WorldWideScience

Sample records for affecting proton exchange

  1. Proton transport in proton exchange membranes

    OpenAIRE

    Schmeisser, Jennifer Mary

    2007-01-01

    This work investigated several proton exchange membranes (PEMs): perfluorosulfonic acid-based polymers (Nafion®), sulfonated poly(ether ether ketone) (S-PEEK), radiation-grafted ethylenetetrafluoroethylene-grafted-poly(styrene sulfonic) acid (ETFE-g-PSSA), sulfonated trifluorostyrene-co-substituted trifluorostyrene (BAM®), sulfonated polystyrene-b-poly(ethylene-r-butylene)-b-polystyrene triblock copolymer (S-SEBS), and a series of novel photocurable polyelectrolytes. These polymer systems dif...

  2. Proton exchange membrane fuel cells

    CERN Document Server

    Qi, Zhigang

    2013-01-01

    Preface Proton Exchange Membrane Fuel CellsFuel CellsTypes of Fuel CellsAdvantages of Fuel CellsProton Exchange Membrane Fuel CellsMembraneCatalystCatalyst LayerGas Diffusion MediumMicroporous LayerMembrane Electrode AssemblyPlateSingle CellStackSystemCell Voltage Monitoring Module (CVM)Fuel Supply Module (FSM)Air Supply Module (ASM)Exhaust Management Module (EMM)Heat Management Module (HMM)Water Management Module (WMM)Internal Power Supply Module (IPM)Power Conditioning Module (PCM)Communications Module (COM)Controls Module (CM)SummaryThermodynamics and KineticsTheoretical EfficiencyVoltagePo

  3. Microporous Inorganic Membranes as Proton Exchange Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Vichi, F.M. Tejedor-Tejedor, M.I. Anderson, Marc A

    2002-08-28

    Porous oxide electrolyte membranes provide an alternative approach to fabricating proton exchange membrane fuel cells based on inorganic materials. This study focused on elucidating the properties of these inorganic membranes that make them good electrolyte materials in membrane electrode assemblies; in particular, we investigated several properties that affect the nature of proton conductivity in these membranes. This report discusses our findings on the effect of variables such as site density, amount of surface protonation and surface modification on the proton conductivity of membranes with a fixed pore structure under selected conditions. Proton conductivities of these inorganic membranes are similar to conductivities of nafion, the polymeric membrane most commonly used in low temperature fuel cells.

  4. Emission of neutron-proton and proton-proton pairs in electron scattering induced by meson-exchange currents

    CERN Document Server

    Simo, I Ruiz; Barbaro, M B; De Pace, A; Caballero, J A; Megias, G D; Donnelly, T W

    2016-01-01

    We use a relativistic model of meson-exchange currents to compute the proton-neutron and proton-proton yields in $(e,e')$ scattering from $^{12}$C in the 2p-2h channel. We compute the response functions and cross section with the relativistic Fermi gas model for a range of kinematics from intermediate to high momentum transfers. We find a large contribution of neutron-proton configurations in the initial state, as compared to proton-proton pairs. The different emission probabilities of distinct species of nucleon pairs are produced in our model only by meson-exchange currents, mainly by the $\\Delta$ isobar current. We also analyze the effect of the exchange contribution and show that the direct/exchange interference strongly affects the determination of the np/pp ratio.

  5. Cooperative internal conversion process by proton exchange

    CERN Document Server

    Kálmán, Péter

    2016-01-01

    A generalization of the recently discovered cooperative internal conversion process is investigated theoretically. In the cooperative internal conversion process by proton exchange investigated the coupling of bound-free electron and proton transitions due to the dipole term of their Coulomb interaction permits cooperation of two nuclei leading to proton exchange and an electron emission. General expression of the cross section of the process obtained in the one particle spherical nuclear shell model is presented. As a numerical example the cooperative internal conversion process by proton exchange in $Al$ is dealt with. As a further generalization, cooperative internal conversion process by heavy charged particle exchange and as an example of it the cooperative internal conversion process by triton exchange is discussed. The process is also connected to the field of nuclear waste disposal.

  6. Ring current proton decay by charge exchange

    Science.gov (United States)

    Smith, P. H.; Hoffman, R. A.; Fritz, T. A.

    1976-01-01

    Explorer 45 (S3-A) measurements were made during the recovery phase of the moderate magnetic storm of February 24, 1972, in which a symmetric ring current had developed and effects due to asymmetric ring current losses could be eliminated. It was found that after the initial rapid decay of the proton flux, which is a consequence of the dissipation of the asymmetric ring current, the equatorially mirroring protons in the energy range 5-30 keV decayed throughout the L value range of 3.5-5.0 at the charge exchange decay rate calculated by Liemohn (1961). After several days of decay, the proton fluxes reached a lower limit where an apparent equilibrium was maintained, between weak particle source mechanisms and the loss mechanisms, until fresh protons were injected into the ring current region during substorms. While other proton loss mechanisms may also be operating, the results indicate that charge exchange is more than sufficient as a particle loss mechanism for the storm time proton ring current decay.

  7. Modeling the cathode in a proton exchange membrane fuel cell using density functional theory How the carbon support can affect durability and activity of a platinum catalyst

    Science.gov (United States)

    Groves, Michael Nelson

    The current global energy and environmental challenges need to be addressed by developing a new portfolio of clean power producing devices. The proton exchange membrane fuel cell has the potential to be included and can fit into a variety of niches ranging from portable electronics to stationary residential applications. One of the many barriers to commercial viability is the cost of the cathode layer which requires too much platinum metal to achieve a comparable power output as well as would need to be replaced more frequently when compared to conventional sources for most applications. Using density functional theory, an ab initio modeling technique, these durability and activity issues are examined for platinum catalysts on graphene and carbon nanotube supports. The carbon supports were also doped by replacing individual carbon atoms with other second row elements (beryllium, boron, nitrogen, and oxygen) and the effect on the platinum-surface interaction along with the interaction between the platinum and the oxygen reduction reaction intermediates are discussed. Keywords: proton exchange membrane fuel cell, density functional theory, platinum catalyst, oxygen reduction reaction, doped carbon surfaces

  8. Ion exchange model for α phase proton exchange waveguide in LiNbO3

    DEFF Research Database (Denmark)

    Veng, Torben Erik; Skettrup, Torben

    1998-01-01

    An H+/Li+ exchange model is found to be applicable to describe the diffusion of protons when optical waveguides are formed in LiNbO3 by proton exchange methods where the proton doped crystal structure stays in the pure α phase. The H + and Li+ self-diffusion coefficients in the ion exchange model...

  9. Proton exchange membrane fuel cells modeling

    CERN Document Server

    Gao, Fengge; Miraoui, Abdellatif

    2013-01-01

    The fuel cell is a potential candidate for energy storage and conversion in our future energy mix. It is able to directly convert the chemical energy stored in fuel (e.g. hydrogen) into electricity, without undergoing different intermediary conversion steps. In the field of mobile and stationary applications, it is considered to be one of the future energy solutions.Among the different fuel cell types, the proton exchange membrane (PEM) fuel cell has shown great potential in mobile applications, due to its low operating temperature, solid-state electrolyte and compactness.This book pre

  10. Exchangers man the pumps: Functional interplay between proton pumps and proton-coupled Ca(2+) exchangers

    Science.gov (United States)

    Tonoplast-localised proton-coupled Ca(2+) transporters encoded by cation/H(+) exchanger (CAX) genes play a critical role in sequestering Ca(2+) into the vacuole. These transporters may function in coordination with Ca(2+) release channels, to shape stimulus-induced cytosolic Ca(2+) elevations. Recen...

  11. Epoxy-crosslinked sulfonated poly (phenylene) copolymer proton exchange membranes

    Science.gov (United States)

    Hibbs, Michael; Fujimoto, Cy H.; Norman, Kirsten; Hickner, Michael A.

    2010-10-19

    An epoxy-crosslinked sulfonated poly(phenylene) copolymer composition used as proton exchange membranes, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cell, in electrode casting solutions and electrodes, and in sulfur dioxide electrolyzers. These improved membranes are tougher, have higher temperature capability, and lower SO.sub.2 crossover rates.

  12. Protonic conductors for proton exchange membrane fuel cells: An overview

    Directory of Open Access Journals (Sweden)

    Jurado Ramon Jose

    2002-01-01

    Full Text Available At present, Nation, which is a perfluorinated polymer, is one of the few materials that deliver the set of chemical and mechanical properties required to perform as a good electrolyte in proton exchange membrane fuel cells (PEMFCs. However, Nation presents some disadvantages, such as limiting the operational temperature of the fuel system (So°C, because of its inability to retain water at higher temperatures and also suffers chemical crossover. In addition to these restrictions, Nation membranes are very expensive. Reducing costs and using environmentally friendly materials are good reasons to make a research effort in this field in order to achieve similar or even better fuel-cell performances. Glass materials of the ternary system SiO2-ZrO2-P2O5, hybrid materials based on Nation, and nanopore ceramic membranes based on SiO2 TiO2, Al2O3, etc. are considered at present, as promising candidates to replace Nation as the electrolyte in PEMFCs. These types of materials are generally prepared by sol-gel processes in order to tailor their channel-porous structure and pore size. In this communication, the possible candidates in the near future as electrolytes (including other polymers different than Nation in PEMFCs are briefly reviewed. Their preparation methods, their electrical transport properties and conduction mechanisms are considered. The advantages and disadvantages of these materials with respect to Nation are also discussed.

  13. Vanadium proton exchange membrane water electrolyser

    Science.gov (United States)

    Noack, Jens; Roznyatovskaya, Nataliya; Pinkwart, Karsten; Tübke, Jens

    2017-05-01

    In order to reverse the reactions of vanadium oxygen fuel cells and to regenerate vanadium redox flow battery electrolytes that have been oxidised by atmospheric oxygen, a vanadium proton exchange membrane water electrolyser was set up and investigated. Using an existing cell with a commercial and iridium-based catalyst coated membrane, it was possible to fully reduce V3.5+ and V3+ solutions to V2+ with the formation of oxygen and with coulomb efficiencies of over 96%. The cell achieved a maximum current density of 75 mA/cm2 during this process and was limited by the proximity of the V(III) reduction to the hydrogen evolution reaction. Due to the specific reaction mechanisms of V(IV) and V(III) ions, V(III) solutions were reduced with an energy efficiency of 61%, making this process nearly twice as energy efficient as the reduction of V(IV) to V(III). Polarisation curves and electrochemical impedance spectroscopy were used to further investigate the losses of half-cell reactions and to find ways of further increasing efficiency and performance levels.

  14. High Energy Proton-Proton Elastic Scattering in Reggeon-Pomeron Exchange Model

    Institute of Scientific and Technical Information of China (English)

    ZHOU Li-Juan; HU Zhao-Hui; MA Wei-Xing

    2006-01-01

    We initially propose a Reggeon-Pomeron exchange model to describe proton-proton elastic scattering at high energies in this short paper. A calculation for total cross section of proton-proton elastic scattering at high energies is performed without any free parameters. Our new finding from this work is that the Reggeon-Pomeron model gives a perfect fit to experimental data of the total cross section at the whole energy region where experimental data exist.

  15. Water hydrogen bonding in proton exchange and neutral polymer membranes

    Science.gov (United States)

    Smedley, Sarah Black

    qualitative observations that can be made with pure D2O or H2O. The theory and experimental practice of determining the hydrogen bonding distribution of water in a range of proton exchange membranes bearing aromatic sulfonate and perfluorosulfonate groups using this OD stretch technique is discussed. To further understand how the acidity of the sulfonate can be altered and how the acidity affects the hydrogen bonding network of water in a polymer membrane, various polymers with small chemical differences in the perfluorosulfonate sidechain were studied. In addition to the vibrational spectroscopy measurements using HOD as a probe, the partial charges of the sulfonate groups were calculating using DMol3 DFT calculations. The calculations and the experimentally determined peak position of the OD stretch both correlated to give a ranking of acidity for the various sidechains. Three sulfonated poly(arylene sulfone) based polymers were studied using FTIR and DFT calculations to better understand how the acidity of the sulfonate groups were affected by the placement on the backbone. By increasing the number of sulfone groups, which have electron withdrawing properties, flanking the sulfonated aromatic ring, the acidity was increased. The charge density of a sulfonate group flanked by two sulfone groups was -1.626 (in units of fundamental charge), while the charge density of a sulfonate group flanked by one sulfone group increased to -1.703. Additionally, if the subsequent ring was unsulfonated, the charge density further increased to -1.737, indicating that some stability is gained by both available rings being sulfonated. The differences in charge density are reflected in the water uptake and conductivity measurements, where the samples with the lowest charge density had the highest water uptake and conductivity. The deconvoluted OD peak revealed that the sample with two sulfone groups flanking the sulfonated aromatic ring contains the highest amount of bulk-like water, which led

  16. Covalently cross-linked polyetheretherketone proton exchange membrane for DMFC

    CSIR Research Space (South Africa)

    Luo, H

    2009-05-01

    Full Text Available -7 cm2/s) and good electrochemical stability. The results suggested that cross-linked polyetheretherketone membrane is particularly promising to be used as proton exchange membrane for the direct methanol fuel cell application....

  17. Imade-imide cross-linked PEEK proton exchange membrane.

    CSIR Research Space (South Africa)

    Luo, H

    2009-08-01

    Full Text Available The proton exchange membrane is a key component of polymer electrolyte membrane fuel cell (PEMFC). It plays an important role, conducts protons and separates the fuel from oxidant in PEMFC. DuPont’s Nafion is a perfluorinated sulfonic acid polymer...

  18. Quantitatively measured photorefractive sensitivity of proton-exchanged lithium niobate, proton-exchanged magnesium oxide-doped lithium niobate, and ion-exchanged potassium titanyl phosphate waveguides.

    Science.gov (United States)

    Kondo, Y; Miyaguchi, S; Onoe, A; Fujii, Y

    1994-06-01

    The photorefractive sensitivities of proton-exchanged lithium niobate waveguides and Rb-ion-exchanged potassium titanyl phosphate waveguides are quantitatively measured, and their influence on waveguide applications is estimated.

  19. Meson exchange currents in neutron-proton bremsstrahlung

    NARCIS (Netherlands)

    Li, Yi; Liou, M.K.; Schreiber, W.M.; Gibson, B.F.; Timmermans, R.G.E.

    2008-01-01

    Background: The meson exchange current (MEC) contribution is important in the neutron-proton bremsstrahlung process (np gamma) when the two nucleon-scattering angles are small. However, our understanding of such effects is limited, and the reason why meson exchange current effects dominate the np ga

  20. Sulfonated polystyrene fiber network-induced hybrid proton exchange membranes.

    Science.gov (United States)

    Yao, Yingfang; Ji, Liwen; Lin, Zhan; Li, Ying; Alcoutlabi, Mataz; Hamouda, Hechmi; Zhang, Xiangwu

    2011-09-01

    A novel type of hybrid membrane was fabricated by incorporating sulfonated polystyrene (S-PS) electrospun fibers into Nafion for the application in proton exchange membrane fuel cells. With the introduction of S-PS fiber mats, a large amount of sulfonic acid groups in Nafion aggregated onto the interfaces between S-PS fibers and the ionomer matrix, forming continuous pathways for facile proton transport. The resultant hybrid membranes had higher proton conductivities than that of recast Nafion, and the conductivities were controlled by selectively adjusting the fiber diameters. Consequently, hybrid membranes fabricated by ionomers, such as Nafion, incorporated with ionic-conducting nanofibers established a promising strategy for the rational design of high-performance proton exchange membranes.

  1. Proton-Exchange Membranes Based on Sulfonated Polymers

    Directory of Open Access Journals (Sweden)

    Yulia Sergeevna Sedesheva

    2016-10-01

    Full Text Available Review is dedicated to discussion of different types of proton-exchange membranes used in fuel cells (FC. One of the most promising electrolytes is polymer electrolyte membrane (PEM. In recent years, researchers pay great attention to various non-fluorinated or partially fluorinated hydrocarbon polymers, which may become a real alternative to Nafion. Typical examples are sulfonatedpolyetheretherketones, polyarylene ethers, polysulphones, polyimides. A class of polyimides-based hydrocarbon proton-exchange membranes is separately considered as promising for widespread use in fuel cell, such membranes are of interest for our further experimental development.

  2. Partially fluorinated electrospun proton exchange membranes

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a novel porous membrane layer, to a novel method for producing a membrane, and the membranes produced by the novel method. The present invention further relates to a fuel cell comprising the porous layer, as well as any use of the porous layer in a fuel cell or in...... copolymer, and wherein at least one side chain of the graft copolymer comprises a polymerization product of a polymerizable proton donor group or a precursor thereof....

  3. Mechanism of Proton Transport in Proton Exchange Membranes: Insights from Computer Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gregory A. Voth

    2010-11-30

    The solvation and transport of hydrated protons in proton exchange membranes (PEMs) such as NafionTM will be described using a novel multi-state reactive molecular dynamics (MD) approach, combined with large scale MD simulation to help probe various PEM morphological models. The multi-state MD methodology allows for the treatment of explicit (Grotthuss) proton shuttling and charge defect delocalization which, in turn, can strongly influence the properties of the hydrated protons in various aqueous and complex environments. A significant extension of the methodology to treat highly acidic (low pH) environments such as the hydrophilic domains of a PEM will be presented. Recent results for proton solvation and transport in NafionTM will be described which reveal the significant role of Grotthuss shuttling and charge defect delocalization on the excess proton solvation structures and transport properties. The role of PEM hydration level and morphology on these properties will also be described.

  4. Modeling Of Proton Exchange Membrane Fuel Cell Systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh

    The objective of this doctoral thesis was to develop reliable steady-state and transient component models suitable to asses-, develop- and optimize proton exchange membrane (PEM) fuel cell systems. Several components in PEM fuel cell systems were characterized and modeled. The developed component...

  5. Stimulated-healing of proton exchange membrane fuel cell catalyst

    NARCIS (Netherlands)

    Latsuzbaia, R.; Negro, E.; Koper, G.J.M.

    2013-01-01

    Platinum nanoparticles, which are used as catalysts in Proton Exchange Membrane Fuel Cells (PEMFC), tend to degrade after long-term operation. We discriminate the following mechanisms of the degradation: poisoning, migration and coalescence, dissolution, and electrochemical Ostwald ripening. There a

  6. Proton translocation in cytochrome c oxidase: insights from proton exchange kinetics and vibrational spectroscopy.

    Science.gov (United States)

    Ishigami, Izumi; Hikita, Masahide; Egawa, Tsuyoshi; Yeh, Syun-Ru; Rousseau, Denis L

    2015-01-01

    Cytochrome c oxidase is the terminal enzyme in the electron transfer chain. It reduces oxygen to water and harnesses the released energy to translocate protons across the inner mitochondrial membrane. The mechanism by which the oxygen chemistry is coupled to proton translocation is not yet resolved owing to the difficulty of monitoring dynamic proton transfer events. Here we summarize several postulated mechanisms for proton translocation, which have been supported by a variety of vibrational spectroscopic studies. We recently proposed a proton translocation model involving proton accessibility to the regions near the propionate groups of the heme a and heme a3 redox centers of the enzyme based by hydrogen/deuterium (H/D) exchange Raman scattering studies (Egawa et al., PLoS ONE 2013). To advance our understanding of this model and to refine the proton accessibility to the hemes, the H/D exchange dependence of the heme propionate group vibrational modes on temperature and pH was measured. The H/D exchange detected at the propionate groups of heme a3 takes place within a few seconds under all conditions. In contrast, that detected at the heme a propionates occurs in the oxidized but not the reduced enzyme and the H/D exchange is pH-dependent with a pKa of ~8.0 (faster at high pH). Analysis of the thermodynamic parameters revealed that, as the pH is varied, entropy/enthalpy compensation held the free energy of activation in a narrow range. The redox dependence of the possible proton pathways to the heme groups is discussed. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Ozonated graphene oxide film as a proton-exchange membrane.

    Science.gov (United States)

    Gao, Wei; Wu, Gang; Janicke, Michael T; Cullen, David A; Mukundan, Rangachary; Baldwin, Jon K; Brosha, Eric L; Galande, Charudatta; Ajayan, Pulickel M; More, Karren L; Dattelbaum, Andrew M; Zelenay, Piotr

    2014-04-01

    Graphene oxide (GO) contains several chemical functional groups that are attached to the graphite basal plane and can be manipulated to tailor GO for specific applications. It is now revealed that the reaction of GO with ozone results in a high level of oxidation, which leads to significantly improved ionic (protonic) conductivity of the GO. Freestanding ozonated GO films were synthesized and used as efficient polymer electrolyte fuel cell membranes. The increase in protonic conductivity of the ozonated GO originates from enhanced proton hopping, which is due to the higher content of oxygenated functional groups in the basal planes and edges of ozonated GO as well as the morphology changes in GO that are caused by ozonation. The results of this study demonstrate that the modification of dispersed GO presents a powerful opportunity for optimizing a nanoscale material for proton-exchange membranes.

  8. A NOVEL KIND OF PROTON EXCHANGE MEMBRANE:CHARACTERS AND PROTON TRANSPORT MECHANISM

    Institute of Scientific and Technical Information of China (English)

    Cheng Peng; Yong Yang; Li Wang; Min Huang; Xian-fa Shi

    2009-01-01

    A novel proton exchange membrane(PEM)was designed and prepared from a polymer containing calix[4]arene as the functional unit to transport proton.The proton-conductivity of this membrane is about the same order of magnitude as that of Nafion(R)112 membrane.It is of interest to note that very different from most of the currently known PEMs,this membrane can transport proton without the help of water or other solvents.It is deduced that the protons are transported via an ion tunneling model.This opens up a new avenue for a new type of solvent-free PEMs to be applied in the development of new H2/O2 fuel cells.

  9. Correlation between Morphology, Water Uptake, and Proton Conductivity in Radiation-Grafted Proton-Exchange Membranes

    DEFF Research Database (Denmark)

    Balog, Sandor; Gasser, Urs; Mortensen, Kell;

    2010-01-01

    An SANS investigation of hydrated proton exchange membranes is presented. Our membranes were synthesized by radiation-induced grafting of ETFE with styrene in the presence of a crosslinker, followed by sulfonation of the styrene. The contrast variation method was used to understand the relationship...... between morphology, water uptake, and proton conductivity. The membranes are separated into two phases. The amorphous phase hosts the water and swells upon hydration, swelling being inversely proportional to the degree of crosslinking. Hydration and proton conductivity exhibit linear dependence...

  10. Preparations of an inorganic-framework proton exchange nanochannel membrane

    Science.gov (United States)

    Yan, X. H.; Jiang, H. R.; Zhao, G.; Zeng, L.; Zhao, T. S.

    2016-09-01

    In this work, a proton exchange membrane composed of straight and aligned proton conducting nanochannels is developed. Preparation of the membrane involves the surface sol-gel method assisted with a through-hole anodic aluminum oxide (AAO) template to form the framework of the PEM nanochannels. A monomolecular layer (SO3Hsbnd (CH2)3sbnd Sisbnd (OCH3)3) is subsequently added onto the inner surfaces of the nanochannels to shape a proton-conducting pathway. Straight nanochannels exhibit long range order morphology, contributing to a substantial improvement in the proton mobility and subsequently proton conductivity. In addition, the nanochannel size can be altered by changing the surface sol-gel condition, allowing control of the active species/charge carrier selectivity via pore size exclusion. The proton conductivity of the nanochannel membrane is reported as high as 11.3 mS cm-1 at 70 °C with a low activation energy of 0.21 eV (20.4 kJ mol-1). First-principle calculations reveal that the activation energy for proton transfer is impressively low (0.06 eV and 0.07 eV) with the assistance of water molecules.

  11. DEVELOPMENT OF NOVEL ELECTROCATALYSTS FOR PROTON EXCHANGE MEMBRANE FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Shamsuddin Ilias

    2003-04-24

    Fuel cells are electrochemical devices that convert the available chemical free energy directly into electrical energy, without going through heat exchange process. Of all different types of fuel cells, the Proton Exchange Membrane Fuel Cell (PEMFC) is one of the most promising power sources for stand-alone utility and electric vehicle applications. Platinum (Pt) Catalyst is used for both fuel and air electrodes in PEMFCs. However, carbon monoxide (CO) contamination of H{sub 2} greatly affects electro catalysts used at the anode of PEMFCs and decreases cell performance. The irreversible poisoning of the anode can occur even in CO concentrations as low as few parts per million (ppm). In this work, we have synthesized several novel elctrocatalysts (Pt/C, Pt/Ru/C, Pt/Mo/C, Pt/Ir and Pt/Ru/Mo) for PEMFCs. These catalysts have been tested for CO tolerance in the H{sub 2}/air fuel cell, using CO concentrations in the H{sub 2} fuel that varies from 10 to 100 ppm. The performance of the electrodes was evaluated by determining the cell potential against current density. The effects of catalyst composition and electrode film preparation method on the performance of PEM fuel cell were also studied. It was found that at 70 C and 3.5 atm pressure at the cathode, Pt-alloy catalyst (10 wt% Pt/Ru/C, 20 wt% Pt/Mo/C) were more CO tolerant than the 20 wt% Pt/C catalyst alone. It was also observed that spraying method was better than the brushing technique for the preparation of electrode film.

  12. Spatial proton exchange membrane fuel cell performance under bromomethane poisoning

    Science.gov (United States)

    Reshetenko, Tatyana V.; Artyushkova, Kateryna; St-Pierre, Jean

    2017-02-01

    The poisoning effects of 5 ppm CH3Br in the air on the spatial performance of a proton exchange membrane fuel cell (PEMFC) were studied using a segmented cell system. The presence of CH3Br caused performance loss from 0.650 to 0.335 V at 1 A cm-2 accompanied by local current density redistribution. The observed behavior was explained by possible bromomethane hydrolysis with the formation of Br-. Bromide and bromomethane negatively affected the oxygen reduction efficiency over a wide range of potentials because of their adsorption on Pt, which was confirmed by XPS. Moreover, the PEMFC exposure to CH3Br led to a decrease in the anode and cathode electrochemical surface area (∼52-57%) due to the growth of Pt particles through agglomeration and Ostwald ripening. The PEMFC did not restore its performance after stopping bromomethane introduction to the air stream. However, the H2/N2 purge of the anode/cathode and CV scans almost completely recovered the cell performance. The observed final loss of ∼50 mV was due to an increased activation overpotential. PEMFC exposure to CH3Br should be limited to concentrations much less than 5 ppm due to serious performance loss and lack of self-recovery.

  13. NMR studies of proton exchange kinetics in aqueous formaldehyde solutions

    Science.gov (United States)

    Rivlin, Michal; Eliav, Uzi; Navon, Gil

    2014-05-01

    Aqueous solutions of formaldehyde, formalin, are commonly used for tissue fixation and preservation. Treatment with formalin is known to shorten the tissue transverse relaxation time T2. Part of this shortening is due to the effect of formalin on the water T2. In the present work we show that the shortening of water T2 is a result of proton exchange between water and the major constituent of aqueous solutions of formaldehyde, methylene glycol. We report the observation of the signal of the hydroxyl protons of methylene glycol at 2 ppm to high frequency of the water signal that can be seen at low temperatures and at pH range of 6.0 ± 1.5 and, at conditions where it cannot be observed by the single pulse experiment, it can be detected indirectly through the water signal by the chemical exchange saturation transfer (CEST) experiment. The above finding made it possible to obtain the exchange rate between the hydroxyl protons of the methylene glycol and water in aqueous formaldehyde solutions, either using the dispersion of the spin-lattice relaxation rate in the rotating frame (1/T1ρ) or, at the slow exchange regime, from the line width hydroxyl protons of methylene glycol. The exchange rate was ∼104 s-1 at pH 7.4 and 37 °C, the activation energy, 50.2 kJ/mol and its pH dependence at 1.1 °C was fitted to: k (s-1) = 520 + 6.5 × 107[H+] + 3.0 × 109[OH-].

  14. Highly efficient optical parametric generation in proton exchanged PPLN waveguides

    CERN Document Server

    Chanvillard, L; Baldi, P; De Micheli, M; Ostrowsky, D B; Huang, L; Bamford, G

    1999-01-01

    Summary form only given. Parametric fluorescence, amplification, and oscillation in PPLN waveguides have already been demonstrated. In all previous experiments, the measured efficiencies were smaller than the theoretically predicted values since the waveguide fabrication process utilized, annealed proton exchange (APE) can reduce or even destroy the nonlinear coefficient and/or the periodic domain orientation in a portion of the guiding structure. In the experiment reported here, we used a 2 cm long, Z-cut PPLN with a 18 mu m domain inversion period. The waveguides are created using a direct proton exchange process in a highly diluted melt, which induces no crystallographic phase transition. This allows preserving both the nonlinear coefficient and the domain orientation while fully benefiting from the power confinement associated with the guided wave configuration. (4 refs).

  15. Analysis of Water Management in Proton Exchange Membrane Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A two-dimensional, steady-state, isothermal water-management model for a complete proton exchange membrane fuel cell (PEMFC) was developed. The model includes the transport in the diffusion layer and the proton exchange membrane (PEM) with a pseudo-homogeneous model for the cathode catalyst layer. The predicted fuel cell performance with variable cathode porosities compares well with experimental results. The model is then used to investigate the effects of some structural parameters, such as the rib size, the interdigitated flow field, and various operating conditions including the gas flow rate, the cell temperature and pressure, humidification, and the relative humidity at the inlet. Water management is best achieved by tuning the anode operating conditions.

