WorldWideScience

Sample records for affecting transcriptional regulation

  1. Advanced Glycation End-Products affect transcription factors regulating insulin gene expression

    International Nuclear Information System (INIS)

    Puddu, A.; Storace, D.; Odetti, P.; Viviani, G.L.

    2010-01-01

    Advanced Glycation End-Products (AGEs) are generated by the covalent interaction of reducing sugars with proteins, lipids or nucleic acids. AGEs are implicated in diabetic complications and pancreatic β-cell dysfunction. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T15 to high concentrations of AGEs leads to a significant decrease of insulin secretion and content. Insulin gene transcription is positively regulated by the beta cell specific transcription factor PDX-1 (Pancreatic and Duodenal Homeobox-1). On the contrary, the forkhead transcription factor FoxO1 inhibits PDX-1 gene transcription. Activity of FoxO1 is regulated by post-translational modifications: phosphorylation deactivates FoxO1, and acetylation prevents FoxO1 ubiquitination. In this work we investigated whether AGEs affect expression and subcellular localization of PDX-1 and FoxO1. HIT-T15 cells were cultured for 5 days in presence of AGEs. Cells were then lysed and processed for subcellular fractionation. We determined intracellular insulin content, then we assessed the expression and subcellular localization of PDX-1, FoxO1, phosphoFoxO1 and acetylFoxO1. As expected intracellular insulin content was lower in HIT-T15 cells cultured with AGEs. The results showed that AGEs decreased expression and nuclear localization of PDX-1, reduced phosphorylation of FoxO1, and increased expression and acetylation of FoxO1. These results suggest that AGEs decrease insulin content unbalancing transcription factors regulating insulin gene expression.

  2. Transcriptional regulation of hepatic lipogenesis.

    Science.gov (United States)

    Wang, Yuhui; Viscarra, Jose; Kim, Sun-Joong; Sul, Hei Sook

    2015-11-01

    Fatty acid and fat synthesis in the liver is a highly regulated metabolic pathway that is important for very low-density lipoprotein (VLDL) production and thus energy distribution to other tissues. Having common features at their promoter regions, lipogenic genes are coordinately regulated at the transcriptional level. Transcription factors, such as upstream stimulatory factors (USFs), sterol regulatory element-binding protein 1C (SREBP1C), liver X receptors (LXRs) and carbohydrate-responsive element-binding protein (ChREBP) have crucial roles in this process. Recently, insights have been gained into the signalling pathways that regulate these transcription factors. After feeding, high blood glucose and insulin levels activate lipogenic genes through several pathways, including the DNA-dependent protein kinase (DNA-PK), atypical protein kinase C (aPKC) and AKT-mTOR pathways. These pathways control the post-translational modifications of transcription factors and co-regulators, such as phosphorylation, acetylation or ubiquitylation, that affect their function, stability and/or localization. Dysregulation of lipogenesis can contribute to hepatosteatosis, which is associated with obesity and insulin resistance.

  3. RNA-guided transcriptional regulation

    Science.gov (United States)

    Church, George M.; Mali, Prashant G.; Esvelt, Kevin M.

    2016-02-23

    Methods of modulating expression of a target nucleic acid in a cell are provided including introducing into the cell a first foreign nucleic acid encoding one or more RNAs complementary to DNA, wherein the DNA includes the target nucleic acid, introducing into the cell a second foreign nucleic acid encoding a nuclease-null Cas9 protein that binds to the DNA and is guided by the one or more RNAs, introducing into the cell a third foreign nucleic acid encoding a transcriptional regulator protein or domain, wherein the one or more RNAs, the nuclease-null Cas9 protein, and the transcriptional regulator protein or domain are expressed, wherein the one or more RNAs, the nuclease-null Cas9 protein and the transcriptional regulator protein or domain co-localize to the DNA and wherein the transcriptional regulator protein or domain regulates expression of the target nucleic acid.

  4. SACE_0012, a TetR-family transcriptional regulator, affects the morphogenesis of Saccharopolyspora erythraea.

    Science.gov (United States)

    Yin, Xiaojuan; Xu, Xinqiang; Wu, Hang; Yuan, Li; Huang, Xunduan; Zhang, Buchang

    2013-12-01

    Saccharopolyspora erythraea, a mycelium-forming actinomycete, produces a clinically important antibiotic erythromycin. Extensive investigations have provided insights into erythromycin biosynthesis in S. erythraea, but knowledge of its morphogenesis remains limited. By gene inactivation and complementation strategies, the TetR-family transcriptional regulator SACE_0012 was identified to be a negative regulator of mycelium formation of S. erythraea A226. Detected by quantitative real-time PCR, the relative transcription of SACE_7115, the amfC homolog for an aerial mycelium formation protein, was dramatically increased in SACE_0012 mutant, whereas erythromycin biosynthetic gene eryA, a pleiotropic regulatory gene bldD, and the genes SACE_2141, SACE_6464, SACE_6040, that are the homologs to the sporulation regulators WhiA, WhiB, WhiG, were not differentially expressed. SACE_0012 disruption could not restore its defect of aerial development in bldD mutant, and also did not further accelerate the mycelium formation in the mutant of SACE_7040 gene, that was previously identified to be a morphogenesis repressor. Furthermore, the transcriptional level of SACE_0012 had not markedly changed in bldD and SACE_7040 mutant over A226. Taken together, these results suggest that SACE_0012 is a negative regulator of S. erythraea morphogenesis by mainly increasing the transcription of amfC gene, independently of the BldD regulatory system.

  5. Profiling of Human Molecular Pathways Affected by Retrotransposons at the Level of Regulation by Transcription Factor Proteins

    Science.gov (United States)

    Nikitin, Daniil; Penzar, Dmitry; Garazha, Andrew; Sorokin, Maxim; Tkachev, Victor; Borisov, Nicolas; Poltorak, Alexander; Prassolov, Vladimir; Buzdin, Anton A.

    2018-01-01

    Endogenous retroviruses and retrotransposons also termed retroelements (REs) are mobile genetic elements that were active until recently in human genome evolution. REs regulate gene expression by actively reshaping chromatin structure or by directly providing transcription factor binding sites (TFBSs). We aimed to identify molecular processes most deeply impacted by the REs in human cells at the level of TFBS regulation. By using ENCODE data, we identified ~2 million TFBS overlapping with putatively regulation-competent human REs located in 5-kb gene promoter neighborhood (~17% of all TFBS in promoter neighborhoods; ~9% of all RE-linked TFBS). Most of REs hosting TFBS were highly diverged repeats, and for the evolutionary young (0–8% diverged) elements we identified only ~7% of all RE-linked TFBS. The gene-specific distributions of RE-linked TFBS generally correlated with the distributions for all TFBS. However, several groups of molecular processes were highly enriched in the RE-linked TFBS regulation. They were strongly connected with the immunity and response to pathogens, with the negative regulation of gene transcription, ubiquitination, and protein degradation, extracellular matrix organization, regulation of STAT signaling, fatty acids metabolism, regulation of GTPase activity, protein targeting to Golgi, regulation of cell division and differentiation, development and functioning of perception organs and reproductive system. By contrast, the processes most weakly affected by the REs were linked with the conservative aspects of embryo development. We also identified differences in the regulation features by the younger and older fractions of the REs. The regulation by the older fraction of the REs was linked mainly with the immunity, cell adhesion, cAMP, IGF1R, Notch, Wnt, and integrin signaling, neuronal development, chondroitin sulfate and heparin metabolism, and endocytosis. The younger REs regulate other aspects of immunity, cell cycle progression and

  6. Profiling of Human Molecular Pathways Affected by Retrotransposons at the Level of Regulation by Transcription Factor Proteins

    Directory of Open Access Journals (Sweden)

    Daniil Nikitin

    2018-01-01

    Full Text Available Endogenous retroviruses and retrotransposons also termed retroelements (REs are mobile genetic elements that were active until recently in human genome evolution. REs regulate gene expression by actively reshaping chromatin structure or by directly providing transcription factor binding sites (TFBSs. We aimed to identify molecular processes most deeply impacted by the REs in human cells at the level of TFBS regulation. By using ENCODE data, we identified ~2 million TFBS overlapping with putatively regulation-competent human REs located in 5-kb gene promoter neighborhood (~17% of all TFBS in promoter neighborhoods; ~9% of all RE-linked TFBS. Most of REs hosting TFBS were highly diverged repeats, and for the evolutionary young (0–8% diverged elements we identified only ~7% of all RE-linked TFBS. The gene-specific distributions of RE-linked TFBS generally correlated with the distributions for all TFBS. However, several groups of molecular processes were highly enriched in the RE-linked TFBS regulation. They were strongly connected with the immunity and response to pathogens, with the negative regulation of gene transcription, ubiquitination, and protein degradation, extracellular matrix organization, regulation of STAT signaling, fatty acids metabolism, regulation of GTPase activity, protein targeting to Golgi, regulation of cell division and differentiation, development and functioning of perception organs and reproductive system. By contrast, the processes most weakly affected by the REs were linked with the conservative aspects of embryo development. We also identified differences in the regulation features by the younger and older fractions of the REs. The regulation by the older fraction of the REs was linked mainly with the immunity, cell adhesion, cAMP, IGF1R, Notch, Wnt, and integrin signaling, neuronal development, chondroitin sulfate and heparin metabolism, and endocytosis. The younger REs regulate other aspects of immunity, cell cycle

  7. Post-translational regulation of Oct4 transcriptional activity.

    Directory of Open Access Journals (Sweden)

    Jonathan P Saxe

    Full Text Available Oct4 is a key component of the molecular circuitry which regulates embryonic stem cell proliferation and differentiation. It is essential for maintenance of undifferentiated, pluripotent cell populations, and accomplishes these tasks by binding DNA in multiple heterodimer and homodimer configurations. Very little is known about how formation of these complexes is regulated, or the mechanisms through which Oct4 proteins respond to complex extracellular stimuli which regulate pluripotency. Here, we provide evidence for a phosphorylation-based mechanism which regulates specific Oct4 homodimer conformations. Point mutations of a putative phosphorylation site can specifically abrogate transcriptional activity of a specific homodimer assembly, with little effect on other configurations. Moreover, we performed bioinformatic predictions to identify a subset of Oct4 target genes which may be regulated by this specific assembly, and show that altering Oct4 protein levels affects transcription of Oct4 target genes which are regulated by this assembly but not others. Finally, we identified several signaling pathways which may mediate this phosphorylation and act in combination to regulate Oct4 transcriptional activity and protein stability. These results provide a mechanism for rapid and reversible alteration of Oct4 transactivation potential in response to extracellular signals.

  8. SUMOylation of the ING1b tumor suppressor regulates gene transcription

    DEFF Research Database (Denmark)

    Satpathy, Shankha; Guérillon, Claire; Kim, Tae-Sun

    2014-01-01

    members of histone deacetylase complexes, whereas ING3-5 are stoichiometric components of different histone acetyltransferase complexes. The INGs target these complexes to histone marks, thus acting as epigenetic regulators. ING proteins affect angiogenesis, apoptosis, DNA repair, metastasis......1b E195A), we further demonstrate that ING1b SUMOylation regulates the binding of ING1b to the ISG15 and DGCR8 promoters, consequently regulating ISG15 and DGCR8 transcription. These results suggest a role for ING1b SUMOylation in the regulation of gene transcription....

  9. An Optogenetic Platform for Real-Time, Single-Cell Interrogation of Stochastic Transcriptional Regulation.

    Science.gov (United States)

    Rullan, Marc; Benzinger, Dirk; Schmidt, Gregor W; Milias-Argeitis, Andreas; Khammash, Mustafa

    2018-05-17

    Transcription is a highly regulated and inherently stochastic process. The complexity of signal transduction and gene regulation makes it challenging to analyze how the dynamic activity of transcriptional regulators affects stochastic transcription. By combining a fast-acting, photo-regulatable transcription factor with nascent RNA quantification in live cells and an experimental setup for precise spatiotemporal delivery of light inputs, we constructed a platform for the real-time, single-cell interrogation of transcription in Saccharomyces cerevisiae. We show that transcriptional activation and deactivation are fast and memoryless. By analyzing the temporal activity of individual cells, we found that transcription occurs in bursts, whose duration and timing are modulated by transcription factor activity. Using our platform, we regulated transcription via light-driven feedback loops at the single-cell level. Feedback markedly reduced cell-to-cell variability and led to qualitative differences in cellular transcriptional dynamics. Our platform establishes a flexible method for studying transcriptional dynamics in single cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Transcription regulation by the Mediator complex.

    Science.gov (United States)

    Soutourina, Julie

    2018-04-01

    Alterations in the regulation of gene expression are frequently associated with developmental diseases or cancer. Transcription activation is a key phenomenon in the regulation of gene expression. In all eukaryotes, mediator of RNA polymerase II transcription (Mediator), a large complex with modular organization, is generally required for transcription by RNA polymerase II, and it regulates various steps of this process. The main function of Mediator is to transduce signals from the transcription activators bound to enhancer regions to the transcription machinery, which is assembled at promoters as the preinitiation complex (PIC) to control transcription initiation. Recent functional studies of Mediator with the use of structural biology approaches and functional genomics have revealed new insights into Mediator activity and its regulation during transcription initiation, including how Mediator is recruited to transcription regulatory regions and how it interacts and cooperates with PIC components to assist in PIC assembly. Novel roles of Mediator in the control of gene expression have also been revealed by showing its connection to the nuclear pore and linking Mediator to the regulation of gene positioning in the nuclear space. Clear links between Mediator subunits and disease have also encouraged studies to explore targeting of this complex as a potential therapeutic approach in cancer and fungal infections.

  11. Regulation of Specialized Metabolism by WRKY Transcription Factors

    Science.gov (United States)

    Schluttenhofer, Craig; Yuan, Ling

    2015-01-01

    WRKY transcription factors (TFs) are well known for regulating plant abiotic and biotic stress tolerance. However, much less is known about how WRKY TFs affect plant-specialized metabolism. Analysis of WRKY TFs regulating the production of specialized metabolites emphasizes the values of the family outside of traditionally accepted roles in stress tolerance. WRKYs with conserved roles across plant species seem to be essential in regulating specialized metabolism. Overall, the WRKY family plays an essential role in regulating the biosynthesis of important pharmaceutical, aromatherapy, biofuel, and industrial components, warranting considerable attention in the forthcoming years. PMID:25501946

  12. The Brakeless co-regulator can directly activate and repress transcription in early Drosophila embryos.

    Science.gov (United States)

    Crona, Filip; Holmqvist, Per-Henrik; Tang, Min; Singla, Bhumica; Vakifahmetoglu-Norberg, Helin; Fantur, Katrin; Mannervik, Mattias

    2015-11-01

    The Brakeless protein performs many important functions during Drosophila development, but how it controls gene expression is poorly understood. We previously showed that Brakeless can function as a transcriptional co-repressor. In this work, we perform transcriptional profiling of brakeless mutant embryos. Unexpectedly, the majority of affected genes are down-regulated in brakeless mutants. We demonstrate that genomic regions in close proximity to some of these genes are occupied by Brakeless, that over-expression of Brakeless causes a reciprocal effect on expression of these genes, and that Brakeless remains an activator of the genes upon fusion to an activation domain. Together, our results show that Brakeless can both repress and activate gene expression. A yeast two-hybrid screen identified the Mediator complex subunit Med19 as interacting with an evolutionarily conserved part of Brakeless. Both down- and up-regulated Brakeless target genes are also affected in Med19-depleted embryos, but only down-regulated targets are influenced in embryos depleted of both Brakeless and Med19. Our data provide support for a Brakeless activator function that regulates transcription by interacting with Med19. We conclude that the transcriptional co-regulator Brakeless can either activate or repress transcription depending on context. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Fatty Acid–Regulated Transcription Factors in the Liver

    Science.gov (United States)

    Jump, Donald B.; Tripathy, Sasmita; Depner, Christopher M.

    2014-01-01

    Fatty acid regulation of hepatic gene transcription was first reported in the early 1990s. Several transcription factors have been identified as targets of fatty acid regulation. This regulation is achieved by direct fatty acid binding to the transcription factor or by indirect mechanisms where fatty acids regulate signaling pathways controlling the expression of transcription factors or the phosphorylation, ubiquitination, or proteolytic cleavage of the transcription factor. Although dietary fatty acids are well-established regulators of hepatic transcription factors, emerging evidence indicates that endogenously generated fatty acids are equally important in controlling transcription factors in the context of glucose and lipid homeostasis. Our first goal in this review is to provide an up-to-date examination of the molecular and metabolic bases of fatty acid regulation of key transcription factors controlling hepatic metabolism. Our second goal is to link these mechanisms to nonalcoholic fatty liver disease (NAFLD), a growing health concern in the obese population. PMID:23528177

  14. Coordinated Evolution of Transcriptional and Post-Transcriptional Regulation for Mitochondrial Functions in Yeast Strains.

    Directory of Open Access Journals (Sweden)

    Xuepeng Sun

    Full Text Available Evolution of gene regulation has been proposed to play an important role in environmental adaptation. Exploring mechanisms underlying coordinated evolutionary changes at various levels of gene regulation could shed new light on how organism adapt in nature. In this study, we focused on regulatory differences between a laboratory Saccharomyces cerevisiae strain BY4742 and a pathogenic S. cerevisiae strain, YJM789. The two strains diverge in many features, including growth rate, morphology, high temperature tolerance, and pathogenicity. Our RNA-Seq and ribosomal footprint profiling data showed that gene expression differences are pervasive, and genes functioning in mitochondria are mostly divergent between the two strains at both transcriptional and translational levels. Combining functional genomics data from other yeast strains, we further demonstrated that significant divergence of expression for genes functioning in the electron transport chain (ETC was likely caused by differential expression of a transcriptional factor, HAP4, and that post-transcriptional regulation mediated by an RNA-binding protein, PUF3, likely led to expression divergence for genes involved in mitochondrial translation. We also explored mito-nuclear interactions via mitochondrial DNA replacement between strains. Although the two mitochondrial genomes harbor substantial sequence divergence, neither growth nor gene expression were affected by mitochondrial DNA replacement in both fermentative and respiratory growth media, indicating compatible mitochondrial and nuclear genomes between these two strains in the tested conditions. Collectively, we used mitochondrial functions as an example to demonstrate for the first time that evolution at both transcriptional and post-transcriptional levels could lead to coordinated regulatory changes underlying strain specific functional variations.

  15. Deciphering Transcriptional Regulation

    DEFF Research Database (Denmark)

    Valen, Eivind

    The myriad of cells in the human body are all made from the same blueprint: the human genome. At the heart of this diversity lies the concept of gene regulation, the process in which it is decided which genes are used where and when. Genes do not function as on/off buttons, but more like a volume...... mostly near the start of the gene known as the promoter. This region contains patterns scattered in the DNA that the TFs can recognize and bind to. Such binding can prompt the assembly of the pre-initiation complex which ultimately leads to transcription of the gene. In order to achieve the regulation...... on what characterizes a hippocampus promoter. Pairing CAGE with TF binding site prediction we identi¿ed a likely key regulator of hippocampus. Finally, we developed a method for CAGE exploration. While the DeepCAGE library characterized a full 1.4 million transcription initiation events it did not capture...

  16. SACE_0012, a TetR-Family Transcriptional Regulator, Affects the Morphogenesis of Saccharopolyspora erythraea

    OpenAIRE

    Yin, Xiaojuan; Xu, Xinqiang; Wu, Hang; Yuan, Li; Huang, Xunduan; Zhang, Buchang

    2013-01-01

    Saccharopolyspora erythraea, a mycelium-forming actinomycete, produces a clinically important antibiotic erythromycin. Extensive investigations have provided insights into erythromycin biosynthesis in S. erythraea, but knowledge of its morphogenesis remains limited. By gene inactivation and complementation strategies, the TetR-family transcriptional regulator SACE_0012 was identified to be a negative regulator of mycelium formation of S. erythraea A226. Detected by quantitative real-time PCR,...

  17. Targeted genome regulation via synthetic programmable transcriptional regulators

    KAUST Repository

    Piatek, Agnieszka Anna

    2016-04-19

    Regulation of gene transcription controls cellular functions and coordinates responses to developmental, physiological and environmental cues. Precise and efficient molecular tools are needed to characterize the functions of single and multiple genes in linear and interacting pathways in a native context. Modular DNA-binding domains from zinc fingers (ZFs) and transcriptional activator-like proteins (TALE) are amenable to bioengineering to bind DNA target sequences of interest. As a result, ZF and TALE proteins were used to develop synthetic programmable transcription factors. However, these systems are limited by the requirement to re-engineer proteins for each new target sequence. The clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR associated 9 (Cas9) genome editing tool was recently repurposed for targeted transcriptional regulation by inactivation of the nuclease activity of Cas9. Due to the facile engineering, simplicity, precision and amenability to library construction, the CRISPR/Cas9 system is poised to revolutionize the functional genomics field across diverse eukaryotic species. In this review, we discuss the development of synthetic customizable transcriptional regulators and provide insights into their current and potential applications, with special emphasis on plant systems, in characterization of gene functions, elucidation of molecular mechanisms and their biotechnological applications. © 2016 Informa UK Limited, trading as Taylor & Francis Group

  18. Metagenomic screening for aromatic compound-responsive transcriptional regulators.

    Directory of Open Access Journals (Sweden)

    Taku Uchiyama

    Full Text Available We applied a metagenomics approach to screen for transcriptional regulators that sense aromatic compounds. The library was constructed by cloning environmental DNA fragments into a promoter-less vector containing green fluorescence protein. Fluorescence-based screening was then performed in the presence of various aromatic compounds. A total of 12 clones were isolated that fluoresced in response to salicylate, 3-methyl catechol, 4-chlorocatechol and chlorohydroquinone. Sequence analysis revealed at least 1 putative transcriptional regulator, excluding 1 clone (CHLO8F. Deletion analysis identified compound-specific transcriptional regulators; namely, 8 LysR-types, 2 two-component-types and 1 AraC-type. Of these, 9 representative clones were selected and their reaction specificities to 18 aromatic compounds were investigated. Overall, our transcriptional regulators were functionally diverse in terms of both specificity and induction rates. LysR- and AraC- type regulators had relatively narrow specificities with high induction rates (5-50 fold, whereas two-component-types had wide specificities with low induction rates (3 fold. Numerous transcriptional regulators have been deposited in sequence databases, but their functions remain largely unknown. Thus, our results add valuable information regarding the sequence-function relationship of transcriptional regulators.

  19. Human I-mfa domain proteins specifically interact with KSHV LANA and affect its regulation of Wnt signaling-dependent transcription

    Energy Technology Data Exchange (ETDEWEB)

    Kusano, Shuichi, E-mail: skusano@m2.kufm.kagoshima-u.ac.jp [Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Eizuru, Yoshito [Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan)

    2010-06-04

    Kaposi's sarcoma-associated herpes virus (KSHV)-encoded latency-associated nuclear antigen (LANA) protein has been reported to interact with glycogen synthase kinase 3{beta} (GSK-3{beta}) and to negatively regulate its activity, leading to stimulation of GSK-3{beta}-dependent {beta}-catenin degradation. We show here that the I-mfa domain proteins, HIC (human I-mfa domain-containing protein) and I-mfa (inhibitor of MyoD family a), interacted in vivo with LANA through their C-terminal I-mfa domains. This interaction affected the intracellular localization of HIC, inhibited the LANA-dependent transactivation of a {beta}-catenin-regulated reporter construct, and decreased the level of the LANA.GSK-3{beta} complex. These data reveal for the first time that I-mfa domain proteins interact with LANA and negatively regulate LANA-mediated activation of Wnt signaling-dependent transcription by inhibiting the formation of the LANA.GSK-3{beta} complex.

  20. Transcriptional profiling in human HaCaT keratinocytes in response to kaempferol and identification of potential transcription factors for regulating differential gene expression

    Science.gov (United States)

    Kang, Byung Young; Lee, Ki-Hwan; Lee, Yong Sung; Hong, Il; Lee, Mi-Ock; Min, Daejin; Chang, Ihseop; Hwang, Jae Sung; Park, Jun Seong; Kim, Duck Hee

    2008-01-01

    Kaempferol is the major flavonol in green tea and exhibits many biomedically useful properties such as antioxidative, cytoprotective and anti-apoptotic activities. To elucidate its effects on the skin, we investigated the transcriptional profiles of kaempferol-treated HaCaT cells using cDNA microarray analysis and identified 147 transcripts that exhibited significant changes in expression. Of these, 18 were up-regulated and 129 were down-regulated. These transcripts were then classified into 12 categories according to their functional roles: cell adhesion/cytoskeleton, cell cycle, redox homeostasis, immune/defense responses, metabolism, protein biosynthesis/modification, intracellular transport, RNA processing, DNA modification/ replication, regulation of transcription, signal transduction and transport. We then analyzed the promoter sequences of differentially-regulated genes and identified over-represented regulatory sites and candidate transcription factors (TFs) for gene regulation by kaempferol. These included c-REL, SAP-1, Ahr-ARNT, Nrf-2, Elk-1, SPI-B, NF-κB and p65. In addition, we validated the microarray results and promoter analyses using conventional methods such as real-time PCR and ELISA-based transcription factor assay. Our microarray analysis has provided useful information for determining the genetic regulatory network affected by kaempferol, and this approach will be useful for elucidating gene-phytochemical interactions. PMID:18446059

  1. Dynamic Metabolite Profiling in an Archaeon Connects Transcriptional Regulation to Metabolic Consequences.

    Science.gov (United States)

    Todor, Horia; Gooding, Jessica; Ilkayeva, Olga R; Schmid, Amy K

    2015-01-01

    Previous work demonstrated that the TrmB transcription factor is responsible for regulating the expression of many enzyme-coding genes in the hypersaline-adapted archaeon Halobacterium salinarum via a direct interaction with a cis-regulatory sequence in their promoters. This interaction is abolished in the presence of glucose. Although much is known about the effects of TrmB at the transcriptional level, it remains unclear whether and to what extent changes in mRNA levels directly affect metabolite levels. In order to address this question, here we performed a high-resolution metabolite profiling time course during a change in nutrients using a combination of targeted and untargeted methods in wild-type and ΔtrmB strain backgrounds. We found that TrmB-mediated transcriptional changes resulted in widespread and significant changes to metabolite levels across the metabolic network. Additionally, the pattern of growth complementation using various purines suggests that the mis-regulation of gluconeogenesis in the ΔtrmB mutant strain in the absence of glucose results in low phosphoribosylpyrophosphate (PRPP) levels. We confirmed these low PRPP levels using a quantitative mass spectrometric technique and found that they are associated with a metabolic block in de novo purine synthesis, which is partially responsible for the growth defect of the ΔtrmB mutant strain in the absence of glucose. In conclusion, we show how transcriptional regulation of metabolism affects metabolite levels and ultimately, phenotypes.

  2. Dynamic Metabolite Profiling in an Archaeon Connects Transcriptional Regulation to Metabolic Consequences.

    Directory of Open Access Journals (Sweden)

    Horia Todor

    Full Text Available Previous work demonstrated that the TrmB transcription factor is responsible for regulating the expression of many enzyme-coding genes in the hypersaline-adapted archaeon Halobacterium salinarum via a direct interaction with a cis-regulatory sequence in their promoters. This interaction is abolished in the presence of glucose. Although much is known about the effects of TrmB at the transcriptional level, it remains unclear whether and to what extent changes in mRNA levels directly affect metabolite levels. In order to address this question, here we performed a high-resolution metabolite profiling time course during a change in nutrients using a combination of targeted and untargeted methods in wild-type and ΔtrmB strain backgrounds. We found that TrmB-mediated transcriptional changes resulted in widespread and significant changes to metabolite levels across the metabolic network. Additionally, the pattern of growth complementation using various purines suggests that the mis-regulation of gluconeogenesis in the ΔtrmB mutant strain in the absence of glucose results in low phosphoribosylpyrophosphate (PRPP levels. We confirmed these low PRPP levels using a quantitative mass spectrometric technique and found that they are associated with a metabolic block in de novo purine synthesis, which is partially responsible for the growth defect of the ΔtrmB mutant strain in the absence of glucose. In conclusion, we show how transcriptional regulation of metabolism affects metabolite levels and ultimately, phenotypes.

  3. The E. coli Global Regulator DksA Reduces Transcription during T4 Infection

    Directory of Open Access Journals (Sweden)

    Jennifer Patterson-West

    2018-06-01

    Full Text Available Bacteriophage T4 relies on host RNA polymerase to transcribe three promoter classes: early (Pe, requires no viral factors, middle (Pm, requires early proteins MotA and AsiA, and late (Pl, requires middle proteins gp55, gp33, and gp45. Using primer extension, RNA-seq, RT-qPCR, single bursts, and a semi-automated method to document plaque size, we investigated how deletion of DksA or ppGpp, two E. coli global transcription regulators, affects T4 infection. Both ppGpp0 and ΔdksA increase T4 wild type (wt plaque size. However, ppGpp0 does not significantly alter burst size or latent period, and only modestly affects T4 transcript abundance, while ΔdksA increases burst size (2-fold without affecting latent period and increases the levels of several Pe transcripts at 5 min post-infection. In a T4motAam infection, ΔdksA increases plaque size and shortens latent period, and the levels of specific middle RNAs increase due to more transcription from Pe’s that extend into these middle genes. We conclude that DksA lowers T4 early gene expression. Consequently, ΔdksA results in a more productive wt infection and ameliorates the poor expression of middle genes in a T4motAam infection. As DksA does not inhibit Pe transcription in vitro, regulation may be indirect or perhaps requires additional factors.

  4. Method to determine transcriptional regulation pathways in organisms

    Science.gov (United States)

    Gardner, Timothy S.; Collins, James J.; Hayete, Boris; Faith, Jeremiah

    2012-11-06

    The invention relates to computer-implemented methods and systems for identifying regulatory relationships between expressed regulating polypeptides and targets of the regulatory activities of such regulating polypeptides. More specifically, the invention provides a new method for identifying regulatory dependencies between biochemical species in a cell. In particular embodiments, provided are computer-implemented methods for identifying a regulatory interaction between a transcription factor and a gene target of the transcription factor, or between a transcription factor and a set of gene targets of the transcription factor. Further provided are genome-scale methods for predicting regulatory interactions between a set of transcription factors and a corresponding set of transcriptional target substrates thereof.

  5. Regulation of transcription in hyperthermophilic archaea

    NARCIS (Netherlands)

    Brinkman, A.B.

    2002-01-01

    The aim of the research presented here was to insight in the mechanisms by which transcription in hyperthermophilic archaea is regulated. To accomplish this, we have aimed (I) to identify transcriptional regulatory proteins from hyperthermophilic archaea, (II) to characterize these

  6. Identification of E2F1 as a positive transcriptional regulator for δ-catenin

    International Nuclear Information System (INIS)

    Kim, Kwonseop; Oh, Minsoo; Ki, Hyunkyoung; Wang Tao; Bareiss, Sonja; Fini, M. Elizabeth.; Li Dawei; Lu Qun

    2008-01-01

    δ-Catenin is upregulated in human carcinomas. However, little is known about the potential transcriptional factors that regulate δ-catenin expression in cancer. Using a human δ-catenin reporter system, we have screened several nuclear signaling modulators to test whether they can affect δ-catenin transcription. Among β-catenin/LEF-1, Notch1, and E2F1, E2F1 dramatically increased δ-catenin-luciferase activities while β-catenin/LEF-1 induced only a marginal increase. Rb suppressed the upregulation of δ-catenin-luciferase activities induced by E2F1 but did not interact with δ-catenin. RT-PCR and Western blot analyses in 4 different prostate cancer cell lines revealed that regulation of δ-catenin expression is controlled mainly at the transcriptional level. Interestingly, the effects of E2F1 on δ-catenin expression were observed only in human cancer cells expressing abundant endogenous δ-catenin. These studies identify E2F1 as a positive transcriptional regulator for δ-catenin, but further suggest the presence of strong negative regulator(s) for δ-catenin in prostate cancer cells with minimal endogenous δ-catenin expression

  7. Regulation of Adult CNS Axonal Regeneration by the Post-transcriptional Regulator Cpeb1

    Directory of Open Access Journals (Sweden)

    Wilson Pak-Kin Lou

    2018-01-01

    Full Text Available Adult mammalian central nervous system (CNS neurons are unable to regenerate following axonal injury, leading to permanent functional impairments. Yet, the reasons underlying this regeneration failure are not fully understood. Here, we studied the transcriptome and translatome shortly after spinal cord injury. Profiling of the total and ribosome-bound RNA in injured and naïve spinal cords identified a substantial post-transcriptional regulation of gene expression. In particular, transcripts associated with nervous system development were down-regulated in the total RNA fraction while remaining stably loaded onto ribosomes. Interestingly, motif association analysis of post-transcriptionally regulated transcripts identified the cytoplasmic polyadenylation element (CPE as enriched in a subset of these transcripts that was more resistant to injury-induced reduction at the transcriptome level. Modulation of these transcripts by overexpression of the CPE binding protein, Cpeb1, in mouse and Drosophila CNS neurons promoted axonal regeneration following injury. Our study uncovered a global evolutionarily conserved post-transcriptional mechanism enhancing regeneration of injured CNS axons.

  8. Nutrient regulation of transcription and signalling by O-GlcNAcylation

    Directory of Open Access Journals (Sweden)

    Gerald W. Hart

    2015-12-01

    Full Text Available The cycling (addition and removal of O-linked N-acetylglucosamine (O-GlcNAc on serine or threonine residues of nuclear and cytoplasmic proteins serves as a nutrient sensor via the hexosamine biosynthetic pathway's production of UDP-GlcNAc, the donor for the O-GlcNAc transferase (OGT. OGT is exquisitely sensitive both in terms of its catalytic activity and by its specificity to the levels of this nucleotide sugar. UDP-GlcNAc is a major node of metabolism whose levels are coupled to flux through the major metabolic pathways of the cell. O-GlcNAcylation has extensive crosstalk with protein phosphorylation to regulate signalling pathways in response to flux through glucose, amino acid, fatty acid, energy and nucleotide metabolism. Not only does O-GlcNAcylation compete for phosphorylation sites on proteins, but also over one-half of all kinases appear to be O-GlcNAcylated, and many are regulated by O-GlcNAcylation. O-GlcNAcylation is also fundamentally important to nutrient regulation of gene expression. OGT is a polycomb gene. Nearly all RNA polymerase II transcription factors are O-GlcNAcylated, and the sugar regulates their activities in many different ways, depending upon the transcription factor and even upon the specific O-GlcNAc site on the protein. O-GlcNAc is part of the histone code, and the sugar affects the modification of histones by other epigenetic marks. O-GlcNAcylation regulates DNA methylation by the TET family of proteins. O-GlcNAc modification of the basal transcription machinery is required for assembly of the pre-initiation complex in the transcription cycle. Dysregulated O-GlcNAcylation is directly involved in the aetiology of the major chronic diseases associated with ageing.

  9. Autoimmune regulator is acetylated by transcription coactivator CBP/p300

    Energy Technology Data Exchange (ETDEWEB)

    Saare, Mario, E-mail: mario.saare@ut.ee [Molecular Pathology, Institute of General and Molecular Pathology, University of Tartu, 19th Ravila Str, Tartu (Estonia); Rebane, Ana [Molecular Pathology, Institute of General and Molecular Pathology, University of Tartu, 19th Ravila Str, Tartu (Estonia); SIAF, Swiss Institute of Allergy and Asthma Research, University of Zuerich, Davos (Switzerland); Rajashekar, Balaji; Vilo, Jaak [BIIT, Bioinformatics, Algorithmics and Data Mining group, Institute of Computer Science, University of Tartu, Tartu (Estonia); Peterson, Paert [Molecular Pathology, Institute of General and Molecular Pathology, University of Tartu, 19th Ravila Str, Tartu (Estonia)

    2012-08-15

    The Autoimmune Regulator (AIRE) is a regulator of transcription in the thymic medulla, where it controls the expression of a large set of peripheral-tissue specific genes. AIRE interacts with the transcriptional coactivator and acetyltransferase CBP and synergistically cooperates with it in transcriptional activation. Here, we aimed to study a possible role of AIRE acetylation in the modulation of its activity. We found that AIRE is acetylated in tissue culture cells and this acetylation is enhanced by overexpression of CBP and the CBP paralog p300. The acetylated lysines were located within nuclear localization signal and SAND domain. AIRE with mutations that mimicked acetylated K243 and K253 in the SAND domain had reduced transactivation activity and accumulated into fewer and larger nuclear bodies, whereas mutations that mimicked the unacetylated lysines were functionally similar to wild-type AIRE. Analogously to CBP, p300 localized to AIRE-containing nuclear bodies, however, the overexpression of p300 did not enhance the transcriptional activation of AIRE-regulated genes. Further studies showed that overexpression of p300 stabilized the AIRE protein. Interestingly, gene expression profiling revealed that AIRE, with mutations mimicking K243/K253 acetylation in SAND, was able to activate gene expression, although the affected genes were different and the activation level was lower from those regulated by wild-type AIRE. Our results suggest that the AIRE acetylation can influence the selection of AIRE activated genes. -- Highlights: Black-Right-Pointing-Pointer AIRE is acetylated by the acetyltransferases p300 and CBP. Black-Right-Pointing-Pointer Acetylation occurs between CARD and SAND domains and within the SAND domain. Black-Right-Pointing-Pointer Acetylation increases the size of AIRE nuclear dots. Black-Right-Pointing-Pointer Acetylation increases AIRE protein stability. Black-Right-Pointing-Pointer AIRE acetylation mimic regulates a different set of AIRE

  10. Regulation of TCF ETS-domain transcription factors by helix-loop-helix motifs.

    Science.gov (United States)

    Stinson, Julie; Inoue, Toshiaki; Yates, Paula; Clancy, Anne; Norton, John D; Sharrocks, Andrew D

    2003-08-15

    DNA binding by the ternary complex factor (TCF) subfamily of ETS-domain transcription factors is tightly regulated by intramolecular and intermolecular interactions. The helix-loop-helix (HLH)-containing Id proteins are trans-acting negative regulators of DNA binding by the TCFs. In the TCF, SAP-2/Net/ERP, intramolecular inhibition of DNA binding is promoted by the cis-acting NID region that also contains an HLH-like motif. The NID also acts as a transcriptional repression domain. Here, we have studied the role of HLH motifs in regulating DNA binding and transcription by the TCF protein SAP-1 and how Cdk-mediated phosphorylation affects the inhibitory activity of the Id proteins towards the TCFs. We demonstrate that the NID region of SAP-1 is an autoinhibitory motif that acts to inhibit DNA binding and also functions as a transcription repression domain. This region can be functionally replaced by fusion of Id proteins to SAP-1, whereby the Id moiety then acts to repress DNA binding in cis. Phosphorylation of the Ids by cyclin-Cdk complexes results in reduction in protein-protein interactions between the Ids and TCFs and relief of their DNA-binding inhibitory activity. In revealing distinct mechanisms through which HLH motifs modulate the activity of TCFs, our results therefore provide further insight into the role of HLH motifs in regulating TCF function and how the inhibitory properties of the trans-acting Id HLH proteins are themselves regulated by phosphorylation.

  11. Molecular imaging of transcriptional regulation during inflammation

    Directory of Open Access Journals (Sweden)

    Carlsen Harald

    2010-04-01

    Full Text Available Abstract Molecular imaging enables non-invasive visualization of the dynamics of molecular processes within living organisms in vivo. Different imaging modalities as MRI, SPECT, PET and optic imaging are used together with molecular probes specific for the biological process of interest. Molecular imaging of transcription factor activity is done in animal models and mostly in transgenic reporter mice, where the transgene essentially consists of a promoter that regulates a reporter gene. During inflammation, the transcription factor NF-κB is widely involved in orchestration and regulation of the immune system and almost all imaging studies in this field has revolved around the role and regulation of NF-κB. We here present a brief introduction to experimental use and design of transgenic reporter mice and a more extensive review of the various studies where molecular imaging of transcriptional regulation has been applied during inflammation.

  12. Transcriptional regulators of Na, K-ATPase subunits

    Directory of Open Access Journals (Sweden)

    Zhiqin eLi

    2015-10-01

    Full Text Available The Na,K-ATPase classically serves as an ion pump creating an electrochemical gradient across the plasma membrane that is essential for transepithelial transport, nutrient uptake and membrane potential. In addition, Na,K-ATPase also functions as a receptor, a signal transducer and a cell adhesion molecule. With such diverse roles, it is understandable that the Na,K-ATPase subunits, the catalytic alpha-subunit, the beta-subunit and the FXYD proteins, are controlled extensively during development and to accommodate physiological needs. The spatial and temporal expression of Na,K-ATPase is partially regulated at the transcriptional level. Numerous transcription factors, hormones, growth factors, lipids and extracellular stimuli modulate the transcription of the Na,K-ATPase subunits. Moreover, epigenetic mechanisms also contribute to the regulation of Na,K-ATPase expression. With the ever growing knowledge about diseases associated with the malfunction of Na,K-ATPase, this review aims at summarizing the best-characterized transcription regulators that modulate Na,K-ATPase subunit levels. As abnormal expression of Na,K-ATPase subunits have been observed in many carcinoma, we will also discuss transcription factors that are associated with epithelial-to-mesenchymal transition, a crucial step in the progression of many tumors to malignant disease.

  13. Interaction with diurnal and circadian regulation results in dynamic metabolic and transcriptional changes during cold acclimation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Carmen Espinoza

    Full Text Available In plants, there is a large overlap between cold and circadian regulated genes and in Arabidopsis, we have shown that cold (4°C affects the expression of clock oscillator genes. However, a broader insight into the significance of diurnal and/or circadian regulation of cold responses, particularly for metabolic pathways, and their physiological relevance is lacking. Here, we performed an integrated analysis of transcripts and primary metabolites using microarrays and gas chromatography-mass spectrometry. As expected, expression of diurnally regulated genes was massively affected during cold acclimation. Our data indicate that disruption of clock function at the transcriptional level extends to metabolic regulation. About 80% of metabolites that showed diurnal cycles maintained these during cold treatment. In particular, maltose content showed a massive night-specific increase in the cold. However, under free-running conditions, maltose was the only metabolite that maintained any oscillations in the cold. Furthermore, although starch accumulates during cold acclimation we show it is still degraded at night, indicating significance beyond the previously demonstrated role of maltose and starch breakdown in the initial phase of cold acclimation. Levels of some conventional cold induced metabolites, such as γ-aminobutyric acid, galactinol, raffinose and putrescine, exhibited diurnal and circadian oscillations and transcripts encoding their biosynthetic enzymes often also cycled and preceded their cold-induction, in agreement with transcriptional regulation. However, the accumulation of other cold-responsive metabolites, for instance homoserine, methionine and maltose, did not have consistent transcriptional regulation, implying that metabolic reconfiguration involves complex transcriptional and post-transcriptional mechanisms. These data demonstrate the importance of understanding cold acclimation in the correct day-night context, and are further

  14. Post-transcriptional regulation of gene expression in Yersinia species

    Directory of Open Access Journals (Sweden)

    Chelsea A Schiano

    2012-11-01

    Full Text Available Proper regulation of gene expression is required by bacterial pathogens to respond to continually changing environmental conditions and the host response during the infectious process. While transcriptional regulation is perhaps the most well understood form of controlling gene expression, recent studies have demonstrated the importance of post-transcriptional mechanisms of gene regulation that allow for more refined management of the bacterial response to host conditions. Yersinia species of bacteria are known to use various forms of post-transcriptional regulation for control of many virulence-associated genes. These include regulation by cis- and trans-acting small non-coding RNAs, RNA-binding proteins, RNases, and thermoswitches. The effects of these and other regulatory mechanisms on Yersinia physiology can be profound and have been shown to influence type III secretion, motility, biofilm formation, host cell invasion, intracellular survival and replication, and more. In this review, we will discuss these and other post-transcriptional mechanisms and their influence on virulence gene regulation, with a particular emphasis on how these processes influence the virulence of Yersinia in the host.

  15. Genome-scale study of the importance of binding site context for transcription factor binding and gene regulation

    Directory of Open Access Journals (Sweden)

    Ronne Hans

    2008-11-01

    Full Text Available Abstract Background The rate of mRNA transcription is controlled by transcription factors that bind to specific DNA motifs in promoter regions upstream of protein coding genes. Recent results indicate that not only the presence of a motif but also motif context (for example the orientation of a motif or its location relative to the coding sequence is important for gene regulation. Results In this study we present ContextFinder, a tool that is specifically aimed at identifying cases where motif context is likely to affect gene regulation. We used ContextFinder to examine the role of motif context in S. cerevisiae both for DNA binding by transcription factors and for effects on gene expression. For DNA binding we found significant patterns of motif location bias, whereas motif orientations did not seem to matter. Motif context appears to affect gene expression even more than it affects DNA binding, as biases in both motif location and orientation were more frequent in promoters of co-expressed genes. We validated our results against data on nucleosome positioning, and found a negative correlation between preferred motif locations and nucleosome occupancy. Conclusion We conclude that the requirement for stable binding of transcription factors to DNA and their subsequent function in gene regulation can impose constraints on motif context.

  16. Frequency Modulation of Transcriptional Bursting Enables Sensitive and Rapid Gene Regulation.

    Science.gov (United States)

    Li, Congxin; Cesbron, François; Oehler, Michael; Brunner, Michael; Höfer, Thomas

    2018-04-25

    Gene regulation is a complex non-equilibrium process. Here, we show that quantitating the temporal regulation of key gene states (transcriptionally inactive, active, and refractory) provides a parsimonious framework for analyzing gene regulation. Our theory makes two non-intuitive predictions. First, for transcription factors (TFs) that regulate transcription burst frequency, as opposed to amplitude or duration, weak TF binding is sufficient to elicit strong transcriptional responses. Second, refractoriness of a gene after a transcription burst enables rapid responses to stimuli. We validate both predictions experimentally by exploiting the natural, optogenetic-like responsiveness of the Neurospora GATA-type TF White Collar Complex (WCC) to blue light. Further, we demonstrate that differential regulation of WCC target genes is caused by different gene activation rates, not different TF occupancy, and that these rates are tuned by both the core promoter and the distance between TF-binding site and core promoter. In total, our work demonstrates the relevance of a kinetic, non-equilibrium framework for understanding transcriptional regulation. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  17. RNA polymerase III transcription - regulated by chromatin structure and regulator of nuclear chromatin organization.

    Science.gov (United States)

    Pascali, Chiara; Teichmann, Martin

    2013-01-01

    RNA polymerase III (Pol III) transcription is regulated by modifications of the chromatin. DNA methylation and post-translational modifications of histones, such as acetylation, phosphorylation and methylation have been linked to Pol III transcriptional activity. In addition to being regulated by modifications of DNA and histones, Pol III genes and its transcription factors have been implicated in the organization of nuclear chromatin in several organisms. In yeast, the ability of the Pol III transcription system to contribute to nuclear organization seems to be dependent on direct interactions of Pol III genes and/or its transcription factors TFIIIC and TFIIIB with the structural maintenance of chromatin (SMC) protein-containing complexes cohesin and condensin. In human cells, Pol III genes and transcription factors have also been shown to colocalize with cohesin and the transcription regulator and genome organizer CCCTC-binding factor (CTCF). Furthermore, chromosomal sites have been identified in yeast and humans that are bound by partial Pol III machineries (extra TFIIIC sites - ETC; chromosome organizing clamps - COC). These ETCs/COC as well as Pol III genes possess the ability to act as boundary elements that restrict spreading of heterochromatin.

  18. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury

    Directory of Open Access Journals (Sweden)

    Westerdahl Ann-Charlotte

    2010-06-01

    Full Text Available Abstract Background Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the reappearance of self-sustained plateau potentials in the absence of modulatory inputs from the brain correlates with the development of spasticity. Results Here we examine the dynamic transcriptional response of motor neurons to spinal cord injury as it evolves over time to unravel common gene expression patterns and their underlying regulatory mechanisms. For this we use a rat-tail-model with complete spinal cord transection causing injury-induced spasticity, where gene expression profiles are obtained from labeled motor neurons extracted with laser microdissection 0, 2, 7, 21 and 60 days post injury. Consensus clustering identifies 12 gene clusters with distinct time expression profiles. Analysis of these gene clusters identifies early immunological/inflammatory and late developmental responses as well as a regulation of genes relating to neuron excitability that support the development of motor neuron hyper-excitability and the reappearance of plateau potentials in the late phase of the injury response. Transcription factor motif analysis identifies differentially expressed transcription factors involved in the regulation of each gene cluster, shaping the expression of the identified biological processes and their associated genes underlying the changes in motor neuron excitability. Conclusions This analysis provides important clues to the underlying mechanisms of transcriptional regulation responsible for the increased excitability observed in motor neurons in the late chronic phase of spinal cord injury suggesting alternative targets for treatment of spinal cord injury. Several transcription factors were identified as potential regulators of gene clusters containing elements related to motor neuron hyper

  19. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury.

    Science.gov (United States)

    Ryge, Jesper; Winther, Ole; Wienecke, Jacob; Sandelin, Albin; Westerdahl, Ann-Charlotte; Hultborn, Hans; Kiehn, Ole

    2010-06-09

    Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the reappearance of self-sustained plateau potentials in the absence of modulatory inputs from the brain correlates with the development of spasticity. Here we examine the dynamic transcriptional response of motor neurons to spinal cord injury as it evolves over time to unravel common gene expression patterns and their underlying regulatory mechanisms. For this we use a rat-tail-model with complete spinal cord transection causing injury-induced spasticity, where gene expression profiles are obtained from labeled motor neurons extracted with laser microdissection 0, 2, 7, 21 and 60 days post injury. Consensus clustering identifies 12 gene clusters with distinct time expression profiles. Analysis of these gene clusters identifies early immunological/inflammatory and late developmental responses as well as a regulation of genes relating to neuron excitability that support the development of motor neuron hyper-excitability and the reappearance of plateau potentials in the late phase of the injury response. Transcription factor motif analysis identifies differentially expressed transcription factors involved in the regulation of each gene cluster, shaping the expression of the identified biological processes and their associated genes underlying the changes in motor neuron excitability. This analysis provides important clues to the underlying mechanisms of transcriptional regulation responsible for the increased excitability observed in motor neurons in the late chronic phase of spinal cord injury suggesting alternative targets for treatment of spinal cord injury. Several transcription factors were identified as potential regulators of gene clusters containing elements related to motor neuron hyper-excitability, the manipulation of which potentially could be

  20. Noncoding transcription by alternative rna polymerases dynamically regulates an auxin-driven chromatin loop

    KAUST Repository

    Ariel, Federico D.; Jé gu, Teddy; Latrasse, David; Romero-Barrios, Natali; Christ, Auré lie; Benhamed, Moussa; Crespi, Martí n D.

    2014-01-01

    The eukaryotic epigenome is shaped by the genome topology in three-dimensional space. Dynamic reversible variations in this epigenome structure directly influence the transcriptional responses to developmental cues. Here, we show that the Arabidopsis long intergenic noncoding RNA (lincRNA) APOLO is transcribed by RNA polymerases II and V in response to auxin, a phytohormone controlling numerous facets of plant development. This dual APOLO transcription regulates the formation of a chromatin loop encompassing the promoter of its neighboring gene PID, a key regulator of polar auxin transport. Altering APOLO expression affects chromatin loop formation, whereas RNA-dependent DNA methylation, active DNA demethylation, and Polycomb complexes control loop dynamics. This dynamic chromatin topology determines PID expression patterns. Hence, the dual transcription of a lincRNA influences local chromatin topology and directs dynamic auxin-controlled developmental outputs on neighboring genes. This mechanism likely underscores the adaptive success of plants in diverse environments and may be widespread in eukaryotes. © 2014 Elsevier Inc.

  1. Noncoding transcription by alternative rna polymerases dynamically regulates an auxin-driven chromatin loop

    KAUST Repository

    Ariel, Federico D.

    2014-08-01

    The eukaryotic epigenome is shaped by the genome topology in three-dimensional space. Dynamic reversible variations in this epigenome structure directly influence the transcriptional responses to developmental cues. Here, we show that the Arabidopsis long intergenic noncoding RNA (lincRNA) APOLO is transcribed by RNA polymerases II and V in response to auxin, a phytohormone controlling numerous facets of plant development. This dual APOLO transcription regulates the formation of a chromatin loop encompassing the promoter of its neighboring gene PID, a key regulator of polar auxin transport. Altering APOLO expression affects chromatin loop formation, whereas RNA-dependent DNA methylation, active DNA demethylation, and Polycomb complexes control loop dynamics. This dynamic chromatin topology determines PID expression patterns. Hence, the dual transcription of a lincRNA influences local chromatin topology and directs dynamic auxin-controlled developmental outputs on neighboring genes. This mechanism likely underscores the adaptive success of plants in diverse environments and may be widespread in eukaryotes. © 2014 Elsevier Inc.

  2. Apple (Malus domestica) MdERF2 negatively affects ethylene biosynthesis during fruit ripening by suppressing MdACS1 transcription.

    Science.gov (United States)

    Li, Tong; Jiang, Zhongyu; Zhang, Lichao; Tan, Dongmei; Wei, Yun; Yuan, Hui; Li, Tianlai; Wang, Aide

    2016-12-01

    Ripening in climacteric fruit requires the gaseous phytohormone ethylene. Although ethylene signaling has been well studied, knowledge of the transcriptional regulation of ethylene biosynthesis is still limited. Here we show that an apple (Malus domestica) ethylene response factor, MdERF2, negatively affects ethylene biosynthesis and fruit ripening by suppressing the transcription of MdACS1, a gene that is critical for biosynthesis of ripening-related ethylene. Expression of MdERF2 was suppressed by ethylene during ripening of apple fruit, and we observed that MdERF2 bound to the promoter of MdACS1 and directly suppressed its transcription. Moreover, MdERF2 suppressed the activity of the promoter of MdERF3, a transcription factor that we found to bind to the MdACS1 promoter, thereby increasing MdACS1 transcription. We determined that the MdERF2 and MdERF3 proteins directly interact, and this interaction suppresses the binding of MdERF3 to the MdACS1 promoter. Moreover, apple fruit with transiently downregulated MdERF2 expression showed higher ethylene production and faster ripening. Our results indicate that MdERF2 negatively affects ethylene biosynthesis and fruit ripening in apple by suppressing the transcription of MdACS1 via multiple mechanisms, thereby acting as an antagonist of positive ripening regulators. Our findings offer a deep understanding of the transcriptional regulation of ethylene biosynthesis during climacteric fruit ripening. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  3. Uridine 5'-Monophosphate Synthase Is Transcriptionally Regulated by Pyrimidine Levels in Nicotiana plumbaginifolia

    Science.gov (United States)

    Santoso; Thornburg

    1998-02-01

    To understand the regulation and expression of pyrimidine biosynthesis in plants, we have examined the effect of the metabolic inhibitor 5-fluoroorotic acid (FOA) on uridine-5'-monophosphate synthase (UMPSase) expression in cell cultures of Nicotiana plumbaginifolia. UMPSase is the rate-limiting step of pyrimidine biosynthesis in plants. Addition of FOA causes an up-regulation of UMPSase enzyme activity in cell cultures after a lag phase of several days. Western-blot analysis demonstrated that the up-regulation in enzyme activity was caused by increased expression of the UMPSase protein. Northern-blot analysis demonstrated a higher level of UMPSase mRNA in the FOA-induced tissues than in control tissues. Run-on transcriptional assays showed that the UMPSase gene was transcriptionally activated after FOA treatment. The mechanism of toxicity of FOA is through thymine starvation. We found that addition of thymine abrogated the FOA-mediated up-regulation of UMPSase. In addition, methotrexate and aminopterin, which affect thymine levels by inhibiting dihydrofolate reductase, also up-regulate UMPSase in N. plumbaginifolia cells.

  4. Serotonin transporter evolution and impact of polymorphic transcriptional regulation

    DEFF Research Database (Denmark)

    Søeby, Karen; Larsen, Svend Ask; Olsen, Line

    2005-01-01

    The serotonin transporter (SERT) is the primary drug target in the current antidepressant therapy. A functional polymorphism in the 2nd intron of the 5HTT gene encoding the SERT has been identified and associated with susceptibility to affective disorders and treatment response to antidepressants....... This study addresses the possible impact of the variable number of tandem repeats (VNTR) to behavior and disease by examining the evolutionary origin and mechanisms of differential transcriptional regulation of SERT. We trace the evolutionary origin of the VNTR and show that it is present and varies...

  5. Serotonin transporter evolution and impact of polymorphic transcriptional regulation

    DEFF Research Database (Denmark)

    Søeby, Karen; Larsen, Svend Ask; Olsen, Line

    2005-01-01

    The serotonin transporter (SERT) is the primary drug target in the current antidepressant therapy. A functional polymorphism in the 2nd intron of the 5HTT gene encoding the SERT has been identified and associated with susceptibility to affective disorders and treatment response to antidepressants...... in the VNTRs of all mammalian SERT genes. The number of these putative binding sites varies proportionally to the length of the VNTR. We propose that the intronic VNTR have been selectively targeted through mammalian evolution to finetune transcriptional regulation of the serotonin expression....

  6. Environmental contaminants and microRNA regulation: Transcription factors as regulators of toxicant-altered microRNA expression

    Energy Technology Data Exchange (ETDEWEB)

    Sollome, James; Martin, Elizabeth [Department of Environmental Science & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill (United States); Sethupathy, Praveen [Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC (United States); Fry, Rebecca C., E-mail: rfry@unc.edu [Department of Environmental Science & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill (United States); Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC (United States)

    2016-12-01

    MicroRNAs (miRNAs) regulate gene expression by binding mRNA and inhibiting translation and/or inducing degradation of the associated transcripts. Expression levels of miRNAs have been shown to be altered in response to environmental toxicants, thus impacting cellular function and influencing disease risk. Transcription factors (TFs) are known to be altered in response to environmental toxicants and play a critical role in the regulation of miRNA expression. To date, environmentally-responsive TFs that are important for regulating miRNAs remain understudied. In a state-of-the-art analysis, we utilized an in silico bioinformatic approach to characterize potential transcriptional regulators of environmentally-responsive miRNAs. Using the miRStart database, genomic sequences of promoter regions for all available human miRNAs (n = 847) were identified and promoter regions were defined as − 1000/+500 base pairs from the transcription start site. Subsequently, the promoter region sequences of environmentally-responsive miRNAs (n = 128) were analyzed using enrichment analysis to determine overrepresented TF binding sites (TFBS). While most (56/73) TFs differed across environmental contaminants, a set of 17 TFs was enriched for promoter binding among miRNAs responsive to numerous environmental contaminants. Of these, one TF was common to miRNAs altered by the majority of environmental contaminants, namely SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 3 (SMARCA3). These identified TFs represent candidate common transcriptional regulators of miRNAs perturbed by environmental toxicants. - Highlights: • Transcription factors that regulate environmentally-modulated miRNA expression are understudied • Transcription factor binding sites (TFBS) located within DNA promoter regions of miRNAs were identified. • Specific transcription factors may serve as master regulators of environmentally-mediated microRNA expression.

  7. Environmental contaminants and microRNA regulation: Transcription factors as regulators of toxicant-altered microRNA expression

    International Nuclear Information System (INIS)

    Sollome, James; Martin, Elizabeth; Sethupathy, Praveen; Fry, Rebecca C.

    2016-01-01

    MicroRNAs (miRNAs) regulate gene expression by binding mRNA and inhibiting translation and/or inducing degradation of the associated transcripts. Expression levels of miRNAs have been shown to be altered in response to environmental toxicants, thus impacting cellular function and influencing disease risk. Transcription factors (TFs) are known to be altered in response to environmental toxicants and play a critical role in the regulation of miRNA expression. To date, environmentally-responsive TFs that are important for regulating miRNAs remain understudied. In a state-of-the-art analysis, we utilized an in silico bioinformatic approach to characterize potential transcriptional regulators of environmentally-responsive miRNAs. Using the miRStart database, genomic sequences of promoter regions for all available human miRNAs (n = 847) were identified and promoter regions were defined as − 1000/+500 base pairs from the transcription start site. Subsequently, the promoter region sequences of environmentally-responsive miRNAs (n = 128) were analyzed using enrichment analysis to determine overrepresented TF binding sites (TFBS). While most (56/73) TFs differed across environmental contaminants, a set of 17 TFs was enriched for promoter binding among miRNAs responsive to numerous environmental contaminants. Of these, one TF was common to miRNAs altered by the majority of environmental contaminants, namely SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 3 (SMARCA3). These identified TFs represent candidate common transcriptional regulators of miRNAs perturbed by environmental toxicants. - Highlights: • Transcription factors that regulate environmentally-modulated miRNA expression are understudied • Transcription factor binding sites (TFBS) located within DNA promoter regions of miRNAs were identified. • Specific transcription factors may serve as master regulators of environmentally-mediated microRNA expression

  8. RNA-binding proteins involved in post-transcriptional regulation in bacteria

    Directory of Open Access Journals (Sweden)

    Elke eVan Assche

    2015-03-01

    Full Text Available Post-transcriptional regulation is a very important mechanism to control gene expression in changing environments. In the past decade, a lot of interest has been directed towards the role of small RNAs in bacterial post-transcriptional regulation. However, small RNAs are not the only molecules controlling gene expression at this level, RNA-binding proteins play an important role as well. CsrA and Hfq are the two best studied bacterial proteins of this type, but recently, additional proteins involved in post-transcriptional control have been identified. This review focuses on the general working mechanisms of post-transcriptionally active RNA-binding proteins, which include (i adaptation of the susceptibility of mRNAs and sRNAs to RNases, (ii modulating the accessibility of the ribosome binding site of mRNAs, (iii recruiting and assisting in the interaction of mRNAs with other molecules and (iv regulating transcription terminator / antiterminator formation, and gives an overview of both the well-studied and the newly identified proteins that are involved in post-transcriptional regulatory processes. Additionally, the post-transcriptional mechanisms by which the expression or the activity of these proteins is regulated, are described. For many of the newly identified proteins, however, mechanistic questions remain. Most likely, more post-transcriptionally active proteins will be identified in the future.

  9. ETS-4 is a transcriptional regulator of life span in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Bargavi Thyagarajan

    2010-09-01

    Full Text Available Aging is a complex phenotype responsive to a plethora of environmental inputs; yet only a limited number of transcriptional regulators are known to influence life span. How the downstream expression programs mediated by these factors (or others are coordinated into common or distinct set of aging effectors is an addressable question in model organisms, such as C. elegans. Here, we establish the transcription factor ETS-4, an ortholog of vertebrate SPDEF, as a longevity determinant. Adult worms with ets-4 mutations had a significant extension of mean life span. Restoring ETS-4 activity in the intestine, but not neurons, of ets-4 mutant worms rescued life span to wild-type levels. Using RNAi, we demonstrated that ets-4 is required post-developmentally to regulate adult life span; thus uncoupling the role of ETS-4 in aging from potential functions in worm intestinal development. Seventy ETS-4-regulated genes, identified by gene expression profiling of two distinct ets-4 alleles and analyzed by bioinformatics, were enriched for known longevity effectors that function in lipid transport, lipid metabolism, and innate immunity. Putative target genes were enriched for ones that change expression during normal aging, the majority of which are controlled by the GATA factors. Also, some ETS-4-regulated genes function downstream of the FOXO factor, DAF-16 and the insulin/IGF-1 signaling pathway. However, epistasis and phenotypic analyses indicate that ets-4 functioned in parallel to the insulin/IGF-1 receptor, daf-2 and akt-1/2 kinases. Furthermore, ets-4 required daf-16 to modulate aging, suggesting overlap in function at the level of common targets that affect life span. In conclusion, ETS-4 is a new transcriptional regulator of aging, which shares transcriptional targets with GATA and FOXO factors, suggesting that overlapping pathways direct common sets of lifespan-related genes.

  10. Serine/threonine/tyrosine phosphorylation regulates DNA binding of bacterial transcriptional regulators

    DEFF Research Database (Denmark)

    Kalantari, Aida; Derouiche, Abderahmane; Shi, Lei

    2015-01-01

    Reversible phosphorylation of bacterial transcriptional regulators (TRs) belonging to the family of two-component systems (TCSs) is a well-established mechanism for regulating gene expression. Recent evidence points to the fact that reversible phosphorylation of bacterial TRs on other types...

  11. Harnessing CRISPR/Cas systems for programmable transcriptional and post-transcriptional regulation

    KAUST Repository

    Mahas, Ahmed

    2017-11-29

    Genome editing has enabled broad advances and novel approaches in studies of gene function and structure; now, emerging methods aim to precisely engineer post-transcriptional processes. Developing precise, efficient molecular tools to alter the transcriptome holds great promise for biotechnology and synthetic biology applications. Different approaches have been employed for targeted degradation of RNA species in eukaryotes, but they lack programmability and versatility, thereby limiting their utility for diverse applications. The CRISPR/Cas9 system has been harnessed for genome editing in many eukaryotic species and, using a catalytically inactive Cas9 variant, the CRISPR/dCas9 system has been repurposed for transcriptional regulation. Recent studies have used other CRISPR/Cas systems for targeted RNA degradation and RNA-based manipulations. For example, Cas13a, a Type VI-A endonuclease, has been identified as an RNA-guided RNA ribonuclease and used for manipulation of RNA. Here, we discuss different modalities for targeted RNA interference with an emphasis on the potential applications of CRISPR/Cas systems as programmable transcriptional regulators for broad uses, including functional biology, biotechnology, and synthetic biology applications.

  12. Harnessing CRISPR/Cas systems for programmable transcriptional and post-transcriptional regulation

    KAUST Repository

    Mahas, Ahmed; Neal Stewart, C.; Mahfouz, Magdy M.

    2017-01-01

    Genome editing has enabled broad advances and novel approaches in studies of gene function and structure; now, emerging methods aim to precisely engineer post-transcriptional processes. Developing precise, efficient molecular tools to alter the transcriptome holds great promise for biotechnology and synthetic biology applications. Different approaches have been employed for targeted degradation of RNA species in eukaryotes, but they lack programmability and versatility, thereby limiting their utility for diverse applications. The CRISPR/Cas9 system has been harnessed for genome editing in many eukaryotic species and, using a catalytically inactive Cas9 variant, the CRISPR/dCas9 system has been repurposed for transcriptional regulation. Recent studies have used other CRISPR/Cas systems for targeted RNA degradation and RNA-based manipulations. For example, Cas13a, a Type VI-A endonuclease, has been identified as an RNA-guided RNA ribonuclease and used for manipulation of RNA. Here, we discuss different modalities for targeted RNA interference with an emphasis on the potential applications of CRISPR/Cas systems as programmable transcriptional regulators for broad uses, including functional biology, biotechnology, and synthetic biology applications.

  13. The DNA replication checkpoint directly regulates MBF-dependent G1/S transcription.

    Science.gov (United States)

    Dutta, Chaitali; Patel, Prasanta K; Rosebrock, Adam; Oliva, Anna; Leatherwood, Janet; Rhind, Nicholas

    2008-10-01

    The DNA replication checkpoint transcriptionally upregulates genes that allow cells to adapt to and survive replication stress. Our results show that, in the fission yeast Schizosaccharomyces pombe, the replication checkpoint regulates the entire G(1)/S transcriptional program by directly regulating MBF, the G(1)/S transcription factor. Instead of initiating a checkpoint-specific transcriptional program, the replication checkpoint targets MBF to maintain the normal G(1)/S transcriptional program during replication stress. We propose a mechanism for this regulation, based on in vitro phosphorylation of the Cdc10 subunit of MBF by the Cds1 replication-checkpoint kinase. Replacement of two potential phosphorylation sites with phosphomimetic amino acids suffices to promote the checkpoint transcriptional program, suggesting that Cds1 phosphorylation directly regulates MBF-dependent transcription. The conservation of MBF between fission and budding yeast, and recent results implicating MBF as a target of the budding yeast replication checkpoint, suggests that checkpoint regulation of the MBF transcription factor is a conserved strategy for coping with replication stress. Furthermore, the structural and regulatory similarity between MBF and E2F, the metazoan G(1)/S transcription factor, suggests that this checkpoint mechanism may be broadly conserved among eukaryotes.

  14. A combination of independent transcriptional regulators shapes bacterial virulence gene expression during infection.

    Directory of Open Access Journals (Sweden)

    Samuel A Shelburne

    2010-03-01

    Full Text Available Transcriptional regulatory networks are fundamental to how microbes alter gene expression in response to environmental stimuli, thereby playing a critical role in bacterial pathogenesis. However, understanding how bacterial transcriptional regulatory networks function during host-pathogen interaction is limited. Recent studies in group A Streptococcus (GAS suggested that the transcriptional regulator catabolite control protein A (CcpA influences many of the same genes as the control of virulence (CovRS two-component gene regulatory system. To provide new information about the CcpA and CovRS networks, we compared the CcpA and CovR transcriptomes in a serotype M1 GAS strain. The transcript levels of several of the same genes encoding virulence factors and proteins involved in basic metabolic processes were affected in both DeltaccpA and DeltacovR isogenic mutant strains. Recombinant CcpA and CovR bound with high-affinity to the promoter regions of several co-regulated genes, including those encoding proteins involved in carbohydrate and amino acid metabolism. Compared to the wild-type parental strain, DeltaccpA and DeltacovRDeltaccpA isogenic mutant strains were significantly less virulent in a mouse myositis model. Inactivation of CcpA and CovR alone and in combination led to significant alterations in the transcript levels of several key GAS virulence factor encoding genes during infection. Importantly, the transcript level alterations in the DeltaccpA and DeltacovRDeltaccpA isogenic mutant strains observed during infection were distinct from those occurring during growth in laboratory medium. These data provide new knowledge regarding the molecular mechanisms by which pathogenic bacteria respond to environmental signals to regulate virulence factor production and basic metabolic processes during infection.

  15. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation

    Science.gov (United States)

    Menet, Jerome S; Rodriguez, Joseph; Abruzzi, Katharine C; Rosbash, Michael

    2012-01-01

    A substantial fraction of the metazoan transcriptome undergoes circadian oscillations in many cells and tissues. Based on the transcription feedback loops important for circadian timekeeping, it is commonly assumed that this mRNA cycling reflects widespread transcriptional regulation. To address this issue, we directly measured the circadian dynamics of mouse liver transcription using Nascent-Seq (genome-wide sequencing of nascent RNA). Although many genes are rhythmically transcribed, many rhythmic mRNAs manifest poor transcriptional rhythms, indicating a prominent contribution of post-transcriptional regulation to circadian mRNA expression. This analysis of rhythmic transcription also showed that the rhythmic DNA binding profile of the transcription factors CLOCK and BMAL1 does not determine the transcriptional phase of most target genes. This likely reflects gene-specific collaborations of CLK:BMAL1 with other transcription factors. These insights from Nascent-Seq indicate that it should have broad applicability to many other gene expression regulatory issues. DOI: http://dx.doi.org/10.7554/eLife.00011.001 PMID:23150795

  16. Membrane-bound transcription factors: regulated release by RIP or RUP.

    Science.gov (United States)

    Hoppe, T; Rape, M; Jentsch, S

    2001-06-01

    Regulated nuclear transport of transcription factors from cytoplasmic pools is a major route by which eukaryotes control gene expression. Exquisite examples are transcription factors that are kept in a dormant state in the cytosol by membrane anchors; such proteins are released from membranes by proteolytic cleavage, which enables these transcription factors to enter the nucleus. Cleavage can be mediated either by regulated intramembrane proteolysis (RIP) catalysed by specific membrane-bound proteases or by regulated ubiquitin/proteasome-dependent processing (RUP). In both cases processing can be controlled by cues that originate at or in the vicinity of the membrane.

  17. FRUITING GENES OF SCHIZOPHYLLUM-COMMUNE ARE TRANSCRIPTIONALLY REGULATED

    NARCIS (Netherlands)

    SCHUREN, FHJ; VANDERLENDE, TR; WESSELS, JGH

    Fruiting genes in Schizophyllum commune are controlled by the mating-type genes and other regulatory genes. To examine whether differential accumulation of mRNAs for these fruiting genes is caused by transcriptional regulation, run-on transcription assaYs were performed with nuclei isolated from

  18. Transcriptional regulation of Caenorhabditis elegans FOXO/DAF-16 modulates lifespan.

    Science.gov (United States)

    Bansal, Ankita; Kwon, Eun-Soo; Conte, Darryl; Liu, Haibo; Gilchrist, Michael J; MacNeil, Lesley T; Tissenbaum, Heidi A

    2014-01-01

    Insulin/IGF-1 signaling plays a central role in longevity across phylogeny. In C. elegans, the forkhead box O (FOXO) transcription factor, DAF-16, is the primary target of insulin/IGF-1 signaling, and multiple isoforms of DAF-16 (a, b, and d/f) modulate lifespan, metabolism, dauer formation, and stress resistance. Thus far, across phylogeny modulation of mammalian FOXOs and DAF-16 have focused on post-translational regulation with little focus on transcriptional regulation. In C. elegans, we have previously shown that DAF-16d/f cooperates with DAF-16a to promote longevity. In this study, we generated transgenic strains expressing near-endogenous levels of either daf-16a or daf-16d/f, and examined temporal expression of the isoforms to further define how these isoforms contribute to lifespan regulation. Here, we show that DAF-16a is sensitive both to changes in gene dosage and to alterations in the level of insulin/IGF-1 signaling. Interestingly, we find that as worms age, the intestinal expression of daf-16d/f but not daf-16a is dramatically upregulated at the level of transcription. Preventing this transcriptional upregulation shortens lifespan, indicating that transcriptional regulation of daf-16d/f promotes longevity. In an RNAi screen of transcriptional regulators, we identify elt-2 (GATA transcription factor) and swsn-1 (core subunit of SWI/SNF complex) as key modulators of daf-16d/f gene expression. ELT-2 and another GATA factor, ELT-4, promote longevity via both DAF-16a and DAF-16d/f while the components of SWI/SNF complex promote longevity specifically via DAF-16d/f. Our findings indicate that transcriptional control of C. elegans FOXO/daf-16 is an essential regulatory event. Considering the conservation of FOXO across species, our findings identify a new layer of FOXO regulation as a potential determinant of mammalian longevity and age-related diseases such as cancer and diabetes.

