WorldWideScience

Sample records for affects bone homeostasis

  1. Urokinase plasminogen activator receptor affects bone homeostasis by regulating osteoblast and osteoclast function

    DEFF Research Database (Denmark)

    Furlan, Federico; Galbiati, Clara; Jørgensen, Niklas R;

    2007-01-01

    reorganization in mature osteoclasts. INTRODUCTION: Urokinase receptor (uPAR) is actively involved in the regulation of important cell functions, such as proliferation, adhesion, and migration. It was previously shown that the major players in bone remodeling, osteoblasts and osteoclasts, express u...... with other osteoblasts markers. On the resorptive side, the number of osteoclasts formed in vitro from uPAR KO monocytes was decreased. Podosome imaging in uPAR KO osteoclasts revealed a defect in actin ring formation. CONCLUSIONS: The defective proliferation and differentiation of bone cells, coincident...

  2. Urokinase plasminogen activator receptor affects bone homeostasis by regulating osteoblast and osteoclast function

    DEFF Research Database (Denmark)

    Furlan, Federico; Galbiati, Clara; Jørgensen, Niklas R;

    2007-01-01

    reorganization in mature osteoclasts. INTRODUCTION: Urokinase receptor (uPAR) is actively involved in the regulation of important cell functions, such as proliferation, adhesion, and migration. It was previously shown that the major players in bone remodeling, osteoblasts and osteoclasts, express u...... to mechanical tests. UPAR KO calvaria osteoblasts were characterized by proliferation assays, RT-PCR for important proteins secreted during differentiation, and immunoblot for activator protein 1 (AP-1) family members. In vitro osteoclast formation was tested with uPAR KO bone marrow monocytes in the presence...... a proliferative advantage with no difference in apoptosis, higher matrix mineralization, and earlier appearance of alkaline phosphatase (ALP). Surface RANKL expression at different stages of differentiation was not altered. AP-1 components, such as JunB and Fra-1, were upregulated in uPAR KO osteoblasts, along...

  3. Impact of the Oral Commensal Flora on Alveolar Bone Homeostasis

    OpenAIRE

    Irie, K; Novince, C.M.; Darveau, R. P.

    2014-01-01

    Homeostasis of healthy periodontal tissues is affected by innate and adaptive immunosurveillance mechanisms in response to the normal oral flora. Recent comparisons of germ-free (GF) and normal specific-pathogen-free (SPF) mice have revealed the impact of host immunosurveillance mechanisms in response to the normal oral flora on alveolar bone height. Prior reports that alveolar bone height is significantly less in normal SPF mice compared with their age- and strain-matched GF counterparts sug...

  4. Role of bone marrow macrophages in controlling homeostasis and repair in bone and bone marrow niches.

    Science.gov (United States)

    Kaur, Simranpreet; Raggatt, Liza Jane; Batoon, Lena; Hume, David Arthur; Levesque, Jean-Pierre; Pettit, Allison Robyn

    2017-01-01

    Macrophages, named for their phagocytic ability, participate in homeostasis, tissue regeneration and inflammatory responses. Bone and adjacent marrow contain multiple functionally unique resident tissue macrophage subsets which maintain and regulate anatomically distinct niche environments within these interconnected tissues. Three subsets of bone-bone marrow resident tissue macrophages have been characterised; erythroblastic island macrophages, haematopoietic stem cell niche macrophages and osteal macrophages. The role of these macrophages in controlling homeostasis and repair in bone and bone marrow niches is reviewed in detail.

  5. Does microbiota composition affect thyroid homeostasis?

    Science.gov (United States)

    Virili, Camilla; Centanni, Marco

    2015-08-01

    The intestinal microbiota is essential for the host to ensure digestive and immunologic homeostasis. When microbiota homeostasis is impaired and dysbiosis occurs, the malfunction of epithelial barrier leads to intestinal and systemic disorders, chiefly immunologic and metabolic. The role of the intestinal tract is crucial in the metabolism of nutrients, drugs, and hormones, including exogenous and endogenous iodothyronines as well as micronutrients involved in thyroid homeostasis. However, the link between thyroid homeostasis and microbiota composition is not yet completely ascertained. A pathogenetic link with dysbiosis has been described in different autoimmune disorders but not yet fully elucidated in autoimmune thyroid disease which represents the most frequent of them. Anyway, it has been suggested that intestinal dysbiosis may trigger autoimmune thyroiditis. Furthermore, hypo- and hyper-thyroidism, often of autoimmune origin, were respectively associated to small intestinal bacterial overgrowth and to changes in microbiota composition. Whether some steps of this thyroid network may be affected by intestinal microbiota composition is briefly discussed below.

  6. Maintenance of Bone Homeostasis by DLL1-Mediated Notch Signaling.

    Science.gov (United States)

    Muguruma, Yukari; Hozumi, Katsuto; Warita, Hiroyuki; Yahata, Takashi; Uno, Tomoko; Ito, Mamoru; Ando, Kiyoshi

    2016-10-13

    Adult bone mass is maintained through a balance of the activities of osteoblasts and osteoclasts. Although Notch signaling has been shown to maintain bone homeostasis by controlling the commitment, differentiation, and function of cells in both the osteoblast and osteoclast lineages, the precise mechanisms by which Notch performs such diverse and complex roles in bone physiology remain unclear. By using a transgenic approach that modified the expression of delta-like 1 (DLL1) or Jagged1 (JAG1) in an osteoblast-specific manner, we investigated the ligand-specific effects of Notch signaling in bone homeostasis. This study demonstrated for the first time that the proper regulation of DLL1 expression, but not JAG1 expression, in osteoblasts is essential for the maintenance of bone remodeling. DLL1-induced Notch signaling was responsible for the expansion of the bone-forming cell pool by promoting the proliferation of committed but immature osteoblasts. However, DLL1-Notch signaling inhibited further differentiation of the expanded osteoblasts to become fully matured functional osteoblasts, thereby substantially decreasing bone formation. Osteoblast-specific expression of DLL1 did not alter the intrinsic differentiation ability of cells of the osteoclast lineage. However, maturational arrest of osteoblasts caused by the DLL1 transgene impaired the maturation and function of osteoclasts due to a failed osteoblast-osteoclast coupling, resulting in severe suppression of bone metabolic turnover. Taken together, DLL1-mediated Notch signaling is critical for proper bone remodeling as it regulates the differentiation and function of both osteoblasts and osteoclasts. Our study elucidates the importance of ligand-specific activation of Notch signaling in the maintenance of bone homeostasis. This article is protected by copyright. All rights reserved.

  7. Osteopontin: Relation between Adipose Tissue and Bone Homeostasis

    Science.gov (United States)

    Messina, Antonietta; Monda, Vincenzo; Viggiano, Emanuela; Valenzano, Anna; Esposito, Teresa; Cibelli, Giuseppe

    2017-01-01

    Osteopontin (OPN) is a multifunctional protein mainly associated with bone metabolism and remodeling. Besides its physiological functions, OPN is implicated in the pathogenesis of a variety of disease states, such as obesity and osteoporosis. Importantly, during the last decades obesity and osteoporosis have become among the main threats to health worldwide. Because OPN is a protein principally expressed in cells with multifaceted effects on bone morphogenesis and remodeling and because it seems to be one of the most overexpressed genes in the adipose tissue of the obese contributing to osteoporosis, this mini review will highlight recent insights about relation between adipose tissue and bone homeostasis.

  8. [Bone and Calcium Metabolisms Associated with Dental and Oral-Maxillofacial Diseases. Bone remodeling and alveolar bone homeostasis].

    Science.gov (United States)

    Nakashima, Tomoki

    2015-08-01

    Bone, which support motile organ and periodontal tissue, is renewing throughout our life. This restructuring process is called "bone remodeling" , and osteoclasts and osteoblasts play a crucial role in this process. Bone remodeling is important not only for normal bone mass and strength, but also for mineral homeostasis. Bone remodeling is stringently regulated by communication between bone component cells such as osteoclasts, osteoblasts and osteocytes. An imbalance of this process is often linked to various bone diseases. Alveolar bone remodeling is directly influenced by occlusal force from the teeth. Thus, the elucidation of the regulatory mechanisms involved in alveolar bone remodeling is critical for a deeper understanding of the maintenance of healthy tooth and dental disease.

  9. Lipocalin 2: a new mechanoresponding gene regulating bone homeostasis.

    Science.gov (United States)

    Rucci, Nadia; Capulli, Mattia; Piperni, Sara Gemini; Cappariello, Alfredo; Lau, Patrick; Frings-Meuthen, Petra; Heer, Martina; Teti, Anna

    2015-02-01

    Mechanical loading represents a crucial factor in the regulation of skeletal homeostasis. Its reduction causes loss of bone mass, eventually leading to osteoporosis. In a previous global transcriptome analysis performed in mouse calvarial osteoblasts subjected to simulated microgravity, the most upregulated gene compared to unit gravity condition was Lcn2, encoding the adipokine Lipocalin 2 (LCN2), whose function in bone metabolism is poorly known. To investigate the mechanoresponding properties of LCN2, we evaluated LCN2 levels in sera of healthy volunteers subjected to bed rest, and found a significant time-dependent increase of this adipokine compared to time 0. We then evaluated the in vivo LCN2 regulation in mice subjected to experimentally-induced mechanical unloading by (1) tail suspension, (2) muscle paralysis by botulin toxin A (Botox), or (3) genetically-induced muscular dystrophy (MDX mice), and observed that Lcn2 expression was upregulated in the long bones of all of them, whereas physical exercise counteracted this increase. Mechanistically, in primary osteoblasts transfected with LCN2-expression-vector (OBs-Lcn2) we observed that Runx2 and its downstream genes, Osterix and Alp, were transcriptionally downregulated, and alkaline phosphatase (ALP) activity was less prominent versus empty-vector transduced osteoblasts (OBs-empty). OBs-Lcn2 also exhibited an increase of the Rankl/Opg ratio and IL-6 mRNA, suggesting that LCN2 could link poor differentiation of osteoblasts to enhanced osteoclast stimulation. In fact, incubation of purified mouse bone marrow mononuclear cells with conditioned media from OBs-Lcn2 cultures, or their coculture with OBs-Lcn2, improved osteoclastogenesis compared to OBs-empty, whereas treatment with recombinant LCN2 had no effect. In conclusion, our data indicate that LCN2 is a novel osteoblast mechanoresponding gene and that its regulation could be central to the pathological response of the bone tissue to low mechanical forces.

  10. Affect development as a need to preserve homeostasis.

    Science.gov (United States)

    Dönmez, Aslıhan; Ceylan, Mehmet Emin; Ünsalver, Barış Önen

    2016-03-01

    In this review, we aim to present our hypothesis about the neural development of affect. According to this view, affect develops at a multi-layered process, and as a mediator between drives, emotion and cognition. This development is parallel to the evolution of the brain from reptiles to mammals. There are five steps in this process: (1) Because of the various environmental challenges, changes in the autonomic nervous system occur and homeostasis becomes destabilized; (2) Drives arise from the destabilized homeostasis; (3) Drives trigger the neural basis of the basic emotional systems; (4) These basic emotions evolve into affect to find the particular object to invest the emotional energy; and (5) In the final stage, cognition is added to increase the possibility of identifying a particular object. In this paper, we will summarize the rationale behind this view, which is based on neuroscientific proofs, such as evolution of autonomic nervous system, neural basis the raw affective states, the interaction between affect and cognition, related brain areas, related neurotransmitters, as well as some clinical examples.

  11. TGF-βand BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease

    Institute of Scientific and Technical Information of China (English)

    Mengrui Wu; Guiqian Chen; and Yi-Ping Li

    2016-01-01

    Transforming growth factor-beta (TGF-β) and bone morphogenic protein (BMP) signaling has fundamental roles in both embryonic skeletal development and postnatal bone homeostasis. TGF-βs and BMPs, acting on a tetrameric receptor complex, transduce signals to both the canonical Smad-dependent signaling pathway (that is, TGF-β/BMP ligands, receptors, and Smads) and the non-canonical-Smad-independent signaling pathway (that is, p38 mitogen-activated protein kinase/p38 MAPK) to regulate mesenchymal stem cell differentiation during skeletal development, bone formation and bone homeostasis. Both the Smad and p38 MAPK signaling pathways converge at transcription factors, for example, Runx2 to promote osteoblast differentiation and chondrocyte differentiation from mesenchymal precursor cells. TGF-βand BMP signaling is controlled by multiple factors, including the ubiquitin–proteasome system, epigenetic factors, and microRNA. Dysregulated TGF-βand BMP signaling result in a number of bone disorders in humans. Knockout or mutation of TGF-βand BMP signaling-related genes in mice leads to bone abnormalities of varying severity, which enable a better understanding of TGF-β/BMP signaling in bone and the signaling networks underlying osteoblast differentiation and bone formation. There is also crosstalk between TGF-β/BMP signaling and several critical cytokines’ signaling pathways (for example, Wnt, Hedgehog, Notch, PTHrP, and FGF) to coordinate osteogenesis, skeletal development, and bone homeostasis. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in osteoblast differentiation, chondrocyte differentiation, skeletal development, cartilage formation, bone formation, bone homeostasis, and related human bone diseases caused by the disruption of TGF-β/BMP signaling.

  12. Effects of microgravity on bone and calcium homeostasis

    Science.gov (United States)

    Zérath, E.

    Mechanical function is known to be of crucial importance for the maintenance of bone tissue. Gravity on one hand and muscular effort on the other hand are required for normal skeletal structure. It has been shown by numerous experimental studies that loss of total-body calcium, and marked skeletal changes occur in people who have flown in space. However, most of the pertinent investigations have been conducted on animal models, including rats and non-human primates, and a reasonably clear picture of bone response to spaceflight has emerged during the past few years. Osteopenia induced by microgravity was found to be associated with reduction in both cortical and trabecular bone formation, alteration in mineralization patterns, and disorganization of collagen, and non-collagenous protein metabolism. Recently, cell-culture techniques have offered a direct approach of altered gravity effects at the osteoblastic-cell level. But the fundamental mechanisms by which bone and calcium are lost during spaceflight are not yet fully known. Infrequenccy and high financial cost of flights have created the necessity to develop on-Earth models designed to mimic weightlessness effects. Antiorthostatic suspension devices are now commonly used to obtain hindlimb unloading in rats, with skeletal effects similar to those observed after spaceflight. Therefore, actual and ``simulated'' spaceflights, with investigations conducted at whole body and cellular levels, are needed to elucidate pathogeny of bone loss in space, to develop effective countermeasures, and to study recovery processes of bone changes after return to Earth.

  13. Bloodletting therapy in hemochromatosis: Does it affect trace element homeostasis?

    Science.gov (United States)

    Bolann, Bjørn J; Distante, Sonia; Mørkrid, Lars; Ulvik, Rune J

    2015-01-01

    Hemochromatosis is the most common hereditary disorder in the Nordic population, if left untreated it can result in severe parenchymal iron accumulation. Bloodletting is mainstay treatment. Iron and trace elements partially share cellular uptake and transport mechanisms, and the aim of the present study was to see if bloodletting for hemochromatosis affects trace elements homeostasis. We recruited patients referred for diagnosis and treatment of hemochromatosis, four women and 22 men 23-68 years of age. Thirteen were C282Y homozygote, one was C282Y heterozygote, three were H63D homozygote, seven were compound heterozygote and two had none of the mutations above. Iron and liver function tests were performed; serum levels of trace elements were measured using inductively coupled plasma mass spectrometry. Results before the start of treatment and after normalization of iron parameters were compared. On completion of the bloodlettings the following average serum concentrations increased: Co from 5.6 to 11.5 nmol/L, serum Cu 16.2-17.6 μmol/L, Ni increased from 50.0 to 52.6 nmol/L and Sb from 13.2 to 16.3 nmol/L. Average serum Mn concentration declined from 30.2 to 28.3 nmol/L. All changes were statistically significant (by paired t-test). B, Ba, Cs, Mo, Se, Sr and Zn were not significantly changed. We conclude that bloodlettings in hemochromatosis lead to changes in trace element metabolism, including increased absorption of potentially toxic elements.

  14. Homeostasis

    Directory of Open Access Journals (Sweden)

    Anna Negroni

    2015-01-01

    Full Text Available Intestinal epithelial cells (IECs form a physiochemical barrier that separates the intestinal lumen from the host’s internal milieu and is critical for electrolyte passage, nutrient absorption, and interaction with commensal microbiota. Moreover, IECs are strongly involved in the intestinal mucosal inflammatory response as well as in mucosal innate and adaptive immune responses. Cell death in the intestinal barrier is finely controlled, since alterations may lead to severe disorders, including inflammatory diseases. The emerging picture indicates that intestinal epithelial cell death is strictly related to the maintenance of tissue homeostasis. This review is focused on previous reports on different forms of cell death in intestinal epithelium.

  15. The role of the BH3-only protein Noxa in bone homeostasis.

    Science.gov (United States)

    Idrus, Erik; Nakashima, Tomoki; Wang, Ling; Hayashi, Mikihito; Okamoto, Kazuo; Kodama, Tatsuhiko; Tanaka, Nobuyuki; Taniguchi, Tadatsugu; Takayanagi, Hiroshi

    2011-07-08

    Bone homeostasis is maintained by a dynamic balance between bone resorption by osteoclasts and bone formation by osteoblasts. Since excessive osteoclast activity is implicated in pathological bone resorption, understanding the mechanism underlying osteoclast differentiation, function and survival is of both scientific and clinical importance. Osteoclasts are monocyte/macrophage lineage cells with a short life span that undergo rapid apoptosis, the rate of which critically determines the level of bone resorption in vivo. However, the molecular basis of rapid osteoclast apoptosis remains obscure. Here we report the role of a BH3-only protein, Noxa (encoded by the Pmaip1 gene), in bone homeostasis using Noxa-deficient mice. Among the Bcl-2 family members, Noxa was selectively induced during osteoclastogenesis. Mice lacking Noxa exhibit a severe osteoporotic phenotype due to an increased number of osteoclasts. Noxa deficiency did not have any effect on the number of osteoclast precursor cells or the expression of osteoclast-specific genes, but led to a prolonged survival of osteoclasts. Furthermore, adenovirus-mediated Noxa overexpression remarkably reduced bone loss in a model of inflammation-induced bone destruction. This study reveals Noxa to be a crucial regulator of osteoclast apoptosis, and may provide a molecular basis for a new therapeutic approach to bone diseases.

  16. Affected chromosome homeostasis and genomic instability of clonal yeast cultures.

    Science.gov (United States)

    Adamczyk, Jagoda; Deregowska, Anna; Panek, Anita; Golec, Ewelina; Lewinska, Anna; Wnuk, Maciej

    2016-05-01

    Yeast cells originating from one single colony are considered genotypically and phenotypically identical. However, taking into account the cellular heterogeneity, it seems also important to monitor cell-to-cell variations within a clone population. In the present study, a comprehensive yeast karyotype screening was conducted using single chromosome comet assay. Chromosome-dependent and mutation-dependent changes in DNA (DNA with breaks or with abnormal replication intermediates) were studied using both single-gene deletion haploid mutants (bub1, bub2, mad1, tel1, rad1 and tor1) and diploid cells lacking one active gene of interest, namely BUB1/bub1, BUB2/bub2, MAD1/mad1, TEL1/tel1, RAD1/rad1 and TOR1/tor1 involved in the control of cell cycle progression, DNA repair and the regulation of longevity. Increased chromosome fragility and replication stress-mediated chromosome abnormalities were correlated with elevated incidence of genomic instability, namely aneuploid events-disomies, monosomies and to a lesser extent trisomies as judged by in situ comparative genomic hybridization (CGH). The tor1 longevity mutant with relatively balanced chromosome homeostasis was found the most genomically stable among analyzed mutants. During clonal yeast culture, spontaneously formed abnormal chromosome structures may stimulate changes in the ploidy state and, in turn, promote genomic heterogeneity. These alterations may be more accented in selected mutated genetic backgrounds, namely in yeast cells deficient in proper cell cycle regulation and DNA repair.

  17. Interoception beyond homeostasis: affect, cognition and mental health

    OpenAIRE

    Tsakiris, Manos; Critchley, Hugo

    2016-01-01

    Interoception refers to the sensing of the internal state of one's body. Interoception is distinct from the processing of sensory information concerning external (non-self) stimuli (e.g. vision, hearing, touch and smell) and is the afferent axis to internal (autonomic and hormonal) physiological control. However, the impact of interoception extends beyond homeostatic/allostatic reflexes: it is proposed to be fundamental to motivation, emotion (affective feelings and behaviours), social cognit...

  18. Interoception beyond homeostasis: affect, cognition and mental health

    Science.gov (United States)

    Tsakiris, Manos; Critchley, Hugo

    2016-01-01

    Interoception refers to the sensing of the internal state of one's body. Interoception is distinct from the processing of sensory information concerning external (non-self) stimuli (e.g. vision, hearing, touch and smell) and is the afferent axis to internal (autonomic and hormonal) physiological control. However, the impact of interoception extends beyond homeostatic/allostatic reflexes: it is proposed to be fundamental to motivation, emotion (affective feelings and behaviours), social cognition and self-awareness. This view is supported by a growing body of experimental evidence that links peripheral physiological states to mental processes. Within this framework, the representation of self is constructed from early development through continuous integrative representation of biological data from the body, to form the basis for those aspects of conscious awareness grounded on the subjective sense of being a unique individual. This theme issue of the Philosophical Transactions of the Royal Society B draws together state-of-the-art knowledge concerning theoretical, experimental and clinical facets of interoception with the emphasis on cognitive and affective neuroscience. The multidisciplinary and cross-disciplinary perspectives represented in this theme issue disseminate and entrench knowledge about interoception across the scientific community and provide a reference for the conceptualization and further study of interoception across behavioural sciences. PMID:28080961

  19. Vitamin D signaling in calcium and bone homeostasis: a delicate balance.

    Science.gov (United States)

    Carmeliet, Geert; Dermauw, Veronique; Bouillon, Roger

    2015-08-01

    Loss-of-function mutations in genes involved in the vitamin D/vitamin D receptor system have clearly evidenced its critical role for mineral and skeletal homeostasis. Adequate levels of 1,25-dihydroxyvitamin D [1,25(OH)2D], the active form of vitamin D are therefore required and depend on sufficient sunlight exposure or dietary intake. Intestinal calcium absorption is a primary target of 1,25(OH)2D action and this pathway indirectly promotes calcium incorporation in bone. Severe vitamin D deficiency may thus decrease bone quality and leads to osteomalacia, whereas less severe deficiency increases the risk of osteoporosis and bone fractures. On the other hand, high vitamin D levels together with low dietary calcium intake will increase bone resorption and decrease bone mineralization in order to maintain normal serum calcium levels. Appropriate dietary calcium intake and sufficient serum vitamin D levels are thus important for skeletal health. Dosing of calcium and vitamin D supplements is still debated and requires further investigation.

  20. Genetically engineered mouse models to evaluate the role of Wnt secretion in bone development and homeostasis.

    Science.gov (United States)

    Williams, Bart O

    2016-03-01

    Alterations in components of the Wnt signaling pathway are associated with altered bone development and homeostasis in several human diseases. We created genetically engineered mouse models (GEMMs) that mimic the cellular defect associated with the Porcupine mutations in patients with Goltz Syndrome/Focal Dermal Hypoplasia. These GEMMs were established by utilizing mice containing a conditionally inactivatable allele of Wntless/GPR177 (a gene encoding a protein required for the transport of Porcupine-modified ligand to the plasma membrane for secretion). We crossed this strain to another which drives cre-mediated gene deletion in mature osteoblasts (Osteocalcin-cre) resulted in mice lacking the ability to secrete Wnt ligands in this cell type. These mice displayed severely reduced bone mass and provide a model to understand the effects of disrupting the ability to secrete Wnt ligands on the skeletal system.

  1. Effects of denosumab, alendronate, or denosumab following alendronate on bone turnover, calcium homeostasis, bone mass and bone strength in ovariectomized cynomolgus monkeys.

    Science.gov (United States)

    Kostenuik, Paul J; Smith, Susan Y; Samadfam, Rana; Jolette, Jacquelin; Zhou, Lei; Ominsky, Michael S

    2015-04-01

    deleterious effects on Ca homeostasis or bone quality.

  2. NPY neuron-specific Y2 receptors regulate adipose tissue and trabecular bone but not cortical bone homeostasis in mice.

    Directory of Open Access Journals (Sweden)

    Yan-Chuan Shi

    Full Text Available BACKGROUND: Y2 receptor signalling is known to be important in neuropeptide Y (NPY-mediated effects on energy homeostasis and bone physiology. Y2 receptors are located post-synaptically as well as acting as auto receptors on NPY-expressing neurons, and the different roles of these two populations of Y2 receptors in the regulation of energy homeostasis and body composition are unclear. METHODOLOGY/PRINCIPAL FINDINGS: We thus generated two conditional knockout mouse models, Y2(lox/lox and NPYCre/+;Y2(lox/lox, in which Y2 receptors can be selectively ablated either in the hypothalamus or specifically in hypothalamic NPY-producing neurons of adult mice. Specific deletion of hypothalamic Y2 receptors increases food intake and body weight compared to controls. Importantly, specific ablation of hypothalamic Y2 receptors on NPY-containing neurons results in a significantly greater adiposity in female but not male mice, accompanied by increased hepatic triglyceride levels, decreased expression of liver carnitine palmitoyltransferase (CPT1 and increased expression of muscle phosphorylated acetyl-CoA carboxylase (ACC. While food intake, body weight, femur length, bone mineral content, density and cortical bone volume and thickness are not significantly altered, trabecular bone volume and number were significantly increased by hypothalamic Y2 deletion on NPY-expressing neurons. Interestingly, in situ hybridisation reveals increased NPY and decreased proopiomelanocortin (POMC mRNA expression in the arcuate nucleus of mice with hypothalamus-specific deletion of Y2 receptors in NPY neurons, consistent with a negative feedback mechanism between NPY expression and Y2 receptors on NPY-ergic neurons. CONCLUSIONS/SIGNIFICANCE: Taken together these data demonstrate the anti-obesogenic role of Y2 receptors in the brain, notably on NPY-ergic neurons, possibly via inhibition of NPY neurons and concomitant stimulation of POMC-expressing neurons in the arcuate nucleus of

  3. Newly identified protein Imi1 affects mitochondrial integrity and glutathione homeostasis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kowalec, Piotr; Grynberg, Marcin; Pająk, Beata; Socha, Anna; Winiarska, Katarzyna; Fronk, Jan; Kurlandzka, Anna

    2015-09-01

    Glutathione homeostasis is crucial for cell functioning. We describe a novel Imi1 protein of Saccharomyces cerevisiae affecting mitochondrial integrity and involved in controlling glutathione level. Imi1 is cytoplasmic and, except for its N-terminal Flo11 domain, has a distinct solenoid structure. A lack of Imi1 leads to mitochondrial lesions comprising aberrant morphology of cristae and multifarious mtDNA rearrangements and impaired respiration. The mitochondrial malfunctioning is coupled to significantly decrease the level of intracellular reduced glutathione without affecting oxidized glutathione, which decreases the reduced/oxidized glutathione ratio. These defects are accompanied by decreased cadmium sensitivity and increased phytochelatin-2 level.

  4. Exposure to pastures fertilised with sewage sludge disrupts bone tissue homeostasis in sheep

    Energy Technology Data Exchange (ETDEWEB)

    Lind, P. Monica [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden)], E-mail: Monica.Lind@ki.se; Gustafsson, Magnus [Department of Environmental Toxicology, Uppsala University, Uppsala (Sweden); Hermsen, Sanne A.B. [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Larsson, Sune [Department of Orthopaedics, University of Uppsala, Uppsala (Sweden); Kyle, Carol E. [Macaulay Institute, Craigiebuckler, Aberdeen AB15 8QH (United Kingdom); Orberg, Jan [Department of Environmental Toxicology, Uppsala University, Uppsala (Sweden); Rhind, Stewart M. [Macaulay Institute, Craigiebuckler, Aberdeen AB15 8QH (United Kingdom)

    2009-03-15

    The femurs of male and female sheep (Ovis aries), aged 18 months, bred on pastures fertilized twice annually with sewage sludge (2.25 tonnes dry matter/ha; Treated; T)) or on pastures treated with inorganic fertilizer (Control; C) were studied, using peripheral Quantitative Computed Tomography (pQCT) and the three-point bending test. Males were maintained on the respective treatments from conception to weaning and then maintained on control pastures while the females were maintained on the respective treatments until slaughter. T rams exhibited increased total bone mineral density (BMD) at the metaphyseal part of femur (+ 10.5%, p < 0.01) compared with C rams but had a reduced total cross sectional area (CSA, - 11.5%, p < 0.001), trabecular CSA (- 17.1%, p < 0.01) and periosteal circumference (- 5.7%, p < 0.001). In the mid-diaphyseal part, T rams had an increased total BMD (+ 13.8%, p < 0.0001) and stiffness (+ 6.4%, p < 0.01) but reduced total CSA (- 12.1%, p < 0.0001) and marrow cavity (- 25.8%, p < 0.0001), relative to C rams. In ewes although pQCT analysis of neither the metaphyseal nor the mid-diaphyseal part of the female femur bones showed any significant differences with treatment, the biomechanical method revealed a reduction in load at failure (- 17.3%, p < 0.01) and stiffness (- 10.7%, p < 0.05) amongst T ewes. It is concluded that exposure to pollutants present in sewage sludge can perturb bone tissue homeostasis in sheep, but particularly in males.

  5. The Allelochemical MDCA Inhibits Lignification and Affects Auxin Homeostasis1[OPEN

    Science.gov (United States)

    Steenackers, Ward; Corneillie, Sander; Van de Wouwer, Dorien; Zažímalová, Eva

    2016-01-01

    The phenylpropanoid 3,4-(methylenedioxy)cinnamic acid (MDCA) is a plant-derived compound first extracted from roots of Asparagus officinalis and further characterized as an allelochemical. Later on, MDCA was identified as an efficient inhibitor of 4-COUMARATE-CoA LIGASE (4CL), a key enzyme of the general phenylpropanoid pathway. By blocking 4CL, MDCA affects the biosynthesis of many important metabolites, which might explain its phytotoxicity. To decipher the molecular basis of the allelochemical activity of MDCA, we evaluated the effect of this compound on Arabidopsis thaliana seedlings. Metabolic profiling revealed that MDCA is converted in planta into piperonylic acid (PA), an inhibitor of CINNAMATE-4-HYDROXYLASE (C4H), the enzyme directly upstream of 4CL. The inhibition of C4H was also reflected in the phenolic profile of MDCA-treated plants. Treatment of in vitro grown plants resulted in an inhibition of primary root growth and a proliferation of lateral and adventitious roots. These observed growth defects were not the consequence of lignin perturbation, but rather the result of disturbing auxin homeostasis. Based on DII-VENUS quantification and direct measurement of cellular auxin transport, we concluded that MDCA disturbs auxin gradients by interfering with auxin efflux. In addition, mass spectrometry was used to show that MDCA triggers auxin biosynthesis, conjugation, and catabolism. A similar shift in auxin homeostasis was found in the c4h mutant ref3-2, indicating that MDCA triggers a cross talk between the phenylpropanoid and auxin biosynthetic pathways independent from the observed auxin efflux inhibition. Altogether, our data provide, to our knowledge, a novel molecular explanation for the phytotoxic properties of MDCA. PMID:27506238

  6. The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects

    Science.gov (United States)

    Zerwekh, J. E.; Ruml, L. A.; Gottschalk, F.; Pak, C. Y.; Blomqvist, C. G. (Principal Investigator)

    1998-01-01

    This study was undertaken to examine the effects of 12 weeks of skeletal unloading on parameters of calcium homeostasis, calcitropic hormones, bone histology, and biochemical markers of bone turnover in 11 normal subjects (9 men, 2 women; 34 +/- 11 years of age). Following an ambulatory control evaluation, all subjects underwent 12 weeks of bed rest. An additional metabolic evaluation was performed after 12 days of reambulation. Bone mineral density declined at the spine (-2.9%, p = 0.092) and at the hip (-3.8%, p = 0.002 for the trochanter). Bed rest prompted a rapid, sustained, significant increase in urinary calcium and phosphorus as well as a significant increase in serum calcium. Urinary calcium increased from a pre-bed rest value of 5.3 mmol/day to values as high as 73 mmol/day during bed rest. Immunoreactive parathyroid hormone and serum 1,25-dihydroxyvitamin D declined significantly during bed rest, although the mean values remained within normal limits. Significant changes in bone histology included a suppression of osteoblastic surface for cancellous bone (3.1 +/- 1.3% to 1.9 +/- 1.5%, p = 0.0142) and increased bone resorption for both cancellous and cortical bone. Cortical eroded surface increased from 3.5 +/- 1.1% to 7.3 +/- 4.0% (p = 0.018) as did active osteoclastic surface (0.2 +/- 0.3% to 0.7 +/- 0.7%, p = 0.021). Cancellous eroded surface increased from 2.1 +/- 1.1% to 4.7 +/- 2.2% (p = 0.002), while mean active osteoclastic surface doubled (0.2 +/- 0.2% to 0.4 +/- 0.3%, p = 0.020). Serum biochemical markers of bone formation (osteocalcin, bone-specific alkaline phosphatase, and type I procollagen extension peptide) did not change significantly during bed rest. Urinary biochemical markers of bone resorption (hydroxyproline, deoxypyridinoline, and N-telopeptide of type I collagen) as well as a serum marker of bone resorption (type I collagen carboxytelopeptide) all demonstrated significant increases during bed rest which declined toward normal

  7. Bone Is a Major Target of PTH/PTHrP Receptor Signaling in Regulation of Fetal Blood Calcium Homeostasis.

    Science.gov (United States)

    Hirai, Takao; Kobayashi, Tatsuya; Nishimori, Shigeki; Karaplis, Andrew C; Goltzman, David; Kronenberg, Henry M

    2015-08-01

    The blood calcium concentration during fetal life is tightly regulated within a narrow range by highly interactive homeostatic mechanisms that include transport of calcium across the placenta and fluxes in and out of bone; the mechanisms of this regulation are poorly understood. Our findings that endochondral bone-specific PTH/PTHrP receptor (PPR) knockout (KO) mice showed significant reduction of fetal blood calcium concentration compared with that of control littermates at embryonic day 18.5 led us to focus on bone as a possibly major determinant of fetal calcium homeostasis. We found that the fetal calcium concentration of Runx2 KO mice was significantly higher than that of control littermates, suggesting that calcium flux into bone had a considerable influence on the circulating calcium concentration. Moreover, Runx2:PTH double mutant fetuses showed calcium levels similar to those of Runx2 KO mice, suggesting that part of the fetal hypocalcemia in PTH KO mice was caused by the increment of the mineralized bone mass allowed by the formation of osteoblasts. Finally, Rank:PTH double mutant mice had a blood calcium concentration even lower than that of the either Rank KO or PTH KO mice alone at embryonic day 18.5. These observations in our genetic models suggest that PTH/PTHrP receptor signaling in bones has a significant role of the regulation of fetal blood calcium concentration and that both placental transport and osteoclast activation contribute to PTH's hypercalcemic action. They also show that PTH-independent deposition of calcium in bone is the major controller of fetal blood calcium level.

  8. Intestinal lamina propria dendritic cells maintain T cell homeostasis but do not affect commensalism.

    Science.gov (United States)

    Welty, Nathan E; Staley, Christopher; Ghilardi, Nico; Sadowsky, Michael J; Igyártó, Botond Z; Kaplan, Daniel H

    2013-09-23

    Dendritic cells (DCs) in the intestinal lamina propria (LP) are composed of two CD103(+) subsets that differ in CD11b expression. We report here that Langerin is expressed by human LP DCs and that transgenic human langerin drives expression in CD103(+)CD11b(+) LP DCs in mice. This subset was ablated in huLangerin-DTA mice, resulting in reduced LP Th17 cells without affecting Th1 or T reg cells. Notably, cognate DC-T cell interactions were not required for Th17 development, as this response was intact in huLangerin-Cre I-Aβ(fl/fl) mice. In contrast, responses to intestinal infection or flagellin administration were unaffected by the absence of CD103(+)CD11b(+) DCs. huLangerin-DTA x BatF3(-/-) mice lacked both CD103(+) LP DC subsets, resulting in defective gut homing and fewer LP T reg cells. Despite these defects in LP DCs and resident T cells, we did not observe alterations of intestinal microbial communities. Thus, CD103(+) LP DC subsets control T cell homeostasis through both nonredundant and overlapping mechanisms.

  9. Intestinal lamina propria dendritic cells maintain T cell homeostasis but do not affect commensalism

    Science.gov (United States)

    Welty, Nathan E.; Staley, Christopher; Ghilardi, Nico; Sadowsky, Michael J.; Igyártó, Botond Z.

    2013-01-01

    Dendritic cells (DCs) in the intestinal lamina propria (LP) are composed of two CD103+ subsets that differ in CD11b expression. We report here that Langerin is expressed by human LP DCs and that transgenic human langerin drives expression in CD103+CD11b+ LP DCs in mice. This subset was ablated in huLangerin-DTA mice, resulting in reduced LP Th17 cells without affecting Th1 or T reg cells. Notably, cognate DC–T cell interactions were not required for Th17 development, as this response was intact in huLangerin-Cre I-Aβfl/fl mice. In contrast, responses to intestinal infection or flagellin administration were unaffected by the absence of CD103+CD11b+ DCs. huLangerin-DTA x BatF3−/− mice lacked both CD103+ LP DC subsets, resulting in defective gut homing and fewer LP T reg cells. Despite these defects in LP DCs and resident T cells, we did not observe alterations of intestinal microbial communities. Thus, CD103+ LP DC subsets control T cell homeostasis through both nonredundant and overlapping mechanisms. PMID:24019552

  10. SLC30A9 mutation affecting intracellular zinc homeostasis causes a novel cerebro-renal syndrome.

    Science.gov (United States)

    Perez, Yonatan; Shorer, Zamir; Liani-Leibson, Keren; Chabosseau, Pauline; Kadir, Rotem; Volodarsky, Michael; Halperin, Daniel; Barber-Zucker, Shiran; Shalev, Hanna; Schreiber, Ruth; Gradstein, Libe; Gurevich, Evgenia; Zarivach, Raz; Rutter, Guy A; Landau, Daniel; Birk, Ohad S

    2017-02-09

    A novel autosomal recessive cerebro-renal syndrome was identified in consanguineous Bedouin kindred: neurological deterioration was evident as of early age, progressing into severe intellectual disability, profound ataxia, camptocormia and oculomotor apraxia. Brain MRI was normal. Four of the six affected individuals also had early-onset nephropathy with features of tubulo-interstitial nephritis, hypertension and tendency for hyperkalemia, though none had rapid deterioration of renal function. Genome wide linkage analysis identified an ∼18 Mb disease-associated locus on chromosome 4 (maximal logarithm of odds score 4.4 at D4S2971; θ = 0). Whole exome sequencing identified a single mutation in SLC30A9 within this locus, segregating as expected within the kindred and not found in a homozygous state in 300 Bedouin controls. We showed that SLC30A9 (solute carrier family 30 member 9; also known as ZnT-9) is ubiquitously expressed with high levels in cerebellum, skeletal muscle, thymus and kidney. Confocal analysis of SH-SY5Y cells overexpressing SLC30A9 fused to enhanced green fluorescent protein demonstrated vesicular cytosolic localization associated with the endoplasmic reticulum, not co-localizing with endosomal or Golgi markers. SLC30A9 encodes a putative zinc transporter (by similarity) previously associated with Wnt signalling. However, using dual-luciferase reporter assay in SH-SY5Y cells we showed that Wnt signalling was not affected by the mutation. Based on protein modelling, the identified mutation is expected to affect SLC30A9's highly conserved cation efflux domain, putatively disrupting its transmembrane helix structure. Cytosolic Zn2+ measurements in HEK293 cells overexpressing wild-type and mutant SLC30A9 showed lower zinc concentration within mutant rather than wild-type SLC30A9 cells. This suggests that SLC30A9 has zinc transport properties affecting intracellular zinc homeostasis, and that the molecular mechanism of the disease is through

  11. Transgenic medaka fish as models to analyze bone homeostasis under micro-gravity conditions in vivo

    Science.gov (United States)

    Winkler, C.; Wagner, T.; Renn, J.; Goerlich, R.; Schartl, M.

    Long-term space flight and microgravity results in bone loss that can be explained by reduced activity of bone-forming osteoblast cells and/or an increase in activity of bone resorbing osteoclast cells. Osteoprotegerin (OPG), a secreted protein of 401 amino acids, has been shown to regulate the balance between osteoblast and osteoclast formation and thereby warrants constant bone mass under normal gravitational conditions. Consistent with this, earlier reports using transgenic mice have shown that increased activation of OPG leads to exc essive bone formation (osteopetrosis), while inactivation of OPG leads to bone loss (osteoporosis). Importantly, it has recently been reported that expression of murine OPG is regulated by vector averaged gravity (Kanematsu et al., 2002, Bone 30, p553). The small bony fish medaka (Oryzias latipes ) has attracted increasing attention as genetic model system to study developmental and pathological processes. To analyze the molecular mechanisms of bone formation in this small vertebrate, we have isolated two related genes, opr-1 and opr -2, from medaka. Our phylogenetic analysis revealed that both genes originated from a common ancestor by fish-specific gene duplication and represent the orthologs of the mammalian OPG gene. Both opr genes are differentially expressed during embryonic and larval development, in adult tissues and in cultured primary osteoblast cells. We have characterized their promoter regions and identified consensus binding sites for transcription factors of the bone-morphogenetic-protein (BMP) p thway and for core-binding-factor-1Aa (cbfa1). Cbfa1 has been shown to be the key regulator of OPG expression during several steps of osteoblast differentiation in mammals. This opens the possibility that the mechanisms controlling bone formation in teleost fish and higher vertebrates are regulated by related mechanisms. We are currently generating transgenic medakafish expressing a GFP reporter gene under control of the

  12. Accumulation of distinct prelamin A variants in human diploid fibroblasts differentially affects cell homeostasis

    Energy Technology Data Exchange (ETDEWEB)

    Candelario, Jose; Borrego, Stacey [Department of Molecular Microbiology and Immunology, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 (United States); Reddy, Sita, E-mail: sitaredd@usc.edu [Department of Biochemistry and Molecular Biology, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 (United States); Comai, Lucio, E-mail: comai@usc.edu [Department of Molecular Microbiology and Immunology, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 (United States)

    2011-02-01

    levels of the basal transcription factor TATA-binding protein (TBP) and global transcription, and severely limited cell growth. Expression of a prelamin A variant that cannot be farnesylated, although did not appreciably influence cell growth, resulted in the formation of lamin A nucleoplasmic foci and caused, in a minor subpopulation of cells, changes in nuclear morphology that were accompanied by reduced levels of TBP and transcription. In contrast, expression of mature lamin A did not affect any of these parameters. These data demonstrate that accumulation of any partially processed prelamin A protein alters cellular homeostasis to some degree, even though the most dramatic effects are caused by variants with a permanently farnesylated carboxyl-terminal tail.

  13. Bone morphogenetic proteins in inflammation, glucose homeostasis and adipose tissue energy metabolism

    DEFF Research Database (Denmark)

    Grgurevic, Lovorka; Christensen, Gitte Lund; Schulz, Tim J;

    2016-01-01

    Bore morphogenetic proteins (BMPs) are members of the transforming growth factor (TGF)-β superfamily, a group of secreted proteins that regulate embryonic development. This review summarizes the effects of BMPs on physiological processes not exclusively linked to the musculoskeletal system....... Specifically, we focus on the involvement of BMPs in inflammatory disorders, e.g. fibrosis, inflammatory bowel disease, anchylosing spondylitis, rheumatoid arthritis. Moreover, we discuss the role of BMPs in the context of vascular disorders, and explore the role of these signalling proteins in iron...... homeostasis (anaemia, hemochromatosis) and oxidative damage. The second and third parts of this review focus on BMPs in the development of metabolic pathologies such as type-2 diabetes mellitus and obesity. The pancreatic beta cells are the sole source of the hormone insulin and BMPs have recently been...

  14. Mineral and Skeletal Homeostasis Influence the Manner of Bone Loss in Metabolic Osteoporosis due to Calcium-Deprived Diet in Different Sites of Rat Vertebra and Femur

    Science.gov (United States)

    Cavani, Francesco; Smargiassi, Alberto

    2015-01-01

    Rats fed calcium-deprived diet develop osteoporosis due to enhanced bone resorption, secondary to parathyroid overactivity resulting from nutritional hypocalcemia. Therefore, rats provide a good experimental animal model for studying bone modelling alterations during biochemical osteoporosis. Three-month-old Sprague-Dawley male rats were divided into 4 groups: (1) baseline, (2) normal diet for 4 weeks, (3) calcium-deprived diet for 4 weeks, and (4) calcium-deprived diet for 4 weeks and concomitant administration of PTH (1-34) 40 µg/Kg/day. Histomorphometrical analyses were made on cortical and trabecular bone of lumbar vertebral body as well as of mid-diaphysis and distal metaphysis of femur. In all rats fed calcium-deprived diet, despite the reduction of trabecular number (due to the maintenance of mineral homeostasis), an intense activity of bone deposition occurs on the surface of the few remaining trabeculae (in answering to mechanical stresses and, consequently, to maintain the skeletal homeostasis). Different responses were detected in different sites of cortical bone, depending on their main function in answering mineral or skeletal homeostasis. This study represents the starting point for work-in-progress researches, with the aim of defining in detail timing and manners of evolution and recovery of biochemical osteoporosis. PMID:26064895

  15. Mineral and Skeletal Homeostasis Influence the Manner of Bone Loss in Metabolic Osteoporosis due to Calcium-Deprived Diet in Different Sites of Rat Vertebra and Femur

    Directory of Open Access Journals (Sweden)

    Marzia Ferretti

    2015-01-01

    Full Text Available Rats fed calcium-deprived diet develop osteoporosis due to enhanced bone resorption, secondary to parathyroid overactivity resulting from nutritional hypocalcemia. Therefore, rats provide a good experimental animal model for studying bone modelling alterations during biochemical osteoporosis. Three-month-old Sprague-Dawley male rats were divided into 4 groups: (1 baseline, (2 normal diet for 4 weeks, (3 calcium-deprived diet for 4 weeks, and (4 calcium-deprived diet for 4 weeks and concomitant administration of PTH (1-34 40 µg/Kg/day. Histomorphometrical analyses were made on cortical and trabecular bone of lumbar vertebral body as well as of mid-diaphysis and distal metaphysis of femur. In all rats fed calcium-deprived diet, despite the reduction of trabecular number (due to the maintenance of mineral homeostasis, an intense activity of bone deposition occurs on the surface of the few remaining trabeculae (in answering to mechanical stresses and, consequently, to maintain the skeletal homeostasis. Different responses were detected in different sites of cortical bone, depending on their main function in answering mineral or skeletal homeostasis. This study represents the starting point for work-in-progress researches, with the aim of defining in detail timing and manners of evolution and recovery of biochemical osteoporosis.

  16. Metformin revisited: Does this regulator of AMP-activated protein kinase secondarily affect bone metabolism and prevent diabetic osteopathy?

    Institute of Scientific and Technical Information of China (English)

    Antonio; Desmond; McCarthy; Ana; María; Cortizo; Claudia; Sedlinsky

    2016-01-01

    Patients with long-term type 1 and type 2 diabetes mellitus(DM) can develop skeletal complications or "diabetic osteopathy". These include osteopenia, osteoporosis and an increased incidence of low-stress fractures. In this context, it is important to evaluate whether current anti-diabetic treatments can secondarily affect bone metabolism. Adenosine monophosphateactivated protein kinase(AMPK) modulates multiple metabolic pathways and acts as a sensor of the cellular energy status; recent evidence suggests a critical role for AMPK in bone homeostasis. In addition, AMPK activation is believed to mediate most clinical effects of the insulin-sensitizer metformin. Over the past decade, several research groups have investigated the effects of metformin on bone, providing a considerable body of pre-clinical(in vitro, ex vivo and in vivo) as well as clinical evidence for an anabolic action of metformin on bone. However, two caveats should be kept in mind when considering metformin treatment for a patient with type 2 DM at risk for diabetic osteopathy. In the first place, metformin should probably not be considered an antiosteoporotic drug; it is an insulin sensitizer with proven macrovascular benefits that can secondarily improve bone metabolism in the context of DM. Secondly, we are still awaiting the results of randomized placebo-controlled studies in humans that evaluate the effects of metformin on bone metabolism as a primary endpoint.

  17. Exposure to atrazine affects the expression of key genes in metabolic pathways integral to energy homeostasis in Xenopus laevis tadpoles

    Energy Technology Data Exchange (ETDEWEB)

    Zaya, Renee M., E-mail: renee.zaya@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Amini, Zakariya, E-mail: zakariya.amini@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Whitaker, Ashley S., E-mail: ashley.s.whitaker@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Ide, Charles F., E-mail: charles.ide@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States)

    2011-08-15

    In our laboratory, Xenopus laevis tadpoles exposed throughout development to 200 or 400 {mu}g/L atrazine, concentrations reported to periodically occur in puddles, vernal ponds and runoff soon after application, were smaller and had smaller fat bodies (the tadpole's lipid storage organ) than controls. It was hypothesized that these changes were due to atrazine-related perturbations of energy homeostasis. To investigate this hypothesis, selected metabolic responses to exposure at the transcriptional and biochemical levels in atrazine-exposed tadpoles were measured. DNA microarray technology was used to determine which metabolic pathways were affected after developmental exposure to 400 {mu}g/L atrazine. From these data, genes representative of the affected pathways were selected for assay using quantitative real time polymerase chain reaction (qRT-PCR) to measure changes in expression during a 2-week exposure to 400 {mu}g/L. Finally, ATP levels were measured from tadpoles both early in and at termination of exposure to 200 and 400 {mu}g/L. Microarray analysis revealed significant differential gene expression in metabolic pathways involved with energy homeostasis. Pathways with increased transcription were associated with the conversion of lipids and proteins into energy. Pathways with decreased transcription were associated with carbohydrate metabolism, fat storage, and protein synthesis. Using qRT-PCR, changes in gene expression indicative of an early stress response to atrazine were noted. Exposed tadpoles had significant decreases in acyl-CoA dehydrogenase (AD) and glucocorticoid receptor protein (GR) mRNA after 24 h of exposure, and near-significant (p = 0.07) increases in peroxisome proliferator-activated receptor {beta} (PPAR-{beta}) mRNA by 72 h. Decreases in AD suggested decreases in fatty acid {beta}-oxidation while decreases in GR may have been a receptor desensitization response to a glucocorticoid surge. Involvement of PPAR-{beta}, an energy

  18. Plant natriuretic peptides: Systemic regulators of plant homeostasis and defense that can affect cardiomyoblasts

    KAUST Repository

    Gehring, Christoph A.

    2010-09-01

    Immunologic evidence has suggested the presence of biologically active natriuretic peptide (NPs) hormones in plants because antiatrial NP antibodies affinity purify biologically active plant NPs (PNP). In the model plant, an Arabidopsis thaliana PNP (AtPNP-A) has been identified and characterized. AtPNP-A belongs to a novel class of molecules that share some similarity with the cell wall loosening expansins but do not contain the carbohydrate-binding wall anchor thus suggesting that PNPs and atrial natriuretic peptides are heterologs. AtPNP-A acts systemically, and this is consistent with its localization in the apoplastic extracellular space and the conductive tissue. Furthermore, AtPNP-A signals via the second messenger cyclic guanosine 3′,5′-monophosphate and modulates ion and water transport and homeostasis. It also plays a critical role in host defense against pathogens. AtPNP-A can be classified as novel paracrine plant hormone because it is secreted into the apoplastic space in response to stress and can enhance its own expression. Interestingly, purified recombinant PNP induces apo-ptosis in a dose-dependent manner and was most effective on cardiac myoblast cell lines. Because PNP is mimicking the effect of ANP in some instances, PNP may prove to provide useful leads for development of novel therapeutic NPs. Copyright © 2013 by The American Federation for Medical Research.

  19. Bone development in black ducks as affected by dietary toxaphene

    Science.gov (United States)

    Mehrle, P.M.; Finley, M.T.; Ludke, J.L.; Mayer, F.L.; Kaiser, T.E.

    1979-01-01

    Black ducks, Anas rubripes, were exposed to dietary toxaphene concentrations of 0, 10, or 50 μg/g of food for 90 days prior to laying and through the reproductive season. Toxaphene did not affect reproduction or survival, but reduced growth and impaired backbone development in ducklings. Collagen, the organic matrix of bone, was decreased significantly in cervical vertebrae of ducklings fed 50 μg/g, and calcium conentrations increased in vertebrae of ducklings fed 10 or 50 μg/g. The effects of toxaphene were observed only in female ducklings. In contrast to effects on vertebrae, toxaphene exposure did not alter tibia development. Toxaphene residues in carcasses of these ducklings averaged slightly less than the dietary levels.

  20. Factors Affecting Bone Mineral Density in Multiple Sclerosis Patients

    Directory of Open Access Journals (Sweden)

    Azin Ayatollahi

    2013-01-01

    Full Text Available Background: Multiple sclerosis (MS is a demyelinating disease which can cause many disabilities for the patient. Recent data suggests that MS patients have higher risk for osteoporosis. This study was performed to investigate if the osteoporosis prevalence is higher in MS patients and to determine the possible factors affecting bone mineral density (BMD.Methods: 51 definite relapsing-remitting MS patients according to McDonald's criteria (45 females, 6 males aged between 20 and 50 years participated in this study. The control group included 407 females aged from 20 to 49 years; they were healthy and had no history of the diseases affecting bone metabolism. Femoral and lumbar BMD were measured by Dual Energy X-ray Absorptiometry (DXA. The disability of MS patients was evaluated by Expanded Disability Status Scale (EDSS. The patient’s quality of life was evaluated by the validated Persian version of multiple sclerosis impact scale (MSIS-29.Results: Patients’ mean age was 36 ± 3.3 years and their mean disease duration was 8.7 ± 1.7 years. The mean EDSS score and the mean body mass index (BMI of the patients were 3 ± 0.9 and 23.5 ± 2.3 kg/m2, respectively. 29% of the patients had never been treated by ß-interferon and 6% of them had not received glucocorticoids (GCs pulses since their MS had been diagnosed. 26% of the patients had a history of fracture.18% of our patients were osteoporotic and 43% of them were osteopenic. Femoral BMD was significantly lower among MS patients than age matched controls (P < 0.001, but lumbar BMD showed no difference. There was no correlation between administration of GCs pulses, interferon and BMD; however, we found a significant correlation between EDSS score, quality of life (QoL, disease duration and BMD of both site.Conclusion: As a result of this study, bone loss inevitably occurs in MS patients. The major factor of BMD loss is immobility. Osteoporosis should be managed as part of MS patients

  1. 7-Rhamnosylated Flavonols Modulate Homeostasis of the Plant Hormone Auxin and Affect Plant Development.

    Science.gov (United States)

    Kuhn, Benjamin M; Errafi, Sanae; Bucher, Rahel; Dobrev, Petre; Geisler, Markus; Bigler, Laurent; Zažímalová, Eva; Ringli, Christoph

    2016-03-04

    Flavonols are a group of secondary metabolites that affect diverse cellular processes. They are considered putative negative regulators of the transport of the phytohormone auxin, by which they influence auxin distribution and concomitantly take part in the control of plant organ development. Flavonols are accumulating in a large number of glycosidic forms. Whether these have distinct functions and diverse cellular targets is not well understood. The rol1-2 mutant of Arabidopsis thaliana is characterized by a modified flavonol glycosylation profile that is inducing changes in auxin transport and growth defects in shoot tissues. To determine whether specific flavonol glycosides are responsible for these phenotypes, a suppressor screen was performed on the rol1-2 mutant, resulting in the identification of an allelic series of UGT89C1, a gene encoding a flavonol 7-O-rhamnosyltransferase. A detailed analysis revealed that interfering with flavonol rhamnosylation increases the concentration of auxin precursors and auxin metabolites, whereas auxin transport is not affected. This finding provides an additional level of complexity to the possible ways by which flavonols influence auxin distribution and suggests that flavonol glycosides play an important role in regulating plant development.

  2. Knockdown of the coenzyme Q synthesis gene Smed-dlp1 affects planarian regeneration and tissue homeostasis.

    Science.gov (United States)

    Shiobara, Yumiko; Harada, Chiaki; Shiota, Takeshi; Sakamoto, Kimitoshi; Kita, Kiyoshi; Tanaka, Saeko; Tabata, Kenta; Sekie, Kiyoteru; Yamamoto, Yorihiro; Sugiyama, Tomoyasu

    2015-12-01

    The freshwater planarian is a model organism used to study tissue regeneration that occupies an important position among multicellular organisms. Planarian genomic databases have led to the identification of genes that are required for regeneration, with implications for their roles in its underlying mechanism. Coenzyme Q (CoQ) is a fundamental lipophilic molecule that is synthesized and expressed in every cell of every organism. Furthermore, CoQ levels affect development, life span, disease and aging in nematodes and mice. Because CoQ can be ingested in food, it has been used in preventive nutrition. In this study, we investigated the role of CoQ in planarian regeneration. Planarians synthesize both CoQ9 and rhodoquinone 9 (RQ9). Knockdown of Smed-dlp1, a trans-prenyltransferase gene that encodes an enzyme that synthesizes the CoQ side chain, led to a decrease in CoQ9 and RQ9 levels. However, ATP levels did not consistently decrease in these animals. Knockdown animals exhibited tissue regression and curling. The number of mitotic cells decreased in Smed-dlp1 (RNAi) animals. These results suggested a failure in physiological cell turnover and stem cell function. Accordingly, regenerating planarians died from lysis or exhibited delayed regeneration. Interestingly, the observed phenotypes were partially rescued by ingesting food supplemented with α-tocopherol. Taken together, our results suggest that oxidative stress induced by reduced CoQ9 levels affects planarian regeneration and tissue homeostasis.

  3. Xanthine dehydrogenase and aldehyde oxidase impact plant hormone homeostasis and affect fruit size in 'Hass' avocado.

    Science.gov (United States)

    Taylor, Nicky J; Cowan, A Keith

    2004-04-01

    The contribution of xanthine dehydrogenase (XDH, EC 1.1.1.204) to fruit size was investigated using the normal and small-fruit variants of Persea americana Mill. cv. 'Hass'. Inhibition of XDH by treatment of normal fruit, in the linear phase of growth (phase II), with allopurinol (Allo) arrested fruit growth. Adenine (Ade), a less effective inhibitor of this enzyme, also arrested fruit growth when applied in phase II and slowed fruit growth when applied in phase III. A time-course study on the activity of XDH in mesocarp tissue from normal and small fruit showed that maximum activity occurred late in phase II and that the peak in activity was absent in mesocarp of the small fruit. Feeding Ade to growing fruit in phase III caused a transient decline in fruit growth (measured as change in fruit length). Thereafter, growth resumed although fruit size was irreversibly affected. Treatment of fruit with Ade and Ade-containing cytokinins altered activity of another molybdenum enzyme, aldehyde oxidase (EC 1.2.3.1). Cytokinin oxidase was induced by cytokinin and auxin. Purine catabolism via hypoxanthine/xanthine was operative in normal fruit and in mesocarp from the small-fruit variant and as expected, Allo treatment caused accumulation of xanthine and adenine. In the absence of an increase in XDH during growth of the small-fruit phenotype, low levels of Ade were interpreted as resulting from respiration-enhanced adenylate depletion. Stress and/or pathogen induction of the alternative oxidase pathway is proposed as a possible cause.

  4. Does Orthodontic Treatment Affect the Alveolar Bone Density?

    Science.gov (United States)

    Yu, Jian-Hong; Huang, Heng-Li; Liu, Chien-Feng; Wu, Jay; Li, Yu-Fen; Tsai, Ming-Tzu; Hsu, Jui-Ting

    2016-03-01

    Few studies involving human participants have been conducted to investigate the effect of orthodontic treatment on alveolar bone density around the teeth. Our previous study revealed that patients who received 6 months of active orthodontic treatment exhibited an ∼24% decrease in alveolar bone density around the teeth. However, after an extensive retention period following orthodontic treatment, whether the bone density around the teeth can recover to its original state from before the treatment remains unclear, thus warranting further investigation.The purpose of this study was to assess the bone density changes around the teeth before, during, and after orthodontic treatment.Dental cone-beam computed tomography (CBCT) was used to measure the changes in bone density around 6 teeth in the anterior maxilla (maxilla central incisors, lateral incisors, and canines) of 8 patients before and after orthodontic treatment. Each patient underwent 3 dental CBCT scans: before treatment (T0); at the end of 7 months of active orthodontic treatment (T1); after several months (20-22 months) of retention (T2). The Friedman test was applied to evaluate the changes in the alveolar bone density around the teeth according to the 3 dental CBCT scans.From T0 to T1, a significant reduction in bone density was observed around the teeth (23.36 ± 10.33%); by contrast, a significant increase was observed from T1 to T2 (31.81 ± 23.80%). From the perspective of the overall orthodontic treatment, comparing the T0 and T2 scans revealed that the bone density around the teeth was relatively constant (a reduction of only 0.75 ± 19.85%). The results of the statistical test also confirmed that the difference in bone density between T0 and T2 was nonsignificant.During orthodontic tooth movement, the alveolar bone density around the teeth was reduced. However, after a period of bone recovery, the reduced bone density recovered to its previous state from before the orthodontic treatment

  5. How Does The Bone Shaft Geometry Affect its Bending Properties?

    Directory of Open Access Journals (Sweden)

    Kaveh P. Saffar

    2009-01-01

    Full Text Available In this research, ten fresh specimens of sheep tibiae were provided from slaughtered animals. Whole bone specimens were loaded in three-point bending according to standard wet bone test protocols. Mechanical properties were determined and compared with the results which were obtained from two dry bone tests. The results showed that fracture bending moment and bone extrinsic stiffness had significant relations with fracture cross-section dependent parameters (i.e., cross-section area and area moment of inertia. Where, fracture energy and ultimate strength did not have such a relation with these parameters. Finite element modeling of bone shaft was made with simplified geometry (neglecting cross-section variations along bone shaft in two steps: First, by elliptical cross-section and second, by circular cross-section, assuming linear elastic and isotropic properties for the specimens. Elastic (Young’s modulus and fracture load, evaluated from curves obtained from tests, were applied to the finite element model and close results of maximum stress in both test specimen and first (elliptical cross-section model showed up. There was an average difference of about 2% between ultimate strength of wet bone specimens and maximum (tensile stress occurred in the elliptical models. However, this value for circular models was about 16%.

  6. Pyridoxine deficiency affects biomechanical properties of chick tibial bone

    Science.gov (United States)

    Masse, P. G.; Rimnac, C. M.; Yamauchi, M.; Coburn, S. P.; Rucker, R. B.; Howell, D. S.; Boskey, A. L.

    1996-01-01

    The mechanical integrity of bone is dependent on the bone matrix, which is believed to account for the plastic deformation of the tissue, and the mineral, which is believed to account for the elastic deformation. The validity of this model is shown in this study based on analysis of the bones of vitamin B6-deficient and vitamin B6-replete chick bones. In this model, when B6-deficient and control animals are compared, vitamin B6 deficiency has no effect on the mineral content or composition of cortical bone as measured by ash weight (63 +/- 6 vs. 58 +/- 3); mineral to matrix ratio of the FTIR spectra (4.2 +/- 0.6 vs. 4.5 +/- 0.2), line-broadening analyses of the X-ray diffraction 002 peak (beta 002 = 0.50 +/- 0.1 vs. 0.49 +/- 0.01), or other features of the infrared spectra. In contrast, collagen was significantly more extractable from vitamin B6-deficient chick bones (20 +/- 2% of total hydroxyproline extracted vs. 10 +/- 3% p < or = 0.001). The B6-deficient bones also contained an increased amount of the reducible cross-links DHLNL, dehydro-dihydroxylysinonorleucine, (1.03 +/- 0.07 vs. 0.84 +/- 0.13 p < or = 0.001); and a nonsignificant increase in HLNL, dehydro-hydroxylysinonorleucine, (0.51 +/- 0.03 vs. 0.43 +/- 0.03, p < or = 0.10). There were no significant changes in bone length, bone diameter, or area moment of inertia. In four-point bending, no significant changes in elastic modulus, stiffness, offset yield deflection, or fracture deflection were detected. However, fracture load in the B6-deficient animals was decreased from 203 +/- 35 MPa to 151 +/- 23 MPa, p < or = 0.01, and offset yield load was decreased from 165 +/- 9 MPa to 125 +/- 14 MPa, p < or = 0.05. Since earlier histomorphometric studies had demonstrated that the B6-deficient bones were osteopenic, these data suggest that although proper cortical bone mineralization occurred, the alterations of the collagen resulted in changes to bone mechanical performance.

  7. Overexpression of the Novel Arabidopsis Gene At5g02890 Alters Inflorescence Stem Wax Composition and Affects Phytohormone Homeostasis

    Science.gov (United States)

    Xu, Liping; Zeisler, Viktoria; Schreiber, Lukas; Gao, Jie; Hu, Kaining; Wen, Jing; Yi, Bin; Shen, Jinxiong; Ma, Chaozhi; Tu, Jinxing; Fu, Tingdong

    2017-01-01

    The cuticle is composed of cutin and cuticular wax. It covers the surfaces of land plants and protects them against environmental damage. At5g02890 encodes a novel protein in Arabidopsis thaliana. In the current study, protein sequence analysis showed that At5g02890 is highly conserved in the Brassicaceae. Arabidopsis lines overexpressing At5g02890 (OE-At5g02890 lines) and an At5g02890 orthologous gene from Brassica napus (OE-Bn1 lines) exhibited glossy stems. Chemical analysis revealed that overexpression of At5g02890 caused significant reductions in the levels of wax components longer than 28 carbons (C28) in inflorescence stems, whereas the levels of wax molecules of chain length C28 or shorter were significantly increased. Transcriptome analysis indicated that nine of 11 cuticular wax synthesis-related genes with different expression levels in OE-At5g02890 plants are involved in very-long-chain fatty acid (VLCFA) elongation. At5g02890 is localized to the endoplasmic reticulum (ER), which is consistent with its function in cuticular wax biosynthesis. These results demonstrate that the overexpression of At5g02890 alters cuticular wax composition by partially blocking VLCFA elongation of C28 and higher. In addition, detailed analysis of differentially expressed genes associated with plant hormones and endogenous phytohormone levels in wild-type and OE-At5g02890 plants indicated that abscisic acid (ABA), jasmonic acid (JA), and jasmonoyl-isoleucine (JA-Ile) biosynthesis, as well as polar auxin transport, were also affected by overexpression of At5g02890. Taken together, these findings indicate that overexpression of At5g02890 affects both cuticular wax biosynthesis and phytohormone homeostasis in Arabidopsis. PMID:28184233

  8. Differential actions of the endocytic collagen receptor uPARAP/Endo180 and the collagenase MMP-2 in bone homeostasis

    DEFF Research Database (Denmark)

    Madsen, Daniel H; Jürgensen, Henrik J; Ingvarsen, Signe;

    2013-01-01

    the extracellular collagenase, MMP-2, and the endocytic collagen receptor, uPARAP, by generating mice with combined deficiency of both components. In both uPARAP-deficient and MMP-2-deficient adult mice the length of the tibia and femur was decreased, along with a reduced bone mineral density and trabecular bone...... quality. An additional decrease in bone length was observed when combining the two deficiencies, pointing to both components being important for the remodeling processes in long bone growth. In agreement with results found by others, a different effect of MMP-2 deficiency was observed in the distinct bone...... structures of the calvaria. These membranous bones were found to be thickened in MMP-2-deficient mice, an effect likely to be related to an accompanying defect in the canalicular system. Surprisingly, both of the latter defects in MMP-2-deficient mice were counteracted by concurrent uPARAP deficiency...

  9. Acute hypothalamic suppression significantly affects trabecular bone but not cortical bone following recovery and ovariectomy surgery in a rat model

    Directory of Open Access Journals (Sweden)

    Vanessa R. Yingling

    2016-01-01

    Full Text Available Background. Osteoporosis is “a pediatric disease with geriatric consequences.” Bone morphology and tissue quality co-adapt during ontogeny for sufficient bone stiffness. Altered bone morphology from hypothalamic amenorrhea, a risk factor for low bone mass in women, may affect bone strength later in life. Our purpose was to determine if altered morphology following hypothalamic suppression during development affects cortical bone strength and trabecular bone volume (BV/TV at maturity.Methods. Female rats (25 days old were assigned to a control (C group (n = 45 that received saline injections (.2 cc or an experimental group (GnRH-a (n = 45 that received gonadotropin releasing hormone antagonist injections (.24 mg per dose for 25 days. Fifteen animals from each group were sacrificed immediately after the injection protocol at Day 50 (C, GnRH-a. The remaining animals recovered for 135 days and a subset of each group was sacrificed at Day 185 ((C-R (n = 15 and (G-R (n = 15. The remaining animals had an ovariectomy surgery (OVX at 185 days of age and were sacrificed 40 days later (C-OVX (n = 15 and (G-OVX (n = 15. After sacrifice femurs were mechanically tested and scanned using micro CT. Serum C-terminal telopeptides (CTX and insulin-like growth factor 1 (IGF-1 were measured. Two-way ANOVA (2 groups (GnRH-a and Control X 3 time points (Injection Protocol, Recovery, post-OVX was computed.Results. GnRH-a injections suppressed uterine weights (72% and increased CTX levels by 59%. Bone stiffness was greater in the GnRH-a groups compared to C. Ash content and cortical bone area were similar between groups at all time points. Polar moment of inertia, a measure of bone architecture, was 15% larger in the GnRH-a group and remained larger than C (19% following recovery. Both the polar moment of inertia and cortical area increased linearly with the increases in body weight. Following the injection protocol, trabecular BV/TV was 31% lower in the Gn

  10. Inhibited osteoblastogenesis, enhanced bone resorption and disrupted vitamin d3 homeostasis in female c57bl/6 mice fed alcohol

    Science.gov (United States)

    Alcohol abuse is a well-known factor for increased risk of osteoporosis. Previous studies have shown that molecular mechanisms underlying alcohol-induced bone loss are complex, involving direct effects on both bone formation and resorption and additional indirect actions via endocrine disruption. Wh...

  11. Does vitamin D supplementation of healthy Danish Caucasian girls affect bone turnover and bone mineralization?

    DEFF Research Database (Denmark)

    Molgaard, C.; Larnkjaer, A.; Cashman, K.D.

    2010-01-01

    and after 12 months whereas physical activity and dietary intake of calcium and vitamin D were assessed at baseline. Serum (S) 25-hydroxyvitamin D (25OHD), S-osteocalcin, S-parathyroid hormone, S-calcium, S-inorganic phosphate, urinary (U) pyridinoline (Pyr) and deoxpyridinoline (Dpyr) were measured......Introduction: A high peak bone mass may be essential for reducing the risk of osteoporosis later in life and a sufficient vitamin D level during puberty may be necessary for optimal bone accretion and obtaining a high peak bone mass. Dietary intake and synthesis during winter of vitamin D might...

  12. Bone Formation is Affected by Matrix Advanced Glycation End Products (AGEs) In Vivo.

    Science.gov (United States)

    Yang, Xiao; Mostafa, Ahmed Jenan; Appleford, Mark; Sun, Lian-Wen; Wang, Xiaodu

    2016-10-01

    Advanced glycation end products (AGEs) accumulate in bone extracellular matrix as people age. Although previous evidence shows that the accumulation of AGEs in bone matrix may impose significant effects on bone cells, the effect of matrix AGEs on bone formation in vivo is still poorly understood. To address this issue, this study used a unique rat model with autograft implant to investigate the in vivo response of bone formation to matrix AGEs. Fluorochrome biomarkers were sequentially injected into rats to label the dynamic bone formation in the presence of elevated levels of matrix AGEs. After sacrificing animals, dynamic histomorphometry was performed to determine mineral apposition rate (MAR), mineralized surface per bone surface (MS/BS), and bone formation rate (BFR). Finally, nanoindentation tests were performed to assess mechanical properties of newly formed bone tissues. The results showed that MAR, MS/BS, and BFR were significantly reduced in the vicinity of implant cores with high concentration of matrix AGEs, suggesting that bone formation activities by osteoblasts were suppressed in the presence of elevated matrix AGEs. In addition, MAR and BFR were found to be dependent on the surrounding environment of implant cores (i.e., cortical or trabecular tissues). Moreover, MS/BS and BFR were also dependent on how far the implant cores were away from the growth plate. These observations suggest that the effect of matrix AGEs on bone formation is dependent on the biological milieu around the implants. Finally, nanoindentation test results indicated that the indentation modulus and hardness of newly formed bone tissues were not affected by the presence of elevated matrix AGEs. In summary, high concentration of matrix AGEs may slow down the bone formation process in vivo, while imposing little effects on bone mineralization.

  13. Ocean acidification affects redox-balance and ion-homeostasis in the life-cycle stages of Emiliania huxleyi.

    Directory of Open Access Journals (Sweden)

    Sebastian D Rokitta

    Full Text Available Ocean Acidification (OA has been shown to affect photosynthesis and calcification in the coccolithophore Emiliania huxleyi, a cosmopolitan calcifier that significantly contributes to the regulation of the biological carbon pumps. Its non-calcifying, haploid life-cycle stage was found to be relatively unaffected by OA with respect to biomass production. Deeper insights into physiological key processes and their dependence on environmental factors are lacking, but are required to understand and possibly estimate the dynamics of carbon cycling in present and future oceans. Therefore, calcifying diploid and non-calcifying haploid cells were acclimated to present and future CO(2 partial pressures (pCO(2; 38.5 Pa vs. 101.3 Pa CO(2 under low and high light (50 vs. 300 µmol photons m(-2 s(-1. Comparative microarray-based transcriptome profiling was used to screen for the underlying cellular processes and allowed to follow up interpretations derived from physiological data. In the diplont, the observed increases in biomass production under OA are likely caused by stimulated production of glycoconjugates and lipids. The observed lowered calcification under OA can be attributed to impaired signal-transduction and ion-transport. The haplont utilizes distinct genes and metabolic pathways, reflecting the stage-specific usage of certain portions of the genome. With respect to functionality and energy-dependence, however, the transcriptomic OA-responses resemble those of the diplont. In both life-cycle stages, OA affects the cellular redox-state as a master regulator and thereby causes a metabolic shift from oxidative towards reductive pathways, which involves a reconstellation of carbon flux networks within and across compartments. Whereas signal transduction and ion-homeostasis appear equally OA-sensitive under both light intensities, the effects on carbon metabolism and light physiology are clearly modulated by light availability. These interactive effects

  14. Timothy hays differing in dietary cation-anion difference affect the capability of dairy cows to maintain their calcium homeostasis.