  16. Proton Exchange Membrane Fuel Cells Applied for Transport Sector

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Rokni, Masoud

    2010-01-01

    A thermodynamic analysis of a PEMFC (proton exchange membrane fuel cell) is investigated. PEMFC may be the most promising technology for fuel cell automotive systems, which is operating at quite low temperatures, (between 60 to 80℃). In this study the fuel cell motive power part of a lift truck has...... investigated. In addition, different stack design schemes have been proposed and their effect on system efficiency has been investigated....

  17. Design & development of innovative proton exchange membrane fuel cells

    OpenAIRE

    Carton, James

    2011-01-01

    The research undertaken in this thesis is concerned with the design and development of Proton Exchange Membrane (PEM) fuel cells and provides a body of information for continued PEM fuel cell development, which will ideally aid in the future commercialisation of these electrochemical devices. Through a combination of numerical analysis, computational fluid dynamic modelling and experimental work, effective flow plate designs, flow field configurations and materials are analysed and new inn...

  18. Proton Conductivity of Proton Exchange Membrane Synergistically Promoted by Different Functionalized Metal-Organic Frameworks.

    Science.gov (United States)

    Rao, Zhuang; Tang, Beibei; Wu, Peiyi

    2017-07-12

    In this study, two functionalized metal-organic frameworks (MOFs), UiO-66-SO3H and UiO-66-NH2, were synthesized. Then, different composite proton exchange membranes (PEMs) were prepared by single doping and codoping of these two MOFs, respectively. It was found that codoping of these two MOFs with suitable sizes was more conducive to the proton conductivity enhancement of the composite PEM. A synergistic effect between these two MOFs led to the the formation of more consecutive hydration channels in the composite PEM. It further greatly promoted the proton conductivity of the composite PEM. The proton conductivity of the codoped PEM reached up to 0.256 S/cm under 90 °C, 95% RH, which was ∼1.17 times higher than that of the recast Nafion (0.118 S/cm). Besides, the methanol permeability of the codoped PEM was prominently decreased owing to the methanol trapping effect of the pores of these two MOFs. Meanwhile, the high water and thermal stabilities of these two MOFs were beneficial to the high proton conductivity stability of the codoped PEM under high humidity and high temperature. The proton conductivity of the codoped PEM was almost unchanged throughout 3000 min of testing under 90 °C, 95% RH. This work provides a valuable reference for designing different functionalized MOFs to synergistically promote the proton conductivities of PEMs.

  19. The Characterisitic of Proton-Exchanged LiNbO_3 Waveguide Formed by Different Proton Source

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Benzoic acid as a source of proton is widely used in the technology of manufacture of proton exchanged ( PE) waveguide .But the diffusing speed of proton is too fast to make the waveguide stable in the pure benzoic acid. The characteristic of waveguide is improved with mixture of benzoic acid and lithium benzoate .

  20. The Characterisitic of Proton-Exchanged LiNbO3 Waveguide Formed by Different Proton Source

    Institute of Scientific and Technical Information of China (English)

    Qiying Zhu; Guoliang Jing; Yifang Yuan; Baoxue Chen

    2003-01-01

    Benzoic acid as a source of proton is widely used in the technology of manufacture of proton exchanged ( PE) waveguide .But the diffusing speed of proton is too fast to make the waveguide stable in the pure benzoic acid. The characteristic of waveguide is improved with mixture of benzoic acid and lithium benzoate .

  1. Proton exchange membranes based on PVDF/SEBS blends

    Energy Technology Data Exchange (ETDEWEB)

    Mokrini, A.; Huneault, M.A. [Industrial Materials Institute, National Research Council of Canada, 75 de Mortagne Blvd., Boucherville, Que. (Canada J4B 6Y4)

    2006-03-09

    Proton-conductive polymer membranes are used as an electrolyte in the so-called proton exchange membrane fuel cells. Current commercially available membranes are perfluorosulfonic acid polymers, a class of high-cost ionomers. This paper examines the potential of polymer blends, namely those of styrene-(ethylene-butylene)-styrene block copolymer (SEBS) and polyvinylidene fluoride (PVDF), in the proton exchange membrane application. SEBS/PVDF blends were prepared by twin-screw extrusion and the membranes were formed by calendering. SEBS is a phase-segregated material where the polystyrene blocks can be selectively functionalized offering high ionic conductivity, while PVDF insures good dimensional stability and chemical resistance to the films. Proton conductivity of the films was obtained by solid-state grafting of sulfonic acid moieties. The obtained membranes were characterized in terms of conductivity, ionic exchange capacity and water uptake. In addition, the membranes were characterized in terms of morphology, microstructure and thermo-mechanical properties to establish the blends morphology-property relationships. Modification of interfacial properties between SEBS and PVDF was found to be a key to optimize the blends performance. Addition of a methyl methacrylate-butyl acrylate-methyl methacrylate block copolymer (MMA-BA-MMA) was found to compatibilize the blend by reducing the segregation scale and improving the blend homogeneity. Mechanical resistance of the membranes was also improved through the addition of this compatibilizer. As little as 2wt.% compatibilizer was sufficient for complete interfacial coverage and lead to improved mechanical properties. Compatibilized blend membranes also showed higher conductivities, 1.9x10{sup -2} to 5.5x10{sup -3}Scm{sup -1}, and improved water management. (author)

  2. Proton exchange membranes based on PVDF/SEBS blends

    Science.gov (United States)

    Mokrini, A.; Huneault, M. A.

    Proton-conductive polymer membranes are used as an electrolyte in the so-called proton exchange membrane fuel cells. Current commercially available membranes are perfluorosulfonic acid polymers, a class of high-cost ionomers. This paper examines the potential of polymer blends, namely those of styrene-(ethylene-butylene)-styrene block copolymer (SEBS) and polyvinylidene fluoride (PVDF), in the proton exchange membrane application. SEBS/PVDF blends were prepared by twin-screw extrusion and the membranes were formed by calendering. SEBS is a phase-segregated material where the polystyrene blocks can be selectively functionalized offering high ionic conductivity, while PVDF insures good dimensional stability and chemical resistance to the films. Proton conductivity of the films was obtained by solid-state grafting of sulfonic acid moieties. The obtained membranes were characterized in terms of conductivity, ionic exchange capacity and water uptake. In addition, the membranes were characterized in terms of morphology, microstructure and thermo-mechanical properties to establish the blends morphology-property relationships. Modification of interfacial properties between SEBS and PVDF was found to be a key to optimize the blends performance. Addition of a methyl methacrylate-butyl acrylate-methyl methacrylate block copolymer (MMA-BA-MMA) was found to compatibilize the blend by reducing the segregation scale and improving the blend homogeneity. Mechanical resistance of the membranes was also improved through the addition of this compatibilizer. As little as 2 wt.% compatibilizer was sufficient for complete interfacial coverage and lead to improved mechanical properties. Compatibilized blend membranes also showed higher conductivities, 1.9 × 10 -2 to 5.5 × 10 -3 S cm -1, and improved water management.

  3. Formation of the organic-inorganic proton exchange membrane

    Directory of Open Access Journals (Sweden)

    A.O. Maizelis

    2016-09-01

    Full Text Available The use of electrolyzers for the low-temperature water electrolysis with the solid polymer membrane is perspective for production of hydrogen using renewable energy sources. However, the high cost of membrane materials obstructs the mass commissioning of such electrolyzers. Most of the researches devoted to the technologies of membranes formation, alternative to Nafion®, deal only with organic materials. Aim: The aim of this research is to develop the method for formation of the competitive proton exchange membrane based on polyvinyl alcohol (PVA and inorganic hydrates. Materials and Methods: The hydrated oxide of tin was added to the 2...10% PVA solution, mixed and applied to inert base layer by layer for formation of the membrane. Then the membrane was separated from the base. The reinforcing mesh was used to improve mechanical properties of the membrane. The hydrated tin oxide was prepared by reaction of tin chloride and ammonium hydroxide solutions. Results: The conditions of formation of proton-exchange membranes based on polyvinyl alcohol and hydrated oxide of tin were investigated. The series of membranes containing 30, 50, 70, 80 and 90% of hydrated tin oxide are obtained. It is shown that a solid membrane film with the thickness over 100 μm can be obtained if the content of PVA exceeds 30%. It is shown that it is necessary to crosslink the chains of PVA in the resulting film. The structure of the obtained proton exchange membrane consists of PVA chains crosslinked by aldehyde, between which the globules of hydrated tin oxide are situated. The membrane conductivity is provided by both proton mobility of hydroxyl group of PVA and H3O+/H2O and OH–/H2O groups that are formed due to the partial dissociation of hydrated oxide on the surface of the globules.

  4. Stereochemistry-Dependent Proton Conduction in Proton Exchange Membrane Fuel Cells.

    Science.gov (United States)

    Thimmappa, Ravikumar; Devendrachari, Mruthyunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Tiwari, Omshanker; Gaikwad, Pramod; Paswan, Bhuneshwar; Thotiyl, Musthafa Ottakam

    2016-01-12

    Graphene oxide (GO) is impermeable to H2 and O2 fuels while permitting H(+) shuttling, making it a potential candidate for proton exchange membrane fuel cells (PEMFC), albeit with a large anisotropy in their proton transport having a dominant in plane (σIP) contribution over the through plane (σTP). If GO-based membranes are ever to succeed in PEMFC, it inevitably should have a dominant through-plane proton shuttling capability (σTP), as it is the direction in which proton gets transported in a real fuel-cell configuration. Here we show that anisotropy in proton conduction in GO-based fuel cell membranes can be brought down by selectively tuning the geometric arrangement of functional groups around the dopant molecules. The results show that cis isomer causes a selective amplification of through-plane proton transport, σTP, pointing to a very strong geometry angle in ionic conduction. Intercalation of cis isomer causes significant expansion of GO (001) planes involved in σTP transport due to their mutual H-bonding interaction and efficient bridging of individual GO planes, bringing down the activation energy required for σTP, suggesting the dominance of a Grotthuss-type mechanism. This isomer-governed amplification of through-plane proton shuttling resulted in the overall boosting of fuel-cell performance, and it underlines that geometrical factors should be given prime consideration while selecting dopant molecules for bringing down the anisotropy in proton conduction and enhancing the fuel-cell performance in GO-based PEMFC.

  5. Proton Exchange Membranes for Fuel Cells Challenges and Recent Developments

    Institute of Scientific and Technical Information of China (English)

    Qingfeng Li; Jens Oluf Jensen; Pernille P. Noyé; Chao Pan; Niels J. Bjerrum

    2005-01-01

    @@ 1Introduction The current technology of proton exchange membrane fuel cells (PEMFC) is based on perfluorosulfonic acid (PFSA) membranes (e. g. Nafion(R)) as electrolyte. It operates on pure hydrogen and oxygen/air at typically 80℃ with high power density and long-term durability. For the membranes to be conductive, a minimum threshold of absorbed water molecules is about 6 to 7 mole per sulfonic site. The highest conductivity is only obtained under fully hydrated conductions, i.e. 21 - 22 mole water per sulfonic acid site. In other words, the proton conductivity is achieved by the locally liquid-like hydrophilic domain of the nanostructure.This strong dependence of conductivity on the water content in membranes limits the operational temperatureof PEMFC below 100℃.

  6. Composite proton exchange membrane based on sulfonated organic nanoparticles

    Science.gov (United States)

    Pitia, Emmanuel Sokiri

    As the world sets its sight into the future, energy remains a great challenge. Proton exchange membrane (PEM) fuel cell is part of the solution to the energy challenge because of its high efficiency and diverse application. The purpose of the PEM is to provide a path for proton transport and to prevent direct mixing of hydrogen and oxygen at the anode and the cathode, respectively. Hence, PEMs must have good proton conductivity, excellent chemical stability, and mechanical durability. The current state-of-the-art PEM is a perfluorosulfonate ionomer, Nafion®. Although Nafion® has many desirable properties, it has high methanol crossover and it is expensive. The objective of this research was to develop a cost effective two-phase, composite PEM wherein a dispersed conductive organic phase preferentially aligned in the transport direction controls proton transport, and a continuous hydrophobic phase provides mechanical durability to the PEM. The hypothesis that was driving this research was that one might expect better dispersion, higher surface to volume ratio and improved proton conductivity of a composite membrane if the dispersed particles were nanometer in size and had high ion exchange capacity (IEC, = [mmol sulfonic acid]/gram of polymer). In view of this, considerable efforts were employed in the synthesis of high IEC organic nanoparticles and fabrication of a composite membrane with controlled microstructure. High IEC, ~ 4.5 meq/g (in acid form, theoretical limit is 5.4 meq/g) nanoparticles were achieved by emulsion copolymerization of a quaternary alkyl ammonium (QAA) neutralized-sulfonated styrene (QAA-SS), styrene, and divinylbenzene (DVB). The effects of varying the counterion of the sulfonated styrene (SS) monomer (alkali metal and QAA cations), SS concentration, and the addition of a crosslinking agent (DVB) on the ability to stabilize the nanoparticles to higher IECs were assessed. The nanoparticles were ion exchanged to acid form. The extent of ion

  7. Advanced proton-exchange materials for energy efficient fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Cy H.; Grest, Gary Stephen; Hickner, Michael A.; Cornelius, Christopher James; Staiger, Chad Lynn; Hibbs, Michael R.

    2005-12-01

    The ''Advanced Proton-Exchange Materials for Energy Efficient Fuel Cells'' Laboratory Directed Research and Development (LDRD) project began in October 2002 and ended in September 2005. This LDRD was funded by the Energy Efficiency and Renewable Energy strategic business unit. The purpose of this LDRD was to initiate the fundamental research necessary for the development of a novel proton-exchange membranes (PEM) to overcome the material and performance limitations of the ''state of the art'' Nafion that is used in both hydrogen and methanol fuel cells. An atomistic modeling effort was added to this LDRD in order to establish a frame work between predicted morphology and observed PEM morphology in order to relate it to fuel cell performance. Significant progress was made in the area of PEM material design, development, and demonstration during this LDRD. A fundamental understanding involving the role of the structure of the PEM material as a function of sulfonic acid content, polymer topology, chemical composition, molecular weight, and electrode electrolyte ink development was demonstrated during this LDRD. PEM materials based upon random and block polyimides, polybenzimidazoles, and polyphenylenes were created and evaluated for improvements in proton conductivity, reduced swelling, reduced O{sub 2} and H{sub 2} permeability, and increased thermal stability. Results from this work reveal that the family of polyphenylenes potentially solves several technical challenges associated with obtaining a high temperature PEM membrane. Fuel cell relevant properties such as high proton conductivity (>120 mS/cm), good thermal stability, and mechanical robustness were demonstrated during this LDRD. This report summarizes the technical accomplishments and results of this LDRD.

  8. Proton conduction in exchange membranes across multiple length scales.

    Science.gov (United States)

    Jorn, Ryan; Savage, John; Voth, Gregory A

    2012-11-20

    Concerns over global climate change associated with fossil-fuel consumption continue to drive the development of electrochemical alternatives for energy technology. Proton exchange fuel cells are a particularly promising technology for stationary power generation, mobile electronics, and hybrid engines in automobiles. For these devices to work efficiently, direct electrical contacts between the anode and cathode must be avoided; hence, the separator material must be electronically insulating but highly proton conductive. As a result, researchers have examined a variety of polymer electrolyte materials for use as membranes in these systems. In the optimization of the membrane, researchers are seeking high proton conductivity, low electronic conduction, and mechanical stability with the inclusion of water in the polymer matrix. A considerable number of potential polymer backbone and side chain combinations have been synthesized to meet these requirements, and computational studies can assist in the challenge of designing the next generation of technologically relevant membranes. Such studies can also be integrated in a feedback loop with experiment to improve fuel cell performance. However, to accurately simulate the currently favored class of membranes, perfluorosulfonic acid containing moieties, several difficulties must be addressed including a proper treatment of the proton-hopping mechanism through the membrane and the formation of nanophase-separated water networks. We discuss our recent efforts to address these difficulties using methods that push the limits of computer simulation and expand on previous theoretical developments. We describe recent advances in the multistate empirical valence bond (MS-EVB) method that can probe proton diffusion at the nanometer-length scale and accurately model the so-called Grotthuss shuttling mechanism for proton diffusion in water. Using both classical molecular dynamics and coarse-grained descriptions that replace atomistic

  9. Ionic Liquids and New Proton Exchange Membranes for Fuel Cells

    Science.gov (United States)

    Belieres, Jean-Philippe

    2004-01-01

    There is currently a great surge of activity in fuel cell research as laboratories across the world seek to take advantage of the high energy capacity provided by &el cells relative to those of other portable electrochemical power systems. Much of this activity is aimed at high temperature fie1 cells, and a vital component of such &el cells must be the availability of a high temperature stable proton-permeable membrane. NASA Glenn Research Center is greatly involved in developing this technology. Other approaches to the high temperature fuel cell involve the use of single- component or almost-single-component electrolytes that provide a path for protons through the cell. A heavily researched case is the phosphoric acid fuel cell, in which the electrolyte is almost pure phosphoric acid and the cathode reaction produces water directly. The phosphoric acid fie1 cell delivers an open circuit voltage of 0.9 V falling to about 0.7 V under operating conditions at 170 C. The proton transport mechanism is mainly vehicular in character according to the viscosity/conductance relation. Here we describe some Proton Transfer Ionic Liquids (PTILs) with low vapor pressure and high temperature stability that have conductivities of unprecedented magnitude for non-aqueous systems. The first requirement of an ionic liquid is that, contrary to experience with most liquids consisting of ions, it must have a melting point that is not much above room temperature. The limit commonly suggested is 100 C. PTILs constitute an interesting class of non-corrosive proton-exchange electrolyte, which can serve well in high temperature (T = 100 - 250 C) fuel cell applications. We will present cell performance data showing that the open circuit voltage output, and the performance of a simple H2(g)Pt/PTIL/Pt/O2(g) fuel cell may be superior to those of the equivalent phosphoric acid electrolyte fuel cell both at ambient temperature and temperatures up to and above 200 C. My work at NASA Glenn Research

  10. Modeling Of Proton Exchange Membrane Fuel Cell Systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh

    The objective of this doctoral thesis was to develop reliable steady-state and transient component models suitable to asses-, develop- and optimize proton exchange membrane (PEM) fuel cell systems. Several components in PEM fuel cell systems were characterized and modeled. The developed component...... cell systems. Consequences of indirectly fueling PEM stacks with hydrocarbons using reforming technology were investigated using a PEM stack model including CO poisoning kinetics and a transient Simulink steam reforming system model. Aspects regarding the optimization of PEM fuel cell systems...

  11. Tandem cathode for proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Siahrostami, Samira; Björketun, Mårten E.; Strasser, Peter

    2013-01-01

    The efficiency of proton exchange membrane fuel cells is limited mainly by the oxygen reduction reaction at the cathode. The large cathodic overpotential is caused by correlations between binding energies of reaction intermediates in the reduction of oxygen to water. This work introduces a novel...... reaction intermediate each, and they occur on different catalyst surfaces. As a result they can be optimized independently and the fundamental problem associated with the four-electron catalysis is avoided. A combination of density functional theory calculations and published experimental data is used...

  12. Identification and analysis based on genetic algorithm for proton exchange membrane fuel cell stack

    Institute of Scientific and Technical Information of China (English)

    LI Xi; CAO Guang-yi; ZHU Xin-jian; WEI Dong

    2006-01-01

    The temperature of proton exchange membrane fuel cell stack and the stoichiometric oxygen in cathode have relationship with the performance and life span of fuel cells closely. The thermal coefficients were taken as important factors affecting the temperature distribution of fuel cells and components. According to the experimental analysis, when the stoichiometric oxygen in cathode is greater than or equal to 1.8, the stack voltage loss is the least. A novel genetic algorithm was developed to identify and optimize the variables in dynamic thermal model of proton exchange membrane fuel cell stack, making the outputs of temperature model approximate to the actual temperature, and ensuring that the maximal error is less than 1℃. At the same time, the optimum region of stoichiometric oxygen is obtained, which is in the range of 1.8 -2.2 and accords with the experimental analysis results. The simulation and experimental results show the effectiveness of the proposed algorithm.

  13. Application of Proton Exchange Membrane Fuel Cell for Lift Trucks

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Rokni, Masoud

    2011-01-01

    In this study a general PEMFC (Proton Exchange Membrane Fuel Cell) model has been developed to take into account the effect of pressure losses, water crossovers, humidity aspects and voltage over potentials in the cells. The model is zero dimensional and it is assumed to be steady state. The effect...... in order to account for water back diffusion. Further Membrane water content is assumed to be a linear function of thickness. PEM fuel cell is working at rather low operating conditions which makes it suitable for the automotive systems. In this paper motive power part of a lift truck has been investigated...... of concentration loss is neglected while the effect of activation and ohmic losses is investigated in the system. Some semi-empirical equations are required to predict the amount of exchange current density for calculation of ohmic loss and water diffusion coefficient through membrane. These equations are applied...

  14. Proton pump inhibitors affect the gut microbiome

    NARCIS (Netherlands)

    Imhann, Floris; Bonder, Marc Jan; Vich Vila, Arnau; Fu, Jingyuan; Mujagic, Zlatan; Vork, Lisa; Tigchelaar, Ettje F; Jankipersadsing, Soesma A; Cenit, Maria Carmen; Harmsen, Hermie J M; Dijkstra, Gerard; Franke, Lude; Xavier, Ramnik J; Jonkers, Daisy; Wijmenga, Cisca; Weersma, Rinse K; Zhernakova, Alexandra

    2015-01-01

    BACKGROUND AND AIMS: Proton pump inhibitors (PPIs) are among the top 10 most widely used drugs in the world. PPI use has been associated with an increased risk of enteric infections, most notably Clostridium difficile. The gut microbiome plays an important role in enteric infections, by resisting or

  15. Water Soluble Polymers as Proton Exchange Membranes for Fuel Cells

    Directory of Open Access Journals (Sweden)

    Bing-Joe Hwang

    2012-03-01

    Full Text Available The relentless increase in the demand for useable power from energy-hungry economies continues to drive energy-material related research. Fuel cells, as a future potential power source that provide clean-at-the-point-of-use power offer many advantages such as high efficiency, high energy density, quiet operation, and environmental friendliness. Critical to the operation of the fuel cell is the proton exchange membrane (polymer electrolyte membrane responsible for internal proton transport from the anode to the cathode. PEMs have the following requirements: high protonic conductivity, low electronic conductivity, impermeability to fuel gas or liquid, good mechanical toughness in both the dry and hydrated states, and high oxidative and hydrolytic stability in the actual fuel cell environment. Water soluble polymers represent an immensely diverse class of polymers. In this comprehensive review the initial focus is on those members of this group that have attracted publication interest, principally: chitosan, poly (ethylene glycol, poly (vinyl alcohol, poly (vinylpyrrolidone, poly (2-acrylamido-2-methyl-1-propanesulfonic acid and poly (styrene sulfonic acid. The paper then considers in detail the relationship of structure to functionality in the context of polymer blends and polymer based networks together with the effects of membrane crosslinking on IPN and semi IPN architectures. This is followed by a review of pore-filling and other impregnation approaches. Throughout the paper detailed numerical results are given for comparison to today’s state-of-the-art Nafion® based materials.

  16. Investigations on high performance proton exchange membrane water electrolyzer

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Lirong [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China)]|[Institute of Fuel Cell, Shanghai Jiao Tong University, Shanghai 200240 (China); Sui, Sheng [Institute of Fuel Cell, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhai, Yuchun [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China)

    2009-01-15

    In order to improve proton exchange membrane water electrolyzer (PEMWE) performance, some factors related to the processes of preparing the Membrane Electrode Assemblies (MEAs), such as iridium (Ir) electrocatalyst loading and Nafion {sup registered} content at the anode, thicknesses of proton exchange membrane and gas diffusion layers (GDLs), were examined. In addition, a home-made supported Ir/titanium carbide (Ir/TiC, 20% Ir by weight) was developed for the anode. With best commercial Ir catalyst loading of 1.5 mg cm{sup -2} Ir at the anode, the cell's current densities of 1346 mA cm{sup -2}, 1820 mA cm{sup -2} and 2250 mA cm{sup -2} were achieved at the cell potentials of 1.80 V, 1.90 V and 2.00 V, respectively. A PEMWE with 0.3 mg cm{sup -2} Ir loading of Ir/TiC anode catalyst was comparatively stable and gave current densities of 840 mA cm{sup -2}, 1130 mA cm{sup -2} and 1463 mA cm{sup -2} at the cell potentials of 1.80 V, 1.90 V and 2.00 V, respectively. Based on catalysis efficiency of Amperes per milligram of Ir, the Ir/TiC catalyst is found to be more active than unsupported Ir catalyst. (author)

  17. Proton form factors and two-photon exchange in elastic electron-proton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Nikolenko, D. M., E-mail: D.M.Nikolenko@inp.nsk.su [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation); Arrington, J. [Argonne National Laboratory (United States); Barkov, L. M. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation); Vries, H. de [NIKHEF (Netherlands); Gauzshtein, V. V. [National Research Tomsk Polytechnic University, Physical-Technical Institute (Russian Federation); Golovin, R. A.; Gramolin, A. V.; Dmitriev, V. F.; Zhilich, V. N.; Zevakov, S. A.; Kaminsky, V. V.; Lazarenko, B. A.; Mishnev, S. I.; Muchnoi, N. Yu.; Neufeld, V. V.; Rachek, I. A.; Sadykov, R. Sh. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation); Stibunov, V. N. [National Research Tomsk Polytechnic University, Physical-Technical Institute (Russian Federation); Toporkov, D. K. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation); Holt, R. J. [Argonne National Laboratory (United States); and others

    2015-05-15

    Proton electromagnetic form factors are among the most important sources of information about the internal structure of the proton. Two different methods for measuring these form factors, the method proposed by Rosenbluth and the polarization-transfer method, yield contradictory results. It is assumed that this contradiction can be removed upon taking into account the hard part of the contribution of two-photon exchange to the cross section for elastic electron-proton scattering. This contribution can measured experimentally via a precision comparison of the cross sections for the elastic scattering of positrons and electrons on protons. Such a measurement, performed at the VEPP-3 storage ring in Novosibirsk at the beam energies of 1.6 and 1.0 GeV for positron (electron) scattering angles in the ranges of θ{sub e} = 15°–25° and 55°–75° in the first case and in the range of θ{sub e} = 65°–105° in the second case is described in the present article. Preliminary results of this experiment and their comparison with theoretical predictions are described.

  18. Polarity governed selective amplification of through plane proton shuttling in proton exchange membrane fuel cells.

    Science.gov (United States)

    Gautam, Manu; Chattanahalli Devendrachari, Mruthyunjayachari; Thimmappa, Ravikumar; Raja Kottaichamy, Alagar; Pottachola Shafi, Shahid; Gaikwad, Pramod; Makri Nimbegondi Kotresh, Harish; Ottakam Thotiyl, Musthafa

    2017-03-15

    Graphene oxide (GO) anisotropically conducts protons with directional dominance of in plane ionic transport (σ IP) over the through plane (σ TP). In a typical H2-O2 fuel cell, since the proton conduction occurs through the plane during its generation at the fuel electrode, it is indeed inevitable to selectively accelerate GO's σ TP for advancement towards a potential fuel cell membrane. We successfully achieved ∼7 times selective amplification of GO's σ TP by tuning the polarity of the dopant molecule in its nanoporous matrix. The coexistence of strongly non-polar and polar domains in the dopant demonstrated a synergistic effect towards σ TP with the former decreasing the number of water molecules coordinated to protons by ∼3 times, diminishing the effects of electroosmotic drag exerted on ionic movements, and the latter selectively accelerating σ TP across the catalytic layers by bridging the individual GO planes via extensive host guest H-bonding interactions. When they are decoupled, the dopant with mainly non-polar or polar features only marginally enhances the σ TP, revealing that polarity factors contribute to fuel cell relevant transport properties of GO membranes only when they coexist. Fuel cell polarization and kinetic analyses revealed that these multitask dopants increased the fuel cell performance metrics of the power and current densities by ∼3 times compared to the pure GO membranes, suggesting that the functional group factors of the dopants are of utmost importance in GO-based proton exchange membrane fuel cells.

  19. Spin-locking versus chemical exchange saturation transfer MRI for investigating chemical exchange process between water and labile metabolite protons.

    Science.gov (United States)

    Jin, Tao; Autio, Joonas; Obata, Takayuki; Kim, Seong-Gi

    2011-05-01

    Chemical exchange saturation transfer (CEST) and spin-locking (SL) experiments were both able to probe the exchange process between protons of nonequivalent chemical environments. To compare the characteristics of the CEST and SL approaches in the study of chemical exchange effects, we performed CEST and SL experiments at varied pH and concentrated metabolite phantoms with exchangeable amide, amine, and hydroxyl protons at 9.4 T. Our results show that: (i) on-resonance SL is most sensitive to chemical exchanges in the intermediate-exchange regime and is able to detect hydroxyl and amine protons on a millimolar concentration scale. Off-resonance SL and CEST approaches are sensitive to slow-exchanging protons when an optimal SL or saturation pulse power matches the exchanging rate, respectively. (ii) Offset frequency-dependent SL and CEST spectra are very similar and can be explained well with an SL model recently developed by Trott and Palmer (J Magn Reson 2002;154:157-160). (iii) The exchange rate and population of metabolite protons can be determined from offset-dependent SL or CEST spectra or from on-resonance SL relaxation dispersion measurements. (iv) The asymmetry of the magnetization transfer ratio (MTR(asym)) is highly dependent on the choice of saturation pulse power. In the intermediate-exchange regime, MTR(asym) becomes complicated and should be interpreted with care.