  19. Age-dependent regulation of ERF-VII transcription factor activity in Arabidopsis thaliana.

    Science.gov (United States)

    Giuntoli, Beatrice; Shukla, Vinay; Maggiorelli, Federica; Giorgi, Federico M; Lombardi, Lara; Perata, Pierdomenico; Licausi, Francesco

    2017-10-01

    The Group VII Ethylene Responsive Factors (ERFs-VII) RAP2.2 and RAP2.12 have been mainly characterized with regard to their contribution as activators of fermentation in plants. However, transcriptional changes measured in conditions that stabilize these transcription factors exceed the mere activation of this biochemical pathway, implying additional roles performed by the ERF-VIIs in other processes. We evaluated gene expression in transgenic Arabidopsis lines expressing a stabilized form of RAP2.12, or hampered in ERF-VII activity, and identified genes affected by this transcriptional regulator and its homologs, including some involved in oxidative stress response, which are not universally induced under anaerobic conditions. The contribution of the ERF-VIIs in regulating this set of genes in response to chemically induced or submergence-stimulated mitochondria malfunctioning was found to depend on the plant developmental stage. A similar age-dependent mechanism also restrained ERF-VII activity upon the core-hypoxic genes, independently of the N-end rule pathway, which is accounted for the control of the anaerobic response. To conclude, this study shed new light on a dual role of ERF-VII proteins under submergence: as positive regulators of the hypoxic response and as repressors of oxidative-stress related genes, depending on the developmental stage at which plants are challenged by stress conditions. © 2017 John Wiley & Sons Ltd.

  20. Novel Functions for TAF7, a Regulator of TAF1-independent Transcription

    OpenAIRE

    Devaiah, Ballachanda N.; Lu, Hanxin; Gegonne, Anne; Sercan, Zeynep; Zhang, Hongen; Clifford, Robert J.; Lee, Maxwell P.; Singer, Dinah S.

    2010-01-01

    The transcription factor TFIID components TAF7 and TAF1 regulate eukaryotic transcription initiation. TAF7 regulates transcription initiation of TAF1-dependent genes by binding to the acetyltransferase (AT) domain of TAF1 and inhibiting the enzymatic activity that is essential for transcription. TAF7 is released from the TAF1-TFIID complex upon completion of preinitiation complex assembly, allowing transcription to initiate. However, not all transcription is TAF1-dependent, and the role of TA...

  1. Navigating the transcriptional roadmap regulating plant secondary cell wall deposition

    Directory of Open Access Journals (Sweden)

    Steven Grant Hussey

    2013-08-01

    Full Text Available The current status of lignocellulosic biomass as an invaluable resource in industry, agriculture and health has spurred increased interest in understanding the transcriptional regulation of secondary cell wall (SCW biosynthesis. The last decade of research has revealed an extensive network of NAC, MYB and other families of transcription factors regulating Arabidopsis SCW biosynthesis, and numerous studies have explored SCW-related transcription factors in other dicots and monocots. Whilst the general structure of the Arabidopsis network has been a topic of several reviews, they have not comprehensively represented the detailed protein-DNA and protein-protein interactions described in the literature, and an understanding of network dynamics and functionality has not yet been achieved for SCW formation. Furthermore the methodologies employed in studies of SCW transcriptional regulation have not received much attention, especially in the case of non-model organisms. In this review, we have reconstructed the most exhaustive literature-based network representations to date of SCW transcriptional regulation in Arabidopsis. We include a manipulable Cytoscape representation of the Arabidopsis SCW transcriptional network to aid in future studies, along with a list of supporting literature for each documented interaction. Amongst other topics, we discuss the various components of the network, its evolutionary conservation in plants, putative modules and dynamic mechanisms that may influence network function, and the approaches that have been employed in network inference. Future research should aim to better understand network function and its response to dynamic perturbations, whilst the development and application of genome-wide approaches such as ChIP-seq and systems genetics are in progress for the study of SCW transcriptional regulation in non-model organisms.

  2. The Mediator complex and transcription regulation

    Science.gov (United States)

    Poss, Zachary C.; Ebmeier, Christopher C.

    2013-01-01

    The Mediator complex is a multi-subunit assembly that appears to be required for regulating expression of most RNA polymerase II (pol II) transcripts, which include protein-coding and most non-coding RNA genes. Mediator and pol II function within the pre-initiation complex (PIC), which consists of Mediator, pol II, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH and is approximately 4.0 MDa in size. Mediator serves as a central scaffold within the PIC and helps regulate pol II activity in ways that remain poorly understood. Mediator is also generally targeted by sequence-specific, DNA-binding transcription factors (TFs) that work to control gene expression programs in response to developmental or environmental cues. At a basic level, Mediator functions by relaying signals from TFs directly to the pol II enzyme, thereby facilitating TF-dependent regulation of gene expression. Thus, Mediator is essential for converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression). In this review, we summarize an expansive body of research on the Mediator complex, with an emphasis on yeast and mammalian complexes. We focus on the basics that underlie Mediator function, such as its structure and subunit composition, and describe its broad regulatory influence on gene expression, ranging from chromatin architecture to transcription initiation and elongation, to mRNA processing. We also describe factors that influence Mediator structure and activity, including TFs, non-coding RNAs and the CDK8 module. PMID:24088064

  3. Computational Investigations of Post-Transcriptional Regulation

    DEFF Research Database (Denmark)

    Rasmussen, Simon Horskjær

    and miRNA regulation was studied by cross-linking immunoprecipitation (CLIP) and RBP double knockdown experiments. A comprehensive analysis of 107 CLIP datasets of 49 RBPs demonstrated that RBPs modulate miRNA regulation. Results suggest it is mediated by RBP-binding hotspots that likely...... investigated using high-throughput data. Analysis of IMP RIP-seq, iCLIP and RNA-seq datasets identified transcripts associated with cytoplasmic IMP ribonucleoproteins. Many of these transcripts were functionally involved in actin cytoskeletal remodeling. Further analyses of this data permitted estimation...... of a bipartite motif, composed of an AU-rich and a CA-rich domain. In addition, a regulatory motif discovery method was developed and applied to identify motifs using differential expression data and CLIP-data in the above investigations. This thesis increased the understanding of the role of RBPs in mi...

  4. DMPD: Post-transcriptional regulation of proinflammatory proteins. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15075353 Post-transcriptional regulation of proinflammatory proteins. Anderson P, P...l) (.csml) Show Post-transcriptional regulation of proinflammatory proteins. PubmedID 15075353 Title Post-tr...anscriptional regulation of proinflammatory proteins. Authors Anderson P, Phillip

  5. Amplified in Breast Cancer Regulates Transcription and Translation in Breast Cancer Cells.

    Science.gov (United States)

    Ochnik, Aleksandra M; Peterson, Mark S; Avdulov, Svetlana V; Oh, Annabell S; Bitterman, Peter B; Yee, Douglas

    2016-02-01

    Control of mRNA translation is fundamentally altered in cancer. Insulin-like growth factor-I (IGF-I) signaling regulates key translation mediators to modulate protein synthesis (e.g. eIF4E, 4E-BP1, mTOR, and S6K1). Importantly the Amplified in Breast Cancer (AIB1) oncogene regulates transcription and is also a downstream mediator of IGF-I signaling. To determine if AIB1 also affects mRNA translation, we conducted gain and loss of AIB1 function experiments in estrogen receptor alpha (ERα)(+) (MCF-7L) and ERα(-) (MDA-MB-231, MDA-MB-435 and LCC6) breast cancer cells. AIB1 positively regulated IGF-I-induced mRNA translation in both ERα(+) and ERα(-) cells. Formation of the eIF4E-4E-BP1 translational complex was altered in the AIB1 ERα(+) and ERα(-) knockdown cells, leading to a reduction in the eIF4E/4E-BP1 and eIF4G/4E-BP1 ratios. In basal and IGF-I stimulated MCF-7 and LCC6 cells, knockdown of AIB1 decreased the integrity of the cap-binding complex, reduced global IGF-I stimulated polyribosomal mRNA recruitment with a concomitant decrease in ten of the thirteen genes tested in polysome-bound mRNAs mapping to proliferation, cell cycle, survival, transcription, translation and ribosome biogenesis ontologies. Specifically, knockdown of AIB1 decreased ribosome-bound mRNA and steady-state protein levels of the transcription factors ERα and E2F1 in addition to reduced ribosome-bound mRNA of the ribosome biogenesis factor BYSL in a cell-line specific manner to regulate mRNA translation. The oncogenic transcription factor AIB1 has a novel role in the regulation of polyribosome recruitment and formation of the translational complex. Combinatorial therapies targeting IGF signaling and mRNA translation in AIB1 expressing breast cancers may have clinical benefit and warrants further investigation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. In silico and wet lab approaches to study transcriptional regulation

    NARCIS (Netherlands)

    Hestand, Matthew Scott

    2010-01-01

    Gene expression is a complicated process with multiple types of regulation, including binding of proteins termed transcription factors. This thesis looks at transcription factors and transcription factor binding site discovery through computational predictions and wet lab work to better elucidate

  7. Insight into podocyte differentiation from the study of human genetic disease: nail-patella syndrome and transcriptional regulation in podocytes.

    Science.gov (United States)

    Morello, Roy; Lee, Brendan

    2002-05-01

    In recent years, our understanding of the molecular basis of kidney development has benefited from the study of rare genetic diseases affecting renal function. This has especially been the case with the differentiation of the highly specialized podocyte in the pathogenesis of human disorders and mouse phenotypes affecting the renal filtration barrier. This filtration barrier represents the end product of a complex series of signaling events that produce a tripartite structure consisting of interdigitating podocyte foot processes with intervening slit diaphragms, the glomerular basement membrane, and the fenestrated endothelial cell. Dysregulation of unique cytoskeletal and extracellular matrix proteins in genetic forms of nephrotic syndrome has shown how specific structural proteins contribute to podocyte function and differentiation. However, much less is known about the transcriptional determinants that both specify and maintain this differentiated cell. Our studies of a skeletal malformation syndrome, nail-patella syndrome, have shown how the LIM homeodomain transcription factor, Lmx1b, contributes to transcriptional regulation of glomerular basement membrane collagen expression by podocytes. Moreover, they raise intriguing questions about more global transcriptional regulation of podocyte morphogenesis.

  8. Silencing of IFN-stimulated gene transcription is regulated by histone H1 and its chaperone TAF-I.

    Science.gov (United States)

    Kadota, Shinichi; Nagata, Kyosuke

    2014-07-01

    Chromatin structure and its alteration play critical roles in the regulation of transcription. However, the transcriptional silencing mechanism with regard to the chromatin structure at an unstimulated state of the interferon (IFN)-stimulated gene (ISG) remains unclear. Here we investigated the role of template activating factor-I (TAF-I, also known as SET) in ISG transcription. Knockdown (KD) of TAF-I increased ISG transcript and simultaneously reduced the histone H1 level on the ISG promoters during the early stages of transcription after IFN stimulation from the unstimulated state. The transcription factor levels on the ISG promoters were increased in TAF-I KD cells only during the early stages of transcription. Furthermore, histone H1 KD also increased ISG transcript. TAF-I and histone H1 double KD did not show the additive effect in ISG transcription, suggesting that TAF-I and histone H1 may act on the same regulatory pathway to control ISG transcription. In addition, TAF-I KD and histone H1 KD affected the chromatin structure near the ISG promoters. On the basis of these findings, we propose that TAF-I and its target histone H1 are key regulators of the chromatin structure at the ISG promoter to maintain the silent state of ISG transcription. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Computational Approaches to Understand Transcriptional Regulation and Alternative Promoter Usage in Mammals

    DEFF Research Database (Denmark)

    Jørgensen, Mette

    erent aspects of transcriptional regulation. In the rst study we develop a machine learning framework to predict mRNA production, stalling and elongation of RNA polymerase II using publicly available histone modi cation data. The study reveals new pieces of information about the histone code. Besides...... into proteins. All cells need di erent proteins in di erent amounts to function properly. The transcription and translation are therefore highly regulated and the regulation is not fully understood. It is important to learn as much as possible about both transcriptional and translational regulation to better...

  10. Uridine 5′-Monophosphate Synthase Is Transcriptionally Regulated by Pyrimidine Levels in Nicotiana plumbaginifolia1

    Science.gov (United States)

    Santoso, Djoko; Thornburg, Robert

    1998-01-01

    To understand the regulation and expression of pyrimidine biosynthesis in plants, we have examined the effect of the metabolic inhibitor 5-fluoroorotic acid (FOA) on uridine-5′-monophosphate synthase (UMPSase) expression in cell cultures of Nicotiana plumbaginifolia. UMPSase is the rate-limiting step of pyrimidine biosynthesis in plants. Addition of FOA causes an up-regulation of UMPSase enzyme activity in cell cultures after a lag phase of several days. Western-blot analysis demonstrated that the up-regulation in enzyme activity was caused by increased expression of the UMPSase protein. Northern-blot analysis demonstrated a higher level of UMPSase mRNA in the FOA-induced tissues than in control tissues. Run-on transcriptional assays showed that the UMPSase gene was transcriptionally activated after FOA treatment. The mechanism of toxicity of FOA is through thymine starvation. We found that addition of thymine abrogated the FOA-mediated up-regulation of UMPSase. In addition, methotrexate and aminopterin, which affect thymine levels by inhibiting dihydrofolate reductase, also up-regulate UMPSase in N. plumbaginifolia cells. PMID:9490773

  11. Pou1f1, the key transcription factor related to somatic growth in tilapia (Orechromis niloticus), is regulated by two independent post-transcriptional regulation mechanisms.

    Science.gov (United States)

    Wang, Dongfang; Qin, Jingkai; Jia, Jirong; Yan, Peipei; Li, Wensheng

    2017-01-29

    This study aims to determine the post-transcriptional regulation mechanism of the transcription factor pou1f1 (pou class 1 homeobox 1), which is the key gene for pituitary development, somatic growth in vertebrates, and transcription of several hormone genes in teleost fish. MicroRNA miR-223-3p was identified as a bona fide target of pou1f; overexpression of miR-223-3p in primary pituitary cells led to the down-regulation of pou1f1 and downstream genes, and inhibition of miR-223-3p led to the up-regulation of pou1f1 in Nile tilapia dispersed primary pituitary cells. An adenylate-uridylate-rich element (AU-Rich element) was found in the 3'UTR of pou1f1 mRNA, and deletion of the AU-Rich element led to slower mRNA decay and therefore more protein output. A potential mutual relationship between miR-223-3p and the AU-rich element was also investigated, and the results demonstrated that with or without the AU-Rich element, miR-223-3p induced the up-regulation of a reporter system under serum starvation conditions, indicating that miR-223-3p and the AU-Rich element function independent of each other. This study is the first to investigate the post-transcriptional mechanism of pou1f1, which revealed that miR-223-3p down-regulated pou1f1 and downstream gene expressions, and the AU-Rich element led to rapid decay of pou1f1 mRNA. MicroRNA miR-223-3p and the AU-Rich element co-regulated the post-transcriptional expression of pou1f1 independently in Nile tilapia, demonstrating that pou1f1 is under the control of a dual post-transcription regulation mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Ranges of control in the transcriptional regulation of Escherichia coli.

    Science.gov (United States)

    Sonnenschein, Nikolaus; Hütt, Marc-Thorsten; Stoyan, Helga; Stoyan, Dietrich

    2009-12-24

    The positioning of genes in the genome is an important evolutionary degree of freedom for organizing gene regulation. Statistical properties of these distributions have been studied particularly in relation to the transcriptional regulatory network. The systematics of gene-gene distances then become important sources of information on the control, which different biological mechanisms exert on gene expression. Here we study a set of categories, which has to our knowledge not been analyzed before. We distinguish between genes that do not participate in the transcriptional regulatory network (i.e. that are according to current knowledge not producing transcription factors and do not possess binding sites for transcription factors in their regulatory region), and genes that via transcription factors either are regulated by or regulate other genes. We find that the two types of genes ("isolated" and "regulatory" genes) show a clear statistical repulsion and have different ranges of correlations. In particular we find that isolated genes have a preference for shorter intergenic distances. These findings support previous evidence from gene expression patterns for two distinct logical types of control, namely digital control (i.e. network-based control mediated by dedicated transcription factors) and analog control (i.e. control based on genome structure and mediated by neighborhood on the genome).

  13. Fat mass and obesity associated gene (FTO expression is regulated negatively by the transcription factor Foxa2.

    Directory of Open Access Journals (Sweden)

    Jianjin Guo

    Full Text Available Fat mass and obesity associated gene (FTO is the first gene associated with body mass index (BMI and risk for diabetes. FTO is highly expressed in the brain and pancreas, and is involved in regulating dietary intake and energy expenditure. To investigate the transcriptional regulation of FTO expression, we created 5'-deletion constructs of the FTO promoter to determine which transcription factors are most relevant to FTO expression. The presence of an activation region at -201/+34 was confirmed by luciferase activity analysis. A potential Foxa2 (called HNF-3β binding site and an upstream stimulatory factor (USF-binding site was identified in the -100 bp fragment upstream of the transcription start site (TSS. Furthermore, using mutagenesis, we identified the Foxa2 binding sequence (-26/-14 as a negative regulatory element to the activity of the human FTO promoter. The USF binding site did not affect the FTO promoter activity. Chromatin immunoprecipitation (ChIP assays were performed to confirm Foxa2 binding to the FTO promoter. Overexpression of Foxa2 in HEK 293 cells significantly down-regulated FTO promoter activity and expression. Conversely, knockdown of Foxa2 by siRNA significantly up-regulated FTO expression. These findings suggest that Foxa2 negatively regulates the basal transcription and expression of the human FTO gene.

  14. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors

    KAUST Repository

    Piatek, Agnieszka Anna

    2014-11-14

    Targeted genomic regulation is a powerful approach to accelerate trait discovery and development in agricultural biotechnology. Bacteria and archaea use clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) regulatory systems for adaptive molecular immunity against foreign nucleic acids introduced by invading phages and conjugative plasmids. The type II CRISPR/Cas system has been adapted for genome editing in many cell types and organisms. A recent study used the catalytically inactive Cas9 (dCas9) protein combined with guide-RNAs (gRNAs) as a DNA-targeting platform to modulate gene expression in bacterial, yeast, and human cells. Here, we modified this DNA-targeting platform for targeted transcriptional regulation in planta by developing chimeric dCas9-based transcriptional activators and repressors. To generate transcriptional activators, we fused the dCas9 C-terminus with the activation domains of EDLL and TAL effectors. To generate a transcriptional repressor, we fused the dCas9 C-terminus with the SRDX repression domain. Our data demonstrate that dCas9 fusion with the EDLL activation domain (dCas9:EDLL) and the TAL activation domain (dCas9:TAD), guided by gRNAs complementary to selected promoter elements, induce strong transcriptional activation on Bs3

  15. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors

    KAUST Repository

    Piatek, Agnieszka Anna; Ali, Zahir; Baazim, Hatoon; Li, Lixin; Abulfaraj, Aala A.; Alshareef, Sahar; Aouida, Mustapha; Mahfouz, Magdy M.

    2014-01-01

    Targeted genomic regulation is a powerful approach to accelerate trait discovery and development in agricultural biotechnology. Bacteria and archaea use clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) regulatory systems for adaptive molecular immunity against foreign nucleic acids introduced by invading phages and conjugative plasmids. The type II CRISPR/Cas system has been adapted for genome editing in many cell types and organisms. A recent study used the catalytically inactive Cas9 (dCas9) protein combined with guide-RNAs (gRNAs) as a DNA-targeting platform to modulate gene expression in bacterial, yeast, and human cells. Here, we modified this DNA-targeting platform for targeted transcriptional regulation in planta by developing chimeric dCas9-based transcriptional activators and repressors. To generate transcriptional activators, we fused the dCas9 C-terminus with the activation domains of EDLL and TAL effectors. To generate a transcriptional repressor, we fused the dCas9 C-terminus with the SRDX repression domain. Our data demonstrate that dCas9 fusion with the EDLL activation domain (dCas9:EDLL) and the TAL activation domain (dCas9:TAD), guided by gRNAs complementary to selected promoter elements, induce strong transcriptional activation on Bs3

  16. Transcriptional and chromatin regulation during fasting – The genomic era

    Science.gov (United States)

    Goldstein, Ido; Hager, Gordon L.

    2015-01-01

    An elaborate metabolic response to fasting is orchestrated by the liver and is heavily reliant upon transcriptional regulation. In response to hormones (glucagon, glucocorticoids) many transcription factors (TFs) are activated and regulate various genes involved in metabolic pathways aimed at restoring homeostasis: gluconeogenesis, fatty acid oxidation, ketogenesis and amino acid shuttling. We summarize the recent discoveries regarding fasting-related TFs with an emphasis on genome-wide binding patterns. Collectively, the summarized findings reveal a large degree of co-operation between TFs during fasting which occurs at motif-rich DNA sites bound by a combination of TFs. These new findings implicate transcriptional and chromatin regulation as major determinants of the response to fasting and unravels the complex, multi-TF nature of this response. PMID:26520657

  17. Transcriptional regulation of dimethyl sulfoxide respiration in a haloarchaeon, Haloferax volcanii.

    Science.gov (United States)

    Qi, Qiuzi; Ito, Yoshiyasu; Yoshimatsu, Katsuhiko; Fujiwara, Taketomo

    2016-01-01

    The halophilic euryarchaeon Haloferax volcanii can grow anaerobically by DMSO respiration. DMSO reductase was induced by DMSO respiration not only under anaerobic growth conditions but also in denitrifying cells of H. volcanii. Deletion of the dmsR gene, encoding a putative regulator for the DMSO reductase, resulted in the loss of anaerobic growth by DMSO respiration. Reporter experiments revealed that only the anaerobic condition was essential for transcription of the dmsEABCD genes encoding DMSO reductase and that transcription was enhanced threefold by supplementation of DMSO. In the ∆dmsR mutant, transcription of the dmsEABCD genes induced by the anaerobic condition was not enhanced by DMSO, suggesting that DmsR is a DMSO-responsive regulator. Transcriptions of the dmsR and mgd genes for Mo-bisMGD biosynthesis were regulated in the same manner as the dmsEABCD genes. These results suggest that the genetic regulation of DMSO respiration in H. volcanii is controlled by at least two systems: one is the DMSO-responsive DmsR, and the other is an unknown anaerobic regulator.

  18. The regulation of mitochondrial transcription factor A (Tfam) expression during skeletal muscle cell differentiation.

    Science.gov (United States)

    Collu-Marchese, Melania; Shuen, Michael; Pauly, Marion; Saleem, Ayesha; Hood, David A

    2015-05-19

    The ATP demand required for muscle development is accommodated by elevations in mitochondrial biogenesis, through the co-ordinated activities of the nuclear and mitochondrial genomes. The most important transcriptional activator of the mitochondrial genome is mitochondrial transcription factor A (Tfam); however, the regulation of Tfam expression during muscle differentiation is not known. Thus, we measured Tfam mRNA levels, mRNA stability, protein expression and localization and Tfam transcription during the progression of muscle differentiation. Parallel 2-fold increases in Tfam protein and mRNA were observed, corresponding with 2-3-fold increases in mitochondrial content. Transcriptional activity of a 2051 bp promoter increased during this differentiation period and this was accompanied by a 3-fold greater Tfam mRNA stabilization. Interestingly, truncations of the promoter at 1706 bp, 978 bp and 393 bp promoter all exhibited 2-3-fold higher transcriptional activity than the 2051 bp construct, indicating the presence of negative regulatory elements within the distal 350 bp of the promoter. Activation of AMP kinase augmented Tfam transcription within the proximal promoter, suggesting the presence of binding sites for transcription factors that are responsive to cellular energy state. During differentiation, the accumulating Tfam protein was progressively distributed to the mitochondrial matrix where it augmented the expression of mtDNA and COX (cytochrome c oxidase) subunit I, an mtDNA gene product. Our data suggest that, during muscle differentiation, Tfam protein levels are regulated by the availability of Tfam mRNA, which is controlled by both transcription and mRNA stability. Changes in energy state and Tfam localization also affect Tfam expression and action in differentiating myotubes. © 2015 Authors.

  19. Regulation of Nitrogen Metabolism by GATA Zinc Finger Transcription Factors in Yarrowia lipolytica

    Energy Technology Data Exchange (ETDEWEB)

    Pomraning, Kyle R.; Bredeweg, Erin L.; Baker, Scott E.

    2017-02-15

    ABSTRACT

    Fungi accumulate lipids in a manner dependent on the quantity and quality of the nitrogen source on which they are growing. In the oleaginous yeastYarrowia lipolytica, growth on a complex source of nitrogen enables rapid growth and limited accumulation of neutral lipids, while growth on a simple nitrogen source promotes lipid accumulation in large lipid droplets. Here we examined the roles of nitrogen catabolite repression and its regulation by GATA zinc finger transcription factors on lipid metabolism inY. lipolytica. Deletion of the GATA transcription factor genesgzf3andgzf2resulted in nitrogen source-specific growth defects and greater accumulation of lipids when the cells were growing on a simple nitrogen source. Deletion ofgzf1, which is most similar to activators of genes repressed by nitrogen catabolite repression in filamentous ascomycetes, did not affect growth on the nitrogen sources tested. We examined gene expression of wild-type and GATA transcription factor mutants on simple and complex nitrogen sources and found that expression of enzymes involved in malate metabolism, beta-oxidation, and ammonia utilization are strongly upregulated on a simple nitrogen source. Deletion ofgzf3results in overexpression of genes with GATAA sites in their promoters, suggesting that it acts as a repressor, whilegzf2is required for expression of ammonia utilization genes but does not grossly affect the transcription level of genes predicted to be controlled by nitrogen catabolite repression. Both GATA transcription factor mutants exhibit decreased expression of genes controlled by carbon catabolite repression via the repressormig1, including genes for beta-oxidation, highlighting the complex interplay between regulation of carbon, nitrogen, and lipid metabolism.

    IMPORTANCENitrogen source is

  20. Specificity versus redundancy in the RAP2.4 transcription factor family of Arabidopsis thaliana: transcriptional regulation of genes for chloroplast peroxidases.

    Science.gov (United States)

    Rudnik, Radoslaw; Bulcha, Jote Tafese; Reifschneider, Elena; Ellersiek, Ulrike; Baier, Margarete

    2017-08-23

    developmentally regulated transcription factor network, in which the various members affect the expression intensity of the others. Within the transcription factor family, RAP2.4a has a unique function as a general transcriptional activator of chloroplast peroxidase activity. The other RAP2.4 proteins mediate the fine-control and adjust the relative availability of 2CPA, sAPx and tAPx.

  1. New insights into transcription fidelity: thermal stability of non-canonical structures in template DNA regulates transcriptional arrest, pause, and slippage.

    Science.gov (United States)

    Tateishi-Karimata, Hisae; Isono, Noburu; Sugimoto, Naoki

    2014-01-01

    The thermal stability and topology of non-canonical structures of G-quadruplexes and hairpins in template DNA were investigated, and the effect of non-canonical structures on transcription fidelity was evaluated quantitatively. We designed ten template DNAs: A linear sequence that does not have significant higher-order structure, three sequences that form hairpin structures, and six sequences that form G-quadruplex structures with different stabilities. Templates with non-canonical structures induced the production of an arrested, a slipped, and a full-length transcript, whereas the linear sequence produced only a full-length transcript. The efficiency of production for run-off transcripts (full-length and slipped transcripts) from templates that formed the non-canonical structures was lower than that from the linear. G-quadruplex structures were more effective inhibitors of full-length product formation than were hairpin structure even when the stability of the G-quadruplex in an aqueous solution was the same as that of the hairpin. We considered that intra-polymerase conditions may differentially affect the stability of non-canonical structures. The values of transcription efficiencies of run-off or arrest transcripts were correlated with stabilities of non-canonical structures in the intra-polymerase condition mimicked by 20 wt% polyethylene glycol (PEG). Transcriptional arrest was induced when the stability of the G-quadruplex structure (-ΔG°37) in the presence of 20 wt% PEG was more than 8.2 kcal mol(-1). Thus, values of stability in the presence of 20 wt% PEG are an important indicator of transcription perturbation. Our results further our understanding of the impact of template structure on the transcription process and may guide logical design of transcription-regulating drugs.

  2. The 5th Symposium on Post-Transcriptional Regulation of Plant Gene Expression (PTRoPGE)

    Energy Technology Data Exchange (ETDEWEB)

    Karen S. Browning; Marie Petrocek; Bonnie Bartel

    2006-06-01

    The 5th Symposium on Post-Transcriptional Regulation of Plant Gene Expression (PTRoPGE) will be held June 8-12, 2005 at the University of Texas at Austin. Exciting new and ongoing discoveries show significant regulation of gene expression occurs after transcription. These post-transcriptional control events in plants range from subtle regulation of transcribed genes and phosphorylation, to the processes of gene regulation through small RNAs. This meeting will focus on the regulatory role of RNA, from transcription, through translation and finally degradation. The cross-disciplinary design of this meeting is necessary to encourage interactions between researchers that have a common interest in post-transcriptional gene expression in plants. By bringing together a diverse group of plant molecular biologist and biochemists at all careers stages from across the world, this meeting will bring about more rapid progress in understanding how plant genomes work and how genes are finely regulated by post-transcriptional processes to ultimately regulate cells.

  3. Modeling post-transcriptional regulation activity of small non-coding RNAs in Escherichia coli.

    Science.gov (United States)

    Wang, Rui-Sheng; Jin, Guangxu; Zhang, Xiang-Sun; Chen, Luonan

    2009-04-29

    Transcriptional regulation is a fundamental process in biological systems, where transcription factors (TFs) have been revealed to play crucial roles. In recent years, in addition to TFs, an increasing number of non-coding RNAs (ncRNAs) have been shown to mediate post-transcriptional processes and regulate many critical pathways in both prokaryotes and eukaryotes. On the other hand, with more and more high-throughput biological data becoming available, it is possible and imperative to quantitatively study gene regulation in a systematic and detailed manner. Most existing studies for inferring transcriptional regulatory interactions and the activity of TFs ignore the possible post-transcriptional effects of ncRNAs. In this work, we propose a novel framework to infer the activity of regulators including both TFs and ncRNAs by exploring the expression profiles of target genes and (post)transcriptional regulatory relationships. We model the integrated regulatory system by a set of biochemical reactions which lead to a log-bilinear problem. The inference process is achieved by an iterative algorithm, in which two linear programming models are efficiently solved. In contrast to available related studies, the effects of ncRNAs on transcription process are considered in this work, and thus more reasonable and accurate reconstruction can be expected. In addition, the approach is suitable for large-scale problems from the viewpoint of computation. Experiments on two synthesized data sets and a model system of Escherichia coli (E. coli) carbon source transition from glucose to acetate illustrate the effectiveness of our model and algorithm. Our results show that incorporating the post-transcriptional regulation of ncRNAs into system model can mine the hidden effects from the regulation activity of TFs in transcription processes and thus can uncover the biological mechanisms in gene regulation in a more accurate manner. The software for the algorithm in this paper is available

  4. RNA synthetic biology inspired from bacteria: construction of transcription attenuators under antisense regulation.

    Science.gov (United States)

    Dawid, Alexandre; Cayrol, Bastien; Isambert, Hervé

    2009-07-01

    Among all biopolymers, ribonucleic acids or RNA have unique functional versatility, which led to the early suggestion that RNA alone (or a closely related biopolymer) might have once sustained a primitive form of life based on a single type of biopolymer. This has been supported by the demonstration of processive RNA-based replication and the discovery of 'riboswitches' or RNA switches, which directly sense their metabolic environment. In this paper, we further explore the plausibility of this 'RNA world' scenario and show, through synthetic molecular design guided by advanced RNA simulations, that RNA can also perform elementary regulation tasks on its own. We demonstrate that RNA synthetic regulatory modules directly inspired from bacterial transcription attenuators can efficiently activate or repress the expression of other RNA by merely controlling their folding paths 'on the fly' during transcription through simple RNA-RNA antisense interaction. Factors, such as NTP concentration and RNA synthesis rate, affecting the efficiency of this kinetic regulation mechanism are also studied and discussed in the light of evolutionary constraints. Overall, this suggests that direct coupling among synthesis, folding and regulation of RNAs may have enabled the early emergence of autonomous RNA-based regulation networks in absence of both DNA and protein partners.

  5. RNA synthetic biology inspired from bacteria: construction of transcription attenuators under antisense regulation

    International Nuclear Information System (INIS)

    Dawid, Alexandre; Cayrol, Bastien; Isambert, Hervé

    2009-01-01

    Among all biopolymers, ribonucleic acids or RNA have unique functional versatility, which led to the early suggestion that RNA alone (or a closely related biopolymer) might have once sustained a primitive form of life based on a single type of biopolymer. This has been supported by the demonstration of processive RNA-based replication and the discovery of 'riboswitches' or RNA switches, which directly sense their metabolic environment. In this paper, we further explore the plausibility of this 'RNA world' scenario and show, through synthetic molecular design guided by advanced RNA simulations, that RNA can also perform elementary regulation tasks on its own. We demonstrate that RNA synthetic regulatory modules directly inspired from bacterial transcription attenuators can efficiently activate or repress the expression of other RNA by merely controlling their folding paths 'on the fly' during transcription through simple RNA–RNA antisense interaction. Factors, such as NTP concentration and RNA synthesis rate, affecting the efficiency of this kinetic regulation mechanism are also studied and discussed in the light of evolutionary constraints. Overall, this suggests that direct coupling among synthesis, folding and regulation of RNAs may have enabled the early emergence of autonomous RNA-based regulation networks in absence of both DNA and protein partners

  6. Transcriptional and posttranscriptional regulation of cyanobacterial photosynthesis.

    Science.gov (United States)

    Wilde, Annegret; Hihara, Yukako

    2016-03-01

    Cyanobacteria are well established model organisms for the study of oxygenic photosynthesis, nitrogen metabolism, toxin biosynthesis, and salt acclimation. However, in comparison to other model bacteria little is known about regulatory networks, which allow cyanobacteria to acclimate to changing environmental conditions. The current work has begun to illuminate how transcription factors modulate expression of different photosynthetic regulons. During the past few years, the research on other regulatory principles like RNA-based regulation showed the importance of non-protein regulators for bacterial lifestyle. Investigations on modulation of photosynthetic components should elucidate the contributions of all factors within the context of a larger regulatory network. Here, we focus on regulation of photosynthetic processes including transcriptional and posttranscriptional mechanisms, citing examples from a limited number of cyanobacterial species. Though, the general idea holds true for most species, important differences exist between various organisms, illustrating diversity of acclimation strategies in the very heterogeneous cyanobacterial clade. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof Conrad Mullineaux. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Post-transcriptional bursting in genes regulated by small RNA molecules

    Science.gov (United States)

    Rodrigo, Guillermo

    2018-03-01

    Gene expression programs in living cells are highly dynamic due to spatiotemporal molecular signaling and inherent biochemical stochasticity. Here we study a mechanism based on molecule-to-molecule variability at the RNA level for the generation of bursts of protein production, which can lead to heterogeneity in a cell population. We develop a mathematical framework to show numerically and analytically that genes regulated post transcriptionally by small RNA molecules can exhibit such bursts due to different states of translation activity (on or off), mostly revealed in a regime of few molecules. We exploit this framework to compare transcriptional and post-transcriptional bursting and also to illustrate how to tune the resulting protein distribution with additional post-transcriptional regulations. Moreover, because RNA-RNA interactions are predictable with an energy model, we define the kinetic constants of on-off switching as functions of the two characteristic free-energy differences of the system, activation and formation, with a nonequilibrium scheme. Overall, post-transcriptional bursting represents a distinctive principle linking gene regulation to gene expression noise, which highlights the importance of the RNA layer beyond the simple information transfer paradigm and significantly contributes to the understanding of the intracellular processes from a first-principles perspective.

  8. Regulation of cell proliferation by the E2F transcription factors

    DEFF Research Database (Denmark)

    Helin, K

    1998-01-01

    Experimental data generated in the past year have further emphasized the essential role for the E2F transcription factors in the regulation of cell proliferation. Genetic studies have shown that E2F activity is required for normal development in fruitflies, and the generation of E2F-1(-/-) mice h......Fs in the proteasomes. Novel target genes for the E2F transcription factors have been identified that link the E2Fs directly to the initiation of DNA replication.......Experimental data generated in the past year have further emphasized the essential role for the E2F transcription factors in the regulation of cell proliferation. Genetic studies have shown that E2F activity is required for normal development in fruitflies, and the generation of E2F-1(-/-) mice has...... demonstrated that individual members of the E2F transcription factor family are likely to have distinct roles in mammalian development and homeostasis. Additional mechanisms regulating the activity of the E2F transcription factors have been reported, including subcellular localization and proteolysis of the E2...

  9. Fungal Morphology, Iron Homeostasis, and Lipid Metabolism Regulated by a GATA Transcription Factor in Blastomyces dermatitidis.

    Directory of Open Access Journals (Sweden)

    Amber J Marty

    2015-06-01

    Full Text Available In response to temperature, Blastomyces dermatitidis converts between yeast and mold forms. Knowledge of the mechanism(s underlying this response to temperature remains limited. In B. dermatitidis, we identified a GATA transcription factor, SREB, important for the transition to mold. Null mutants (SREBΔ fail to fully complete the conversion to mold and cannot properly regulate siderophore biosynthesis. To capture the transcriptional response regulated by SREB early in the phase transition (0-48 hours, gene expression microarrays were used to compare SREB∆ to an isogenic wild type isolate. Analysis of the time course microarray data demonstrated SREB functioned as a transcriptional regulator at 37°C and 22°C. Bioinformatic and biochemical analyses indicated SREB was involved in diverse biological processes including iron homeostasis, biosynthesis of triacylglycerol and ergosterol, and lipid droplet formation. Integration of microarray data, bioinformatics, and chromatin immunoprecipitation identified a subset of genes directly bound and regulated by SREB in vivo in yeast (37°C and during the phase transition to mold (22°C. This included genes involved with siderophore biosynthesis and uptake, iron homeostasis, and genes unrelated to iron assimilation. Functional analysis suggested that lipid droplets were actively metabolized during the phase transition and lipid metabolism may contribute to filamentous growth at 22°C. Chromatin immunoprecipitation, RNA interference, and overexpression analyses suggested that SREB was in a negative regulatory circuit with the bZIP transcription factor encoded by HAPX. Both SREB and HAPX affected morphogenesis at 22°C; however, large changes in transcript abundance by gene deletion for SREB or strong overexpression for HAPX were required to alter the phase transition.

  10. Designed Transcriptional Regulation in Mammalian Cells Based on TALE- and CRISPR/dCas9.

    Science.gov (United States)

    Lebar, Tina; Jerala, Roman

    2018-01-01

    Transcriptional regulation lies at the center of many cellular processes and is the result of cellular response to different external and internal signals. Control of transcription of selected genes enables an unprecedented access to shape the cellular response. While orthogonal transcription factors from bacteria, yeast, plants, or other cells have been used to introduce new cellular logic into mammalian cells, the discovery of designable modular DNA binding domains, such as Transcription Activator-Like Effectors (TALEs) and the CRISPR system, enable targeting of almost any selected DNA sequence. Fusion or conditional association of DNA targeting domain with transcriptional effector domains enables controlled regulation of almost any endogenous or ectopic gene. Moreover, the designed regulators can be linked into genetic circuits to implement complex responses, such as different types of Boolean functions and switches. In this chapter, we describe the protocols for achieving efficient transcriptional regulation with TALE- and CRISPR-based designed transcription factors in mammalian cells.

  11. Capsicum annuum WRKY transcription factor d (CaWRKYd) regulates hypersensitive response and defense response upon Tobacco mosaic virus infection.

    Science.gov (United States)

    Huh, Sung Un; Choi, La Mee; Lee, Gil-Je; Kim, Young Jin; Paek, Kyung-Hee

    2012-12-01

    WRKY transcription factors regulate biotic, abiotic, and developmental processes. In terms of plant defense, WRKY factors have important roles as positive and negative regulators via transcriptional regulation or protein-protein interaction. Here, we report the characterization of the gene encoding Capsicum annuum WRKY transcription factor d (CaWRKYd) isolated from microarray analysis in the Tobacco mosaic virus (TMV)-P(0)-inoculated hot pepper plants. CaWRKYd belongs to the WRKY IIa group, a very small clade in the WRKY subfamily, and WRKY IIa group has positive/negative regulatory roles in Arabidopsis and rice. CaWRKYd transcripts were induced by various plant defense-related hormone treatments and TMV-P(0) inoculation. Silencing of CaWRKYd affected TMV-P(0)-mediated hypersensitive response (HR) cell death and accumulation of TMV-P(0) coat protein in local and systemic leaves. Furthermore, expression of some pathogenesis-related (PR) genes and HR-related genes was reduced in the CaWRKYd-silenced plants compared with TRV2 vector control plants upon TMV-P(0) inoculation. CaWRKYd was confirmed to bind to the W-box. Thus CaWRKYd is a newly identified Capsicum annuum WRKY transcription factor that appears to be involved in TMV-P(0)-mediated HR cell death by regulating downstream gene expression. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Identification of transcription factors linked to cell cycle regulation in Arabidopsis

    OpenAIRE

    Dehghan Nayeri, Fatemeh

    2014-01-01

    Cell cycle is an essential process in growth and development of living organisms consists of the replication and mitotic phases separated by 2 gap phases; G1 and G2. It is tightly controlled at the molecular level and especially at the level of transcription. Precise regulation of the cell cycle is of central significance for plant growth and development and transcription factors are global regulators of gene expression playing essential roles in cell cycle regulation. This study has uncovere...

  13. Tryptophan derivatives regulate the transcription of Oct4 in stem-like cancer cells.

    Science.gov (United States)

    Cheng, Jie; Li, Wenxin; Kang, Bo; Zhou, Yanwen; Song, Jiasheng; Dan, Songsong; Yang, Ying; Zhang, Xiaoqian; Li, Jingchao; Yin, Shengyong; Cao, Hongcui; Yao, Hangping; Zhu, Chenggang; Yi, Wen; Zhao, Qingwei; Xu, Xiaowei; Zheng, Min; Zheng, Shusen; Li, Lanjuan; Shen, Binghui; Wang, Ying-Jie

    2015-06-10

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to environmental toxicants, is increasingly recognized as a key player in embryogenesis and tumorigenesis. Here we show that a variety of tryptophan derivatives that act as endogenous AhR ligands can affect the transcription level of the master pluripotency factor Oct4. Among them, ITE enhances the binding of the AhR to the promoter of Oct4 and suppresses its transcription. Reduction of endogenous ITE levels in cancer cells by tryptophan deprivation or hypoxia leads to Oct4 elevation, which can be reverted by administration with synthetic ITE. Consequently, synthetic ITE induces the differentiation of stem-like cancer cells and reduces their tumorigenic potential in both subcutaneous and orthotopic xenograft tumour models. Thus, our results reveal a role of tryptophan derivatives and the AhR signalling pathway in regulating cancer cell stemness and open a new therapeutic avenue to target stem-like cancer cells.

  14. Repetitive Elements in Mycoplasma hyopneumoniae Transcriptional Regulation.

    Directory of Open Access Journals (Sweden)

    Amanda Malvessi Cattani

    Full Text Available Transcriptional regulation, a multiple-step process, is still poorly understood in the important pig pathogen Mycoplasma hyopneumoniae. Basic motifs like promoters and terminators have already been described, but no other cis-regulatory elements have been found. DNA repeat sequences have been shown to be an interesting potential source of cis-regulatory elements. In this work, a genome-wide search for tandem and palindromic repetitive elements was performed in the intergenic regions of all coding sequences from M. hyopneumoniae strain 7448. Computational analysis demonstrated the presence of 144 tandem repeats and 1,171 palindromic elements. The DNA repeat sequences were distributed within the 5' upstream regions of 86% of transcriptional units of M. hyopneumoniae strain 7448. Comparative analysis between distinct repetitive sequences found in related mycoplasma genomes demonstrated different percentages of conservation among pathogenic and nonpathogenic strains. qPCR assays revealed differential expression among genes showing variable numbers of repetitive elements. In addition, repeats found in 206 genes already described to be differentially regulated under different culture conditions of M. hyopneumoniae strain 232 showed almost 80% conservation in relation to M. hyopneumoniae strain 7448 repeats. Altogether, these findings suggest a potential regulatory role of tandem and palindromic DNA repeats in the M. hyopneumoniae transcriptional profile.

  15. Repetitive Elements in Mycoplasma hyopneumoniae Transcriptional Regulation.

    Science.gov (United States)

    Cattani, Amanda Malvessi; Siqueira, Franciele Maboni; Guedes, Rafael Lucas Muniz; Schrank, Irene Silveira

    2016-01-01

    Transcriptional regulation, a multiple-step process, is still poorly understood in the important pig pathogen Mycoplasma hyopneumoniae. Basic motifs like promoters and terminators have already been described, but no other cis-regulatory elements have been found. DNA repeat sequences have been shown to be an interesting potential source of cis-regulatory elements. In this work, a genome-wide search for tandem and palindromic repetitive elements was performed in the intergenic regions of all coding sequences from M. hyopneumoniae strain 7448. Computational analysis demonstrated the presence of 144 tandem repeats and 1,171 palindromic elements. The DNA repeat sequences were distributed within the 5' upstream regions of 86% of transcriptional units of M. hyopneumoniae strain 7448. Comparative analysis between distinct repetitive sequences found in related mycoplasma genomes demonstrated different percentages of conservation among pathogenic and nonpathogenic strains. qPCR assays revealed differential expression among genes showing variable numbers of repetitive elements. In addition, repeats found in 206 genes already described to be differentially regulated under different culture conditions of M. hyopneumoniae strain 232 showed almost 80% conservation in relation to M. hyopneumoniae strain 7448 repeats. Altogether, these findings suggest a potential regulatory role of tandem and palindromic DNA repeats in the M. hyopneumoniae transcriptional profile.

  16. Hepatitis C virus core protein regulates p300/CBP co-activation function. Possible role in the regulation of NF-AT1 transcriptional activity

    International Nuclear Information System (INIS)

    Gomez-Gonzalo, Marta; Benedicto, Ignacio; Carretero, Marta; Lara-Pezzi, Enrique; Maldonado-Rodriguez, Alejandra; Moreno-Otero, Ricardo; Lai, Michael M.C.; Lopez-Cabrera, Manuel

    2004-01-01

    Hepatitis C virus (HCV) core is a viral structural protein; it also participates in some cellular processes, including transcriptional regulation. However, the mechanisms of core-mediated transcriptional regulation remain poorly understood. Oncogenic virus proteins often target p300/CBP, a known co-activator of a wide variety of transcription factors, to regulate the expression of cellular and viral genes. Here we demonstrate, for the first time, that HCV core protein interacts with p300/CBP and enhances both its acetyl-transferase and transcriptional activities. In addition, we demonstrate that nuclear core protein activates the NH 2 -terminal transcription activation domain (TAD) of NF-AT1 in a p300/CBP-dependent manner. We propose a model in which core protein regulates the co-activation function of p300/CBP and activates NF-AT1, and probably other p300/CBP-regulated transcription factors, by a novel mechanism involving the regulation of the acetylation state of histones and/or components of the transcriptional machinery

  17. Cooperative activation of transcription by autoimmune regulator AIRE and CBP

    International Nuclear Information System (INIS)

    Pitkaenen, J.; Rebane, A.; Rowell, J.; Murumaegi, A.; Stroebel, P.; Moell, K.; Saare, M.; Heikkilae, J.; Doucas, V.; Marx, A.; Peterson, P.

    2005-01-01

    Autoimmune regulator (AIRE) is a transcriptional regulator that is believed to control the expression of tissue-specific genes in the thymus. Mutated AIRE is responsible for onset of the hereditary autoimmune disease APECED. AIRE is able to form nuclear bodies (NBs) and interacts with the ubiquitous transcriptional coactivator CBP. In this paper, we show that CBP and AIRE synergistically activate transcription on different promoter reporters whereas AIRE gene mutation R257X, found in APECED patients, interferes with this coactivation effect. Furthermore, the overexpression of AIRE and CBP collaboratively enhance endogenous IFNβ mRNA expression. The immunohistochemical studies suggest that CBP, depending on the balance of nuclear proteins, is a component of AIRE NBs. We also show that AIRE NBs are devoid of active chromatin and, therefore, not sites of transcription. In addition, we demonstrate by 3D analyses that AIRE and CBP, when colocalizing, are located spatially differently within AIRE NBs. In conclusion, our data suggest that AIRE activates transcription of the target genes, i.e., autoantigens in collaboration with CBP and that this activation occurs outside of AIRE NBs

  18. Regulation of human protein S gene (PROS1) transcription

    NARCIS (Netherlands)

    Wolf, Cornelia de

    2006-01-01

    This thesis describes the investigation of the transcriptional regulation of the gene for anticoagulant plasma Protein S, PROS1. Protein S is a cofactor for Protein C in the Protein C anticoagulant pathway. The coagulation cascade is negatively regulated by this pathway through inactivation of

  19. O-GlcNAc transferase regulates transcriptional activity of human Oct4.

    Science.gov (United States)

    Constable, Sandii; Lim, Jae-Min; Vaidyanathan, Krithika; Wells, Lance

    2017-10-01

    O-linked β-N-acetylglucosamine (O-GlcNAc) is a single sugar modification found on many different classes of nuclear and cytoplasmic proteins. Addition of this modification, by the enzyme O-linked N-acetylglucosamine transferase (OGT), is dynamic and inducible. One major class of proteins modified by O-GlcNAc is transcription factors. O-GlcNAc regulates transcription factor properties through a variety of different mechanisms including localization, stability and transcriptional activation. Maintenance of embryonic stem (ES) cell pluripotency requires tight regulation of several key transcription factors, many of which are modified by O-GlcNAc. Octamer-binding protein 4 (Oct4) is one of the key transcription factors required for pluripotency of ES cells and more recently, the generation of induced pluripotent stem (iPS) cells. The action of Oct4 is modulated by the addition of several post-translational modifications, including O-GlcNAc. Previous studies in mice found a single site of O-GlcNAc addition responsible for transcriptional regulation. This study was designed to determine if this mechanism is conserved in humans. We mapped 10 novel sites of O-GlcNAc attachment on human Oct4, and confirmed a role for OGT in transcriptional activation of Oct4 at a site distinct from that found in mouse that allows distinction between different Oct4 target promoters. Additionally, we uncovered a potential new role for OGT that does not include its catalytic function. These results confirm that human Oct4 activity is being regulated by OGT by a mechanism that is distinct from mouse Oct4. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Dynamic Transcriptional Regulation of Fis in Salmonella During the Exponential Phase.

    Science.gov (United States)

    Wang, Hui; Wang, Lei; Li, Ping; Hu, Yilang; Zhang, Wei; Tang, Bo

    2015-12-01

    Fis is one of the most important global regulators and has attracted extensive research attention. Many studies have focused on comparing the Fis global regulatory networks for exploring Fis function during different growth stages, such as the exponential and stationary stages. Although the Fis protein in bacteria is mainly expressed in the exponential phase, the dynamic transcriptional regulation of Fis during the exponential phase remains poorly understood. To address this question, we used RNA-seq technology to identify the Fis-regulated genes in the S. enterica serovar Typhimurium during the early exponential phase, and qRT-PCR was performed to validate the transcriptional data. A total of 1495 Fis-regulated genes were successfully identified, including 987 Fis-repressed genes and 508 Fis-activated genes. Comparing the results of this study with those of our previous study, we found that the transcriptional regulation of Fis was diverse during the early- and mid-exponential phases. The results also showed that the strong positive regulation of Fis on Salmonella pathogenicity island genes in the mid-exponential phase transitioned into insignificant effect in the early exponential phase. To validate these results, we performed a cell infection assay and found that Δfis only exhibited a 1.49-fold decreased capacity compared with the LT2 wild-type strain, indicating a large difference from the 6.31-fold decrease observed in the mid-exponential phase. Our results provide strong evidence for a need to thoroughly understand the dynamic transcriptional regulation of Fis in Salmonella during the exponential phase.

  1. Regulation of the voltage-gated Ca2+ channel CaVα2δ-1 subunit expression by the transcription factor Egr-1.

    Science.gov (United States)

    González-Ramírez, Ricardo; Martínez-Hernández, Elizabeth; Sandoval, Alejandro; Gómez-Mora, Kimberly; Felix, Ricardo

    2018-04-23

    It is well known that the Ca V α 2 δ auxiliary subunit regulates the density of high voltage-activated Ca 2+ channels in the plasma membrane and that alterations in their functional expression might have implications in the pathophysiology of diverse human diseases such as neuropathic pain. However, little is known concerning the transcriptional regulation of this protein. We previously characterized the promoter of Ca V α 2 δ, and here we report its regulation by the transcription factor Egr-1. Using the neuroblastoma N1E-115 cells, we found that Egr-1 interacts specifically with its binding site in the promoter, affecting the transcriptional regulation of Ca V α 2 δ. Overexpression and knockdown analysis of Egr-1 showed significant changes in the transcriptional activity of the Ca V α 2 δ promoter. Egr-1 also regulated the expression of Ca V α 2 δ at the level of protein. Also, functional studies showed that Egr-1 knockdown significantly decreases Ca 2+ currents in dorsal root ganglion (DRG) neurons, while overexpression of the transcription factor increased Ca 2+ currents in the F11 cell line, a hybrid of DRG and N18TG2 neuroblastoma cells. Studying the effects of Egr-1 on the transcriptional expression of Ca V α 2 δ could help to understand the regulatory mechanisms of this protein in both health and disease. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Transcriptional and post-transcriptional regulation of nucleotide excision repair genes in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Lefkofsky, Hailey B. [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Veloso, Artur [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Bioinformatics Program, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI (United States); Ljungman, Mats, E-mail: ljungman@umich.edu [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI (United States)

    2015-06-15

    Nucleotide excision repair (NER) removes DNA helix-distorting lesions induced by UV light and various chemotherapeutic agents such as cisplatin. These lesions efficiently block the elongation of transcription and need to be rapidly removed by transcription-coupled NER (TC-NER) to avoid the induction of apoptosis. Twenty-nine genes have been classified to code for proteins participating in nucleotide excision repair (NER) in human cells. Here we explored the transcriptional and post-transcriptional regulation of these NER genes across 13 human cell lines using Bru-seq and BruChase-seq, respectively. Many NER genes are relatively large in size and therefore will be easily inactivated by UV-induced transcription-blocking lesions. Furthermore, many of these genes produce transcripts that are rather unstable. Thus, these genes are expected to rapidly lose expression leading to a diminished function of NER. One such gene is ERCC6 that codes for the CSB protein critical for TC-NER. Due to its large gene size and high RNA turnover rate, the ERCC6 gene may act as dosimeter of DNA damage so that at high levels of damage, ERCC6 RNA levels would be diminished leading to the loss of CSB expression, inhibition of TC-NER and the promotion of cell death.

  3. NUCKS Is a Positive Transcriptional Regulator of Insulin Signaling

    Directory of Open Access Journals (Sweden)

    Beiying Qiu

    2014-06-01

    Full Text Available Although much is known about the molecular players in insulin signaling, there is scant information about transcriptional regulation of its key components. We now find that NUCKS is a transcriptional regulator of the insulin signaling components, including the insulin receptor (IR. Knockdown of NUCKS leads to impaired insulin signaling in endocrine cells. NUCKS knockout mice exhibit decreased insulin signaling and increased body weight/fat mass along with impaired glucose tolerance and reduced insulin sensitivity, all of which are further exacerbated by a high-fat diet (HFD. Genome-wide ChIP-seq identifies metabolism and insulin signaling as NUCKS targets. Importantly, NUCKS is downregulated in individuals with a high body mass index and in HFD-fed mice, and conversely, its levels increase upon starvation. Altogether, NUCKS is a physiological regulator of energy homeostasis and glucose metabolism that works by regulating chromatin accessibility and RNA polymerase II recruitment to the promoters of IR and other insulin pathway modulators.

  4. Post-transcriptional trafficking and regulation of neuronal gene expression.

    Science.gov (United States)

    Goldie, Belinda J; Cairns, Murray J

    2012-02-01

    Intracellular messenger RNA (mRNA) traffic and translation must be highly regulated, both temporally and spatially, within eukaryotic cells to support the complex functional partitioning. This capacity is essential in neurons because it provides a mechanism for rapid input-restricted activity-dependent protein synthesis in individual dendritic spines. While this feature is thought to be important for synaptic plasticity, the structures and mechanisms that support this capability are largely unknown. Certainly specialized RNA binding proteins and binding elements in the 3' untranslated region (UTR) of translationally regulated mRNA are important, but the subtlety and complexity of this system suggests that an intermediate "specificity" component is also involved. Small non-coding microRNA (miRNA) are essential for CNS development and may fulfill this role by acting as the guide strand for mediating complex patterns of post-transcriptional regulation. In this review we examine post-synaptic gene regulation, mRNA trafficking and the emerging role of post-transcriptional gene silencing in synaptic plasticity.

  5. MDRL lncRNA regulates the processing of miR-484 primary transcript by targeting miR-361.

    Directory of Open Access Journals (Sweden)

    Kun Wang

    2014-07-01

    Full Text Available Long noncoding RNAs (lncRNAs are emerging as new players in gene regulation, but whether lncRNAs operate in the processing of miRNA primary transcript is unclear. Also, whether lncRNAs are involved in the regulation of the mitochondrial network remains to be elucidated. Here, we report that a long noncoding RNA, named mitochondrial dynamic related lncRNA (MDRL, affects the processing of miR-484 primary transcript in nucleus and regulates the mitochondrial network by targeting miR-361 and miR-484. The results showed that miR-361 that predominantly located in nucleus can directly bind to primary transcript of miR-484 (pri-miR-484 and prevent its processing by Drosha into pre-miR-484. miR-361 is able to regulate mitochondrial fission and apoptosis by regulating miR-484 levels. In exploring the underlying molecular mechanism by which miR-361 is regulated, we identified MDRL and demonstrated that it could directly bind to miR-361 and downregulate its expression levels, which promotes the processing of pri-miR-484. MDRL inhibits mitochondrial fission and apoptosis by downregulating miR-361, which in turn relieves inhibition of miR-484 processing by miR-361. Our present study reveals a novel regulating model of mitochondrial fission program which is composed of MDRL, miR-361 and miR-484. Our work not only expands the function of the lncRNA pathway in gene regulation but also establishes a new mechanism for controlling miRNA expression.

  6. Inter- and intra-combinatorial regulation by transcription factors and microRNAs

    Directory of Open Access Journals (Sweden)

    Chang Joseph T

    2007-10-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are a novel class of non-coding small RNAs. In mammalian cells, miRNAs repress the translation of messenger RNAs (mRNAs or degrade mRNAs. miRNAs play important roles in development and differentiation, and they are also implicated in aging, and oncogenesis. Predictions of targets of miRNAs suggest that they may regulate more than one-third of all genes. The overall functions of mammalian miRNAs remain unclear. Combinatorial regulation by transcription factors alone or miRNAs alone offers a wide range of regulatory programs. However, joining transcriptional and post-transcriptional regulatory mechanisms enables higher complexity regulatory programs that in turn could give cells evolutionary advantages. Investigating coordinated regulation of genes by miRNAs and transcription factors (TFs from a statistical standpoint is a first step that may elucidate some of their roles in various biological processes. Results Here, we studied the nature and scope of coordination among regulators from the transcriptional and miRNA regulatory layers in the human genome. Our findings are based on genome wide statistical assessment of regulatory associations ("interactions" among the sets of predicted targets of miRNAs and sets of putative targets of transcription factors. We found that combinatorial regulation by transcription factor pairs and miRNA pairs is much more abundant than the combinatorial regulation by TF-miRNA pairs. In addition, many of the strongly interacting TF-miRNA pairs involve a subset of master TF regulators that co-regulate genes in coordination with almost any miRNA. Application of standard measures for evaluating the degree of interaction between pairs of regulators show that strongly interacting TF-miRNA, TF-TF or miRNA-miRNA pairs tend to include TFs or miRNAs that regulate very large numbers of genes. To correct for this potential bias we introduced an additional Bayesian measure that incorporates

  7. Transcriptional Regulation of Frizzled-1 in Human Osteoblasts by Sp1.

    Directory of Open Access Journals (Sweden)

    Shibing Yu

    Full Text Available The wingless pathway has a powerful influence on bone metabolism and is a therapeutic target in skeletal disorders. Wingless signaling is mediated in part through the Frizzled (FZD receptor family. FZD transcriptional regulation is poorly understood. Herein we tested the hypothesis that Sp1 plays an important role in the transcriptional regulation of FZD1 expression in osteoblasts and osteoblast mineralization. To test this hypothesis, we conducted FZD1 promoter assays in Saos2 cells with and without Sp1 overexpression. We found that Sp1 significantly up-regulates FZD1 promoter activity in Saos2 cells. Chromatin immunoprecipitation (ChIP and electrophoretic mobility shift (EMSA assays identified a novel and functional Sp1 binding site at -44 to -40 from the translation start site in the FZD1 promoter. The Sp1-dependent activation of the FZD1 promoter was abolished by mithramycin A (MMA, an antibiotic affecting both Sp1 binding and Sp1 protein levels in Saos2 cells. Similarly, down-regulation of Sp1 in hFOB cells resulted in less FZD1 expression and lower alkaline phosphatase activity. Moreover, over-expression of Sp1 increased FZD1 expression and Saos2 cell mineralization while MMA decreased Sp1 and FZD1 expression and Saos2 cell mineralization. Knockdown of FZD1 prior to Sp1 overexpression partially abolished Sp1 stimulation of osteoblast differentiation markers. Taken together, our results suggest that Sp1 plays a role in human osteoblast differentiation and mineralization, which is at least partially mediated by Sp1-dependent transactivation of FZD1.

  8. Tissue-specific 5' heterogeneity of PPARα transcripts and their differential regulation by leptin.

    Directory of Open Access Journals (Sweden)

    Emma S Garratt

    Full Text Available The genes encoding nuclear receptors comprise multiple 5'untranslated exons, which give rise to several transcripts encoding the same protein, allowing tissue-specific regulation of expression. Both human and mouse peroxisome proliferator activated receptor (PPAR α genes have multiple promoters, although their function is unknown. Here we have characterised the rat PPARα promoter region and have identified three alternative PPARα transcripts, which have different transcription start sites owing to the utilisation of distinct first exons. Moreover these alternative PPARα transcripts were differentially expressed between adipose tissue and liver. We show that while the major adipose (P1 and liver (P2 transcripts were both induced by dexamethasone, they were differentially regulated by the PPARα agonist, clofibric acid, and leptin. Leptin had no effect on the adipose-specific P1 transcript, but induced liver-specific P2 promoter activity via a STAT3/Sp1 mechanism. Moreover in Wistar rats, leptin treatment between postnatal day 3-13 led to an increase in P2 but not P1 transcription in adipose tissue which was sustained into adulthood. This suggests that the expression of the alternative PPARα transcripts are in part programmed by early life exposure to leptin leading to persistent change in adipose tissue fatty acid metabolism through specific activation of a quiescent PPARα promoter. Such complexity in the regulation of PPARα may allow the expression of PPARα to be finely regulated in response to environmental factors.

  9. Transcription profiling suggests that mitochondrial topoisomerase IB acts as a topological barrier and regulator of mitochondrial DNA transcription.

    Science.gov (United States)

    Dalla Rosa, Ilaria; Zhang, Hongliang; Khiati, Salim; Wu, Xiaolin; Pommier, Yves

    2017-12-08

    Mitochondrial DNA (mtDNA) is essential for cell viability because it encodes subunits of the respiratory chain complexes. Mitochondrial topoisomerase IB (TOP1MT) facilitates mtDNA replication by removing DNA topological tensions produced during mtDNA transcription, but it appears to be dispensable. To test whether cells lacking TOP1MT have aberrant mtDNA transcription, we performed mitochondrial transcriptome profiling. To that end, we designed and implemented a customized tiling array, which enabled genome-wide, strand-specific, and simultaneous detection of all mitochondrial transcripts. Our technique revealed that Top1mt KO mouse cells process the mitochondrial transcripts normally but that protein-coding mitochondrial transcripts are elevated. Moreover, we found discrete long noncoding RNAs produced by H-strand transcription and encompassing the noncoding regulatory region of mtDNA in human and murine cells and tissues. Of note, these noncoding RNAs were strongly up-regulated in the absence of TOP1MT. In contrast, 7S DNA, produced by mtDNA replication, was reduced in the Top1mt KO cells. We propose that the long noncoding RNA species in the D-loop region are generated by the extension of H-strand transcripts beyond their canonical stop site and that TOP1MT acts as a topological barrier and regulator for mtDNA transcription and D-loop formation.

  10. Regulating expressin of cell and tissue-specific genes by modifying transcription

    Energy Technology Data Exchange (ETDEWEB)

    Beachy, Roger N. [Donald Danforth Plant Science Center, St. Louis, MO (United States); Dai, Shunhong [Donald Danforth Plant Science Center, St. Louis, MO (United States)

    2009-12-15

    Transcriptional regulation is the primary step to control gene expression, therefore function. Such regulation is achieved primarily via a combination of the activities of the promoter cis regulatory DNA elements and trans regulatory proteins that function through binding to these DNA elements. Our research supported by this program has led to the identification of rice bZIP transcription factors RF2a, RF2b and RLP1 that play key roles in regulating the activity of a vascular tissue specific promoter isolated from Rice Tungro Bacilliform Virus (RTBV) through their interactions with the Box II essential cis element located in the promoter. RF2a, RF2b and RLP1 possess multiple regulatory domains. Functional characterization reveals that those domains can activate or repress the activity of the RTBV promoter. Studies of transcriptional regulation of the RTBV promoter by this group of bZIP proteins not only provide insights about gene expression in the vascular tissue, but also insights about general mechanisms of transcription activation and repression. The knowledge gained from this research will also enable us to develop a well-described set of tools that can be used to control expression of multiple genes in transgenic plants and to improve biofuel feedstock.

  11. Novel transcriptional networks regulated by CLOCK in human neurons.

    Science.gov (United States)

    Fontenot, Miles R; Berto, Stefano; Liu, Yuxiang; Werthmann, Gordon; Douglas, Connor; Usui, Noriyoshi; Gleason, Kelly; Tamminga, Carol A; Takahashi, Joseph S; Konopka, Genevieve

    2017-11-01

    The molecular mechanisms underlying human brain evolution are not fully understood; however, previous work suggested that expression of the transcription factor CLOCK in the human cortex might be relevant to human cognition and disease. In this study, we investigated this novel transcriptional role for CLOCK in human neurons by performing chromatin immunoprecipitation sequencing for endogenous CLOCK in adult neocortices and RNA sequencing following CLOCK knockdown in differentiated human neurons in vitro. These data suggested that CLOCK regulates the expression of genes involved in neuronal migration, and a functional assay showed that CLOCK knockdown increased neuronal migratory distance. Furthermore, dysregulation of CLOCK disrupts coexpressed networks of genes implicated in neuropsychiatric disorders, and the expression of these networks is driven by hub genes with human-specific patterns of expression. These data support a role for CLOCK-regulated transcriptional cascades involved in human brain evolution and function. © 2017 Fontenot et al.; Published by Cold Spring Harbor Laboratory Press.

  12. ZBED6, a novel transcription factor derived from a domesticated DNA transposon regulates IGF2 expression and muscle growth

    DEFF Research Database (Denmark)

    Markljung, Ellen; Jiang, Lin; Jaffe, Jacob D

    2009-01-01

    and find that the protein, named ZBED6, is previously unknown, specific for placental mammals, and derived from an exapted DNA transposon. Silencing of Zbed6 in mouse C2C12 myoblasts affected Igf2 expression, cell proliferation, wound healing, and myotube formation. Chromatin immunoprecipitation (Ch......, including development and transcriptional regulation. The phenotypic effects in mutant pigs and ZBED6-silenced C2C12 myoblasts, the extreme sequence conservation, its nucleolar localization, the broad tissue distribution, and the many target genes with essential biological functions suggest that ZBED6...... is an important transcription factor in placental mammals, affecting development, cell proliferation, and growth....

  13. Transcriptional regulation of genes related to progesterone production.

    Science.gov (United States)

    Mizutani, Tetsuya; Ishikane, Shin; Kawabe, Shinya; Umezawa, Akihiro; Miyamoto, Kaoru

    2015-01-01

    Steroid hormones are synthesized from cholesterol in various tissues, mainly in the adrenal glands and gonads. Because these lipid-soluble steroid hormones immediately diffuse through the cells in which they are produced, their secretion directly reflects the activity of the genes related to their production. Progesterone is important not only for luteinization and maintenance of pregnancy, but also as a substrate for most other steroids. Steroidogenic acute regulatory protein (STAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), and 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4) isomerase (3β-HSD) are well-known proteins essential for progesterone production. In addition to them, glutathione S-transferase A1-1 and A3-3 are shown to exert Δ(5)-Δ(4) isomerization activity to produce progesterone in a cooperative fashion with 3β-HSD. 5-Aminolevulinic acid synthase 1, ferredoxin 1, and ferredoxin reductase also play a role in steroidogenesis as accessory factors. Members of the nuclear receptor 5A (NR5A) family (steroidogenic factor 1 and liver receptor homolog 1) play a crucial role in the transcriptional regulation of these genes. The NR5A family activates these genes by binding to NR5A responsive elements present within their promoter regions, as well as to the elements far from their promoters. In addition, various NR5A-interacting proteins including peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear receptor subfamily 0, group B, member 1 (DAX-1), and CCAAT/enhancer-binding proteins (C/EBP) are involved in the transcription of NR5A target genes and regulate the transcription either positively or negatively under both basal and tropic hormone-stimulated conditions. In this review, we describe the transcriptional regulation of genes related to progesterone production.

  14. Characterization of DNA binding, transcriptional activation, and regulated nuclear association of recombinant human NFATp

    Directory of Open Access Journals (Sweden)

    Seto Anita G

    2000-11-01

    Full Text Available Abstract Background NFATp is one member of a family of transcriptional activators whose nuclear accumulation and hence transcriptional activity is regulated in mammalian cells. Human NFATp exists as a phosphoprotein in the cytoplasm of naive T cells. Upon antigen stimulation, NFATp is dephosphorylated, accumulates in nuclei, and functions to regulate transcription of genes including those encoding cytokines. While the properties of the DNA binding domain of NFATp have been investigated in detail, biochemical studies of the transcriptional activation and regulated association with nuclei have remained unexplored because of a lack of full length, purified recombinant NFATp. Results We developed methods for expressing and purifying full length recombinant human NFATp that has all of the properties known to be associated with native NFATp. The recombinant NFATp binds DNA on its own and cooperatively with AP-1 proteins, activates transcription in vitro, is phosphorylated, can be dephosphorylated by calcineurin, and exhibits regulated association with nuclei in vitro. Importantly, activation by recombinant NFATp in a reconstituted transcription system required regions of the protein outside of the central DNA binding domain. Conclusions We conclude that NFATp is a bona fide transcriptional activator. Moreover, the reagents and methods that we developed will facilitate future studies on the mechanisms of transcriptional activation and nuclear accumulation by NFATp, a member of an important family of transcriptional regulatory proteins.

  15. Hydrogen peroxide sensing, signaling and regulation of transcription factors

    Directory of Open Access Journals (Sweden)

    H. Susana Marinho

    2014-01-01

    Full Text Available The regulatory mechanisms by which hydrogen peroxide (H2O2 modulates the activity of transcription factors in bacteria (OxyR and PerR, lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4 and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1 are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1 synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii cytoplasm–nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and (iv DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M−1 s−1 and ≥1.3 × 103 M−1 s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for

  16. H3K36 Methylation Regulates Nutrient Stress Response in Saccharomyces cerevisiae by Enforcing Transcriptional Fidelity

    Directory of Open Access Journals (Sweden)

    Stephen L. McDaniel

    2017-06-01

    Full Text Available Set2-mediated histone methylation at H3K36 regulates diverse activities, including DNA repair, mRNA splicing, and suppression of inappropriate (cryptic transcription. Although failure of Set2 to suppress cryptic transcription has been linked to decreased lifespan, the extent to which cryptic transcription influences other cellular functions is poorly understood. Here, we uncover a role for H3K36 methylation in the regulation of the nutrient stress response pathway. We found that the transcriptional response to nutrient stress was dysregulated in SET2-deleted (set2Δ cells and was correlated with genome-wide bi-directional cryptic transcription that originated from within gene bodies. Antisense transcripts arising from these cryptic events extended into the promoters of the genes from which they arose and were associated with decreased sense transcription under nutrient stress conditions. These results suggest that Set2-enforced transcriptional fidelity is critical to the proper regulation of inducible and highly regulated transcription programs.

  17. How salicylic acid takes transcriptional control over jasmonic acid signaling

    Directory of Open Access Journals (Sweden)

    Lotte eCaarls

    2015-03-01

    Full Text Available Transcriptional regulation is a central process in plant immunity. The induction or repression of defense genes is orchestrated by signaling networks that are directed by plant hormones of which salicylic acid (SA and jasmonic acid (JA are the major players. Extensive cross-communication between the hormone signaling pathways allows for fine tuning of transcriptional programs, determining resistance to invaders and trade-offs with plant development. Here, we give an overview of how SA can control transcriptional reprogramming of JA-induced genes in Arabidopsis thaliana. SA can influence activity and/or localization of transcriptional regulators by post-translational modifications of transcription factors and co-regulators. SA-induced redox changes, mediated by thioredoxins and glutaredoxins, modify transcriptional regulators that are involved in suppression of JA-dependent genes, such as NPR1 and TGA transcription factors, which affects their localization or DNA binding activity. Furthermore, SA can mediate sequestering of JA-responsive transcription factors away from their target genes by stalling them in the cytosol or in complexes with repressor proteins in the nucleus. SA also affects JA-induced transcription by inducing degradation of transcription factors with an activating role in JA signaling, as was shown for the ERF transcription factor ORA59. Additionally, SA can induce negative regulators, among which WRKY transcription factors, that can directly or indirectly inhibit JA-responsive gene expression. Finally, at the DNA level, modification of histones by SA-dependent factors can result in repression of JA-responsive genes. These diverse and complex regulatory mechanisms affect important signaling hubs in the integration of hormone signaling networks. Some pathogens have evolved effectors that highjack hormone crosstalk mechanisms for their own good, which are described in this review as well.