    Science.gov (United States)

    Heron, V S; Tremblay, G F; Oba, M

    2009-01-01

    Forages low in dietary cation-anion difference (DCAD) can be used to decrease the DCAD in prepartum diet but the extent to which DCAD needs to be reduced is of recent interest. The objective of this study was to evaluate the effectiveness of timothy hays differing in DCAD at maintaining Ca homeostasis. Six nonlactating and nonpregnant multiparous Holstein cows were fed diets containing timothy (Phleum pratense L.) hay with DCAD values of 4.1 +/- 3.6 (LOW), 14.1 +/- 3.0 (MED), or 25.1 +/- 2.5 (HIGH) mEq per 100 g of DM in a duplicated 3 x 3 Latin square design with 14-d experimental periods. The LOW and MED hays were produced by fertilizing established timothy fields at a rate of 224 kg CaCl(2) per ha, and HIGH hay was obtained from the same field where LOW hay was produced, but from a section not fertilized with CaCl(2). Experimental diets, containing LOW, MED, or HIGH timothy hay at 71% of dietary DM, had DCAD values of 0.7, 7.3, and 14.4 mEq per 100 g of DM, respectively. Animals were fed at 6% of metabolic body weight, which provided 108% of their daily energy requirement. For each period, after a 12 d diet adaptation, cows were subjected to an EDTA challenge (3 cows each on d 13 and 14). Infusion of EDTA solution into the jugular vein decreases the concentration of blood ionized Ca, and the EDTA challenge protocol determined the resistance time and recovery time: the time required for the blood ionized Ca concentration to decrease to 60%, and the time required to recover to 90% of the prechallenge concentrations, respectively. Urine pH was lower when cows were fed LOW compared with HIGH diet (6.88 vs. 7.83), but urine pH when cows were fed MED diet (7.15) did not differ from that when cows received the LOW or HIGH diet. However, immediately before the EDTA challenge, blood pH was lower when cows were fed LOW or MED compared with HIGH diet (7.44 vs. 7.47). Although the resistance time was not affected by treatments, the recovery time was shorter when cows were

  15. Glucocorticoid-Induced Changes in the Geometry of Osteoclast Resorption Cavities Affect Trabecular Bone Stiffness

    DEFF Research Database (Denmark)

    Vanderoost, Jef; Søe, Kent; Merrild, Ditte Marie Horslev;

    2012-01-01

    Bone fracture risk can increase through bone microstructural changes observed in bone pathologies, such as glucocorticoid-induced osteoporosis. Resorption cavities present one of these microstructural aspects. We recently found that glucocorticoids (GCs) affect the shape of the resorption cavities...... is closely related to the shape of the cavities, highly determines the stiffness effect. The lumbar spine was the anatomic site most affected by the GC-induced changes on the shape of the cavities. These findings might explain the clinical observation that the prevalence of vertebral fractures during GC...

  16. Microtubule assembly affects bone mass by regulating both osteoblast and osteoclast functions: stathmin deficiency produces an osteopenic phenotype in mice.

    Science.gov (United States)

    Liu, Hongbin; Zhang, Rongrong; Ko, Seon-Yle; Oyajobi, Babatunde O; Papasian, Christopher J; Deng, Hong-Wen; Zhang, Shujun; Zhao, Ming

    2011-09-01

    Cytoskeleton microtubules regulate various cell signaling pathways that are involved in bone cell function. We recently reported that inhibition of microtubule assembly by microtubule-targeting drugs stimulates osteoblast differentiation and bone formation. To further elucidate the role of microtubules in bone homeostasis, we characterized the skeletal phenotype of mice null for stathmin, an endogenous protein that inhibits microtubule assembly. In vivo micro-computed tomography (µCT) and histology revealed that stathmin deficiency results in a significant reduction of bone mass in adult mice concurrent with decreased osteoblast and increased osteoclast numbers in bone tissues. Phenotypic analyses of primary calvarial cells and bone marrow cells showed that stathmin deficiency inhibited osteoblast differentiation and induced osteoclast formation. In vitro overexpression studies showed that increased stathmin levels enhanced osteogenic differentiation of preosteoblast MC3T3-E1 cells and mouse bone marrow-derived cells and attenuated osteoclast formation from osteoclast precursor Raw264.7 cells and bone marrow cells. Results of immunofluorescent studies indicated that overexpression of stathmin disrupted radial microtubule filaments, whereas deficiency of stathmin stabilized the microtubule network structure in these bone cells. In addition, microtubule-targeting drugs that inhibit microtubule assembly and induce osteoblast differentiation lost these effects in the absence of stathmin. Collectively, these results suggest that stathmin, which alters microtubule dynamics, plays an essential role in maintenance of postnatal bone mass by regulating both osteoblast and osteoclast functions in bone. \\

  17. Peroxisomal Polyamine Oxidase and NADPH-Oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Efthimios A. Andronis

    2014-04-01

    Full Text Available Homeostasis of reactive oxygen species (ROS in the intracellular compartments is of critical importance as ROS have been linked with nearly all cellular processes and more importantly with diseases and aging. PAs are nitrogenous molecules with an evolutionary conserved role in the regulation of metabolic and energetic status of cells. Recent evidence also suggests that polyamines (PA are major regulators of ROS homeostasis. In Arabidopsis the backconversion of the PAs spermidine (Spd and spermine (Spm to putrescine (Put and Spd, respectively is catalyzed by two peroxisomal PA oxidases (AtPAO. However, the physiological role of this pathway remains largely elusive. Here we explore the role of peroxisomal PA backconversion and in particular that catalyzed by the highly expressed AtPAO3 in the regulation of ROS homeostasis and mitochondrial respiratory burst. Exogenous PAs exert an NADPH-oxidase dependent stimulation of oxygen consumption, with Spd exerting the strongest effect. This increase is attenuated by treatment with the NADPH-oxidase blocker diphenyleneiodonium iodide (DPI. Loss-of-function of AtPAO3 gene results to increased NADPH-oxidase-dependent production of superoxide anions (O2.-, but not H2O2, which activate the mitochondrial alternative oxidase pathway (AOX. On the contrary, overexpression of AtPAO3 results to an increased but balanced production of both H2O2 and O2.-. These results suggest that the ratio of O2.-/H2O2 regulates respiratory chain in mitochondria, with PA-dependent production of O2.- by NADPH-oxidase tilting the balance of electron transfer chain in favor of the AOX pathway. In addition, AtPAO3 seems to be an important component in the regulating module of ROS homeostasis, while a conserved role for PA backconversion and ROS across kingdoms is discussed.

  18. The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo

    OpenAIRE

    Whyte, Lauren S.; Ryberg, Erik; Sims, Natalie A.; Ridge, Susan A.; Mackie, Ken; Greasley, Peter J.; Ross, Ruth A.; Rogers, Michael J

    2009-01-01

    GPR55 is a G protein-coupled receptor recently shown to be activated by certain cannabinoids and by lysophosphatidylinositol (LPI). However, the physiological role of GPR55 remains unknown. Given the recent finding that the cannabinoid receptors CB1 and CB2 affect bone metabolism, we examined the role of GPR55 in bone biology. GPR55 was expressed in human and mouse osteoclasts and osteoblasts; expression was higher in human osteoclasts than in macrophage progenitors. Although the GPR55 agonis...

  19. Cell and Signal Components of the Microenvironment of Bone Metastasis Are Affected by Hypoxia

    Science.gov (United States)

    Bendinelli, Paola; Maroni, Paola; Matteucci, Emanuela; Desiderio, Maria Alfonsina

    2016-01-01

    Bone metastatic cells release bone microenvironment proteins, such as the matricellular protein SPARC (secreted protein acidic and rich in cysteine), and share a cell signaling typical of the bone metabolism controlled by Runx2. The megakaryocytes in the bone marrow engrafted by the metastases seem to be one of the principal microenvironment sources of the biological stimuli, implicated in the formation of an osteoblastic niche, and affecting metastasis phenotype and colonization. Educated platelets in the circulation might derive from megakaryocytes in bone metastasis. The evaluation of predictive markers in the circulating platelets might be useful for the stratification of patients for therapeutic purposes. The hypoxic environment in bone metastasis is one of the key regulators of the network of the biological soluble and structural components of the matrix. In bone metastatic cells under hypoxia, similar patterns of Runx2 and SPARC are observed, both showing downregulation. Conversely, hypoxia induces Endothelin 1, which upregulates SPARC, and these biological stimuli may be considered prognostic markers of bone metastasis in breast carcinoma patients. PMID:27187355

  20. Cell and Signal Components of the Microenvironment of Bone Metastasis Are Affected by Hypoxia

    Directory of Open Access Journals (Sweden)

    Paola Bendinelli

    2016-05-01

    Full Text Available Bone metastatic cells release bone microenvironment proteins, such as the matricellular protein SPARC (secreted protein acidic and rich in cysteine, and share a cell signaling typical of the bone metabolism controlled by Runx2. The megakaryocytes in the bone marrow engrafted by the metastases seem to be one of the principal microenvironment sources of the biological stimuli, implicated in the formation of an osteoblastic niche, and affecting metastasis phenotype and colonization. Educated platelets in the circulation might derive from megakaryocytes in bone metastasis. The evaluation of predictive markers in the circulating platelets might be useful for the stratification of patients for therapeutic purposes. The hypoxic environment in bone metastasis is one of the key regulators of the network of the biological soluble and structural components of the matrix. In bone metastatic cells under hypoxia, similar patterns of Runx2 and SPARC are observed, both showing downregulation. Conversely, hypoxia induces Endothelin 1, which upregulates SPARC, and these biological stimuli may be considered prognostic markers of bone metastasis in breast carcinoma patients.

  1. Osteocyte regulation of phosphate homeostasis and bone mineralization underlies the pathophysiology of the heritable disorders of rickets and osteomalacia.

    Science.gov (United States)

    Feng, Jian Q; Clinkenbeard, Erica L; Yuan, Baozhi; White, Kenneth E; Drezner, Marc K

    2013-06-01

    Although recent studies have established that osteocytes function as secretory cells that regulate phosphate metabolism, the biomolecular mechanism(s) underlying these effects remain incompletely defined. However, investigations focusing on the pathogenesis of X-linked hypophosphatemia (XLH), autosomal dominant hypophosphatemic rickets (ADHR), and autosomal recessive hypophosphatemic rickets (ARHR), heritable disorders characterized by abnormal renal phosphate wasting and bone mineralization, have clearly implicated FGF23 as a central factor in osteocytes underlying renal phosphate wasting, documented new molecular pathways regulating FGF23 production, and revealed complementary abnormalities in osteocytes that regulate bone mineralization. The seminal observations leading to these discoveries were the following: 1) mutations in FGF23 cause ADHR by limiting cleavage of the bioactive intact molecule, at a subtilisin-like protein convertase (SPC) site, resulting in increased circulating FGF23 levels and hypophosphatemia; 2) mutations in DMP1 cause ARHR, not only by increasing serum FGF23, albeit by enhanced production and not limited cleavage, but also by limiting production of the active DMP1 component, the C-terminal fragment, resulting in dysregulated production of DKK1 and β-catenin, which contributes to impaired bone mineralization; and 3) mutations in PHEX cause XLH both by altering FGF23 proteolysis and production and causing dysregulated production of DKK1 and β-catenin, similar to abnormalities in ADHR and ARHR, but secondary to different central pathophysiological events. These discoveries indicate that ADHR, XLH, and ARHR represent three related heritable hypophosphatemic diseases that arise from mutations in, or dysregulation of, a single common gene product, FGF23 and, in ARHR and XLH, complimentary DMP1 and PHEX directed events that contribute to abnormal bone mineralization.

  2. The Comparison Between Affected and Non-Affected Side of the Calcaneal Bone Density in Chronic Hemiparetic Patients

    Directory of Open Access Journals (Sweden)

    Demet Ofluoğlu

    2005-06-01

    Full Text Available Stroke is a non-traumatic brain injury caused by occlusion or rupture of cerebral blood vessels that results in sudden neurological deficit characterized by loss of motor control, altered sensation, cognitive or language impairment, disequilibrium, or coma. Immobilization is an important risk factor for osteoporosis. The aim of this study was to compare between affected and non-affected side’s calcaneal bone mineral density in chronic hemiparetic patients. Thirty-tree unilateral and independently mobile hemiparetic patients due to stroke were included in the study. The exclusion criteria were to have poor general health status, bilateral involvement, congenital dislocation of hip and past calcaneal fracture history. Motor functional level, spasticity and daily living activities of the patients were assessed by using Brunstrom, Ashworth and Barthel scales, respectively. The calcaneal bone mineral density was evaluated with DXL-Calscan in both affected and non-affected side of all patients. Patients’ mean age and duration of disease were 58.9±11.9 years and 20±19.4 months, respectively. 48.5% of patients were male and 60.6% has right side hemiparesis. Their mean spasticity level was 1.6±1.2 according to Ashworth Scale. Mean motor functional level and activity of daily living score were 4.5±1 and 87.4±22.2, respectively. The calcaneal mean T score was –2.1±0.9 and –1.7±0.7 in affected and non-affected side, respectively. In the pearson correlation analysis, there were positive correlation between age and non-affected Z score (r=0.42, p=0.01; Brunstrom score and affected side T score (r=0.48, p=0.005; Brunstrom score and affected side BMD (r=0.51, p=0.002. On the other hand, there were negative correlation between age and disease duration (r=-0.36, p=0.03; Ashworth score and Brunstrom (r=-0.66, p=0.0001, affected side T score (r=-0.41, p=0.01, affected side Z score (r=-0.35, p=0.04, affected BMD (r=-0.46, p=0.01. However, there was no

  3. Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure.

    Science.gov (United States)

    Scholz-Ahrens, Katharina E; Ade, Peter; Marten, Berit; Weber, Petra; Timm, Wolfram; Açil, Yahya; Glüer, Claus-C; Schrezenmeir, Jürgen

    2007-03-01

    Several studies in animals and humans have shown positive effects of nondigestible oligosaccharides (NDO) on mineral absorption and metabolism and bone composition and architecture. These include inulin, oligofructose, fructooligosaccharides, galactooligosaccharides, soybean oligosaccharide, and also resistant starches, sugar alcohols, and difructose anhydride. A positive outcome of dietary prebiotics is promoted by a high dietary calcium content up to a threshold level and an optimum amount and composition of supplemented prebiotics. There might be an optimum composition of fructooligosaccharides with different chain lengths (synergy products). The efficacy of dietary prebiotics depends on chronological age, physiological age, menopausal status, and calcium absorption capacity. There is evidence for an independent probiotic effect on facilitating mineral absorption. Synbiotics, i.e., a combination of probiotics and prebiotics, can induce additional effects. Whether a low content of habitual NDO would augment the effect of dietary prebiotics or synbiotics remains to be studied. The underlying mechanisms are manifold: increased solubility of minerals because of increased bacterial production of short-chain fatty acids, which is promoted by the greater supply of substrate; an enlargement of the absorption surface by promoting proliferation of enterocytes mediated by bacterial fermentation products, predominantly lactate and butyrate; increased expression of calcium-binding proteins; improvement of gut health; degradation of mineral complexing phytic acid; release of bone-modulating factors such as phytoestrogens from foods; stabilization of the intestinal flora and ecology, also in the presence of antibiotics; stabilization of the intestinal mucus; and impact of modulating growth factors such as polyamines. In conclusion, prebiotics are the most promising but also best investigated substances with respect to a bone-health-promoting potential, compared with probiotics

  4. NOS2 is critical to the development of emphysema in Sftpd deficient mice but does not affect surfactant homeostasis.

    Directory of Open Access Journals (Sweden)

    Lars Knudsen

    Full Text Available RATIONALE: Surfactant protein D (SP-D has important immuno-modulatory properties. The absence of SP-D results in an inducible NO synthase (iNOS, coded by NOS2 gene related chronic inflammation, development of emphysema-like pathophysiology and alterations of surfactant homeostasis. OBJECTIVE: In order to test the hypothesis that SP-D deficiency related abnormalities in pulmonary structure and function are a consequence of iNOS induced inflammation, we generated SP-D and iNOS double knockout mice (DiNOS. METHODS: Structural data obtained by design-based stereology to quantify the emphysema-like phenotype and disturbances of the intracellular surfactant were correlated to invasive pulmonary function tests and inflammatory markers including activation markers of alveolar macrophages and compared to SP-D (Sftpd(-/- and iNOS single knockout mice (NOS2(-/- as well as wild type (WT littermates. MEASUREMENTS AND RESULTS: DiNOS mice had reduced inflammatory cells in BAL and BAL-derived alveolar macrophages showed an increased expression of markers of an alternative activation as well as reduced inflammation. As evidenced by increased alveolar numbers and surface area, emphysematous changes were attenuated in DiNOS while disturbances of the surfactant system remained virtually unchanged. Sftpd(-/- demonstrated alterations of intrinsic mechanical properties of lung parenchyma as shown by reduced stiffness and resistance at its static limits, which could be corrected by additional ablation of NOS2 gene in DiNOS. CONCLUSION: iNOS related inflammation in the absence of SP-D is involved in the emphysematous remodeling leading to a loss of alveoli and associated alterations of elastic properties of lung parenchyma while disturbances of surfactant homeostasis are mediated by different mechanisms.

  5. Factors that affect postnatal bone growth retardation in the twitcher murine model of Krabbe disease

    Science.gov (United States)

    Contreras, Miguel Agustin; Ries, William Louis; Shanmugarajan, Srinivasan; Arboleda, Gonzalo; Singh, Inderjit; Singh, Avtar Kaur

    2010-01-01

    Krabbe disease is an inherited lysosomal disorder in which galactosylsphingosine (psychosine) accumulates mainly in the central nervous system. To gain insight into the possible mechanism(s) that may be participating in the inhibition of the postnatal somatic growth described in the animal model of this disease (twitcher mouse, twi), we studied their femora. This study reports that twi femora are smaller than of those of wild type (wt), and present with abnormality of marrow cellularity, bone deposition (osteoblastic function), and osteoclastic activity. Furthermore, lipidomic analysis indicates altered sphingolipid homeostasis, but without significant changes in the levels of sphingolipid-derived intermediates of cell death (ceramide) or the levels of the osteoclast-osteoblast coupling factor (sphingosine-1-phosphate). However, there was significant accumulation of psychosine in the femora of adult twi animals as compared to wt, without induction of tumor necrosis factor-alpha or interleukin-6. Analysis of insulin-like growth factor-1 (IGF-1) plasma levels, a liver secreted hormone known to play a role in bone growth, indicated a drastic reduction in twi animals when compared to wt. To identify the cause of the decrease, we examined the IGF-1 mRNA expression and protein levels in the liver. The results indicated a significant reduction of IGF-1 mRNA as well as protein levels in the liver from twi as compared to wt littermates. Our data suggest that a combination of endogenous (psychosine) and endocrine (IGF-1) factors play a role in the inhibition of postnatal bone growth in twi mice; and further suggest that derangements of liver function may be contributing, at least in part, to this alteration. PMID:20441793

  6. Plasma inflammatory and vascular homeostasis biomarkers increase during human pregnancy but are not affected by oily fish intake.

    Science.gov (United States)

    García-Rodríguez, Cruz E; Olza, Josune; Aguilera, Concepción M; Mesa, María D; Miles, Elizabeth A; Noakes, Paul S; Vlachava, Maria; Kremmyda, Lefkothea-Stella; Diaper, Norma D; Godfrey, Keith M; Calder, Philip C; Gil, Angel

    2012-07-01

    The Salmon in Pregnancy Study investigated whether the increased consumption of (n-3) long-chain PUFA (LC-PUFA) from farmed Atlantic salmon affects immune function during pregnancy and atopic disease in neonates compared with a habitual diet low in oily fish. In this context, because the ingestion of (n-3) LC-PUFA may lower the concentrations of inflammatory biomarkers, we investigated whether the consumption of oily fish affects the levels of inflammatory cytokines and vascular adhesion factors during pregnancy. Pregnant women (n = 123) were randomly assigned to continue their habitual diet (control group, n = 61), which was low in oily fish, or to consume two 150-g salmon portions/wk (salmon group, n = 62; providing 3.45 g EPA plus DHA) from 20 wk of gestation until delivery. Plasma inflammatory cytokines and vascular adhesion factors were measured in maternal plasma samples. Inflammatory biomarkers, including IL-8, hepatocyte growth factor, and monocyte chemotactic protein, increased over the course of pregnancy (P pregnancy progressed (P pregnancy, they are not affected by the increased intake of farmed salmon.

  7. Chronic exposure to low concentrations of strontium 90 affects bone physiology but not the hematopoietic system in mice.

    Science.gov (United States)

    Synhaeve, Nicholas; Wade-Gueye, Ndéye Marième; Musilli, Stefania; Stefani, Johanna; Grandcolas, Line; Gruel, Gaëtan; Souidi, Maâmar; Dublineau, Isabelle; Bertho, Jean-Marc

    2014-01-01

    The aim of this work was to delineate the effects of chronic ingestion of strontium 90 ((90) Sr) at low concentrations on the hematopoiesis and the bone physiology. A mouse model was used for that purpose. Parent animals ingested water containing 20 kBq l(-1) of (90) Sr two weeks before mating. Offspring were then continuously contaminated with (90) Sr through placental transfer during fetal life, through lactation after birth and through drinking water after weaning. At various ages between birth and 20 weeks, animals were tested for hematopoietic parameters such as blood cell counts, colony forming cells in spleen and bone marrow and cytokine concentrations in the plasma. However, we did not find any modification in (90) Sr ingesting animals as compared with control animals. By contrast, the analysis of bone physiology showed a modification of gene expression towards bone resorption. This was confirmed by an increase in C-telopeptide of collagen in the plasma of (90) Sr ingesting animals as compared with control animals. This modification in bone metabolism was not linked to a modification of the phosphocalcic homeostasis, as measured by calcium, phosphorus, vitamin D and parathyroid hormone in the blood. Overall these results suggest that the chronic ingestion of (90) Sr at low concentration in the long term may induce modifications in bone metabolism but not in hematopoiesis.

  8. Bone morphogenetic protein Smads signaling in mesenchymal stem cells affected by osteoinductive calcium phosphate ceramics.

    Science.gov (United States)

    Tang, Zhurong; Wang, Zhe; Qing, Fangzhu; Ni, Yilu; Fan, Yujiang; Tan, Yanfei; Zhang, Xingdong

    2015-03-01

    Porous calcium phosphate ceramics (CaP ceramics) could induce ectopic bone formation which was regulated by various signal molecules. In this work, bone marrow mesenchymal stem cells (MSCs) were cultured on the surface of osteoinductive hydroxyapatite (HA) and biphasic calcium phosphate (BCP) ceramics in comparison with control (culture plate) for up to 14 days to detect the signal molecules which might be affected by the CaP ceramics. Without adding osteogenic factors, MSCs cultured on HA and BCP both expressed higher Runx2, Osterix, collagen type I, osteopontin, bone sialoprotein, and osteocalcin at various stages compared with control, thus confirmed the osteoblastic differentiation of MSCs. Later study demonstrated the messenger RNA level of bone morphogenetic protein 2 (BMP2) and BMP4 were also significantly enhanced by HA and BCP. Furthermore, Smad1, 4, 5, and Dlx5, the main molecules in the BMP/Smads signaling pathway, were upregulated by HA and BCP. Moreover, the higher expression of Smads and BMP2, 4 in BCP over HA, corresponded to the better performance of BCP in stimulating in vitro osteoblastic differentiation of MSCs. This was in accordance with the better osteoinductivity of BCP over HA in vivo. Altogether, these results implied that the CaP ceramics may initiate the osteoblastic differentiation of MSCs by influencing the expression of molecules in BMP/Smads pathway.

  9. Alteration of Homeostasis in Pre-osteoclasts Induced by Aggregatibacter actinomycetemcomitans CDT

    OpenAIRE

    Dione eKawamoto; Ellen Sayuri Ando-Sugimoto; Bruno eBueno-Silva; DiRienzo, Joseph M.; Marcia Pinto Alves Mayer

    2016-01-01

    The dysbiotic microbiota associated with aggressive periodontitis includes Aggregatibacter actinomycetemcomitans, the only oral species known to produce a cytolethal distending toxin (AaCDT). Given that CDT alters the cytokine profile in monocytic cells, we aimed to test the hypothesis that CDT plays a role in bone homeostasis by affecting the differentiation of precursor cells into osteoclasts. Recombinant AaCDT was added to murine bone marrow monocytes (BMMC) in the presence or absence of R...

  10. Inducible models of bone loss.

    Science.gov (United States)

    Doucette, Casey R; Rosen, Clifford J

    2014-12-11

    Bone is an essential organ that not only confers structural stability to the organism, but also serves as a reservoir for hematopoietic elements and is thought to affect systemic homeostasis through the release of endocrine factors as well as calcium. The loss of bone mass due to an uncoupling of bone formation and bone resorption leads to increased fragility that can result in devastating fractures. Further understanding of the effects of environmental stimuli on the development of bone disease in humans is needed, and they can be studied using animal models. Here, we present established and novel methods for the induction of bone loss in mice, including manipulation of diet and environment, administration of drugs, irradiation, and surgically induced hormone deficiency. All of these models are directly related to human cases, and thus, can be used to investigate the causes of bone loss resulting from these interventions.

  11. Low dose pioglitazone does not affect bone formation and resorption markers or bone mineral density in streptozocin-induced diabetic rats.

    Science.gov (United States)

    Tsirella, E; Mavrakanas, T; Rager, O; Tsartsalis, S; Kallaras, K; Kokkas, B; Mironidou-Tzouveleki, M

    2012-04-01

    Our study aims to investigate the effect of a low-dose pioglitazone regimen on bone mineral density and bone formation-resorption markers in control and diabetic rats. Wistar rats were divided into 4 groups: non-diabetic controls, control rats receiving pioglitazone (3 mg/kg), streptozocin-treated diabetic rats (50 mg/kg), diabetic rats treated with pioglitazone (3 mg/kg). The duration of the experiment was 8 weeks. Diabetes in our rats was associated with weight loss, increased urinary calcium excretion and reduced plasma osteocalcin levels. Diabetes mellitus did not affect bone mineral density. Pioglitazone administration had no impact on bone formation and resorption markers levels and did not modify bone mineral density in the four studied groups. Pioglitazone at the 3 mg/kg dose was not associated with significant skeletal complications in our experimental model.

  12. Zebrafish Bone and General Physiology Are Differently Affected by Hormones or Changes in Gravity.

    Science.gov (United States)

    Aceto, Jessica; Nourizadeh-Lillabadi, Rasoul; Marée, Raphael; Dardenne, Nadia; Jeanray, Nathalie; Wehenkel, Louis; Aleström, Peter; van Loon, Jack J W A; Muller, Marc

    2015-01-01

    Teleost fish such as zebrafish (Danio rerio) are increasingly used for physiological, genetic and developmental studies. Our understanding of the physiological consequences of altered gravity in an entire organism is still incomplete. We used altered gravity and drug treatment experiments to evaluate their effects specifically on bone formation and more generally on whole genome gene expression. By combining morphometric tools with an objective scoring system for the state of development for each element in the head skeleton and specific gene expression analysis, we confirmed and characterized in detail the decrease or increase of bone formation caused by a 5 day treatment (from 5dpf to 10 dpf) of, respectively parathyroid hormone (PTH) or vitamin D3 (VitD3). Microarray transcriptome analysis after 24 hours treatment reveals a general effect on physiology upon VitD3 treatment, while PTH causes more specifically developmental effects. Hypergravity (3g from 5dpf to 9 dpf) exposure results in a significantly larger head and a significant increase in bone formation for a subset of the cranial bones. Gene expression analysis after 24 hrs at 3g revealed differential expression of genes involved in the development and function of the skeletal, muscular, nervous, endocrine and cardiovascular systems. Finally, we propose a novel type of experimental approach, the "Reduced Gravity Paradigm", by keeping the developing larvae at 3g hypergravity for the first 5 days before returning them to 1g for one additional day. 5 days exposure to 3g during these early stages also caused increased bone formation, while gene expression analysis revealed a central network of regulatory genes (hes5, sox10, lgals3bp, egr1, edn1, fos, fosb, klf2, gadd45ba and socs3a) whose expression was consistently affected by the transition from hyper- to normal gravity.

  13. Zebrafish Bone and General Physiology Are Differently Affected by Hormones or Changes in Gravity.

    Directory of Open Access Journals (Sweden)

    Jessica Aceto

    Full Text Available Teleost fish such as zebrafish (Danio rerio are increasingly used for physiological, genetic and developmental studies. Our understanding of the physiological consequences of altered gravity in an entire organism is still incomplete. We used altered gravity and drug treatment experiments to evaluate their effects specifically on bone formation and more generally on whole genome gene expression. By combining morphometric tools with an objective scoring system for the state of development for each element in the head skeleton and specific gene expression analysis, we confirmed and characterized in detail the decrease or increase of bone formation caused by a 5 day treatment (from 5dpf to 10 dpf of, respectively parathyroid hormone (PTH or vitamin D3 (VitD3. Microarray transcriptome analysis after 24 hours treatment reveals a general effect on physiology upon VitD3 treatment, while PTH causes more specifically developmental effects. Hypergravity (3g from 5dpf to 9 dpf exposure results in a significantly larger head and a significant increase in bone formation for a subset of the cranial bones. Gene expression analysis after 24 hrs at 3g revealed differential expression of genes involved in the development and function of the skeletal, muscular, nervous, endocrine and cardiovascular systems. Finally, we propose a novel type of experimental approach, the "Reduced Gravity Paradigm", by keeping the developing larvae at 3g hypergravity for the first 5 days before returning them to 1g for one additional day. 5 days exposure to 3g during these early stages also caused increased bone formation, while gene expression analysis revealed a central network of regulatory genes (hes5, sox10, lgals3bp, egr1, edn1, fos, fosb, klf2, gadd45ba and socs3a whose expression was consistently affected by the transition from hyper- to normal gravity.

  14. Exposure to GSM RF fields does not affect calcium homeostasis in human endothelial cells, rat pheocromocytoma cells or rat hippocampal neurons.

    Science.gov (United States)

    O'Connor, Rodney P; Madison, Steve D; Leveque, Philippe; Roderick, H Llewelyn; Bootman, Martin D

    2010-07-27

    In the course of modern daily life, individuals are exposed to numerous sources of electromagnetic radiation that are not present in the natural environment. The strength of the electromagnetic fields from sources such as hairdryers, computer display units and other electrical devices is modest. However, in many home and office environments, individuals can experience perpetual exposure to an "electromagnetic smog", with occasional peaks of relatively high electromagnetic field intensity. This has led to concerns that such radiation can affect health. In particular, emissions from mobile phones or mobile phone masts have been invoked as a potential source of pathological electromagnetic radiation. Previous reports have suggested that cellular calcium (Ca2+) homeostasis is affected by the types of radiofrequency fields emitted by mobile phones. In the present study, we used a high-throughput imaging platform to monitor putative changes in cellular Ca2+ during exposure of cells to 900 MHz GSM fields of differing power (specific absorption rate 0.012-2 W/Kg), thus mimicking the type of radiation emitted by current mobile phone handsets. Data from cells experiencing the 900 Mhz GSM fields were compared with data obtained from paired experiments using continuous wave fields or no field. We employed three cell types (human endothelial cells, PC-12 neuroblastoma and primary hippocampal neurons) that have previously been suggested to be sensitive to radiofrequency fields. Experiments were designed to examine putative effects of radiofrequency fields on resting Ca2+, in addition to Ca2+ signals evoked by an InsP(3)-generating agonist. Furthermore, we examined putative effects of radiofrequency field exposure on Ca2+ store emptying and store-operated Ca2+ entry following application of the Ca2+ATPase inhibitor thapsigargin. Multiple parameters (e.g., peak amplitude, integrated Ca2+ signal, recovery rates) were analysed to explore potential impact of radiofrequency field

  15. Exposure to GSM RF fields does not affect calcium homeostasis in human endothelial cells, rat pheocromocytoma cells or rat hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Rodney P O'Connor

    Full Text Available In the course of modern daily life, individuals are exposed to numerous sources of electromagnetic radiation that are not present in the natural environment. The strength of the electromagnetic fields from sources such as hairdryers, computer display units and other electrical devices is modest. However, in many home and office environments, individuals can experience perpetual exposure to an "electromagnetic smog", with occasional peaks of relatively high electromagnetic field intensity. This has led to concerns that such radiation can affect health. In particular, emissions from mobile phones or mobile phone masts have been invoked as a potential source of pathological electromagnetic radiation. Previous reports have suggested that cellular calcium (Ca2+ homeostasis is affected by the types of radiofrequency fields emitted by mobile phones. In the present study, we used a high-throughput imaging platform to monitor putative changes in cellular Ca2+ during exposure of cells to 900 MHz GSM fields of differing power (specific absorption rate 0.012-2 W/Kg, thus mimicking the type of radiation emitted by current mobile phone handsets. Data from cells experiencing the 900 Mhz GSM fields were compared with data obtained from paired experiments using continuous wave fields or no field. We employed three cell types (human endothelial cells, PC-12 neuroblastoma and primary hippocampal neurons that have previously been suggested to be sensitive to radiofrequency fields. Experiments were designed to examine putative effects of radiofrequency fields on resting Ca2+, in addition to Ca2+ signals evoked by an InsP(3-generating agonist. Furthermore, we examined putative effects of radiofrequency field exposure on Ca2+ store emptying and store-operated Ca2+ entry following application of the Ca2+ATPase inhibitor thapsigargin. Multiple parameters (e.g., peak amplitude, integrated Ca2+ signal, recovery rates were analysed to explore potential impact of

  16. Familial multiple exostosis arising from bones of enchondral as well as membranous (in a family affecting seven members

    Directory of Open Access Journals (Sweden)

    Maruti Kambali

    2012-01-01

    Full Text Available Familial multiple exostosis in a family of seven members who are affected found that exostosis was arising both from bones of enchondral as well as membranous ossification, which was sessile as well as pedunculated and was larger in size at the growing ends of the bones. The lesions occur only in bones that develop from cartilage (endochondral ossification. In our study, we have noticed lesions occurring in both endochondral as well as membranous bone. Till now, no article has mentioned about membranous origin (clavicle.

  17. Analysis of aluminium content and iron homeostasis in nipple aspirate fluids from healthy women and breast cancer-affected patients.

    Science.gov (United States)

    Mannello, Ferdinando; Tonti, Gaetana A; Medda, Virginia; Simone, Patrizia; Darbre, Philippa D

    2011-04-01

    Aluminium is not a physiological component of the breast but has been measured recently in human breast tissues and breast cyst fluids at levels above those found in blood serum or milk. Since the presence of aluminium can lead to iron dyshomeostasis, levels of aluminium and iron-binding proteins (ferritin, transferrin) were measured in nipple aspirate fluid (NAF), a fluid present in the breast duct tree and mirroring the breast microenvironment. NAFs were collected noninvasively from healthy women (NoCancer; n = 16) and breast cancer-affected women (Cancer; n = 19), and compared with levels in serum (n = 15) and milk (n = 45) from healthy subjects. The mean level of aluminium, measured by ICP-mass spectrometry, was significantly higher in Cancer NAF (268.4 ± 28.1 μg l(-1) ; n = 19) than in NoCancer NAF (131.3 ± 9.6 μg l(-1) ; n = 16; P Cancer NAF (280.0 ± 32.3 μg l(-1) ) than in NoCancer NAF (55.5 ± 7.2 μg l(-1) ), and furthermore, a positive correlation was found between levels of aluminium and ferritin in the Cancer NAF (correlation coefficient R = 0.94, P breast cancer. The reasons for the high levels of aluminium in NAF remain unknown but possibilities include either exposure to aluminium-based antiperspirant salts in the adjacent underarm area and/or preferential accumulation of aluminium by breast tissues.

  18. High vitamin D3 diet administered during active colitis negatively affects bone metabolism in an adoptive T cell transfer model.

    Science.gov (United States)

    Larmonier, C B; McFadden, R-M T; Hill, F M; Schreiner, R; Ramalingam, R; Besselsen, D G; Ghishan, F K; Kiela, P R

    2013-07-01

    Decreased bone mineral density (BMD) represents an extraintestinal complication of inflammatory bowel disease (IBD). Vitamin D₃ has been considered a viable adjunctive therapy in IBD. However, vitamin D₃ plays a pleiotropic role in bone modeling and regulates the bone formation-resorption balance, depending on the physiological environment, and supplementation during active IBD may have unintended consequences. We evaluated the effects of vitamin D₃ supplementation during the active phase of disease on colonic inflammation, BMD, and bone metabolism in an adoptive IL-10-/- CD4⁺ T cell transfer model of chronic colitis. High-dose vitamin D₃ supplementation for 12 days during established disease had negligible effects on mucosal inflammation. Plasma vitamin D₃ metabolites correlated with diet, but not disease, status. Colitis significantly reduced BMD. High-dose vitamin D₃ supplementation did not affect cortical bone but led to a further deterioration of trabecular bone morphology. In mice fed a high vitamin D₃ diet, colitis more severely impacted bone formation markers (osteocalcin and bone alkaline phosphatase) and increased bone resorption markers, ratio of receptor activator of NF-κB ligand to osteoprotegrin transcript, plasma osteoprotegrin level, and the osteoclast activation marker tartrate-resistant acid phosphatase (ACp5). Bone vitamin D receptor expression was increased in mice with chronic colitis, especially in the high vitamin D₃ group. Our data suggest that vitamin D₃, at a dose that does not improve inflammation, has no beneficial effects on bone metabolism and density during active colitis or may adversely affect BMD and bone turnover. These observations should be taken into consideration in the planning of further clinical studies with high-dose vitamin D₃ supplementation in patients with active IBD.

  19. Short-term prolactin administration causes expressible galactorrhea but does not affect bone turnover: pilot data for a new lactation agent

    Directory of Open Access Journals (Sweden)

    Smith Patricia C

    2007-07-01

    Full Text Available Abstract Background Medications used to augment lactation increase prolactin secretion but can have intolerable side effects. We examined the biological activity of recombinant human prolactin (r-hPRL as preliminary data for its use to augment lactation. Methods Healthy, non-postpartum women (n = 21 with regular menstrual cycles underwent a seven day randomized, double-blind, placebo-controlled trial of r-hPRL. Expressible galactorrhea, markers of bone turnover, calcium homeostasis and gonadal function were measured and side effects recorded. Results Prolactin levels increased during r-hPRL administration (20.0 ± 2.8 to 231.7 ± 48.9 μg/L at 6 hours; p Conclusion In summary, r-hPRL can cause expressible galactorrhea. Seven days of r-hPRL administration does not adversely affect bone turnover or menstrual cyclicity. Thus, r-hPRL may be a viable option for short-term lactation augmentation. Trial registration Clinical Trials.gov NCT00438490

  20. Treatment with eldecalcitol positively affects mineralization, microdamage, and collagen crosslinks in primate bone.

    Science.gov (United States)

    Saito, Mitsuru; Grynpas, Marc D; Burr, David B; Allen, Matthew R; Smith, Susan Y; Doyle, Nancy; Amizuka, Norio; Hasegawa, Tomoka; Kida, Yoshikuni; Marumo, Keishi; Saito, Hitoshi

    2015-04-01

    Eldecalcitol (ELD), an active form of vitamin D analog approved for the treatment of osteoporosis in Japan, increases lumbar spine bone mineral density (BMD), suppresses bone turnover markers, and reduces fracture risk in patients with osteoporosis. We have previously reported that treatment with ELD for 6 months improved the mechanical properties of the lumbar spine in ovariectomized (OVX) cynomolgus monkeys. ELD treatment increased lumbar BMD, suppressed bone turnover markers, and reduced histomorphometric parameters of both bone formation and resorption in vertebral trabecular bone. In this study, we elucidated the effects of ELD on bone quality (namely, mineralization, microarchitecture, microdamage, and bone collagen crosslinks) in OVX cynomolgus monkeys in comparison with OVX-vehicle control monkeys. Density fractionation of bone powder prepared from lumbar vertebrae revealed that ELD treatment shifted the distribution profile of bone mineralization to a higher density, and backscattered electron microscopic imaging showed improved trabecular bone connectivity in the ELD-treated groups. Higher doses of ELD more significantly reduced the amount of microdamage compared to OVX-vehicle controls. The fractionated bone powder samples were divided according to their density, and analyzed for collagen crosslinks. Enzymatic crosslinks were higher in both the high-density (≥2.0 mg/mL) and low-density (mineralization, but prevented non-enzymatic reaction of collagen crosslinks and accumulation of bone microdamage. Bone anti-resorptive agents such as bisphosphonates slow down bone remodeling so that bone mineralization, bone microdamage, and non-enzymatic collagen crosslinks all increase. Bone anabolic agents such as parathyroid hormone decrease bone mineralization and bone microdamage by stimulating bone remodeling. ELD did not fit into either category. Histological analysis indicated that the ELD treatment strongly suppressed bone resorption by reducing the number of

  1. Bone

    Science.gov (United States)

    Helmberger, Thomas K.; Hoffmann, Ralf-Thorsten

    The typical clinical signs in bone tumours are pain, destruction and destabilization, immobilization, neurologic deficits, and finally functional impairment. Primary malignant bone tumours are a rare entity, accounting for about 0.2% of all malignancies. Also benign primary bone tumours are in total rare and mostly asymptomatic. The most common symptomatic benign bone tumour is osteoid osteoma with an incidence of 1:2000.

  2. Quinoa extract enriched in 20-hydroxyecdysone affects energy homeostasis and intestinal fat absorption in mice fed a high-fat diet.

    Science.gov (United States)

    Foucault, Anne-Sophie; Even, Patrick; Lafont, René; Dioh, Waly; Veillet, Stanislas; Tomé, Daniel; Huneau, Jean-François; Hermier, Dominique; Quignard-Boulangé, Annie

    2014-04-10

    In a previous study, we have demonstrated that a supplementation of a high-fat diet with a quinoa extract enriched in 20-hydroxyecdysone (QE) or pure 20-hydroxyecdysone (20E) could prevent the development of obesity. In line with the anti-obesity effect of QE, we used indirect calorimetry to examine the effect of dietary QE and 20E in high-fat fed mice on different components of energy metabolism. Mice were fed a high-fat (HF) diet with or without supplementation by QE or pure 20E for 3 weeks. As compared to mice maintained on a low-fat diet, HF feeding resulted in a marked physiological shift in energy homeostasis, associating a decrease in global energy expenditure (EE) and an increase in lipid utilization as assessed by the lower respiratory quotient (RQ). Supplementation with 20E increased energy expenditure while food intake and activity were not affected. Furthermore QE and 20E promoted a higher rate of glucose oxidation leading to an increased RQ value. In QE and 20E-treated HFD fed mice, there was an increase in fecal lipid excretion without any change in stool amount. Our study indicates that anti-obesity effect of QE can be explained by a global increase in energy expenditure, a shift in glucose metabolism towards oxidation to the detriment of lipogenesis and a decrease in dietary lipid absorption leading to reduced dietary lipid storage in adipose tissue.

  3. Interdental alveolar bone density in bruxers, mild bruxers, and non-bruxers affected by orthodontia and impaction as influencing factors.

    Directory of Open Access Journals (Sweden)

    Shereen Shokry

    2015-12-01

    Full Text Available Aim: To assess the interdental alveolar bone density within specific regions of interest in the mandible of bruxers, mild bruxers and non-bruxers in absence or presence of influencing factors, such as orthodontia and impaction. Materials and methods: The study consisted of 104 subjects (64 bruxers and 40 controls from the female students in the Faculty of Dentistry. Students were classified into bruxers, non-bruxers, and mild bruxers. The presence of modifying factors, such as impacted mandibular third molars and/or current or recent orthodontic treatment were identified. Panoramic radiographs were obtained, and the mean bone density values of interdental alveolar bone were measured using ImageJ software. Results: Non-bruxers had the highest mean bone density in all measured regions. The mesial aspect of the second premolar was an area of higher mean bone density in bruxers and in mild bruxers, compared to non-bruxers. In the presence of orthodontic treatment, the mean bone density in non-bruxers surpassed that of bruxers and mild bruxers. Conclusion: Bruxism, whether mild or severe decreased the interdental mean bone density in the studied regions of interest. The presence of influencing factors affected the interdental mean bone density.

  4. Mode of heparin attachment to nanocrystalline hydroxyapatite affects its interaction with bone morphogenetic protein-2.

    Science.gov (United States)

    Goonasekera, Chandhi S; Jack, Kevin S; Bhakta, Gajadhar; Rai, Bina; Luong-Van, Emma; Nurcombe, Victor; Cool, Simon M; Cooper-White, Justin J; Grøndahl, Lisbeth

    2015-12-16

    Heparin has a high affinity for bone morphogenetic protein-2 (BMP-2), which is a key growth factor in bone regeneration. The aim of this study was to investigate how the rate of release of BMP-2 was affected when adsorbed to nanosized hydroxyapatite (HAP) particles functionalized with heparin by different methods. Heparin was attached to the surface of HAP, either via adsorption or covalent coupling, via a 3-aminopropyltriethoxysilane (APTES) layer. The chemical composition of the particles was evaluated using X-ray photoelectron spectroscopy and elemental microanalysis, revealing that the heparin grafting densities achieved were dependent on the curing temperature used in the fabrication of APTES-modified HAP. Comparable amounts of heparin were attached via both covalent coupling and adsorption to the APTES-modified particles, but characterization of the particle surfaces by zeta potential and Brunauer-Emmett-Teller measurements indicated that the conformation of the heparin on the surface was dependent on the method of attachment, which in turn affected the stability of heparin on the surface. The release of BMP-2 from the particles after 7 days in phosphate-buffered saline found that 31% of the loaded BMP-2 was released from the APTES-modified particles with heparin covalently attached, compared to 16% from the APTES-modified particles with the heparin adsorbed. Moreover, when heparin was adsorbed onto pure HAP, it was found that the BMP-2 released after 7 days was 5% (similar to that from unmodified HAP). This illustrates that by altering the mode of attachment of heparin to HAP the release profile and total release of BMP-2 can be manipulated. Importantly, the BMP-2 released from all the heparin particle types was found by the SMAD 1/5/8 phosphorylation assay to be biologically active.

  5. Diet calcium level but not calcium supplement particle size affects bone density and mechanical properties in ovariectomized rats.

    Science.gov (United States)

    Shahnazari, Mohammad; Martin, Berdine R; Legette, Leecole L; Lachcik, Pamela J; Welch, Jo; Weaver, Connie M

    2009-07-01

    Calcium (Ca) supplements, especially Ca carbonate (CaCO3), are the main alternative sources of dietary Ca and an important part of a treatment regimen for osteoporosis, the most common metabolic bone disorder of aging and menopause. In a female ovariectomized (OVX) rat model for studying postmenopausal osteoporosis, we tested the hypothesis that a small compared with a large particle size of CaCO3 (13.0- vs. 18.5-mum geometric diameter) would result in increased Ca balance and subsequently bone mass and that this would be affected by dietary Ca level. We used 6-mo-old rats that were OVX either at 6 or 3 mo of age as models of early or stable menopausal status, respectively. The rats received semipurified diets that contained either 0.4 or 0.2% dietary Ca provided from CaCO3 of 2 particle sizes. A group of Sham-operated rats with intact ovaries served as control and were fed 0.4% dietary Ca from large particles. Estrogen deficiency as a result of ovariectomy had an adverse effect on bone density, mineral content, and bone mechanical properties (P < 0.001). Reducing dietary Ca from 0.4 to 0.2% resulted in significant adverse effects on bone density and mechanical properties (P < 0.001). The particle size of CaCO3 did not affect total Ca balance, bone dual energy X-ray absorptiometry and peripheral quantitative computed tomography indices, bone ash and Ca content, or the mechanical determinants of bone strength. We conclude that a decrease in particle size of CaCO3 to 70% of that typically found in Ca supplements does not provide a benefit to overall Ca metabolism or bone characteristics and that the amount of Ca consumed is of greater influence in enhancing Ca nutrition and skeletal strength.

  6. Subtle changes in bone mineralization density distribution in most severely affected patients with chronic obstructive pulmonary disease.

    Science.gov (United States)

    Misof, B M; Roschger, P; Jorgetti, V; Klaushofer, K; Borba, V Z C; Boguszewski, C L; Cohen, A; Shane, E; Zhou, H; Dempster, D W; Moreira, C A

    2015-10-01

    Chronic obstructive pulmonary disease (COPD) is associated with low aBMD as measured by DXA and altered microstructure as assessed by bone histomorphometry and microcomputed tomography. Knowledge of bone matrix mineralization is lacking in COPD. Using quantitative backscatter electron imaging (qBEI), we assessed cancellous (Cn.) and cortical (Ct.) bone mineralization density distribution (BMDD) in 19 postmenopausal women (62.1 ± 7.3 years of age) with COPD. Eight had sustained fragility fractures, and 13 had received treatment with inhaled glucocorticoids. The BMDD outcomes from the patients were compared with healthy reference data and were correlated with previous clinical and histomorphometric findings. In general, the BMDD outcomes for the patients were not significantly different from the reference data. Neither the subgroups of with or without fragility fractures or of who did or did not receive inhaled glucocorticoid treatment, showed differences in BMDD. However, subgroup comparison according to severity revealed 10% decreased cancellous mineralization heterogeneity (Cn.CaWidth) for the most severely affected compared with less affected patients (p=0.042) and compared with healthy premenopausal controls (p=0.021). BMDD parameters were highly correlated with histomorphometric cancellous bone volume (BV/TV) and formation indices: mean degree of mineralization (Cn.CaMean) versus BV/TV (r=0.58, p=0.009), and Cn.CaMean and Ct.CaMean versus bone formation rate (BFR/BS) (r=-0.71, p50th percentile) BV/TV. The normality in most of the BMDD parameters and bone formation rates as well as the significant correlations between them suggests unaffected mineralization processes in COPD. Our findings also indicate no significant negative effect of treatment with inhaled glucocorticoids on the bone mineralization pattern. However, the observed concomitant occurrence of relatively lower bone volumes with lower bone matrix mineralization will both contribute to the reduced a

  7. The Function of HMG-Box Transcription Factors Sox4a and Sox4b in Zebrafish Bone Development and Homeostasis

    Science.gov (United States)

    Aceto, J.; Motte, P.; Martial, J. A.; Muller, M.

    2008-06-01

    In mammals, the Sox4 gene is involved in development of endocardial crests, the brain, the lung, teeth, gonads and lymphocytes. Recently, Sox4 was shown to control bone mass and mineralization in mice. In zebrafish, two homologs for the mammalian Sox4 are present, sox4a and sox4b. Here we investigate the function of the sox4a and sox4b genes in cartilage and bone development in zebrafish. Therefore, we focus our attention on the first bone structures to be formed, the head skeleton and more precisely the pharyngeal cartilage. We show that both genes are expressed in the pharyngeal region, albeit at different time points during development. Double in situ hybridization experiments are used to exactly define the particular tissues where they are expressed. Furthermore, microinjection experiments of antisense oligonucleotides are used to block translation of these specific genes and to define their precise function during cartilage and bone development.

  8. Troglitazone treatment increases bone marrow adipose tissue volume but does not affect trabecular bone volume in mice

    DEFF Research Database (Denmark)

    Erikstrup, Lise Tornvig; Mosekilde, Leif; Justesen, J;

    2001-01-01

    proliferator activated receptor-gamma (PPARgamma). Histomorphometric analysis of proximal tibia was performed in order to quantitate the amount of trabecular bone volume per total volume (BV/TV %), adipose tissue volume per total volume (AV/TV %), and hematopoietic marrow volume per total volume (HV...

  9. Glucose homeostasis and metabolic adaptation in the pregnant and lactating sheep are affected by the level of nutrition previously provided during her late fetal life

    DEFF Research Database (Denmark)

    Husted, Sanne Munch; Nielsen, Mette Benedicte Olaf; Blache, D.

    2008-01-01

    This study investigated whether undernutrition (UN) during late fetal life can programme the subsequent adult life adaptation of glucose homeostasis and metabolism during pregnancy and lactation. Twenty-four primiparous experimental ewes were used. Twelve had been exposed to a prenatal NORM level...

  10. New Insights into the Molecular Basis of Kidney Governing Bone Theory

    Directory of Open Access Journals (Sweden)

    Dong-feng Zhao

    2015-07-01

    Full Text Available Kidney governing bone theory plays an important role in treating bone metabolic disease such as osteoporosis, and many tonifying kidney prescriptions/herbs are widely used in Traditional Chinese Medicine (TCM. However, the exact biological basis of kidney governing bone theory in the context of new advances in biology is still not fully established. In this paper, the content of kidney governing bone theory in biology has been fully demonstrated from different aspects. We first propose that bone and kidney mutually affect each other in pathology and physiology, particularly through homeostasis of calcium, phosphorus and fibroblast growth factor-23(FGF-23. Next, we identify that tonifying kidney prescriptions/herbs exert bone protective effects, thus treating osteoporosis by regulating bone formation and bone resorption. Furthermore, the exact molecular mechanisms of tonifying kidney prescriptions, herbs and their effective components in treating osteoporosis have been systematically reviewed. Finally, we come into the conclusion that kidney regulating bone mineral homeostasis, bone protective effects of tonifying kidney herbs and regulatory effects on bone homeostasis are all the manifestations of kidney governing bone theory. Therefore, the new insights into kidney governing bone theory in biology will promote the development of clinical practices, and drugs discovery in treating osteoporosis.

  11. New Insights into the Molecular Basis of Kidney Governing Bone Theory

    Institute of Scientific and Technical Information of China (English)

    Dong-feng Zhao; Yong-jian Zhao; Cheng-long Wang; Yan-ping Yang; Yong-jun Wang

    2015-01-01

    Kidney governing bone theory plays an important role in treating bone metabolic disease such as osteoporosis, and many tonifying kidney prescriptions/herbs are widely used in Traditional Chinese Medicine (TCM). However, the exact biological basis of kidney governing bone theory in the context of new advances in biology is still not fully established. In this paper, the content of kidney governing bone theory in biology has been fully demonstrated from different aspects. We first propose that bone and kidney mutually affect each other in pathology and physiology, particularly through homeostasis of calcium, phosphorus and fibroblast growth factor-23(FGF-23). Next, we identify that tonifying kidney prescriptions/herbs exert bone protective effects, thus treating osteoporosis by regulating bone formation and bone resorption. Furthermore, the exact molecular mechanisms of tonifying kidney prescriptions, herbs and their effective components in treating osteoporosis have been systematically reviewed. Finally, we come into the conclusion that kidney regulating bone mineral homeostasis, bone protective effects of tonifying kidney herbs and regulatory effects on bone homeostasis are all the manifestations of kidney governing bone theory. Therefore, the new insights into kidney governing bone theory in biology will promote the development of clinical practices, and drugs discovery in treating osteoporosis.

  12. The Bone Resorption Inhibitors Odanacatib and Alendronate Affect Post-Osteoclastic Events Differently in Ovariectomized Rabbits

    DEFF Research Database (Denmark)

    Jensen, Pia Rosgaard; Andersen, Thomas Levin; Pennypacker, Brenda L;

    2014-01-01

    Odanacatib (ODN) is a bone resorption inhibitor which differs from standard antiresorptives by its ability to reduce bone resorption without decreasing bone formation. What is the reason for this difference? In contrast with other antiresorptives, such as alendronate (ALN), ODN targets only...... the very last step of the resorption process. We hypothesize that ODN may therefore modify the remodeling events immediately following osteoclastic resorption. These events belong to the reversal phase and include recruitment of osteoblasts, which is critical for connecting bone resorption to formation. We...... in the interface between osteoclasts and surrounding osteoblast-lineage cells. This increase is expected to favor the osteoclast-osteoblast interactions required for bone formation. Regarding bone resorption itself, we show that ODN, but not ALN, treatment results in shallower resorption lacunae, a geometry...

  13. When size matters: differences in demineralized bone matrix particles affect collagen structure, mesenchymal stem cell behavior, and osteogenic potential.

    Science.gov (United States)

    Dozza, B; Lesci, I G; Duchi, S; Della Bella, E; Martini, L; Salamanna, F; Falconi, M; Cinotti, S; Fini, M; Lucarelli, E; Donati, D

    2017-04-01

    Demineralized bone matrix (DBM) is a natural, collagen-based, osteoinductive biomaterial. Nevertheless, there are conflicting reports on the efficacy of this product. The purpose of this study was to evaluate whether DBM collagen structure is affected by particle size and can influence DBM cytocompatibility and osteoinductivity. Sheep cortical bone was ground and particles were divided in three fractions with different sizes, defined as large (L, 1-2 mm), medium (M, 0.5-1 mm), and small (S, structure, with DBM-M being altered but not as much as DBM-S. DBM-M displayed a preferable trend in almost all biological characteristics tested, although all DBM particles revealed an optimal cytocompatibility. Subcutaneous implantation of DBM particles into immunocompromised mice resulted in bone induction only for DBM-M. When sheep MSC were seeded onto particles before implantation, all DBM particles were able to induce new bone formation with the best incidence for DBM-M and DBM-S. In conclusion, the collagen alteration in DBM-M is likely the best condition to promote bone induction in vivo. Furthermore, the choice of 0.5-1 mm particles may enable to obtain more efficient and consistent results among different research groups in bone tissue-engineering applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1019-1033, 2017.

  14. Id1 represses osteoclast-dependent transcription and affects bone formation and hematopoiesis.

    Directory of Open Access Journals (Sweden)

    April S Chan

    Full Text Available BACKGROUND: The bone-bone marrow interface is an area of the bone marrow microenvironment in which both bone remodeling cells, osteoblasts and osteoclasts, and hematopoietic cells are anatomically juxtaposed. The close proximity of these cells naturally suggests that they interact with one another, but these interactions are just beginning to be characterized. METHODOLOGY/PRINCIPAL FINDINGS: An Id1(-/- mouse model was used to assess the role of Id1 in the bone marrow microenvironment. Micro-computed tomography and fracture tests showed that Id1(-/- mice have reduced bone mass and increased bone fragility, consistent with an osteoporotic phenotype. Osteoclastogenesis and pit formation assays revealed that loss of Id1 increased osteoclast differentiation and resorption activity, both in vivo and in vitro, suggesting a cell autonomous role for Id1 as a negative regulator of osteoclast differentiation. Examination by flow cytometry of the hematopoietic compartment of Id1(-/- mice showed an increase in myeloid differentiation. Additionally, we found increased expression of osteoclast genes, TRAP, Oscar, and CTSK in the Id1(-/- bone marrow microenvironment. Lastly, transplantation of wild-type bone marrow into Id1(-/- mice repressed TRAP, Oscar, and CTSK expression and activity and rescued the hematopoietic and bone phenotype in these mice. CONCLUSIONS/SIGNIFICANCE: In conclusion, we demonstrate an osteoporotic phenotype in Id1(-/- mice and a mechanism for Id1 transcriptional control of osteoclast-associated genes. Our results identify Id1 as a principal player responsible for the dynamic cross-talk between bone and bone marrow hematopoietic cells.

  15. Alcohol disrupts sleep homeostasis.

    Science.gov (United States)

    Thakkar, Mahesh M; Sharma, Rishi; Sahota, Pradeep

    2015-06-01

    Alcohol is a potent somnogen and one of the most commonly used "over the counter" sleep aids. In healthy non-alcoholics, acute alcohol decreases sleep latency, consolidates and increases the quality (delta power) and quantity of NREM sleep during the first half of the night. However, sleep is disrupted during the second half. Alcoholics, both during drinking periods and during abstinences, suffer from a multitude of sleep disruptions manifested by profound insomnia, excessive daytime sleepiness, and altered sleep architecture. Furthermore, subjective and objective indicators of sleep disturbances are predictors of relapse. Finally, within the USA, it is estimated that societal costs of alcohol-related sleep disorders exceeds $18 billion. Thus, although alcohol-associated sleep problems have significant economic and clinical consequences, very little is known about how and where alcohol acts to affect sleep. In this review, we have described our attempts to unravel the mechanism of alcohol-induced sleep disruptions. We have conducted a series of experiments using two different species, rats and mice, as animal models. We performed microdialysis, immunohistochemical, pharmacological, sleep deprivation and lesion studies which suggest that the sleep-promoting effects of alcohol may be mediated via alcohol's action on the mediators of sleep homeostasis: adenosine (AD) and the wake-promoting cholinergic neurons of the basal forebrain (BF). Alcohol, via its action on AD uptake, increases extracellular AD resulting in the inhibition of BF wake-promoting neurons. Since binge alcohol consumption is a highly prevalent pattern of alcohol consumption and disrupts sleep, we examined the effects of binge drinking on sleep-wakefulness. Our results suggest that disrupted sleep homeostasis may be the primary cause of sleep disruption observed following binge drinking. Finally, we have also shown that sleep disruptions observed during acute withdrawal, are caused due to impaired

  16. Cytokine-Mediated Bone Destruction in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Seung Min Jung

    2014-01-01

    Full Text Available Bone homeostasis, which involves formation and resorption, is an important process for maintaining adequate bone mass in humans. Rheumatoid arthritis (RA is an autoimmune disease characterized by inflammation and bone loss, leading to joint destruction and deformity, and is a representative disease of disrupted bone homeostasis. The bone loss and joint destruction are mediated by immunological insults by proinflammatory cytokines and various immune cells. The connection between bone and immunity has been intensely studied and comprises the emerging field of osteoimmunology. Osteoimmunology is an interdisciplinary science investigating the interplay between the skeletal and the immune systems. The main contributors in osteoimmunology are the bone effector cells, such as osteoclasts or osteoblasts, and the immune cells, particularly lymphocytes and monocytes. Physiologically, osteoclasts originate from immune cells, and immune cells regulate osteoblasts and vice versa. Pathological conditions such as RA might affect these interactions, thereby altering bone homeostasis, resulting in the unfavorable outcome of bone destruction. In this review, we describe the osteoclastogenic roles of the proinflammatory cytokines and immune cells that are important in the pathophysiology of RA.

  17. The negative bone effects of the disease and of chronic corticosteroid treatment in premenopausal women affected by rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    A. Fassio

    2016-09-01

    Full Text Available Osteoporosis is a well-known extra-articular complication in rheumatoid arthritis (RA. The chronic corticosteroid treatment, the functional impairment associated with RA and the disease itself appear to be the most relevant determinants. Most of the previous studies involved postmenopausal women, in whom the estrogenic deficiency might amplify the negative effect towards bone of both RA and corticosteroid therapy. We decided to evaluate bone health in a cohort of premenopausal RA patients. The study population includes 47 premenopausal women attending our outpatient clinic for RA and twice as many healthy age-matched control women selected from the hospital personnel. The bone density at the spine and femoral neck were significantly lower in patients with RA as compared with controls. When spine bone mineral density (BMD values were adjusted for the cumulative glucocorticoid (GC dose alone and for the cumulative GC dose plus body mass index (BMI the mean differences between two groups decreased but they remained statistically significant. We found no difference when the spine BMD was adjusted for cumulative GC dose, BMI and health assessment questionnaire. The difference in femoral neck BMD remained statistically significant also after all the same adjustments. In conclusion, our study shows that a BMD deficiency is frequent also in premenopausal women affected by RA, especially at femoral site and that the main determinants of this bone loss are not only the disease-related weight loss, corticosteroid therapy and functional impairment, but also the systemic effects of the disease itself.

  18. Intravenous contrast injection significantly affects bone mineral density measured on CT

    Energy Technology Data Exchange (ETDEWEB)

    Pompe, Esther; Willemink, Martin J.; Dijkhuis, Gawein R.; Verhaar, Harald J.J.; Hoesein, Firdaus A.A.M.; Jong, Pim A. de [University Medical Center Utrecht, Department of Radiology and Internal Medicine-Geriatrics, Postbus 85500, Postbox: E.03.511, GA, Utrecht (Netherlands)

    2014-09-05

    The objective is to evaluate the effect of intravenous contrast media on bone mineral density (BMD) assessment by comparing unenhanced and contrast-enhanced computed tomography (CT) examinations performed for other indications. One hundred and fifty-two patients (99 without and 53 with malignant neoplasm) who underwent both unenhanced and two contrast-enhanced (arterial and portal venous phase) abdominal CT examinations in a single session between June 2011 and July 2013 were included. BMD was evaluated on the three examinations as CT-attenuation values in Hounsfield Units (HU) in the first lumbar vertebra (L1). CT-attenuation values were significantly higher in both contrast-enhanced phases, compared to the unenhanced phase (p < 0.01). In patients without malignancies, mean ± standard deviation (SD) HU-values increased from 128.8 ± 48.6 HU for the unenhanced phase to 142.3 ± 47.2 HU for the arterial phase and 147.0 ± 47.4 HU for the portal phase (p < 0.01). In patients with malignancies, HU-values increased from 112.1 ± 38.1 HU to 126.2 ± 38.4 HU and 130.1 ± 37.3 HU (p < 0.02), respectively. With different thresholds to define osteoporosis, measurements in the arterial and portal phase resulted in 7-25 % false negatives. Our study showed that intravenous contrast injection substantially affects BMD-assessment on CT and taking this into account may improve routine assessment of low BMD in nonquantitative CT. (orig.)

  19. Bisphosphonate treatment affects trabecular bone apparent modulus through micro-architecture rather than matrix properties

    DEFF Research Database (Denmark)

    Ding, Ming

    2004-01-01

    and trabecular architecture independently. Conventional histomorphometry and microdamage data were obtained from the second and third lumbar vertebrae of the same dogs [Bone 28 (2001) 524]. Bisphosphonate treatment resulted in an increased apparent Young's modulus, decreased bone turnover, increased calcified......Bisphosphonates are emerging as an important treatment for osteoporosis. But whether the reduced fracture risk associated with bisphosphonate treatment is due to increased bone mass, improved trabecular architecture and/or increased secondary mineralization of the calcified matrix remains unclear....... We examined the effects of bisphosphonates on both the trabecular architecture and matrix properties of canine trabecular bone. Thirty-six beagles were divided into a control group and two treatment groups, one receiving risedronate and the other alendronate at 5-6 times the clinical dose...

  20. Genetic and environmental factors affecting peak bone mass in premenopausal Japanese women

    OpenAIRE

    Hayakawa, Yoshika; Yanagi, Hisako; Hara, Shuichi; Amagai, Hitoshi; Endo, Kazue; Hamaguchi, Hideo; Tomura, Shigeo

    2001-01-01

    The purpose of this study was to examine the relationships between peak bone mass and genetic and environmental factors. We measured whole-body bone mineral density (BMD), lumbar spine BMD, and radius BMD with dual-energy X-ray absorptiometry (DXA) and analyzed eight genetic factors: vitamin D receptor (VDR)-3′, VDR-5′, estrogen receptor (ER), calcitonin receptor (CTR), parathyroid hormone (PTH), osteocalcin (OC), apolipoprotein E (ApoE), and fatty acid binding protein 2 (FABP2) allelic polym...

  1. Prevention of vascular calcification with bisphosphonates without affecting bone mineralization: a new challenge?

    Science.gov (United States)

    Neven, Ellen G; De Broe, Marc E; D'Haese, Patrick C

    2009-03-01

    Arterial calcification has been found to coexist with bone loss. Bisphosphonates, used as standard therapy for osteoporosis, inhibit experimentally induced vascular calcification, offering perspectives for the treatment of vascular calcification in renal failure patients. However, Lomashvili et al. report that the doses of etidronate and pamidronate that are effective in attenuating aortic calcification also decrease bone formation and mineralization in uremic rats, limiting their therapeutic use as anticalcifying agents.

  2. A generalized quantitative antibody homeostasis model: regulation of B-cell development by BCR saturation and novel insights into bone marrow function

    Science.gov (United States)

    Prechl, József

    2017-01-01

    In a pair of articles, we present a generalized quantitative model for the homeostatic function of clonal humoral immune system. In this first paper, we describe the cycles of B-cell expansion and differentiation driven by B-cell receptor engagement. The fate of a B cell is determined by the signals it receives via its antigen receptor at any point of its lifetime. We express BCR engagement as a function of apparent affinity and free antigen concentration, using the range of 10−14–10−3 M for both factors. We assume that for keeping their BCR responsive, B cells must maintain partial BCR saturation, which is a narrow region defined by [Ag]≈KD. To remain in this region, B cells respond to changes in [Ag] by proliferation or apoptosis and modulate KD by changing BCR structure. We apply this framework to various niches of B-cell development such as the bone marrow, blood, lymphoid follicles and germinal centers. We propose that clustered B cells in the bone marrow and in follicles present antigen to surrounding B cells by exposing antigen captured on complement and Fc receptors. The model suggests that antigen-dependent selection in the bone marrow results in (1) effector BI cells, which develop in blood as a consequence of the inexhaustible nature of soluble antigens, (2) memory cells that survive in antigen rich niches, identified as marginal zone B cells. Finally, the model implies that memory B cells could derive survival signals from abundant non-cognate antigens. PMID:28265373

  3. Bisphosphonate treatment affects trabecular bone apparent modulus through micro-architecture rather than matrix properties.

    Science.gov (United States)

    Day, J S; Ding, M; Bednarz, P; van der Linden, J C; Mashiba, T; Hirano, T; Johnston, C C; Burr, D B; Hvid, I; Sumner, D R; Weinans, H

    2004-05-01

    Bisphosphonates are emerging as an important treatment for osteoporosis. But whether the reduced fracture risk associated with bisphosphonate treatment is due to increased bone mass, improved trabecular architecture and/or increased secondary mineralization of the calcified matrix remains unclear. We examined the effects of bisphosphonates on both the trabecular architecture and matrix properties of canine trabecular bone. Thirty-six beagles were divided into a control group and two treatment groups, one receiving risedronate and the other alendronate at 5-6 times the clinical dose for osteoporosis treatment. After one year, the dogs were killed, and samples from the first lumbar vertebrae were examined using a combination of micro-computed tomography, finite element modeling, and mechanical testing. By combining these methods, we examined the treatment effects on the calcified matrix and trabecular architecture independently. Conventional histomorphometry and microdamage data were obtained from the second and third lumbar vertebrae of the same dogs [Bone 28 (2001) 524]. Bisphosphonate treatment resulted in an increased apparent Young's modulus, decreased bone turnover, increased calcified matrix density, and increased microdamage. We could not detect any change in the effective Young's modulus of the calcified matrix in the bisphosphonate treated groups. The observed increase in apparent Young's modulus was due to increased bone mass and altered trabecular architecture rather than changes in the calcified matrix modulus. We hypothesize that the expected increase in the Young's modulus of the calcified matrix due to the increased calcified matrix density was counteracted by the accumulation of microdamage.

  4. The zinc finger protein ZNF658 regulates the transcription of genes involved in zinc homeostasis and affects ribosome biogenesis through the zinc transcriptional regulatory element.

    Science.gov (United States)

    Ogo, Ogo A; Tyson, John; Cockell, Simon J; Howard, Alison; Valentine, Ruth A; Ford, Dianne

    2015-03-01

    We previously identified the ZTRE (zinc transcriptional regulatory element) in genes involved in zinc homeostasis and showed that it mediates transcriptional repression in response to zinc. We now report that ZNF658 acts at the ZTRE. ZNF658 was identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry of a band excised after electrophoretic mobility shift assay using a ZTRE probe. The protein contains a KRAB domain and 21 zinc fingers. It has similarity with ZAP1 from Saccharomyces cerevisiae, which regulates the response to zinc restriction, including a conserved DNA binding region we show to be functional also in ZNF658. Small interfering RNA (siRNA) targeted to ZNF658 abrogated the zinc-induced, ZTRE-dependent reduction in SLC30A5 (ZnT5 gene), SLC30A10 (ZnT10 gene), and CBWD transcripts in human Caco-2 cells and the ability of zinc to repress reporter gene expression from corresponding promoter-reporter constructs. Microarray analysis of the effect of reducing ZNF658 expression by siRNA uncovered a large decrease in rRNA. We find that ZTREs are clustered within the 45S rRNA precursor. We also saw effects on expression of multiple ribosomal proteins. ZNF658 thus links zinc homeostasis with ribosome biogenesis, the most active transcriptional, and hence zinc-demanding, process in the cell. ZNF658 is thus a novel transcriptional regulator that plays a fundamental role in the orchestrated cellular response to zinc availability.

  5. Acidosis, hypoxia and bone.

    Science.gov (United States)

    Arnett, Timothy R

    2010-11-01

    Bone homeostasis is profoundly affected by local pH and oxygen tension. It has long been recognised that the skeleton contains a large reserve of alkaline mineral (hydroxyapatite), which is ultimately available to neutralise metabolic H(+) if acid-base balance is not maintained within narrow limits. Bone cells are extremely sensitive to the direct effects of pH: acidosis inhibits mineral deposition by osteoblasts but it activates osteoclasts to resorb bone and other mineralised tissues. These reciprocal responses act to maximise the availability of OH(-) ions from hydroxyapatite in solution, where they can buffer excess H(+). The mechanisms by which bone cells sense small pH changes are likely to be complex, involving ion channels and receptors in the cell membrane, as well as direct intracellular effects. The importance of oxygen tension in the skeleton has also long been known. Recent work shows that hypoxia blocks the growth and differentiation of osteoblasts (and thus bone formation), whilst strongly stimulating osteoclast formation (and thus bone resorption). Surprisingly, the resorptive function of osteoclasts is unimpaired in hypoxia. In vivo, tissue hypoxia is usually accompanied by acidosis due to reduced vascular perfusion and increased glycolytic metabolism. Thus, disruption of the blood supply can engender a multiple negative impact on bone via the direct actions of reduced pO(2) and pH on bone cells. These observations may contribute to our understanding of the bone disturbances that occur in numerous settings, including ageing, inflammation, fractures, tumours, anaemias, kidney disease, diabetes, respiratory disease and smoking.

  6. Collagen modifications in postmenopausal osteoporosis: advanced glycation endproducts may affect bone volume, structure and quality.

    Science.gov (United States)

    Willett, Thomas L; Pasquale, Julia; Grynpas, Marc D

    2014-09-01

    The classic model of postmenopausal osteoporosis (PM-OP) starts with the depletion of estrogen, which in turn stimulates imbalanced bone remodeling, resulting in loss of bone mass/volume. Clinically, this leads to fractures because of structural weakness. Recent work has begun to provide a more complete picture of the mechanisms of PM-OP involving oxidative stress and collagen modifications known as advanced glycation endproducts (AGEs). On one hand, AGEs may drive imbalanced bone remodeling through signaling mediated by the receptor for AGEs (RAGE), stimulating resorption and inhibiting formation. On the other hand, AGEs are associated with degraded bone material quality. Oxidative stress promotes the formation of AGEs, inhibits normal enzymatically derived crosslinking and can degrade collagen structure, thereby reducing fracture resistance. Notably, there are multiple positive feedback loops that can exacerbate the mechanisms of PM-OP associated with oxidative stress and AGEs. Anti-oxidant therapies may have the potential to inhibit the oxidative stress based mechanisms of this disease.

  7. Dietary supplements and physical exercise affecting bone and body composition in frail elderly persons

    NARCIS (Netherlands)

    Jong, de N.; Chin A Paw, M.; Groot, de C.P.G.M.; Hiddink, G.J.; Staveren, van W.A.

    2000-01-01

    This study determined the effect of enriched foods and all-around physical exercise on bone and body composition in frail elderly persons. Methods. A 17-week randomized, controlled intervention trial, following a 2 x 2 factorial design—(1) enriched foods, (2) exercise, (3) both, or (4) neither— was

  8. Intravenous contrast injection significantly affects bone mineral density measured on CT

    NARCIS (Netherlands)

    Pompe, Esther; Willemink, Martin J.; Dijkhuis, Gawein R.; Verhaar, Harald J. J.; Mohamed Hoesein, Firdaus A A; de Jong, Pim A.