  20. Analysis performance of proton exchange membrane fuel cell (PEMFC)

    Science.gov (United States)

    Mubin, A. N. A.; Bahrom, M. H.; Azri, M.; Ibrahim, Z.; Rahim, N. A.; Raihan, S. R. S.

    2017-06-01

    Recently, the proton exchange membrane fuel cell (PEMFC) has gained much attention to the technology of renewable energy due to its mechanically ideal and zero emission power source. PEMFC performance reflects from the surroundings such as temperature and pressure. This paper presents an analysis of the performance of the PEMFC by developing the mathematical thermodynamic modelling using Matlab/Simulink. Apart from that, the differential equation of the thermodynamic model of the PEMFC is used to explain the contribution of heat to the performance of the output voltage of the PEMFC. On the other hand, the partial pressure equation of the hydrogen is included in the PEMFC mathematical modeling to study the PEMFC voltage behaviour related to the input variable input hydrogen pressure. The efficiency of the model is 33.8% which calculated by applying the energy conversion device equations on the thermal efficiency. PEMFC’s voltage output performance is increased by increasing the hydrogen input pressure and temperature.

  1. Durable Catalysts for High Temperature Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Durability of proton exchange membrane fuel cells (PEMFCs) is recognized as one of the most important issues to be addressed before the commercialization. The failure mechanisms are not well understood, however, degradation of carbon supported noble metal catalysts is identified as a major failure...... corrosion, in turn, triggers the agglomeration of platinum particles resulting in reduction of the active surface area and catalytic activity. This is a major mechanism of the catalyst degradation and a key challenge to the PEMFC long-term durability. High temperature PEMFC, on the other hand, has attached...... the selectivity for platinum loading. Fuel cell durability tests in term of performance degradation were performed with acid doped polybenzimidazole membrane fuel cells at temperatures of up to 160°C. The tests were focused on catalyst degradation by means of a potential cycling protocol. The electrochemical...

  2. New hybrid model of proton exchange membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    WANG Rui-min; CAO Guang-yi; ZHU Xin-jian

    2007-01-01

    Model and simulation are good tools for design optimization of fuel cell systems. This paper proposes a new hybrid model of proton exchange membrane fuel cell (PEMFC). The hybrid model includes physical component and black-box component. The physical component represents the well-known part of PEMFC, while artificial neural network (ANN) component estimates the poorly known part of PEMFC. The ANN model can compensate the performance of the physical model. This hybrid model is implemented on Matlab/Simulink software. The hybrid model shows better accuracy than that of the physical model and ANN model. Simulation results suggest that the hybrid model can be used as a suitable and accurate model for PEMFC.

  3. Towards developing a backing layer for proton exchange membrane electrolyzers

    Science.gov (United States)

    Lettenmeier, P.; Kolb, S.; Burggraf, F.; Gago, A. S.; Friedrich, K. A.

    2016-04-01

    Current energy policies require the urgent replacement of fossil energy carriers by carbon neutral ones, such as hydrogen. The backing or micro-porous layer plays an important role in the performance of hydrogen proton exchange membrane (PEM) fuel cells, reducing contact resistance and improving reactant/product management. Such carbon-based coating cannot be used in PEM electrolysis since it oxidizes to CO2 at high voltages. A functional titanium macro-porous layer (MPL) on the current collectors of a PEM electrolyzer is developed by thermal spraying. It improves the contact with the catalyst layers by ca. 20 mΩ cm2, increasing significantly the efficiency of the device when operating at high current densities.

  4. Physical Chemistry Research Toward Proton Exchange Membrane Fuel Cell Advancement.

    Science.gov (United States)

    Swider-Lyons, Karen E; Campbell, Stephen A

    2013-02-07

    Hydrogen fuel cells, the most common type of which are proton exchange membrane fuel cells (PEMFCs), are on a rapid path to commercialization. We credit physical chemistry research in oxygen reduction electrocatalysis and theory with significant breakthroughs, enabling more cost-effective fuel cells. However, most of the physical chemistry has been restricted to studies of platinum and related alloys. More work is needed to better understand electrocatalysts generally in terms of properties and characterization. While the advent of such highly active catalysts will enable smaller, less expensive, and more powerful stacks, they will require better understanding and a complete restructuring of the diffusion media in PEMFCs to facilitate faster transport of the reactants (O2) and products (H2O). Even Ohmic losses between materials become more important at high power. Such lessons from PEMFC research are relevant to other electrochemical conversion systems, including Li-air batteries and flow batteries.

  5. MICROBIAL FUEL CELL BASED POLYSTYRENE SULFONATED MEMBRANE AS PROTON EXCHANGE MEMBRANE

    Directory of Open Access Journals (Sweden)

    S. Mulijani

    2016-09-01

    Full Text Available Microbial fuel cell (MFC represents a major bioelectrochemical system that converts biomass spontaneously into electricity through the activity of microorganisms. The MFC consists of anode and cathode compartments. Microorganisms in MFC liberate electrons while the electron donor is consumed. The produced electron is transmitted to the anode surface, but the generated protons must pass through the proton exchange membrane (PEM to reach the cathode compartment. PEM, as a key factor, affects electricity generation in MFCs. The study attempted to investigate if the sulfonated polystyrene (SPS membrane can be used as a PEM in the application on MFC. SPS membrane has been characterized using Fourier transform infrared spectrophotometer (FTIR, scanning electron microscope (SEM and conductivity. The result of the conductivity (σ revealed that the membrane has a promising application for MFC.

  6. Proton Exchange in a Paramagnetic Chemical Exchange Saturation Transfer Agent from Experimental Studies and ab Initio Metadynamics Simulation.

    Science.gov (United States)

    Pollet, Rodolphe; Bonnet, Célia S; Retailleau, Pascal; Durand, Philippe; Tóth, Éva

    2017-03-27

    The proton-exchange process between water and a carbamate has been studied experimentally and theoretically in a lanthanide-based paramagnetic chemical exchange saturation transfer agent endowed with potential multimodality detection capabilities (optical imaging, or T1 MRI for the Gd(III) analogue). In addition to an in-depth structural analysis by a combined approach (using X-ray crystallography, NMR, and molecular dynamics), our ab initio simulation in aqueous solution sheds light on the reaction mechanism for this proton exchange, which involves structural Grotthuss diffusion.

  7. On electron-proton energy exchange in strong magnetic field

    Science.gov (United States)

    Zelener, B. B.; Zelener, B. V.; Manykin, E. A.; Bronin, S. Y.; Bobrov, A. A.

    2016-11-01

    Heating of protons in cold electron gas in strong magnetic field is studied. Calculations of heating process are preformed using molecular dynamics method. Estimations of heating rate depending on initial proton energies and electron gas temperatures are made.

  8. Fault tolerance control for proton exchange membrane fuel cell systems

    Science.gov (United States)

    Wu, Xiaojuan; Zhou, Boyang

    2016-08-01

    Fault diagnosis and controller design are two important aspects to improve proton exchange membrane fuel cell (PEMFC) system durability. However, the two tasks are often separately performed. For example, many pressure and voltage controllers have been successfully built. However, these controllers are designed based on the normal operation of PEMFC. When PEMFC faces problems such as flooding or membrane drying, a controller with a specific design must be used. This paper proposes a unique scheme that simultaneously performs fault diagnosis and tolerance control for the PEMFC system. The proposed control strategy consists of a fault diagnosis, a reconfiguration mechanism and adjustable controllers. Using a back-propagation neural network, a model-based fault detection method is employed to detect the PEMFC current fault type (flooding, membrane drying or normal). According to the diagnosis results, the reconfiguration mechanism determines which backup controllers to be selected. Three nonlinear controllers based on feedback linearization approaches are respectively built to adjust the voltage and pressure difference in the case of normal, membrane drying and flooding conditions. The simulation results illustrate that the proposed fault tolerance control strategy can track the voltage and keep the pressure difference at desired levels in faulty conditions.

  9. Proton exchange membrane fuel cell technology for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Swathirajan, S. [General Motors R& D Center, Warren, MI (United States)

    1996-04-01

    Proton Exchange Membrane (PEM) fuel cells are extremely promising as future power plants in the transportation sector to achieve an increase in energy efficiency and eliminate environmental pollution due to vehicles. GM is currently involved in a multiphase program with the US Department of Energy for developing a proof-of-concept hybrid vehicle based on a PEM fuel cell power plant and a methanol fuel processor. Other participants in the program are Los Alamos National Labs, Dow Chemical Co., Ballard Power Systems and DuPont Co., In the just completed phase 1 of the program, a 10 kW PEM fuel cell power plant was built and tested to demonstrate the feasibility of integrating a methanol fuel processor with a PEM fuel cell stack. However, the fuel cell power plant must overcome stiff technical and economic challenges before it can be commercialized for light duty vehicle applications. Progress achieved in phase I on the use of monolithic catalyst reactors in the fuel processor, managing CO impurity in the fuel cell stack, low-cost electrode-membrane assembles, and on the integration of the fuel processor with a Ballard PEM fuel cell stack will be presented.

  10. Gold Nanoparticles-Enhanced Proton Exchange Membrane (PEM) Fuel Cell

    Science.gov (United States)

    Li, Hongfei; Pan, Cheng; Liu, Ping; Zhu, Yimei; Adzic, Radoslav; Rafailovich, Miriam

    Proton exchange membrane fuel cells have drawn great attention and been taken as a promising alternated energy source. One of the reasons hamper the wider application of PEM fuel cell is the catalytic poison effect from the impurity of the gas flow. Haruta has predicted that gold nanoparticles that are platelet shaped and have direct contact with the metal oxide substrate to be the perfect catalysts of the CO oxidization, yet the synthesis method is difficult to apply in the Fuel Cell. In our approach, thiol-functionalized gold nanoparticles were synthesized through two-phase method developed by Brust et al. We deposit these Au particles with stepped surface directly onto the Nafion membrane in the PEM fuel cell by Langmuir-Blodgett method, resulting in over 50% enhancement of the efficiency of the fuel cell. DFT calculations were conducted to understand the theory of this kind of enhancement. The results indicated that only when the particles were in direct surface contact with the membrane, where AuNPs attached at the end of the Nafion side chains, it could reduce the energy barrier for the CO oxidation that could happen at T<300K.

  11. Effect of Nafion ionometer content on proton conductivity in the catalyst layer of proton exchange fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Ozalevlia, Cihan Cemil; Jian Xie; Xu, Fan [METU MS Mechanical Engineering (United States)], email: cihan.ozalevli@metu.edu.tr, email: jianxie@iupui.edu, email: fanxu@iupui.edu

    2011-07-01

    In the energy conversion sector, proton exchange fuel cells (PEFC's) are among the most promising technologies for the future. The Nafion ionometer is the most important part of the membrane electrode assembly (MEA) which is the core technology of the system. The Nafion ionometer is both a proton conductor and a binder for the catalyst layer in the technology. The aim of this study is to assess the effect of the Nafion content in the cathode catalyst layer on the proton conductivity of the MEA. Two MEAs with different Nafion content were prepared following the LANL process and the proton conductivity of the catalyst layer was measured. Results showed a much higher performance of the 28wt. % Nafion MEA than the 10wt. %. This study demonstrated that when the Nafion ionometer content decreases, the performance of the fuel cell decreases; further investigations should be undertaken with Nafion ionometer amounts of 15wt. % to 20wt. %.

  12. DOES CURRENCY SUBSTITUTION AFFECT EXCHANGE RATE VOLATILITY?

    Directory of Open Access Journals (Sweden)

    Hisao Kumamoto

    2014-10-01

    Full Text Available This study investigates the impacts of the degree of currency substitution on nominal exchange rate volatility in seven countries (Indonesia, the Philippines, the Czech Republic, Hungary, Poland, Argentina, and Peru. We use the Threshold ARCH model to consider the ratchet effect of currency substitution and sample periods in the 2000s, during which time the economies of the sample countries stabilized, while the U.S. dollar and euro depreciated against other major currencies following the recent global financial crisis. The presented empirical analyses show that the degree of currency substitution has significant positive effects on the conditional variance of the depreciation rate of the nominal exchange rate in most sample countries. Moreover, a shock to the depreciation rate of the nominal exchange rate has asymmetric effects on the conditional variance, depending on the sign. One possible explanation for these differential effects is the existence of the ratchet effect of currency substitution.

  13. Contribution of σ meson exchange to elastic lepton-proton scattering

    Science.gov (United States)

    Koshchii, Oleksandr; Afanasev, Andrei

    2016-12-01

    Lepton mass effects play a decisive role in the description of elastic lepton-proton scattering when the beam's energy is comparable to the mass of the lepton. The future Muon Scattering Experiment (MUSE) experiment, which is devised to solve the "Proton Radius Puzzle," is going to cover the corresponding kinematic region for a scattering of muons by a proton target. We anticipate that helicity-flip meson exchanges will make a difference in the comparison of elastic electron-proton vs muon-proton scattering in MUSE. In this article, we estimate the σ meson exchange contribution in the t channel. This contribution, mediated by two-photon coupling of σ , is calculated to be at most ˜0.1 % for muons in the kinematics of MUSE, and it appears to be about 3 orders of magnitude larger than for electrons because of the lepton-mass difference.

  14. Contribution of \\sigma-meson exchange to elastic lepton-proton scattering

    CERN Document Server

    Koshchii, O

    2016-01-01

    Lepton mass effects play a decisive role in description of elastic lepton-proton scattering when the beam's energy is comparable to the mass of the lepton. The future MUSE experiment, which is devised to solve the "Proton Radius Puzzle", is going to cover the corresponding kinematic region for a scattering of muons by a proton target. We anticipate that helicity-flip meson exchanges will make a difference in comparison of elastic electron-proton versus muon-proton scattering in MUSE. In this article, we estimate the $\\sigma$ meson exchange contribution in the $t$-channel. This contribution, mediated by two-photon coupling of $\\sigma$, is calculated to be at most $\\sim 0.1 \\%$ for muons in the kinematics of MUSE and it is about 3 orders in magnitude larger than for electrons because of the lepton-mass difference.

  15. An non-uniformity voltage model for proton exchange membrane fuel cell

    Science.gov (United States)

    Li, Kelei; Li, Yankun; Liu, Jiawei; Guo, Ai

    2017-01-01

    The fuel cell used in transportation has environmental protection, high efficiency and no line traction power system which can greatly reduce line construction investment. That makes it a huge potential. The voltage uniformity is one of the most important factors affecting the operation life of proton exchange membrane fuel cell (PEMFC). On the basis of principle and classical model of the PEMFC, single cell voltage is calculated and the location coefficients are introduced so as to establish a non-uniformity voltage model. These coefficients are estimated with the experimental datum at stack current 50 A. The model is validated respectively with datum at 60 A and 100 A. The results show that the model reflects the basic characteristics of voltage non-uniformity and provides the beneficial reference for fuel cell control and single cell voltage detection.

  16. Effects of swift argon-ion irradiation on the proton-exchanged LiNbO3 crystal

    Science.gov (United States)

    Huang, Qing; Liu, Peng; Liu, Tao; Guo, Sha-Sha; Wang, Xue-Lin

    2012-05-01

    A proton-exchanged LiNbO3 crystal was subjected to 70-MeV argon-ion irradiation. The lattice damage was investigated by the Rutherford backscattering and channeling technique. It was found that the lattice disorder induced by the proton exchange process was partially recovered and the proton-exchanged layer was broadened. It indicated that the lithium ions underneath the initial proton-exchanged layer migrated to the surface during the swift argon-ion irradiation and supplemented the lack of lithium ions in the initial proton-exchanged layer. This effect was ascribed to the great electronic energy deposition and relaxation. The swift argon-ion irradiation induced an increase in extraordinary refractive index and formed another waveguide structure beneath the proton-exchanged waveguide.

  17. Effects of swift argon-ion irradiation on the proton-exchanged LiNbO3 crystal

    Institute of Scientific and Technical Information of China (English)

    Huang Qing; Liu Peng; Liu Tao; Guo Sha-Sha; Wang Xue-Lin

    2012-01-01

    A proton-exchanged LiNbO3 crystal was subjected to 70-MeV argon-ion irradiation.The lattice damage was investigated by the Rutherford backscattering and channeling technique.It was found that the lattice disorder induced by the proton exchange process was partially recovered and the proton-exchanged layer was broadened.It indicated that the lithium ions underneath the initial proton-exchanged layer migrated to the surface during the swift argon-ion irradiation and supplemented the lack of lithium ions in the initial proton-exchanged layer.This effect was ascribed to the great electronic energy deposition and relaxation.The swift argon-ion irradiation induced an increase in extraordinary refractive index and formed another waveguide structure beneath the proton-exchanged waveguide.

  18. Proton exchange between oxymethyl radical and acids and bases: semiempirical quantum-chemical study

    Directory of Open Access Journals (Sweden)

    Irina Pustolaikina

    2016-12-01

    Full Text Available The reactions with proton participation are widely represented in the analytical, technological and biological chemistry. Quantum-chemical study of the exchange processes in hydrogen bonding complexes will allow us to achieve progress in the understanding of the elementary act mechanism of proton transfer in hydrogen bonding chain as well as the essence of the acid-base interactions. Oxymethyl radical •CH2ОН is small in size and comfortable as a model particle that well transmits protolytic properties of paramagnetic acids having more complex structure. Quantum-chemical modeling of proton exchange reaction oxymethyl radical ∙CH2OH and its diamagnetic analog CH3OH with amines, carboxylic acids and water was carried out using UAM1 method with the help of Gaussian-2009 program. QST2 method was used for the search of transition state, IRC procedure was applied for the calculation of descents along the reaction coordinate. The difference in the structure of transition states of ∙CH2OH/ CH3OH with bases and acids has been shown. It has been confirmed that in the case of bases, consecutive proton exchange mechanism was fixed, and in the case of complexes with carboxylic acids parallel proton exchange mechanism was fixed. The similarity in the reaction behavior of paramagnetic and diamagnetic systems in the proton exchange has been found. It was suggested that the mechanism of proton exchange reaction is determined by the structure of the hydrogen bonding cyclic complex, which is, in turn, depends from the nature of the acid-base interactions partners.

  19. Kinetic isotope effects for fast deuterium and proton exchange rates.

    Science.gov (United States)

    Canet, Estel; Mammoli, Daniele; Kadeřávek, Pavel; Pelupessy, Philippe; Bodenhausen, Geoffrey

    2016-04-21

    By monitoring the effect of deuterium decoupling on the decay of transverse (15)N magnetization in D-(15)N spin pairs during multiple-refocusing echo sequences, we have determined fast D-D exchange rates kD and compared them with fast H-H exchange rates kH in tryptophan to determine the kinetic isotope effect as a function of pH and temperature.

  20. Two-photon exchange corrections in elastic electron-proton scattering

    CERN Document Server

    Tomalak, O

    2016-01-01

    We apply a subtracted dispersion relation (DR) formalism with the aim to improve predictions for the two-photon exchange (TPE) corrections to elastic electron-proton scattering observables at small momentum transfers. We study the formalism on the elastic TPE contribution in comparison with existing data for unpolarized cross sections. We extend the general formalism of TPE to elastic scattering with massive lepton and perform a numerical estimate of the muon-proton scattering at low momentum transfer in view of the upcoming muon-proton scattering experiment (MUSE). We study the influence of the double-virtual Compton scattering (VVCS) subtraction function on the unpolarized lepton-proton scattering cross-section. We show that the resulting TPE correction is negligible in the electron-proton scattering and smaller than planned uncertainties of the MUSE experiment for the subtraction functions evaluated in chiral perturbation theory.

  1. Constant Power Control of a Proton Exchange Membrane Fuel Cell through Adaptive Fuzzy Sliding Mode

    Directory of Open Access Journals (Sweden)

    Minxiu Yan

    2013-05-01

    Full Text Available Fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction with oxygen or another oxidizing agent. The paper describes a mathematical model of proton exchange membrane fuel cells by analyzing the working mechanism of the proton exchange membrane fuel cell. Furthermore, an adaptive fuzzy sliding mode controller is designed for the constant power output of PEMFC system. Simulation results prove that adaptive fuzzy sliding mode control has better control effect than conventional fuzzy sliding mode control.

  2. Proton Exchange Membrane (PEM) Material Synthetic Design for Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    Michael; D.Guiver; Dae-Sik; Kim; Gilles; P.Robertson; Yu; Seung; Kim; Bryan; S.Pivovar

    2007-01-01

    1 Results Hydrocarbon PEM materials are being widely studied as replacements for Nafion-type perfluorinated polymeric materials to reduce cost and improve performance such as operating temperature and methanol crossover in the DMFC application. Among some of the important property considerations required are thermal and chemical stability, low dimensional swelling, low methanol permeability in the case of DMFC and high proton conductivity. Careful structural design can reduce the effect of swelling as...

  3. Phosphorus-containing sulfonated polyimides for proton exchange membranes

    OpenAIRE

    2008-01-01

    Synthesis and characterization of the novel sulfonated BAPPO monomer and its use in the synthesis of a new phosphine oxide-based sulfonated polyimide are described. BTDA, 6FDA, and DDS were used as monomers in the polyimide synthesis. Sulfonated polyimide membranes were obtained by a solution thermal imidization method. The thermal behavior of the polymers was investigated by DSC and TGA. The morphological structure of the membranes was investigated by tapping-mode AFM. The proton conductivit...

  4. Sulfonated polyimides containing triphenylphosphine oxide for proton exchange membranes

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Arun Kumar; Bera, Debaditya; Banerjee, Susanta, E-mail: susanta@matsc.iitkgp.ernet.in

    2016-09-15

    A series of sulfonated co-polyimides (co-SPI) were prepared by one pot polycondensation reaction of a combination of diamines namely; 4,4′-diaminostilbene-2,2′-disulfonic acid (DSDSA) and prepared non-sulfonated diamine (DATPPO) containing triphenylphosphine oxide with 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA). All these soluble co-SPI gave flexible membranes with high thermal stability and showed good mechanical property. Transmission electron microscopy (TEM) analysis revealed the microphase separated morphology with well-dispersed hydrophilic (cluster size in the range of 5–55 nm) domains. The co-SPI membranes showed high oxidative and hydrolytic stability with higher proton conductivity. All these co-SPI membranes exhibited low water uptake and swelling ratio. The co-SPI membrane TPPO-60 (60% degree of sulfonation) with IEC{sub W} = 1.84 mequiv g{sup −1} showed high proton conductivity (99 mS cm{sup −1} at 80 °C and 107 mS cm{sup −1} at 90 °C) in water with high oxidative (20 h) and hydrolytic stability (only 5% degradation in 24 h). - Highlights: • Triphenylphosphine oxide containing sulfonated polyimides (SPIs) was synthesized. • The SPIs showed good oxidative and hydrolytic stability and high proton conductivity. • TEM analysis revealed well separated morphology of the SPIs.

  5. Tuning a High Transmission Ion Guide to Prevent Gas-Phase Proton Exchange During H/D Exchange MS Analysis.

    Science.gov (United States)

    Guttman, Miklos; Wales, Thomas E; Whittington, Dale; Engen, John R; Brown, Jeffery M; Lee, Kelly K

    2016-04-01

    Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for protein structural analysis has been adopted for many purposes, including biopharmaceutical development. One of the benefits of examining amide proton exchange by mass spectrometry is that it can readily resolve different exchange regimes, as evidenced by either binomial or bimodal isotope patterns. By careful analysis of the isotope pattern during exchange, more insight can be obtained on protein behavior in solution. However, one must be sure that any observed bimodal isotope patterns are not artifacts of analysis and are reflective of the true behavior in solution. Sample carryover and certain stationary phases are known as potential sources of bimodal artifacts. Here, we describe an additional undocumented source of deuterium loss resulting in artificial bimodal patterns for certain highly charged peptides. We demonstrate that this phenomenon is predominantly due to gas-phase proton exchange between peptides and bulk solvent within the initial stages of high-transmission conjoined ion guides. Minor adjustments of the ion guide settings, as reported here, eliminate the phenomenon without sacrificing signal intensity. Such gas-phase deuterium loss should be appreciated for all HDX-MS studies using such ion optics, even for routine studies not focused on interpreting bimodal spectra. Graphical Abstract ᅟ.

  6. Preparation and characterization of self-crosslinked organic/inorganic proton exchange membranes

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Shuangling; Dou, Sen; Liu, Wencong [College of Resources and Environment, Jilin Agricultural University, Xincheng Street 2888, Changchun 130118 (China); Cui, Xuejun [College of Chemistry, Jilin University, Changchun 130012 (China)

    2010-07-01

    A series of silicon-containing sulfonated polystyrene/acrylate (Si-sPS/A) nanoparticles are successfully synthesized via simple emulsion polymerization method. The Si-sPS/A latexes show good film-forming capability and the self-crosslinked organic/inorganic proton exchange membranes are prepared by pouring the Si-sPS/A nanoparticle latexes into glass plates and drying at 60 C for 10 h and 120 C for 2 h. The potential of the membranes in direct methanol fuel cells (DMFCs) is characterized preliminarily by studying their thermal stability, ion-exchange capacity, water uptake, methanol diffusion coefficient, proton conductivity and selectivity (proton conductivity/methanol diffusion coefficient). The results indicate that these membranes possess excellent thermal stability and methanol barrier due to the existence of self-crosslinked silica network. In addition, the proton conductivity of the membranes is in the range of 10{sup -3}-10{sup -2} S cm{sup -1} and all the membranes show much higher selectivity in comparison with Nafion {sup registered} 117. These results suggest that the self-crosslinked organic/inorganic proton exchange membranes are particularly promising in DMFC applications. (author)

  7. Preparation and characterization of self-crosslinked organic/inorganic proton exchange membranes

    Science.gov (United States)

    Zhong, Shuangling; Cui, Xuejun; Dou, Sen; Liu, Wencong

    A series of silicon-containing sulfonated polystyrene/acrylate (Si-sPS/A) nanoparticles are successfully synthesized via simple emulsion polymerization method. The Si-sPS/A latexes show good film-forming capability and the self-crosslinked organic/inorganic proton exchange membranes are prepared by pouring the Si-sPS/A nanoparticle latexes into glass plates and drying at 60 °C for 10 h and 120 °C for 2 h. The potential of the membranes in direct methanol fuel cells (DMFCs) is characterized preliminarily by studying their thermal stability, ion-exchange capacity, water uptake, methanol diffusion coefficient, proton conductivity and selectivity (proton conductivity/methanol diffusion coefficient). The results indicate that these membranes possess excellent thermal stability and methanol barrier due to the existence of self-crosslinked silica network. In addition, the proton conductivity of the membranes is in the range of 10 -3-10 -2 S cm -1 and all the membranes show much higher selectivity in comparison with Nafion ® 117. These results suggest that the self-crosslinked organic/inorganic proton exchange membranes are particularly promising in DMFC applications.

  8. Aligned electrospun nanofibers as proton conductive channels through thickness of sulfonated poly (phthalazinone ether sulfone ketone) proton exchange membranes

    Science.gov (United States)

    Gong, Xue; He, Gaohong; Wu, Yao; Zhang, Shikai; Chen, Bo; Dai, Yan; Wu, Xuemei

    2017-08-01

    A novel approach is proposed to fabricate sulfonated poly (phthalazinone ether sulfone ketone) (SPPESK) proton exchange membranes with ordered through-plane electrospinning nanofibers, which provide nano-scale through-plane proton conductive channels along the thickness direction of the membranes, aiming to satisfy the challenging requirement of high through-plane proton conductivity in fuel cell operations. Induced by electrostatic attraction of strong electric field, the negatively charged sulfonic acid groups tend to aggregate towards surface of the electrospun fibers, which is evidenced by TEM and SAXS and further induces aggregation of the sulfonic acid groups in the SPPESK inferfiber voids filler along the surface of the nanofibers. The aligned electrospun nanofibers carries long-range ionic clusters along the thickness direction of the membrane and results in much higher total through-plane conductivity in the thickness aligned electrospun membranes, nearly twice as much as that of the cast SPPESK membrane. With smooth treatment, the thickness aligned electrospun SPPESK membranes exhibit higher single cell power density and tensile strength as compared with Nafion 115 (around 1.2 and 1.5 folds, respectively). Such a design of thickness aligned nano-size proton conductive channels provide feasibility for high performance non-fluorinated PEMs in fuel cell applications.

  9. Dissociation between lactate and proton exchange in muscle during intense exercise in man

    DEFF Research Database (Denmark)

    Bangsbo, Jens; Juel, Carsten; Hellsten, Ylva

    1997-01-01

    , the difference between net proton and lactate release was positive throughout exercise and of similar magnitude in N and H. 5. The present data suggest that (1) H+ exchange in muscle during submaximal exercise can to a large extent occur through mechanisms other than via coupling to lactate; (2) muscle transport...