  18. Basal transcription of APOBEC3G is regulated by USF1 gene in hepatocyte

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yanli [Department of Infectious Diseases, Zhengzhou University People' s Hospital (Henan Provincial People' s Hospital), Zhengzhou, 450003 (China); Li, Hui [The Central Hospital of Wuhan, Tongji Medical College Huazhong University of Science Technology, Wuhan, 430000 (China); Zhang, Xiaoju [Department of Respiratory Medicine, Zhengzhou University People' s Hospital (Henan Provincial People' s Hospital), Zhengzhou, 450003 (China); Shang, Jia [Department of Infectious Diseases, Zhengzhou University People' s Hospital (Henan Provincial People' s Hospital), Zhengzhou, 450003 (China); Kang, Yi, E-mail: kykangyi@163.com [Department of Infectious Diseases, Zhengzhou University People' s Hospital (Henan Provincial People' s Hospital), Zhengzhou, 450003 (China)

    2016-01-29

    Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G, A3G) exert antiviral defense as an important factor of innate immunity. A variety of cytokines such as IFN-γ,IL2,IL15,IL7 could induce the transcription of A3G. However, the regulation of other nuclear factor on the transcription of A3G have not been reported at the present. To gain new insights into the transcriptional regulation of this restriction factor, we cloned and characterized the promoter region of A3G and investigate the modulation of USF1 gene on the transcription of A3G. We identified a 232 bp region that was sufficient to regulate the activity of full promoter. Transcriptional start sites (TSS) were identified by the luciferase reporter assays of plasmids containing full or shorter fragments of the A3G promoter. The results demonstrated that the core promoter of A3G is located within the region -159/-84 relative to the TSS. Transcriptional activity of A3G core promoter regulated by USF1 was dependent on an E-box (located at position -91/-86 relative to the major TSS) and was abolished after mutation of this DNA element. USF1 gene can take part in basal transcription regulation of the human A3G gene in hepatocyte, and the identified E-box represented a binding site for the USF1. - Highlights: • The core promoter of A3G is located within the region −159/−84 relative to the TSS. • Transcriptional activity of A3G core promoter regulated by USF1 was dependent on an E-box (located at position −91/−86 relative to the major TSS). • USF1 gene can take part in basal transcription regulation of the human A3G gene in hepatocyte.

  19. Basal transcription of APOBEC3G is regulated by USF1 gene in hepatocyte

    International Nuclear Information System (INIS)

    Zeng, Yanli; Li, Hui; Zhang, Xiaoju; Shang, Jia; Kang, Yi

    2016-01-01

    Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G, A3G) exert antiviral defense as an important factor of innate immunity. A variety of cytokines such as IFN-γ,IL2,IL15,IL7 could induce the transcription of A3G. However, the regulation of other nuclear factor on the transcription of A3G have not been reported at the present. To gain new insights into the transcriptional regulation of this restriction factor, we cloned and characterized the promoter region of A3G and investigate the modulation of USF1 gene on the transcription of A3G. We identified a 232 bp region that was sufficient to regulate the activity of full promoter. Transcriptional start sites (TSS) were identified by the luciferase reporter assays of plasmids containing full or shorter fragments of the A3G promoter. The results demonstrated that the core promoter of A3G is located within the region -159/-84 relative to the TSS. Transcriptional activity of A3G core promoter regulated by USF1 was dependent on an E-box (located at position -91/-86 relative to the major TSS) and was abolished after mutation of this DNA element. USF1 gene can take part in basal transcription regulation of the human A3G gene in hepatocyte, and the identified E-box represented a binding site for the USF1. - Highlights: • The core promoter of A3G is located within the region −159/−84 relative to the TSS. • Transcriptional activity of A3G core promoter regulated by USF1 was dependent on an E-box (located at position −91/−86 relative to the major TSS). • USF1 gene can take part in basal transcription regulation of the human A3G gene in hepatocyte.

  20. Emerging roles and regulation of MiT/TFE transcriptional factors.

    Science.gov (United States)

    Yang, Min; Liu, En; Tang, Li; Lei, Yuanyuan; Sun, Xuemei; Hu, Jiaxi; Dong, Hui; Yang, Shi-Ming; Gao, Mingfa; Tang, Bo

    2018-06-15

    The MiT/TFE transcription factors play a pivotal role in the regulation of autophagy and lysosomal biogenesis. The subcellular localization and activity of MiT/TFE proteins are primarily regulated through phosphorylation. And the phosphorylated protein is retained in the cytoplasm and subsequently translocates to the nucleus upon dephosphorylation, where it stimulates the expression of hundreds of genes, leading to lysosomal biogenesis and autophagy induction. The transcription factor-mediated lysosome-to-nucleus signaling can be directly controlled by several signaling molecules involved in the mTORC1, PKC, and AKT pathways. MiT/TFE family members have attracted much attention owing to their intracellular clearance of pathogenic factors in numerous diseases. Recently, multiple studies have also revealed the MiT/TFE proteins as master regulators of cellular metabolic reprogramming, converging on autophagic and lysosomal function and playing a critical role in cancer, suggesting that novel therapeutic strategies could be based on the modulation of MiT/TFE family member activity. Here, we present an overview of the latest research on MiT/TFE transcriptional factors and their potential mechanisms in cancer.

  1. Structure of the transcriptional regulator LmrR and its mechanism of multidrug recognition

    NARCIS (Netherlands)

    Madoori, Pramod Kumar; Agustiandari, Herfita; Driessen, Arnold J. M.; Thunnissen, Andy-Mark W. H.

    2009-01-01

    LmrR is a PadR-related transcriptional repressor that regulates the production of LmrCD, a major multidrug ABC transporter in Lactococcus lactis. Transcriptional regulation is presumed to follow a drug-sensitive induction mechanism involving the direct binding of transporter ligands to LmrR. Here,

  2. In silico comparative genomic analysis of GABAA receptor transcriptional regulation

    Directory of Open Access Journals (Sweden)

    Joyce Christopher J

    2007-06-01

    Full Text Available Abstract Background Subtypes of the GABAA receptor subunit exhibit diverse temporal and spatial expression patterns. In silico comparative analysis was used to predict transcriptional regulatory features in individual mammalian GABAA receptor subunit genes, and to identify potential transcriptional regulatory components involved in the coordinate regulation of the GABAA receptor gene clusters. Results Previously unreported putative promoters were identified for the β2, γ1, γ3, ε, θ and π subunit genes. Putative core elements and proximal transcriptional factors were identified within these predicted promoters, and within the experimentally determined promoters of other subunit genes. Conserved intergenic regions of sequence in the mammalian GABAA receptor gene cluster comprising the α1, β2, γ2 and α6 subunits were identified as potential long range transcriptional regulatory components involved in the coordinate regulation of these genes. A region of predicted DNase I hypersensitive sites within the cluster may contain transcriptional regulatory features coordinating gene expression. A novel model is proposed for the coordinate control of the gene cluster and parallel expression of the α1 and β2 subunits, based upon the selective action of putative Scaffold/Matrix Attachment Regions (S/MARs. Conclusion The putative regulatory features identified by genomic analysis of GABAA receptor genes were substantiated by cross-species comparative analysis and now require experimental verification. The proposed model for the coordinate regulation of genes in the cluster accounts for the head-to-head orientation and parallel expression of the α1 and β2 subunit genes, and for the disruption of transcription caused by insertion of a neomycin gene in the close vicinity of the α6 gene, which is proximal to a putative critical S/MAR.

  3. Co-Transcriptional Folding and Regulation Mechanisms of Riboswitches

    Directory of Open Access Journals (Sweden)

    Sha Gong

    2017-07-01

    Full Text Available Riboswitches are genetic control elements within non-coding regions of mRNA. These self-regulatory elements have been found to sense a range of small metabolites, ions, and other physical signals to exert regulatory control of transcription, translation, and splicing. To date, more than a dozen riboswitch classes have been characterized that vary widely in size and secondary structure. Extensive experiments and theoretical studies have made great strides in understanding the general structures, genetic mechanisms, and regulatory activities of individual riboswitches. As the ligand-dependent co-transcriptional folding and unfolding dynamics of riboswitches are the key determinant of gene expression, it is important to investigate the thermodynamics and kinetics of riboswitches both in the presence and absence of metabolites under the transcription. This review will provide a brief summary of the studies about the regulation mechanisms of the pbuE, SMK, yitJ, and metF riboswitches based on the ligand-dependent co-transcriptional folding of the riboswitches.

  4. Dissecting specific and global transcriptional regulation of bacterial gene expression

    NARCIS (Netherlands)

    Gerosa, Luca; Kochanowski, Karl; Heinemann, Matthias; Sauer, Uwe

    Gene expression is regulated by specific transcriptional circuits but also by the global expression machinery as a function of growth. Simultaneous specific and global regulation thus constitutes an additional-but often neglected-layer of complexity in gene expression. Here, we develop an

  5. Transcription factor ZBED6 mediates IGF2 gene expression by regulating promoter activity and DNA methylation in myoblasts

    Science.gov (United States)

    Zinc finger, BED-type containing 6 (ZBED6) is an important transcription factor in placental mammals, affecting development, cell proliferation and growth. In this study, we found that the expression of the ZBED6 and IGF2 were up regulated during C2C12 differentiation. The IGF2 expression levels wer...

  6. Functional analysis of the conserved transcriptional regulator CfWor1 in Cladosporium fulvum reveals diverse roles in the virulence of plant pathogenic fungi

    NARCIS (Netherlands)

    Ökmen, B.; Collemare, J.; Griffiths, S.A.; Burgt, van der A.; Cox, R.; Wit, de P.J.G.M.

    2014-01-01

    Fungal Wor1-like proteins are conserved transcriptional regulators that are reported to regulate the virulence of several plant pathogenic fungi by affecting the expression of virulence genes. Here, we report the functional analysis of CfWor1, the homologue of Wor1 in Cladosporium fulvum. ¿cfwor1

  7. The WRKY57 Transcription Factor Affects the Expression of Jasmonate ZIM-Domain Genes Transcriptionally to Compromise Botrytis cinerea Resistance.

    Science.gov (United States)

    Jiang, Yanjuan; Yu, Diqiu

    2016-08-01

    Although necrotrophic pathogens cause many devastating plant diseases, our understanding of the plant defense response to them is limited. Here, we found that loss of function of WRKY57 enhanced the resistance of Arabidopsis (Arabidopsis thaliana) against Botrytis cinerea infection. Further investigation suggested that the negative regulation of WRKY57 against B cinerea depends on the jasmonic acid (JA) signaling pathway. Chromatin immunoprecipitation experiments revealed that WRKY57 directly binds to the promoters of JASMONATE ZIM-DOMAIN1 (JAZ1) and JAZ5, encoding two important repressors of the JA signaling pathway, and activates their transcription. In vivo and in vitro experiments demonstrated that WRKY57 interacts with nuclear-encoded SIGMA FACTOR BINDING PROTEIN1 (SIB1) and SIB2. Further experiments display that the same domain, the VQ motif, of SIB1 and SIB2 interact with WRKY33 and WRKY57. Moreover, transient transcriptional activity assays confirmed that WRKY57 and WRKY33 competitively regulate JAZ1 and JAZ5, SIB1 and SIB2 further enhance these competitions of WRKY57 to WRKY33. Therefore, coordinated regulation of Arabidopsis against B cinerea by transcription activators and repressors would benefit plants by allowing fine regulation of defense. © 2016 American Society of Plant Biologists. All Rights Reserved.

  8. Genetic Regulation of Hypothalamic Cocaine and Amphetamine-Regulated Transcript (CART) in BxD Inbred Mice

    Science.gov (United States)

    Hawks, Brian W.; Li, Wei; Garlow, Steven J.

    2009-01-01

    Cocaine-Amphetamine Regulated Transcript (CART) peptides are implicated in a wide range of behaviors including in the reinforcing properties of psychostimulants, feeding and energy balance and stress and anxiety responses. We conducted a complex trait analysis to examine natural variation in the regulation of CART transcript abundance (CARTta) in the hypothalamus. CART transcript abundance was measured in total hypothalamic RNA from 26 BxD recombinant inbred (RI) mouse strains and in the C57BL/6 (B6) and DBA/2J (D2) progenitor strains. The strain distribution pattern for CARTta was continuous across the RI panel, which is consistent with this being a quantitative trait. Marker regression and interval mapping revealed significant quantitative trait loci (QTL) on mouse chromosome 4 (around 58.2cM) and chromosome 11 (between 20–36cM) that influence CARTta and account for 31% of the between strain variance in this phenotype. There are numerous candidate genes and QTL in these chromosomal regions that may indicate shared genetic regulation between CART expression and other neurobiological processes referable to known actions of this neuropeptide. PMID:18199428

  9. Transcriptional regulation of long-term memory in the marine snail Aplysia

    Directory of Open Access Journals (Sweden)

    Lee Yong-Seok

    2008-06-01

    Full Text Available Abstract Whereas the induction of short-term memory involves only covalent modifications of constitutively expressed preexisting proteins, the formation of long-term memory requires gene expression, new RNA, and new protein synthesis. On the cellular level, transcriptional regulation is thought to be the starting point for a series of molecular steps necessary for both the initiation and maintenance of long-term synaptic facilitation (LTF. The core molecular features of transcriptional regulation involved in the long-term process are evolutionally conserved in Aplysia, Drosophila, and mouse, and indicate that gene regulation by the cyclic AMP response element binding protein (CREB acting in conjunction with different combinations of transcriptional factors is critical for the expression of many forms of long-term memory. In the marine snail Aplysia, the molecular mechanisms that underlie the storage of long-term memory have been extensively studied in the monosynaptic connections between identified sensory neuron and motor neurons of the gill-withdrawal reflex. One tail shock or one pulse of serotonin (5-HT, a modulatory transmitter released by tail shocks, produces a transient facilitation mediated by the cAMP-dependent protein kinase leading to covalent modifications in the sensory neurons that results in an enhancement of transmitter release and a strengthening of synaptic connections lasting minutes. By contrast, repeated pulses of 5-hydroxytryptamine (5-HT induce a transcription- and translation-dependent long-term facilitation (LTF lasting more than 24 h and trigger the activation of a family of transcription factors in the presynaptic sensory neurons including ApCREB1, ApCREB2 and ApC/EBP. In addition, we have recently identified novel transcription factors that modulate the expression of ApC/EBP and also are critically involved in LTF. In this review, we examine the roles of these transcription factors during consolidation of LTF induced

  10. Transcriptional regulation of long-term memory in the marine snail Aplysia.

    Science.gov (United States)

    Lee, Yong-Seok; Bailey, Craig H; Kandel, Eric R; Kaang, Bong-Kiun

    2008-06-17

    Whereas the induction of short-term memory involves only covalent modifications of constitutively expressed preexisting proteins, the formation of long-term memory requires gene expression, new RNA, and new protein synthesis. On the cellular level, transcriptional regulation is thought to be the starting point for a series of molecular steps necessary for both the initiation and maintenance of long-term synaptic facilitation (LTF). The core molecular features of transcriptional regulation involved in the long-term process are evolutionally conserved in Aplysia, Drosophila, and mouse, and indicate that gene regulation by the cyclic AMP response element binding protein (CREB) acting in conjunction with different combinations of transcriptional factors is critical for the expression of many forms of long-term memory. In the marine snail Aplysia, the molecular mechanisms that underlie the storage of long-term memory have been extensively studied in the monosynaptic connections between identified sensory neuron and motor neurons of the gill-withdrawal reflex. One tail shock or one pulse of serotonin (5-HT), a modulatory transmitter released by tail shocks, produces a transient facilitation mediated by the cAMP-dependent protein kinase leading to covalent modifications in the sensory neurons that results in an enhancement of transmitter release and a strengthening of synaptic connections lasting minutes. By contrast, repeated pulses of 5-hydroxytryptamine (5-HT) induce a transcription- and translation-dependent long-term facilitation (LTF) lasting more than 24 h and trigger the activation of a family of transcription factors in the presynaptic sensory neurons including ApCREB1, ApCREB2 and ApC/EBP. In addition, we have recently identified novel transcription factors that modulate the expression of ApC/EBP and also are critically involved in LTF. In this review, we examine the roles of these transcription factors during consolidation of LTF induced by different

  11. Interplay between DNA supercoiling and transcription elongation.

    Science.gov (United States)

    Ma, Jie; Wang, Michelle

    2014-01-01

    Transcription-coupled DNA supercoiling has been shown to be an important regulator of transcription that is broadly present in the cell. Here we review experimental work which shows that RNA polymerase is a powerful torsional motor that can alter DNA topology and structure, and DNA supercoiling in turn directly affects transcription elongation.

  12. Tissue-Specific 5′ Heterogeneity of PPARα Transcripts and Their Differential Regulation by Leptin

    Science.gov (United States)

    Garratt, Emma S.; Vickers, Mark H.; Gluckman, Peter D.; Hanson, Mark A.

    2013-01-01

    The genes encoding nuclear receptors comprise multiple 5′untranslated exons, which give rise to several transcripts encoding the same protein, allowing tissue-specific regulation of expression. Both human and mouse peroxisome proliferator activated receptor (PPAR) α genes have multiple promoters, although their function is unknown. Here we have characterised the rat PPARα promoter region and have identified three alternative PPARα transcripts, which have different transcription start sites owing to the utilisation of distinct first exons. Moreover these alternative PPARα transcripts were differentially expressed between adipose tissue and liver. We show that while the major adipose (P1) and liver (P2) transcripts were both induced by dexamethasone, they were differentially regulated by the PPARα agonist, clofibric acid, and leptin. Leptin had no effect on the adipose-specific P1 transcript, but induced liver-specific P2 promoter activity via a STAT3/Sp1 mechanism. Moreover in Wistar rats, leptin treatment between postnatal day 3–13 led to an increase in P2 but not P1 transcription in adipose tissue which was sustained into adulthood. This suggests that the expression of the alternative PPARα transcripts are in part programmed by early life exposure to leptin leading to persistent change in adipose tissue fatty acid metabolism through specific activation of a quiescent PPARα promoter. Such complexity in the regulation of PPARα may allow the expression of PPARα to be finely regulated in response to environmental factors. PMID:23825665

  13. Transcriptional regulation of Arabidopsis MIR168a and argonaute1 homeostasis in abscisic acid and abiotic stress responses.

    Science.gov (United States)

    Li, Wei; Cui, Xiao; Meng, Zhaolu; Huang, Xiahe; Xie, Qi; Wu, Heng; Jin, Hailing; Zhang, Dabing; Liang, Wanqi

    2012-03-01

    The accumulation of a number of small RNAs in plants is affected by abscisic acid (ABA) and abiotic stresses, but the underlying mechanisms are poorly understood. The miR168-mediated feedback regulatory loop regulates ARGONAUTE1 (AGO1) homeostasis, which is crucial for gene expression modulation and plant development. Here, we reveal a transcriptional regulatory mechanism by which MIR168 controls AGO1 homeostasis during ABA treatment and abiotic stress responses in Arabidopsis (Arabidopsis thaliana). Plants overexpressing MIR168a and the AGO1 loss-of-function mutant ago1-27 display ABA hypersensitivity and drought tolerance, while the mir168a-2 mutant shows ABA hyposensitivity and drought hypersensitivity. Both the precursor and mature miR168 were induced under ABA and several abiotic stress treatments, but no obvious decrease for the target of miR168, AGO1, was shown under the same conditions. However, promoter activity analysis indicated that AGO1 transcription activity was increased under ABA and drought treatments, suggesting that transcriptional elevation of MIR168a is required for maintaining a stable AGO1 transcript level during the stress response. Furthermore, we showed both in vitro and in vivo that the transcription of MIR168a is directly regulated by four abscisic acid-responsive element (ABRE) binding factors, which bind to the ABRE cis-element within the MIR168a promoter. This ABRE motif is also found in the promoter of MIR168a homologs in diverse plant species. Our findings suggest that transcriptional regulation of miR168 and posttranscriptional control of AGO1 homeostasis may play an important and conserved role in stress response and signal transduction in plants.

  14. Transcriptional regulation of the HMGA1 gene by octamer-binding proteins Oct-1 and Oct-2.

    Directory of Open Access Journals (Sweden)

    Eusebio Chiefari

    Full Text Available The High-Mobility Group AT-Hook 1 (HMGA1 protein is an architectural transcription factor that binds to AT-rich sequences in the promoter region of DNA and functions as a specific cofactor for gene activation. Previously, we demonstrated that HMGA1 is a key regulator of the insulin receptor (INSR gene and an important downstream target of the INSR signaling cascade. Moreover, from a pathogenic point of view, overexpression of HMGA1 has been associated with human cancer, whereas functional variants of the HMGA1 gene have been recently linked to type 2 diabetes mellitus and metabolic syndrome. However, despite of this biological and pathological relevance, the mechanisms that control HMGA1 gene expression remain unknown. In this study, to define the molecular mechanism(s that regulate HMGA1 gene expression, the HMGA1 gene promoter was investigated by transient transfection of different cell lines, either before or after DNA and siRNA cotransfections. An octamer motif was identified as an important element of transcriptional regulation of this gene, the interaction of which with the octamer transcription factors Oct-1 and Oct-2 is crucial in modulating HMGA1 gene and protein expression. Additionally, we demonstrate that HMGA1 binds its own promoter and contributes to its transactivation by Oct-2 (but not Oct-1, supporting its role in an auto-regulatory circuit. Overall, our results provide insight into the transcriptional regulation of the HMGA1 gene, revealing a differential control exerted by both Oct-1 and Oct-2. Furthermore, they consistently support the hypothesis that a putative defect in Oct-1 and/or Oct-2, by affecting HMGA1 expression, may cause INSR dysfunction, leading to defects of the INSR signaling pathway.

  15. Negative transcriptional regulation of mitochondrial transcription factor A (TFAM) by nuclear TFAM

    International Nuclear Information System (INIS)

    Lee, Eun Jin; Kang, Young Cheol; Park, Wook-Ha; Jeong, Jae Hoon; Pak, Youngmi Kim

    2014-01-01

    Highlights: • TFAM localizes in nuclei and mitochondria of neuronal cells. • Nuclear TFAM does not bind the Tfam promoter. • Nuclear TFAM reduced the Tfam promoter activity via suppressing NRF-1 activity. • A novel self-negative feedback regulation of Tfam gene expression is explored. • FAM may play different roles depending on its subcellular localizations. - Abstract: The nuclear DNA-encoded mitochondrial transcription factor A (TFAM) is synthesized in cytoplasm and transported into mitochondria. TFAM enhances both transcription and replication of mitochondrial DNA. It is unclear, however, whether TFAM plays a role in regulating nuclear gene expression. Here, we demonstrated that TFAM was localized to the nucleus and mitochondria by immunostaining, subcellular fractionation, and TFAM-green fluorescent protein hybrid protein studies. In HT22 hippocampal neuronal cells, human TFAM (hTFAM) overexpression suppressed human Tfam promoter-mediated luciferase activity in a dose-dependent manner. The mitochondria targeting sequence-deficient hTFAM also repressed Tfam promoter activity to the same degree as hTFAM. It indicated that nuclear hTFAM suppressed Tfam expression without modulating mitochondrial activity. The repression required for nuclear respiratory factor-1 (NRF-1), but hTFAM did not bind to the NRF-1 binding site of its promoter. TFAM was co-immunoprecipitated with NRF-1. Taken together, we suggest that nuclear TFAM down-regulate its own gene expression as a NRF-1 repressor, showing that TFAM may play different roles depending on its subcellular localizations

  16. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli.

    Science.gov (United States)

    Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J; Girbal, Laurence; Cocaign-Bousquet, Muriel

    2016-04-26

    Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation.

  17. VirF-Independent Regulation of Shigella virB Transcription is Mediated by the Small RNA RyhB

    Science.gov (United States)

    Broach, William H.; Egan, Nicholas; Wing, Helen J.; Payne, Shelley M.; Murphy, Erin R.

    2012-01-01

    Infection of the human host by Shigella species requires the coordinated production of specific Shigella virulence factors, a process mediated largely by the VirF/VirB regulatory cascade. VirF promotes the transcription of virB, a gene encoding the transcriptional activator of several virulence-associated genes. This study reveals that transcription of virB is also regulated by the small RNA RyhB, and importantly, that this regulation is not achieved indirectly via modulation of VirF activity. These data are the first to demonstrate that the regulation of virB transcription can be uncoupled from the master regulator VirF. It is also established that efficient RyhB-dependent regulation of transcription is facilitated by specific nucleic acid sequences within virB. This study not only reveals RyhB-dependent regulation of virB transcription as a novel point of control in the central regulatory circuit modulating Shigella virulence, but also highlights the versatility of RyhB in controlling bacterial gene expression. PMID:22701677

  18. LnqR, a TetR-family transcriptional regulator, positively regulates lacticin Q production in Lactococcus lactis QU 5.

    Science.gov (United States)

    Iwatani, Shun; Ishibashi, Naoki; Flores, Floirendo P; Zendo, Takeshi; Nakayama, Jiro; Sonomoto, Kenji

    2016-09-01

    Lacticin Q is an unmodified leaderless bacteriocin produced by Lactococcus lactis QU 5. It has been revealed that the production and self-immunity of lacticin Q are facilitated by a gene cluster lnqQBCDEF The gene for a putative TetR-family transcriptional regulator, termed lnqR, was found nearby the lnqQBCDEF cluster, but its involvement in lacticin Q biosynthesis remained unknown. In this study, we created an LnqR-overexpressing QU 5 recombinant by using lactococcal constitutive promoter P32 The recombinant QU 5 showed enhanced production of and self-immunity to lacticin Q. RT-PCR analysis has revealed that an overexpression of LnqR increases the amounts of lnqQBCDEF transcripts, and these six genes are transcribed as an operon in a single transcriptional unit. Interestingly, LnqR expression and thus lacticin Q production by L. lactis QU 5 was found temperature dependent, while LnzR, an LnqR-homologue, in L. lactis QU 14 was expressed in a similar but not identical manner to LnqR, resulting in dissimilar bacteriocin productivities by these strains. This report demonstrates LnqR as the first TetR-family transcriptional regulator involved in LAB bacteriocin biosynthesis and that, as an exceptional case of TetR-family regulators, LnqR positively regulates the transcription of these biosynthetic genes. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. The Varicella-Zoster Virus Immediate-Early 63 protein affects chromatin controlled gene transcription in a cell-type dependent manner

    Directory of Open Access Journals (Sweden)

    Bontems Sébastien

    2007-10-01

    Full Text Available Abstract Background Varicella Zoster Virus Immediate Early 63 protein (IE63 has been shown to be essential for VZV replication, and critical for latency establishment. The activity of the protein as a transcriptional regulator is not fully clear yet. Using transient transfection assays, IE63 has been shown to repress viral and cellular promoters containing typical TATA boxes by interacting with general transcription factors. Results In this paper, IE63 regulation properties on endogenous gene expression were evaluated using an oligonucleotide-based micro-array approach. We found that IE63 modulates the transcription of only a few genes in HeLa cells including genes implicated in transcription or immunity. Furthermore, we showed that this effect is mediated by a modification of RNA POL II binding on the promoters tested and that IE63 phosphorylation was essential for these effects. In MeWo cells, the number of genes whose transcription was modified by IE63 was somewhat higher, including genes implicated in signal transduction, transcription, immunity, and heat-shock signalling. While IE63 did not modify the basal expression of several NF-κB dependent genes such as IL-8, ICAM-1, and IκBα, it modulates transcription of these genes upon TNFα induction. This effect was obviously correlated with the amount of p65 binding to the promoter of these genes and with histone H3 acetylation and HDAC-3 removal. Conclusion While IE63 only affected transcription of a small number of cellular genes, it interfered with the TNF-inducibility of several NF-κB dependent genes by the accelerated resynthesis of the inhibitor IκBα.

  20. Post-transcriptional regulation of ribosome biogenesis in yeast

    Directory of Open Access Journals (Sweden)

    Isabelle C. Kos-Braun

    2017-05-01

    Full Text Available Most microorganisms are exposed to the constantly and often rapidly changing environment. As such they evolved mechanisms to balance their metabolism and energy expenditure with the resources available to them. When resources become scarce or conditions turn out to be unfavourable for growth, cells reduce their metabolism and energy usage to survive. One of the major energy consuming processes in the cell is ribosome biogenesis. Unsurprisingly, cells encountering adverse conditions immediately shut down production of new ribosomes. It is well established that nutrient depletion leads to a rapid repression of transcription of the genes encoding ribosomal proteins, ribosome biogenesis factors as well as ribosomal RNA (rRNA. However, if pre-rRNA processing and ribosome assembly are regulated post-transcriptionally remains largely unclear. We have recently uncovered that the yeast Saccharomyces cerevisiae rapidly switches between two alternative pre-rRNA processing pathways depending on the environmental conditions. Our findings reveal a new level of complexity in the regulation of ribosome biogenesis.

  1. Insights into the post-transcriptional regulation of the mitochondrial electron transport chain.

    Science.gov (United States)

    Sirey, Tamara M; Ponting, Chris P

    2016-10-15

    The regulation of the mitochondrial electron transport chain is central to the control of cellular homeostasis. There are significant gaps in our understanding of how the expression of the mitochondrial and nuclear genome-encoded components of the electron transport chain are co-ordinated, and how the assembly of the protein complexes that constitute the electron transport chain are regulated. Furthermore, the role post-transcriptional gene regulation may play in modulating these processes needs to be clarified. This review summarizes the current knowledge regarding the post-transcriptional gene regulation of the electron transport chain and highlights how noncoding RNAs may contribute significantly both to complex electron transport chain regulatory networks and to mitochondrial dysfunction. © 2016 The Author(s).

  2. The FlbA-regulated predicted transcription factor Fum21 of Aspergillus niger is involved in fumonisin production.

    Science.gov (United States)

    Aerts, David; Hauer, Esther E; Ohm, Robin A; Arentshorst, Mark; Teertstra, Wieke R; Phippen, Christopher; Ram, Arthur F J; Frisvad, Jens C; Wösten, Han A B

    2018-03-01

    Aspergillus niger secretes proteins throughout the colony except for the zone that forms asexual spores called conidia. Inactivation of flbA that encodes a regulator of G-protein signaling results in colonies that are unable to reproduce asexually and that secrete proteins throughout the mycelium. In addition, the ΔflbA strain shows cell lysis and has thinner cell walls. Expression analysis showed that 38 predicted transcription factor genes are differentially expressed in strain ΔflbA. Here, the most down-regulated predicted transcription factor gene, called fum21, was inactivated. Growth, conidiation, and protein secretion were not affected in strain Δfum21. Whole genome expression analysis revealed that 63 and 11 genes were down- and up-regulated in Δfum21, respectively, when compared to the wild-type strain. Notably, 24 genes predicted to be involved in secondary metabolism were down-regulated in Δfum21, including 10 out of 12 genes of the fumonisin cluster. This was accompanied by absence of fumonisin production in the deletion strain and a 25% reduction in production of pyranonigrin A. Together, these results link FlbA-mediated sporulation-inhibited secretion with mycotoxin production.

  3. Daughter-specific transcription factors regulate cell size control in budding yeast.

    Science.gov (United States)

    Di Talia, Stefano; Wang, Hongyin; Skotheim, Jan M; Rosebrock, Adam P; Futcher, Bruce; Cross, Frederick R

    2009-10-01

    In budding yeast, asymmetric cell division yields a larger mother and a smaller daughter cell, which transcribe different genes due to the daughter-specific transcription factors Ace2 and Ash1. Cell size control at the Start checkpoint has long been considered to be a main regulator of the length of the G1 phase of the cell cycle, resulting in longer G1 in the smaller daughter cells. Our recent data confirmed this concept using quantitative time-lapse microscopy. However, it has been proposed that daughter-specific, Ace2-dependent repression of expression of the G1 cyclin CLN3 had a dominant role in delaying daughters in G1. We wanted to reconcile these two divergent perspectives on the origin of long daughter G1 times. We quantified size control using single-cell time-lapse imaging of fluorescently labeled budding yeast, in the presence or absence of the daughter-specific transcriptional regulators Ace2 and Ash1. Ace2 and Ash1 are not required for efficient size control, but they shift the domain of efficient size control to larger cell size, thus increasing cell size requirement for Start in daughters. Microarray and chromatin immunoprecipitation experiments show that Ace2 and Ash1 are direct transcriptional regulators of the G1 cyclin gene CLN3. Quantification of cell size control in cells expressing titrated levels of Cln3 from ectopic promoters, and from cells with mutated Ace2 and Ash1 sites in the CLN3 promoter, showed that regulation of CLN3 expression by Ace2 and Ash1 can account for the differential regulation of Start in response to cell size in mothers and daughters. We show how daughter-specific transcriptional programs can interact with intrinsic cell size control to differentially regulate Start in mother and daughter cells. This work demonstrates mechanistically how asymmetric localization of cell fate determinants results in cell-type-specific regulation of the cell cycle.

  4. Daughter-Specific Transcription Factors Regulate Cell Size Control in Budding Yeast

    Science.gov (United States)

    Di Talia, Stefano; Wang, Hongyin; Skotheim, Jan M.; Rosebrock, Adam P.; Futcher, Bruce; Cross, Frederick R.

    2009-01-01

    In budding yeast, asymmetric cell division yields a larger mother and a smaller daughter cell, which transcribe different genes due to the daughter-specific transcription factors Ace2 and Ash1. Cell size control at the Start checkpoint has long been considered to be a main regulator of the length of the G1 phase of the cell cycle, resulting in longer G1 in the smaller daughter cells. Our recent data confirmed this concept using quantitative time-lapse microscopy. However, it has been proposed that daughter-specific, Ace2-dependent repression of expression of the G1 cyclin CLN3 had a dominant role in delaying daughters in G1. We wanted to reconcile these two divergent perspectives on the origin of long daughter G1 times. We quantified size control using single-cell time-lapse imaging of fluorescently labeled budding yeast, in the presence or absence of the daughter-specific transcriptional regulators Ace2 and Ash1. Ace2 and Ash1 are not required for efficient size control, but they shift the domain of efficient size control to larger cell size, thus increasing cell size requirement for Start in daughters. Microarray and chromatin immunoprecipitation experiments show that Ace2 and Ash1 are direct transcriptional regulators of the G1 cyclin gene CLN3. Quantification of cell size control in cells expressing titrated levels of Cln3 from ectopic promoters, and from cells with mutated Ace2 and Ash1 sites in the CLN3 promoter, showed that regulation of CLN3 expression by Ace2 and Ash1 can account for the differential regulation of Start in response to cell size in mothers and daughters. We show how daughter-specific transcriptional programs can interact with intrinsic cell size control to differentially regulate Start in mother and daughter cells. This work demonstrates mechanistically how asymmetric localization of cell fate determinants results in cell-type-specific regulation of the cell cycle. PMID:19841732

  5. Daughter-specific transcription factors regulate cell size control in budding yeast.

    Directory of Open Access Journals (Sweden)

    Stefano Di Talia

    2009-10-01

    Full Text Available In budding yeast, asymmetric cell division yields a larger mother and a smaller daughter cell, which transcribe different genes due to the daughter-specific transcription factors Ace2 and Ash1. Cell size control at the Start checkpoint has long been considered to be a main regulator of the length of the G1 phase of the cell cycle, resulting in longer G1 in the smaller daughter cells. Our recent data confirmed this concept using quantitative time-lapse microscopy. However, it has been proposed that daughter-specific, Ace2-dependent repression of expression of the G1 cyclin CLN3 had a dominant role in delaying daughters in G1. We wanted to reconcile these two divergent perspectives on the origin of long daughter G1 times. We quantified size control using single-cell time-lapse imaging of fluorescently labeled budding yeast, in the presence or absence of the daughter-specific transcriptional regulators Ace2 and Ash1. Ace2 and Ash1 are not required for efficient size control, but they shift the domain of efficient size control to larger cell size, thus increasing cell size requirement for Start in daughters. Microarray and chromatin immunoprecipitation experiments show that Ace2 and Ash1 are direct transcriptional regulators of the G1 cyclin gene CLN3. Quantification of cell size control in cells expressing titrated levels of Cln3 from ectopic promoters, and from cells with mutated Ace2 and Ash1 sites in the CLN3 promoter, showed that regulation of CLN3 expression by Ace2 and Ash1 can account for the differential regulation of Start in response to cell size in mothers and daughters. We show how daughter-specific transcriptional programs can interact with intrinsic cell size control to differentially regulate Start in mother and daughter cells. This work demonstrates mechanistically how asymmetric localization of cell fate determinants results in cell-type-specific regulation of the cell cycle.

  6. Circuit-wide Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulating Depression Susceptibility.

    Science.gov (United States)

    Bagot, Rosemary C; Cates, Hannah M; Purushothaman, Immanuel; Lorsch, Zachary S; Walker, Deena M; Wang, Junshi; Huang, Xiaojie; Schlüter, Oliver M; Maze, Ian; Peña, Catherine J; Heller, Elizabeth A; Issler, Orna; Wang, Minghui; Song, Won-Min; Stein, Jason L; Liu, Xiaochuan; Doyle, Marie A; Scobie, Kimberly N; Sun, Hao Sheng; Neve, Rachael L; Geschwind, Daniel; Dong, Yan; Shen, Li; Zhang, Bin; Nestler, Eric J

    2016-06-01

    Depression is a complex, heterogeneous disorder and a leading contributor to the global burden of disease. Most previous research has focused on individual brain regions and genes contributing to depression. However, emerging evidence in humans and animal models suggests that dysregulated circuit function and gene expression across multiple brain regions drive depressive phenotypes. Here, we performed RNA sequencing on four brain regions from control animals and those susceptible or resilient to chronic social defeat stress at multiple time points. We employed an integrative network biology approach to identify transcriptional networks and key driver genes that regulate susceptibility to depressive-like symptoms. Further, we validated in vivo several key drivers and their associated transcriptional networks that regulate depression susceptibility and confirmed their functional significance at the levels of gene transcription, synaptic regulation, and behavior. Our study reveals novel transcriptional networks that control stress susceptibility and offers fundamentally new leads for antidepressant drug discovery. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. General organisational principles of the transcriptional regulation system: a tree or a circle?

    Science.gov (United States)

    Muskhelishvili, Georgi; Sobetzko, Patrick; Geertz, Marcel; Berger, Michael

    2010-04-01

    Recent advances of systemic approaches to gene expression and cellular metabolism provide unforeseen opportunities for relating and integrating extensive datasets describing the transcriptional regulation system as a whole. However, due to the multifaceted nature of the phenomenon, these datasets often contain logically distinct types of information determined by underlying approach and adopted methodology of data analysis. Consequently, to integrate the datasets comprising information on the states of chromatin structure, transcriptional regulatory network and cellular metabolism, a novel methodology enabling interconversion of logically distinct types of information is required. Here we provide a holistic conceptual framework for analysis of global transcriptional regulation as a system coordinated by structural coupling between the transcription machinery and DNA topology, acting as interdependent sensors and determinants of metabolic functions. In this operationally closed system any transition in physiological state represents an emergent property determined by shifts in structural coupling, whereas genetic regulation acts as a genuine device converting one logical type of information into the other.

  8. The KNOXI Transcription Factor SHOOT MERISTEMLESS Regulates Floral Fate in Arabidopsis.

    Science.gov (United States)

    Roth, Ohad; Alvarez, John; Levy, Matan; Bowman, John L; Ori, Naomi; Shani, Eilon

    2018-05-09

    Plants have evolved a unique and conserved developmental program that enables the conversion of leaves into floral organs. Elegant genetic and molecular work has identified key regulators of flower meristem identity. However, further understanding of flower meristem specification has been hampered by redundancy and by pleiotropic effects. The KNOXI transcription factor SHOOT MERISTEMLESS (STM) is a well-characterized regulator of shoot apical meristem maintenance. Arabidopsis thaliana stm loss-of-function mutants arrest shortly after germination, and therefore the knowledge on later roles of STM in later processes, including flower development, is limited. Here, we uncover a role for STM in the specification of flower meristem identity. Silencing STM in the APETALA1 (AP1) expression domain in the ap1-4 mutant background resulted in a leafy-flower phenotype, and an intermediate stm-2 allele enhanced the flower meristem identity phenotype of ap1-4. Transcriptional profiling of STM perturbation suggested that STM activity affects multiple floral fate genes, among them the F-Box protein-encoding gene UNUSUAL FLORAL ORGANS (UFO). In agreement with this notion, stm-2 enhanced the ufo-2 floral fate phenotype, and ectopic UFO expression rescued the leafy flowers in genetic backgrounds with compromised AP1 and STM activities. This work suggests a genetic mechanism that underlies the activity of STM in the specification of flower meristem identity. © 2018 American Society of Plant Biologists. All rights reserved.

  9. Transcriptional regulation of epithelial-mesenchymal transition in melanoma

    International Nuclear Information System (INIS)

    Wels, C.

    2010-01-01

    The downregulation of epithelial markers followed by upregulation of mesenchymal characteristics is an important step in melanoma development. This process goes along with gains in cell proliferation and motility, depolarization and detachment from neighbouring cells, finally enabling melanoma cells to leave the primary site of tumor growth and to circulate through the blood or lymphatic system. The entirety of these events is referred to as epithelial-mesenchymal transition (EMT). Changes during EMT are accomplished by a set of transcription factors which share the same DNA binding site called E-box. These E-box binding transcription factors are subsumed as epithelial-mesenchymal transitions regulators (EMTRs). In this thesis, I studied the interplay of the zinc-finger transcription factors Slug and ZEB1 and the basic helix-loop-helix transcription factor Twist during melanoma progression. I demonstrate for the first time the direct and specific transcriptional upregulation of one EMTR, ZEB1, by another, Slug, using gene silencing and overexpression studies together with mobility shift and luciferase assays. The two transcription factors cooperate in repressing the epithelial adhesion molecule E-cadherin which is supposed to be a crucial step during early EMT. Further, they show additive effects in promoting detachment from neighbouring cells and cell migration. Conceptually, Slug and ZEB1 are supported by Twist, a transcription factor that might be less pivotal for E-cadherin repression but rather for inducing the expression of the mesenchymal marker N-cadherin, enabling adhesion to mesenchymal cells, thereby promoting migration and invasion of melanoma cells.Taken together, I provide a model of a hierarchical organization of EMT transcription factors, with Slug as a transcriptional activator of ZEB1, leading to cooperative effects on detachment and migration and, together with Twist, leading to EMT in melanoma. (author) [de

  10. Extracellular Matrix-Regulated Gene Expression RequiresCooperation of SWI/SNF and Transcription Factors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ren; Spencer, Virginia A.; Bissell, Mina J.

    2006-05-25

    Extracellular cues play crucial roles in the transcriptional regulation of tissue-specific genes, but whether and how these signals lead to chromatin remodeling is not understood and subject to debate. Using chromatin immunoprecipitation (ChIP) assays and mammary-specific genes as models, we show here that extracellular matrix (ECM) molecules and prolactin cooperate to induce histone acetylation and binding of transcription factors and the SWI/SNF complex to the {beta}- and ?-casein promoters. Introduction of a dominant negative Brg1, an ATPase subunit of SWI/SNF complex, significantly reduced both {beta}- and ?-casein expression, suggesting that SWI/SNF-dependent chromatin remodeling is required for transcription of mammary-specific genes. ChIP analyses demonstrated that the ATPase activity of SWI/SNF is necessary for recruitment of RNA transcriptional machinery, but not for binding of transcription factors or for histone acetylation. Coimmunoprecipitation analyses showed that the SWI/SNF complex is associated with STAT5, C/EBP{beta}, and glucocorticoid receptor (GR). Thus, ECM- and prolactin-regulated transcription of the mammary-specific casein genes requires the concerted action of chromatin remodeling enzymes and transcription factors.

  11. Transcriptional regulation by nonclassical action of thyroid hormone

    Directory of Open Access Journals (Sweden)

    Moeller Lars C

    2011-08-01

    Full Text Available Abstract Thyroid hormone (TH is essential for normal development, growth and metabolism. Its effects were thought to be principally mediated through triiodothyronine (T3, acting as a ligand for the nuclear TH receptors (TRs α and β residing on thyroid hormone response elements (TREs in the promoter of TH target genes. In this classical model of TH action, T3 binding to TRs leads to recruitment of basal transcription factors and increased transcription of TH responsive genes. Recently, the concept of TH action on gene expression has become more diverse and now includes nonclassical actions of T3 and T4: T3 has been shown to activate PI3K via the TRs, which ultimately increases transcription of certain genes, e.g. HIF-1α. Additionally, both T3 and thyroxine (T4 can bind to a membrane integrin, αvβ3, which leads to activation of the PI3K and MAPK signal transduction pathways and finally also increases gene transcription, e.g. of the FGF2 gene. Therefore, these initially nongenomic, nonclassical actions seem to serve as additional interfaces for transcriptional regulation by TH. Aim of this perspective is to summarize the genes that are currently known to be induced by nonclassical TH action and the mechanisms involved.

  12. Transcriptional regulator-mediated activation of adaptation genes triggers CRISPR de novo spacer acquisition

    DEFF Research Database (Denmark)

    Liu, Tao; Li, Yingjun; Wang, Xiaodi

    2015-01-01

    Acquisition of de novo spacer sequences confers CRISPR-Cas with a memory to defend against invading genetic elements. However, the mechanism of regulation of CRISPR spacer acquisition remains unknown. Here we examine the transcriptional regulation of the conserved spacer acquisition genes in Type I......, it was demonstrated that the transcription level of csa1, cas1, cas2 and cas4 was significantly enhanced in a csa3a-overexpression strain and, moreover, the Csa1 and Cas1 protein levels were increased in this strain. Furthermore, we demonstrated the hyperactive uptake of unique spacers within both CRISPR loci...... in the presence of the csa3a overexpression vector. The spacer acquisition process is dependent on the CCN PAM sequence and protospacer selection is random and non-directional. These results suggested a regulation mechanism of CRISPR spacer acquisition where a single transcriptional regulator senses the presence...

  13. The MYST family histone acetyltransferase complex regulates stress resistance and longevity through transcriptional control of DAF-16/FOXO transcription factors.

    Science.gov (United States)

    Ikeda, Takako; Uno, Masaharu; Honjoh, Sakiko; Nishida, Eisuke

    2017-08-09

    The well-known link between longevity and the Sir2 histone deacetylase family suggests that histone deacetylation, a modification associated with repressed chromatin, is beneficial to longevity. However, the molecular links between histone acetylation and longevity remain unclear. Here, we report an unexpected finding that the MYST family histone acetyltransferase complex (MYS-1/TRR-1 complex) promotes rather than inhibits stress resistance and longevity in Caenorhabditis elegans Our results show that these beneficial effects are largely mediated through transcriptional up-regulation of the FOXO transcription factor DAF-16. MYS-1 and TRR-1 are recruited to the promoter regions of the daf-16 gene, where they play a role in histone acetylation, including H4K16 acetylation. Remarkably, we also find that the human MYST family Tip60/TRRAP complex promotes oxidative stress resistance by up-regulating the expression of FOXO transcription factors in human cells. Tip60 is recruited to the promoter regions of the foxo1 gene, where it increases H4K16 acetylation levels. Our results thus identify the evolutionarily conserved role of the MYST family acetyltransferase as a key epigenetic regulator of DAF-16/FOXO transcription factors. © 2017 The Authors.

  14. Transcriptomic analysis highlights epigenetic and transcriptional regulation during zygotic embryo development of Pinus pinaster.

    Science.gov (United States)

    de Vega-Bartol, José J; Simões, Marta; Lorenz, W Walter; Rodrigues, Andreia S; Alba, Rob; Dean, Jeffrey F D; Miguel, Célia M

    2013-08-30

    It is during embryogenesis that the plant body plan is established and the meristems responsible for all post-embryonic growth are specified. The molecular mechanisms governing conifer embryogenesis are still largely unknown. Their elucidation may contribute valuable information to clarify if the distinct features of embryo development in angiosperms and gymnosperms result from differential gene regulation. To address this issue, we have performed the first transcriptomic analysis of zygotic embryo development in a conifer species (Pinus pinaster) focusing our study in particular on regulatory genes playing important roles during plant embryo development, namely epigenetic regulators and transcription factors. Microarray analysis of P. pinaster zygotic embryogenesis was performed at five periods of embryo development from early developing to mature embryos. Our results show that most changes in transcript levels occurred in the first and the last embryo stage-to-stage transitions, namely early to pre-cotyledonary embryo and cotyledonary to mature embryo. An analysis of functional categories for genes that were differentially expressed through embryogenesis highlighted several epigenetic regulation mechanisms. While putative orthologs of transcripts associated with mechanisms that target transposable elements and repetitive sequences were strongly expressed in early embryogenesis, PRC2-mediated repression of genes seemed more relevant during late embryogenesis. On the other hand, functions related to sRNA pathways appeared differentially regulated across all stages of embryo development with a prevalence of miRNA functions in mid to late embryogenesis. Identification of putative transcription factor genes differentially regulated between consecutive embryo stages was strongly suggestive of the relevance of auxin responses and regulation of auxin carriers during early embryogenesis. Such responses could be involved in establishing embryo patterning. Later in

  15. The Agrobacterium tumefaciens Transcription Factor BlcR Is Regulated via Oligomerization

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yi; Fiscus, Valena; Meng, Wuyi; Zheng, Zhida; Zhang, Lian-Hui; Fuqua, Clay; Chen, Lingling (IMCB-Singapore); (Indiana)

    2012-02-08

    The Agrobacterium tumefaciens BlcR is a member of the emerging isocitrate lyase transcription regulators that negatively regulates metabolism of {gamma}-butyrolactone, and its repressing function is relieved by succinate semialdehyde (SSA). Our crystal structure showed that BlcR folded into the DNA- and SSA-binding domains and dimerized via the DNA-binding domains. Mutational analysis identified residues, including Phe{sup 147}, that are important for SSA association; BlcR{sup F147A} existed as tetramer. Two BlcR dimers bound to target DNA and in a cooperative manner, and the distance between the two BlcR-binding sequences in DNA was critical for BlcR-DNA association. Tetrameric BlcR{sup F147A} retained DNA binding activity, and importantly, this activity was not affected by the distance separating the BlcR-binding sequences in DNA. SSA did not dissociate tetrameric BlcR{sup F147A} or BlcR{sup F147A}-DNA. As well as in the SSA-binding site, Phe{sup 147} is located in a structurally flexible loop that may be involved in BlcR oligomerization. We propose that SSA regulates BlcR DNA-binding function via oligomerization.

  16. DNA dynamics play a role as a basal transcription factor in the positioning and regulation of gene transcription initiation

    OpenAIRE

    Alexandrov, Boian S.; Gelev, Vladimir; Yoo, Sang Wook; Alexandrov, Ludmil B.; Fukuyo, Yayoi; Bishop, Alan R.; Rasmussen, Kim ?.; Usheva, Anny

    2009-01-01

    We assess the role of DNA breathing dynamics as a determinant of promoter strength and transcription start site (TSS) location. We compare DNA Langevin dynamic profiles of representative gene promoters, calculated with the extended non-linear PBD model of DNA with experimental data on transcription factor binding and transcriptional activity. Our results demonstrate that DNA dynamic activity at the TSS can be suppressed by mutations that do not affect basal transcription factor binding–DNA co...

  17. Ethanol sensitivity: a central role for CREB transcription regulation in the cerebellum

    Directory of Open Access Journals (Sweden)

    Biswal Shyam

    2006-12-01

    Full Text Available Abstract Background Lowered sensitivity to the effects of ethanol increases the risk of developing alcoholism. Inbred mouse strains have been useful for the study of the genetic basis of various drug addiction-related phenotypes. Inbred Long-Sleep (ILS and Inbred Short-Sleep (ISS mice differentially express a number of genes thought to be implicated in sensitivity to the effects of ethanol. Concomitantly, there is evidence for a mediating role of cAMP/PKA/CREB signalling in aspects of alcoholism modelled in animals. In this report, the extent to which CREB signalling impacts the differential expression of genes in ILS and ISS mouse cerebella is examined. Results A training dataset for Machine Learning (ML and Exploratory Data Analyses (EDA was generated from promoter region sequences of a set of genes known to be targets of CREB transcription regulation and a set of genes whose transcription regulations are potentially CREB-independent. For each promoter sequence, a vector of size 132, with elements characterizing nucleotide composition features was generated. Genes whose expressions have been previously determined to be increased in ILS or ISS cerebella were identified, and their CREB regulation status predicted using the ML scheme C4.5. The C4.5 learning scheme was used because, of four ML schemes evaluated, it had the lowest predicted error rate. On an independent evaluation set of 21 genes of known CREB regulation status, C4.5 correctly classified 81% of instances with F-measures of 0.87 and 0.67 respectively for the CREB-regulated and CREB-independent classes. Additionally, six out of eight genes previously determined by two independent microarray platforms to be up-regulated in the ILS or ISS cerebellum were predicted by C4.5 to be transcriptionally regulated by CREB. Furthermore, 64% and 52% of a cross-section of other up-regulated cerebellar genes in ILS and ISS mice, respectively, were deemed to be CREB-regulated. Conclusion These

  18. Quick change: post-transcriptional regulation in Pseudomonas.

    Science.gov (United States)

    Grenga, Lucia; Little, Richard H; Malone, Jacob G

    2017-08-01

    Pseudomonas species have evolved dynamic and intricate regulatory networks to fine-tune gene expression, with complex regulation occurring at every stage in the processing of genetic information. This approach enables Pseudomonas to generate precise individual responses to the environment in order to improve their fitness and resource economy. The weak correlations we observe between RNA and protein abundance highlight the significant regulatory contribution of a series of intersecting post-transcriptional pathways, influencing mRNA stability, translational activity and ribosome function, to Pseudomonas environmental responses. This review examines our current understanding of three major post-transcriptional regulatory systems in Pseudomonas spp.; Gac/Rsm, Hfq and RimK, and presents an overview of new research frontiers, emerging genome-wide methodologies, and their potential for the study of global regulatory responses in Pseudomonas. © FEMS 2017.

  19. β-adrenergic receptor-dependent alterations in murine cardiac transcript expression are differentially regulated by gefitinib in vivo.

    Directory of Open Access Journals (Sweden)

    Jennifer A Talarico

    Full Text Available β-adrenergic receptor (βAR-mediated transactivation of epidermal growth factor receptor (EGFR has been shown to promote cardioprotection in a mouse model of heart failure and we recently showed that this mechanism leads to enhanced cell survival in part via regulation of apoptotic transcript expression in isolated primary rat neonatal cardiomyocytes. Thus, we hypothesized that this process could regulate cardiac transcript expression in vivo. To comprehensively assess cardiac transcript alterations in response to acute βAR-dependent EGFR transactivation, we performed whole transcriptome analysis of hearts from C57BL/6 mice given i.p. injections of the βAR agonist isoproterenol in the presence or absence of the EGFR antagonist gefitinib for 1 hour. Total cardiac RNA from each treatment group underwent transcriptome analysis, revealing a substantial number of transcripts regulated by each treatment. Gefitinib alone significantly altered the expression of 405 transcripts, while isoproterenol either alone or in conjunction with gefitinib significantly altered 493 and 698 distinct transcripts, respectively. Further statistical analysis was performed, confirming 473 transcripts whose regulation by isoproterenol were significantly altered by gefitinib (isoproterenol-induced up/downregulation antagonized/promoted by gefinitib, including several known to be involved in the regulation of numerous processes including cell death and survival. Thus, βAR-dependent regulation of cardiac transcript expression in vivo can be modulated by the EGFR antagonist gefitinib.

  20. Disorders of Transcriptional Regulation: An Emerging Category of Multiple Malformation Syndromes

    Science.gov (United States)

    Izumi, Kosuke

    2016-01-01

    Some genetic disorders caused by mutations in genes encoding components of the transcriptional machinery as well as proteins involved in epigenetic modification of the genome share many overlapping features, such as facial dysmorphisms, growth problems and developmental delay/intellectual disability. As a basis for some shared phenotypic characteristics in these syndromes, a similar transcriptome disturbance, characterized by global transcriptional dysregulation, is believed to play a major role. In this review article, a general overview of gene transcription is provided, and the current knowledge of the mechanisms underlying some disorders of transcriptional regulation, such as Rubinstein- Taybi, Coffin-Siris, Cornelia de Lange, and CHOPS syndromes, are discussed. PMID:27867341

  1. An EAR-motif-containing ERF transcription factor affects herbivore-induced signaling, defense and resistance in rice.

    Science.gov (United States)

    Lu, Jing; Ju, Hongping; Zhou, Guoxin; Zhu, Chuanshu; Erb, Matthias; Wang, Xiaopeng; Wang, Peng; Lou, Yonggen

    2011-11-01

    Ethylene responsive factors (ERFs) are a large family of plant-specific transcription factors that are involved in the regulation of plant development and stress responses. However, little to nothing is known about their role in herbivore-induced defense. We discovered a nucleus-localized ERF gene in rice (Oryza sativa), OsERF3, that was rapidly up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis. Antisense and over-expression of OsERF3 revealed that it positively affects transcript levels of two mitogen-activated protein kinases (MAPKs) and two WRKY genes as well as concentrations of jasmonate (JA), salicylate (SA) and the activity of trypsin protease inhibitors (TrypPIs). OsERF3 was also found to mediate the resistance of rice to SSB. On the other hand, OsERF3 was slightly suppressed by the rice brown planthopper (BPH) Nilaparvata lugens (Stål) and increased susceptibility to this piercing sucking insect, possibly by suppressing H(2)O(2) biosynthesis. We propose that OsERF3 affects early components of herbivore-induced defense responses by suppressing MAPK repressors and modulating JA, SA, ethylene and H(2)O(2) pathways as well as plant resistance. Our results also illustrate that OsERF3 acts as a central switch that gears the plant's metabolism towards an appropriate response to chewing or piercing/sucking insects. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  2. Heat shock transcription factors regulate heat induced cell death in a ...

    Indian Academy of Sciences (India)

    2007-03-29

    Mar 29, 2007 ... Heat shock transcription factors regulate heat induced cell death in a rat ... the synthesis of heat shock proteins (Hsps) which is strictly regulated by ... The lack of Hsp synthesis in these cells was due to a failure in HSF1 DNA ...

  3. Transcriptional regulation by Polycomb group proteins

    DEFF Research Database (Denmark)

    Di Croce, Luciano; Helin, Kristian

    2013-01-01

    Polycomb group (PcG) proteins are epigenetic regulators of transcription that have key roles in stem-cell identity, differentiation and disease. Mechanistically, they function within multiprotein complexes, called Polycomb repressive complexes (PRCs), which modify histones (and other proteins......) and silence target genes. The dynamics of PRC1 and PRC2 components has been the focus of recent research. Here we discuss our current knowledge of the PRC complexes, how they are targeted to chromatin and how the high diversity of the PcG proteins allows these complexes to influence cell identity....

  4. Global transcriptional repression in C. elegans germline precursors by regulated sequestration of TAF-4.

    Science.gov (United States)

    Guven-Ozkan, Tugba; Nishi, Yuichi; Robertson, Scott M; Lin, Rueyling

    2008-10-03

    In C. elegans, four asymmetric divisions, beginning with the zygote (P0), generate transcriptionally repressed germline blastomeres (P1-P4) and somatic sisters that become transcriptionally active. The protein PIE-1 represses transcription in the later germline blastomeres but not in the earlier germline blastomeres P0 and P1. We show here that OMA-1 and OMA-2, previously shown to regulate oocyte maturation, repress transcription in P0 and P1 by binding to and sequestering in the cytoplasm TAF-4, a component critical for assembly of TFIID and the pol II preinitiation complex. OMA-1/2 binding to TAF-4 is developmentally regulated, requiring phosphorylation by the DYRK kinase MBK-2, which is activated at meiosis II after fertilization. OMA-1/2 are normally degraded after the first mitosis, but ectopic expression of wild-type OMA-1 is sufficient to repress transcription in both somatic and later germline blastomeres. We propose that phosphorylation by MBK-2 serves as a developmental switch, converting OMA-1/2 from oocyte to embryo regulators.

  5. Transcriptional regulation of human RANK ligand gene expression by E2F1

    International Nuclear Information System (INIS)

    Hu Yan; Sun Meng; Nadiminty, Nagalakshmi; Lou Wei; Pinder, Elaine; Gao, Allen C.

    2008-01-01

    Receptor activator of nuclear factor kappa B ligand (RANKL) is a critical osteoclastogenic factor involved in the regulation of bone resorption, immune function, the development of mammary gland and cardiovascular system. To understand the transcriptional regulation of RANKL, we amplified and characterized a 1890 bp 5'-flanking sequence of human RANKL gene (-1782 bp to +108 bp relative to the transcription start site). Using a series of deletion mutations of the 1890 bp RANKL promoter, we identified a 72 bp region (-172 to -100 bp) mediating RANKL basal transcriptional activity. Sequence analysis revealed a putative E2F binding site within this 72 bp region in the human RANKL promoter. Overexpression of E2F1 increased RANKL promoter activity, while down-regulation of E2F1 expression by small interfering RNA decreased RANKL promoter activity. RT-PCR and enzyme linked immunosorbent assays (ELISA) further demonstrated that E2F1 induced the expression of RANKL. Electrophoretic gel mobility shift assays (EMSA) and antibody competition assays confirmed that E2F1 proteins bind to the consensus E2F binding site in the RANKL promoter. Mutation of the E2F consensus binding site in the RANKL promoter profoundly reduced the basal promoter activity and abolished the transcriptional modulation of RANKL by E2F1. These results suggest that E2F1 plays an important role in regulating RANKL transcription through binding to the E2F consensus binding site

  6. Regulation of circadian clock transcriptional output by CLOCK:BMAL1

    Science.gov (United States)

    Trott, Alexandra J.

    2018-01-01

    The mammalian circadian clock relies on the transcription factor CLOCK:BMAL1 to coordinate the rhythmic expression of 15% of the transcriptome and control the daily regulation of biological functions. The recent characterization of CLOCK:BMAL1 cistrome revealed that although CLOCK:BMAL1 binds synchronously to all of its target genes, its transcriptional output is highly heterogeneous. By performing a meta-analysis of several independent genome-wide datasets, we found that the binding of other transcription factors at CLOCK:BMAL1 enhancers likely contribute to the heterogeneity of CLOCK:BMAL1 transcriptional output. While CLOCK:BMAL1 rhythmic DNA binding promotes rhythmic nucleosome removal, it is not sufficient to generate transcriptionally active enhancers as assessed by H3K27ac signal, RNA Polymerase II recruitment, and eRNA expression. Instead, the transcriptional activity of CLOCK:BMAL1 enhancers appears to rely on the activity of ubiquitously expressed transcription factors, and not tissue-specific transcription factors, recruited at nearby binding sites. The contribution of other transcription factors is exemplified by how fasting, which effects several transcription factors but not CLOCK:BMAL1, either decreases or increases the amplitude of many rhythmically expressed CLOCK:BMAL1 target genes. Together, our analysis suggests that CLOCK:BMAL1 promotes a transcriptionally permissive chromatin landscape that primes its target genes for transcription activation rather than directly activating transcription, and provides a new framework to explain how environmental or pathological conditions can reprogram the rhythmic expression of clock-controlled genes. PMID:29300726

  7. TFIIS-Dependent Non-coding Transcription Regulates Developmental Genome Rearrangements.

    Directory of Open Access Journals (Sweden)

    Kamila Maliszewska-Olejniczak

    2015-07-01

    Full Text Available Because of their nuclear dimorphism, ciliates provide a unique opportunity to study the role of non-coding RNAs (ncRNAs in the communication between germline and somatic lineages. In these unicellular eukaryotes, a new somatic nucleus develops at each sexual cycle from a copy of the zygotic (germline nucleus, while the old somatic nucleus degenerates. In the ciliate Paramecium tetraurelia, the genome is massively rearranged during this process through the reproducible elimination of repeated sequences and the precise excision of over 45,000 short, single-copy Internal Eliminated Sequences (IESs. Different types of ncRNAs resulting from genome-wide transcription were shown to be involved in the epigenetic regulation of genome rearrangements. To understand how ncRNAs are produced from the entire genome, we have focused on a homolog of the TFIIS elongation factor, which regulates RNA polymerase II transcriptional pausing. Six TFIIS-paralogs, representing four distinct families, can be found in P. tetraurelia genome. Using RNA interference, we showed that TFIIS4, which encodes a development-specific TFIIS protein, is essential for the formation of a functional somatic genome. Molecular analyses and high-throughput DNA sequencing upon TFIIS4 RNAi demonstrated that TFIIS4 is involved in all kinds of genome rearrangements, including excision of ~48% of IESs. Localization of a GFP-TFIIS4 fusion revealed that TFIIS4 appears specifically in the new somatic nucleus at an early developmental stage, before IES excision. RT-PCR experiments showed that TFIIS4 is necessary for the synthesis of IES-containing non-coding transcripts. We propose that these IES+ transcripts originate from the developing somatic nucleus and serve as pairing substrates for germline-specific short RNAs that target elimination of their homologous sequences. Our study, therefore, connects the onset of zygotic non coding transcription to the control of genome plasticity in Paramecium

  8. Transcriptional analysis of the MrpJ network: modulation of diverse virulence-associated genes and direct regulation of mrp fimbrial and flhDC flagellar operons in Proteus mirabilis.

    Science.gov (United States)

    Bode, Nadine J; Debnath, Irina; Kuan, Lisa; Schulfer, Anjelique; Ty, Maureen; Pearson, Melanie M

    2015-06-01

    The enteric bacterium Proteus mirabilis is associated with a significant number of catheter-associated urinary tract infections (UTIs). Strict regulation of the antagonistic processes of adhesion and motility, mediated by fimbriae and flagella, respectively, is essential for disease progression. Previously, the transcriptional regulator MrpJ, which is encoded by the mrp fimbrial operon, has been shown to repress both swimming and swarming motility. Here we show that MrpJ affects an array of cellular processes beyond adherence and motility. Microarray analysis found that expression of mrpJ mimicking levels observed during UTIs leads to differential expression of 217 genes related to, among other functions, bacterial virulence, type VI secretion, and metabolism. We probed the molecular mechanism of transcriptional regulation by MrpJ using transcriptional reporters and chromatin immunoprecipitation (ChIP). Binding of MrpJ to two virulence-associated target gene promoters, the promoters of the flagellar master regulator flhDC and mrp itself, appears to be affected by the condensation state of the native chromosome, although both targets share a direct MrpJ binding site proximal to the transcriptional start. Furthermore, an mrpJ deletion mutant colonized the bladders of mice at significantly lower levels in a transurethral model of infection. Additionally, we observed that mrpJ is widely conserved in a collection of recent clinical isolates. Altogether, these findings support a role of MrpJ as a global regulator of P. mirabilis virulence. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Transcriptional Analysis of the MrpJ Network: Modulation of Diverse Virulence-Associated Genes and Direct Regulation of mrp Fimbrial and flhDC Flagellar Operons in Proteus mirabilis

    Science.gov (United States)

    Bode, Nadine J.; Debnath, Irina; Kuan, Lisa; Schulfer, Anjelique; Ty, Maureen

    2015-01-01

    The enteric bacterium Proteus mirabilis is associated with a significant number of catheter-associated urinary tract infections (UTIs). Strict regulation of the antagonistic processes of adhesion and motility, mediated by fimbriae and flagella, respectively, is essential for disease progression. Previously, the transcriptional regulator MrpJ, which is encoded by the mrp fimbrial operon, has been shown to repress both swimming and swarming motility. Here we show that MrpJ affects an array of cellular processes beyond adherence and motility. Microarray analysis found that expression of mrpJ mimicking levels observed during UTIs leads to differential expression of 217 genes related to, among other functions, bacterial virulence, type VI secretion, and metabolism. We probed the molecular mechanism of transcriptional regulation by MrpJ using transcriptional reporters and chromatin immunoprecipitation (ChIP). Binding of MrpJ to two virulence-associated target gene promoters, the promoters of the flagellar master regulator flhDC and mrp itself, appears to be affected by the condensation state of the native chromosome, although both targets share a direct MrpJ binding site proximal to the transcriptional start. Furthermore, an mrpJ deletion mutant colonized the bladders of mice at significantly lower levels in a transurethral model of infection. Additionally, we observed that mrpJ is widely conserved in a collection of recent clinical isolates. Altogether, these findings support a role of MrpJ as a global regulator of P. mirabilis virulence. PMID:25847961

  10. Transcriptional regulation by competing transcription factor modules.

    Directory of Open Access Journals (Sweden)

    Rutger Hermsen

    2006-12-01

    Full Text Available Gene regulatory networks lie at the heart of cellular computation. In these networks, intracellular and extracellular signals are integrated by transcription factors, which control the expression of transcription units by binding to cis-regulatory regions on the DNA. The designs of both eukaryotic and prokaryotic cis-regulatory regions are usually highly complex. They frequently consist of both repetitive and overlapping transcription factor binding sites. To unravel the design principles of these promoter architectures, we have designed in silico prokaryotic transcriptional logic gates with predefined input-output relations using an evolutionary algorithm. The resulting cis-regulatory designs are often composed of modules that consist of tandem arrays of binding sites to which the transcription factors bind cooperatively. Moreover, these modules often overlap with each other, leading to competition between them. Our analysis thus identifies a new signal integration motif that is based upon the interplay between intramodular cooperativity and intermodular competition. We show that this signal integration mechanism drastically enhances the capacity of cis-regulatory domains to integrate signals. Our results provide a possible explanation for the complexity of promoter architectures and could be used for the rational design of synthetic gene circuits.

  11. Monitoring of transcriptional regulation in Pichia pastoris under protein production conditions

    Directory of Open Access Journals (Sweden)

    Bhattacharyya Anamitra

    2007-06-01

    Full Text Available Abstract Background It has become evident that host cells react to recombinant protein production with a variety of metabolic and intrinsic stresses such as the unfolded protein response (UPR pathway. Additionally, environmental conditions such as growth temperature may have a strong impact on cell physiology and specific productivity. However, there is little information about the molecular reactions of the host cells on a genomic level, especially in context to recombinant protein secretion. For the first time, we monitored transcriptional regulation of a subset of marker genes in the common production host Pichia pastoris to gain insights into the general physiological status of the cells under protein production conditions, with the main focus on secretion stress related genes. Results Overexpression of the UPR activating transcription factor Hac1p was employed to identify UPR target genes in P. pastoris and the responses were compared to those known for Saccharomyces cerevisiae. Most of the folding/secretion related genes showed similar regulation patterns in both yeasts, whereas genes associated with the general stress response were differentially regulated. Secretion of an antibody Fab fragment led to induction of UPR target genes in P. pastoris, however not to the same magnitude as Hac1p overproduction. Overexpression of S. cerevisiae protein disulfide isomerase (PDI1 enhances Fab secretion rates 1.9 fold, but did not relief UPR stress. Reduction of cultivation temperature from 25°C to 20°C led to a 1.4-fold increase of specific product secretion rate in chemostat cultivations, although the transcriptional levels of the product genes (Fab light and heavy chain were significantly reduced at the lower temperature. A subset of folding related genes appeared to be down-regulated at the reduced temperature, whereas transcription of components of the ER associated degradation and the secretory transport was enhanced. Conclusion Monitoring of

  12. Identification of novel transcription factors regulating secondary cell wall formation in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Hua eCassan-Wang

    2013-06-01

    Full Text Available The presence of lignin in secondary cell walls (SCW is a major factor preventing hydrolytic enzymes from gaining access to cellulose, thereby limiting the saccharification potential of plant biomass. To understand how lignification is regulated is a prerequisite for selecting plant biomass better adapted to bioethanol production. Because transcriptional regulation is a major mechanism controlling the expression of genes involved in lignin biosynthesis, our aim was to identify novel transcription factors dictating lignin profiles in the model plant Arabidopsis. To this end, we have developed a post-genomic approach by combining four independent in-house SCW-related transcriptome datasets obtained from (i the fiber cell wall-deficient wat1 Arabidopsis mutant, (ii Arabidopsis lines over-expressing either the master regulatory activator EgMYB2 or (iii the repressor EgMYB1 and finally (iv Arabidopsis orthologs of Eucalyptus xylem-expressed genes. This allowed us to identify 502 up- or down-regulated transcription factors. We preferentially selected those present in more than one dataset and further analyzed their in silico expression patterns as an additional selection criteria. This selection process led to 80 candidates. Notably, 16 of them were already proven to regulate SCW formation, thereby validating the overall strategy. Then, we phenotyped 43 corresponding mutant lines focusing on histological observations of xylem and interfascicular fibers. This phenotypic screen revealed six mutant lines exhibiting altered lignification patterns. Two of them (blh6 and a zinc finger transcription factor presented hypolignified SCW. Three others (myb52, myb-like TF, hb5 showed hyperlignified SCW whereas the last one (hb15 showed ectopic lignification. In addition, our meta-analyses highlighted a reservoir of new potential regulators adding to the gene network regulating SCW but also opening new avenues to ultimately improve SCW composition for biofuel

  13. Thermodynamics-based models of transcriptional regulation with gene sequence.

    Science.gov (United States)

    Wang, Shuqiang; Shen, Yanyan; Hu, Jinxing

    2015-12-01

    Quantitative models of gene regulatory activity have the potential to improve our mechanistic understanding of transcriptional regulation. However, the few models available today have been based on simplistic assumptions about the sequences being modeled or heuristic approximations of the underlying regulatory mechanisms. In this work, we have developed a thermodynamics-based model to predict gene expression driven by any DNA sequence. The proposed model relies on a continuous time, differential equation description of transcriptional dynamics. The sequence features of the promoter are exploited to derive the binding affinity which is derived based on statistical molecular thermodynamics. Experimental results show that the proposed model can effectively identify the activity levels of transcription factors and the regulatory parameters. Comparing with the previous models, the proposed model can reveal more biological sense.