    2015-01-01

    OBJECTIVE: The objective is to evaluate the effect of intravenous contrast media on bone mineral density (BMD) assessment by comparing unenhanced and contrast-enhanced computed tomography (CT) examinations performed for other indications. METHODS: One hundred and fifty-two patients (99 without and 5

  9. An analysis of factors affecting the mercury content in the human femoral bone.

    Science.gov (United States)

    Zioła-Frankowska, A; Dąbrowski, M; Kubaszewski, Ł; Rogala, P; Kowalski, A; Frankowski, M

    2017-01-01

    The study was carried out to determine the content of mercury in bone tissue of the proximal femur (head and neck bone) of 95 patients undergoing total hip replacement due to osteoarthritis, using CF-AFS analytical technique. Furthermore, the investigations were aimed at assessing the impact of selected factors, such as age, gender, tobacco smoking, alcohol consumption, exposure to chemical substance at work, type of degenerative changes, clinical evaluation and radiological parameters, type of medications, on the concentration of mercury in the head and neck of the femur, resected in situ. Mercury was obtained in all samples of the head and neck of the femur (n = 190) in patients aged 25-91 years. The mean content of mercury for the whole group of patients was as follows: 37.1 ± 35.0 ng/g for the femoral neck and 24.2 ± 19.5 ng/g for the femoral head. The highest Hg contents were found in femoral neck samples, both in women and men, and they amounted to 169.6 and 176.5 ng/g, respectively. The research showed that the mercury content of bones can be associated with body mass index, differences in body anatomy, and gender. The uses of statistical analysis gave the possibility to define the influence of factors on mercury content in human femoral bones.

  10. Nerve Growth Factor, Brain-Derived Neurotrophic Factor and Osteocalcin Gene Relationship in Energy Regulation, Bone Homeostasis and Reproductive Organs Analyzed by mRNA Quantitative Evaluation and Linear Correlation Analysis.

    Science.gov (United States)

    Camerino, Claudia; Conte, Elena; Cannone, Maria; Caloiero, Roberta; Fonzino, Adriano; Tricarico, Domenico

    2016-01-01

    Nerve Growth Factor (NGF)/Brain-derived Neurotrophic Factor (BDNF) and osteocalcin share common effects regulating energy, bone mass, reproduction and neuronal functions. To investigate on the gene-relationship between NGF, BDNF, and Osteocalcin we compared by RT-PCR the transcript levels of Ngf, Bdnf and Osteocalcin as well as of their receptors p75NTR/NTRK1, NTRK2, and Gprc6a in brain, bone, white/brown adipose tissue (WAT/BAT) and reproductive organs of 3 months old female and male mice. Brain and bone were used as positive controls for NGF/BDNF and Osteocalcin respectively. The role of oxitocin(Oxt) and its receptor(Oxtr) was also investigated. Ngf expression shows an opposite trend compared to Bdnf. Ngf /p75NTR expression is 50% higher in BAT than brain, in both genders, but lower in bone. In contrast, Bdnf expression in bone is higher than in brain, but low in BAT/WAT. We found Osteocalcin gene expressed in brain in both genders, but Gprc6a expression is low in brain and BAT/WAT. As expected, Gprc6a gene is expressed in bone. Oxt gene was markedly expressed in brain, Oxtr in the ovaries and in fat and bone in both genders. Ngf is highly expressed in reproductive tissues and p75NTR mRNA levels are respectively 300, 100, and 50% higher in testis/ovaries/uterus than in brain. In contrast, BDNF genes are not expressed in reproductive tissues. As expected, Gprc6a is expressed in testis but not in the ovaries/uterus. A significant correlation was found between the expression levels of the gene ligands and their receptors in brain, BAT and testis suggesting a common pathway of different genes in these tissues in either male and female. Changes in the expression levels of osteocalcin, Ngf, or Bdnf genes may mutually affect the expression levels of the others. Moreover, it may be possible that different ligands may operate through different receptor subtypes. Oxt and Oxtr failed to show significant correlation. The up-regulation of Ngf /p75NTR in BAT is consistent

  11. Nerve Growth Factor, Brain-Derived Neurotrophic Factor and Osteocalcin Gene Relationship in Energy Regulation, Bone Homeostasis and Reproductive Organs Analyzed by mRNA Quantitative Evaluation and Linear Correlation Analysis

    Science.gov (United States)

    Camerino, Claudia; Conte, Elena; Cannone, Maria; Caloiero, Roberta; Fonzino, Adriano; Tricarico, Domenico

    2016-01-01

    Nerve Growth Factor (NGF)/Brain-derived Neurotrophic Factor (BDNF) and osteocalcin share common effects regulating energy, bone mass, reproduction and neuronal functions. To investigate on the gene-relationship between NGF, BDNF, and Osteocalcin we compared by RT-PCR the transcript levels of Ngf, Bdnf and Osteocalcin as well as of their receptors p75NTR/NTRK1, NTRK2, and Gprc6a in brain, bone, white/brown adipose tissue (WAT/BAT) and reproductive organs of 3 months old female and male mice. Brain and bone were used as positive controls for NGF/BDNF and Osteocalcin respectively. The role of oxitocin(Oxt) and its receptor(Oxtr) was also investigated. Ngf expression shows an opposite trend compared to Bdnf. Ngf /p75NTR expression is 50% higher in BAT than brain, in both genders, but lower in bone. In contrast, Bdnf expression in bone is higher than in brain, but low in BAT/WAT. We found Osteocalcin gene expressed in brain in both genders, but Gprc6a expression is low in brain and BAT/WAT. As expected, Gprc6a gene is expressed in bone. Oxt gene was markedly expressed in brain, Oxtr in the ovaries and in fat and bone in both genders. Ngf is highly expressed in reproductive tissues and p75NTR mRNA levels are respectively 300, 100, and 50% higher in testis/ovaries/uterus than in brain. In contrast, BDNF genes are not expressed in reproductive tissues. As expected, Gprc6a is expressed in testis but not in the ovaries/uterus. A significant correlation was found between the expression levels of the gene ligands and their receptors in brain, BAT and testis suggesting a common pathway of different genes in these tissues in either male and female. Changes in the expression levels of osteocalcin, Ngf, or Bdnf genes may mutually affect the expression levels of the others. Moreover, it may be possible that different ligands may operate through different receptor subtypes. Oxt and Oxtr failed to show significant correlation. The up-regulation of Ngf /p75NTR in BAT is consistent

  12. Nerve Growth Factor, Brain-derived Neurotrophic Factor and Osteocalcin gene relationship in energy regulation, bone homeostasis and reproductive organs analyzed by mRNA quantitative evaluation and linear correlation analysis

    Directory of Open Access Journals (Sweden)

    Claudia Camerino

    2016-10-01

    Full Text Available Nerve Growth Factor (NGF / Brain-derived Neurotrophic Factor (BDNF and osteocalcin share common effects regulating energy, bone mass, reproduction and neuronal functions. To investigate on the gene-relationship between NGF, BDNF and Osteocalcin we compared by RT-PCR the transcript levels of Ngf, Bdnf and Osteocalcin as well as of their receptors p75NTR/NTRK1, NTRK2 and Gprc6a in brain, bone, white/brown adipose tissue (WAT/BAT and reproductive organs of 3 months old female and male mice. Brain and bone were used as positive controls for NGF/BDNF and Osteocalcin respectively. The role of oxitocin(Oxt and its receptor(Oxtr was also investigated. Ngf expression shows an opposite trend compared to Bdnf. Ngf/p75NTR expression is 50% higher in BAT than brain, in both genders, but lower in bone. In contrast, Bdnf expression in bone is higher than in brain, but low in BAT/WAT. We found Osteocalcin gene expressed in brain in both genders, but Gprc6a expression is low in brain and BAT/WAT. As expected, Gprc6a gene is expressed in bone. Oxt gene was markedly expressed in brain, Oxtr in the ovaries and in fat and bone in both genders. Ngf is highly expressed in reproductive tissues and p75NTR mRNA levels are respectively 300%, 100% and 50% higher in testis/ovaries/uterus than in brain. In contrast, BDNF genes are not expressed in reproductive tissues. As expected, Gprc6a is expressed in testis but not in the ovaries/uterus. A significant correlation was found between the expression levels of the gene ligands and their receptors in brain, BAT and testis suggesting a common pathway of different genes in these tissues in either male and female. Changes in the expression levels of osteocalcin, Ngf or Bdnf genes may mutually affect the expression levels of the others. Moreover, it may be possible that different ligands may operate through different receptor subtypes. Oxt and Oxtr failed to show significant correlation. The up-regulation of Ngf/p75NTR in BAT is

  13. Rye affects bacterial translocation, intestinal viscosity, microbiota composition and bone mineralization in Turkey poults.

    Directory of Open Access Journals (Sweden)

    Guillermo Tellez

    Full Text Available Previously, we have reported that rye significantly increased both viscosity and Clostridium perfringens proliferation when compared with corn in an in vitro digestive model. Two independent trials were conducted to evaluate the effect of rye as a source of energy on bacterial translocation, intestinal viscosity, gut microbiota composition, and bone mineralization, when compared with corn in turkey poults. In each experiment, day-of-hatch, turkey poults were randomly assigned to either a corn or a rye diet (n = 0 /group. At 10 d of age, in both experiments, 12 birds/group were given an oral gavage dose of fluorescein isothiocyanate dextran (FITC-d. After 2.5 h of oral gavage, blood and liver samples were collected to evaluate the passage of FITC-d and bacterial translocation (BT respectively. Duodenum, ileum and cecum gut sections were collected to evaluate intestinal viscosity and to enumerate gut microbiota. Tibias were collected for observation of bone parameters. Broilers fed with a rye diet showed increased (p<0.05 intestinal viscosity, BT, and serum FITC-d. Bacterial enumeration revealed that turkey poults fed with rye had increased the number of total lactic acid bacteria (LAB in all three sections of the gastrointestinal tract evaluated when compared to turkey poults fed with corn. Turkey poults fed with rye also had significantly higher coliforms in duodenum and ileum but not in the ceca, whereas the total number of anaerobes increased only in duodenum. A significant reduction in bone strength and bone mineralization was observed in turkey poults fed with rye when compared with corn fed turkey poults. In conclusion, rye evoked mucosal damage in turkey poults that increased intestinal viscosity, increased leakage through the intestinal tract, and altered the microbiota composition and bone mineralization. Studies to evaluate dietary inclusion of selected Direct-Fed Microbial (DFM candidates that produce exogenous enzymes in rye fed

  14. Rye affects bacterial translocation, intestinal viscosity, microbiota composition and bone mineralization in Turkey poults.

    Science.gov (United States)

    Tellez, Guillermo; Latorre, Juan D; Kuttappan, Vivek A; Hargis, Billy M; Hernandez-Velasco, Xochitl

    2015-01-01

    Previously, we have reported that rye significantly increased both viscosity and Clostridium perfringens proliferation when compared with corn in an in vitro digestive model. Two independent trials were conducted to evaluate the effect of rye as a source of energy on bacterial translocation, intestinal viscosity, gut microbiota composition, and bone mineralization, when compared with corn in turkey poults. In each experiment, day-of-hatch, turkey poults were randomly assigned to either a corn or a rye diet (n = 0 /group). At 10 d of age, in both experiments, 12 birds/group were given an oral gavage dose of fluorescein isothiocyanate dextran (FITC-d). After 2.5 h of oral gavage, blood and liver samples were collected to evaluate the passage of FITC-d and bacterial translocation (BT) respectively. Duodenum, ileum and cecum gut sections were collected to evaluate intestinal viscosity and to enumerate gut microbiota. Tibias were collected for observation of bone parameters. Broilers fed with a rye diet showed increased (pBacterial enumeration revealed that turkey poults fed with rye had increased the number of total lactic acid bacteria (LAB) in all three sections of the gastrointestinal tract evaluated when compared to turkey poults fed with corn. Turkey poults fed with rye also had significantly higher coliforms in duodenum and ileum but not in the ceca, whereas the total number of anaerobes increased only in duodenum. A significant reduction in bone strength and bone mineralization was observed in turkey poults fed with rye when compared with corn fed turkey poults. In conclusion, rye evoked mucosal damage in turkey poults that increased intestinal viscosity, increased leakage through the intestinal tract, and altered the microbiota composition and bone mineralization. Studies to evaluate dietary inclusion of selected Direct-Fed Microbial (DFM) candidates that produce exogenous enzymes in rye fed turkey poults are currently being evaluated.

  15. Pain emotion and homeostasis.

    Science.gov (United States)

    Panerai, Alberto E

    2011-05-01

    Pain has always been considered as part of a defensive strategy, whose specific role is to signal an immediate, active danger. This definition partially fits acute pain, but certainly not chronic pain, that is maintained also in the absence of an active noxa or danger and that nowadays is considered a disease by itself. Moreover, acute pain is not only an automatic alerting system, but its severity and characteristics can change depending on the surrounding environment. The affective, emotional components of pain have been and are the object of extensive attention and research by psychologists, philosophers, physiologists and also pharmacologists. Pain itself can be considered to share the same genesis as emotions and as a specific emotion in contributing to the maintenance of the homeostasis of each unique subject. Interestingly, this role of pain reaches its maximal development in the human; some even argue that it is specific for the human primate.

  16. Genetic factors and diet affect long-bone length in the F34 LG,SM advanced intercross.

    Science.gov (United States)

    Norgard, Elizabeth A; Lawson, Heather A; Pletscher, L Susan; Wang, Bing; Brooks, Victoria R; Wolf, Jason B; Cheverud, James M

    2011-04-01

    Previous studies on the LG,SM advanced intercross line have identified approximately 40 quantitative trait loci (QTL) for long -bone (humerus, ulna, femur, and tibia) lengths. In this study, long-bone-length QTL were fine-mapped in the F(34) generation (n = 1424) of the LG,SM advanced intercross. Environmental effects were assessed by dividing the population by sex between high-fat and low-fat diets, producing eight sex/diet cohorts. We identified 145 individual bone-length QTL comprising 45 pleiotropic QTL; 69 replicated QTL from previous studies, 35 were new traits significant at previously identified loci, and 41 were novel QTL. Many QTL affected only a subset of the population based on sex and/or diet. Eight of ten known skeletal growth genes were upregulated in 3-week-old LG/J male proximal tibial growth plates relative to SM/J. The sequences of parental strains LG/J and SM/J indicated the presence of over half a million polymorphisms in the confidence intervals of these 45 QTL. We examined 526 polymorphisms and found that 97 represented radical changes to amino acid composition while 40 were predicted to be deleterious to protein function. Additional experimentation is required to understand how changes in gene regulation or protein function can alter the genetic architecture and interact with the environment to produce phenotypic variation.

  17. Glucose homeostasis and metabolic adaptation in the pregnant and lactating sheep are affected by the level of nutrition previously provided during her late fetal life.

    Science.gov (United States)

    Husted, S M; Nielsen, M O; Blache, D; Ingvartsen, K L

    2008-05-01

    This study investigated whether undernutrition (UN) during late fetal life can programme the subsequent adult life adaptation of glucose homeostasis and metabolism during pregnancy and lactation. Twenty-four primiparous experimental ewes were used. Twelve had been exposed to a prenatal NORM level of nutrition (maternal diet approximately 15 MJME/d) and 12 to a LOW level of nutrition (maternal diet approximately 7 MJME/d) during the last 6 weeks pre-partum. The experimental ewes were subjected to two intravenous glucose tolerance tests (IGTT) in late gestation (one prior to (G-IGTT) and one by the end of a feed restriction period (RG-IGTT)), and a third around peak lactation (L-IGTT). LOW had lower basal insulin concentrations during lactation, and significantly decreased absolute insulin secretion during the L-IGTT in spite of similar glucose tolerance, indicating increased insulin sensitivity in LOW during lactation. There was no effect of prenatal UN on glucose tolerance during G-IGTT, however, during RG-IGTT LOW was more glucose intolerant and apparently more insulin resistant compared to NORM. In conclusion, UN during late fetal life in sheep impairs subsequent pancreatic insulin secretory capacity during adult life, and reduces plasticity of down-regulation of insulin secretion in response to a metabolic challenge. Furthermore, prenatal UN appears to programme mechanisms, which in young adult females can shift the insulin hypersensitivity observed during early lactation into an insulin resistance observed during late gestation and feed restriction. Early postnatal UN caused by lowered milk intake in early postnatal life may have contributed to these phenomena.

  18. Opioid receptor agonists may favorably affect bone mechanical properties in rats with estrogen deficiency-induced osteoporosis.

    Science.gov (United States)

    Janas, Aleksandra; Folwarczna, Joanna

    2017-02-01

    The results of epidemiological, clinical, and in vivo and in vitro experimental studies on the effect of opioid analgesics on bone are inconsistent. The aim of the present study was to investigate the effect of morphine (an agonist of opioid receptors), buprenorphine (a partial μ opioid receptor agonist and κ opioid receptor antagonist), and naloxone (an antagonist of opioid receptors) on the skeletal system of female rats in vivo. The experiments were carried out on 3-month-old Wistar rats, divided into two groups: nonovariectomized (intact; NOVX) rats and ovariectomized (OVX) rats. The bilateral ovariectomy was performed 7 days before the start of drug administration. Morphine hydrochloride (20 mg/kg/day s.c.), buprenorphine (0.05 mg/kg/day s.c.), or naloxone hydrochloride dihydrate (2 mg/kg/day s.c.) were administered for 4 weeks to NOVX and OVX rats. In OVX rats, the use of morphine and buprenorphine counteracted the development of osteoporotic changes in the skeletal system induced by estrogen deficiency. Morphine and buprenorphine beneficially affected also the skeletal system of NOVX rats, but the effects were much weaker than those in OVX rats. Naloxone generally did not affect the rat skeletal system. The results confirmed the role of opioid receptors in the regulation of bone remodeling processes and demonstrated, in experimental conditions, that the use of opioid analgesics at moderate doses may exert beneficial effects on the skeletal system, especially in estrogen deficiency.

  19. Peripheral quantitative computed tomography (pQCT) for the assessment of bone strength in most of bone affecting conditions in developmental age: a review.

    Science.gov (United States)

    Stagi, Stefano; Cavalli, Loredana; Cavalli, Tiziana; de Martino, Maurizio; Brandi, Maria Luisa

    2016-09-26

    Peripheral quantitative computed tomography provides an automatical scan analysis of trabecular and cortical bone compartments, calculating not only their bone mineral density (BMD), but also bone geometrical parameters, such as marrow and cortical Cross-Sectional Area (CSA), Cortical Thickness (CoTh), both periosteal and endosteal circumference, as well as biomechanical parameters like Cross-Sectional Moment of Inertia (CSMI), a measure of bending, polar moment of inertia, indicating bone strength in torsion, and Strength Strain Index (SSI). Also CSA of muscle and fat can be extracted. Muscles, which are thought to stimulate bones to adapt their geometry and mineral content, are determinant to preserve or increase bone strength; thus, pQCT provides an evaluation of the functional 'muscle-bone unit', defined as BMC/muscle CSA ratio. This functional approach to bone densitometry can establish if bone strength is normally adapted to the muscle force, and if muscle force is adequate for body size, providing more detailed insights to targeted strategies for the prevention and treatment of bone fragility. The present paper offers an extensive review of technical features of pQCT and its possible clinical application in the diagnostic of bone status as well as in the monitoring of the skeleton's health follow-up.

  20. Carpal Tunnel Cross-Sectional Area Affected by Soft Tissues Abutting the Carpal Bones.

    Science.gov (United States)

    Gabra, Joseph N; Li, Zong-Ming

    2013-02-01

    The carpal tunnel accommodates free movement of its contents, and the tunnel's cross-sectional area is a useful morphological parameter for the evaluation of the space available for the carpal tunnel contents and of potential nerve compression in the tunnel. The osseous boundary of the carpal bones as the dorsal border of the carpal tunnel is commonly used to determine the tunnel area, but this boundary contains soft tissues such as numerous intercarpal ligaments and the flexor carpi radialis tendon. The aims of this study were to quantify the thickness of the soft tissues abutting the carpal bones and to investigate how this soft tissue influences the calculation of the carpal tunnel area. Magnetic resonance images were analyzed for eight cadaveric specimens. A medical balloon with a physiological pressure was inserted into an evacuated tunnel to identify the carpal tunnel boundary. The balloon-based (i.e. true carpal tunnel) and osseous-based carpal tunnel boundaries were extracted and divided into regions corresponding to the hamate, capitate, trapezoid, trapezium, and transverse carpal ligament (TCL). From the two boundaries, the overall and regional soft tissue thicknesses and areas were calculated. The soft tissue thickness was significantly greater for the trapezoid (3.1±1.2mm) and trapezium (3.4±1.0mm) regions than for the hamate (0.7±0.3mm) and capitate (1.2±0.5mm) regions. The carpal tunnel area using the osseous boundary (243.0±40.4mm(2)) was significantly larger than the balloon-based area (183.9±29.7mm(2)) with a ratio of 1.32. In other words, the carpal tunnel area can be estimated as 76% (= 1/1.32) of the osseous-based area. The abundance of soft tissue in the trapezoid and trapezium regions can be attributed mainly to the capitate-trapezium ligament and the flexor carpi radialis tendon. Inclusion of such soft tissue leads to overestimations of the carpal tunnel area. Correct quantification of the carpal tunnel area aids in examining carpal

  1. The rice FISH BONE gene encodes a tryptophan aminotransferase, which affects pleiotropic auxin-related processes.

    Science.gov (United States)

    Yoshikawa, Takanori; Ito, Momoyo; Sumikura, Tsuyoshi; Nakayama, Akira; Nishimura, Takeshi; Kitano, Hidemi; Yamaguchi, Isomaro; Koshiba, Tomokazu; Hibara, Ken-Ichiro; Nagato, Yasuo; Itoh, Jun-Ichi

    2014-06-01

    Auxin is a fundamental plant hormone and its localization within organs plays pivotal roles in plant growth and development. Analysis of many Arabidopsis mutants that were defective in auxin biosynthesis revealed that the indole-3-pyruvic acid (IPA) pathway, catalyzed by the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) and YUCCA (YUC) families, is the major biosynthetic pathway of indole-3-acetic acid (IAA). In contrast, little information is known about the molecular mechanisms of auxin biosynthesis in rice. In this study, we identified a auxin-related rice mutant, fish bone (fib). FIB encodes an orthologue of TAA genes and loss of FIB function resulted in pleiotropic abnormal phenotypes, such as small leaves with large lamina joint angles, abnormal vascular development, small panicles, abnormal organ identity and defects in root development, together with a reduction in internal IAA levels. Moreover, we found that auxin sensitivity and polar transport activity were altered in the fib mutant. From these results, we suggest that FIB plays a pivotal role in IAA biosynthesis in rice and that auxin biosynthesis, transport and sensitivity are closely interrelated.

  2. of Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Xian Liu

    2015-01-01

    Full Text Available Sex differences exist in the complex regulation of energy homeostasis that utilizes central and peripheral systems. It is widely accepted that sex steroids, especially estrogens, are important physiological and pathological components in this sex-specific regulation. Estrogens exert their biological functions via estrogen receptors (ERs. ERα, a classic nuclear receptor, contributes to metabolic regulation and sexual behavior more than other ER subtypes. Physiological and molecular studies have identified multiple ERα-rich nuclei in the hypothalamus of the central nervous system (CNS as sites of actions that mediate effects of estrogens. Much of our understanding of ERα regulation has been obtained using transgenic models such as ERα global or nuclei-specific knockout mice. A fundamental question concerning how ERα is regulated in wild-type animals, including humans, in response to alterations in steroid hormone levels, due to experimental manipulation (i.e., castration and hormone replacement or physiological stages (i.e., puberty, pregnancy, and menopause, lacks consistent answers. This review discusses how different sex hormones affect ERα expression in the hypothalamus. This information will contribute to the knowledge of estrogen action in the CNS, further our understanding of discrepancies in correlation of altered sex hormone levels with metabolic disturbances when comparing both sexes, and improve health issues in postmenopausal women.

  3. Erythropoietin Promotes Bone Formation through EphrinB2/EphB4 Signaling

    OpenAIRE

    Li, C; Shi, C.; Kim, J; Chen, Y.; Ni, S.; Jiang, L.; Zheng, C.; Li, D; J. Hou; Taichman, R. S.; Sun, H

    2015-01-01

    Recent studies have demonstrated that erythropoietin (EPO) has extensive nonhematopoietic biological functions. However, little is known about how EPO regulates bone formation, although several studies suggested that EPO can affect bone homeostasis. In this study, we investigated the effects of EPO on the communication between osteoclasts and osteoblasts through the ephrinB2/EphB4 signaling pathway. We found that EPO slightly promotes osteoblastic differentiation with the increased expression...

  4. Glucocorticoids affect the metabolism of bone marrow stromal cells and lead to osteonecrosis of the femoral head: a review

    Institute of Scientific and Technical Information of China (English)

    TAN Gang; KANG Peng-de; PEI Fu-xing

    2012-01-01

    Objective To review the recent developments in the mechanisms of glucocorticoids induced osteonecrosis of femoral head (ONFH) and introduce a new theory of ONFH.Data sources Both Chinese- and English-language literatures were searched using MEDLINE (1997-2011),Pubmed (1997-2011 ) and the Index of Chinese-language Literature (1997-2011 ).Study selection Data from published articles about mechanisms of glucocorticoids induced ONFH in recent domestic and foreign literature were selected.Data extraction Data were mainly extracted from 61 articles which are listed in the reference section of this review.Results Glucocorticoids are steroid hormones secreted by the adrenal cortex that play a pivotal role in the regulation of a variety of developmental,metabolic and immune functions.However,high dose of exogenous glucocorticoids usage is the most common non-traumatic cause of ON FH.Glucocorticoids can affect the metabolisms of osteoblasts,osteoclasts,bone marrow stromal cells and adipocytes which decrease osteoblasts formation but increase adipocytes formation and cause ONFH finally.Conclusions Glucocorticoids affect the differentiation of mesenchymal stem cells,through activating or inhibiting the related transcript regulators of osteogenesis and adipogenesis.At last,the size and volume of mesenchymal stem cells derived adipocytes will increase amazingly,but the osteoblasts will be decreased obviously.In the meantime,the activity of the osteoclasts will be activated.So,these mechanisms work together and lead to ONFH.

  5. Perturbations of amino acid metabolism associated with glyphosate-dependent inhibition of shikimic acid metabolism affect cellular redox homeostasis and alter the abundance of proteins involved in photosynthesis and photorespiration.

    Science.gov (United States)

    Vivancos, Pedro Diaz; Driscoll, Simon P; Bulman, Christopher A; Ying, Liu; Emami, Kaveh; Treumann, Achim; Mauve, Caroline; Noctor, Graham; Foyer, Christine H

    2011-09-01

    The herbicide glyphosate inhibits the shikimate pathway of the synthesis of amino acids such as phenylalanine, tyrosine, and tryptophan. However, much uncertainty remains concerning precisely how glyphosate kills plants or affects cellular redox homeostasis and related processes in glyphosate-sensitive and glyphosate-resistant crop plants. To address this issue, we performed an integrated study of photosynthesis, leaf proteomes, amino acid profiles, and redox profiles in the glyphosate-sensitive soybean (Glycine max) genotype PAN809 and glyphosate-resistant Roundup Ready Soybean (RRS). RRS leaves accumulated much more glyphosate than the sensitive line but showed relatively few changes in amino acid metabolism. Photosynthesis was unaffected by glyphosate in RRS leaves, but decreased abundance of photosynthesis/photorespiratory pathway proteins was observed together with oxidation of major redox pools. While treatment of a sensitive genotype with glyphosate rapidly inhibited photosynthesis and triggered the appearance of a nitrogen-rich amino acid profile, there was no evidence of oxidation of the redox pools. There was, however, an increase in starvation-associated and defense proteins. We conclude that glyphosate-dependent inhibition of soybean leaf metabolism leads to the induction of defense proteins without sustained oxidation. Conversely, the accumulation of high levels of glyphosate in RRS enhances cellular oxidation, possibly through mechanisms involving stimulation of the photorespiratory pathway.

  6. Regulation of Bone Metabolism.

    Science.gov (United States)

    Shahi, Maryam; Peymani, Amir; Sahmani, Mehdi

    2017-04-01

    Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation, and bone homeostasis are controlled by various markers and signaling pathways. Bone needs to be remodeled to maintain integrity with osteoblasts, which are bone-forming cells, and osteoclasts, which are bone-degrading cells.In this review we considered the major factors and signaling pathways in bone formation; these include fibroblast growth factors (FGFs), bone morphogenetic proteins (BMPs), wingless-type (Wnt) genes, runt-related transcription factor 2 (RUNX2) and osteoblast-specific transcription factor (osterix or OSX).

  7. Regulation of Bone Metabolism

    Science.gov (United States)

    Shahi, Maryam; Peymani, Amir; Sahmani, Mehdi

    2017-01-01

    Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation, and bone homeostasis are controlled by various markers and signaling pathways. Bone needs to be remodeled to maintain integrity with osteoblasts, which are bone-forming cells, and osteoclasts, which are bone-degrading cells.In this review we considered the major factors and signaling pathways in bone formation; these include fibroblast growth factors (FGFs), bone morphogenetic proteins (BMPs), wingless-type (Wnt) genes, runt-related transcription factor 2 (RUNX2) and osteoblast-specific transcription factor (osterix or OSX). PMID:28367467

  8. Phosphate homeostasis and disorders.

    Science.gov (United States)

    Manghat, P; Sodi, R; Swaminathan, R

    2014-11-01

    Recent studies of inherited disorders of phosphate metabolism have shed new light on the understanding of phosphate metabolism. Phosphate has important functions in the body and several mechanisms have evolved to regulate phosphate balance including vitamin D, parathyroid hormone and phosphatonins such as fibroblast growth factor-23 (FGF23). Disorders of phosphate homeostasis leading to hypo- and hyperphosphataemia are common and have clinical and biochemical consequences. Notably, recent studies have linked hyperphosphataemia with an increased risk of cardiovascular disease. This review outlines the recent advances in the understanding of phosphate homeostasis and describes the causes, investigation and management of hypo- and hyperphosphataemia.

  9. The behavior of the micro-mechanical cement-bone interface affects the cement failure in total hip replacement

    NARCIS (Netherlands)

    Waanders, D.; Janssen, D.; Mann, K.A.; Verdonschot, N.J.J.

    2011-01-01

    In the current study, the effects of different ways to implement the complex micro-mechanical behavior of the cement-bone interface on the fatigue failure of the cement mantle were investigated. In an FEA-model of a cemented hip reconstruction the cement-bone interface was modeled and numerically im

  10. Consumption of different sources of omega-3 polyunsaturated fatty acids by growing female rats affects long bone mass and microarchitecture.

    Science.gov (United States)

    Lukas, Robin; Gigliotti, Joseph C; Smith, Brenda J; Altman, Stephanie; Tou, Janet C

    2011-09-01

    Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) consumption has been reported to improve bone health. However, sources of ω-3 PUFAs differ in the type of fatty acids and structural form. The study objective was to determine the effect of various ω-3 PUFAs sources on bone during growth. Young (age 28d) female Sprague-Dawley rats were randomly assigned (n=10/group) to a high fat 12% (wt) diet consisting of either corn oil (CO) or ω-3 PUFA rich, flaxseed (FO), krill (KO), menhaden (MO), salmon (SO) or tuna (TO) for 8 weeks. Bone mass was assessed by dual-energy X-ray absorptiometry (DXA) and bone microarchitecture by micro-computed tomography (μCT). Bone turnover markers were measured by enzyme immunoassay. Lipid peroxidation was measured by calorimetric assays. Results showed that rats fed TO, rich in docosahexaenoic acid (DHA, 22:6ω-3) had higher (Pacid (ALA, 18:3ω-3), improved bone microarchitecture compared to rats fed CO or SO. Serum osteocalcin was higher (P=0.03) in rats fed FO compared to rats fed SO. Serum osteocalcin was associated with improved trabecular bone microarchitecture. The animal study results suggest consuming a variety of ω-3 PUFA sources to promote bone health during the growth stage.

  11. Cabozantinib inhibits growth of androgen-sensitive and castration-resistant prostate cancer and affects bone remodeling.

    Directory of Open Access Journals (Sweden)

    Holly M Nguyen

    Full Text Available Cabozantinib is an inhibitor of multiple receptor tyrosine kinases, including MET and VEGFR2. In a phase II clinical trial in advanced prostate cancer (PCa, cabozantinib treatment improved bone scans in 68% of evaluable patients. Our studies aimed to determine the expression of cabozantinib targets during PCa progression and to evaluate its efficacy in hormone-sensitive and castration-resistant PCa in preclinical models while delineating its effects on tumor and bone. Using immunohistochemistry and tissue microarrays containing normal prostate, primary PCa, and soft tissue and bone metastases, our data show that levels of MET, P-MET, and VEGFR2 are increasing during PCa progression. Our data also show that the expression of cabozantinib targets are particularly pronounced in bone metastases. To evaluate cabozantinib efficacy on PCa growth in the bone environment and in soft tissues we used androgen-sensitive LuCaP 23.1 and castration-resistant C4-2B PCa tumors. In vivo, cabozantinib inhibited the growth of PCa in bone as well as growth of subcutaneous tumors. Furthermore, cabozantinib treatment attenuated the bone response to the tumor and resulted in increased normal bone volume. In summary, the expression pattern of cabozantinib targets in primary and castration-resistant metastatic PCa, and its efficacy in two different models of PCa suggest that this agent has a strong potential for the effective treatment of PCa at different stages of the disease.

  12. Markers of bone metabolism are affected by renal function and growth hormone therapy in children with chronic kidney disease

    DEFF Research Database (Denmark)

    Doyon, Anke; Fischer, Dagmar Christiane; Bayazit, Aysun Karabay;

    2015-01-01

    Objectives: The extent and relevance of altered bone metabolism for statural growth in children with chronic kidney disease is controversial. We analyzed the impact of renal dysfunction and recombinant growth hormone therapy on a panel of serum markers of bone metabolism in a large pediatric chro...

  13. ALTERATIONS OF FE HOMEOSTASIS IN RAT CARDIOVASCULAR DISEASE MODELS AND ITS CONTRIBUTION TO CARDIOPULMONARY TOXICITY

    Science.gov (United States)

    Introduction: Fe homeostasis can be disrupted in human cardiovascular diseases (CVD). We addressed how dysregulation of Fe homeostasis affected the pulmonary inflammation/oxidative stress response and disease progression after exposure to Libby amphibole (LA), an asbestifonn mine...

  14. Calcium, vitamin D and bone

    OpenAIRE

    Borg, Andrew A.

    2012-01-01

    Calcium, protein and vitamin D are the main nutrients relevant to bone health. This short article discusses the importance of vitamin D and its relation to calcium homeostasis. The various causes, clinical manifestations and treatment are outlined.

  15. Changes in calcitropic hormones, bone markers and insulin-like growth factor I (IGF-I) during pregnancy and postpartum

    DEFF Research Database (Denmark)

    Møller, U K; við Streym, Susanna; Mosekilde, L

    2013-01-01

    UNLABELLED: Pregnancy and lactation cause major changes in calcium homeostasis and bone metabolism. This population-based cohort study presents the physiological changes in biochemical indices of calcium homeostasis and bone metabolism during pregnancy and lactation INTRODUCTION: We describe phys...

  16. A proteome study of secreted prostatic factors affecting osteoblastic activity: galectin-1 is involved in differentiation of human bone marrow stromal cells

    DEFF Research Database (Denmark)

    Andersen, H; Jensen, Ole N; Moiseeva, Elena P

    2003-01-01

    Prostate cancer cells metastasize to bone causing a predominantly osteosclerotic response. It has been shown that cells from the human prostate cancer cell line PC3 secrete factors that influence the behavior of osteoblast-like cells. Some of these factors with mitogenic activity have been found...... to 58 +/- 4%, 30 +/- 12, 72 +/- 9%, and 86 +/- 4%. In conclusion, galectin-1 modulated osteoblastic proliferation and differentiation. These effects were affected by IGF-I. Thus, galectin-1 is likely be involved in the osteoblastic response, caused by prostate cancer cells metastasizing into bone....../ionization time of flight mass spectrometry (MALDI-TOF MS). One of these spots was identified as galectin-1. We examined whether PC3 CM, recombinant galectin-1 alone, or combined with insulin-like growth factor-I (IGF-I) had any effects on the proliferation or differentiation of human bone marrow stromal (h...

  17. Dietary boron does not affect tooth strength, micro-hardness, and density, but affects tooth mineral composition and alveolar bone mineral density in rabbits fed a high-energy diet.

    Science.gov (United States)

    Hakki, Sema S; SiddikMalkoc; Dundar, Niyazi; Kayis, Seyit Ali; Hakki, Erdogan E; Hamurcu, Mehmet; Baspinar, Nuri; Basoglu, Abdullah; Nielsen, Forrest H; Götz, Werner

    2015-01-01

    The objective of this study was to determine whether dietary boron (B) affects the strength, density and mineral composition of teeth and mineral density of alveolar bone in rabbits with apparent obesity induced by a high-energy diet. Sixty female, 8-month-old, New Zealand rabbits were randomly assigned for 7 months into five groups as follows: (1) control 1, fed alfalfa hay only (5.91 MJ/kg and 57.5 mg B/kg); (2) control 2, high energy diet (11.76 MJ and 3.88 mg B/kg); (3) B10, high energy diet + 10 mg B gavage/kg body weight/96 h; (4) B30, high energy diet + 30 mg B gavage/kg body weight/96 h; (5) B50, high energy diet + 50 mg B gavage/kg body weight/96 h. Maxillary incisor teeth of the rabbits were evaluated for compression strength, mineral composition, and micro-hardness. Enamel, dentin, cementum and pulp tissue were examined histologically. Mineral densities of the incisor teeth and surrounding alveolar bone were determined by using micro-CT. When compared to controls, the different boron treatments did not significantly affect compression strength, and micro-hardness of the teeth, although the B content of teeth increased in a dose-dependent manner. Compared to control 1, B50 teeth had decreased phosphorus (P) concentrations. Histological examination revealed that teeth structure (shape and thickness of the enamel, dentin, cementum and pulp) was similar in the B-treated and control rabbits. Micro CT evaluation revealed greater alveolar bone mineral density in B10 and B30 groups than in controls. Alveolar bone density of the B50 group was not different than the controls. Although the B treatments did not affect teeth structure, strength, mineral density and micro-hardness, increasing B intake altered the mineral composition of teeth, and, in moderate amounts, had beneficial effects on surrounding alveolar bone.

  18. Vitamin D, calcium homeostasis and aging

    Science.gov (United States)

    Veldurthy, Vaishali; Wei, Ran; Oz, Leyla; Dhawan, Puneet; Jeon, Yong Heui; Christakos, Sylvia

    2016-01-01

    Osteoporosis is characterized by low bone mass and microarchitecture deterioration of bone tissue, leading to enhanced bone fragility and consequent increase in fracture risk. Evidence is accumulating for an important role of calcium deficiency as the process of aging is associated with disturbed calcium balance. Vitamin D is the principal factor that maintains calcium homeostasis. Increasing evidence indicates that the reason for disturbed calcium balance with age is inadequate vitamin D levels in the elderly. In this article, an overview of our current understanding of vitamin D, its metabolism, and mechanisms involved in vitamin D-mediated maintenance of calcium homeostasis is presented. In addition, mechanisms involved in age-related dysregulation of 1,25(OH)2D3 action, recommended daily doses of vitamin D and calcium, and the use of vitamin D analogs for the treatment of osteoporosis (which remains controversial) are reviewed. Elucidation of the molecular pathways of vitamin D action and modifications that occur with aging will be an active area of future research that has the potential to reveal new therapeutic strategies to maintain calcium balance. PMID:27790378

  19. Lathyrism-induced alterations in collagen cross-links influence the mechanical properties of bone material without affecting the mineral

    Science.gov (United States)

    Paschalis, E.P.; Tatakis, D.N.; Robins, S.; Fratzl, P.; Manjubala, I.; Zoehrer, R.; Gamsjaeger, S.; Buchinger, B.; Roschger, A.; Phipps, R.; Boskey, A.L.; Dall'Ara, E.; Varga, P.; Zysset, P.; Klaushofer, K.; Roschger, P.

    2011-01-01

    In the present study a rat animal model of lathyrism was employed to decipher whether anatomically confined alterations in collagen cross-links are sufficient to influence the mechanical properties of whole bone. Animal experiments were performed under an ethics committee approved protocol. Sixty-four female (47 day old) rats of equivalent weights were divided into four groups (16 per group): Controls were fed a semi-synthetic diet containing 0.6% calcium and 0.6% phosphorus for 2 or 4 weeks and β-APN treated animals were fed additionally with β-aminopropionitrile (0.1% dry weight). At the end of this period the rats in the four groups were sacrificed, and L2–L6 vertebra were collected. Collagen cross-links were determined by both biochemical and spectroscopic (Fourier transform infrared imaging (FTIRI)) analyses. Mineral content and distribution (BMDD) were determined by quantitative backscattered electron imaging (qBEI), and mineral maturity/crystallinity by FTIRI techniques. Micro-CT was used to describe the architectural properties. Mechanical performance of whole bone as well as of bone matrix material was tested by vertebral compression tests and by nano-indentation, respectively. The data of the present study indicate that β-APN treatment changed whole vertebra properties compared to non-treated rats, including collagen cross-links pattern, trabecular bone volume to tissue ratio and trabecular thickness, which were all decreased (p < 0.05). Further, compression tests revealed a significant negative impact of β-APN treatment on maximal force to failure and energy to failure, while stiffness was not influenced. Bone mineral density distribution (BMDD) was not altered either. At the material level, β-APN treated rats exhibited increased Pyd/Divalent cross-link ratios in areas confined to a newly formed bone. Moreover, nano-indentation experiments showed that the E-modulus and hardness were reduced only in newly formed bone areas under the influence

  20. TSLP and Immune Homeostasis

    Directory of Open Access Journals (Sweden)

    Shino Hanabuchi

    2012-01-01

    Full Text Available In an immune system, dendritic cells (DCs are professional antigen-presenting cells (APCs as well as powerful sensors of danger signals. When DCs receive signals from infection and tissue stress, they immediately activate and instruct the initiation of appropriate immune responses to T cells. However, it has remained unclear how the tissue microenvironment in a steady state shapes the function of DCs. Recent many works on thymic stromal lymphopoietin (TSLP, an epithelial cell-derived cytokine that has the strong ability to activate DCs, provide evidence that TSLP mediates crosstalk between epithelial cells and DCs, involving in DC-mediated immune homeostasis. Here, we review recent progress made on how TSLP expressed within the thymus and peripheral lymphoid and non-lymphoid tissues regulates DC-mediated T-cell development in the thymus and T-cell homeostasis in the periphery.

  1. TRPV5, the gateway to Ca2+ homeostasis.

    NARCIS (Netherlands)

    Mensenkamp, A.R.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2007-01-01

    Ca2+ homeostasis in the body is tightly controlled, and is a balance between absorption in the intestine, excretion via the urine, and exchange from bone. Recently, the epithelial Ca2+ channel (TRPV5) has been identified as the gene responsible for the Ca2+ influx in epithelial cells of the renal di

  2. Mathematical model for bone mineralization

    Directory of Open Access Journals (Sweden)

    Svetlana V Komarova

    2015-08-01

    Full Text Available Defective bone mineralization has serious clinical manifestations, including deformities and fractures, but the regulation of this extracellular process is not fully understood. We have developed a mathematical model consisting of ordinary differential equations that describe collagen maturation, production and degradation of inhibitors, and mineral nucleation and growth. We examined the roles of individual processes in generating normal and abnormal mineralization patterns characterized using two outcome measures: mineralization lag time and degree of mineralization. Model parameters describing the formation of hydroxyapatite mineral on the nucleating centers most potently affected the degree of mineralization, while the parameters describing inhibitor homeostasis most effectively changed the mineralization lag time. Of interest, a parameter describing the rate of matrix maturation emerged as being capable of counter-intuitively increasing both the mineralization lag time and the degree of mineralization. We validated the accuracy of model predictions using known diseases of bone mineralization such as osteogenesis imperfecta and X-linked hypophosphatemia. The model successfully describes the highly non-linear mineralization dynamics, which includes an initial lag phase when osteoid is present but no mineralization is evident, then fast primary mineralization, followed by secondary mineralization characterized by a continuous slow increase in bone mineral content. The developed model can potentially predict the function for a mutated protein based on the histology of pathologic bone samples from mineralization disorders of unknown etiology.

  3. Weight loss on stimulant medication: how does it affect body composition and bone metabolism? – A prospective longitudinal study

    Directory of Open Access Journals (Sweden)

    Poulton Alison

    2012-12-01

    Full Text Available Abstract Objective Children treated with stimulant medication for attention deficit hyperactivity disorder (ADHD often lose weight. It is important to understand the implications of this during growth. This prospective study was designed to quantify the changes in body composition and markers of bone metabolism on starting treatment. Methods 34 children (29 boys aged 4.7 to 9.1 years newly diagnosed with ADHD were treated with dexamphetamine or methylphenidate, titrating the dose to optimise the therapeutic response. Medication was continued for as long as clinically indicated. Body composition and bone density (dual-energy X-ray absorptiometry were measured at baseline, 6 months and 3 years; changes were analysed in Z-scores based on data from 241 healthy, local children. Markers of bone turnover were measured at baseline, 3 months and 3 years. Results Fat loss of 1.4±0.96kg (total fat 5.7±3.6 to 4.3±3.1kg, p Conclusions Stimulant medication was associated with early fat loss and reduced bone turnover. Lean tissue including bone increased more slowly over 3 years of continuous treatment than would be expected for growth in height. There was long-term improvement in the proportion of central fat for height. This study shows that relatively minor reductions in weight on stimulant medication can be associated with long-term changes in body composition. Further study is required to determine the effects of these changes on adult health.

  4. The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase.

    Science.gov (United States)

    Cox, Thomas R; Rumney, Robin M H; Schoof, Erwin M; Perryman, Lara; Høye, Anette M; Agrawal, Ankita; Bird, Demelza; Latif, Norain Ab; Forrest, Hamish; Evans, Holly R; Huggins, Iain D; Lang, Georgina; Linding, Rune; Gartland, Alison; Erler, Janine T

    2015-06-04

    Tumour metastasis is a complex process involving reciprocal interplay between cancer cells and host stroma at both primary and secondary sites, and is strongly influenced by microenvironmental factors such as hypoxia. Tumour-secreted proteins play a crucial role in these interactions and present strategic therapeutic potential. Metastasis of breast cancer to the bone affects approximately 85% of patients with advanced disease and renders them largely untreatable. Specifically, osteolytic bone lesions, where bone is destroyed, lead to debilitating skeletal complications and increased patient morbidity and mortality. The molecular interactions governing the early events of osteolytic lesion formation are currently unclear. Here we show hypoxia to be specifically associated with bone relapse in patients with oestrogen-receptor negative breast cancer. Global quantitative analysis of the hypoxic secretome identified lysyl oxidase (LOX) as significantly associated with bone-tropism and relapse. High expression of LOX in primary breast tumours or systemic delivery of LOX leads to osteolytic lesion formation whereas silencing or inhibition of LOX activity abrogates tumour-driven osteolytic lesion formation. We identify LOX as a novel regulator of NFATc1-driven osteoclastogenesis, independent of RANK ligand, which disrupts normal bone homeostasis leading to the formation of focal pre-metastatic lesions. We show that these lesions subsequently provide a platform for circulating tumour cells to colonize and form bone metastases. Our study identifies a novel mechanism of regulation of bone homeostasis and metastasis, opening up opportunities for novel therapeutic intervention with important clinical implications.

  5. Genetic analysis identifies DDR2 as a novel gene affecting bone mineral density and osteoporotic fractures in Chinese population.

    Directory of Open Access Journals (Sweden)

    Yan Guo

    Full Text Available DDR2 gene, playing an essential role in regulating osteoblast differentiation and chondrocyte maturation, may influence bone mineral density (BMD and osteoporosis, but the genetic variations actually leading to the association remain to be elucidated. Therefore, the aim of this study was to investigate whether the genetic variants in DDR2 are associated with BMD and fracture risk. This study was performed in three samples from two ethnicities, including 1,300 Chinese Han subjects, 700 Chinese Han subjects (350 with osteoporotic hip fractures and 350 healthy controls and 2,286 US white subjects. Twenty-eight SNPs in DDR2 were genotyped and tested for associations with hip BMD and fractures. We identified 3 SNPs in DDR2 significantly associated with hip BMD in the Chinese population after multiple testing adjustments, which were rs7521233 (P = 1.06×10-4, β: -0.018 for allele C, rs7553831 (P = 1.30×10-4, β: -0.018 for allele T, and rs6697469 (P = 1.59×10-3, β: -0.015 for allele C, separately. These three SNPs were in high linkage disequilibrium. Haplotype analyses detected two significantly associated haplotypes, including one haplotype in block 2 (P = 9.54×10-4, β: -0.016 where these three SNPs located. SNP rs6697469 was also associated with hip fractures (P = 0.043, OR: 1.42 in the Chinese population. The effect on fracture risk was consistent with its association with lower BMD. However, in the white population, we didn't observe significant associations with hip BMD. eQTL analyses revealed that SNPs associated with BMD also affected DDR2 mRNA expression levels in Chinese. Our findings, together with the prior biological evidence, suggest that DDR2 could be a new candidate for osteoporosis in Chinese population. Our results also reveal an ethnic difference, which highlights the need for further genetic studies in each ethnic group.

  6. Genetic analysis identifies DDR2 as a novel gene affecting bone mineral density and osteoporotic fractures in Chinese population.

    Science.gov (United States)

    Guo, Yan; Yang, Tie-Lin; Dong, Shan-Shan; Yan, Han; Hao, Ruo-Han; Chen, Xiao-Feng; Chen, Jia-Bin; Tian, Qing; Li, Jian; Shen, Hui; Deng, Hong-Wen

    2015-01-01

    DDR2 gene, playing an essential role in regulating osteoblast differentiation and chondrocyte maturation, may influence bone mineral density (BMD) and osteoporosis, but the genetic variations actually leading to the association remain to be elucidated. Therefore, the aim of this study was to investigate whether the genetic variants in DDR2 are associated with BMD and fracture risk. This study was performed in three samples from two ethnicities, including 1,300 Chinese Han subjects, 700 Chinese Han subjects (350 with osteoporotic hip fractures and 350 healthy controls) and 2,286 US white subjects. Twenty-eight SNPs in DDR2 were genotyped and tested for associations with hip BMD and fractures. We identified 3 SNPs in DDR2 significantly associated with hip BMD in the Chinese population after multiple testing adjustments, which were rs7521233 (P = 1.06×10-4, β: -0.018 for allele C), rs7553831 (P = 1.30×10-4, β: -0.018 for allele T), and rs6697469 (P = 1.59×10-3, β: -0.015 for allele C), separately. These three SNPs were in high linkage disequilibrium. Haplotype analyses detected two significantly associated haplotypes, including one haplotype in block 2 (P = 9.54×10-4, β: -0.016) where these three SNPs located. SNP rs6697469 was also associated with hip fractures (P = 0.043, OR: 1.42) in the Chinese population. The effect on fracture risk was consistent with its association with lower BMD. However, in the white population, we didn't observe significant associations with hip BMD. eQTL analyses revealed that SNPs associated with BMD also affected DDR2 mRNA expression levels in Chinese. Our findings, together with the prior biological evidence, suggest that DDR2 could be a new candidate for osteoporosis in Chinese population. Our results also reveal an ethnic difference, which highlights the need for further genetic studies in each ethnic group.

  7. Genome-wide association study using extreme truncate selection identifies novel genes affecting bone mineral density and fracture risk

    NARCIS (Netherlands)

    E.L. Duncan (Emma); P. Danoy (Patrick); J.P. Kemp (John); P.J. Leo (Paul); E. McCloskey (Eugene); G.C. Nicholson (Geoffrey); R. Eastell (Richard); R.L. Prince (Richard); J.A. Eisman (John); G. Jones (Graeme); P.N. Sambrook (Philip); I.R. Reid (Ian); E.M. Dennison (Elaine); J. Wark (John); J.B. Richards (Brent); A.G. Uitterlinden (André); T.D. Spector (Timothy); C. Esapa (Chris); R.D. Cox (Roger); S.D.M. Brown (Steve); R.V. Thakker (Rajesh); K.A. Addison (Kathryn); L.A. Bradbury (Linda); J.R. Center (Jacqueline); C. Cooper (Cyrus); C. Cremin (Catherine); K. Estrada Gil (Karol); D. Felsenberg (Dieter); C.-C. Glüer (Claus-); J. Hadler (Johanna); M.J. Henry (Margaret); A. Hofman (Albert); M.A. Kotowicz (Mark); J. Makovey (Joanna); S.C. Nguyen (Sing); J.A. Pasco (Julie); K. Pryce (Karena); F. Rivadeneira Ramirez (Fernando); C. Roux (Christian); K. Stefansson (Kari); U. Styrkarsdottir (Unnur); G. Thorleifsson (Gudmar); R. Tichawangana (Rumbidzai); D.M. Evans (David)

    2011-01-01

    textabstractOsteoporotic fracture is a major cause of morbidity and mortality worldwide. Low bone mineral density (BMD) is a major predisposing factor to fracture and is known to be highly heritable. Site-, gender-, and age-specific genetic effects on BMD are thought to be significant, but have larg

  8. Factors affecting the possibility to detect buccal bone condition around dental implants using cone beam computed tomography

    DEFF Research Database (Denmark)

    Liedke, Gabriela S; Spin-Neto, Rubens; da Silveira, Heloisa E D

    2017-01-01

    in a way to obtain variable buccal bone thicknesses. Three combinations regarding the implant-abutment metal (TiTi, TiZr, or ZrZr) and the number of implants (one, two, or three) were assessed. Two CBCT units (Scanora 3D - Sc and Cranex 3D - Cr) and two voxel resolutions (0.2 and 0.13 mm) were used...

  9. Markers of bone metabolism are affected by renal function and growth hormone therapy in children with chronic kidney disease

    DEFF Research Database (Denmark)

    Doyon, Anke; Fischer, Dagmar Christiane; Bayazit, Aysun Karabay

    2015-01-01

    chronic kidney disease cohort. Methods: Bone alkaline phosphatase (BAP), tartrate-resistant acid phosphatase 5b (TRAP5b), sclerostin and C-terminal FGF-23 (cFGF23) normalized for age and sex were analyzed in 556 children aged 6-18 years with an estimated glomerular filtration rate (eGFR) of 10-60 ml...

  10. Is bone mineral density measurement using dual-energy X-ray absorptiometry affected by gamma rays?

    Science.gov (United States)

    Xie, Liang-Jun; Li, Jian-Fang; Zeng, Feng-Wei; Jiang, Hang; Cheng, Mu-Hua; Chen, Yi

    2013-01-01

    The objective of this study was to determine whether the gamma rays emitted from the radionuclide effect bone mineral density (BMD) measurement. Nine subjects (mean age: 56 ± 17.96 yr) scheduled for bone scanning underwent BMD measurement using dual-energy X-ray absorptiometry (DXA) (Hologic/Discovery A) before and 1, 2, and 4 h after injection of technetium-99m-methylene diphosphonate (99mTc-MDP). Ten subjects (mean age: 41 ± 15.47 yr) scheduled for therapy of differentiated thyroid carcinoma with iodine-131 underwent BMD measurement before and 2 h after therapeutic radionuclide administration. All patients were given whole body BMD measurement, including head, arm, ribs, lumbar spine, pelvis, and leg sites. Besides, patients who referred to radioiodine therapy were given total hip and femoral neck BMD measurement as well. No statistically significant changes in BMD values were detected after 99mTc-MDP and iodine-131 administration for all measurement sites (p > 0.05), and individual difference of BMD before and after radionuclide imaging or therapy was less than the least significant change in lumbar spine, total hip, and femoral neck. In conclusion, BMD measurements are not influenced by the gamma rays emitted from technetium-99m and iodine-131. DXA bone densitometry may be performed simultaneously with bone scanning and radioiodine therapy.

  11. Homeostasis in anorexia nervosa

    Directory of Open Access Journals (Sweden)

    Per eSodersten

    2014-08-01

    Full Text Available Brainstem and hypothalamic orexigenic/anorexigenic networks are thought to maintain body weight homeostasis in response to hormonal and metabolic feedback from peripheral sites. This approach has not been successful in managing over- and underweight patients. It is suggested that concept of homeostasis has been misinterpreted; rather than exerting control, the brain permits eating in proportion to the amount of physical activity necessary to obtain food. In support, animal experiments have shown that while a hypothalamic orexigen excites eating when food is abundant, it inhibits eating and stimulates foraging when food is in short supply. As the physical price of food approaches zero, eating and body weight increase without constraints. Conversely, in anorexia nervosa body weight is homeostatically regulated, the high level of physical activity in anorexia is displaced hoarding for food that keeps body weight constantly low. A treatment based on this point of view, providing patients with computerized mealtime support to re-establish normal eating behavior, has brought 75% of patients with eating disorders into remission, reduced the rate of relapse to 10%, and eliminated mortality.

  12. Acid-Base Homeostasis.

    Science.gov (United States)

    Hamm, L Lee; Nakhoul, Nazih; Hering-Smith, Kathleen S

    2015-12-07

    Acid-base homeostasis and pH regulation are critical for both normal physiology and cell metabolism and function. The importance of this regulation is evidenced by a variety of physiologic derangements that occur when plasma pH is either high or low. The kidneys have the predominant role in regulating the systemic bicarbonate concentration and hence, the metabolic component of acid-base balance. This function of the kidneys has two components: reabsorption of virtually all of the filtered HCO3(-) and production of new bicarbonate to replace that consumed by normal or pathologic acids. This production or generation of new HCO3(-) is done by net acid excretion. Under normal conditions, approximately one-third to one-half of net acid excretion by the kidneys is in the form of titratable acid. The other one-half to two-thirds is the excretion of ammonium. The capacity to excrete ammonium under conditions of acid loads is quantitatively much greater than the capacity to increase titratable acid. Multiple, often redundant pathways and processes exist to regulate these renal functions. Derangements in acid-base homeostasis, however, are common in clinical medicine and can often be related to the systems involved in acid-base transport in the kidneys.

  13. Morphological Study: Ultrastructural Aspects of Articular Cartilage and Subchondral Bone in Patients Affected by Post-Traumatic Shoulder Instability.

    Science.gov (United States)

    Baudi, Paolo; Catani, Fabio; Rebuzzi, Manuela; Ferretti, Marzia; Smargiassi, Alberto; Campochiaro, Gabriele; Serafini, Fabio; Palumbo, Carla

    2016-12-16

    Post-traumatic shoulder instability is a frequent condition in active population, representing one of most disabling pathologies, due to altered balance involving joints. No data are so far available on early ultrastructural osteo-chondral damages, associated with the onset of invalidating pathologies, like osteoarthritis-OA. Biopsies of glenoid articular cartilage and sub-chondral bone were taken from 10 adult patients underwent arthroscopic stabilization. Observations were performed under Transmission Electron Microscopy-TEM in tangential, arcuate and radial layers of the articular cartilage and in the sub-chondral bone. In tangential and arcuate layers chondrocytes display normal and very well preserved ultrastructure, probably due to the synovial liquid supply; otherwise, throughout the radial layer (un-calcified and calcified) chondrocytes show various degrees of degeneration; occasionally, in the radial layer evidences of apoptosis/autophagy were also observed. Concerning sub-chondral bone, osteocytes next to the calcified cartilage also show signs of degeneration, while osteocytes farther from the osteo-chondral border display normal ultrastructure, probably due to the bone vascular supply. The ultrastructural features of the osteo-chondral complex are not age-dependent. This study represents the first complete ultrastructural investigation of the articular osteo-chondral complex in shoulder instability, evaluating the state of preservation/viability of both chondrocytes and osteocytes throughout the successive layers of articular cartilage and sub-chondral bone. Preliminary observations here collected represent the morphological basis for further deepening of pathogenesis related to shoulder instability, enhancing the relationship between cell shape and microenvironment; in particular, they could be useful in understanding if the early surgical treatment in shoulder instability could avoid the onset of OA. Anat Rec, 300:12-15, 2017. © 2016 Wiley

  14. Chemical modification of extracellular matrix by cold atmospheric plasma-generated reactive species affects chondrogenesis and bone formation.

    Science.gov (United States)

    Eisenhauer, Peter; Chernets, Natalie; Song, You; Dobrynin, Danil; Pleshko, Nancy; Steinbeck, Marla J; Freeman, Theresa A

    2016-09-01

    The goal of this study was to investigate whether cold plasma generated by dielectric barrier discharge (DBD) modifies extracellular matrices (ECM) to influence chondrogenesis and endochondral ossification. Replacement of cartilage by bone during endochondral ossification is essential in fetal skeletal development, bone growth and fracture healing. Regulation of this process by the ECM occurs through matrix remodelling, involving a variety of cell attachment molecules and growth factors, which influence cell morphology and protein expression. The commercially available ECM, Matrigel, was treated with microsecond or nanosecond pulsed (μsp or nsp, respectively) DBD frequencies conditions at the equivalent frequencies (1 kHz) or power (~1 W). Recombinant human bone morphogenetic protein-2 was added and the mixture subcutaneously injected into mice to simulate ectopic endochondral ossification. Two weeks later, the masses were extracted and analysed by microcomputed tomography. A significant increase in bone formation was observed in Matrigel treated with μsp DBD compared with control, while a significant decrease in bone formation was observed for both nsp treatments. Histological and immunohistochemical analysis showed Matrigel treated with μsp plasma increased the number of invading cells, the amount of vascular endothelial growth factor and chondrogenesis while the opposite was true for Matrigel treated with nsp plasma. In support of the in vivo Matrigel study, 10 T1/2 cells cultured in vitro on μsp DBD-treated type I collagen showed increased expression of adhesion proteins and activation of survival pathways, which decreased with nsp plasma treatments. These results indicate DBD modification of ECM can influence cellular behaviours to accelerate or inhibit chondrogenesis and endochondral ossification. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Body Composition, Nutritional Profile and Muscular Fitness Affect Bone Health in a Sample of Schoolchildren from Colombia: The Fuprecol Study

    Directory of Open Access Journals (Sweden)

    Mónica Adriana Forero-Bogotá

    2017-02-01

    Full Text Available The objective of the present study is to investigate the relationships between body composition, nutritional profile, muscular fitness (MF and bone health in a sample of children and adolescents from Colombia. Participants included 1118 children and adolescents (54.6% girls. Calcaneal broadband ultrasound attenuation (c-BUA was obtained as a marker of bone health. Body composition (fat mass and lean mass was assessed using bioelectrical impedance analysis. Furthermore height, weight, waist circumference and Tanner stage were measured and body mass index (BMI was calculated. Standing long-jump (SLJ and isometric handgrip dynamometry were used respectively as indicators of lower and upper body muscular fitness. A muscular index score was also computed by summing up the standardised values of both SLJ and handgrip strength. Dietary intake and degree of adherence to the Mediterranean diet were assessed by a 7-day recall questionnaire for food frequency and the Kidmed questionnaire. Poor bone health was considered using a z-score cut off of ≤−1.5 standard deviation. Once the results were adjusted for age and Tanner stage, the predisposing factors of having a c-BUA z-score ≤−1.5 standard deviation included being underweight or obese, having an unhealthy lean mass, having an unhealthy fat mass, SLJ performance, handgrip performance, and unhealthy muscular index score. In conclusion, body composition (fat mass and lean body mass and MF both influenced bone health in a sample of children and adolescents from Colombia. Thus promoting strength adaptation and preservation in Colombian youth will help to improve bone health, an important protective factor against osteoporosis in later life.

  16. Body Composition, Nutritional Profile and Muscular Fitness Affect Bone Health in a Sample of Schoolchildren from Colombia: The Fuprecol Study

    Science.gov (United States)

    Forero-Bogotá, Mónica Adriana; Ojeda-Pardo, Mónica Liliana; García-Hermoso, Antonio; Correa-Bautista, Jorge Enrique; González-Jiménez, Emilio; Schmidt-RíoValle, Jacqueline; Navarro-Pérez, Carmen Flores; Gracia-Marco, Luis; Vlachopoulos, Dimitris; Martínez-Torres, Javier; Ramírez-Vélez, Robinson

    2017-01-01

    The objective of the present study is to investigate the relationships between body composition, nutritional profile, muscular fitness (MF) and bone health in a sample of children and adolescents from Colombia. Participants included 1118 children and adolescents (54.6% girls). Calcaneal broadband ultrasound attenuation (c-BUA) was obtained as a marker of bone health. Body composition (fat mass and lean mass) was assessed using bioelectrical impedance analysis. Furthermore height, weight, waist circumference and Tanner stage were measured and body mass index (BMI) was calculated. Standing long-jump (SLJ) and isometric handgrip dynamometry were used respectively as indicators of lower and upper body muscular fitness. A muscular index score was also computed by summing up the standardised values of both SLJ and handgrip strength. Dietary intake and degree of adherence to the Mediterranean diet were assessed by a 7-day recall questionnaire for food frequency and the Kidmed questionnaire. Poor bone health was considered using a z-score cut off of ≤−1.5 standard deviation. Once the results were adjusted for age and Tanner stage, the predisposing factors of having a c-BUA z-score ≤−1.5 standard deviation included being underweight or obese, having an unhealthy lean mass, having an unhealthy fat mass, SLJ performance, handgrip performance, and unhealthy muscular index score. In conclusion, body composition (fat mass and lean body mass) and MF both influenced bone health in a sample of children and adolescents from Colombia. Thus promoting strength adaptation and preservation in Colombian youth will help to improve bone health, an important protective factor against osteoporosis in later life. PMID:28165360

  17. Nerve Growth Factor, Brain-derived Neurotrophic Factor and Osteocalcin gene relationship in energy regulation, bone homeostasis and reproductive organs analyzed by mRNA quantitative evaluation and linear correlation analysis

    OpenAIRE

    Claudia Camerino; Elena Conte; Maria Cannone; Roberta Caloiero; Adriano Fonzino; Domenico Tricarico

    2016-01-01

    Nerve Growth Factor (NGF) / Brain-derived Neurotrophic Factor (BDNF) and osteocalcin share common effects regulating energy, bone mass, reproduction and neuronal functions. To investigate on the gene-relationship between NGF, BDNF and Osteocalcin we compared by RT-PCR the transcript levels of Ngf, Bdnf and Osteocalcin as well as of their receptors p75NTR/NTRK1, NTRK2 and Gprc6a in brain, bone, white/brown adipose tissue (WAT/BAT) and reproductive organs of 3 months old female and male mice. B...

  18. Acute calcium homeostasis in MHS swine.

    Science.gov (United States)

    Harrison, G G; Morrell, D F; Brain, V; Jaros, G G

    1987-07-01

    To elucidate a pathogenesis for the reduction in bone calcium content observed in MHS individuals, we studied the acute calcium homeostasis of MHS swine. This was achieved by the serial measurement, with a calcium selective electrode, of calcium transients in Landrace MHS (five) and control Landrace/large white cross MH negative (five) swine following IV bolus injection of calcium gluconate 0.1 mmol X kg-1--a dose which induced an acute 45 per cent increase in plasma ionised calcium. Experimental animals were anaesthetised with ketamine 10 mg X kg-1 IM, thiopentone (intermittent divided doses) 15-25 mg X kg-1 (total) IV and N2O/O2 (FIO2 0.3) by IPPV to maintain a normal blood gas, acid/base state. The plasma ionised calcium decay curve observed in MHS swine did not differ from that of control normal swine. Further it was noted that the induced acute rise in plasma ionised calcium failed to trigger the MH syndrome in any MHS swine. It is concluded that the mechanisms of acute calcium homeostasis in MHS swine are normal. An explanation for the reduction in bone calcium content observed in MHS individuals must be sought, therefore, through study of the slow long-term component of the calcium regulatory process. In addition, the conventional strictures placed on the use, in MHS patients, of calcium gluconate are called in question.

  19. Exercise frequency and bone mineral density development in exercising postmenopausal osteopenic women. Is there a critical dose of exercise for affecting bone? Results of the Erlangen Fitness and Osteoporosis Prevention Study.

    Science.gov (United States)

    Kemmler, Wolfgang; von Stengel, Simon; Kohl, Matthias

    2016-08-01

    Due to older people's low sports participation rates, exercise frequency may be the most critical component for designing exercise protocols that address bone. The aims of the present article were to determine the independent effect of exercise frequency (ExFreq) and its corresponding changes on bone mineral density (BMD) and to identify the minimum effective dose that just relevantly affects bone. Based on the 16-year follow-up of the intense, consistently supervised Erlangen Fitness and Osteoporosis Prevention-Study, ExFreq was retrospectively determined in the exercise-group of 55 initially early-postmenopausal females with osteopenia. Linear mixed-effect regression analysis was conducted to determine the independent effect of ExFreq on BMD changes at lumbar spine and total hip. Minimum effective dose of ExFreq based on BMD changes less than the 90% quantile of the sedentary control-group (n=43). Cut-offs were determined after 4, 8, 12 and 16years using bootstrap with 5000 replications. After 16years, average ExFreq ranged between 1.02 and 2.96sessions/week (2.28±0.40sessions/week). ExFreq has an independent effect on LS-BMD (pexercise frequency that relevantly addresses BMD is quite high, at least compared with the low sport participation rate of older adults. This result might not be generalizable across all exercise types, protocols and cohorts, but it does indicate at least that even when applying high impact/high intensity programs, exercise frequency and its maintenance play a key role in bone adaptation.

  20. Bone Health Should Be an Important Concern in the Care of Patients Affected by 21 Hydroxylase Deficiency

    Directory of Open Access Journals (Sweden)

    Dulon Jérome

    2010-09-01

    Full Text Available Osteoporosis has been an understandable concern for children and adult patients with congenital adrenal hyperplasia (CAH who may receive or have received supraphysiological doses of glucocorticoids. Some previous reports on bone mineral density (BMD in adult CAH patients showed no significant differences in BMD between patients with CAH and controls, but others have found lower BMD in CAH patients. In reports documenting the BMD reduction, this outcome has been attributed to an accumulated effect of prolonged exposure to excess glucocorticoids during infancy and childhood. We recently conducted a trial to establish the role of the total cumulative glucocorticoid dose on BMD. We established for the first time that there was a negative relationship between total cumulative glucocorticoid dose and lumbar and femoral BMD. Women might benefit from the preserving effect of estrogens compared to men. BMI (Body Mass Index also appeared to protect patients from bone loss. In light of this, physicians should bear in mind the potential consequences of glucocorticoids on bone and therefore adjust the treatment and improve clinical and biological surveillance from infancy. Furthermore, preventive measures against corticosteroid-induced osteoporosis should be discussed right from the beginning of glucocorticoid therapy.

  1. Regulation of cholesterol homeostasis.

    Science.gov (United States)

    van der Wulp, Mariëtte Y M; Verkade, Henkjan J; Groen, Albert K

    2013-04-10

    Hypercholesterolemia is an important risk factor for cardiovascular disease. It is caused by a disturbed balance between cholesterol secretion into the blood versus uptake. The pathways involved are regulated via a complex interplay of enzymes, transport proteins, transcription factors and non-coding RNA's. The last two decades insight into underlying mechanisms has increased vastly but there are still a lot of unknowns, particularly regarding intracellular cholesterol transport. After decades of concentration on the liver, in recent years the intestine has come into focus as an important control point in cholesterol homeostasis. This review will discuss current knowledge of cholesterol physiology, with emphasis on cholesterol absorption, cholesterol synthesis and fecal excretion, and new (possible) therapeutic options for hypercholesterolemia.

  2. Altering adsorbed proteins or cellular gene expression in bone-metastatic cancer cells affects PTHrP and Gli2 without altering cell growth

    Directory of Open Access Journals (Sweden)

    Jonathan M. Page

    2015-09-01

    Full Text Available The contents of this data in brief are related to the article titled “Matrix Rigidity Regulates the Transition of Tumor Cells to a Bone-Destructive Phenotype through Integrin β3 and TGF-β Receptor Type II”. In this DIB we will present our supplemental data investigating Integrin expression, attachment of cells to various adhesion molecules, and changes in gene expression in multiple cancer cell lines. Since the interactions of Integrins with adsorbed matrix proteins are thought to affect the ability of cancer cells to interact with their underlying substrates, we examined the expression of Integrin β1, β3, and β5 in response to matrix rigidity. We found that only Iβ3 increased with increasing substrate modulus. While it was shown that fibronectin greatly affects the expression of tumor-produced factors associated with bone destruction (parathyroid hormone-related protein, PTHrP, and Gli2, poly-l-lysine, vitronectin and type I collagen were also analyzed as potential matrix proteins. Each of the proteins was independently adsorbed on both rigid and compliant polyurethane films which were subsequently used to culture cancer cells. Poly-l-lysine, vitronectin and type I collagen all had negligible effects on PTHrP or Gli2 expression, but fibronectin was shown to have a dose dependent effect. Finally, altering the expression of Iβ3 demonstrated that it is required for tumor cells to respond to the rigidity of the matrix, but does not affect other cell growth or viability. Together these data support the data presented in our manuscript to show that the rigidity of bone drives Integrinβ3/TGF-β crosstalk, leading to increased expression of Gli2 and PTHrP.

  3. Obesity and type 2 diabetes in rats are associated with altered brain glycogen and amino-acid homeostasis

    DEFF Research Database (Denmark)

    Sickmann, Helle M; Waagepetersen, Helle S; Schousboe, Arne

    2010-01-01

    Obesity and type 2 diabetes have reached epidemic proportions; however, scarce information about how these metabolic syndromes influence brain energy and neurotransmitter homeostasis exist. The objective of this study was to elucidate how brain glycogen and neurotransmitter homeostasis are affect...

  4. BONE IN OSTEOPETROSIS

    Directory of Open Access Journals (Sweden)

    Ramkumar

    2014-04-01

    Full Text Available Osteopetrosis, a generalized developmental bone disease due to genetic disturbances, characterized by failure of bone re sorption and continuous bone formation making the bone hard, dense and brittle. Bones of intramembranous ossification and enchondrial ossification are affected genetically and symmetrically. During the process of disease the excess bone formation obliterates the cranial foramina and presses the optic, auditory and facial nerves resulting in defective vision, impaired hearing and facial paralysis. The bone formation in osteopetrosis affects bone marrow function leading to severe anemia and deficient of blood cells. The bone devoid of blood supply due to compression of blood vessels by excess formation of bone are prone to osteomyelitic changes with suppuration and pathological fracture if exposed to infection. Though the condition is chronic progressive, it produces changes leading to fatal condition, it should be studied thoroughly by everyone and hence this article presents a classical case of osteopetrosis with detailed description and discussion for the benefit of readers

  5. Diabetes, Biochemical Markers of Bone Turnover, Diabetes Control, and Bone

    OpenAIRE

    Starup-Linde, Jakob

    2013-01-01

    Diabetes mellitus is known to have late complications including micro vascular and macro vascular disease. This review focuses on another possible area of complication regarding diabetes; bone. Diabetes may affect bone via bone structure, bone density, and biochemical markers of bone turnover. The aim of the present review is to examine in vivo from humans on biochemical markers of bone turnover in diabetics compared to non-diabetics. Furthermore, the effect of glycemic control on bone marker...

  6. The Autophagic Process Occurs in Human Bone Metastasis and Implicates Molecular Mechanisms Differently Affected by Rab5a in the Early and Late Stages

    Directory of Open Access Journals (Sweden)

    Paola Maroni

    2016-03-01

    Full Text Available Autophagy favours metastatic growth through fuelling energy and nutrients and resistance to anoikis, typical of disseminated-tumour cells. The autophagic process, mediated by a unique organelle, the autophagosome, which fuses with lysosomes, is divided into three steps. Several stages, especially early omegasome formation and isolation-membrane initiation, remain controversial; molecular mechanisms involve the small-GTPase Rab5a, which regulates vesicle traffic for autophagosome formation. We examined Rab5a involvement in the function of key members of ubiquitin-conjugation systems, Atg7 and LC3-lipidated, interacting with the scaffold-protein p62. Immunohistochemistry of Rab5a was performed in human specimens of bone metastasis and pair-matched breast carcinoma; the autophagic-molecular mechanisms affected by Rab5a were evaluated in human 1833 bone metastatic cells, derived from breast-carcinoma MDA-MB231 cells. To clarify the role of Rab5a, 1833 cells were transfected transiently with Rab5a-dominant negative, and/or stably with the short-hairpin RNA Atg7, were exposed to two inhibitors of autolysosome function, and LC3II and p62 expression was measured. We showed basal autophagy in bone-metastatic cells and the pivotal role of Rab5a together with Beclin 1 between the early stages, elongation of isolation membrane/closed autophagosome mediated by Atg7, and the late-degradative stages. This regulatory network might occur in bone-metastasis and in high-grade dysplastic lesions, preceding invasive-breast carcinoma and conferring phenotypic characteristics for dissemination.