  10. Liquid Crystal Sulfonated Aramids as Proton Exchange Membranes for Fuel Cell Applications

    NARCIS (Netherlands)

    Gao, J.

    2015-01-01

    Two sulfonated aramids, poly(2,2’-disulfonylbenzidine terephthalamide) (PBDT) and poly(2,2’-disulfonylbenzidine isophthalamide) (PBDI) were synthesized with the aim to explore their unique morphology for proton exchange membrane applications. Due to the different polymer structures, PBDT forms a nem

  11. Low stoichiometry operation of a proton exchange membrane fuel cell employing the interdigitated flow field

    DEFF Research Database (Denmark)

    Berning, Torsten; Kær, Søren Knudsen

    2012-01-01

    A multiphase fuel cell model based on computational fluid dynamics is used to investigate the possibility of operating a proton exchange membrane fuel cell at low stoichiometric flow ratios (ξ < 1.5) employing the interdigitated flow field design and using completely dry inlet gases. A case study...

  12. Phosphoric acid doped imidazolium polysulfone membranes for high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Li, Qingfeng; Jensen, Jens Oluf

    2012-01-01

    A novel acid–base polymer membrane is prepared by doping of imidazolium polysulfone with phosphoric acid for high temperature proton exchange membrane fuel cells. Polysulfone is first chloromethylated, followed by functionalization of the chloromethylated polysulfone with alkyl imidazoles i.e. me...

  13. Dynamic Thermal Model and Temperature Control of Proton Exchange Membrane Fuel Cell Stack

    Institute of Scientific and Technical Information of China (English)

    邵庆龙; 卫东; 曹广益; 朱新坚

    2005-01-01

    A dynamic thermal transfer model of a proton exchange membrane fuel cell (PEMFC) stack is developed based on energy conservation in order to reach better temperature control of PEMFC stack. Considering its uncertain parameters and disturbance, we propose a robust adaptive controller based on backstepping algorithm of Lyaponov function. Numerical simulations indicate the validity of the proposed controller.

  14. Liquid Crystal Sulfonated Aramids as Proton Exchange Membranes for Fuel Cell Applications

    NARCIS (Netherlands)

    Gao, J.

    2015-01-01

    Two sulfonated aramids, poly(2,2’-disulfonylbenzidine terephthalamide) (PBDT) and poly(2,2’-disulfonylbenzidine isophthalamide) (PBDI) were synthesized with the aim to explore their unique morphology for proton exchange membrane applications. Due to the different polymer structures, PBDT forms a nem

  15. Understanding on Interface Contribution to the Electrode Performance of Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Grahl-Madsen, L.

    2016-01-01

    The commercialization of proton exchange membrane fuel cells (PEMFCs) is closer to the reality than ever before. Electrode interface development can bring a boost to the last few steps. Here, we explore electrode properties from its interface structure, especially the ionomer phase. Electrodes...

  16. Multiphase Simulations and Design of Validation Experiments for Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Berning, Torsten

    2013-01-01

    Proton exchange membrane fuel cells directly convert into electricity the chemical energy of hydrogen and oxygen from air. The by-products are just water and waste heat. Depending on the operating conditions the water may be in the liquid or gas phase, and liquid water can hence plug the porous m...

  17. Cross-linked PEEK-WC proton exchange membrane for fuel cell

    CSIR Research Space (South Africa)

    Lou, H

    2009-10-01

    Full Text Available /divinylbenzene mixtures onto PFA films. Journal of Membrane Science, 2003. 216(1-2): p. 27-38. [20] Beattie, P. D.; Orfino, F. P.; Basura, V. I.; Zychowska, K.; Ding, J.; Chuy, C.; Schmeisser, J.; Holdcroft, S., Ionic conductivity of proton exchange membranes. Journal...

  18. Analysing powers and spin correlations in deuteron–proton charge exchange at 726 MeV

    Directory of Open Access Journals (Sweden)

    S. Dymov

    2015-05-01

    Full Text Available The charge exchange of vector polarised deuterons on a polarised hydrogen target has been studied in a high statistics experiment at the COSY-ANKE facility at a deuteron beam energy of Td=726 MeV. By selecting two fast protons at low relative energy Epp, the measured analysing powers and spin correlations are sensitive to interference terms between specific neutron–proton charge-exchange amplitudes at a neutron kinetic energy of Tn≈12Td=363 MeV. An impulse approximation calculation, which takes into account corrections due to the angular distribution in the diproton, describes reasonably the dependence of the data on both Epp and the momentum transfer. This lends broad support to the current neutron–proton partial wave solution that was used in the estimation.

  19. Annealed proton exchanged optical waveguides in lithium niobate differences between the X- and Z-cuts

    CERN Document Server

    Nekvindova, P; Cervena, J; Budnar, M; Razpet, A; Zorko, B; Pelicon, P; 10.1016/S0925-3467(01)00186-0

    2002-01-01

    Summarizes results and assessments of our systematic fabrication and characterization of proton exchanged (PE) and annealed proton exchanged (APE) waveguides in lithium niobate. This study focused on different behavior of crystallographically diverse X(1120) and Z (0001) substrate cuts during waveguide fabrication, and differences in characteristics of the resulting waveguides. Non-toxic adipic acid was used as a proton source, and the waveguides properties were defined by mode spectroscopy (waveguide characteristics) and neutron depth profiling (NDP, lithium concentration and distribution), infrared vibration spectra and elastic recoil detection analysis (ERDA, concentration and depth distribution of hydrogen). It was discovered that the X-cut structure is more permeable for moving particles (lithium and hydrogen ions), which leads to a higher effectiveness of the PE process within the X-cut. The explanation of this phenomenon is based on fitting X-cut orientation towards cleavage planes of lithium niobate c...

  20. Two-Photon Exchange Corrections to Precise Measurements of Proton Electroweak Form Factors

    Science.gov (United States)

    Afanasev, Andrei

    2004-10-01

    Higher-order QED effects play an important role for extracting information on proton form factors from electron scattering data. For the electric form factor of the proton, a previously neglected two-photon-exchange correction reconciles an observed discrepancy between Rosenbluth and polarization techniques [1]. We use a similar approach based on General Parton Distributions to compute additional radiative corrections to parity-violating electron scattering. [1] Y.C. Chen, A. Afanasev, S.J. Brodsky, C.E. Carlson and M. Vanderhaeghen, ``Partonic calculation of the two-photon exchange contribution to elastic electron proton scattering at large momentum transfer,`` arXiv:hep-ph/0403058, to appear in Phys.Rev.Lett.

  1. Analysing powers and spin correlations in deuteron-proton charge exchange at 726 MeV

    CERN Document Server

    Dymov, S; Bagdasarian, Z; Barsov, S; Carbonell, J; Chiladze, D; Engels, R; Gebel, R; Grigoryev, K; Hartmann, M; Kacharava, A; Khoukaz, A; Komarov, V; Kulessa, P; Kulikov, A; Kurbatov, V; Lomidze, N; Lorentz, B; Macharashvili, G; Mchedlishvili, D; Merzliakov, S; Mielke, M; Mikirtychyants, M; Mikirtychyants, S; Nioradze, M; Ohm, H; Prasuhn, D; Rathmann, F; Serdyuk, V; Seyfarth, H; Shmakova, V; Ströher, H; Tabidze, M; Trusov, S; Tsirkov, D; Uzikov, Yu; Valdau, Yu; Weidemann, C; Wilkin, C

    2015-01-01

    The charge exchange of vector polarised deuterons on a polarised hydrogen target has been studied in a high statistics experiment at the COSY-ANKE facility at a deuteron beam energy of Td = 726 MeV. By selecting two fast protons at low relative energy E_{pp}, the measured analysing powers and spin correlations are sensitive to interference terms between specific neutron-proton charge-exchange amplitudes at a neutron kinetic energy of Tn ~ 1/2 Td =363 MeV. An impulse approximation calculation, which takes into account corrections due to the angular distribution in the diproton, describes reasonably the dependence of the data on both E_{pp} and the momentum transfer. This lends broad support to the current neutron-proton partial-wave solution that was used in the estimation.

  2. Improved Performance of Sulfonated Polyarylene Ethers for Proton Exchange Membrane Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    D. Xing; J. Kerres; F. Sch(o)nberger

    2005-01-01

    @@ 1Introduction The proton exchange membrane (PEM) is one of key components in fuel cell system. Its properties are very important in determining PEMFC performance. The membranes presently used in fuel cell are perfluorosulfonic polymers, such as Nafion(R) from Dupont. Although they have high proton conductivity and excellent chemical stability, their too high production cast and methanol permeability lead to failure of fuel cell application. Therefore, various partially fluorinated and non-fluorinated polymer electrolytes are under development for PEMFC application since one decade. In the middle of non-fluorinated polymer electrolytes, sulfonated poly(arylene ether)s display high thermal stability, good mechanical properties and exceptional resistance to oxidation and acid catalyzed hydrolysis. They have been regarded as well-suited proton exchange membrane candidates for fuel cells.

  3. Preparation and charactorization of EVOH proton exchange membrane%EVOH质子交换膜的制备及表征

    Institute of Scientific and Technical Information of China (English)

    张红星; 蔡芳昌; 马宁; 殷浩; 胡金星; 任荣; 蒋涛

    2012-01-01

    以碳酸钾为催化剂由乙烯-乙烯醇共聚物(EVOH)与1,3丙烷磺酸内酯(PS)的磺化反应制得离子聚合物(EVOH-g-SO3K),该离子聚合物透析后通过流延法成膜得到质子交换膜(EVOH-g-SO3H).探讨了离子交换容量(IEC)对质子交换膜传导率的影响,当K2CO3/PS摩尔比为1∶2,PS用量为0.03 mol,IEC=0.67mmol/g时电导率达到最大值0.003 S/cm;研究了S-EVOH与EVOH溶液共混后其质子传导率的变化,当SEVOH/EVOH的质量比为7∶3时电导率可达到0.012 S/cm.研究了质子交换膜的质子传导率,离子交换容量(IEC),热学方面的性能.%EVOH-g-SO3K ion polymer was synthesized by the sulfonated reaction of EVOH and 1,3-propanesultone with potassium carbonate as a catalyst The Proton exchange membrane (EVOH-g-SQ3 H) was formed by tape casting method after dialyzing EVOH g SQ3 K. The influencing factor of ion exchange capacity to the membrane proton conductivity was studied,when molar ratio of K2CO3/PS was l:2,and PS dosage was 0. 03 mol,IEC=0. 67 mmol/g,the membrane proton conductivity achieved the maximum 0. 003 S/cm. EVOH-g-SQ3H and EVOH blended in solution affect the proton conductivity, when the mass ratio of ithem was 7:3,the proton conductivity could attain 0. 012 S/cm, The proton conductivity,ion exchange capacity (IEO)and the thermal performance of proton membrane was characterized.

  4. Two-photon exchange correction to muon-proton elastic scattering at low momentum transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tomalak, Oleksandr [Johannes Gutenberg Universitaet, Institut fuer Kernphysik, Mainz (Germany); Johannes Gutenberg-Universitaet, PRISMA Cluster of Excellence, Mainz (Germany); Taras Shevchenko National University of Kyiv, Department of Physics, Kiev (Ukraine); Vanderhaeghen, Marc [Johannes Gutenberg Universitaet, Institut fuer Kernphysik, Mainz (Germany); Johannes Gutenberg-Universitaet, PRISMA Cluster of Excellence, Mainz (Germany)

    2016-03-15

    We evaluate the two-photon exchange (TPE) correction to the muon-proton elastic scattering at small momentum transfer. Besides the elastic (nucleon) intermediate state contribution, which is calculated exactly, we account for the inelastic intermediate states by expressing the TPE process approximately through the forward doubly virtual Compton scattering. The input in our evaluation is given by the unpolarized proton structure functions and by one subtraction function. For the latter, we provide an explicit evaluation based on a Regge fit of high-energy proton structure function data. It is found that, for the kinematics of the forthcoming muon-proton elastic scattering data of the MUSE experiment, the elastic TPE contribution dominates, and the size of the inelastic TPE contributions is within the anticipated error of the forthcoming data. (orig.)

  5. Two-photon exchange correction to muon-proton elastic scattering at small momentum transfer

    CERN Document Server

    Tomalak, O

    2015-01-01

    We evaluate the two-photon exchange (TPE) correction to the muon-proton elastic scattering at small momentum transfer. Besides the elastic (nucleon) intermediate state contribution, which is calculated exactly, we account for the inelastic intermediate states by expressing the TPE process approximately through the forward doubly virtual Compton scattering. The input in our evaluation is given by the unpolarized proton structure functions and by one subtraction function. For the latter, we provide an explicit evaluation based on a Regge fit of high-energy proton structure function data. It is found that,for the kinematics of the forthcoming muon-proton elastic scattering data of the MUSE experiment, the elastic TPE contribution dominates, and the size of the inelastic TPE contributions is within the anticipated error of the forthcoming data.

  6. SULFONATED POLYIMIDES CONTAINING PYRIDINE GROUPS AS PROTON EXCHANGE MEMBRANE MATERIALS

    Institute of Scientific and Technical Information of China (English)

    Rui Lei; Chuan-qing Kang; Yun-jie Huang; Xue-peng Qiu; Xiang-ling Ji; Wei Xing; Lian-xun Gao

    2011-01-01

    A series of sulfonated polyimides (SPIs) containing pyridine groups were prepared by direct polycondensation from 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA),4,4′-diaminodiphenyl ether-2,2′-disulfonic acid (ODADS) and 4-(4-methoxy)phenyl-2,6-bis(4-aminophenyl)pyridine (DAM).The resulting copolymers displayed good solubility in common organic solvents.Flexible,transparent,tough membranes were obtained via solution casting.All the films showed high thermal stability with desulfonation temperature over 300℃.They exhibited prominent mechanical properties with Young's modulus around 2.0 GPa.High proton conductivity (0.23 S/em at 100% RH) was also observed.More importantly,the new materials exhibited low water uptake (30 wt%-75 wt% at 80℃) and improved water stability,which were attributed to the acid-base interaction between sulfonic acid and pyridine functional groups.

  7. A comparative study of proton transport properties of zirconium phosphate and its metal exchanged phases

    Indian Academy of Sciences (India)

    Rakesh Thakkar; Heemanshu Patel; Uma Chudasama

    2007-06-01

    A new phase of amorphous zirconium phosphate (ZrP), an inorganic ion exchanger of the class of tetravalent metal acid (TMA) salt, is synthesized by sol–gel method. The protons present in the structural hydroxyl groups indicate good potential for TMA salts to exhibit solid state proton conduction. Cu2+ and Li+ are exchanged onto ZrP to yield CuZrP and LiZrP exchanged phases. All these materials were characterized for elemental analysis (ICP–AES), thermal analysis (TGA, DSC), X-ray analysis and FTIR spectroscopy. The transport properties of these materials were explored and compared by measuring conductance at different temperatures using an impedance analyser. It is observed that conductivity decreases with increasing temperature in all cases and mechanism of transportation is proposed to be Grotthuss type. Conductivity performance of ZrP, CuZrP and LiZrP is discussed based on conductivity data and activation energy.

  8. Review on Modification of Sulfonated Poly (-ether-ether-ketone Membranes Used as Proton Exchange Membranes

    Directory of Open Access Journals (Sweden)

    Xiaomin GAO

    2015-11-01

    Full Text Available The proton exchange membrane fuel cell (PEMFC is a type of modern power, but the traditional proton exchange membranes (PEM of PEMFC are limited by high methanol permeability and water uptake. Poly-ether-ether-ketone (PEEK is a widely used thermoplastic with good cost-effective property. Sulfonated poly (-ether-ether-ketone (SPEEK has high electric conductivity and low methanol permeability, as well as comprehensive property, which is expected to be used as PEMs. However, the proton exchange ability, methanol resistance, mechanical property and thermal stability of SPEEK are closely related to the degree of sulfonation (DS of SPEEK membranes. Additionally, the proton conductivity, methanol permeability, and stability of SPEEK membranes applied in various conditions need to be further improved. In this paper, the research into modification of SPEEK membranes made by SPEEK and other polymers, inorganic materials are introduced. The properties and modification situation of the SPEEK and the composite membranes, as well as the advantages and disadvantages of membranes prepared by different materials are summarized. From the results we know that, the methanol permeability of SPEEK/PES-C membranes is within the order of magnitude, 10-7cm2/s. The proton conductivity of the SPPESK/SPEEK blend membrane reaches 0.212 S cm-1 at 80 °C. The cross-linked SPEEK membranes have raised thermal and dimensional stability. The non-solvent caused aggregation of the SPEEK ionomers. The proton conductivity of SPEEK/50%BMIMPF6/4.6PA membrane maintains stable as 2.0 x 10-2S cm-1 after 600 h at 160 °C. Incorporation of aligned CNT into SPEEK increases the proton conductivity and reduces the methanol permeability of the composite membranes. The PANI improves the hydrothermal stability. More proton transfer sites lead to a more compact structure in the composite membranes. According to the results, the proton exchange capacity, water uptake, and conductivity of

  9. Analysis of proton exchange kinetics with time-dependent exchange rate.

    Science.gov (United States)

    Rutkowska-Wlodarczyk, Izabela; Kierdaszuk, Borys; Wlodarczyk, Jakub

    2010-04-01

    Mass spectrometry is used to probe the kinetics of hydrogen-deuterium exchange in lysozyme in pH 5, 6 and 7.4. An analysis based on a Verhulst growth model is proposed and effectively applied to the kinetics of the hydrogen exchange. The data are described by a power-like function which is based on a time-dependence of the exchange rate. Experimental data ranging over many time scales is considered and accurate fits of a power-like function are obtained. Results of fittings show correlation between faster hydrogen-deuterium exchange and increase of pH. Furthermore a model is presented that discriminates between easily exchangeable hydrogens (located in close proximity to the protein surface) and those protected from the exchange (located in the protein interior). A possible interpretation of the model and its biological significance are discussed.

  10. The inconsistency between proton charge exchange and the observed ring current decay

    Science.gov (United States)

    Lyons, L. R.; Evans, D. S.

    1976-01-01

    The equatorial pitch-angle distributions of ring-current ions observed during a storm recovery phase at L values between 3 and 4 are compared with the pitch-angle distributions predicted by proton charge exchange with neutral hydrogen. Large disagreements are found, and three alternative explanations are explored. (1) A strong proton source acts to mask the effects of charge exchange. It is believed that the required strong continual source with a unique pitch-angle and energy dependence is unrealistic at these low L values. (2) Presently accepted neutral hydrogen density models have densities well over an order of magnitude too large for a storm recovery phase. No evidence is known to support the required large errors in the densities. (3) The ring current at particle energies not exceeding 50 keV was dominated by some ion species other than protons during the storm recovery phase. Such ions must have much longer lifetimes for charge exchange with hydrogen than do protons. This alternative is strongly favored, with He(+) being an attractive candidate.

  11. Fast proton exchange in histidine: measurement of rate constants through indirect detection by NMR spectroscopy.

    Science.gov (United States)

    Sehgal, Akansha Ashvani; Duma, Luminita; Bodenhausen, Geoffrey; Pelupessy, Philippe

    2014-05-19

    Owing to its imidazole side chain, histidine participates in various processes such as enzyme catalysis, pH regulation, metal binding, and phosphorylation. The determination of exchange rates of labile protons for such a system is important for understanding its functions. However, these rates are too fast to be measured directly in an aqueous solution by using NMR spectroscopy. We have obtained the exchange rates of the NH3(+) amino protons and the labile NH(ε2) and NH(δ1) protons of the imidazole ring by indirect detection through nitrogen-15 as a function of temperature (272 KExchange rates up to 8.5×10(4) s(-1) could be determined (i.e., lifetimes as short as 12 μs). The three chemical shifts δH(i) of the invisible exchanging protons H(i) and the three one-bond scalar coupling constants (1)J(N,H(i)) could also be determined accurately.

  12. Advantages of chemical exchange-sensitive spin-lock (CESL) over chemical exchange saturation transfer (CEST) for hydroxyl- and amine-water proton exchange studies.

    Science.gov (United States)

    Jin, Tao; Kim, Seong-Gi

    2014-11-01

    The chemical exchange (CE) rate of endogenous hydroxyl and amine protons with water is often comparable to the difference in their chemical shifts. These intermediate exchange processes have been imaged by the CE saturation transfer (CEST) approach with low-power and long-duration irradiation. However, the sensitivity is not optimal and, more importantly, the signal is contaminated by slow magnetization transfer processes. Here, the properties of CEST signals are compared with those of a CE-sensitive spin-lock (CESL) technique irradiating at the labile proton frequency. First, using a higher power and shorter irradiation in CE-MRI, we obtain: (i) an increased selectivity to faster CE rates via a higher sensitivity to faster CEs and a lower sensitivity to slower CEs and magnetization transfer processes; and (ii) a decreased in vivo asymmetric magnetization transfer contrast measured at ±15 ppm. The sensitivity gain of CESL over CEST is higher for a higher power and shorter irradiation. Unlike CESL, CEST signals oscillate at a very high power and short irradiation. Second, time-dependent CEST and CESL signals are well modeled by analytical solutions of CE-MRI with an asymmetric population approximation, which can be used for quantitative CE-MRI and validated by simulations of Bloch-McConnell equations and phantom experiments. Finally, the in vivo amine-water proton exchange contrast measured at 2.5 ppm with ω1 = 500 Hz is 18% higher in sensitivity for CESL than CEST at 9.4 T. Overall, CESL provides better exchange rate selectivity and sensitivity than CEST; therefore, CESL is more suitable for CE-MRI of intermediate exchange protons.

  13. Molecular sieve/sulfonated poly(ether ketone ether sulfone) composite membrane as proton exchange membrane

    Science.gov (United States)

    Changkhamchom, Sairung; Sirivat, Anuvat

    2012-02-01

    A proton exchange membrane (PEM) is an electrolyte membrane used in both polymer electrolyte membrane fuel cells (PEMFC) and direct methanol fuel cells (DMFCs). Currently, PEMs typically used for PEMFCs are mainly the commercially available Nafion^ membranes, which is high cost and loss of proton conductivity at elevated temperature. In this work, the Sulfonated poly(ether ketone ether sulfone), (S-PEKES), was synthesized by the nucleophilic aromatic substitution polycondensation between bisphenol S and 4,4'-dichlorobenzophenone, and followed by the sulfonation reaction with concentrated sulfuric acid. The molecular sieve was added in the S-PEKES matrix at various ratios to form composite membranes to be the candidate for PEM. Properties of both pure sulfonated polymer and composite membranes were compared with the commercial Nafion^ 117 membrane from Dupont. S-PEKES membranes cast from these materials were evaluated as a polymer electrolyte membrane for direct methanol fuel cells. The main properties investigated were the proton conductivity, methanol permeability, thermal, chemical, oxidative, and mechanical stabilities by using a LCR meter, Gas Chromatography, Thermogravimetric Analysis, Fourier Transform Infrared Spectroscopy, Fenton's reagent, and Universal Testing Machine. The addition of the molecular sieve helped to increase both the proton conductivity and the methanol stability. These composite membranes are shown as to be potential candidates for use as a Proton Exchange Membrane (PEM).

  14. Using Kappa Functions to Characterize Outer Heliosphere Proton Distributions in the Presence of Charge-exchange

    Science.gov (United States)

    Zirnstein, E. J.; McComas, D. J.

    2015-12-01

    Kappa functions have long been used in the analysis and modeling of suprathermal particles in various space plasmas. In situ observations of the supersonic solar wind show its distribution contains a cold ion core and power-law tail, which is well-represented by a kappa function. In situ plasma observations by Voyager, as well as observations of energetic neutral atom (ENA) spectra by the Interstellar Boundary Explorer (IBEX), showed that the compressed and heated inner heliosheath (IHS) plasma beyond the termination shock can also be represented by a kappa function. IBEX exposes the IHS plasma properties through the detection of ENAs generated by charge-exchange in the IHS. However, charge-exchange modifies the plasma as it flows through the IHS, and makes it difficult to ascertain the parent proton distribution. In this paper we investigate the evolution of proton distributions, initially represented by a kappa function, that experience losses due to charge-exchange in the IHS. In the absence of other processes, it is no longer representable by a single kappa function due to the energy-dependent, charge-exchange process. While one can still fit a kappa function to the evolving proton distribution over limited energy ranges, this yields fitting parameters (pseudo-density, pseudo-temperature, pseudo-kappa index) that depend on the energy range of the fit. We discuss the effects of fitting a kappa function to the IHS proton distribution over limited energy ranges, its dependence on the initial proton distribution properties at the termination shock, and implications for understanding the observations.

  15. USING KAPPA FUNCTIONS TO CHARACTERIZE OUTER HELIOSPHERE PROTON DISTRIBUTIONS IN THE PRESENCE OF CHARGE-EXCHANGE

    Energy Technology Data Exchange (ETDEWEB)

    Zirnstein, E. J.; McComas, D. J., E-mail: ezirnstein@swri.edu, E-mail: dmccomas@swri.edu [Southwest Research Institute, San Antonio, TX 78228 (United States)

    2015-12-10

    Kappa functions have long been used in the analysis and modeling of suprathermal particles in various space plasmas. In situ observations of the supersonic solar wind show its distribution contains a cold ion core and power-law tail, which is well-represented by a kappa function. In situ plasma observations by Voyager, as well as observations of energetic neutral atom (ENA) spectra by the Interstellar Boundary Explorer (IBEX), showed that the compressed and heated inner heliosheath (IHS) plasma beyond the termination shock can also be represented by a kappa function. IBEX exposes the IHS plasma properties through the detection of ENAs generated by charge-exchange in the IHS. However, charge-exchange modifies the plasma as it flows through the IHS, and makes it difficult to ascertain the parent proton distribution. In this paper we investigate the evolution of proton distributions, initially represented by a kappa function, that experience losses due to charge-exchange in the IHS. In the absence of other processes, it is no longer representable by a single kappa function due to the energy-dependent, charge-exchange process. While one can still fit a kappa function to the evolving proton distribution over limited energy ranges, this yields fitting parameters (pseudo-density, pseudo-temperature, pseudo-kappa index) that depend on the energy range of the fit. We discuss the effects of fitting a kappa function to the IHS proton distribution over limited energy ranges, its dependence on the initial proton distribution properties at the termination shock, and implications for understanding the observations.

  16. Preparation of Stable Pt-Clay Nanocatalysts for Self-humidifying Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Zhang, Wenjing

    ultrasonication and a rigorous mechanical agitation of Ptclay in the Nafion solution during the membrane casting process. Planar and hygroscopic clay reduced fuel crossover and balanced the water content. In situ water production for humidification of the dry membranes without any external humidification......One of the critical challenges in making proton exchange membrane (PEM) fuel cells commercially viable is the inability of Nafion (the most used PEM) to conduct protons at low water content level. Both external humidifier and physical seal of the fixture in commercial products increase the cost...

  17. An Investigation of Proton Conductivity of Vinyltriazole-Grafted PVDF Proton Exchange Membranes Prepared via Photoinduced Grafting

    Directory of Open Access Journals (Sweden)

    Sinan Sezgin

    2014-01-01

    Full Text Available Proton exchange membrane fuel cells (PEMFCs are considered to be a promising technology for clean and efficient power generation in the twenty-first century. In this study, high performance of poly(vinylidene fluoride (PVDF and proton conductivity of poly(1-vinyl-1,2,4-triazole (PVTri were combined in a graft copolymer, PVDF-g-PVTri, by the polymerization of 1-vinyl-1,2,4-triazole on a PVDF based matrix under UV light in one step. The polymers were doped with triflic acid (TA at different stoichiometric ratios with respect to triazole units and the anhydrous polymer electrolyte membranes were prepared. All samples were characterized by FTIR and 1H-NMR spectroscopies. Their thermal properties were examined by thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. TGA demonstrated that the PVDF-g-PVTri and PVDF-g-PVTri-(TAx membranes were thermally stable up to 390°C and 330°C, respectively. NMR and energy dispersive X-ray spectroscopy (EDS results demonstrated that PVDF-g-PVTri was successfully synthesized with a degree of grafting of 21%. PVDF-g-PVTri-(TA3 showed a maximum proton conductivity of 6×10-3 Scm−1 at 150°C and anhydrous conditions. CV study illustrated that electrochemical stability domain for PVDF-g-PVTri-(TA3 extended over 4.0 V.

  18. An analytical model and parametric study of electrical contact resistance in proton exchange membrane fuel cells

    Science.gov (United States)

    Wu, Zhiliang; Wang, Shuxin; Zhang, Lianhong; Hu, S. Jack

    This paper presents an analytical model of the electrical contact resistance between the carbon paper gas diffusion layers (GDLs) and the graphite bipolar plates (BPPs) in a proton exchange membrane (PEM) fuel cell. The model is developed based on the classical statistical contact theory for a PEM fuel cell, using the same probability distributions of the GDL structure and BPP surface profile as previously described in Wu et al. [Z. Wu, Y. Zhou, G. Lin, S. Wang, S.J. Hu, J. Power Sources 182 (2008) 265-269] and Zhou et al. [Y. Zhou, G. Lin, A.J. Shih, S.J. Hu, J. Power Sources 163 (2007) 777-783]. Results show that estimates of the contact resistance compare favorably with experimental data by Zhou et al. [Y. Zhou, G. Lin, A.J. Shih, S.J. Hu, J. Power Sources 163 (2007) 777-783]. Factors affecting the contact behavior are systematically studied using the analytical model, including the material properties of the two contact bodies and factors arising from the manufacturing processes. The transverse Young's modulus of chopped carbon fibers in the GDL and the surface profile of the BPP are found to be significant to the contact resistance. The factor study also sheds light on the manufacturing requirements of carbon fiber GDLs for a better contact performance in PEM fuel cells.