  14. Transcription factor organic cation transporter 1 (OCT-1 affects the expression of porcine Klotho (KL gene

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-07-01

    Full Text Available Klotho (KL, originally discovered as an aging suppressor, is a membrane protein that shares sequence similarity with the β-glucosidase enzymes. Recent reports showed Klotho might play a role in adipocyte maturation and systemic glucose metabolism. However, little is known about the transcription factors involved in regulating the expression of porcine KL gene. Deletion fragment analysis identified KL-D2 (−418 bp to −3 bp as the porcine KL core promoter. MARC0022311SNP (A or G in KL intron 1 was detected in Landrace × DIV pigs using the Porcine SNP60 BeadChip. The pGL-D2-A and pGL-D2-G were constructed with KL-D2 and the intron fragment of different alleles and relative luciferase activity of pGL3-D2-G was significantly higher than that of pGL3-D2-A in the PK cells and ST cells. This was possibly the result of a change in KL binding ability with transcription factor organic cation transporter 1 (OCT-1, which was confirmed using electrophoretic mobility shift assays (EMSA and chromatin immune-precipitation (ChIP. Moreover, OCT-1 regulated endogenous KL expression by RNA interference experiments. Our study indicates SNP MARC0022311 affects porcine KL expression by regulating its promoter activity via OCT-1.

  15. Discrete redox signaling pathways regulate photosynthetic light-harvesting and chloroplast gene transcription.

    Directory of Open Access Journals (Sweden)

    John F Allen

    Full Text Available In photosynthesis in chloroplasts, two related regulatory processes balance the actions of photosystems I and II. These processes are short-term, post-translational redistribution of light-harvesting capacity, and long-term adjustment of photosystem stoichiometry initiated by control of chloroplast DNA transcription. Both responses are initiated by changes in the redox state of the electron carrier, plastoquinone, which connects the two photosystems. Chloroplast Sensor Kinase (CSK is a regulator of transcription of chloroplast genes for reaction centres of the two photosystems, and a sensor of plastoquinone redox state. We asked whether CSK is also involved in regulation of absorbed light energy distribution by phosphorylation of light-harvesting complex II (LHC II. Chloroplast thylakoid membranes isolated from a CSK T-DNA insertion mutant and from wild-type Arabidopsis thaliana exhibit similar light- and redox-induced (32P-labelling of LHC II and changes in 77 K chlorophyll fluorescence emission spectra, while room-temperature chlorophyll fluorescence emission transients from Arabidopsis leaves are perturbed by inactivation of CSK. The results indicate indirect, pleiotropic effects of reaction centre gene transcription on regulation of photosynthetic light-harvesting in vivo. A single, direct redox signal is transmitted separately to discrete transcriptional and post-translational branches of an integrated cytoplasmic regulatory system.

  16. Calcium regulates caveolin-1 expression at the transcriptional level

    International Nuclear Information System (INIS)

    Yang, Xiao-Yan; Huang, Cheng-Cheng; Kan, Qi-Ming; Li, Yan; Liu, Dan; Zhang, Xue-Cheng; Sato, Toshinori; Yamagata, Sadako; Yamagata, Tatsuya

    2012-01-01

    Highlights: ► Caveolin-1 expression is regulated by calcium signaling at the transcriptional level. ► An inhibitor of or siRNA to L-type calcium channel suppressed caveolin-1 expression. ► Cyclosporine A or an NFAT inhibitor markedly reduced caveolin-1 expression. ► Caveolin-1 regulation by calcium signaling is observed in several mouse cell lines. -- Abstract: Caveolin-1, an indispensable component of caveolae serving as a transformation suppressor protein, is highly expressed in poorly metastatic mouse osteosarcoma FBJ-S1 cells while highly metastatic FBJ-LL cells express low levels of caveolin-1. Calcium concentration is higher in FBJ-S1 cells than in FBJ-LL cells; therefore, we investigated the possibility that calcium signaling positively regulates caveolin-1 in mouse FBJ-S1 cells. When cells were treated with the calcium channel blocker nifedipine, cyclosporin A (a calcineurin inhibitor), or INCA-6 (a nuclear factor of activated T-cells [NFAT] inhibitor), caveolin-1 expression at the mRNA and protein levels decreased. RNA silencing of voltage-dependent L-type calcium channel subunit alpha-1C resulted in suppression of caveolin-1 expression. This novel caveolin-1 regulation pathway was also identified in mouse NIH 3T3 cells and Lewis lung carcinoma cells. These results indicate that caveolin-1 is positively regulated at the transcriptional level through a novel calcium signaling pathway mediated by L-type calcium channel/Ca 2+ /calcineurin/NFAT.

  17. Synchronization of developmental processes and defense signaling by growth regulating transcription factors.

    Directory of Open Access Journals (Sweden)

    Jinyi Liu

    Full Text Available Growth regulating factors (GRFs are a conserved class of transcription factor in seed plants. GRFs are involved in various aspects of tissue differentiation and organ development. The implication of GRFs in biotic stress response has also been recently reported, suggesting a role of these transcription factors in coordinating the interaction between developmental processes and defense dynamics. However, the molecular mechanisms by which GRFs mediate the overlaps between defense signaling and developmental pathways are elusive. Here, we report large scale identification of putative target candidates of Arabidopsis GRF1 and GRF3 by comparing mRNA profiles of the grf1/grf2/grf3 triple mutant and those of the transgenic plants overexpressing miR396-resistant version of GRF1 or GRF3. We identified 1,098 and 600 genes as putative targets of GRF1 and GRF3, respectively. Functional classification of the potential target candidates revealed that GRF1 and GRF3 contribute to the regulation of various biological processes associated with defense response and disease resistance. GRF1 and GRF3 participate specifically in the regulation of defense-related transcription factors, cell-wall modifications, cytokinin biosynthesis and signaling, and secondary metabolites accumulation. GRF1 and GRF3 seem to fine-tune the crosstalk between miRNA signaling networks by regulating the expression of several miRNA target genes. In addition, our data suggest that GRF1 and GRF3 may function as negative regulators of gene expression through their association with other transcription factors. Collectively, our data provide new insights into how GRF1 and GRF3 might coordinate the interactions between defense signaling and plant growth and developmental pathways.

  18. Transcriptional Regulation of Arabidopsis MIR168a and ARGONAUTE1 Homeostasis in Abscisic Acid and Abiotic Stress Responses1[W

    Science.gov (United States)

    Li, Wei; Cui, Xiao; Meng, Zhaolu; Huang, Xiahe; Xie, Qi; Wu, Heng; Jin, Hailing; Zhang, Dabing; Liang, Wanqi

    2012-01-01

    The accumulation of a number of small RNAs in plants is affected by abscisic acid (ABA) and abiotic stresses, but the underlying mechanisms are poorly understood. The miR168-mediated feedback regulatory loop regulates ARGONAUTE1 (AGO1) homeostasis, which is crucial for gene expression modulation and plant development. Here, we reveal a transcriptional regulatory mechanism by which MIR168 controls AGO1 homeostasis during ABA treatment and abiotic stress responses in Arabidopsis (Arabidopsis thaliana). Plants overexpressing MIR168a and the AGO1 loss-of-function mutant ago1-27 display ABA hypersensitivity and drought tolerance, while the mir168a-2 mutant shows ABA hyposensitivity and drought hypersensitivity. Both the precursor and mature miR168 were induced under ABA and several abiotic stress treatments, but no obvious decrease for the target of miR168, AGO1, was shown under the same conditions. However, promoter activity analysis indicated that AGO1 transcription activity was increased under ABA and drought treatments, suggesting that transcriptional elevation of MIR168a is required for maintaining a stable AGO1 transcript level during the stress response. Furthermore, we showed both in vitro and in vivo that the transcription of MIR168a is directly regulated by four abscisic acid-responsive element (ABRE) binding factors, which bind to the ABRE cis-element within the MIR168a promoter. This ABRE motif is also found in the promoter of MIR168a homologs in diverse plant species. Our findings suggest that transcriptional regulation of miR168 and posttranscriptional control of AGO1 homeostasis may play an important and conserved role in stress response and signal transduction in plants. PMID:22247272

  19. What's the FOX Got to Do with the KITten? Regulating the Lineage-Specific Transcriptional Landscape in GIST.

    Science.gov (United States)

    Lee, Donna M; Duensing, Anette

    2018-02-01

    Transcriptional regulation of the KIT receptor tyrosine kinase, a master regulator in gastrointestinal stromal tumors (GIST) and their precursors, the interstitial cells of Cajal (ICC), is part of a positive feedback loop involving the transcription factor ETV1. A new study now shows that the forkhead box (FOX) family transcription factor FOXF1 not only is an upstream regulator of ETV1 and hence ICC/GIST lineage-specific gene transcription, but also functions as lineage-specific pioneer factor with an active role in chromatin rearrangement to facilitate ETV1 binding and transcriptional activity. Cancer Discov; 8(2); 146-9. ©2018 AACR See related article by Ran et al., p. 234 . ©2018 American Association for Cancer Research.

  20. Temperature and metal exposure affect membrane fatty acid composition and transcription of desaturases and elongases in fathead minnow muscle and brain.

    Science.gov (United States)

    Fadhlaoui, Mariem; Pierron, Fabien; Couture, Patrice

    2018-02-01

    In this study, we tested the hypothesis that metal exposure affected the normal thermal response of cell membrane FA composition and of elongase and desaturase gene transcription levels. To this end, muscle and brain membrane FA composition and FA desaturase (fads2, degs2 and scd2) and elongase (elovl2, elovl5 and elovl6) gene transcription levels were analyzed in fathead minnows (Pimephales promelas) acclimated for eight weeks to 15, 25 or 30°C exposed or not to cadmium (Cd, 6μg/l) or nickel (Ni, 450 6μg/l). The response of membrane FA composition to temperature variations or metal exposure differed between muscle and brain. In muscle, an increase of temperature induced a decrease of polyunsaturated FA (PUFA) and an increase of saturated FA (SFA) in agreement with the current paradigm. Although a similar response was observed in brain between 15 and 25°C, at 30°C, brain membrane unsaturation was higher than predicted. In both tissues, metal exposure affected the normal thermal response of membrane FA composition. The transcription of desaturases and elongases was higher in the brain and varied with acclimation temperature and metal exposure but these variations did not generally reflect changes in membrane FA composition. The mismatch between gene transcription and membrane composition highlights that several levels of control other than gene transcription are involved in adjusting membrane FA composition, including post-transcriptional regulation of elongases and desaturases and de novo phospholipid biosynthesis. Our study also reveals that metal exposure affects the mechanisms involved in adjusting cell membrane FA composition in ectotherms. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Cyclin D3 interacts with vitamin D receptor and regulates its transcription activity

    International Nuclear Information System (INIS)

    Jian Yongzhi; Yan Jun; Wang Hanzhou; Chen Chen; Sun Maoyun; Jiang Jianhai; Lu Jieqiong; Yang Yanzhong; Gu Jianxin

    2005-01-01

    D-type cyclins are essential for the progression through the G1 phase of the cell cycle. Besides serving as cell cycle regulators, D-type cyclins were recently reported to have transcription regulation functions. Here, we report that cyclin D3 is a new interacting partner of vitamin D receptor (VDR), a member of the superfamily of nuclear receptors for steroid hormones, thyroid hormone, and the fat-soluble vitamins A and D. The interaction was confirmed with methods of yeast two-hybrid system, in vitro binding analysis and in vivo co-immunoprecipitation. Cyclin D3 interacted with VDR in a ligand-independent manner, but treatment of the ligand, 1,25-dihydroxyvitamin D3, strengthened the interaction. Confocal microscopy analysis showed that ligand-activated VDR led to an accumulation of cyclin D3 in the nuclear region. Cyclin D3 up-regulated transcriptional activity of VDR and this effect was counteracted by overexpression of CDK4 and CDK6. These findings provide us a new clue to understand the transcription regulation functions of D-type cyclins

  2. TGMS in Rapeseed (Brassica napus Resulted in Aberrant Transcriptional Regulation, Asynchronous Microsporocyte Meiosis, Defective Tapetum, and Fused Sexine

    Directory of Open Access Journals (Sweden)

    Xi-Qiong Liu

    2017-07-01

    -associated endoplasmic reticulum protein 2, WRKY transcription factors and pentatricopeptide repeat (PPR protein At1g07590. The tapetum-development-related genes, including BnEMS1, BnDYT1, and BnAMS, were slightly up-regulated in 3-mm-long flower buds or their anthers, and their downstream genes, BnMS1 and BnMYB80, which affect callose dissolution and exine formation, were greatly up-regulated in SP2S. This aberrant genetic regulation corresponded well with the cytological abnormalities. The results suggested that expression of TGMS associates with complex transcriptional regulation.

  3. Non-electron transfer chain mitochondrial defects differently regulate HIF-1α degradation and transcription

    Directory of Open Access Journals (Sweden)

    Antonina N. Shvetsova

    2017-08-01

    contribute differently to HIF-1α regulation by affecting HIF-1α degradation and HIF-1α transcription where ROS play not a major role.

  4. Triptolide inhibits transcription of hTERT through down-regulation of transcription factor specificity protein 1 in primary effusion lymphoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Long, Cong; Wang, Jingchao [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); Guo, Wei [Department of Pathology and Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); Wang, Huan; Wang, Chao; Liu, Yu [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); Sun, Xiaoping, E-mail: xsun6@whu.edu.cn [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); State Key Laboratory of Virology, Wuhan University, Wuhan, 430072 (China)

    2016-01-01

    Primary effusion lymphoma (PEL) is a rare and aggressive non-Hodgkin's lymphoma. Human telomerase reverse transcriptase (hTERT), a key component responsible for the regulation of telomerase activity, plays important roles in cellular immortalization and cancer development. Triptolide purified from Tripterygium extracts displays a broad-spectrum bioactivity profile, including immunosuppressive, anti-inflammatory, and anti-tumor. In this study, it is investigated whether triptolide reduces hTERT expression and suppresses its activity in PEL cells. The mRNA and protein levels of hTERT were examined by real time-PCR and Western blotting, respectively. The activity of hTERT promoter was determined by Dual luciferase reporter assay. Our results demonstrated that triptolide decreased expression of hTERT at both mRNA and protein levels. Further gene sequence analysis indicated that the activity of hTERT promoter was suppressed by triptolide. Triptolide also reduced the half-time of hTERT. Additionally, triptolide inhibited the expression of transcription factor specificity protein 1(Sp1) in PEL cells. Furthermore, knock-down of Sp1 by using specific shRNAs resulted in down-regulation of hTERT transcription and protein expression levels. Inhibition of Sp1 by specific shRNAs enhanced triptolide-induced cell growth inhibition and apoptosis. Collectively, our results demonstrate that the inhibitory effect of triptolide on hTERT transcription is possibly mediated by inhibition of transcription factor Sp1 in PEL cells. - Highlights: • Triptolide reduces expression of hTERT by decreasing its transcription level. • Triptolide reduces promoter activity and stability of hTERT. • Triptolide down-regulates expression of Sp1. • Special Sp1 shRNAs inhibit transcription and protein expression of hTERT. • Triptolide and Sp1 shRNA2 induce cell proliferation inhibition and apoptosis.

  5. DNA context represents transcription regulation of the gene in mouse embryonic stem cells

    Science.gov (United States)

    Ha, Misook; Hong, Soondo

    2016-04-01

    Understanding gene regulatory information in DNA remains a significant challenge in biomedical research. This study presents a computational approach to infer gene regulatory programs from primary DNA sequences. Using DNA around transcription start sites as attributes, our model predicts gene regulation in the gene. We find that H3K27ac around TSS is an informative descriptor of the transcription program in mouse embryonic stem cells. We build a computational model inferring the cell-type-specific H3K27ac signatures in the DNA around TSS. A comparison of embryonic stem cell and liver cell-specific H3K27ac signatures in DNA shows that the H3K27ac signatures in DNA around TSS efficiently distinguish the cell-type specific H3K27ac peaks and the gene regulation. The arrangement of the H3K27ac signatures inferred from the DNA represents the transcription regulation of the gene in mESC. We show that the DNA around transcription start sites is associated with the gene regulatory program by specific interaction with H3K27ac.

  6. Protein-protein interactions in the regulation of WRKY transcription factors.

    Science.gov (United States)

    Chi, Yingjun; Yang, Yan; Zhou, Yuan; Zhou, Jie; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2013-03-01

    It has been almost 20 years since the first report of a WRKY transcription factor, SPF1, from sweet potato. Great progress has been made since then in establishing the diverse biological roles of WRKY transcription factors in plant growth, development, and responses to biotic and abiotic stress. Despite the functional diversity, almost all analyzed WRKY proteins recognize the TTGACC/T W-box sequences and, therefore, mechanisms other than mere recognition of the core W-box promoter elements are necessary to achieve the regulatory specificity of WRKY transcription factors. Research over the past several years has revealed that WRKY transcription factors physically interact with a wide range of proteins with roles in signaling, transcription, and chromatin remodeling. Studies of WRKY-interacting proteins have provided important insights into the regulation and mode of action of members of the important family of transcription factors. It has also emerged that the slightly varied WRKY domains and other protein motifs conserved within each of the seven WRKY subfamilies participate in protein-protein interactions and mediate complex functional interactions between WRKY proteins and between WRKY and other regulatory proteins in the modulation of important biological processes. In this review, we summarize studies of protein-protein interactions for WRKY transcription factors and discuss how the interacting partners contribute, at different levels, to the establishment of the complex regulatory and functional network of WRKY transcription factors.

  7. Nitrogen fixation and molecular oxygen: comparative genomic reconstruction of transcription regulation in Alphaproteobacteria

    Directory of Open Access Journals (Sweden)

    Olga V Tsoy

    2016-08-01

    Full Text Available Biological nitrogen fixation plays a crucial role in the nitrogen cycle. An ability to fix atmospheric nitrogen, reducing it to ammonium, was described for multiple species of Bacteria and Archaea. Being a complex and sensitive process, nitrogen fixation requires a complicated regulatory system, also, on the level of transcription. The transcriptional regulatory network for nitrogen fixation was extensively studied in several representatives of the class Alphaproteobacteria. This regulatory network includes the activator of nitrogen fixation NifA, working in tandem with the alternative sigma-factor RpoN as well as oxygen-responsive regulatory systems, one-component regulators FnrN/FixK and two-component system FixLJ. Here we used a comparative genomics analysis for in silico study of the transcriptional regulatory network in 50 genomes of Alphaproteobacteria. We extended the known regulons and proposed the scenario for the evolution of the nitrogen fixation transcriptional network. The reconstructed network substantially expands the existing knowledge of transcriptional regulation in nitrogen-fixing microorganisms and can be used for genetic experiments, metabolic reconstruction, and evolutionary analysis.

  8. An oilseed rape WRKY-type transcription factor regulates ROS accumulation and leaf senescence in Nicotiana benthamiana and Arabidopsis through modulating transcription of RbohD and RbohF.

    Science.gov (United States)

    Yang, Liu; Ye, Chaofei; Zhao, Yuting; Cheng, Xiaolin; Wang, Yiqiao; Jiang, Yuan-Qing; Yang, Bo

    2018-06-01

    Overexpression of BnaWGR1 causes ROS accumulation and promotes leaf senescence. BnaWGR1 binds to promoters of RbohD and RbohF and regulates their expression. Manipulation of leaf senescence process affects agricultural traits of crop plants, including biomass, seed yield and stress resistance. Since delayed leaf senescence usually enhances tolerance to multiple stresses, we analyzed the function of specific MAPK-WRKY cascades in abiotic and biotic stress tolerance as well as leaf senescence in oilseed rape (Brassica napus L.), one of the important oil crops. In the present study, we showed that expression of one WRKY gene from oilseed rape, BnaWGR1, induced an accumulation of reactive oxygen species (ROS), cell death and precocious leaf senescence both in Nicotiana benthamiana and transgenic Arabidopsis (Arabidopsis thaliana). BnaWGR1 regulates the transcription of two genes encoding key enzymes implicated in production of ROS, that is, respiratory burst oxidase homolog (Rboh) D and RbohF. A dual-luciferase reporter assay confirmed the transcriptional regulation of RbohD and RbohF by BnaWGR1. In vitro electrophoresis mobility shift assay (EMSA) showed that BnaWGR1 could bind to W-box cis-elements within promoters of RbohD and RbohF. Moreover, RbohD and RbohF were significantly upregulated in transgenic Arabidopsis overexpressing BnaWGR1. In summary, these results suggest that BnaWGR1 could positively regulate leaf senescence through regulating the expression of RbohD and RbohF genes.

  9. Transcriptional regulation of BRD7 expression by Sp1 and c-Myc

    Directory of Open Access Journals (Sweden)

    Li Shufang

    2008-12-01

    Full Text Available Abstract Background Bromodomain is an evolutionally conserved domain that is found in proteins strongly implicated in signal-dependent transcriptional regulation. Genetic alterations of bromodomain genes contributed to the development of many human cancers and other disorders. BRD7 is a recently identified bromodomain gene. It plays a critical role in cellular growth, cell cycle progression, and signal-dependent gene expression. Previous studies showed that BRD7 gene exhibited much higher-level of mRNA expression in normal nasopharyngeal epithelia than in nasopharyngeal carcinoma (NPC biopsies and cell lines. However, little is known about its transcriptional regulation. In this study, we explored the transcriptional regulation of BRD7 gene. Method Potential binding sites of transcription factors within the promoter region of BRD7 gene were predicted with MatInspector Professional http://genomatix.de/cgi-bin/matinspector_prof/mat_fam.pl. Mutation construct methods and luciferase assays were performed to define the minimal promoter of BRD7 gene. RT-PCR and western blot assays were used to detect the endogenous expression of transcription factor Sp1, c-Myc and E2F6 in all cell lines used in this study. Electrophoretic mobility shift assays (EMSA and Chromatin immunoprecipitation (ChIP were used to detect the direct transcription factors that are responsible for the promoter activity of BRD7 gene. DNA vector-based siRNA technology and cell transfection methods were employed to establish clone pools that stably expresses SiRNA against c-Myc expression in nasopharyngeal carcinoma 5-8F cells. Real-time PCR was used to detect mRNA expression of BRD7 gene in 5-8F/Si-c-Myc cells. Results We defined the minimal promoter of BRD7 gene in a 55-bp region (from -266 to -212bp, and identified that its promoter activity is inversely related to c-Myc expression. Sp1 binds to the Sp1/Myc-Max overlapping site of BRD7 minimal promoter, and slightly positively

  10. Differential regulation of the transcriptional activity of the glucocorticoid receptor through site-specific phosphorylation

    Directory of Open Access Journals (Sweden)

    Raj Kumar

    2008-08-01

    Full Text Available Raj Kumar1, William J Calhoun21Division of Gastroenterology; 2Division of Allergy, Pulmonary, Immunology, Critical Care, and Sleep (APICS, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USAAbstract: Post-translational modifications such as phosphorylation are known to play an important role in the gene regulation by the transcription factors including the nuclear hormone receptor superfamily of which the glucocorticoid receptor (GR is a member. Protein phosphorylation often switches cellular activity from one state to another. Like many other transcription factors, the GR is a phosphoprotein, and phosphorylation plays an important role in the regulation of GR activity. Cell signaling pathways that regulate phosphorylation of the GR and its associated proteins are important determinants of GR function under various physiological conditions. While the role of many phosphorylation sites in the GR is still not fully understood, the role of others is clearer. Several aspects of transcription factor function, including DNA binding affinity, interaction of transactivation domains with the transcription initiation complex, and shuttling between the cytoplasmic compartments, have all been linked to site-specific phosphorylation. All major phosphorylation sites in the human GR are located in the N-terminal domain including the major transactivation domain, AF1. Available literature clearly indicates that many of these potential phosphorylation sites are substrates for multiple kinases, suggesting the potential for a very complex regulatory network. Phosphorylated GR interacts favorably with critical coregulatory proteins and subsequently enhances transcriptional activity. In addition, the activities and specificities of coregulators may be subject to similar regulation by phosphorylation. Regulation of the GR activity due to phosphorylation appears to be site-specific and dependent upon specific cell signaling cascade

  11. Translational control by the DEAD Box RNA helicase belle regulates ecdysone-triggered transcriptional cascades.

    Directory of Open Access Journals (Sweden)

    Robert J Ihry

    Full Text Available Steroid hormones act, through their respective nuclear receptors, to regulate target gene expression. Despite their critical role in development, physiology, and disease, however, it is still unclear how these systemic cues are refined into tissue-specific responses. We identified a mutation in the evolutionarily conserved DEAD box RNA helicase belle/DDX3 that disrupts a subset of responses to the steroid hormone ecdysone during Drosophila melanogaster metamorphosis. We demonstrate that belle directly regulates translation of E74A, an ets transcription factor and critical component of the ecdysone-induced transcriptional cascade. Although E74A mRNA accumulates to abnormally high levels in belle mutant tissues, no E74A protein is detectable, resulting in misregulation of E74A-dependent ecdysone response genes. The accumulation of E74A mRNA in belle mutant salivary glands is a result of auto-regulation, fulfilling a prediction made by Ashburner nearly 40 years ago. In this model, Ashburner postulates that, in addition to regulating secondary response genes, protein products of primary response genes like E74A also inhibit their own ecdysone-induced transcription. Moreover, although ecdysone-triggered transcription of E74A appears to be ubiquitous during metamorphosis, belle-dependent translation of E74A mRNA is spatially restricted. These results demonstrate that translational control plays a critical, and previously unknown, role in refining transcriptional responses to the steroid hormone ecdysone.

  12. Pnrc2 regulates 3'UTR-mediated decay of segmentation clock-associated transcripts during zebrafish segmentation.

    Science.gov (United States)

    Gallagher, Thomas L; Tietz, Kiel T; Morrow, Zachary T; McCammon, Jasmine M; Goldrich, Michael L; Derr, Nicolas L; Amacher, Sharon L

    2017-09-01

    Vertebrate segmentation is controlled by the segmentation clock, a molecular oscillator that regulates gene expression and cycles rapidly. The expression of many genes oscillates during segmentation, including hairy/Enhancer of split-related (her or Hes) genes, which encode transcriptional repressors that auto-inhibit their own expression, and deltaC (dlc), which encodes a Notch ligand. We previously identified the tortuga (tor) locus in a zebrafish forward genetic screen for genes involved in cyclic transcript regulation and showed that cyclic transcripts accumulate post-splicing in tor mutants. Here we show that cyclic mRNA accumulation in tor mutants is due to loss of pnrc2, which encodes a proline-rich nuclear receptor co-activator implicated in mRNA decay. Using an inducible in vivo reporter system to analyze transcript stability, we find that the her1 3'UTR confers Pnrc2-dependent instability to a heterologous transcript. her1 mRNA decay is Dicer-independent and likely employs a Pnrc2-Upf1-containing mRNA decay complex. Surprisingly, despite accumulation of cyclic transcripts in pnrc2-deficient embryos, we find that cyclic protein is expressed normally. Overall, we show that Pnrc2 promotes 3'UTR-mediated decay of developmentally-regulated segmentation clock transcripts and we uncover an additional post-transcriptional regulatory layer that ensures oscillatory protein expression in the absence of cyclic mRNA decay. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Hyperosmotic stress regulates the distribution and stability of myocardin-related transcription factor, a key modulator of the cytoskeleton

    DEFF Research Database (Denmark)

    Ly, Donald L.; Waheed, Faiza; Lodyga, Monika

    2013-01-01

    Hyperosmotic stress initiates several adaptive responses, including the remodeling of the cytoskeleton. Besides maintaining structural integrity, the cytoskeleton has emerged as an important regulator of gene transcription. Myocardin-related transcription factor (MRTF), an actin-regulated coactiv......Hyperosmotic stress initiates several adaptive responses, including the remodeling of the cytoskeleton. Besides maintaining structural integrity, the cytoskeleton has emerged as an important regulator of gene transcription. Myocardin-related transcription factor (MRTF), an actin......-regulated coactivator of serum response factor, is a major link between the actin skeleton and transcriptional control. We therefore investigated whether MRTF is regulated by hyperosmotic stress. Here we show that hypertonicity induces robust, rapid, and transient translocation of MRTF from the cytosol to the nucleus...... in kidney tubular cells. We found that the hyperosmolarity-triggered MRTF translocation is mediated by the RhoA/Rho kinase (ROK) pathway. Moreover, the Rho guanine nucleotide exchange factor GEF-H1 is activated by hyperosmotic stress, and it is a key contributor to the ensuing RhoA activation and MRTF...

  14. Post-transcriptional regulation of vascular endothelial growth factor: Implications for tumor angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Peter S Yoo; Abby L Mulkeen; Charles H Cha

    2006-01-01

    Vascular endothelial growth factor (VEGF) is a potent secreted mitogen critical for physiologic and tumor angiogenesis. Regulation of VEGF occurs at several levels, including transcription, mRNA stabilization,translation, and differential cellular localization of various isoforms. Recent advances in our understanding of posttranscriptional regulation of VEGF include identification of the stabilizing mRNA binding protein, HuR, and the discovery of internal ribosomal entry sites in the 5'UTR of the VEGF mRNA. Monoclonal anti-VEGF antibody was recently approved for use in humans, but suffers from the need for high systemic doses. RNA interference (RNAi)technology is being used in vitro and in animal models with promising results. Here, we review the literature on post-transcriptional regulation of VEGF and describe recent progress in targeting these mechanisms for therapeutic benefit.

  15. Affected pathways and transcriptional regulators in gene expression response to an ultra-marathon trail: Global and independent activity approaches.

    Directory of Open Access Journals (Sweden)

    Maria Maqueda

    Full Text Available Gene expression (GE analyses on blood samples from marathon and half-marathon runners have reported significant impacts on the immune and inflammatory systems. An ultra-marathon trail (UMT represents a greater effort due to its more testing conditions. For the first time, we report the genome-wide GE profiling in a group of 16 runners participating in an 82 km UMT competition. We quantified their differential GE profile before and after the race using HuGene2.0st microarrays (Affymetrix Inc., California, US. The results obtained were decomposed by means of an independent component analysis (ICA targeting independent expression modes. We observed significant differences in the expression levels of 5,084 protein coding genes resulting in an overrepresentation of 14% of the human biological pathways from the Kyoto Encyclopedia of Genes and Genomes database. These were mainly clustered on terms related with protein synthesis repression, altered immune system and infectious diseases related mechanisms. In a second analysis, 27 out of the 196 transcriptional regulators (TRs included in the Open Regulatory Annotation database were overrepresented. Among these TRs, we identified transcription factors from the hypoxia-inducible factors (HIF family EPAS1 (p< 0.01 and HIF1A (p<0.001, and others jointly described in the gluconeogenesis program such as HNF4 (p< 0.001, EGR1 (p<0.001, CEBPA (p< 0.001 and a highly specific TR, YY1 (p<0.01. The five independent components, obtained from ICA, further revealed a down-regulation of 10 genes distributed in the complex I, III and V from the electron transport chain. This mitochondrial activity reduction is compatible with HIF-1 system activation. The vascular endothelial growth factor (VEGF pathway, known to be regulated by HIF, also emerged (p<0.05. Additionally, and related to the brain rewarding circuit, the endocannabinoid signalling pathway was overrepresented (p<0.05.

  16. Nucleolin is regulated both at the level of transcription and translation

    International Nuclear Information System (INIS)

    Bicknell, Katrina; Brooks, Gavin; Kaiser, Pete; Chen Hongying; Dove, Brian K.; Hiscox, Julian A.

    2005-01-01

    Nucleolin is a multi-functional protein that is located to the nucleolus. In tissue culture cells, the stability of nucleolin is related to the proliferation status of the cell. During development, rat cardiomyocytes proliferate actively with increases in the mass of the heart being due to both hyperplasia and hypertrophy. The timing of this shift in the phenotype of the myocyte from one capable of undergoing hyperplasia to one that can grow only by hypertrophy occurs within 4 days of post-natal development. Thus, cardiomyocytes are an ideal model system in which to study the regulation of nucleolin during growth in vivo. Using Western blot and quantitative RT-PCR (TaqMan) we found that the amount of nucleolin is regulated both at the level of transcription and translation during the development of the cardiomyocyte. However, in cells which had exited the cell cycle and were subsequently given a hypertrophic stimulus, nucleolin was regulated post-transcriptionally

  17. V(D)J recombination on minichromosomes is not affected by transcription.

    Science.gov (United States)

    Hsieh, C L; McCloskey, R P; Lieber, M R

    1992-08-05

    It has been shown previously by others that transcription is temporally correlated with the onset of V(D)J recombination at the endogenous antigen receptor loci. We have been interested in determining whether this temporal correlation indicates a causal connection between these two processes. We have compared V(D)J recombination minichromosome substrates that have transcripts running through the recombination zone with substrates that do not in a transient transfection assay. In this system, the substrates acquire a minichromosome conformation within the first several hours after transfection. We find that the substrates recombine equally well over a 100-fold range in transcriptional variation. In additional studies, we have taken substrates that have low levels of transcription and inhibited transcription further by methylating the substrate DNA or by treating the cells with a general transcription inhibitor (alpha-amanitin). Although these treatments decrease the level of expression an additional 10-100-fold, there is still no observable effect on V(D)J recombination. Based on these results, we conclude that transcription is not necessary for the V(D)J reaction mechanism and does not alter substrate structure at the DNA level or at the simplest levels of chromatin structure in a way that affects the reaction.

  18. Regulation of gene expression by manipulating transcriptional repressor activity using a novel CoSRI technology.

    Science.gov (United States)

    Xu, Yue; Li, Song Feng; Parish, Roger W

    2017-07-01

    Targeted gene manipulation is a central strategy for studying gene function and identifying related biological processes. However, a methodology for manipulating the regulatory motifs of transcription factors is lacking as these factors commonly possess multiple motifs (e.g. repression and activation motifs) which collaborate with each other to regulate multiple biological processes. We describe a novel approach designated conserved sequence-guided repressor inhibition (CoSRI) that can specifically reduce or abolish the repressive activities of transcription factors in vivo. The technology was evaluated using the chimeric MYB80-EAR transcription factor and subsequently the endogenous WUS transcription factor. The technology was employed to develop a reversible male sterility system applicable to hybrid seed production. In order to determine the capacity of the technology to regulate the activity of endogenous transcription factors, the WUS repressor was chosen. The WUS repression motif could be inhibited in vivo and the transformed plants exhibited the wus-1 phenotype. Consequently, the technology can be used to manipulate the activities of transcriptional repressor motifs regulating beneficial traits in crop plants and other eukaryotic organisms. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  19. Parental Sensitivity, Infant Affect, and Affect Regulation: Predictors of Later Attachment.

    Science.gov (United States)

    Braungart-Rieker, Julia M.; Garwood, Molly M.; Powers, Bruce P.; Wang, Xiaoyu

    2001-01-01

    Examined extent to which parent sensitivity, infant affect, and affect regulation at 4 months predicted mother- and father-infant attachment classifications at 1 year. Found that affect regulation and maternal sensitivity discriminated infant-mother attachment groups. The association between maternal sensitivity and infant-mother attachment was…

  20. Gibberellic acid and cGMP-dependent transcriptional regulation in arabidopsis thaliana

    KAUST Repository

    Bastian, René

    2010-03-01

    An ever increasing amount of transcriptomic data and analysis tools provide novel insight into complex responses of biological systems. Given these resources we have undertaken to review aspects of transcriptional regulation in response to the plant hormone gibberellic acid (GA) and its second messenger guanosine 3\\',5\\'-cyclic monophosphate (cGMP) in Arabidopsis thaliana, both wild type and selected mutants. Evidence suggests enrichment of GA-responsive (GARE) elements in promoters of genes that are transcriptionally upregulated in response to cGMP but downregulated in a GA insensitive mutant (ga1-3). In contrast, in the genes upregulated in the mutant, no enrichment in the GARE is observed suggesting that GARE motifs are diagnostic for GA-induced and cGMP-dependent transcriptional upregulation. Further, we review how expression studies of GA-dependent transcription factors and transcriptional networks based on common promoter signatures derived from ab initio analyses can contribute to our understanding of plant responses at the systems level. © 2010 Landes Bioscience.

  1. Genomic dissection of conserved transcriptional regulation in intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Colin R Lickwar

    2017-08-01

    Full Text Available The intestinal epithelium serves critical physiologic functions that are shared among all vertebrates. However, it is unknown how the transcriptional regulatory mechanisms underlying these functions have changed over the course of vertebrate evolution. We generated genome-wide mRNA and accessible chromatin data from adult intestinal epithelial cells (IECs in zebrafish, stickleback, mouse, and human species to determine if conserved IEC functions are achieved through common transcriptional regulation. We found evidence for substantial common regulation and conservation of gene expression regionally along the length of the intestine from fish to mammals and identified a core set of genes comprising a vertebrate IEC signature. We also identified transcriptional start sites and other putative regulatory regions that are differentially accessible in IECs in all 4 species. Although these sites rarely showed sequence conservation from fish to mammals, surprisingly, they drove highly conserved IEC expression in a zebrafish reporter assay. Common putative transcription factor binding sites (TFBS found at these sites in multiple species indicate that sequence conservation alone is insufficient to identify much of the functionally conserved IEC regulatory information. Among the rare, highly sequence-conserved, IEC-specific regulatory regions, we discovered an ancient enhancer upstream from her6/HES1 that is active in a distinct population of Notch-positive cells in the intestinal epithelium. Together, these results show how combining accessible chromatin and mRNA datasets with TFBS prediction and in vivo reporter assays can reveal tissue-specific regulatory information conserved across 420 million years of vertebrate evolution. We define an IEC transcriptional regulatory network that is shared between fish and mammals and establish an experimental platform for studying how evolutionarily distilled regulatory information commonly controls IEC development

  2. Homeodomain Transcription Factor Msx-2 Regulates Uterine Progenitor Cell Response to Diethylstilbestrol.

    Science.gov (United States)

    Yin, Yan; Lin, Congxing; Zhang, Ivy; Fisher, Alexander V; Dhandha, Maulik; Ma, Liang

    The fate of mouse uterine epithelial progenitor cells is determined between postnatal days 5 to 7. Around this critical time window, exposure to an endocrine disruptor, diethylstilbestrol (DES), can profoundly alter uterine cytodifferentiation. We have shown previously that a homeo domain transcription factor MSX-2 plays an important role in DES-responsiveness in the female reproductive tract (FRT). Mutant FRTs exhibited a much more severe phenotype when treated with DES, accompanied by gene expression changes that are dependent on Msx2 . To better understand the role that MSX-2 plays in uterine response to DES, we performed global gene expression profiling experiment in mice lacking Msx2 By comparing this result to our previously published microarray data performed on wild-type mice, we extracted common and differentially regulated genes in the two genotypes. In so doing, we identified potential downstream targets of MSX-2, as well as genes whose regulation by DES is modulated through MSX-2. Discovery of these genes will lead to a better understanding of how DES, and possibly other endocrine disruptors, affects reproductive organ development.

  3. Expression, processing and transcriptional regulation of granulysin in short-term activated human lymphocytes

    Directory of Open Access Journals (Sweden)

    Groscurth Peter

    2007-06-01

    Full Text Available Abstract Background Granulysin, a cytotoxic protein expressed in human natural killer cells and activated T lymphocytes, exhibits cytolytic activity against a variety of intracellular microbes. Expression and transcription have been partially characterised in vitro and four transcripts (NKG5, 519, 520, and 522 were identified. However, only a single protein product of 15 kDa was found, which is subsequently processed to an active 9 kDa protein. Results In this study we investigated generation of granulysin in lymphokine activated killer (LAK cells and antigen (Listeria specific T-cells. Semiquantitative RT-PCR revealed NKG5 to be the most prominent transcript. It was found to be up-regulated in a time-dependent manner in LAK cells and antigen specific T-cells and their subsets. Two isoforms of 519 mRNA were up-regulated under IL-2 and antigen stimulation. Moreover, two novel transcripts, without any known function, comprising solely parts of the 5 prime region of the primary transcript, were detected. A significant increase of granulysin expressing LAK cells as well as antigen specific T-cells was shown by fluorescence microscopy. On the subset level, increase in CD4+ granulysin expressing cells was found only under antigen stimulation. Immunoblotting showed the 15 kDa form of granulysin to be present in the first week of stimulation either with IL-2 or with bacterial antigen. Substantial processing to the 9 kDa form was detected during the first week in LAK cells and in the second week in antigen specific T-cells. Conclusion This first comprehensive study of granulysin gene regulation in primary cultured human lymphocytes shows that the regulation of granulysin synthesis in response to IL-2 or bacterial antigen stimulation occurs at several levels: RNA expression, extensive alternative splicing and posttranslational processing.

  4. In silico detection of sequence variations modifying transcriptional regulation.

    Directory of Open Access Journals (Sweden)

    Malin C Andersen

    2008-01-01

    Full Text Available Identification of functional genetic variation associated with increased susceptibility to complex diseases can elucidate genes and underlying biochemical mechanisms linked to disease onset and progression. For genes linked to genetic diseases, most identified causal mutations alter an encoded protein sequence. Technological advances for measuring RNA abundance suggest that a significant number of undiscovered causal mutations may alter the regulation of gene transcription. However, it remains a challenge to separate causal genetic variations from linked neutral variations. Here we present an in silico driven approach to identify possible genetic variation in regulatory sequences. The approach combines phylogenetic footprinting and transcription factor binding site prediction to identify variation in candidate cis-regulatory elements. The bioinformatics approach has been tested on a set of SNPs that are reported to have a regulatory function, as well as background SNPs. In the absence of additional information about an analyzed gene, the poor specificity of binding site prediction is prohibitive to its application. However, when additional data is available that can give guidance on which transcription factor is involved in the regulation of the gene, the in silico binding site prediction improves the selection of candidate regulatory polymorphisms for further analyses. The bioinformatics software generated for the analysis has been implemented as a Web-based application system entitled RAVEN (regulatory analysis of variation in enhancers. The RAVEN system is available at http://www.cisreg.ca for all researchers interested in the detection and characterization of regulatory sequence variation.

  5. In Silico Detection of Sequence Variations Modifying Transcriptional Regulation

    Science.gov (United States)

    Andersen, Malin C; Engström, Pär G; Lithwick, Stuart; Arenillas, David; Eriksson, Per; Lenhard, Boris; Wasserman, Wyeth W; Odeberg, Jacob

    2008-01-01

    Identification of functional genetic variation associated with increased susceptibility to complex diseases can elucidate genes and underlying biochemical mechanisms linked to disease onset and progression. For genes linked to genetic diseases, most identified causal mutations alter an encoded protein sequence. Technological advances for measuring RNA abundance suggest that a significant number of undiscovered causal mutations may alter the regulation of gene transcription. However, it remains a challenge to separate causal genetic variations from linked neutral variations. Here we present an in silico driven approach to identify possible genetic variation in regulatory sequences. The approach combines phylogenetic footprinting and transcription factor binding site prediction to identify variation in candidate cis-regulatory elements. The bioinformatics approach has been tested on a set of SNPs that are reported to have a regulatory function, as well as background SNPs. In the absence of additional information about an analyzed gene, the poor specificity of binding site prediction is prohibitive to its application. However, when additional data is available that can give guidance on which transcription factor is involved in the regulation of the gene, the in silico binding site prediction improves the selection of candidate regulatory polymorphisms for further analyses. The bioinformatics software generated for the analysis has been implemented as a Web-based application system entitled RAVEN (regulatory analysis of variation in enhancers). The RAVEN system is available at http://www.cisreg.ca for all researchers interested in the detection and characterization of regulatory sequence variation. PMID:18208319

  6. The STAR protein QKI-7 recruits PAPD4 to regulate post-transcriptional polyadenylation of target mRNAs

    OpenAIRE

    Yamagishi, Ryota; Tsusaka, Takeshi; Mitsunaga, Hiroko; Maehata, Takaharu; Hoshino, Shin-ichi

    2016-01-01

    Emerging evidence has demonstrated that regulating the length of the poly(A) tail on an mRNA is an efficient means of controlling gene expression at the post-transcriptional level. In early development, transcription is silenced and gene expression is primarily regulated by cytoplasmic polyadenylation. In somatic cells, considerable progress has been made toward understanding the mechanisms of negative regulation by deadenylation. However, positive regulation through elongation of the poly(A)...

  7. High mobility group protein DSP1 negatively regulates HSP70 transcription in Crassostrea hongkongensis

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Zongyu; Xu, Delin; Cui, Miao; Zhang, Qizhong, E-mail: zhangqzdr@126.com

    2016-06-10

    HSP70 acts mostly as a molecular chaperone and plays important roles in facilitating the folding of nascent peptides as well as the refolding or degradation of the denatured proteins. Under stressed conditions, the expression level of HSP70 is upregulated significantly and rapidly, as is known to be achieved by various regulatory factors controlling the transcriptional level. In this study, a high mobility group protein DSP1 was identified by DNA-affinity purification from the nuclear extracts of Crassostrea hongkongensis using the ChHSP70 promoter as a bait. The specific interaction between the prokaryotically expressed ChDSP1 and the FITC-labeled ChHSP70 promoter was confirmed by EMSA analysis. ChDSP1 was shown to negatively regulate ChHSP70 promoter expression by Luciferase Reporter Assay in the heterologous HEK293T cells. Both ChHSP70 and ChDSP1 transcriptions were induced by either thermal or CdCl{sub 2} stress, while the accumulated expression peaks of ChDSP1 were always slightly delayed when compared with that of ChHSP70. This indicates that ChDSP1 is involved, very likely to exert its suppressive role, in the recovery of the ChHSP70 expression from the induced level to its original state. This study is the first to report negative regulator of HSP70 gene transcription, and provides novel insights into the mechanisms controlling heat shock protein expression. -- Highlights: •HMG protein ChDSP1 shows affinity to ChHSP70 promoter in Crassostrea hongkongensis. •ChDSP1 negatively regulates ChHSP70 transcription. •ChHSP70 and ChDSP1 transcriptions were coordinately induced by thermal/Cd stress. •ChDSP1 may contribute to the recovery of the induced ChHSP70 to its original state. •This is the first report regarding negative regulator of HSP70 transcription.

  8. Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei)

    NARCIS (Netherlands)

    Stricker, A.R.; Mach, R.L.; Graaff, de L.H.

    2008-01-01

    The filamentous fungi Aspergillus niger and Hypocrea jecorina (Trichoderma reesei) have been the subject of many studies investigating the mechanism of transcriptional regulation of hemicellulase- and cellulase-encoding genes. The transcriptional regulator XlnR that was initially identified in A.

  9. Analysis of the highly diverse gene borders in Ebola virus reveals a distinct mechanism of transcriptional regulation.

    Science.gov (United States)

    Brauburger, Kristina; Boehmann, Yannik; Tsuda, Yoshimi; Hoenen, Thomas; Olejnik, Judith; Schümann, Michael; Ebihara, Hideki; Mühlberger, Elke

    2014-11-01

    Ebola virus (EBOV) belongs to the group of nonsegmented negative-sense RNA viruses. The seven EBOV genes are separated by variable gene borders, including short (4- or 5-nucleotide) intergenic regions (IRs), a single long (144-nucleotide) IR, and gene overlaps, where the neighboring gene end and start signals share five conserved nucleotides. The unique structure of the gene overlaps and the presence of a single long IR are conserved among all filoviruses. Here, we sought to determine the impact of the EBOV gene borders during viral transcription. We show that readthrough mRNA synthesis occurs in EBOV-infected cells irrespective of the structure of the gene border, indicating that the gene overlaps do not promote recognition of the gene end signal. However, two consecutive gene end signals at the VP24 gene might improve termination at the VP24-L gene border, ensuring efficient L gene expression. We further demonstrate that the long IR is not essential for but regulates transcription reinitiation in a length-dependent but sequence-independent manner. Mutational analysis of bicistronic minigenomes and recombinant EBOVs showed no direct correlation between IR length and reinitiation rates but demonstrated that specific IR lengths not found naturally in filoviruses profoundly inhibit downstream gene expression. Intriguingly, although truncation of the 144-nucleotide-long IR to 5 nucleotides did not substantially affect EBOV transcription, it led to a significant reduction of viral growth. Our current understanding of EBOV transcription regulation is limited due to the requirement for high-containment conditions to study this highly pathogenic virus. EBOV is thought to share many mechanistic features with well-analyzed prototype nonsegmented negative-sense RNA viruses. A single polymerase entry site at the 3' end of the genome determines that transcription of the genes is mainly controlled by gene order and cis-acting signals found at the gene borders. Here, we examined

  10. Differential regulation of HIF-1α and HIF-2α in neuroblastoma: Estrogen-related receptor alpha (ERRα) regulates HIF2A transcription and correlates to poor outcome

    International Nuclear Information System (INIS)

    Hamidian, Arash; Stedingk, Kristoffer von; Munksgaard Thorén, Matilda; Mohlin, Sofie; Påhlman, Sven

    2015-01-01

    Hypoxia-inducible factors (HIFs) are differentially regulated in tumor cells. While the current paradigm supports post-translational regulation of the HIF-α subunits, we recently showed that hypoxic HIF-2α is also transcriptionally regulated via insulin-like growth factor (IGF)-II in the childhood tumor neuroblastoma. Here, we demonstrate that transcriptional regulation of HIF-2α seems to be restricted to neural cell-derived tumors, while HIF-1α is canonically regulated at the post-translational level uniformly across different tumor forms. Enhanced expression of HIF2A mRNA at hypoxia is due to de novo transcription rather than increased mRNA stability, and chemical stabilization of the HIF-α proteins at oxygen-rich conditions unexpectedly leads to increased HIF2A transcription. The enhanced HIF2A levels do not seem to be dependent on active HIF-1. Using a transcriptome array approach, we identified members of the Peroxisome proliferator-activated receptor gamma coactivator (PGC)/Estrogen-related receptor (ERR) complex families as potential regulators of HIF2A. Knockdown or inhibition of one of the members, ERRα, leads to decreased expression of HIF2A, and high expression of the ERRα gene ESRRA correlates with poor overall and progression-free survival in a clinical neuroblastoma material consisting of 88 tumors. Thus, targeting of ERRα and pathways regulating transcriptional HIF-2α are promising therapeutic avenues in neuroblastoma. - Highlights: • Transcriptional control of HIF-2α is restricted to neural cell-derived tumors. • Enhanced transcription of HIF2A is not due to increased mRNA stability. • Chemical stabilization of the HIF-α subunits leads to increased HIF2A transcription. • ERRα regulates HIF2A mRNA expression in neuroblastoma. • High expression of ESRRA correlates to poor outcome in neuroblastoma

  11. Differential regulation of HIF-1α and HIF-2α in neuroblastoma: Estrogen-related receptor alpha (ERRα) regulates HIF2A transcription and correlates to poor outcome

    Energy Technology Data Exchange (ETDEWEB)

    Hamidian, Arash; Stedingk, Kristoffer von; Munksgaard Thorén, Matilda; Mohlin, Sofie; Påhlman, Sven, E-mail: sven.pahlman@med.lu.se

    2015-06-05

    Hypoxia-inducible factors (HIFs) are differentially regulated in tumor cells. While the current paradigm supports post-translational regulation of the HIF-α subunits, we recently showed that hypoxic HIF-2α is also transcriptionally regulated via insulin-like growth factor (IGF)-II in the childhood tumor neuroblastoma. Here, we demonstrate that transcriptional regulation of HIF-2α seems to be restricted to neural cell-derived tumors, while HIF-1α is canonically regulated at the post-translational level uniformly across different tumor forms. Enhanced expression of HIF2A mRNA at hypoxia is due to de novo transcription rather than increased mRNA stability, and chemical stabilization of the HIF-α proteins at oxygen-rich conditions unexpectedly leads to increased HIF2A transcription. The enhanced HIF2A levels do not seem to be dependent on active HIF-1. Using a transcriptome array approach, we identified members of the Peroxisome proliferator-activated receptor gamma coactivator (PGC)/Estrogen-related receptor (ERR) complex families as potential regulators of HIF2A. Knockdown or inhibition of one of the members, ERRα, leads to decreased expression of HIF2A, and high expression of the ERRα gene ESRRA correlates with poor overall and progression-free survival in a clinical neuroblastoma material consisting of 88 tumors. Thus, targeting of ERRα and pathways regulating transcriptional HIF-2α are promising therapeutic avenues in neuroblastoma. - Highlights: • Transcriptional control of HIF-2α is restricted to neural cell-derived tumors. • Enhanced transcription of HIF2A is not due to increased mRNA stability. • Chemical stabilization of the HIF-α subunits leads to increased HIF2A transcription. • ERRα regulates HIF2A mRNA expression in neuroblastoma. • High expression of ESRRA correlates to poor outcome in neuroblastoma.

  12. Sp1 and CREB regulate basal transcription of the human SNF2L gene

    International Nuclear Information System (INIS)

    Xia Yu; Jiang Baichun; Zou Yongxin; Gao Guimin; Shang Linshan; Chen Bingxi; Liu Qiji; Gong Yaoqin

    2008-01-01

    Imitation Switch (ISWI) is a member of the SWI2/SNF2 superfamily of ATP-dependent chromatin remodelers, which are involved in multiple nuclear functions, including transcriptional regulation, replication, and chromatin assembly. Mammalian genomes encode two ISWI orthologs, SNF2H and SNF2L. In order to clarify the molecular mechanisms governing the expression of human SNF2L gene, we functionally examined the transcriptional regulation of human SNF2L promoter. Reporter gene assays demonstrated that the minimal SNF2L promoter was located between positions -152 to -86 relative to the transcription start site. In this region we have identified a cAMP-response element (CRE) located at -99 to -92 and a Sp1-binding site at -145 to -135 that play a critical role in regulating basal activity of human SNF2L gene, which were proven by deletion and mutation of specific binding sites, EMSA, and down-regulating Sp1 and CREB via RNAi. This study provides the first insight into the mechanisms that control basal expression of human SNF2L gene

  13. Transcriptional regulation of respiration in yeast metabolizing differently repressive carbon substrates

    Directory of Open Access Journals (Sweden)

    Fendt Sarah-Maria

    2010-02-01

    Full Text Available Abstract Background Depending on the carbon source, Saccharomyces cerevisiae displays various degrees of respiration. These range from complete respiration as in the case of ethanol, to almost complete fermentation, and thus very low degrees of respiration on glucose. While many key regulators are known for these extreme cases, we focus here on regulators that are relevant at intermediate levels of respiration. Results We address this question by linking the functional degree of respiration to transcriptional regulation via enzyme abundances. Specifically, we investigated aerobic batch cultures with the differently repressive carbon sources glucose, mannose, galactose and pyruvate. Based on 13C flux analysis, we found that the respiratory contribution to cellular energy production was largely absent on glucose and mannose, intermediate on galactose and highest on pyruvate. In vivo abundances of 40 respiratory enzymes were quantified by GFP-fusions under each condition. During growth on the partly and fully respired substrates galactose and pyruvate, several TCA cycle and respiratory chain enzymes were significantly up-regulated. From these enzyme levels and the known regulatory network structure, we determined the probability for a given transcription factor to cause the coordinated expression changes. The most probable transcription factors to regulate the different degrees of respiration were Gcr1p, Cat8p, the Rtg-proteins and the Hap-complex. For the latter three ones we confirmed their importance for respiration by quantifying the degree of respiration and biomass yields in the corresponding deletion strains. Conclusions Cat8p is required for wild-type like respiration, independent of its known activation of gluconeogenic genes. The Rtg-proteins and the Hap-complex are essential for wild-type like respiration under partially respiratory conditions. Under fully respiratory conditions, the Hap-complex, but not the Rtg-proteins are essential

  14. Transcriptional regulation of respiration in yeast metabolizing differently repressive carbon substrates.

    Science.gov (United States)

    Fendt, Sarah-Maria; Sauer, Uwe

    2010-02-18

    Depending on the carbon source, Saccharomyces cerevisiae displays various degrees of respiration. These range from complete respiration as in the case of ethanol, to almost complete fermentation, and thus very low degrees of respiration on glucose. While many key regulators are known for these extreme cases, we focus here on regulators that are relevant at intermediate levels of respiration. We address this question by linking the functional degree of respiration to transcriptional regulation via enzyme abundances. Specifically, we investigated aerobic batch cultures with the differently repressive carbon sources glucose, mannose, galactose and pyruvate. Based on 13C flux analysis, we found that the respiratory contribution to cellular energy production was largely absent on glucose and mannose, intermediate on galactose and highest on pyruvate. In vivo abundances of 40 respiratory enzymes were quantified by GFP-fusions under each condition. During growth on the partly and fully respired substrates galactose and pyruvate, several TCA cycle and respiratory chain enzymes were significantly up-regulated. From these enzyme levels and the known regulatory network structure, we determined the probability for a given transcription factor to cause the coordinated expression changes. The most probable transcription factors to regulate the different degrees of respiration were Gcr1p, Cat8p, the Rtg-proteins and the Hap-complex. For the latter three ones we confirmed their importance for respiration by quantifying the degree of respiration and biomass yields in the corresponding deletion strains. Cat8p is required for wild-type like respiration, independent of its known activation of gluconeogenic genes. The Rtg-proteins and the Hap-complex are essential for wild-type like respiration under partially respiratory conditions. Under fully respiratory conditions, the Hap-complex, but not the Rtg-proteins are essential for respiration.

  15. Integrated pathway-based transcription regulation network mining and visualization based on gene expression profiles.

    Science.gov (United States)

    Kibinge, Nelson; Ono, Naoaki; Horie, Masafumi; Sato, Tetsuo; Sugiura, Tadao; Altaf-Ul-Amin, Md; Saito, Akira; Kanaya, Shigehiko

    2016-06-01

    Conventionally, workflows examining transcription regulation networks from gene expression data involve distinct analytical steps. There is a need for pipelines that unify data mining and inference deduction into a singular framework to enhance interpretation and hypotheses generation. We propose a workflow that merges network construction with gene expression data mining focusing on regulation processes in the context of transcription factor driven gene regulation. The pipeline implements pathway-based modularization of expression profiles into functional units to improve biological interpretation. The integrated workflow was implemented as a web application software (TransReguloNet) with functions that enable pathway visualization and comparison of transcription factor activity between sample conditions defined in the experimental design. The pipeline merges differential expression, network construction, pathway-based abstraction, clustering and visualization. The framework was applied in analysis of actual expression datasets related to lung, breast and prostrate cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Brassinosteroid-Induced Transcriptional Repression and Dephosphorylation-Dependent Protein Degradation Negatively Regulate BIN2-Interacting AIF2 (a BR Signaling-Negative Regulator) bHLH Transcription Factor.

    Science.gov (United States)

    Kim, Yoon; Song, Ji-Hye; Park, Seon-U; Jeong, You-Seung; Kim, Soo-Hwan

    2017-02-01

    Brassinosteroids (BRs) are plant polyhydroxy-steroids that play important roles in plant growth and development via extensive signal integration through direct interactions between regulatory components of different signaling pathways. Recent studies have shown that diverse helix-loop-helix/basic helix-loop-helix (HLH/bHLH) family proteins are actively involved in control of BR signaling pathways and interact with other signaling pathways. In this study, we show that ATBS1-INTERACTING FACTOR 2 (AIF2), a nuclear-localized atypical bHLH transcription factor, specifically interacts with BRASSINOSTEROID-INSENSITIVE 2 (BIN2) among other BR signaling molecules. Overexpression of AIF2 down-regulated transcript expression of growth-promoting genes, thus resulting in retardation of growth. AIF2 renders plants hyposensitive to BR-induced root growth inhibition, but shows little effects on BR-promoted hypocotyl elongation. Notably, AIF2 was dephosphorylated by BR, and the dephosphorylated AIF2 was subject to proteasome-mediated degradation. AIF2 degradation was greatly induced by BR and ABA, but relatively slightly by other hormones such as auxin, gibberellin, cytokinin and ethylene. Moreover, AIF2 transcription was significantly suppressed by a BRI1/BZR1-mediated BR signaling pathway through a direct binding of BRASSINAZOLE RESISTANT 1 (BZR1) to the BR response element (BRRE) region of the AIF2 promoter. In conclusion, our study suggests that BIN2-driven AIF2 phosphorylation could augment the BIN2/AIF2-mediated negative circuit of BR signaling pathways, and the BR-induced transcriptional repression and protein degradation negatively regulate AIF2 transcription factor, reinforcing the BZR1/BES1-mediated positive BR signaling pathway. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. TRIM45 negatively regulates NF-κB-mediated transcription and suppresses cell proliferation

    International Nuclear Information System (INIS)

    Shibata, Mio; Sato, Tomonobu; Nukiwa, Ryota; Ariga, Tadashi; Hatakeyama, Shigetsugu

    2012-01-01

    Highlights: ► NF-κB plays an important role in cell survival and carcinogenesis. ► TRIM45 negatively regulates TNFα-induced NF-κB-mediated transcription. ► TRIM45 overexpression suppresses cell growth. ► TRIM45 acts as a repressor for the NF-κB signal and regulates cell growth. -- Abstract: The NF-κB signaling pathway plays an important role in cell survival, immunity, inflammation, carcinogenesis, and organogenesis. Activation of NF-κB is regulated by several posttranslational modifications including phosphorylation, neddylation and ubiquitination. The NF-κB signaling pathway is activated by two distinct signaling mechanisms and is strictly modulated by the ubiquitin–proteasome system. It has been reported that overexpression of TRIM45, one of the TRIM family ubiquitin ligases, suppresses transcriptional activities of Elk-1 and AP-1, which are targets of the MAPK signaling pathway. In this study, we showed that TRIM45 also negatively regulates TNFα-induced NF-κB-mediated transcription by a luciferase reporter assay and that TRIM45 lacking a RING domain also has an activity to inhibit the NF-κB signal. Moreover, we found that TRIM45 overexpression suppresses cell growth. These findings suggest that TRIM45 acts as a repressor for the NF-κB signal and regulates cell growth.

  18. Non-classical mechanisms of transcriptional regulation by the vitamin D receptor: insights into calcium homeostasis, immune system regulation and cancer chemoprevention.

    Science.gov (United States)

    Dimitrov, Vassil; Salehi-Tabar, Reyhaneh; An, Beum-Soo; White, John H

    2014-10-01

    Hormonal 1,25-dihydroxyvitamin D [1,25(OH)2D] signals through the nuclear vitamin D receptor (VDR), a ligand-regulated transcription factor. Gene expression profiling studies have revealed that 1,25(OH)2D signaling through the VDR can lead to activation or repression of target gene transcription in roughly equal proportions. Classically, transcriptional regulation by the VDR, similar to other nuclear receptors, has been characterized by its capacity to recognize high affinity cognate vitamin D response elements (VDREs), located in the regulatory regions of target genes. Several biochemical studies revealed that the VDRE-bound receptor recruits a series of coregulatory proteins, leading to transactivation of adjacent target genes. However, genome-wide and other analyses of VDR binding have revealed that a subset of VDR binding sites does not contain VDREs, and that VDREs are not associated with transcriptionally repressed VDR target genes. Work over the last ∼20 years and in particular recent findings have revealed a diverse array of mechanisms by which VDR can form complexes with several other classes of transcriptional activators, leading to repression of gene transcription. Moreover, these efforts have led to several insights into the molecular basis for the physiological regulation of calcium homeostasis, immune system function and cancer chemoprevention by 1,25(OH)2D/VDR signaling. This article is part of a Special Issue entitled '16th Vitamin D Workshop'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria.

    Science.gov (United States)

    Troxell, Bryan; Hassan, Hosni M

    2013-01-01

    In the ancient anaerobic environment, ferrous iron (Fe(2+)) was one of the first metal cofactors. Oxygenation of the ancient world challenged bacteria to acquire the insoluble ferric iron (Fe(3+)) and later to defend against reactive oxygen species (ROS) generated by the Fenton chemistry. To acquire Fe(3+), bacteria produce low-molecular weight compounds, known as siderophores, which have extremely high affinity for Fe(3+). However, during infection the host restricts iron from pathogens by producing iron- and siderophore-chelating proteins, by exporting iron from intracellular pathogen-containing compartments, and by limiting absorption of dietary iron. Ferric Uptake Regulator (Fur) is a transcription factor which utilizes Fe(2+) as a corepressor and represses siderophore synthesis in pathogens. Fur, directly or indirectly, controls expression of enzymes that protect against ROS damage. Thus, the challenges of iron homeostasis and defense against ROS are addressed via Fur. Although the role of Fur as a repressor is well-documented, emerging evidence demonstrates that Fur can function as an activator. Fur activation can occur through three distinct mechanisms (1) indirectly via small RNAs, (2) binding at cis regulatory elements that enhance recruitment of the RNA polymerase holoenzyme (RNAP), and (3) functioning as an antirepressor by removing or blocking DNA binding of a repressor of transcription. In addition, Fur homologs control defense against peroxide stress (PerR) and control uptake of other metals such as zinc (Zur) and manganese (Mur) in pathogenic bacteria. Fur family members are important for virulence within bacterial pathogens since mutants of fur, perR, or zur exhibit reduced virulence within numerous animal and plant models of infection. This review focuses on the breadth of Fur regulation in pathogenic bacteria.

  20. Utrophin up-regulation by an artificial transcription factor in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Elisabetta Mattei

    2007-08-01

    Full Text Available Duchenne Muscular Dystrophy (DMD is a severe muscle degenerative disease, due to absence of dystrophin. There is currently no effective treatment for DMD. Our aim is to up-regulate the expression level of the dystrophin related gene utrophin in DMD, complementing in this way the lack of dystrophin functions. To this end we designed and engineered several synthetic zinc finger based transcription factors. In particular, we have previously shown that the artificial three zinc finger protein named Jazz, fused with the appropriate effector domain, is able to drive the transcription of a test gene from the utrophin promoter "A". Here we report on the characterization of Vp16-Jazz-transgenic mice that specifically over-express the utrophin gene at the muscular level. A Chromatin Immunoprecipitation assay (ChIP demonstrated the effective access/binding of the Jazz protein to active chromatin in mouse muscle and Vp16-Jazz was shown to be able to up-regulate endogenous utrophin gene expression by immunohistochemistry, western blot analyses and real-time PCR. To our knowledge, this is the first example of a transgenic mouse expressing an artificial gene coding for a zinc finger based transcription factor. The achievement of Vp16-Jazz transgenic mice validates the strategy of transcriptional targeting of endogenous genes and could represent an exclusive animal model for use in drug discovery and therapeutics.

  1. The transcription factor ABI4 Is required for the ascorbic acid-dependent regulation of growth and regulation of jasmonate-dependent defense signaling pathways in Arabidopsis.

    Science.gov (United States)

    Kerchev, Pavel I; Pellny, Till K; Vivancos, Pedro Diaz; Kiddle, Guy; Hedden, Peter; Driscoll, Simon; Vanacker, Hélène; Verrier, Paul; Hancock, Robert D; Foyer, Christine H

    2011-09-01

    Cellular redox homeostasis is a hub for signal integration. Interactions between redox metabolism and the ABSCISIC ACID-INSENSITIVE-4 (ABI4) transcription factor were characterized in the Arabidopsis thaliana vitamin c defective1 (vtc1) and vtc2 mutants, which are defective in ascorbic acid synthesis and show a slow growth phenotype together with enhanced abscisic acid (ABA) levels relative to the wild type (Columbia-0). The 75% decrease in the leaf ascorbate pool in the vtc2 mutants was not sufficient to adversely affect GA metabolism. The transcriptome signatures of the abi4, vtc1, and vtc2 mutants showed significant overlap, with a large number of transcription factors or signaling components similarly repressed or induced. Moreover, lincomycin-dependent changes in LIGHT HARVESTING CHLOROPHYLL A/B BINDING PROTEIN 1.1 expression were comparable in these mutants, suggesting overlapping participation in chloroplast to nucleus signaling. The slow growth phenotype of vtc2 was absent in the abi4 vtc2 double mutant, as was the sugar-insensitive phenotype of the abi4 mutant. Octadecanoid derivative-responsive AP2/ERF-domain transcription factor 47 (ORA47) and AP3 (an ABI5 binding factor) transcripts were enhanced in vtc2 but repressed in abi4 vtc2, suggesting that ABI4 and ascorbate modulate growth and defense gene expression through jasmonate signaling. We conclude that low ascorbate triggers ABA- and jasmonate-dependent signaling pathways that together regulate growth through ABI4. Moreover, cellular redox homeostasis exerts a strong influence on sugar-dependent growth regulation.

  2. Systems assessment of transcriptional regulation on central carbon metabolism by Cra and CRP.

    Science.gov (United States)

    Kim, Donghyuk; Seo, Sang Woo; Gao, Ye; Nam, Hojung; Guzman, Gabriela I; Cho, Byung-Kwan; Palsson, Bernhard O

    2018-04-06

    Two major transcriptional regulators of carbon metabolism in bacteria are Cra and CRP. CRP is considered to be the main mediator of catabolite repression. Unlike for CRP, in vivo DNA binding information of Cra is scarce. Here we generate and integrate ChIP-exo and RNA-seq data to identify 39 binding sites for Cra and 97 regulon genes that are regulated by Cra in Escherichia coli. An integrated metabolic-regulatory network was formed by including experimentally-derived regulatory information and a genome-scale metabolic network reconstruction. Applying analysis methods of systems biology to this integrated network showed that Cra enables optimal bacterial growth on poor carbon sources by redirecting and repressing glycolysis flux, by activating the glyoxylate shunt pathway, and by activating the respiratory pathway. In these regulatory mechanisms, the overriding regulatory activity of Cra over CRP is fundamental. Thus, elucidation of interacting transcriptional regulation of core carbon metabolism in bacteria by two key transcription factors was possible by combining genome-wide experimental measurement and simulation with a genome-scale metabolic model.

  3. Histone deacetylases play a major role in the transcriptional regulation of the Plasmodium falciparum life cycle.

    Directory of Open Access Journals (Sweden)

    Balbir K Chaal

    2010-01-01

    Full Text Available The apparent paucity of molecular factors of transcriptional control in the genomes of Plasmodium parasites raises many questions about the mechanisms of life cycle regulation in these malaria parasites. Epigenetic regulation has been suggested to play a major role in the stage specific gene expression during the Plasmodium life cycle. To address some of these questions, we analyzed global transcriptional responses of Plasmodium falciparum to a potent inhibitor of histone deacetylase activities (HDAC. The inhibitor apicidin induced profound transcriptional changes in multiple stages of the P. falciparum intraerythrocytic developmental cycle (IDC that were characterized by rapid activation and repression of a large percentage of the genome. A major component of this response was induction of genes that are otherwise suppressed during that particular stage of the IDC or specific for the exo-erythrocytic stages. In the schizont stage, apicidin induced hyperacetylation of histone lysine residues H3K9, H4K8 and the tetra-acetyl H4 (H4Ac4 and demethylation of H3K4me3. Interestingly, we observed overlapping patterns of chromosomal distributions between H4K8Ac and H3K4me3 and between H3K9Ac and H4Ac4. There was a significant but partial association between the apicidin-induced gene expression and histone modifications, which included a number of stage specific transcription factors. Taken together, inhibition of HDAC activities leads to dramatic de-regulation of the IDC transcriptional cascade, which is a result of both disruption of histone modifications and up-regulation of stage specific transcription factors. These findings suggest an important role of histone modification and chromatin remodeling in transcriptional regulation of the Plasmodium life cycle. This also emphasizes the potential of P. falciparum HDACs as drug targets for malaria chemotherapy.

  4. Histone deacetylases play a major role in the transcriptional regulation of the Plasmodium falciparum life cycle.

    Science.gov (United States)

    Chaal, Balbir K; Gupta, Archna P; Wastuwidyaningtyas, Brigitta D; Luah, Yen-Hoon; Bozdech, Zbynek

    2010-01-22

    The apparent paucity of molecular factors of transcriptional control in the genomes of Plasmodium parasites raises many questions about the mechanisms of life cycle regulation in these malaria parasites. Epigenetic regulation has been suggested to play a major role in the stage specific gene expression during the Plasmodium life cycle. To address some of these questions, we analyzed global transcriptional responses of Plasmodium falciparum to a potent inhibitor of histone deacetylase activities (HDAC). The inhibitor apicidin induced profound transcriptional changes in multiple stages of the P. falciparum intraerythrocytic developmental cycle (IDC) that were characterized by rapid activation and repression of a large percentage of the genome. A major component of this response was induction of genes that are otherwise suppressed during that particular stage of the IDC or specific for the exo-erythrocytic stages. In the schizont stage, apicidin induced hyperacetylation of histone lysine residues H3K9, H4K8 and the tetra-acetyl H4 (H4Ac4) and demethylation of H3K4me3. Interestingly, we observed overlapping patterns of chromosomal distributions between H4K8Ac and H3K4me3 and between H3K9Ac and H4Ac4. There was a significant but partial association between the apicidin-induced gene expression and histone modifications, which included a number of stage specific transcription factors. Taken together, inhibition of HDAC activities leads to dramatic de-regulation of the IDC transcriptional cascade, which is a result of both disruption of histone modifications and up-regulation of stage specific transcription factors. These findings suggest an important role of histone modification and chromatin remodeling in transcriptional regulation of the Plasmodium life cycle. This also emphasizes the potential of P. falciparum HDACs as drug targets for malaria chemotherapy.