  7. The Autophagic Process Occurs in Human Bone Metastasis and Implicates Molecular Mechanisms Differently Affected by Rab5a in the Early and Late Stages

    Science.gov (United States)

    Maroni, Paola; Bendinelli, Paola; Resnati, Massimo; Matteucci, Emanuela; Milan, Enrico; Desiderio, Maria Alfonsina

    2016-01-01

    Autophagy favours metastatic growth through fuelling energy and nutrients and resistance to anoikis, typical of disseminated-tumour cells. The autophagic process, mediated by a unique organelle, the autophagosome, which fuses with lysosomes, is divided into three steps. Several stages, especially early omegasome formation and isolation-membrane initiation, remain controversial; molecular mechanisms involve the small-GTPase Rab5a, which regulates vesicle traffic for autophagosome formation. We examined Rab5a involvement in the function of key members of ubiquitin-conjugation systems, Atg7 and LC3-lipidated, interacting with the scaffold-protein p62. Immunohistochemistry of Rab5a was performed in human specimens of bone metastasis and pair-matched breast carcinoma; the autophagic-molecular mechanisms affected by Rab5a were evaluated in human 1833 bone metastatic cells, derived from breast-carcinoma MDA-MB231 cells. To clarify the role of Rab5a, 1833 cells were transfected transiently with Rab5a-dominant negative, and/or stably with the short-hairpin RNA Atg7, were exposed to two inhibitors of autolysosome function, and LC3II and p62 expression was measured. We showed basal autophagy in bone-metastatic cells and the pivotal role of Rab5a together with Beclin 1 between the early stages, elongation of isolation membrane/closed autophagosome mediated by Atg7, and the late-degradative stages. This regulatory network might occur in bone-metastasis and in high-grade dysplastic lesions, preceding invasive-breast carcinoma and conferring phenotypic characteristics for dissemination. PMID:27023526

  8. Multiscale Modeling of Bone

    Science.gov (United States)

    2014-12-01

    DISEASE Both age and disease can affect the structure of bone, the effects of which are often similar. The most common bone disease is osteoporosis ... Osteoporosis is a disease that results in reduced bone mass and density. This reduction of bone mass and density has a greater impact on trabecular...Bone loss in females is linked to a decrease in estrogen ; the decrease of estrogen associated with menopause increases osteoclast activity [89]. This

  9. Bone tumor

    Science.gov (United States)

    Tumor - bone; Bone cancer; Primary bone tumor; Secondary bone tumor; Bone tumor - benign ... The cause of bone tumors is unknown. They often occur in areas of the bone that grow rapidly. Possible causes include: Genetic defects ...

  10. Nitric oxide and plant iron homeostasis.

    Science.gov (United States)

    Buet, Agustina; Simontacchi, Marcela

    2015-03-01

    Like all living organisms, plants demand iron (Fe) for important biochemical and metabolic processes. Internal imbalances, as a consequence of insufficient or excess Fe in the environment, lead to growth restriction and affect crop yield. Knowledge of signals and factors affecting each step in Fe uptake from the soil and distribution (long-distance transport, remobilization from old to young leaves, and storage in seeds) is necessary to improve our understanding of plant mineral nutrition. In this context, the role of nitric oxide (NO) is discussed as a key player in maintaining Fe homeostasis through its cross talk with hormones, ferritin, and frataxin and the ability to form nitrosyl-iron complexes.

  11. Familial interactions and physical, lifestyle, and dietary factors to affect bone mineral density of children in the KNHANES 2009-2010.

    Science.gov (United States)

    Park, Sunmin; Park, Chung-Yill; Ham, Jung-O; Lee, Byung-Kook

    2014-07-01

    We examined familial bone mineral density (BMD) interactions between parents and children and lifestyle factors affecting BMD in the Korean general population of children under 20 and parents under 50 years of age. This cross-sectional study included 2,453 participants (667 daughters, 705 sons, 719 mothers, and 362 fathers) in the 2009-2010 Korean National Health and Nutrition Examination Survey. We calculated prevalence ratios and 95 % confidence intervals for BMD values of whole femur, femur neck, lumbar spine, and whole body excluding the head being in the low tertile in adolescents according to parental BMD tertile after adjusting for physical, lifestyle, and dietary factors. For daughters and sons, there were significant differences in BMD at the four bone sites according to age group, body fat percentage, regular walking and exercise, and milk consumption compared to the reference value for each classification category. Surprisingly, there were no differences in BMD according to serum 25-OH-D levels. Birth order affected BMD of only whole body except head, but its impact was less than that of lifestyle factors. The mean differences in BMD between daughters and sons in the first and third parental BMD tertiles were statistically significant. Notably, the prevalence ratio of whole body without head BMD being in the low tertile increased eight and ten-folds in adolescent daughters and sons, respectively, when parents were in the low BMD tertile. In specific bone regions, parental BMD had a greater effect on total femur in daughters but in the lumbar spine in sons. In conclusion, parental BMD positively influences BMD in daughters and sons after adjustment for environmental parameters. This suggests that the children from parents with low BMD need to make an extra effort to increase BMD through dietary and lifestyle changes.

  12. Genome-wide association study using extreme truncate selection identifies novel genes affecting bone mineral density and fracture risk.

    Directory of Open Access Journals (Sweden)

    Emma L Duncan

    2011-04-01

    Full Text Available Osteoporotic fracture is a major cause of morbidity and mortality worldwide. Low bone mineral density (BMD is a major predisposing factor to fracture and is known to be highly heritable. Site-, gender-, and age-specific genetic effects on BMD are thought to be significant, but have largely not been considered in the design of genome-wide association studies (GWAS of BMD to date. We report here a GWAS using a novel study design focusing on women of a specific age (postmenopausal women, age 55-85 years, with either extreme high or low hip BMD (age- and gender-adjusted BMD z-scores of +1.5 to +4.0, n = 1055, or -4.0 to -1.5, n = 900, with replication in cohorts of women drawn from the general population (n = 20,898. The study replicates 21 of 26 known BMD-associated genes. Additionally, we report suggestive association of a further six new genetic associations in or around the genes CLCN7, GALNT3, IBSP, LTBP3, RSPO3, and SOX4, with replication in two independent datasets. A novel mouse model with a loss-of-function mutation in GALNT3 is also reported, which has high bone mass, supporting the involvement of this gene in BMD determination. In addition to identifying further genes associated with BMD, this study confirms the efficiency of extreme-truncate selection designs for quantitative trait association studies.

  13. EPIDEMIOLOGICAL STUDY ON THE IMPLANT TREATMENT NEEDS IN CASES OF BONE AFFECTION IN PATIENTS WITH PERIODONTAL DISEASES

    Directory of Open Access Journals (Sweden)

    Diana Paula Radu

    2012-09-01

    Full Text Available The scope of the study is to critically evaluate and, implicitly, to establish a correlation among the status of edentation, the missing odonto-periodontal support and the necessary implantary therapy. Materials and method: The experimental group was formed of 179 patients, 93 women and 86 men, with ages between 18 and 72 years, who addressed the Clinics of Periodontology and some private consulting room between 2010-2012. The investigations involved both a minute clinical examination, by descriptive and canonic methods, and paraclinical exams: gnatophotostatic examinations on intra- and extra-oral (front and profile photos, patterns of study and radiological evaluation by OPT with markers. Results and discussion: The highest values were registered for III class Kennedy edentations, especially in the 31-50 years group of age, and mainly in women. This evaluation led to a higher number of implantary treatments. The necessary of implantary treatments was of 100% in IV, V and VI class Kennedy edentations, as well as in total edentations. Conclusions: The necessary number of interventions on bone structures for the optimization of the implantary field is of 43.92%, the highest ratios being represented by controlled bone regeneration.

  14. How does the supernatant of Lactobacillus acidophilus affect the proliferation and differentiation activities of rat bone marrow-derived stromal cells?

    Science.gov (United States)

    Samadikuchaksaraei, A; Gholipourmalekabadi, M; Saberian, M; Abdollahpour Alitappeh, M; Shahidi Delshad, E

    2016-08-31

    Low proliferation rate and unwanted differentiation of bone marrow-derived stromal cells (rBMSCs) during the frequent passages have limited the use of such cells in clinical cell therapy. Recently, the researchers have focused on the effects of the components produced by some bacteria on proliferation of the stem cells. In this study, we discussed the possible effects of the Lactobacillus acidophilus supernatant on proliferation and differentiation of the rBMSCs. For this aim, the cells were isolated from rat bone marrow, characterized by culturing on tissue specific differentiation media and stained. The cells (passage two) were treated with different concentrations of the L. acidophilus supernatant (0, 0.1, 0.3, 0.9, 3, 9 and 30 &mgr;l/ml) for 14 days. The proliferation and differentiation capacity of the cells were then determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT assay) and tissue specific staining. The results showed a positive effect of the supernatant on the cell proliferation in 3 and 9 &mgr;l/ml concentrations, while did not affect the differentiation capacity of the rBMSCs. The current study strongly suggests the L. acidophilus supernatant as an alternative material that could be added to the media with aim of improvement in the proliferation rate of the rBMSCs without affecting their differentiation capacity.

  15. The Rho-GEF Kalirin regulates bone mass and the function of osteoblasts and osteoclasts.

    Science.gov (United States)

    Huang, Su; Eleniste, Pierre P; Wayakanon, Kornchanok; Mandela, Prashant; Eipper, Betty A; Mains, Richard E; Allen, Matthew R; Bruzzaniti, Angela

    2014-03-01

    Bone homeostasis is maintained by the balance between bone resorption by osteoclasts and bone formation by osteoblasts. Dysregulation in the activity of the bone cells can lead to osteoporosis, a disease characterized by low bone mass and an increase in bone fragility and risk of fracture. Kalirin is a novel GTP-exchange factor protein that has been shown to play a role in cytoskeletal remodeling and dendritic spine formation in neurons. We examined Kalirin expression in skeletal tissue and found that it was expressed in osteoclasts and osteoblasts. Furthermore, micro-CT analyses of the distal femur of global Kalirin knockout (Kal-KO) mice revealed significantly reduced trabecular and cortical bone parameters in Kal-KO mice, compared to WT mice, with significantly reduced bone mass in 8, 14 and 36week-old female Kal-KO mice. Male mice also exhibited a decrease in bone parameters but not to the level seen in female mice. Histomorphometric analyses also revealed decreased bone formation rate in 14week-old female Kal-KO mice, as well as decreased osteoblast number/bone surface and increased osteoclast surface/bone surface. Consistent with our in vivo findings, the bone resorbing activity and differentiation of Kal-KO osteoclasts was increased in vitro. Although alkaline phosphatase activity by Kal-KO osteoblasts was increased in vitro, Kal-KO osteoblasts showed decreased mineralizing activity, as well as decreased secretion of OPG, which was inversely correlated with ERK activity. Taken together, our findings suggest that deletion of Kalirin directly affects osteoclast and osteoblast activity, leading to decreased OPG secretion by osteoblasts which is likely to alter the RANKL/OPG ratio and promote osteoclastogenesis. Therefore, Kalirin may play a role in paracrine and/or endocrine signaling events that control skeletal bone remodeling and the maintenance of bone mass.

  16. Variability of mineral nitrogen contents in soil as affected by meat and bone meal used as fertilizer

    Directory of Open Access Journals (Sweden)

    Arkadiusz Stępień

    2015-03-01

    Full Text Available In recent years, a number of alternative sources of organic matter have been discovered, such as producís made of waste materials and recycled into composts or as meal of meat and bone. Meat and bone meal, a by-product of the meat industry, is rich in N and P and hence it can be a viable alternative to mineral fertilizers. This study determined the direct effect of different doses of meat and bone meal (MBM used as fertilizer on the content of mineral N in soil. The effect of MBM fertilizer applied at rates of 1.0, 1.5, 2.0, and 2.5 t ha-1 was compared with no fertilization. The experiment was conducted in the years 2007-2009 at the research station in Balcyny, Poland. MBM was applied every year for 3 yr, with the following crop sequence: 2007 winter wheat (T. aestivum, 2008 winter rape (Brassica rapa L. subsp. oleífera (DC. Metzg., and 2009 spring wheat. Determination of mineral N (NO3--N and NH4+-N were taken from the 0-30 cm layer, each year, during the full plant vegetation. The study found that changes in the mineral N content in soil depended on the dose of MBM and the crop species in a sequence. Each 0.5 t of MBM above 1.0 t ha-1 increased the mineral N content by an average of 4 mg. MBM applied every year at 2.0 and 2.5 t ha-1 produced a 2.33- and 2.56-fold increase in the mineral N content compared to unfertilized soil. The rate of release of NO3--N was found to be the highest at those sites in all the years of study, while that of NH4+-N was highest during the first 2 yr of study. The levels of NO3--N lay within the range of very low fertility. A strong correlation was found between NO3--N and NH4+-N content in soil and the N content in winter and spring wheat (Triticum aestivum L. grain and in winter rapeseed (Brassica rapa L. subsp. oleífera (DC. Metzg. The NO3--N and NH4+-N compounds released from MBM were a good source of N for the plants.

  17. Factors Affecting the Recurrence of Giant Cell Tumor of Bone After Surgery: A Clinicopathological Study of 80 Cases from a Single Center

    Directory of Open Access Journals (Sweden)

    Dong-dong Cheng

    2015-07-01

    Full Text Available Background/Aims: This aim of the present study was to identify specific markers determining the recurrence of the giant cell tumor of bone (GCTB. Methods: This study involved the clinicopathological analysis of 80 cases. All of the clinical features, pathological fracture, Campanacci grade, histological features and surgical methods were reviewed. Immunohistochemistry was used to detect the expression of Ki-67, CD147, mutant p53 and p63 in GCTB. Comparisons between different groups were performed using the Chi-square test. The risk factors affecting recurrence were analyzed using a binary logistic model. Kaplan-Meier analysis was employed for the survival analysis between the groups. Cell proliferation assays, migration and invasion assays were used to detect the function of CD147 on GCTB in vitro. Results: The univariate analysis showed that Ki-67 and CD147 expression, pathological fracture, Campanacci grade and surgical method were associated with recurrence. The multivariate analysis revealed that CD147 expression, Campanacci grade and surgical method were the factors affecting GCTB recurrence. In addition, the Kaplan-Meier analysis revealed that these factors affected tumor-free survival time. In vitro study revealed that the CD147 knockdown by small interfering RNA (siRNA technique dramatically reduced the proliferation, migration and invasion of GCTB. Conclusion: Our results suggest that CD147 may serve as an adequate marker for GCTB recurrence. Campanacci grade is a risk factor for GCTB recurrence, which is also affected by the surgical method used.

  18. Connective tissue growth factor is required for skeletal development and postnatal skeletal homeostasis in male mice.

    Science.gov (United States)

    Canalis, Ernesto; Zanotti, Stefano; Beamer, Wesley G; Economides, Aris N; Smerdel-Ramoya, Anna

    2010-08-01

    Connective tissue growth factor (CTGF), a member of the cysteine-rich 61 (Cyr 61), CTGF, nephroblastoma overexpressed (NOV) (CCN) family of proteins, is synthesized by osteoblasts, and its overexpression inhibits osteoblastogenesis and causes osteopenia. The global inactivation of Ctgf leads to defective endochondral bone formation and perinatal lethality; therefore, the consequences of Ctgf inactivation on the postnatal skeleton are not known. To study the function of CTGF, we generated Ctgf(+/LacZ) heterozygous null mice and tissue-specific null Ctgf mice by mating Ctgf conditional mice, where Ctgf is flanked by lox sequences with mice expressing the Cre recombinase under the control of the paired-related homeobox gene 1 (Prx1) enhancer (Prx1-Cre) or the osteocalcin promoter (Oc-Cre). Ctgf(+/LacZ) heterozygous mice exhibited transient osteopenia at 1 month of age secondary to decreased trabecular number. A similar osteopenic phenotype was observed in 1-month-old Ctgf conditional null male mice generated with Prx1-Cre, suggesting that the decreased trabecular number was secondary to impaired endochondral bone formation. In contrast, when the conditional deletion of Ctgf was achieved by Oc-Cre, an osteopenic phenotype was observed only in 6-month-old male mice. Osteoblast and osteoclast number, bone formation, and eroded surface were not affected in Ctgf heterozygous or conditional null mice. In conclusion, CTGF is necessary for normal skeletal development but to a lesser extent for postnatal skeletal homeostasis.

  19. 影响人工骨载药微球发挥作用的因素%Factors affecting the function of drug-loaded microspheres in artificial bone

    Institute of Scientific and Technical Information of China (English)

    李超; 方涛林; 董健

    2011-01-01

    背景:生物可降解材料构建的载生长因子或载生长因子基因的微球已被较多应用于骨组织工程研究中.但载药微球在骨缺损修复中的作用效果不一,受到很多因素的影响.目的:探讨影响骨缺损修复过程中载药微球发挥作用的因素,为载药微球的进一步有效应用奠定基础.方法:通过计算机检索 PubMed 数据库 1999-01/2010-04 的相关文献,检索词为"gene or growth factor, nanosphere or microsphere, bone";同时检索中国期刊全文数据库1999-01/2009-04 的相关文献,检索词为"基因或生长因子、微球、骨",纳入有关载生长因子或生长因子基因的微球在骨缺损修复中应用方面的30篇文章进行综述.结果与结论:微球发挥作用的效率与微球材料、尺寸、表面修饰、所载药物种类及与支架的结合方式等密切相关.目前,对于这些因素的研究仍不够彻底,对它们的控制也还不够理想.调整好这些因素,使载药微球有效应用于骨组织工程,需要更多的研究从各方面进行不断的探索和完善.%BACKGROUND: As carriers of growth factors or genes, microspheres made with artificial biodegradable materials have been used in bone tissue engineering by many researchers. But the effect of these microspheres on bone defects repair is different,and depends on many factors.OBJECTIVE: To discuss the factors that affect the function of drug loaded microspheres in bone defect repair, and to lay a foundation for further effective application of drug loaded microspheres.METHODS: A computer-based online search of PubMed (1999-01/2010-04) and CNKI (1999-01/2010-04) was performed for related articles with the keywords "gene or growth factor, nanosphere or microsphere, bone". Thirty studies about application of growth factors- or genes-loaded microspheres were included.RESULTS AND CONCLUSION: The effect of the drug loaded microspheres is closely related to their material and diameter

  20. Urinary calcium and oxalate excretion in healthy adult cats are not affected by increasing dietary levels of bone meal in a canned diet.

    Science.gov (United States)

    Passlack, Nadine; Zentek, Jürgen

    2013-01-01

    This study aimed to investigate the impact of dietary calcium (Ca) and phosphorus (P), derived from bone meal, on the feline urine composition and the urinary pH, allowing a risk assessment for the formation of calcium oxalate (CaOx) uroliths in cats. Eight healthy adult cats received 3 canned diets, containing 12.2 (A), 18.5 (B) and 27.0 g Ca/kg dry matter (C) and 16.1 (A), 17.6 (B) and 21.1 g P/kg dry matter (C). Each diet was fed over 17 days. After a 7 dayś adaptation period, urine and faeces were collected over 2×4 days (with a two-day rest between), and blood samples were taken. Urinary and faecal minerals, urinary oxalate (Ox), the urinary pH and the concentrations of serum Ca, phosphate and parathyroid hormone (PTH) were analyzed. Moreover, the urine was microscopically examined for CaOx uroliths. The results demonstrated that increasing levels of dietary Ca led to decreased serum PTH and Ca and increased faecal Ca and P concentrations, but did not affect the urinary Ca or Ox concentrations or the urinary fasting pH. The urinary postprandial pH slightly increased when the diet C was compared to the diet B. No CaOx crystals were detected in the urine of the cats. In conclusion, urinary Ca excretion in cats seems to be widely independent of the dietary Ca levels when Ca is added as bone meal to a typical canned diet, implicating that raw materials with higher contents of bones are of subordinate importance as risk factors for the formation of urinary CaOx crystals.

  1. Urinary calcium and oxalate excretion in healthy adult cats are not affected by increasing dietary levels of bone meal in a canned diet.

    Directory of Open Access Journals (Sweden)

    Nadine Passlack

    Full Text Available This study aimed to investigate the impact of dietary calcium (Ca and phosphorus (P, derived from bone meal, on the feline urine composition and the urinary pH, allowing a risk assessment for the formation of calcium oxalate (CaOx uroliths in cats. Eight healthy adult cats received 3 canned diets, containing 12.2 (A, 18.5 (B and 27.0 g Ca/kg dry matter (C and 16.1 (A, 17.6 (B and 21.1 g P/kg dry matter (C. Each diet was fed over 17 days. After a 7 dayś adaptation period, urine and faeces were collected over 2×4 days (with a two-day rest between, and blood samples were taken. Urinary and faecal minerals, urinary oxalate (Ox, the urinary pH and the concentrations of serum Ca, phosphate and parathyroid hormone (PTH were analyzed. Moreover, the urine was microscopically examined for CaOx uroliths. The results demonstrated that increasing levels of dietary Ca led to decreased serum PTH and Ca and increased faecal Ca and P concentrations, but did not affect the urinary Ca or Ox concentrations or the urinary fasting pH. The urinary postprandial pH slightly increased when the diet C was compared to the diet B. No CaOx crystals were detected in the urine of the cats. In conclusion, urinary Ca excretion in cats seems to be widely independent of the dietary Ca levels when Ca is added as bone meal to a typical canned diet, implicating that raw materials with higher contents of bones are of subordinate importance as risk factors for the formation of urinary CaOx crystals.

  2. Bone pain

    DEFF Research Database (Denmark)

    Frost, Charlotte Ørsted; Hansen, Rikke Rie; Heegaard, Anne-Marie

    2016-01-01

    Skeletal conditions are common causes of chronic pain and there is an unmet medical need for improved treatment options. Bone pain is currently managed with disease modifying agents and/or analgesics depending on the condition. Disease modifying agents affect the underlying pathophysiology...... of the disease and reduce as a secondary effect bone pain. Antiresorptive and anabolic agents, such as bisphosphonates and intermittent parathyroid hormone (1-34), respectively, have proven effective as pain relieving agents. Cathepsin K inhibitors and anti-sclerostin antibodies hold, due to their disease...... modifying effects, promise of a pain relieving effect. NSAIDs and opioids are widely employed in the treatment of bone pain. However, recent preclinical findings demonstrating a unique neuronal innervation of bone tissue and sprouting of sensory nerve fibers open for new treatment possibilities....

  3. The Steady-State Serum Concentration of Genistein Aglycone Is Affected by Formulation: A Bioequivalence Study of Bone Products

    Directory of Open Access Journals (Sweden)

    Alessandra Bitto

    2013-01-01

    Full Text Available An FDA-regulated, prescription medical food (Fosteum; 27 mg natural genistein, 200 IU cholecalciferol, 20 mg citrated zinc bisglycinate (4 mg elemental zinc per capsule and an over-the-counter (OTC supplement (Citracal Plus Bone Density Builder; 27 mg synthetic genistein, 600 mg elemental calcium (calcium citrate, 400 IU vitamin D3, 50 mg magnesium, 7.5 mg zinc, 1 mg copper, 75 μg molybdenum, 250 μg boron per two tablets were compared to a clinically proven bone formulation (27 mg natural genistein, 400 IU cholecalciferol, 500 mg elemental calcium (calcium carbonate per tablet; the Squadrito formulation in an 8-day steady-state pharmacokinetic (PK study of healthy postmenopausal women (n=30 randomized to receive 54 mg of genistein per day. Trough serum samples were obtained before the final dose on the morning of the ninth day followed by sampling at 1, 2, 4, 6, 8, 10, 12, 24, 36, 48, 72, and 96 hrs. Total serum genistein, after β-glucuronidase/sulfatase digestion, was measured by time-resolved fluorometric assay. Maximal time (Tmax, concentration (Cmax, half-life (T1/2, and area under the curve (AUC were determined for genistein in each formulation. Fosteum and the Squadrito study formulation were equivalent for genistein Tmax (2 hrs, Cmax (0.7 μM, T1/2 (18±6.9 versus 21±4.9 hrs, and AUC (9221±413 versus 9818±1370 ng·hr/mL. The OTC supplement’s synthetically derived genistein, however, showed altered Tmax (6 hrs, Cmax (0.57 μM, T1/2 (8.3±1.9 hrs, and AUC (6474±287 ng·hr/mL. Differences in uptake may be due to multiple ingredients in the OTC supplement which interfere with genistein absorption.

  4. Perinatal exposure to a mixture of persistent pollutants based on blood profiles of Arctic populations affects bone parameters in 35 days old rats

    Energy Technology Data Exchange (ETDEWEB)

    Stern, N.; Trossvik, C.; Hakansson, H. [Inst. of Environmental Medicine, Karolinska Inst., Stockholm (Sweden); Bowers, W.; Nakai, J.S.; Chu, I. [Environmental and Occupational Toxicology Div., Environmental Health Sciences Bureau, Health Canada, Ottawa (Canada)

    2004-09-15

    Environmental pollution of Arctic regions is a public concern. Arctic inhabitants are a high-risk group regarding health effects of environmental toxicants because of their high consumption of contaminated fish and wildlife. Developing fetuses and newborn infants may be particularly vulnerable to the effects of exposure to persistent organic pollutants (POPs) and toxic metals. Developmental exposure to environmental pollutants affects a wide range of clinical and biochemical parameters. Disturbance in skeletal growth, an integral component of somatic development, is a novel area in the toxicity of POPs. Low-dose prenatal exposure to TCDD caused a variety of harmful effects in rat long bones. In adult rats, TCDD exposure caused inhibited bone growth and lowered biomechanical properties of tibia and exposure to the dioxin-like PCBcongener 3,3,4,4,5-pentachlorobiphenyl has been associated with a decreased strength and collagen concentration of humerus. The aim of this study was to investigate effects of perinatal exposure to a mixture of PCBs, organochlorines and methyl mercury based on blood levels of Canadian Arctic populations on skeletal development in rat pups.

  5. Bone marrow mesenchymal stromal cells affect the cell cycle arrest effect of genotoxic agents on acute lymphocytic leukemia cells via p21 down-regulation.

    Science.gov (United States)

    Zhang, Yiran; Hu, Kaimin; Hu, Yongxian; Liu, Lizhen; Wang, Binsheng; Huang, He

    2014-09-01

    The effect of bone marrow microenvironment on the cell cycle of acute lymphocytic leukemia (ALL) and the underlying mechanism has not been elucidated. In this study, we found that in normal condition, bone marrow mesenchymal stromal cells (BM-MSCs) had no significant effect on the cell cycle and apoptosis of ALL; in the condition when the cell cycle of ALL was blocked by genotoxic agents, BM-MSCs could increase the S-phase cell ratio and decrease the G2/M phase ratio of ALL. Besides, BM-MSCs could protect ALL cells from drug-induced apoptosis. Then, we proved that BM-MSCs affect the cell cycle arrest effect of genotoxic agents on ALL cells via p21 down-regulation. Moreover, our results indicated that activation of Wnt/β-catenin and Erk pathways might be involved in the BM-MSC-induced down-regulation of p21 in ALL cells. Targeting microenvironment-related signaling pathway may therefore be a potential novel approach for ALL therapy.

  6. Roles of the kidney in the formation, remodeling and repair of bone.

    Science.gov (United States)

    Wei, Kai; Yin, Zhiwei; Xie, Yuansheng

    2016-06-01

    The relationship between the kidney and bone is highly complex, and the kidney plays an important role in the regulation of bone development and metabolism. The kidney is the major organ involved in the regulation of calcium and phosphate homeostasis, which is essential for bone mineralization and development. Many substances synthesized by the kidney, such as 1,25(OH)2D3, Klotho, bone morphogenetic protein-7, and erythropoietin, are involved in different stages of bone formation, remodeling and repair. In addition, some cytokines which can be affected by the kidney, such as osteoprotegerin, sclerostin, fibroblast growth factor -23 and parathyroid hormone, also play important roles in bone metabolism. In this paper, we summarize the possible effects of these kidney-related cytokines on bone and their possible mechanisms. Most of these cytokines can interact with one another, constituting an intricate network between the kidney and bone. Therefore, kidney diseases should be considered among patients presenting with osteodystrophy and disturbances in bone and mineral metabolism, and treatment for renal dysfunction may accelerate their recovery.

  7. Epididymis cholesterol homeostasis and sperm fertilizing ability

    Institute of Scientific and Technical Information of China (English)

    Fabrice Saez; Aurélia Ouvrier; Jo(e)l R Drevet

    2011-01-01

    Cholesterol, being the starting point of steroid hormone synthesis, is a long known modulator of both female and male reproductive physiology especially at the level of the gonads and the impact cholesterol has on gametogenesis. Less is known about the effects cholesterol homeostasis may have on postgonadic reproductive functions. Lately, several data have been reported showing how imbalanced cholesterol levels may particularly affect the post-testicular events of sperm maturation that lead to fully fertile male gametes. This review will focus on that aspect and essentially centers on how cholesterol is important for the physiology of the mammalian epididymis and spermatozoa.

  8. Potassium homeostasis in chronic kidney disease.

    Science.gov (United States)

    Palmer, Biff F

    2016-04-01

    Adaptive increases in renal and gastrointestinal excretion of K+ help to prevent hyperkalemia in patients with CKD as long as the GFR remains > 15-20 mL/min. Once the GFR falls below these values, the impact of factors known to adversely affect K+ homeostasis is significantly magnified. Impaired renal K+ excretion can be the result of conditions that severely limit distal Na+ delivery, decreased mineralocorticoid levels or activity, or a distal tubular defect (Table 2). In clinical practice, hyperkalemia is usually the result of a combination of factors superimposed on renal dysfunction.

  9. The commensal microbiota drives immune homeostasis

    Directory of Open Access Journals (Sweden)

    Marie-Claire eArrieta

    2012-03-01

    Full Text Available For millions of years, microbes have coexisted with eukaryotic cells at the mucosal surfaces of vertebrates in a complex, yet usually harmonious symbiosis. An ever-expanding number of reports describe how eliminating or shifting the intestinal microbiota has profound effects on the development and functionality of the mucosal and systemic immune systems. Here, we examine some of the mechanisms by which bacterial signals affect immune homeostasis. Focusing on the strategies that microbes use to keep our immune system healthy, as opposed to trying to correct the immune imbalances caused by dysbiosis, may prove to be a more astute and efficient way of treating immune-mediated disease.

  10. Brain iron homeostasis.

    Science.gov (United States)

    Moos, Torben

    2002-11-01

    Iron is essential for virtually all types of cells and organisms. The significance of the iron for brain function is reflected by the presence of receptors for transferrin on brain capillary endothelial cells. The transport of iron into the brain from the circulation is regulated so that the extraction of iron by brain capillary endothelial cells is low in iron-replete conditions and the reverse when the iron need of the brain is high as in conditions with iron deficiency and during development of the brain. Whereas there is good agreement that iron is taken up by means of receptor-mediated uptake of iron-transferrin at the brain barriers, there are contradictory views on how iron is transported further on from the brain barriers and into the brain extracellular space. The prevailing hypothesis for transport of iron across the BBB suggests a mechanism that involves detachment of iron from transferrin within barrier cells followed by recycling of apo-transferrin to blood plasma and release of iron as non-transferrin-bound iron into the brain interstitium from where the iron is taken up by neurons and glial cells. Another hypothesis claims that iron-transferrin is transported into the brain by means of transcytosis through the BBB. This thesis deals with the topic "brain iron homeostasis" defined as the attempts to maintain constant concentrations of iron in the brain internal environment via regulation of iron transport through brain barriers, cellular iron uptake by neurons and glia, and export of iron from brain to blood. The first part deals with transport of iron-transferrin complexes from blood to brain either by transport across the brain barriers or by uptake and retrograde axonal transport in motor neurons projecting beyond the blood-brain barrier. The transport of iron and transport into the brain was examined using radiolabeled iron-transferrin. Intravenous injection of [59Fe-125]transferrin led to an almost two-fold higher accumulation of 59Fe than of

  11. Calcium Homeostasis in ageing neurons

    Directory of Open Access Journals (Sweden)

    Vassiliki eNikoletopoulou

    2012-10-01

    Full Text Available The nervous system becomes increasingly vulnerable to insults and prone to dysfunction during ageing. Age-related decline of neuronal function is manifested by the late onset of many neurodegenerative disorders, as well as by reduced signalling and processing capacity of individual neuron populations. Recent findings indicate that impairment of Ca2+ homeostasis underlies the increased susceptibility of neurons to damage, associated with the ageing process. However, the impact of ageing on Ca2+ homeostasis in neurons remains largely unknown. Here, we survey the molecular mechanisms that mediate neuronal Ca2+ homeostasis and discuss the impact of ageing on their efficacy. To address the question of how ageing impinges on Ca2+ homeostasis, we consider potential nodes through which mechanisms regulating Ca2+ levels interface with molecular pathways known to influence the process of ageing and senescent decline. Delineation of this crosstalk would facilitate the development of interventions aiming to fortify neurons against age-associated functional deterioration and death by augmenting Ca2+ homeostasis.

  12. Estimated lean mass and fat mass differentially affect femoral bone density and strength index but are not FRAX independent risk factors for fracture.

    Science.gov (United States)

    Leslie, William D; Orwoll, Eric S; Nielson, Carrie M; Morin, Suzanne N; Majumdar, Sumit R; Johansson, Helena; Odén, Anders; McCloskey, Eugene V; Kanis, John A

    2014-11-01

    Although increasing body weight has been regarded as protective against osteoporosis and fractures, there is accumulating evidence that fat mass adversely affects skeletal health compared with lean mass. We examined skeletal health as a function of estimated total body lean and fat mass in 40,050 women and 3600 men age ≥50 years at the time of baseline dual-energy X-ray absorptiometry (DXA) testing from a clinical registry from Manitoba, Canada. Femoral neck bone mineral density (BMD), strength index (SI), cross-sectional area (CSA), and cross-sectional moment of inertia (CSMI) were derived from DXA. Multivariable models showed that increasing lean mass was associated with near-linear increases in femoral BMD, CSA, and CSMI in both women and men, whereas increasing fat mass showed a small initial increase in these measurements followed by a plateau. In contrast, femoral SI was relatively unaffected by increasing lean mass but was associated with a continuous linear decline with increasing fat mass, which should predict higher fracture risk. During mean 5-year follow-up, incident major osteoporosis fractures and hip fractures were observed in 2505 women and 180 men (626 and 45 hip fractures, respectively). After adjustment for fracture risk assessment tool (FRAX) scores (with or without BMD), we found no evidence that lean mass, fat mass, or femoral SI affected prediction of major osteoporosis fractures or hip fractures. Findings were similar in men and women, without significant interactions with sex or obesity. In conclusion, skeletal adaptation to increasing lean mass was positively associated with BMD but had no effect on femoral SI, whereas increasing fat mass had no effect on BMD but adversely affected femoral SI. Greater fat mass was not independently associated with a greater risk of fractures over 5-year follow-up. FRAX robustly predicts fractures and was not affected by variations in body composition.

  13. Homeostasis of T Cell Diversity

    Institute of Scientific and Technical Information of China (English)

    VinayS.Mahajan; IlyaB.Leskov; JianzhuChen

    2005-01-01

    T cell homeostasis commonly refers to the maintenance of relatively stable T cell numbers in the peripheral lymphoid organs. Among the large numbers of T cells in the periphery, T cells exhibit structural diversity, i.e., the expression of a diverse repertoire of T cell receptors (TCRs), and functional diversity, i.e., the presence of T cells at naive, effector, and memory developmental stages. Although the homeostasis of T cell numbers has been extensively studied, investigation of the mechanisms underlying the maintenance of structural and functional diversity of T cells is still at an early stage. The fundamental feature throughout T cell development is the interaction between the TCR and either self or foreign peptides in association with MHC molecules. In this review, we present evidence showing that homeostasis of T cell number and diversity is mediated through competition for limiting resources. The number of T cells is maintained through competition for limiting cytokines, whereas the diversity of T cells is maintained by competition for self-peptide-MHC complexes. In other words, diversity of the self-peptide repertoire limits the structural (TCR) diversity of a T cell population. We speculate that cognate low affinity self-peptides, acting as weak agonists and antagonists, regulate the homeostasis of T cell diversity whereas non-cognate or null peptides which are extremely abundant for any given TCR, may contribute to the homeostasis of T cell number by providing survival signals. Moreover, self-peptides and cytokines may form specialized niches for the regulation of T cell homeostasis. Cellular & Molecular Immunology. 2005;2(1): 1-10.

  14. Homeostasis of T Cell Diversity

    Institute of Scientific and Technical Information of China (English)

    Vinay S. Mahajan; Ilya B. Leskov; Jianzhu Chen

    2005-01-01

    T cell homeostasis commonly refers to the maintenance of relatively stable T cell numbers in the peripheral lymphoid organs. Among the large numbers of T cells in the periphery, T cells exhibit structural diversity, I.e., the expression of a diverse repertoire of T cell receptors (TCRs), and functional diversity, I.e., the presence of T cells at na(I)ve, effector, and memory developmental stages. Although the homeostasis of T cell numbers has been extensively studied, investigation of the mechanisms underlying the maintenance of structural and functional diversity of T cells is still at an early stage. The fundamental feature throughout T cell development is the interaction between the TCR and either self or foreign peptides in association with MHC molecules. In this review, we present evidence showing that homeostasis of T cell number and diversity is mediated through competition for limiting resources.The number of T cells is maintained through competition for limiting cytokines, whereas the diversity of T cells is maintained by competition for self-peptide-MHC complexes. In other words, diversity of the self-peptide repertoire limits the structural (TCR) diversity of a T cell population. We speculate that cognate low affinity self-peptides,acting as weak agonists and antagonists, regulate the homeostasis of T cell diversity whereas non-cognate or null peptides which are extremely abundant for any given TCR, may contribute to the homeostasis of T cell number by providing survival signals. Moreover, self-peptides and cytokines may form specialized niches for the regulation of T cell homeostasis.

  15. Disorders of erythrocyte volume homeostasis.

    Science.gov (United States)

    Glogowska, E; Gallagher, P G

    2015-05-01

    Inherited disorders of erythrocyte volume homeostasis are a heterogeneous group of rare disorders with phenotypes ranging from dehydrated to overhydrated erythrocytes. Clinical, laboratory, physiologic, and genetic heterogeneities characterize this group of disorders. A series of recent reports have provided novel insights into our understanding of the genetic bases underlying some of these disorders of red cell volume regulation. This report reviews this progress in understanding determinants that influence erythrocyte hydration and how they have yielded a better understanding of the pathways that influence cellular water and solute homeostasis.

  16. The Hedgehog signalling pathway in bone formation

    Institute of Scientific and Technical Information of China (English)

    Jing Yang; Philipp Andre; Ling Ye; Ying-Zi Yang

    2015-01-01

    The Hedgehog (Hh) signalling pathway plays many important roles in development, homeostasis and tumorigenesis. The critical function of Hh signalling in bone formation has been identified in the past two decades. Here, we review the evolutionarily conserved Hh signalling mechanisms with an emphasis on the functions of the Hh signalling pathway in bone development, homeostasis and diseases. In the early stages of embryonic limb development, Sonic Hedgehog (Shh) acts as a major morphogen in patterning the limb buds. Indian Hedgehog (Ihh) has an essential function in endochondral ossification and induces osteoblast differentiation in the perichondrium. Hh signalling is also involved intramembrane ossification. Interactions between Hh and Wnt signalling regulate cartilage development, endochondral bone formation and synovial joint formation. Hh also plays an important role in bone homeostasis, and reducing Hh signalling protects against age-related bone loss. Disruption of Hh signalling regulation leads to multiple bone diseases, such as progressive osseous heteroplasia. Therefore, understanding the signalling mechanisms and functions of Hh signalling in bone development, homeostasis and diseases will provide important insights into bone disease prevention, diagnoses and therapeutics.

  17. Bone Biopsy

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Bone Biopsy Bone biopsy uses a needle and imaging ... the limitations of Bone Biopsy? What is a Bone Biopsy? A bone biopsy is an image-guided ...

  18. RANKL, osteopontin, and osteoclast homeostasis in a hyperocclusion mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Cameron G.; Ito, Yoshihiro; Dangaria, Smit; Luan, Xianghong; Diekwisch, Thomas G.H. (UIC)

    2009-10-21

    The biological mechanisms that maintain the position of teeth in their sockets establish a dynamic equilibrium between bone resorption and apposition. In order to reveal some of the dynamics involved in the tissue responses towards occlusal forces on periodontal ligament (PDL) and alveolar bone homeostasis, we developed the first mouse model of hyperocclusion. Swiss-Webster mice were kept in hyperocclusion for 0, 3, 6, and 9 d. Morphological and histological changes in the periodontium were assessed using micro-computed tomography (micro-CT) and ground sections with fluorescent detection of vital dye labels. Sections were stained for tartrate-resistant acid phosphatase, and the expression of receptor activator of nuclear factor-{kappa}B ligand (RANKL) and osteopontin (OPN) was analyzed by immunohistochemistry and real-time polymerase chain reaction (PCR). Traumatic occlusion resulted in enamel surface abrasion, inhibition of alveolar bone apposition, significant formation of osteoclasts at 3, 6 and 9 d, and upregulation of OPN and RANKL. Data from this study suggest that both OPN and RANKL contribute to the stimulation of bone resorption in the hyperocclusive state. In addition, we propose that the inhibition of alveolar bone apposition by occlusal forces is an important mechanism for the control of occlusal height that might work in synergy with RANKL-induced bone resorption to maintain normal occlusion.

  19. Bone Densitometry (Bone Density Scan)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Bone Densitometry (DEXA) Bone densitometry, also called dual-energy ... limitations of DEXA Bone Densitometry? What is a Bone Density Scan (DEXA)? Bone density scanning, also called ...

  20. Neurohypophyseal hormones: novel actors of striated muscle development and homeostasis

    Directory of Open Access Journals (Sweden)

    Alessandra Costa

    2014-09-01

    Full Text Available Since the 1980's, novel functional roles of the neurohypophyseal hormones vasopressin and oxytocin have emerged. Several studies have investigated the effects of these two neurohormones on striated muscle tissues, both in vitro and in vivo. The effects of vasopressin on skeletal myogenic cells, developing muscle and muscle homeostasis have been documented. Oxytocin appears to have a greater influence on cardiomyocite differentiation and heart homeostasis. This review summarizes the studies on these novel roles of the two neurohypophyseal hormones, and open the possibility of new therapeutic approaches for diseases affecting striated muscle.

  1. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells.

    Science.gov (United States)

    Florencio-Silva, Rinaldo; Sasso, Gisela Rodrigues da Silva; Sasso-Cerri, Estela; Simões, Manuel Jesus; Cerri, Paulo Sérgio

    2015-01-01

    Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling.

  2. Bariatric Surgery: Bad to the Bone, Part 1.

    Science.gov (United States)

    Pizzorno, Lara

    2016-03-01

    Obesity is now a global epidemic affecting a significant and rapidly increasing number of adults, adolescents, and children. As the incidence of obesity has increased, so has the use of bariatric surgery as a medical solution. A growing number of studies now report that, despite calcium and vitamin D supplementation, the most frequently performed types of bariatric surgery, the Roux-en-Y gastric bypass and the sleeve gastrectomy, cause significant ongoing bone loss. In resources available to the general public and to physicians, this adverse outcome is rarely mentioned or is attributed solely to reduced calcium absorption. Recent studies investigating micronutrient malabsorption and changes in a wide range of hormones induced by bariatric surgery now indicate that calcium malabsorption is the tip of a formidable iceberg. The current article, part 1 of a 2-part series, reviews the latest research findings confirming that obesity prevalence is skyrocketing and that bariatric surgery causes ongoing, accelerated bone loss. Part 1 also discusses the mechanisms through which the bariatric surgery-induced malabsorption of key nutrients adversely affects bone homeostasis. Part 2 discusses the specific changes seen in bone metabolism after bariatric surgery and reviews current data on the underlying mechanisms, in addition to nutrient malabsorption, which are thought to contribute to bariatric surgery-induced ongoing accelerated bone loss. These processes include mechanical unloading and changes in a wide variety of hormones (eg, leptin, adiponectin, testosterone, estradiol, serotonin, ghrelin, glucagon-like peptide 1, and gastric inhibitory peptide). Also, part 2 covers interventions that may help lessen bariatric surgery-induced bone loss, which are now beginning to appear in the medical literature. Bariatric surgery's adverse effects on bone must be widely recognized and protocols developed to prevent early onset osteoporosis in the recipients of an increasingly utilized

  3. Skeletal growth after oral administration of demineralized bone matrix.

    Science.gov (United States)

    Martínez, J A; Elorriaga, M; Marquínez, M; Larralde, J

    1993-03-01

    Oral administration of bone extracts obtained from bovine demineralized bone matrix to rats has a direct effect on bone metabolism, affecting bone proportions and some markers of bone formation such as bone malate dehydrogenase, serum alkaline phosphatase and serum osteocalcin. Furthermore collagen deposition, bone protein synthesis and nucleic acids content were significantly increased by the treatment.

  4. Inactivation of the Progesterone Receptor in Mx1+ Cells Potentiates Osteogenesis in Calvaria but Not in Long Bone.

    Science.gov (United States)

    Zhong, Zhendong A; Sun, Weihua; Chen, Haiyan; Zhang, Hongliang; Lane, Nancy E; Yao, Wei

    2015-01-01

    The effect of progesterone on bone remains elusive. We previously reported that global progesterone receptor (PR) knockout mice displayed high bone mass phenotype, suggesting that PR influences bone growth and modeling. Recently, Mx1+ cells were characterized to be mesenchymal stem cell-like pluripotent Cells. The aim of this study was to evaluate whether the PR in Mx1+ cells regulates osteogenesis. Using the Mx1-Cre;mT/mG reporter mouse model, we found that the calvarial cells exhibited minimal background Mx1-Cre activity prior to Cre activation by IFNα treatment as compared to the bone marrow stromal cells. IFNα treatment significantly activated Mx1-Cre in the calvarial cells. When the PR gene was deleted in the Mx1-Cre;PR-flox calvarial cells in vitro, significantly higher levels of expression of osteoblast maturation marker genes (RUNX2, Osteocalcin, and Dmp1) and osteogenic potential were detected. The PR-deficient calvariae exhibited greater bone volume, especially in the males. Although Mx1-Cre activity could be induced on the bone surface in vivo, the Mx1+ cells did not differentiate into osteocytes in long bones. Bone volumes at the distal femurs and the bone turnover marker serum Osteocalcin were similar between the Mx1-Cre;PR-flox mutant mice and the corresponding wild types in both sexes. In conclusion, our data demonstrates that blocking progesterone signaling via PRs in calvarial Mx1+ cells promoted osteoblast differentiation in the calvaria. Mx1+ was expressed by heterogeneous cells in bone marrow and did not differentiate into osteocyte during long bone development in vivo. Selectively inactivating the PR gene in Mx1+ cells affected the membrane bone formation but did not affect peripheral skeletal homeostasis.

  5. Inactivation of the Progesterone Receptor in Mx1+ Cells Potentiates Osteogenesis in Calvaria but Not in Long Bone.

    Directory of Open Access Journals (Sweden)

    Zhendong A Zhong

    Full Text Available The effect of progesterone on bone remains elusive. We previously reported that global progesterone receptor (PR knockout mice displayed high bone mass phenotype, suggesting that PR influences bone growth and modeling. Recently, Mx1+ cells were characterized to be mesenchymal stem cell-like pluripotent Cells. The aim of this study was to evaluate whether the PR in Mx1+ cells regulates osteogenesis. Using the Mx1-Cre;mT/mG reporter mouse model, we found that the calvarial cells exhibited minimal background Mx1-Cre activity prior to Cre activation by IFNα treatment as compared to the bone marrow stromal cells. IFNα treatment significantly activated Mx1-Cre in the calvarial cells. When the PR gene was deleted in the Mx1-Cre;PR-flox calvarial cells in vitro, significantly higher levels of expression of osteoblast maturation marker genes (RUNX2, Osteocalcin, and Dmp1 and osteogenic potential were detected. The PR-deficient calvariae exhibited greater bone volume, especially in the males. Although Mx1-Cre activity could be induced on the bone surface in vivo, the Mx1+ cells did not differentiate into osteocytes in long bones. Bone volumes at the distal femurs and the bone turnover marker serum Osteocalcin were similar between the Mx1-Cre;PR-flox mutant mice and the corresponding wild types in both sexes. In conclusion, our data demonstrates that blocking progesterone signaling via PRs in calvarial Mx1+ cells promoted osteoblast differentiation in the calvaria. Mx1+ was expressed by heterogeneous cells in bone marrow and did not differentiate into osteocyte during long bone development in vivo. Selectively inactivating the PR gene in Mx1+ cells affected the membrane bone formation but did not affect peripheral skeletal homeostasis.

  6. Maternal dietary restriction alters offspring's sleep homeostasis.

    Directory of Open Access Journals (Sweden)

    Noriyuki Shimizu

    Full Text Available Nutritional state in the gestation period influences fetal growth and development. We hypothesized that undernutrition during gestation would affect offspring sleep architecture and/or homeostasis. Pregnant female mice were assigned to either control (fed ad libitum; AD or 50% dietary restriction (DR groups from gestation day 12 to parturition. After parturition, dams were fed AD chow. After weaning, the pups were also fed AD into adulthood. At adulthood (aged 8-9 weeks, we carried out sleep recordings. Although offspring mice displayed a significantly reduced body weight at birth, their weights recovered three days after birth. Enhancement of electroencephalogram (EEG slow wave activity (SWA during non-rapid eye movement (NREM sleep was observed in the DR mice over a 24-hour period without changing the diurnal pattern or amounts of wake, NREM, or rapid eye movement (REM sleep. In addition, DR mice also displayed an enhancement of EEG-SWA rebound after a 6-hour sleep deprivation and a higher threshold for waking in the face of external stimuli. DR adult offspring mice exhibited small but significant increases in the expression of hypothalamic peroxisome proliferator-activated receptor α (Pparα and brain-specific carnitine palmitoyltransferase 1 (Cpt1c mRNA, two genes involved in lipid metabolism. Undernutrition during pregnancy may influence sleep homeostasis, with offspring exhibiting greater sleep pressure.

  7. Disorders of Erythrocyte Volume Homeostasis

    OpenAIRE

    Glogowska, Edyta; Gallagher, Patrick G.

    2015-01-01

    Inherited disorders of erythrocyte volume homeostasis are a heterogeneous group of rare disorders with phenotypes ranging from dehydrated to overhydrated erythrocytes. Clinical, laboratory, physiologic, and genetic heterogeneity characterize this group of disorders. A series of recent reports have provided novel insights into our understanding of the genetic bases underlying some of these disorders of red cell volume regulation. This report reviews this progress in understanding determinants ...

  8. Role of FGF/FGFR signaling in skeletal development and homeostasis:learning from mouse models

    Institute of Scientific and Technical Information of China (English)

    Nan Su; Min Jin; Lin Chen

    2014-01-01

    Fibroblast growth factor (FGF)/fibroblast growth factor receptor (FGFR) signaling plays essential roles in bone development and diseases. Missense mutations in FGFs and FGFRs in humans can cause various congenital bone diseases, including chondrodysplasia syndromes, craniosynostosis syndromes and syndromes with dysregulated phosphate metabolism. FGF/FGFR signaling is also an important pathway involved in the maintenance of adult bone homeostasis. Multiple kinds of mouse models, mimicking human skeleton diseases caused by missense mutations in FGFs and FGFRs, have been established by knock-in/out and transgenic technologies. These genetically modified mice provide good models for studying the role of FGF/FGFR signaling in skeleton development and homeostasis. In this review, we summarize the mouse models of FGF signaling-related skeleton diseases and recent progresses regarding the molecular mechanisms, underlying the role of FGFs/FGFRs in the regulation of bone development and homeostasis. This review also provides a perspective view on future works to explore the roles of FGF signaling in skeletal development and homeostasis.

  9. Effects of Adding Chymosin to Milk on Calcium Homeostasis

    DEFF Research Database (Denmark)

    Møller, Ulla Kristine; Jensen, Lars Thorbjørn; Mosekilde, Leif

    2014-01-01

    Calcium intake and absorption is important for bone health. In a randomized double-blind cross-over trial, we investigated effects of adding chymosin to milk on the intestinal calcium absorption as measured by renal calcium excretion and indices of calcium homeostasis. The primary outcome...... of the study was 24-h renal calcium excretion that is considered a proxy measure of the amount of calcium absorbed from the intestine. We studied 125 healthy men and women, aged 34 (25-45) years on two separate days. On each day, a light breakfast was served together with 500 ml of semi-skimmed milk to which...

  10. Optimization of bone health in children before and after renal transplantation: current perspectives and future directions

    Directory of Open Access Journals (Sweden)

    Kristen eSgambat

    2014-02-01

    Full Text Available The accrual of healthy bone during the critical period of childhood and adolescence sets the stage for lifelong skeletal health. However, in children with chronic kidney disease (CKD, disturbances in mineral metabolism and endocrine homeostasis begin early on, leading to alterations in bone turnover, mineralization, and volume, and impairing growth. Risk factors for CKD-mineral and bone disorder (CKD-MBD include nutritional vitamin D deficiency, secondary hyperparathyroidism, increased fibroblast growth factor 23 (FGF23, altered growth hormone and insulin like growth factor-1 (GH/IGF-1 axis, delayed puberty, malnutrition, and metabolic acidosis. After kidney transplantation, nutritional vitamin D deficiency, persistent hyperparathyroidism, tertiary FGF23 excess, hypophosphatemia, hypomagnesaemia, immunosuppressive therapy, and alteration of sex hormones continue to impair bone health and growth. As function of the renal allograft declines over time, CKD-MBD associated changes are reactivated, further impairing bone health. Strategies to optimize bone health post-transplant include healthy diet, weight-bearing exercise, correction of vitamin D deficiency and acidosis, electrolyte abnormalities, steroid avoidance, and consideration of recombinant human growth hormone therapy. Other drug therapies have been used in adult transplant recipients, but there is insufficient evidence for use in the pediatric population at the present time. Future therapies to be explored include anti-FGF23 antibodies, FGF23 receptor blockers, and treatments targeting the colonic microbiota by reduction of generation of bacterial toxins and adsorption of toxic end products that affect bone mineralization.

  11. Silencing of the Charcot-Marie-Tooth disease-associated gene GDAP1 induces abnormal mitochondrial distribution and affects Ca2+ homeostasis by reducing store-operated Ca2+ entry.

    Science.gov (United States)

    Pla-Martín, David; Rueda, Carlos B; Estela, Anna; Sánchez-Piris, Maribel; González-Sánchez, Paloma; Traba, Javier; de la Fuente, Sergio; Scorrano, Luca; Renau-Piqueras, Jaime; Alvarez, Javier; Satrústegui, Jorgina; Palau, Francesc

    2013-07-01

    GDAP1 is an outer mitochondrial membrane protein that acts as a regulator of mitochondrial dynamics. Mutations of the GDAP1 gene cause Charcot-Marie-Tooth (CMT) neuropathy. We show that GDAP1 interacts with the vesicle-organelle trafficking proteins RAB6B and caytaxin, which suggests that GDAP1 may participate in the mitochondrial movement within the cell. GDAP1 silencing in the SH-SY5Y cell line induces abnormal distribution of the mitochondrial network, reduces the contact between mitochondria and endoplasmic reticulum (ER) and alters the mobilization of mitochondria towards plasma membrane upon depletion of ER-Ca(2+) stores. GDAP1 silencing does not affect mitochondrial Ca(2+) uptake, ER-Ca(2+), or Ca(2+) flow from ER to mitochondria, but reduces Ca(2+) inflow through store-operated Ca(2+) entry (SOCE) following mobilization of ER-Ca(2+) and SOCE-driven Ca(2+) entry in mitochondria. Our studies suggest that the pathophysiology of GDAP1-related CMT neuropathies may be associated with abnormal distribution and movement of mitochondria throughout cytoskeleton towards the ER and subplasmalemmal microdomains, resulting in a decrease in SOCE activity and impaired SOCE-driven Ca(2+) uptake in mitochondria.

  12. Ascorbate synthesis pathway, dual role of ascorbate in bone homeostasis

    Science.gov (United States)

    Using mouse gene knock-out models, we identify aldehyde reductase (EC 1.1.1.2, Akr1a4 (GR)) and aldose reductase (EC 1.1.1.21, Akr1b3 (AR)) as the enzymes responsible for conversion of D-glucuronate to L-gulonate, a key step in the ascorbate (ASC) synthesis pathway in mice. The gene knock-out (KO) m...

  13. The Rho-GEF Kalirin regulates bone mass and the function of osteoblasts and osteoclasts

    OpenAIRE

    2013-01-01

    Bone homeostasis is maintained by the balance between bone resorption by osteoclasts and bone formation by osteoblasts. Dysregulation in the activity of the bone cells can lead to osteoporosis, a disease characterized by low bone mass and an increase in bone fragility and risk of fracture. Kalirin is a novel GTP-exchange factor protein that has been shown to play a role in cytoskeletal remodeling and dendritic spine formation in neurons. We examined Kalirin expression in skeletal tissue and f...

  14. Mechanical Loading Synergistically Increases Trabecular Bone Volume and Improves Mechanical Properties in the Mouse when BMP Signaling Is Specifically Ablated in Osteoblasts.

    Directory of Open Access Journals (Sweden)

    Ayaka Iura

    Full Text Available Bone homeostasis is affected by several factors, particularly mechanical loading and growth factor signaling pathways. There is overwhelming evidence to validate the importance of these signaling pathways, however, whether these signals work synergistically or independently to contribute to proper bone maintenance is poorly understood. Weight-bearing exercise increases mechanical load on the skeletal system and can improves bone quality. We previously reported that conditional knockout (cKO of Bmpr1a, which encodes one of the type 1 receptors for Bone Morphogenetic Proteins (BMPs, in an osteoblast-specific manner increased trabecular bone mass by suppressing osteoclastogenesis. The cKO bones also showed increased cortical porosity, which is expected to impair bone mechanical properties. Here, we evaluated the impact of weight-bearing exercise on the cKO bone phenotype to understand interactions between mechanical loading and BMP signaling through BMPR1A. Male mice with disruption of Bmpr1a induced at 9 weeks of age, exercised 5 days per week on a motor-driven treadmill from 11 to 16 weeks of age. Trabecular bone volume in cKO tibia was further increased by exercise, whereas exercise did not affect the trabecular bone in the control genotype group. This finding was supported by decreased levels of osteoclasts in the cKO tibiae. The cortical porosity in the cKO bones showed a marginally significant decrease with exercise and approached normal levels. Exercise increased ductility and toughness in the cKO bones. Taken together, reduction in BMPR1A signaling may sensitize osteoblasts for mechanical loading to improve bone mechanical properties.

  15. Bone within a bone

    Energy Technology Data Exchange (ETDEWEB)

    Williams, H.J.; Davies, A.M. E-mail: wendy.turner@roh.nhs.uk; Chapman, S

    2004-02-01

    The 'bone within a bone' appearance is a well-recognized radiological term with a variety of causes. It is important to recognize this appearance and also to be aware of the differential diagnosis. A number of common conditions infrequently cause this appearance. Other causes are rare and some remain primarily of historical interest, as they are no longer encountered in clinical practice. In this review we illustrate some of the conditions that can give the bone within a bone appearance and discuss the physiological and pathological aetiology of each where known.

  16. Bone mineral density determinations by dual-energy x-ray absorptiometry in the management of patients with Marfan syndrome--some factors which affect the measurement.

    Science.gov (United States)

    Giampietro, Philip F; Peterson, Margaret G E; Schneider, Robert; Davis, Jessica G; Burke, Stephen W; Boachie-Adjei, Oheneba; Mueller, Charles M; Raggio, Cathleen L

    2007-02-01

    Reduced bone mineral density (BMD) was sporadically reported in patients with Marfan syndrome. This may or may not place the Marfan patient at increased risk for bone fracture. In comparing the BMDs of our patients with those reported in the literature, it seemed that agreement between values, and hence the degree of osteoporosis or osteopenia reported, was dependent on the instrumentation used. The objective of this study was to statistically assess this impression. Bone mineral density measurements from our previously published study of 30 adults with Marfan syndrome performed on a Lunar DPXL machine were compared with studies published between 1993-2000 measured using either Lunar or Hologic bone densitometry instruments. The differences of our measurements compared with those made on other Lunar machines were not statistically significant, but did differ significantly with published results from Hologic machines (P density determinations will be required along with considerations of height, obesity, age, and sex.

  17. Cytokines and T-lymphocyte subsets in healthy post-menopausal women: estrogen retards bone loss without affecting the release of IL-1 or IL-1ra

    DEFF Research Database (Denmark)

    Abrahamsen, Bo; Bendtzen, Klaus; Beck-Nielsen, H

    1997-01-01

    Interleukin (IL)-1 is a potent inducer of bone resorption, and an increased secretion of the IL-1 agonists IL-1 alpha and IL-1 beta relative to the IL-1 receptor antagonist (IL-1ra) has been proposed as a mechanism leading to post-menopausal osteoporosis. T-lymphocytes are capable of secreting bone...... resorptive cytokines and have also been linked with bone metabolism and the development of osteoporosis. Cytokine secretion from whole blood cell cultures was compared between two randomized groups of healthy early post-menopausal women (mean age 52.5 yrs, N = 91) and lymphocyte subsets were quantitated...... by flow cytometry. One group received cyclic estrogen-gestagen replacement therapy (ERT) while the other group was untreated. In spite of a significant bone maintaining effect of ERT, the basal and LPS-stimulated secretion of IL-1 alpha, IL-1 beta, and IL-1ra was identical in the two groups...

  18. Mesenchymal dental pulp cells attenuate dentin resorption in homeostasis.

    Science.gov (United States)

    Zheng, Y; Chen, M; He, L; Marão, H F; Sun, D M; Zhou, J; Kim, S G; Song, S; Wang, S L; Mao, J J

    2015-06-01

    Dentin in permanent teeth rarely undergoes resorption in development, homeostasis, or aging, in contrast to bone that undergoes periodic resorption/remodeling. The authors hypothesized that cells in the mesenchymal compartment of dental pulp attenuate osteoclastogenesis. Mononucleated and adherent cells from donor-matched rat dental pulp (dental pulp cells [DPCs]) and alveolar bone (alveolar bone cells [ABCs]) were isolated and separately cocultured with primary rat splenocytes. Primary splenocytes readily aggregated and formed osteoclast-like cells in chemically defined osteoclastogenesis medium with 20 ng/mL of macrophage colony-stimulating factor (M-CSF) and 50 ng/mL of receptor activator of nuclear factor κB ligand (RANKL). Strikingly, DPCs attenuated osteoclastogenesis when cocultured with primary splenocytes, whereas ABCs slightly but significantly promoted osteoclastogenesis. DPCs yielded ~20-fold lower RANKL expression but >2-fold higher osteoprotegerin (OPG) expression than donor-matched ABCs, yielding a RANKL/OPG ratio of 41:1 (ABCs:DPCs). Vitamin D3 significantly promoted RANKL expression in ABCs and OPG in DPCs. In vivo, rat maxillary incisors were atraumatically extracted (without any tooth fractures), followed by retrograde pulpectomy to remove DPCs and immediate replantation into the extraction sockets to allow repopulation of the surgically treated root canal with periodontal and alveolar bone-derived cells. After 8 wk, multiple dentin/root resorption lacunae were present in root dentin with robust RANKL and OPG expression. There were areas of dentin resoprtion alternating with areas of osteodentin formation in root dentin surface in the observed 8 wk. These findings suggest that DPCs of the mesenchymal compartment have an innate ability to attenuate osteoclastogenesis and that this innate ability may be responsible for the absence of dentin resorption in homeostasis. Mesenchymal attenuation of dentin resorption may have implications in internal

  19. Bone mineral metabolism, bone mineral density, and body composition in patients with chronic pancreatitis and pancreatic exocrine insufficiency

    DEFF Research Database (Denmark)

    Haaber, Anne Birgitte; Rosenfalck, A M; Hansen, B

    2000-01-01

    Calcium and vitamin D homeostasis seem to be abnormal in patients with exocrine pancreatic dysfunction resulting from cystic fibrosis. Only a few studies have evaluated and described bone mineral metabolism in patients with chronic pancreatitis and pancreatic insufficiency.......Calcium and vitamin D homeostasis seem to be abnormal in patients with exocrine pancreatic dysfunction resulting from cystic fibrosis. Only a few studies have evaluated and described bone mineral metabolism in patients with chronic pancreatitis and pancreatic insufficiency....

  20. A physiologist's view of homeostasis.

    Science.gov (United States)

    Modell, Harold; Cliff, William; Michael, Joel; McFarland, Jenny; Wenderoth, Mary Pat; Wright, Ann

    2015-12-01

    Homeostasis is a core concept necessary for understanding the many regulatory mechanisms in physiology. Claude Bernard originally proposed the concept of the constancy of the "milieu interieur," but his discussion was rather abstract. Walter Cannon introduced the term "homeostasis" and expanded Bernard's notion of "constancy" of the internal environment in an explicit and concrete way. In the 1960s, homeostatic regulatory mechanisms in physiology began to be described as discrete processes following the application of engineering control system analysis to physiological systems. Unfortunately, many undergraduate texts continue to highlight abstract aspects of the concept rather than emphasizing a general model that can be specifically and comprehensively applied to all homeostatic mechanisms. As a result, students and instructors alike often fail to develop a clear, concise model with which to think about such systems. In this article, we present a standard model for homeostatic mechanisms to be used at the undergraduate level. We discuss common sources of confusion ("sticky points") that arise from inconsistencies in vocabulary and illustrations found in popular undergraduate texts. Finally, we propose a simplified model and vocabulary set for helping undergraduate students build effective mental models of homeostatic regulation in physiological systems.

  1. Long-term consumption of isoflavone-enriched foods does not affect bone mineral density, bone metabolism, or hormonal status in early postmenopausal women: A randomized, double-blind, placebo controlled study

    NARCIS (Netherlands)

    Brink, E.; Coxam, V.; Robins, S.; Wahala, K.; Cassidy, A.; Branca, F.

    2008-01-01

    Background: Osteoporosis is a major health problem. It was hypothesized that isoflavone-containing products may be a potential alternative to hormone replacement therapy for preventing bone loss during the menopausal transition. Objective: The objective was to investigate whether the consumption of

  2. The infrared spectroscopy in the study of the bone crystallinity thermally affected; La espectroscopia infrarroja en el estudio de la cristalinidad del hueso afectado termicamente

    Energy Technology Data Exchange (ETDEWEB)

    Medina, C.; Tiesler, V. [Universidad Autonoma de Yucatan, Facultad de Ciencias Antropoloicas. 97000 Merida, Yucatan (Mexico); Azamar, J.A.; Alvarado G, J.J.; Quintana, P. [CINVESTAV-Unidad Merida, Depto. Fisica Aplicada, Km 6 Ant. Carr. a Progreso, 97310 Merida, Yucatan (Mexico)

    2006-07-01

    Bone is made up by both organic and inorganic components. Among the latter stands out hydroxyapatite (HAP), composed by hexagonal crystallites arranged in a laminar form. The size of the hydroxyapatite crystals may be altered by different conditions, among those figures thermal exhibition, since during burning the bone eliminates organic matrix and thus promotes the crystallization process of the material. An experimental series was designed to measure crystallinity, in which pig bone remains were burnt at different temperatures and analyzed by infrared spectroscopy (FTIR). By means of analogy a comparison was made between the infrared spectra in order to compare with the ones obtained from the archaeological samples, coming from the Classic period Maya sites of Calakmul and Becan, Campeche. (Author)

  3. Bone cement distribution in the vertebral body affects chances of recompression after percutaneous vertebroplasty treatment in elderly patients with osteoporotic vertebral compression fractures

    Science.gov (United States)

    Zhang, Liang; Wang, Qiang; Wang, Lin; Shen, Jian; Zhang, Qiwei; Sun, Changtai

    2017-01-01

    Objective Percutaneous vertebroplasty (PVP) is a surgical procedure that has been widely used to treat patients suffering from osteoporotic vertebral compression fractures (OVCFs). The procedure involves injection of bone cement into a fractured vertebra. In this study, we investigated whether the distribution of the cement in the vertebral body is related to the occurrence of recompression after surgery. Patients and methods A total of 172 patients diagnosed with OVCF, from January 2008 to June 2013, were retrospectively reviewed. Fifty of these patients experienced recompression after surgery during the follow-up period (recompression group), and 122 patients had no recompression observed during the follow-up period (control group). Statistical analysis was performed to compare clinical and operative parameters between these two groups. Results Differences were found in bone cement distribution between the recompression group and control group (P=0.001). Patients with bone cement distributed around both upper and lower endplates had a significantly less incidence of recompression (4/50 patients), when compared to other patterns of cement distribution (eg, below upper endplate, above lower endplate, and in the middle of vertebral body). The logistic multiple regression analysis also indicated that patients with bone cement distributed around both the upper and lower endplates had a lower risk of recompression when compared to patients with bone cement distributed in the middle of vertebral body (odds ratio =0.223, P=0.003). Conclusion We herein suggest that the control of bone cement distribution during surgery provides beneficial effects on reducing the risks of recompression after PVP treatment in patients with OVCF. PMID:28260871

  4. A non-synonymous coding change in the CYP19A1 gene Arg264Cys (rs700519 does not affect circulating estradiol, bone structure or fracture

    Directory of Open Access Journals (Sweden)

    Wang Jenny Z

    2011-12-01

    Full Text Available Abstract Background The biosynthesis of estrogens from androgens is catalyzed by aromatase P450 enzyme, coded by the CYP19A1 gene on chromosome 15q21.2. Genetic variation within the CYP19A1 gene sequence has been shown to alter the function of the enzyme. The aim of this study is to investigate whether a non-synonymous Arg264Cys (rs700519 single nucleotide polymorphism (SNP is associated with altered levels of circulating estradiol, areal bone mineral density or fracture. Methods This population- based study of 1,022 elderly Caucasian women (mean age 74.95 ± 2.60 years was genotyped for the rs700519 SNP were analyzed to detect any association with endocrine and bone phenotypes. Results The genotype frequencies were 997 wildtype (97.6%, 24 heterozygous (2.3% and 1 homozygous (0.1%. When individuals were grouped by genotype, there was no association between the polymorphism and serum estradiol (wildtype 27.5 ± 16.0; variants 31.2 ± 18.4, P = 0.27. There was also no association seen on hip bone mineral density (wildtype 0.81 ± 0.12; 0.84 ± 0.14 for variants, P = 0.48 or femoral neck bone mineral density (0.69 ± 0.10 for wildtype; 0.70 ± 0.12 for variants, P = 0.54 before or after correction of the data with age, height, weight and calcium therapy. There were also no associations with quantitative ultrasound measures of bone structure (broadband ultrasound attenuation, speed of sound and average stiffness. Conclusions In a cohort of 1,022 elderly Western Australian women, the presence of Arg264Cys (rs700519 polymorphism was not found to be associated with serum estradiol, bone structure or phenotypes.

  5. Copper Homeostasis in Mycobacterium tuberculosis

    Science.gov (United States)

    Shi, Xiaoshan; Darwin, K. Heran

    2015-01-01

    Copper (Cu) is a trace element essential for the growth and development of almost all organisms, including bacteria. However, Cu overload in most systems is toxic. Studies show Cu accumulates in macrophage phagosomes infected with bacteria, suggesting Cu provides an innate immune mechanism to combat invading pathogens. To counteract the host-supplied Cu, increasing evidence suggests that bacteria have evolved Cu resistance mechanisms to facilitate their pathogenesis. In particular, Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, has evolved multiple pathways to respond to Cu. Here, we summarize what is currently known about Cu homeostasis in Mtb and discuss potential sources of Cu encountered by this and other pathogens in a mammalian host. PMID:25614981

  6. Neutrophil Functions in Periodontal Homeostasis

    Directory of Open Access Journals (Sweden)

    Ricarda Cortés-Vieyra

    2016-01-01

    Full Text Available Oral tissues are constantly exposed to damage from the mechanical effort of eating and to microorganisms, mostly bacteria. In healthy gingiva tissue remodeling and a balance between bacteria and innate immune cells are maintained. However, excess of bacteria biofilm (plaque creates an inflammation state that recruits more immune cells, mainly neutrophils to the gingiva. Neutrophils create a barrier for bacteria to reach inside tissues. When neutrophils are insufficient, bacteria thrive causing more inflammation that has been associated with systemic effects on other conditions such as atherosclerosis, diabetes, and cancer. But paradoxically when neutrophils persist, they can also promote a chronic inflammatory state that leads to periodontitis, a condition that leads to damage of the bone-supporting tissues. In periodontitis, bone loss is a serious complication. How a neutrophil balance is needed for maintaining healthy oral tissues is the focus of this review. We present recent evidence on how alterations in neutrophil number and function can lead to inflammatory bone loss, and how some oral bacteria signal neutrophils to block their antimicrobial functions and promote an inflammatory state. Also, based on this new information, novel therapeutic approaches are discussed.

  7. Bone Markers

    Science.gov (United States)

    ... markers may be seen in conditions such as: Osteoporosis Paget disease Cancer that has spread to the bone (metastatic bone disease) Hyperparathyroidism Hyperthyroidism Osteomalacia in adults and rickets in children—lack of bone mineralization, ...

  8. Bone scan

    Science.gov (United States)

    ... legs, or spine fractures) Diagnose a bone infection (osteomyelitis) Diagnose or determine the cause of bone pain, ... 2015:chap 43. Read More Broken bone Metabolism Osteomyelitis Review Date 12/10/2015 Updated by: Jatin ...

  9. Bone Cancer

    Science.gov (United States)

    Cancer that starts in a bone is uncommon. Cancer that has spread to the bone from another ... more common. There are three types of bone cancer: Osteosarcoma - occurs most often between ages 10 and ...

  10. Bone Diseases

    Science.gov (United States)

    Your bones help you move, give you shape and support your body. They are living tissues that rebuild constantly ... childhood and your teens, your body adds new bone faster than it removes old bone. After about ...

  11. [Osteocytes and the pathways of mechanical homeostasis optimization from the point of view of functional osteology].

    Science.gov (United States)

    Avrunin, A S; Tikhilov, R M; Parshin, L K; Mel'nikov, B E

    2012-01-01

    The aim of this work was to determine, on the basis of the results of authors' own research and literature data, the main pathways of osteocyte (OC) influence on the mechanical homeostasis of the skeleton. The following pathways of reorganization of the architecture of bone structures are postulated: at the ultrastructural level without direct cell participation, through the bone matrix synthesis by osteoblasts and OC, through bone matrix resorption by osteoclasts and OC, the latter being able to resorb the surrounding mineral and organic matrix both separately, and conjointly. This reorganization results in local changes of the mechanical characteristics of bones due to changes in: porosity of interstitial spaces, transport ability of the lacunar-canalicular system, porosity of the area of osteoblastic-osteoclastic remodeling, modeling of bone structures. From the point of view of adaptation theory it is highly significant that the subtle local control of bone structures is able to induce changes in the parameters of the mechanical environment, which, on the one hand, would correspond to OC metabolic requirements and, on the other hand, would support the parameters of body mineral homeostasis.