  19. An analytical model and parametric study of electrical contact resistance in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhiliang; Wang, Shuxin; Zhang, Lianhong [School of Mechanical Engineering, Tianjin University, Tianjin 300072 (China); Hu, S. Jack [Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI 48109-2125 (United States)

    2009-04-15

    This paper presents an analytical model of the electrical contact resistance between the carbon paper gas diffusion layers (GDLs) and the graphite bipolar plates (BPPs) in a proton exchange membrane (PEM) fuel cell. The model is developed based on the classical statistical contact theory for a PEM fuel cell, using the same probability distributions of the GDL structure and BPP surface profile as previously described in Wu et al. [Z. Wu, Y. Zhou, G. Lin, S. Wang, S.J. Hu, J. Power Sources 182 (2008) 265-269] and Zhou et al. [Y. Zhou, G. Lin, A.J. Shih, S.J. Hu, J. Power Sources 163 (2007) 777-783]. Results show that estimates of the contact resistance compare favorably with experimental data by Zhou et al. [Y. Zhou, G. Lin, A.J. Shih, S.J. Hu, J. Power Sources 163 (2007) 777-783]. Factors affecting the contact behavior are systematically studied using the analytical model, including the material properties of the two contact bodies and factors arising from the manufacturing processes. The transverse Young's modulus of chopped carbon fibers in the GDL and the surface profile of the BPP are found to be significant to the contact resistance. The factor study also sheds light on the manufacturing requirements of carbon fiber GDLs for a better contact performance in PEM fuel cells. (author)

  20. On active disturbance rejection in temperature regulation of the proton exchange membrane fuel cells

    Science.gov (United States)

    Li, Dazi; Li, Chong; Gao, Zhiqiang; Jin, Qibing

    2015-06-01

    Operating a Proton Exchange Membrane fuel cell (PEMFC) system to maintain the stack temperature stable is one of the key issues in PEMFC's normal electrochemical reaction process. Its temperature characteristic is easily affected by inlet gas humidity, external disturbances, and electrical load changes and so on. Because of the complexity and nonlinearity of the reaction process, it is hard to build a model totally consistent with the real characteristic of the process. If model uncertainty, external disturbances, parameters changes can be regarded as "total disturbance", which is then estimated and compensated, the accurate model is no longer required and the control design can be greatly simplified to meet the practical needs. Based on this idea, an active disturbance rejection control (ADRC) with a switching law is proposed for the problem of precise temperature regulation in PEMFC. Results of the work show that the proposed control system allows the PEMFC to operate successfully at the temperature of 343 K point in the presence of two different disturbances.

  1. Design and simulation of novel flow field plate geometry for proton exchange membrane fuel cells

    Science.gov (United States)

    Ruan, Hanxia; Wu, Chaoqun; Liu, Shuliang; Chen, Tao

    2016-10-01

    Bipolar plate is one of the many important components of proton exchange membrane fuel cell (PEMFC) stacks as it supplies fuel and oxidant to the membrane-electrode assembly (MEA), removes water, collects produced current and provides mechanical support for the single cells in the stack. The flow field design of a bipolar plate greatly affects the performance of a PEMFC. It must uniformly distribute the reactant gases over the MEA and prevent product water flooding. This paper aims at improving the fuel cell performance by optimizing flow field designs and flow channel configurations. To achieve this, a novel biomimetic flow channel for flow field designs is proposed based on Murray's Law. Computational fluid dynamics based simulations were performed to compare three different designs (parallel, serpentine and biomimetic channel, respectively) in terms of current density distribution, power density distribution, pressure distribution, temperature distribution, and hydrogen mass fraction distribution. It was found that flow field designs with biomimetic flow channel perform better than that with convectional flow channel under the same operating conditions.

  2. Acid-catalysed deuterium exchange of aromatic protons. Pt. 3; Accelerated exchange by microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Koeves, G.J. (Centre of Forensic Sciences, Toronto, ON (Canada))

    1994-03-01

    Conventional acid-catalysed [sup 2]H/[sup 1]H exchange in aromatic rings requires long reaction times, high temperatures and pressure. This paper reports that accelerated deuterium exchange can be achieved in a microwave oven. Experiments were carried out on benzodiazepines, tricyclic antidepressants and phenothiazines. The reaction time was decreased from days to minutes, the preparatory work was simpler than with conventional heating and the labelled products were cleaner. (author).

  3. Preparation and characterization of a thermoplastic proton-exchange system based on SEBS and polypropylene blends

    Directory of Open Access Journals (Sweden)

    K. Polat

    2017-03-01

    Full Text Available The paper focuses on a series of blends prepared with different contents of polystyrene-block-poly-(ethylene-ranbutylene-block-polystyrene (SEBS and polypropylene (PP for the purpose of examining the potential as proton exchange membranes. Polymer blends were prepared by twin-screw extrusion and then compressed by means of a hot-press device into thin films of 125 µm and then ionic sides were created by solid state sulfonation in a chlorosulfonic acid solution. Obtained films were characterized by means of water-uptake, mechanical properties, ion-exchange capacities (IEC and ion conductivities. It was observed that the rigidity of the films increased with rising sulfonation durations. However humidity absorption from the air decreased the rigidity at high sulfonation levels. Improved water uptake values were obtained when compared to previously reported values in the literature. On the other hand ion exchange values showed an increase parallel to the sulfonation duration up to 45 minutes, but a decrease thereafter was observed due to the diffusion of some sulfonated polymer chains into the ion-exchange medium thereby calculated ion exchange values of S-SEBSH45 and S-SEBSH60 were found less than expected. All films showed ion conductivities up to 432 mS/cm at 25 °C. Only S-SEBSH45 and S-SEBSH60 were successful in conducting protons at 80 °C owing to the high water retaining capacity.

  4. Chitosan/silica coated carbon nanotubes composite proton exchange membranes for fuel cell applications.

    Science.gov (United States)

    Liu, Hai; Gong, Chunli; Wang, Jie; Liu, Xiaoyan; Liu, Huanli; Cheng, Fan; Wang, Guangjin; Zheng, Genwen; Qin, Caiqin; Wen, Sheng

    2016-01-20

    Silica-coated carbon nanotubes (SCNTs), which were obtained by a simple sol-gel method, were utilized in preparation of chitosan/SCNTs (CS/SCNTs) composite membranes. The thermal and oxidative stability, morphology, mechanical properties, water uptake and proton conductivity of CS/SCNTs composite membranes were investigated. The insulated and hydrophilic silica layer coated on CNTs eliminates the risk of electronic short-circuiting and enhances the interaction between SCNTs and chitosan to ensure the homogenous dispersion of SCNTs, although the water uptake of CS/SCNTs membranes is reduced owing to the decrease of the effective number of the amino functional groups of chitosan. The CS/SCNTs composite membranes are superior to the pure CS membrane in thermal and oxidative stability, mechanical properties and proton conductivity. The results of this study suggest that CS/SCNTs composite membranes exhibit promising potential for practical application in proton exchange membranes.

  5. Nanostructure-based proton exchange membrane for fuel cell applications at high temperature.

    Science.gov (United States)

    Li, Junsheng; Wang, Zhengbang; Li, Junrui; Pan, Mu; Tang, Haolin

    2014-02-01

    As a clean and highly efficient energy source, the proton exchange membrane fuel cell (PEMFC) has been considered an ideal alternative to traditional fossil energy sources. Great efforts have been devoted to realizing the commercialization of the PEMFC in the past decade. To eliminate some technical problems that are associated with the low-temperature operation (such as catalyst poisoning and poor water management), PEMFCs are usually operated at elevated temperatures (e.g., > 100 degrees C). However, traditional proton exchange membrane (PEM) shows poor performance at elevated temperature. To achieve a high-performance PEM for high temperature fuel cell applications, novel PEMs, which are based on nanostructures, have been developed recently. In this review, we discuss and summarize the methods for fabricating the nanostructure-based PEMs for PEMFC operated at elevated temperatures and the high temperature performance of these PEMs. We also give an outlook on the rational design and development of the nanostructure-based PEMs.

  6. Thermodynamic Studies of Electrostatic Self-assembly of Poly Diallyldimethylammonium Chloride on Proton Exchange Membrane

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The electrostatic self-assembly of polymer on proton exchange membrane was studied by calorimetric tech-nique. The titration of poly diallyldimethylammonium chloride (PDDA) into Nation membrane was designed and performed to determine the thermodynamic parameters. The enthalpy change △rH(○)m and binding constant K in the process of self-assembly were obtained from data analysis with the help of Origin. According to the calculated thermodynamic parameters, the electrostatic self-assembly of PDDA on the proton exchange membrane is an "en-thalpy-driven" reaction. The released heat indicates decrease of energy, which is helpful for the occurrence of the self-assembly process, and the degree of disorder is reduced, which went against the adsorption process. As to everyion bond, the value of △rH(○)m of DDA is beyond PDDA because a small molecule can bind itself to the membranewithout steric hindrance.

  7. Heterogeneous allylsilylation of aromatic and aliphatic alkenes catalyzed by proton-exchanged montmorillonite.

    Science.gov (United States)

    Motokura, Ken; Matsunaga, Shigekazu; Miyaji, Akimitsu; Sakamoto, Yasuharu; Baba, Toshihide

    2010-04-02

    Allylsilylation of an alkene is the only known procedure to install both silyl and allyl groups onto a carbon-carbon double bond directly. Proton-exchanged montmorillonite showed excellent catalytic performances for the allylsilylation of alkenes. For example, the reaction of p-chlorostyrene with allyltrimethylsilane proceeded smoothly to afford the corresponding allylsilylated product in 95% yield. We also attempted to isolate the reaction intermediate on the montmorillonite surface to investigate the reaction mechanism.

  8. Proton-exchanged LiNbO(3) waveguides: relevance of atmospheric environment during annealing.

    Science.gov (United States)

    Loni, A; De La Rue, R M

    1992-08-20

    The relevance of the type of atmosphere used during the annealing of proton-exchanged LiNbO(3) planar waveguides is discussed. The experimental evidence, based on a comparison of the refractive-index profiles of waveguides annealed under wet O(2), dry O(2), or ambient atmospheres, with various gas flow rates, suggests that the atmosphere type does not influence the properties of the resulting waveguide.

  9. Proton Exchange Membrane Fuel Cell Modeling Based on Seeker Optimization Algorithm

    Institute of Scientific and Technical Information of China (English)

    LI Qi; DAI Chao-hua; Chen Wei-rong; JIA Jun-bo; HAN Ming

    2008-01-01

    Seeker optimization algorithm (SOA) has applications in continuous space of swarm intelligence. In the fields of proton ex-change membrane fuel cell (PEMFC) modeling, SOA was proposed to research a set of optimized parameters in PEMFC polariza-tion curve model. Experimental result showed that the mean square error of the optimization modeling strategy was only 6.9 × 10-23. Hence, the optimization model could fit the experiment data with high precision.

  10. Preparation of new proton exchange membranes using sulfonated poly(ether sulfone) modified by octylamine (SPESOS)

    Energy Technology Data Exchange (ETDEWEB)

    Mabrouk, W. [Societe ERAS Labo, 222 RN 90, 38330, St Nazaire Les Eymes, Grenoble (France); Laboratoire des Materiaux Industriels, Conservatoire National des Arts et Metiers de Paris 75003, Paris (France); Laboratoire de Chimie Analytique et Electrochimie, Faculte des Sciences de Tunis, Campus Universitaire 1092, Tunis (Tunisia); Ogier, L. [Societe ERAS Labo, 222 RN 90, 38330, St Nazaire Les Eymes, Grenoble (France); Matoussi, F. [Laboratoire de Chimie Analytique et Electrochimie, Faculte des Sciences de Tunis, Campus Universitaire 1092, Tunis (Tunisia); Sollogoub, C., E-mail: cyrille.sollogoub@cnam.fr [Laboratoire des Materiaux Industriels, Conservatoire National des Arts et Metiers de Paris 75003, Paris (France); Vidal, S. [Societe ERAS Labo, 222 RN 90, 38330, St Nazaire Les Eymes, Grenoble (France); Dachraoui, M. [Laboratoire de Chimie Analytique et Electrochimie, Faculte des Sciences de Tunis, Campus Universitaire 1092, Tunis (Tunisia); Fauvarque, J.F. [Laboratoire des Materiaux Industriels, Conservatoire National des Arts et Metiers de Paris 75003, Paris (France)

    2011-08-15

    Highlights: {yields} New, simple and cheap way to synthesize a membrane. {yields} The membranes combine good proton conductivities with good mechanical properties. {yields} The membrane performances in a fuel cell are similar to the Nafion 117. - Abstract: Sulfonated poly(arylene ether sulfone) (SPES) has received considerable attention in membrane preparation for proton exchange membrane fuel cell (PEMFC). But such membranes are brittle and difficult to handle in operation. We investigated new membranes using SPES grafted with various degrees of octylamine. Five new materials made from sulfonated polyethersulfone sulfonamide (SPESOS) were synthetized with different grades of grafting. They were made from SPES, with initially an ionic exchange capacity (IEC) of 2.4 meq g{sup -1} (1.3 H{sup +} per monomer unit). Pristine SPES with that IEC is water swelling and becomes soluble at 80 deg. C, its proton conductivity is in the range of 0.1 S cm{sup -1} at room temperature in aqueous H{sub 2}SO{sub 4} 1 M, similar to that of Nafion. After grafting with various amounts of octylamine, the material is water insoluble; membranes are less brittle and show sufficient ionic conductivity. Proton transport numbers were measured close to 1.

  11. Toward a predictive understanding of water and charge transport in proton exchange membranes.

    Science.gov (United States)

    Selvan, Myvizhi Esai; Calvo-Muñoz, Elisa; Keffer, David J

    2011-03-31

    An analytical model for water and charge transport in highly acidic and highly confined systems such as proton exchange membranes of fuel cells is developed and compared to available experimental data. The model is based on observations from both experiment and multiscale simulation. The model accounts for three factors in the system including acidity, confinement, and connectivity. This model has its basis in the molecular-level mechanisms of water transport but has been coarse-grained to the extent that it can be expressed in an analytical form. The model uses the concentration of H(3)O(+) ion to characterize acidity, interfacial surface area per water molecule to characterize confinement, and percolation theory to describe connectivity. Several important results are presented. First, an integrated multiscale simulation approach including both molecular dynamics simulation and confined random walk theory is capable of quantitatively reproducing experimentally measured self-diffusivities of water in the perfluorinated sulfonic acid proton exchange membrane material, Nafion. The simulations, across a range of hydration conditions from minimally hydrated to fully saturated, have an average error for the self-diffusivity of water of 16% relative to experiment. Second, accounting for three factors-acidity, confinement, and connectivity-is necessary and sufficient to understand the self-diffusivity of water in proton exchange membranes. Third, an analytical model based on percolation theory is capable of quantitatively reproducing experimentally measured self-diffusivities of both water and charge in Nafion across a full range of hydration.

  12. Proton exchange fuel cell : the design, construction and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Heinzen, M.R.; Simoes, G.C.; Da Silva, L. [Univ. do Vale do Itajai, Sao Jose, SC (Brazil). Lab. de Pesquisa em Energia; Fiori, M.A.; Paula, M.M.S. [Univ. do Extremo Sul Catarinense, Santa Catarina (Brazil). Lab. de Sintese de Complexos Multifuncionais; Benavides, R. [Centro de Investigacion en Quimica Aplicada, Coahuila (Mexico)

    2010-07-15

    Polymer electrolyte membrane fuel cells (PEMFC) convert the chemical energy stored in the fuel directly into electrical energy without intermediate steps. The PEMFC operates at a relatively low operating temperature making it a good choice for mobile applications, but a high power density is needed in order to decrease the total weight of the vehicles. This paper presented a simple methodology to construct a PEMFC-type fuel cell, with particular reference to the gaseous diffuser, cell structure, the fixing plate, mounting bracket, gas distribution plates, and the membrane electrode assembly (MEA). The geometric design and meshing of the PEMFC were also described. The electrode was made using graphite with flow-field geometry. The PEMFC was tested for 100 hour of continuous work, during which time the current and voltage produced were monitored in order to evaluate the performance of the PEMFC. The materials used in the preparation of the fuel cell proved to be suitable. There was no loss of efficiency during the tests. The most relevant aspects affecting the PEMFC design were examined in an effort to optimize the performance of the cell. 13 refs., 6 figs.

  13. Exchange of aspartate and alanine. Mechanism for development of a proton-motive force in bacteria.

    Science.gov (United States)

    Abe, K; Hayashi, H; Maloney, P C; Malone, P C

    1996-02-09

    We examined the idea that aspartate metabolism by Lactobacillus subsp. M3 is organized as a proton-motive metabolic cycle by using reconstitution to monitor the activity of the carrier, termed AspT, expected to carry out the electrogenic exchange of precursor (aspartate) and product (alanine). Membranes of Lactobacillus subsp. M3 were extracted with 1.25% octyl glucoside in the presence of 0. 4% Escherichia coli phospholipid and 20% glycerol. The extracts were then used to prepare proteoliposomes loaded with either aspartate or alanine. Aspartate-loaded proteoliposomes accumulated external [3H]aspartate by exchange with internal substrate; this homologous self-exchange (Kt = 0.4 mm) was insensitive to potassium or proton ionophores and was unaffected by the presence or absence of Na+, K+, or Mg2+. Alanine-loaded proteoliposomes also took up [3H]aspartate in a heterologous antiport reaction that was stimulated or inhibited by an inside-positive or inside-negative membrane potential, respectively. Several lines of evidence suggest that these homologous and heterologous exchange reactions were catalyzed by the same functional unit. Thus, [3H]aspartate taken up by AspT during self-exchange was released by a delayed addition of alanine. In addition, the spontaneous loss of AspT activity that occurs when a detergent extract is held at 37 degrees C prior to reconstitution was prevented by the presence of either aspartate (KD(aspartate) = 0.3 mm) or alanine (KD(alanine) > or = 10 mm), indicating that both substrates interact directly with AspT. These findings are consistent with operation of a proton-motive metabolic cycle during aspartate metabolism by Lactobacillus subsp. M3.

  14. 燃料电池用质子交换膜%Proton Exchange Membranes for Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    杨洪迁; 钱晓良; 索进平

    2003-01-01

      The requests of practical proton exchange membranes for fuel cells were introduced briefly: Some polymer proton exchange membranes and composite proton exchange membranes up to date are narrated, and the character and influencing factors of these membranes also discussed;Based on its recent research, the trend of the development of proton exchange membranes is introduced.%  简要介绍了有实用价值的燃料电池用质子交换膜的性能要求。阐述了最新研究的一些聚合物质子交换膜和复合质子交换膜的研究动态及这些膜的性质和其影响因素。并根据目前的研究动态,介绍了质子交换膜的研究趋势。

  15. Characterization and Modification of Electrospun Fiber Mats for Use in Composite Proton Exchange Membranes

    Science.gov (United States)

    Mannarino, Matthew Marchand

    . Post-spin thermal annealing was used to modify the fiber morphology, inter-fiber welding, and crystallinity within the fibers. Morphological changes, in-plane tensile response, friction coefficient, and wear rate were characterized as functions of the annealing temperature. The Young's moduli, yield stresses and toughnesses of the PA 6(3)T nonwoven mats improved by two- to ten-fold when annealed slightly above the glass transition temperature, but at the expense of mat porosity. The mechanical and tribological properties of the thermally annealed P A 6,6 fiber mats exhibited significant improvements through the Brill transition temperature, comparable to the improvements observed for amorphous P A 6(3)T electrospun mats annealed near the glass transition temperature. The wear rates for both polymer systems correlate with the yield properties of the mat, in accordance with a modified Ratner-Lancaster model. The variation in mechanical and tribological properties of the mats with increasing annealing temperature is consistent with the formation of fiber-to-fiber junctions and a mechanism of abrasive wear that involves the breakage of these junctions between fibers. A mechanically robust proton exchange membrane with high ionic conductivity and selectivity is an important component in many electrochemical energy devices such as fuel cells, batteries, and photovoltaics. The ability to control and improve independently the mechanical response, ionic conductivity, and selectivity properties of a membrane is highly desirable in the development of next generation electrochemical devices. In this thesis, the use of layer-by-layer (LbL) assembly of polyelectrolytes is used to generate three different polymer film morphologies on highly porous electrospun fiber mats: webbed, conformal coating, and pore-bridging films. Specifically, depending on whether a vacuum is applied to the backside of the mat or not, the spray-LbL assembly either fills the voids of the mat with the proton

  16. [Growth and proton-potassium exchange in Enterococcus hirae: protonophore effect and the role of oxidation-reduction potential].

    Science.gov (United States)

    Poladian, A; Kirakosian, G; Trchunian, A

    2006-01-01

    Enterococcus hirae ATCC 9790 are able to grow under anaerobic conditions during the fermentation of sugars (pH 8.0) in the presence of the protonophore carbonylcyanide-m-chlorophenylhydrazone at a lesser specific growth rate. As bacteria grow, the acidification of the external medium and a drop in the redox potential from positive to negative (up to -220 mV) values occur. The reducer dithiothreitol, which maintains the negative values of the redox potential, increases the growth rate and acidification of the medium, recovering thereby the effect of the protonophore (without interacting with it). Conversely, the impermeable oxidizer ferricyanide, while maintaining positive values of the redox potential, inhibits the bacterial growth. These results indicate the role of the proton-motive force and importance of reducing processes in bacterial growth. The proton-potassium exchange is inhibited by carbonylcyanide-m-chlorophenylhydazone but is restored with dithiothreitol. Dithiothreiol is able to substitute the proton-motive force; however, ferricyanide and dithiothreitol may also directly affect the bacterial membrane.

  17. The neutron-proton charge-exchange amplitudes measured in the dp {yields} ppn reaction

    Energy Technology Data Exchange (ETDEWEB)

    Mchedlishvili, D.; Chiladze, D. [Tbilisi State University, High Energy Physics Institute, Tbilisi (Georgia); Forschungszentrum Juelich, Institut fuer Kernphysik and Juelich Centre for Hadron Physics, Juelich (Germany); Barsov, S.; Dzyuba, A. [Petersburg Nuclear Physics Institute, High Energy Physics Department, Gatchina (Russian Federation); Carbonell, J. [Universite Paris-Sud, IN2P3-CNRS, Institut de Physique Nucleaire, Orsay Cedex (France); Dymov, S. [JINR, Laboratory of Nuclear Problems, Dubna (Russian Federation); Universitaet Erlangen-Nuernberg, Physikalisches Institut II, Erlangen (Germany); Engels, R.; Gebel, R.; Hartmann, M.; Kacharava, A.; Kamerdzhiev, V.; Lehrach, A.; Lorentz, B.; Maier, R.; Ohm, H.; Prasuhn, D.; Rathmann, F.; Serdyuk, V.; Seyfarth, H.; Stein, H.J.; Stockhorst, H.; Stroeher, H. [Forschungszentrum Juelich, Institut fuer Kernphysik and Juelich Centre for Hadron Physics, Juelich (Germany); Glagolev, V. [JINR, Laboratory of High Energies, Dubna (Russian Federation); Grigoryev, K.; Mikirtychyants, M.; Mikirtychyants, S.; Valdau, Yu. [Forschungszentrum Juelich, Institut fuer Kernphysik and Juelich Centre for Hadron Physics, Juelich (Germany); Petersburg Nuclear Physics Institute, High Energy Physics Department, Gatchina (Russian Federation); Goslawski, P.; Khoukaz, A.; Mielke, M.; Papenbrock, M. [Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Keshelashvili, I. [Tbilisi State University, High Energy Physics Institute, Tbilisi (Georgia); University of Basel, Department of Physics, Basel (Switzerland); Komarov, V.; Kulikov, A. [JINR, Laboratory of Nuclear Problems, Dubna (Russian Federation); Kulessa, P. [H. Niewodniczanski Institute of Nuclear Physics PAN, Krakow (Poland); Lomidze, N.; Nioradze, M.; Tabidze, M. [Tbilisi State University, High Energy Physics Institute, Tbilisi (Georgia); Macharashvili, G. [Tbilisi State University, High Energy Physics Institute, Tbilisi (Georgia); JINR, Laboratory of Nuclear Problems, Dubna (Russian Federation); Merzliakov, S. [Forschungszentrum Juelich, Institut fuer Kernphysik and Juelich Centre for Hadron Physics, Juelich (Germany); JINR, Laboratory of Nuclear Problems, Dubna (Russian Federation); Steffens, E. [Universitaet Erlangen-Nuernberg, Physikalisches Institut II, Erlangen (Germany); Trusov, S. [Forschungszentrum Rossendorf, Institut fuer Kern- und Hadronenphysik, Dresden (Germany); Uzikov, Yu. [JINR, Laboratory of Nuclear Problems, Dubna (Russian Federation); M. V. Lomonosov Moscow State University, Department of Physics, Moscow (Russian Federation); Wilkin, C. [UCL, Physics and Astronomy Department, London (United Kingdom)

    2013-04-15

    The unpolarised differential cross section and the two deuteron tensor analysing powers A{sub xx} and A{sub yy} of the vector dp {yields} {l_brace}pp{r_brace}{sub s}n charge-exchange reaction have been measured with the ANKE spectrometer at the COSY storage ring. Using deuteron beams with energies 1.2, 1.6, 1.8, and 2.27GeV, data were obtained for small momentum transfers to a {l_brace}pp{r_brace}{sub s} system with low excitation energy. The results at the three lower energies are consistent with impulse approximation predictions based upon the current knowledge of the neutron-proton amplitudes. However, at 2.27GeV, where these amplitudes are far more uncertain, agreement requires a reduction in the overall double-spin-flip contribution, with an especially significant effect in the longitudinal direction. These conclusions are supported by measurements of the deuteron-proton spin-correlation parameters C{sub x,x} and C{sub y,y} that were carried out in the vector dvector p {yields} {l_brace}pp{r_brace}{sub s}n reaction at 1.2 and 2.27GeV. The values obtained for the proton analysing power A{sub y}{sup p} also suggest the need for a radical re-evaluation of the neutron-proton elastic scattering amplitudes at the higher energy. It is therefore clear that such measurements can provide a valuable addition to the neutron-proton database in the charge-exchange region. (orig.)

  18. Improved durability of proton exchange membrane fuel cells by introducing Sn (IV) oxide into electrodes using an ion exchange method

    Science.gov (United States)

    Poulsen, M. G.; Larsen, M. J.; Andersen, S. M.

    2017-03-01

    Electrodes of Proton Exchange Membrane Fuel Cells (PEMFCs), consisting of catalyst-coated gas diffusion layers, were subjected to an optimized ion exchange procedure, in which tin (IV) oxide (SnO2) nanoparticles were introduced into them. Both methanol and sulfuric acid were tested as ion exchange solvents. SnO2 has previously been shown to exhibit radical scavenging abilities towards radicals inside the electrocatalyst layers. Its presence inside the electrodes was confirmed using X-ray photoelectron spectroscopy and X-ray fluorescence. After exposure to an accelerated stress test in a three-electrode setup, the electrodes containing SnO2 were found to have retained approximately 73.0% of their original Pt, while only 53.2% was retained in electrodes treated identically, but without Sn. Similarly, the SnO2-treated electrodes also experienced a smaller loss in electrochemical surface area in comparison to before the accelerated stress test. A membrane electrode assembly (MEA) constructed with a SnO2-containing anode was evaluated over 500 h. The results showed remarkably reduced OCV decay rate and end of test hydrogen crossover compared to the control MEA, indicating that SnO2 aids in impeding membrane thinning and pinhole formation. The results point toward a positive effect of SnO2 on fuel cell durability, by reducing the degradation of the membrane as well as of the ionomer in the electrocatalyst layer.

  19. Proton exchange in Y-cut $LiNbO_{3}$

    CERN Document Server

    Kuneva, M; Pashtrapanska, M; Nedkov, I

    2000-01-01

    In the present work, planar waveguides in Y-cut LiNbO/sub 3/ were obtained using modified proton exchange (PE) conditions of: PE and subsequent annealing (APE), PE in buffered melts (BMPE), APE followed by PE (APE+PE), and PE in vapours (VPE). Benzoic acid was used as the proton source in the PE, BMPE, and (APE+PE) experiments. Cinnamic acid was used for obtaining VPE-waveguides. The main aim was to prevent surface damage of Y-cut crystals due to the strains introduced by proton exchange. The investigations performed showed that the surface etching is probably due to lattice deformation anisotropy leading to higher strains in PE Y-cut samples. Most encouraging results were observed, when an optimized (APE+PE)- procedure was used for waveguide formation. This method is very attractive for the fast preparation of deep high-index and low-loss waveguides in Y-cut LiNbO/sub 3/. This procedure allows passive and active elements to be produced in one and the same Y-cut substrate of LiNbO/sub 3/. Similar preliminary ...