  5. Chk2 regulates transcription-independent p53-mediated apoptosis in response to DNA damage

    International Nuclear Information System (INIS)

    Chen Chen; Shimizu, Shigeomi; Tsujimoto, Yoshihide; Motoyama, Noboru

    2005-01-01

    The tumor suppressor protein p53 plays a central role in the induction of apoptosis in response to genotoxic stress. The protein kinase Chk2 is an important regulator of p53 function in mammalian cells exposed to ionizing radiation (IR). Cells derived from Chk2-deficient mice are resistant to the induction of apoptosis by IR, and this resistance has been thought to be a result of the defective transcriptional activation of p53 target genes. It was recently shown, however, that p53 itself and histone H1.2 translocate to mitochondria and thereby induces apoptosis in a transcription-independent manner in response to IR. We have now examined whether Chk2 also regulates the transcription-independent induction of apoptosis by p53 and histone H1.2. The reduced ability of IR to induce p53 stabilization in Chk2-deficient thymocytes was associated with a marked impairment of p53 and histone H1 translocation to mitochondria. These results suggest that Chk2 regulates the transcription-independent mechanism of p53-mediated apoptosis by inducing stabilization of p53 in response to IR

  6. Mediator MED23 regulates basal transcription in vivo via an interaction with P-TEFb.

    Science.gov (United States)

    Wang, Wei; Yao, Xiao; Huang, Yan; Hu, Xiangming; Liu, Runzhong; Hou, Dongming; Chen, Ruichuan; Wang, Gang

    2013-01-01

    The Mediator is a multi-subunit complex that transduces regulatory information from transcription regulators to the RNA polymerase II apparatus. Growing evidence suggests that Mediator plays roles in multiple stages of eukaryotic transcription, including elongation. However, the detailed mechanism by which Mediator regulates elongation remains elusive. In this study, we demonstrate that Mediator MED23 subunit controls a basal level of transcription by recruiting elongation factor P-TEFb, via an interaction with its CDK9 subunit. The mRNA level of Egr1, a MED23-controlled model gene, is reduced 4-5 fold in Med23 (-/-) ES cells under an unstimulated condition, but Med23-deficiency does not alter the occupancies of RNAP II, GTFs, Mediator complex, or activator ELK1 at the Egr1 promoter. Instead, Med23 depletion results in a significant decrease in P-TEFb and RNAP II (Ser2P) binding at the coding region, but no changes for several other elongation regulators, such as DSIF and NELF. ChIP-seq revealed that Med23-deficiency partially reduced the P-TEFb occupancy at a set of MED23-regulated gene promoters. Further, we demonstrate that MED23 interacts with CDK9 in vivo and in vitro. Collectively, these results provide the mechanistic insight into how Mediator promotes RNAP II into transcription elongation.

  7. Diverse Genetic Regulon of the Virulence-Associated Transcriptional Regulator MucR in Brucella abortus 2308

    Science.gov (United States)

    Caswell, Clayton C.; Elhassanny, Ahmed E. M.; Planchin, Emilie E.; Roux, Christelle M.; Weeks-Gorospe, Jenni N.; Ficht, Thomas A.; Dunman, Paul M.

    2013-01-01

    The Ros-type regulator MucR is one of the few transcriptional regulators that have been linked to virulence in Brucella. Here, we show that a Brucella abortus in-frame mucR deletion strain exhibits a pronounced growth defect during in vitro cultivation and, more importantly, that the mucR mutant is attenuated in cultured macrophages and in mice. The genetic basis for the attenuation of Brucella mucR mutants has not been defined previously, but in the present study the genes regulated by MucR in B. abortus have been elucidated using microarray analysis and real-time reverse transcription-PCR (RT-PCR). In B. abortus 2308, MucR regulates a wide variety of genes whose products may function in establishing and maintaining cell envelope integrity, polysaccharide biosynthesis, iron homeostasis, genome plasticity, and transcriptional regulation. Particularly notable among the MucR-regulated genes identified is arsR6 (nolR), which encodes a transcriptional regulator previously linked to virulence in Brucella melitensis 16 M. Importantly, electrophoretic mobility shift assays (EMSAs) determined that a recombinant MucR protein binds directly to the promoter regions of several genes repressed by MucR (including arsR6 [nolR]), and in Brucella, as in other alphaproteobacteria, MucR binds to its own promoter to repress expression of the gene that encodes it. Overall, these studies have uncovered the diverse genetic regulon of MucR in Brucella, and in doing so this work has begun to define the MucR-controlled genetic circuitry whose misregulation contributes to the virulence defect of Brucella mucR mutants. PMID:23319565

  8. Transcription of minute virus of mice, an autonomous parvovirus, may be regulated by attenuation

    International Nuclear Information System (INIS)

    Ben-Asher, E.; Aloni, Y.

    1984-01-01

    To characterize the transcriptional organization and regulation of minute virus of mice, an autonomous parvovirus, viral transcriptional complexes were isolated and cleaved with restriction enzymes. The in vivo preinitiated nascent RNA was elongated in vitro in the presence of [alpha- 32 P]UTP to generate runoff transcripts. The lengths of the runoff transcripts were analyzed by gel electrophoresis under denaturing conditions. On the basis of the map locations of the restriction sites and the lengths of the runoff transcripts, the in vivo initiation sites were determined. Two major initiation sites having similar activities were thus identified at residues 201 +/- 5 and 2005 +/- 5; both of them were preceded by a TATAA sequence. When uncleaved viral transcriptional complexes or isolated nuclei were incubated in vitro in the presence of [alpha- 32 P]UTP or [alpha- 32 P]CTP, they synthesized labeled RNA that, as determined by polyacrylamide gel electrophoresis, contained a major band of 142 nucleotides. The RNA of the major band was mapped between the initiation site at residue 201 +/- 5 and residue 342. We noticed the potential of forming two mutually exclusive stem-and-loop structures in the 142-nucleotide RNA; one of them is followed by a string of uridylic acid residues typical of a procaryotic transcription termination signal. We propose that, as in the transcription of simian virus 40, RNA transcription in minute virus of mice may be regulated by attenuation and may involve eucaryotic polymerase B, which can respond to a transcription termination signal similar to that of the procaryotic polymerase

  9. Transcriptional regulation and DNA methylation in plastids during transitional conversion of chloroplasts to chromoplasts.

    OpenAIRE

    Kobayashi, H; Ngernprasirtsiri, J; Akazawa, T

    1990-01-01

    During transitional conversion of chloroplasts to chromoplasts in ripening tomato (Lycopersicon esculentum) fruits, transcripts for several plastid genes for photosynthesis decreased to undetectable levels. Run-on transcription of plastids indicated that transcriptional regulation operated as a predominant factor. We found that most of the genes in chloroplasts were actively transcribed in vitro by Escherichia coli and soluble plastid RNA polymerases, but some genes in chromoplasts seemed to ...

  10. Transcriptional regulation of c-fos

    International Nuclear Information System (INIS)

    Prywes, R.; Fisch, T.M.; Roeder, R.G.

    1988-01-01

    Expression of the c-fos proto-oncogene is induced rapidly and transiently by serum and other mitogenic agents. This rapid induction is therefore likely to involve posttranslational modifications and provides an excellent model for an early nuclear target of the signal transduction process, growth factors that bind to tyrosine kinase receptors. The authors have sought to understand the mechanism of transcriptional induction by each of these agents. The first step in this process was to identify the sequence elements in the c-fos gene responsible for induction by each of these agents. A specific element, termed serum response element (SRE), has been identified by transfection experiments of c-fos promoter constructs. To study regulation via SRE, a nuclear factor that binds to the SRE, termed serum response factor (SRF), has been identified with the gel mobility shift assay

  11. Estradiol-Induced Transcriptional Regulation of Long Non-Coding RNA, HOTAIR.

    Science.gov (United States)

    Bhan, Arunoday; Mandal, Subhrangsu S

    2016-01-01

    HOTAIR (HOX antisense intergenic RNA) is a 2.2 kb long non-coding RNA (lncRNA), transcribed from the antisense strand of homeobox C (HOXC) gene locus in chromosome 12. HOTAIR acts as a scaffolding lncRNA. It interacts and guides various chromatin-modifying complexes such as PRC2 (polycomb-repressive complex 2) and LSD1 (lysine-specific demethylase 1) to the target gene promoters leading to their gene silencing. Various studies have demonstrated that HOTAIR overexpression is associated with breast cancer. Recent studies from our laboratory demonstrate that HOTAIR is required for viability of breast cancer cells and is transcriptionally regulated by estradiol (E2) in vitro and in vivo. This chapter describes protocols for analysis of the HOTAIR promoter, cloning, transfection and dual luciferase assays, knockdown of protein synthesis by antisense oligonucleotides, and chromatin immunoprecipitation (ChIP) assay. These protocols are useful for studying the estrogen-mediated transcriptional regulation of lncRNA HOTAIR, as well as other protein coding genes and non-coding RNAs.

  12. Global transcriptional repression in C. elegans germline precursors by regulated sequestration of TFIID component TAF-4

    Science.gov (United States)

    Guven-Ozkan, Tugba; Nishi, Yuichi; Robertson, Scott M.; Lin, Rueyling

    2008-01-01

    In C. elegans, four asymmetric divisions, beginning with the zygote (P0), generate transcriptionally repressed germline blastomeres (P1–P4) and somatic sisters that become transcriptionally active. The protein PIE-1 represses transcription in the later germline blastomeres, but not in the earlier germline blastomeres P0 and P1. We show here that OMA-1 and OMA-2, previously shown to regulate oocyte maturation, repress transcription in P0 and P1 by binding to and sequestering in the cytoplasm TAF-4, a component critical for assembly of TFIID and the pol II preinitiation complex. OMA-1/2 binding to TAF-4 is developmentally regulated, requiring phosphorylation by the DYRK kinase MBK-2, which is activated at meiosis II following fertilization. OMA-1/2 are normally degraded after the first mitosis, but ectopic expression of wildtype OMA-1 is sufficient to repress transcription in both somatic and later germline blastomeres. We propose that phosphorylation by MBK-2 serves as a developmental switch, converting OMA-1/2 from oocyte to embryo regulators. PMID:18854162

  13. Depletion of Arabidopsis SC35 and SC35-like serine/arginine-rich proteins affects the transcription and splicing of a subset of genes.

    Science.gov (United States)

    Yan, Qingqing; Xia, Xi; Sun, Zhenfei; Fang, Yuda

    2017-03-01

    Serine/arginine-rich (SR) proteins are important splicing factors which play significant roles in spliceosome assembly and splicing regulation. However, little is known regarding their biological functions in plants. Here, we analyzed the phenotypes of mutants upon depleting different subfamilies of Arabidopsis SR proteins. We found that loss of the functions of SC35 and SC35-like (SCL) proteins cause pleiotropic changes in plant morphology and development, including serrated leaves, late flowering, shorter roots and abnormal silique phyllotaxy. Using RNA-seq, we found that SC35 and SCL proteins play roles in the pre-mRNA splicing. Motif analysis revealed that SC35 and SCL proteins preferentially bind to a specific RNA sequence containing the AGAAGA motif. In addition, the transcriptions of a subset of genes are affected by the deletion of SC35 and SCL proteins which interact with NRPB4, a specific subunit of RNA polymerase II. The splicing of FLOWERING LOCUS C (FLC) intron1 and transcription of FLC were significantly regulated by SC35 and SCL proteins to control Arabidopsis flowering. Therefore, our findings provide mechanistic insight into the functions of plant SC35 and SCL proteins in the regulation of splicing and transcription in a direct or indirect manner to maintain the proper expression of genes and development.

  14. Mediator can regulate mitotic entry and direct periodic transcription in fission yeast.

    Science.gov (United States)

    Banyai, Gabor; Lopez, Marcela Davila; Szilagyi, Zsolt; Gustafsson, Claes M

    2014-11-01

    Cdk8 is required for correct timing of mitotic progression in fission yeast. How the activity of Cdk8 is regulated is unclear, since the kinase is not activated by T-loop phosphorylation and its partner, CycC, does not oscillate. Cdk8 is, however, a component of the multiprotein Mediator complex, a conserved coregulator of eukaryotic transcription that is connected to a number of intracellular signaling pathways. We demonstrate here that other Mediator components regulate the activity of Cdk8 in vivo and thereby direct the timing of mitotic entry. Deletion of Mediator components Med12 and Med13 leads to higher cellular Cdk8 protein levels, premature phosphorylation of the Cdk8 target Fkh2, and earlier entry into mitosis. We also demonstrate that Mediator is recruited to clusters of mitotic genes in a periodic fashion and that the complex is required for the transcription of these genes. We suggest that Mediator functions as a hub for coordinated regulation of mitotic progression and cell cycle-dependent transcription. The many signaling pathways and activator proteins shown to function via Mediator may influence the timing of these cell cycle events. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  15. Transcriptional regulation of the Borrelia burgdorferi antigenically variable VlsE surface protein.

    Science.gov (United States)

    Bykowski, Tomasz; Babb, Kelly; von Lackum, Kate; Riley, Sean P; Norris, Steven J; Stevenson, Brian

    2006-07-01

    The Lyme disease agent Borrelia burgdorferi can persistently infect humans and other animals despite host active immune responses. This is facilitated, in part, by the vls locus, a complex system consisting of the vlsE expression site and an adjacent set of 11 to 15 silent vls cassettes. Segments of nonexpressed cassettes recombine with the vlsE region during infection of mammalian hosts, resulting in combinatorial antigenic variation of the VlsE outer surface protein. We now demonstrate that synthesis of VlsE is regulated during the natural mammal-tick infectious cycle, being activated in mammals but repressed during tick colonization. Examination of cultured B. burgdorferi cells indicated that the spirochete controls vlsE transcription levels in response to environmental cues. Analysis of PvlsE::gfp fusions in B. burgdorferi indicated that VlsE production is controlled at the level of transcriptional initiation, and regions of 5' DNA involved in the regulation were identified. Electrophoretic mobility shift assays detected qualitative and quantitative changes in patterns of protein-DNA complexes formed between the vlsE promoter and cytoplasmic proteins, suggesting the involvement of DNA-binding proteins in the regulation of vlsE, with at least one protein acting as a transcriptional activator.

  16. VLDL hydrolysis by hepatic lipase regulates PPARδ transcriptional responses.

    Directory of Open Access Journals (Sweden)

    Jonathan D Brown

    Full Text Available PPARs (α,γ,δ are a family of ligand-activated transcription factors that regulate energy balance, including lipid metabolism. Despite these critical functions, the integration between specific pathways of lipid metabolism and distinct PPAR responses remains obscure. Previous work has revealed that lipolytic pathways can activate PPARs. Whether hepatic lipase (HL, an enzyme that regulates VLDL and HDL catabolism, participates in PPAR responses is unknown.Using PPAR ligand binding domain transactivation assays, we found that HL interacted with triglyceride-rich VLDL (>HDL≫LDL, IDL to activate PPARδ preferentially over PPARα or PPARγ, an effect dependent on HL catalytic activity. In cell free ligand displacement assays, VLDL hydrolysis by HL activated PPARδ in a VLDL-concentration dependent manner. Extended further, VLDL stimulation of HL-expressing HUVECs and FAO hepatoma cells increased mRNA expression of canonical PPARδ target genes, including adipocyte differentiation related protein (ADRP, angiopoietin like protein 4 and pyruvate dehydrogenase kinase-4. HL/VLDL regulated ADRP through a PPRE in the promoter region of this gene. In vivo, adenoviral-mediated hepatic HL expression in C57BL/6 mice increased hepatic ADRP mRNA levels by 30%. In ob/ob mice, a model with higher triglycerides than C57BL/6 mice, HL overexpression increased ADRP expression by 70%, demonstrating the importance of triglyceride substrate for HL-mediated PPARδ activation. Global metabolite profiling identified HL/VLDL released fatty acids including oleic acid and palmitoleic acid that were capable of recapitulating PPARδ activation and ADRP gene regulation in vitro.These data define a novel pathway involving HL hydrolysis of VLDL that activates PPARδ through generation of specific monounsaturated fatty acids. These data also demonstrate how integrating cell biology with metabolomic approaches provides insight into specific lipid mediators and pathways of lipid

  17. Transcriptional Regulation and the Diversification of Metabolism in Wine Yeast Strains

    Science.gov (United States)

    Rossouw, Debra; Jacobson, Dan; Bauer, Florian F.

    2012-01-01

    Transcription factors and their binding sites have been proposed as primary targets of evolutionary adaptation because changes to single transcription factors can lead to far-reaching changes in gene expression patterns. Nevertheless, there is very little concrete evidence for such evolutionary changes. Industrial wine yeast strains, of the species Saccharomyces cerevisiae, are a geno- and phenotypically diverse group of organisms that have adapted to the ecological niches of industrial winemaking environments and have been selected to produce specific styles of wine. Variation in transcriptional regulation among wine yeast strains may be responsible for many of the observed differences and specific adaptations to different fermentative conditions in the context of commercial winemaking. We analyzed gene expression profiles of wine yeast strains to assess the impact of transcription factor expression on metabolic networks. The data provide new insights into the molecular basis of variations in gene expression in industrial strains and their consequent effects on metabolic networks important to wine fermentation. We show that the metabolic phenotype of a strain can be shifted in a relatively predictable manner by changing expression levels of individual transcription factors, opening opportunities to modify transcription networks to achieve desirable outcomes. PMID:22042577

  18. Tye7 regulates yeast Ty1 retrotransposon sense and antisense transcription in response to adenylic nucleotides stress.

    Science.gov (United States)

    Servant, Géraldine; Pinson, Benoit; Tchalikian-Cosson, Aurélie; Coulpier, Fanny; Lemoine, Sophie; Pennetier, Carole; Bridier-Nahmias, Antoine; Todeschini, Anne Laure; Fayol, Hélène; Daignan-Fornier, Bertrand; Lesage, Pascale

    2012-07-01

    Transposable elements play a fundamental role in genome evolution. It is proposed that their mobility, activated under stress, induces mutations that could confer advantages to the host organism. Transcription of the Ty1 LTR-retrotransposon of Saccharomyces cerevisiae is activated in response to a severe deficiency in adenylic nucleotides. Here, we show that Ty2 and Ty3 are also stimulated under these stress conditions, revealing the simultaneous activation of three active Ty retrotransposon families. We demonstrate that Ty1 activation in response to adenylic nucleotide depletion requires the DNA-binding transcription factor Tye7. Ty1 is transcribed in both sense and antisense directions. We identify three Tye7 potential binding sites in the region of Ty1 DNA sequence where antisense transcription starts. We show that Tye7 binds to Ty1 DNA and regulates Ty1 antisense transcription. Altogether, our data suggest that, in response to adenylic nucleotide reduction, TYE7 is induced and activates Ty1 mRNA transcription, possibly by controlling Ty1 antisense transcription. We also provide the first evidence that Ty1 antisense transcription can be regulated by environmental stress conditions, pointing to a new level of control of Ty1 activity by stress, as Ty1 antisense RNAs play an important role in regulating Ty1 mobility at both the transcriptional and post-transcriptional stages.

  19. Streptomyces coelicolor Encodes a Urate-Responsive Transcriptional Regulator with Homology to PecS from Plant Pathogens

    OpenAIRE

    Huang, Hao; Mackel, Brian J.; Grove, Anne

    2013-01-01

    Many transcriptional regulators control gene activity by responding to specific ligands. Members of the multiple-antibiotic resistance regulator (MarR) family of transcriptional regulators feature prominently in this regard, and they frequently function as repressors in the absence of their cognate ligands. Plant pathogens such as Dickeya dadantii encode a MarR homolog named PecS that controls expression of a gene encoding the efflux pump PecM in addition to other virulence genes. We report h...

  20. DNA replication initiator Cdc6 also regulates ribosomal DNA transcription initiation.

    Science.gov (United States)

    Huang, Shijiao; Xu, Xiaowei; Wang, Guopeng; Lu, Guoliang; Xie, Wenbing; Tao, Wei; Zhang, Hongyin; Jiang, Qing; Zhang, Chuanmao

    2016-04-01

    RNA-polymerase-I-dependent ribosomal DNA (rDNA) transcription is fundamental to rRNA processing, ribosome assembly and protein synthesis. However, how this process is initiated during the cell cycle is not fully understood. By performing a proteomic analysis of transcription factors that bind RNA polymerase I during rDNA transcription initiation, we identified that the DNA replication initiator Cdc6 interacts with RNA polymerase I and its co-factors, and promotes rDNA transcription in G1 phase in an ATPase-activity-dependent manner. We further showed that Cdc6 is targeted to the nucleolus during late mitosis and G1 phase in a manner that is dependent on B23 (also known as nucleophosmin, NPM1), and preferentially binds to the rDNA promoter through its ATP-binding domain. Overexpression of Cdc6 increases rDNA transcription, whereas knockdown of Cdc6 results in a decreased association of both RNA polymerase I and the RNA polymerase I transcription factor RRN3 with rDNA, and a reduction of rDNA transcription. Furthermore, depletion of Cdc6 impairs the interaction between RRN3 and RNA polymerase I. Taken together, our data demonstrate that Cdc6 also serves as a regulator of rDNA transcription initiation, and indicate a mechanism by which initiation of rDNA transcription and DNA replication can be coordinated in cells. © 2016. Published by The Company of Biologists Ltd.

  1. Small RNAs and the regulation of cis-natural antisense transcripts in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Lonardi Stefano

    2008-01-01

    Full Text Available Abstract Background In spite of large intergenic spaces in plant and animal genomes, 7% to 30% of genes in the genomes encode overlapping cis-natural antisense transcripts (cis-NATs. The widespread occurrence of cis-NATs suggests an evolutionary advantage for this type of genomic arrangement. Experimental evidence for the regulation of two cis-NAT gene pairs by natural antisense transcripts-generated small interfering RNAs (nat-siRNAs via the RNA interference (RNAi pathway has been reported in Arabidopsis. However, the extent of siRNA-mediated regulation of cis-NAT genes is still unclear in any genome. Results The hallmarks of RNAi regulation of NATs are 1 inverse regulation of two genes in a cis-NAT pair by environmental and developmental cues and 2 generation of siRNAs by cis-NAT genes. We examined Arabidopsis transcript profiling data from public microarray databases to identify cis-NAT pairs whose sense and antisense transcripts show opposite expression changes. A subset of the cis-NAT genes displayed negatively correlated expression profiles as well as inverse differential expression changes under at least one of the examined developmental stages or treatment conditions. By searching the Arabidopsis Small RNA Project (ASRP and Massively Parallel Signature Sequencing (MPSS small RNA databases as well as our stress-treated small RNA dataset, we found small RNAs that matched at least one gene in 646 pairs out of 1008 (64% protein-coding cis-NAT pairs, which suggests that siRNAs may regulate the expression of many cis-NAT genes. 209 putative siRNAs have the potential to target more than one gene and half of these small RNAs could target multiple members of a gene family. Furthermore, the majority of the putative siRNAs within the overlapping regions tend to target only one transcript of a given NAT pair, which is consistent with our previous finding on salt- and bacteria-induced nat-siRNAs. In addition, we found that genes encoding plastid- or

  2. Mga2 transcription factor regulates an oxygen-responsive lipid homeostasis pathway in fission yeast

    DEFF Research Database (Denmark)

    Burr, Risa; Stewart, Emerson V; Shao, Wei

    2016-01-01

    -binding protein (SREBP) transcription factors regulate lipid homeostasis. In mammals, SREBP-2 controls cholesterol biosynthesis, whereas SREBP-1 controls triacylglycerol and glycerophospholipid biosynthesis. In the fission yeast Schizosaccharomyces pombe, the SREBP-2 homolog Sre1 regulates sterol homeostasis....... In the absence of mga2, fission yeast exhibited growth defects under both normoxia and low oxygen conditions. Mga2 transcriptional targets were enriched for lipid metabolism genes, and mga2Δ cells showed disrupted triacylglycerol and glycerophospholipid homeostasis, most notably with an increase in fatty acid...

  3. Crystallization and preliminary X-ray crystallographic studies of Mycobacterium tuberculosis CRP/FNR family transcription regulator

    International Nuclear Information System (INIS)

    Akif, Mohd; Akhter, Yusuf; Hasnain, Seyed E.; Mande, Shekhar C.

    2006-01-01

    The CRP/FNR family transcription factor from M. tuberculosis H37Rv has been crystallized in space group P2 1 2 1 2 1 in the absence of cAMP. The crystals show the presence of a dimeric molecule in the asymmetric unit. CRP/FNR family members are transcription factors that regulate the transcription of many genes in Escherichia coli and other organisms. Mycobacterium tuberculosis H37Rv contains a probable CRP/FNR homologue encoded by the open reading frame Rv3676. The deletion of this gene is known to cause growth defects in cell culture, in bone marrow-derived macrophages and in a mouse model of tuberculosis. The mycobacterial gene Rv3676 shares ∼32% sequence identity with prototype E. coli CRP. The structure of the protein might provide insight into transcriptional regulation in the pathogen by this protein. The M. tuberculosis CRP/FNR transcription regulator was crystallized in space group P2 1 2 1 2 1 , with unit-cell parameters a = 54.1, b = 84.6, c = 101.2 Å. The crystal diffracted to a resolution of 2.9 Å. Matthews coefficient and self-rotation function calculations reveal the presence of two monomers in the asymmetric unit

  4. Transcriptional regulation of Drosophila gonad formation.

    Science.gov (United States)

    Tripathy, Ratna; Kunwar, Prabhat S; Sano, Hiroko; Renault, Andrew D

    2014-08-15

    The formation of the Drosophila embryonic gonad, involving the fusion of clusters of somatic gonadal precursor cells (SGPs) and their ensheathment of germ cells, provides a simple and genetically tractable model for the interplay between cells during organ formation. In a screen for mutants affecting gonad formation we identified a SGP cell autonomous role for Midline (Mid) and Longitudinals lacking (Lola). These transcriptional factors are required for multiple aspects of SGP behaviour including SGP cluster fusion, germ cell ensheathment and gonad compaction. The lola locus encodes more than 25 differentially spliced isoforms and we have identified an isoform specific requirement for lola in the gonad which is distinct from that in nervous system development. Mid and Lola work in parallel in gonad formation and surprisingly Mid overexpression in a lola background leads to additional SGPs at the expense of fat body cells. Our findings support the idea that although the transcription factors required by SGPs can ostensibly be assigned to those being required for either SGP specification or behaviour, they can also interact to impinge on both processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. The bHLH Transcription Factors TSAR1 and TSAR2 Regulate Triterpene Saponin Biosynthesis in Medicago truncatula.

    Science.gov (United States)

    Mertens, Jan; Pollier, Jacob; Vanden Bossche, Robin; Lopez-Vidriero, Irene; Franco-Zorrilla, José Manuel; Goossens, Alain

    2016-01-01

    Plants respond to stresses by producing a broad spectrum of bioactive specialized metabolites. Hormonal elicitors, such as jasmonates, trigger a complex signaling circuit leading to the concerted activation of specific metabolic pathways. However, for many specialized metabolic pathways, the transcription factors involved remain unknown. Here, we report on two homologous jasmonate-inducible transcription factors of the basic helix-loop-helix family, TRITERPENE SAPONIN BIOSYNTHESIS ACTIVATING REGULATOR1 (TSAR1) and TSAR2, which direct triterpene saponin biosynthesis in Medicago truncatula. TSAR1 and TSAR2 are coregulated with and transactivate the genes encoding 3-HYDROXY-3-METHYLGLUTARYL-COENZYME A REDUCTASE1 (HMGR1) and MAKIBISHI1, the rate-limiting enzyme for triterpene biosynthesis and an E3 ubiquitin ligase that controls HMGR1 levels, respectively. Transactivation is mediated by direct binding of TSARs to the N-box in the promoter of HMGR1. In transient expression assays in tobacco (Nicotiana tabacum) protoplasts, TSAR1 and TSAR2 exhibit different patterns of transactivation of downstream triterpene saponin biosynthetic genes, hinting at distinct functionalities within the regulation of the pathway. Correspondingly, overexpression of TSAR1 or TSAR2 in M. truncatula hairy roots resulted in elevated transcript levels of known triterpene saponin biosynthetic genes and strongly increased the accumulation of triterpene saponins. TSAR2 overexpression specifically boosted hemolytic saponin biosynthesis, whereas TSAR1 overexpression primarily stimulated nonhemolytic soyasaponin biosynthesis. Both TSARs also activated all genes of the precursor mevalonate pathway but did not affect sterol biosynthetic genes, pointing to their specific role as regulators of specialized triterpene metabolism in M. truncatula. © 2016 American Society of Plant Biologists. All Rights Reserved.

  6. Innate immune responses: Crosstalk of signaling and regulation of gene transcription

    International Nuclear Information System (INIS)

    Zhong Bo; Tien Po; Shu Hongbing

    2006-01-01

    Innate immune responses to pathogens such as bacteria and viruses are triggered by recognition of specific structures of invading pathogens called pathogen-associated molecular patterns (PAMPs) by cellular pattern recognition receptors (PRRs) that are located at plasma membrane or inside cells. Stimulation of different PAMPs activates Toll-like receptor (TLR)-dependent and -independent signaling pathways that lead to activation of transcription factors nuclear factor-κB (NF-κB), interferon regulatory factor 3/7 (IRF3/7) and/or activator protein-1 (AP-1), which collaborate to induce transcription of a large number of downstream genes. This review focuses on the rapid progress that has recently improved our understanding of the crosstalk among the pathways and the precise regulation of transcription of the downstream genes

  7. Multiple oxygen tension environments reveal diverse patterns of transcriptional regulation in primary astrocytes.

    Directory of Open Access Journals (Sweden)

    Wayne Chadwick

    Full Text Available The central nervous system normally functions at O(2 levels which would be regarded as hypoxic by most other tissues. However, most in vitro studies of neurons and astrocytes are conducted under hyperoxic conditions without consideration of O(2-dependent cellular adaptation. We analyzed the reactivity of astrocytes to 1, 4 and 9% O(2 tensions compared to the cell culture standard of 20% O(2, to investigate their ability to sense and translate this O(2 information to transcriptional activity. Variance of ambient O(2 tension for rat astrocytes resulted in profound changes in ribosomal activity, cytoskeletal and energy-regulatory mechanisms and cytokine-related signaling. Clustering of transcriptional regulation patterns revealed four distinct response pattern groups that directionally pivoted around the 4% O(2 tension, or demonstrated coherent ascending/decreasing gene expression patterns in response to diverse oxygen tensions. Immune response and cell cycle/cancer-related signaling pathway transcriptomic subsets were significantly activated with increasing hypoxia, whilst hemostatic and cardiovascular signaling mechanisms were attenuated with increasing hypoxia. Our data indicate that variant O(2 tensions induce specific and physiologically-focused transcript regulation patterns that may underpin important physiological mechanisms that connect higher neurological activity to astrocytic function and ambient oxygen environments. These strongly defined patterns demonstrate a strong bias for physiological transcript programs to pivot around the 4% O(2 tension, while uni-modal programs that do not, appear more related to pathological actions. The functional interaction of these transcriptional 'programs' may serve to regulate the dynamic vascular responsivity of the central nervous system during periods of stress or heightened activity.

  8. Amino acid-dependent signaling via S6K1 and MYC is essential for regulation of rDNA transcription

    Science.gov (United States)

    Kang, Jian; Kusnadi, Eric P.; Ogden, Allison J.; Hicks, Rodney J.; Bammert, Lukas; Kutay, Ulrike; Hung, Sandy; Sanij, Elaine; Hannan, Ross D.; Hannan, Katherine M.; Pearson, Richard B.

    2016-01-01

    Dysregulation of RNA polymerase I (Pol I)-dependent ribosomal DNA (rDNA) transcription is a consistent feature of malignant transformation that can be targeted to treat cancer. Understanding how rDNA transcription is coupled to the availability of growth factors and nutrients will provide insight into how ribosome biogenesis is maintained in a tumour environment characterised by limiting nutrients. We demonstrate that modulation of rDNA transcription initiation, elongation and rRNA processing is an immediate, co-regulated response to altered amino acid abundance, dependent on both mTORC1 activation of S6K1 and MYC activity. Growth factors regulate rDNA transcription initiation while amino acids modulate growth factor-dependent rDNA transcription by primarily regulating S6K1-dependent rDNA transcription elongation and processing. Thus, we show for the first time amino acids regulate rRNA synthesis by a distinct, post-initiation mechanism, providing a novel model for integrated control of ribosome biogenesis that has implications for understanding how this process is dysregulated in cancer. PMID:27385002

  9. RNF11 is a multifunctional modulator of growth factor receptor signalling and transcriptional regulation.

    Science.gov (United States)

    Azmi, Peter; Seth, Arun

    2005-11-01

    Our laboratory has found that the 154aa RING finger protein 11 (RNF11), has modular domains and motifs including a RING-H2 finger domain, a PY motif, an ubiquitin interacting motif (UIM), a 14-3-3 binding sequence and an AKT phosphorylation site. RNF11 represents a unique protein with no other known immediate family members yet described. Comparative genetic analysis has shown that RNF11 is highly conserved throughout evolution. This may indicate a conserved and non-redundant role for the RNF11 protein. Molecular binding assays using RNF11 have shown that RNF11 has important roles in growth factor signalling, ubiquitination and transcriptional regulation. RNF11 has been shown to interact with HECT-type E3 ubiquitin ligases Nedd4, AIP4, Smurf1 and Smurf2, as well as with Cullin1, the core protein in the multi-subunit SCF E3 ubiquitin ligase complex. Work done in our laboratory has shown that RNF11 is capable of antagonizing Smurf2-mediated inhibition of TGFbeta signalling. Furthermore, RNF11 is capable of degrading AMSH, a positive regulator of both TGFbeta and EGFR signalling pathways. Recently, we have found that RNF11 can directly enhance TGFbeta signalling through a direct association with Smad4, the common signal transducer and transcription factor in the TGFbeta, BMP, and Activin pathways. Through its association with Smad4 and other transcription factors, RNF11 may have a role in direct transcriptional regulation. Our laboratory and others have found nearly 80 protein interactions for RNF11, placing RNF11 at the cross-roads of cell signalling and transcriptional regulation. RNF11 is highly expressed in breast tumours. Deregulation of RNF11 function may prove to be harmful to patient therapeutic outcomes. RNF11 may therefore provide a novel target for cancer therapeutics. The purpose of this review is to discuss the role of RNF11 in cell signalling and transcription factor modulation with special attention given to the ubiquitin-proteasomal pathway, TGFbeta

  10. The rgg0182 gene encodes a transcriptional regulator required for the full Streptococcus thermophilus LMG18311 thermal adaptation.

    Science.gov (United States)

    Henry, Romain; Bruneau, Emmanuelle; Gardan, Rozenn; Bertin, Stéphane; Fleuchot, Betty; Decaris, Bernard; Leblond-Bourget, Nathalie

    2011-10-07

    Streptococcus thermophilus is an important starter strain for the production of yogurt and cheeses. The analysis of sequenced genomes of four strains of S. thermophilus indicates that they contain several genes of the rgg familly potentially encoding transcriptional regulators. Some of the Rgg proteins are known to be involved in bacterial stress adaptation. In this study, we demonstrated that Streptococcus thermophilus thermal stress adaptation required the rgg0182 gene which transcription depends on the culture medium and the growth temperature. This gene encoded a protein showing similarity with members of the Rgg family transcriptional regulator. Our data confirmed that Rgg0182 is a transcriptional regulator controlling the expression of its neighboring genes as well as chaperones and proteases encoding genes. Therefore, analysis of a Δrgg0182 mutant revealed that this protein played a role in the heat shock adaptation of Streptococcus thermophilus LMG18311. These data showed the importance of the Rgg0182 transcriptional regulator on the survival of S. thermophilus during dairy processes and more specifically during changes in temperature.

  11. The rgg0182 gene encodes a transcriptional regulator required for the full Streptococcus thermophilus LMG18311 thermal adaptation

    Directory of Open Access Journals (Sweden)

    Bertin Stéphane

    2011-10-01

    Full Text Available Abstract Background Streptococcus thermophilus is an important starter strain for the production of yogurt and cheeses. The analysis of sequenced genomes of four strains of S. thermophilus indicates that they contain several genes of the rgg familly potentially encoding transcriptional regulators. Some of the Rgg proteins are known to be involved in bacterial stress adaptation. Results In this study, we demonstrated that Streptococcus thermophilus thermal stress adaptation required the rgg0182 gene which transcription depends on the culture medium and the growth temperature. This gene encoded a protein showing similarity with members of the Rgg family transcriptional regulator. Our data confirmed that Rgg0182 is a transcriptional regulator controlling the expression of its neighboring genes as well as chaperones and proteases encoding genes. Therefore, analysis of a Δrgg0182 mutant revealed that this protein played a role in the heat shock adaptation of Streptococcus thermophilus LMG18311. Conclusions These data showed the importance of the Rgg0182 transcriptional regulator on the survival of S. thermophilus during dairy processes and more specifically during changes in temperature.

  12. The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries.

    Science.gov (United States)

    Deluc, Laurent; Bogs, Jochen; Walker, Amanda R; Ferrier, Thilia; Decendit, Alain; Merillon, Jean-Michel; Robinson, Simon P; Barrieu, François

    2008-08-01

    Among the dramatic changes occurring during grape berry (Vitis vinifera) development, those affecting the flavonoid pathway have provoked a number of investigations in the last 10 years. In addition to producing several compounds involved in the protection of the berry and the dissemination of the seeds, final products of this pathway also play a critical role in berry and wine quality. In this article, we describe the cloning and functional characterization of VvMYB5b, a cDNA isolated from a grape berry (V. vinifera 'Cabernet Sauvignon') library. VvMYB5b encodes a protein belonging to the R2R3-MYB family of transcription factors and displays significant similarity with VvMYB5a, another MYB factor recently shown to regulate flavonoid synthesis in grapevine. The ability of VvMYB5a and VvMYB5b to activate the grapevine promoters of several structural genes of the flavonoid pathway was confirmed by transient expression of the corresponding cDNAs in grape cells. Overexpression of VvMYB5b in tobacco (Nicotiana tabacum) leads to an up-regulation of genes encoding enzymes of the flavonoid pathway and results in the accumulation of anthocyanin- and proanthocyanidin-derived compounds. The ability of VvMYB5b to regulate particularly the anthocyanin and the proanthocyanidin pathways is discussed in relation to other recently characterized MYB transcription factors in grapevine. Taken together, data presented in this article give insight into the transcriptional mechanisms associated with the regulation of the flavonoid pathway throughout grape berry development.

  13. Plant-Derived Transcription Factors for Orthologous Regulation of Gene Expression in the Yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Naseri, Gita; Balazadeh, Salma; Machens, Fabian; Kamranfar, Iman; Messerschmidt, Katrin; Mueller-Roeber, Bernd

    2017-09-15

    Control of gene expression by transcription factors (TFs) is central in many synthetic biology projects for which a tailored expression of one or multiple genes is often needed. As TFs from evolutionary distant organisms are unlikely to affect gene expression in a host of choice, they represent excellent candidates for establishing orthogonal control systems. To establish orthogonal regulators for use in yeast (Saccharomyces cerevisiae), we chose TFs from the plant Arabidopsis thaliana. We established a library of 106 different combinations of chromosomally integrated TFs, activation domains (yeast GAL4 AD, herpes simplex virus VP64, and plant EDLL) and synthetic promoters harboring cognate cis-regulatory motifs driving a yEGFP reporter. Transcriptional output of the different driver/reporter combinations varied over a wide spectrum, with EDLL being a considerably stronger transcription activation domain in yeast than the GAL4 activation domain, in particular when fused to Arabidopsis NAC TFs. Notably, the strength of several NAC-EDLL fusions exceeded that of the strong yeast TDH3 promoter by 6- to 10-fold. We furthermore show that plant TFs can be used to build regulatory systems encoded by centromeric or episomal plasmids. Our library of TF-DNA binding site combinations offers an excellent tool for diverse synthetic biology applications in yeast.

  14. SUMOylation regulates the transcriptional repression activity of FOG-2 and its association with GATA-4.

    Science.gov (United States)

    Perdomo, José; Jiang, Xing-Mai; Carter, Daniel R; Khachigian, Levon M; Chong, Beng H

    2012-01-01

    Friend of GATA 2 (FOG-2), a co-factor of several GATA transcription factors (GATA-4, -5 and 6), is a critical regulator of coronary vessel formation and heart morphogenesis. Here we demonstrate that FOG-2 is SUMOylated and that this modification modulates its transcriptional activity. FOG-2 SUMOylation occurs at four lysine residues (K324, 471, 915, 955) [corrected]. Three of these residues are part of the characteristic SUMO consensus site (ψKXE), while K955 is found in the less frequent TKXE motif. Absence of SUMOylation did not affect FOG-2's nuclear localization. However, mutation of the FOG-2 SUMOylation sites, or de-SUMOylation, with SENP-1 or SENP-8 resulted in stronger transcriptional repression activity in both heterologous cells and cardiomyocytes. Conversely, increased FOG-2 SUMOylation by overexpression of SUMO-1 or expression of a SUMO-1-FOG-2 fusion protein rendered FOG-2 incapable of repressing GATA-4-mediated activation of the B-type natriuretic peptide (BNP) promoter. Moreover, we demonstrate both increased interaction between a FOG-2 SUMO mutant and GATA-4 and enhanced SUMOylation of wild-type FOG-2 by co-expression of GATA-4. These data suggest a new dynamics in which GATA-4 may alter the activity of FOG-2 by influencing its SUMOylation status.

  15. Regulation of the yeast metabolic cycle by transcription factors with periodic activities

    Directory of Open Access Journals (Sweden)

    Pellegrini Matteo

    2011-10-01

    Full Text Available Abstract Background When growing budding yeast under continuous, nutrient-limited conditions, over half of yeast genes exhibit periodic expression patterns. Periodicity can also be observed in respiration, in the timing of cell division, as well as in various metabolite levels. Knowing the transcription factors involved in the yeast metabolic cycle is helpful for determining the cascade of regulatory events that cause these patterns. Results Transcription factor activities were estimated by linear regression using time series and genome-wide transcription factor binding data. Time-translation matrices were estimated using least squares and were used to model the interactions between the most significant transcription factors. The top transcription factors have functions involving respiration, cell cycle events, amino acid metabolism and glycolysis. Key regulators of transitions between phases of the yeast metabolic cycle appear to be Hap1, Hap4, Gcn4, Msn4, Swi6 and Adr1. Conclusions Analysis of the phases at which transcription factor activities peak supports previous findings suggesting that the various cellular functions occur during specific phases of the yeast metabolic cycle.

  16. A regulating element essential for PDGFRA transcription is recognized by neural tube defect-associated PRX homeobox transcription factors

    NARCIS (Netherlands)

    Joosten, Paul H. L. J.; Toepoel, Mascha; van Oosterhout, Dirk; Afink, Gijs B.; van Zoelen, Everardus J. J.

    2002-01-01

    We have previously shown that deregulated expression of the platelet-derived growth factor alpha-receptor (PDGFRA) can be associated with neural tube defects (NTDs) in both men and mice. In the present study, we have investigated the transcription factors that control the up-regulation of PDGFRA

  17. Zinc coordination is required for and regulates transcription activation by Epstein-Barr nuclear antigen 1.

    Directory of Open Access Journals (Sweden)

    Siddhesh Aras

    2009-06-01

    Full Text Available Epstein-Barr Nuclear Antigen 1 (EBNA1 is essential for Epstein-Barr virus to immortalize naïve B-cells. Upon binding a cluster of 20 cognate binding-sites termed the family of repeats, EBNA1 transactivates promoters for EBV genes that are required for immortalization. A small domain, termed UR1, that is 25 amino-acids in length, has been identified previously as essential for EBNA1 to activate transcription. In this study, we have elucidated how UR1 contributes to EBNA1's ability to transactivate. We show that zinc is necessary for EBNA1 to activate transcription, and that UR1 coordinates zinc through a pair of essential cysteines contained within it. UR1 dimerizes upon coordinating zinc, indicating that EBNA1 contains a second dimerization interface in its amino-terminus. There is a strong correlation between UR1-mediated dimerization and EBNA1's ability to transactivate cooperatively. Point mutants of EBNA1 that disrupt zinc coordination also prevent self-association, and do not activate transcription cooperatively. Further, we demonstrate that UR1 acts as a molecular sensor that regulates the ability of EBNA1 to activate transcription in response to changes in redox and oxygen partial pressure (pO(2. Mild oxidative stress mimicking such environmental changes decreases EBNA1-dependent transcription in a lymphoblastoid cell-line. Coincident with a reduction in EBNA1-dependent transcription, reductions are observed in EBNA2 and LMP1 protein levels. Although these changes do not affect LCL survival, treated cells accumulate in G0/G1. These findings are discussed in the context of EBV latency in body compartments that differ strikingly in their pO(2 and redox potential.

  18. PML-associated repressor of transcription (PAROT), a novel KRAB-zinc finger repressor, is regulated through association with PML nuclear bodies

    International Nuclear Information System (INIS)

    Fleischer, Sandra; Wiemann, Stefan; Will, Hans; Hofmann, Thomas G.

    2006-01-01

    Promyelocytic leukemia nuclear bodies (PML-NBs) are implicated in transcriptional regulation. Here we identify a novel transcriptional repressor, PML-associated repressor of transcription (PAROT), which is regulated in its repressor activity through recruitment to PML-NBs. PAROT is a Krueppel-associated box ( KRAB) zinc-finger (ZNF) protein, which comprises an amino terminal KRAB-A and KRAB-B box, a linker domain and 8 tandemly repeated C 2 H 2 -ZNF motifs at its carboxy terminus. Consistent with its domain structure, when tethered to DNA, PAROT represses transcription, and this is partially released by the HDAC inhibitor trichostatin A. PAROT colocalizes with members of the heterochromatin protein 1 (HP1) family and with transcriptional intermediary factor-1β/KRAB-associated protein 1 (TIF-1β/KAP1), a transcriptional corepressor for the KRAB-ZNF family. Interestingly, PML isoform IV, in contrast to PML-III, efficiently recruits PAROT and TIF-1β from heterochromatin to PML-NBs. PML-NB recruitment of PAROT partially releases its transcriptional repressor activity, indicating that PAROT can be regulated through subnuclear compartmentalization. Taken together, our data identify a novel transcriptional repressor and provide evidence for its regulation through association with PML-NBs

  19. Regulation of nucleolus assembly by non-coding RNA polymerase II transcripts.

    Science.gov (United States)

    Caudron-Herger, Maïwen; Pankert, Teresa; Rippe, Karsten

    2016-05-03

    The nucleolus is a nuclear subcompartment for tightly regulated rRNA production and ribosome subunit biogenesis. It also acts as a cellular stress sensor and can release enriched factors in response to cellular stimuli. Accordingly, the content and structure of the nucleolus change dynamically, which is particularly evident during cell cycle progression: the nucleolus completely disassembles during mitosis and reassembles in interphase. Although the mechanisms that drive nucleolar (re)organization have been the subject of a number of studies, they are only partly understood. Recently, we identified Alu element-containing RNA polymerase II transcripts (aluRNAs) as important for nucleolar structure and rRNA synthesis. Integrating these findings with studies on the liquid droplet-like nature of the nucleolus leads us to propose a model on how RNA polymerase II transcripts could regulate the assembly of the nucleolus in response to external stimuli and during cell cycle progression.

  20. The forkhead transcription factor FoxY regulates Nanos.

    Science.gov (United States)

    Song, Jia L; Wessel, Gary M

    2012-10-01

    FoxY is a member of the forkhead transcription factor family that appeared enriched in the presumptive germ line of sea urchins (Ransick et al. Dev Biol 2002;246:132). Here, we test the hypothesis that FoxY is involved in germ line determination in this animal. We found two splice forms of FoxY that share the same DNA-binding domain, but vary in the carboxy-terminal trans-activation/repression domain. Both forms of the FoxY protein are present in the egg and in the early embryo, and their mRNAs accumulate to their highest levels in the small micromeres and adjacent non-skeletogenic mesoderm. Knockdown of FoxY resulted in a dramatic decrease in Nanos mRNA and protein levels as well as a loss of coelomic pouches in 2-week-old larvae. Our results indicate that FoxY positively regulates Nanos at the transcriptional level and is essential for reproductive potential in this organism. Copyright © 2012 Wiley Periodicals, Inc.

  1. Jasmonate-responsive transcription factors regulating plant secondary metabolism.

    Science.gov (United States)

    Zhou, Meiliang; Memelink, Johan

    2016-01-01

    Plants produce a large variety of secondary metabolites including alkaloids, glucosinolates, terpenoids and phenylpropanoids. These compounds play key roles in plant-environment interactions and many of them have pharmacological activity in humans. Jasmonates (JAs) are plant hormones which induce biosynthesis of many secondary metabolites. JAs-responsive transcription factors (TFs) that regulate the JAs-induced accumulation of secondary metabolites belong to different families including AP2/ERF, bHLH, MYB and WRKY. Here, we give an overview of the types and functions of TFs that have been identified in JAs-induced secondary metabolite biosynthesis, and highlight their similarities and differences in regulating various biosynthetic pathways. We review major recent developments regarding JAs-responsive TFs mediating secondary metabolite biosynthesis, and provide suggestions for further studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Regulation of a transcription factor network by Cdk1 coordinates late cell cycle gene expression.

    Science.gov (United States)

    Landry, Benjamin D; Mapa, Claudine E; Arsenault, Heather E; Poti, Kristin E; Benanti, Jennifer A

    2014-05-02

    To maintain genome stability, regulators of chromosome segregation must be expressed in coordination with mitotic events. Expression of these late cell cycle genes is regulated by cyclin-dependent kinase (Cdk1), which phosphorylates a network of conserved transcription factors (TFs). However, the effects of Cdk1 phosphorylation on many key TFs are not known. We find that elimination of Cdk1-mediated phosphorylation of four S-phase TFs decreases expression of many late cell cycle genes, delays mitotic progression, and reduces fitness in budding yeast. Blocking phosphorylation impairs degradation of all four TFs. Consequently, phosphorylation-deficient mutants of the repressors Yox1 and Yhp1 exhibit increased promoter occupancy and decreased expression of their target genes. Interestingly, although phosphorylation of the transcriptional activator Hcm1 on its N-terminus promotes its degradation, phosphorylation on its C-terminus is required for its activity, indicating that Cdk1 both activates and inhibits a single TF. We conclude that Cdk1 promotes gene expression by both activating transcriptional activators and inactivating transcriptional repressors. Furthermore, our data suggest that coordinated regulation of the TF network by Cdk1 is necessary for faithful cell division.

  3. Fluid consumption and taste novelty determines transcription temporal dynamics in the gustatory cortex

    OpenAIRE

    Inberg, Sharon; Jacob, Eyal; Elkobi, Alina; Edry, Efrat; Rappaport, Akiva; Simpson, T. Ian; Armstrong, J. Douglas; Shomron, Noam; Pasmanik-Chor, Metsada; Rosenblum, Kobi

    2016-01-01

    Background Novel taste memories, critical for animal survival, are consolidated to form long term memories which are dependent on translation regulation in the gustatory cortex (GC) hours following acquisition. However, the role of transcription regulation in the process is unknown. Results Here, we report that transcription in the GC is necessary for taste learning in rats, and that drinking and its consequences, as well as the novel taste experience, affect transcription in the GC during ta...

  4. RNA-guided Transcriptional Regulation in Plants via dCas9 Chimeric Proteins

    KAUST Repository

    Baazim, Hatoon

    2014-05-01

    Developing targeted genome regulation approaches holds much promise for accelerating trait discovery and development in agricultural biotechnology. Clustered Regularly Interspaced Palindromic Repeats (CRISPRs)/CRISPR associated (Cas) system provides bacteria and archaea with an adaptive molecular immunity mechanism against invading nucleic acids through phages and conjugative plasmids. The type II CRISPR/Cas system has been adapted for genome editing purposes across a variety of cell types and organisms. Recently, the catalytically inactive Cas9 (dCas9) protein combined with guide RNAs (gRNAs) were used as a DNA-targeting platform to modulate the expression patterns in bacterial, yeast and human cells. Here, we employed this DNA-targeting system for targeted transcriptional regulation in planta by developing chimeric dCas9-based activators and repressors. For example, we fused to the C-terminus of dCas9 with the activation domains of EDLL and TAL effectors, respectively, to generate transcriptional activators, and the SRDX repression domain to generate transcriptional repressor. Our data demonstrate that the dCas9:EDLL and dCas9:TAD activators, guided by gRNAs complementary to promoter elements, induce strong transcriptional activation on episomal targets in plant cells. Moreover, our data suggest that the dCas9:SRDX repressor and the dCas9:EDLL and dCas9:TAD activators are capable of markedly repressing or activating, respectively, the transcription of an endogenous genomic target. Our data indicate that the CRISPR/dCas9:TFs DNA targeting system can be used in plants as a functional genomic tool and for biotechnological applications.

  5. Transcription activator-like effector-mediated regulation of gene expression based on the inducible packaging and delivery via designed extracellular vesicles

    International Nuclear Information System (INIS)

    Lainšček, Duško; Lebar, Tina; Jerala, Roman

    2017-01-01

    Transcription activator-like effector (TALE) proteins present a powerful tool for genome editing and engineering, enabling introduction of site-specific mutations, gene knockouts or regulation of the transcription levels of selected genes. TALE nucleases or TALE-based transcription regulators are introduced into mammalian cells mainly via delivery of the coding genes. Here we report an extracellular vesicle-mediated delivery of TALE transcription regulators and their ability to upregulate the reporter gene in target cells. Designed transcriptional activator TALE-VP16 fused to the appropriate dimerization domain was enriched as a cargo protein within extracellular vesicles produced by mammalian HEK293 cells stimulated by Ca-ionophore and using blue light- or rapamycin-inducible dimerization systems. Blue light illumination or rapamycin increased the amount of the TALE-VP16 activator in extracellular vesicles and their addition to the target cells resulted in an increased expression of the reporter gene upon addition of extracellular vesicles to the target cells. This technology therefore represents an efficient delivery for the TALE-based transcriptional regulators. - Highlights: • Inducible dimerization enriched cargo proteins within extracellular vesicles (EV). • Farnesylation surpassed LAMP-1 fusion proteins for the EV packing. • Extracellular vesicles were able to deliver TALE regulators to mammalian cells. • TALE mediated transcriptional activation was achieved by designed EV.

  6. Up-regulation of microRNA-1290 impairs cytokinesis and affects the reprogramming of colon cancer cells.

    Science.gov (United States)

    Wu, Jia; Ji, Xiaowei; Zhu, Linlin; Jiang, Qiaoli; Wen, Zhenzhen; Xu, Song; Shao, Wei; Cai, Jianting; Du, Qin; Zhu, Yongliang; Mao, Jianshan

    2013-02-28

    Abnormal cytokinesis increases the possibility of nuclear fusion in tumor cells. However, the role of microRNAs (miRNAs) in abnormal cytokinesis is unclear. Here, we found that miR-1290 was significantly up-regulated in clinical colon cancer tissues. Up-regulation of miR-1290 postponed cytokinesis and led to the formation of multinucleated cells. KIF13B was a target of miR-1290 that was involved in aberrant cytokinesis. Furthermore, enforced expression of miR-1290 activated the Wnt pathway and increased the reprogramming-related transcript factors c-Myc and Nanog. Our results suggest that up-regulation of miR-1290 in colon cancer cells impaired cytokinesis and affected reprogramming. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Epigenetics regulates transcription and pathogenesis in the parasite Trichomonas vaginalis.

    Science.gov (United States)

    Pachano, Tomas; Nievas, Yesica R; Lizarraga, Ayelen; Johnson, Patricia J; Strobl-Mazzulla, Pablo H; de Miguel, Natalia

    2017-06-01

    Trichomonas vaginalis is a common sexually transmitted parasite that colonizes the human urogenital tract. Infections range from asymptomatic to highly inflammatory, depending on the host and the parasite strain. Different T. vaginalis strains vary greatly in their adherence and cytolytic capacities. These phenotypic differences might be attributed to differentially expressed genes as a consequence of extra-genetic variation, such as epigenetic modifications. In this study, we explored the role of histone acetylation in regulating gene transcription and pathogenesis in T. vaginalis. Here, we show that histone 3 lysine acetylation (H3KAc) is enriched in nucleosomes positioned around the transcription start site of active genes (BAP1 and BAP2) in a highly adherent parasite strain; compared with the low acetylation abundance in contrast to that observed in a less-adherent strain that expresses these genes at low levels. Additionally, exposition of less-adherent strain with a specific histone deacetylases inhibitor, trichostatin A, upregulated the transcription of BAP1 and BAP2 genes in concomitance with an increase in H3KAc abundance and chromatin accessibility around their transcription start sites. Moreover, we demonstrated that the binding of initiator binding protein, the transcription factor responsible for the initiation of transcription of ~75% of known T. vaginalis genes, depends on the histone acetylation state around the metazoan-like initiator to which initiator binding protein binds. Finally, we found that trichostatin A treatment increased parasite aggregation and adherence to host cells. Our data demonstrated for the first time that H3KAc is a permissive histone modification that functions to mediate both transcription and pathogenesis of the parasite T. vaginalis. © 2017 John Wiley & Sons Ltd.

  8. Concentration and length dependence of DNA looping in transcriptional regulation.

    Directory of Open Access Journals (Sweden)

    Lin Han

    2009-05-01

    Full Text Available In many cases, transcriptional regulation involves the binding of transcription factors at sites on the DNA that are not immediately adjacent to the promoter of interest. This action at a distance is often mediated by the formation of DNA loops: Binding at two or more sites on the DNA results in the formation of a loop, which can bring the transcription factor into the immediate neighborhood of the relevant promoter. These processes are important in settings ranging from the historic bacterial examples (bacterial metabolism and the lytic-lysogeny decision in bacteriophage, to the modern concept of gene regulation to regulatory processes central to pattern formation during development of multicellular organisms. Though there have been a variety of insights into the combinatorial aspects of transcriptional control, the mechanism of DNA looping as an agent of combinatorial control in both prokaryotes and eukaryotes remains unclear. We use single-molecule techniques to dissect DNA looping in the lac operon. In particular, we measure the propensity for DNA looping by the Lac repressor as a function of the concentration of repressor protein and as a function of the distance between repressor binding sites. As with earlier single-molecule studies, we find (at least two distinct looped states and demonstrate that the presence of these two states depends both upon the concentration of repressor protein and the distance between the two repressor binding sites. We find that loops form even at interoperator spacings considerably shorter than the DNA persistence length, without the intervention of any other proteins to prebend the DNA. The concentration measurements also permit us to use a simple statistical mechanical model of DNA loop formation to determine the free energy of DNA looping, or equivalently, the for looping.

  9. An excited state underlies gene regulation of a transcriptional riboswitch

    Science.gov (United States)

    Zhao, Bo; Guffy, Sharon L.; Williams, Benfeard; Zhang, Qi

    2017-01-01

    Riboswitches control gene expression through ligand-dependent structural rearrangements of the sensing aptamer domain. However, we found that the Bacillus cereus fluoride riboswitch aptamer adopts identical tertiary structures in solution with and without ligand. Using chemical exchange saturation transfer (CEST) NMR spectroscopy, we revealed that the structured ligand-free aptamer transiently accesses a low-populated (~1%) and short-lived (~3 ms) excited conformational state that unravels a conserved ‘linchpin’ base pair to signal transcription termination. Upon fluoride binding, this highly localized fleeting process is allosterically suppressed to activate transcription. We demonstrated that this mechanism confers effective fluoride-dependent gene activation over a wide range of transcription rates, which is essential for robust toxicity response across diverse cellular conditions. These results unveil a novel switching mechanism that employs ligand-dependent suppression of an aptamer excited state to coordinate regulatory conformational transitions rather than adopting distinct aptamer ground-state tertiary architectures, exemplifying a new mode of ligand-dependent RNA regulation. PMID:28719589

  10. Semester-Long Inquiry-Based Molecular Biology Laboratory: Transcriptional Regulation in Yeast

    Science.gov (United States)

    Oelkers, Peter M.

    2017-01-01

    A single semester molecular biology laboratory has been developed in which students design and execute a project examining transcriptional regulation in "Saccharomyces cerevisiae." Three weeks of planning are allocated to developing a hypothesis through literature searches and use of bioinformatics. Common experimental plans address a…

  11. Exosome proteomics reveals transcriptional regulator proteins with potential to mediate downstream pathways.

    Science.gov (United States)

    Ung, Timothy H; Madsen, Helen J; Hellwinkel, Justin E; Lencioni, Alex M; Graner, Michael W

    2014-11-01

    Exosomes are virus-sized, membrane-enclosed vesicles with origins in the cellular endosomal system, but are released extracellularly. As a population, these tiny vesicles carry relatively enormous amounts of information in their protein, lipid and nucleic acid content, and the vesicles can have profound impacts on recipient cells. This review employs publically-available data combined with gene ontology applications to propose a novel concept, that exosomes transport transcriptional and translational machinery that may have direct impacts on gene expression in recipient cells. Here, we examine the previously published proteomic contents of medulloblastoma-derived exosomes, focusing on transcriptional regulators; we found that there are numerous proteins that may have potential roles in transcriptional and translational regulation with putative influence on downstream, cancer-related pathways. We expanded this search to all of the proteins in the Vesiclepedia database; using gene ontology approaches, we see that these regulatory factors are implicated in many of the processes involved in cancer initiation and progression. This information suggests that some of the effects of exosomes on recipient cells may be due to the delivery of protein factors that can directly and fundamentally change the transcriptional landscape of the cells. Within a tumor environment, this has potential to tilt the advantage towards the cancer. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  12. The Transcription Factor ABI4 Is Required for the Ascorbic Acid–Dependent Regulation of Growth and Regulation of Jasmonate-Dependent Defense Signaling Pathways in Arabidopsis[C][W

    Science.gov (United States)

    Kerchev, Pavel I.; Pellny, Till K.; Vivancos, Pedro Diaz; Kiddle, Guy; Hedden, Peter; Driscoll, Simon; Vanacker, Hélène; Verrier, Paul; Hancock, Robert D.; Foyer, Christine H.

    2011-01-01

    Cellular redox homeostasis is a hub for signal integration. Interactions between redox metabolism and the ABSCISIC ACID-INSENSITIVE-4 (ABI4) transcription factor were characterized in the Arabidopsis thaliana vitamin c defective1 (vtc1) and vtc2 mutants, which are defective in ascorbic acid synthesis and show a slow growth phenotype together with enhanced abscisic acid (ABA) levels relative to the wild type (Columbia-0). The 75% decrease in the leaf ascorbate pool in the vtc2 mutants was not sufficient to adversely affect GA metabolism. The transcriptome signatures of the abi4, vtc1, and vtc2 mutants showed significant overlap, with a large number of transcription factors or signaling components similarly repressed or induced. Moreover, lincomycin-dependent changes in LIGHT HARVESTING CHLOROPHYLL A/B BINDING PROTEIN 1.1 expression were comparable in these mutants, suggesting overlapping participation in chloroplast to nucleus signaling. The slow growth phenotype of vtc2 was absent in the abi4 vtc2 double mutant, as was the sugar-insensitive phenotype of the abi4 mutant. Octadecanoid derivative-responsive AP2/ERF-domain transcription factor 47 (ORA47) and AP3 (an ABI5 binding factor) transcripts were enhanced in vtc2 but repressed in abi4 vtc2, suggesting that ABI4 and ascorbate modulate growth and defense gene expression through jasmonate signaling. We conclude that low ascorbate triggers ABA- and jasmonate-dependent signaling pathways that together regulate growth through ABI4. Moreover, cellular redox homeostasis exerts a strong influence on sugar-dependent growth regulation. PMID:21926335

  13. SET oncoprotein accumulation regulates transcription through DNA demethylation and histone hypoacetylation.

    Science.gov (United States)

    Almeida, Luciana O; Neto, Marinaldo P C; Sousa, Lucas O; Tannous, Maryna A; Curti, Carlos; Leopoldino, Andreia M

    2017-04-18

    Epigenetic modifications are essential in the control of normal cellular processes and cancer development. DNA methylation and histone acetylation are major epigenetic modifications involved in gene transcription and abnormal events driving the oncogenic process. SET protein accumulates in many cancer types, including head and neck squamous cell carcinoma (HNSCC); SET is a member of the INHAT complex that inhibits gene transcription associating with histones and preventing their acetylation. We explored how SET protein accumulation impacts on the regulation of gene expression, focusing on DNA methylation and histone acetylation. DNA methylation profile of 24 tumour suppressors evidenced that SET accumulation decreased DNA methylation in association with loss of 5-methylcytidine, formation of 5-hydroxymethylcytosine and increased TET1 levels, indicating an active DNA demethylation mechanism. However, the expression of some suppressor genes was lowered in cells with high SET levels, suggesting that loss of methylation is not the main mechanism modulating gene expression. SET accumulation also downregulated the expression of 32 genes of a panel of 84 transcription factors, and SET directly interacted with chromatin at the promoter of the downregulated genes, decreasing histone acetylation. Gene expression analysis after cell treatment with 5-aza-2'-deoxycytidine (5-AZA) and Trichostatin A (TSA) revealed that histone acetylation reversed transcription repression promoted by SET. These results suggest a new function for SET in the regulation of chromatin dynamics. In addition, TSA diminished both SET protein levels and SET capability to bind to gene promoter, suggesting that administration of epigenetic modifier agents could be efficient to reverse SET phenotype in cancer.

  14. Global parameter estimation for thermodynamic models of transcriptional regulation.

    Science.gov (United States)

    Suleimenov, Yerzhan; Ay, Ahmet; Samee, Md Abul Hassan; Dresch, Jacqueline M; Sinha, Saurabh; Arnosti, David N

    2013-07-15

    Deciphering the mechanisms involved in gene regulation holds the key to understanding the control of central biological processes, including human disease, population variation, and the evolution of morphological innovations. New experimental techniques including whole genome sequencing and transcriptome analysis have enabled comprehensive modeling approaches to study gene regulation. In many cases, it is useful to be able to assign biological significance to the inferred model parameters, but such interpretation should take into account features that affect these parameters, including model construction and sensitivity, the type of fitness calculation, and the effectiveness of parameter estimation. This last point is often neglected, as estimation methods are often selected for historical reasons or for computational ease. Here, we compare the performance of two parameter estimation techniques broadly representative of local and global approaches, namely, a quasi-Newton/Nelder-Mead simplex (QN/NMS) method and a covariance matrix adaptation-evolutionary strategy (CMA-ES) method. The estimation methods were applied to a set of thermodynamic models of gene transcription applied to regulatory elements active in the Drosophila embryo. Measuring overall fit, the global CMA-ES method performed significantly better than the local QN/NMS method on high quality data sets, but this difference was negligible on lower quality data sets with increased noise or on data sets simplified by stringent thresholding. Our results suggest that the choice of parameter estimation technique for evaluation of gene expression models depends both on quality of data, the nature of the models [again, remains to be established] and the aims of the modeling effort. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Palmitoylation regulates 17β-estradiol-induced estrogen receptor-α degradation and transcriptional activity.

    Science.gov (United States)

    La Rosa, Piergiorgio; Pesiri, Valeria; Leclercq, Guy; Marino, Maria; Acconcia, Filippo

    2012-05-01

    The estrogen receptor-α (ERα) is a transcription factor that regulates gene expression through the binding to its cognate hormone 17β-estradiol (E2). ERα transcriptional activity is regulated by E2-evoked 26S proteasome-mediated ERα degradation and ERα serine (S) residue 118 phosphorylation. Furthermore, ERα mediates fast cell responses to E2 through the activation of signaling cascades such as the MAPK/ERK and phosphoinositide-3-kinase/v-akt murine thymoma viral oncogene homolog 1 pathways. These E2 rapid effects require a population of the ERα located at the cell plasma membrane through palmitoylation, a dynamic enzymatic modification mediated by palmitoyl-acyl-transferases. However, whether membrane-initiated and transcriptional ERα activities integrate in a unique picture or represent parallel pathways still remains to be firmly clarified. Hence, we evaluated here the impact of ERα palmitoylation on E2-induced ERα degradation and S118 phosphorylation. The lack of palmitoylation renders ERα more susceptible to E2-dependent degradation, blocks ERα S118 phosphorylation and prevents E2-induced ERα estrogen-responsive element-containing promoter occupancy. Consequently, ERα transcriptional activity is prevented and the receptor addressed to the nuclear matrix subnuclear compartment. These data uncover a circuitry in which receptor palmitoylation links E2-dependent ERα degradation, S118 phosphorylation, and transcriptional activity in a unique molecular mechanism. We propose that rapid E2-dependent signaling could be considered as a prerequisite for ERα transcriptional activity and suggest an integrated model of ERα intracellular signaling where E2-dependent early extranuclear effects control late receptor-dependent nuclear actions.

  16. Characterization of herpes simplex virus 2 primary microRNA Transcript regulation.

    Science.gov (United States)

    Tang, Shuang; Bosch-Marce, Marta; Patel, Amita; Margolis, Todd P; Krause, Philip R

    2015-05-01

    In order to understand factors that may influence latency-associated transcription and latency-associated transcript (LAT) phenotypes, we studied the expression of the herpes simplex virus 2 (HSV-2) LAT-associated microRNAs (miRNAs). We mapped the transcription initiation sites of all three primary miRNA transcripts and identified the ICP4-binding sequences at the transcription initiation sites of both HSV-2 LAT (pri-miRNA for miR-I and miR-II, which target ICP34.5, and miR-III, which targets ICP0) and L/ST (a pri-miRNA for miR-I and miR-II) but not at that of the primary miR-H6 (for which the target is unknown). We confirmed activity of the putative HSV-2 L/ST promoter and found that ICP4 trans-activates the L/ST promoter when the ICP4-binding site at its transcription initiation site is mutated, suggesting that ICP4 may play a dual role in regulating transcription of L/ST and, consequently, of miR-I and miR-II. LAT exon 1 (containing LAT enhancer sequences), together with the LAT promoter region, comprises a bidirectional promoter required for the expression of both LAT-encoded miRNAs and miR-H6 in latently infected mouse ganglia. The ability of ICP4 to suppress ICP34.5-targeting miRNAs and to activate lytic viral genes suggests that ICP4 could play a key role in the switch between latency and reactivation. The HSV-2 LAT and viral miRNAs expressed in the LAT region are the most abundant viral transcripts during HSV latency. The balance between the expression of LAT and LAT-associated miRNAs and the expression of lytic viral transcripts from the opposite strand appears to influence whether individual HSV-infected neurons will be latently or productively infected. The outcome of neuronal infection may thus depend on regulation of gene expression of the corresponding primary miRNAs. In the present study, we characterize promoter sequences responsible for miRNA expression, including identification of the primary miRNA 5' ends and evaluation of ICP4 response. These

  17. A novel branched chain amino acids responsive transcriptional regulator, BCARR, negatively acts on the proteolytic system in Lactobacillus helveticus.

    Directory of Open Access Journals (Sweden)

    Taketo Wakai

    Full Text Available Transcriptional negative regulation of the proteolytic system of Lactobacillus helveticus CM4 in response to amino acids seems to be very important for the control of antihypertensive peptide production; however, it remains poorly understood. A 26-kDa protein with N-terminal cystathionine β-synthase domains (CBS domain protein, which seems to be involved in the regulatory system, was purified by using a DNA-sepharose bound 300-bp DNA fragment corresponding to the upstream regions of the six proteolytic genes that are down-regulated by amino acids. The CBS domain protein bound to a DNA fragment corresponding to the region upstream of the pepV gene in response to branched chain amino acids (BCAAs. The expression of the pepV gene in Escherichia coli grown in BCAA-enriched medium was repressed when the CBS domain protein was co-expressed. These results reveal that the CBS domain protein acts as a novel type of BCAA-responsive transcriptional regulator (BCARR in L. helveticus. From comparative analysis of the promoter regions of the six proteolysis genes, a palindromic AT-rich motif, 5'-AAAAANNCTWTTATT-3', was predicted as the consensus DNA motif for the BCARR protein binding. Footprint analysis using the pepV promotor region and gel shift analyses with the corresponding short DNA fragments strongly suggested that the BCARR protein binds adjacent to the pepV promoter region and affects the transcription level of the pepV gene in the presence of BCAAs. Homology search analysis of the C-terminal region of the BCARR protein suggested the existence of a unique βαββαβ fold structure that has been reported in a variety of ACT (aspartate kinase-chorismate mutase-tyrA domain proteins for sensing amino acids. These results also suggest that the sensing of BCAAs by the ACT domain might promote the binding of the BCARR to DNA sequences upstream of proteolysis genes, which affects the gene expression of the proteolytic system in L. helveticus.

  18. Inferring transcriptional gene regulation network of starch metabolism in Arabidopsis thaliana leaves using graphical Gaussian model

    Directory of Open Access Journals (Sweden)

    Ingkasuwan Papapit

    2012-08-01

    Full Text Available Abstract Background Starch serves as a temporal storage of carbohydrates in plant leaves during day/night cycles. To study transcriptional regulatory modules of this dynamic metabolic process, we conducted gene regulation network analysis based on small-sample inference of graphical Gaussian model (GGM. Results Time-series significant analysis was applied for Arabidopsis leaf transcriptome data to obtain a set of genes that are highly regulated under a diurnal cycle. A total of 1,480 diurnally regulated genes included 21 starch metabolic enzymes, 6 clock-associated genes, and 106 transcription factors (TF. A starch-clock-TF gene regulation network comprising 117 nodes and 266 edges was constructed by GGM from these 133 significant genes that are potentially related to the diurnal control of starch metabolism. From this network, we found that β-amylase 3 (b-amy3: At4g17090, which participates in starch degradation in chloroplast, is the most frequently connected gene (a hub gene. The robustness of gene-to-gene regulatory network was further analyzed by TF binding site prediction and by evaluating global co-expression of TFs and target starch metabolic enzymes. As a result, two TFs, indeterminate domain 5 (AtIDD5: At2g02070 and constans-like (COL: At2g21320, were identified as positive regulators of starch synthase 4 (SS4: At4g18240. The inference model of AtIDD5-dependent positive regulation of SS4 gene expression was experimentally supported by decreased SS4 mRNA accumulation in Atidd5 mutant plants during the light period of both short and long day conditions. COL was also shown to positively control SS4 mRNA accumulation. Furthermore, the knockout of AtIDD5 and COL led to deformation of chloroplast and its contained starch granules. This deformity also affected the number of starch granules per chloroplast, which increased significantly in both knockout mutant lines. Conclusions In this study, we utilized a systematic approach of microarray

  19. Regulation of Caenorhabditis elegans vitellogenesis by DAF-2/IIS through separable transcriptional and posttranscriptional mechanisms.