  12. Chronobiology, endocrinology, and energy- and food-reward homeostasis.

    Science.gov (United States)

    Gonnissen, H K J; Hulshof, T; Westerterp-Plantenga, M S

    2013-05-01

    Energy- and food-reward homeostasis is the essential component for maintaining energy balance and its disruption may lead to metabolic disorders, including obesity and diabetes. Circadian alignment, quality sleep and sleep architecture in relation to energy- and food-reward homeostasis are crucial. A reduced sleep duration, quality sleep and rapid-eye movement sleep affect substrate oxidation, leptin and ghrelin concentrations, sleeping metabolic rate, appetite, food reward, hypothalamic-pituitary-adrenal (HPA)-axis activity, and gut-peptide concentrations, enhancing a positive energy balance. Circadian misalignment affects sleep architecture and the glucose-insulin metabolism, substrate oxidation, homeostasis model assessment of insulin resistance (HOMA-IR) index, leptin concentrations and HPA-axis activity. Mood disorders such as depression occur; reduced dopaminergic neuronal signaling shows decreased food reward. A good sleep hygiene, together with circadian alignment of food intake, a regular meal frequency, and attention for protein intake or diets, contributes in curing sleep abnormalities and overweight/obesity features by preventing overeating; normalizing substrate oxidation, stress, insulin and glucose metabolism including HOMA-IR index, and leptin, GLP-1 concentrations, lipid metabolism, appetite, energy expenditure and substrate oxidation; and normalizing food reward. Synchrony between circadian and metabolic processes including meal patterns plays an important role in the regulation of energy balance and body-weight control. Additive effects of circadian alignment including meal patterns, sleep restoration, and protein diets in the treatment of overweight and obesity are suggested.

  13. Pregnancy associated plasma protein A2 (PAPP-A2) affects bone size and shape and contributes to natural variation in postnatal growth in mice.

    Science.gov (United States)

    Christians, Julian Kenneth; de Zwaan, Devin Rhys; Fung, Sunny Ho Yeung

    2013-01-01

    Pregnancy associated plasma protein A2 (PAPP-A2) is a protease of insulin-like growth factor binding protein 5 and is receiving increasing attention for its roles in pregnancy and postnatal growth. The goals of the present study were to characterize the effects of PAPP-A2 deletion on bone size and shape in mice at 10 weeks of age, and to determine whether Pappa2 is the gene responsible for a previously-identified quantitative trait locus (QTL) contributing to natural variation in postnatal growth in mice. Mice homozygous for constitutive PAPP-A2 deletion were lighter than wild-type littermates, and had smaller mandible dimensions and shorter skull, humerus, femur, tibia, pelvic girdle, and tail bone. Furthermore, PAPP-A2 deletion reduced mandible dimensions and the lengths of the skull, femur, pelvic girdle, and tail bone more than would be expected due to the effect on body mass. In addition to its effects on bone size, PAPP-A2 deficiency also altered the shape of the mandible and pelvic girdle, as assessed by geometric morphometrics. Mice homozygous for the PAPP-A2 deletion had less deep mandibles, and pelvic girdles with a more feminine shape. Using a quantitative complementation test, we confirmed that Pappa2 is responsible for the effects of the previously-identified QTL, demonstrating that natural variation in the Pappa2 gene contributes to variation in postnatal growth in mice. If similar functional variation in the Pappa2 gene exists in other species, effects of this variation on the shape of the pelvic girdle might explain the previously-reported associations between Pappa2 SNPs and developmental dysplasia of the hip in humans, and birthing in cattle.

  14. Deficiency of Thrombospondin-4 in Mice Does Not Affect Skeletal Growth or Bone Mass Acquisition, but Causes a Transient Reduction of Articular Cartilage Thickness.

    Directory of Open Access Journals (Sweden)

    Anke Jeschke

    Full Text Available Although articular cartilage degeneration represents a major public health problem, the underlying molecular mechanisms are still poorly characterized. We have previously utilized genome-wide expression analysis to identify specific markers of porcine articular cartilage, one of them being Thrombospondin-4 (Thbs4. In the present study we analyzed Thbs4 expression in mice, thereby confirming its predominant expression in articular cartilage, but also identifying expression in other tissues, including bone. To study the role of Thbs4 in skeletal development and integrity we took advantage of a Thbs4-deficient mouse model that was analyzed by undecalcified bone histology. We found that Thbs4-deficient mice do not display phenotypic differences towards wildtype littermates in terms of skeletal growth or bone mass acquisition. Since Thbs4 has previously been found over-expressed in bones of Phex-deficient Hyp mice, we additionally generated Thbs4-deficient Hyp mice, but failed to detect phenotypic differences towards Hyp littermates. With respect to articular cartilage we found that Thbs4-deficient mice display transient thinning of articular cartilage, suggesting a protective role of Thbs4 for joint integrity. Gene expression analysis using porcine primary cells revealed that Thbs4 is not expressed by synovial fibroblasts and that it represents the only member of the Thbs gene family with specific expression in articular, but not in growth plate chondrocytes. In an attempt to identify specific molecular effects of Thbs4 we treated porcine articular chondrocytes with human THBS4 in the absence or presence of conditioned medium from porcine synovial fibroblasts. Here we did not observe a significant influence of THBS4 on proliferation, metabolic activity, apoptosis or gene expression, suggesting that it does not act as a signaling molecule. Taken together, our data demonstrate that Thbs4 is highly expressed in articular chondrocytes, where its

  15. The Thoc1 encoded ribonucleoprotein is required for myeloid progenitor cell homeostasis in the adult mouse.

    Directory of Open Access Journals (Sweden)

    Laura Pitzonka

    Full Text Available Co-transcriptionally assembled ribonucleoprotein (RNP complexes are critical for RNA processing and nuclear export. RNPs have been hypothesized to contribute to the regulation of coordinated gene expression, and defects in RNP biogenesis contribute to genome instability and disease. Despite the large number of RNPs and the importance of the molecular processes they mediate, the requirements for individual RNP complexes in mammalian development and tissue homeostasis are not well characterized. THO is an evolutionarily conserved, nuclear RNP complex that physically links nascent transcripts with the nuclear export apparatus. THO is essential for early mouse embryonic development, limiting characterization of the requirements for THO in adult tissues. To address this shortcoming, a mouse strain has been generated allowing inducible deletion of the Thoc1 gene which encodes an essential protein subunit of THO. Bone marrow reconstitution was used to generate mice in which Thoc1 deletion could be induced specifically in the hematopoietic system. We find that granulocyte macrophage progenitors have a cell autonomous requirement for Thoc1 to maintain cell growth and viability. Lymphoid lineages are not detectably affected by Thoc1 loss under the homeostatic conditions tested. Myeloid lineages may be more sensitive to Thoc1 loss due to their relatively high rate of proliferation and turnover.

  16. Alteration of Homeostasis in Pre-osteoclasts Induced by Aggregatibacter actinomycetemcomitans CDT

    Science.gov (United States)

    Kawamoto, Dione; Ando-Suguimoto, Ellen S.; Bueno-Silva, Bruno; DiRienzo, Joseph M.; Mayer, Marcia P. A.

    2016-01-01

    The dysbiotic microbiota associated with aggressive periodontitis includes Aggregatibacter actinomycetemcomitans, the only oral species known to produce a cytolethal distending toxin (AaCDT). Give that CDT alters the cytokine profile in monocytic cells, we aimed to test the hypothesis that CDT plays a role in bone homeostasis by affecting the differentiation of precursor cells into osteoclasts. Recombinant AaCDT was added to murine bone marrow monocytes (BMMC) in the presence or absence of RANKL and the cell viability and cytokine profile of osteoclast precursor cells were determined. Multinucleated TRAP+ cell numbers, and relative transcription of genes related to osteoclastogenesis were also evaluated. The addition of AaCDT did not lead to loss in cell viability but promoted an increase in the average number of TRAP+ cells with 1-2 nuclei in the absence or presence of RANKL (Tukey, p < 0.05). This increase was also observed for TRAP+ cells with ≥3nuclei, although this difference was not significant. Levels of TGF-β, TNF-α, and IL-6, in the supernatant fraction of cells, were higher when in AaCDT exposed cells, whereas levels of IL-1β and IL-10 were lower than controls under the same conditions. After interaction with AaCDT, transcription of the rank (encoding the receptor RANK), nfatc1 (transcription factor), and ctpK (encoding cathepsin K) genes was downregulated in pre-osteoclastic cells. The data indicated that despite the presence of RANKL and M-CSF, AaCDT may inhibit osteoclast differentiation by altering cytokine profiles and repressing transcription of genes involved in osteoclastogenesis. Therefore, the CDT may impair host defense mechanisms in periodontitis. PMID:27064424

  17. Redox Homeostasis in Pancreatic Cells

    Directory of Open Access Journals (Sweden)

    Petr Ježek

    2012-01-01

    Full Text Available We reviewed mechanisms that determine reactive oxygen species (redox homeostasis, redox information signaling and metabolic/regulatory function of autocrine insulin signaling in pancreatic β cells, and consequences of oxidative stress and dysregulation of redox/information signaling for their dysfunction. We emphasize the role of mitochondrion in β cell molecular physiology and pathology, including the antioxidant role of mitochondrial uncoupling protein UCP2. Since in pancreatic β cells pyruvate cannot be easily diverted towards lactate dehydrogenase for lactate formation, the respiration and oxidative phosphorylation intensity are governed by the availability of glucose, leading to a certain ATP/ADP ratio, whereas in other cell types, cell demand dictates respiration/metabolism rates. Moreover, we examine the possibility that type 2 diabetes mellitus might be considered as an inevitable result of progressive self-accelerating oxidative stress and concomitantly dysregulated information signaling in peripheral tissues as well as in pancreatic β cells. It is because the redox signaling is inherent to the insulin receptor signaling mechanism and its impairment leads to the oxidative and nitrosative stress. Also emerging concepts, admiting participation of redox signaling even in glucose sensing and insulin release in pancreatic β cells, fit in this view. For example, NADPH has been firmly established to be a modulator of glucose-stimulated insulin release.

  18. Regulation of systemic energy homeostasis by serotonin in adipose tissues.

    Science.gov (United States)

    Oh, Chang-Myung; Namkung, Jun; Go, Younghoon; Shong, Ko Eun; Kim, Kyuho; Kim, Hyeongseok; Park, Bo-Yoon; Lee, Ho Won; Jeon, Yong Hyun; Song, Junghan; Shong, Minho; Yadav, Vijay K; Karsenty, Gerard; Kajimura, Shingo; Lee, In-Kyu; Park, Sangkyu; Kim, Hail

    2015-04-13

    Central serotonin (5-HT) is an anorexigenic neurotransmitter in the brain. However, accumulating evidence suggests peripheral 5-HT may affect organismal energy homeostasis. Here we show 5-HT regulates white and brown adipose tissue function. Pharmacological inhibition of 5-HT synthesis leads to inhibition of lipogenesis in epididymal white adipose tissue (WAT), induction of browning in inguinal WAT and activation of adaptive thermogenesis in brown adipose tissue (BAT). Mice with inducible Tph1 KO in adipose tissues exhibit a similar phenotype as mice in which 5-HT synthesis is inhibited pharmacologically, suggesting 5-HT has localized effects on adipose tissues. In addition, Htr3a KO mice exhibit increased energy expenditure and reduced weight gain when fed a high-fat diet. Treatment with an Htr2a antagonist reduces lipid accumulation in 3T3-L1 adipocytes. These data suggest important roles for adipocyte-derived 5-HT in controlling energy homeostasis.

  19. Disrupted iron homeostasis causes dopaminergic neurodegeneration in mice.

    Science.gov (United States)

    Matak, Pavle; Matak, Andrija; Moustafa, Sarah; Aryal, Dipendra K; Benner, Eric J; Wetsel, William; Andrews, Nancy C

    2016-03-29

    Disrupted brain iron homeostasis is a common feature of neurodegenerative disease. To begin to understand how neuronal iron handling might be involved, we focused on dopaminergic neurons and asked how inactivation of transport proteins affected iron homeostasis in vivo in mice. Loss of the cellular iron exporter, ferroportin, had no apparent consequences. However, loss of transferrin receptor 1, involved in iron uptake, caused neuronal iron deficiency, age-progressive degeneration of a subset of dopaminergic neurons, and motor deficits. There was gradual depletion of dopaminergic projections in the striatum followed by death of dopaminergic neurons in the substantia nigra. Damaged mitochondria accumulated, and gene expression signatures indicated attempted axonal regeneration, a metabolic switch to glycolysis, oxidative stress, and the unfolded protein response. We demonstrate that loss of transferrin receptor 1, but not loss of ferroportin, can cause neurodegeneration in a subset of dopaminergic neurons in mice.

  20. Transport, signaling, and homeostasis of potassium and sodium in plants

    Institute of Scientific and Technical Information of China (English)

    Eri Adams; Ryoung Shin

    2014-01-01

    Potassium (Kþ) is an essential macronutrient in plants and a lack of Kþ significantly reduces the potential for plant growth and development. By contrast, sodium (Naþ), while beneficial to some extent, at high concentrations it disturbs and inhibits various physiological processes and plant growth. Due to their chemical similarities, some functions of Kþ can be undertaken by Naþ but Kþ homeostasis is severely affected by salt stress, on the other hand. Recent advances have highlighted the fascinating regulatory mechanisms of Kþ and Naþ transport and signaling in plants. This review summarizes three major topics:(i) the transport mechanisms of Kþ and Naþ from the soil to the shoot and to the cellular compartments; (i ) the mechanisms through which plants sense and respond to Kþ and Naþ availability; and (i i) the components involved in maintenance of Kþ/Naþ homeostasis in plants under salt stress.

  1. Vitamin A homeostasis endangered by environmental pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Zile, M.H. (Department of Food Science and Human Nutrition, Michigan State University, East Lansing (United States))

    1992-11-01

    Normal vitamin A function depends on adequate stores of the vitamin, a finely regulated supply of the vitamin to target tissues, and an ability of cells to generate functionally active forms of the vitamin. Both endogenous and exogenous factors can adversely affect vitamin A homeostasis. Polyhalogenated aromatic hydrocarbons are ubiquitous environmental pollutants and cause severe disturbances in vitamin A metabolism, manifested by an accelerated metabolism and breakdown of vitamin A and its metabolites and a depletion of vitamin A from the body; this sequence of events accounts for the vitamin A deficiency-like symptoms associated with PHAH intoxication. The mechanism(s) responsible for these events most likely includes altered activities of enzymes that are either directly or indirectly involved in critical vitamin A metabolic pathways. Human populations that continue to be exposed to environmental pollutants, may accumulate critical levels of polyhalogenated aromatic hydrocarbons and will be at risk for inadequate vitamin A function as well as for other health impairments that have been difficult to link to any specific causes. Therefore, it is important to seriously evaluate the similarities in physiological disturbances across species that have become apparent in studies with wildlife inhabiting polluted environments similar to ours; the relevance to human health is evident.197 references.

  2. Porous surface modified bioactive bone cement for enhanced bone bonding.

    Directory of Open Access Journals (Sweden)

    Qiang He

    Full Text Available BACKGROUND: Polymethylmethacrylate bone cement cannot provide an adhesive chemical bonding to form a stable cement-bone interface. Bioactive bone cements show bone bonding ability, but their clinical application is limited because bone resorption is observed after implantation. Porous polymethylmethacrylate can be achieved with the addition of carboxymethylcellulose, alginate and gelatin microparticles to promote bone ingrowth, but the mechanical properties are too low to be used in orthopedic applications. Bone ingrowth into cement could decrease the possibility of bone resorption and promote the formation of a stable interface. However, scarce literature is reported on bioactive bone cements that allow bone ingrowth. In this paper, we reported a porous surface modified bioactive bone cement with desired mechanical properties, which could allow for bone ingrowth. MATERIALS AND METHODS: The porous surface modified bioactive bone cement was evaluated to determine its handling characteristics, mechanical properties and behavior in a simulated body fluid. The in vitro cellular responses of the samples were also investigated in terms of cell attachment, proliferation, and osteoblastic differentiation. Furthermore, bone ingrowth was examined in a rabbit femoral condyle defect model by using micro-CT imaging and histological analysis. The strength of the implant-bone interface was also investigated by push-out tests. RESULTS: The modified bone cement with a low content of bioactive fillers resulted in proper handling characteristics and adequate mechanical properties, but slightly affected its bioactivity. Moreover, the degree of attachment, proliferation and osteogenic differentiation of preosteoblast cells was also increased. The results of the push-out test revealed that higher interfacial bonding strength was achieved with the modified bone cement because of the formation of the apatite layer and the osseointegration after implantation in the bony

  3. Bone mineralization is regulated by signaling cross talk between molecular factors of local and systemic origin: the role of fibroblast growth factor 23.

    Science.gov (United States)

    Sapir-Koren, Rony; Livshits, Gregory

    2014-01-01

    Body phosphate homeostasis is regulated by a hormonal counter-balanced intestine-bone-kidney axis. The major systemic hormones involved in this axis are parathyroid hormone (PTH), 1,25-dihydroxyvitamin-D, and fibroblast growth factor-23 (FGF23). FGF23, produced almost exclusively by the osteocytes, is a phosphaturic hormone that plays a major role in regulation of the bone remodeling process. Remodeling composite components, bone mineralization and resorption cycles create a continuous influx-efflux loop of the inorganic phosphate (Pi) through the skeleton. This "bone Pi loop," which is formed, is controlled by local and systemic factors according to phosphate homeostasis demands. Although FGF23 systemic actions in the kidney, and for the production of PTH and 1,25-dihydroxyvitamin-D are well established, its direct involvement in bone metabolism is currently poorly understood. This review presents the latest available evidence suggesting two aspects of FGF23 bone local activity: (a) Regulation of FGF23 production by both local and systemic factors. The suggested local factors include extracellular levels of Pi and pyrophosphate (PPi), (the Pi/PPi ratio), and another osteocyte-derived protein, sclerostin. In addition, 1,25-dihydroxyvitamin-D, synthesized locally by bone cells, may contribute to regulation of FGF23 production. The systemic control is achieved via PTH and 1,25-dihydroxyvitamin-D endocrine functions. (b) FGF23 acts as a local agent, directly affecting bone mineralization. We support the assumption that under balanced physiological conditions, sclerostin, by para- autocrine signaling, upregulates FGF23 production by the osteocyte. FGF23, in turn, acts as a mineralization inhibitor, by stimulating the generation of the major mineralization antagonist-PPi.

  4. Calcium homeostasis in barley aleurone

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.L.

    1990-02-21

    Under the auspices of the Department of Energy we investigated calcium homeostasis in aleurone cells of barley. This investigation was initiated to explore the role played by extracellular Ca{sup 2+} in gibberellic acid (GA)-induced synthesis and secretion of hydrolases in the aleurone layer. We have focused our attention on four topics that relate to the role of Ca{sup 2+} in regulating the synthesis of {alpha}-amylase. First, we determined the stoichiometry of Ca{sup 2+} binding to the two principal classes of barley {alpha}-amylase and examined some of the biochemical and physical properties of the native and Ca{sup 2+}-depleted forms of the enzyme. Second, since {alpha}-amylase is a Ca{sup 2+} containing metalloenzyme that binds one atom of Ca{sup 2+} per molecule, we developed methods to determine the concentration of Ca{sup 2+} in the cytosol of the aleurone cell. We developed a technique for introducing Ca{sup 2+}-sensitive dyes into aleurone protoplasts that allows the measurement of Ca{sup 2+} in both cytosol and endoplasmic reticulum (ER). Third, because the results of our Ca{sup 2+} measurements showed higher levels of Ca{sup 2+} in the ER than in the cytosol, we examined Ca{sup 2+} transport into the ER of control and GA-treated aleurone tissue. And fourth, we applied the technique of patch-clamping to the barley aleurone protoplast to examine ion transport at the plasma membrane. Our results with the patch-clamp technique established the presence of K{sup +} channels in the plasma membrane of the aleurone protoplast, and they showed that this cell is ideally suited for the application of this methodology for studying ion transport. 34 refs.

  5. 阿仑膦酸钠与雷洛昔芬对牙槽骨吸收的影响*%Alendronate and raloxifene affect alveolar bone resorption

    Institute of Scientific and Technical Information of China (English)

    陈锦波; 刘铁玉; 阎美凤; 曲晓娟

    2013-01-01

      背景:研究证明阿仑膦酸钠与雷洛昔芬对骨质疏松有抑制作用。目的:建立实验性大鼠骨质疏松及牙槽骨吸收模型,评价阿仑膦酸钠与雷洛昔芬对骨吸收的防治作用。方法:56只雌性 SD 大鼠建立骨质疏松及牙槽骨吸收的动物模型,实验动物分组:①去势+结扎组和单纯结扎组又分别分为3个亚组:阿仑膦酸钠组、雷洛昔芬组和非用药组。②单纯去势非用药组。③假手术组做空白对照。建模手术后第5日开始灌胃给药,1次/d,治疗3个月。用血生化指标、骨密度测量及组织形态学方法进行药效评价。结果与结论:阿仑膦酸钠治疗组较雷洛昔芬组有更强的降低去势组碱性磷酸酶和血钙的作用;提高去势组骨密度。结果证实阿仑膦酸钠与雷洛昔芬均能减少骨质丢失,从而可以防止骨质疏松及病理性牙槽骨骨吸收,且阿仑膦酸钠作用较好。%BACKGROUND: Studies have shown that alendronate and raloxifene can suppress osteoporosis. OBJECTIVE: To evaluate the anti-osteoporosis effect of alendronate and raloxifene in rat models of osteoporosis and alveolar bone resorption. METHODS: Total y 56 female Sprague-Dawley rats were enrol ed to establish animal models of osteoporosis and alveolar bone resorption. Ovariectomized+ligation group and ligation group were respectively divided into three subgroups: alendronate, raloxifene and non-drug groups. Ovariectomized group and sham operation group (blank control) were set. Intragastric administration was performed at 5 days after modeling, once a day, total y for 3 months. Blood biochemical markers, bone mineral density measurement and histomorphological method were done for evaluation of drug effectiveness. RESULTS AND CONCLUSION: As compared with the raloxifene groups, alendronate groups could significantly reduce alkaline phosphatase and serum calcium levels and promote bone mineral density in the

  6. Impaired osteoclast homeostasis in the cystatin B-deficient mouse model of progressive myoclonus epilepsy

    Directory of Open Access Journals (Sweden)

    Otto Manninen

    2015-12-01

    Full Text Available Progressive myoclonus epilepsy of Unverricht–Lundborg type (EPM1 is an autosomal recessively inherited disorder characterized by incapacitating stimulus-sensitive myoclonus and tonic-clonic epileptic seizures with onset at the age of 6 to 16 years. EPM1 patients also exhibit a range of skeletal changes, e.g., thickened frontal cranial bone, arachnodactyly and scoliosis. Mutations in the gene encoding cystatin B (CSTB underlie EPM1. CSTB is an inhibitor of cysteine cathepsins, including cathepsin K, a key enzyme in bone resorption by osteoclasts. CSTB has previously been shown to protect osteoclasts from experimentally induced apoptosis and to modulate bone resorption in vitro. Nevertheless, its physiological function in bone and the cause of the bone changes in patients remain unknown. Here we used the CSTB-deficient mouse (Cstb−/− model of EPM1 to evaluate the contribution of defective CSTB protein function on bone pathology and osteoclast differentiation and function. Micro-computed tomography of hind limbs revealed thicker trabeculae and elevated bone mineral density in the trabecular bone of Cstb−/− mice. Histology from Cstb−/− mouse bones showed lower osteoclast count and thinner growth plates in long bones. Bone marrow-derived osteoclast cultures revealed lower osteoclast number and size in the Cstb−/− group. Cstb−/− osteoclasts formed less and smaller resorption pits in an in vitro assay. This impaired resorptive capacity was likely due to a decrease in osteoclast numbers and size. These data imply that the skeletal changes in Cstb−/− mice and in EPM1 patients are a result of CSTB deficiency leading to impaired osteoclast formation and consequently compromised resorptive capacity. These results suggest that the role of CSTB in osteoclast homeostasis and modulation of bone metabolism extends beyond cathepsin K regulation.

  7. Bone Densitometry (Bone Density Scan)

    Science.gov (United States)

    ... of DXA Bone Densitometry? What is a Bone Density Scan (DXA)? Bone density scanning, also called dual-energy x-ray absorptiometry ( ... is today's established standard for measuring bone mineral density (BMD). An x-ray (radiograph) is a noninvasive ...

  8. Glucose homeostasis and insulin sensitivity in growth hormone-transgenic mice: a cross-sectional analysis

    OpenAIRE

    Boparai, Ravneet K; Arum, Oge; Khardori, Romesh; Bartke, Andrzej

    2010-01-01

    In contrast to its stimulatory effects on musculature, bone, and organ development, and its lipolytic effects, growth hormone (GH) opposes insulin effects on glucose metabolism. Chronic GH overexposure is thought to result in insulin insensitivity and decreased blood glucose homeostatic control. Yet, despite the importance of this concept for basic biology, as well as human conditions of GH excess or deficiency, no systematic assessment of the impact of GH overexpression on glucose homeostasi...

  9. Renal control of calcium, phosphate, and magnesium homeostasis.

    Science.gov (United States)

    Blaine, Judith; Chonchol, Michel; Levi, Moshe

    2015-07-01

    Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys.

  10. Urinary Calcium and Oxalate Excretion in Healthy Adult Cats Are Not Affected by Increasing Dietary Levels of Bone Meal in a Canned Diet

    OpenAIRE

    2013-01-01

    This study aimed to investigate the impact of dietary calcium (Ca) and phosphorus (P), derived from bone meal, on the feline urine composition and the urinary pH, allowing a risk assessment for the formation of calcium oxalate (CaOx) uroliths in cats. Eight healthy adult cats received 3 canned diets, containing 12.2 (A), 18.5 (B) and 27.0 g Ca/kg dry matter (C) and 16.1 (A), 17.6 (B) and 21.1 g P/kg dry matter (C). Each diet was fed over 17 days. After a 7 dayś adaptation period, urine and fa...

  11. Biochemical markers of bone turnover

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Deog Yoon [College of Medicine, Kyunghee Univ., Seoul (Korea, Republic of)

    1999-08-01

    Biochemical markers of bone turnover has received increasing attention over the past few years, because of the need for sensitivity and specific tool in the clinical investigation of osteoporosis. Bone markers should be unique to bone, reflect changes of bone less, and should be correlated with radiocalcium kinetics, histomorphometry, or changes in bone mass. The markers also should be useful in monitoring treatment efficacy. Although no bone marker has been established to meet all these criteria, currently osteocalcin and pyridinium crosslinks are the most efficient markers to assess the level of bone turnover in the menopausal and senile osteoporosis. Recently, N-terminal telopeptide (NTX), C-terminal telopeptide (CTX) and bone specific alkaline phosphatase are considered as new valid markers of bone turnover. Recent data suggest that CTX and free deoxypyridinoline could predict the subsequent risk of hip fracture of elderly women. Treatment of postmenopausal women with estrogen, calcitonin and bisphosphonates demonstrated rapid decrease of the levels of bone markers that correlated with the long-term increase of bone mass. Factors such as circadian rhythms, diet, age, sex, bone mass and renal function affect the results of biochemical markers and should be appropriately adjusted whenever possible. Each biochemical markers of bone turnover may have its own specific advantages and limitations. Recent advances in research will provide more sensitive and specific assays.

  12. Erythropoietin promotes bone formation through EphrinB2/EphB4 signaling.

    Science.gov (United States)

    Li, C; Shi, C; Kim, J; Chen, Y; Ni, S; Jiang, L; Zheng, C; Li, D; Hou, J; Taichman, R S; Sun, H

    2015-03-01

    Recent studies have demonstrated that erythropoietin (EPO) has extensive nonhematopoietic biological functions. However, little is known about how EPO regulates bone formation, although several studies suggested that EPO can affect bone homeostasis. In this study, we investigated the effects of EPO on the communication between osteoclasts and osteoblasts through the ephrinB2/EphB4 signaling pathway. We found that EPO slightly promotes osteoblastic differentiation with the increased expression of EphB4 in ST2 cells. However, EPO increased the expression of Nfatc1 and ephrinB2 but decreased the expression of Mmp9 in RAW264.7 cells, resulting in an increase of ephrinB2-expressing osteoclasts and a decrease in resorption activity. The stimulation of ephrinB2/EphB4 signaling via ephrinB2-Fc significantly promoted EPO-mediated osteoblastic differentiation in ST2 cells. EphB4 knockdown through EphB4 shRNA inhibited EPO-mediated osteoblastic phenotypes. Furthermore, in vivo assays clearly demonstrated that EPO efficiently induces new bone formation in the alveolar bone regeneration model. Taken together, these results suggest that ephrinB2/EphB4 signaling may play an important role in EPO-mediated bone formation.

  13. Bone marrow aspiration

    Science.gov (United States)

    Iliac crest tap; Sternal tap; Leukemia - bone marrow aspiration; Aplastic anemia - bone marrow aspiration; Myelodysplastic syndrome - bone marrow aspiration; Thrombocytopenia - bone marrow aspiration; Myelofibrosis - bone marrow aspiration

  14. Air pollution particles and iron homeostasis

    Science.gov (United States)

    Background: The mechanism underlying biological effects of particles deposited in the lung has not been defined. Major Conclusions: A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, fun...

  15. Iron Homeostasis and Nutritional Iron Deficiency123

    OpenAIRE

    2011-01-01

    Nonheme food ferritin (FTN) iron minerals, nonheme iron complexes, and heme iron contribute to the balance between food iron absorption and body iron homeostasis. Iron absorption depends on membrane transporter proteins DMT1, PCP/HCP1, ferroportin (FPN), TRF2, and matriptase 2. Mutations in DMT1 and matriptase-2 cause iron deficiency; mutations in FPN, HFE, and TRF2 cause iron excess. Intracellular iron homeostasis depends on coordinated regulation of iron trafficking and storage proteins enc...

  16. Cadmium interferes with maintenance of auxin homeostasis in Arabidopsis seedlings.

    Science.gov (United States)

    Hu, Yan Feng; Zhou, Guoying; Na, Xiao Fan; Yang, Lijing; Nan, Wen Bin; Liu, Xu; Zhang, Yong Qiang; Li, Jiao Long; Bi, Yu Rong

    2013-07-15

    Auxin and its homeostasis play key roles in many aspects of plant growth and development. Cadmium (Cd) is a phytotoxic heavy metal and its inhibitory effects on plant growth and development have been extensively studied. However, the underlying molecular mechanism of the effects of Cd stress on auxin homeostasis is still unclear. In the present study, we found that the root elongation, shoot weight, hypocotyl length and chlorophyll content in wild-type (WT) Arabidopsis seedlings were significantly reduced after exposure to Cd stress. However, the lateral root (LR) formation was markedly promoted by Cd stress. The level and distribution of auxin were both greatly altered in primary root tips and cotyledons of Cd-treated plants. The results also showed that after Cd treatment, the IAA content was significantly decreased, which was accompanied by increases in the activity of the IAA oxidase and alteration in the expression of several putative auxin biosynthetic and catabolic genes. Application of the auxin transport inhibitor, 1-naphthylphthalamic acid (NPA) and 1-naphthoxyacetic acid (1-NOA), reversed the effects of Cd on LR formation. Additionally, there was less promotion of LR formation by Cd treatment in aux1-7 and pin2 mutants than that in the WT. Meanwhile, Cd stress also altered the expression of PINs and AUX1 in Arabidopsis roots, implying that the auxin transport pathway is required for Cd-modulated LR development. Taken together, these findings suggest that Cd stress disturbs auxin homeostasis through affecting auxin level, distribution, metabolism, and transport in Arabidopsis seedling.

  17. Comparison of osteoclastogenesis and resorption activity of human osteoclasts on tissue culture polystyrene and on natural extracellular bone matrix in 2D and 3D.

    Science.gov (United States)

    Kleinhans, C; Schmid, F F; Schmid, F V; Kluger, P J

    2015-07-10

    Bone homeostasis is maintained by osteoblasts (bone formation) and osteoclasts (bone resorption). While there have been numerous studies investigating mesenchymal stem cells and their potential to differentiate into osteoblasts as well as their interaction with different bone substitute materials, there is only limited knowledge concerning in vitro generated osteoclasts. Due to the increasing development of degradable bone-grafting materials and the need of sophisticated in vitro test methods, it is essential to gain deeper insight into the process of osteoclastogenesis and the resorption functionality of human osteoclasts. Therefore, we focused on the comparison of osteoclastogenesis and resorption activity on tissue culture polystyrene (TCPS) and bovine extracellular bone matrices (BMs). Cortical bone slices were used as two-dimensional (2D) substrates, whereas a thermally treated cancellous bone matrix was used for three-dimensional (3D) experiments. We isolated primary human monocytes and induced osteoclastogenesis by medium supplementation. Subsequently, the expression of the vitronectin receptor (αVβ3) and cathepsin K as well as the characteristic actin formation on TCPS and the two BMs were examined. The cell area of human osteoclasts was analyzed on TCPS and on BMs, whereas significantly larger osteoclasts could be detected on BMs. Additionally, we compared the diameter of the sealing zones with the measured diameter of the resorption pits on the BMs and revealed similar diameters of the sealing zones and the resorption pits. We conclude that using TCPS as culture substrate does not affect the expression of osteoclast-specific markers. The analysis of resorption activity can successfully be conducted on cortical as well as on cancellous bone matrices. For new in vitro test systems concerning bone resorption, we suggest the establishment of a 2D assay for high throughput screening of new degradable bone substitute materials with osteoclasts.

  18. Osteobiology: newest bone organ topics and the platelet-rich plasma treatment.

    Directory of Open Access Journals (Sweden)

    Ananias García Cardona

    2007-11-01

    Full Text Available The bone is a dynamic tissue taht provides mechanical support, physical protection, storage site for minerals, and enables genesis movement. The bone biology (osteobiology is regulated by the balance betqeen osteoblastic formation and osteoclatic resorption. the skeletal bone homeostasis is influenced by components of the bone marrow organ, neuroendocrine system and hemato-inmmune system. The purpose of this review is to describe the biodynamic of the bone organ, and actual terapeutics with platelet-rich plasma in guide bone regeneration, a co-surgical method employed to increase the quantity and quality of the bone.

  19. Anabolic Vitamin D Analogs as Countermeasures to Bone Loss

    Science.gov (United States)

    Li, Wei; Duncan, Randall L.; Karin, Norman J.; Farach-Carson, Mary C.

    1997-01-01

    We demonstrated for the first time that vitamin D3 influences the effect of PTH on bone cell calcium ion levels. This is a rapid effect, taking place within seconds/minutes. This may prove to be a critical contribution to our understanding of bone physiology in that these two hormones are among the most potent regulators of bone calcium content and of systemic calcium homeostasis. Together with the data gathered from the study of astronauts exposed to microgravity for extended periods, these observations suggest the interaction of vitamin D3 and PTH as a possible therapeutic target in the treatment of bone loss disorders such as osteoporosis and disuse atrophy. Chronic exposure of cultured osteoblasts to vitamin D, altered the number of voltage-sensitive Ca(+2) channels expressed. Estrogen treatment yielded a similar result, suggesting that there is overlap in the mechanism by which these hormones elicit long-term effects on bone cell calcium homeostasis.

  20. Chronic Sleep Disturbance Impairs Glucose Homeostasis in Rats

    Directory of Open Access Journals (Sweden)

    R. Paulien Barf

    2010-01-01

    Full Text Available Epidemiological studies have shown an association between short or disrupted sleep and an increased risk for metabolic disorders. To assess a possible causal relationship, we examined the effects of experimental sleep disturbance on glucose regulation in Wistar rats under controlled laboratory conditions. Three groups of animals were used: a sleep restriction group (RS, a group subjected to moderate sleep disturbance without restriction of sleep time (DS, and a home cage control group. To establish changes in glucose regulation, animals were subjected to intravenous glucose tolerance tests (IVGTTs before and after 1 or 8 days of sleep restriction or disturbance. Data show that both RS and DS reduce body weight without affecting food intake and also lead to hyperglycemia and decreased insulin levels during an IVGTT. Acute sleep disturbance also caused hyperglycemia during an IVGTT, yet, without affecting the insulin response. In conclusion, both moderate and severe disturbances of sleep markedly affect glucose homeostasis and body weight control.

  1. Bone disease in primary hypercalciuria

    OpenAIRE

    Sella, Stefania; Cattelan, Catia; Realdi, Giuseppe; Giannini, Sandro

    2008-01-01

    Primary Hypercalciuria (PH) is very often accompanied with some degrees of bone demineralization. The most frequent clinical condition in which this association has been observed is calcium nephrolithiasis. In patients affected by this disorder bone density is very frequently low and increased susceptibility to fragility fractures is reported. The very poor definition of this bone disease from a histomorphometric point of view is a crucial aspect. At present, the most common finding seems to ...

  2. Fibroblast growth factor 23 and bone mineralisation

    Institute of Scientific and Technical Information of China (English)

    Yu-Chen Guo; Quan Yuan

    2015-01-01

    Fibroblast growth factor 23 (FGF23) is a hormone that is mainly secreted by osteocytes and osteoblasts in bone. The critical role of FGF23 in mineral ion homeostasis was first identified in human genetic and acquired rachitic diseases and has been further characterised in animal models. Recent studies have revealed that the levels of FGF23 increase significantly at the very early stages of chronic kidney disease (CKD) and may play a critical role in mineral ion disorders and bone metabolism in these patients. Our recent publications have also shown that FGF23 and its cofactor, Klotho, may play an independent role in directly regulating bone mineralisation instead of producing a systematic effect. In this review, we will discuss the new role of FGF23 in bone mineralisation and the pathophysiology of CKD-related bone disorders.

  3. Wnt7b is an important intrinsic regulator of hair follicle stem cell homeostasis and hair follicle cycling.

    Science.gov (United States)

    Kandyba, Eve; Kobielak, Krzysztof

    2014-04-01

    The hair follicle (HF) is an exceptional mini-organ to study the mechanisms which regulate HF morphogenesis, cycling, hair follicle stem cell (hfSCs) homeostasis, and progeny differentiation. During morphogenesis, Wnt signaling is well-characterized in the initiation of HF patterning but less is known about which particular Wnt ligands are required and whether individual Wnt ligands act in an indispensable or redundant manner during postnatal hfSCs anagen onset and HF cycle progression. Previously, we described the function of the bone morphogenetic protein (BMP) signaling target gene WNT7a in intrinsic regulation of hfSCs homeostasis in vivo. Here, we investigated the role of Wnt7b, which was also intrinsically upregulated in hfSCs during physiological and precocious anagen after BMP inhibition in vivo. We demonstrated Wnt7b to be a direct target of canonical BMP signaling in hfSCs and using Wnt7b conditional gene targeting during HF morphogenesis revealed disrupted HF cycling including a shorter anagen, premature catagen onset with overall shorter hair production, and diminished HF differentiation marker expression. Additionally, we observed that postnatal ablation of Wnt7b resulted in delayed HF activation, affecting both the hair germ and bulge hfSCs but still maintaining a two-step sequence of HF stimulation. Interestingly, Wnt7b cKO hfSCs participated in reformation of the new HF bulge, but with slower self-renewal. These findings demonstrate the importance of intrinsic Wnt7b expression in hfSCs regulation and normal HF cycling and surprisingly reveal a nonredundant role for Wnt7b in the control of HF anagen length and catagen entry which was not compensated by other Wnt ligands.

  4. Iron homeostasis: new players, newer insights.

    Science.gov (United States)

    Edison, Eunice S; Bajel, Ashish; Chandy, Mammen

    2008-12-01

    Although iron is a relatively abundant element in the universe, it is estimated that more than 2 billion people worldwide suffer from iron deficiency anemia. Iron deficiency results in impaired production of iron-containing proteins, the most prominent of which is hemoglobin. Cellular iron deficiency inhibits cell growth and subsequently leads to cell death. Hemochromatosis, an inherited disorder results in disproportionate absorption of iron and the extra iron builds up in tissues resulting in organ damage. As both iron deficiency and iron overload have adverse effects, cellular and systemic iron homeostasis is critically important. Recent advances in the field of iron metabolism have led to newer understanding of the pathways involved in iron homeostasis and the diseases which arise from alteration in the regulators. Although insight into this complex regulation of the proteins involved in iron homeostasis has been obtained mainly through animal studies, it is most likely that this knowledge can be directly extrapolated to humans.

  5. Dual role of IL-21 in megakaryopoiesis and platelet homeostasis.

    Science.gov (United States)

    Benbarche, Salima; Strassel, Catherine; Angénieux, Catherine; Mallo, Léa; Freund, Monique; Gachet, Christian; Lanza, François; de la Salle, Henri

    2017-01-05

    Gene profiling studies have indicated that in vitro differentiated human megakaryocytes express the receptor for IL-21 (IL-21R), an immunostimulatory cytokine associated with inflammatory disorders and currently under evaluation in cancer therapy. The aim of this study was to investigate whether IL-21 modulates megakaryopoiesis. We first checked the expression of IL-21 receptor on human bone marrow and in vitro differentiated megakaryocytes. Then, we investigated the effect of IL-21 on the in vitro differentiation of human blood CD34+ progenitors into megakaryocytes. Finally, we analyzed the consequences of hydrodynamic transfection-mediated transient expression of IL-21, on megakaryopoieisis and thrombopoiesis in mice. The IL-21Rα chain was expressed in human bone marrow megakaryocytes and was progressively induced during in vitro differentiation of human peripheral CD34+ progenitors, while the signal transducing γ chain was down-regulated. Consistently, the STAT3 phosphorylation induced by IL-21 diminished during the later stages of megakaryocytic differentiation. In vitro, IL-21 increased the number of CFU-MKs generated from CD34+ cells and the number of megakaryocyte differentiated from CD34+ progenitors in a JAK3- and STAT3-dependent manner. Forced expression of IL-21 in mice increased the density of bi-potent MK progenitors and bone marrow megakaryocytes, and the platelet generation, but increased platelet clearance and consequently resulting in reduced blood platelet counts. Our work suggests that IL-21 regulates megakaryocyte development and platelet homeostasis. Thus IL-21 may link immune responses to physiological or pathological platelet-dependent processes.

  6. Bone mineral density and markers of bone turnover in patients with renal transplantation and regular hemodialysis

    Directory of Open Access Journals (Sweden)

    Samir M. Ibrahim,. Khalid H Abdel-Mageed, Magdi M El-Sharkawy

    2002-09-01

    Full Text Available Background: Decreased bone mineral density (BMD is a known complication for the uremic state antedating dialysis / renal transplantation (RTx. The issue of stabilized versus continued decrease of BMD especially on long-term basis, continues to be unresolved. Patients and Methods: !"#"hemodialysis (HD-#" $% " &'( &'(-group had been evaluated for metabolic bone changes by calcium homeostasis parameters (serum calcium, phosphorus, alkaline phosphatase "ALP" and vitamin D "calcitriol", markers of bone formation (bone alkaline phosphatase "BAP", osteocalcin "OC", N-terminal propeptide of collagen type I "PINP", bone resorption markers (pyridoline "PYL" and deoxypyridoline "DPYL", and intact parathyroid hormone (iPTH. Also, BMD had been assessed by dual energy x-ray absorptiometry (DEXA twice, at inclusion time and * ! "" Results: comparing both groups regarding calcium homeostasis, markers of bone turnover and iPTH showed non significant difference. However, there was a significant drop of BMD (as evidenced by T-score at follow up in the HD group, compared to stabilization of T-score for the RTx-group. Furthermore, annual T-score change was significantly more in HD-group, compared to RTx-group. Results also showed that, the best marker correlating with T-score annual changes and iPTH to be PINP. Irrespective of normal calcium homeostasis parameters, low BMD is a prevalent disorder among patients on regular HD and renal transplants.Conclusion: Follow up for * ! " %+ ,- ." % """"!to continued bone loss in patients on regular HD. This could raise recommendation for calcium and calcitriol supplementation, especially in the predialysis period, early post transplantation period, and continued guided replacement for those on maintenance HD. Serum PINP showed best correlations with BMD changes and iPTH and could be considered a reliable marker reflecting bone formation in those patients. Keywords: hemodialysis, renal transplantation, markers of bone

  7. Apparent total tract digestibility of dietary calcium and phosphorus and their efficiency in bone mineral retention are affected by body mineral status in growing pigs.

    Science.gov (United States)

    Létourneau-Montminy, M P; Lovatto, P A; Pomar, C

    2014-09-01

    Improving dietary P utilization without modifying pig performance is crucial for production sustainability. A feeding program comprising three 28-d phases (20 to 40, 40 to 70, and 70 to 100 kg) was used to feed 72 pigs with an initial BW of 20 kg. The ability of the pigs to modify the digestive and metabolic utilization of P when fed either a control (CON) diet or a low-P (LOW) diet providing 40% less digestible P with a constant Ca:digestible P was studied using different sequences of dietary P and Ca restriction (i.e., depletion [LOW]) and recovery (i.e., repletion [CON]), namely CON-CON-CON, CON-CON-LOW, CON-LOW-LOW, LOW-CON-CON, LOW-LOW-CON, and LOW-LOW-LOW. Bone mineral content (BMC) was measured in the lumbar region (L2-L4) by dual-energy X-ray absorptiometry at the beginning and end of each feeding phase. Total feces and urine were collected during phases 2 and 3. At the end of phase 1, BMC was lower in the LOW pigs than in the C pigs (29%; P pigs than in the CON-CON pigs (16%; P pigs absorbed 26% more Ca (P pigs did. Digestive and metabolic adaptations allowed the LOW-LOW-CON and LOW-CON-CON pigs to reach BMC similar to that of the CON-CON-CON pigs. These metabolic adaptations are promising, but practical applications of these results requires a better understanding of the underlying mechanisms to fine-tune the degree of depletion, pig age, and the duration of P and Ca depletion and repletion periods.

  8. Variables Affecting Fusion Rates in the Rat Posterolateral Spinal Fusion Model with Autogenic/Allogenic Bone Grafts: A Meta-analysis.

    Science.gov (United States)

    Ishida, Wataru; Elder, Benjamin D; Holmes, Christina; Lo, Sheng-Fu L; Witham, Timothy F

    2016-11-01

    The rat posterolateral spinal fusion model with autogenic/allogenic bone graft (rat PFABG) has been increasingly utilized as an experimental model to assess the efficacy of novel fusion treatments. The objective of this study was to investigate the reliability of the rat PFABG model and examine the effects of different variables on spinal fusion. A web-based literature search from January, 1970 to September, 2015, yielded 26 studies, which included 40 rat PFABG control groups and 449 rats. Data regarding age, weight, sex, and strain of rats, graft volume, graft type, decorticated levels, surgical approach, institution, the number of control rats, fusion rate, methods of fusion assessment, and timing of fusion assessment were collected and analyzed. The primary outcome variable of interest was fusion rate, as evaluated by manual palpation. Fusion rates varied widely, from 0 to 96%. The calculated overall fusion rate was 46.1% with an I (2) value of 62.4, which indicated moderate heterogeneity. Weight >300 g, age >14 weeks, male rat, Sprague-Dawley strain, and autogenic coccyx grafts increased fusion rates with statistical significance. Additionally, an assessment time-point ≥8 weeks had a trend towards statistical significance (p = 0.070). Multi-regression analysis demonstrated that timing of assessment and age as continuous variables, as well as sex as a categorical variable, can predict the fusion rate with R (2) = 0.82. In an inter-institution reliability analysis, the pooled overall fusion rate was 50.0% [44.8, 55.3%], with statistically significant differences among fusion outcomes at different institutions (p fusion outcomes, the reliability of the rat PFABG model was relatively limited. However, selection of adequate variables can optimize its use as a control group in studies evaluating the efficacy of novel fusion therapies.

  9. Rac-null leukocytes are associated with increased inflammation-mediated alveolar bone loss.

    Science.gov (United States)

    Sima, Corneliu; Gastfreund, Shoshi; Sun, Chunxiang; Glogauer, Michael

    2014-02-01

    Periodontitis is characterized by altered host-biofilm interactions that result in irreversible inflammation-mediated alveolar bone loss. Genetic and epigenetic factors that predispose to ineffective control of biofilm composition and maintenance of tissue homeostasis are not fully understood. We elucidated how leukocytes affect the course of periodontitis in Rac-null mice. Mouse models of acute gingivitis and periodontitis were used to assess the early inflammatory response and patterns of chronicity leading to loss of alveolar bone due to inflammation in Rac-null mice. Leukocyte margination was differentially impaired in these mice during attachment in conditional Rac1-null (granulocyte/monocyte lineage) mice and during rolling and attachment in Rac2-null (all blood cells) mice. Inflammatory responses to subgingival ligatures, assessed by changes in peripheral blood differential leukocyte numbers, were altered in Rac-null compared with wild-type mice. In response to persistent subgingival ligature-mediated challenge, Rac-null mice had increased loss of alveolar bone with patterns of resorption characteristic of aggressive forms of periodontitis. These findings were partially explained by higher osteoclastic coverage of the bone-periodontal ligament interface in Rac-null compared with wild-type mice. In conclusion, this study demonstrates that leukocyte defects, such as decreased endothelial margination and tissue recruitment, are rate-limiting steps in the periodontal inflammatory process that lead to more aggressive forms of periodontitis.

  10. Influence of different mechanical stimuli in a multi-scale mechanobiological isotropic model for bone remodelling.

    Science.gov (United States)

    Mercuri, E G F; Daniel, A L; Hecke, M B; Carvalho, L

    2016-09-01

    This work represents a study of a mathematical model that describes the biological response to different mechanical stimuli in a cellular dynamics model for bone remodelling. The biological system discussed herein consists of three specialised cellular types, responsive osteoblasts, active osteoblasts and osteoclasts, three types of signalling molecules, transforming growth factor beta (TGF-β), receptor activator of nuclear factor kappa-b ligand (RANKL) and osteoprotegerin (OPG) and the parathyroid hormone (PTH). Three proposals for mechanical stimuli were tested: strain energy density (SED), hydrostatic and deviatoric parts of SED. The model was tested in a two-dimensional geometry of a standard human femur. The spatial discretization was performed by the finite element method while the temporal evolution of the variables was calculated by the 4th order Runge-Kutta method. The obtained results represent the temporal evolution of the apparent density distribution and the mean apparent density and thickness for the cortical bone after 600 days of remodelling simulation. The main contributions of this paper are the coupling of mechanical and biological models and the exploration of how the different mechanical stimuli affect the cellular activity in different types of physical activities. The results revealed that hydrostatic SED stimulus was able to form more cortical bone than deviatoric SED and total SED stimuli. The computational model confirms how different mechanical stimuli can impact in the balance of bone homeostasis.

  11. The BMP Pathway Participates in Human Naive CD4+ T Cell Activation and Homeostasis.

    Directory of Open Access Journals (Sweden)

    Víctor G Martínez

    Full Text Available Bone Morphogenetic Proteins (BMPs form a group of secreted factors that belongs to the TGF-β superfamily. Among different roles in a number of immune cell types, BMPs are known to regulate T cell development within the thymus, although the role of BMP signaling in human mature T cells remains elusive. In this study, we demonstrate that canonical BMP signaling is necessary during two critical events that regulate the size and function of human naive CD4+ T cell population: activation and homeostasis. Upon stimulation via TCR, naive CD4+ T cells upregulate the expression of BMP ligands triggering canonical BMP signaling in CD25+ cells. Blockade of BMP signaling severely impairs CD4+ T cell proliferation after activation mainly through regulation of IL-2, since the addition of this cytokine recuperates normal T cell expansion after inhibition of BMP signaling. Similarly, activation of canonical BMP pathway is required for both the maintenance of cell survival and the homeostatic proliferation induced by IL-7, a key factor for T cell homeostasis. Moreover, upregulation of two critical receptors for T cell homeostasis, CXCR4 and CCR9, triggered by IL-7 is also abrogated in the absence of BMP signaling. Collectively, we describe important roles of the canonical BMP signaling in human naive CD4+ T cell activation and homeostasis that could be valuable for clinical application.

  12. Disruption of c-Kit Signaling in Kit(W-sh/W-sh) Growing Mice Increases Bone Turnover.

    Science.gov (United States)

    Lotinun, Sutada; Krishnamra, Nateetip

    2016-08-16

    c-Kit tyrosine kinase receptor has been identified as a regulator of bone homeostasis. The c-Kit loss-of-function mutations in WBB6F1/J-Kit(W/W-v) mice result in low bone mass. However, these mice are sterile and it is unclear whether the observed skeletal phenotype is secondary to a sex hormone deficiency. In contrast, C57BL/6J-Kit(W-sh)/(W-sh) (W(sh)/W(sh)) mice, which carry an inversion mutation affecting the transcriptional regulatory elements of the c-Kit gene, are fertile. Here, we showed that W(sh)/W(sh) mice exhibited osteopenia with elevated bone resorption and bone formation at 6- and 9-week-old. The c-Kit W(sh) mutation increased osteoclast differentiation, the number of committed osteoprogenitors, alkaline phosphatase activity and mineralization. c-Kit was expressed in both osteoclasts and osteoblasts, and c-Kit expression was decreased in W(sh)/W(sh)osteoclasts, but not osteoblasts, suggesting an indirect effect of c-Kit on bone formation. Furthermore, the osteoclast-derived coupling factor Wnt10b mRNA was increased in W(sh)/W(sh) osteoclasts. Conditioned medium from W(sh)/W(sh) osteoclasts had elevated Wnt10b protein levels and induced increased alkaline phosphatase activity and mineralization in osteoblast cultures. Antagonizing Wnt10b signaling with DKK1 or Wnt10b antibody inhibited these effects. Our data suggest that c-Kit negatively regulates bone turnover, and disrupted c-Kit signaling couples increased bone resorption with bone formation through osteoclast-derived Wnt 10 b.

  13. RANKL, Osteopontin, and Osteoclast Homeostasis in a Hyper-Occlusion Mouse Model

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Cameron G.; Ito, Yoshihiro; Dangaria, Smit; Luan, Xianghong; Diekwisch, Thomas G.H. (UIC)

    2010-11-15

    The biological mechanisms that maintain the position of teeth in their sockets establish a dynamic equilibrium between bone resorption and apposition. In order to reveal some of the dynamics involved in the tissue responses towards occlusal forces on periodontal ligament (PDL) and alveolar bone homeostasis, we developed the first mouse model of hyperocclusion. Swiss-Webster mice were kept in hyperocclusion for 0, 3, 6, and 9 d. Morphological and histological changes in the periodontium were assessed using micro-computed tomography (micro-CT) and ground sections with fluorescent detection of vital dye labels. Sections were stained for tartrate-resistant acid phosphatase, and the expression of receptor activator of nuclear factor-{kappa}B ligand (RANKL) and osteopontin (OPN) was analyzed by immunohistochemistry and real-time polymerase chain reaction (PCR). Traumatic occlusion resulted in enamel surface abrasion, inhibition of alveolar bone apposition, significant formation of osteoclasts at 3, 6 and 9 d, and upregulation of OPN and RANKL. Data from this study suggest that both OPN and RANKL contribute to the stimulation of bone resorption in the hyperocclusive state. In addition, we propose that the inhibition of alveolar bone apposition by occlusal forces is an important mechanism for the control of occlusal height that might work in synergy with RANKL-induced bone resorption to maintain normal occlusion.

  14. Calcium homeostasis in fly photoreceptor cells

    NARCIS (Netherlands)

    Oberwinkler, J

    2002-01-01

    In fly photoreceptor cells, two processes dominate the Ca2+ homeostasis: light-induced Ca2+ influx through members of the TRP family of ion channels, and Ca2+ extrusion by Na+/Ca2+ exchange.Ca2+ release from intracellular stores is quantitatively insignificant. Both, the light-activated channels and

  15. Molecular monitoring of equine joint homeostasis

    NARCIS (Netherlands)

    de Grauw, J.C.

    2010-01-01

    Chronic joint disorders are a major cause of impaired mobility and loss of quality of life in both humans and horses. Regardless of the primary insult, any joint disorder is characterized by an upset in normal joint homeostasis, the balance between tissue anabolism and catabolism that is normally ma

  16. Bone cutting.

    Science.gov (United States)

    Giraud, J Y; Villemin, S; Darmana, R; Cahuzac, J P; Autefage, A; Morucci, J P

    1991-02-01

    Bone cutting has always been a problem for surgeons because bone is a hard living material, and many osteotomes are still very crude tools. Technical improvement of these surgical tools has first been their motorization. Studies of the bone cutting process have indicated better features for conventional tools. Several non-conventional osteotomes, particularly ultrasonic osteotomes are described. Some studies on the possible use of lasers for bone cutting are also reported. Use of a pressurised water jet is also briefly examined. Despite their advantages, non-conventional tools still require improvement if they are to be used by surgeons.

  17. The Multiple Roles of Microrna-223 in Regulating Bone Metabolism

    Directory of Open Access Journals (Sweden)

    Yong Xie

    2015-10-01

    Full Text Available Bone metabolism is a lifelong process for maintaining skeletal system homeostasis, which is regulated by bone-resorbing osteoclasts and bone-forming osteoblasts. Aberrant differentiation of osteoclasts and osteoblasts leads to imbalanced bone metabolism, resulting in ossification and osteolysis diseases. MicroRNAs (miRNAs are pivotal factors in regulating bone metabolism via post-transcriptional inhibition of target genes. Recent studies have revealed that miR-223 exerts multiple effects on bone metabolism, especially in the processes of osteoclast and osteoblasts differentiation. In this review, we highlight the roles of miR-223 during the processes of osteoclast and osteoblast differentiation, as well as the potential clinical applications of miR-223 in bone metabolism disorders.

  18. Temperature Stress and Redox Homeostasis in Agricultural Crops

    Directory of Open Access Journals (Sweden)

    Rashmi eAwasthi

    2015-03-01

    Full Text Available Plants are exposed to a wide range of environmental conditions and one of the major forces that shape the structure and function of plants are temperature stresses, which include low and high temperature stresses and considered as major abiotic stresses for crop plants. Due to global climate change, temperature stress is becoming the major area of concern for the researchers worldwide. The reactions of plants to these stresses are complex and have devastating effects on plant metabolism, disrupting cellular homeostasis and uncoupling major physiological and biochemical processes. Temperature stresses disrupt photosynthesis and increase photorespiration altering the normal homeostasis of plant cells. The constancy of temperature, among different metabolic equilibria present in plant cells, depends to a certain extent on a homeostatically regulated ratio of redox components, which are present virtually in all plant cells. Several pathways, which are present in plant cells, enable correct equilibrium of the plant cellular redox state and balance fluctuations in plant cells caused by changes in environment due to stressful conditions. In temperature stresses, high temperature stress is considered to be one of the major abiotic stresses for restricting crop production. The responses of plants to heat stress vary with extent of temperature increase, its duration and the type of plant. On other hand, low temperature as major environmental factor often affects plant growth and crop productivity and leads to substantial crop loses. The present review discusses how oxidative damage as a result of temperature stress is detrimental for various crops. Various strategies adapted by the plants to main redox homeostasis are described along with use of exogenous application of some stress protectants.

  19. Dynamics of bone graft healing around implants

    Directory of Open Access Journals (Sweden)

    Narayan Venkataraman

    2015-01-01

    A few questions arise pertaining to the use of bone grafts along with implants are whether these are successful in approximation with implant. Do they accelerate bone regeneration? Are all defects ultimately regenerated with new viable bone? Is the bone graft completely resorbed or integrated in new bone? Does the implant surface characteristic positively affect osseointegration when used with a bone graft? What type of graft and implant surface can be used that will have a positive effect on the healing type and time? Finally, what are the dynamics of bone graft healing around an implant? This review discusses the cellular and molecular mechanisms of bone graft healing in general and in vicinity of another foreign, avascular body, namely the implant surface, and further, the role of bone grafts in osseointegration and/or clinical success of the implants.

  20. Essential Regulation of Lung Surfactant Homeostasis by the Orphan G Protein-Coupled Receptor GPR116

    Directory of Open Access Journals (Sweden)

    Mi Young Yang

    2013-05-01

    Full Text Available GPR116 is an orphan seven-pass transmembrane receptor whose function has been unclear. Global disruption of the Gpr116 gene in mice revealed an unexpected, critical role for this receptor in lung surfactant homeostasis, resulting in progressive accumulation of surfactant lipids and proteins in the alveolar space, labored breathing, and a reduced lifespan. GPR116 expression analysis, bone marrow transplantation studies, and characterization of conditional knockout mice revealed that GPR116 expression in ATII cells is required for maintaining normal surfactant levels. Aberrant packaging of surfactant proteins with lipids in the Gpr116 mutant mice resulted in compromised surfactant structure, function, uptake, and processing. Thus, GPR116 plays an indispensable role in lung surfactant homeostasis with important ramifications for the understanding and treatment of lung surfactant disorders.

  1. Selenoprotein P is the essential selenium transporter for bones.

    Science.gov (United States)

    Pietschmann, Nicole; Rijntjes, Eddy; Hoeg, Antonia; Stoedter, Mette; Schweizer, Ulrich; Seemann, Petra; Schomburg, Lutz

    2014-05-01

    Selenium (Se) plays an important role in bone physiology as best reflected by Kashin-Beck disease, an endemic Se-dependent osteoarthritis. Bone development is delayed in children with mutations in SECIS binding protein 2 (SBP2), a central factor for selenoprotein biosynthesis. Circulating selenoprotein P (SePP) is positively associated with bone turnover in humans, yet its function for bone homeostasis is not known. We have analysed murine models of altered Se metabolism. Most of the known selenoprotein genes and factors needed for selenoprotein biosynthesis are expressed in bones. Bone Se is not associated with the mineral but exclusively with the organic matrix. Genetic ablation of Sepp-expression causes a drastic decline in serum (25-fold) but only a mild reduction in bone (2.5-fold) Se concentrations. Cell-specific expression of a SePP transgene in hepatocytes efficiently restores bone Se levels in Sepp-knockout mice. Of the two known SePP receptors, Lrp8 was detected in bones while Lrp2 was absent. Interestingly, Lrp8 mRNA concentrations were strongly increased in bones of Sepp-knockout mice likely in order to counteract the developing Se deficiency. Our data highlight SePP as the essential Se transporter to bones, and suggest a novel feedback mechanism for preferential uptake of Se in Se-deprived bones, thereby contributing to our understanding of hepatic osteodystrophy and the consistent bone phenotype observed in subjects with inherited selenoprotein biosynthesis mutations.

  2. Osteocyte regulation of bone mineral: a little give and take.

    Science.gov (United States)

    Atkins, G J; Findlay, D M

    2012-08-01

    Osteocytes actively participate in almost every phase of mineral handling by bone. They regulate the mineralisation of osteoid during bone formation, and they are also a major RANKL-producing cell. Osteocytes are thus able to liberate bone mineral by regulating osteoclast differentiation and activity in response to a range of stimuli, including bone matrix damage, bone disuse and mechanical unloading, oestrogen deficiency, high-dose glucocorticoid and chemotherapeutic agents. At least some of these activities may be regulated by the osteocyte-secreted product, sclerostin. There is also mounting evidence that in addition to regulating phosphate homeostasis systemically, osteocytes contribute directly to calcium homeostasis in the mature skeleton. Osteocyte cell death and the local loss of control of bone mineralisation may be the cause of focal hypermineralisation of bone and osteopetrosis, as seen in aging and pathology. The sheer number of osteocytes in bone means that "a little give and take" in terms of regulation of bone mineral content translates into a powerful whole organism effect.

  3. Contribution of a Membrane Estrogen Receptor to the Estrogenic Regulation of Body Temperature and Energy Homeostasis

    Science.gov (United States)

    Roepke, Troy A.; Bosch, Martha A.; Rick, Elizabeth A.; Lee, Benjamin; Wagner, Edward J.; Seidlova-Wuttke, Dana; Wuttke, Wolfgang; Scanlan, Thomas S.; Rønnekleiv, Oline K.; Kelly, Martin J.

    2010-01-01

    The hypothalamus is a key region of the central nervous system involved in the control of homeostasis, including energy and core body temperature (Tc). 17β-Estradiol (E2) regulates Tc, in part, via actions in the basal hypothalamus and preoptic area. E2 primarily controls hypothalamic functions via the nuclear steroid receptors, estrogen receptor α/β. However, we have previously described an E2-responsive, Gq-coupled membrane receptor that reduces the postsynaptic inhibitory γ-aminobutyric acid-ergic tone and attenuates postovariectomy body weight gain in female guinea pigs through the administration of a selective Gq-mER ligand, STX. To determine the role of Gq-mER in regulating Tc, energy and bone homeostasis, ovariectomized female guinea pigs, implanted ip with temperature probes, were treated with STX or E2 for 7–8 wk. Tc was recorded for 4 wk, whereas food intake and body weight were monitored daily. Bone density and fat accumulation were determined postmortem. Both E2 and STX significantly reduced Tc in the females compared with controls. STX, similar to E2, reduced food intake and fat accumulation and increased tibial bone density. Therefore, a Gq-mER-coupled signaling pathway appears to be involved in maintaining homeostatic functions and may constitute a novel therapeutic target for treatment of hypoestrogenic symptoms. PMID:20685867

  4. 铁稳态与骨质疏松%Iron homeostasis and osteoporosis

    Institute of Scientific and Technical Information of China (English)

    张伟; 李光飞; 徐又佳

    2013-01-01

    Iron plays an important role in the normal physiological activity in human body.The regulatory mechanism of iron homeostasis has become a hot topic in domain of iron metabolism.Studies in recent years have revealed that the iron homeostasis disorders ( iron overload or iron deficiency) is closely related to bone metabolism abnormality, and it can also lead to osteoporosis. Hence, this paper reviews the recent related literatures about iron mediated bone metabolism abnormality, in order to provide theoretical evidence for the study of iron and bone metabolism.%铁在机体正常的生理活动中扮演着重要角色,铁稳态调节机制已成为目前铁代谢领域研究的热点。近年研究表明,铁稳态失调(铁过载或铁缺乏)与骨代谢异常密切相关,可导致骨质疏松的发生。因此,将近年“铁介导的骨代谢异常”相关文献进行梳理综述,以期为铁代谢与骨代谢的研究提供一定的参考。

  5. Temporal aspects of copper homeostasis and its crosstalk with hormones

    Directory of Open Access Journals (Sweden)

    Lola ePeñarrubia

    2015-04-01

    Full Text Available To cope with the dual nature of copper as being essential and toxic for cells, plants temporarily adapt the expression of copper homeostasis components to assure its delivery to cuproproteins while avoiding the interference of potential oxidative damage derived from both copper uptake and photosynthetic reactions during light hours. The circadian clock participates in the temporal organization of coordination of plant nutrition adapting metabolic responses to the daily oscillations. This timely control improves plant fitness and reproduction and holds biotechnological potential to drive increased crop yields. Hormonal pathways, including those of abscisic acid, gibberellins, ethylene, auxins, and jasmonates are also under direct clock and light control, both in mono and dicotyledons. In this review, we focus on copper transport in Arabidopsis thaliana and Oryza sativa and the presumable role of hormones in metal homeostasis matching nutrient availability to growth requirements and preventing metal toxicity. The presence of putative hormone-dependent regulatory elements in the promoters of copper transporters genes suggests hormonal regulation to match special copper requirements during plant development. Spatial and temporal processes that can be affected by hormones include the regulation of copper uptake into roots, intracellular trafficking and compartmentalisation, and long-distance transport to developing vegetative and reproductive tissues. In turn, hormone biosynthesis and signalling are also influenced by copper availability, which suggests reciprocal regulation subjected to temporal control by the central oscillator of the circadian clock. This transcriptional regulatory network, coordinates environmental and hormonal signalling with developmental pathways to allow enhanced micronutrient acquisition efficiency.

  6. Chronic Effect of Aspartame on Ionic Homeostasis and Monoamine Neurotransmitters in the Rat Brain.

    Science.gov (United States)

    Abhilash, M; Alex, Manju; Mathews, Varghese V; Nair, R Harikumaran

    2014-05-28

    Aspartame is one of the most widely used artificial sweeteners globally. Data concerning acute neurotoxicity of aspartame is controversial, and knowledge on its chronic effect is limited. In the current study, we investigated the chronic effects of aspartame on ionic homeostasis and regional monoamine neurotransmitter concentrations in the brain. Our results showed that aspartame at high dose caused a disturbance in ionic homeostasis and induced apoptosis in the brain. We also investigated the effects of aspartame on brain regional monoamine synthesis, and the results revealed that there was a significant decrease of dopamine in corpus striatum and cerebral cortex and of serotonin in corpus striatum. Moreover, aspartame treatment significantly alters the tyrosine hydroxylase activity and amino acids levels in the brain. Our data suggest that chronic use of aspartame may affect electrolyte homeostasis and monoamine neurotransmitter synthesis dose dependently, and this might have a possible effect on cognitive functions.

  7. An age-dependent interaction with leptin unmasks ghrelin's bone-protective effects

    Science.gov (United States)

    The mutual interplay between energy homeostasis and bone metabolism is an important emerging concept. Ghrelin and leptin antagonize each other in regulating energy balance, but the role of this interaction in bone metabolism is unknown. Using ghrelin receptor and leptin-deficient mice, we show that ...

  8. Expression of metastasin S100A4 is essential for bone resorption and regulates osteoclast function

    DEFF Research Database (Denmark)

    Erlandsson, Malin C; Svensson, M; Jonsson, Ing-Marie

    2013-01-01

    S100A4 is a Ca-binding protein that regulates cell growth, survival, and motility. The abundant expression of S100A4 in rheumatiod arthritis contributes to the invasive growth of joint tissue and to bone damage. In the present study, we analysed the role of S100A4 in bone homeostasis....

  9. Bone-targeted therapy for metastatic breast cancer—Where do we go from here? A commentary from the BONUS 8 meeting

    Directory of Open Access Journals (Sweden)

    Xiaofu Zhu

    2014-03-01

    Full Text Available The annual Bone and The Oncologist New Updates (BONUS 8 conference focuses on the current understanding and dilemmas in the treatment and prevention of bone metastasis in cancer, as well as novel research on bone homeostasis and cancer-induced bone loss. We present commentaries from experts for their own take on where they feel the field of bone-targeted therapies for metastatic breast cancer is moving, or needs to move, if we are to make further progress.

  10. Bone-targeted therapy for metastatic breast cancer-Where do we go from here? A commentary from the BONUS 8 meeting.

    Science.gov (United States)

    Zhu, Xiaofu; Amir, Eitan; Singh, Gurmit; Clemons, Mark; Addison, Christina

    2014-03-01

    The annual Bone and The Oncologist New Updates (BONUS 8) conference focuses on the current understanding and dilemmas in the treatment and prevention of bone metastasis in cancer, as well as novel research on bone homeostasis and cancer-induced bone loss. We present commentaries from experts for their own take on where they feel the field of bone-targeted therapies for metastatic breast cancer is moving, or needs to move, if we are to make further progress.

  11. Molecular regulators of phosphate homeostasis in plants.

    Science.gov (United States)

    Lin, Wei-Yi; Lin, Shu-I; Chiou, Tzyy-Jen

    2009-01-01

    An appropriate cellular phosphate (Pi) concentration is indispensable for essential physiological and biochemical processes. To maintain cellular Pi homeostasis, plants have developed a series of adaptive responses to facilitate external Pi acquisition and to limit Pi consumption and to adjust Pi recycling internally when the Pi supply is inadequate. Over the past decade, significant progress has been made toward understanding such regulation at the molecular level. In this review, the focus is on the molecular regulators that mediate cellular Pi concentrations. The regulators are introduced and organized according to their original identification procedures, by the forward genetic approach of mutant screening or by reverse genetic analysis. These genes are involved in Pi uptake, allocation or remobilization or are upstream regulators, such as transcriptional factors or signalling molecules. In the future, integration of current knowledge and exploration of new technology is expected to offer new insights into molecular mechanisms that maintain Pi homeostasis.

  12. Transcranial electrical stimulation accelerates human sleep homeostasis.

    Directory of Open Access Journals (Sweden)

    Davide Reato

    Full Text Available The sleeping brain exhibits characteristic slow-wave activity which decays over the course of the night. This decay is thought to result from homeostatic synaptic downscaling. Transcranial electrical stimulation can entrain slow-wave oscillations (SWO in the human electro-encephalogram (EEG. A computational model of the underlying mechanism predicts that firing rates are predominantly increased during stimulation. Assuming that synaptic homeostasis is driven by average firing rates, we expected an acceleration of synaptic downscaling during stimulation, which is compensated by a reduced drive after stimulation. We show that 25 minutes of transcranial electrical stimulation, as predicted, reduced the decay of SWO in the remainder of the night. Anatomically accurate simulations of the field intensities on human cortex precisely matched the effect size in different EEG electrodes. Together these results suggest a mechanistic link between electrical stimulation and accelerated synaptic homeostasis in human sleep.

  13. The Impact of Melatonin on Glucose Homeostasis

    Directory of Open Access Journals (Sweden)

    Zeynep Arzu Yeğin

    2009-12-01

    Full Text Available Objective: Melatonin is a pineal product mainly charged with the maintenance of antioxidant conditions in human. This study is performed to identify the short-term effect of melatonin on glucose homeostasis in diabetic patients. Materials and Methods: Melatonin and placebo were given perorally to sixty patients. Blood glucose and insulin levels were measured with constant intervals. Results: No significant correlation was found among the levels of glucose, insulin and HOMA-IR index at any time after melatonin/placebo administration.Conclusions: Prospective studies with long-term use of melatonin are needed to define the exact role of melatonin in glucose homeostasis. Turk Jem 2009; 13: 52-5

  14. Homeostasis as the Mechanism of Evolution

    Directory of Open Access Journals (Sweden)

    John S. Torday

    2015-09-01

    Full Text Available Homeostasis is conventionally thought of merely as a synchronic (same time servo-mechanism that maintains the status quo for organismal physiology. However, when seen from the perspective of developmental physiology, homeostasis is a robust, dynamic, intergenerational, diachronic (across-time mechanism for the maintenance, perpetuation and modification of physiologic structure and function. The integral relationships generated by cell-cell signaling for the mechanisms of embryogenesis, physiology and repair provide the needed insight to the scale-free universality of the homeostatic principle, offering a novel opportunity for a Systems approach to Biology. Starting with the inception of life itself, with the advent of reproduction during meiosis and mitosis, moving forward both ontogenetically and phylogenetically through the evolutionary steps involved in adaptation to an ever-changing environment, Biology and Evolution Theory need no longer default to teleology.

  15. Thiol/disulfide homeostasis in asphalt workers.

    Science.gov (United States)

    Yilmaz, Ömer Hınç; Bal, Ceylan; Neşelioglu, Salim; Büyükşekerci, Murat; Gündüzöz, Meşide; Eren, Funda; Tutkun, Lutfiye; Yilmaz, Fatma Meric

    2016-09-02

    The aim of this study was to investigate thiol/disulfide homeostasis in asphalt workers who are exposed to polycyclic aromatic hydrocarbons occupationally. The study was carried out in 34 nonsmoker asphalt workers. Additionally, 35 healthy nonsmoker volunteers were recruited as control group. Thiol and disulfide concentrations were determined using the novel automated measurement method. Levels of urinary 1-OH-pyrene were analyzed by liquid chromatography. Disulfide/thiol ratio was significantly higher in exposed group (p = .034). Also, a positive correlation was detected between disulfide/thiol ratio and 1-OH-pyrene values (r = .249, p = .036). Thiol/disulfide homeostasis was found to be disturbed in asphalt workers. The novel test used in this study may be useful for evaluating the oxidative status in polycyclic aromatic hydrocarbon (PAH) exposure.