  20. Highly efficient sulfonated polybenzimidazole as a proton exchange membrane for microbial fuel cells

    Science.gov (United States)

    Singha, Shuvra; Jana, Tushar; Modestra, J. Annie; Naresh Kumar, A.; Mohan, S. Venkata

    2016-06-01

    Although microbial fuel cells (MFCs) represent a promising bio-energy technology with a dual advantage (i.e., electricity production and waste-water treatment), their low power densities and high installation costs are major impediments. To address these bottlenecks and replace highly expensive Nafion, which is a proton exchange membrane (PEM), the current study focuses for the first time on membranes made from an easily synthesizable and more economical oxy-polybenzimidazole (OPBI) and its sulfonated analogue (S-OPBI) as alternate PEMs in single-chambered MFCs. The S-OPBI membrane exhibits better properties, with high water uptake, ion exchange capacity (IEC) and proton conductivity and a comparatively smaller degree of swelling compared to Nafion. The membrane morphology is characterized by atomic force microscopy, and the bright and dark regions of the S-OPBI membrane reveals the formation of ionic domains in the matrix, forming continuous water nanochannels when doped with water. These water-filled nanochannels are responsible for faster proton conduction in S-OPBI than in Nafion; therefore, the power output in the MFC with S-OPBI as the PEM is higher than in other MFCs. The open circuit voltage (460 mV), current generation (2.27 mA) and power density profile (110 mW/m2) as a function of time, as well as the polarization curves, exhibits higher current and power density (87.8 mW/m2) with S-OPBI compared to Nafion as the PEM.

  1. Employing Hot Wire Anemometry to Directly Measure the Water Balance of a Proton Exchange Membrane Fuel Cell

    DEFF Research Database (Denmark)

    Shakhshir, Saher Al; Berning, Torsten

    Proton exchange membrane fuel cells (PEMFC’s) are currently being commercialized for various applications ranging from automotive to stationary such as powering telecom back-up units. In PEMFC’s, oxygen from air is internally combined with hydrogen to form water and produce electricity and waste...... heat. One critical technical problem of these fuel cells is still the water management: the proton exchange membrane in the center of these fuel cells has to be hydrated in order to stay proton-conductive while excessive liquid water can lead to cell flooding and increased degradation rates. Clearly...

  2. Aspartic acid substitutions affect proton translocation by bacteriorhodopsin.

    Science.gov (United States)

    Mogi, T; Stern, L J; Marti, T; Chao, B H; Khorana, H G

    1988-01-01

    We have substituted each of the aspartic acid residues in bacteriorhodopsin to determine their possible role in proton translocation by this protein. The aspartic acid residues were replaced by asparagines; in addition, Asp-85, -96, -115, and -112 were changed to glutamic acid and Asp-212 was also replaced by alanine. The mutant bacteriorhodopsin genes were expressed in Escherichia coli and the proteins were purified. The mutant proteins all regenerated bacteriorhodopsin-like chromophores when treated with a detergent-phospholipid mixture and retinal. However, the rates of regeneration of the chromophores and their lambda max varied widely. No support was obtained for the external point charge model for the opsin shift. The Asp-85----Asn mutant showed not detectable proton pumping, the Asp-96----Asn and Asp-212----Glu mutants showed less than 10% and the Asp-115----Glu mutant showed approximately equal to 30% of the normal proton pumping. The implications of these findings for possible mechanisms of proton translocation by bacteriorhodopsin are discussed. PMID:3288985

  3. Pendant dual sulfonated poly(arylene ether ketone) proton exchange membranes for fuel cell application

    Science.gov (United States)

    Nguyen, Minh Dat Thinh; Yang, Sungwoo; Kim, Dukjoon

    2016-10-01

    Poly(arylene ether ketone) (PAEK) possessing carboxylic groups at the pendant position is synthesized, and the substitution degree of pendant carboxylic groups is controlled by adjusting the ratio of 4,4-bis(4-hydroxyphenyl)valeric acid and 2,2-bis(4-hydroxyphenyl)propane. Dual sulfonated 3,3-diphenylpropylamine (SDPA) is grafted onto PAEK as a proton-conducting moiety via the amidation reaction with carboxylic groups. The transparent and flexible membranes with different degrees of sulfonation are fabricated so that we can test and compare their structure and properties with a commercial Nafion® 115 membrane for PEMFC applications. All prepared PAEK-SDPA membranes exhibit good oxidative and hydrolytic stability from Fenton's and high temperature water immersion test. SAXS analysis illustrates an excellent phase separation between the hydrophobic backbone and hydrophilic pendant groups, resulting in big ionic clusters. The proton conductivity was measured at different relative humidity, and its behavior was analyzed by hydration number of the membrane. Among a series of membranes, some samples (including B20V80-SDPA) show not only higher proton conductivity, but also higher integrated cell performance than those of Nafion® 115 at 100% relative humidity, and thus we expect these to be good candidate membranes for proton exchange membrane fuel cells (PEMFCs).

  4. Water exchange in plant tissue studied by proton NMR in the presence of paramagnetic centers.

    Science.gov (United States)

    Bacić, G; Ratković, S

    1984-04-01

    The proton NMR relaxation of water in maize roots in the presence of paramagnetic centers, Mn2+, Mn- EDTA2 -, and dextran-magnetite was measured. It was shown that the NMR method of Conlon and Outhred (1972, Biochem. Biophys. Acta. 288:354-361) can be applied to a heterogenous multicellular system, and the water exchange time between cortical cells and the extracellular space can be calculated. The water exchange is presumably controlled by the intracellular unstirred layers. The Mn- EDTA2 - complex is a suitable paramagnetic compound for complex tissue, while the application of dextran-magnetite is probably restricted to studies of water exchange in cell suspensions. The water free space of the root and viscosity of the cells cytoplasm was estimated with the use of Mn- EDTA2 -. The convenience of proton NMR for studying the multiphase uptake of paramagnetic ions by plant root as well as their transport to leaves is demonstrated. A simple and rapid NMR technique (spin-echo recovery) for continuous measurement of the uptake process is presented.

  5. Correlating Humidity-Dependent Ionically Conductive Surface Area with Transport Phenomena in Proton-Exchange Membranes

    Energy Technology Data Exchange (ETDEWEB)

    He, Qinggang; Kusoglu, Ahmet; Lucas, Ivan T.; Clark, Kyle; Weber, Adam Z.; Kostecki, Robert

    2011-08-01

    The objective of this effort was to correlate the local surface ionic conductance of a Nafion? 212 proton-exchange membrane with its bulk and interfacial transport properties as a function of water content. Both macroscopic and microscopic proton conductivities were investigated at different relative humidity levels, using electrochemical impedance spectroscopy and current-sensing atomic force microscopy (CSAFM). We were able to identify small ion-conducting domains that grew with humidity at the surface of the membrane. Numerical analysis of the surface ionic conductance images recorded at various relative humidity levels helped determine the fractional area of ion-conducting active sites. A simple square-root relationship between the fractional conducting area and observed interfacial mass-transport resistance was established. Furthermore, the relationship between the bulk ionic conductivity and surface ionic conductance pattern of the Nafion? membrane was examined.

  6. Durability of symmetrically and asymmetrically porous polybenzimidazole membranes for high temperature proton exchange membrane fuel cells

    Science.gov (United States)

    Jheng, Li-Cheng; Chang, Wesley Jen-Yang; Hsu, Steve Lien-Chung; Cheng, Po-Yang

    2016-08-01

    Two types of porous polybenzimidazole (PBI) membranes with symmetric and asymmetric morphologies were fabricated by the template-leaching method and characterized by scanning electron microscope (SEM). Their physicochemical properties were compared in terms of acid-doping level, proton conductivity, mechanical strength, and oxidative stability. The durability of fuel cell operation is one of the most challenging for the PBI based membrane electrode assembly (MEA) used in high-temperature proton exchange membrane fuel cells (HT-PEMFCs). In the present work, we carried out a long-term steady-state fuel cell test to compare the effect of membrane structure on the cell voltage degradation. It has also been demonstrated that the asymmetrically porous PBI could bring some notable improvements on the durability of fuel cell operation, the fuel crossover problem, and the phosphoric acid leakage.

  7. Characterization of Annealed, Proton Exchange Optical Waveguides in Y-cut MgO∶LiNbO3 Crystal

    Institute of Scientific and Technical Information of China (English)

    CAO Xia; XIA Yuxing; YANG Yi; WANG Pinghe; CHEN Xianfeng

    2000-01-01

    It is reported the results of a systematic study on planar waveguides fabricated in Y-cut MgO∶LiNbO3 crystal. The index profile of the as-exchanged waveguide can be modeled as a step-like one. It is deduced the diffusion coefficient and the activation energy for the proton exchange process. The surface index increases Δne of around 0.127 after proton exchange can be reduced by post thermal annealing. The effects of the annealing on the index profile and guide depth were found not as fast as it does on a pure LiNbO3 crystal.

  8. Quantitative chemical exchange saturation transfer (qCEST) MRI--RF spillover effect-corrected omega plot for simultaneous determination of labile proton fraction ratio and exchange rate.

    Science.gov (United States)

    Sun, Phillip Zhe; Wang, Yu; Dai, ZhuoZhi; Xiao, Gang; Wu, Renhua

    2014-01-01

    Chemical exchange saturation transfer (CEST) MRI is sensitive to dilute proteins and peptides as well as microenvironmental properties. However, the complexity of the CEST MRI effect, which varies with the labile proton content, exchange rate and experimental conditions, underscores the need for developing quantitative CEST (qCEST) analysis. Towards this goal, it has been shown that omega plot is capable of quantifying paramagnetic CEST MRI. However, the use of the omega plot is somewhat limited for diamagnetic CEST (DIACEST) MRI because it is more susceptible to direct radio frequency (RF) saturation (spillover) owing to the relatively small chemical shift. Recently, it has been found that, for dilute DIACEST agents that undergo slow to intermediate chemical exchange, the spillover effect varies little with the labile proton ratio and exchange rate. Therefore, we postulated that the omega plot analysis can be improved if RF spillover effect could be estimated and taken into account. Specifically, simulation showed that both labile proton ratio and exchange rate derived using the spillover effect-corrected omega plot were in good agreement with simulated values. In addition, the modified omega plot was confirmed experimentally, and we showed that the derived labile proton ratio increased linearly with creatine concentration (p exchange rate (p = 0.32). In summary, our study extends the conventional omega plot for quantitative analysis of DIACEST MRI.

  9. Biodegradation and proton exchange using natural rubber in microbial fuel cells.

    Science.gov (United States)

    Winfield, Jonathan; Ieropoulos, Ioannis; Rossiter, Jonathan; Greenman, John; Patton, David

    2013-11-01

    Microbial fuel cells (MFCs) generate electricity from waste but to date the technology's development and scale-up has been held-up by the need to incorporate expensive materials. A costly but vital component is the ion exchange membrane (IEM) which conducts protons between the anode and cathode electrodes. The current study compares natural rubber as an alternative material to two commercially available IEMs. Initially, the material proved impermeable to protons, but gradually a working voltage was generated that improved with time. After 6 months, MFCs with natural rubber membrane outperformed those with anion exchange membrane (AEM) but cation exchange membrane (CEM) produced 109 % higher power and 16 % higher current. After 11 months, polarisation experiments showed a decline in performance for both commercially available membranes while natural rubber continued to improve and generated 12 % higher power and 54 % higher current than CEM MFC. Scanning electron microscope images revealed distinct structural changes and the formation of micropores in natural latex samples that had been employed as IEM for 9 months. It is proposed that the channels and micropores formed as a result of biodegradation were providing pathways for proton transfer, reflected by the steady increase in power generation over time. These improvements may also be aided by the establishment of biofilms that, in contrast, caused declining performance in the CEM. The research demonstrates for the first time that the biodegradation of a ubiquitous waste material operating as IEM can benefit MFC performance while also improving the reactor's lifetime compared to commercially available membranes.

  10. Diluted melt proton exchange slab waveguides in LiNbO3: A new fabrication and characterization method

    DEFF Research Database (Denmark)

    Veng, Torben; Skettrup, Torben

    1997-01-01

    A method of dilute-melt proton exchange employing a mixture of glycerol and KHSO4 with lithium benzoate added is used to fabricate planar waveguides in c-cut LiNbO3. With this exchange melt system the waveguide refractive index profiles can be fabricated with a high degree of reproducibility. In ...... refractive index change and composition of this glycerol, KHSO4 and lithium benzoate exchange melt system....

  11. Novel niobium carbide/carbon porous nanotube electrocatalyst supports for proton exchange membrane fuel cell cathodes

    Science.gov (United States)

    Nabil, Y.; Cavaliere, S.; Harkness, I. A.; Sharman, J. D. B.; Jones, D. J.; Rozière, J.

    2017-09-01

    Niobium carbide/carbon nanotubular porous structures have been prepared using electrospinning and used as electrocatalyst supports for proton exchange membrane fuel cells. They were functionalised with 3.1 nm Pt particles synthesised by a microwave-assisted polyol method and characterised for their electrochemical properties. The novel NbC-based electrocatalyst demonstrated electroactivity towards the oxygen reduction reaction as well as greater stability over high potential cycling than a commercial carbon-based electrocatalyst. Pt/NbC/C was integrated at the cathode of a membrane electrode assembly and characterised in a single fuel cell showing promising activity and power density.

  12. Proton exchange membrane fuel cells modeling based on artificial neural networks

    Institute of Scientific and Technical Information of China (English)

    Yudong Tian; Xinjian Zhu; Guangyi Cao

    2005-01-01

    To understand the complexity of the mathematical models of a proton exchange membrane fuel cell (PEMFC) and their shortage of practical PEMFC control, the PEMFC complex mechanism and the existing PEMFC models are analyzed, and artificial neural networks based PEMFC modeling is advanced. The structure, algorithm, training and simulation of PEMFC modeling based on improved BP networks are given out in detail. The computer simulation and conducted experiment verify that this model is fast and accurate, and can be used as a suitable operational model for PEMFC real-time control.

  13. Particle Swarm Optimization based predictive control of Proton Exchange Membrane Fuel Cell (PEMFC)

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Proton Exchange Membrane Fuel Cells (PEMFCs) are the main focus of their current development as power sources because they are capable of higher power density and faster start-up than other fuel cells. The humidification system and output performance of PEMFC stack are briefly analyzed. Predictive control of PEMFC based on Support Vector Regression Machine (SVRM) is presented and the SVRM is constructed. The processing plant is modelled on SVRM and the predictive control law is obtained by using Particle Swarm Optimization (PSO). The simulation and the results showed that the SVRM and the PSO receding optimization applied to the PEMFC predictive control yielded good performance.

  14. Recent Development of Pd-Based Electrocatalysts for Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Hui Meng

    2015-07-01

    Full Text Available This review selectively summarizes the latest developments in the Pd-based cataysts for low temperature proton exchange membrane fuel cells, especially in the application of formic acid oxidation, alcohol oxidation and oxygen reduction reaction. The advantages and shortcomings of the Pd-based catalysts for electrocatalysis are analyzed. The influence of the structure and morphology of the Pd materials on the performance of the Pd-based catalysts were described. Finally, the perspectives of future trends on Pd-based catalysts for different applications were considered.

  15. Study on Production of Hydrogen from Methane for Proton Exchange Membrane Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    宋正昶; 李传统

    2001-01-01

    The hydrogen production from methane for proton exchange membrane fuel cell (PEMFC) was studied experimentally. The conversion rate of methane under different steam-carbon ratios, the effect of the different excess air ratios on the constituents of the gas produced, the permeability of hydrogen under different pressure differences, and the effect of different system pressure on the reaction enthalpy of hydrogen were obtained. The results lay the basis for the production of hydrogen applicable to PEMFC, moreover, provide a new way for the comprehensive utilization of the coal bed methane.

  16. Preparation of Poly(oxybutyleneoxymaleoyl Catalyzed by a Proton Exchanged Montmorillonite Clay

    Directory of Open Access Journals (Sweden)

    Mohammed Belbachir

    2004-11-01

    Full Text Available The polycondensation of tetrahydrofuran with maleic anhydride catalyzed byMaghnite-H+ (Mag-H was investigated. Maghnite is a montmorillonite sheet silicateclay that is exchanged with protons to produce Maghnite-H [1]. It was found that thepolymerization in bulk is initiated by Mag-H in the presence of acetic anhydride at 40°C.The effects of the amounts of Mag-H and acetic anhydride were studied. Thepolymerization yield increased as the proportions of catalyst and acetic anhydride wereincreased.

  17. Preparation of poly(oxybutyleneoxymaleoyl) catalyzed by a proton exchanged montmorillonite clay.

    Science.gov (United States)

    Ferrahi, Mohammed Issam; Belbachir, Mohammed

    2004-01-01

    The polycondensation of tetrahydrofuran with maleic anhydride catalyzed by Maghnite-H+ (Mag-H) was investigated. Maghnite is a montmorillonite sheet silicate clay that is exchanged with protons to produce Maghnite-H [1]. It was found that the polymerization in bulk is initiated by Mag-H in the presence of acetic anhydride at 40 degrees C. The effects of the amounts of Mag-H and acetic anhydride were studied. The polymerization yield increased as the proportions of catalyst and acetic anhydride were increased.

  18. Preparation of Poly(oxybutyleneoxymaleoyl) Catalyzed by a Proton Exchanged Montmorillonite Clay

    OpenAIRE

    Mohammed Belbachir; Mohammed Issam Ferrahi

    2004-01-01

    The polycondensation of tetrahydrofuran with maleic anhydride catalyzed byMaghnite-H+ (Mag-H) was investigated. Maghnite is a montmorillonite sheet silicateclay that is exchanged with protons to produce Maghnite-H [1]. It was found that thepolymerization in bulk is initiated by Mag-H in the presence of acetic anhydride at 40°C.The effects of the amounts of Mag-H and acetic anhydride were studied. Thepolymerization yield increased as the proportions of catalyst and acetic anhydride wereincr...

  19. Inorganic-organic Composite Membranes with Novel Microstructure for High Temperature Proton Exchange Membrane Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    Zhigang Ma; Jiandong Gao; Jing Guo; Zhenghua Deng; Jishuan Suo

    2007-01-01

    Nowadays,more and more fossil fuels are consumed and air pollurion has become a threat to the survival of people.Therefore,we need some other power sources to provide energy without damaging the environment.Proton exchange membrane fuel cells(PEMFCs)have received wide attention due to their advantages Such as high energy density and zero emission[1].Particularly, direct methanol fuel cells (DMFCs)were considered as the most suitable energy sources for electric vehicles(EVs)and portable electronics.

  20. Continual Energy Management System of Proton Exchange Membrane Fuel Cell Hybrid Power Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Ren Yuan

    2016-01-01

    Full Text Available Current research status in energy management of Proton Exchange Membrane (PEM fuel cell hybrid power electric vehicles are first described in this paper, and then build the PEMFC/ lithium-ion battery/ ultra-capacitor hybrid system model. The paper analysis the key factors of the continuous power available in PEM fuel cell hybrid power electric vehicle and hybrid power system working status under different driving modes. In the end this paper gives the working flow chart of the hybrid power system and concludes the three items of the system performance analysis.

  1. Synthesis of the diazonium (perfluoroalkyl) benzenesulfonimide monomer from Nafion monomer for proton exchange membrane fuel cells

    Science.gov (United States)

    Mei, Hua; D'Andrea, Dan; Nguyen, Tuyet-Trinh; Nworie, Chima

    2014-02-01

    One diazonium (perfluoroalkyl) benzenesulfonimide monomer, perfluoro-3, 6-dioxa-4-methyl-7-octene benzenesulfonyl imide, has been synthesized from Nafion monomer for the first time. With trifluorovinyl ether and diazonium precursors, the partially-fluorinated diazonium PFSI monomer can be polymerized and will provide chemically bonding with carbon electrode in proton exchange membrane fuel cells. A systematic study of the synthesis and characterization of this diazonium PFSI monomer has been conducted by varying reaction conditions. The optimized synthesis method has been established in the lab.

  2. Dynamic Control of Electric Output Characteristics of Proton Exchange Membrane Fuel Cell System

    Institute of Scientific and Technical Information of China (English)

    刘星则; 朱新坚

    2005-01-01

    This paper discusses dynamic characteristics of proton exchange membrane fuel cell (PEMFC) under rapid fluctuation of power demand. Wavelet neural network is adopted in the identification of the characteristic curve to predict the voltage. The system control scheme of the voltage and power is introduced. The corresponding schemes for voltage and power control are studied. MATLAB is used to simulate the control system. The results reveal that the adopted control schemes can produce expected effects. Corresponding anti-disturbance and robustness simulation are also carried out. The simulation results show that the implemented control schemes have better robustness and adaptability.

  3. Hierarchy carbon paper for the gas diffusion layer of proton exchange membrane fuel cells

    Science.gov (United States)

    Du, Chunyu; Wang, Baorong; Cheng, Xinqun

    This communication described the fabrication of a hierarchy carbon paper, and its application to the gas diffusion layer (GDL) of proton exchange membrane (PEM) fuel cells. The carbon paper was fabricated by growing carbon nanotubes (CNTs) on carbon fibers via covalently assembling metal nanocatalysts. Surface morphology observation revealed a highly uniform distribution of hydrophobic materials within the carbon paper. The contact angle to water of this carbon paper was not only very large but also particularly even. Polarization measurements verified that the hierarchy carbon paper facilitated the self-humidifying of PEM fuel cells, which could be mainly attributed to its higher hydrophobic property as diagnosed by electrochemical impedance spectroscopy (EIS).

  4. Neutron-proton charge-exchange amplitudes at 585 MeV

    CERN Document Server

    Chiladze, D; Dzyuba, A; Dymov, S; Glagolev, V; Hartmann, M; Kacharava, A; Keshelashvili, I; Khoukaz, A; Komarov, V; Kulessa, P; Kulikov, A; Lomidze, N; Macharashvili, G; Maeda, Y; Mchedlishvili, D; Mersmann, T; Merzliakov, S; Mielke, M; Mikirtychyants, S; Nekipelov, M; Nioradze, M; Ohm, H; Rathmann, F; Ströher, H; Tabidze, M; Trusov, S; Uzikov, Yu; Valdau, Yu; Wilkin, C

    2008-01-01

    The differential cross section and deuteron analysing powers of the dp -> {pp}n charge-exchange reaction have been measured with the ANKE spectrometer at the COSY storage ring. Using a deuteron beam of energy 1170 MeV, data were obtained for small momentum transfers to a {pp} system with low excitation energy. A good quantitative understanding of all the measured observables is provided by the impulse approximation using known neutron-proton amplitudes. The proof of principle achieved here for the method suggests that measurements at higher energies will provide useful information in regions where the existing np database is far less reliable.

  5. Performance of Cassava Starch as a Proton Exchange Membrane in a Dual Chambered Microbial Fuel Cell.

    OpenAIRE

    Livinus A. Obasi; Charles C. Opara; Akuma Oji

    2012-01-01

    This research work shows the feasibility of power generation in a mediatorless dual chambered microbial fuel cell, utilizing cassava starch as the proton exchange membrane (PEM). The study employed swine house effluent (a serious environmental threat) as the substrate (fuel) (pH, 7.2, BOD: 1200mg/l, COD: 3800mg/l) in the anode chamber prepared with a phosphate buffer solution (K2HPO4+KH2PO4), potassium ferry cyanide solution served as the oxygen acceptor in the cathode chamber using graphite ...

  6. Improved Electrodes for High Temperature Proton Exchange Membrane Fuel Cells using Carbon Nanospheres.

    Science.gov (United States)

    Zamora, Héctor; Plaza, Jorge; Cañizares, Pablo; Lobato, Justo; Rodrigo, Manuel A

    2016-05-23

    This work evaluates the use of carbon nanospheres (CNS) in microporous layers (MPL) of high temperature proton exchange membrane fuel cell (HT-PEMFC) electrodes and compares the characteristics and performance with those obtained using conventional MPL based on carbon black. XRD, hydrophobicity, Brunauer-Emmett-Teller theory, and gas permeability of MPL prepared with CNS were the parameters evaluated. In addition, a short life test in a fuel cell was carried out to evaluate performance under accelerated stress conditions. The results demonstrate that CNS is a promising alternative to traditional carbonaceous materials because of its high electrochemical stability and good electrical conductivity, suitable to be used in this technology.

  7. RADIATION STABILITY OF NAFION MEMBRANES USED FOR ISOTOPE SEPARATION BY PROTON EXCHANGE MEMBRANE ELECTROLYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, E

    2009-05-15

    Proton Exchange Membrane Electrolyzers have potential interest for use for hydrogen isotope separation from water. In order for PEME to be fully utilized, more information is needed on the stability of Nafion when exposed to radiation. This work examines Nafion 117 under varying exposure conditions, including dose rate, total dosage and atmospheric condition. Analytical tools, such as FT-IR, ion exchange capacity, DMA and TIC-TOC were used to characterize the exposed membranes. Analysis of the water from saturated membranes can provide important data on the stability of the membranes during radiation exposure. It was found that the dose rate of exposure plays an important role in membrane degradation. Potential mechanisms for membrane degradation include peroxide formation by free radicals.

  8. Development of proton exchange membranes fuel cells with sulfonated HTPB-phenol; Desenvolvimento de membranas polimericas trocadoras de protons utilizando PBLH-fenol

    Energy Technology Data Exchange (ETDEWEB)

    Ferraz, Fernando A.; Oliveira, Angelo R.S.; Cesar-Oliveira, Maria Aparecida F. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Quimica. Lab. de Polimeros Sinteticos], e-mail: ferraz@quimica.ufpr.br; Cantao, Mauricio P. [LACTEC - Instituto de Tecnologia para o Desenvolvimento, Curitiba, PR (Brazil). Centro Politecnico

    2007-07-01

    Proton exchange membrane fuel cells (PEMFC) have been paid attention as promising candidates for vehicle and portable applications. PEMFC employ proton exchange polymer membrane which serves as an electrolyte between anode and cathode. Nafion{sup R} (DuPont), perfluorosulfonic acid/PTFE copolymer membranes are typically used as the polymer electrolyte in PEMFC due to their good chemical and mechanical properties as well as high proton conductivity. However, high cost of these materials is one of main obstacles for commercialization of PEMFC. Extensive efforts have been devoted to develop alternative polymer electrolyte membranes. Our group have investigated the development of proton exchange membranes fuel cells using sulfonated HTPB-Phenyl ether (HTPB-Phenol), making possible the formation of membranes with sulfonated groups amount of 2,4, 2,5 and 2,8 mmol/g of dry polymer from HTPB-Phenol 80, 98 and 117 respectively. These results mean a bigger values than those of the Nafion{sup R} membranes, that possess an ion exchange capacity of 0,67 up to 1,25 mmol/g of sulfonated groups. (author)

  9. Electrochemical characterization of proton exchange membrane fuel cells; Caracterizacao eletroquimica de celulas a combustivel de membrana polimerica trocadora de protons

    Energy Technology Data Exchange (ETDEWEB)

    Furtado, Jose Geraldo de Melo; Serra, Eduardo Torres [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)]. E-mail: furtado@cepel.br; Codeceira Neto, Alcides [Companhia HidroEletrica do Sao Francisco (CHESF), Recife, PE (Brazil)

    2008-07-01

    This paper describes the electrochemical behavior of a proton exchange membrane fuel cell in function of temperature and time of operation. Different polarization phenomena are considered in the 30 to 70 deg C temperature range, as well as the degradation of electrochemical behavior of the fuel cell analyzed up to 1260 hours of operation. The results show that there is a tendency for the experimental values approaching the theoretical as it increases the temperature of the membrane electrolyte. The electrochemical behavior of the PEMFC studied proved to be less stable at 70 deg C. On the other hand, at 30 deg C the fuel cell performance proved to be considerably lower than at other temperatures. Also, it was found that in certain current ranges occurs greater overlay in potential-current curves, and in some cases reversing between these curves depending on the electric current required for the data obtained at 60 and 70 deg C, indicating, perhaps, that at 70 deg C the characteristics of the electrolyte are slightly inferior to those at 70 deg C, corresponding to an electrolyte degradation. Additionally, for the system studied, we found that the rate of variation of the potential difference in function of the temperature is quite high at the beginning of the operation process and tends to stabilize in a level of around 2,3-2,5 {mu}V per minute for times greater than 330 hours of operation. (author)

  10. HOGEN{trademark} proton exchange membrane hydrogen generators: Commercialization of PEM electrolyzers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, W.F.; Molter, T.M. [Proton Energy Systems, Inc., Rocky Hill, CT (United States)

    1997-12-31

    PROTON Energy Systems` new HOGEN series hydrogen generators are Proton Exchange Membrane (PEM) based water electrolyzers designed to generate 300 to 1000 Standard Cubic Feet Per Hour (SCFH) of high purity hydrogen at pressures up to 400 psi without the use of mechanical compressors. This paper will describe technology evolution leading to the HOGEN, identify system design performance parameters and describe the physical packaging and interfaces of HOGEN systems. PEM electrolyzers have served US and UK Navy and NASA needs for many years in a variety of diverse programs including oxygen generators for life support applications. In the late 1970`s these systems were advocated for bulk hydrogen generation through a series of DOE sponsored program activities. During the military buildup of the 1980`s commercial deployment of PEM hydrogen generators was de-emphasized as priority was given to new Navy and NASA PEM electrolysis systems. PROTON Energy Systems was founded in 1996 with the primary corporate mission of commercializing PEM hydrogen generators. These systems are specifically designed and priced to meet the needs of commercial markets and produced through manufacturing processes tailored to these applications. The HOGEN series generators are the first step along the path to full commercial deployment of PEM electrolyzer products for both industrial and consumer uses. The 300/1000 series are sized to meet the needs of the industrial gases market today and provide a design base that can transition to serve the needs of a decentralized hydrogen infrastructure tomorrow.