    Science.gov (United States)

    DePina, Ana S; Iser, Wendy B; Park, Sung-Soo; Maudsley, Stuart; Wilson, Mark A; Wolkow, Catherine A

    2011-07-12

    Evolutionary theories of aging propose that longevity evolves as a competition between reproduction and somatic maintenance for a finite pool of resources. Reproduction is thought to shorten lifespan by depleting resources from processes promoting somatic maintenance. Maternal yolk production, vitellogenesis, represents a significant maternal cost for reproduction and is suppressed under genetic and environmental conditions that extend lifespan. However, little is known about the pathways regulating vitellogenesis in response to prolongevity cues. In order to identify mechanisms that suppress vitellogenesis under prolongevity conditions, we studied factors regulating vitellogenesis in C. elegans nematodes. In C. elegans, vitellogenesis is depressed in the absence of insulin-like signaling (IIS). We found that the C. elegans daf-2/IIS pathway regulates vitellogenesis through two mechanisms. vit-2 transcript levels in daf-2 mutants were indirectly regulated through a germline-dependent signal, and could be rescued by introduction of daf-2(+) sperm. However, yolk protein (YP) levels in daf-2 mutants were also regulated by germline-independent posttranscriptional mechanisms. C. elegans vitellogenesis is regulated transcriptionally and posttranscriptionally in response to environmental and reproductive cues. The daf-2 pathway suppressed vitellogenesis through transcriptional mechanisms reflecting reproductive phenotypes, as well as distinct posttranscriptional mechanisms. This study reveals that pleiotropic effects of IIS pathway mutations can converge on a common downstream target, vitellogenesis, as a mechanism to modulate longevity.

  20. Regulation of Caenorhabditis elegans vitellogenesis by DAF-2/IIS through separable transcriptional and posttranscriptional mechanisms

    Directory of Open Access Journals (Sweden)

    Wilson Mark A

    2011-07-01

    Full Text Available Abstract Background Evolutionary theories of aging propose that longevity evolves as a competition between reproduction and somatic maintenance for a finite pool of resources. Reproduction is thought to shorten lifespan by depleting resources from processes promoting somatic maintenance. Maternal yolk production, vitellogenesis, represents a significant maternal cost for reproduction and is suppressed under genetic and environmental conditions that extend lifespan. However, little is known about the pathways regulating vitellogenesis in response to prolongevity cues. Results In order to identify mechanisms that suppress vitellogenesis under prolongevity conditions, we studied factors regulating vitellogenesis in C. elegans nematodes. In C. elegans, vitellogenesis is depressed in the absence of insulin-like signaling (IIS. We found that the C. elegans daf-2/IIS pathway regulates vitellogenesis through two mechanisms. vit-2 transcript levels in daf-2 mutants were indirectly regulated through a germline-dependent signal, and could be rescued by introduction of daf-2(+ sperm. However, yolk protein (YP levels in daf-2 mutants were also regulated by germline-independent posttranscriptional mechanisms. Conclusions C. elegans vitellogenesis is regulated transcriptionally and posttranscriptionally in response to environmental and reproductive cues. The daf-2 pathway suppressed vitellogenesis through transcriptional mechanisms reflecting reproductive phenotypes, as well as distinct posttranscriptional mechanisms. This study reveals that pleiotropic effects of IIS pathway mutations can converge on a common downstream target, vitellogenesis, as a mechanism to modulate longevity.

  1. Co-ordinate transcriptional regulation of dopamine synthesis genes by alpha-synuclein in human neuroblastoma cell lines.

    Science.gov (United States)

    Baptista, Melisa J; O'Farrell, Casey; Daya, Sneha; Ahmad, Rili; Miller, David W; Hardy, John; Farrer, Matthew J; Cookson, Mark R

    2003-05-01

    Abnormal accumulation of alpha-synuclein in Lewy bodies is a neuropathological hallmark of both sporadic and familial Parkinson's disease (PD). Although mutations in alpha-synuclein have been identified in autosomal dominant PD, the mechanism by which dopaminergic cell death occurs remains unknown. We investigated transcriptional changes in neuroblastoma cell lines transfected with either normal or mutant (A30P or A53T) alpha-synuclein using microarrays, with confirmation of selected genes by quantitative RT-PCR. Gene products whose expression was found to be significantly altered included members of diverse functional groups such as stress response, transcription regulators, apoptosis-inducing molecules, transcription factors and membrane-bound proteins. We also found evidence of altered expression of dihydropteridine reductase, which indirectly regulates the synthesis of dopamine. Because of the importance of dopamine in PD, we investigated the expression of all the known genes in dopamine synthesis. We found co-ordinated downregulation of mRNA for GTP cyclohydrolase, sepiapterin reductase (SR), tyrosine hydroxylase (TH) and aromatic acid decarboxylase by wild-type but not mutant alpha-synuclein. These were confirmed at the protein level for SR and TH. Reduced expression of the orphan nuclear receptor Nurr1 was also noted, suggesting that the co-ordinate regulation of dopamine synthesis is regulated through this transcription factor.

  2. Menin and RNF20 recruitment is associated with dynamic histone modifications that regulate signal transducer and activator of transcription 1 (STAT1-activated transcription of the interferon regulatory factor 1 gene (IRF1

    Directory of Open Access Journals (Sweden)

    Buro Lauren J

    2010-09-01

    Full Text Available Abstract Background Signal transducer and activator of transcription (STAT activation of gene expression is both rapid and transient, and when properly executed it affects growth, differentiation, homeostasis and the immune response, but when dysregulated it contributes to human disease. Transcriptional activation is regulated by alterations to the chromatin template. However, the role of histone modification at gene loci that are activated for transcription in response to STAT signaling is poorly defined. Results Using chromatin immunoprecipitation, we profiled several histone modifications during STAT1 activation of the interferon regulatory factor 1 gene (IRF1. Methylated lysine histone proteins H3K4me2, H3K4me3, H3K79me3, H3K36me3 and monoubiquitinated histone ubH2B are dynamic and correlate with interferon (IFNγ induction of STAT1 activity. Chemical inhibition of H3K4 methylation downregulates IRF1 transcription and decreases RNA polymerase II (Pol II occupancy at the IRF1 promoter. MEN1, a component of a complex proteins associated with Set1 (COMPASS-like complex and the hBRE1 component, RNF20, are localized to IRF1 in the uninduced state and are further recruited when IRF1 is activated. RNAi-mediated depletion of RNF20 lowers both ubH2B and H3K4me3, but surprisingly, upregulates IFNγ induced IRF1 transcription. The dynamics of phosphorylation in the C-terminal domain (CTD of Pol II are disrupted during gene activation as well. Conclusions H2B monoubiquitination promotes H3K4 methylation, but the E3 ubiquitin ligase, RNF20, is repressive of inducible transcription at the IRF1 gene locus, suggesting that ubH2B can, directly or indirectly, affect Pol II CTD phosphorylation cycling to exert control on ongoing transcription.

  3. Role of cocaine- and amphetamine-regulated transcript in estradiol-mediated neuroprotection

    Science.gov (United States)

    Xu, Yun; Zhang, Wenri; Klaus, Judith; Young, Jennifer; Koerner, Ines; Sheldahl, Laird C.; Hurn, Patricia D.; Martínez-Murillo, Francisco; Alkayed, Nabil J.

    2006-09-01

    Estrogen reduces brain injury after experimental cerebral ischemia in part through a genomic mechanism of action. Using DNA microarrays, we analyzed the genomic response of the brain to estradiol, and we identified a transcript, cocaine- and amphetamine-regulated transcript (CART), that is highly induced in the cerebral cortex by estradiol under ischemic conditions. Using in vitro and in vivo models of neural injury, we confirmed and characterized CART mRNA and protein up-regulation by estradiol in surviving neurons, and we demonstrated that i.v. administration of a rat CART peptide is protective against ischemic brain injury in vivo. We further demonstrated binding of cAMP response element (CRE)-binding protein to a CART promoter CRE site in ischemic brain and rapid activation by CART of ERK in primary cultured cortical neurons. The findings suggest that CART is an important player in estrogen-mediated neuroprotection and a potential therapeutic agent for stroke and other neurodegenerative diseases. ischemia | stroke | estrogen

  4. Neuronal activity-regulated gene transcription: how are distant synaptic signals conveyed to the nucleus?

    Science.gov (United States)

    Matamales, Miriam

    2012-12-19

    Synaptic activity can trigger gene expression programs that are required for the stable change of neuronal properties, a process that is essential for learning and memory. Currently, it is still unclear how the stimulation of dendritic synapses can be coupled to transcription in the nucleus in a timely way given that large distances can separate these two cellular compartments. Although several mechanisms have been proposed to explain long distance communication between synapses and the nucleus, the possible co-existence of these models and their relevance in physiological conditions remain elusive. One model suggests that synaptic activation triggers the translocation to the nucleus of certain transcription regulators localised at postsynaptic sites that function as synapto-nuclear messengers. Alternatively, it has been hypothesised that synaptic activity initiates propagating regenerative intracellular calcium waves that spread through dendrites into the nucleus where nuclear transcription machinery is thereby regulated. It has also been postulated that membrane depolarisation of voltage-gated calcium channels on the somatic membrane is sufficient to increase intracellular calcium concentration and activate transcription without the need for transported signals from distant synapses. Here I provide a critical overview of the suggested mechanisms for coupling synaptic stimulation to transcription, the underlying assumptions behind them and their plausible physiological significance.

  5. Preliminary structural studies of the transcriptional regulator CmeR from Campylobacter jejuni

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chih-Chia [Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 (United States); Shi, Feng [Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011 (United States); Gu, Ruoyu; Li, Ming [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); McDermott, Gerry [Department of Anatomy, School of Medicine, University of California, San Francisco, CA 94143 (United States); Yu, Edward W., E-mail: ewyu@iastate.edu [Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 (United States); Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Zhang, Qijing [Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011 (United States); Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 (United States)

    2007-01-01

    The transcriptional regulator CmeR from C. jejuni has been purified and crystallized and X-ray diffraction data have been collected to a resolution of 2.2 Å. In Campylobacter jejuni, a Gram-negative bacterial pathogen causing gastroenteritis in humans, the CmeR regulatory protein controls transcription of the multidrug transporter gene operon cmeABC. CmeR belongs to the TetR family of transcriptional regulators. The 210-residue CmeR consists of two functional motifs: an N-terminal DNA-binding domain and a C-terminal ligand-binding domain. It is predicted that the DNA-binding domain interacts directly with target promoters, while the C-terminal motif interacts with inducing ligands (such as bile salts). As an initial step towards confirming this structural model, recombinant CmeR protein containing a 6×His tag at the N-terminus was crystallized. Crystals of ligand-free CmeR belonged to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 37.4, b = 57.6, c = 93.3 Å. Diffraction was observed to at least 2.2 Å at 100 K. Analysis of the detailed CmeR structure is currently in progress.

  6. Regulation of the human ADAMTS-4 promoter by transcription factors and cytokines

    International Nuclear Information System (INIS)

    Thirunavukkarasu, Kannan; Pei, Yong; Moore, Terry L.; Wang, He; Yu, Xiao-peng; Geiser, Andrew G.; Chandrasekhar, Srinivasan

    2006-01-01

    ADAMTS-4 (aggrecanase-1) is a metalloprotease that plays a role in aggrecan degradation in the cartilage extracellular matrix. In order to understand the regulation of ADAMTS-4 gene expression we have cloned and characterized a functional 4.5 kb human ADAMTS-4 promoter. Sequence analysis of the promoter revealed the presence of putative binding sites for nuclear factor of activated T cells (NFAT) and Runx family of transcription factors that are known to regulate chondrocyte maturation and differentiation. Using promoter-reporter assays and mRNA analysis we have analyzed the role of chondrocyte-expressed transcription factors NFATp and Runx2 and have shown that ADAMTS-4 is a potential downstream target of these two factors. Our results suggest that inhibition of the expression/function of NFATp and/or Runx2 may enable us to modulate aggrecan degradation in normal physiology and/or in degenerative joint diseases. The ADAMTS-4 promoter would serve as a valuable mechanistic tool to better understand the regulation of ADAMTS-4 expression by signaling pathways that modulate cartilage matrix breakdown

  7. Transcriptome-wide analysis of jasmonate-treated BY-2 cells reveals new transcriptional regulators associated with alkaloid formation in tobacco.

    Science.gov (United States)

    Yang, Yuping; Yan, Pengcheng; Yi, Che; Li, Wenzheng; Chai, Yuhui; Fei, Lingling; Gao, Ping; Zhao, Heping; Wang, Yingdian; Timko, Michael P; Wang, Bingwu; Han, Shengcheng

    2017-08-01

    Jasmonates (JAs) are well-known regulators of stress, defence, and secondary metabolism in plants, with JA perception triggering extensive transcriptional reprogramming, including both activation and/or repression of entire metabolic pathways. We performed RNA sequencing based transcriptomic profiling of tobacco BY-2 cells before and after treatment with methyl jasmonate (MeJA) to identify novel transcriptional regulators associated with alkaloid formation. A total of 107,140 unigenes were obtained through de novo assembly, and at least 33,213 transcripts (31%) encode proteins, in which 3419 transcription factors (TFs) were identified, representing 72 gene families, as well as 840 transcriptional regulators (TRs) distributed among 19 gene families. After MeJA treatment BY-2 cells, 7260 differentially expressed transcripts were characterised, which include 4443 MeJA-upregulated and 2817 MeJA-downregulated genes. Of these, 227 TFs/TRs in 36 families were specifically upregulated, and 102 TFs/TRs in 38 families were downregulated in MeJA-treated BY-2 cells. We further showed that the expression of 12 ethylene response factors and four basic helix-loop-helix factors increased at the transcriptional level after MeJA treatment in BY-2 cells and displayed specific expression patterns in nic mutants with or without MeJA treatments. Our data provide a catalogue of transcripts of tobacco BY-2 cells and benefit future study of JA-modulated regulation of secondary metabolism in tobacco. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Regulation of hepatic lipogenesis by the transcription complex Prep1-Pbx1

    OpenAIRE

    Cabaro, Serena

    2011-01-01

    Prep1 is an homeodomain transcription factor belonging to the TALE proteins, including also Pbx1, which plays an essential role in hematopoiesis, organogenesis and development. Prep1 forms transcriptionally active complexes with Pbx1 and regulates the activity of several genes. The Prep1 null mutation leads to embryonic death at a very early stage. Therefore, Prep1 hypomorphic (Prep1i/i) mice have been generated. Prep1 heterozygous (Prep1i/+) mice, which express only 55-57% of protein, have a...

  9. Evolutionary Analysis of DELLA-Associated Transcriptional Networks

    Directory of Open Access Journals (Sweden)

    Miguel A. Blázquez

    2017-04-01

    Full Text Available DELLA proteins are transcriptional regulators present in all land plants which have been shown to modulate the activity of over 100 transcription factors in Arabidopsis, involved in multiple physiological and developmental processes. It has been proposed that DELLAs transduce environmental information to pre-wired transcriptional circuits because their stability is regulated by gibberellins (GAs, whose homeostasis largely depends on environmental signals. The ability of GAs to promote DELLA degradation coincides with the origin of vascular plants, but the presence of DELLAs in other land plants poses at least two questions: what regulatory properties have DELLAs provided to the behavior of transcriptional networks in land plants, and how has the recruitment of DELLAs by GA signaling affected this regulation. To address these issues, we have constructed gene co-expression networks of four different organisms within the green lineage with different properties regarding DELLAs: Arabidopsis thaliana and Solanum lycopersicum (both with GA-regulated DELLA proteins, Physcomitrella patens (with GA-independent DELLA proteins and Chlamydomonas reinhardtii (a green alga without DELLA, and we have examined the relative evolution of the subnetworks containing the potential DELLA-dependent transcriptomes. Network analysis indicates a relative increase in parameters associated with the degree of interconnectivity in the DELLA-associated subnetworks of land plants, with a stronger effect in species with GA-regulated DELLA proteins. These results suggest that DELLAs may have played a role in the coordination of multiple transcriptional programs along evolution, and the function of DELLAs as regulatory ‘hubs’ became further consolidated after their recruitment by GA signaling in higher plants.

  10. Estrogen-induced transcription factor EGR1 regulates c-Kit transcription in the mouse uterus to maintain uterine receptivity for embryo implantation.

    Science.gov (United States)

    Park, Mira; Kim, Hye-Ryun; Kim, Yeon Sun; Yang, Seung Chel; Yoon, Jung Ah; Lyu, Sang Woo; Lim, Hyunjung Jade; Hong, Seok-Ho; Song, Haengseok

    2018-07-15

    Early growth response 1 (Egr1) is a key transcription factor that mediates the action of estrogen (E 2 ) to establish uterine receptivity for embryo implantation. However, few direct target genes of EGR1 have been identified in the uterus. Here, we demonstrated that E 2 induced EGR1-regulated transcription of c-Kit, which plays a crucial role in cell fate decisions. Spatiotemporal expression of c-Kit followed that of EGR1 in uteri of ovariectomized mice at various time points after E 2 treatment. E 2 activated ERK1/2 and p38 to induce EGR1, which then activated c-Kit expression in the uterus. EGR1 transfection produced rapid and transient induction of c-KIT in a time- and dose-dependent manner. Furthermore, luciferase assays to measure c-Kit promoter activity confirmed that a functional EGR1 binding site(s) (EBS) was located within -1 kb of the c-Kit promoter. Site-directed mutagenesis and chromatin immunoprecipitation-PCR for three putative EBS within -1 kb demonstrated that the EBS at -818/-805 was critical for EGR1-dependent c-Kit transcription. c-Kit expression was significantly increased in the uterus on day 4 and administration of Masitinib, a c-Kit inhibitor, effectively interfered with embryo implantation. Collectively, our results showed that estrogen induces transcription factor EGR1 to regulate c-Kit transcription for uterine receptivity for embryo implantation in the mouse uterus. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Distinct Residues Contribute to Motility Repression and Autoregulation in the Proteus mirabilis Fimbria-Associated Transcriptional Regulator AtfJ.

    Science.gov (United States)

    Bode, Nadine J; Chan, Kun-Wei; Kong, Xiang-Peng; Pearson, Melanie M

    2016-08-01

    Proteus mirabilis contributes to a significant number of catheter-associated urinary tract infections, where coordinated regulation of adherence and motility is critical for ascending disease progression. Previously, the mannose-resistant Proteus-like (MR/P) fimbria-associated transcriptional regulator MrpJ has been shown to both repress motility and directly induce the transcription of its own operon; in addition, it affects the expression of a wide range of cellular processes. Interestingly, 14 additional mrpJ paralogs are included in the P. mirabilis genome. Looking at a selection of MrpJ paralogs, we discovered that these proteins, which consistently repress motility, also have nonidentical functions that include cross-regulation of fimbrial operons. A subset of paralogs, including AtfJ (encoded by the ambient temperature fimbrial operon), Fim8J, and MrpJ, are capable of autoinduction. We identified an element of the atf promoter extending from 487 to 655 nucleotides upstream of the transcriptional start site that is responsive to AtfJ, and we found that AtfJ directly binds this fragment. Mutational analysis of AtfJ revealed that its two identified functions, autoregulation and motility repression, are not invariably linked. Residues within the DNA-binding helix-turn-helix domain are required for motility repression but not necessarily autoregulation. Likewise, the C-terminal domain is dispensable for motility repression but is essential for autoregulation. Supported by a three-dimensional (3D) structural model, we hypothesize that the C-terminal domain confers unique regulatory capacities on the AtfJ family of regulators. Balancing adherence with motility is essential for uropathogens to successfully establish a foothold in their host. Proteus mirabilis uses a fimbria-associated transcriptional regulator to switch between these antagonistic processes by increasing fimbrial adherence while simultaneously downregulating flagella. The discovery of multiple

  12. Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors.

    Science.gov (United States)

    Mercer, Andrew C; Gaj, Thomas; Sirk, Shannon J; Lamb, Brian M; Barbas, Carlos F

    2014-10-17

    The construction of increasingly sophisticated synthetic biological circuits is dependent on the development of extensible tools capable of providing specific control of gene expression in eukaryotic cells. Here, we describe a new class of synthetic transcription factors that activate gene expression in response to extracellular chemical stimuli. These inducible activators consist of customizable transcription activator-like effector (TALE) proteins combined with steroid hormone receptor ligand-binding domains. We demonstrate that these ligand-responsive TALE transcription factors allow for tunable and conditional control of gene activation and can be used to regulate the expression of endogenous genes in human cells. Since TALEs can be designed to recognize any contiguous DNA sequence, the conditional gene regulatory system described herein will enable the design of advanced synthetic gene networks.

  13. JUNGBRUNNEN1, a Reactive Oxygen Species–Responsive NAC Transcription Factor, Regulates Longevity in Arabidopsis

    NARCIS (Netherlands)

    Wu, A.; Devi Allu, A.; Garapati, P.; Siddiqui, H.; Dortay, H.; Zanor, M.I.; Amparo Asensi-Fabado, M.; Munne´ -Bosch, S.; Antonio, C.; Tohge, T.; Fernie, A.R.; Kaufmann, K.; Xue, G.P.; Mueller-Roeber, B.; Balazadeh, S.

    2012-01-01

    The transition from juvenility through maturation to senescence is a complex process that involves the regulation of longevity. Here, we identify JUNGBRUNNEN1 (JUB1), a hydrogen peroxide (H2O2)-induced NAC transcription factor, as a central longevity regulator in Arabidopsis thaliana. JUB1

  14. Identification of novel transcriptional regulators of PKA subunits in Saccharomyces cerevisiae by quantitative promoter-reporter screening.

    Science.gov (United States)

    Pautasso, Constanza; Reca, Sol; Chatfield-Reed, Kate; Chua, Gordon; Galello, Fiorella; Portela, Paula; Zaremberg, Vanina; Rossi, Silvia

    2016-08-01

    The cAMP-dependent protein kinase (PKA) signaling is a broad pathway that plays important roles in the transduction of environmental signals triggering precise physiological responses. However, how PKA achieves the cAMP-signal transduction specificity is still in study. The regulation of expression of subunits of PKA should contribute to the signal specificity. Saccharomyces cerevisiae PKA holoenzyme contains two catalytic subunits encoded by TPK1, TPK2 and TPK3 genes, and two regulatory subunits encoded by BCY1 gene. We studied the activity of these gene promoters using a fluorescent reporter synthetic genetic array screen, with the goal of systematically identifying novel regulators of expression of PKA subunits. Gene ontology analysis of the identified modulators showed enrichment not only in the category of transcriptional regulators, but also in less expected categories such as lipid and phosphate metabolism. Inositol, choline and phosphate were identified as novel upstream signals that regulate transcription of PKA subunit genes. The results support the role of transcription regulation of PKA subunits in cAMP specificity signaling. Interestingly, known targets of PKA phosphorylation are associated with the identified pathways opening the possibility of a reciprocal regulation. PKA would be coordinating different metabolic pathways and these processes would in turn regulate expression of the kinase subunits. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. SUMOylation regulates the transcriptional repression activity of FOG-2 and its association with GATA-4.

    Directory of Open Access Journals (Sweden)

    José Perdomo

    Full Text Available Friend of GATA 2 (FOG-2, a co-factor of several GATA transcription factors (GATA-4, -5 and 6, is a critical regulator of coronary vessel formation and heart morphogenesis. Here we demonstrate that FOG-2 is SUMOylated and that this modification modulates its transcriptional activity. FOG-2 SUMOylation occurs at four lysine residues (K324, 471, 915, 955 [corrected]. Three of these residues are part of the characteristic SUMO consensus site (ψKXE, while K955 is found in the less frequent TKXE motif. Absence of SUMOylation did not affect FOG-2's nuclear localization. However, mutation of the FOG-2 SUMOylation sites, or de-SUMOylation, with SENP-1 or SENP-8 resulted in stronger transcriptional repression activity in both heterologous cells and cardiomyocytes. Conversely, increased FOG-2 SUMOylation by overexpression of SUMO-1 or expression of a SUMO-1-FOG-2 fusion protein rendered FOG-2 incapable of repressing GATA-4-mediated activation of the B-type natriuretic peptide (BNP promoter. Moreover, we demonstrate both increased interaction between a FOG-2 SUMO mutant and GATA-4 and enhanced SUMOylation of wild-type FOG-2 by co-expression of GATA-4. These data suggest a new dynamics in which GATA-4 may alter the activity of FOG-2 by influencing its SUMOylation status.

  16. Specificity of the E. coli LysR-type transcriptional regulators.

    Directory of Open Access Journals (Sweden)

    Gwendowlyn S Knapp

    2010-12-01

    Full Text Available Families of paralogous oligomeric proteins are common in biology. How the specificity of assembly evolves is a fundamental question of biology. The LysR-Type Transcriptional Regulators (LTTR form perhaps the largest family of transcriptional regulators in bacteria. Because genomes often encode many LTTR family members, it is assumed that many distinct homooligomers are formed simultaneously in the same cell without interfering with each other's activities, suggesting specificity in the interactions. However, this assumption has not been systematically tested.A negative-dominant assay with λcI repressor fusions was used to evaluate the assembly of the LTTRs in E. coli K-12. Thioredoxin (Trx-LTTR fusions were used to challenge the homooligomeric interactions of λcI-LTTR fusions. Eight cI-LTTR fusions were challenged with twenty-eight Trx fusions. LTTRs could be divided into three classes based on their interactions with other LTTRs.Multimerization of LTTRs in E. coli K-12 is mostly specific. However, under the conditions of the assay, many LTTRs interact with more than one noncognate partner. The physiological significance and physical basis for these interactions are not known.

  17. Transcriptional Regulation of Chemokine Genes: A Link to Pancreatic Islet Inflammation?

    Directory of Open Access Journals (Sweden)

    Susan J. Burke

    2015-05-01

    Full Text Available Enhanced expression of chemotactic cytokines (aka chemokines within pancreatic islets likely contributes to islet inflammation by regulating the recruitment and activation of various leukocyte populations, including macrophages, neutrophils, and T-lymphocytes. Because of the powerful actions of these chemokines, precise transcriptional control is required. In this review, we highlight what is known about the signals and mechanisms that govern the transcription of genes encoding specific chemokine proteins in pancreatic islet β-cells, which include contributions from the NF-κB and STAT1 pathways. We further discuss increased chemokine expression in pancreatic islets during autoimmune-mediated and obesity-related development of diabetes.

  18. A code for transcription initiation in mammalian genomes

    DEFF Research Database (Denmark)

    Frith, Martin C.; Valen, Eivind Dale; Krogh, Anders

    2007-01-01

    that initiation events are clustered on the chromosomes at multiple scales - clusters within clusters - indicating multiple regulatory processes. Within the smallest of such clusters, which can be interpreted as core promoters, the local DNA sequence predicts the relative transcription start usage of each...... of large- and small-scale effects: the selection of transcription start sites is largely governed by the local DNA sequence, whereas the transcriptional activity of a locus is regulated at a different level; it is affected by distal features or events such as enhancers and chromatin remodeling....

  19. An activator of transcription regulates phage TP901-1 late gene expression

    DEFF Research Database (Denmark)

    Brøndsted, Lone; Pedersen, Margit; Hammer, Karin

    2001-01-01

    bp contains both the promoter and the region necessary for activation by ORF29. The transcriptional start site of the promoter was identified by primer extension to position 13073 on the TP901-1 genome, thus located 87 bp downstream of orf29 in a 580-bp intergenic region between orf29 and orf30....... Furthermore, the region located -85 to -61 bp upstream of the start site was shown to be necessary for promoter activity. During infection, the transcript arising from the late promoter is fully induced at 40 min postinfection, and our results suggest that a certain level of ORF29 must he reached in order...... to activate transcription of the promoter. Several lactococcal bacteriophages encode ORF29 homologous proteins, indicating that late transcription may be controlled by a similar mechanism in these phages. With the identification of this novel regulator, our results suggest that within the P335 group...

  20. Coordinate Regulation of Yeast Sterol Regulatory Element-binding Protein (SREBP) and Mga2 Transcription Factors.

    Science.gov (United States)

    Burr, Risa; Stewart, Emerson V; Espenshade, Peter J

    2017-03-31

    The Mga2 and Sre1 transcription factors regulate oxygen-responsive lipid homeostasis in the fission yeast Schizosaccharomyces pombe in a manner analogous to the mammalian sterol regulatory element-binding protein (SREBP)-1 and SREBP-2 transcription factors. Mga2 and SREBP-1 regulate triacylglycerol and glycerophospholipid synthesis, whereas Sre1 and SREBP-2 regulate sterol synthesis. In mammals, a shared activation mechanism allows for coordinate regulation of SREBP-1 and SREBP-2. In contrast, distinct pathways activate fission yeast Mga2 and Sre1. Therefore, it is unclear whether and how these two related pathways are coordinated to maintain lipid balance in fission yeast. Previously, we showed that Sre1 cleavage is defective in the absence of mga2 Here, we report that this defect is due to deficient unsaturated fatty acid synthesis, resulting in aberrant membrane transport. This defect is recapitulated by treatment with the fatty acid synthase inhibitor cerulenin and is rescued by addition of exogenous unsaturated fatty acids. Furthermore, sterol synthesis inhibition blocks Mga2 pathway activation. Together, these data demonstrate that Sre1 and Mga2 are each regulated by the lipid product of the other transcription factor pathway, providing a source of coordination for these two branches of lipid synthesis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Pairwise comparisons of ten porcine tissues identify differential transcriptional regulation at the gene, isoform, promoter and transcription start site level

    DEFF Research Database (Denmark)

    Farajzadeh, Leila; Hornshøj, Henrik; Momeni, Jamal

    2013-01-01

    , isoform, and transcription start site (TSS), and promoter level showed that several of the genes differed at all four levels. Interestingly, these genes were mainly annotated to the "electron transport chain" and neuronal differentiation, emphasizing that "tissue important" genes are regulated at several...

  2. DNA methylation regulates transcriptional homeostasis of algal endosymbiosis in the coral model Aiptasia

    KAUST Repository

    Li, Yong

    2017-11-03

    The symbiotic relationship between cnidarians and dinoflagellates is the cornerstone of coral reef ecosystems. Although research is focusing on the molecular mechanisms underlying this symbiosis, the role of epigenetic mechanisms, which have been implicated in transcriptional regulation and acclimation to environmental change, is unknown. To assess the role of DNA methylation in the cnidarian-dinoflagellate symbiosis, we analyzed genome-wide CpG methylation, histone associations, and transcriptomic states of symbiotic and aposymbiotic anemones in the model system Aiptasia. We find methylated genes are marked by histone H3K36me3 and show significant reduction of spurious transcription and transcriptional noise, revealing a role of DNA methylation in the maintenance of transcriptional homeostasis. Changes in DNA methylation and expression show enrichment for symbiosis-related processes such as immunity, apoptosis, phagocytosis recognition and phagosome formation, and unveil intricate interactions between the underlying pathways. Our results demonstrate that DNA methylation provides an epigenetic mechanism of transcriptional homeostasis during symbiosis.

  3. DNA methylation regulates transcriptional homeostasis of algal endosymbiosis in the coral model Aiptasia

    KAUST Repository

    Li, Yong; Liew, Yi Jin; Cui, Guoxin; Cziesielski, Maha J; Zahran, Noura Ibrahim Omar; Michell, Craig T; Voolstra, Christian R.; Aranda, Manuel

    2017-01-01

    The symbiotic relationship between cnidarians and dinoflagellates is the cornerstone of coral reef ecosystems. Although research is focusing on the molecular mechanisms underlying this symbiosis, the role of epigenetic mechanisms, which have been implicated in transcriptional regulation and acclimation to environmental change, is unknown. To assess the role of DNA methylation in the cnidarian-dinoflagellate symbiosis, we analyzed genome-wide CpG methylation, histone associations, and transcriptomic states of symbiotic and aposymbiotic anemones in the model system Aiptasia. We find methylated genes are marked by histone H3K36me3 and show significant reduction of spurious transcription and transcriptional noise, revealing a role of DNA methylation in the maintenance of transcriptional homeostasis. Changes in DNA methylation and expression show enrichment for symbiosis-related processes such as immunity, apoptosis, phagocytosis recognition and phagosome formation, and unveil intricate interactions between the underlying pathways. Our results demonstrate that DNA methylation provides an epigenetic mechanism of transcriptional homeostasis during symbiosis.

  4. Inducible, tunable and multiplex human gene regulation using CRISPR-Cpf1-based transcription factors | Office of Cancer Genomics

    Science.gov (United States)

    Targeted and inducible regulation of mammalian gene expression is a broadly important research capability that may also enable development of novel therapeutics for treating human diseases. Here we demonstrate that a catalytically inactive RNA-guided CRISPR-Cpf1 nuclease fused to transcriptional activation domains can up-regulate endogenous human gene expression. We engineered drug-inducible Cpf1-based activators and show how this system can be used to tune the regulation of endogenous gene transcription in human cells.

  5. The transcription factor bZIP14 regulates the TCA cycle in the diatom Phaeodactylum tricornutum.

    Science.gov (United States)

    Matthijs, Michiel; Fabris, Michele; Obata, Toshihiro; Foubert, Imogen; Franco-Zorrilla, José Manuel; Solano, Roberto; Fernie, Alisdair R; Vyverman, Wim; Goossens, Alain

    2017-06-01

    Diatoms are amongst the most important marine microalgae in terms of biomass, but little is known concerning the molecular mechanisms that regulate their versatile metabolism. Here, the pennate diatom Phaeodactylum tricornutum was studied at the metabolite and transcriptome level during nitrogen starvation and following imposition of three other stresses that impede growth. The coordinated upregulation of the tricarboxylic acid (TCA) cycle during the nitrogen stress response was the most striking observation. Through co-expression analysis and DNA binding assays, the transcription factor bZIP14 was identified as a regulator of the TCA cycle, also beyond the nitrogen starvation response, namely in diurnal regulation. Accordingly, metabolic and transcriptional shifts were observed upon overexpression of bZIP14 in transformed P. tricornutum cells. Our data indicate that the TCA cycle is a tightly regulated and important hub for carbon reallocation in the diatom cell during nutrient starvation and that bZIP14 is a conserved regulator of this cycle. © 2017 The Authors.

  6. mTOR: A Link from the Extracellular Milieu to Transcriptional Regulation of Oligodendrocyte Development

    Directory of Open Access Journals (Sweden)

    Teresa L. Wood

    2013-02-01

    Full Text Available Oligodendrocyte development is controlled by numerous extracellular signals that regulate a series of transcription factors that promote the differentiation of oligodendrocyte progenitor cells to myelinating cells in the central nervous system. A major element of this regulatory system that has only recently been studied is the intracellular signalling from surface receptors to transcription factors to down-regulate inhibitors and up-regulate inducers of oligodendrocyte differentiation and myelination. The current review focuses on one such pathway: the mTOR (mammalian target of rapamycin pathway, which integrates signals in many cell systems and induces cell responses including cell proliferation and cell differentiation. This review describes the known functions of mTOR as they relate to oligodendrocyte development, and its recently discovered impact on oligodendrocyte differentiation and myelination. A potential model for its role in oligodendrocyte development is proposed.

  7. Regulation of expression of two LY-6 family genes by intron retention and transcription induced chimerism

    Directory of Open Access Journals (Sweden)

    Mallya Meera

    2008-09-01

    Full Text Available Abstract Background Regulation of the expression of particular genes can rely on mechanisms that are different from classical transcriptional and translational control. The LY6G5B and LY6G6D genes encode LY-6 domain proteins, whose expression seems to be regulated in an original fashion, consisting of an intron retention event which generates, through an early premature stop codon, a non-coding transcript, preventing expression in most cell lines and tissues. Results The MHC LY-6 non-coding transcripts have shown to be stable and very abundant in the cell, and not subject to Nonsense Mediated Decay (NMD. This retention event appears not to be solely dependent on intron features, because in the case of LY6G5B, when the intron is inserted in the artificial context of a luciferase expression plasmid, it is fully spliced but strongly stabilises the resulting luciferase transcript. In addition, by quantitative PCR we found that the retained and spliced forms are differentially expressed in tissues indicating an active regulation of the non-coding transcript. EST database analysis revealed that these genes have an alternative expression pathway with the formation of Transcription Induced Chimeras (TIC. This data was confirmed by RT-PCR, revealing the presence of different transcripts that would encode the chimeric proteins CSNKβ-LY6G5B and G6F-LY6G6D, in which the LY-6 domain would join to a kinase domain and an Ig-like domain, respectively. Conclusion In conclusion, the LY6G5B and LY6G6D intron-retained transcripts are not subjected to NMD and are more abundant than the properly spliced forms. In addition, these genes form chimeric transcripts with their neighbouring same orientation 5' genes. Of interest is the fact that the 5' genes (CSNKβ or G6F undergo differential splicing only in the context of the chimera (CSNKβ-LY6G5B or G6F-LY6G6C and not on their own.

  8. Nuclear adaptor Ldb1 regulates a transcriptional program essential for the maintenance of hematopoietic stem cells.

    Science.gov (United States)

    Li, LiQi; Jothi, Raja; Cui, Kairong; Lee, Jan Y; Cohen, Tsadok; Gorivodsky, Marat; Tzchori, Itai; Zhao, Yangu; Hayes, Sandra M; Bresnick, Emery H; Zhao, Keji; Westphal, Heiner; Love, Paul E

    2011-02-01

    The nuclear adaptor Ldb1 functions as a core component of multiprotein transcription complexes that regulate differentiation in diverse cell types. In the hematopoietic lineage, Ldb1 forms a complex with the non-DNA-binding adaptor Lmo2 and the transcription factors E2A, Scl and GATA-1 (or GATA-2). Here we demonstrate a critical and continuous requirement for Ldb1 in the maintenance of both fetal and adult mouse hematopoietic stem cells (HSCs). Deletion of Ldb1 in hematopoietic progenitors resulted in the downregulation of many transcripts required for HSC maintenance. Genome-wide profiling by chromatin immunoprecipitation followed by sequencing (ChIP-Seq) identified Ldb1 complex-binding sites at highly conserved regions in the promoters of genes involved in HSC maintenance. Our results identify a central role for Ldb1 in regulating the transcriptional program responsible for the maintenance of HSCs.

  9. Epstein-Barr virus (EBV) LMP2A alters normal transcriptional regulation following B-cell receptor activation

    International Nuclear Information System (INIS)

    Portis, Toni; Longnecker, Richard

    2004-01-01

    The latent membrane protein 2A (LMP2A) of Epstein-Barr virus (EBV) is an important mediator of viral latency in infected B-lymphocytes. LMP2A inhibits B-cell receptor (BCR) signaling in vitro and allows for the survival of BCR-negative B cells in vivo. In this study, we compared gene transcription in BCR-activated B cells from non-transgenic and LMP2A Tg6 transgenic mice. We found that the transcriptional induction and down-regulation of many genes that normally occurs in B cells following BCR activation did not occur in B cells from LMP2A Tg6 transgenic mice. Furthermore, LMP2A induced the expression of various transcription factors and genes associated with DNA/RNA metabolism, which may allow for the altered transcriptional regulation observed in BCR-activated B cells from LMP2A Tg6 mice. These results suggest that LMP2A may inhibit the downstream effects of BCR signaling by directly or indirectly altering gene transcription to ensure EBV persistence in infected B cells

  10. Downregulated long non-coding RNA MEG3 in breast cancer regulates proliferation, migration and invasion by depending on p53’s transcriptional activity

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lin [West Biostatistics and Cost-effectiveness Research Center, Medical Insurance Office, West China Hospital of Sichuan University, 610041, Sichuan (China); Li, Yu [Department of Anesthesiology, West China Hospital, Sichuan University, 610041, Sichuan (China); Yang, Bangxiang, E-mail: b19933009@qq.coom [Department of Pain Management, West China Hospital of Sichuan University, 610041, Sichuan (China)

    2016-09-09

    Long non-coding RNAs (lncRNAs) was found to play critical roles in tumorigenesis, hence, screen of tumor-related lncRNAs, identification of their biological roles is important for understanding the processes of tumorigenesis. In this study, we identified the expressing difference of several tumor-related lncRNAs in breast cancer samples and found that, MEG3, which is downregulated in non-small cell lung cancer (NSCLC) tumor tissues, is also downregulated in breast cancer samples compared with adjacent tissues. For figuring out the effect of MEG3 in breast cancer cells MCF7 and MB231, we overexpressed MEG3 in these cells, and found that it resulted the inhibition of proliferation, colony formation, migration and invasion capacities by enhancing p53’s transcriptional activity on its target genes, including p21, Maspin and KAI1. MEG3 presented similar effects in MB157, which is a p53-null breast cancer cell line, when functional p53 but not p53R273H mutant, which lacks transcriptional activity, was introduced. Surprisingly, overexpression of MEG3 activates p53’s transcriptional activity by decreasing MDM2’s transcription level, and thus stabilizes and accumulates P53. Taken together, our findings indicate that MEG3 is downregulated in breast cancer tissues and affects breast cancer cells’ malignant behaviors, which indicate MEG3 a potential therapeutic target for breast cancer. - Highlights: • MEG3 RNA is widely downregulated in breast tumor tissue. • MEG3 regulates P53 indirectly through transcriptional regulation of MDM2. • Under unstressed condition, MEG3-related P53 accumulation transcriptionally activates p53’s target genes. • MEG3 expression level tightly regulates proliferation, colony formation, migration and invasion in breast tumor cells.

  11. Patterns of subnet usage reveal distinct scales of regulation in the transcriptional regulatory network of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Carsten Marr

    Full Text Available The set of regulatory interactions between genes, mediated by transcription factors, forms a species' transcriptional regulatory network (TRN. By comparing this network with measured gene expression data, one can identify functional properties of the TRN and gain general insight into transcriptional control. We define the subnet of a node as the subgraph consisting of all nodes topologically downstream of the node, including itself. Using a large set of microarray expression data of the bacterium Escherichia coli, we find that the gene expression in different subnets exhibits a structured pattern in response to environmental changes and genotypic mutation. Subnets with fewer changes in their expression pattern have a higher fraction of feed-forward loop motifs and a lower fraction of small RNA targets within them. Our study implies that the TRN consists of several scales of regulatory organization: (1 subnets with more varying gene expression controlled by both transcription factors and post-transcriptional RNA regulation and (2 subnets with less varying gene expression having more feed-forward loops and less post-transcriptional RNA regulation.

  12. Aging affects the transcriptional regulation of human skeletal muscle disuse atrophy

    DEFF Research Database (Denmark)

    Suetta, Charlotte Arneboe; Frandsen, Ulrik; Jensen, Line

    2012-01-01

    Important insights concerning the molecular basis of skeletal muscle disuse-atrophy and aging related muscle loss have been obtained in cell culture and animal models, but these regulatory signaling pathways have not previously been studied in aging human muscle. In the present study, muscle...... atrophy was induced by immobilization in healthy old and young individuals to study the time-course and transcriptional factors underlying human skeletal muscle atrophy. The results reveal that irrespectively of age, mRNA expression levels of MuRF-1 and Atrogin-1 increased in the very initial phase (2......-4 days) of human disuse-muscle atrophy along with a marked reduction in PGC-1α and PGC-1β (1-4 days) and a ∼10% decrease in myofiber size (4 days). Further, an age-specific decrease in Akt and S6 phosphorylation was observed in young muscle within the first days (1-4 days) of immobilization. In contrast...

  13. Pairwise comparisons of ten porcine tissues identify differential transcriptional regulation at the gene, isoform, promoter and transcription start site level

    International Nuclear Information System (INIS)

    Farajzadeh, Leila; Hornshøj, Henrik; Momeni, Jamal; Thomsen, Bo; Larsen, Knud; Hedegaard, Jakob; Bendixen, Christian; Madsen, Lone Bruhn

    2013-01-01

    Highlights: •Transcriptome sequencing yielded 223 mill porcine RNA-seq reads, and 59,000 transcribed locations. •Establishment of unique transcription profiles for ten porcine tissues including four brain tissues. •Comparison of transcription profiles at gene, isoform, promoter and transcription start site level. •Highlights a high level of regulation of neuro-related genes at both gene, isoform, and TSS level. •Our results emphasize the pig as a valuable animal model with respect to human biological issues. -- Abstract: The transcriptome is the absolute set of transcripts in a tissue or cell at the time of sampling. In this study RNA-Seq is employed to enable the differential analysis of the transcriptome profile for ten porcine tissues in order to evaluate differences between the tissues at the gene and isoform expression level, together with an analysis of variation in transcription start sites, promoter usage, and splicing. Totally, 223 million RNA fragments were sequenced leading to the identification of 59,930 transcribed gene locations and 290,936 transcript variants using Cufflinks with similarity to approximately 13,899 annotated human genes. Pairwise analysis of tissues for differential expression at the gene level showed that the smallest differences were between tissues originating from the porcine brain. Interestingly, the relative level of differential expression at the isoform level did generally not vary between tissue contrasts. Furthermore, analysis of differential promoter usage between tissues, revealed a proportionally higher variation between cerebellum (CBE) versus frontal cortex and cerebellum versus hypothalamus (HYP) than in the remaining comparisons. In addition, the comparison of differential transcription start sites showed that the number of these sites is generally increased in comparisons including hypothalamus in contrast to other pairwise assessments. A comprehensive analysis of one of the tissue contrasts, i

  14. Onset and organ specificity of Tk2 deficiency depends on Tk1 down-regulation and transcriptional compensation.

    Science.gov (United States)

    Dorado, Beatriz; Area, Estela; Akman, Hasan O; Hirano, Michio

    2011-01-01

    Deficiency of thymidine kinase 2 (TK2) is a frequent cause of isolated myopathy or encephalomyopathy in children with mitochondrial DNA (mtDNA) depletion. To determine the bases of disease onset, organ specificity and severity of TK2 deficiency, we have carefully characterized Tk2 H126N knockin mice (Tk2-/-). Although normal until postnatal day 8, Tk2-/- mice rapidly develop fatal encephalomyopathy between postnatal days 10 and 13. We have observed that wild-type Tk2 activity is constant in the second week of life, while Tk1 activity decreases significantly between postnatal days 8 and 13. The down-regulation of Tk1 activity unmasks Tk2 deficiency in Tk2-/- mice and correlates with the onset of mtDNA depletion in the brain and the heart. Resistance to pathology in Tk2 mutant organs depends on compensatory mechanisms to the reduced mtDNA level. Our analyses at postnatal day 13 have revealed that Tk2-/- heart significantly increases mitochondrial transcript levels relative to the mtDNA content. This transcriptional compensation allows the heart to maintain normal levels of mtDNA-encoded proteins. The up-regulation in mitochondrial transcripts is not due to increased expression of the master mitochondrial biogenesis regulators peroxisome proliferator-activated receptor-gamma coactivator 1 alpha and nuclear respiratory factors 1 and 2, or to enhanced expression of the mitochondrial transcription factors A, B1 or B2. Instead, Tk2-/- heart compensates for mtDNA depletion by down-regulating the expression of the mitochondrial transcriptional terminator transcription factor 3 (MTERF3). Understanding the molecular mechanisms that allow Tk2 mutant organs to be spared may help design therapies for Tk2 deficiency.

  15. Strong negative self regulation of Prokaryotic transcription factors increases the intrinsic noise of protein expression

    Directory of Open Access Journals (Sweden)

    Jenkins Dafyd J

    2008-01-01

    Full Text Available Abstract Background Many prokaryotic transcription factors repress their own transcription. It is often asserted that such regulation enables a cell to homeostatically maintain protein abundance. We explore the role of negative self regulation of transcription in regulating the variability of protein abundance using a variety of stochastic modeling techniques. Results We undertake a novel analysis of a classic model for negative self regulation. We demonstrate that, with standard approximations, protein variance relative to its mean should be independent of repressor strength in a physiological range. Consequently, in that range, the coefficient of variation would increase with repressor strength. However, stochastic computer simulations demonstrate that there is a greater increase in noise associated with strong repressors than predicted by theory. The discrepancies between the mathematical analysis and computer simulations arise because with strong repressors the approximation that leads to Michaelis-Menten-like hyperbolic repression terms ceases to be valid. Because we observe that strong negative feedback increases variability and so is unlikely to be a mechanism for noise control, we suggest instead that negative feedback is evolutionarily favoured because it allows the cell to minimize mRNA usage. To test this, we used in silico evolution to demonstrate that while negative feedback can achieve only a modest improvement in protein noise reduction compared with the unregulated system, it can achieve good improvement in protein response times and very substantial improvement in reducing mRNA levels. Conclusion Strong negative self regulation of transcription may not always be a mechanism for homeostatic control of protein abundance, but instead might be evolutionarily favoured as a mechanism to limit the use of mRNA. The use of hyperbolic terms derived from quasi-steady-state approximation should also be avoided in the analysis of stochastic

  16. Phyloscan: locating transcription-regulating binding sites in mixed aligned and unaligned sequence data.

    Science.gov (United States)

    Palumbo, Michael J; Newberg, Lee A

    2010-07-01

    The transcription of a gene from its DNA template into an mRNA molecule is the first, and most heavily regulated, step in gene expression. Especially in bacteria, regulation is typically achieved via the binding of a transcription factor (protein) or small RNA molecule to the chromosomal region upstream of a regulated gene. The protein or RNA molecule recognizes a short, approximately conserved sequence within a gene's promoter region and, by binding to it, either enhances or represses expression of the nearby gene. Since the sought-for motif (pattern) is short and accommodating to variation, computational approaches that scan for binding sites have trouble distinguishing functional sites from look-alikes. Many computational approaches are unable to find the majority of experimentally verified binding sites without also finding many false positives. Phyloscan overcomes this difficulty by exploiting two key features of functional binding sites: (i) these sites are typically more conserved evolutionarily than are non-functional DNA sequences; and (ii) these sites often occur two or more times in the promoter region of a regulated gene. The website is free and open to all users, and there is no login requirement. Address: (http://bayesweb.wadsworth.org/phyloscan/).

  17. An Atlas of Combinatorial Transcriptional Regulation in Mouse and Man

    KAUST Repository

    Ravasi, Timothy; Suzuki, Harukazu; Cannistraci, Carlo; Katayama, Shintaro; Bajic, Vladimir B.; Tan, Kai; Akalin, Altuna; Schmeier, Sebastian; Kanamori-Katayama, Mutsumi; Bertin, Nicolas; Carninci, Piero; Daub, Carsten O.; Forrest, Alistair R.R.; Gough, Julian; Grimmond, Sean; Han, Jung-Hoon; Hashimoto, Takehiro; Hide, Winston; Hofmann, Oliver; Kamburov, Atanas; Kaur, Mandeep; Kawaji, Hideya; Kubosaki, Atsutaka; Lassmann, Timo; van Nimwegen, Erik; MacPherson, Cameron Ross; Ogawa, Chihiro; Radovanovic, Aleksandar; Schwartz, Ariel; Teasdale, Rohan D.; Tegné r, Jesper; Lenhard, Boris; Teichmann, Sarah A.; Arakawa, Takahiro; Ninomiya, Noriko; Murakami, Kayoko; Tagami, Michihira; Fukuda, Shiro; Imamura, Kengo; Kai, Chikatoshi; Ishihara, Ryoko; Kitazume, Yayoi; Kawai, Jun; Hume, David A.; Ideker, Trey; Hayashizaki, Yoshihide

    2010-01-01

    Combinatorial interactions among transcription factors are critical to directing tissue-specific gene expression. To build a global atlas of these combinations, we have screened for physical interactions among the majority of human and mouse DNA-binding transcription factors (TFs). The complete networks contain 762 human and 877 mouse interactions. Analysis of the networks reveals that highly connected TFs are broadly expressed across tissues, and that roughly half of the measured interactions are conserved between mouse and human. The data highlight the importance of TF combinations for determining cell fate, and they lead to the identification of a SMAD3/FLI1 complex expressed during development of immunity. The availability of large TF combinatorial networks in both human and mouse will provide many opportunities to study gene regulation, tissue differentiation, and mammalian evolution.

  18. An Atlas of Combinatorial Transcriptional Regulation in Mouse and Man

    KAUST Repository

    Ravasi, Timothy

    2010-03-01

    Combinatorial interactions among transcription factors are critical to directing tissue-specific gene expression. To build a global atlas of these combinations, we have screened for physical interactions among the majority of human and mouse DNA-binding transcription factors (TFs). The complete networks contain 762 human and 877 mouse interactions. Analysis of the networks reveals that highly connected TFs are broadly expressed across tissues, and that roughly half of the measured interactions are conserved between mouse and human. The data highlight the importance of TF combinations for determining cell fate, and they lead to the identification of a SMAD3/FLI1 complex expressed during development of immunity. The availability of large TF combinatorial networks in both human and mouse will provide many opportunities to study gene regulation, tissue differentiation, and mammalian evolution.

  19. Regulation of basophil and mast cell development by transcription factors

    Directory of Open Access Journals (Sweden)

    Haruka Sasaki

    2016-04-01

    Full Text Available Basophils and mast cells play important roles in host defense against parasitic infections and allergic responses. Several progenitor populations, either shared or specific, for basophils and/or mast cells have been identified, thus elucidating the developmental pathways of these cells. Multiple transcription factors essential for their development and the relationships between them have been also revealed. For example, IRF8 induces GATA2 expression to promote the generation of both basophils and mast cells. The STAT5-GATA2 axis induces C/EBPα and MITF expression, facilitating the differentiation into basophils and mast cells, respectively. In addition, C/EBPα and MITF mutually suppress each other's expression. This review provides an overview of recent advances in our understanding of how transcription factors regulate the development of basophils and mast cells.

  20. Down-regulation of hTERT and Cyclin D1 transcription via PI3K/Akt and TGF-β pathways in MCF-7 Cancer cells with PX-866 and Raloxifene

    Energy Technology Data Exchange (ETDEWEB)

    Peek, Gregory W. [Department of Biology, University of Alabama at Birmingham, Birmingham, AL (United States); Tollefsbol, Trygve O., E-mail: trygve@uab.edu [Department of Biology, University of Alabama at Birmingham, Birmingham, AL (United States); Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL (United States); Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL (United States); Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL (United States); Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL (United States)

    2016-05-15

    Human telomerase reverse transcriptase (hTERT) is the catalytic and limiting component of telomerase and also a transcription factor. It is critical to the integrity of the ends of linear chromosomes and to the regulation, extent and rate of cell cycle progression in multicellular eukaryotes. The level of hTERT expression is essential to a wide range of bodily functions and to avoidance of disease conditions, such as cancer, that are mediated in part by aberrant level and regulation of cell cycle proliferation. Value of a gene in regulation depends on its ability to both receive input from multiple sources and transmit signals to multiple effectors. The expression of hTERT and the progression of the cell cycle have been shown to be regulated by an extensive network of gene products and signaling pathways, including the PI3K/Akt and TGF-β pathways. The PI3K inhibitor PX-866 and the competitive estrogen receptor ligand raloxifene have been shown to modify progression of those pathways and, in combination, to decrease proliferation of estrogen receptor positive (ER+) MCF-7 breast cancer cells. We found that combinations of modulators of those pathways decreased not only hTERT transcription but also transcription of additional essential cell cycle regulators such as Cyclin D1. By evaluating known expression profile signatures for TGF-β pathway diversions, we confirmed additional genes such as heparin-binding epidermal growth factor-like growth factor (HB EGF) by which those pathways and their perturbations may also modify cell cycle progression. - Highlights: • PX-866 and raloxifene affect the PI3K/Akt and TGF-β pathways. • PX-866 and raloxifene down-regulate genes up-regulated in cancer. • PX-866 and raloxifene decrease transcription of hTERT and Cyclin D1. • Pathological transcription signatures can identify new defense mechanisms.

  1. A Canonical DREB2-Type Transcription Factor in Lily Is Post-translationally Regulated and Mediates Heat Stress Response

    Directory of Open Access Journals (Sweden)

    Ze Wu

    2018-03-01

    Full Text Available Based on studies of monocot crops and eudicot model plants, the DREB2 class of AP2-type transcription factor has been shown to play crucial roles in various abiotic stresses, especially in the upstream of the heat stress response; however, research on DREB2s has not been reported in non-gramineous monocot plants. Here, we identified a novel DREB2 (LlDREB2B from lily (Lilium longiflorum, which was homologous to AtDREB2A of Arabidopsis, OsDREB2B of rice, and ZmDREB2A of maize. LlDREB2B was induced by heat, cold, salt, and mannitol stress, and its protein had transcriptional activity, was located in the nucleus, was able to bind to the dehydration-responsive element (DRE, and participated in the heat-responsive pathway of HsfA3. Overexpression of LlDREB2B in Arabidopsis activated expression of downstream genes and improved thermotolerance. LlDREB2B was not regulated by alternative splicing; functional transcripts accumulated under either normal or heat-stress conditions. A potential PEST sequence was predicted in LlDREB2B, but the stability of the LlDREB2B protein was not positively affected when the predicated PEST sequence was deleted. Further analysis revealed that the predicated PEST sequence lacked a SBC or SBC-like motif allowing interaction with BPMs and required for negative regulation. Nevertheless, LlDREB2B was still regulated at the post-translational level by interaction with AtDRIP1 and AtDRIP2 of Arabidopsis. In addition, LlDREB2B also interacted with AtRCD1 and LlRCD1 via a potential RIM motif located at amino acids 215–245. Taken together, our results show that LlDREB2B participated in the establishment of thermotolerance, and its regulation was different from that of the orthologs of gramineous and eudicot plants.

  2. A Canonical DREB2-Type Transcription Factor in Lily Is Post-translationally Regulated and Mediates Heat Stress Response.

    Science.gov (United States)

    Wu, Ze; Liang, Jiahui; Zhang, Shuai; Zhang, Bing; Zhao, Qingcui; Li, Guoqing; Yang, Xi; Wang, Chengpeng; He, Junna; Yi, Mingfang

    2018-01-01

    Based on studies of monocot crops and eudicot model plants, the DREB2 class of AP2-type transcription factor has been shown to play crucial roles in various abiotic stresses, especially in the upstream of the heat stress response; however, research on DREB2s has not been reported in non-gramineous monocot plants. Here, we identified a novel DREB2 (LlDREB2B) from lily ( Lilium longiflorum ), which was homologous to AtDREB2A of Arabidopsis, OsDREB2B of rice, and ZmDREB2A of maize. LlDREB2B was induced by heat, cold, salt, and mannitol stress, and its protein had transcriptional activity, was located in the nucleus, was able to bind to the dehydration-responsive element (DRE), and participated in the heat-responsive pathway of HsfA3. Overexpression of LlDREB2B in Arabidopsis activated expression of downstream genes and improved thermotolerance. LlDREB2B was not regulated by alternative splicing; functional transcripts accumulated under either normal or heat-stress conditions. A potential PEST sequence was predicted in LlDREB2B, but the stability of the LlDREB2B protein was not positively affected when the predicated PEST sequence was deleted. Further analysis revealed that the predicated PEST sequence lacked a SBC or SBC-like motif allowing interaction with BPMs and required for negative regulation. Nevertheless, LlDREB2B was still regulated at the post-translational level by interaction with AtDRIP1 and AtDRIP2 of Arabidopsis. In addition, LlDREB2B also interacted with AtRCD1 and LlRCD1 via a potential RIM motif located at amino acids 215-245. Taken together, our results show that LlDREB2B participated in the establishment of thermotolerance, and its regulation was different from that of the orthologs of gramineous and eudicot plants.

  3. Capsicum annuum transcription factor WRKYa positively regulates defense response upon TMV infection and is a substrate of CaMK1 and CaMK2.

    Science.gov (United States)

    Huh, Sung Un; Lee, Gil-Je; Jung, Ji Hoon; Kim, Yunsik; Kim, Young Jin; Paek, Kyung-Hee

    2015-01-23

    Plants are constantly exposed to pathogens and environmental stresses. To minimize damage caused by these potentially harmful factors, plants respond by massive transcriptional reprogramming of various stress-related genes via major transcription factor families. One of the transcription factor families, WRKY, plays an important role in diverse stress response of plants and is often useful to generate genetically engineered crop plants. In this study, we carried out functional characterization of CaWRKYa encoding group I WRKY member, which is induced during hypersensitive response (HR) in hot pepper (Capsicum annuum) upon Tobacco mosaic virus (TMV) infection. CaWRKYa was involved in L-mediated resistance via transcriptional reprogramming of pathogenesis-related (PR) gene expression and affected HR upon TMV-P0 infection. CaWRKYa acts as a positive regulator of this defense system and could bind to the W-box of diverse PR genes promoters. Furthermore, we found Capsicum annuum mitogen-activated protein kinase 1 (CaMK1) and 2 (CaMK2) interacted with CaWRKYa and phosphorylated the SP clusters but not the MAPK docking (D)-domain of CaWRKYa. Thus, these results demonstrated that CaWRKYa was regulated by CaMK1 and CaMK2 at the posttranslational level in hot pepper.

  4. Kctd10 regulates heart morphogenesis by repressing the transcriptional activity of Tbx5a in zebrafish

    Science.gov (United States)

    Tong, Xiangjun; Zu, Yao; Li, Zengpeng; Li, Wenyuan; Ying, Lingxiao; Yang, Jing; Wang, Xin; He, Shuonan; Liu, Da; Zhu, Zuoyan; Chen, Jianming; Lin, Shuo; Zhang, Bo

    2014-01-01

    The T-box transcription factor Tbx5 (Tbx5a in zebrafish) plays a crucial role in the formation of cardiac chambers in a dose-dependent manner. Its deregulation leads to congenital heart disease. However, little is known regarding its regulation. Here we isolate a zebrafish mutant with heart malformations, called 34c. The affected gene is identified as kctd10, a member of the potassium channel tetramerization domain (KCTD)-containing family. In the mutant, the expressions of the atrioventricular canal marker genes, such as tbx2b, hyaluronan synthase 2 (has2), notch1b and bmp4, are changed. The knockdown of tbx5 rescues the ectopic expression of has2, and knockdown of either tbx5a or has2 alleviates the heart defects. We show that Kctd10 directly binds to Tbx5 to repress its transcriptional activity. Our results reveal a new essential factor for cardiac development and suggest that KCTD10 could be considered as a new causative gene of congenital heart disease.

  5. The C2H2-type transcription factor, FlbC, is involved in the transcriptional regulation of Aspergillus oryzae glucoamylase and protease genes specifically expressed in solid-state culture.

    Science.gov (United States)

    Tanaka, Mizuki; Yoshimura, Midori; Ogawa, Masahiro; Koyama, Yasuji; Shintani, Takahiro; Gomi, Katsuya

    2016-07-01

    Aspergillus oryzae produces a large amount of secreted proteins in solid-state culture, and some proteins such as glucoamylase (GlaB) and acid protease (PepA) are specifically produced in solid-state culture, but rarely in submerged culture. From the disruption mutant library of A. oryzae transcriptional regulators, we successfully identified a disruption mutant showing an extremely low production level of GlaB but a normal level of α-amylase production. This strain was a disruption mutant of the C2H2-type transcription factor, FlbC, which is reported to be involved in the regulation of conidiospore development. Disruption mutants of other upstream regulators comprising a conidiation regulatory network had no apparent effect on GlaB production in solid-state culture. In addition to GlaB, the production of acid protease in solid-state culture was also markedly decreased by flbC disruption. Northern blot analyses revealed that transcripts of glaB and pepA were significantly decreased in the flbC disruption strain. These results suggested that FlbC is involved in the transcriptional regulation of genes specifically expressed under solid-state cultivation conditions, possibly independent of the conidiation regulatory network.

  6. Transcription factors SOHLH1 and SOHLH2 coordinate oocyte differentiation without affecting meiosis I.

    Science.gov (United States)

    Shin, Yong-Hyun; Ren, Yu; Suzuki, Hitomi; Golnoski, Kayla J; Ahn, Hyo Won; Mico, Vasil; Rajkovic, Aleksandar

    2017-06-01

    Following migration of primordial germ cells to the genital ridge, oogonia undergo several rounds of mitotic division and enter meiosis at approximately E13.5. Most oocytes arrest in the dictyate (diplotene) stage of meiosis circa E18.5. The genes necessary to drive oocyte differentiation in parallel with meiosis are unknown. Here, we have investigated whether expression of spermatogenesis and oogenesis bHLH transcription factor 1 (Sohlh1) and Sohlh2 coordinates oocyte differentiation within the embryonic ovary. We found that SOHLH2 protein was expressed in the mouse germline as early as E12.5 and preceded SOHLH1 protein expression, which occurred circa E15.5. SOHLH1 protein appearance at E15.5 correlated with SOHLH2 translocation from the cytoplasm into the nucleus and was dependent on SOHLH1 expression. NOBOX oogenesis homeobox (NOBOX) and LIM homeobox protein 8 (LHX8), two important regulators of postnatal oogenesis, were coexpressed with SOHLH1. Single deficiency of Sohlh1 or Sohlh2 disrupted the expression of LHX8 and NOBOX in the embryonic gonad without affecting meiosis. Sohlh1-KO infertility was rescued by conditional expression of the Sohlh1 transgene after the onset of meiosis. However, Sohlh1 or Sohlh2 transgene expression could not rescue Sohlh2-KO infertility due to a lack of Sohlh1 or Sohlh2 expression in rescued mice. Our results indicate that Sohlh1 and Sohlh2 are essential regulators of oocyte differentiation but do not affect meiosis I.

  7. Rice homeobox transcription factor HOX1a positively regulates gibberellin responses by directly suppressing EL1.

    Science.gov (United States)

    Wen, Bi-Qing; Xing, Mei-Qing; Zhang, Hua; Dai, Cheng; Xue, Hong-Wei

    2011-11-01

    Homeobox transcription factors are involved in various aspects of plant development, including maintenance of the biosynthesis and signaling pathways of different hormones. However, few direct targets of homeobox proteins have been identified. We here show that overexpression of rice homeobox gene HOX1a resulted in enhanced gibberellin (GA) response, indicating a positive effect of HOX1a in GA signaling. HOX1a is induced by GA and encodes a homeobox transcription factor with transcription repression activity. In addition, HOX1a suppresses the transcription of early flowering1 (EL1), a negative regulator of GA signaling, and further electrophoretic mobility shift assay and chromatin immunoprecipitation analysis revealed that HOX1a directly bound to the promoter region of EL1 to suppress its expression and stimulate GA signaling. These results demonstrate that HOX1a functions as a positive regulator of GA signaling by suppressing EL1, providing informative hints on the study of GA signaling. © 2011 Institute of Botany, Chinese Academy of Sciences.

  8. GlnR-Mediated Regulation of ectABCD Transcription Expands the Role of the GlnR Regulon to Osmotic Stress Management.

    Science.gov (United States)

    Shao, ZhiHui; Deng, WanXin; Li, ShiYuan; He, JuanMei; Ren, ShuangXi; Huang, WeiRen; Lu, YinHua; Zhao, GuoPing; Cai, ZhiMing; Wang, Jin

    2015-10-01

    Ectoine and hydroxyectoine are excellent compatible solutes for bacteria to deal with environmental osmotic stress and temperature damages. The biosynthesis cluster of ectoine and hydroxyectoine is widespread among microorganisms, and its expression is activated by high salinity and temperature changes. So far, little is known about the mechanism of the regulation of the transcription of ect genes and only two MarR family regulators (EctR1 in methylobacteria and the EctR1-related regulator CosR in Vibrio cholerae) have been found to negatively regulate the expression of ect genes. Here, we characterize GlnR, the global regulator for nitrogen metabolism in actinomycetes, as a negative regulator for the transcription of ectoine/hydroxyectoine biosynthetic genes (ect operon) in Streptomyces coelicolor. The physiological role of this transcriptional repression by GlnR is proposed to protect the intracellular glutamate pool, which acts as a key nitrogen donor for both the nitrogen metabolism and the ectoine/hydroxyectoine biosynthesis. High salinity is deleterious, and cells must evolve sophisticated mechanisms to cope with this osmotic stress. Although production of ectoine and hydroxyectoine is one of the most frequently adopted strategies, the in-depth mechanism of regulation of their biosynthesis is less understood. So far, only two MarR family negative regulators, EctR1 and CosR, have been identified in methylobacteria and Vibrio, respectively. Here, our work demonstrates that GlnR, the global regulator for nitrogen metabolism, is a negative transcriptional regulator for ect genes in Streptomyces coelicolor. Moreover, a close relationship is found between nitrogen metabolism and osmotic resistance, and GlnR-mediated regulation of ect transcription is proposed to protect the intracellular glutamate pool. Meanwhile, the work reveals the multiple roles of GlnR in bacterial physiology. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Transcription and splicing regulation in human umbilical vein endothelial cells under hypoxic stress conditions by exon array

    Directory of Open Access Journals (Sweden)

    Wu Yonghong

    2009-03-01

    Full Text Available Abstract Background The balance between endothelial cell survival and apoptosis during stress is an important cellular process for vessel integrity and vascular homeostasis, and it is also pivotal in angiogenesis during the development of many vascular diseases. However, the underlying molecular mechanisms remain largely unknown. Although both transcription and alternative splicing are important in regulating gene expression in endothelial cells under stress, the regulatory mechanisms underlying this state and their interactions have not yet been studied on a genome-wide basis. Results Human umbilical vein endothelial cells (HUVECs were treated with cobalt chloride (CoCl2 both to mimic hypoxia and to induce cell apoptosis and alternative splicing responses. Cell apoptosis rate analysis indicated that HUVECs exposed to 300 μM CoCl2 for 24 hrs were initially counterbalancing apoptosis with cell survival. We therefore used the Affymetrix exon array system to determine genome-wide transcript- and exon-level differential expression. Other than 1583 differentially expressed transcripts, 342 alternatively spliced exons were detected and classified by different splicing types. Sixteen alternatively spliced exons were validated by RT-PCR. Furthermore, direct evidence for the ongoing balance between HUVEC survival and apoptosis was provided by Gene Ontology (GO and protein function, as well as protein domain and pathway enrichment analyses of the differentially expressed transcripts. Importantly, a novel molecular module, in which the heat shock protein (HSP families play a significant role, was found to be activated under mimicked hypoxia conditions. In addition, 46% of the transcripts containing stress-modulated exons were differentially expressed, indicating the possibility of combinatorial regulation of transcription and splicing. Conclusion The exon array system effectively profiles gene expression and splicing on the genome-wide scale. Based on

  10. Distinguishing the Transcription Regulation Patterns in Promoters of Human Genes with Different Function or Evolutionary Age

    KAUST Repository

    Alam, Tanvir

    2012-07-01

    Distinguishing transcription regulatory patterns of different gene groups is a common problem in various bioinformatics studies. In this work we developed a methodology to deal with such a problem based on machine learning techniques. We applied our method to two biologically important problems related to detecting a difference in transcription regulation of: a/ protein-coding and long non-coding RNAs (lncRNAs) in human, as well as b/ a difference between primate-specific and non-primate-specific long non-coding RNAs. Our method is capable to classify RNAs using various regulatory features of genes that transcribe into these RNAs, such as nucleotide frequencies, transcription factor binding sites, de novo sequence motifs, CpG islands, repetitive elements, histone modification marks, and others. Ten-fold cross-validation tests suggest that our model can distinguish protein-coding and non-coding RNAs with accuracy above 80%. Twenty-fold cross-validation tests suggest that our model can distinguish primate-specific from non-primate-specific promoters of lncRNAs with accuracy above 80%. Consequently, we can hypothesize that transcription of the groups of genes mentioned above are regulated by different mechanisms. Feature selection techniques allowed us to reduce the number of features significantly while keeping the accuracy around 80%. Consequently, we can conclude that selected features play significant role in transcription regulation of coding and non-coding genes, as well as primate-specific and non-primate-specific lncRNA genes.

  11. Structure of noncoding RNA is a determinant of function of RNA binding proteins in transcriptional regulation

    Directory of Open Access Journals (Sweden)

    Oyoshi Takanori

    2012-01-01

    Full Text Available Abstract The majority of the noncoding regions of mammalian genomes have been found to be transcribed to generate noncoding RNAs (ncRNAs, resulting in intense interest in their biological roles. During the past decade, numerous ncRNAs and aptamers have been identified as regulators of transcription. 6S RNA, first described as a ncRNA in E. coli, mimics an open promoter structure, which has a large bulge with two hairpin/stalk structures that regulate transcription through interactions with RNA polymerase. B2 RNA, which has stem-loops and unstructured single-stranded regions, represses transcription of mRNA in response to various stresses, including heat shock in mouse cells. The interaction of TLS (translocated in liposarcoma with CBP/p300 was induced by ncRNAs that bind to TLS, and this in turn results in inhibition of CBP/p300 histone acetyltransferase (HAT activity in human cells. Transcription regulator EWS (Ewing's sarcoma, which is highly related to TLS, and TLS specifically bind to G-quadruplex structures in vitro. The carboxy terminus containing the Arg-Gly-Gly (RGG repeat domains in these proteins are necessary for cis-repression of transcription activation and HAT activity by the N-terminal glutamine-rich domain. Especially, the RGG domain in the carboxy terminus of EWS is important for the G-quadruplex specific binding. Together, these data suggest that functions of EWS and TLS are modulated by specific structures of ncRNAs.

  12. The Pseudomonas transcriptional regulator AlgR controls LipA expression via the noncoding RNA RsmZ in Pseudomonas protegens Pf-5.

    Science.gov (United States)

    Li, Menggang; Yan, Jinyong; Yan, Yunjun

    2017-05-20

    Pseudomonas lipases are well studied enzymes. However, few studies have been conducted to explore the mechanism underlying the regulation of lipases expression. AlgR, a global regulator, controls the expression of multiple genes, regulates bacterial peristalsis, and participates in the regulation of quorum-sensing (QS) system, and so on. In this study, the effect of AlgR on lipase expression was investigated by knocking out the algR and rsmZ genes or overexpressing them. It is found out that AlgR can regulate the expression of lipA at both transcriptional and translational levels, but the transcriptional level was dominant. AlgR is also able to regulate the expression of rsmX/rsmY/rsmZ. Additionally, using algR/rsmZ double gene knock-out, it showed that AlgR could directly bind to the promoter sequence of rsmZ to regulate lipA activity. In conclusion, this study for the first time indicates that AlgR directly binds to rsmZ to regulates the expression of lipA via regulating transcription of rsmZ, and mainly regulates the expression of lipA at transcriptional level in P. protegens Pf-5. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. PPARγ transcriptionally regulates the expression of insulin-degrading enzyme in primary neurons

    International Nuclear Information System (INIS)

    Du, Jing; Zhang, Lang; Liu, Shubo; Zhang, Chi; Huang, Xiuqing; Li, Jian; Zhao, Nanming; Wang, Zhao

    2009-01-01

    Insulin-degrading enzyme (IDE) is a protease that has been demonstrated to play a key role in degrading both Aβ and insulin and deficient in IDE function is associated with Alzheimer's disease (AD) and type 2 diabetes mellitus (DM2) pathology. However, little is known about the cellular and molecular regulation of IDE expression. Here we show IDE levels are markedly decreased in DM2 patients and positively correlated with the peroxisome proliferator-activated receptor γ (PPARγ) levels. Further studies show that PPARγ plays an important role in regulating IDE expression in rat primary neurons through binding to a functional peroxisome proliferator-response element (PPRE) in IDE promoter and promoting IDE gene transcription. Finally, we demonstrate that PPARγ participates in the insulin-induced IDE expression in neurons. These results suggest that PPARγ transcriptionally induces IDE expression which provides a novel mechanism for the use of PPARγ agonists in both DM2 and AD therapies.