  16. Iron Homeostasis in Health and Disease

    Directory of Open Access Journals (Sweden)

    Raffaella Gozzelino

    2016-01-01

    Full Text Available Iron is required for the survival of most organisms, including bacteria, plants, and humans. Its homeostasis in mammals must be fine-tuned to avoid iron deficiency with a reduced oxygen transport and diminished activity of Fe-dependent enzymes, and also iron excess that may catalyze the formation of highly reactive hydroxyl radicals, oxidative stress, and programmed cell death. The advance in understanding the main players and mechanisms involved in iron regulation significantly improved since the discovery of genes responsible for hemochromatosis, the IRE/IRPs machinery, and the hepcidin-ferroportin axis. This review provides an update on the molecular mechanisms regulating cellular and systemic Fe homeostasis and their roles in pathophysiologic conditions that involve alterations of iron metabolism, and provides novel therapeutic strategies to prevent the deleterious effect of its deficiency/overload.

  17. microRNA Regulation of Peritoneal Cavity Homeostasis in Peritoneal Dialysis

    Directory of Open Access Journals (Sweden)

    Melisa Lopez-Anton

    2015-01-01

    Full Text Available Preservation of peritoneal cavity homeostasis and peritoneal membrane function is critical for long-term peritoneal dialysis (PD treatment. Several microRNAs (miRNAs have been implicated in the regulation of key molecular pathways driving peritoneal membrane alterations leading to PD failure. miRNAs regulate the expression of the majority of protein coding genes in the human genome, thereby affecting most biochemical pathways implicated in cellular homeostasis. In this review, we report published findings on miRNAs and PD therapy, with emphasis on evidence for changes in peritoneal miRNA expression during long-term PD treatment. Recent work indicates that PD effluent- (PDE- derived cells change their miRNA expression throughout the course of PD therapy, contributing to the loss of peritoneal cavity homeostasis and peritoneal membrane function. Changes in miRNA expression profiles will alter regulation of key molecular pathways, with the potential to cause profound effects on peritoneal cavity homeostasis during PD treatment. However, research to date has mainly adopted a literature-based miRNA-candidate methodology drawing conclusions from modest numbers of patient-derived samples. Therefore, the study of miRNA expression during PD therapy remains a promising field of research to understand the mechanisms involved in basic peritoneal cell homeostasis and PD failure.

  18. Abnormal calcium homeostasis in peripheral neuropathies

    OpenAIRE

    2009-01-01

    Abnormal neuronal calcium (Ca2+) homeostasis has been implicated in numerous diseases of the nervous system. The pathogenesis of two increasingly common disorders of the peripheral nervous system, namely neuropathic pain and diabetic polyneuropathy, has been associated with aberrant Ca2+ channel expression and function. Here we review the current state of knowledge regarding the role of Ca2+ dyshomeostasis and associated mitochondrial dysfunction in painful and diabetic neuropathies. The cent...

  19. THE WORLD VIEW, IDENTITY AND SOCIOCULTUR HOMEOSTASIS

    Directory of Open Access Journals (Sweden)

    Marina Yur’evna Neronova

    2016-02-01

    Full Text Available The paper presents the relationship between the phenomenon of world view and sociocultural identity both individuals and the community as a whole. The research is being carried out in the context of current crisis of world view accepted in so-called art Nouveau era. This paper also presents the identity crisis typical for modern civilized societies. A new notion of sociocultural homeostasis is introduced in connection with analyzable phenomena and their mutual relations.Purpose. Study of the relationship between the phenomenon of the world view and sociocultural identity as a structural and functional mechanism.Methodology. Phenomenological and systematic methods with the elements of historical method were employed. Cultural analysis is based on using both axiological and phenomenological approach, and also the elements of semiotic approach.Results. The dependence of identity on the world view is revealed (or is being revealed?, the phenomenon of sociocultural homeostasis is singled out (or is being singled out in the capacity of the mechanism setting up the correspondence in the contradictory unity between the world view as a subjective image and concrete reality as an objective part of this contradictory. The analysis of sociocultural homeostasis is carried out (or is being carried out and the conclusion is being drown that instability of the latter leads to serious problems in the identification of both individuals and communities as a whole. Besides, (moreover the relationship between the legitimacy level of the world view and stability of sociocultural homeostasis is established. (is being established.Practical implications: the system of education.

  20. Bone x-ray

    Science.gov (United States)

    ... or broken bone Bone tumors Degenerative bone conditions Osteomyelitis (inflammation of the bone caused by an infection) ... Multiple myeloma Osgood-Schlatter disease Osteogenesis imperfecta Osteomalacia Osteomyelitis Paget disease of the bone Rickets X-ray ...

  1. Sleep and bodily functions: the physiological interplay between body homeostasis and sleep homeostasis.

    Science.gov (United States)

    Amici, R; Bastianini, S; Berteotti, C; Cerri, M; Del Vecchio, F; Lo Martire, V; Luppi, M; Perez, E; Silvani, A; Zamboni, G; Zoccoli, G

    2014-01-01

    Body homeostasis and sleep homeostasis may both rely on the complex integrative activity carried out by the hypothalamus. Thus, the three main wake-sleep (WS) states (i.e. wakefulness, NREM sleep, and REM sleep) may be better understood if the different cardio-respiratory and metabolic parameters, which are under the integrated control of the autonomic and the endocrine systems, are studied during sleep monitoring. According to this view, many physiological events can be considered as an expression of the activity that physiological regulations should perform in order to cope with the need to fulfill body and sleep homeostasis. This review is aimed at making an assessment of data showing the existence of a physiological interplay between body homeostasis and sleep homeostasis, starting from the spontaneous changes observed in the somatic and autonomic activity during sleep, through evidence showing the deep changes occurring in the central integration of bodily functions during the different WS states, to the changes in the WS states observed when body homeostasis is challenged by the external environment and when the return to normal ambient conditions allows sleep homeo- stasis to run without apparent physiological restrictions. The data summarized in this review suggest that an approach to the dichotomy between NREM and REM sleep based on physiological regulations may offer a framework within which observations that a traditional behavioral approach may overlook can be interpreted. The study of the interplay between body and sleep homeostasis appears, therefore, to be a way to understand the function of complex organisms beyond that of the specific regulations.

  2. Endocannabinoids and energy homeostasis: an update.

    Science.gov (United States)

    Cristino, Luigia; Becker, Thorsten; Di Marzo, Vincenzo

    2014-01-01

    The endocannabinoid system (ECS) is a widespread intercellular signaling system that plays a critical role in energy homeostasis, meant as the precise matching of caloric intake with energy expenditure which normally keeps body weight stable over time. Complex interactions between environmental and neurohormonal systems directly contribute to the balance of energy homeostasis. This review highlights established and more recent data on the brain circuits in which the ECS plays an important regulatory role, with focus on the hypothalamus, a region where numerous interacting systems regulating feeding, satiety, stress, and other motivational states coexist. Although not meant as an exhaustive review of the field, this article will discuss how endocannabinoid tone, in addition to reinforcing reward circuitries and modulating food intake and the salience of food, controls lipid and glucose metabolism in several peripheral organs, particularly the liver and adipose tissue. Direct actions in the skeletal muscle and pancreas are also emerging and are briefly discussed. This review provides new perspectives into endocannabinoid control of the neurochemical causes and consequences of energy homeostasis imbalance, a knowledge that might lead to new potential treatments for obesity and related morbidities.

  3. Regulation of energy homeostasis via GPR120

    Directory of Open Access Journals (Sweden)

    Atsuhiko eIchimura

    2014-07-01

    Full Text Available Free fatty acids (FFAs are fundamental units of key nutrients. FFAs exert various biological functions, depending on the chain length and degree of desaturation. Recent studies have shown that several FFAs act as ligands of G-protein-coupled receptors (GPCRs, activate intracellular signaling and exert physiological functions via these GPCRs. GPR120 (also known as free fatty acid receptor 4, FFAR4 is activated by unsaturated medium- to long-chain FFAs and has a critical role in various physiological homeostasis mechanisms such as incretin hormone secretion, food preference, anti-inflammation and adipogenesis. Recent studies showed that a lipid sensor GPR120 has a key role in sensing dietary fat in white adipose tissue and regulates the whole body energy homeostasis in both humans and rodents. Genetic study in human identified the loss-of-functional mutation of GPR120 associated with obesity and insulin resistance. In addition, dysfunction of GPR120 has been linked as a novel risk factor for diet-induced obesity. This review aims to provide evidence from the recent development in physiological function of GPR120 and discusses its functional roles in regulation of energy homeostasis and its potential as drug targets.

  4. Bitter taste receptors influence glucose homeostasis.

    Science.gov (United States)

    Dotson, Cedrick D; Zhang, Lan; Xu, Hong; Shin, Yu-Kyong; Vigues, Stephan; Ott, Sandra H; Elson, Amanda E T; Choi, Hyun Jin; Shaw, Hillary; Egan, Josephine M; Mitchell, Braxton D; Li, Xiaodong; Steinle, Nanette I; Munger, Steven D

    2008-01-01

    TAS1R- and TAS2R-type taste receptors are expressed in the gustatory system, where they detect sweet- and bitter-tasting stimuli, respectively. These receptors are also expressed in subsets of cells within the mammalian gastrointestinal tract, where they mediate nutrient assimilation and endocrine responses. For example, sweeteners stimulate taste receptors on the surface of gut enteroendocrine L cells to elicit an increase in intracellular Ca(2+) and secretion of the incretin hormone glucagon-like peptide-1 (GLP-1), an important modulator of insulin biosynthesis and secretion. Because of the importance of taste receptors in the regulation of food intake and the alimentary responses to chemostimuli, we hypothesized that differences in taste receptor efficacy may impact glucose homeostasis. To address this issue, we initiated a candidate gene study within the Amish Family Diabetes Study and assessed the association of taste receptor variants with indicators of glucose dysregulation, including a diagnosis of type 2 diabetes mellitus and high levels of blood glucose and insulin during an oral glucose tolerance test. We report that a TAS2R haplotype is associated with altered glucose and insulin homeostasis. We also found that one SNP within this haplotype disrupts normal responses of a single receptor, TAS2R9, to its cognate ligands ofloxacin, procainamide and pirenzapine. Together, these findings suggest that a functionally compromised TAS2R receptor negatively impacts glucose homeostasis, providing an important link between alimentary chemosensation and metabolic disease.

  5. Bitter taste receptors influence glucose homeostasis.

    Directory of Open Access Journals (Sweden)

    Cedrick D Dotson

    Full Text Available TAS1R- and TAS2R-type taste receptors are expressed in the gustatory system, where they detect sweet- and bitter-tasting stimuli, respectively. These receptors are also expressed in subsets of cells within the mammalian gastrointestinal tract, where they mediate nutrient assimilation and endocrine responses. For example, sweeteners stimulate taste receptors on the surface of gut enteroendocrine L cells to elicit an increase in intracellular Ca(2+ and secretion of the incretin hormone glucagon-like peptide-1 (GLP-1, an important modulator of insulin biosynthesis and secretion. Because of the importance of taste receptors in the regulation of food intake and the alimentary responses to chemostimuli, we hypothesized that differences in taste receptor efficacy may impact glucose homeostasis. To address this issue, we initiated a candidate gene study within the Amish Family Diabetes Study and assessed the association of taste receptor variants with indicators of glucose dysregulation, including a diagnosis of type 2 diabetes mellitus and high levels of blood glucose and insulin during an oral glucose tolerance test. We report that a TAS2R haplotype is associated with altered glucose and insulin homeostasis. We also found that one SNP within this haplotype disrupts normal responses of a single receptor, TAS2R9, to its cognate ligands ofloxacin, procainamide and pirenzapine. Together, these findings suggest that a functionally compromised TAS2R receptor negatively impacts glucose homeostasis, providing an important link between alimentary chemosensation and metabolic disease.

  6. 山茶籽联合雌二醇对去卵巢大鼠骨重建和骨代谢酶的影响%Affect of Mountain tea seed combined Estradiol on bone remodeling in ovariectomized rats and bone metabolic enzymes

    Institute of Scientific and Technical Information of China (English)

    庞广福; 李海; 陈建海; 王金花; 黎飚

    2012-01-01

    目的:了解山茶籽联合雌二醇对去卵巢大鼠骨重建和骨代谢酶的影响,为山茶籽联合雌二醇治疗I型骨质疏松症提供实验依据.方法:将90只5月龄健康雌性大白鼠分成假手术组(sham)、去卵巢模型组(OVX)、山茶籽组、雌二醇组(E2)、小剂量山茶籽+雌二醇组(Ts+ E2),每组各18只.各实验组在第8、12、16周,随机处死6只大鼠,取左股骨切片观察骨组织,取右股骨测量骨密度,取左心血测量血清雌二醇、碱性磷酸酶.数据进行统计学分析.结果:OVX组的血清雌二醇和骨密度明显低于sham组(P<0.01),而血清碱性磷酸酶明显高于sham组(P<0.01);3个治疗组与sham组相比,各时间的血清雌二醇、碱性磷酸酶、骨密度均无显著性差异(P>0.05).结论:小剂量的雌二醇联合山茶籽对去卵巢大鼠的骨质疏松症的治疗效果与单独使用较大剂量的山茶籽或较大剂量的雌二醇的治疗效果相近.%Objective: To understand the affect of Mountain tea seed combined Estradiol on bone remodeling in ovariectomized rats and bone metabolic enzymes, and to provide experimental basis for the treatment of type I osteoporosis by Mountain tea seed combined Estra-diol. Methods: 5 -month - old healthy female rats 90 were divided into five experimental groups (n = 18) : ①sham operation group (sham); ② model group, ovariectomized (OVX); ③ Mountain tea seed group (Ts), mountain water - soluble alcohol extract tea seed fed, 10 ml/kg, d (quite crude drug 5 g/g); ④ Estradiol (E2), subcutaneous injection of Estradiol 200μg/kg, 2 times / week; ⑤Mountain tea seed + low -dose Estradiol group (Ts + E2) , subcutaneous injection of Estradiol 100 μg/kg, 2 times / week and Mountain tea seed extract water-soluble alcohol fed, 10 ml/kg, d (quite crude drug 2. 5 g/g) . At 8, 12 and 16 weeks, the experimental groups were randomly killed six rats , the left femur bone tissue slices were observed, the density measurements of

  7. Bone graft

    Science.gov (United States)

    ... around the area. The bone graft can be held in place with pins, plates, or screws. Why ... Orthopaedic Surgery, San Francosco, CA. Also reviewed by David Zieve, MD, MHA, Isla Ogilvie, PhD, and the ...

  8. Bone Mineral Density Assessment in Ankylosing Spondylitis and Characteristics of Bone Turnover Parameters

    Directory of Open Access Journals (Sweden)

    Füsun Şahin

    2005-09-01

    Full Text Available Ankylosing spondylitis, characterised with excessive new bone formation and calcification in spine and peripheral joints, causes osteoporosis which is a general component of inflammatory arthritis. Since is excessive bone formation affects bone mineral density, there are problems in diagnosis and follow-up of osteoporosis efforts made for finding the right diagnostic tool. Besides bone metabolism and turn-over in inflammatory diseases should be known in detail, because it has a place in diagnosis and follow-up. In this review, bone mineral density in ankylosing spondylitis, the importance and usage of bone turn-over parameters are discussed in the light of literature data.

  9. LRP6 in mesenchymal stem cells is required for bone formation during bone growth and bone remodeling

    Institute of Scientific and Technical Information of China (English)

    Changjun Li; Bart O Williams; Xu Cao; Mei Wan

    2014-01-01

    Lipoprotein receptor-related protein 6 (LRP6) plays a critical role in skeletal development and homeostasis in adults. However, the role of LRP6 in mesenchymal stem cells (MSCs), skeletal stem cells that give rise to osteoblastic lineage, is unknown. In this study, we generated mice lacking LRP6 expression specifically in nestin1 MSCs by crossing nestin-Cre mice with LRP6flox mice and investigated the functional changes of bone marrow MSCs and skeletal alterations. Mice with LRP6 deletion in nestin1 cells demonstrated reductions in body weight and body length at 1 and 3 months of age. Bone architecture measured by microCT (mCT) showed a significant reduction in bone mass in both trabecular and cortical bone of homozygous and heterozygous LRP6 mutant mice. A dramatic reduction in the numbers of osteoblasts but much less significant reduction in the numbers of osteoclasts was observed in the mutant mice. Osterix1 osteoprogenitors and osteocalcin1 osteoblasts significantly reduced at the secondary spongiosa area, but only moderately decreased at the primary spongiosa area in mutant mice. Bone marrow MSCs from the mutant mice showed decreased colony forming, cell viability and cell proliferation. Thus, LRP6 in bone marrow MSCs is essential for their survival and proliferation, and therefore, is a key positive regulator for bone formation during skeletal growth and remodeling.

  10. Dose-dependent effects of genistein on bone nomeostasis in rats' mandibular subchondral bone

    Institute of Scientific and Technical Information of China (English)

    Yong-qi LI; Xiang-hui XING; Hui WANG; Xi-li WENG; Shi-bin YU; Guang-ying DONG

    2012-01-01

    To investigate the effect of genistein on bone homeostasis in mandibular subchondral bone of rats.Methods:Female SD rats were administered with genistein (10 and 50 mg/kg) or placebo by oral gavage for 6 weeks.Then the animals were sacrificed,and histomorphology and micro-structure of mandibular condyle were examined using HE staining and micro-CT analysis,respectively.The expression levels of alkaline phosphatase (ALP),osteocalcin (OC),osteoprotegerin (OPG),the receptor activator of nuclear factor KB ligand (RANKL) and estrogen receptors (Ers) in mandibular condyle were detected using real-time PCR.Cultured osteoblasts were prepared from rat mandibular condyle for in in vitro study.The cells were treated with genistein (10-7 or 10-4 mol/L) for 48 h.The expression of the bone homeostasis-associated factors and estrogen receptors (Ers) was detected using realtime PCR,and ER silencing was performed.Results:At both the low- and high-doses,genistein significantly increased the bone mineral density (BMD) and bone volume,and resulted in thicker subchondral trabecular bone in vivo.In both in vivo and in vitro study,the low-dose genistein significantly increased the expression of ALP,OC and OPG,but decreased the expression of RANKL and the RANKL/OPG ratio.The high-dose genistein decreased the expression of all these bone homeostasis-associated factors.Both the low and high doses of genistein significantly increased the expression of Erβ,while Erα expression was increased by the low dose genistein and decreased by the high dose genistein.Erβ silencing abrogated most of the effects of genistein treatment.Conclusion:In rat mandibular condylar subchondral bone,low-dose genistein increases bone formation and inhibit bone resorption,while excess genistein inhibits both bone formation and resorption.The effects of genistein were predominantly mediated through Erβ.

  11. Tungsten Promotes Sex-Specific Adipogenesis in the Bone by Altering Differentiation of Bone Marrow-Resident Mesenchymal Stromal Cells.

    Science.gov (United States)

    Bolt, Alicia M; Grant, Michael P; Wu, Ting Hua; Flores Molina, Manuel; Plourde, Dany; Kelly, Alexander D R; Negro Silva, Luis Fernando; Lemaire, Maryse; Schlezinger, Jennifer J; Mwale, Fackson; Mann, Koren K

    2016-04-01

    Tungsten is a naturally occurring metal that increasingly is being incorporated into industrial goods and medical devices, and is recognized as an emerging contaminant. Tungsten preferentially and rapidly accumulates in murine bone in a concentration-dependent manner; however the effect of tungsten deposition on bone biology is unknown. Other metals alter bone homeostasis by targeting bone marrow-derived mesenchymal stromal cell (MSC) differentiation, thus, we investigated the effects of tungsten on MSCsin vitroandin vivoIn vitro, tungsten shifted the balance of MSC differentiation by enhancing rosiglitazone-induced adipogenesis, which correlated with an increase in adipocyte content in the bone of tungsten-exposed, young, male mice. Conversely, tungsten inhibited osteogenesis of MSCsin vitro; however, we found no evidence that tungsten inhibited osteogenesisin vivo Interestingly, two factors known to influence adipogenesis are sex and age of mice. Both female and older mice have enhanced adipogenesis. We extended our study and exposed young female and adult (9-month) male and female mice to tungsten for 4 weeks. Although tungsten accumulated to a similar extent in young female mice, it did not promote adipogenesis. Interestingly, tungsten did not accumulate in the bone of older mice; it was undetectable in adult male mice, and just above the limit of detect in adult female mice. Surprisingly, tungsten enhanced adipogenesis in adult female mice. In summary, we found that tungsten alters bone homeostasis by altering differentiation of MSCs, which could have significant implications for bone quality, but is highly dependent upon sex and age.

  12. Low Bone Density

    Science.gov (United States)

    ... Information › Bone Density Exam/Testing › Low Bone Density Low Bone Density Low bone density is when your ... compared to people with normal bone density. Detecting Low Bone Density A bone density test will determine ...

  13. Nickel metallomics: general themes guiding nickel homeostasis.

    Science.gov (United States)

    Sydor, Andrew M; Zamble, Deborah B

    2013-01-01

    The nickel metallome describes the distribution and speciation of nickel within the cells of organisms that utilize this element. This distribution is a consequence of nickel homeostasis, which includes import, storage, and export of nickel, incorporation into metalloenzymes, and the modulation of these and associated cellular systems through nickel-regulated transcription. In this chapter, we review the current knowledge of the most common nickel proteins in prokaryotic organisms with a focus on their coordination environments. Several underlying themes emerge upon review of these nickel systems, which illustrate the common principles applied by nature to shape the nickel metallome of the cell.

  14. The circadian clock mutation alters sleep homeostasis in the mouse.

    Science.gov (United States)

    Naylor, E; Bergmann, B M; Krauski, K; Zee, P C; Takahashi, J S; Vitaterna, M H; Turek, F W

    2000-11-01

    The onset and duration of sleep are thought to be primarily under the control of a homeostatic mechanism affected by previous periods of wake and sleep and a circadian timing mechanism that partitions wake and sleep into different portions of the day and night. The mouse Clock mutation induces pronounced changes in overall circadian organization. We sought to determine whether this genetic disruption of circadian timing would affect sleep homeostasis. The Clock mutation affected a number of sleep parameters during entrainment to a 12 hr light/dark (LD 12:12) cycle, when animals were free-running in constant darkness (DD), and during recovery from 6 hr of sleep deprivation in LD 12:12. In particular, in LD 12:12, heterozygous and homozygous Clock mutants slept, respectively, approximately 1 and approximately 2 hr less than wild-type mice, and they had 25 and 51% smaller increases in rapid eye movement (REM) sleep during 24 hr recovery, respectively, than wild-type mice. The effects of the mutation on sleep are not readily attributable to differential entrainment to LD 12:12 because the baseline sleep differences between genotypes were also present when animals were free-running in DD. These results indicate that genetic alterations of the circadian clock system and/or its regulatory genes are likely to have widespread effects on a variety of sleep and wake parameters, including the homeostatic regulation of sleep.

  15. Gaucher disease and bone manifestations.

    Science.gov (United States)

    Marcucci, Gemma; Zimran, Ari; Bembi, Bruno; Kanis, John; Reginster, Jean-Yves; Rizzoli, Renè; Cooper, Cyrus; Brandi, Maria Luisa

    2014-12-01

    Gaucher disease is a relatively rare metabolic disease caused by the inherited deficiency of the lysosomal enzyme glucocerebrosidase. Gaucher disease affects multiple organs, among which is the skeleton. Bone involvement occurs frequently in Gaucher disease, and is one of its most debilitating features, reducing the quality of life of patients. Bone status is an important consideration for treatment to ameliorate symptoms and reduce the risk of irreversible complications. We have conducted a systematic review of all the various aspects of Gaucher disease, focusing on different skeletal manifestations, pathophysiology of bone alterations, clinical symptoms, and current diagnostic and therapeutic approaches.

  16. Bone marrow transplant

    Science.gov (United States)

    Transplant - bone marrow; Stem cell transplant; Hematopoietic stem cell transplant; Reduced intensity nonmyeloablative transplant; Mini transplant; Allogenic bone marrow transplant; Autologous bone marrow transplant; Umbilical ...

  17. Mechanistic fracture criteria for the failure of human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Nalla, Ravi K.; Kinney, John H.; Ritchie, Robert O.

    2002-12-13

    A mechanistic understanding of fracture in human bone is critical to predicting fracture risk associated with age and disease. Despite extensive work, a mechanistic framework for describing how the underlying microstructure affects the failure mode in bone is lacking.

  18. The Regulation of Iron Absorption and Homeostasis

    Science.gov (United States)

    Wallace, Daniel F

    2016-01-01

    Iron is an essential element in biology, required for numerous cellular processes. Either too much or too little iron can be detrimental, and organisms have developed mechanisms for balancing iron within safe limits. In mammals there are no controlled mechanisms for the excretion of excess iron, hence body iron homeostasis is regulated at the sites of absorption, utilisation and recycling. This review will discuss the discoveries that have been made in the past 20 years into advancing our understanding of iron homeostasis and its regulation. The study of iron-associated disorders, such as the iron overload condition hereditary haemochromatosis and various forms of anaemia have been instrumental in increasing our knowledge in this area, as have cellular and animal model studies. The liver has emerged as the major site of systemic iron regulation, being the location where the iron regulatory hormone hepcidin is produced. Hepcidin is a negative regulator of iron absorption and recycling, achieving this by binding to the only known cellular iron exporter ferroportin and causing its internalisation and degradation, thereby reducing iron efflux from target cells and reducing serum iron levels. Much of the research in the iron metabolism field has focussed on the regulation of hepcidin and its interaction with ferroportin. The advances in this area have greatly increased our knowledge of iron metabolism and its regulation and have led to the development of novel diagnostics and therapeutics for iron-associated disorders.

  19. Circadian dysregulation disrupts bile acid homeostasis.

    Directory of Open Access Journals (Sweden)

    Ke Ma

    Full Text Available BACKGROUND: Bile acids are potentially toxic compounds and their levels of hepatic production, uptake and export are tightly regulated by many inputs, including circadian rhythm. We tested the impact of disrupting the peripheral circadian clock on integral steps of bile acid homeostasis. METHODOLOGY/PRINCIPAL FINDINGS: Both restricted feeding, which phase shifts peripheral clocks, and genetic ablation in Per1(-/-/Per2(-/- (PERDKO mice disrupted normal bile acid control and resulted in hepatic cholestasis. Restricted feeding caused a dramatic, transient elevation in hepatic bile acid levels that was associated with activation of the xenobiotic receptors CAR and PXR and elevated serum aspartate aminotransferase (AST, indicative of liver damage. In the PERDKO mice, serum bile acid levels were elevated and the circadian expression of key bile acid synthesis and transport genes, including Cyp7A1 and NTCP, was lost. This was associated with blunted expression of a primary clock output, the transcription factor DBP, which transactivates the promoters of both genes. CONCLUSIONS/SIGNIFICANCE: We conclude that disruption of the circadian clock results in dysregulation of bile acid homeostasis that mimics cholestatic disease.

  20. MAVS maintains mitochondrial homeostasis via autophagy

    Science.gov (United States)

    Sun, Xiaofeng; Sun, Liwei; Zhao, Yuanyuan; Li, Ying; Lin, Wei; Chen, Dahua; Sun, Qinmiao

    2016-01-01

    Mitochondrial antiviral signalling protein (MAVS) acts as a critical adaptor protein to transduce antiviral signalling by physically interacting with activated RIG-I and MDA5 receptors. MAVS executes its functions at the outer membrane of mitochondria to regulate downstream antiviral signalling, indicating that the mitochondria provides a functional platform for innate antiviral signalling transduction. However, little is known about whether and how MAVS-mediated antiviral signalling contributes to mitochondrial homeostasis. Here we show that the activation of MAVS is sufficient to induce autophagic signalling, which may mediate the turnover of the damaged mitochondria. Importantly, we find MAVS directly interacts with LC3 through its LC3-binding motif ‘YxxI’, suggesting that MAVS might act as an autophagy receptor to mediate mitochondrial turnover upon excessive activation of RLR signalling. Furthermore, we provide evidence that both MAVS self-aggregation and its interaction with TRAF2/6 proteins are important for MAVS-mediated mitochondrial turnover. Collectively, our findings suggest that MAVS acts as a potential receptor for mitochondria-associated autophagic signalling to maintain mitochondrial homeostasis. PMID:27551434

  1. Intestinal barrier homeostasis in inflammatory bowel disease.

    Science.gov (United States)

    Goll, Rasmus; van Beelen Granlund, Atle

    2015-01-01

    The single-cell thick intestinal epithelial cell (IEC) lining with its protective layer of mucus is the primary barrier protecting the organism from the harsh environment of the intestinal lumen. Today it is clear that the balancing act necessary to maintain intestinal homeostasis is dependent on the coordinated action of all cell types of the IEC, and that there are no passive bystanders to gut immunity solely acting as absorptive or regenerative cells: Mucin and antimicrobial peptides on the epithelial surface are continually being replenished by goblet and Paneth's cells. Luminal antigens are being sensed by pattern recognition receptors on the enterocytes. The enteroendocrine cells sense the environment and coordinate the intestinal function by releasing neuropeptides acting both on IEC and inflammatory cells. All this while cells are continuously and rapidly being regenerated from a limited number of stem cells close to the intestinal crypt base. This review seeks to describe the cell types and structures of the intestinal epithelial barrier supporting intestinal homeostasis, and how disturbance in these systems might relate to inflammatory bowel disease.

  2. Lipoproteins, cholesterol homeostasis and cardiac health

    Directory of Open Access Journals (Sweden)

    Tyler F. Daniels, Karen M. Killinger, Jennifer J. Michal, Raymond W. Wright Jr., Zhihua Jiang

    2009-01-01

    Full Text Available Cholesterol is an essential substance involved in many functions, such as maintaining cell membranes, manufacturing vitamin D on surface of the skin, producing hormones, and possibly helping cell connections in the brain. When cholesterol levels rise in the blood, they can, however, have dangerous consequences. In particular, cholesterol has generated considerable notoriety for its causative role in atherosclerosis, the leading cause of death in developed countries around the world. Homeostasis of cholesterol is centered on the metabolism of lipoproteins, which mediate transport of the lipid to and from tissues. As a synopsis of the major events and proteins that manage lipoprotein homeostasis, this review contributes to the substantial attention that has recently been directed to this area. Despite intense scrutiny, the majority of phenotypic variation in total cholesterol and related traits eludes explanation by current genetic knowledge. This is somewhat disappointing considering heritability estimates have established these traits as highly genetic. Thus, the continued search for candidate genes, mutations, and mechanisms is vital to our understanding of heart disease at the molecular level. Furthermore, as marker development continues to predict risk of vascular illness, this knowledge has the potential to revolutionize treatment of this leading human disease.

  3. Iron homeostasis related genes in rice

    Directory of Open Access Journals (Sweden)

    Gross Jeferson

    2003-01-01

    Full Text Available Iron is essential for plants. However, excess iron is toxic, leading to oxidative stress and decreased productivity. Therefore, plants must use finely tuned mechanisms to keep iron homeostasis in each of their organs, tissues, cells and organelles. A few of the genes involved in iron homeostasis in plants have been identified recently, and we used some of their protein sequences as queries to look for corresponding genes in the rice (Oryza sativa genome. We have assigned possible functions to thirty-nine new rice genes. Together with four previously reported sequences, we analyzed a total of forty-three genes belonging to five known protein families: eighteen YS (Yellow Stripe, two FRO (Fe3+-chelate reductase oxidase, thirteen ZIP (Zinc regulated transporter / Iron regulated transporter Protein, eight NRAMP (Natural Resistance - Associated Macrophage Protein, and two Ferritin proteins. The possible cellular localization and number of potential transmembrane domains were evaluated, and phylogenetic analysis performed for each gene family. Annotation of genomic sequences was performed. The presence and number of homologues in each gene family in rice and Arabidopsis is discussed in light of the established iron acquisition strategies used by each one of these two plants.

  4. Plant transporters involved in heavy metal homeostasis

    Directory of Open Access Journals (Sweden)

    Dorina Podar

    2010-12-01

    Full Text Available Transition metal ions (predominately manganese, iron, cobalt, nickel, copper and zinc havean array of catalytic and regulatory roles in the growth and development of all living organisms.However, an excess of these metal ions can also be toxic to any life form and therefore every cell andwhole organism needs to maintain the concentration of these essential nutrient metals within a narrowrange: a process known as metal homeostasis. Heavy metal ions are taken up into cells by selectivetransporters and as they cannot be degraded, the “desired” levels of metal ions are achieved by anumber of strategies that involve: chelation, sequestration and export out of the cell. Cation DiffusionFacilitators (CDF is a large family of transporters involved in maintaining the cytosolic metalconcentration. They transport different heavy metal divalent ions, but exhibit main affinity for zinc, ironand manganese. Metal Tolerance Proteins (MTPs are a subfamily of the Cation Diffusion Facilitator (CDFfamily found in plants. There has been much interest in these heavy metal transporters in order toprovide an insight into plant metal homeostasis, which has significant implications in human health andphytoremediation. Although data regarding the CDFs/MTPs mechanism is gathering there is still littleinformation with respect to metal selectivity determinants.

  5. Non-myogenic Contribution to Muscle Development and Homeostasis: The Role of Connective Tissues.

    Science.gov (United States)

    Nassari, Sonya; Duprez, Delphine; Fournier-Thibault, Claire

    2017-01-01

    Skeletal muscles belong to the musculoskeletal system, which is composed of bone, tendon, ligament and irregular connective tissue, and closely associated with motor nerves and blood vessels. The intrinsic molecular signals regulating myogenesis have been extensively investigated. However, muscle development, homeostasis and regeneration require interactions with surrounding tissues and the cellular and molecular aspects of this dialogue have not been completely elucidated. During development and adult life, myogenic cells are closely associated with the different types of connective tissue. Connective tissues are defined as specialized (bone and cartilage), dense regular (tendon and ligament) and dense irregular connective tissue. The role of connective tissue in muscle morphogenesis has been investigated, thanks to the identification of transcription factors that characterize the different types of connective tissues. Here, we review the development of the various connective tissues in the context of the musculoskeletal system and highlight their important role in delivering information necessary for correct muscle morphogenesis, from the early step of myoblast differentiation to the late stage of muscle maturation. Interactions between muscle and connective tissue are also critical in the adult during muscle regeneration, as impairment of the regenerative potential after injury or in neuromuscular diseases results in the progressive replacement of the muscle mass by fibrotic tissue. We conclude that bi-directional communication between muscle and connective tissue is critical for a correct assembly of the musculoskeletal system during development as well as to maintain its homeostasis in the adult.

  6. Bone mineral content and bone metabolism in young adults with severe periodontitis

    DEFF Research Database (Denmark)

    Wowern von, N.; Westergaard, J.; Kollerup, G.

    2001-01-01

    Bone loss, bone markers, bone metabolism, bone mineral content, osteoporosis, severe periodontitis......Bone loss, bone markers, bone metabolism, bone mineral content, osteoporosis, severe periodontitis...

  7. [Bone transplant].

    Science.gov (United States)

    San Julián, M; Valentí, A

    2006-01-01

    We describe the methodology of the Bone and Soft Tissue Bank, from extraction and storage until use. Since the year 1986, with the creation of the Bone Bank in the University Clinic of Navarra, more than 3,000 grafts have been used for very different types of surgery. Bone grafts can be classified into cortical and spongy; the former are principally used in surgery to save tumour patients, in large post-traumatic reconstructions and in replacement surgery where there are massive bone defects and a structural support is required. The spongy grafts are the most used due to their numerous indications; they are especially useful in filling cavities that require a significant quantity of graft when the autograft is insufficient, or as a complement. They are also of special help in treating fractures when there is bone loss and in the treatment of delays in consolidation and pseudoarthrosis in little vascularized and atrophic zones. They are also used in prosthetic surgery against the presence of cavity type defects. Allografts of soft tissues are specially recognised in multiple ligament injuries that require reconstructions. Nowadays, the most utilised are those employed in surgery of the anterior cruciate ligament although they can be used for filling any ligament or tendon defect. The principal difficulties of the cortical allografts are in the consolidation of the ends with the bone itself and in tumour surgery, given that these are patients immunodepressed by the treatment, the incidence of infection is increased with respect to spongy grafts and soft tissues, which is irrelevant. In short, the increasingly widespread use of allografts is an essential therapeutic weapon in orthopaedic surgery and traumatology. It must be used by expert hands.

  8. Diabetes mellitus related bone metabolism and periodontal disease

    Institute of Scientific and Technical Information of China (English)

    Ying-Ying Wu; E Xiao; Dana T Graves

    2015-01-01

    Diabetes mellitus and periodontal disease are chronic diseases affecting a large number of populations worldwide. Changed bone metabolism is one of the important long-term complications associated with diabetes mellitus. Alveolar bone loss is one of the main outcomes of periodontitis, and diabetes is among the primary risk factors for periodontal disease. In this review, we summarise the adverse effects of diabetes on the periodontium in periodontitis subjects, focusing on alveolar bone loss. Bone remodelling begins with osteoclasts resorbing bone, followed by new bone formation by osteoblasts in the resorption lacunae. Therefore, we discuss the potential mechanism of diabetes-enhanced bone loss in relation to osteoblasts and osteoclasts.

  9. Pathophysiology of chronic kidney disease-mineral and bone disorder.

    Science.gov (United States)

    Mac Way, Fabrice; Lessard, Myriam; Lafage-Proust, Marie-Hélène

    2012-12-01

    Chronic kidney disease (CKD) alters the metabolism of several minerals, thereby inducing bone lesions and vessel-wall calcifications that can cause functional impairments and excess mortality. The histological bone abnormalities seen in CKD, known as renal osteodystrophy, consist of alterations in the bone turnover rate, which may be increased (osteitis fibrosa [OF]) or severely decreased (adynamic bone disease [AD]); abnormal mineralization (osteomalacia [OM]), and bone loss. Secondary hyperparathyroidism is related to early phosphate accumulation (responsible for FGF23 overproduction by bone tissue), decreased calcitriol production by the kidneys, and hypocalcemia. Secondary hyperparathyroidism is associated with OF. Other factors that affect bone include acidosis, chronic inflammation, nutritional deficiencies, and iatrogenic complications.

  10. Trisomy 12 is seen within a specific subtype of B-cell chronic lymphoproliferative disease affecting the peripheral blood/bone marrow and co-segregates with elevated expression of CD11a.

    Science.gov (United States)

    Su'ut, L; O'Connor, S J; Richards, S J; Jones, R A; Roberts, B E; Davies, F E; Fegan, C D; Jack, A S; Morgan, G J

    1998-04-01

    In order to delineate the specific morphological and immunophenotypic features of B-cell lymphoproliferative disorders associated with trisomy 12, 172 sequential unselected cases of CD19+CD5+ B-cell disorders, primarily affecting the peripheral blood and bone marrow, were studied. Trisomy 12 was found in 24 cases (13.9%), with all cases morphologically classified as either CLL-PL or CLL-mixed by FAB criteria. Trisomy 12 was not found in any cases of typical CLL. Trisomy 12 cases demonstrated a significant higher expression of CD11a (P<0.0001) and CD20 (P<0.0006) when compared to cases with the equivalent morphology and immunophenotype, but without the chromosomal abnormality. Trisomy 12 cases also demonstrated a higher frequency of FMC7, CD38 expression and moderate to strong surface immunoglobulin staining. However, no correlation was detected between the percentages of trisomy 12 cells and cells expressing CD11a, CD38, FMC7 or sIg mean fluorescent intensity. Cells from trisomy 12 positive cases were sorted according to their CD11a expression using fluorescent activated cell sorting. There was a significant increase in the percentage of trisomy 12 cells within the CD11a+ sorted fraction compared to the unsorted population (P < 0.05), implying that trisomy 12 is associated with increased expression of CD11a. With the highly specific morphological and immunophenotypic features demonstrated by trisomy 12 cases in this study, it is highly likely that these cases constitute a specific group of B-cell lymphoproliferative disorders.

  11. Bone mass and bone metabolic indices in male master rowers.

    Science.gov (United States)

    Śliwicka, Ewa; Nowak, Alicja; Zep, Wojciech; Leszczyński, Piotr; Pilaczyńska-Szcześniak, Łucja

    2015-09-01

    The purpose of this study was to assess bone mass and bone metabolic indices in master athletes who regularly perform rowing exercises. The study was performed in 29 men: 14 master rowers and 15 non-athletic, body mass index-matched controls. Dual-energy X-ray absorptiometry measurements of the areal bone mineral density (aBMD) were performed for the total body, regional areas (arms, total forearms, trunk, thoracic spine, pelvis, and legs), lumbar spine (L1-L4), left hip (total hip and femoral neck), and forearm (33 % radius of the dominant and nondominant forearm). Serum concentrations of osteocalcin, collagen type I cross-linked C-telopeptide, visfatin, resistin, insulin, and glucose were determined. Comparative analyses showed significantly lower levels of body fat and higher lean body mass values in the rowers compared to the control group. The rowers also had significantly higher values of total and regional (left arm, trunk, thoracic spine, pelvis, and leg) BMD, as well as higher BMD values for the lumbar spine and the left hip. There were significant differences between the groups with respect to insulin, glucose, and the index of homeostasis model assessment insulin resistance. In conclusion, the systematic training of master rowers has beneficial effects on total and regional BMD and may be recommended for preventing osteoporosis.

  12. SH2 domain–containing adaptor protein B expressed in dendritic cells is involved in T-cell homeostasis by regulating dendritic cell–mediated Th2 immunity

    Science.gov (United States)

    2017-01-01

    Purpose The Src homology 2 domain–containing adaptor protein B (SHB) is widely expressed in immune cells and acts as an important regulator for hematopoietic cell function. SHB silencing induces Th2 immunity in mice. SHB is also involved in T-cell homeostasis in vivo. However, SHB has not yet been studied and addressed in association with dendritic cells (DCs). Materials and Methods The effects of SHB expression on the immunogenicity of DCs were assessed by Shb gene silencing in mouse bone marrow–derived DCs (BMDCs). After silencing, surface phenotype, cytokine expression profile, and T-cell stimulation capacity of BMDCs were examined. We investigated the signaling pathways involved in SHB expression during BMDC development. We also examined the immunogenicity of SHB-knockdown (SHBKD) BMDCs in a mouse atopic dermatitis model. Results SHB was steadily expressed in mouse splenic DCs and in in vitro–generated BMDCs in both immature and mature stages. SHB expression was contingent on activation of the mitogen- activated protein kinase/Foxa2 signaling pathway during DC development. SHBKD increased the expression of MHC class II and costimulatory molecules without affecting the cytokine expression of BMDCs. When co-cultured with T cells, SHBKD in BMDCs significantly induced CD4+ T-cell proliferation and the expression of Th2 cytokines, while the regulatory T cell (Treg) population was downregulated. In mouse atopic dermatitis model, mice inoculated with SHBKD DCs developed more severe symptoms of atopic dermatitis compared with mice injected with control DCs. Conclusion SHB expression in DCs plays an important role in T-cell homeostasis in vivo by regulating DC-mediated Th2 polarization. PMID:28168174

  13. Bone biopsy (image)

    Science.gov (United States)

    A bone biopsy is performed by making a small incision into the skin. A biopsy needle retrieves a sample of bone and it ... examination. The most common reasons for bone lesion biopsy are to distinguish between benign and malignant bone ...

  14. Bone lesion biopsy

    Science.gov (United States)

    Bone biopsy; Biopsy - bone ... needle is gently pushed and twisted into the bone. Once the sample is obtained, the needle is ... sample is sent to a lab for examination. Bone biopsy may also be done under general anesthesia ...

  15. Facts about Broken Bones

    Science.gov (United States)

    ... Room? What Happens in the Operating Room? Broken Bones KidsHealth > For Kids > Broken Bones Print A A ... sticking through the skin . What Happens When a Bone Breaks? It hurts to break a bone! It's ...

  16. Calcium and bones

    Science.gov (United States)

    Bone strength and calcium ... calcium (as well as phosphorus) to make healthy bones. Bones are the main storage site of calcium in ... your body does not absorb enough calcium, your bones can get weak or will not grow properly. ...

  17. Broken Bones (For Parents)

    Science.gov (United States)

    ... Feeding Your 1- to 2-Year-Old Broken Bones KidsHealth > For Parents > Broken Bones Print A A ... bone fragments in place. When Will a Broken Bone Heal? Fractures heal at different rates, depending upon ...

  18. Temporal bone imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lemmerling, Marc [Algemeen Ziekenhuis Sint-Lucas, Gent (Belgium). Dept. of Radiology; Foer, Bert de (ed.) [Sint-Augustinus Ziekenhuis, Wilrijk (Belgium). Dept. of Radiology

    2015-04-01

    Complete overview of imaging of normal and diseased temporal bone. Straightforward structure to facilitate learning. Detailed consideration of newer imaging techniques, including the hot topic of diffusion-weighted imaging. Includes a chapter on anatomy that will be of great help to the novice interpreter of imaging findings. Excellent illustrations throughout. This book provides a complete overview of imaging of normal and diseased temporal bone. After description of indications for imaging and the cross-sectional imaging anatomy of the area, subsequent chapters address the various diseases and conditions that affect the temporal bone and are likely to be encountered regularly in clinical practice. The classic imaging methods are described and discussed in detail, and individual chapters are included on newer techniques such as functional imaging and diffusion-weighted imaging. There is also a strong focus on postoperative imaging. Throughout, imaging findings are documented with the aid of numerous informative, high-quality illustrations. Temporal Bone Imaging, with its straightforward structure based essentially on topography, will prove of immense value in daily practice.

  19. Hereditary hypophosphatemias: new genes in the bone-kidney axis.

    Science.gov (United States)

    Negri, Armando L

    2007-08-01

    Hypophosphatemia due to isolated renal phosphate wasting is a genetically heterogeneous disease. Two new genes linked to two different forms of hereditary hypophosphatemias have recently been described. Autosomal recessive form of hypophosphatemic rickets was mapped to chromosome 4q21 and identified homozygous mutations in dentin matrix protein 1 (DMP1) gene, which encodes a non-collagenous bone matrix protein. Intact plasma levels of the phosphaturic protein FGF23 (fibroblast growth factor 23) were clearly elevated in some of the affected individuals, providing a possible explanation for the phosphaturia and inappropriately normal 1,25(OH)2D levels, and suggesting that DMP1 may regulate FGF23 expression. Hereditary hypophosphatemic rickets with hypercalciuria is another rare disorder of autosomal recessive inheritance. Affected individuals present with hypercalciuria due to increased serum 1,25-dihydroxyvitamin D levels and increased intestinal calcium absorption. The disease was mapped to a 1.6 Mbp region on chromosome 9q34, which contains SLC34A3, the gene encoding the renal sodium-phosphate cotransporter NaPi-IIc. This was the first demonstration that NaPi-IIc has a key role in the regulation of phosphate homeostasis. Thus, DMP1 and NaPi-IIc add two new members to the bone-kidney axis proposed since it was discovered that the first phosphatonin, FGF23, was of osteoblastic/osteocyte origin. This provides a mechanism for the skeleton to communicate with the kidney to coordinate the mineralization of extracelular matrix and the renal handling of phosphate.

  20. Melatonin modulates glucose homeostasis during winter dormancy in a vespertilionid bat, Scotophilus heathi.

    Science.gov (United States)

    Srivastava, Raj Kamal; Krishna, Amitabh

    2010-03-01

    The role for melatonin in glucose homeostasis and insulin resistance is not very clear and has recently been an active area of investigation. The present study investigated the role of melatonin in seasonal accumulation of adipose tissue in Scotophilus heathi, with particular reference to its role in glucose homeostasis and development of insulin resistance. The circulating melatonin levels correlated positively (pinsulin resistance condition which improves after winter when most of the fat has been utilized as a metabolic fuel. The high circulating melatonin levels during the period of maximum body fat at the beginning of winter prepare the bats for winter dormancy by modulating the glucose homeostasis through affecting blood glucose levels, muscle and liver glycogen stores, insulin receptor and glucose transporter 4 (GLUT 4) expression. This is also confirmed by in vivo study in which melatonin injection improves the glucose tolerance, increases muscle insulin receptor and GLUT 4 expression, and enhances glucose clearance from the blood. The results of present study further showed that the effect of melatonin injection on the blood glucose levels is determined by the metabolic state of the bats and may protect from decrease in blood glucose level during extreme starvation, however, melatonin when injected during fed state increases glucose clearance from the blood. In summary, the present study suggested that melatonin interferes with the glucose homeostasis through modulating intracellular glucose transport and may protect bats from hypoglycemia during winter dormancy.

  1. Bone Injury and Repair Trigger Central and Peripheral NPY Neuronal Pathways

    Science.gov (United States)

    Alencastre, Inês S.; Neto, Estrela; Ribas, João; Ferreira, Sofia; Vasconcelos, Daniel M.; Sousa, Daniela M.; Summavielle, Teresa; Lamghari, Meriem

    2016-01-01

    Bone repair is a specialized type of wound repair controlled by complex multi-factorial events. The nervous system is recognized as one of the key regulators of bone mass, thereby suggesting a role for neuronal pathways in bone homeostasis. However, in the context of bone injury and repair, little is known on the interplay between the nervous system and bone. Here, we addressed the neuropeptide Y (NPY) neuronal arm during the initial stages of bone repair encompassing the inflammatory response and ossification phases in femoral-defect mouse model. Spatial and temporal analysis of transcriptional and protein levels of NPY and its receptors, Y1R and Y2R, reported to be involved in bone homeostasis, was performed in bone, dorsal root ganglia (DRG) and hypothalamus after femoral injury. The results showed that NPY system activity is increased in a time- and space-dependent manner during bone repair. Y1R expression was trigged in both bone and DRG throughout the inflammatory phase, while a Y2R response was restricted to the hypothalamus and at a later stage, during the ossification step. Our results provide new insights into the involvement of NPY neuronal pathways in bone repair. PMID:27802308

  2. A novel mouse model for the study of the inhibitory effects of chronic ethanol exposure on direct bone formation

    Science.gov (United States)

    Excessive alcohol consumption has been reported to interfere with human bone homeostasis and repair in multiple ways. Previous studies have demonstrated that chronic ethanol exposure in the rat via an intragastric dietary delivery system inhibits direct bone formation during distraction osteogenesis...

  3. Bone health in children with long–term idiopathic subclinical hypothyroidism

    Directory of Open Access Journals (Sweden)

    Di Mase Raffaella

    2012-10-01

    Full Text Available Abstract Background Subclinical hypothyroidism (SH is a relatively common condition characterized by a mild persistent thyroid failure. The management of children with SH is still a controversial issue and the decision to treat with L-thyroxine represents a clinical dilemma. Thyroid hormone and TSH play an important role in skeletal growth and bone mineral homeostasis. Aim To evaluate whether untreated idiopathic SH may affect bone health in childhood and to compare two different diagnostic tools such as dual-energy X-ray densitometry (DXA and quantitative ultrasound (QUS. Patients and Methods Twenty-five children and adolescents (11 males aged 9.8 ± 3.5 years (range 4.2-18.7 with untreated idiopathic SH were enrolled in the study. SH was diagnosed on the basis of normal FT4 levels with TSH concentrations between 4.2 and 10 mU/l. Children have been followed for 3.3 ± 0.3 years from the time of SH diagnosis. Twenty-five healthy children, age- and sex-matched, were enrolled as controls. Patients and controls underwent DXA to evaluate lumbar spine bone mineral density (BMD and QUS at proximal phalanges of the non-dominant hand to assess bone quality, measured as amplitude-dependent speed of sound (Ad-SoS and bone transmission time (BTT. Results Mean BMD Z-score was −0.4 ± 1.36 in patients and −0.2 ± 1.2 in controls. Mean Ad-SoS Z-score was 0.01 ± 1.0 in patients and 0.1 ± 1.2 in controls and mean BTT Z-score was −0.03 ± 0.8 and 0.04 ± 1.1 respectively. All values were within the normal range, both in patients and in controls. There were no statistically significant differences between the two groups. Conclusion Bone health, evaluated by lumbar spine DXA and phalangeal QUS, is not impaired in our children, despite long-term duration of idiopathic SH. Data about bone status provided by QUS are comparable to those provided by DXA. Therefore, QUS may represent a good, cheaper and safe screening test for bone evaluation in children with SH.

  4. Bone densitometry

    DEFF Research Database (Denmark)

    Ravn, Pernille; Alexandersen, P; Møllgaard, A

    1999-01-01

    The bisphosphonates have been introduced as alternatives to hormone replacement therapy (HRT) for the treatment and prevention of postmenopausal osteoporosis. The expected increasing application in at clinical practice demands cost-effective and easily handled methods to monitor the effect on bone...

  5. Growth and differentiation of a long bone in limb development, repair and regeneration.

    Science.gov (United States)

    Egawa, Shiro; Miura, Shinichirou; Yokoyama, Hitoshi; Endo, Tetsuya; Tamura, Koji

    2014-06-01

    Repair from traumatic bone fracture is a complex process that includes mechanisms of bone development and bone homeostasis. Thus, elucidation of the cellular/molecular basis of bone formation in skeletal development would provide valuable information on fracture repair and would lead to successful skeletal regeneration after limb amputation, which never occurs in mammals. Elucidation of the basis of epimorphic limb regeneration in amphibians would also provide insights into skeletal regeneration in mammals, since the epimorphic regeneration enables an amputated limb to re-develop the three-dimensional structure of bones. In the processes of bone development, repair and regeneration, growth of the bone is achieved through several events including not only cell proliferation but also aggregation of mesenchymal cells, enlargement of cells, deposition and accumulation of extracellular matrix, and bone remodeling.

  6. Nutrients other than carbohydrates: their effects on glucose homeostasis in humans.

    Science.gov (United States)

    Heer, Martina; Egert, Sarah

    2015-01-01

    Besides carbohydrates, other nutrients, such as dietary protein and amino acids; the supply of fat, vitamin D, and vitamin K; and sodium intake seem to affect glucose homeostasis. Although their effect is less pronounced than that of the amount and composition of carbohydrates, it seems reasonable to consider how nutrient intake habits may be modified to support an improved glucose homeostasis. For instance, taking into account the effect of some nutrients to lower blood glucose concentration on a day-by-day basis might support improvement of glucose homeostasis in the long run. On the other hand, lowering sodium intake too much, as recommended to avoid the development of hypertension, particularly in sodium-sensitive people, might lead to insulin resistance and thereby might risk increasing fasting as well as postprandial blood glucose concentrations. This review summarizes the state of our knowledge of how several nutrients other than carbohydrates, such as protein, fatty acids, vitamin D, vitamin K, magnesium, zinc, chromium, and sodium, affect blood glucose concentrations. Sufficient evidence exists to show that, in prospective studies based on randomized controlled trials, these selected nutrients affect blood glucose regulation. The review describes potential mechanisms leading to the observed effect. As much as is possible from the available data, the extent of the effect, is considered.

  7. Environmental stresses disrupt telomere length homeostasis.

    Directory of Open Access Journals (Sweden)

    Gal Hagit Romano

    Full Text Available Telomeres protect the chromosome ends from degradation and play crucial roles in cellular aging and disease. Recent studies have additionally found a correlation between psychological stress, telomere length, and health outcome in humans. However, studies have not yet explored the causal relationship between stress and telomere length, or the molecular mechanisms underlying that relationship. Using yeast as a model organism, we show that stresses may have very different outcomes: alcohol and acetic acid elongate telomeres, whereas caffeine and high temperatures shorten telomeres. Additional treatments, such as oxidative stress, show no effect. By combining genome-wide expression measurements with a systematic genetic screen, we identify the Rap1/Rif1 pathway as the central mediator of the telomeric response to environmental signals. These results demonstrate that telomere length can be manipulated, and that a carefully regulated homeostasis may become markedly deregulated in opposing directions in response to different environmental cues.

  8. Satellite Cell Heterogeneity in Skeletal Muscle Homeostasis.

    Science.gov (United States)

    Tierney, Matthew T; Sacco, Alessandra

    2016-06-01

    The cellular turnover required for skeletal muscle maintenance and repair is mediated by resident stem cells, also termed satellite cells. Satellite cells normally reside in a quiescent state, intermittently entering the cell cycle to fuse with neighboring myofibers and replenish the stem cell pool. However, the mechanisms by which satellite cells maintain the precise balance between self-renewal and differentiation necessary for long-term homeostasis remain unclear. Recent work has supported a previously unappreciated heterogeneity in the satellite cell compartment that may underlie the observed variability in cell fate and function. In this review, we examine the work supporting this notion as well as the potential governing principles, developmental origins, and principal determinants of satellite cell heterogeneity.

  9. Cholesterol metabolism and homeostasis in the brain.

    Science.gov (United States)

    Zhang, Juan; Liu, Qiang

    2015-04-01

    Cholesterol is an essential component for neuronal physiology not only during development stage but also in the adult life. Cholesterol metabolism in brain is independent from that in peripheral tissues due to blood-brain barrier. The content of cholesterol in brain must be accurately maintained in order to keep brain function well. Defects in brain cholesterol metabolism has been shown to be implicated in neurodegenerative diseases, such as Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), and some cognitive deficits typical of the old age. The brain contains large amount of cholesterol, but the cholesterol metabolism and its complex homeostasis regulation are currently poorly understood. This review will seek to integrate current knowledge about the brain cholesterol metabolism with molecular mechanisms.

  10. Mechanics of epithelial tissue homeostasis and morphogenesis.

    Science.gov (United States)

    Guillot, Charlène; Lecuit, Thomas

    2013-06-07

    Epithelia are robust tissues that support the structure of embryos and organs and serve as effective barriers against pathogens. Epithelia also chemically separate different physiological environments. These vital functions require tight association between cells through the assembly of junctions that mechanically stabilize the tissue. Remarkably, epithelia are also dynamic and can display a fluid behavior. Cells continuously die or divide, thereby allowing functional tissue homeostasis. Epithelial cells can change shape or intercalate as tissues deform during morphogenesis. We review the mechanical basis of tissue robustness and fluidity, with an emphasis on the pivotal role of junction dynamics. Tissue fluidity emerges from local active stresses acting at cell interfaces and allows the maintenance of epithelial organization during morphogenesis and tissue renewal.

  11. Interference between nanoparticles and metal homeostasis

    Science.gov (United States)

    Petit, A. N.; Aude Garcia, C.; Candéias, S.; Casanova, A.; Catty, P.; Charbonnier, P.; Chevallet, M.; Collin-Faure, V.; Cuillel, M.; Douki, T.; Herlin-Boime, N.; Lelong, C.; Luche, S.; Mintz, E.; Moulis, J. M.; Nivière, V.; Ollagnier de Choudens, S.; Rabilloud, T.; Ravanat, J. L.; Sauvaigo, S.; Carrière, M.; Michaud-Soret, I.

    2011-07-01

    The TiO2 nanoparticles (NPs) are now produced abundantly and widely used in a variety of consumer products. Due to the important increase in the production of TiO2-NPs, potential widespread exposure of humans and environment may occur during both the manufacturing process and final use. Therefore, the potential toxicity of TiO2-NPs on human health and environment has attracted particular attention. Unfortunately, the results of the large number of studies on the toxicity of TiO2-NPs differ significantly, mainly due to an incomplete characterization of the used nanomaterials in terms of size, shape and crystalline structure and to their unknown state of agglomeration/aggregation. The purpose of our project entitled NanoBioMet is to investigate if interferences between nanoparticles and metal homeostasis could be observed and to study the toxicity mechanisms of TiO2-NPs with well-characterized physicochemical parameters, using proteomic and molecular approaches. A perturbation of metal homeostasis will be evaluated upon TiO2-NPs exposure which could generate reactive oxygen species (ROS) production. Moreover, oxidative stress consequences such as DNA damage and lipid peroxidation will be studied. The toxicity of TiO2-NPs of different sizes and crystalline structures will be evaluated both in prokaryotic (E. coli) and eukaryotic cells (A549 human pneumocytes, macrophages, and hepatocytes). First results of the project will be presented concerning the dispersion of TiO2-NPs in bacterial medium, proteomic studies on total extracts of macrophages and genotoxicity on pneumocytes.

  12. Cyclophilin A in cardiovascular homeostasis and diseases.

    Science.gov (United States)

    Satoh, Kimio

    2015-01-01

    Vascular homeostasis is regulated by complex interactions between many vascular cell components, including endothelial cells, vascular smooth muscle cells (VSMCs), adventitial inflammatory cells, and autonomic nervous system. The balance between oxidant and antioxidant systems determines intracellular redox status, and their imbalance can cause oxidative stress. Excessive oxidative stress is one of the important stimuli that induce cellular damage and dysregulation of vascular cell components, leading to vascular diseases through multiple pathways. Cyclophilin A (CyPA) is one of the causative proteins that mediate oxidative stress-induced cardiovascular dysfunction. CyPA was initially discovered as the intracellular receptor of the immunosuppressive drug cyclosporine 30 years ago. However, recent studies have established that CyPA is secreted from vascular cell components, such as endothelial cells and VSMCs. Extracellular CyPA augments the development of cardiovascular diseases. CyPA secretion is regulated by Rho-kinase, which contributes to the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion injury, hypertension, pulmonary hypertension, and heart failure. We recently reported that plasma CyPA levels are significantly higher in patients with coronary artery disease, which is associated with increased numbers of stenotic coronary arteries and the need for coronary intervention in such patients. Furthermore, we showed that the vascular erythropoietin (Epo)/Epo receptor system plays an important role in production of nitric oxide and maintenance of vascular redox state and homeostasis, with a potential mechanistic link to the Rho-kinase-CyPA pathway. In this article, I review the data on the protective role of the vascular Epo/Epo receptor system and discuss the roles of the CyPA/Rho-kinase system in cardiovascular diseases.

  13. Interference between nanoparticles and metal homeostasis

    Energy Technology Data Exchange (ETDEWEB)

    Petit, A N; Catty, P; Charbonnier, P; Cuillel, M; Mintz, E; Moulis, J M; Niviere, V; Choudens, S Ollagnier de [Laboratoire de Chimie et Biologie des Metaux UMR 5249 CEA-CNRS-UJF, 17 rue des Martyrs, 38054 Grenoble Cedex 09 (France); Garcia, C Aude; Candeias, S; Chevallet, M; Collin-Faure, V; Lelong, C; Luche, S; Rabilloud, T [Laboratoire de Biochimie et Biophysique des Systemes Integres UMR 5092 CNRS-CEA-UJF, 17 rue des martyrs, 38054 Grenoble Cedex 09 (France); Casanova, A; Herlin-Boime, N [Laboratoire Edifices Nanometriques URA 2453 CEA-CNRS-IRAMIS, 91191 Gif-sur-Yvette (France); Douki, T; Ravanat, J L; Sauvaigo, S, E-mail: isabelle.michaud-soret@cea.fr [Laboratoire Lesions des Acides Nucleiques UMR E3 CEA-UJF, 17 rue des Martyrs, 38054 Grenoble Cedex 09 (France)

    2011-07-06

    The TiO{sub 2} nanoparticles (NPs) are now produced abundantly and widely used in a variety of consumer products. Due to the important increase in the production of TiO{sub 2}-NPs, potential widespread exposure of humans and environment may occur during both the manufacturing process and final use. Therefore, the potential toxicity of TiO{sub 2}-NPs on human health and environment has attracted particular attention. Unfortunately, the results of the large number of studies on the toxicity of TiO{sub 2}-NPs differ significantly, mainly due to an incomplete characterization of the used nanomaterials in terms of size, shape and crystalline structure and to their unknown state of agglomeration/aggregation. The purpose of our project entitled NanoBioMet is to investigate if interferences between nanoparticles and metal homeostasis could be observed and to study the toxicity mechanisms of TiO{sub 2}-NPs with well-characterized physicochemical parameters, using proteomic and molecular approaches. A perturbation of metal homeostasis will be evaluated upon TiO{sub 2}-NPs exposure which could generate reactive oxygen species (ROS) production. Moreover, oxidative stress consequences such as DNA damage and lipid peroxidation will be studied. The toxicity of TiO{sub 2}-NPs of different sizes and crystalline structures will be evaluated both in prokaryotic (E. coli) and eukaryotic cells (A549 human pneumocytes, macrophages, and hepatocytes). First results of the project will be presented concerning the dispersion of TiO{sub 2}-NPs in bacterial medium, proteomic studies on total extracts of macrophages and genotoxicity on pneumocytes.

  14. Bifunctional Bisphosphonates for Delivering Biomolecules to Bone

    Science.gov (United States)

    2012-01-13

    Osteoporosis primarily affects women after menopause (11). In general, menopause limits estrogen , which has an anti-resorptive characteristic, in the...several bone diseases. Since bisphosphonates (BPs) are known to have high affinity to bone mineral and are being widely used in treatment of osteoporosis ...diseases. Since bisphosphonates (BPs) are known to have high affinity to bone mineral and are being widely used in treatment of osteoporosis , they are well

  15. A Brief Review of Bone Adaptation to Unloading

    Institute of Scientific and Technical Information of China (English)

    Ping Zhang; Kazunori Hamamura; Hiroki Yokota

    2008-01-01

    Weight-bearing bone is constantly adapting its structure and function to mechanical environments. Loading through routine exercises stimulates bone formation and prevents bone loss, but unloading through bed rest and cast immobilization as well as exposure to weightlessness during spaceflight reduces its mass and strength. In order to elucidate the mechanism underlying unloading-driven bone adaptation, ground-based in vitro and in vivo analyses have been conducted using rotating cell culturing and hindlimb suspension. Focusing on gene expression studies in osteoblasts and hindlimb suspension studies, this minireview introduces our recent understanding on bone homeostasis under weightlessness in space. Most of the existing data indicate that unloading has the opposite effects to loading through common signaling pathways. However, a question remains as to whether any pathway unique to unloading (and not to loading) may exist.

  16. Maxillary sinus lift with solely autogenous bone compared to a combination of autogenous bone and growth factors or (solely) bone substitutes. A systematic review : a systematic review

    NARCIS (Netherlands)

    Rickert, D.; Slater, J. J. R. Huddleston; Meijer, H. J. A.; Vissink, A.; Raghoebar, G. M.

    2012-01-01

    Literature regarding the outcome of maxillary sinus floor elevation to create sufficient bone fraction to enable implant placement was systematically reviewed. Bone fraction and implant survival rate were assessed to determine whether grafting material or applied growth factor affected bone fraction

  17. Inulin, oligofructose and bone health: experimental approaches and mechanisms.

    Science.gov (United States)

    Weaver, Connie M

    2005-04-01

    Inulin-type fructans have been proposed to benefit mineral retention, thereby enhancing bone health. Many, but not all, experimental animal studies have shown increased mineral absorption by feeding non-digestible oligosaccharides. Possible reasons for inconsistencies are explored. A few studies have reported an enhanced bone mineral density or content. Bone health can be evaluated in chronic feeding studies with bone densitometry, bone breaking strength, bone mineral concentration and bone structure. Isotopic Ca tracers can be used to determine the point of metabolism affected by feeding a functional food ingredient. These methods and the effects of feeding inulin-type fructose are reviewed. Inulin-type fructans enhance Mg retention. Chicory long-chain inulin and oligofructose enhance femoral Ca content, bone mineral density and Ca retention through enhanced Ca absorption and suppressed bone turnover rates, but it is not bone-promoting under all conditions.

  18. Limb bone morphology, bone strength, and cursoriality in lagomorphs.

    Science.gov (United States)

    Young, Jesse W; Danczak, Robert; Russo, Gabrielle A; Fellmann, Connie D

    2014-10-01

    The primary aim of this study is to broadly evaluate the relationship between cursoriality (i.e. anatomical and physiological specialization for running) and limb bone morphology in lagomorphs. Relative to most previous studies of cursoriality, our focus on a size-restricted, taxonomically narrow group of mammals permits us to evaluate the degree to which 'cursorial specialization' affects locomotor anatomy independently of broader allometric and phylogenetic trends that might obscure such a relationship. We collected linear morphometrics and μCT data on 737 limb bones covering three lagomorph species that differ in degree of cursoriality: pikas (Ochotona princeps, non-cursorial), jackrabbits (Lepus californicus, highly cursorial), and rabbits (Sylvilagus bachmani, level of cursoriality intermediate between pikas and jackrabbits). We evaluated two hypotheses: cursoriality should be associated with (i) lower limb joint mechanical advantage (i.e. high 'displacement advantage', permitting more cursorial species to cycle their limbs more quickly) and (ii) longer, more gracile limb bones, particularly at the distal segments (as a means of decreasing rotational inertia). As predicted, highly cursorial jackrabbits are typically marked by the lowest mechanical advantage and the longest distal segments, non-cursorial pikas display the highest mechanical advantage and the shortest distal segments, and rabbits generally display intermediate values for these variables. Variation in long bone robusticity followed a proximodistal gradient. Whereas proximal limb bone robusticity declined with cursoriality, distal limb bone robusticity generally remained constant across the three species. The association between long, structurally gracile limb bones and decreased maximal bending strength suggests that the more cursorial lagomorphs compromise proximal limb bone integrity to improve locomotor economy. In contrast, the integrity of distal limb bones is maintained with increasing

  19. The Effects of Cosmos caudatus (Ulam Raja Supplementation on Serum and Bone Minerals Levels in Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    Norazlina Mohamed

    2016-10-01

    Full Text Available Summary. Osteoporosis is a consequence of estrogen deficiency and has been associated with oxidative stress. Cosmos caudatus (ulam raja, a local plant, has been shown to improve bone histomorphometry in ovariectomized rats. This study further determined the effects of Cosmos caudatus on serum and bone minerals levels in ovariectomised rats. Female Sprague Dawley rats were divided into 4 groups, (I sham operated (SO (II ovariectomised  (OVX (III ovariectomised + 500mg/kg Cosmos caudatus extract (CC and (IV ovariectomised + estrogen 64.5 ug/kg of rat weight (E2. Rats were treated for 8 weeks. Ovariectomy reduced serum calcium and phosphate levels compared to SO group (p = 0.042 for both but did not cause any changes in bone minerals levels. Groups treated with CC and E2 showed significant increase in serum calcium levels (p= 0.018 for both and serum phosphate levels (p= 0.016, p= 0.002 respectively compared to ovariectomized group. However, both Cosmos caudatus and E2 did not affect the minerals levels of femur and fifth lumbar bones (L5. In conclusion, Cosmos caudatus is comparable to estrogen in improving estrogen deficient-induced osteoporosis by maintaining serum minerals homeostasis. Industrial relevance. Osteoporosis has grown to be a major concern especially among postmenopausal women. Studies have been done extensively in finding alternative treatment for osteoporosis. This is in view of the various side effects caused by the existing treatment agents such as estrogen. Cosmos caudatus, one of the local plants, has been explored and was observed to improve bone histomorphometric in ovariectomised rats. It has also been shown to enhance fracture healing in ovariectomized rats. This study further examined the effects of Cosmos caudatus on minerals homeostasis which further proved the effectiveness of this plant as an alternative treatment for osteoporosis. Keywords. Cosmos caudatus; estrogen; bone minerals; serum minerals

  20. Mechanosensitive subcellular rheostasis drives emergent single-cell mechanical homeostasis

    Science.gov (United States)

    Weng, Shinuo; Shao, Yue; Chen, Weiqiang; Fu, Jianping

    2016-09-01

    Mechanical homeostasis--a fundamental process by which cells maintain stable states under environmental perturbations--is regulated by two subcellular mechanotransducers: cytoskeleton tension and integrin-mediated focal adhesions (FAs). Here, we show that single-cell mechanical homeostasis is collectively driven by the distinct, graduated dynamics (rheostasis) of subcellular cytoskeleton tension and FAs. Such rheostasis involves a mechanosensitive pattern wherein ground states of cytoskeleton tension and FA determine their distinct reactive paths through either relaxation or reinforcement. Pharmacological perturbations of the cytoskeleton and molecularly modulated integrin catch-slip bonds biased the rheostasis and induced non-homeostasis of FAs, but not of cytoskeleton tension, suggesting a unique sensitivity of FAs in regulating homeostasis. Theoretical modelling revealed myosin-mediated cytoskeleton contractility and catch-slip-bond-like behaviours in FAs and the cytoskeleton as sufficient and necessary mechanisms for quantitatively recapitulating mechanosensitive rheostasis. Our findings highlight the previously underappreciated physical nature of the mechanical homeostasis of cells.

  1. A conceptual framework for homeostasis: development and validation.

    Science.gov (United States)

    McFarland, Jenny; Wenderoth, Mary Pat; Michael, Joel; Cliff, William; Wright, Ann; Modell, Harold

    2016-06-01

    We have developed and validated a conceptual framework for understanding and teaching organismal homeostasis at the undergraduate level. The resulting homeostasis conceptual framework details critical components and constituent ideas underlying the concept of homeostasis. It has been validated by a broad range of physiology faculty members from community colleges, primarily undergraduate institutions, research universities, and medical schools. In online surveys, faculty members confirmed the relevance of each item in the framework for undergraduate physiology and rated the importance and difficulty of each. The homeostasis conceptual framework was constructed as a guide for teaching and learning of this critical core concept in physiology, and it also paves the way for the development of a concept inventory for homeostasis.

  2. Disorders of the calcium-sensing receptor and partner proteins: insights into the molecular basis of calcium homeostasis

    Science.gov (United States)

    Hannan, Fadil M; Babinsky, Valerie N

    2016-01-01

    The extracellular calcium (Ca2+o)-sensing receptor (CaSR) is a family C G protein-coupled receptor, which detects alterations in Ca2+o concentrations and modulates parathyroid hormone secretion and urinary calcium excretion. The central role of the CaSR in Ca2+o homeostasis has been highlighted by the identification of mutations affecting the CASR gene on chromosome 3q21.1. Loss-of-function CASR mutations cause familial hypocalciuric hypercalcaemia (FHH), whereas gain-of-function mutations lead to autosomal dominant hypocalcaemia (ADH). However, CASR mutations are only detected in ≤70% of FHH and ADH cases, referred to as FHH type 1 and ADH type 1, respectively, and studies in other FHH and ADH kindreds have revealed these disorders to be genetically heterogeneous. Thus, loss- and gain-of-function mutations of the GNA11 gene on chromosome 19p13.3, which encodes the G-protein α-11 (Gα11) subunit, lead to FHH type 2 and ADH type 2, respectively; whilst loss-of-function mutations of AP2S1 on chromosome 19q13.3, which encodes the adaptor-related protein complex 2 sigma (AP2σ) subunit, cause FHH type 3. These studies have demonstrated Gα11 to be a key mediator of downstream CaSR signal transduction, and also revealed a role for AP2σ, which is involved in clathrin-mediated endocytosis, in CaSR signalling and trafficking. Moreover, FHH type 3 has been demonstrated to represent a more severe FHH variant that may lead to symptomatic hypercalcaemia, low bone mineral density and cognitive dysfunction. In addition, calcimimetic and calcilytic drugs, which are positive and negative CaSR allosteric modulators, respectively, have been shown to be of potential benefit for these FHH and ADH disorders. PMID:27647839

  3. Nutrition Society Medal lecture. The role of the skeleton in acid-base homeostasis.

    Science.gov (United States)

    New, Susan A

    2002-05-01

    Nutritional strategies for optimising bone health throughout the life cycle are extremely important, since a dietary approach is more popular amongst osteoporosis sufferers than drug intervention, and long-term drug treatment compliance is relatively poor. As an exogenous factor, nutrition is amenable to change and has relevant public health implications. With the growing increase in life expectancy, hip fractures are predicted to rise dramatically in the next decade, and hence there is an urgent need for the implementation of public health strategies to target prevention of poor skeletal health on a population-wide basis. The role that the skeleton plays in acid-base homeostasis has been gaining increasing prominence in the literature; with theoretical considerations of the role alkaline bone mineral may play in the defence against acidosis dating as far back as the late 19th century. Natural, pathological and experimental states of acid loading and/or acidosis have been associated with hypercalciuria and negative Ca balance and, more recently, the detrimental effects of 'acid' from the diet on bone mineral have been demonstrated. At the cellular level, a reduction in extracellular pH has been shown to have a direct enhancement on osteoclastic activity, with the result of increased resorption pit formation in bone. A number of observational, experimental, clinical and intervention studies over the last decade have suggested a positive link between fruit and vegetable consumption and the skeleton. Further research is required, particularly with regard to the influence of dietary manipulation using alkali-forming foods on fracture prevention. Should the findings prove conclusive, a 'fruit and vegetable' approach to bone health maintenance may provide a very sensible (and natural) alternative therapy for osteoporosis treatment, which is likely to have numerous additional health-related benefits.