  11. NMR resonance splitting of urea in stretched hydrogels: proton exchange and (1)H/(2)H isotopologues.

    Science.gov (United States)

    Kuchel, Philip W; Naumann, Christoph; Chapman, Bogdan E; Shishmarev, Dmitry; Håkansson, Pär; Bacskay, George; Hush, Noel S

    2014-10-01

    Urea at ∼12 M in concentrated gelatin gel, that was stretched, gave (1)H and (2)H NMR spectral splitting patterns that varied in a predictable way with changes in the relative proportions of (1)H2O and (2)H2O in the medium. This required consideration of the combinatorics of the two amide groups in urea that have a total of four protonation/deuteration sites giving rise to 16 different isotopologues, if all the atoms were separately identifiable. The rate constant that characterized the exchange of the protons with water was estimated by back-transformation analysis of 2D-EXSY spectra. There was no (1)H NMR spectral evidence that the chiral gelatin medium had caused in-equivalence in the protons bonded to each amide nitrogen atom. The spectral splitting patterns in (1)H and (2)H NMR spectra were accounted for by intra-molecular scalar and dipolar interactions, and quadrupolar interactions with the electric field gradients of the gelatin matrix, respectively.

  12. The neutron-proton charge-exchange amplitudes measured in the dp -> ppn reaction

    CERN Document Server

    Mchedlishvili, D; Carbonell, J; Chiladze, D; Dymov, S; Dzyuba, A; Engels, R; Gebel, R; Glagolev, V; Grigoryev, K; Goslawski, P; Hartmann, M; Kacharava, A; Kamerdzhiev, V; Keshelashvili, I; Khoukaz, A; Komarov, V; Kulessa, P; Kulikov, A; Lehrach, A; Lomidze, N; Lorentz, B; Macharashvili, G; Maier, R; Merzliakov, S; Mielke, M; Mikirtychyants, M; Mikirtychyants, S; Nioradze, M; Ohm, H; Papenbrock, M; Prasuhn, D; Rathmann, F; Serdyuk, V; Seyfarth, H; Stein, H J; Steffens, E; Stockhorst, H; Stroeher, H; Tabidze, M; Trusov, S; Uzikov, Yu; Valdau, Yu; Wilkin, C

    2012-01-01

    The unpolarised differential cross section and the two deuteron tensor analysing powers A_{xx} and A_{yy} of the pol{d}p -> (pp)n charge-exchange reaction have been measured with the ANKE spectrometer at the COSY storage ring. Using deuteron beams with energies 1.2, 1.6, 1.8, and 2.27 GeV, data were obtained for small momentum transfers to a (pp) system with low excitation energy. The results at the three lower energies are consistent with impulse approximation predictions based upon the current knowledge of the neutron-proton amplitudes. However, at 2.27GeV, where these amplitudes are far more uncertain, agreement requires a reduction in the overall double-spin-flip contribution, with an especially significant effect in the longitudinal direction. These conclusions are supported by measurements of the deuteron-proton spin-correlation parameters C_{x,x} and C_{y,y} that were carried out in the pol{d}pol{p} -> (pp)n reaction at 1.2 and 2.27GeV. The values obtained for the proton analysing power also suggest th...

  13. Melt-processed anhydrous proton exchange membranes for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Mokrini, A.; Siu, A.; Diaz, G.; Crites, C.; Robitaille, L. [National Research Council of Canada, Boucherville, PQ (Canada). Industrial Materials Inst.

    2009-07-01

    The current benchmark materials for proton exchange membrane (PEM) fuel cells are perfluorosulfonic acid resins (PFSA) because of their excellent stability and proton conductivity of 0.1 s/cm at 80 degrees C when fully humidified. However their performance decreases significantly at higher temperatures and low humidity. This paper presented the properties of nanocomposite PEMs incorporating a series of anhydrous charge carriers that are viable candidates for making water-free membranes that can operate at temperatures above 120 degrees C. However, the volatility or leaching of these anhydrous charge carriers could prevent them from being successfully used in open electrochemical systems. Therefore, in this study, the anhydrous charge carriers were immobilized on inorganic nanoparticles and incorporated into PEMs formulations. Nanoparticles with diameters ranging from 50-200 nm were synthesized via a sol-gel process and the desired anhydrous charge carriers immobilized on their surfaces. Nanocomposite PEMs were prepared using melt-processing technologies, by blending the grafted nanoparticles and fluorinated polymers such as poly (vinylidene fluoride) (PVDF) and ionomers such as Nafion. This paper presented the properties of the PEMs developed as a function of nanoparticles size and content, as well as the proton conductivity at controlled temperature and RH.

  14. Sulfonic Acid Modified Hollow Silica Spheres and Its Application in Proton Exchange Membranes

    Institute of Scientific and Technical Information of China (English)

    ZHU Min; YUAN Junjie; ZHOU Guangbin

    2011-01-01

    In order to improve the proton conductivity of hollow silica spheres (HSS)/perfluorosulfonic acid ion-exchange (PFSA) composite membranes as proton exchange membrane,sulfonic acid groups were grafted onto the surfaces of HSS via post grafting methods.TEM images and FT-IR spectra of the obtained sulfonic acid groups modified hollow silica spheres (SAMHSS) illustrated that the sulfonic acid groups were successfully grafted onto the surfaces of HSS.Water uptake and swelling degree of SAMHSS/PFSA composite membranes were found much higher than those of HSS/PFSA membranes due to the introduction of hydrophilic sulfonic acid groups.In a range from 50 ℃C to 130 ℃,the highest conductivity of composite membranes was obtained when 5 wt% SAMHSS was loaded.The maximum conductivity reached 7.5×10-2S·cm-1 at 100 ℃C and 100% relative humidity,even the temperature increased to 130 ℃,the conductivity of composite membranes with 5 wt% SAMHSS could reach 3.7× 10-2 S·cm-1 at 100 % relative humidity,while the conductivity of the recast PFSA was only 2.2x 10-3 S·cm-1.

  15. Hydroquinone based sulfonated poly (arylene ether sulfone copolymer as proton exchange membrane for fuel cell applications

    Directory of Open Access Journals (Sweden)

    V. Kiran

    2015-12-01

    Full Text Available Synthesis of sulfonated poly (arylene ether sulfone copolymer by direct copolymerization of 4,4'-bis(4-hydroxyphenyl valeric acid, benzene 1,4-diol and synthesized sulfonated 4,4'-difluorodiphenylsulfone and its characterization by using FTIR (Fourier Transform Infrared and NMR (Nuclear Magnetic Resonance spectroscopic techniques have been performed. The copolymer was subsequently cross-linked with 4, 4!(hexafluoroisopropylidenediphenol epoxy resin by thermal curing reaction to synthesize crosslinked membranes. The evaluation of properties showed reduction in water and methanol uptake, ion exchange capacity, proton conductivity with simultaneous enhancement in oxidative stability of the crosslinked membranes as compared to pristine membrane. The performance of the membranes has also been evaluated in terms of thermal stability, morphology, mechanical strength and methanol permeability by using Thermo gravimetric analyzer, Differential scanning calorimetery, Atomic force microscopy, XPERT-PRO diffractometer, universal testing machine and diffusion cell, respectively. The results demonstrated that the crosslinked membranes exhibited high thermal stability with phase separation, restrained crystallinity, acceptable mechanical properties and methanol permeability. Therefore, these can serve as promising proton exchange membranes for fuel cell applications.

  16. Sulfonation of cPTFE Film grafted Styrene for Proton Exchange Membrane Fuel Cell

    Directory of Open Access Journals (Sweden)

    Yohan Yohan

    2010-10-01

    Full Text Available Sulfonation of γ-ray iradiated and styrene-grafted crosslinked polytetrafluoroethylene film (cPTFE-g-S film have been done. The aim of the research is to make hydropyl membrane as proton exchange membrane fuel cell. Sulfonation was prepared with chlorosulfonic acid in chloroethane under various conditions. The impact of the percent of grafting, the concentration of chlorosulfonic acid, the reaction time,and the reaction temperature on the properties of sulfonated film is examinated. The results show that sulfonation of surface-grafted films is incomplete at room  temperature. The increasing of concentration of chlorosulfonic acid and reaction temperature accelerates the reaction but they also add favor side reactions. These will lead to decreasing of the ion-exchange capacity, water uptake, and proton conductivity but increasing the resistance to oxidation in a perhidrol solution. The cPTFE-g-SS membrane which is resulted has stability in a H2O2 30% solution for 20 hours.

  17. BLEND MEMBRANES FOR DIRECT METHANOL AND PROTON EXCHANGE MEMBRANE FUEL CELLS

    Institute of Scientific and Technical Information of China (English)

    Perurnal Bhavani; Dharmalingam Sangeetha

    2012-01-01

    Sulphonated polystyrene ethylene butylene polystyrene (SPSEBS) prepared with 35% sulphonation was found to be highly elastic and enlarged up to 300%-400% of its initial length.It absorbed over 110% of water by weight.A major drawback of this membrane is its poor mechanical properties which are not adequate for use as polymer electrolytes in fuel cells.To overcome this,SPSEBS was blended with poly(vinylidene fluoride) (PVDF),a hydrophobic polymer.The blend membranes showed better mechanical properties than the base polymer.The effect of PVDF content on water uptake,ion exchange capacity and proton conductivity of the blend membranes was investigated.This paper presents the results of recent studies applied to develop an optimized in-house membrane electrode assembly (MEA) preparation technique combining catalyst ink spraying and assembly hot pressing.Easy steps were chosen in this preparation technique in order to simplify the method,aiming at cost reduction.The open circuit voltage for the cell with SPSEBS is 0.980 V which is higher compared to that of the cell with Nafion 117 (0.790 V).From this study,it is concluded that a polymer electrolyte membrane suitable for proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) application can be obtained by blending SPSEBS and PVDF in appropriate proportions.The methanol permeability and selectivity showed a strong influence on DMFC performance.

  18. Water management in proton exchange membrane fuel cells using integrated electroosmotic pumping

    Science.gov (United States)

    Buie, Cullen R.; Posner, Jonathan D.; Fabian, Tibor; Cha, Suk-Won; Kim, Daejoong; Prinz, Fritz B.; Eaton, John K.; Santiago, Juan G.

    Recent experimental and numerical investigations on proton exchange membrane fuel cells (PEMFCs) emphasize water management as a critical factor in the design of robust, high efficiency systems. Although various water management strategies have been proposed, water is still typically removed by pumping air into cathode channels at flow rates significantly higher than required by fuel cell stoichiometry. Such methods are thermodynamically unfavorable and constrain cathode flow channel design. We have developed proton exchange membrane fuel cells (PEMFCs) with integrated planar electroosmotic (EO) pumping structures that actively remove liquid water from cathode flow channels. EO pumps can relieve cathode design barriers and facilitate efficient water management in fuel cells. EO pumps have no moving parts, scale appropriately with fuel cells, operate across a wide range of conditions, and consume a small fraction of fuel cell power. We demonstrate and quantify the efficacy of EO water pumping using controlled experiments in a single channel cathode flow structure. Our results show that, under certain operating conditions, removing water from the cathode using integrated EO pumping structures improves fuel cell performance and stability. The application of EO pumps for liquid water removal from PEMFC cathodes extends their operational range and reduces air flow rates.

  19. Water management in proton exchange membrane fuel cells using integrated electroosmotic pumping

    Energy Technology Data Exchange (ETDEWEB)

    Buie, Cullen R.; Posner, Jonathan D.; Fabian, Tibor; Cha, Suk-Won; Kim, Daejoong; Prinz, Fritz B.; Eaton, John K.; Santiago, Juan G. [Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 (United States)

    2006-10-20

    Recent experimental and numerical investigations on proton exchange membrane fuel cells (PEMFCs) emphasize water management as a critical factor in the design of robust, high efficiency systems. Although various water management strategies have been proposed, water is still typically removed by pumping air into cathode channels at flow rates significantly higher than required by fuel cell stoichiometry. Such methods are thermodynamically unfavorable and constrain cathode flow channel design. We have developed proton exchange membrane fuel cells (PEMFCs) with integrated planar electroosmotic (EO) pumping structures that actively remove liquid water from cathode flow channels. EO pumps can relieve cathode design barriers and facilitate efficient water management in fuel cells. EO pumps have no moving parts, scale appropriately with fuel cells, operate across a wide range of conditions, and consume a small fraction of fuel cell power. We demonstrate and quantify the efficacy of EO water pumping using controlled experiments in a single channel cathode flow structure. Our results show that, under certain operating conditions, removing water from the cathode using integrated EO pumping structures improves fuel cell performance and stability. The application of EO pumps for liquid water removal from PEMFC cathodes extends their operational range and reduces air flow rates. (author)

  20. Effects of temperature and stoichiometric ratio on performance of a proton exchange membrane fuel cell (PEMFC)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y.H.; Caton, J.A. [Texas A and M Univ., College Station, TX (United States). Engines, Emissions, Energy Laboratory; Parulian, A. [Arbin Instruments, College Station, TX (United States)

    2007-07-01

    Relative to any power source using any hydrocarbon fuel, the fuel cell offers the potential to produce power with minimal or zero emissions. Depending on the electrolyte utilized in the cell, there are several types of fuel cells. The most common is the proton exchange membrane fuel cell (PEMFC) because of its simplicity, quick start-up, and diversity for any application from powering small portable device to automobile applications. However, the handling and storing of hydrogen is the biggest challenge of the PEMFC. The technology related with the PEMFC, however, enables it to be commercialized in the near future as both hydrogen generation and storage continues to evolve. This paper assessed the effects of temperature and stoichiometric flow rate for various conditions for a proton exchange membrane (PEM) fuel cell. The study investigated the performance associated with the reagent stoichiometric ratio and the desired current starting stoichiometric flow rate, the effect of operating temperature, and the relationship between quantity of air used at the cathode and cell performance. The paper discussed membrane and electrode assembly (MEA) preparation as well as the study results. It was concluded that higher air supply leads to better performance at the constant stoichiometric ratio at the anode, but there is not have much of an increase after the stoichiometric ratio of 5. 14 refs., 4 tabs., 5 figs.

  1. Phase transition and proton exchange in 1,3-diazinium hydrogen chloranilate monohydrate

    Energy Technology Data Exchange (ETDEWEB)

    Asaji, T., E-mail: asaji@chs.nihon-u.ac.jp; Hoshino, M. [Nihon University, Department of Chemistry, Graduate School of Integrated Basic Sciences (Japan); Ishida, H. [Okayama University, Department of Chemistry, Faculty of Science (Japan); Konnai, A. [National Maritime Research Institute, Navigation and System Engineering Department (Japan); Shinoda, Y. [Bruker AXS K. K. (Japan); Seliger, J. [University of Ljubljana, Faculty of Mathematics and Physics (Slovenia); Zagar, V. [Jozef Stefan Institute (Slovenia)

    2010-06-15

    In the hydrate crystal of 1:1 salt with 1,3-diazine and chloranilic acid (H{sub 2}ca), (1,3-diazineH){center_dot}H{sub 2}O{center_dot}Hca, an unique hydrogen-bonded molecular aggregate is formed. There exists proton disorder in the N-H...O hydrogen bond between 1,3-diazinium ion and water (H{sub 2}O) of crystallization. In order to reveal dynamic aspect of this disorder, {sup 35}Cl NQR measurements were conducted. Two resonance lines observed at 35.973 and 35.449 MHz at 321 K split into four lines below T{sub c} = 198 K clearly showing occurrence of a solid-solid phase transition; 36.565, 36.357, 36.011, 35.974 MHz at 77 K. Temperature dependence of spin-lattice relaxation time T{sub 1} in high-temperature phase was observed to obey an Arrhenius-type relation with the activation energy of 8.5 kJ mol{sup - 1}. This result leads to the conclusion that proton exchange in the N-H...O hydrogen bond takes place in the high-temperature phase. Specific heat measurements by DSC resulted in the transition entropy {Delta}S = 1.3 J K{sup - 1} per 1 mole [(1,3-diazineH){center_dot}H{sub 2}O{center_dot}Hca]{sub 2} which is far less than 2R ln2 = 11.5 J K{sup - 1} mol{sup - 1}. It is expected that proton exchange in the two hydrogen bonds within the aggregate does not occur independently but concertedly with strong correlation in the high-temperature phase.

  2. Preparation and Conducting Behavior of Amphibious Organic/Inorganic Hybrid Proton Exchange Membranes Based on Benzyltetrazole

    Institute of Scientific and Technical Information of China (English)

    QIAO Li-gen; SHI Wen-fang

    2012-01-01

    A series of novel amphibious organic/inorganic hybrid proton exchange membranes with H3PO4 doped which could be used under both wet and dry conditions was prepared through a sol-gel process based on acrylated triethoxysilane(A-TES)and benzyltetrazole-modified triethoxysilane(BT-TES).The dual-curing approach including UV-curing and thermal curing was used to obtain the crosslinked membranes.Polyethylene glycol(400)diacrylate(PEGDA)was used as an oligomer to form the polymeric matrix.The molecular structures of precursors were characterized by 1H,13C and 29Si NMR spectra.The thermogravimetric analysis(TGA)results show that the membranes exhibit acceptable thermal stability for their application at above 200 ℃.The differential scanning calorimeter(DSC)determination indicates that the crosslinked membranes with the mass ratios of below 1.6 of BT-TES to A-TES and the same mass of H3PO4 doped as that of A-TES possess the-Tgs,and the lowest Tg(-28.9 ℃)exists for the membrane with double mass of H3PO4 doped as well.The high proton conductivity in a range of 9.4-17.3 mS/cm with the corresponding water uptake of 19.1%-32.8% of the membranes was detected at 90 ℃ under wet conditions.Meanwhile,the proton conductivity in a dry environment for the membrane with a mass ratio of 2.4 of BT-TES to A-TES and double H3PO4 loading increases from 4.89× 10-2 mS/cm at 30 ℃ to 25.7 mS/cm at 140 ℃.The excellent proton transport ability under both hydrous and anhydrous conditions demonstrates a potential application in the polymer electrolyte membrane fuel cells.

  3. Effect of Organic Acids and Protons on Release of Non-Exchangeable NH4+ in Flooded Paddy Soils

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong-Song; SHAO Xing-Hua; LIN Xian-Yong; H. W. SCHERER

    2005-01-01

    In a model experiment, which imitated the rhizosphere of rice, the effect of organic acids (oxalic acid, citric acid) and protons on the release of non-exchangeable NH4+ and the resin adsorption of N was studied in a paddy soil, typical for Zhejiang Province, China. Oxalic and citric acids under low pH conditions, in combination with proton secretion, favored the mobilization of NH4+ ions and increased resin adsorption of N. The release of non-exchangeable NH4+ was associated with less formation of iron oxides. These could coat clay minerals and thus hinder the diffusion of NH4+ ions out of the interlayer. Protons enhanced the release of NH4+, and then they could enter the wedge zones of the clay minerals and displace non-exchangeable NH4+ ions.

  4. Gas exchanges in soybean as affected by landfill biogas atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Marchiol, L.; Zerbi, G. (Univ. di Udine (Italy). Dipt. di Produzione Vegetale e Tecnologie Agrarie); Mori, A.; Leita, L. (Ist. Sperimentale per la Nutrizione delle Piante-Sezione di Gorizia (Italy))

    A problem in the ecological restoration of closed landfills is the production of potentially toxic gases by decomposition of refuse that affects the root system and physiology of plants growing on these sites. The aim of the present study was to assess the effects induced by landfill biogas contamination on gas-exchanges of soybean [Glycine max (L.) Merr.]. Simulated landfill and control gases were supplied to soybean plants under laboratory conditions for 10 d. The composition of the simulated landfill gas used was: 16% O[sub 2], 8% CO[sub 2], 3% CH[sub 4], and 73% N[sub 2]; a control gas was also tested. Photosynthesis and stomatal conductance were significantly affected by the gas treatment after 3 d; in the course of the experiment, biogas treatment progressively reduced A[sub max] in light-saturation curves. The fresh and dry weight, leaf area and leaf chlorophyll content were not affected by the treatment. A metabolic adaptation to the biogas in the roots of treated plants was related to the disappearance of a fraction of the protein pool.

  5. A self-sustained, complete and miniaturized methanol fuel processor for proton exchange membrane fuel cell

    Science.gov (United States)

    Yang, Mei; Jiao, Fengjun; Li, Shulian; Li, Hengqiang; Chen, Guangwen

    2015-08-01

    A self-sustained, complete and miniaturized methanol fuel processor has been developed based on modular integration and microreactor technology. The fuel processor is comprised of one methanol oxidative reformer, one methanol combustor and one two-stage CO preferential oxidation unit. Microchannel heat exchanger is employed to recover heat from hot stream, miniaturize system size and thus achieve high energy utilization efficiency. By optimized thermal management and proper operation parameter control, the fuel processor can start up in 10 min at room temperature without external heating. A self-sustained state is achieved with H2 production rate of 0.99 Nm3 h-1 and extremely low CO content below 25 ppm. This amount of H2 is sufficient to supply a 1 kWe proton exchange membrane fuel cell. The corresponding thermal efficiency of whole processor is higher than 86%. The size and weight of the assembled reactors integrated with microchannel heat exchangers are 1.4 L and 5.3 kg, respectively, demonstrating a very compact construction of the fuel processor.

  6. Optical waveguides in LiNbO3 and stoichiometric LiNbO3 crystals by proton exchange

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The formation of optical planar waveguides in LiNbO3 and stoichiometric LiNbO3 crystals by proton exchange was reported. The prism-coupling method was used to characterize the dark-line spectroscopy at the wavelength of 633 and 1539 nm, re-spectively. The mode optical near-field outputs from proton-exchanged LiNbO3 and SLN waveguides at 633 nm were presented. The mode field from stoichiometric LiNbO3 (SLN) waveguide is lighter and more uniform than that from LiNbO3 waveguide, which means the quality of the waveguide in SLN crystal is better than that of the LiNbO3 waveguide. For proton-exchanged LiNbO3 waveguides, the evo-lution of the refractive index profile with annealing was presented. The disorder profiles of Nb atoms in proton-exchanged LiNbO3 waveguides were obtained by Rutherford backscattering/channeling technique. It is shown that the longer the exchange time, the larger the displacement of Nb atoms.

  7. EXCHANGE

    Energy Technology Data Exchange (ETDEWEB)

    Boltz, J.C. (ed.)

    1992-09-01

    EXCHANGE is published monthly by the Idaho National Engineering Laboratory (INEL), a multidisciplinary facility operated for the US Department of Energy (DOE). The purpose of EXCHANGE is to inform computer users about about recent changes and innovations in both the mainframe and personal computer environments and how these changes can affect work being performed at DOE facilities.

  8. Development of a proton-exchange membrane electrochemical reclaimed water post-treatment system

    Science.gov (United States)

    Kaba, Lamine; Verostko, Charles E.; Hitchens, G. D.; Murphy, Oliver J.

    1991-01-01

    A single-cell electrochemical reactor that utilizes a proton exchange membrane (PEM) as a solid electrolyte is being investigated for posttreatment of reclaimed waste waters with low or negligible electrolyte content. Posttreatment is a final 'polishing' of reclaimed waste waters prior to reuse, and involves removing organic impurities at levels as high as 100 ppm to below 500 ppb total organic carbon (TOC) content to provide disinfection. The system does not utilize or produce either expendable hardware components or chemicals and has no moving parts. Test data and kinetic analysis are presented. The feasibility and application for water reclamation processes in controlled ecological environments (e.g., lunar/Mars habitats) are also presented. Test results show that the electrochemical single cell reactor provides effective posttreatment.

  9. Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes.

    Energy Technology Data Exchange (ETDEWEB)

    Curgus, Dita Brigitte; Munoz-Ramos, Karina (Sandia National Laboratories, Albuquerque, NM); Pratt, Joseph William; Akhil, Abbas Ali (Sandia National Laboratories, Albuquerque, NM); Klebanoff, Leonard E.; Schenkman, Benjamin L. (Sandia National Laboratories, Albuquerque, NM)

    2011-05-01

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today's technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-did the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.

  10. Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Joesph W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klebanoff, Leonard E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Munoz-Ramos, Karina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Akhil, Abbas A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Curgus, Dita B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schenkman, Benjamin L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2011-05-01

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today’s technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-did the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.

  11. A Review of Metallic Bipolar Plates for Proton Exchange Membrane Fuel Cells: Materials and Fabrication Methods

    Directory of Open Access Journals (Sweden)

    Shahram Karimi

    2012-01-01

    Full Text Available The proton exchange membrane fuel cell offers an exceptional potential for a clean, efficient, and reliable power source. The bipolar plate is a key component in this device, as it connects each cell electrically, supplies reactant gases to both anode and cathode, and removes reaction products from the cell. Bipolar plates have been fabricated primarily from high-density graphite, but in recent years, much attention has been paid to developing cost-effective and feasible alternative materials. Two different classes of materials have attracted attention: metals and composites. This paper offers a comprehensive review of the current research being carried out on metallic bipolar plates, covering materials and fabrication methods.

  12. Diffusion-driven proton exchange membrane fuel cell for converting fermenting biomass to electricity.

    Science.gov (United States)

    Malati, P; Mehrotra, P; Minoofar, P; Mackie, D M; Sumner, J J; Ganguli, R

    2015-10-01

    A membrane-integrated proton exchange membrane fuel cell that enables in situ fermentation of sugar to ethanol, diffusion-driven separation of ethanol, and its catalytic oxidation in a single continuous process is reported. The fuel cell consists of a fermentation chamber coupled to a direct ethanol fuel cell. The anode and fermentation chambers are separated by a reverse osmosis (RO) membrane. Ethanol generated from fermented biomass in the fermentation chamber diffuses through the RO membrane into a glucose solution contained in the DEFC anode chamber. The glucose solution is osmotically neutral to the biomass solution in the fermentation chamber preventing the anode chamber from drying out. The fuel cell sustains >1.3 mW cm(-2) at 47°C with high discharge capacity. No separate purification or dilution is necessary, resulting in an efficient and portable system for direct conversion of fermenting biomass to electricity.

  13. Low energy plasma treatment of a proton exchange membrane used for low temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Charles, C [Space Plasma, Power, and Propulsion group, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Ramdutt, D [Space Plasma, Power, and Propulsion group, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Brault, P [GREMI-CNRS Laboratory, University of Orleans, BP 6744, F-45067, Orleans (France); Caillard, A [Space Plasma, Power, and Propulsion group, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Bulla, D [Space Plasma, Power, and Propulsion group, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Boswell, R [Space Plasma, Power, and Propulsion group, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Rabat, H [GREMI-CNRS Laboratory, University of Orleans, BP 6744, F-45067, Orleans (France); Dicks, A [School of Engineering, University of Queensland, Brisbane, QLD 4072 (Australia)

    2007-05-15

    A low energy ({approx}30 V) plasma treatment of Nafion, a commercial proton exchange membrane used for low temperature fuel cells, is performed in a helicon radiofrequency (13.56 MHz) plasma system. For argon densities in the 10{sup 9}-10{sup 10} cm{sup -3} range, the water contact angle (hydrophobicity) of the membrane surface linearly decreases with an increase in the plasma energy dose, which is maintained below 5.1 J cm{sup -2}, and which results from the combination of an ion energy dose (up to 3.8 J cm{sup -2}) and a photon (mostly UV) energy dose (up to 1.3 J cm{sup -2}). The decrease in water contact angle is essentially a result of the energy brought to the surface by ion bombardment. The measured effect of the energy brought to the surface by UV light is found to be negligible.

  14. Low energy plasma treatment of a proton exchange membrane used for low temperature fuel cells

    Science.gov (United States)

    Charles, C.; Ramdutt, D.; Brault, P.; Caillard, A.; Bulla, D.; Boswell, R.; Rabat, H.; Dicks, A.

    2007-05-01

    A low energy (~30 V) plasma treatment of Nafion, a commercial proton exchange membrane used for low temperature fuel cells, is performed in a helicon radiofrequency (13.56 MHz) plasma system. For argon densities in the 109-1010 cm-3 range, the water contact angle (hydrophobicity) of the membrane surface linearly decreases with an increase in the plasma energy dose, which is maintained below 5.1 J cm-2, and which results from the combination of an ion energy dose (up to 3.8 J cm-2) and a photon (mostly UV) energy dose (up to 1.3 J cm-2). The decrease in water contact angle is essentially a result of the energy brought to the surface by ion bombardment. The measured effect of the energy brought to the surface by UV light is found to be negligible.