  14. Does regulating others' feelings influence people's own affective well-being?

    Science.gov (United States)

    Niven, Karen; Totterdell, Peter; Holman, David; Headley, Tara

    2012-01-01

    Individuals in a variety of social contexts try to regulate other people's feelings, but how does this process affect the regulators themselves? This research aimed to establish a relationship between people's use of interpersonal affect regulation and their own affective well-being. In a field study, self- and other-reported data were collected from prisoners and staff members in a therapeutic prison using two surveys separated in time. In a laboratory study, a student sample reported their affect before and after attempting to influence the feelings of talent show contestants in a role-play task. The results of both studies indicated congruent associations between the use of affect-improving and affect-worsening interpersonal affect regulation and strategy agents' affective well-being. Our findings highlight that, when performing interpersonal affect regulation, people may not be immune from the effects of their own actions.

  15. Estrogen receptor alpha and nuclear factor Y coordinately regulate the transcription of the SUMO-conjugating UBC9 gene in MCF-7 breast cancer cells.

    Science.gov (United States)

    Ying, Shibo; Dünnebier, Thomas; Si, Jing; Hamann, Ute

    2013-01-01

    UBC9 encodes a protein that conjugates small ubiquitin-related modifier (SUMO) to target proteins thereby changing their functions. Recently, it was noted that UBC9 expression and activity play a role in breast tumorigenesis and response to anticancer drugs. However, the underlying mechanism is poorly understood. To investigate the transcriptional regulation of the UBC9 gene, we identified and characterized its promoter and cis-elements. Promoter activity was tested using luciferase reporter assays. The binding of transcription factors to the promoter was detected by chromatin immunoprecipitation (ChIP), and their functional role was confirmed by siRNA knockdown. UBC9 mRNA and protein levels were measured by quantitative reverse transcription PCR and Western blot analysis, respectively. An increased expression of UBC9 mRNA and protein was found in MCF-7 breast cancer cells treated with 17β-estradiol (E2). Analysis of various deletion mutants revealed a 137 bp fragment upstream of the transcription initiation site to be sufficient for reporter gene transcription. Mutations of putative estrogen receptor α (ER-α) (one imperfect estrogen response element, ERE) and/or nuclear factor Y (NF-Y) binding sites (two CCAAT boxes) markedly reduced promoter activity. Similar results were obtained in ER-negative MDA-MB-231 cells except that the ERE mutation did not affect promoter activity. Additionally, promoter activity was stimulated upon E2 treatment and overexpression of ER-α or NF-YA in MCF-7 cells. ChIP confirmed direct binding of both transcription factors to the UBC9 promoter in vivo. Furthermore, UBC9 expression was diminished by ER-α and NF-Y siRNAs on the mRNA and protein levels. In conclusion, we identified the proximal UBC9 promoter and provided evidence that ER-α and NF-Y regulate UBC9 expression on the transcriptional level in response to E2 in MCF-7 cells. These findings may contribute to a better understanding of the regulation of UBC9 in ER

  16. DNA methylation of specific CpG sites in the promoter region regulates the transcription of the mouse oxytocin receptor.

    Directory of Open Access Journals (Sweden)

    Shimrat Mamrut

    Full Text Available Oxytocin is a peptide hormone, well known for its role in labor and suckling, and most recently for its involvement in mammalian social behavior. All central and peripheral actions of oxytocin are mediated through the oxytocin receptor, which is the product of a single gene. Transcription of the oxytocin receptor is subject to regulation by gonadal steroid hormones, and is profoundly elevated in the uterus and mammary glands during parturition. DNA methylation is a major epigenetic mechanism that regulates gene transcription, and has been linked to reduced expression of the oxytocin receptor in individuals with autism. Here, we hypothesized that transcription of the mouse oxytocin receptor is regulated by DNA methylation of specific sites in its promoter, in a tissue-specific manner. Hypothalamus-derived GT1-7, and mammary-derived 4T1 murine cell lines displayed negative correlations between oxytocin receptor transcription and methylation of the gene promoter, and demethylation caused a significant enhancement of oxytocin receptor transcription in 4T1 cells. Using a reporter gene assay, we showed that methylation of specific sites in the gene promoter, including an estrogen response element, significantly inhibits transcription. Furthermore, methylation of the oxytocin receptor promoter was found to be differentially correlated with oxytocin receptor expression in mammary glands and the uterus of virgin and post-partum mice, suggesting that it plays a distinct role in oxytocin receptor transcription among tissues and under different physiological conditions. Together, these results support the hypothesis that the expression of the mouse oxytocin receptor gene is epigenetically regulated by DNA methylation of its promoter.

  17. Building the Future: Post-transcriptional Regulation of Cell Fate Decisions Prior to the Xenopus Midblastula Transition.

    Science.gov (United States)

    Sheets, Michael D

    2015-01-01

    In all animals, a critical period in early development is when embryonic cells switch from relying solely upon maternally deposited RNAs and proteins to relying upon molecules encoded by the zygotic genome. Xenopus embryos have served as a model for examining this switch, as well as the maternally controlled stages that prepare for it. In Xenopus, the robust activation of zygotic transcription occurs at the 12th cleavage division and is referred to as the midblastula transition (MBT). Prior to MBT, gene expression is regulated by post-transcriptional events including mRNA and protein localization, protein post-translational modification, and mRNA translation. After the MBT, appropriate transcriptional regulation of the zygotic genome becomes critical and predominates. However, it is important to realize that the first key cell fate decisions that have profound impacts on development occur prior to the MBT and these are governed by regulating the expression of maternally deposited regulatory mRNAs and proteins. In this chapter, I will discuss post-transcriptional mechanisms that function during the maternal stages of Xenopus development with an emphasis on mechanisms known to directly modulate cell fate decisions. Emerging approaches and technologies that will help better understand this phase of development will also be discussed. © 2015 Elsevier Inc. All rights reserved.

  18. Translatome profiling in dormant and nondormant sunflower (Helianthus annuus) seeds highlights post-transcriptional regulation of germination.

    Science.gov (United States)

    Layat, Elodie; Leymarie, Juliette; El-Maarouf-Bouteau, Hayat; Caius, José; Langlade, Nicolas; Bailly, Christophe

    2014-12-01

    Seed dormancy, which blocks germination in apparently favourable conditions, is a key regulatory control point of plant population establishment. As germination requires de novo translation, its regulation by dormancy is likely to be related to the association of individual transcripts to polysomes. Here, the polysome-associated mRNAs, that is, the translatome, were fractionated and characterized with microarrays in dormant and nondormant sunflower (Helianthus annuus) embryos during their imbibition at 10°C, a temperature preventing germination of dormant embryos. Profiling of mRNAs in polysomal complexes revealed that the translatome differs between germinating and nongerminating embryos. Association of transcripts with polysomes reached a maximum after 15 h of imbibition; at this time-point 194 polysome-associated transcripts were specifically found in nondormant embryos and 47 in dormant embryos only. The proteins corresponding to the polysomal mRNAs in nondormant embryos appeared to be very pertinent for germination and were involved mainly in transport, regulation of transcription or cell wall modifications. This work demonstrates that seed germination results from a timely regulated and selective recruitment of mRNAs to polysomes, thus opening novel fields of investigation for the understanding of this developmental process. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  19. ATF1 Modulates the Heat Shock Response by Regulating the Stress-Inducible Heat Shock Factor 1 Transcription Complex

    Science.gov (United States)

    Takii, Ryosuke; Fujimoto, Mitsuaki; Tan, Ke; Takaki, Eiichi; Hayashida, Naoki; Nakato, Ryuichiro; Shirahige, Katsuhiko

    2014-01-01

    The heat shock response is an evolutionally conserved adaptive response to high temperatures that controls proteostasis capacity and is regulated mainly by an ancient heat shock factor (HSF). However, the regulation of target genes by the stress-inducible HSF1 transcription complex has not yet been examined in detail in mammalian cells. In the present study, we demonstrated that HSF1 interacted with members of the ATF1/CREB family involved in metabolic homeostasis and recruited them on the HSP70 promoter in response to heat shock. The HSF1 transcription complex, including the chromatin-remodeling factor BRG1 and lysine acetyltransferases p300 and CREB-binding protein (CBP), was formed in a manner that was dependent on the phosphorylation of ATF1. ATF1-BRG1 promoted the establishment of an active chromatin state and HSP70 expression during heat shock, whereas ATF1-p300/CBP accelerated the shutdown of HSF1 DNA-binding activity during recovery from acute stress, possibly through the acetylation of HSF1. Furthermore, ATF1 markedly affected the resistance to heat shock. These results revealed the unanticipated complexity of the primitive heat shock response mechanism, which is connected to metabolic adaptation. PMID:25312646

  20. The hematopoietic transcription factor PU.1 regulates RANK gene expression in myeloid progenitors

    International Nuclear Information System (INIS)

    Kwon, Oh Hyung; Lee, Chong-Kil; Lee, Young Ik; Paik, Sang-Gi; Lee, Hyun-Jun

    2005-01-01

    Osteoclasts are bone resorbing cells of hematopoietic origin. The hematopoietic transcription factor PU.1 is critical for osteoclastogenesis; however, the molecular mechanisms of PU.1-regulated osteoclastogenesis have not been explored. Here, we present evidence that the receptor activator of nuclear factor κB (RANK) gene that has been shown to be crucial for osteoclastogenesis is a transcriptional target of PU.1. The PU.1 -/- progenitor cells failed to express the RANK gene and reconstitution of PU.1 in these cells induced RANK expression. Treatment of the PU.1 reconstituted cells with M-CSF and RANKL further augmented the RANK gene expression. To explore the regulatory mechanism of the RANK gene expression by PU.1, we have cloned the human RANK promoter. Transient transfection assays have revealed that the 2.2-kb RANK promoter was functional in a monocyte line RAW264.7, whereas co-transfection of PU.1 transactivated the RANK promoter in HeLa cells. Taken together, these results suggest that PU.1 regulates the RANK gene transcription and this may represent one of the key roles of PU.1 in osteoclast differentiation

  1. The Journey of a Transcription Factor

    DEFF Research Database (Denmark)

    Pireyre, Marie

    Plants have developed astonishing networks regulating their metabolism to adapt to their environment. The complexity of these networks is illustrated by the expansion of families of regulators such as transcription factors in the plant kingdom. Transcription factors specifically impact...... transcriptional networks by integrating exogenous and endogenous stimuli and regulating gene expression accordingly. Regulation of transcription factors and their activation is thus highly important to modulate the transcriptional programs and increase fitness of the plant in a given environment. Plant metabolism....... The biosynthetic machinery of GLS is governed by interplay of six MYB and three bHLH transcription factors. MYB28, MYB29 and MYB76 regulate methionine-derived GLS, and MYB51, MYB34 and MYB122 regulate tryptophan-derived GLS. The three bHLH transcription factors MYC2, MYC3 and MYC4 physically interact with all six...

  2. Identification of SNPs involved in regulating a novel alternative transcript of P450 CYP6ER1 in the brown planthopper.

    Science.gov (United States)

    Liang, Zhi-Kun; Pang, Rui; Dong, Yi; Sun, Zhong-Xiang; Ling, Yan; Zhang, Wen-Qing

    2017-04-29

    Cytochrome P450-mediated metabolic resistance is one of the major mechanisms involved in insecticide resistance. Although the up-regulation of cytochrome P450 plays a vital role in insecticide metabolism, the molecular basis for the transcriptional regulation of cytochrome P450 remains largely unknown. The P450 gene CYP6ER1, has been reported to confer imidacloprid resistance to the brown planthopper, Nilaparvata lugens. Here, we identified a novel alternative transcript of CYP6ER1 (transcript A2) that had different expression patterns between resistant and susceptible populations, and was more stable after insecticide induction. The promoter of this transcript was sequenced and multiple single nucleotide polymorphisms (SNPs) were detected in individuals from susceptible and resistant field-collected populations. Resistant alleles of four SNPs were found to significantly enhance the promoter activity of the CYP6ER1 transcript A2. Electrophoretic mobility shift assays (EMSAs) revealed that these SNPs might regulate the binding of transcription factors to the promoter. Our findings provide novel evidence regarding the transcriptional regulation of a metabolic resistance-related gene and may be useful to understand the resistance mechanism of N. lugens in the field. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  3. The Mycobacterium tuberculosis transcriptional repressor EthR is negatively regulated by Serine/Threonine phosphorylation.

    Science.gov (United States)

    Leiba, Jade; Carrère-Kremer, Séverine; Blondiaux, Nicolas; Dimala, Martin Moune; Wohlkönig, Alexandre; Baulard, Alain; Kremer, Laurent; Molle, Virginie

    2014-04-18

    Recent efforts have underlined the role of Serine/Threonine Protein Kinases (STPKs) in growth, pathogenesis and cell wall metabolism in mycobacteria. Herein, we demonstrated that the Mycobacterium tuberculosis EthR, a transcriptional repressor that regulates the activation process of the antitubercular drug ethionamide (ETH) is a specific substrate of the mycobacterial kinase PknF. ETH is a prodrug that must undergo bioactivation by the monooxygenease EthA to exert its antimycobacterial activity and previous studies reported that EthR represses transcription of ethA by binding to the ethA-ethR intergenic region. Mass spectrometry analyses and site-directed mutagenesis identified a set of four phosphoacceptors, namely Thr2, Thr3, Ser4 and Ser7. This was further supported by the complete loss of PknF-dependent phosphorylation of a phosphoablative EthR mutant protein. Importantly, a phosphomimetic version of EthR, in which all phosphosites were replaced by Asp residues, exhibited markedly decreased DNA-binding activity compared with the wild-type protein. Together, these findings are the first demonstration of EthR phosphorylation and indicate that phosphorylation negatively affects its DNA-binding activity, which may impact ETH resistance levels in M. tb. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. The role of transcriptional regulation in maintaining the availability of mycobacterial adenylate cyclases

    Directory of Open Access Journals (Sweden)

    Sarah J. Casey

    2014-03-01

    Full Text Available Mycobacterium species have a complex cAMP regulatory network indicated by the high number of adenylate cyclases annotated in their genomes. However the need for a high level of redundancy in adenylate cyclase genes remains unknown. We have used semiquantitiative RT-PCR to examine the expression of eight Mycobacterium smegmatis cyclases with orthologs in the human pathogen Mycobacterium tuberculosis, where cAMP has recently been shown to be important for virulence. All eight cyclases were transcribed in all environments tested, and only four demonstrated environmental-mediated changes in transcription. M. smegmatis genes MSMEG_0545 and MSMEG_4279 were upregulated during starvation conditions while MSMEG_0545 and MSMEG_4924 were downregulated in H2O2 and MSMEG_3780 was downregulated in low pH and starvation. Promoter fusion constructs containing M. tuberculosis H37Rv promoters showed consistent regulation compared to their M. smegmatis orthologs. Overall our findings indicate that while low levels of transcriptional regulation occur, regulation at the mRNA level does not play a major role in controlling cellular cyclase availability in a given environment.

  5. MYCT1-TV, A Novel MYCT1 Transcript, Is Regulated by c-Myc and May Participate in Laryngeal Carcinogenesis

    Science.gov (United States)

    Fu, Shuang; Guo, Yan; Chen, Hong; Xu, Zhen-Ming; Qiu, Guang-Bin; Zhong, Ming; Sun, Kai-Lai; Fu, Wei-Neng

    2011-01-01

    Background MYCT1, a putative target of c-Myc, is a novel candidate tumor suppressor gene cloned from laryngeal squamous cell carcinoma (LSCC). Its transcriptional regulation and biological effects on LSCC have not been clarified. Methodology/Principal Findings Using RACE assay, we cloned a 1106 bp transcript named Myc target 1 transcript variant 1 (MYCT1-TV) and confirmed its transcriptional start site was located at 140 bp upstream of the ATG start codon of MYCT1-TV. Luciferase, electrophoretic mobility shift and chromatin immunoprecipitation assays confirmed c-Myc could regulate the promoter activity of MYCT1-TV by specifically binding to the E-box elements within −886 to −655 bp region. These results were further verified by site-directed mutagenesis and RNA interference (RNAi) assays. MYCT1-TV and MYCT1 expressed lower in LSCC than those in paired adjacent normal laryngeal tissues, and overexpression of MYCT1-TV and MYCT1 could inhibit cell proliferation and invasion and promote apoptosis in LSCC cells. Conclusions/Significance Our data indicate that MYCT1-TV, a novel MYCT1 transcript, is regulated by c-Myc and down-regulation of MYCT1-TV/MYCT1 could contribute to LSCC development and function. PMID:21998677

  6. Isoprenoid Pyrophosphate-Dependent Transcriptional Regulation of Carotenogenesis in Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Petra Peters-Wendisch

    2017-04-01

    Full Text Available Corynebacterium glutamicum is a natural producer of the C50 carotenoid decaprenoxanthin. The crtEcg0722crtBIYEb operon comprises most of its genes for terpenoid biosynthesis. The MarR-type regulator encoded upstream and in divergent orientation of the carotenoid biosynthesis operon has not yet been characterized. This regulator, named CrtR in this study, is encoded in many actinobacterial genomes co-occurring with terpenoid biosynthesis genes. CrtR was shown to repress the crt operon of C. glutamicum since DNA microarray experiments revealed that transcript levels of crt operon genes were increased 10 to 70-fold in its absence. Transcriptional fusions of a promoter-less gfp gene with the crt operon and crtR promoters confirmed that CrtR represses its own gene and the crt operon. Gel mobility shift assays with purified His-tagged CrtR showed that CrtR binds to a region overlapping with the −10 and −35 promoter sequences of the crt operon. Isoprenoid pyrophosphates interfered with binding of CrtR to its target DNA, a so far unknown mechanism for regulation of carotenogenesis. The molecular details of protein-ligand interactions remain to be studied. Decaprenoxanthin synthesis by C. glutamicum wild type was enhanced 10 to 30-fold upon deletion of crtR and was decreased 5 to 6-fold as result of crtR overexpression. Moreover, deletion of crtR was shown as metabolic engineering strategy to improve production of native and non-native carotenoids including lycopene, β-carotene, C.p. 450 and sarcinaxanthin.

  7. Purification and crystallization of a putative transcriptional regulator of the benzoate oxidation pathway in Burkholderia xenovorans LB400

    International Nuclear Information System (INIS)

    Law, Adrienne M.; Bains, Jasleen; Boulanger, Martin J.

    2009-01-01

    The X-ray diffraction and preliminary phasing of the putative transcriptional regulator Bxe-C0898 from B. xenovorans LB400 are reported. Burkholderia xenovorans LB400 harbours two paralogous copies of the recently discovered benzoate oxidation (box) pathway. While both copies are functional, the paralogues are differentially regulated and flanked by putative transcriptional regulators from distinct families. The putative LysR-type transcriptional regulator (LTTR) adjacent to the megaplasmid-encoded box enzymes, Bxe-C0898, has been produced recombinantly in Escherichia coli and purified to homogeneity. Gel-filtration studies show that Bxe-C0898 is a tetramer in solution, consistent with previously characterized LTTRs. Bxe-C0898 crystallized with four molecules in the asymmetric unit of the P4 3 2 1 2/P4 1 2 1 2 unit cell with a solvent content of 61.19%, as indicated by processing of the X-ray diffraction data. DNA-protection assays are currently under way in order to identify potential operator regions for this LTTR and to define its role in regulation of the box pathway

  8. Natural variation in monoterpene synthesis in kiwifruit: transcriptional regulation of terpene synthases by NAC and ETHYLENE-INSENSITIVE3-like transcription factors.

    Science.gov (United States)

    Nieuwenhuizen, Niels J; Chen, Xiuyin; Wang, Mindy Y; Matich, Adam J; Perez, Ramon Lopez; Allan, Andrew C; Green, Sol A; Atkinson, Ross G

    2015-04-01

    Two kiwifruit (Actinidia) species with contrasting terpene profiles were compared to understand the regulation of fruit monoterpene production. High rates of terpinolene production in ripe Actinidia arguta fruit were correlated with increasing gene and protein expression of A. arguta terpene synthase1 (AaTPS1) and correlated with an increase in transcript levels of the 2-C-methyl-D-erythritol 4-phosphate pathway enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXS). Actinidia chinensis terpene synthase1 (AcTPS1) was identified as part of an array of eight tandemly duplicated genes, and AcTPS1 expression and terpene production were observed only at low levels in developing fruit. Transient overexpression of DXS in Nicotiana benthamiana leaves elevated monoterpene synthesis by AaTPS1 more than 100-fold, indicating that DXS is likely to be the key step in regulating 2-C-methyl-D-erythritol 4-phosphate substrate flux in kiwifruit. Comparative promoter analysis identified potential NAC (for no apical meristem [NAM], Arabidopsis transcription activation factor [ATAF], and cup-shaped cotyledon [CUC])-domain transcription factor) and ETHYLENE-INSENSITIVE3-like transcription factor (TF) binding sites in the AaTPS1 promoter, and cloned members of both TF classes were able to activate the AaTPS1 promoter in transient assays. Electrophoretic mobility shift assays showed that AaNAC2, AaNAC3, and AaNAC4 bind a 28-bp fragment of the proximal NAC binding site in the AaTPS1 promoter but not the A. chinensis AcTPS1 promoter, where the NAC binding site was mutated. Activation could be restored by reintroducing multiple repeats of the 12-bp NAC core-binding motif. The absence of NAC transcriptional activation in ripe A. chinensis fruit can account for the low accumulation of AcTPS1 transcript, protein, and monoterpene volatiles in this species. These results indicate the importance of NAC TFs in controlling monoterpene production and other traits in ripening fruits. © 2015 American

  9. Transcriptional regulation of genes involved in terpenoid índole alkaloid production in Catharanthus roseus seedlings

    Directory of Open Access Journals (Sweden)

    Pedro J. Rocha

    2002-07-01

    Full Text Available Catharanthus roseus (L. G Don is a medicinal plant that produces a variety of terpenoid indole alkaloids (TIAs, some of which display pharmacological activity. C. roseus plants and cell cultures have been used to elucidate the TIAs biosynthetic pathway. A considerable number or enzymes have also been characterised, and their respective genes cloned. TIAs production in C. roseus plant and cell cultures is highly regulated at transcriptional-, develop-mental-, and environmental-level. Studies into TIAs biosynthetic gene regulation have been carried out using cell cultures. However, regulation in plants is almost unknown. Here, biosynthetic genes idc, strl, d4h and dat expres-sion levels are qualitatively examined in a developmental series of C. roseus seedlings. The effect of water- and light-stress and methyl jasmonate (MeJa and acetyl salicylic acid (ASA elicitation is also examined. Comparison between seedlings and cell cultures strongly suggests that TIAs biosynthetic gene transcriptional regulation is different in C.roseus plants and cell cultures.

  10. FGF signalling regulates chromatin organisation during neural differentiation via mechanisms that can be uncoupled from transcription.

    Directory of Open Access Journals (Sweden)

    Nishal S Patel

    Full Text Available Changes in higher order chromatin organisation have been linked to transcriptional regulation; however, little is known about how such organisation alters during embryonic development or how it is regulated by extrinsic signals. Here we analyse changes in chromatin organisation as neural differentiation progresses, exploiting the clear spatial separation of the temporal events of differentiation along the elongating body axis of the mouse embryo. Combining fluorescence in situ hybridisation with super-resolution structured illumination microscopy, we show that chromatin around key differentiation gene loci Pax6 and Irx3 undergoes both decompaction and displacement towards the nuclear centre coincident with transcriptional onset. Conversely, down-regulation of Fgf8 as neural differentiation commences correlates with a more peripheral nuclear position of this locus. During normal neural differentiation, fibroblast growth factor (FGF signalling is repressed by retinoic acid, and this vitamin A derivative is further required for transcription of neural genes. We show here that exposure to retinoic acid or inhibition of FGF signalling promotes precocious decompaction and central nuclear positioning of differentiation gene loci. Using the Raldh2 mutant as a model for retinoid deficiency, we further find that such changes in higher order chromatin organisation are dependent on retinoid signalling. In this retinoid deficient condition, FGF signalling persists ectopically in the elongating body, and importantly, we find that inhibiting FGF receptor (FGFR signalling in Raldh2-/- embryos does not rescue differentiation gene transcription, but does elicit both chromatin decompaction and nuclear position change. These findings demonstrate that regulation of higher order chromatin organisation during differentiation in the embryo can be uncoupled from the machinery that promotes transcription and, for the first time, identify FGF as an extrinsic signal that

  11. An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers.

    Science.gov (United States)

    Sagawa, Janelle M; Stanley, Lauren E; LaFountain, Amy M; Frank, Harry A; Liu, Chang; Yuan, Yao-Wu

    2016-02-01

    Carotenoids are yellow, orange, and red pigments that contribute to the beautiful colors and nutritive value of many flowers and fruits. The structural genes in the highly conserved carotenoid biosynthetic pathway have been well characterized in multiple plant systems, but little is known about the transcription factors that control the expression of these structural genes. By analyzing a chemically induced mutant of Mimulus lewisii through bulk segregant analysis and transgenic experiments, we have identified an R2R3-MYB, Reduced Carotenoid Pigmentation 1 (RCP1), as the first transcription factor that positively regulates carotenoid biosynthesis during flower development. Loss-of-function mutations in RCP1 lead to down-regulation of all carotenoid biosynthetic genes and reduced carotenoid content in M. lewisii flowers, a phenotype recapitulated by RNA interference in the wild-type background. Overexpression of this gene in the rcp1 mutant background restores carotenoid production and, unexpectedly, results in simultaneous decrease of anthocyanin production in some transgenic lines by down-regulating the expression of an activator of anthocyanin biosynthesis. Identification of transcriptional regulators of carotenoid biosynthesis provides the 'toolbox' genes for understanding the molecular basis of flower color diversification in nature and for potential enhancement of carotenoid production in crop plants via genetic engineering. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  12. Transcription Factor Foxo1 Is a Negative Regulator of NK Cell Maturation and Function

    Science.gov (United States)

    Deng, Youcai; Kerdiles, Yann; Chu, Jianhong; Yuan, Shunzong; Wang, Youwei; Chen, Xilin; Mao, Hsiaoyin; Zhang, Lingling; Zhang, Jianying; Hughes, Tiffany; Deng, Yafei; Zhang, Qi; Wang, Fangjie; Zou, Xianghong; Liu, Chang-Gong; Freud, Aharon G.; Li, Xiaohui; Caligiuri, Michael A; Vivier, Eric; Yu, Jianhua

    2015-01-01

    SUMMARY Little is known about the role of negative regulators in controlling natural killer (NK) cell development and effector functions. Foxo1 is a multifunctional transcription factor of the forkhead family. Using a mouse model of conditional deletion in NK cells, we found that Foxo1 negatively controlled NK cell differentiation and function. Immature NK cells expressed abundant Foxo1 and little Tbx21 relative to mature NK cells, but these two transcription factors reversed their expression as NK cells proceeded through development. Foxo1 promoted NK cell homing to lymph nodes through upregulating CD62L expression, and impaired late-stage maturation and effector functions by repressing Tbx21 expression. Loss of Foxo1 rescued the defect in late-stage NK cell maturation in heterozygous Tbx21+/− mice. Collectively, our data reveal a regulatory pathway by which the negative regulator Foxo1 and the positive regulator Tbx21 play opposing roles in controlling NK cell development and effector functions. PMID:25769609

  13. Several Hfq-dependent alterations in physiology of Yersinia enterocolitica O:3 are mediated by derepression of the transcriptional regulator RovM.

    Science.gov (United States)

    Leskinen, Katarzyna; Pajunen, Maria I; Varjosalo, Markku; Fernández-Carrasco, Helena; Bengoechea, José A; Skurnik, Mikael

    2017-03-01

    In bacteria, the RNA chaperone Hfq enables pairing of small regulatory RNAs with their target mRNAs and therefore is a key player of post-transcriptional regulation network. As a global regulator, Hfq is engaged in the adaptation to external environment, regulation of metabolism and bacterial virulence. In this study we used RNA-sequencing and quantitative proteomics (LC-MS/MS) to elucidate the role of this chaperone in the physiology and virulence of Yersinia enterocolitica serotype O:3. This global approach revealed the profound impact of Hfq on gene and protein expression. Furthermore, the role of Hfq in the cell morphology, metabolism, cell wall integrity, resistance to external stresses and pathogenicity was evaluated. Importantly, our results revealed that several alterations typical for the hfq-negative phenotype were due to derepression of the transcriptional factor RovM. The overexpression of RovM caused by the loss of Hfq chaperone resulted in extended growth defect, alterations in the lipid A structure, motility and biofilm formation defects, as well as changes in mannitol utilization. Furthermore, in Y. enterocolitica RovM only in the presence of Hfq affected the abundance of RpoS. Finally, the impact of hfq and rovM mutations on the virulence was assessed in the mouse infection model. © 2016 John Wiley & Sons Ltd.

  14. A novel luciferase knock-in reporter system for studying transcriptional regulation of the human Sox2 gene.

    Science.gov (United States)

    Xiao, Dan; Zhang, Weifeng; Li, Yan; Liu, Kuan; Zhao, Junli; Sun, Xiaohong; Shan, Linlin; Mao, Qinwen; Xia, Haibin

    2016-02-10

    Sox2 is an important transcriptional factor that has multiple functions in stem cell maintenance and tumorigenesis. To investigate the transcriptional regulation of the Sox2 gene, a luciferase knock-in reporter system was established in HEK293 cells by placing the luciferase gene in the genome under the control of the Sox2 gene promoter using a transcription activator-like effector nuclease (TALEN)-mediated genome editing technique. PCR and Southern blot results confirmed the site-specific integration of a single copy of the exogenous luciferase gene into the genome. To prove the reliability and sensitivity of this novel luciferase knock-in system, a CRISPR/Cas transcription activation system for the Sox2 gene was constructed and applied to the knock-in system. The results indicated that luciferase activity was directly correlated with the activity of the Sox2 endogenous promoter. This novel system will be a useful tool to study the transcriptional regulation of Sox2, and has great potential in medical and industrial applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Undifferentiated Embryonic Cell Transcription Factor 1 Regulates ESC Chromatin Organization and Gene Expression

    NARCIS (Netherlands)

    Kooistra, Susanne M.; van den Boom, Vincent; Thummer, Rajkumar P.; Johannes, Frank; Wardenaar, Rene; Tesson, Bruno M.; Veenhoff, Liesbeth M.; Fusetti, Fabrizia; O'Neill, Laura P.; Turner, Bryan M.; de Haan, Gerald; Eggen, Bart J. L.; O’Neill, Laura P.

    2010-01-01

    Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES

  16. The CWI Pathway: Regulation of the Transcriptional Adaptive Response to Cell Wall Stress in Yeast

    Directory of Open Access Journals (Sweden)

    Ana Belén Sanz

    2017-12-01

    Full Text Available Fungi are surrounded by an essential structure, the cell wall, which not only confers cell shape but also protects cells from environmental stress. As a consequence, yeast cells growing under cell wall damage conditions elicit rescue mechanisms to provide maintenance of cellular integrity and fungal survival. Through transcriptional reprogramming, yeast modulate the expression of genes important for cell wall biogenesis and remodeling, metabolism and energy generation, morphogenesis, signal transduction and stress. The yeast cell wall integrity (CWI pathway, which is very well conserved in other fungi, is the key pathway for the regulation of this adaptive response. In this review, we summarize the current knowledge of the yeast transcriptional program elicited to counterbalance cell wall stress situations, the role of the CWI pathway in the regulation of this program and the importance of the transcriptional input received by other pathways. Modulation of this adaptive response through the CWI pathway by positive and negative transcriptional feedbacks is also discussed. Since all these regulatory mechanisms are well conserved in pathogenic fungi, improving our knowledge about them will have an impact in the developing of new antifungal therapies.

  17. Transcriptional regulation and DNA methylation in plastids during transitional conversion of chloroplasts to chromoplasts.

    Science.gov (United States)

    Kobayashi, H; Ngernprasirtsiri, J; Akazawa, T

    1990-01-01

    During transitional conversion of chloroplasts to chromoplasts in ripening tomato (Lycopersicon esculentum) fruits, transcripts for several plastid genes for photosynthesis decreased to undetectable levels. Run-on transcription of plastids indicated that transcriptional regulation operated as a predominant factor. We found that most of the genes in chloroplasts were actively transcribed in vitro by Escherichia coli and soluble plastid RNA polymerases, but some genes in chromoplasts seemed to be silent when assayed by the in vitro systems. The regulatory step, therefore, was ascribed to DNA templates. The analysis of modified base composition revealed the presence of methylated bases in chromoplast DNA, in which 5-methylcytosine was most abundant. The presence of 5-methylcytosine detected by isoschizomeric endonucleases and Southern hybridization was correlated with the undetectable transcription activity of each gene in the run-on assay and in vitro transcription experiments. It is thus concluded that the suppression of transcription mediated by DNA methylation is one of the mechanisms governing gene expression in plastids converting from chloroplasts to chromoplasts. Images Fig. 1 Fig. 2 Fig. 3. Fig. 4. Fig. 5. PMID:2303026

  18. Hypoxic regulation of the noncoding genome and NEAT1

    Science.gov (United States)

    Choudhry, Hani

    2016-01-01

    Activation of hypoxia pathways is both associated with and contributes to an aggressive phenotype across multiple types of solid cancers. The regulation of gene transcription by hypoxia-inducible factor (HIF) is a key element in this response. HIF directly upregulates the expression of many hundreds of protein-coding genes, which act to both improve oxygen delivery and to reduce oxygen demand. However, it is now becoming apparent that many classes of noncoding RNAs are also regulated by hypoxia, with several (e.g. micro RNAs, long noncoding RNAs and antisense RNAs) under direct transcriptional regulation by HIF. These hypoxia-regulated, noncoding RNAs may act as effectors of the indirect response to HIF by acting on specific coding transcripts or by affecting generic RNA-processing pathways. In addition, noncoding RNAs may also act as modulators of the HIF pathway, either by integrating other physiological responses or, in the case of HIF-regulated, noncoding RNAs, by providing negative or positive feedback and feedforward loops that affect upstream or downstream components of the HIF cascade. These hypoxia-regulated, noncoding transcripts play important roles in the aggressive hypoxic phenotype observed in cancer. PMID:26590207

  19. Yeast glucose pathways converge on the transcriptional regulation of trehalose biosynthesis

    Directory of Open Access Journals (Sweden)

    Apweiler Eva

    2012-06-01

    Full Text Available Abstract Background Cellular glucose availability is crucial for the functioning of most biological processes. Our understanding of the glucose regulatory system has been greatly advanced by studying the model organism Saccharomyces cerevisiae, but many aspects of this system remain elusive. To understand the organisation of the glucose regulatory system, we analysed 91 deletion mutants of the different glucose signalling and metabolic pathways in Saccharomyces cerevisiae using DNA microarrays. Results In general, the mutations do not induce pathway-specific transcriptional responses. Instead, one main transcriptional response is discerned, which varies in direction to mimic either a high or a low glucose response. Detailed analysis uncovers established and new relationships within and between individual pathways and their members. In contrast to signalling components, metabolic components of the glucose regulatory system are transcriptionally more frequently affected. A new network approach is applied that exposes the hierarchical organisation of the glucose regulatory system. Conclusions The tight interconnection between the different pathways of the glucose regulatory system is reflected by the main transcriptional response observed. Tps2 and Tsl1, two enzymes involved in the biosynthesis of the storage carbohydrate trehalose, are predicted to be the most downstream transcriptional components. Epistasis analysis of tps2Δ double mutants supports this prediction. Although based on transcriptional changes only, these results suggest that all changes in perceived glucose levels ultimately lead to a shift in trehalose biosynthesis.

  20. Endocrine disruptors induce cytochrome P450 by affecting transcriptional regulation via pregnane X receptor

    International Nuclear Information System (INIS)

    Mikamo, Eriko; Harada, Shingo; Nishikawa, Jun-ichi; Nishihara, Tsutomu

    2003-01-01

    Pregnane X receptor (PXR) is a nuclear receptor that regulates the expression of genes for cytochrome P450 3A (CYP3A), multidrug resistance 1 (MDR1), and organic anion-transporting peptide 2 (OATP2). These genes control the metabolism (CYP3A subfamily) and aspects of the pharmacokinetics (MDR1 and OATP2) of both endogenous and xenobiotic compounds. Since PXR is important in understanding the actions of endocrine disruptors (EDs), we determined the ability of suspected EDs to interact with PXR. In our study, 7 of 54 xenobiotics compounds interacted with PXR, including methoxychlor and benzophenone. All of the chemicals activated PXR in vitro and induced CYP3A mRNA in the male rat liver. In addition, CYP2C11 was also induced by some PXR agonists and converted methoxychlor into xenoestrogen. These findings suggest that some EDs affect sex hormone receptor indirectly by induction of metabolic enzyme via PXR, to produce rapidly higher concentrations of effective metabolites, leading to disturbance of the endocrine system

  1. Transcriptional control of monolignol biosynthesis in Pinus taeda: factors affecting monolignol ratios and carbon allocation in phenylpropanoid metabolism

    Science.gov (United States)

    Anterola, Aldwin M.; Jeon, Jae-Heung; Davin, Laurence B.; Lewis, Norman G.

    2002-01-01

    Transcriptional profiling of the phenylpropanoid pathway in Pinus taeda cell suspension cultures was carried out using quantitative real time PCR analyses of all known genes involved in the biosynthesis of the two monolignols, p-coumaryl and coniferyl alcohols (lignin/lignan precursors). When the cells were transferred to a medium containing 8% sucrose and 20 mm potassium iodide, the monolignol/phenylpropanoid pathway was induced, and transcript levels for phenylalanine ammonia lyase, cinnamate 4-hydroxylase, p-coumarate 3-hydroxylase, 4-coumarate:CoA ligase, caffeoyl-CoA O-methyltransferase, cinnamoyl-CoA reductase, and cinnamyl alcohol dehydrogenase were coordinately up-regulated. Provision of increasing levels of exogenously supplied Phe to saturating levels (40 mm) to the induction medium resulted in further up-regulation of their transcript levels in the P. taeda cell cultures; this in turn was accompanied by considerable increases in both p-coumaryl and coniferyl alcohol formation and excretion. By contrast, transcript levels for both cinnamate 4-hydroxylase and p-coumarate 3-hydroxylase were only slightly up-regulated. These data, when considered together with metabolic profiling results and genetic manipulation of various plant species, reveal that carbon allocation to the pathway and its differential distribution into the two monolignols is controlled by Phe supply and differential modulation of cinnamate 4-hydroxylase and p-coumarate 3-hydroxylase activities, respectively. The coordinated up-regulation of phenylalanine ammonia lyase, 4-coumarate:CoA ligase, caffeoyl-CoA O-methyltransferase, cinnamoyl-CoA reductase and cinnamyl alcohol dehydrogenase in the presence of increasing concentrations of Phe also indicates that these steps are not truly rate-limiting, because they are modulated according to metabolic demand. Finally, the transcript profile of a putative acid/ester O-methyltransferase, proposed as an alternative catalyst for O-methylation leading

  2. Gibberellin-regulated gene in the basal region of rice leaf sheath encodes basic helix-loop-helix transcription factor.

    Science.gov (United States)

    Komatsu, Setsuko; Takasaki, Hironori

    2009-07-01

    Genes regulated by gibberellin (GA) during leaf sheath elongation in rice seedlings were identified using the transcriptome approach. mRNA from the basal regions of leaf sheaths treated with GA3 was analyzed by high-coverage gene expression profiling. 33,004 peaks were detected, and 30 transcripts showed significant changes in the presence of GA3. Among these, basic helix-loop-helix transcription factor (AK073385) was significantly upregulated. Quantitative PCR analysis confirmed that expression of AK073385 was controlled by GA3 in a time- and dose-dependent manner. Basic helix-loop-helix transcription factor (AK073385) is therefore involved in the regulation of gene expression by GA3.

  3. Regulation of Budding Yeast CENP-A levels Prevents Misincorporation at Promoter Nucleosomes and Transcriptional Defects.

    Directory of Open Access Journals (Sweden)

    Erica M Hildebrand

    2016-03-01

    Full Text Available The exclusive localization of the histone H3 variant CENP-A to centromeres is essential for accurate chromosome segregation. Ubiquitin-mediated proteolysis helps to ensure that CENP-A does not mislocalize to euchromatin, which can lead to genomic instability. Consistent with this, overexpression of the budding yeast CENP-A(Cse4 is lethal in cells lacking Psh1, the E3 ubiquitin ligase that targets CENP-A(Cse4 for degradation. To identify additional mechanisms that prevent CENP-A(Cse4 misincorporation and lethality, we analyzed the genome-wide mislocalization pattern of overexpressed CENP-A(Cse4 in the presence and absence of Psh1 by chromatin immunoprecipitation followed by high throughput sequencing. We found that ectopic CENP-A(Cse4 is enriched at promoters that contain histone H2A.Z(Htz1 nucleosomes, but that H2A.Z(Htz1 is not required for CENP-A(Cse4 mislocalization. Instead, the INO80 complex, which removes H2A.Z(Htz1 from nucleosomes, promotes the ectopic deposition of CENP-A(Cse4. Transcriptional profiling revealed gene expression changes in the psh1Δ cells overexpressing CENP-A(Cse4. The down-regulated genes are enriched for CENP-A(Cse4 mislocalization to promoters, while the up-regulated genes correlate with those that are also transcriptionally up-regulated in an htz1Δ strain. Together, these data show that regulating centromeric nucleosome localization is not only critical for maintaining centromere function, but also for ensuring accurate promoter function and transcriptional regulation.

  4. Interaction between C/EBPβ and Tax down-regulates human T-cell leukemia virus type I transcription

    International Nuclear Information System (INIS)

    Hivin, P.; Gaudray, G.; Devaux, C.; Mesnard, J.-M.

    2004-01-01

    The human T-cell leukemia virus type I (HTLV-I) Tax protein trans-activates viral transcription through three imperfect tandem repeats of a 21-bp sequence called Tax-responsive element (TxRE). Tax regulates transcription via direct interaction with some members of the activating transcription factor/CRE-binding protein (ATF/CREB) family including CREM, CREB, and CREB-2. By interacting with their ZIP domain, Tax stimulates the binding of these cellular factors to the CRE-like sequence present in the TxREs. Recent observations have shown that CCAAT/enhancer binding protein β (C/EBPβ) forms stable complexes on the CRE site in the presence of CREB-2. Given that C/EBPβ has also been found to interact with Tax, we analyzed the effects of C/EBPβ on viral Tax-dependent transcription. We show here that C/EBPβ represses viral transcription and that Tax is no more able to form a stable complex with CREB-2 on the TxRE site in the presence of C/EBPβ. We also analyzed the physical interactions between Tax and C/EBPβ and found that the central region of C/EBPβ, excluding its ZIP domain, is required for direct interaction with Tax. It is the first time that Tax is described to interact with a basic leucine-zipper (bZIP) factor without recognizing its ZIP domain. Although unexpected, this result explains why C/EBPβ would be unable to form a stable complex with Tax on the TxRE site and could then down-regulate viral transcription. Lastly, we found that C/EBPβ was able to inhibit Tax expression in vivo from an infectious HTLV-I molecular clone. In conclusion, we propose that during cell activation events, which stimulate the Tax synthesis, C/EBPβ may down-regulate the level of HTLV-I expression to escape the cytotoxic-T-lymphocyte response

  5. A Novel PCR Assay for Listeria welshimeri Targeting Transcriptional Regulator Gene lwe1801

    Science.gov (United States)

    Transcriptional regulator genes encode a group of specialized molecules that play essential roles in microbial responses to changing external conditions. These genes have been shown to possess species or group specificity and are useful as detection targets for diagnostic application. The present st...

  6. PamR, a new MarR-like regulator affecting prophages and metabolic genes expression in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Alba De San Eustaquio-Campillo

    Full Text Available B. subtilis adapts to changing environments by reprogramming its genetic expression through a variety of transcriptional regulators from the global transition state regulators that allow a complete resetting of the cell genetic expression, to stress specific regulators controlling only a limited number of key genes required for optimal adaptation. Among them, MarR-type transcriptional regulators are known to respond to a variety of stresses including antibiotics or oxidative stress, and to control catabolic or virulence gene expression. Here we report the characterization of the ydcFGH operon of B. subtilis, containing a putative MarR-type transcriptional regulator. Using a combination of molecular genetics and high-throughput approaches, we show that this regulator, renamed PamR, controls directly its own expression and influence the expression of large sets of prophage-related and metabolic genes. The extent of the regulon impacted by PamR suggests that this regulator reprograms the metabolic landscape of B. subtilis in response to a yet unknown signal.

  7. Stat3 inhibition attenuates mechanical allodynia through transcriptional regulation of chemokine expression in spinal astrocytes.

    Directory of Open Access Journals (Sweden)

    Xiaodong Liu

    Full Text Available BACKGROUND: Signal transducer and activator of transcription 3 (Stat3 is known to induce cell proliferation and inflammation by regulating gene transcription. Recent studies showed that Stat3 modulates nociceptive transmission by reducing spinal astrocyte proliferation. However, it is unclear whether Stat3 also contributes to the modulation of nociceptive transmission by regulating inflammatory response in spinal astrocytes. This study aimed at investigating the role of Stat3 on neuroinflammation during development of pain in rats after intrathecal injection of lipopolysaccharide (LPS. METHODS: Stat3 specific siRNA oligo and synthetic selective inhibitor (Stattic were applied to block the activity of Stat3 in primary astrocytes or rat spinal cord, respectively. LPS was used to induce the expression of proinflammatory genes in all studies. Immunofluorescence staining of cells and slices of spinal cord was performed to monitor Stat3 activation. The impact of Stat3 inhibition on proinflammatory genes expression was determined by cytokine antibody array, enzyme-linked immunosorbent assay and real-time polymerase chain reaction. Mechanical allodynia, as determined by the threshold pressure that could induce hind paw withdrawal after application of standardized von Frey filaments, was used to detect the effects of Stat3 inhibition after pain development with intrathecal LPS injection. RESULTS: Intrathecal injection of LPS activated Stat3 in reactive spinal astrocytes. Blockade of Stat3 activity attenuated mechanical allodynia significantly and was correlated with a lower number of reactive astrocytes in the spinal dorsal horn. In vitro study demonstrated that Stat3 modulated inflammatory response in primary astrocytes by transcriptional regulation of chemokine expression including Cx3cl1, Cxcl5, Cxcl10 and Ccl20. Similarly, inhibition of Stat3 reversed the expression of these chemokines in the spinal dorsal horn. CONCLUSIONS: Stat3 acted as a

  8. Landscape of transcriptional deregulations in the preeclamptic placenta.

    Directory of Open Access Journals (Sweden)

    Daniel Vaiman

    Full Text Available Preeclampsia is a pregnancy disease affecting 5 to 8% of pregnant women and a leading cause of both maternal and fetal mortality and morbidity. Because of a default in the process of implantation, the placenta of preeclamptic women undergoes insufficient vascularization. This results in placental ischemia, inflammation and subsequent release of placental debris and vasoactive factors in the maternal circulation causing a systemic endothelial activation. Several microarray studies have analyzed the transcriptome of the preeclamptic placentas to identify genes which could be involved in placental dysfunction. In this study, we compared the data from publicly available microarray analyses to obtain a consensus list of modified genes. This allowed to identify consistently modified genes in the preeclamptic placenta. Of these, 67 were up-regulated and 31 down-regulated. Assuming that changes in the transcription level of co-expressed genes may result from the coordinated action of a limited number of transcription factors, we looked for over-represented putative transcription factor binding sites in the promoters of these genes. Indeed, we found that the promoters of up-regulated genes are enriched in putative binding sites for NFkB, CREB, ANRT, REEB1, SP1, and AP-2. In the promoters of down-regulated genes, the most prevalent putative binding sites are those of MZF-1, NFYA, E2F1 and MEF2A. These transcriptions factors are known to regulate specific biological pathways such as cell responses to inflammation, hypoxia, DNA damage and proliferation. We discuss here the molecular mechanisms of action of these transcription factors and how they can be related to the placental dysfunction in the context of preeclampsia.

  9. Alteration of BRCA1 expression affects alcohol-induced transcription of RNA Pol III-dependent genes.

    Science.gov (United States)

    Zhong, Qian; Shi, Ganggang; Zhang, Yanmei; Lu, Lei; Levy, Daniel; Zhong, Shuping

    2015-02-01

    Emerging evidence has indicated that alcohol consumption is an established risk factor for breast cancer. Deregulation of RNA polymerase III (Pol III) transcription enhances cellular Pol III gene production, leading to an increase in translational capacity to promote cell transformation and tumor formation. We have reported that alcohol intake increases Pol III gene transcription to promote cell transformation and tumor formation in vitro and in vivo. Studies revealed that tumor suppressors, pRb, p53, PTEN and Maf1 repress the transcription of Pol III genes. BRCA1 is a tumor suppressor and its mutation is tightly related to breast cancer development. However, it is not clear whether BRCA1 expression affects alcohol-induced transcription of Pol III genes. At the present studies, we report that restoring BRCA1 in HCC 1937 cells, which is a BRCA1 deficient cell line, represses Pol III gene transcription. Expressing mutant or truncated BRCA1 in these cells does not affect the ability of repression on Pol III genes. Our analysis has demonstrated that alcohol induces Pol III gene transcription. More importantly, overexpression of BRCA1 in estrogen receptor positive (ER+) breast cancer cells (MCF-7) decreases the induction of tRNA(Leu) and 5S rRNA genes by alcohol, whereas reduction of BRCA1 by its siRNA slightly increases the transcription of the class of genes. This suggests that BRCA1 is associated with alcohol-induced deregulation of Pol III genes. These studies for the first time demonstrate the role of BRCA1 in induction of Pol III genes by alcohol and uncover a novel mechanism of alcohol-associated breast cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. UBE2C Is a Transcriptional Target of the Cell Cycle Regulator FOXM1

    Directory of Open Access Journals (Sweden)

    Pedro Nicolau-Neto

    2018-03-01

    Full Text Available FOXM1 (forkhead box protein M1 is a transcription factor that participates in all stages of tumor development, mainly through the control of cell cycle and proliferation, regulating the expression of genes involved in G1/S and G2/M transition and M phase progression. The ubiquitin conjugating enzyme E2 (UBE2C is a member of the anaphase promoting complex/cyclosome, promoting the degradation of several target proteins along cell cycle progression, during metaphase/anaphase transition. FOXM1 and UBE2C have been found overexpressed in a wide range of different solid tumors. Therefore, the aim of this study was to investigate whether UBE2C is a transcriptional target of FOXM1, using esophageal squamous cell carcinoma (ESCC as a model, in addition to several cancer-deposited data. Our results show that FOXM1 and UBE2C expression present a positive correlation in normal tissues and in 25 distinct tumor types, including ESCC, where these genes are overexpressed. Moreover, FOXM1 binds to UBE2C promoter region in ESCC cell line and transcriptionally activates it, leading to UBE2C upregulation. In conclusion, this study provides evidences that FOXM1 transcriptionally regulates UBE2C expression in ESCC and their deregulation may be a general phenomenon in human neoplasias.

  11. DNA breaks and chromatin structural changes enhance the transcription of autoimmune regulator target genes.

    Science.gov (United States)

    Guha, Mithu; Saare, Mario; Maslovskaja, Julia; Kisand, Kai; Liiv, Ingrid; Haljasorg, Uku; Tasa, Tõnis; Metspalu, Andres; Milani, Lili; Peterson, Pärt

    2017-04-21

    The autoimmune regulator (AIRE) protein is the key factor in thymic negative selection of autoreactive T cells by promoting the ectopic expression of tissue-specific genes in the thymic medullary epithelium. Mutations in AIRE cause a monogenic autoimmune disease called autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. AIRE has been shown to promote DNA breaks via its interaction with topoisomerase 2 (TOP2). In this study, we investigated topoisomerase-induced DNA breaks and chromatin structural alterations in conjunction with AIRE-dependent gene expression. Using RNA sequencing, we found that inhibition of TOP2 religation activity by etoposide in AIRE-expressing cells had a synergistic effect on genes with low expression levels. AIRE-mediated transcription was not only enhanced by TOP2 inhibition but also by the TOP1 inhibitor camptothecin. The transcriptional activation was associated with structural rearrangements in chromatin, notably the accumulation of γH2AX and the exchange of histone H1 with HMGB1 at AIRE target gene promoters. In addition, we found the transcriptional up-regulation to co-occur with the chromatin structural changes within the genomic cluster of carcinoembryonic antigen-like cellular adhesion molecule genes. Overall, our results suggest that the presence of AIRE can trigger molecular events leading to an altered chromatin landscape and the enhanced transcription of low-expressed genes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Termination factor Rho: From the control of pervasive transcription to cell fate determination in Bacillus subtilis

    Science.gov (United States)

    Nicolas, Pierre; Repoila, Francis; Bardowski, Jacek; Aymerich, Stéphane

    2017-01-01

    In eukaryotes, RNA species originating from pervasive transcription are regulators of various cellular processes, from the expression of individual genes to the control of cellular development and oncogenesis. In prokaryotes, the function of pervasive transcription and its output on cell physiology is still unknown. Most bacteria possess termination factor Rho, which represses pervasive, mostly antisense, transcription. Here, we investigate the biological significance of Rho-controlled transcription in the Gram-positive model bacterium Bacillus subtilis. Rho inactivation strongly affected gene expression in B. subtilis, as assessed by transcriptome and proteome analysis of a rho–null mutant during exponential growth in rich medium. Subsequent physiological analyses demonstrated that a considerable part of Rho-controlled transcription is connected to balanced regulation of three mutually exclusive differentiation programs: cell motility, biofilm formation, and sporulation. In the absence of Rho, several up-regulated sense and antisense transcripts affect key structural and regulatory elements of these differentiation programs, thereby suppressing motility and biofilm formation and stimulating sporulation. We dissected how Rho is involved in the activity of the cell fate decision-making network, centered on the master regulator Spo0A. We also revealed a novel regulatory mechanism of Spo0A activation through Rho-dependent intragenic transcription termination of the protein kinase kinB gene. Altogether, our findings indicate that distinct Rho-controlled transcripts are functional and constitute a previously unknown built-in module for the control of cell differentiation in B. subtilis. In a broader context, our results highlight the recruitment of the termination factor Rho, for which the conserved biological role is probably to repress pervasive transcription, in highly integrated, bacterium-specific, regulatory networks. PMID:28723971

  13. ERalpha and ERbeta expression and transcriptional activity are differentially regulated by HDAC inhibitors

    Science.gov (United States)

    Duong, Vanessa; Licznar, Anne; Margueron, Raphaël; Boulle, Nathalie; Busson, Muriel; Lacroix, Matthieu; Katzenellenbogen, Benita S.; Cavaillès, Vincent; Lazennec, Gwendal

    2006-01-01

    The proliferative action of ERα largely accounts for the carcinogenic activity of estrogens. By contrast, recent data show that ERβ displays tumor-suppressor properties, thus supporting the interest to identify compounds which could increase its activity. Here, we show that histone deacetylase inhibitors (HDI) up-regulated ERβ protein levels, whereas it decreased ERα expression. Part of this regulation took place at the mRNA level through a mechanism independent of de novo protein synthesis. In addition, we found that, in various cancer cells, the treatment with different HDI enhanced the ligand-dependent activity of ERβ more strongly than that of ERα. On the other hand, in MDA-MB231 and HeLa cells, the expression of ERs modified the transcriptional response to HDI. The use of deletion mutants of both receptors demonstrated that AF1 domain of the receptors was required. Finally, we show that ERβ expression led to a dramatic increased in the antiproliferative activity of HDI, which correlated with a modification of the transcription of genes involved in cell cycle control by HDI. Altogether, these data demonstrate that the interference of ERβ and HDAC on the control of transcription and cell proliferation constitute a promising approach for cancer therapy. PMID:16158045

  14. Transcriptional and post-transcriptional regulation of pst2 operon expression in Vibrio cholerae O1.

    Science.gov (United States)

    da C Leite, Daniel M; Barbosa, Livia C; Mantuano, Nathalia; Goulart, Carolina L; Veríssimo da Costa, Giovani C; Bisch, Paulo M; von Krüger, Wanda M A

    2017-07-01

    One of the most abundant proteins in V. cholerae O1 cells grown under inorganic phosphate (Pi) limitation is PstS, the periplasmic Pi-binding component of the high-affinity Pi transport system Pst2 (PstSCAB), encoded in pst2 operon (pstS-pstC2-pstA2-pstB2). Besides its role in Pi uptake, Pst2 has been also associated with V. cholerae virulence. However, the mechanisms regulating pst2 expression and the non-stoichiometric production of the Pst2 components under Pi-limitation are unknown. A computational-experimental approach was used to elucidate the regulatory mechanisms behind pst2 expression in V. cholerae O1. Bioinformatics analysis of pst2 operon nucleotide sequence revealed start codons for pstS and pstC genes distinct from those originally annotated, a regulatory region upstream pstS containing potential PhoB-binding sites and a pstS-pstC intergenic region longer than predicted. Analysis of nucleotide sequence between pstS-pstC revealed inverted repeats able to form stem-loop structures followed by a potential RNAse E-cleavage site. Another putative RNase E recognition site was identified within the pstA-pstB intergenic sequence. In silico predictions of pst2 operon expression regulation were subsequently tested using cells grown under Pi limitation by promoter-lacZ fusion, gel electrophoresis mobility shift assay and quantitative RT-PCR. The experimental and in silico results matched very well and led us to propose a pst2 promoter sequence upstream of pstS gene distinct from the previously annotated. Furthermore, V. cholerae O1 pst2 operon transcription is PhoB-dependent and generates a polycistronic mRNA molecule that is rapidly processed into minor transcripts of distinct stabilities. The most stable was the pstS-encoding mRNA, which correlates with PstS higher levels relative to other Pst2 components in Pi-starved cells. The relatively higher stability of pstS and pstB transcripts seems to rely on the secondary structures at their 3' untranslated regions

  15. Cell cycle regulation by feed-forward loops coupling transcription and phosphorylation

    DEFF Research Database (Denmark)

    Csikász-Nagy, Attila; Kapuy, Orsolya; Tóth, Attila

    2009-01-01

    of these EPs. From genome-scale data sets of budding yeast, we identify 126 EPs that are regulated by Cdk1 both through direct phosphorylation of the EP and through phosphorylation of the transcription factors that control expression of the EP, so that each of these EPs is regulated by a feed-forward loop (FFL......) from Cdk1. By mathematical modelling, we show that such FFLs can activate EPs at different phases of the cell cycle depending of the effective signs (+ or -) of the regulatory steps of the FFL. We provide several case studies of EPs that are controlled by FFLs exactly as our models predict. The signal...

  16. Co-regulation of Iron Metabolism and Virulence Associated Functions by Iron and XibR, a Novel Iron Binding Transcription Factor, in the Plant Pathogen Xanthomonas.

    Directory of Open Access Journals (Sweden)

    Sheo Shankar Pandey

    2016-11-01

    Full Text Available Abilities of bacterial pathogens to adapt to the iron limitation present in hosts is critical to their virulence. Bacterial pathogens have evolved diverse strategies to coordinately regulate iron metabolism and virulence associated functions to maintain iron homeostasis in response to changing iron availability in the environment. In many bacteria the ferric uptake regulator (Fur functions as transcription factor that utilize ferrous form of iron as cofactor to regulate transcription of iron metabolism and many cellular functions. However, mechanisms of fine-tuning and coordinated regulation of virulence associated function beyond iron and Fur-Fe2+ remain undefined. In this study, we show that a novel transcriptional regulator XibR (named Xanthomonas iron binding regulator of the NtrC family, is required for fine-tuning and co-coordinately regulating the expression of several iron regulated genes and virulence associated functions in phytopathogen Xanthomonas campestris pv. campestris (Xcc. Genome wide expression analysis of iron-starvation stimulon and XibR regulon, GUS assays, genetic and functional studies of xibR mutant revealed that XibR positively regulates functions involved in iron storage and uptake, chemotaxis, motility and negatively regulates siderophore production, in response to iron. Furthermore, chromatin immunoprecipitation followed by quantitative real-time PCR indicated that iron promoted binding of the XibR to the upstream regulatory sequence of operon's involved in chemotaxis and motility. Circular dichroism spectroscopy showed that purified XibR bound ferric form of iron. Electrophoretic mobility shift assay revealed that iron positively affected the binding of XibR to the upstream regulatory sequences of the target virulence genes, an effect that was reversed by ferric iron chelator deferoxamine. Taken together, these data revealed that how XibR coordinately regulates virulence associated and iron metabolism functions in

  17. Co-regulation of Iron Metabolism and Virulence Associated Functions by Iron and XibR, a Novel Iron Binding Transcription Factor, in the Plant Pathogen Xanthomonas

    Science.gov (United States)

    Pandey, Sheo Shankar; Patnana, Pradeep Kumar; Lomada, Santosh Kumar; Tomar, Archana; Chatterjee, Subhadeep

    2016-01-01

    Abilities of bacterial pathogens to adapt to the iron limitation present in hosts is critical to their virulence. Bacterial pathogens have evolved diverse strategies to coordinately regulate iron metabolism and virulence associated functions to maintain iron homeostasis in response to changing iron availability in the environment. In many bacteria the ferric uptake regulator (Fur) functions as transcription factor that utilize ferrous form of iron as cofactor to regulate transcription of iron metabolism and many cellular functions. However, mechanisms of fine-tuning and coordinated regulation of virulence associated function beyond iron and Fur-Fe2+ remain undefined. In this study, we show that a novel transcriptional regulator XibR (named X anthomonas iron binding regulator) of the NtrC family, is required for fine-tuning and co-coordinately regulating the expression of several iron regulated genes and virulence associated functions in phytopathogen Xanthomonas campestris pv. campestris (Xcc). Genome wide expression analysis of iron-starvation stimulon and XibR regulon, GUS assays, genetic and functional studies of xibR mutant revealed that XibR positively regulates functions involved in iron storage and uptake, chemotaxis, motility and negatively regulates siderophore production, in response to iron. Furthermore, chromatin immunoprecipitation followed by quantitative real-time PCR indicated that iron promoted binding of the XibR to the upstream regulatory sequence of operon’s involved in chemotaxis and motility. Circular dichroism spectroscopy showed that purified XibR bound ferric form of iron. Electrophoretic mobility shift assay revealed that iron positively affected the binding of XibR to the upstream regulatory sequences of the target virulence genes, an effect that was reversed by ferric iron chelator deferoxamine. Taken together, these data revealed that how XibR coordinately regulates virulence associated and iron metabolism functions in Xanthomonads in

  18. VEGF-A isoform-specific regulation of calcium ion flux, transcriptional activation and endothelial cell migration.

    Science.gov (United States)

    Fearnley, Gareth W; Bruns, Alexander F; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2015-04-24

    Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular physiology such as cell migration, proliferation, tubulogenesis and cell-cell interactions. Numerous isoforms of VEGF-A exist but their physiological significance is unclear. Here we evaluated two different VEGF-A isoforms and discovered differential regulation of cytosolic calcium ion flux, transcription factor localisation and endothelial cell response. Analysis of VEGF-A isoform-specific stimulation of VEGFR2-dependent signal transduction revealed differential capabilities for isoform activation of multiple signal transduction pathways. VEGF-A165 treatment promoted increased phospholipase Cγ1 phosphorylation, which was proportional to the subsequent rise in cytosolic calcium ions, in comparison to cells treated with VEGF-A121. A major consequence of this VEGF-A isoform-specific calcium ion flux in endothelial cells is differential dephosphorylation and subsequent nuclear translocation of the transcription factor NFATc2. Using reverse genetics, we discovered that NFATc2 is functionally required for VEGF-A-stimulated endothelial cell migration but not tubulogenesis. This work presents a new mechanism for understanding how VEGF-A isoforms program complex cellular outputs by converting signal transduction pathways into transcription factor redistribution to the nucleus, as well as defining a novel role for NFATc2 in regulating the endothelial cell response. © 2015. Published by The Company of Biologists Ltd.

  19. VEGF-A isoform-specific regulation of calcium ion flux, transcriptional activation and endothelial cell migration

    Directory of Open Access Journals (Sweden)

    Gareth W. Fearnley

    2015-07-01

    Full Text Available Vascular endothelial growth factor A (VEGF-A regulates many aspects of vascular physiology such as cell migration, proliferation, tubulogenesis and cell-cell interactions. Numerous isoforms of VEGF-A exist but their physiological significance is unclear. Here we evaluated two different VEGF-A isoforms and discovered differential regulation of cytosolic calcium ion flux, transcription factor localisation and endothelial cell response. Analysis of VEGF-A isoform-specific stimulation of VEGFR2-dependent signal transduction revealed differential capabilities for isoform activation of multiple signal transduction pathways. VEGF-A165 treatment promoted increased phospholipase Cγ1 phosphorylation, which was proportional to the subsequent rise in cytosolic calcium ions, in comparison to cells treated with VEGF-A121. A major consequence of this VEGF-A isoform-specific calcium ion flux in endothelial cells is differential dephosphorylation and subsequent nuclear translocation of the transcription factor NFATc2. Using reverse genetics, we discovered that NFATc2 is functionally required for VEGF-A-stimulated endothelial cell migration but not tubulogenesis. This work presents a new mechanism for understanding how VEGF-A isoforms program complex cellular outputs by converting signal transduction pathways into transcription factor redistribution to the nucleus, as well as defining a novel role for NFATc2 in regulating the endothelial cell response.

  20. The E2F-DP1 Transcription Factor Complex Regulates Centriole Duplication in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Jacqueline G. Miller

    2016-03-01

    Full Text Available Centrioles play critical roles in the organization of microtubule-based structures, from the mitotic spindle to cilia and flagella. In order to properly execute their various functions, centrioles are subjected to stringent copy number control. Central to this control mechanism is a precise duplication event that takes place during S phase of the cell cycle and involves the assembly of a single daughter centriole in association with each mother centriole . Recent studies have revealed that posttranslational control of the master regulator Plk4/ZYG-1 kinase and its downstream effector SAS-6 is key to ensuring production of a single daughter centriole. In contrast, relatively little is known about how centriole duplication is regulated at a transcriptional level. Here we show that the transcription factor complex EFL-1-DPL-1 both positively and negatively controls centriole duplication in the Caenorhabditis elegans embryo. Specifically, we find that down regulation of EFL-1-DPL-1 can restore centriole duplication in a zyg-1 hypomorphic mutant and that suppression of the zyg-1 mutant phenotype is accompanied by an increase in SAS-6 protein levels. Further, we find evidence that EFL-1-DPL-1 promotes the transcription of zyg-1 and other centriole duplication genes. Our results provide evidence that in a single tissue type, EFL-1-DPL-1 sets the balance between positive and negative regulators of centriole assembly and thus may be part of a homeostatic mechanism that governs centriole assembly.

  1. Translational Upregulation of an Individual p21Cip1 Transcript Variant by GCN2 Regulates Cell Proliferation and Survival under Nutrient Stress.

    Directory of Open Access Journals (Sweden)

    Stacey L Lehman

    2015-06-01

    Full Text Available Multiple transcripts encode for the cell cycle inhibitor p21(Cip1. These transcripts produce identical proteins but differ in their 5' untranslated regions (UTRs. Although several stresses that induce p21 have been characterized, the mechanisms regulating the individual transcript variants and their functional significance are unknown. Here we demonstrate through (35S labeling, luciferase reporter assays, and polysome transcript profiling that activation of the Integrated Stress Response (ISR kinase GCN2 selectively upregulates the translation of a p21 transcript variant containing 5' upstream open reading frames (uORFs through phosphorylation of the eukaryotic translation initiation factor eIF2α. Mutational analysis reveals that the uORFs suppress translation under basal conditions, but promote translation under stress. Functionally, ablation of p21 ameliorates G1/S arrest and reduces cell survival in response to GCN2 activation. These findings uncover a novel mechanism of p21 post-transcriptional regulation, offer functional significance for the existence of multiple p21 transcripts, and support a key role for GCN2 in regulating the cell cycle under stress.

  2. Locked and proteolysis-based transcription activator-like effector (TALE) regulation.

    Science.gov (United States)

    Lonzarić, Jan; Lebar, Tina; Majerle, Andreja; Manček-Keber, Mateja; Jerala, Roman

    2016-02-18

    Development of orthogonal, designable and adjustable transcriptional regulators is an important goal of synthetic biology. Their activity has been typically modulated through stimulus-induced oligomerization or interaction between the DNA-binding and activation/repression domain. We exploited a feature of the designable Transcription activator-like effector (TALE) DNA-binding domain that it winds around the DNA which allows to topologically prevent it from binding by intramolecular cyclization. This new approach was investigated through noncovalent ligand-induced cyclization or through a covalent split intein cyclization strategy, where the topological inhibition of DNA binding by cyclization and its restoration by a proteolytic release of the topologic constraint was expected. We show that locked TALEs indeed have diminished DNA binding and regain full transcriptional activity by stimulation with the rapamycin ligand or site-specific proteolysis of the peptide linker, with much higher level of activation than rapamycin-induced heterodimerization. Additionally, we demonstrated reversibility, activation of genomic targets and implemented logic gates based on combinations of protein cyclization, proteolytic cleavage and ligand-induced dimerization, where the strongest fold induction was achieved by the proteolytic cleavage of a repression domain from a linear TALE. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Transcriptional regulation of the grape cytochrome P450 monooxygenase gene CYP736B expression in response to Xylella fastidiosa infection

    Directory of Open Access Journals (Sweden)

    Walker M Andrew

    2010-07-01

    Full Text Available Abstract Background Plant cytochrome P450 monooxygenases (CYP mediate synthesis and metabolism of many physiologically important primary and secondary compounds that are related to plant defense against a range of pathogenic microbes and insects. To determine if cytochrome P450 monooxygenases are involved in defense response to Xylella fastidiosa (Xf infection, we investigated expression and regulatory mechanisms of the cytochrome P450 monooxygenase CYP736B gene in both disease resistant and susceptible grapevines. Results Cloning of genomic DNA and cDNA revealed that the CYP736B gene was composed of two exons and one intron with GT as a donor site and AG as an acceptor site. CYP736B transcript was up-regulated in PD-resistant plants and down-regulated in PD-susceptible plants 6 weeks after Xf inoculation. However, CYP736B expression was very low in stem tissues at all evaluated time points. 5'RACE and 3'RACE sequence analyses revealed that there were three candidate transcription start sites (TSS in the upstream region and three candidate polyadenylation (PolyA sites in the downstream region of CYP736B. Usage frequencies of each transcription initiation site and each polyadenylation site varied depending on plant genotype, developmental stage, tissue, and treatment. These results demonstrate that expression of CYP736B is regulated developmentally and in response to Xf infection at both transcriptional and post-transcriptional levels. Multiple transcription start and polyadenylation sites contribute to regulation of CYP736B expression. Conclusions This report provides evidence that the cytochrome P450 monooxygenase CYP736B gene is involved in defense response at a specific stage of Xf infection in grapevines; multiple transcription initiation and polyadenylation sites exist for CYP736B in grapevine; and coordinative and selective use of transcription initiation and polyadenylation sites play an important role in regulation of CYP736B expression

  4. Natural Variation in Monoterpene Synthesis in Kiwifruit: Transcriptional Regulation of Terpene Synthases by NAC and ETHYLENE-INSENSITIVE3-Like Transcription Factors1

    Science.gov (United States)

    Nieuwenhuizen, Niels J.; Chen, Xiuyin; Wang, Mindy Y.; Matich, Adam J.; Perez, Ramon Lopez; Allan, Andrew C.; Green, Sol A.; Atkinson, Ross G.

    2015-01-01

    Two kiwifruit (Actinidia) species with contrasting terpene profiles were compared to understand the regulation of fruit monoterpene production. High rates of terpinolene production in ripe Actinidia arguta fruit were correlated with increasing gene and protein expression of A. arguta terpene synthase1 (AaTPS1) and correlated with an increase in transcript levels of the 2-C-methyl-d-erythritol 4-phosphate pathway enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXS). Actinidia chinensis terpene synthase1 (AcTPS1) was identified as part of an array of eight tandemly duplicated genes, and AcTPS1 expression and terpene production were observed only at low levels in developing fruit. Transient overexpression of DXS in Nicotiana benthamiana leaves elevated monoterpene synthesis by AaTPS1 more than 100-fold, indicating that DXS is likely to be the key step in regulating 2-C-methyl-d-erythritol 4-phosphate substrate flux in kiwifruit. Comparative promoter analysis identified potential NAC (for no apical meristem [NAM], Arabidopsis transcription activation factor [ATAF], and cup-shaped cotyledon [CUC])-domain transcription factor) and ETHYLENE-INSENSITIVE3-like transcription factor (TF) binding sites in the AaTPS1 promoter, and cloned members of both TF classes were able to activate the AaTPS1 promoter in transient assays. Electrophoretic mobility shift assays showed that AaNAC2, AaNAC3, and AaNAC4 bind a 28-bp fragment of the proximal NAC binding site in the AaTPS1 promoter but not the A. chinensis AcTPS1 promoter, where the NAC binding site was mutated. Activation could be restored by reintroducing multiple repeats of the 12-bp NAC core-binding motif. The absence of NAC transcriptional activation in ripe A. chinensis fruit can account for the low accumulation of AcTPS1 transcript, protein, and monoterpene volatiles in this species. These results indicate the importance of NAC TFs in controlling monoterpene production and other traits in ripening fruits. PMID:25649633

  5. APAF1 is a key transcriptional target for p53 in the regulation of neuronal cell death

    DEFF Research Database (Denmark)

    Fortin, A; Cregan, S P; MacLaurin, J G

    2001-01-01

    p53 is a transcriptional activator which has been implicated as a key regulator of neuronal cell death after acute injury. We have shown previously that p53-mediated neuronal cell death involves a Bax-dependent activation of caspase 3; however, the transcriptional targets involved in the regulati...