  4. Controlled release pharmaceutical composition useful for the treatment of diseases and conditions affecting metabolism and/or structural integrity of cartilage and/or bone in male comprises strontium salt

    DEFF Research Database (Denmark)

    2004-01-01

    NOVELTY - A controlled release pharmaceutical composition comprises a strontium salt in an amount for once daily oral administration. USE - For the treatment and/or prophylaxis of a cartilage and/or bone disease and/or conditions resulting in a dysregulation of cartilage and/or bone metabolism......, not more than 70 and at least70 in the first 30 minutes, first 4 hours and first 14 hours, respectively. DETAILED DESCRIPTION - An INDEPENDENT CLAIM is included for a pharmaceutical composition containing the strontium salt, a drug substance that induces osteoporosis and a carrier....

  5. Tamarind Seed (Tamarindus indica) Extract Ameliorates Adjuvant-Induced Arthritis via Regulating the Mediators of Cartilage/Bone Degeneration, Inflammation and Oxidative Stress.

    Science.gov (United States)

    Sundaram, Mahalingam S; Hemshekhar, Mahadevappa; Santhosh, Martin S; Paul, Manoj; Sunitha, Kabburahalli; Thushara, Ram M; NaveenKumar, Somanathapura K; Naveen, Shivanna; Devaraja, Sannaningaiah; Rangappa, Kanchugarakoppal S; Kemparaju, Kempaiah; Girish, Kesturu S

    2015-06-10

    Medicinal plants are employed in the treatment of human ailments from time immemorial. Several studies have validated the use of medicinal plant products in arthritis treatment. Arthritis is a joint disorder affecting subchondral bone and cartilage. Degradation of cartilage is principally mediated by enzymes like matrix metalloproteinases (MMPs), hyaluronidases (HAase), aggrecanases and exoglycosidases. These enzymes act upon collagen, hyaluronan and aggrecan of cartilage respectively, which would in turn activate bone deteriorating enzymes like cathepsins and tartrate resistant acid phosphatases (TRAP). Besides, the incessant action of reactive oxygen species and the inflammatory mediators is reported to cause further damage by immunological activation. The present study demonstrated the anti-arthritic efficacy of tamarind seed extract (TSE). TSE exhibited cartilage and bone protecting nature by inhibiting the elevated activities of MMPs, HAase, exoglycosidases, cathepsins and TRAP. It also mitigated the augmented levels of inflammatory mediators like interleukin (IL)-1β, tumor necrosis factor-α, IL-6, IL-23 and cyclooxygenase-2. Further, TSE administration alleviated increased levels of ROS and hydroperoxides and sustained the endogenous antioxidant homeostasis by balancing altered levels of endogenous antioxidant markers. Overall, TSE was observed as a potent agent abrogating arthritis-mediated cartilage/bone degradation, inflammation and associated stress in vivo demanding further attention.

  6. Lower fibroblast growth factor 23 levels in young adults with Crohn disease as a possible secondary compensatory effect on the disturbance of bone and mineral metabolism.

    Science.gov (United States)

    Oikonomou, Konstantinos A; Orfanidou, Timoklia I; Vlychou, Marianna K; Kapsoritakis, Andreas N; Tsezou, Aspasia; Malizos, Konstantinos N; Potamianos, Spyros P

    2014-01-01

    Fibroblast growth factor 23 (FGF-23) is a bone-derived circulating phosphaturic factor that decreases serum concentration of phosphate and vitamin D, suggested to actively participate in a complex renal-gastrointestinal-skeletal axis. Serum FGF-23 concentrations, as well as various other laboratory parameters involved in bone homeostasis, were measured and analyzed with regard to various diseases and patients' characteristics in 44 patients with Crohn disease (CD) and 20 healthy controls (HCs) included in this cross-sectional study. Serum FGF-23 levels were significantly lower in patients with CD (900.42 ± 815.85pg/mL) compared with HC (1410.94 ± 1000.53pg/mL), p = 0.037. Further analyses suggested FGF-23 as a factor independent from various parameters including age (r = -0.218), body mass index (r = -0.115), 25-hydroxy vitamin D (r = 0.126), parathyroid hormone (r = 0.084), and bone mineral density (BMD) of hip and lumbar (r = 0.205 and r = 0.149, respectively). This observation remained even after multivariate analyses, exhibiting that BMD was not affected by FGF-23, although parameters such as age (p = 0.026), cumulative prednisolone dose (p vitamin D levels, showing no impact on BMD determination of young adults with CD. The downregulation of serum FGF-23 levels in CD appears as a secondary compensatory effect on the bone and mineral metabolism induced by chronic intestinal inflammation.

  7. Abnormal calcium homeostasis in peripheral neuropathies.

    Science.gov (United States)

    Fernyhough, Paul; Calcutt, Nigel A

    2010-02-01

    Abnormal neuronal calcium (Ca2+) homeostasis has been implicated in numerous diseases of the nervous system. The pathogenesis of two increasingly common disorders of the peripheral nervous system, namely neuropathic pain and diabetic polyneuropathy, has been associated with aberrant Ca2+ channel expression and function. Here we review the current state of knowledge regarding the role of Ca2+ dyshomeostasis and associated mitochondrial dysfunction in painful and diabetic neuropathies. The central impact of both alterations of Ca2+ signalling at the plasma membrane and also intracellular Ca2+ handling on sensory neurone function is discussed and related to abnormal endoplasmic reticulum performance. We also present new data highlighting sub-optimal axonal Ca2+ signalling in diabetic neuropathy and discuss the putative role for this abnormality in the induction of axonal degeneration in peripheral neuropathies. The accumulating evidence implicating Ca2+ dysregulation in both painful and degenerative neuropathies, along with recent advances in understanding of regional variations in Ca2+ channel and pump structures, makes modulation of neuronal Ca2+ handling an increasingly viable approach for therapeutic interventions against the painful and degenerative aspects of many peripheral neuropathies.

  8. DYSREGULATION OF ION HOMEOSTASIS BY ANTIFUNGAL AGENTS

    Directory of Open Access Journals (Sweden)

    Yongqiang eZhang

    2012-04-01

    Full Text Available Ion signaling and transduction networks are central to fungal development and virulence because they regulate gene expression, filamentation, host association and invasion, pathogen stress response and survival. Dysregulation of ion homeostasis rapidly mediates cell death, forming the mechanistic basis by which a growing number of amphipathic but structurally unrelated compounds elicit antifungal activity. Included in this group is carvacrol, a terpenoid phenol that is a prominent component of oregano and other plant essential oils. Carvacrol triggers an early dose dependent Ca2+ burst and long lasting pH changes in the model yeast S. cerevisiae. The distinct phases of ionic transients and a robust transcriptional response that overlaps with Ca2+ stress and nutrient starvation point to specific signaling events elicited by plant terpenoid phenols, rather than a non-specific lesion of the membrane as was previously considered. We discuss the potential use of plant essential oils and other agents that disrupt ion signaling pathways as chemosensitizers to augment conventional antifungal therapy, and to convert fungistatic drugs with strong safety profiles into fungicides.

  9. Regulation of energy homeostasis by GPR41

    Directory of Open Access Journals (Sweden)

    Daisuke eInoue

    2014-05-01

    Full Text Available Imbalances in energy regulation lead to metabolic disorders such as obesity and diabetes. Diet plays an essential role in the maintenance of body energy homeostasis by acting not only as energy source but also as a signaling modality. Excess energy increases energy expenditure, leading to a consumption of them. In addition to glucose, mammals utilize short-chain fatty acids (SCFAs, which are produced by colonic bacterial fermentation of dietary fiber, as a metabolic fuel. The roles of SCFAs in energy regulation have remained unclear, although the roles of glucose are well studied. Recently, a G protein-coupled receptor (GPCR deorphanizing strategy successfully identified GPR41 (also called free fatty acid receptor 3 or FFAR3 as a receptor for SCFAs. GPR41 is expressed in adipose tissue, gut, and the peripheral nervous system, and it is involved in SCFA-dependent energy regulation. In this mini-review, we focus on the role of GPR41 in host energy regulation.

  10. Cellular Auxin Homeostasis:Gatekeeping Is Housekeeping

    Institute of Scientific and Technical Information of China (English)

    Michel Ruiz Rosquete; Elke Barbez; Jürgen Kleine-Vehn

    2012-01-01

    The phytohormone auxin is essential for plant development and contributes to nearly every aspect of the plant life cycle.The spatio-temporal distribution of auxin depends on a complex interplay between auxin metabolism and cell-to-cell auxin transport.Auxin metabolism and transport are both crucial for plant development;however,it largely remains to be seen how these processes are integrated to ensure defined cellular auxin levels or even gradients within tissues or organs.In this review,we provide a glance at very diverse topics of auxin biology,such as biosynthesis,conjugation,oxidation,and transport of auxin.This broad,but certainly superficial,overview highlights the mutual importance of auxin metabolism and transport.Moreover,it allows pinpointing how auxin metabolism and transport get integrated to jointly regulate cellular auxin homeostasis.Even though these processes have been so far only separately studied,we assume that the phytohormonal crosstalk integrates and coordinates auxin metabolism and transport.Besides the integrative power of the global hormone signaling,we additionally introduce the hypothetical concept considering auxin transport components as gatekeepers for auxin responses.

  11. Dysregulation of glutathione homeostasis in neurodegenerative diseases.

    Science.gov (United States)

    Johnson, William M; Wilson-Delfosse, Amy L; Mieyal, John J

    2012-10-09

    Dysregulation of glutathione homeostasis and alterations in glutathione-dependent enzyme activities are increasingly implicated in the induction and progression of neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's diseases, amyotrophic lateral sclerosis, and Friedreich's ataxia. In this review background is provided on the steady-state synthesis, regulation, and transport of glutathione, with primary focus on the brain. A brief overview is presented on the distinct but vital roles of glutathione in cellular maintenance and survival, and on the functions of key glutathione-dependent enzymes. Major contributors to initiation and progression of neurodegenerative diseases are considered, including oxidative stress, protein misfolding, and protein aggregation. In each case examples of key regulatory mechanisms are identified that are sensitive to changes in glutathione redox status and/or in the activities of glutathione-dependent enzymes. Mechanisms of dysregulation of glutathione and/or glutathione-dependent enzymes are discussed that are implicated in pathogenesis of each neurodegenerative disease. Limitations in information or interpretation are identified, and possible avenues for further research are described with an aim to elucidating novel targets for therapeutic interventions. The pros and cons of administration of N-acetylcysteine or glutathione as therapeutic agents for neurodegenerative diseases, as well as the potential utility of serum glutathione as a biomarker, are critically evaluated.

  12. Molecular and clinical aspects of iron homeostasis: From anemia to hemochromatosis.

    Science.gov (United States)

    Nairz, Manfred; Weiss, Günter

    2006-08-01

    The discovery in recent years of a plethora of new genes whose products are implicated in iron homeostasis has led to rapid expansion of our knowledge in the field of iron metabolism and its underlying complex regulation in both health and disease. Abnormalities of iron metabolism are among the most common disorders encountered in practical medicine and may have significant negative impact on physical condition and life expectancy. Basic insights into the principles of iron homeostasis and the pathophysiological and clinical consequences of iron overload, iron deficiency and misdistribution are thus of crucial importance in modern medicine. This review summarizes our current understanding of human iron metabolism and focuses on the clinically relevant features of hereditary and secondary hemochromatosis, iron deficiency anemia, anemia of chronic disease and anemia of critical illness. The interconnections between iron metabolism and immunity are also addressed, in as much as they may affect the risk and course of infections and malignancies.

  13. PROBABILISTIC PERCEPTION, EMPATHY AND DYNAMIC HOMEOSTASIS: INSIGHTS IN AUTISM SPECTRUM DISORDERS AND CONDUCT DISORDERS

    Directory of Open Access Journals (Sweden)

    Jean Marc eGuile

    2014-01-01

    Full Text Available Homeostasis is not a permanent and stable state but instead results from conflicting forces. Therefore infants have to engage in dynamic exchanges with their environment, on biological, cognitive and affective domains. Empathy is an adaptive response to these environmental challenges, which contributes to reaching proper dynamic homeostasis and development. Empathy relies on implicit interactive processes, namely probabilistic perception and synchrony, which will be reviewed in the article. If typically-developped neonates are fully equipped to automatically and synchronously interact with their human environment, Conduct Disorders (CD and Autism Spectrum Disorders (ASD present with impairments in empathetic communication, e.g. emotional arousal and facial emotion processing . In addition sensorimotor resonance is lacking in ASD and emotional concern impaired in CD with Callous-Unemotional traits.

  14. Fluoride inhibits the response of bone cells to mechanical loading

    NARCIS (Netherlands)

    Willems, H.M.E.; van den Heuvel, E.G.H.M.; Castelein, S.; Keverling Buisman, J.; Bronckers, A.L.J.J.; Bakker, A.D.; Klein-Nulend, J.

    2011-01-01

    The response of bone cells to mechanical loading is mediated by the cytoskeleton. Since the bone anabolic agent fluoride disrupts the cytoskeleton, we investigated whether fluoride affects the response of bone cells to mechanical loading, and whether this is cytoskeleton mediated. The mechano-respon

  15. Carbonic anhydrase 5 regulates acid-base homeostasis in zebrafish.

    Directory of Open Access Journals (Sweden)

    Ruben Postel

    Full Text Available The regulation of the acid-base balance in cells is essential for proper cellular homeostasis. Disturbed acid-base balance directly affects cellular physiology, which often results in various pathological conditions. In every living organism, the protein family of carbonic anhydrases regulate a broad variety of homeostatic processes. Here we describe the identification, mapping and cloning of a zebrafish carbonic anhydrase 5 (ca5 mutation, collapse of fins (cof, which causes initially a collapse of the medial fins followed by necrosis and rapid degeneration of the embryo. These phenotypical characteristics can be mimicked in wild-type embryos by acetazolamide treatment, suggesting that CA5 activity in zebrafish is essential for a proper development. In addition we show that CA5 regulates acid-base balance during embryonic development, since lowering the pH can compensate for the loss of CA5 activity. Identification of selective modulators of CA5 activity could have a major impact on the development of new therapeutics involved in the treatment of a variety of disorders.

  16. The role of biological clock in glucose homeostasis 

    Directory of Open Access Journals (Sweden)

    Piotr Chrościcki

    2013-06-01

    Full Text Available The mechanism of the biological clock is based on a rhythmic expression of clock genes and clock-controlled genes. As a result of their transcripto-translational associations, endogenous rhythms in the synthesis of key proteins of various physiological and metabolic processes are created. The major timekeeping mechanism for these rhythms exists in the central nervous system. The master circadian clock, localized in suprachiasmatic nucleus (SCN, regulates multiple metabolic pathways, while feeding behavior and metabolite availability can in turn regulate the circadian clock. It is also suggested that in the brain there is a food entrainable oscillator (FEO or oscillators, resulting in activation of both food anticipatory activity and hormone secretion that control digestion processes. Moreover, most cells and tissues express autonomous clocks. Maintenance of the glucose homeostasis is particularly important for the proper function of the body, as this sugar is the main source of energy for the brain, retina, erythrocytes and skeletal muscles. Thus, glucose production and utilization are synchronized in time. The hypothalamic excited orexin neurons control energy balance of organism and modulate the glucose production and utilization. Deficiency of orexin action results in narcolepsy and weight gain, whereas glucose and amino acids can affect activity of the orexin cells. Large-scale genetic studies in rodents and humans provide evidence for the involvement of disrupted clock gene expression rhythms in the pathogenesis of obesity and type 2 diabetes. In general, the current lifestyle of the developed modern societies disturbs the action of biological clock. 

  17. Renal Cell Carcinoma Metastasized to Pagetic Bone.

    Science.gov (United States)

    Ramirez, Ashley; Liu, Bo; Rop, Baiywo; Edison, Michelle; Valente, Michael; Burt, Jeremy

    2016-01-01

    Paget's disease of the bone, historically known as osteitis deformans, is an uncommon disease typically affecting individuals of European descent. Patients with Paget's disease of the bone are at increased risk for primary bone neoplasms, particularly osteosarcoma. Many cases of metastatic disease to pagetic bone have been reported. However, renal cell carcinoma metastasized to pagetic bone is extremely rare. A 94-year-old male presented to the emergency department complaining of abdominal pain. A computed tomography scan of the abdomen demonstrated a large mass in the right kidney compatible with renal cell carcinoma. The patient was also noted to have Paget's disease of the pelvic bones and sacrum. Within the pagetic bone of the sacrum, there was an enhancing mass compatible with renal cell carcinoma. A subsequent biopsy of the renal lesion confirmed renal cell carcinoma. Paget's disease of the bone places the patient at an increased risk for bone neoplasms. The most commonly reported sites for malignant transformation are the femur, pelvis, and humerus. In cases of malignant transformation, osteosarcoma is the most common diagnosis. Breast, lung, and prostate carcinomas are the most common to metastasize to pagetic bone. Renal cell carcinoma associated with Paget's disease of the bone is very rare, with only one prior reported case. Malignancy in Paget's disease of the bone is uncommon with metastatic disease to pagetic bone being extremely rare. We report a patient diagnosed with concomitant renal cell carcinoma and metastatic disease within Paget's disease of the sacrum. Further research is needed to assess the true incidence of renal cell carcinoma associated with pagetic bone.

  18. Dating of cremated bones

    NARCIS (Netherlands)

    Lanting, JN; Aerts-Bijma, AT; van der Plicht, J; Boaretto, E.; Carmi, I.

    2001-01-01

    When dating unburnt bone, bone collagen, the organic fraction of the bone, is used. Collagen does not survive the heat of the cremation pyre, so dating of cremated bone has been considered impossible. Structural carbonate in the mineral fraction of the bone, however, survives the cremation process.

  19. Maternal vitamin D status in pregnancy and offspring bone development: the unmet needs of vitamin D era.

    Science.gov (United States)

    Karras, S N; Anagnostis, P; Bili, E; Naughton, D; Petroczi, A; Papadopoulou, F; Goulis, D G

    2014-03-01

    Data from animal and human studies implicate maternal vitamin D deficiency during pregnancy as a significant risk factor for several adverse outcomes affecting maternal, fetal, and child health. The possible associations of maternal vitamin D status and offspring bone development comprise a significant public health issue. Evidence from randomized trials regarding maternal vitamin D supplementation for optimization of offspring bone mass is lacking. In the same field, data from observational studies suggest that vitamin D supplementation is not indicated. Conversely, supplementation studies provided evidence that vitamin D has beneficial effects on neonatal calcium homeostasis. Nevertheless, a series of issues, such as technical difficulties of current vitamin D assays and functional interplay among vitamin D analytes, prohibit arrival at safe conclusions. Future studies would benefit from adoption of a gold standard assay, which would unravel the functions of vitamin D analytes. This narrative review summarizes and discusses data from both observational and supplementation studies regarding maternal vitamin D status during pregnancy and offspring bone development.

  20. Cell Biology of Thiazide Bone Effects

    Science.gov (United States)

    Gamba, Gerardo; Riccardi, Daniela

    2008-09-01

    The thiazide-sensitive Na+:Cl- cotransporter (NCC) is the major pathway for salt reabsorption in the mammalian kidney. The activity of NCC is not only related to salt metabolism, but also to calcium and magnesium homeostasis due to the inverse relationship between NCC activity and calcium reabsorption. Hence, the thiazide-type diuretics that specifically block NCC have been used for years, not only for treatment of hypertension and edematous disease, but also for the management of renal stone disease. Epidemiological studies have shown that chronic thiazide treatment is associated with higher bone mineral density and reduced risk of bone fractures, which can only partly be explained in terms of their effects on the kidney. In this regard, we have recently shown that NCC is expressed in bone cells and that inhibition of NCC in bone, either by thiazides or by reduction of NCC protein with specific siRNA, is associated with increased mineralization in vitro. These observations open a field of study to begin to understand the cell biology of the beneficial effects of thiazides in bone.

  1. In vivo bone biocompatibility and degradation of porous fumarate-based polymer/alumoxane nanocomposites for bone tissue engineering.

    NARCIS (Netherlands)

    Mistry, A.S.; Pham, Q.P.; Schouten, C.; Yeh, T.; Christenson, E.M.; Mikos, A.G.; Jansen, J.A.

    2010-01-01

    The objective of this study was to determine how the incorporation of surface-modified alumoxane nanoparticles into a biodegradable fumarate-based polymer affects in vivo bone biocompatibility (characterized by direct bone contact and bone ingrowth) and in vivo degradability. Porous scaffolds were f

  2. Bone mass and turnover in fibromyalgia

    DEFF Research Database (Denmark)

    Jacobsen, Søren; Gam, A; Egsmose, C

    1993-01-01

    Physical inactivity accelerates bone loss. Since patients with fibromyalgia are relatively physically inactive, bone mass and markers of bone metabolism were determined in 12 premenopausal women with fibromyalgia and in healthy age matched female control subjects. No differences were found...... in lumbar bone mineral density, femoral neck bone mineral density, serum levels of alkaline phosphatase, osteocalcin, ionized calcium and phosphate. The urinary excretion of both hydroxyproline and calcium relative to urinary creatinine excretion was significantly higher in patients with fibromyalgia, p = 0.......01. This was linked to lower urinary creatinine excretion (p = 0.02) probably reflecting lower physical activity in the patients with fibromyalgia. We conclude that bone mass and turnover are generally not affected in premenopausal women with fibromyalgia....

  3. A diet high in meat protein and potential renal acid load increases fractional Ca absorption and urinary Ca excretion, without affecting markers of bone resorption or formation in postmenopausal women

    Science.gov (United States)

    Objective: The objective was to determine the effects of high dietary protein (mostly meat) and high potential renal acid load (PRAL) on calcium (Ca) balance and markers of bone metabolism. Methods: In a randomized crossover design, sixteen healthy postmenopausal women consumed two diets: one with l...

  4. Fifty years of human space travel: implications for bone and calcium research.

    Science.gov (United States)

    Smith, S M; Abrams, S A; Davis-Street, J E; Heer, M; O'Brien, K O; Wastney, M E; Zwart, S R

    2014-01-01

    Calcium and bone metabolism remain key concerns for space travelers, and ground-based models of space flight have provided a vast literature to complement the smaller set of reports from flight studies. Increased bone resorption and largely unchanged bone formation result in the loss of calcium and bone mineral during space flight, which alters the endocrine regulation of calcium metabolism. Physical, pharmacologic, and nutritional means have been used to counteract these changes. In 2012, heavy resistance exercise plus good nutritional and vitamin D status were demonstrated to reduce loss of bone mineral density on long-duration International Space Station missions. Uncertainty continues to exist, however, as to whether the bone is as strong after flight as it was before flight and whether nutritional and exercise prescriptions can be optimized during space flight. Findings from these studies not only will help future space explorers but also will broaden our understanding of the regulation of bone and calcium homeostasis on Earth.

  5. The Bone Marrow-Derived Stromal Cells: Commitment and Regulation of Adipogenesis

    Science.gov (United States)

    Tencerova, Michaela; Kassem, Moustapha

    2016-01-01

    Bone marrow (BM) microenvironment represents an important compartment of bone that regulates bone homeostasis and the balance between bone formation and bone resorption depending on the physiological needs of the organism. Abnormalities of BM microenvironmental dynamics can lead to metabolic bone diseases. BM stromal cells (also known as skeletal or mesenchymal stem cells) [bone marrow stromal stem cell (BMSC)] are multipotent stem cells located within BM stroma and give rise to osteoblasts and adipocytes. However, cellular and molecular mechanisms of BMSC lineage commitment to adipocytic lineage and regulation of BM adipocyte formation are not fully understood. In this review, we will discuss recent findings pertaining to identification and characterization of adipocyte progenitor cells in BM and the regulation of differentiation into mature adipocytes. We have also emphasized the clinical relevance of these findings. PMID:27708616

  6. Reduced Bone Mineral Density and Bone Metabolism in Aquaporin-1 Knockout Mice

    Institute of Scientific and Technical Information of China (English)

    WU Qing-tian; MA Qing-jie; HE Cheng-yan; WANG Cai-xia; GAO Shi; HOU Xia; MA Tong-hui

    2007-01-01

    An overt phenotype of aquaporin-1 knockout(AQP1 ko) mice is growth retardation, suggesting possible defects in bone development and metabolism. In the present study, we analyzed the bone mineral density(BMD), bone calcium and phosphorus contents, and bone metabolism in an AQP1 ko mouse model. The BMD of femurs in AQP1 ko mice was significantly lower than that of litter-matched wildtype mice as measured by dual energy X-ray absorptiometry. Consistently, the contents of bone total calcium and phosphorus were also significantly lower in AQP1 ko mice. The reduced BMD caused by AQP1 deficiency mainly affect male mice. Bone metabolic activity, as indicated by 99mTc-MDP absorption measurements, was remarkably reduced in AQP1 ko mice. These results provide the first evidence that AQP1 play an important role in bone structure and metabolism.

  7. Vitamin D and Bone Disease

    Directory of Open Access Journals (Sweden)

    S. Christodoulou

    2013-01-01

    Full Text Available Vitamin D is important for normal development and maintenance of the skeleton. Hypovitaminosis D adversely affects calcium metabolism, osteoblastic activity, matrix ossification, bone remodeling and bone density. It is well known that Vit. D deficiency in the developing skeleton is related to rickets, while in adults is related to osteomalacia. The causes of rickets include conditions that lead to hypocalcemia and/or hypophosphatemia, either isolated or secondary to vitamin D deficiency. In osteomalacia, Vit. D deficiency leads to impairment of the mineralisation phase of bone remodeling and thus an increasing amount of the skeleton being replaced by unmineralized osteoid. The relationship between Vit. D and bone mineral density and osteoporosis are still controversial while new evidence suggests that Vit. D may play a role in other bone conditions such as osteoarthritis and stress fractures. In order to maintain a “good bone health” guidelines concerning the recommended dietary intakes should be followed and screening for Vit. D deficiency in individuals at risk for deficiency is required, followed by the appropriate action.

  8. Bone changes in alcoholic liver disease

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Alcoholism has been associated with growth impairment,osteomalacia, delayed fracture healing, and asepticnecrosis (primarily necrosis of the femoral head), butthe main alterations observed in the bones of alcoholicpatients are osteoporosis and an increased risk offractures. Decreased bone mass is a hallmark of osteoporosis,and it may be due either to decreased bone synthesis and/or to increased bone breakdown. Ethanolmay affect both mechanisms. It is generally acceptedthat ethanol decreases bone synthesis, and most authorshave reported decreased osteocalcin levels (a "marker" ofbone synthesis), but some controversy exists regardingthe effect of alcohol on bone breakdown, and, indeed,disparate results have been reported for telopeptideand other biochemical markers of bone resorption.In addition to the direct effect of ethanol, systemicalterations such as malnutrition, malabsorption, liverdisease, increased levels of proinflammatory cytokines,alcoholic myopathy and neuropathy, low testosteronelevels, and an increased risk of trauma, play contributoryroles. The treatment of alcoholic bone disease should beaimed towards increasing bone formation and decreasingbone degradation. In this sense, vitamin D and calciumsupplementation, together with biphosphonates areessential, but alcohol abstinence and nutritional improvementare equally important. In this review we study thepathogenesis of bone changes in alcoholic liver diseaseand discuss potential therapies.

  9. Optimizing Bone Health in Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Jason L. Buckner

    2015-01-01

    Full Text Available Duchenne muscular dystrophy (DMD is an X-linked recessive disorder characterized by progressive muscle weakness, with eventual loss of ambulation and premature death. The approved therapy with corticosteroids improves muscle strength, prolongs ambulation, and maintains pulmonary function. However, the osteoporotic impact of chronic corticosteroid use further impairs the underlying reduced bone mass seen in DMD, leading to increased fragility fractures of long bones and vertebrae. These serious sequelae adversely affect quality of life and can impact survival. The current clinical issues relating to bone health and bone health screening methods in DMD are presented in this review. Diagnostic studies, including biochemical markers of bone turnover and bone mineral density by dual energy X-ray absorptiometry (DXA, as well as spinal imaging using densitometric lateral spinal imaging, and treatment to optimize bone health in patients with DMD are discussed. Treatment with bisphosphonates offers a method to increase bone mass in these children; oral and intravenous bisphosphonates have been used successfully although treatment is typically reserved for children with fractures and/or bone pain with low bone mass by DXA.

  10. Cytokines and growth factors which regulate bone cell function

    Science.gov (United States)

    Seino, Yoshiki

    Everybody knows that growth factors are most important in making bone. Hormones enhance bone formation from a long distance. Growth factors promote bone formation as an autocrine or paracrine factor in nearby bone. BMP-2 through BMP-8 are in the TGF-β family. BMP makes bone by enchondral ossification. In bone, IGF-II is most abundant, second, TGF-β, and third IGF-I. TGF-β enhances bone formation mainly by intramembranous ossification in vivo. TGF-β affects both cell proliferation and differentiation, however, TGF-β mainly enhances bone formation by intramembranous ossification. Interestingly, TGF-β is increased by estrogen(E 2), androgen, vitamin D, TGF-β and FGF. IGF-I and IGF-II also enhance bone formation. At present it remains unclear why IGF-I is more active in bone formation than IGF-II, although IGF-II is more abundant in bone compared to IGF-I. However, if only type I receptor signal transduction promotes bone formation, the strong activity of IGF-I in bone formation is understandable. GH, PTH and E 2 promotes IGF-I production. Recent data suggest that hormones containing vitamin D or E 2 enhance bone formation through growth factors. Therefore, growth factors are the key to clarifying the mechanism of bone formation.

  11. Microelements for bone boost: the last but not the least

    Science.gov (United States)

    Pepa, Giuseppe Della; Brandi, Maria Luisa

    2016-01-01

    Summary Osteoporosis is a major public health problem affects many millions of people around the world. It is a metabolic bone disease characterized by loss of bone mass and strength, resulting in increased risk of fractures. Several lifestyle factors are considered to be important determinants of it and nutrition can potentially have a positive impact on bone health, in the development and maintenance of bone mass and in the prevention of osteoporosis. There are potentially numerous nutrients and dietary components that can influence bone health, and these range from the macronutrients to micronutrients. In the last decade, epidemiological studies and clinical trials showed micronutrients can potentially have a positive impact on bone health, preventing bone loss and fractures, decreasing bone resorption and increasing bone formation. Consequently, optimizing micronutrients intake might represent an effective and low-cost preventive measure against osteoporosis. PMID:28228778

  12. Evidence for auto/paracrine actions of vitamin D in bone: 1α-Hydroxylase expression and activity in human bone cells

    NARCIS (Netherlands)

    M. van Driel (Marjolein); M. Koedam (Marijke); C.J. Buurman (Cok); M. Hewison; H. Chiba (Hideki); A.G. Uitterlinden (André); H.A.P. Pols (Huib); J.P.T.M. van Leeuwen (Hans)

    2006-01-01

    textabstractVitamin D is an important regulator of mineral homeostasis and bone metabolism. 1α-Hydroxylation of 25-(OH)D3 to form the bioactive vitamin D hormone, 1α,25-(OH)2D3, is classically considered to take place in the kidney. However, 1α-hydroxylase has been reported at extrarenal sites. Whet

  13. Effect of lysosomotropic molecules on cellular homeostasis.

    Science.gov (United States)

    Kuzu, Omer F; Toprak, Mesut; Noory, M Anwar; Robertson, Gavin P

    2017-03-01

    Weak bases that readily penetrate through the lipid bilayer and accumulate inside the acidic organelles are known as lysosomotropic molecules. Many lysosomotropic compounds exhibit therapeutic activity and are commonly used as antidepressant, antipsychotic, antihistamine, or antimalarial agents. Interestingly, studies also have shown increased sensitivity of cancer cells to certain lysosomotropic agents and suggested their mechanism of action as a promising approach for selective destruction of cancer cells. However, their chemotherapeutic utility may be limited due to various side effects. Hence, understanding the homeostatic alterations mediated by lysosomotropic compounds has significant importance for revealing their true therapeutic potential as well as toxicity. In this review, after briefly introducing the concept of lysosomotropism and classifying the lysosomotropic compounds into two major groups according to their cytotoxicity on cancer cells, we focused on the subcellular alterations mediated by class-II lysosomotropic compounds. Briefly, their effect on intracellular cholesterol homeostasis, autophagy and lysosomal sphingolipid metabolism was discussed. Accordingly, class-II lysosomotropic molecules inhibit intracellular cholesterol transport, leading to the accumulation of cholesterol inside the late endosomal-lysosomal cell compartments. However, the accumulated lysosomal cholesterol is invisible to the cellular homeostatic circuits, hence class-II lysosomotropic molecules also upregulate cholesterol synthesis pathway as a downstream event. Considering the fact that Niemann-Pick disease, a lysosomal cholesterol storage disorder, also triggers similar pathologic abnormalities, this review combines the knowledge obtained from the Niemann-Pick studies and lysosomotropic compounds. Taken together, this review is aimed at allowing readers a better understanding of subcellular alterations mediated by lysosomotropic drugs, as well as their potential

  14. Role of presenilins in neuronal calcium homeostasis.

    Science.gov (United States)

    Zhang, Hua; Sun, Suya; Herreman, An; De Strooper, Bart; Bezprozvanny, Ilya

    2010-06-23

    Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disorder. Familial AD (FAD) mutations in presenilins have been linked to calcium (Ca(2+)) signaling abnormalities. To explain these results, we previously proposed that presenilins function as endoplasmic reticulum (ER) passive Ca(2+) leak channels. To directly investigate the role of presenilins in neuronal ER Ca(2+) homeostasis, we here performed a series of Ca(2+) imaging experiments with primary neuronal cultures from conditional presenilin double-knock-out mice (PS1(dTAG/dTAG), PS2(-/-)) and from triple-transgenic AD mice (KI-PS1(M146V), Thy1-APP(KM670/671NL), Thy1-tau(P301L)). Obtained results provided additional support to the hypothesis that presenilins function as ER Ca(2+) leak channels in neurons. Interestingly, we discovered that presenilins play a major role in ER Ca(2+) leak function in hippocampal but not in striatal neurons. We further discovered that, in hippocampal neurons, loss of presenilin-mediated ER Ca(2+) leak function was compensated by an increase in expression and function of ryanodine receptors (RyanRs). Long-term feeding of the RyanR inhibitor dantrolene to amyloid precursor protein-presenilin-1 mice (Thy1-APP(KM670/671NL), Thy1-PS1(L166P)) resulted in an increased amyloid load, loss of synaptic markers, and neuronal atrophy in hippocampal and cortical regions. These results indicate that disruption of ER Ca(2+) leak function of presenilins may play an important role in AD pathogenesis.

  15. Smoking and Bone Health

    Science.gov (United States)

    ... supported by your browser. Home Bone Basics Lifestyle Smoking and Bone Health Publication available in: PDF (85 ... late to adopt new habits for healthy bones. Smoking and Osteoporosis Cigarette smoking was first identified as ...

  16. Homeostasis in the mononuclear phagocyte system.

    Science.gov (United States)

    Jenkins, Stephen J; Hume, David A

    2014-08-01

    The mononuclear phagocyte system (MPS) is a family of functionally related cells including bone marrow precursors, blood monocytes, and tissue macrophages. We review the evidence that macrophages and dendritic cells (DCs) are separate lineages and functional entities, and examine whether the traditional view that monocytes are the immediate precursors of tissue macrophages needs to be refined based upon evidence that macrophages can extensively self-renew and can be seeded from yolk sac/foetal liver progenitors with little input from monocytes thereafter. We review the role of the growth factor colony-stimulating factor (CSF)1, and present a model consistent with the concept of the MPS in which local proliferation and monocyte recruitment are connected to ensure macrophages occupy their well-defined niche in most tissues.

  17. Glucose homeostasis and insulin sensitivity in growth hormone-transgenic mice: a cross-sectional analysis.

    Science.gov (United States)

    Boparai, Ravneet K; Arum, Oge; Khardori, Romesh; Bartke, Andrzej

    2010-10-01

    In contrast to its stimulatory effects on musculature, bone, and organ development, and its lipolytic effects, growth hormone (GH) opposes insulin effects on glucose metabolism. Chronic GH overexposure is thought to result in insulin insensitivity and decreased blood glucose homeostatic control. Yet, despite the importance of this concept for basic biology, as well as human conditions of GH excess or deficiency, no systematic assessment of the impact of GH over- expression on glucose homeostasis and insulin sensitivity has been conducted. We report that male and female adult GH transgenic mice have enhanced glucose tolerance compared to littermate controls and this effect is not dependent on age or on the particular heterologous GH transgene used. Furthermore, increased glucose-stimulated insulin secretion, augmented insulin sensitivity, and muted gluconeogenesis were also observed in bovine GH overexpressing mice. These results show that markedly increased systemic GH concentration in GH-transgenic mice exerts unexpected beneficial effects on glucose homeostasis, presumably via a compensatory increase in insulin release. The counterintuitive nature of these results challenges previously held presumptions of the physiology of these mice and other states of GH overexpression or suppression. In addition, they pose intriguing queries about the relationships between GH, endocrine control of metabolism, and aging.

  18. ERR gamma Regulates Cardiac, Gastric, and Renal Potassium Homeostasis

    NARCIS (Netherlands)

    Alaynick, William A.; Way, James M.; Wilson, Stephanie A.; Benson, William G.; Pei, Liming; Downes, Michael; Yu, Ruth; Jonker, Johan W.; Holt, Jason A.; Rajpal, Deepak K.; Li, Hao; Stuart, Joan; McPherson, Ruth; Remlinger, Katja S.; Chang, Ching-Yi; McDonnell, Donald P.; Evans, Ronald M.; Billin, Andrew N.

    2010-01-01

    Energy production by oxidative metabolism in kidney, stomach, and heart, is primarily expended in establishing ion gradients to drive renal electrolyte homeostasis, gastric acid secretion, and cardiac muscle contraction, respectively. In addition to orchestrating transcriptional control of oxidative

  19. Bone phenotypes in response to gonadotropin misexpression: the role for gonadotropins in postmenopausal osteoporosis

    OpenAIRE

    Mansell, Jason

    2008-01-01

    Jason P MansellDepartment of Oral and Dental Sciences, Division of Oral Medicine, University of Bristol Dental School, Lower Maudlin Street, Bristol, BS1 2LY, UKAbstract: Scant attention has been paid to the potential role of gonadotropins in bone tissue homeostasis. The focus on estrogen and estrogen replacement therapy for osteoporosis as far back as the 1940’s may account for the paucity of gonadotropin studies in bone biology. It is conceivable that prevailing dogma may have sub...

  20. Redox homeostasis: The Golden Mean of healthy living

    Directory of Open Access Journals (Sweden)

    Fulvio Ursini

    2016-08-01

    Full Text Available The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of maintenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the misperception that reactions in redox signaling involve “reactive oxygen species” rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically addressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutritional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of endogenously produced electrophiles

  1. The "love-hate" relationship between osteoclasts and bone matrix.

    Science.gov (United States)

    Rucci, Nadia; Teti, Anna

    2016-01-01

    Osteoclasts are unique cells that destroy the mineralized matrix of the skeleton. There is a "love-hate" relationship between the osteoclasts and the bone matrix, whereby the osteoclast is stimulated by the contact with the matrix but, at the same time, it disrupts the matrix, which, in turn, counteracts this disruption by some of its components. The balance between these concerted events brings about bone resorption to be controlled and to contribute to bone tissue integrity and skeletal health. The matrix components released by osteoclasts are also involved in the local regulation of other bone cells and in the systemic control of organismal homeostasis. Disruption of this regulatory loop causes bone diseases, which may end up with either reduced or increased bone mass, often associated with poor bone quality. Expanding the knowledge on osteoclast-to-matrix interaction could help to counteract these diseases and improve the human bone health. In this article, we will present evidence of the physical, molecular and regulatory relationships between the osteoclasts and the mineralized matrix, discussing the underlying mechanisms as well as their pathologic alterations and potential targeting.

  2. Targeted deletion of Crif1 in mouse epidermis impairs skin homeostasis and hair morphogenesis

    Science.gov (United States)

    Shin, Jung-Min; Choi, Dae-Kyoung; Sohn, Kyung-Cheol; Kim, Ji-Young; Im, Myung; Lee, Young; Seo, Young-Joon; Shong, Minho; Lee, Jeung-Hoon; Kim, Chang Deok

    2017-01-01

    The epidermis, which consists mainly of keratinocytes, acts as a physical barrier to infections by regulating keratinocyte proliferation and differentiation. Hair follicles undergo continuous cycling to produce new one. Therefore, optimum supply of energy from the mitochondria is essential for maintaining skin homeostasis and hair growth. CRIF1 is a mitochondrial protein that regulates mitoribosome-mediated synthesis and insertion of mitochondrial oxidative phosphorylation polypeptides into the mitochondrial membrane in mammals. Recent studies reveal that conditional knockout (cKO) of Crif1 in specific tissues of mice induced mitochondrial dysfunction. To determine whether the mitochondrial function of keratinocytes affects skin homeostasis and hair morphogenesis, we generated epidermis-specific Crif1 cKO mice. Deletion of Crif1 in epidermis resulted in impaired mitochondrial function and Crif1 cKO mice died within a week. Keratinocyte proliferation and differentiation were markedly inhibited in Crif1 cKO mice. Furthermore, hair follicle morphogenesis of Crif1 cKO mice was disrupted by down-regulation of Wnt/β-catenin signaling. These results demonstrate that mitochondrial function in keratinocytes is essential for maintaining epidermal homeostasis and hair follicle morphogenesis. PMID:28317864

  3. Peripheral signals of energy homeostasis as possible markers of training stress in athletes: a review.

    Science.gov (United States)

    Jürimäe, Jaak; Mäestu, Jarek; Jürimäe, Toivo; Mangus, Brent; von Duvillard, Serge P

    2011-03-01

    The importance of physical exercise in regulating energy balance and ultimately body mass is widely recognized. There have been several investigative efforts in describing the regulation of the energy homeostasis. Important in this regulatory system is the existence of several peripheral signals that communicate the status of body energy stores to the hypothalamus including leptin, adiponectin, ghrelin, interleukin-6, interleukin-1β, and tumor necrosis factor-α--different cytokines and other peptides that affect energy homeostasis. In certain circumstances, all these peripheral signals may be used to reveal the condition of the athlete as the result of several months of prolonged exercise training. These hormone and cytokine concentrations characterize a physical stress condition in which different hormone and cytokine responses are apparently linked to changes in physical performance. The possibility to use these peripheral signals as markers of training stress (and possible overreaching/overtraining) in elite athletes should be considered. These measured hormone and cytokine levels could also be used to characterize the physical stress of single exercise session, as the hormone and cytokine response to exercise may actually be a response to the concurrent energy deficit. In summary, different peripheral signals of energy homeostasis may be sensitive to changes in specific training stress and may be useful for predicting the onset of possible overreaching/overtraining in athletes.

  4. Apoptosis as a mechanism of T-regulatory cell homeostasis and suppression.

    Science.gov (United States)

    Yolcu, Esma S; Ash, Shifra; Kaminitz, Ayelet; Sagiv, Yuval; Askenasy, Nadir; Yarkoni, Shai

    2008-01-01

    Activation-induced cell death is a general mechanism of immune homeostasis through negative regulation of clonal expansion of activated immune cells. This mechanism is involved in the maintenance of self- and transplant tolerance through polarization of the immune responses. The Fas/Fas-ligand interaction is a major common executioner of apoptosis in lymphocytes, with a dual role in regulatory T cell (Treg) function: Treg cell homeostasis and Treg cell-mediated suppression. Sensitivity to apoptosis and the patterns of Treg-cell death are of outmost importance in immune homeostasis that affects the equilibrium between cytolytic and suppressor forces in activation and termination of immune activity. Naive innate (naturally occurring) Treg cells present variable sensitivities to apoptosis, related to their turnover rates in tissue under steady state conditions. Following activation, Treg cells are less sensitive to apoptosis than cytotoxic effector subsets. Their susceptibility to apoptosis is influenced by cytokines within the inflammatory environment (primarily interleukin-2), the mode of antigenic stimulation and the proliferation rates. Here, we attempt to resolve some controversies surrounding the sensitivity of Treg cells to apoptosis under various experimental conditions, to delineate the function of cell death in regulation of immunity.

  5. Bone development

    DEFF Research Database (Denmark)

    Tatara, M.R.; Tygesen, Malin Plumhoff; Sawa-Wojtanowicz, B.

    2007-01-01

    The objective of this study was to determine the long-term effect of alpha-ketoglutarate (AKG) administration during early neonatal life on skeletal development and function, with emphasis on bone exposed to regular stress and used to serve for systemic changes monitoring, the rib. Shropshire ram...... lambs were randomly assigned to two weight-matched groups at birth. During the first 14 days of life AKG was administered orally to the experimental group (n=12) at the dosage of 0.1 g/kg body weight per day, while the control group (n=11) received an equal dose of the vehicle. Lambs were slaughtered...... has a long-term effect on skeletal development when given early in neonatal life, and that changes in rib properties serve to improve chest mechanics and functioning in young animals. Moreover, neonatal administration of AKG may be considered as an effective factor enhancing proper development...

  6. Human dental pulp cells exhibit bone cell-like responsiveness to fluid shear stress

    NARCIS (Netherlands)

    Kraft, D.C.E.; Bindslev, D.A.; Melsen, B.; Klein-Nulend, J.

    2011-01-01

    Background aims. For engineering bone tissue to restore, for example, maxillofacial defects, mechanosensitive cells are needed that are able to conduct bone cell-specific functions, such as bone remodelling. Mechanical loading affects local bone mass and architecture in vivo by initiating a cellular

  7. NF-κB in the regulation of epithelial homeostasis and inflammation

    Institute of Scientific and Technical Information of China (English)

    Andy Wullaert; Marion C Bonnet; Manolis Pasparakis

    2011-01-01

    Aging-Associated Diseases(CECAD),University of Cologne,Zülpicher Strasse 47a,50674 Cologne,Germany The IκB kinase/NF-κB signaling pathway has been implicated in the pathogenesis of several inflammatory diseases.Increased activation of NF-κB is often detected in both immune and non-immune cells in tissues affected by chronic inflammation,where it is believed to exert detrimental functions by inducing the expression of proinflammatory mediators that orchestrate and sustain the inflammatory response and cause tissue damage.Thus,increased NF-κB activation is considered an important pathogenic factor in many acute and chronic inflammatory disorders,raising hopes that NF-κB inhibitors could be effective for the treatment of inflammatory diseases.However,ample evidence has accumulated that NF-κB inhibition can also be harmful for the organism,and in some cases trigger the development of inflammation and disease.These findings suggested that NF-κB signaling has important functions for the maintenance of physiological immune homeostasis and for the prevention of inflammatory diseases in many tissues.This beneficial function of NF-κB has been predominantly observed in epithelial cells,indicating that NF-κB signaling has a particularly important role for the maintenance of immune homeostasis in epithelial tissues.It seems therefore that NF-κB displays two faces in chronic inflammation: on the one hand increased and sustained NF-κB activation induces inflammation and tissue damage,but on the other hand inhibition of NF-κB signaling can also disturb immune homeostasis,triggering inflammation and disease.Here,we discuss the mechanisms that control these apparently opposing functions of NF-κB signaling,focusing particularly on the role of NF-κB in the regulation of immune homeostasis and inflammation in the intestine and the skin.

  8. Gonadal steroid–dependent effects on bone turnover and bone mineral density in men

    Science.gov (United States)

    Finkelstein, Joel S.; Lee, Hang; Leder, Benjamin Z.; Goldstein, David W.; Hahn, Christopher W.; Hirsch, Sarah C.; Linker, Alex; Perros, Nicholas; Servais, Andrew B.; Taylor, Alexander P.; Webb, Matthew L.; Youngner, Jonathan M.; Yu, Elaine W.

    2016-01-01

    BACKGROUND. Severe gonadal steroid deficiency induces bone loss in adult men; however, the specific roles of androgen and estrogen deficiency in hypogonadal bone loss are unclear. Additionally, the threshold levels of testosterone and estradiol that initiate bone loss are uncertain. METHODS. One hundred ninety-eight healthy men, ages 20–50, received goserelin acetate, which suppresses endogenous gonadal steroid production, and were randomized to treatment with 0, 1.25, 2.5, 5, or 10 grams of testosterone gel daily for 16 weeks. An additional cohort of 202 men was randomized to receive these treatments plus anastrozole, which suppresses conversion of androgens to estrogens. Thirty-seven men served as controls and received placebos for goserelin and testosterone. Changes in bone turnover markers, bone mineral density (BMD) by dual-energy x-ray absorptiometry (DXA), and BMD by quantitative computed tomography (QCT) were assessed in all men. Bone microarchitecture was assessed in 100 men. RESULTS. As testosterone dosage decreased, the percent change in C-telopeptide increased. These increases were considerably greater when aromatization of testosterone to estradiol was also suppressed, suggesting effects of both testosterone and estradiol deficiency. Decreases in DXA BMD were observed when aromatization was suppressed but were modest in most groups. QCT spine BMD fell substantially in all testosterone-dose groups in which aromatization was also suppressed, and this decline was independent of testosterone dose. Estradiol deficiency disrupted cortical microarchitecture at peripheral sites. Estradiol levels above 10 pg/ml and testosterone levels above 200 ng/dl were generally sufficient to prevent increases in bone resorption and decreases in BMD in men. CONCLUSIONS. Estrogens primarily regulate bone homeostasis in adult men, and testosterone and estradiol levels must decline substantially to impact the skeleton. TRIAL REGISTRATION. ClinicalTrials.gov, NCT00114114

  9. Magnetic resonance imaging of the bone marrow

    Energy Technology Data Exchange (ETDEWEB)

    Baur-Melnyk, Andrea (ed.) [Klinikum der Univ. Muenchen (Germany). Inst. fuer Klinische Radiologie

    2013-08-01

    The first book devoted to MRI of the bone marrow. Describes the MRI appearances of normal bone marrows and the full range of bone marrow disorders. Discusses the role of advanced MRI techniques and contrast enhancement. On account of its unrivalled imaging capabilities and sensitivity, magnetic resonance imaging (MRI) is considered the modality of choice for the investigation of physiologic and pathologic processes affecting the bone marrow. This book describes the MRI appearances of both the normal bone marrow, including variants, and the full range of bone marrow disorders. Detailed discussion is devoted to malignancies, including multiple myeloma, lymphoma, chronic myeloproliferative disorders, leukemia, and bone metastases. Among the other conditions covered are benign and malignant compression fractures, osteonecrosis, hemolytic anemia, Gaucher's disease, bone marrow edema syndrome, trauma, and infective and non-infective inflammatory disease. Further chapters address the role of MRI in assessing treatment response, the use of contrast media, and advanced MRI techniques. Magnetic Resonance Imaging of the Bone Marrow represents an ideal reference for both novice and experienced practitioners.

  10. A new zebrafish bone crush injury model

    Directory of Open Access Journals (Sweden)

    Sara Sousa

    2012-07-01

    While mammals have a limited capacity to repair bone fractures, zebrafish can completely regenerate amputated bony fin rays. Fin regeneration in teleosts has been studied after partial amputation of the caudal fin, which is not ideal to model human bone fractures because it involves substantial tissue removal, rather than local tissue injury. In this work, we have established a bone crush injury model in zebrafish adult caudal fin, which consists of the precise crush of bony rays with no tissue amputation. Comparing these two injury models, we show that the initial stages of injury response are the same regarding the activation of wound healing molecular markers. However, in the crush assay the expression of the blastema marker msxb appears later than during regeneration after amputation. Following the same trend, bone cells deposition and expression of genes involved in skeletogenesis are also delayed. We further show that bone and blood vessel patterning is also affected. Moreover, analysis of osteopontin and Tenascin-C reveals that they are expressed at later stages in crushed tissue, suggesting that in this case bone repair is prolonged for longer than in the case of regeneration after amputation. Due to the nature of the trauma inflicted, the crush injury model seems more similar to fracture bone repair in mammals than bony ray amputation. Therefore, the new model that we present here may help to identify the key processes that regulate bone fracture and contribute to improve bone repair in humans.

  11. Effect of epimedium pubescen flavonoid on bone mineral status and bone turnover in male rats chronically exposed to cigarette smoke

    Directory of Open Access Journals (Sweden)

    Gao Shu-guang

    2012-06-01

    Full Text Available Abstract Background Epimedii herba is one of the most frequently used herbs in formulas that are prescribed for the treatment of osteoporosis in China and its main constituent is Epimedium pubescen flavonoid (EPF. However, it is unclear whether EPF during chronic exposure to cigarette smoke may have a protective influence on the skeleton. The present study investigated the effect of EPF on bone mineral status and bone turnover in a rat model of human relatively high exposure to cigarette smoke. Methods Fifty male Wistar rats were randomized into five groups: controls, passive smoking groups and passive smoking rats administered EPF at three dosage levels (75, 150 or 300 mg/kg/day in drinking water for 4 months. A rat model of passive smoking was prepared by breeding male rats in a cigarette-smoking box. Bone mineral content (BMC, bone mineral density (BMD, bone turnover markers, bone histomorphometric parameters and biomechanical properties were examined. Results Smoke exposure decreased BMC and BMD, increased bone turnover (inhibited bone formation and stimulated its resorption, affected bone histomorphometry (increased trabecular separation and osteoclast surface per bone surface; decreased trabecular bone volume, trabecular thickness, trabecular number, cortical thickness, bone formation rate and osteoblast surface per bone surface, and reduced mechanical properties. EPF supplementation during cigarette smoke exposure prevented smoke-induced changes in bone mineral status and bone turnover. Conclusion The results suggest that EPF can prevent the adverse effects of smoke exposure on bone by stimulating bone formation and inhibiting bone turnover and bone resorption.

  12. The Role of GH/IGF-I Axis in Muscle Homeostasis During Weightlessness

    Science.gov (United States)

    Schwartz, Robert J.

    1997-01-01

    Exposure to reduced gravity during space travel profoundly alters the loads placed on bone and muscle. Astronauts suffer significant losses of muscle and bone strength during weightlessness. Exercise as a countermeasure is only partially effective in remedying severe muscle atrophy and bone demineralization. Similar wasting of muscles and bones affects people on Earth during prolonged bed rest or immobilization due to injury. In the absence of weight bearing activity, atrophy occurs primarily in the muscles that act in low power, routine movements and in maintaining posture. Hormonal disfunction could contribute in part to the loss of muscle and bone during spaceflight. Reduced levels of human Growth Hormone (hGH) were found in astronauts during space flight, as well as reduced GH secretory activity was observed from the anterior pituitary in 7-day space flight rats. Growth hormone has been shown to be required for maintenance of muscle mass and bone mineralization, in part by mediating the biosynthesis IGF-I, a small polypeptide growth factor. IGF biosynthesis and secretion plays an important role in potentiating muscle cell differentiation and has been shown to drive the expression of myogenin, a myogenic specific basic helix-loop-helix factor. IGF-I has also been shown to have an important role in potentiating muscle regeneration, repair and adult muscle hypertrophy.

  13. Stress-induced alterations in the programmed natural cycles of post-natal lymphoid organ development in C57BL/6 mice: Evidence for a regulatory feedback relationship between bone marrow and thymus.

    Science.gov (United States)

    Domínguez-Gerpe, Lourdes

    2007-01-01

    This study investigated some effects of weaning and immobilization stress in C57BL/6 mice aged 22-68 days, i.e., over a period including activation of the hypothalamus-pituitary-adrenal (HPA) axis and puberty. Specifically, the study evaluated the evolution, over the referred age interval, of a set of variables (body, thymus, spleen and axillary lymph nodes weights, the proportion of lymphoid cells in the bone marrow, the relative chemoattraction capacity of thymic supernatants for lymphoid cells and the migratory capacity of bone marrow lymphoid cells) in either weaned mice or weaned mice subjected to immobilization stress, compared to "non-stressed" unweaned mice. Cyclic patterns, observed for most variables in unweaned mice, were especially pronounced in two cases: the relative migratory capacity of bone marrow lymphoid cells collected at different ages towards neonatal thymic supernatant, and the relative chemoattraction capacity of thymic supernatants of different ages as tested against a sample of bone marrow lymphoid cells from mice aged 35 days. Weaning stress tended to intensify the involution stages of the cycles in thymus, spleen and lymph node weight, but increased the relative proportion of lymphoid cells in the bone marrow cell population. Both types of exogenous stress tended to affect cycle phase, i.e., cycle peaks and troughs were shifted in time. Correlations were observed between patterns seen in the thymus and bone marrow, suggesting the existence of an autoregulatory feedback loop governing pre-T cell migration and bone marrow/thymus homeostasis. These results also suggest that exogenous stress acts as a non-programmed regulator, modulating the naturally programmed cyclic patterns.

  14. Effects of obesity on bone metabolism

    Directory of Open Access Journals (Sweden)

    Cao Jay J

    2011-06-01

    Full Text Available Abstract Obesity is traditionally viewed to be beneficial to bone health because of well-established positive effect of mechanical loading conferred by body weight on bone formation, despite being a risk factor for many other chronic health disorders. Although body mass has a positive effect on bone formation, whether the mass derived from an obesity condition or excessive fat accumulation is beneficial to bone remains controversial. The underline pathophysiological relationship between obesity and bone is complex and continues to be an active research area. Recent data from epidemiological and animal studies strongly support that fat accumulation is detrimental to bone mass. To our knowledge, obesity possibly affects bone metabolism through several mechanisms. Because both adipocytes and osteoblasts are derived from a common multipotential mesenchymal stem cell, obesity may increase adipocyte differentiation and fat accumulation while decrease osteoblast differentiation and bone formation. Obesity is associated with chronic inflammation. The increased circulating and tissue proinflammatory cytokines in obesity may promote osteoclast activity and bone resorption through modifying the receptor activator of NF-κB (RANK/RANK ligand/osteoprotegerin pathway. Furthermore, the excessive secretion of leptin and/or decreased production of adiponectin by adipocytes in obesity may either directly affect bone formation or indirectly affect bone resorption through up-regulated proinflammatory cytokine production. Finally, high-fat intake may interfere with intestinal calcium absorption and therefore decrease calcium availability for bone formation. Unraveling the relationship between fat and bone metabolism at molecular level may help us to develop therapeutic agents to prevent or treat both obesity and osteoporosis. Obesity, defined as having a body mass index ≥ 30 kg/m2, is a condition in which excessive body fat accumulates to a degree that adversely

  15. Bone grafting: An overview

    Directory of Open Access Journals (Sweden)

    D. O. Joshi

    2010-08-01

    Full Text Available Bone grafting is the process by which bone is transferred from a source (donor to site (recipient. Due to trauma from accidents by speedy vehicles, falling down from height or gunshot injury particularly in human being, acquired or developmental diseases like rickets, congenital defects like abnormal bone development, wearing out because of age and overuse; lead to bone loss and to replace the loss we need the bone grafting. Osteogenesis, osteoinduction, osteoconduction, mechanical supports are the four basic mechanisms of bone graft. Bone graft can be harvested from the iliac crest, proximal tibia, proximal humerus, proximal femur, ribs and sternum. An ideal bone graft material is biologically inert, source of osteogenic, act as a mechanical support, readily available, easily adaptable in terms of size, shape, length and replaced by the host bone. Except blood, bone is grafted with greater frequency. Bone graft indicated for variety of orthopedic abnormalities, comminuted fractures, delayed unions, non-unions, arthrodesis and osteomyelitis. Bone graft can be harvested from the iliac crest, proximal tibia, proximal humerus, proximal femur, ribs and sternum. By adopting different procedure of graft preservation its antigenicity can be minimized. The concept of bone banking for obtaining bone grafts and implants is very useful for clinical application. Absolute stability require for successful incorporation. Ideal bone graft must possess osteogenic, osteoinductive and osteocon-ductive properties. Cancellous bone graft is superior to cortical bone graft. Usually autologous cancellous bone graft are used as fresh grafts where as allografts are employed as an alloimplant. None of the available type of bone grafts possesses all these properties therefore, a single type of graft cannot be recomm-ended for all types of orthopedic abnormalities. Bone grafts and implants can be selected as per clinical problems, the equipments available and preference of

  16. Orchestration of bone remodeling

    NARCIS (Netherlands)

    Moester, Martiene Johanna Catharina

    2014-01-01

    In healthy individuals, a balance exists between bone formation and resorption. Disruption of this balance can lead to higher or lower bone mass, and disease such as osteoporosis. Treatment for osteoporosis generally inhibits bone resorption, but does not rebuild bone to a healthy strength. More kno

  17. Bone grafts in dentistry

    Directory of Open Access Journals (Sweden)

    Prasanna Kumar

    2013-01-01

    Full Text Available Bone grafts are used as a filler and scaffold to facilitate bone formation and promote wound healing. These grafts are bioresorbable and have no antigen-antibody reaction. These bone grafts act as a mineral reservoir which induces new bone formation.

  18. Bone Marrow Diseases

    Science.gov (United States)

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. It contains stem cells. The stem cells can ... the platelets that help with blood clotting. With bone marrow disease, there are problems with the stem ...

  19. Cross-correlative 3D micro-structural investigation of human bone processed into bone allografts

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Atul Kumar [Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Gajiwala, Astrid Lobo [Tissue Bank, Tata Memorial Hospital, Parel, Mumbai 400012 (India); Rai, Ratan Kumar [Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014 (India); Khan, Mohd Parvez [Division of Endocrinology, Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI) CSIR-Central Drug Research Institute, Lucknow 226031 (India); Singh, Chandan [Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014 (India); Barbhuyan, Tarun [Division of Endocrinology, Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI) CSIR-Central Drug Research Institute, Lucknow 226031 (India); Vijayalakshmi, S. [Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Chattopadhyay, Naibedya [Division of Endocrinology, Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI) CSIR-Central Drug Research Institute, Lucknow 226031 (India); Sinha, Neeraj, E-mail: neerajcbmr@gmail.com [Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014 (India); Kumar, Ashutosh, E-mail: ashutoshk@iitb.ac.in [Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076 (India); Bellare, Jayesh R., E-mail: jb@iitb.ac.in [Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076 (India)

    2016-05-01

    Bone allografts (BA) are a cost-effective and sustainable alternative in orthopedic practice as they provide a permanent solution for preserving skeletal architecture and function. Such BA however, must be processed to be disease free and immunologically safe as well as biologically and clinically useful. Here, we have demonstrated a processing protocol for bone allografts and investigated the micro-structural properties of bone collected from osteoporotic and normal human donor samples. In order to characterize BA at different microscopic levels, a combination of techniques such as Solid State Nuclear Magnetic Resonance (ssNMR), Scanning Electron Microscope (SEM), micro-computed tomography (μCT) and Thermal Gravimetric Analysis (TGA) were used for delineating the ultra-structural property of bone. ssNMR revealed the extent of water, collagen fine structure and crystalline order in the bone. These were greatly perturbed in the bone taken from osteoporotic bone donor. Among the processing methods analyzed, pasteurization at 60 °C and radiation treatment appeared to substantially alter the bone integrity. SEM study showed a reduction in Ca/P ratio and non-uniform distribution of elements in osteoporotic bones. μ-CT and MIMICS® (Materialize Interactive Medical Image Control System) demonstrated that pasteurization and radiation treatment affects the BA morphology and cause a shift in the HU unit. However, the combination of all these processes restored all-important parameters that are critical for BA integrity and sustainability. Cross-correlation between the various probes we used quantitatively demonstrated differences in morphological and micro-structural properties between BA taken from normal and osteoporotic human donor. Such details could also be instrumental in designing an appropriate bone scaffold. For the best restoration of bone microstructure and to be used as a biomaterial allograft, a step-wise processing method is recommended that preserves all

  20. Fibroblast Growth Factor 23: a Bridge Between Bone Minerals and Renal Volume Handling

    NARCIS (Netherlands)

    Humalda, Jelmer Kor

    2016-01-01

    The work in this thesis addresses the interaction between the phosphate-regulating hormone Fibroblast Growth Factor 23 (FGF-23) as key player in bone-mineral homeostasis and renal volume handling, mainly in the context of the renin-angiotensin-aldosterone system (RAAS). First, we elaborate on the ro

  1. Integrated Multimodal Imaging of Dynamic Bone-Tumor Alterations Associated with Metastatic Prostate Cancer

    NARCIS (Netherlands)

    Brisset, Jean-Christophe; Hoff, Benjamin A.; Chenevert, Thomas L.; Jacobson, Jon A.; Boes, Jennifer L.; Galban, Stefanie; Rehemtulla, Alnawaz; Johnson, Timothy D.; Pienta, Kenneth J.; Galban, Craig J.; Meyer, Charles R.; Schakel, Timothy; Nicolay, Klaas; Alva, Ajjai S.; Hussain, Maha; Ross, Brian D.; Schakel, Tim

    2015-01-01

    Bone metastasis occurs for men with advanced prostate cancer which promotes osseous growth and destruction driven by alterations in osteoblast and osteoclast homeostasis. Patients can experience pain, spontaneous fractures and morbidity eroding overall quality of life. The complex and dynamic cellul

  2. Trace element status and zinc homeostasis differ in breast and formula-fed piglets

    Science.gov (United States)

    Miousse, Isabelle R; Mason, Andrew Z; Sharma, Neha; Blackburn, Michael L; Badger, Thomas M

    2015-01-01

    Differences in trace element composition and bioavailability between breast milk and infant formulas may affect metal homeostasis in neonates. However, there is a paucity of controlled studies in this area. Here, piglets were fed soy infant formula (soy), cow’s milk formula (milk), or were allowed to suckle from the sow from PND2 to PND21. Serum iron concentrations were higher in formula-fed compared to breastfed piglets (P supplementation, allows strong causal inference that significant differences in serum zinc after cow’s milk formula compared to soy formula consumption result in compensatory changes in expression of zinc transporters, binding proteins, and zinc-regulated genes. PMID:25179632

  3. Disruption of Calcium Homeostasis during Exercise as a Mediator of Bone Metabolism

    Science.gov (United States)

    2014-10-01

    TSH out of range (1), steroid use in the past 6 months (2), low vitamin D (1) Before randomization: time constraints (2), injury not related to the...publication Findings from EXP1 were presented at the American College of Sports Medicine Annual Meeting in May 2014 and at the Military Health Systems

  4. Disruption of Calcium Homeostasis During Exercise as a Mediator of Bone Metabolism

    Science.gov (United States)

    2015-10-01

    Conference in Newcastle, England, in December 2015. Based on feedback from presentations , the research being conducted under this award is viewed as being of...successful oral pilots (and 1 unsuccessful) were completed in Q2-4. Approval of the Continuing Review application, which included local approval to...the most recent pilot infusion experiments. We expect EXP3 to begin in Y4Q1. Wendy Kohrt, PhD, presented preliminary findings from EXP1 and EXP2 at

  5. Bone Health and Osteoporosis.

    Science.gov (United States)

    Lupsa, Beatrice C; Insogna, Karl

    2015-09-01

    Osteoporosis is characterized by low bone mass and microarchitectural deterioration of bone tissue leading to decreased bone strength and an increased risk of low-energy fractures. Central dual-energy X-ray absorptiometry measurements are the gold standard for determining bone mineral density. Bone loss is an inevitable consequence of the decrease in estrogen levels during and following menopause, but additional risk factors for bone loss can also contribute to osteoporosis in older women. A well-balanced diet, exercise, and smoking cessation are key to maintaining bone health as women age. Pharmacologic agents should be recommended in patients at high risk for fracture.

  6. Lack of Influence of Vitamin D Receptor BsmI (rs1544410 Polymorphism on the Rate of Bone Loss in a Cohort of Postmenopausal Spanish Women Affected by Osteoporosis and Followed for Five Years.

    Directory of Open Access Journals (Sweden)

    Maria Pedrera-Canal

    Full Text Available A longitudinal study was conducted to investigate the relation between a polymorphism in the vitamin D receptor (VDR gene and changes in bone mineral density (BMD and quantitative ultrasound of the phalanges (QUS over a five-year period. The subjects were 456 postmenopausal women with osteoporosis undergoing treatment, aged 59.95±7.97 years (mean±standard deviation [SD] at baseline. BMD was measured at the hips and lumbar spine by dual-energy X-ray absorptiometry, and QUS was measured by means of amplitude-dependent speed of sound (Ad-SoS at the phalanges. Lifestyle information was obtained via a questionnaire. The genotype frequencies of the BsmI (rs1544410 gene polymorphism were 29.4%, 47.1%, and 23.5% for bb, Bb, and BB, respectively. After five years, BMD (annual change in %/year at the femoral neck (FN showed a significant modification based on the rs1544410 genotype (BB vs Bb; there was an overall decrease in bone mass (-0.70±2.79%/year; P = 0.025. An analysis of covariance with adjustments for age, weight, height, percentage of weight change per year, baseline BMD and calcium intake showed that the observed associations were no longer significant (P = 0.429. No significant associations were found between the QUS measurements and the rs1544410 genotype after the five-year period. Our study limitations includes lack of information about type and length of duration of the osteoporosis treatment. Our results indicate that rs1544410 polymorphisms do not account significantly for the changes in bone mass in Spanish women with osteoporosis undergoing treatment.

  7. Regulation of Vitamin C Homeostasis during Deficiency

    OpenAIRE

    Jens Lykkesfeldt; Pernille Tveden-Nyborg; Maiken Lindblad

    2013-01-01

    Large cross-sectional population studies confirm that vitamin C deficiency is common in humans, affecting 5%–10% of adults in the industrialized world. Moreover, significant associations between poor vitamin C status and increased morbidity and mortality have consistently been observed. However, the absorption, distribution and elimination kinetics of vitamin C in vivo are highly complex, due to dose-dependent non-linearity, and the specific regulatory mechanisms are not fully understood. Par...

  8. Bone mineral density in patients on maintenance dialysis.

    Science.gov (United States)

    Ambrus, Csaba; Marton, Adrienn; Nemeth, Zsofia Klara; Mucsi, Istvan

    2010-09-01

    Disorders of bone and mineral metabolism affect almost all patients with advanced chronic kidney disease (CKD). High prevalence of decreased bone mineral density has been reported in this population; however, the role and diagnostic utility of bone density measurements are not well established. The incidence of bone fractures is high in patients with ESRD, but the association between fractures and bone density is not obvious. A recent meta-analysis suggested that decreased density at the radius might be associated with higher overall fracture risk. Changes in bone mineral density reflect several underlying pathological processes, such as vitamin D deficiency, estrogen deficiency and changes in bone turnover. The response of bone to these factors and processes is not uniform: it can vary in different compartments of the same bone or in different bones of the skeleton. Therefore, it is important to differentiate between the various types of bone. This may be possible by proper selection of the measurement site or using methods such as quantitative bone computed tomography. Previous studies used different methods and measured bone mineral density at diverse sites of the skeleton, which makes the comparison of their results very difficult. The association between changes in bone mineral metabolism and cardiovascular mortality is well known in ESRD patients. Studies also suggest that low bone density itself might be an indicator for high risk of cardiovascular events and poor overall outcome in this population. Some of the risk factors of low bone mineral density, such as vitamin D or estrogen deficiency, are potentially modifiable. Further studies are needed to elucidate if interventions modifying these risk factors will have an impact on clinical outcomes. In this review, we discuss the options for and problems of assessment of bone density and summarize the literature about factors associated with low bone density and its link to clinical outcomes in patients on

  9. Erythropoietin in bone - Controversies and consensus.

    Science.gov (United States)

    Hiram-Bab, Sahar; Neumann, Drorit; Gabet, Yankel

    2017-01-01

    Erythropoietin (Epo) is the main hormone that regulates the production of red blood cells (hematopoiesis), by stimulating their progenitors. Beyond this vital function, several emerging roles have been noted for Epo in other tissues, including neurons, heart and retina. The skeletal system is also affected by Epo, however, its actions on bone are, as yet, controversial. Here, we review the seemingly contradicting evidence regarding Epo effects on bone remodeling. We also discuss the evidence pointing to a direct versus indirect effect of Epo on the osteoblastic and osteoclastic cell lineages. The current controversy may derive from a context-dependent mode of action of Epo, namely opposite skeletal actions during bone regeneration and steady-state bone remodeling. Differences in conclusions from the published in-vitro studies may thus relate to the different experimental conditions. Taken together, these studies indicate a complexity of Epo functions in bone cells.

  10. The controversy of cranial bone motion.

    Science.gov (United States)

    Rogers, J S; Witt, P L

    1997-08-01

    Cranial bone motion continues to stimulate controversy. This controversy affects the general acceptance of some intervention methods used by physical therapists, namely, cranial osteopathic and craniosacral therapy techniques. Core to these intervention techniques is the belief that cranial bone mobility provides a compliant system where somatic dysfunction can occur and therapeutic techniques can be applied. Diversity of opinion over the truth of this concept characterizes differing viewpoints on the anatomy and physiology of the cranial complex. Literature on cranial bone motion was reviewed for the purpose of better understanding this topic. Published research overall was scant and inconclusive. Animal and human studies demonstrate a potential for small magnitude motion. Physical therapists should carefully scrutinize the literature presented as evidence for cranial bone motion. Further research is needed to resolve this controversy. Outcomes research, however, is needed to validate cranial bone mobilization as an effective treatment.

  11. Bone cysts: unicameral and aneurysmal bone cyst.

    Science.gov (United States)

    Mascard, E; Gomez-Brouchet, A; Lambot, K

    2015-02-01

    Simple and aneurysmal bone cysts are benign lytic bone lesions, usually encountered in children and adolescents. Simple bone cyst is a cystic, fluid-filled lesion, which may be unicameral (UBC) or partially separated. UBC can involve all bones, but usually the long bone metaphysis and otherwise primarily the proximal humerus and proximal femur. The classic aneurysmal bone cyst (ABC) is an expansive and hemorrhagic tumor, usually showing characteristic translocation. About 30% of ABCs are secondary, without translocation; they occur in reaction to another, usually benign, bone lesion. ABCs are metaphyseal, excentric, bulging, fluid-filled and multicameral, and may develop in all bones of the skeleton. On MRI, the fluid level is evocative. It is mandatory to distinguish ABC from UBC, as prognosis and treatment are different. UBCs resolve spontaneously between adolescence and adulthood; the main concern is the risk of pathologic fracture. Treatment in non-threatening forms consists in intracystic injection of methylprednisolone. When there is a risk of fracture, especially of the femoral neck, surgery with curettage, filling with bone substitute or graft and osteosynthesis may be required. ABCs are potentially more aggressive, with a risk of bone destruction. Diagnosis must systematically be confirmed by biopsy, identifying soft-tissue parts, as telangiectatic sarcoma can mimic ABC. Intra-lesional sclerotherapy with alcohol is an effective treatment. In spinal ABC and in aggressive lesions with a risk of fracture, surgical treatment should be preferred, possibly after preoperative embolization. The risk of malignant transformation is very low, except in case of radiation therapy.

  12. OSTEOPOROSIS AND ALZHEIMER PATHOLOGY: ROLE OF CELLULAR STRESS RESPONSE AND HORMETIC REDOX SIGNALING IN AGING AND BONE REMODELING

    Directory of Open Access Journals (Sweden)

    Vittorio eCalabrese

    2014-06-01

    Full Text Available Alzheimer’s disease (AD as well as osteoporosis are multifactorial progressive degenerative disorders characterized by low parenchymal density and microarchitectural deterioration of tissue. Though not referred to as one of the major complications of AD, osteoporosis and hip fracture are commonly observed in patients with AD, however, the mechanisms underlying this association remain poorly understood. Reactive oxygen species (ROS are generally recognized as intracellular redox signaling molecules involved in the regulation of bone metabolism, including receptor activator of nuclear factor-kB ligand (RANKL-dependent osteoclast differentiation, but they also have cytotoxic effects that include peroxidation of lipids and oxidative damage to proteins and DNA. ROS formation, which is positively implicated in cellular stress response mechanisms, is a highly regulated process controlled by a complex network of intracellular signaling pathways which regulate life span across species including vitagenes which are genes involved in preserving cellular homeostasis during stressful conditions. Vitagenes encode for heat shock proteins (Hsp Hsp32, Hsp70, the thioredoxin and the sirtuin protein systems. Dietary antioxidants, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways, including vitagenes. The hormetic dose–response, has the potential to affect significantly the design of pre-clinical studies and clinical trials as well as strategies for optimal patient dosing in the treatment of numerous diseases. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing stress responses. Here we focus on possible signaling mechanisms involved in bone remodeling and activation of vitagenes resulting in enhanced defense against energy and stress resistance homeostasis dysruption with consequent impact on

  13. Bone biology in the elderly: clinical importance for fracture treatment

    Directory of Open Access Journals (Sweden)

    Rolvien Tim

    2016-12-01

    Full Text Available Age-related bone impairment often leads to fragility fractures in the elderly. Although excellent surgical care is widely provided, diagnosis and treatment of the underlying bone disorder are often not kept in mind. The interplay of the three major bone cells – osteoblasts, osteoclasts, and osteocytes – is normally well regulated via the secretion of messengers to control bone remodeling. Possible imbalances that might occur in the elderly are partly due to age, genetic risk factors, and adverse lifestyle factors but importantly also due to imbalances in calcium homeostasis (mostly due to vitamin D deficiency or hypochlorhydria, which have to be eliminated. Therefore, the cooperation between the trauma surgeon and the osteologist is of major importance to diagnose and treat the respective patients at risk. We propose that any patient suffering from fragility fractures is rigorously screened for osteoporosis and metabolic bone diseases. This includes bone density measurement by dual-energy X-ray absorptiometry, laboratory tests for calcium, phosphate, vitamin D, and bone turnover markers, as well as additional diagnostic modalities if needed. Thereby, most risk factors, including vitamin D deficiency, can be identified and treated while patients who meet the criteria for a specific therapy (i.e. antiresorptive and osteoanabolic receive such. If local health systems succeed to manage this process of secondary fracture prevention, morbidity and mortality of fragility fractures will decline to a minimum level.

  14. Protein homeostasis disorders of key enzymes of amino acids metabolism: mutation-induced protein kinetic destabilization and new therapeutic strategies.

    Science.gov (United States)

    Pey, Angel L

    2013-12-01

    Many inborn errors of amino acids metabolism are caused by single point mutations affecting the ability of proteins to fold properly (i.e., protein homeostasis), thus leading to enzyme loss-of-function. Mutations may affect protein homeostasis by altering intrinsic physical properties of the polypeptide (folding thermodynamics, and rates of folding/unfolding/misfolding) as well as the interaction of partially folded states with elements of the protein homeostasis network (such as molecular chaperones and proteolytic machineries). Understanding these mutational effects on protein homeostasis is required to develop new therapeutic strategies aimed to target specific features of the mutant polypeptide. Here, I review recent work in three different diseases of protein homeostasis associated to inborn errors of amino acids metabolism: phenylketonuria, inherited homocystinuria and primary hyperoxaluria type I. These three different genetic disorders involve proteins operating in different cell organelles and displaying different structural complexities. Mutations often decrease protein kinetic stability of the native state (i.e., its half-life for irreversible denaturation), which can be studied using simple kinetic models amenable to biophysical and biochemical characterization. Natural ligands and pharmacological chaperones are shown to stabilize mutant enzymes, thus supporting their therapeutic application to overcome protein kinetic destabilization. The role of molecular chaperones in protein folding and misfolding is also discussed as well as their potential pharmacological modulation as promising new therapeutic approaches. Since current available treatments for these diseases are either burdening or only successful in a fraction of patients, alternative treatments must be considered covering studies from protein structure and biophysics to studies in animal models and patients.

  15. Evaluation of different rotary devices on bone repair in rabbits

    OpenAIRE

    Ribeiro Junior, Paulo Domingos; Barleto, Christiane Vespasiano; Ribeiro,Daniel Araki; Matsumoto,Mariza Akemi

    2007-01-01

    In oral surgery, the quality of bone repair may be influenced by several factors that can increase the morbidity of the procedure. The type of equipment used for ostectomy can directly affect bone healing. The aim of this study was to evaluate bone repair of mandible bone defects prepared in rabbits using three different rotary devices. Fifteen New Zealand rabbits were randomly assigned to 3 groups (n=5) according to type of rotary device used to create bone defects: I - pneumatic low-speed r...

  16. Bone marrow edema syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Korompilias, Anastasios V.; Lykissas, Marios G.; Beris, Alexandros E. [University of Ioannina, Department of Orthopaedic Surgery, School of Medicine, Ioannina (Greece); Karantanas, Apostolos H. [University of Crete School of Medicine, Department of Radiology, Heraklion (Greece)

    2009-05-15

    Bone marrow edema syndrome (BMES) refers to transient clinical conditions with unknown pathogenic mechanism, such as transient osteoporosis of the hip (TOH), regional migratory osteoporosis (RMO), and reflex sympathetic dystrophy (RSD). BMES is primarily characterized by bone marrow edema (BME) pattern. The disease mainly affects the hip, the knee, and the ankle of middle-aged males. Many hypotheses have been proposed to explain the pathogenesis of the disease. Unfortunately, the etiology of BMES remains obscure. The hallmark that separates BMES from other conditions presented with BME pattern is its self-limited nature. Laboratory tests usually do not contribute to the diagnosis. Histological examination of the lesion is unnecessary. Plain radiographs may reveal regional osseous demineralization. Magnetic resonance imaging is mainly used for the early diagnosis and monitoring the progression of the disease. Early differentiation from other aggressive conditions with long-term sequelae is essential in order to avoid unnecessary treatment. Clinical entities, such as TOH, RMO, and RSD are spontaneously resolving, and surgical treatment is not needed. On the other hand, early differential diagnosis and surgical treatment in case of osteonecrosis is of crucial importance. (orig.)

  17. Artificial Gravity: Effects on Bone Turnover

    Science.gov (United States)

    Heer, M.; Zwart, S /R.; Baecker, N.; Smith, S. M.

    2007-01-01

    The impact of microgravity on the human body is a significant concern for space travelers. Since mechanical loading is a main reason for bone loss, artificial gravity might be an effective countermeasure to the effects of microgravity. In a 21-day 6 head-down tilt bed rest (HDBR) pilot study carried out by NASA, USA, the utility of artificial gravity (AG) as a countermeasure to immobilization-induced bone loss was tested. Blood and urine were collected before, during, and after bed rest for bone marker determinations. Bone mineral density was determined by DXA and pQCT before and after bed rest. Urinary excretion of bone resorption markers (n-telopeptide and helical peptide) were increased from pre-bed rest, but there was no difference between the control and the AG group. The same was true for serum c-telopeptide measurements. Bone formation markers were affected by bed rest and artificial gravity. While bone-specific alkaline phosphatase tended to be lower in the AG group during bed rest (p = 0.08), PINP, another bone formation marker, was significantly lower in AG subjects than CN before and during bed rest. PINP was lower during bed rest in both groups. For comparison, artificial gravity combined with ergometric exercise was tested in a 14-day HDBR study carried out in Japan (Iwase et al. J Grav Physiol 2004). In that study, an exercise regime combined with AG was able to significantly mitigate the bed rest-induced increase in the bone resorption marker deoxypyridinoline. While further study is required to more clearly differentiate bone and muscle effects, these initial data demonstrate the potential effectiveness of short-radius, intermittent AG as a countermeasure to the bone deconditioning that occurs during bed rest and spaceflight. Future studies will need to optimize not only the AG prescription (intensity and duration), but will likely need to include the use of exercise or other combined treatments.

  18. Temporal bone chondroblastoma with secondary aneurysmal bone cyst presenting as an intracranial mass with clinical seizure activity.

    Science.gov (United States)

    Stapleton, Christopher J; Walcott, Brian P; Linskey, Katy R; Kahle, Kristopher T; Nahed, Brian V; Asaad, Wael F

    2011-06-01

    Chondroblastomas are rare tumors that characteristically arise from the epiphyseal cartilage of long bones of the immature skeleton. Intracranial involvement is uncommon, though the squamous portion of the temporal bone is preferentially affected due to its cartilaginous origin. Patients with temporal bone chondroblastomas classically present with otologic symptoms, while primary neurological complaints are rare. In this report, we describe a 33 year-old man with a chondroblastoma of the temporal bone and an associated aneurysmal bone cyst constituting a large intracranial mass lesion who presented with new-onset seizure activity. We review issues relevant to the pathology and treatment of these lesions.

  19. 尼古丁对小鼠骨髓细胞微核影响的实验研究%Affected on bone marrow erythrocyte micronucleus of mice by Nicotine

    Institute of Scientific and Technical Information of China (English)

    施强; 郑勇斌; 睢凤英; 徐广涛; 姚峰; 罗海平

    2011-01-01

    目的:探讨香烟成分尼古丁对骨髓细胞微核产生的影响.方法:建立小鼠骨髓嗜多染红细胞微核实验模型,将小鼠随机分为尼古丁(低、中、高剂量)实验组、顺铂对照组、乙醇对照组、生理盐水对照组,每组10只,采用腹腔注射给药,油镜下检测骨髓中嗜多红染细胞(PCE)微核情况及绘制量效关系曲线.结果:尼古丁低剂量组和乙醇对照组的微核发生率分别为(1.90±0.88)%和(0.70±0.22)%,两组间有显著差异(P<0.05).采用不同剂量尼古丁染毒小鼠,其骨髓细胞微核率呈递增趋势.结论:尼古丁在嗜多染红细胞微核实验中具有明显的致突作用.%Objcctive:To investigate the impacts of Nicotine on micronucleus in mouse bone marrow. Methods:Micronucleus test in polychromatic erythrocytcs of bone marrow in mice was performed. The mice was divided into six group, there was solution group with injection of nicotine by low doses, middle doses and high doses, and control group with injection of CDDP, ethanol and saline. Ten mice in each group, the drugs were injected into abdominal. Observed micronucleus cells in bone marrow cells under Oil immersion, and drawing quantity-effect relationship curve. Results:Thcre was apparent increasing of micronucleus frequency in nicotine low -doses solution group comparing with ethanol control group (P<0. 05) , two group of micronucleus rats is (1. 90± 0. 88) % and (0. 70± 0. 22) %. For the following poisoning at different doses, the drug had apparent action on increasing micronucleus frequency in mice. Conclusion:In this experiment, it is viewed primarily that cigarettes ingredient of nicotine has significant mu-tagenic effect on polychromatic crythrocytes micronucleus test.

  20. Effects of Gliadin consumption on the Intestinal Microbiota and Metabolic Homeostasis in Mice Fed a High-fat Diet

    DEFF Research Database (Denmark)

    Zhang, Li; Andersen, Daniel; Roager, Henrik Munch

    2017-01-01

    Dietary gluten causes severe disorders like celiac disease in gluten-intolerant humans. However, currently understanding of its impact in tolerant individuals is limited. Our objective was to test whether gliadin, one of the detrimental parts of gluten, would impact the metabolic effects...... that gliadin disturbs the intestinal environment and affects metabolic homeostasis in obese mice, suggesting a detrimental effect of gluten intake in gluten-tolerant subjects consuming a high-fat diet....

  1. Cytoplasmic reactive oxygen species and SOD1 regulate bone mass during mechanical unloading.

    Science.gov (United States)

    Morikawa, Daichi; Nojiri, Hidetoshi; Saita, Yoshitomo; Kobayashi, Keiji; Watanabe, Kenji; Ozawa, Yusuke; Koike, Masato; Asou, Yoshinori; Takaku, Tomoiku; Kaneko, Kazuo; Shimizu, Takahiko

    2013-11-01

    Oxidative stress contributes to the pathogenesis of age-related diseases as well as bone fragility. Our previous study demonstrated that copper/zinc superoxide dismutase (Sod1)-deficient mice exhibit the induction of intracellular reactive oxygen species (ROS) and bone fragility resulting from low-turnover bone loss and impaired collagen cross-linking (Nojiri et al. J Bone Miner Res. 2011;26:2682-94). Mechanical stress also plays an important role in the maintenance of homeostasis in bone tissue. However, the molecular links between oxidative and mechanical stresses in bone tissue have not been fully elucidated. We herein report that mechanical unloading significantly increased intracellular ROS production and the specific upregulation of Sod1 in bone tissue in a tail-suspension experiment. We also reveal that Sod1 loss exacerbated bone loss via reduced osteoblastic abilities during mechanical unloading. Interestingly, we found that the administration of an antioxidant, vitamin C, significantly attenuated bone loss during unloading. These results indicate that mechanical unloading, in part, regulates bone mass via intracellular ROS generation and the Sod1 expression, suggesting that activating Sod1 may be a preventive strategy for ameliorating mechanical unloading-induced bone loss.

  2. Role of Bone Biopsy in Stages 3 to 4 Chronic Kidney Disease

    Science.gov (United States)

    Gal-Moscovici, Anca; Sprague, Stuart M.

    2008-01-01

    Secondary hyperparathyroidism develops relatively early in chronic kidney disease as a consequence of impaired phosphate, calcium, and vitamin D homeostasis. The disease state in chronic kidney disease, which includes the histologic features of bone disease, defined as renal osteodystrophy, and the hormonal and biochemical disturbances, have recently been redefined as a disease syndrome and is referred to as “chronic kidney disease–mineral and bone disorder.” As chronic kidney disease progresses, specific histologic disturbances in the bone develop, which may or may not be predictable from the biochemical and hormonal changes that are associated with chronic kidney disease. In addition, patients may have had underlying bone disease before developing kidney failure or may have been treated with agents that will alter the classical pathologic findings of the bones in chronic kidney disease and their relation to parathyroid hormone. Thus, in stage 5 chronic kidney disease, bone biopsy with quantitative histomorphometric analysis is considered the gold standard in the diagnosis of renal osteodystrophy. In contrast to stage 5 chronic kidney disease, there are very few data on the histologic changes in bone in earlier stages of chronic kidney disease. There also is no adequate information on the etiopathogenesis of bone disease in stages 3 and 4 chronic kidney disease. Thus, because biochemical data cannot predict bone pathology in stages 3 and 4 chronic kidney disease, bone biopsy should be used to define these bone changes and to allow appropriate therapeutic approaches. PMID:18988703

  3. A Review of Dental Implant Treatment Planning and Implant Design Based on Bone Density

    OpenAIRE

    Torkzaban; Moradi Haghgoo; khoshhal; Arabi; Razaghi

    2013-01-01

    Context A key determinant for clinical success is the diagnosis of the bone density in a potential implant site. The percentage of bone-implant contact is related to bone density, and the axial stress contours around an implant are affected by the density of bone. Evidence Acquisition A number of reports have emphasized the importance of the quality of bone on the survival of dental implants. The volume and density of the recipien...

  4. Bone response to fluoride exposure is influenced by genetics.

    Directory of Open Access Journals (Sweden)

    Cláudia A N Kobayashi

    Full Text Available Genetic factors influence the effects of fluoride (F on amelogenesis and bone homeostasis but the underlying molecular mechanisms remain undefined. A label-free proteomics approach was employed to identify and evaluate changes in bone protein expression in two mouse strains having different susceptibilities to develop dental fluorosis and to alter bone quality. In vivo bone formation and histomorphometry after F intake were also evaluated and related to the proteome. Resistant 129P3/J and susceptible A/J mice were assigned to three groups given low-F food and water containing 0, 10 or 50 ppmF for 8 weeks. Plasma was evaluated for alkaline phosphatase activity. Femurs, tibiae and lumbar vertebrae were evaluated using micro-CT analysis and mineral apposition rate (MAR was measured in cortical bone. For quantitative proteomic analysis, bone proteins were extracted and analyzed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS, followed by label-free semi-quantitative differential expression analysis. Alterations in several bone proteins were found among the F treatment groups within each mouse strain and between the strains for each F treatment group (ratio ≥1.5 or ≤0.5; p<0.05. Although F treatment had no significant effects on BMD or bone histomorphometry in either strain, MAR was higher in the 50 ppmF 129P3/J mice than in the 50 ppmF A/J mice treated with 50 ppmF showing that F increased bone formation in a strain-specific manner. Also, F exposure was associated with dose-specific and strain-specific alterations in expression of proteins involved in osteogenesis and osteoclastogenesis. In conclusion, our findings confirm a genetic influence in bone response to F exposure and point to several proteins that may act as targets for the differential F responses in this tissue.

  5. [Clinical perspectives of the study of RANK/RANKL/OPG system components in primary and metastatic bone tumor].

    Science.gov (United States)

    Kushlinskiĭ, N E; Timofeev, Iu S; Gershteĭn, E S; Solov'ev, Iu N

    2014-01-01

    Disbalance of bone homeostasis, associated with malfunctioning of RANK/RANKL/OPG system underlies the oncological processes such as the destruction of bone, metastasis development, tumor progression. Pathological activity of system was described in such conditions, as breast cancer, prostate cancer, multiple myeloma, squamous cell carcinoma, Hodgkin's disease, and also metastasis in bones from lung cancer and other malignant diseases. In the literature, there is evidence of involvement of RANK/RANKL/OPG system in the pathogenesis of bone tumors (osteosarcoma, giant cell tumor of bone, chondroblastoma). Experimental data show that RANKL inhibitors can play a role in reducing tumor-induced lesions of bone in multiple myeloma, breast cancer, prostate cancer and lung cancer. Also this review presents data from clinical studies of the drug efficacy targeted on RANK/RANKL/OPG system and results of authors' study of the levels of this system's components and proinflammatory cytokines in blood serum of primary bone sarcoma patients.

  6. Immune Homeostasis of Human Gastric Mucosa in Helicobacter pylori Infection.

    Science.gov (United States)

    Reva, I V; Yamamoto, T; Vershinina, S S; Reva, G V

    2015-05-01

    We present the results of electron microscopic, microbiological, immunohistochemical, and molecular genetic studies of gastric biopsy specimens taken for diagnostic purposes according by clinical indications during examination of patients with gastrointestinal pathology. Immune homeostasis of the gastric mucosa against the background of infection with various pathogen strains of Helicobacter pylori was studied in patients of different age groups with peptic ulcer, gastritis, metaplasia, and cancer. Some peculiarities of Helicobacter pylori contamination in the gastric mucosa were demonstrated. Immune homeostasis of the gastric mucosa in different pathologies was analyzed depending on the Helicobacter pylori genotype.

  7. Plasticity and dedifferentiation within the pancreas: development, homeostasis, and disease.

    Science.gov (United States)

    Puri, Sapna; Folias, Alexandra E; Hebrok, Matthias

    2015-01-08

    Cellular identity is established by genetic, epigenetic, and environmental factors that regulate organogenesis and tissue homeostasis. Although some flexibility in fate potential is beneficial to overall organ health, dramatic changes in cellular identity can have disastrous consequences. Emerging data within the field of pancreas biology are revising current beliefs about how cellular identity is shaped by developmental and environmental cues under homeostasis and stress conditions. Here, we discuss the changes occurring in cellular states upon fate modulation and address how our understanding of the nature of this fluidity is shaping therapeutic approaches to pancreatic disorders such as diabetes and cancer.

  8. Journey of bone graft materials in periodontal therapy: A chronological review

    Directory of Open Access Journals (Sweden)

    Jitendra Kumar

    2016-01-01

    Full Text Available Bone, the basic building block of the healthy periodontium, is affected in most of the periodontal diseases and can be managed either by mechanically recontouring it or by grafting techniques, which encourages regeneration where it has been lost. Bone replacement grafts are widely used to promote bone formation and periodontal regeneration. Bone grafting, placing bone or bone substitutes into defects created by the disease process, acts like a scaffold upon which the body generates its own, new bone. A wide range of bone grafting materials, including bone grafts and bone graft substitutes, have been applied and evaluated clinically, including autografts, allografts, xenografts, and alloplasts. This review provides an overview of the clinical application, biologic function, and advantages and disadvantages of various types of bone graft materials used in periodontal therapy till date with emphasis on recent advances in this field.

  9. Alpha-1 antitrypsin gene therapy prevented bone loss in ovariectomy induced osteoporosis mouse model

    Science.gov (United States)

    Osteoporosis is a major healthcare burden affecting mostly postmenopausal women characterized by compromised bone strength and increased risk of fragility fracture. Although pathogenesis of this disease is complex, elevated proinflammatory cytokine production is clearly involved in bone loss at meno...

  10. Sodium/Potassium Homeostasis in the Cell

    DEFF Research Database (Denmark)

    Clausen, Michael Jakob; Poulsen, Hanne

    2013-01-01

    Metallomics and the Cell provides in an authoritative and timely manner in 16 stimulating chapters, written by 37 internationally recognized experts from 9 nations, and supported by more than 3000 references, several tables, and 110 illustrations, mostly in color, a most up-to-date view of the "m......Metallomics and the Cell provides in an authoritative and timely manner in 16 stimulating chapters, written by 37 internationally recognized experts from 9 nations, and supported by more than 3000 references, several tables, and 110 illustrations, mostly in color, a most up-to-date view...... of the "metallomes" which, as defined in the "omics" world, describe the entire set of biomolecules that interact with or are affected by each metal ion. The most relevant tools for visualizing metal ions in the cell and the most suitable bioinformatic tools for browsing genomes to identify metal-binding proteins...

  11. Prevalence of osteoporosis and factors affecting bone mineral density in elderly women with type 2 diabetes mellitus%老年2型糖尿病女性骨质疏松状况及其影响因素

    Institute of Scientific and Technical Information of China (English)

    陈海翎; 李菊芬; 王倩; 邓丽丽; 吕艳伟

    2016-01-01

    Objective To investigate the prevalence of osteoporosis in elderly women with type 2 diabetes mellitus(T2DM) and associated factors. Methods From January 2011 to February 2012, 167 elderly women with T2DM and 138 healthy elderly women (controls) were enrolled in this study. The medical history, bone densitometry and biochemical indicators were recorded in the two groups. Data were analyzed with multivariate logistic regression and multiple regression analysis to identify the impacting factors of the osteoporosis in the elderly female patients with T2DM. Results There were 167 elderly women in T2DM group, aged 60-78 years; and 138 elderly women in control group, aged 60-80 years. Total incidence of osteopenia and osteoporosis in T2DM group (85.6%(143/167)) was lower than that in control group(97.1%(134/138)) (χ2=11.929, P=0.001). The risk of developing low bone mass and fracture in T2DM group was 0.178 and 1.776 times of that in control group, respectively. Set low bone mass as dependent variable, the variables of frequency of physical exercise, duration of physical exercise and body mass index(BMI) entered the logistic regression equation, and the regression coefficients B were-0.438,-0.840 and-0.297, respectively, all P<0.05. T2DM was excluded from this equation, but it entered the logistic regression equation with fracture as dependent variable. The levels of tartrate-resistant acid phosphatase 5b and urinary hydroxyproline/creatinine were higher in T2DM group than those in control group(adjusted for BMI and life style, F=3.818, 1.541, both P<0.05). While the levels of bone glaprotein and bone-specific alkaline phosphatase were lower in T2DM group than those in control participants (adjusted for BMI and life style, F=0.407, 0.920, both P<0.05). Conclusion The risk of developing low bone mass is lower in elderly women with T2DM than the control participants, but the risk for fracture is higher, and the osteoporosis in these patients is more difficult to be

  12. PfsR is a key regulator of iron homeostasis in Synechocystis PCC 6803.

    Directory of Open Access Journals (Sweden)

    Dan Cheng

    Full Text Available Iron is an essential cofactor in numerous cellular processes. The iron deficiency in the oceans affects the primary productivity of phytoplankton including cyanobacteria. In this study, we examined the function of PfsR, a TetR family transcriptional regulator, in iron homeostasis of the cyanobacterium Synechocystis PCC 6803. Compared with the wild type, the pfsR deletion mutant displayed stronger tolerance to iron limitation and accumulated significantly more chlorophyll a, carotenoid, and phycocyanin under iron-limiting conditions. The mutant also maintained more photosystem I and photosystem II complexes than the wild type after iron deprivation. In addition, the activities of photosystem I and photosystem II were much higher in pfsR deletion mutant than in wild-type cells under iron-limiting conditions. The transcripts of pfsR were enhanced by iron limitation and inactivation of the gene affected pronouncedly expression of fut genes (encoding a ferric iron transporter, feoB (encoding a ferrous iron transporter, bfr genes (encoding bacterioferritins, ho genes (encoding heme oxygenases, isiA (encoding a chlorophyll-binding protein, and furA (encoding a ferric uptake regulator. The iron quota in pfsR deletion mutant cells was higher than in wild-type cells both before and after exposure to iron limitation. Electrophoretic mobility shift assays showed that PfsR bound to its own promoter and thereby auto-regulated its own expression. These data suggest that PfsR is a critical regulator of iron homeostasis.

  13. Primary Hyperparathyroidism: The Influence of Bone Marrow Adipose Tissue on Bone Loss and of Osteocalcin on Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Maira L. Mendonça

    Full Text Available OBJECTIVES: Bone marrow adipose tissue has been associated with low bone mineral density. However, no data exist regarding marrow adipose tissue in primary hyperparathyroidism, a disorder associated with bone loss in conditions of high bone turnover. The objective of the present study was to investigate the relationship between marrow adipose tissue, bone mass and parathyroid hormone. The influence of osteocalcin on the homeostasis model assessment of insulin resistance was also evaluated. METHODS: This was a cross-sectional study conducted at a university hospital, involving 18 patients with primary hyperparathyroidism (PHPT and 21 controls (CG. Bone mass was assessed by dual-energy x-ray absorptiometry and marrow adipose tissue was assessed by 1H magnetic resonance spectroscopy. The biochemical evaluation included the determination of parathyroid hormone, osteocalcin, glucose and insulin levels. RESULTS: A negative association was found between the bone mass at the 1/3 radius and parathyroid hormone levels (r = -0.69; p<0.01. Marrow adipose tissue was not significantly increased in patients (CG = 32.8±11.2% vs PHPT = 38.6±12%. The serum levels of osteocalcin were higher in patients (CG = 8.6±3.6 ng/mL vs PHPT = 36.5±38.4 ng/mL; p<0.005, but no associations were observed between osteocalcin and insulin or between insulin and both marrow adipose tissue and bone mass. CONCLUSION: These results suggest that the increment of adipogenesis in the bone marrow microenvironment under conditions of high bone turnover due to primary hyperparathyroidism is limited. Despite the increased serum levels of osteocalcin due to primary hyperparathyroidism, these patients tend to have impaired insulin sensitivity.

  14. Horizontal alveolar bone loss: A periodontal orphan

    Directory of Open Access Journals (Sweden)

    Jayakumar A

    2010-01-01

    Full Text Available Background: Attempts to successfully regenerate lost alveolar bone have always been a clinician′s dream. Angular defects, at least, have a fairer chance, but the same cannot be said about horizontal bone loss. The purpose of the present study was to evaluate the prevalence of horizontal alveolar bone loss and vertical bone defects in periodontal patients; and later, to correlate it with the treatment modalities available in the literature for horizontal and vertical bone defects. Materials and Methods: The study was conducted in two parts. Part I was the radiographic evaluation of 150 orthopantomographs (OPGs (of patients diagnosed with chronic periodontitis and seeking periodontal care, which were digitized and read using the AutoCAD 2006 software. All the periodontitis-affected teeth were categorized as teeth with vertical defects (if the defect angle was ≤45° and defect depth was ≥3 mm or as having horizontal bone loss. Part II of the study comprised search of the literature on treatment modalities for horizontal and vertical bone loss in four selected periodontal journals. Results: Out of the 150 OPGs studied, 54 (36% OPGs showed one or more vertical defects. Totally, 3,371 teeth were studied, out of which horizontal bone loss was found in 3,107 (92.2% teeth, and vertical defects were found only in 264 (7.8% of the teeth, which was statistically significant (P<.001. Search of the selected journals revealed 477 papers have addressed the treatment modalities for vertical and horizontal types of bone loss specifically. Out of the 477 papers, 461 (96.3% have addressed vertical bone loss, and 18 (3.7% have addressed treatment options for horizontal bone loss. Two papers have addressed both types of bone loss and are included in both categories. Conclusion: Horizontal bone loss is more prevalent than vertical bone loss but has been sidelined by researchers as very few papers have been published on the subject of regenerative treatment

  15. Thioredoxin interacting protein is a potential regulator of glucose and energy homeostasis in endogenous Cushing's syndrome.

    Science.gov (United States)

    Lekva, Tove; Bollerslev, Jens; Sahraoui, Afaf; Scholz, Hanne; Bøyum, Hege; Evang, Johan Arild; Godang, Kristin; Aukrust, Pål; Ueland, Thor

    2013-01-01

    Recent studies have described bone as an endocrine organ regulating glucose metabolism, with insulin signaling regulating osteocalcin secretion and osteocalcin regulating β cell function. We have previously demonstrated increased bone expression of TXNIP in patients with endogenous Cushing's syndrome (CS), and we hypothesized that TXNIP could contribute to the dysregulated glucose metabolism in CS. We studied 33 CS patients and 29 matched controls, with bone biopsies from nine patients, before and after surgical treatment. In vitro, the effect of silencing TXNIP (siTXNIP) in osteoblasts, including its effect on human islet cells, was examined. Our major findings were: (i) The high mRNA levels of TXNIP in bone from CS patients were significantly associated with high levels of glucose and insulin, increased insulin resistance, and decreased insulin sensitivity in these patients. (ii) Silencing TXNIP in osteoblasts enhanced their OC response to insulin and glucose and down-regulated interleukin (IL)-8 levels in these cells. (iii) Conditional media from siTXNIP-treated osteoblasts promoted insulin content and anti-inflammatory responses in human islet cells. We recently demonstrated that the thioredoxin/TXNIP axis may mediate some detrimental effects of glucocorticoid excess on bone tissue in CS. Here we show that alterations in this axis also may affect glucose metabolism in these patients.

  16. Thioredoxin interacting protein is a potential regulator of glucose and energy homeostasis in endogenous Cushing's syndrome.

    Directory of Open Access Journals (Sweden)

    Tove Lekva

    Full Text Available Recent studies have described bone as an endocrine organ regulating glucose metabolism, with insulin signaling regulating osteocalcin secretion and osteocalcin regulating β cell function. We have previously demonstrated increased bone expression of TXNIP in patients with endogenous Cushing's syndrome (CS, and we hypothesized that TXNIP could contribute to the dysregulated glucose metabolism in CS. We studied 33 CS patients and 29 matched controls, with bone biopsies from nine patients, before and after surgical treatment. In vitro, the effect of silencing TXNIP (siTXNIP in osteoblasts, including its effect on human islet cells, was examined. Our major findings were: (i The high mRNA levels of TXNIP in bone from CS patients were significantly associated with high levels of glucose and insulin, increased insulin resistance, and decreased insulin sensitivity in these patients. (ii Silencing TXNIP in osteoblasts enhanced their OC response to insulin and glucose and down-regulated interleukin (IL-8 levels in these cells. (iii Conditional media from siTXNIP-treated osteoblasts promoted insulin content and anti-inflammatory responses in human islet cells. We recently demonstrated that the thioredoxin/TXNIP axis may mediate some detrimental effects of glucocorticoid excess on bone tissue in CS. Here we show that alterations in this axis also may affect glucose metabolism in these patients.

  17. Zinc Status Affects Glucose Homeostasis and Insulin Secretion in Patients with Thalassemia

    Directory of Open Access Journals (Sweden)

    Ellen B. Fung

    2015-06-01

    Full Text Available Up to 20% of adult patients with Thalassemia major (Thal live with diabetes, while 30% may be zinc deficient. The objective of this study was to explore the relationship between zinc status, impaired glucose tolerance and insulin sensitivity in Thal patients. Charts from thirty subjects (16 male, 27.8 ± 9.1 years with Thal were reviewed. Patients with low serum zinc had significantly lower fasting insulin, insulinogenic and oral disposition indexes (all p < 0.05 and elevated glucose response curve, following a standard 75 g oral load of glucose compared to those with normal serum zinc after controlling for baseline (group × time interaction p = 0.048. Longitudinal data in five patients with a decline in serum zinc over a two year follow up period (−19.0 ± 9.6 μg/dL, showed consistent increases in fasting glucose (3.6 ± 3.2 mg/dL and insulin to glucose ratios at 120 min post glucose dose (p = 0.05. Taken together, these data suggest that the frequently present zinc deficiency in Thal patients is associated with decreased insulin secretion and reduced glucose disposal. Future zinc trials will require modeling of oral glucose tolerance test data and not simply measurement of static indices in order to understand the complexities of pancreatic function in the Thal patient.

  18. Bright morning light advances the human circadian system without affecting NREM sleep homeostasis

    NARCIS (Netherlands)

    Dijk, Derk Jan; Beersma, Domien G.M.; Daan, Serge; Lewy, Alfred J.

    1989-01-01

    Eight male subjects were exposed to either bright light or dim light between 0600 and 0900 h for 3 consecutive days each. Relative to the dim light condition, the bright light treatment advanced the evening rise in plasma melatonin and the time of sleep termination (sleep onset was held constant) fo

  19. Methanolic Extracts of Bitter Melon Inhibit Colon Cancer Stem Cells by Affecting Energy Homeostasis and Autophagy

    Directory of Open Access Journals (Sweden)

    Deep Kwatra

    2013-01-01

    Full Text Available Bitter melon fruit is recommended in ancient Indian and Chinese medicine for prevention/treatment of diabetes. However its effects on cancer progression are not well understood. Here, we have determined the efficacy of methanolic extracts of bitter melon on colon cancer stem and progenitor cells. Both, whole fruit (BMW and skin (BMSk extracts showed significant inhibition of cell proliferation and colony formation, with BMW showing greater efficacy. In addition, the cells were arrested at the S phase of cell cycle. Moreover, BMW induced the cleavage of LC3B but not caspase 3/7, suggesting that the cells were undergoing autophagy and not apoptosis. Further confirmation of autophagy was obtained when western blots showed reduced Bcl-2 and increased Beclin-1, Atg 7 and 12 upon BMW treatment. BMW reduced cellular ATP levels coupled with activation of AMP activated protein kinase; on the other hand, exogenous additions of ATP lead to revival of cell proliferation. Finally, BMW treatment results in a dose-dependent reduction in the number and size of colonospheres. The extracts also decreased the expression of DCLK1 and Lgr5, markers of quiescent, and activated stem cells. Taken together, these results suggest that the extracts of bitter melon can be an effective preventive/therapeutic agent for colon cancer.

  20. Low-carbohydrate diets affect energy balance and fuel homeostasis differentially in lean and obese rats

    NARCIS (Netherlands)

    Morens, C.; Sirot, V.; Scheurink, A. J. W.; van Dijk, G.

    2006-01-01

    In parallel with increased prevalence of overweight people in affluent societies are individuals trying to lose weight, often using low-carbohydrate diets. Nevertheless, long-term metabolic consequences of those diets, usually high in (saturated) fat, remain unclear. Therefore, we investigated long-

  1. Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis

    NARCIS (Netherlands)

    Benyamin, Beben; Esko, Tonu; Ried, Janina S.; Radhakrishnan, Aparna; Vermeulen, Sita H.; Traglia, Michela; Goegele, Martin; Anderson, Denise; Broer, Linda; Podmore, Clara; Luan, Jian'an; Kutalik, Zoltan; Sanna, Serena; van der Meer, Peter; Tanaka, Toshiko; Wang, Fudi; Westra, Harm-Jan; Franke, Lude; Mihailov, Evelin; Milani, Lili; Haeldin, Jonas; Winkelmann, Juliane; Meitinger, Thomas; Thiery, Joachim; Peters, Annette; Waldenberger, Melanie; Rendon, Augusto; Jolley, Jennifer; Sambrook, Jennifer; Kiemeney, Lambertus A.; Sweep, Fred C.; Sala, Cinzia F.; Schwienbacher, Christine; Pichler, Irene; Hui, Jennie; Demirkan, Ayse; Isaacs, Aaron; Amin, Najaf; Steri, Maristella; Waeber, Gerard; Verweij, Niek; Powell, Joseph E.; Nyholt, Dale R.; Heath, Andrew C.; Madden, Pamela A. F.; Visscher, Peter M.; Wright, Margaret J.; Montgomery, Grant W.; Martin, Nicholas G.; Hernandez, Dena; Bandinelli, Stefania; van der Harst, Pim; Uda, Manuela; Vollenweider, Peter; Scott, Robert A.; Langenberg, Claudia; Wareham, Nicholas J.; van Duijn, Cornelia; Beilby, John; Pramstaller, Peter P.; Hicks, Andrew A.; Ouwehand, Willem H.; Oexle, Konrad; Gieger, Christian; Metspalu, Andres; Camaschella, Clara; Toniolo, Daniela; Swinkels, Dorine W.; Whitfield, John B.

    2014-01-01

    Variation in body iron is associated with or causes diseases, including anaemia and iron overload. Here, we analyse genetic association data on biochemical markers of iron status from 11 European-population studies, with replication in eight additional cohorts (total up to 48,972 subjects). We find

  2. Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis

    NARCIS (Netherlands)

    B. Benyamin (Beben); T. Esko (Tõnu); J.S. Ried (Janina); A. Radhakrishnan (Aparna); S.H.H.M. Vermeulen (Sita); M. Traglia (Michela); M. Gögele (Martin); D. Anderson (David); L. Broer (Linda); C. Podmore (Clara); J. Luan; Z. Kutalik (Zoltán); S. Sanna (Serena); P. van der Meer (Peter); T. Tanaka (Toshiko); F. Wang (Fudi); H.J. Westra (Harm-Jan); L. Franke (Lude); E. Mihailov (Evelin); L. Milani (Lili); J. Häldin (Jonas); B. Winkelmann; T. Meitinger (Thomas); J. Thiery (Joachim); A. Peters (Annette); M. Waldenberger (Melanie); A. Rendon (Augusto); G.J. Jolley (Jason); J.G. Sambrook (Jennifer); L.A.L.M. Kiemeney (Bart); F.C. Sweep (Fred); C. Sala (Cinzia); C. Schwienbacher (Christine); I. Pichler (Irene); J. Hui (Jennie); A. Demirkan (Ayşe); A. Isaacs (Aaron); N. Amin (Najaf); M. Steri (Maristella); G. Waeber (Gérard); N. Verweij (Niek); J.E. Powell (Joseph); A.S. Dimas (Antigone); A.C. Heath (Andrew); P.A. Madden (Pamela); P.M. Visscher (Peter); M.J. Wright (Margaret); G.W. Montgomery (Grant); N.G. Martin (Nicholas); D.G. Hernandez (Dena); S. Bandinelli (Stefania); P. van der Harst (Pim); M. Uda (Manuela); P. Vollenweider (Peter); R.A. Scott (Robert); C. Langenberg (Claudia); N.J. Wareham (Nick); C.M. van Duijn (Cock); J. Beilby (John); P.P. Pramstaller (Peter Paul); A.A. Hicks (Andrew); W.H. Ouwehand (Willem); K. Oexle (Konrad); C. Gieger (Christian); A. Metspalu (Andres); C. Camaschella (Clara); D. Toniolo (Daniela); D.W. Swinkels (Dorine); J. Whitfield (John)

    2014-01-01

    textabstractVariation in body iron is associated with or causes diseases, including anaemia and iron overload. Here, we analyse genetic association data on biochemical markers of iron status from 11 European-population studies, with replication in eight additional cohorts (total up to 48,972 subject

  3. Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance

    NARCIS (Netherlands)

    Heeman, B.; Haute, C. Van den; Aelvoet, S.A.; Valsecchi, F.; Rodenburg, R.J.T.; Reumers, V.; Debyser, Z.; Callewaert, G.; Koopman, W.J.H.; Willems, P.H.G.M.; Baekelandt, V.

    2011-01-01

    Loss-of-function mutations in the gene encoding the mitochondrial PTEN-induced putative kinase 1 (PINK1) are a major cause of early-onset familial Parkinson's disease (PD). Recent studies have highlighted an important function for PINK1 in clearing depolarized mitochondria by mitophagy. However, the

  4. Fumonisins affect the intestinal microbial homeostasis in broiler chickens, predisposing to necrotic enteritis.

    Science.gov (United States)

    Antonissen, Gunther; Croubels, Siska; Pasmans, Frank; Ducatelle, Richard; Eeckhaut, Venessa; Devreese, Mathias; Verlinden, Marc; Haesebrouck, Freddy; Eeckhout, Mia; De Saeger, Sarah; Antlinger, Birgit; Novak, Barbara; Martel, An; Van Immerseel, Filip

    2015-09-23

    Fumonisins (FBs) are mycotoxins produced by Fusarium fungi. This study aimed to investigate the effect of these feed contaminants on the intestinal morphology and microbiota composition, and to evaluate whether FBs predispose broilers to necrotic enteritis. One-day-old broiler chicks were divided into a group fed a control diet, and a group fed a FBs contaminated diet (18.6 mg FB1+FB2/kg feed). A significant increase in the plasma sphinganine/sphingosine ratio in the FBs-treated group (0.21 ± 0.016) compared to the control (0.14 ± 0.014) indicated disturbance of the sphingolipid biosynthesis. Furthermore, villus height and crypt depth of the ileum was significantly reduced by FBs. Denaturing gradient gel electrophoresis showed a shift in the microbiota composition in the ileum in the FBs group compared to the control. A reduced presence of low-GC containing operational taxonomic units in ileal digesta of birds exposed to FBs was demonstrated, and identified as a reduced abundance of Candidatus Savagella and Lactobaccilus spp. Quantification of total Clostridium perfringens in these ileal samples, previous to experimental infection, using cpa gene (alpha toxin) quantification by qPCR showed an increase in C. perfringens in chickens fed a FBs contaminated diet compared to control (7.5 ± 0.30 versus 6.3 ± 0.24 log10 copies/g intestinal content). After C. perfringens challenge, a higher percentage of birds developed subclinical necrotic enteritis in the group fed a FBs contaminated diet as compared to the control (44.9 ± 2.22% versus 29.8 ± 5.46%).

  5. Sphingolipids regulate telomere clustering by affecting the transcription of genes involved in telomere homeostasis.

    Science.gov (United States)

    Ikeda, Atsuko; Muneoka, Tetsuya; Murakami, Suguru; Hirota, Ayaka; Yabuki, Yukari; Karashima, Takefumi; Nakazono, Kota; Tsuruno, Masahiro; Pichler, Harald; Shirahige, Katsuhiko; Kodama, Yukiko; Shimamoto, Toshi; Mizuta, Keiko; Funato, Kouichi

    2015-07-15

    In eukaryotic organisms, including mammals, nematodes and yeasts, the ends of chromosomes, telomeres are clustered at the nuclear periphery. Telomere clustering is assumed to be functionally important because proper organization of chromosomes is necessary for proper genome function and stability. However, the mechanisms and physiological roles of telomere clustering remain poorly understood. In this study, we demonstrate a role for sphingolipids in telomere clustering in the budding yeast Saccharomyces cerevisiae. Because abnormal sphingolipid metabolism causes downregulation of expression levels of genes involved in telomere organization, sphingolipids appear to control telomere clustering at the transcriptional level. In addition, the data presented here provide evidence that telomere clustering is required to protect chromosome ends from DNA-damage checkpoint signaling. As sphingolipids are found in all eukaryotes, we speculate that sphingolipid-based regulation of telomere clustering and the protective role of telomere clusters in maintaining genome stability might be conserved in eukaryotes.

  6. Blood flow controls bone vascular function and osteogenesis

    Science.gov (United States)

    Ramasamy, Saravana K.; Kusumbe, Anjali P.; Schiller, Maria; Zeuschner, Dagmar; Bixel, M. Gabriele; Milia, Carlo; Gamrekelashvili, Jaba; Limbourg, Anne; Medvinsky, Alexander; Santoro, Massimo M.; Limbourg, Florian P.; Adams, Ralf H.

    2016-01-01

    While blood vessels play important roles in bone homeostasis and repair, fundamental aspects of vascular function in the skeletal system remain poorly understood. Here we show that the long bone vasculature generates a peculiar flow pattern, which is important for proper angiogenesis. Intravital imaging reveals that vessel growth in murine long bone involves the extension and anastomotic fusion of endothelial buds. Impaired blood flow leads to defective angiogenesis and osteogenesis, and downregulation of Notch signalling in endothelial cells. In aged mice, skeletal blood flow and endothelial Notch activity are also reduced leading to decreased angiogenesis and osteogenesis, which is reverted by genetic reactivation of Notch. Blood flow and angiogenesis in aged mice are also enhanced on administration of bisphosphonate, a class of drugs frequently used for the treatment of osteoporosis. We propose that blood flow and endothelial Notch signalling are key factors controlling ageing processes in the skeletal system. PMID:27922003

  7. Physicochemical Characteristics of Bone Substitutes Used in Oral Surgery in Comparison to Autogenous Bone

    Directory of Open Access Journals (Sweden)

    Antoine Berberi

    2014-01-01

    Full Text Available Bone substitutes used in oral surgery include allografts, xenografts, and synthetic materials that are frequently used to compensate bone loss or to reinforce repaired bone, but little is currently known about their physicochemical characteristics. The aim of this study was to evaluate a number of physical and chemical properties in a variety of granulated mineral-based biomaterials used in dentistry and to compare them with those of autogenous bone. Autogenous bone and eight commercial biomaterials of human, bovine, and synthetic origins were studied by high-resolution X-ray diffraction, atomic absorption spectrometry, and laser diffraction to determine their chemical composition, calcium release concentration, crystallinity, and granulation size. The highest calcium release concentration was 24. 94 mg/g for Puros and the lowest one was 2.83 mg/g for Ingenios β-TCP compared to 20.15 mg/g for natural bone. The range of particles sizes, in terms of median size D50, varied between 1.32 μm for BioOss and 902.41 μm for OsteoSponge, compared to 282.1 μm for natural bone. All samples displayed a similar hexagonal shape as bone, except Ingenios β-TCP, Macrobone, and OsteoSponge, which showed rhomboid and triclinic shapes, respectively. Commercial bone substitutes significantly differ in terms of calcium concentration, particle size, and crystallinity, which may affect their in vivo performance.

  8. Monosodium glutamate-sensitive hypothalamic neurons contribute to the control of bone mass

    Science.gov (United States)

    Elefteriou, Florent; Takeda, Shu; Liu, Xiuyun; Armstrong, Dawna; Karsenty, Gerard

    2003-01-01

    Using chemical lesioning we previously identified hypothalamic neurons that are required for leptin antiosteogenic function. In the course of these studies we observed that destruction of neurons sensitive to monosodium glutamate (MSG) in arcuate nuclei did not affect bone mass. However MSG treatment leads to hypogonadism, a condition inducing bone loss. Therefore the normal bone mass of MSG-treated mice suggested that MSG-sensitive neurons may be implicated in the control of bone mass. To test this hypothesis we assessed bone resorption and bone formation parameters in MSG-treated mice. We show here that MSG-treated mice display the expected increase in bone resorption and that their normal bone mass is due to a concomitant increase in bone formation. Correction of MSG-induced hypogonadism by physiological doses of estradiol corrected the abnormal bone resorptive activity in MSG-treated mice and uncovered their high bone mass phenotype. Because neuropeptide Y (NPY) is highly expressed in MSG-sensitive neurons we tested whether NPY regulates bone formation. Surprisingly, NPY-deficient mice had a normal bone mass. This study reveals that distinct populations of hypothalamic neurons are involved in the control of bone mass and demonstrates that MSG-sensitive neurons control bone formation in a leptin-independent manner. It also indicates that NPY deficiency does not affect bone mass.

  9. Estradiol does not affect bone tissue and bone metabolism indices in rat models of lead poisoning%雌二醇对铅中毒模型大鼠骨组织及骨代谢指标不能产生影响

    Institute of Scientific and Technical Information of China (English)

    陈秉朴; 李海; 陈建海; 黎飚; 张树球

    2011-01-01

    BACKGROUND: There ha s been no consensus regarding whether lead poisoning can cause osteoporosis and whether estradiol exhibits curative effects on osteoporosis.OBJECTIVE: To observe the curative effects of estradiol on osteoporosisinduced by ovariectomy and lead poisoning in rats.METHODS: A total of 100 female rats were randomly and evenly divided into five g roups: normal control, ovariectomized, lead poisoning, estradiol+ovariectomized and estradiol+lead poisoning. At 1 week after ovariectomy, estradiol (100 μg/kg) was subcutaneously injected into the rats in the estradiol+ovariectomized and estradiol+lead poisoning groups, twice a week, for successive 12 weeks.RESULTS AND CONCLUSION: In the ovariectomized group and lead poisoning group, calcium and phosphoruslevelsin the bone and serum were significantly decreased (P < 0.01), serum level of alkaline phosphatase was significantly increased (P<0.01), and bone tissue showed the pathological change of osteoporosis. In the estradiol+ovariectomized group, serum levels of calcium, phosphorus, and alkaline phosphatase and bone tissue morphology returned to normal, while in the estradiol+lead poisoning group, no obvious changes in bone metabolism indices and bone tissue morphology above-mentioned did not recover obviously. The lead level in the bone and serum was significantly higher in the lead poisoning group, estradiol+lead poisoning group than in the normal control group (P < 0.01). These results showed that lead poisoning can cause osteoporosis, and estradiol exhibits good curative effects on osteoporosiscaused by ovariectomy in rats, but it does not produce obvious curative effects on osteoporosiscaused by lead poisoning.%背景:关于铅中毒能否引起骨质疏松症及雌激素对其治疗是否有效尚无共识.目的:观察雌二醇对去卵巢大鼠和铅中毒大鼠所致骨质疏松症的治疗效果.方法:雌性大白鼠100 只等分成正常对照组、去卵巢模型组、染铅模型组、

  10. Canine Models for Copper Homeostasis Disorders

    Directory of Open Access Journals (Sweden)

    Xiaoyan Wu

    2016-02-01

    Full Text Available Copper is an essential trace nutrient metal involved in a multitude of cellular processes. Hereditary defects in copper metabolism result in disorders with a severe clinical course such as Wilson disease and Menkes disease. In Wilson disease, copper accumulation leads to liver cirrhosis and neurological impairments. A lack in genotype-phenotype correlation in Wilson disease points toward the influence of environmental factors or modifying genes. In a number of Non-Wilsonian forms of copper metabolism, the underlying genetic defects remain elusive. Several pure bred dog populations are affected with copper-associated hepatitis showing similarities to human copper metabolism disorders. Gene-mapping studies in these populations offer the opportunity to discover new genes involved in copper metabolism. Furthermore, due to the relatively large body size and long life-span of dogs they are excellent models for development of new treatment strategies. One example is the recent use of canine organoids for disease modeling and gene therapy of copper storage disease. This review addresses the opportunities offered by canine genetics for discovery of genes involved in copper metabolism disorders. Further, possibilities for the use of dogs in development of new treatment modalities for copper storage disorders, including gene repair in patient-derived hepatic organoids, are highlighted.

  11. Different exercise intensities affect bone mineral density in type 2 diabetic rats%不同运动强度干预2型糖尿病模型大鼠的骨密度变化

    Institute of Scientific and Technical Information of China (English)

    江洪

    2016-01-01

    背景:超过50%的糖尿病患者伴随骨质疏松。运动是治疗糖尿病的主要方法,其是否也对糖尿病骨质疏松的发生产生影响目前尚不明确。  目的:分析不同运动强度与2型糖尿病大鼠模型骨密度变化。  方法:将40只大鼠随机等分为模型组和低、中、高强度运动组,所有大鼠均采用一次性腹腔注射链脲佐菌素建立2型糖尿病模型。低、中、高强度运动组分别进行10,20,30 m/min的跑台训练,1 h/d,6 d为一个周期,每周期训练结束后休息1 d,连续运动8个周期。而模型组不进行运动训练。  结果与结论:与模型组相比,低、中、高强度运动组大鼠体质量减轻,血糖水平下降,骨钙素、血钙水平以及股骨生物力学指标增加,血磷和碱性磷酸酶降低,且中、高强度运动组大鼠骨密度增加。提示不同运动强度都对2型糖尿病大鼠模型骨密度和骨代谢具有一定的影响。采用运动方法治疗时采取适当的体育运动能提高血清骨钙素含量,改善骨代谢状况,更好的预防糖尿病骨质疏松症,具有较高的临床应用价值。%BACKGROUND:More than 50% of patients with diabetes are accompanied by osteoporosis. Exercise is the main method to treat diabetes, but whether it has an impact on diabetes osteoporosis is unclear. OBJECTIVE:To analyze the different exercise intensities and changes in bone mineral density in type 2 diabetic rat models. METHODS:Forty rats were randomly divided into model group and low-, medium-and high-intensity exercise groups. Al rats received intraperitoneal injection of streptozotocin to establish models of type 2 diabetes. Rats in the low-, medium-and high-intensity exercise groups did treadmil training at 10, 20, 30 m/min, 1 hour per day, 6 daysas a cycle. They had a rest for 1 day after each cycle, for 8 consecutive cycles. Rats in the model group did not do any exercise. RESULTS AND

  12. What Is Bone Cancer?

    Science.gov (United States)

    ... start in bone, muscle, fibrous tissue, blood vessels, fat tissue, as well as some other tissues. They can develop anywhere in the body. There are several different types of bone tumors. Their names are based on ...

  13. Osteochondroma (Bone Tumor)

    Science.gov (United States)

    ... to be the most common benign bone tumor, accounting for 35% to 40% of all benign bone ... imaging scans. Doctors may also request computed tomography (CT) scans or magnetic resonance imaging (MRI) scans to ...

  14. What causes bone loss?

    Science.gov (United States)

    ... bone biology. In: Melmed S, Polonsky KS, Larsen PR, Kronenberg HM, eds. Williams Textbook of Endocrinology . 13th ed. Philadelphia, PA: Elsevier; 2016:chap 29. Maes C, Kronenberg HM. Bone development and remodeling. In: Jameson JL, ...

  15. Bone mineral density test

    Science.gov (United States)

    BMD test; Bone density test; Bone densitometry; DEXA scan; DXA; Dual-energy x-ray absorptiometry; p-DEXA; Osteoporosis-BMD ... need to undress. This scan is the best test to predict your risk of fractures. Peripheral DEXA ( ...

  16. Neurobiology: Setting the Set Point for Neural Homeostasis.

    Science.gov (United States)

    Truszkowski, Torrey L S; Aizenman, Carlos D

    2015-12-07

    Neural homeostasis allows neural networks to maintain a dynamic range around a given set point. How this set point is determined remains unknown. New evidence shows that alterations of activity during a critical developmental period can alter the homeostatic set point, resulting in epilepsy-like activity.

  17. Multilevel control of glucose homeostasis by adenylyl cyclase 8

    NARCIS (Netherlands)

    Raoux, Matthieu; Vacher, Pierre; Papin, Julien; Picard, Alexandre; Kostrzewa, Elzbieta; Devin, Anne; Gaitan, Julien; Limon, Isabelle; Kas, Martien J.; Magnan, Christophe; Lang, Jochen

    2015-01-01

    Aims/hypothesis: Nutrient homeostasis requires integration of signals generated by glucose metabolism and hormones. Expression of the calcium-stimulated adenylyl cyclase ADCY8 is regulated by glucose and the enzyme is capable of integrating signals from multiple pathways. It may thus have an importa

  18. A lysosome-centered view of nutrient homeostasis.

    Science.gov (United States)

    Mony, Vinod K; Benjamin, Shawna; O'Rourke, Eyleen J

    2016-01-01

    Lysosomes are highly acidic cellular organelles traditionally viewed as sacs of enzymes involved in digesting extracellular or intracellular macromolecules for the regeneration of basic building blocks, cellular housekeeping, or pathogen degradation. Bound by a single lipid bilayer, lysosomes receive their substrates by fusing with endosomes or autophagosomes, or through specialized translocation mechanisms such as chaperone-mediated autophagy or microautophagy. Lysosomes degrade their substrates using up to 60 different soluble hydrolases and release their products either to the cytosol through poorly defined exporting and efflux mechanisms or to the extracellular space by fusing with the plasma membrane. However, it is becoming evident that the role of the lysosome in nutrient homeostasis goes beyond the disposal of waste or the recycling of building blocks. The lysosome is emerging as a signaling hub that can integrate and relay external and internal nutritional information to promote cellular and organismal homeostasis, as well as a major contributor to the processing of energy-dense molecules like glycogen and triglycerides. Here we describe the current knowledge of the nutrient signaling pathways governing lysosomal function, the role of the lysosome in nutrient mobilization, and how lysosomes signal other organelles, distant tissues, and even themselves to ensure energy homeostasis in spite of fluctuations in energy intake. At the same time, we highlight the value of genomics approaches to the past and future discoveries of how the lysosome simultaneously executes and controls cellular homeostasis.

  19. nfluence of antidepressants on glucose homeostasis : effects and mechanisms

    NARCIS (Netherlands)

    Derijks, H.J.

    2009-01-01

    Depression has shown to be a common morbidity in patients with diabetes mellitus and comorbid depression in diabetes mellitus patients is frequently treated with antidepressants. It has been postulated that antidepressants may interfere with glucose homeostasis and that the interference of antidepre

  20. Deficiency of a alpha-1-antitrypsin influences systemic iron homeostasis

    Science.gov (United States)

    Abstract Background: There is evidence that proteases and anti-proteases participate in the iron homeostasis of cells and living systems. We tested the postulate that alpha-1 antitrypsin (A1AT) polymorphism and the consequent deficiency of this anti-protease in humans are asso...

  1. Exploring the role of glucagon in glucose homeostasis

    NARCIS (Netherlands)

    Dongen, Maria Gertrud Jobina van

    2015-01-01

    The aim of this thesis was to gain further insight into the role of glucagon in glucose homeostasis in healthy volunteers and type 2 diabetes mellitus (T2DM) patients, and to explore the novel antisense glucagon receptor antagonist. Chapter 2 showed that the effect of meal replacers containing prote

  2. A systems approach to mapping transcriptional networks controlling surfactant homeostasis

    Directory of Open Access Journals (Sweden)

    Dave Vrushank

    2010-07-01

    Full Text Available Abstract Background Pulmonary surfactant is required for lung function at birth and throughout life. Lung lipid and surfactant homeostasis requires regulation among multi-tiered processes, coordinating the synthesis of surfactant proteins and lipids, their assembly, trafficking, and storage in type II cells of the lung. The mechanisms regulating these interrelated processes are largely unknown. Results We integrated mRNA microarray data with array independent knowledge using Gene Ontology (GO similarity analysis, promoter motif searching, protein interaction and literature mining to elucidate genetic networks regulating lipid related biological processes in lung. A Transcription factor (TF - target gene (TG similarity matrix was generated by integrating data from different analytic methods. A scoring function was built to rank the likely TF-TG pairs. Using this strategy, we identified and verified critical components of a transcriptional network directing lipogenesis, lipid trafficking and surfactant homeostasis in the mouse lung. Conclusions Within the transcriptional network, SREBP, CEBPA, FOXA2, ETSF, GATA6 and IRF1 were identified as regulatory hubs displaying high connectivity. SREBP, FOXA2 and CEBPA together form a common core regulatory module that controls surfactant lipid homeostasis. The core module cooperates with other factors to regulate lipid metabolism and transport, cell growth and development, cell death and cell mediated immune response. Coordinated interactions of the TFs influence surfactant homeostasis and regulate lung function at birth.

  3. Long bone histology of the subterranean rodent Bathyergus suillus (Bathyergidae): ontogenetic pattern of cortical bone thickening.

    Science.gov (United States)

    Montoya-Sanhueza, Germán; Chinsamy, Anusuya

    2017-02-01

    Patterns of bone development in mammals are best known from terrestrial and cursorial groups, but there is a considerable gap in our understanding of how specializations for life underground affect bone growth and development. Likewise, studies of bone microstructure in wild populations are still scarce, and they often include few individuals and tend to be focused on adults. For these reasons, the processes generating bone microstructural variation at intra- and interspecific levels are not fully understood. This study comprehensively examines the bone microstructure of an extant population of Cape dune molerats, Bathyergus suillus (Bathyergidae), the largest subterranean mammal endemic to the Western Cape of South Africa. The aim of this study is to investigate the postnatal bone growth of B. suillus using undecalcified histological sections (n = 197) of the femur, humerus, tibia-fibula, ulna and radius, including males and females belonging to different ontogenetic and reproductive stages (n = 42). Qualitative histological features demonstrate a wide histodiversity with thickening of the cortex mainly resulting from endosteal and periosteal bone depositions, whilst there is scarce endosteal resorption and remodeling throughout ontogeny. This imbalanced bone modeling allows the tissues deposited during ontogeny to remain relatively intact, thus preserving an excellent record of growth. The distribution of the different bone tissues observed in the cortex depends on ontogenetic status, anatomical features (e.g. muscle attachment structures) and location on the bone (e.g. anterior or lateral). The type of bone microstructure and modeling is discussed in relation to digging behavior, reproduction and physiology of this species. This study is the first histological assessment describing the process of cortical thickening in long bones of a fossorial mammal.

  4. Androgens and bone.

    Science.gov (United States)

    Vanderschueren, Dirk; Vandenput, Liesbeth; Boonen, Steven; Lindberg, Marie K; Bouillon, Roger; Ohlsson, Claes

    2004-06-01

    Loss of estrogens or androgens increases the rate of bone remodeling by removing restraining effects on osteoblastogenesis and osteoclastogenesis, and also causes a focal imbalance between resorption and formation by prolonging the lifespan of osteoclasts and shortening the lifespan of osteoblasts. Conversely, androgens, as well as estrogens, maintain cancellous bone mass and integrity, regardless of age or sex. Although androgens, via the androgen receptor (AR), and estrogens, via the estrogen receptors (ERs), can exert these effects, their relative contribution remains uncertain. Recent studies suggest that androgen action on cancellous bone depends on (local) aromatization of androgens into estrogens. However, at least in rodents, androgen action on cancellous bone can be directly mediated via AR activation, even in the absence of ERs. Androgens also increase cortical bone size via stimulation of both longitudinal and radial growth. First, androgens, like estrogens, have a biphasic effect on endochondral bone formation: at the start of puberty, sex steroids stimulate endochondral bone formation, whereas they induce epiphyseal closure at the end of puberty. Androgen action on the growth plate is, however, clearly mediated via aromatization in estrogens and interaction with ERalpha. Androgens increase radial growth, whereas estrogens decrease periosteal bone formation. This effect of androgens may be important because bone strength in males seems to be determined by relatively higher periosteal bone formation and, therefore, greater bone dimensions, relative to muscle mass at older age. Experiments in mice again suggest that both the AR and ERalpha pathways are involved in androgen action on radial bone growth. ERbeta may mediate growth-limiting effects of estrogens in the female but does not seem to be involved in the regulation of bone size in males. In conclusion, androgens may protect men against osteoporosis via maintenance of cancellous bone mass and

  5. Gracile bone dysplasias

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, Kazimierz [Department of Medical Imaging, The Children' s Hospital at Westmead, Locked Bag 4001, Westmead 2145, NSW (Australia); Masel, John [Department of Radiology, Royal Children' s Hospital, Brisbane (Australia); Sillence, David O. [Department of Paediatrics and Child Health, The University of Sydney (Australia); Arbuckle, Susan [Department of Anatomical Pathology, The Children' s Hospital at Westmead, NSW (Australia); Juttnerova, Vera [Oddeleni Lekarske Genetiky, Hradec Kralove (Czech Republic)

    2002-09-01

    Gracile bone dysplasias constitute a group of disorders characterised by extremely slender bones with or without fractures. We report four newborns, two of whom showed multiple fractures. Two babies had osteocraniostenosis and one had features of oligohydramnios sequence. The diagnosis in the fourth newborn, which showed thin long bones and clavicles and extremely thin, poorly ossified ribs, is uncertain. Exact diagnosis of a gracile bone dysplasia is important for genetic counselling and medico-legal reasons. (orig.)

  6. Leptin regulates bone formation via the sympathetic nervous system

    Science.gov (United States)

    Takeda, Shu; Elefteriou, Florent; Levasseur, Regis; Liu, Xiuyun; Zhao, Liping; Parker, Keith L.; Armstrong, Dawna; Ducy, Patricia; Karsenty, Gerard

    2002-01-01

    We previously showed that leptin inhibits bone formation by an undefined mechanism. Here, we show that hypothalamic leptin-dependent antiosteogenic and anorexigenic networks differ, and that the peripheral mediators of leptin antiosteogenic function appear to be neuronal. Neuropeptides mediating leptin anorexigenic function do not affect bone formation. Leptin deficiency results in low sympathetic tone, and genetic or pharmacological ablation of adrenergic signaling leads to a leptin-resistant high bone mass. beta-adrenergic receptors on osteoblasts regulate their proliferation, and a beta-adrenergic agonist decreases bone mass in leptin-deficient and wild-type mice while a beta-adrenergic antagonist increases bone mass in wild-type and ovariectomized mice. None of these manipulations affects body weight. This study demonstrates a leptin-dependent neuronal regulation of bone formation with potential therapeutic implications for osteoporosis.

  7. Computer-simulated bone architecture in a simple bone-remodeling model based on a reaction-diffusion system.

    Science.gov (United States)

    Tezuka, Ken-ichi; Wada, Yoshitaka; Takahashi, Akiyuki; Kikuchi, Masanori

    2005-01-01

    Bone is a complex system with functions including those of adaptation and repair. To understand how bone cells can create a structure adapted to the mechanical environment, we propose a simple bone remodeling model based on a reaction-diffusion system influenced by mechanical stress. Two-dimensional bone models were created and subjected to mechanical loads. The conventional finite element method (FEM) was used to calculate stress distribution. A stress-reactive reaction-diffusion model was constructed and used to simulate bone remodeling under mechanical loads. When an external mechanical stress was applied, stimulated bone formation and subsequent activation of bone resorption produced an efficient adaptation of the internal shape of the model bone to a given stress, and demonstrated major structures of trabecular bone seen in the human femoral neck. The degree of adaptation could be controlled by modulating the diffusion constants of hypothetical local factors. We also tried to demonstrate the deformation of bone structure during osteoporosis by the modulation of a parameter affecting the balance between formation and resorption. This simple model gives us an insight into how bone cells can create an architecture adapted to environmental stress, and will serve as a useful tool to understand both physiological and pathological states of bone based on structural information.

  8. Enzymatic maceration of bone

    DEFF Research Database (Denmark)

    Uhre, Marie-Louise; Eriksen, Anne Marie; Simonsen, Kim Pilkjær;

    2015-01-01

    the bones. The DNA analysis showed that DNA was preserved on all the pieces of bones which were examined. Finally, the investigation suggests that enzyme maceration could be gentler on the bones, as the edges appeared less frayed. The enzyme maceration was also a quicker method; it took three hours compared...

  9. Oxidative stress homeostasis in grapevine (Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Luisa C Carvalho

    2015-03-01

    Full Text Available Plants can maintain growth and reproductive success by sensing changes in the environment and reacting through mechanisms at molecular, cellular, physiological and developmental levels. Each stress condition prompts a unique response although some overlap between the reactions to abiotic stress (drought, heat, cold, salt or high light and to biotic stress (pathogens does occur. A common feature in the response to all stresses is the onset of oxidative stress, through the production of reactive oxygen species (ROS. As hydrogen peroxide and superoxide are involved in stress signaling, a tight control in ROS homeostasis requires a delicate balance of systems involved in their generation and degradation. If the plant lacks the capacity to generate scavenging potential, this can ultimately lead to death. In grapevine, antioxidant homeostasis can be considered at whole plant levels and during the development cycle. The most striking example lies in berries and their derivatives, such as wine, with nutraceutical properties associated with their antioxidant capacity. Antioxidant homeostasis is tightly regulated in leaves, assuring a positive balance between photosynthesis and respiration, explaining the tolerance of many grapevine varieties to extreme environments.In this review we will focus on antioxidant metabolites, antioxidant enzymes, transcriptional regulation and cross-talk with hormones prompted by abiotic stress conditions. We will also discuss three situations that require specific homeostasis balance: biotic stress, the oxidative burst in berries at veraison and in vitro systems. The genetic plasticity of the antioxidant homeostasis response put in evidence by the different levels of tolerance to stress presented by grapevine varieties will be addressed. The gathered information is relevant to foster varietal adaptation to impending climate changes, to assist breeders in choosing the more adapted varieties and to suitable viticulture

  10. Bone marrow mesenchymal stromal cells induce nitric oxide synthase-dependent differentiation of CD11b+ cells that expedite hematopoietic recovery.

    Science.gov (United States)

    Trento, Cristina; Marigo, Ilaria; Pievani, Alice; Galleu, Antonio; Dolcetti, Luigi; Wang, Chun-Yin; Serafini, Marta; Bronte, Vincenzo; Dazzi, Francesco

    2017-02-09

    Bone marrow microenvironment is fundamental for hematopoietic homeostasis. Numerous efforts have been made to reproduce or manipulate its activity to facilitate engraftment after hematopoietic stem cell transplantation but clinical results remain unconvincing. This probably reflects the complexity of the hematopoietic niche. Recent data have demonstrated the fundamental role of stromal and myeloid cells in regulating hematopoietic stem cell self-renewal and mobilization in the bone marrow. In this study we unveil a novel interaction by which bone marrow mesenchymal stromal cells induce the rapid differentiation of CD11b+ myeloid cells from bone marrow progenitors. Such an activity requires the expression of nitric oxide synthase-2. Importantly, the administration of these mesenchymal stromal cells-educated CD11b+ cells accelerates hematopoietic reconstitution in bone marrow transplant recipients. We conclude that the liaison between mesenchymal stromal cells and myeloid cells is fundamental in hematopoietic homeostasis and suggests that it can be harnessed in clinical transplantation.

  11. Wntless functions in mature osteoblasts to regulate bone mass.

    Science.gov (United States)

    Zhong, Zhendong; Zylstra-Diegel, Cassandra R; Schumacher, Cassie A; Baker, Jacob J; Carpenter, April C; Rao, Sujata; Yao, Wei; Guan, Min; Helms, Jill A; Lane, Nancy E; Lang, Richard A; Williams, Bart O

    2012-08-14

    Recent genome-wide association studies of individuals of Asian and European descent have found that SNPs located within the genomic region (1p31.3) encoding the Wntless (Wls)/Gpr177 protein are associated significantly with reduced bone mineral density. Wls/Gpr177 is a newly identified chaperone protein that specifically escorts Wnt ligands for secretion. Given the strong functional association between the Wnt signaling pathways and bone development and homeostasis, we generated osteoblast-specific Wls-deficient (Ocn-Cre;Wls-flox) mice. Homozygous conditional knockout animals were born at a normal Mendelian frequency. Whole-body dual-energy X-ray absorptiometry scanning revealed that bone-mass accrual was significantly inhibited in homozygotes as early as 20 d of age. These homozygotes had spontaneous fractures and a high frequency of premature lethality at around 2 mo of age. Microcomputed tomography analysis and histomorphometric data revealed a dramatic reduction of both trabecular and cortical bone mass in homozygous mutants. Bone formation in homozygotes was severely impaired, but no obvious phenotypic change was observed in mice heterozygous for the conditional deletion. In vitro studies showed that Wls-deficient osteoblasts had a defect in differentiation and mineralization, with significant reductions in the expression of key osteoblast differentiation regulators. In summary, these results reveal a surprising and crucial role of osteoblast-secreted Wnt ligands in bone-mass accrual.

  12. Chronic recurrent multifocal osteomyelitis: typical patterns of bone involvement in whole-body bone scintigraphy.

    Science.gov (United States)

    Acikgoz, Gunsel; Averill, Lauren W

    2014-08-01

    Chronic recurrent multifocal osteomyelitis (CRMO) is an autoinflammatory bone disease of unknown etiology. It affects children and adolescents predominantly and occurs mostly in the female population. It is characterized by the insidious onset of pain and swelling, with a fluctuating clinical course of relapses and remissions. Typically, several bones are affected, either synchronously or metachronously, and bilateral involvement is common. CRMO most commonly affects the metaphysis of long bones, especially the tibia, femur, and clavicle. The spine, pelvis, ribs, sternum, and mandible may also be affected. Although lesions are mostly multiple, patients may present with a single symptomatic focus. Radiographic findings may be negative early in the course of the disease. Bone scintigraphy is useful in determining the presence of abnormality and the extent of disease. The imaging and clinical features of CRMO overlap with those of infectious osteomyelitis, bone malignancy, and inflammatory arthritis. Nonetheless, CRMO can be confidently diagnosed with the recognition of typical imaging patterns in the appropriate clinical setting. This article reviews imaging findings with special emphasis on bone scintigraphy and specific disease sites.

  13. A unified theory of bone healing and nonunion: BHN theory.

    Science.gov (United States)

    Elliott, D S; Newman, K J H; Forward, D P; Hahn, D M; Ollivere, B; Kojima, K; Handley, R; Rossiter, N D; Wixted, J J; Smith, R M; Moran, C G

    2016-07-01

    This article presents a unified clinical theory that links established facts about the physiology of bone and homeostasis, with those involved in the healing of fractures and the development of nonunion. The key to this theory is the concept that the tissue that forms in and around a fracture should be considered a specific functional entity. This 'bone-healing unit' produces a physiological response to its biological and mechanical environment, which leads to the normal healing of bone. This tissue responds to mechanical forces and functions according to Wolff's law, Perren's strain theory and Frost's concept of the "mechanostat". In response to the local mechanical environment, the bone-healing unit normally changes with time, producing different tissues that can tolerate various levels of strain. The normal result is the formation of bone that bridges the fracture - healing by callus. Nonunion occurs when the bone-healing unit fails either due to mechanical or biological problems or a combination of both. In clinical practice, the majority of nonunions are due to mechanical problems with instability, resulting in too much strain at the fracture site. In most nonunions, there is an intact bone-healing unit. We suggest that this maintains its biological potential to heal, but fails to function due to the mechanical conditions. The theory predicts the healing pattern of multifragmentary fractures and the observed morphological characteristics of different nonunions. It suggests that the majority of nonunions will heal if the correct mechanical environment is produced by surgery, without the need for biological adjuncts such as autologous bone graft. Cite this article: Bone Joint J 2016;98-B:884-91.

  14. Vitamin D Interactions with Soy Isoflavones on Bone after Menopause: A Review

    Directory of Open Access Journals (Sweden)

    Clara Y. Park

    2012-11-01

    Full Text Available Vitamin D is known to increase Ca absorption in adults. However, the threshold vitamin D status to benefit Ca absorption is