  6. Hypoxia-Inducible Factor 3 Is an Oxygen-Dependent Transcription Activator and Regulates a Distinct Transcriptional Response to Hypoxia

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2014-03-01

    Full Text Available Hypoxia-inducible factors (HIFs play key roles in the cellular response to hypoxia. It is widely accepted that whereas HIF-1 and HIF-2 function as transcriptional activators, HIF-3 inhibits HIF-1/2α action. Contrary to this idea, we show that zebrafish Hif-3α has strong transactivation activity. Hif-3α is degraded under normoxia. Mutation of P393, P493, and L503 inhibits this oxygen-dependent degradation. Transcriptomics and chromatin immunoprecipitation analyses identify genes that are regulated by Hif-3α, Hif-1α, or both. Under hypoxia or when overexpressed, Hif-3α binds to its target gene promoters and upregulates their expression. Dominant-negative inhibition and knockdown of Hif-3α abolish hypoxia-induced Hif-3α-promoter binding and gene expression. Hif-3α not only mediates hypoxia-induced growth and developmental retardation but also possesses hypoxia-independent activities. Importantly, transactivation activity is conserved and human HIF-3α upregulates similar genes in human cells. These findings suggest that Hif-3 is an oxygen-dependent transcription factor and activates a distinct transcriptional response to hypoxia.

  7. Sigma-1 receptor mediates cocaine-induced transcriptional regulation by recruiting chromatin-remodeling factors at the nuclear envelope.

    Science.gov (United States)

    Tsai, Shang-Yi A; Chuang, Jian-Ying; Tsai, Meng-Shan; Wang, Xiao-Fei; Xi, Zheng-Xiong; Hung, Jan-Jong; Chang, Wen-Chang; Bonci, Antonello; Su, Tsung-Ping

    2015-11-24

    The sigma-1 receptor (Sig-1R) chaperone at the endoplasmic reticulum (ER) plays important roles in cellular regulation. Here we found a new function of Sig-1R, in that it translocates from the ER to the nuclear envelope (NE) to recruit chromatin-remodeling molecules and regulate the gene transcription thereof. Sig-1Rs mainly reside at the ER-mitochondrion interface. However, on stimulation by agonists such as cocaine, Sig-1Rs translocate from ER to the NE, where Sig-1Rs bind NE protein emerin and recruit chromatin-remodeling molecules, including lamin A/C, barrier-to-autointegration factor (BAF), and histone deacetylase (HDAC), to form a complex with the gene repressor specific protein 3 (Sp3). Knockdown of Sig-1Rs attenuates the complex formation. Cocaine was found to suppress the gene expression of monoamine oxidase B (MAOB) in the brain of wild-type but not Sig-1R knockout mouse. A single dose of cocaine (20 mg/kg) in rats suppresses the level of MAOB at nuclear accumbens without affecting the level of dopamine transporter. Daily injections of cocaine in rats caused behavioral sensitization. Withdrawal from cocaine in cocaine-sensitized rats induced an apparent time-dependent rebound of the MAOB protein level to about 200% over control on day 14 after withdrawal. Treatment of cocaine-withdrawn rats with the MAOB inhibitor deprenyl completely alleviated the behavioral sensitization to cocaine. Our results demonstrate a role of Sig-1R in transcriptional regulation and suggest cocaine may work through this newly discovered genomic action to achieve its addictive action. Results also suggest the MAOB inhibitor deprenyl as a therapeutic agent to block certain actions of cocaine during withdrawal.

  8. Nuclear cereblon modulates transcriptional activity of Ikaros and regulates its downstream target, enkephalin, in human neuroblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Takeyoshi [Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480 (Japan); Asahi, Toru [Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480 (Japan); Research Organization for Nano & Life Innovation, Waseda University #03C309, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480 (Japan); Sawamura, Naoya, E-mail: naoya.sawamura@gmail.com [Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480 (Japan); Research Organization for Nano & Life Innovation, Waseda University #03C309, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480 (Japan)

    2016-08-26

    The gene coding cereblon (CRBN) was originally identified in genetic linkage analysis of mild autosomal recessive nonsyndromic intellectual disability. CRBN has broad localization in both the cytoplasm and nucleus. However, the significance of nuclear CRBN remains unknown. In the present study, we aimed to elucidate the role of CRBN in the nucleus. First, we generated a series of CRBN deletion mutants and determined the regions responsible for the nuclear localization. Only CRBN protein lacking the N-terminal region was localized outside of the nucleus, suggesting that the N-terminal region is important for its nuclear localization. CRBN was also identified as a thalidomide-binding protein and component of the cullin-4-containing E3 ubiquitin ligase complex. Thalidomide has been reported to be involved in the regulation of the transcription factor Ikaros by CRBN-mediated degradation. To investigate the nuclear functions of CRBN, we performed co-immunoprecipitation experiments and evaluated the binding of CRBN to Ikaros. As a result, we found that CRBN was associated with Ikaros protein, and the N-terminal region of CRBN was required for Ikaros binding. In luciferase reporter gene experiments, CRBN modulated transcriptional activity of Ikaros. Furthermore, we found that CRBN modulated Ikaros-mediated transcriptional repression of the proenkephalin gene by binding to its promoter region. These results suggest that CRBN binds to Ikaros via its N-terminal region and regulates transcriptional activities of Ikaros and its downstream target, enkephalin. - Highlights: • We found that CRBN is a nucleocytoplasmic shutting protein and identified the key domain for nucleocytoplasmic shuttling. • CRBN associates with the transcription factor Ikaros via the N-terminal domain. • CRBN modulates Ikaros-mediated transcriptional regulation and its downstream target, enkephalin.

  9. Nuclear cereblon modulates transcriptional activity of Ikaros and regulates its downstream target, enkephalin, in human neuroblastoma cells

    International Nuclear Information System (INIS)

    Wada, Takeyoshi; Asahi, Toru; Sawamura, Naoya

    2016-01-01

    The gene coding cereblon (CRBN) was originally identified in genetic linkage analysis of mild autosomal recessive nonsyndromic intellectual disability. CRBN has broad localization in both the cytoplasm and nucleus. However, the significance of nuclear CRBN remains unknown. In the present study, we aimed to elucidate the role of CRBN in the nucleus. First, we generated a series of CRBN deletion mutants and determined the regions responsible for the nuclear localization. Only CRBN protein lacking the N-terminal region was localized outside of the nucleus, suggesting that the N-terminal region is important for its nuclear localization. CRBN was also identified as a thalidomide-binding protein and component of the cullin-4-containing E3 ubiquitin ligase complex. Thalidomide has been reported to be involved in the regulation of the transcription factor Ikaros by CRBN-mediated degradation. To investigate the nuclear functions of CRBN, we performed co-immunoprecipitation experiments and evaluated the binding of CRBN to Ikaros. As a result, we found that CRBN was associated with Ikaros protein, and the N-terminal region of CRBN was required for Ikaros binding. In luciferase reporter gene experiments, CRBN modulated transcriptional activity of Ikaros. Furthermore, we found that CRBN modulated Ikaros-mediated transcriptional repression of the proenkephalin gene by binding to its promoter region. These results suggest that CRBN binds to Ikaros via its N-terminal region and regulates transcriptional activities of Ikaros and its downstream target, enkephalin. - Highlights: • We found that CRBN is a nucleocytoplasmic shutting protein and identified the key domain for nucleocytoplasmic shuttling. • CRBN associates with the transcription factor Ikaros via the N-terminal domain. • CRBN modulates Ikaros-mediated transcriptional regulation and its downstream target, enkephalin.

  10. E2F1-Mediated Induction of NFYB Attenuates Apoptosis via Joint Regulation of a Pro-Survival Transcriptional Program.

    Directory of Open Access Journals (Sweden)

    Xiaolei Jiang

    Full Text Available The E2F1 transcription factor regulates cell proliferation and apoptosis through the control of a considerable variety of target genes. Previous work has detailed the role of other transcription factors in mediating the specificity of E2F function. Here we identify the NF-YB transcription factor as a novel direct E2F1 target. Genome-wide expression analysis of the effects of NFYB knockdown on E2F1-mediated transcription identified a large group of genes that are co-regulated by E2F1 and NFYB. We also provide evidence that knockdown of NFYB enhances E2F1-induced apoptosis, suggesting a pro-survival function of the NFYB/E2F1 joint transcriptional program. Bioinformatic analysis suggests that deregulation of these NFY-dependent E2F1 target genes might play a role in sarcomagenesis as well as drug resistance.

  11. Disruption of histone modification and CARM1 recruitment by arsenic represses transcription at glucocorticoid receptor-regulated promoters.

    Science.gov (United States)

    Barr, Fiona D; Krohmer, Lori J; Hamilton, Joshua W; Sheldon, Lynn A

    2009-08-26

    Chronic exposure to inorganic arsenic (iAs) found in the environment is one of the most significant and widespread environmental health risks in the U.S. and throughout the world. It is associated with a broad range of health effects from cancer to diabetes as well as reproductive and developmental anomalies. This diversity of diseases can also result from disruption of metabolic and other cellular processes regulated by steroid hormone receptors via aberrant transcriptional regulation. Significantly, exposure to iAs inhibits steroid hormone-mediated gene activation. iAs exposure is associated with disease, but is also used therapeutically to treat specific cancers complicating an understanding of iAs action. Transcriptional activation by steroid hormone receptors is accompanied by changes in histone and non-histone protein post-translational modification (PTM) that result from the enzymatic activity of coactivator and corepressor proteins such as GRIP1 and CARM1. This study addresses how iAs represses steroid receptor-regulated gene transcription. PTMs on histones H3 and H4 at the glucocorticoid receptor (GR)-activated mouse mammary tumor virus (MMTV) promoter were identified by chromatin immunoprecipitation analysis following exposure to steroid hormone+/-iAs. Histone H3K18 and H3R17 amino acid residues had significantly different patterns of PTMs after treatment with iAs. Promoter interaction of the coactivator CARM1 was disrupted, but the interaction of GRIP1, a p160 coactivator through which CARM1 interacts with a promoter, was intact. Over-expression of CARM1 was able to fully restore and GRIP1 partially restored iAs-repressed transcription indicating that these coactivators are functionally associated with iAs-mediated transcriptional repression. Both are essential for robust transcription at steroid hormone regulated genes and both are associated with disease when inappropriately expressed. We postulate that iAs effects on CARM1 and GRIP1 may underlie some

  12. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm.

    Science.gov (United States)

    Wang, Jie-Chen; Xu, Heng; Zhu, Ying; Liu, Qiao-Quan; Cai, Xiu-Ling

    2013-08-01

    Starch composition and the amount in endosperm, both of which contribute dramatically to seed yield, cooking quality, and taste in cereals, are determined by a series of complex biochemical reactions. However, the mechanism regulating starch biosynthesis in cereal seeds is not well understood. This study showed that OsbZIP58, a bZIP transcription factor, is a key transcriptional regulator controlling starch synthesis in rice endosperm. OsbZIP58 was expressed mainly in endosperm during active starch synthesis. osbzip58 null mutants displayed abnormal seed morphology with altered starch accumulation in the white belly region and decreased amounts of total starch and amylose. Moreover, osbzip58 had a higher proportion of short chains and a lower proportion of intermediate chains of amylopectin. Furthermore, OsbZIP58 was shown to bind directly to the promoters of six starch-synthesizing genes, OsAGPL3, Wx, OsSSIIa, SBE1, OsBEIIb, and ISA2, and to regulate their expression. These findings indicate that OsbZIP58 functions as a key regulator of starch synthesis in rice seeds and provide new insights into seed quality control.

  13. WRKY transcription factors

    Science.gov (United States)

    Bakshi, Madhunita; Oelmüller, Ralf

    2014-01-01

    WRKY transcription factors are one of the largest families of transcriptional regulators found exclusively in plants. They have diverse biological functions in plant disease resistance, abiotic stress responses, nutrient deprivation, senescence, seed and trichome development, embryogenesis, as well as additional developmental and hormone-controlled processes. WRKYs can act as transcriptional activators or repressors, in various homo- and heterodimer combinations. Here we review recent progress on the function of WRKY transcription factors in Arabidopsis and other plant species such as rice, potato, and parsley, with a special focus on abiotic, developmental, and hormone-regulated processes. PMID:24492469

  14. CREB and FoxO1: two transcription factors for the regulation of hepatic gluconeogenesis

    Science.gov (United States)

    Oh, Kyoung-Jin; Han, Hye-Sook; Kim, Min-Jung; Koo, Seung-Hoi

    2013-01-01

    Liver plays a major role in maintaining glucose homeostasis in mammals. Under fasting conditions, hepatic glucose production is critical as a source of fuel to maintain the basic functions in other tissues, including skeletal muscle, red blood cells, and the brain. Fasting hormones glucagon and cortisol play major roles during the process, in part by activating the transcription of key enzyme genes in the gluconeogenesis such as phosphoenol pyruvate carboxykinase (PEPCK) and glucose 6 phosphatase catalytic subunit (G6Pase). Conversely, gluconeogenic transcription is repressed by pancreatic insulin under feeding conditions, which effectively inhibits transcriptional activator complexes by either promoting post-translational modifications or activating transcriptional inhibitors in the liver, resulting in the reduction of hepatic glucose output. The transcriptional regulatory machineries have been highlighted as targets for type 2 diabetes drugs to control glycemia, so understanding of the complex regulatory mechanisms for transcription circuits for hepatic gluconeogenesis is critical in the potential development of therapeutic tools for the treatment of this disease. In this review, the current understanding regarding the roles of two key transcriptional activators, CREB and FoxO1, in the regulation of hepatic gluconeogenic program is discussed. [BMB Reports 2013; 46(12): 567-574] PMID:24238363

  15. DMPD: The interferon-alpha/beta system in antiviral responses: a multimodal machineryof gene regulation by the IRF family of transcription factors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available ineryof gene regulation by the IRF family of transcription factors. Taniguchi T, Takaoka A. Curr Opin Immuno...sponses: a multimodal machineryof gene regulation by the IRF family of transcript...achineryof gene regulation by the IRF family of transcription factors. Authors Taniguchi T, Takaoka A. Publi

  16. Novel biosensors based on flavonoid-responsive transcriptional regulators introduced into Escherichia coli

    DEFF Research Database (Denmark)

    Siedler, Solvej; Stahlhut, Steen Gustav; Malla, Sailesh

    2014-01-01

    This study describes the construction of two flavonoid biosensors, which can be applied for metabolic engineering of Escherichia coli strains. The biosensors are based on transcriptional regulators combined with autofluorescent proteins. The transcriptional activator FdeR from Herbaspirillum...... and externally added flavonoid concentration. The QdoR-biosensor was successfully applied for detection of kaempferol production in vivo at the single cell level by fluorescence-activated cell sorting. Furthermore, the amount of kaempferol produced highly correlated with the specific fluorescence of E. coli...... cells containing a flavonol synthase from Arabidopsis thaliana (fls1). We expect the designed biosensors to be applied for isolation of genes involved in flavonoid biosynthetic pathways. © 2013 The Authors....

  17. Direct Regulation of tRNA and 5S rRNA Gene Transcription by Polo-like Kinase 1

    NARCIS (Netherlands)

    Fairley, Jennifer A.; Mitchell, Louise E.; Berg, Tracy; Kenneth, Niall S.; von Schubert, Conrad; Sillje, Herman H. W.; Medema, Rene H.; Nigg, Erich A.; White, Robert J.

    2012-01-01

    Polo-like kinase Plk1 controls numerous aspects of cell-cycle progression. We show that it associates with tRNA and 5S rRNA genes and regulates their transcription by RNA polymerase Ill (pol Ill) through direct binding and phosphorylation of transcription factor Brit During interphase, Plk1 promotes

  18. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation

    Directory of Open Access Journals (Sweden)

    Kouki eYoshida

    2013-10-01

    Full Text Available Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs can regulate secondary wall formation in rice (Oryza sativa and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S has very low transcriptional activation ability, but the longer protein (OsSWN2L and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications.

  19. Anti-sigma factor YlaD regulates transcriptional activity of sigma factor YlaC and sporulation via manganese-dependent redox-sensing molecular switch in Bacillus subtilis.

    Science.gov (United States)

    Kwak, Min-Kyu; Ryu, Han-Bong; Song, Sung-Hyun; Lee, Jin-Won; Kang, Sa-Ouk

    2018-05-14

    YlaD, a membrane-anchored anti-sigma factor of Bacillus subtilis , contains a HX 3 CXXC motif that functions as a redox-sensing domain and belongs to one of the zinc-coordinated anti-sigma factor families. Despite previously showing that the YlaC transcription is controlled by YlaD, experimental evidence of how the YlaC-YlaD interaction is affected by active cysteines and/or metal ions is lacking. Here, we showed that the P yla promoter is autoregulated solely by YlaC. Moreover, reduced YlaD contained zinc and iron, while oxidized YlaD did not. Cysteine substitution in YlaD led to changes in its secondary structure; Cys3 had important structural functions in YlaD, and its mutation caused dissociation from YlaC, indicating the essential requirement of a HX 3 CXXC motif for regulating interactions of YlaC with YlaD. Analyses of the far-UV CD spectrum and metal content revealed that the addition of Mn ions to Zn-YlaD changed its secondary structure and that iron was substituted for manganese. The ylaC gene expression using βGlu activity from P yla : gusA was observed at the late-exponential and early-stationary phase and the ylaC -overexpressing mutant constitutively expressed gene transcripts of clpP and sigH , an important alternative sigma factor regulated by ClpXP. Collectively, our data demonstrated that YlaD senses redox changes and elicits increase in manganese ion concentrations and that, in turn, YlaD-mediated transcriptional activity of YlaC regulates sporulation initiation under oxidative stress and manganese-substituted conditions by regulating clpP gene transcripts. This is the first report of the involvement of oxidative stress-responsive B. subtilis extracytoplasmic function sigma factors during sporulation via a manganese-dependent redox-sensing molecular switch. ©2018 The Author(s).

  20. Basic leucine zipper protein Cnc-C is a substrate and transcriptional regulator of the Drosophila 26S proteasome.

    Science.gov (United States)

    Grimberg, Kristian Björk; Beskow, Anne; Lundin, Daniel; Davis, Monica M; Young, Patrick

    2011-02-01

    While the 26S proteasome is a key proteolytic complex, little is known about how proteasome levels are maintained in higher eukaryotic cells. Here we describe an RNA interference (RNAi) screen of Drosophila melanogaster that was used to identify transcription factors that may play a role in maintaining levels of the 26S proteasome. We used an RNAi library against 993 Drosophila transcription factor genes to identify genes whose suppression in Schneider 2 cells stabilized a ubiquitin-green fluorescent protein reporter protein. This screen identified Cnc (cap 'n' collar [CNC]; basic region leucine zipper) as a candidate transcriptional regulator of proteasome component expression. In fact, 20S proteasome activity was reduced in cells depleted of cnc. Immunoblot assays against proteasome components revealed a general decline in both 19S regulatory complex and 20S proteasome subunits after RNAi depletion of this transcription factor. Transcript-specific silencing revealed that the longest of the seven transcripts for the cnc gene, cnc-C, was needed for proteasome and p97 ATPase production. Quantitative reverse transcription-PCR confirmed the role of Cnc-C in activation of transcription of genes encoding proteasome components. Expression of a V5-His-tagged form of Cnc-C revealed that the transcription factor is itself a proteasome substrate that is stabilized when the proteasome is inhibited. We propose that this single cnc gene in Drosophila resembles the ancestral gene family of mammalian nuclear factor erythroid-derived 2-related transcription factors, which are essential in regulating oxidative stress and proteolysis.

  1. Transcriptional profiles of hybrid Eucalyptus genotypes with contrasting lignin content reveal that monolignol biosynthesis-related genes regulate wood composition

    Directory of Open Access Journals (Sweden)

    Tomotaka eShinya

    2016-04-01

    Full Text Available Eucalyptus species constitutes the most widely planted hardwood trees in temperate and subtropical regions. In this study, we compared the transcript levels of genes involved in lignocellulose formation such as cellulose, hemicellulose and lignin biosynthesis in two selected three-year old hybrid Eucalyptus (Eucalyptus urophylla x E. grandis genotypes (AM063 and AM380 that have different lignin content. AM063 and AM380 had 20.2 and 35.5% of Klason lignin content and 59.0% and 48.2%, -cellulose contents, respectively. We investigated the correlation between wood properties and transcript levels of wood formation-related genes using RNA-seq with total RNAs extracted from developing xylem tissues at a breast height. Transcript levels of cell wall construction genes such as cellulose synthase (CesA and sucrose synthase (SUSY were almost the same in both genotypes. However, AM063 exhibited higher transcript levels of UDP-glucose pyrophosphorylase (UGP and xyloglucan endotransglucoxylase (XTH than those in AM380. Most monolignol biosynthesis- related isozyme genes showed higher transcript levels in AM380. These results indicate monolignol biosynthesis-related genes may regulate wood composition in Eucalyptus. Flavonoids contents were also observed at much higher levels in AM380 as a result of the elevated transcript levels of common phenylpropanoid pathway genes, phenylalanine ammonium lyase (PAL, cinnamate-4-hydroxylase (C4H and 4-coumarate-CoA ligase (4CL. Secondary plant cell wall formation is regulated by many transcription factors. We analyzed genes encoding NAC, WRKY, AP2/ERF and KNOX transcription factors and found higher transcript levels of these genes in AM380. We also observed increased transcription of some MYB and LIM domain transcription factors in AM380 compared to AM063. All these results show that genes related to monolignol biosynthesis may regulate the wood composition and help maintain the ratio of cellulose and lignin contents

  2. Anoxia-responsive regulation of the FoxO transcription factors in freshwater turtles, Trachemys scripta elegans.

    Science.gov (United States)

    Krivoruchko, Anastasia; Storey, Kenneth B

    2013-11-01

    The forkhead class O (FoxO) transcription factors are important regulators of multiple aspects of cellular metabolism. We hypothesized that activation of these transcription factors could play crucial roles in low oxygen survival in the anoxia-tolerant turtle, Trachemys scripta elegans. Two FoxOs, FoxO1 and FoxO3, were examined in turtle tissues in response to 5 and 20h of anoxic submergence using techniques of RT-PCR, western immunoblotting and DNA-binding assays to assess activation. Transcript levels of FoxO-responsive genes were also quantified using RT-PCR. FoxO1 was anoxia-responsive in the liver, with increases in transcript levels, protein levels, nuclear levels and DNA-binding of 1.7-4.8fold in response to anoxia. Levels of phosphorylated FoxO1 also decreased to 57% of control values in response to 5h of anoxia, indicating activation. FoxO3 was activated in the heart, kidney and liver in response to anoxia, with nuclear levels increasing by 1.5-3.7fold and DNA-binding activity increasing by 1.3-2.9fold. Transcript levels of two FoxO-target genes, p27kip1 and catalase, also rose by 2.4-2.5fold in the turtle liver under anoxia. The results suggest that the FoxO transcription factors are activated in response to anoxia in T. scripta elegans, potentially contributing to the regulation of stress resistance and metabolic depression. This study provides the first demonstration of activation of FoxOs in a natural model for vertebrate anoxia tolerance, further improving understanding of how tissues can survive without oxygen. © 2013.

  3. Estrogen receptor alpha and nuclear factor Y coordinately regulate the transcription of the SUMO-conjugating UBC9 gene in MCF-7 breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Shibo Ying

    Full Text Available UBC9 encodes a protein that conjugates small ubiquitin-related modifier (SUMO to target proteins thereby changing their functions. Recently, it was noted that UBC9 expression and activity play a role in breast tumorigenesis and response to anticancer drugs. However, the underlying mechanism is poorly understood. To investigate the transcriptional regulation of the UBC9 gene, we identified and characterized its promoter and cis-elements. Promoter activity was tested using luciferase reporter assays. The binding of transcription factors to the promoter was detected by chromatin immunoprecipitation (ChIP, and their functional role was confirmed by siRNA knockdown. UBC9 mRNA and protein levels were measured by quantitative reverse transcription PCR and Western blot analysis, respectively. An increased expression of UBC9 mRNA and protein was found in MCF-7 breast cancer cells treated with 17β-estradiol (E2. Analysis of various deletion mutants revealed a 137 bp fragment upstream of the transcription initiation site to be sufficient for reporter gene transcription. Mutations of putative estrogen receptor α (ER-α (one imperfect estrogen response element, ERE and/or nuclear factor Y (NF-Y binding sites (two CCAAT boxes markedly reduced promoter activity. Similar results were obtained in ER-negative MDA-MB-231 cells except that the ERE mutation did not affect promoter activity. Additionally, promoter activity was stimulated upon E2 treatment and overexpression of ER-α or NF-YA in MCF-7 cells. ChIP confirmed direct binding of both transcription factors to the UBC9 promoter in vivo. Furthermore, UBC9 expression was diminished by ER-α and NF-Y siRNAs on the mRNA and protein levels. In conclusion, we identified the proximal UBC9 promoter and provided evidence that ER-α and NF-Y regulate UBC9 expression on the transcriptional level in response to E2 in MCF-7 cells. These findings may contribute to a better understanding of the regulation of UBC9 in ER

  4. Transcriptional profiling of MEF2-regulated genes in human neural progenitor cells derived from embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Shing Fai Chan

    2015-03-01

    Full Text Available The myocyte enhancer factor 2 (MEF2 family of transcription factors is highly expressed in the brain and constitutes a key determinant of neuronal survival, differentiation, and synaptic plasticity. However, genome-wide transcriptional profiling of MEF2-regulated genes has not yet been fully elucidated, particularly at the neural stem cell stage. Here we report the results of microarray analysis comparing mRNAs isolated from human neural progenitor/stem cells (hNPCs derived from embryonic stem cells expressing a control vector versus progenitors expressing a constitutively-active form of MEF2 (MEF2CA, which increases MEF2 activity. Microarray experiments were performed using the Illumina Human HT-12 V4.0 expression beadchip (GEO#: GSE57184. By comparing vector-control cells to MEF2CA cells, microarray analysis identified 1880 unique genes that were differentially expressed. Among these genes, 1121 genes were up-regulated and 759 genes were down-regulated. Our results provide a valuable resource for identifying transcriptional targets of MEF2 in hNPCs.

  5. Engineering synthetic TALE and CRISPR/Cas9 transcription factors for regulating gene expression.

    Science.gov (United States)

    Kabadi, Ami M; Gersbach, Charles A

    2014-09-01

    Engineered DNA-binding proteins that can be targeted to specific sites in the genome to manipulate gene expression have enabled many advances in biomedical research. This includes generating tools to study fundamental aspects of gene regulation and the development of a new class of gene therapies that alter the expression of endogenous genes. Designed transcription factors have entered clinical trials for the treatment of human diseases and others are in preclinical development. High-throughput and user-friendly platforms for designing synthetic DNA-binding proteins present innovative methods for deciphering cell biology and designing custom synthetic gene circuits. We review two platforms for designing synthetic transcription factors for manipulating gene expression: Transcription activator-like effectors (TALEs) and the RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. We present an overview of each technology and a guide for designing and assembling custom TALE- and CRISPR/Cas9-based transcription factors. We also discuss characteristics of each platform that are best suited for different applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Reorganization of the actin cytoskeleton via transcriptional regulation of cytoskeletal/focal adhesion genes by myocardin-related transcription factors (MRTFs/MAL/MKLs)

    International Nuclear Information System (INIS)

    Morita, Tsuyoshi; Mayanagi, Taira; Sobue, Kenji

    2007-01-01

    RhoA is a crucial regulator of stress fiber and focal adhesion formation through the activation of actin nucleation and polymerization. It also regulates the nuclear translocation of myocardin-related transcription factor-A and -B (MRTF-A/B, MAL or MKL 1/2), which are co-activators of serum response factor (SRF). In dominant-negative MRTF-A (DN-MRTF-A)-expressing NIH 3T3 cell lines, the expressions of several cytoskeletal/focal adhesion genes were down-regulated, and the formation of stress fiber and focal adhesion was severely diminished. MRTF-A/B-knockdown cells also exhibited such cytoskeletal defects. In reporter assays, both RhoA and MRTF-A enhanced promoter activities of these genes in a CArG-box-dependent manner, and DN-MRTF-A inhibited the RhoA-mediated activation of these promoters. In dominant-negative RhoA (RhoA-N19)-expressing NIH 3T3 cell lines, the nuclear translocation of MRTF-A/B was predominantly prevented, resulting in the reduced expression of cytoskeletal/focal adhesion proteins. Further, constitutive-active MRTF-A/B increased the expression of endogenous cytoskeletal/focal adhesion proteins, and thereby rescued the defective phenotype of stress fibers and focal adhesions in RhoA-N19 expressing cells. These results indicate that MRTF-A/B act as pivotal mediators of stress fiber and focal adhesion formation via the transcriptional regulation of a subset of cytoskeletal/focal adhesion genes

  7. Gene prediction and RFX transcriptional regulation analysis using comparative genomics

    OpenAIRE

    Chu, Jeffrey Shih Chieh

    2011-01-01

    Regulatory Factor X (RFX) is a family of transcription factors (TF) that is conserved in all metazoans, in some fungi, and in only a few single-cellular organisms. Seven members are found in mammals, nine in fishes, three in fruit flies, and a single member in nematodes and fungi. RFX is involved in many different roles in humans, but a particular function that is conserved in many metazoans is its regulation of ciliogenesis. Probing over 150 genomes for the presence of RFX and ciliary genes ...

  8. Epalrestat increases intracellular glutathione levels in Schwann cells through transcription regulation

    Directory of Open Access Journals (Sweden)

    Keisuke Sato

    2014-01-01

    Full Text Available Epalrestat (EPS, approved in Japan, is the only aldose reductase inhibitor that is currently available for the treatment of diabetic neuropathy. Here we report that EPS at near-plasma concentration increases the intracellular levels of glutathione (GSH, which is important for protection against oxidative injury, through transcription regulation. Treatment of Schwann cells with EPS caused a dramatic increase in intracellular GSH levels. EPS increased the mRNA levels of γ-glutamylcysteine synthetase (γ-GCS, the enzyme catalyzing the first and rate-limiting step in de novo GSH synthesis. Nuclear factor erythroid 2-related factor 2 (Nrf2 is a key transcription factor that plays a central role in regulating the expression of γ-GCS. ELISA revealed that EPS increased nuclear Nrf2 levels. Knockdown of Nrf2 by siRNA suppressed the EPS-induced GSH biosynthesis. Furthermore, pretreatment with EPS reduced the cytotoxicity induced by H2O2, tert-butylhydroperoxide, 2,2'-azobis (2-amidinopropane dihydrochloride, and menadione, indicating that EPS plays a role in protecting against oxidative stress. This is the first study to show that EPS induces GSH biosynthesis via the activation of Nrf2. We suggest that EPS has new beneficial properties that may prevent the development and progression of disorders caused by oxidative stress.

  9. Endogenous ovarian hormones affect mitochondrial efficiency in cerebral endothelium via distinct regulation of PGC-1 isoforms.

    Science.gov (United States)

    Kemper, Martin F; Zhao, Yuanzi; Duckles, Sue P; Krause, Diana N

    2013-01-01

    Mitochondria support the energy-intensive functions of brain endothelium but also produce damaging-free radicals that lead to disease. Previously, we found that estrogen treatment protects cerebrovascular mitochondria, increasing capacity for ATP production while decreasing reactive oxygen species (ROS). To determine whether these effects occur specifically in endothelium in vivo and also explore underlying transcriptional mechanisms, we studied freshly isolated brain endothelial preparations from intact and ovariectomized female mice. This preparation reflects physiologic influences of circulating hormones, hemodynamic forces, and cell-cell interactions of the neurovascular unit. Loss of ovarian hormones affected endothelial expression of the key mitochondrial regulator family, peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1), but in a unique way. Ovariectomy increased endothelial PGC-1α mRNA but decreased PGC-1β mRNA. The change in PGC-1β correlated with decreased mRNA for crucial downstream mitochondrial regulators, nuclear respiratory factor 1 and mitochondrial transcription factor A, as well as for ATP synthase and ROS protection enzymes, glutamate-cysteine ligase and manganese superoxide dismutase. Ovariectomy also decreased mitochondrial biogenesis (mitochondrial/nuclear DNA ratio). These results indicate ovarian hormones normally act through a distinctive regulatory pathway involving PGC-1β to support cerebral endothelial mitochondrial content and guide mitochondrial function to favor ATP coupling and ROS protection.

  10. Functional link between DNA damage responses and transcriptional regulation by ATM in response to a histone deacetylase inhibitor TSA.

    Science.gov (United States)

    Lee, Jong-Soo

    2007-09-01

    Mutations in the ATM (ataxia-telangiectasia mutated) gene, which encodes a 370 kd protein with a kinase catalytic domain, predisposes people to cancers, and these mutations are also linked to ataxia-telangiectasia (A-T). The histone acetylaion/deacetylation- dependent chromatin remodeling can activate the ATM kinase-mediated DNA damage signal pathway (in an accompanying work, Lee, 2007). This has led us to study whether this modification can impinge on the ATM-mediated DNA damage response via transcriptional modulation in order to understand the function of ATM in the regulation of gene transcription. To identify the genes whose expression is regulated by ATM in response to histone deaceylase (HDAC) inhibition, we performed an analysis of oligonucleotide microarrays with using the appropriate cell lines, isogenic A-T (ATM(-)) and control (ATM(+)) cells, following treatment with a HDAC inhibitor TSA. Treatment with TSA reprograms the differential gene expression profile in response to HDAC inhibition in ATM(-) cells and ATM(+) cells. We analyzed the genes that are regulated by TSA in the ATM-dependent manner, and we classified these genes into different functional categories, including those involved in cell cycle/DNA replication, DNA repair, apoptosis, growth/differentiation, cell- cell adhesion, signal transduction, metabolism and transcription. We found that while some genes are regulated by TSA without regard to ATM, the patterns of gene regulation are differentially regulated in an ATM-dependent manner. Taken together, these finding indicate that ATM can regulate the transcription of genes that play critical roles in the molecular response to DNA damage, and this response is modulated through an altered HDAC inhibition-mediated gene expression.

  11. Dimer formation and transcription activation in the sporulation response regulator Spo0A.

    Science.gov (United States)

    Lewis, Richard J; Scott, David J; Brannigan, James A; Ladds, Joanne C; Cervin, Marguerite A; Spiegelman, George B; Hoggett, James G; Barák, Imrich; Wilkinson, Anthony J

    2002-02-15

    The response regulator Spo0A is the master control element in the initiation of sporulation in Bacillus subtilis. Like many other multi-domain response regulators, the latent activity of the effector, C-terminal domain is stimulated by phosphorylation on a conserved aspartic acid residue in the regulatory, N-terminal domain. If a threshold concentration of phosphorylated Spo0A is achieved, the transcription of genes required for sporulation is activated, whereas the genes encoding stationary phase sentinels are repressed, and sporulation proceeds. Despite detailed genetic, biochemical and structural characterisation, it is not understood how the phosphorylation signal in the receiver domain is transduced into DNA binding and transcription activation in the distal effector domain. An obstacle to our understanding of Spo0A function is the uncertainty concerning changes in quaternary structure that accompany phosphorylation. Here we have revisited this question and shown unequivocally that Spo0A forms dimers upon phosphorylation and that the subunit interactions in the dimer are mediated principally by the receiver domain. Purified dimers of two mutants of Spo0A, in which the phosphorylatable aspartic acid residue has been substituted, activate transcription from the spoIIG promoter in vitro, whereas monomers do not. This suggests that dimers represent the activated form of Spo0A. Copyright 2002 Elsevier Science Ltd.

  12. Transcriptional Regulation in Haematopoiesis:

    DEFF Research Database (Denmark)

    Lauridsen, Felicia K B

    with the capacity to both self-renew and differentiate. This thesis is built upon two studies, which investigate two different aspects of the haematopoietic system; heterogeneity within the HSC compartment (presented in manuscript I), and the interplay between transcription factors controlling granulocyte/ monocyte...

  13. High-resolution structure of TBP with TAF1 reveals anchoring patterns in transcriptional regulation.

    Science.gov (United States)

    Anandapadamanaban, Madhanagopal; Andresen, Cecilia; Helander, Sara; Ohyama, Yoshifumi; Siponen, Marina I; Lundström, Patrik; Kokubo, Tetsuro; Ikura, Mitsuhiko; Moche, Martin; Sunnerhagen, Maria

    2013-08-01

    The general transcription factor TFIID provides a regulatory platform for transcription initiation. Here we present the crystal structure (1.97 Å) and NMR analysis of yeast TAF1 N-terminal domains TAND1 and TAND2 bound to yeast TBP, together with mutational data. We find that yeast TAF1-TAND1, which in itself acts as a transcriptional activator, binds TBP's concave DNA-binding surface by presenting similar anchor residues to TBP as does Mot1 but from a distinct structural scaffold. Furthermore, we show how TAF1-TAND2 uses an aromatic and acidic anchoring pattern to bind a conserved TBP surface groove traversing the basic helix region, and we find highly similar TBP-binding motifs also presented by the structurally distinct TFIIA, Mot1 and Brf1 proteins. Our identification of these anchoring patterns, which can be easily disrupted or enhanced, provides insight into the competitive multiprotein TBP interplay critical to transcriptional regulation.

  14. Bmp indicator mice reveal dynamic regulation of transcriptional response.

    Directory of Open Access Journals (Sweden)

    Anna L Javier

    Full Text Available Cellular responses to Bmp ligands are regulated at multiple levels, both extracellularly and intracellularly. Therefore, the presence of these growth factors is not an accurate indicator of Bmp signaling activity. While a common approach to detect Bmp signaling activity is to determine the presence of phosphorylated forms of Smad1, 5 and 8 by immunostaining, this approach is time consuming and not quantitative. In order to provide a simpler readout system to examine the presence of Bmp signaling in developing animals, we developed BRE-gal mouse embryonic stem cells and a transgenic mouse line that specifically respond to Bmp ligand stimulation. Our reporter identifies specific transcriptional responses that are mediated by Smad1 and Smad4 with the Schnurri transcription factor complex binding to a conserved Bmp-Responsive Element (BRE, originally identified among Drosophila, Xenopus and human Bmp targets. Our BRE-gal mES cells specifically respond to Bmp ligands at concentrations as low as 5 ng/ml; and BRE-gal reporter mice, derived from the BRE-gal mES cells, show dynamic activity in many cellular sites, including extraembryonic structures and mammary glands, thereby making this a useful scientific tool.

  15. Cyclic AMP Receptor Protein Acts as a Transcription Regulator in Response to Stresses in Deinococcus radiodurans.

    Directory of Open Access Journals (Sweden)

    Su Yang

    Full Text Available The cyclic AMP receptor protein family of transcription factors regulates various metabolic pathways in bacteria, and also play roles in response to environmental changes. Here, we identify four homologs of the CRP family in Deinococcus radiodurans, one of which tolerates extremely high levels of oxidative stress and DNA-damaging reagents. Transcriptional levels of CRP were increased under hydrogen peroxide (H2O2 treatment during the stationary growth phase, indicating that CRPs function in response to oxidative stress. By constructing all CRP single knockout mutants, we found that the dr0997 mutant showed the lowest tolerance toward H2O2, ultraviolet radiation, ionizing radiation, and mitomycin C, while the phenotypes of the dr2362, dr0834, and dr1646 mutants showed slight or no significant differences from those of the wild-type strain. Taking advantage of the conservation of the CRP-binding site in many bacteria, we found that transcription of 18 genes, including genes encoding chromosome-partitioning protein (dr0998, Lon proteases (dr0349 and dr1974, NADH-quinone oxidoreductase (dr1506, thiosulfate sulfurtransferase (dr2531, the DNA repair protein UvsE (dr1819, PprA (dra0346, and RecN (dr1447, are directly regulated by DR0997. Quantitative real-time polymerase chain reaction (qRT-PCR analyses showed that certain genes involved in anti-oxidative responses, DNA repair, and various cellular pathways are transcriptionally attenuated in the dr0997 mutant. Interestingly, DR0997 also regulate the transcriptional levels of all CRP genes in this bacterium. These data suggest that DR0997 contributes to the extreme stress resistance of D. radiodurans via its regulatory role in multiple cellular pathways, such as anti-oxidation and DNA repair pathways.

  16. Knowledge-based analysis of microarrays for the discovery of transcriptional regulation relationships.

    Science.gov (United States)

    Seok, Junhee; Kaushal, Amit; Davis, Ronald W; Xiao, Wenzhong

    2010-01-18

    The large amount of high-throughput genomic data has facilitated the discovery of the regulatory relationships between transcription factors and their target genes. While early methods for discovery of transcriptional regulation relationships from microarray data often focused on the high-throughput experimental data alone, more recent approaches have explored the integration of external knowledge bases of gene interactions. In this work, we develop an algorithm that provides improved performance in the prediction of transcriptional regulatory relationships by supplementing the analysis of microarray data with a new method of integrating information from an existing knowledge base. Using a well-known dataset of yeast microarrays and the Yeast Proteome Database, a comprehensive collection of known information of yeast genes, we show that knowledge-based predictions demonstrate better sensitivity and specificity in inferring new transcriptional interactions than predictions from microarray data alone. We also show that comprehensive, direct and high-quality knowledge bases provide better prediction performance. Comparison of our results with ChIP-chip data and growth fitness data suggests that our predicted genome-wide regulatory pairs in yeast are reasonable candidates for follow-up biological verification. High quality, comprehensive, and direct knowledge bases, when combined with appropriate bioinformatic algorithms, can significantly improve the discovery of gene regulatory relationships from high throughput gene expression data.

  17. Transcriptional factor PU.1 regulates decidual C1q expression in early pregnancy in human

    Directory of Open Access Journals (Sweden)

    Priyaa Madhukaran Raj

    2015-02-01

    Full Text Available C1q is the first recognition subcomponent of the complement classical pathway, which in addition to being synthesized in the liver, is also expressed by macrophages and dendritic cells. Trophoblast invasion during early placentation results in accumulation of debris that triggers the complement system. Hence, both early and late components of the classical pathway are widely distributed in the placenta and decidua. In addition, C1q has recently been shown to significantly contribute to feto-maternal tolerance, trophoblast migration, and spiral artery remodeling, although the exact mechanism remains unknown. Pregnancy in mice, genetically deficient in C1q, mirrors symptoms similar to that of human preeclampsia. Thus, regulated complement activation has been proposed as an essential requirement for normal successful pregnancy. Little is known about the molecular pathways that regulate C1q expression in pregnancy. PU.1, an Ets-family transcription factor, is required for the development of hematopoietic myeloid lineage immune cells, and its expression is tissue- specific. Recently, PU.1 has been shown to regulate C1q gene expression in dendritic cells and macrophages. Here, we have examined if PU.1 transcription factor regulates decidual C1q expression. We used immune-histochemical analysis, PCR and immunostaining to localize and study the gene expression of PU.1 transcription factor in early human decidua. PU.1 was highly expressed at gene and protein level in early human decidual cells including trophoblast and stromal cells. Surprisingly, nuclear as well as cytoplasmic PU.1 expression was observed. Decidual cells with predominantly nuclear PU.1 expression had higher C1q expression. It is likely that nuclear and cytoplasmic PU.1 localization has a role to play in early pregnancy via regulating C1q expression in the decidua during implantation.

  18. The Hv NAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Rung, Jesper Henrik; Gregersen, Per Langkjaer

    2007-01-01

    Pathogens induce the expression of many genes encoding plant transcription factors, though specific knowledge of the biological function of individual transcription factors remains scarce. NAC transcription factors are encoded in plants by a gene family with proposed functions in both abiotic...... and biotic stress adaptation, as well as in developmental processes. In this paper, we provide convincing evidence that a barley NAC transcription factor has a direct role in regulating basal defence. The gene transcript was isolated by differential display from barley leaves infected with the biotrophic...... powdery mildew fungus, Blumeria graminis f.sp. hordei (Bgh). The full-length cDNA clone was obtained using 5'-RACE and termed HvNAC6, due to its high similarity to the rice homologue, OsNAC6. Gene silencing of HvNAC6 during Bgh inoculation compromises penetration resistance in barley epidermal cells...

  19. The gga-let-7 family post-transcriptionally regulates TGFBR1 and LIN28B during the differentiation process in early chick development.

    Science.gov (United States)

    Lee, Sang In; Jeon, Mi-Hyang; Kim, Jeom Sun; Jeon, Ik-Soo; Byun, Sung June

    2015-12-01

    Early chick embryogenesis is governed by a complex mechanism involving transcriptional and post-transcriptional regulation, although how post-transcriptional processes influence the balance between pluripotency and differentiation during early chick development have not been previously investigated. Here, we characterized the microRNA (miRNA) signature associated with differentiation in the chick embryo, and found that as expression of the gga-let-7 family increases through early development, expression of their direct targets, TGFBR1 and LIN28B, decreases; indeed, gga-let-7a-5p and gga-let-7b miRNAs directly bind to TGFBR1 and LIN28B transcripts. Our data further indicate that TGFBR1 and LIN28B maintain pluripotency by regulating POUV, NANOG, and CRIPTO. Therefore, gga-let-7 miRNAs act as post-transcriptional regulators of differentiation in blastodermal cells by repressing the expression of the TGFBR1 and LIN28B, which intrinsically controls blastodermal cell differentiation in early chick development. © 2015 Wiley Periodicals, Inc.

  20. Transcriptional diversity and regulation across time and states

    DEFF Research Database (Denmark)

    Vitting-Seerup, Kristoffer

    Originally the production of RNA copies from genes was thought to serve just as an intermediary step in the production of proteins. This view has however drastically changed with the emergence of several important functions of RNA. It has been found that the production of RNA also serves as to in......Originally the production of RNA copies from genes was thought to serve just as an intermediary step in the production of proteins. This view has however drastically changed with the emergence of several important functions of RNA. It has been found that the production of RNA also serves...... is transferred through the regulatory levels is currently unknown. In this thesis we have utilized high-throughput sequencing of RNA to perform genome wide analysis of transcriptional diversity and regulation across time and states. Specifically we have developed computational tools for both genome wide analysis...... used time-course data to perform an analysis of gene regulation in unprecedented details. The analysis resulted in a model where regulatory signals are deciphered first at enhancers and then subsequently in genes (Article V). This model, which is consistent across different stimuli and species...

  1. Network analysis of inflammatory genes and their transcriptional regulators in coronary artery disease.

    Directory of Open Access Journals (Sweden)

    Jiny Nair

    Full Text Available Network analysis is a novel method to understand the complex pathogenesis of inflammation-driven atherosclerosis. Using this approach, we attempted to identify key inflammatory genes and their core transcriptional regulators in coronary artery disease (CAD. Initially, we obtained 124 candidate genes associated with inflammation and CAD using Polysearch and CADgene database for which protein-protein interaction network was generated using STRING 9.0 (Search Tool for the Retrieval of Interacting Genes and visualized using Cytoscape v 2.8.3. Based on betweenness centrality (BC and node degree as key topological parameters, we identified interleukin-6 (IL-6, vascular endothelial growth factor A (VEGFA, interleukin-1 beta (IL-1B, tumor necrosis factor (TNF and prostaglandin-endoperoxide synthase 2 (PTGS2 as hub nodes. The backbone network constructed with these five hub genes showed 111 nodes connected via 348 edges, with IL-6 having the largest degree and highest BC. Nuclear factor kappa B1 (NFKB1, signal transducer and activator of transcription 3 (STAT3 and JUN were identified as the three core transcription factors from the regulatory network derived using MatInspector. For the purpose of validation of the hub genes, 97 test networks were constructed, which revealed the accuracy of the backbone network to be 0.7763 while the frequency of the hub nodes remained largely unaltered. Pathway enrichment analysis with ClueGO, KEGG and REACTOME showed significant enrichment of six validated CAD pathways - smooth muscle cell proliferation, acute-phase response, calcidiol 1-monooxygenase activity, toll-like receptor signaling, NOD-like receptor signaling and adipocytokine signaling pathways. Experimental verification of the above findings in 64 cases and 64 controls showed increased expression of the five candidate genes and the three transcription factors in the cases relative to the controls (p<0.05. Thus, analysis of complex networks aid in the

  2. A switch from a gradient to a threshold mode in the regulation of a transcriptional cascade promotes robust execution of meiosis in budding yeast.

    Directory of Open Access Journals (Sweden)

    Vyacheslav Gurevich

    Full Text Available Tight regulation of developmental pathways is of critical importance to all organisms, and is achieved by a transcriptional cascade ensuring the coordinated expression of sets of genes. We aimed to explore whether a strong signal is required to enter and complete a developmental pathway, by using meiosis in budding yeast as a model. We demonstrate that meiosis in budding yeast is insensitive to drastic changes in the levels of its consecutive positive regulators (Ime1, Ime2, and Ndt80. Entry into DNA replication is not correlated with the time of transcription of the early genes that regulate this event. Entry into nuclear division is directly regulated by the time of transcription of the middle genes, as premature transcription of their activator NDT80, leads to a premature entry into the first meiotic division, and loss of coordination between DNA replication and nuclear division. We demonstrate that Cdk1/Cln3 functions as a negative regulator of Ime2, and that ectopic expression of Cln3 delays entry into nuclear division as well as NDT80 transcription. Because Ime2 functions as a positive regulator for premeiotic DNA replication and NDT80 transcription, as well as a negative regulator of Cdk/Cln, we suggest that a double negative feedback loop between Ime2 and Cdk1/Cln3 promotes a bistable switch from the cell cycle to meiosis. Moreover, our results suggest a regulatory mode switch that ensures robust meiosis as the transcription of the early meiosis-specific genes responds in a graded mode to Ime1 levels, whereas that of the middle and late genes as well as initiation of DNA replication, are regulated in a threshold mode.

  3. Regulation of pokemon 1 activity by sumoylation.

    Science.gov (United States)

    Roh, Hee-Eun; Lee, Min-Nyung; Jeon, Bu-Nam; Choi, Won-Il; Kim, Yoo-Jin; Yu, Mi-Young; Hur, Man-Wook

    2007-01-01

    Pokemon 1 is a proto-oncogenic transcriptional regulator that contains a POZ domain at the N-terminus and four Kruppel-like zinc fingers at the C-terminus. Pokemon 1 plays an important role in adipogenesis, osteogenesis, oncogenesis, and transcription of NF-kB responsive genes. Recent reports have shown that biological activities of transcription factors are regulated by sumolylation. We investigated whether Pokemon 1 is post-translationally modified by sumoylation and whether the modification affects Pokemon 1's transcriptional properties. We found that Pokemon 1 is sumoylated in vitro and in vivo. Upon careful analysis of the amino acid sequence of Pokemon 1, we found ten potential sumoylation sites located at lysines 61, 354, 371, 379, 383, 396, 486, 487, 536 and 539. We mutated each of these amino acids into arginine and tested whether the mutation could affect the transcriptional properties of Pokemon 1 on the Pokemon 1 responsive genes, such as ADH5/FDH and pG5-FRE-Luc. Wild-type Pokemon 1 potently represses transcription of ADH5/FDH. Most of the mutants, however, were weaker transcription repressors and repressed transcription 1.3-3.3 fold less effective. Although potential sumoylation sites were located close to the DNA binding domain or the nuclear localization sequence, the mutations did not alter nuclear localization or DNA binding activity. In addition, on the pG5-FRE-Luc test promoter construct, ectopic SUMO-1 repressed transcription in the presence of Pokemon 1. The sumoylation target lysine residue at amino acid 61, which is located in the middle of the POZ-domain, is important because K61R mutation resulted in a much weaker molecular interaction with corepressors. Our data suggest that Pokemon 1's activity as a transcription factor may involve sumoylation, and that sumoylation might be important in the regulation of transcription by Pokemon 1.

  4. Complex Interdependence Regulates Heterotypic Transcription Factor Distribution and Coordinates Cardiogenesis.

    Science.gov (United States)

    Luna-Zurita, Luis; Stirnimann, Christian U; Glatt, Sebastian; Kaynak, Bogac L; Thomas, Sean; Baudin, Florence; Samee, Md Abul Hassan; He, Daniel; Small, Eric M; Mileikovsky, Maria; Nagy, Andras; Holloway, Alisha K; Pollard, Katherine S; Müller, Christoph W; Bruneau, Benoit G

    2016-02-25

    Transcription factors (TFs) are thought to function with partners to achieve specificity and precise quantitative outputs. In the developing heart, heterotypic TF interactions, such as between the T-box TF TBX5 and the homeodomain TF NKX2-5, have been proposed as a mechanism for human congenital heart defects. We report extensive and complex interdependent genomic occupancy of TBX5, NKX2-5, and the zinc finger TF GATA4 coordinately controlling cardiac gene expression, differentiation, and morphogenesis. Interdependent binding serves not only to co-regulate gene expression but also to prevent TFs from distributing to ectopic loci and activate lineage-inappropriate genes. We define preferential motif arrangements for TBX5 and NKX2-5 cooperative binding sites, supported at the atomic level by their co-crystal structure bound to DNA, revealing a direct interaction between the two factors and induced DNA bending. Complex interdependent binding mechanisms reveal tightly regulated TF genomic distribution and define a combinatorial logic for heterotypic TF regulation of differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Widespread anti-sense transcription in apple is correlated with siRNA production and indicates a large potential for transcriptional and/or post-transcriptional control.

    Science.gov (United States)

    Celton, Jean-Marc; Gaillard, Sylvain; Bruneau, Maryline; Pelletier, Sandra; Aubourg, Sébastien; Martin-Magniette, Marie-Laure; Navarro, Lionel; Laurens, François; Renou, Jean-Pierre

    2014-07-01

    Characterizing the transcriptome of eukaryotic organisms is essential for studying gene regulation and its impact on phenotype. The realization that anti-sense (AS) and noncoding RNA transcription is pervasive in many genomes has emphasized our limited understanding of gene transcription and post-transcriptional regulation. Numerous mechanisms including convergent transcription, anti-correlated expression of sense and AS transcripts, and RNAi remain ill-defined. Here, we have combined microarray analysis and high-throughput sequencing of small RNAs (sRNAs) to unravel the complexity of transcriptional and potential post-transcriptional regulation in eight organs of apple (Malus × domestica). The percentage of AS transcript expression is higher than that identified in annual plants such as rice and Arabidopsis thaliana. Furthermore, we show that a majority of AS transcripts are transcribed beyond 3'UTR regions, and may cover a significant portion of the predicted sense transcripts. Finally we demonstrate at a genome-wide scale that anti-sense transcript expression is correlated with the presence of both short (21-23 nt) and long (> 30 nt) siRNAs, and that the sRNA coverage depth varies with the level of AS transcript expression. Our study provides a new insight on the functional role of anti-sense transcripts at the genome-wide level, and a new basis for the understanding of sRNA biogenesis in plants. © 2014 INRA. New Phytologist © 2014 New Phytologist Trust.

  6. A single-repeat R3-MYB transcription factor MYBC1 negatively regulates freezing tolerance in Arabidopsis

    International Nuclear Information System (INIS)

    Zhai, Hong; Bai, Xi; Zhu, Yanming; Li, Yong; Cai, Hua; Ji, Wei; Ji, Zuojun; Liu, Xiaofei; Liu, Xin; Li, Jing

    2010-01-01

    We had previously identified the MYBC1 gene, which encodes a single-repeat R3-MYB protein, as a putative osmotic responding gene; however, no R3-MYB transcription factor has been reported to regulate osmotic stress tolerance. Thus, we sought to elucidate the function of MYBC1 in response to osmotic stresses. Real-time RT-PCR analysis indicated that MYBC1 expression responded to cold, dehydration, salinity and exogenous ABA at the transcript level. mybc1 mutants exhibited an increased tolerance to freezing stress, whereas 35S::MYBC1 transgenic plants exhibited decreased cold tolerance. Transcript levels of some cold-responsive genes, including CBF/DREB genes, KIN1, ADC1, ADC2 and ZAT12, though, were not altered in the mybc1 mutants or the 35S::MYBC1 transgenic plants in response to cold stress, as compared to the wild type. Microarray analysis results that are publically available were investigated and found transcript level of MYBC1 was not altered by overexpression of CBF1, CBF2, and CBF3, suggesting that MYBC1 is not down regulated by these CBF family members. Together, these results suggested that MYBC1is capable of negatively regulating the freezing tolerance of Arabidopsis in the CBF-independent pathway. In transgenic Arabidopsis carrying an MYBC1 promoter driven β-glucuronidase (GUS) construct, GUS activity was observed in all tissues and was relatively stronger in the vascular tissues. Fused MYBC1 and GFP protein revealed that MYBC1 was localized exclusively in the nuclear compartment.

  7. 1,25-dihydroxyvitamin D3 is an autonomous regulator of the transcriptional changes leading to a tolerogenic dendritic cell phenotype.

    Science.gov (United States)

    Széles, Lajos; Keresztes, Gábor; Töröcsik, Dániel; Balajthy, Zoltán; Krenács, László; Póliska, Szilárd; Steinmeyer, Andreas; Zuegel, Ulrich; Pruenster, Monika; Rot, Antal; Nagy, László

    2009-02-15

    Activation of vitamin D receptor (VDR) by 1,25-dihydroxyvitamin D(3) (1,25-vitD) reprograms dendritic cells (DC) to become tolerogenic. Previous studies suggested that 1,25-vitD could inhibit the changes brought about by differentiation and maturation of DCs. Underpinning the described phenotypic and functional alterations, there must be 1,25-vitD-coordinated transcriptional events. However, this transcriptional program has not been systematically investigated, particularly not in a developmental context. Hence, it has not been explored how 1,25-vitD-regulated genes, particularly the ones bringing about the tolerogenic phenotype, are connected to differentiation. We conducted global gene expression analysis followed by comprehensive quantitative PCR validation to clarify the interrelationship between 1,25-vitD and differentiation-driven gene expression patterns in developing human monocyte-derived and blood myeloid DCs. In this study we show that 1,25-vitD regulates a large set of genes that are not affected by differentiation. Interestingly, several genes, impacted both by the ligand and by differentiation, appear to be regulated by 1,25-vitD independently of the developmental context. We have also characterized the kinetics of generation of 1,25-vitD by using three early and robustly regulated genes, the chemokine CCL22, the inhibitory receptors CD300LF and CYP24A1. We found that monocyte-derived DCs are able to turn on 1,25-vitD sensitive genes in early phases of differentiation if the precursor is present. Our data collectively suggest that exogenous or endogenously generated 1,25-vitD regulates a large set of its targets autonomously and not via inhibition of differentiation and maturation, leading to the previously characterized tolerogenic state.

  8. Genome-wide investigation of transcription factors provides insights into transcriptional regulation in Plutella xylostella.

    Science.gov (United States)

    Zhao, Qian; Ma, Dongna; Huang, Yuping; He, Weiyi; Li, Yiying; Vasseur, Liette; You, Minsheng

    2018-04-01

    Transcription factors (TFs), which play a vital role in regulating gene expression, are prevalent in all organisms and characterization of them may provide important clues for understanding regulation in vivo. The present study reports a genome-wide investigation of TFs in the diamondback moth, Plutella xylostella (L.), a worldwide pest of crucifers. A total of 940 TFs distributed among 133 families were identified. Phylogenetic analysis of insect species showed that some of these families were found to have expanded during the evolution of P. xylostella or Lepidoptera. RNA-seq analysis showed that some of the TF families, such as zinc fingers, homeobox, bZIP, bHLH, and MADF_DNA_bdg genes, were highly expressed in certain tissues including midgut, salivary glands, fat body, and hemocytes, with an obvious sex-biased expression pattern. In addition, a number of TFs showed significant differences in expression between insecticide susceptible and resistant strains, suggesting that these TFs play a role in regulating genes related to insecticide resistance. Finally, we identified an expansion of the HOX cluster in Lepidoptera, which might be related to Lepidoptera-specific evolution. Knockout of this cluster using CRISPR/Cas9 showed that the egg cannot hatch, indicating that this cluster may be related to egg development and maturation. This is the first comprehensive study on identifying and characterizing TFs in P. xylostella. Our results suggest that some TF families are expanded in the P. xylostella genome, and these TFs may have important biological roles in growth, development, sexual dimorphism, and resistance to insecticides. The present work provides a solid foundation for understanding regulation via TFs in P. xylostella and insights into the evolution of the P. xylostella genome.

  9. The precise regulation of different COR genes by individual CBF transcription factors in Arabidopsis thaliana.

    Science.gov (United States)

    Shi, Yihao; Huang, Jiaying; Sun, Tianshu; Wang, Xuefei; Zhu, Chenqi; Ai, Yuxi; Gu, Hongya

    2017-02-01

    The transcription factors CBF1/2/3 are reported to play a dominant role in the cold responsive network of Arabidopsis by directly regulating the expression levels of cold responsive (COR) genes. In this study, we obtained CRISPR/Cas9-mediated loss-of-function mutants of cbf1∼3. Over 3,000 COR genes identified by RNA-seq analysis showed a slight but significant change in their expression levels in the mutants compared to the wild-type plants after being treated at 4 °C for 12 h. The C-repeat (CRT) motif (5'-CCGAC-3') was enriched in promoters of genes that were up-regulated by CBF2 and CBF3 but not in promoters of genes up-regulated by CBF1. These data suggest that CBF2 and CBF3 play a more important role in directing the cold response by regulating different sets of downstream COR genes. More than 2/3 of COR genes were co-regulated by two or three CBFs and were involved mainly in cellular signal transduction and metabolic processes; less than 1/3 of the genes were regulated by one CBF, and those genes up-regulated were enriched in cold-related abiotic stress responses. Our results indicate that CBFs play an important role in the trade-off between cold tolerance and plant growth through the precise regulation of COR genes in the complicated transcriptional network. © 2016 The Authors. Journal of Integrative Plant Biology Published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

  10. Post-transcriptional regulation of the arginine transporter Cat-1 by amino acid availability

    NARCIS (Netherlands)

    Aulak, K. S.; Mishra, R.; Zhou, L.; Hyatt, S. L.; de Jonge, W.; Lamers, W.; Snider, M.; Hatzoglou, M.

    1999-01-01

    The regulation of the high affinity cationic amino acid transporter (Cat-1) by amino acid availability has been studied. In C6 glioma and NRK kidney cells, cat-1 mRNA levels increased 3.8-18-fold following 2 h of amino acid starvation. The transcription rate of the cat-1 gene remained unchanged

  11. Genome-Wide Phylogenetic Comparative Analysis of Plant Transcriptional Regulation: A Timeline of Loss, Gain, Expansion, and Correlation with Complexity

    OpenAIRE

    Lang, Daniel; Weiche, Benjamin; Timmerhaus, Gerrit; Richardt, Sandra; Ria?o-Pach?n, Diego M.; Corr?a, Luiz G. G.; Reski, Ralf; Mueller-Roeber, Bernd; Rensing, Stefan A.

    2010-01-01

    Evolutionary retention of duplicated genes encoding transcription-associated proteins (TAPs, comprising transcription factors and other transcriptional regulators) has been hypothesized to be positively correlated with increasing morphological complexity and paleopolyploidizations, especially within the plant kingdom. Here, we present the most comprehensive set of classification rules for TAPs and its application for genome-wide analyses of plants and algae. Using a dated species tree and phy...

  12. Dysfunctional transcripts are formed by alternative polyadenylation in OPMD

    OpenAIRE

    Raz, Vered; Dickson, George; ’t Hoen, Peter A.C.

    2017-01-01

    Post-transcription mRNA processing in the 3’-untranslated region (UTR) of transcripts alters mRNA landscape. Alternative polyadenylation (APA) utilization in the 3’-UTR often leads to shorter 3’-UTR affecting mRNA stability, a process that is regulated by PABPN1. In skeletal muscles PABPN1 levels reduce with age and a greater decrease in found in Oculopharyngeal muscular dystrophy (OPMD). OPMD is a late onset autosomal dominant myopathy caused by expansion mutation in PABPN1. In OPMD models a...

  13. Trpac1, a pH response transcription regulator, is involved in cellulase gene expression in Trichoderma reesei.

    Science.gov (United States)

    He, Ronglin; Ma, Lijuan; Li, Chen; Jia, Wendi; Li, Demao; Zhang, Dongyuan; Chen, Shulin

    2014-12-01

    Fungi grow over a relatively wide pH range and adapt to extracellular pH through a genetic regulatory system mediated by a key component PacC, which is a pH transcription regulator. The cellulase production of the filamentous fungi Trichoderma reesei is sensitive to ambient pH. To investigate the connection between cellulase expression regulation and ambient pH, an ortholog of Aspergillus nidulans pacC, Trpac1, was identified and functionally characterized using a target gene deletion strategy. Deleting Trpac1 dramatically increased the cellulase production and the transcription levels of the major cellulase genes at neutral pH, which suggested Trpac1 is involved in the regulation of cellulase production. It was further observed that the expression levels of transcription factors xyr1 and ace2 also increased in the ΔTrpac1 mutant at neutral pH. In addition, the ΔTrpac1 mutant exhibited conidiation defects under neutral and alkaline pH. These results implied that Trpac1 in involved in growth and development process and cellulase gene expression in T. reesei. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Modulation of organic acids and sugar content in tomato fruits by an abscisic acid-regulated transcription factor.

    Science.gov (United States)

    Bastías, Adriana; López-Climent, María; Valcárcel, Mercedes; Rosello, Salvador; Gómez-Cadenas, Aurelio; Casaretto, José A

    2011-03-01

    Growing evidence suggests that the phytohormone abscisic acid (ABA) plays a role in fruit development. ABA signaling components of developmental programs and responses to stress conditions include the group of basic leucine zipper transcriptional activators known as ABA-response element binding factors (AREBs/ABFs). AREB transcription factors mediate ABA-regulated gene expression involved in desiccation tolerance and are expressed mainly in seeds and in vegetative tissues under stress; however, they are also expressed in some fruits such as tomato. In order to get an insight into the role of ABA signaling in fruit development, the expression of two AREB-like factors were investigated during different developmental stages. In addition, tomato transgenic lines that overexpress and downregulate one AREB-like transcription factor, SlAREB1, were used to determine its effect on the levels of some metabolites determining fruit quality. Higher levels of citric acid, malic acid, glutamic acid, glucose and fructose were observed in SlAREB1-overexpressing lines compared with those in antisense suppression lines in red mature fruit pericarp. The higher hexose concentration correlated with increased expression of genes encoding a vacuolar invertase (EC 3.2.1.26) and a sucrose synthase (EC 2.4.1.13). No significant changes were found in ethylene content which agrees with the normal ripening phenotype observed in transgenic fruits. These results suggest that an AREB-mediated ABA signal affects the metabolism of these compounds during the fruit developmental program. Copyright © Physiologia Plantarum 2010.

  15. Hippo, TGF-β, and Src-MAPK pathways regulate transcription of the upd3 cytokine in Drosophila enterocytes upon bacterial infection.

    Science.gov (United States)

    Houtz, Philip; Bonfini, Alessandro; Liu, Xi; Revah, Jonathan; Guillou, Aurélien; Poidevin, Mickael; Hens, Korneel; Huang, Hsin-Yi; Deplancke, Bart; Tsai, Yu-Chen; Buchon, Nicolas

    2017-11-01

    Cytokine signaling is responsible for coordinating conserved epithelial regeneration and immune responses in the digestive tract. In the Drosophila midgut, Upd3 is a major cytokine, which is induced in enterocytes (EC) and enteroblasts (EB) upon oral infection, and initiates intestinal stem cell (ISC) dependent tissue repair. To date, the genetic network directing upd3 transcription remains largely uncharacterized. Here, we have identified the key infection-responsive enhancers of the upd3 gene and show that distinct enhancers respond to various stresses. Furthermore, through functional genetic screening, bioinformatic analyses and yeast one-hybrid screening, we determined that the transcription factors Scalloped (Sd), Mothers against dpp (Mad), and D-Fos are principal regulators of upd3 expression. Our study demonstrates that upd3 transcription in the gut is regulated by the activation of multiple pathways, including the Hippo, TGF-β/Dpp, and Src, as well as p38-dependent MAPK pathways. Thus, these essential pathways, which are known to control ISC proliferation cell-autonomously, are also activated in ECs to promote tissue turnover the regulation of upd3 transcription.

  16. DNMT3L is a regulator of X chromosome compaction and post-meiotic gene transcription.

    Directory of Open Access Journals (Sweden)

    Natasha M Zamudio

    Full Text Available Previous studies on the epigenetic regulator DNA methyltransferase 3-Like (DNMT3L, have demonstrated it is an essential regulator of paternal imprinting and early male meiosis. Dnmt3L is also a paternal effect gene, i.e., wild type offspring of heterozygous mutant sires display abnormal phenotypes suggesting the inheritance of aberrant epigenetic marks on the paternal chromosomes. In order to reveal the mechanisms underlying these paternal effects, we have assessed X chromosome meiotic compaction, XY chromosome aneuploidy rates and global transcription in meiotic and haploid germ cells from male mice heterozygous for Dnmt3L. XY bodies from Dnmt3L heterozygous males were significantly longer than those from wild types, and were associated with a three-fold increase in XY bearing sperm. Loss of a Dnmt3L allele resulted in deregulated expression of a large number of both X-linked and autosomal genes within meiotic cells, but more prominently in haploid germ cells. Data demonstrate that similar to embryonic stem cells, DNMT3L is involved in an auto-regulatory loop in germ cells wherein the loss of a Dnmt3L allele resulted in increased transcription from the remaining wild type allele. In contrast, however, within round spermatids, this auto-regulatory loop incorporated the alternative non-coding alternative transcripts. Consistent with the mRNA data, we have localized DNMT3L within spermatids and sperm and shown that the loss of a Dnmt3L allele results in a decreased DNMT3L content within sperm. These data demonstrate previously unrecognised roles for DNMT3L in late meiosis and in the transcriptional regulation of meiotic and post-meiotic germ cells. These data provide a potential mechanism for some cases of human Klinefelter's and Turner's syndromes.

  17. Semester-long inquiry-based molecular biology laboratory: Transcriptional regulation in yeast.

    Science.gov (United States)

    Oelkers, Peter M

    2017-03-04

    A single semester molecular biology laboratory has been developed in which students design and execute a project examining transcriptional regulation in Saccharomyces cerevisiae. Three weeks of planning are allocated to developing a hypothesis through literature searches and use of bioinformatics. Common experimental plans address a cell process and how three genes that encode for proteins involved in that process are transcriptionally regulated in response to changing environmental conditions. Planning includes designing oligonucleotides to amplify the putative promoters of the three genes of interest. After the PCR, each product is cloned proximal to β-galactosidase in a yeast reporter plasmid. Techniques used include agarose electrophoresis, extraction of DNA from agarose, plasmid purification from bacteria, restriction digestion, ligation, and bacterial transformation. This promoter/reporter plasmid is then transformed into yeast. Transformed yeast are cultured in conditions prescribed in the experimental design, lysed and β-galactosidase activity is measured. The course provides an independent research experience in a group setting. Notebooks are maintained on-line with regular feedback. Projects culminate with the presentation of a poster worth 60% of the grade. Over the last three years, about 65% of students met expectations for experimental design, data acquisition, and analysis. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(2):145-151, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  18. Inactivation of SACE_3446, a TetR family transcriptional regulator, stimulates erythromycin production in Saccharopolyspora erythraea

    OpenAIRE

    Wu, Hang; Wang, Yansheng; Yuan, Li; Mao, Yongrong; Wang, Weiwei; Zhu, Lin; Wu, Panpan; Fu, Chengzhang; Müller, Rolf; Weaver, David T.; Zhang, Lixin; Zhang, Buchang

    2016-01-01

    Erythromycin A is a widely used antibiotic produced by Saccharopolyspora erythraea; however, its biosynthetic cluster lacks a regulatory gene, limiting the yield enhancement via regulation engineering of S. erythraea. Herein, six TetR family transcriptional regulators (TFRs) belonging to three genomic context types were individually inactivated in S. erythraea A226, and one of them, SACE_3446, was proved to play a negative role in regulating erythromycin biosynthesis. EMSA and qRT-PCR analysi...

  19. The post-transcriptional regulator rsmA/csrA activates T3SS by stabilizing the 5' UTR of hrpG, the master regulator of hrp/hrc genes, in Xanthomonas.

    Directory of Open Access Journals (Sweden)

    Maxuel O Andrade

    2014-02-01

    Full Text Available The RsmA/CsrA family of the post-transcriptional regulators of bacteria is involved in the regulation of many cellular processes, including pathogenesis. In this study, we demonstrated that rsmA not only is required for the full virulence of the phytopathogenic bacterium Xanthomonas citri subsp. citri (XCC but also contributes to triggering the hypersensitive response (HR in non-host plants. Deletion of rsmA resulted in significantly reduced virulence in the host plant sweet orange and a delayed and weakened HR in the non-host plant Nicotiana benthamiana. Microarray, quantitative reverse-transcription PCR, western-blotting, and GUS assays indicated that RsmA regulates the expression of the type 3 secretion system (T3SS at both transcriptional and post-transcriptional levels. The regulation of T3SS by RsmA is a universal phenomenon in T3SS-containing bacteria, but the specific mechanism seems to depend on the interaction between a particular bacterium and its hosts. For Xanthomonads, the mechanism by which RsmA activates T3SS remains unknown. Here, we show that RsmA activates the expression of T3SS-encoding hrp/hrc genes by directly binding to the 5' untranslated region (UTR of hrpG, the master regulator of the hrp/hrc genes in XCC. RsmA stabilizes hrpG mRNA, leading to increased accumulation of HrpG proteins and subsequently, the activation of hrp/hrc genes. The activation of the hrp/hrc genes by RsmA via HrpG was further supported by the observation that ectopic overexpression of hrpG in an rsmA mutant restored its ability to cause disease in host plants and trigger HR in non-host