  15. Impedance study of membrane dehydration and compression in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Le Canut, Jean-Marc; Latham, Ruth; Merida, Walter; Harrington, David A. [Institute for Integrated Energy Systems, University of Victoria, Victoria, British Columbia (Canada)

    2009-07-15

    Electrochemical impedance spectroscopy (EIS) is used to measure drying and rehydration in proton exchange membrane fuel cells running under load. The hysteresis between forward and backward acquisition of polarization curves is shown to be largely due to changes in the membrane resistance. Drying tests are carried out with hydrogen and simulated reformate (hydrogen and carbon dioxide), and quasi-periodic drying and rehydration conditions are studied. The membrane hydration state is clearly linked to the high-frequency arc in the impedance spectrum, which increases in size for dry conditions indicating an increase in membrane resistance. Changes in impedance spectra as external compression is applied to the cell assembly show that EIS can separate membrane and interfacial effects, and that changes in membrane resistance dominate. Reasons for the presence of a capacitance in parallel with the membrane resistance are discussed. (author)

  16. Carbon film coating on gas diffusion layer for proton exchange membrane fuel cells

    Science.gov (United States)

    Lin, Jui-Hsiang; Chen, Wei-Hung; Su, Shih-Hsuan; Liao, Yuan-Kai; Ko, Tse-Hao

    This study discusses a novel process to increase the performance of proton exchange membrane fuel cells (PEMFC). In order to improve the electrical conductivity and reduce the surface indentation of the carbon fibers, we modified the carbon fibers with pitch-based carbon materials (mesophase pitch and coal tar pitch). Compared with the gas diffusion backing (GDB), GDB-A240 and GDB-MP have 32% and 33% higher current densities at 0.5 V, respectively. Self-made carbon paper with the addition of a micro-porous layer (MPL) (GDL-A240 and GDL-MP) show improved performance compared with GDB-A240 and GDB-MP. The current densities of GDL-A240 and GDL-MP at 0.5 V increased by 37% and 31% compared with GDL, respectively. This study combines these two effects (carbon film and MPL coating) to promote high current density in a PEMFC.

  17. Proton exchange membrane fuel cell system diagnosis based on the signed directed graph method

    Science.gov (United States)

    Hua, Jianfeng; Lu, Languang; Ouyang, Minggao; Li, Jianqiu; Xu, Liangfei

    The fuel-cell powered bus is becoming the favored choice for electric vehicles because of its extended driving range, zero emissions, and high energy conversion efficiency when compared with battery-operated electric vehicles. In China, a demonstration program for the fuel cell bus fleet operated at the Beijing Olympics in 2008 and the Shanghai Expo in 2010. It is necessary to develop comprehensive proton exchange membrane fuel cell (PEMFC) diagnostic tools to increase the reliability of these systems. It is especially critical for fuel-cell city buses serving large numbers of passengers using public transportation. This paper presents a diagnostic analysis and implementation study based on the signed directed graph (SDG) method for the fuel-cell system. This diagnostic system was successfully implemented in the fuel-cell bus fleet at the Shanghai Expo in 2010.

  18. An Equivalent Electrical Circuit Model of Proton Exchange Membrane Fuel Cells Based on Mathematical Modelling

    Directory of Open Access Journals (Sweden)

    Dinh An Nguyen

    2012-07-01

    Full Text Available Many of the Proton Exchange Membrane Fuel Cell (PEMFC models proposed in the literature consist of mathematical equations. However, they are not adequately practical for simulating power systems. The proposed model takes into account phenomena such as activation polarization, ohmic polarization, double layer capacitance and mass transport effects present in a PEM fuel cell. Using electrical analogies and a mathematical modeling of PEMFC, the circuit model is established. To evaluate the effectiveness of the circuit model, its static and dynamic performances under load step changes are simulated and compared to the numerical results obtained by solving the mathematical model. Finally, the applicability of our model is demonstrated by simulating a practical system.

  19. Potential oscillations in a proton exchange membrane fuel cell with a Pd-Pt/C anode

    Science.gov (United States)

    Lopes, Pietro P.; Ticianelli, Edson A.; Varela, Hamilton

    We report in this paper the occurrence of potential oscillations in a proton exchange membrane fuel cell (PEMFC) with a Pd-Pt/C anode, fed with H 2/100 ppm CO, and operated at 30 °C. We demonstrate that the use of Pd-Pt/C anode enables the emergence of dynamic instabilities in a PEMFC. Oscillations are characterized by the presence of very high oscillation amplitude, ca. 0.8 V, which is almost twice that observed in a PEMFC with a Pt-Ru/C anode under similar conditions. The effects of the H 2/CO flow rate and cell current density on the oscillatory dynamics were investigated and the mechanism rationalized in terms of the CO oxidation and adsorption processes. We also discuss the fundamental aspects concerning the operation of a PEMFC under oscillatory regime in terms of the benefit resulting from the higher average power output.

  20. Adaptive inverse control of air supply flow for proton exchange membrane fuel cell systems

    Institute of Scientific and Technical Information of China (English)

    LI Chun-hua; ZHU Xin-jian; SUI Sheng; HU Wan-qi; HU Ming-ruo

    2009-01-01

    To prevent the oxygen starvation and improve the system output performance, an adaptive inverse control (AIC) strategy is developed to regulate the air supply flow of a proton exchange membrane fuel cell (PEMFC) system in this paper.The PEMFC stack and the air supply system including a compressor and a supply manifold are modeled for the purpose of performance analysis and controller design. A recurrent fuzzy neural network (RFNN) is utilized to identify the inverse model of the controlled system and generates a suitable control input during the abrupt step change of external disturbances.Compared with the PI controller, numerical simulations are performed to validate the effectiveness and advantages of the proposed AIC strategy.

  1. Characterisation of porous carbon electrode materials used in proton exchange membrane fuel cells via gas adsorption

    Science.gov (United States)

    Watt-Smith, M. J.; Rigby, S. P.; Ralph, T. R.; Walsh, F. C.

    Porous carbon materials are typically used in both the substrate (typically carbon paper) and the electrocatalyst supports (often platinised carbon) within proton exchange membrane fuel cells. Gravimetric nitrogen adsorption has been studied at a carbon paper substrate, two different Pt-loaded carbon paper electrodes and three particulate carbon blacks. N 2 BET surface areas and surface fractal dimensions were determined using the fractal BET and Frenkel-Halsey-Hill models for all but one of the materials studied. The fractal dimensions of the carbon blacks obtained from gas adsorption were compared with those obtained independently by small angle X-ray scattering and showed good agreement. Density functional theory was used to characterise one of the carbon blacks, as the standard BET model was not applicable.

  2. A Protons Exchanged Montmorillonite Clay as an Efficient Catalyst for the Reaction of Isobutylene Polymerization

    OpenAIRE

    Mohammed Belbachir; Rachid Meghabar; Amine Harrane

    2002-01-01

    Abstract: “Maghnite†a montmorillonite sheet silicate clay, exchanged with protons to produce “H-Maghnite†is an efficient catalyst for cationic polymerization of many vinylic and heterocyclic monomers (Belbachir, M. U.S. Patent. 066969.0101 –2001). The structure compositions of both “Maghnite†and “H-Maghnite†have been developed. Isobutylene monomer, wich is polymerizable only by cationic process (Odian,G. La Polymerisation :principes et Applications...

  3. Polycondensation of Tetrahydrofuran with Phthalic Anhydride Induced By a Proton Exchanged Montmorillonite Clay

    OpenAIRE

    Mohammed Belbachir; Mohammed Issam Ferrahi

    2003-01-01

    Abstract: “Maghnite†a montmorillonite sheet silicate clay, exchanged with protons to produce “H-Maghnite†is an efficient catalyst for polymerization of many vinylic and heterocyclic monomers (Belbachir, M. U.S. Patent. 066969.0101 –2001). The structure compositions of both “Maghnite†and “H-Maghnite†have been developed. This catalyst was used for the polycondensation of the tetrahydrofuran with phthalic anhydride. The polymerization was performed un...

  4. Control-oriented dynamic fuzzy model and predictive control for proton exchange membrane fuel cell stack

    Institute of Scientific and Technical Information of China (English)

    LI Xi; DENG Zhong-hua; CAO Guang-yi; ZHU Xin-jian; WEI Dong

    2006-01-01

    Proton exchange membrane fuel cell (PEMFC) stack temperature and cathode stoichiometric oxygen are very important control parameters. The performance and lifespan of PEMFC stack are greatly dependent on the parameters. So, in order to improve the performance index, tight control of two parameters within a given range and reducing their fluctuation are indispensable.However, control-oriented models and control strategies are very weak junctures in the PEMFC development. A predictive control algorithm was presented based on their model established by input-output data and operating experiences. It adjusts the operating temperature to 80 ℃. At the same time, the optimized region of stoichiometric oxygen is kept between 1.8-2.2. Furthermore, the control algorithm adjusts the variants quickly to the destination value and makes the fluctuation of the variants the least. According to the test results, compared with traditional fuzzy and PID controllers, the designed controller shows much better performance.

  5. Inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells - A review

    Science.gov (United States)

    Pivac, Ivan; Barbir, Frano

    2016-09-01

    The results of electrochemical impedance spectroscopy of proton exchange membrane (PEM) fuel cells may exhibit inductive phenomena at low frequencies. The occurrence of inductive features at high frequencies is explained by the cables and wires of the test system. However, explanation of inductive loop at low frequencies requires a more detailed study. This review paper discusses several possible causes of such inductive behavior in PEM fuel cells, such as side reactions with intermediate species, carbon monoxide poisoning, and water transport, also as their equivalent circuit representations. It may be concluded that interpretation of impedance spectra at low frequencies is still ambiguous, and that better equivalent circuit models are needed with clearly defined physical meaning of each of the circuit elements.

  6. Graphene-doped electrospun nanofiber membrane electrodes and proton exchange membrane fuel cell performance

    Science.gov (United States)

    Wei, Meng; Jiang, Min; Liu, Xiaobo; Wang, Min; Mu, Shichun

    2016-09-01

    A rational electrode structure can allow proton exchange membrane (PEM) fuel cells own high performance with a low noble metal loading and an optimal transport pathway for reaction species. In this study, we develop a graphene doped polyacrylonitile (PAN)/polyvinylident fluoride (PVDF) (GPP) electrospun nanofiber electrode with improved electrical conductivity and high porosity, which could enhance the triple reaction boundary and promote gas and water transport throughout the porous electrode. Thus the increased electrochemical active surface area (ECSA) of Pt catalysts and fuel cell performance can be expected. As results, the ECSA of hot-pressed electrospun electrodes with 2 wt% graphene oxide (GO) is up to 84.3 m2/g, which is greatly larger than that of the conventional electrode (59.5 m2/g). Significantly, the GPP nanofiber electrospun electrode with Pt loading of 0.2 mg/cm2 exhibits higher fuel cell voltage output and stability than the conventional electrode.

  7. Strategy for Airflow Control of Cathode in Proton Exchange Membrane Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    LI Lei; LI Xiao-jing

    2008-01-01

    There are two important objectives for airflow control in proton exchange membrane fuel cells(PEMFCs). One is to keep the desired excess ratio(to provide sufficient reactant airflow) to ensure fast transient response and to minimize auxiliary power consumption, and the other one is to control the cathode pressure in stack within an acceptable range. In reality, the big inertia of stack's airflow-supplying activator limits the bandwidth of air-flow supply loop, which makes the first objective difficult to achieve, and another difficulty is that airflow is coupled with the cathode pressure in stack, which make it uneasy to keep the pressure unchanged in case of airflow perturbation. In order to overcome these difficulties, three dependant controllers are presented in this paper to control airflow, decouple the cathode pressure in stack from airflow and stabilize the cat hode pressure in stack respectively. The effectiveness of these controllers is proven by subsequent simulation and test results.

  8. Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes

    DEFF Research Database (Denmark)

    Cleemann, Lars Nilausen; Buazar, F.; Li, Qingfeng;

    2013-01-01

    Degradation of carbon supported platinum catalysts is a major failure mode for the long term durability of high temperature proton exchange membrane fuel cells based on phosphoric acid doped polybenzimidazole membranes. With Vulcan carbon black as a reference, thermally treated carbon black...... and multi‐walled carbon nanotubes were used as supports for electrode catalysts and evaluated in accelerated durability tests under potential cycling at 150 °C. Measurements of open circuit voltage, area specific resistance and hydrogen permeation through the membrane were carried out, indicating little...... contribution of the membrane degradation to the performance losses during the potential cycling tests. As the major mechanism of the fuel cell performance degradation, the electrochemical active area of the cathodic catalysts showed a steady decrease in the cyclic voltammetric measurements, which was also...

  9. Vibration mode analysis of the proton exchange membrane fuel cell stack

    Science.gov (United States)

    Liu, B.; Liu, L. F.; Wei, M. Y.; Wu, C. W.

    2016-11-01

    Proton exchange membrane fuel cell (PEMFC) stacks usually undergo vibration during packing, transportation, and serving time, in particular for those used in the automobiles or portable equipment. To study the stack vibration response, based on finite element method (FEM), a mode analysis is carried out in the present paper. Using this method, we can distinguish the local vibration from the stack global modes, predict the vibration responses, such as deformed shape and direction, and discuss the effects of the clamping configuration and the clamping force magnitude on vibration modes. It is found that when the total clamping force remains the same, increasing the bolt number can strengthen the stack resistance to vibration in the clamping direction, but cannot obviously strengthen stack resistance to vibration in the translations perpendicular to clamping direction and the three axis rotations. Increasing the total clamping force can increase both of the stack global mode and the bolt local mode frequencies, but will decrease the gasket local mode frequency.

  10. Durability Issues of High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes

    DEFF Research Database (Denmark)

    To achieve high temperature operation of proton exchange membrane fuel cells (PEMFC), preferably under ambient pressure, phosphoric acid doped polybenzimidazole (PBI) membrane represents an effective approach, which in recent years has motivated extensive research activities with great progress....... As a critical concern, issues of long term durability of PBI based fuel cells are addressed in this talk, including oxidative degradation of the polymer, mechanical failures of the membrane, acid leaching out, corrosion of carbon support and sintering of catalysts particles. Excellent polymer durability has...... observed under continuous operation with hydrogen and air at 150-160oC, with a fuel cell performance degradation rate of 5-10 µV/h. Improvement of the membrane performance such as mechanical strength, swelling and oxidative stability has achieved by exploring the polymer chemistry, i.e. covalently...

  11. Experimental and thermodynamic approach on proton exchange membrane fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Miansari, Me. [Islamic Azad University Ghaemshahr, P.O. Box 163, Ghaemshahr (Iran); Sedighi, K.; Alizadeh, E.; Miansari, Mo. [Department of Mechanical Engineering, Noushirvani University of Technology, P.O. Box 484, Babol (Iran); Amidpour, M. [Department of Mechanical Engineering, K.N. Toosi University, Box 15875-4416, Tehran (Iran)

    2009-05-15

    The present work is employed in two sections. Firstly the effect of different parameters such as pressure, temperature and anode and cathode channel depth on the performance of the proton exchange membrane (PEM) fuel cell was experimentally studied. The experimental result shows a good accuracy compared to other works. Secondly a semi-empirical model of the PEM fuel cell has been developed. This model was used to study the effect of different operating conditions such as temperature, pressure and air stoichiometry on the exergy efficiencies and irreversibilities of the cell. The results show that the predicted polarization curves are in good agreement with the experimental data and a high performance was observed at the channel depth of 1.5 mm for the anode and 1 mm for the cathode. Furthermore the results show that increase in the operating temperature and pressure can enhance the cell performance, exergy efficiencies and reduce irreversibilities of the cell. (author)

  12. Experimental and thermodynamic approach on proton exchange membrane fuel cell performance

    Science.gov (United States)

    Miansari, Me.; Sedighi, K.; Amidpour, M.; Alizadeh, E.; Miansari, Mo.

    The present work is employed in two sections. Firstly the effect of different parameters such as pressure, temperature and anode and cathode channel depth on the performance of the proton exchange membrane (PEM) fuel cell was experimentally studied. The experimental result shows a good accuracy compared to other works. Secondly a semi-empirical model of the PEM fuel cell has been developed. This model was used to study the effect of different operating conditions such as temperature, pressure and air stoichiometry on the exergy efficiencies and irreversibilities of the cell. The results show that the predicted polarization curves are in good agreement with the experimental data and a high performance was observed at the channel depth of 1.5 mm for the anode and 1 mm for the cathode. Furthermore the results show that increase in the operating temperature and pressure can enhance the cell performance, exergy efficiencies and reduce irreversibilities of the cell.

  13. High surface area graphite as alternative support for proton exchange membrane fuel cell catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira-Aparicio, P.; Folgado, M.A. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, E-28040 Madrid (Spain); Daza, L. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, E-28040 Madrid (Spain); Instituto de Catalisis y Petroleoquimica (CSIC), C/Marie Curie, 2 Campus de Cantoblanco, E-28049 Madrid (Spain)

    2009-07-01

    The suitability of a high surface area graphite (HSAG) as proton exchange membrane fuel cell (PEMFC) catalyst support has been evaluated and compared with that of the most popular carbon black: the Vulcan XC72. It has been observed that Pt is arranged on the graphite surface resulting in different structures which depend on the catalysts synthesis conditions. The influence that the metal particle size and the metal-support interaction exert on the catalysts degradation rate is analyzed. Temperature programmed oxidation (TPO) under oxygen containing streams has been shown to be a useful method to assess the resistance of PEMFC catalysts to carbon corrosion. The synthesized Pt/HSAG catalysts have been evaluated in single cell tests in the cathode catalytic layer. The obtained results show that HSAG can be a promising alternative to the traditionally used Vulcan XC72 carbon black when suitable catalysts synthesis conditions are used. (author)

  14. POLYSULFONE COMPOSED OF POLYANILINE NANOPARTICLES AS NANOCOMPOSITE PROTON EXCHANGE MEMBRANE IN MICROBIAL FUEL CELL

    Directory of Open Access Journals (Sweden)

    Mostafa Ghasemi

    2012-01-01

    Full Text Available Proton exchange membranes play a critical role in the performance of Microbial Fuel Cells (MFCs but their high price was always a big deal for commercialization of MFCs. In the present study, doped and undoped polyaniline nanoparticles/polysulfone nanocomposites membranes as a new type of PEM, were fabricated and applied in the MFC and their performance was compared with Nafion 117 as a traditional and expensive PEM. The obtained results show that MFC working by undoped Pani/Ps generated 78.1 mW/m2 which is higher than doped Pani/Ps system with 62.5 mW/m2. However, Naion 117 generated the highest power than other types of membrane by 93 mW/m2. It means that undoped Pani/Ps can compete in power generation with Nafion 117 and this is an outlook toward commercialization of MFC.

  15. A review on the performance and modelling of proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Boucetta, A., E-mail: abirboucetta@yahoo.fr; Ghodbane, H., E-mail: h.ghodbane@mselab.org; Bahri, M., E-mail: m.bahri@mselab.org [Department of Electrical Engineering, MSE Laboratory, Mohamed khider Biskra University (Algeria); Ayad, M. Y., E-mail: ayadmy@gmail.com [R& D, Industrial Hybrid Vehicle Applications (France)

    2016-07-25

    Proton Exchange Membrane Fuel Cells (PEMFC), are energy efficient and environmentally friendly alternative to conventional energy conversion for various applications in stationary power plants, portable power device and transportation. PEM fuel cells provide low operating temperature and high-energy efficiency with near zero emission. A PEM fuel cell is a multiple distinct parts device and a series of mass, energy, transport through gas channels, electric current transport through membrane electrode assembly and electrochemical reactions at the triple-phase boundaries. These processes play a decisive role in determining the performance of the Fuel cell, so that studies on the phenomena of gas flows and the performance modelling are made deeply. This paper gives a comprehensive overview of the state of the art on the Study of the phenomena of gas flow and performance modelling of PEMFC.

  16. Neural network modeling and control of proton exchange membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    CHEN Yue-hua; CAO Guang-yi; ZHU Xin-jian

    2007-01-01

    A neural network model and fuzzy neural network controller was designed to control the inner impedance of a proton exchange membrane fuel cell(PEMFC)stack. A radial basis function(RBF)neural network model was trained by the input-output data of impedance. A fuzzy neural network controller Was designed to control the impedance response.The RBF neural network model was used to test the fuzzy neural network controller.The results show that the RBF model output Can imitate actual output well, themaximal errorisnotbeyond 20 mΩ, thetrainingtime is about 1 s by using 20 neurons, and the mean squared errors is 141.9 mΩ2.The impedance of the PEMFC stack is controlled within the optimum range when the load changes, and the adjustive time is ahnllt 3 rain.

  17. Small proton exchange membrane fuel cell power station by using bio-hydrogen

    Institute of Scientific and Technical Information of China (English)

    刘志祥; 毛宗强; 王诚; 任南琪

    2006-01-01

    In fermentative organic waste water treatment process, there was hydrogen as a by-product. After some purification,there was about 50% ~ 70% hydrogen in the bio-gas, which could be utilized for electricity generation with fuel cell. Half a year ago, joint experiments between biological hydrogen production in Harbin Institute of Technology (HIT) and proton exchange membrane fuel cell (PEMFC) power station in Tsinghua University were conducted for electricity generation with bio-hydrogen from the pilot plant in HIT. The results proved the feasibility of the bio-hydrogen as a by-product utilization with PEMFC power station and revealed some problems of fuel cell power station for this application.

  18. Proton exchange membrane fuel cell diagnosis by spectral characterization of the electrochemical noise

    Science.gov (United States)

    Maizia, R.; Dib, A.; Thomas, A.; Martemianov, S.

    2017-02-01

    Electrochemical noise analysis (ENA) has been performed for the diagnosis of proton-exchange membrane fuel cell (PEMFC) under various operating conditions. Its interest is related with the possibility of a non-invasive on-line diagnosis of a commercial fuel cell. A methodology of spectral analysis has been developed and an evaluation of the stationarity of the signal has been proposed. It has been revealed that the spectral signature of fuel cell, is a linear slope with a fractional power dependence 1/fα where α = 2 for different relative humidities and current densities. Experimental results reveal that the electrochemical noise is sensitive to the water management, especially under dry conditions. At RHH2 = 20% and RHair = 20%, spectral analysis shows a three linear slopes signature on the spectrum at low frequency range (f power spectral density, calculated thanks to FFT, can be used for the detection of an incorrect fuel cell water balance.

  19. A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies

    Science.gov (United States)

    Feng, Qi; Yuan, Xiao-Zi; Liu, Gaoyang; Wei, Bing; Zhang, Zhen; Li, Hui; Wang, Haijiang

    2017-10-01

    Proton exchange membrane water electrolysis (PEMWE) is an advanced and effective solution to the primary energy storage technologies. A better understanding of performance and durability of PEMWE is critical for the engineers and researchers to further advance this technology for its market penetration, and for the manufacturers of PEM water electrolyzers to implement quality control procedures for the production line or on-site process monitoring/diagnosis. This paper reviews the published works on performance degradations and mitigation strategies for PEMWE. Sources of degradation for individual components are introduced. With degradation causes discussed and degradation mechanisms examined, the review emphasizes on feasible strategies to mitigate the components degradation. To avoid lengthy real lifetime degradation tests and their high costs, the importance of accelerated stress tests and protocols is highlighted for various components. In the end, R&D directions are proposed to move the PEMWE technology forward to become a key element in future energy scenarios.

  20. A review on the performance and modelling of proton exchange membrane fuel cells

    Science.gov (United States)

    Boucetta, A.; Ghodbane, H.; Ayad, M. Y.; Bahri, M.

    2016-07-01

    Proton Exchange Membrane Fuel Cells (PEMFC), are energy efficient and environmentally friendly alternative to conventional energy conversion for various applications in stationary power plants, portable power device and transportation. PEM fuel cells provide low operating temperature and high-energy efficiency with near zero emission. A PEM fuel cell is a multiple distinct parts device and a series of mass, energy, transport through gas channels, electric current transport through membrane electrode assembly and electrochemical reactions at the triple-phase boundaries. These processes play a decisive role in determining the performance of the Fuel cell, so that studies on the phenomena of gas flows and the performance modelling are made deeply. This paper gives a comprehensive overview of the state of the art on the Study of the phenomena of gas flow and performance modelling of PEMFC.

  1. A review of water flooding issues in the proton exchange membrane fuel cell

    Science.gov (United States)

    Li, Hui; Tang, Yanghua; Wang, Zhenwei; Shi, Zheng; Wu, Shaohong; Song, Datong; Zhang, Jianlu; Fatih, Khalid; Zhang, Jiujun; Wang, Haijiang; Liu, Zhongsheng; Abouatallah, Rami; Mazza, Antonio

    We have reviewed more than 100 references that are related to water management in proton exchange membrane (PEM) fuel cells, with a particular focus on the issue of water flooding, its diagnosis and mitigation. It was found that extensive work has been carried out on the issues of flooding during the last two decades, including prediction through numerical modeling, detection by experimental measurements, and mitigation through the design of cell components and manipulating the operating conditions. Two classes of strategies to mitigate flooding have been developed. The first is based on system design and engineering, which is often accompanied by significant parasitic power loss. The second class is based on membrane electrode assembly (MEA) design and engineering, and involves modifying the material and structural properties of the gas diffusion layer (GDL), cathode catalyst layer (CCL) and membrane to function in the presence of liquid water. In this review, several insightful directions are also suggested for future investigation.

  2. High temperature proton exchange membranes based on polybenzimidazoles for fuel cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf; Savinell, Robert F

    2009-01-01

    To achieve high temperature operation of proton exchange membrane fuel cells (PEMFC), preferably under ambient pressure, acid–base polymer membranes represent an effective approach. The phosphoric acid-doped polybenzimidazole membrane seems so far the most successful system in the field. It has...... in recent years motivated extensive research activities with great progress. This treatise is devoted to updating the development, covering polymer synthesis, membrane casting, physicochemical characterizations and fuel cell technologies. To optimize the membrane properties, high molecular weight polymers...... with synthetically modified or N-substituted structures have been synthesized. Techniques for membrane casting from organic solutions and directly from acid solutions have been developed. Ionic and covalent cross-linking as well as inorganic–organic composites has been explored. Membrane characterizations...

  3. Two-Photon Exchange Effects in Elastic Electron-Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Myriam James [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-08-01

    Two methods, Rosenbluth separation and polarization transfer, can be used to extract the proton form factor ratio μp GEp/GMp, but they do not yield the same results. It is thought that the disagreement is due to two photon exchange corrections to the differential cross sections. High precision proton Rosenbluth extractions were carried out at 102 kinematics points spanning 16 values of momentum transfer Q2, from 0.40 to 5.76 GeV2. Reduced cross sections were found to 1.1% or better for Q2 less than 3 GeV2 increasing to 4% at 5.76 GeV2 The form factor ratios were determined to 1:5-3% for Q2 < 1.5 GeV2, increasing to 9% by 3 GeV2 and rapidly above. Our data agrees with prior Rosenbluth, improving upon it the 1.0 - 2.0 GeV2 range to conclusively show a separation from polarization transfer where it had not been certain before. In addition, reduced cross sections at each Q2 were tested for nonlinearity in the angular variable. Such a departure from linearity would be a signature of two photon exchange effects, and prior data had not been sufficiently precise to show nonzero curvature. Our data begins to hint at negative curvature but does not yet show a significant departure from zero.

  4. Electrochemical hydrogen production from thermochemical cycles using a proton exchange membrane electrolyzer

    Energy Technology Data Exchange (ETDEWEB)

    Sivasubramanian, PremKumar; Ramasamy, Ramaraja P.; Holland, Charles E.; Weidner, John W. [Center for Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Freire, Francisco J. [Chlorine Recycle Consultants, Miami Beach, FL 33140 (United States)

    2007-03-15

    The electrochemical step in two thermochemical cycles for hydrogen production is reported. One cycle involves the electrochemical oxidation of sulfur dioxide to sulfuric acid (both water and SO{sub 2} are reactants). The other cycle involves the oxidation of anhydrous hydrogen bromide to bromine (anhydrous HBr is the only reactant). In both cycles, protons are reduced at the cathode to produce hydrogen. The novelty of this work is that both anode reactions are carried out in the gas phase of a proton exchange membrane (PEM) electrolyzer, which enhances the transport rate of reactants to the electrode surface. The HBr process achieved 2.0A/cm{sup 2} at 1.91 V. The SO{sub 2} process reached 0.4A/cm{sup 2}, but behind this current density the cell experienced mass transfer limitations of water across the membrane. However, the voltage required to achieve 0.4A/cm{sup 2} was 0.835 V, compared to 1.025 V for the HBr process at this current density. (author)

  5. Performance improvement of proton exchange membrane fuel cell by using annular shaped geometry

    Science.gov (United States)

    Khazaee, I.; Ghazikhani, M.

    2011-03-01

    A complete three-dimensional and single phase CFD model for a different geometry of proton exchange membrane (PEM) fuel cell is used to investigate the effect of using different connections between bipolar plate and gas diffusion layer on the performances, current density and gas concentration. The proposed model is a full cell model, which includes all the parts of the PEM fuel cell, flow channels, gas diffusion electrodes, catalyst layers and the membrane. Coupled transport and electrochemical kinetics equations are solved in a single domain; therefore no interfacial boundary condition is required at the internal boundaries between cell components. This computational fluid dynamics code is used as the direct problem solver, which is used to simulate the three-dimensional mass, momentum and species transport phenomena as well as the electron- and proton-transfer process taking place in a PEMFC that cannot be investigated experimentally. The results show that the predicted polarization curves by using this model are in good agreement with the experimental results. Also the results show that by increasing the number of connection between GDL and bipolar plate the performance of the fuel cell enhances.

  6. Effect of gas diffusion layer and membrane properties in an annular proton exchange membrane fuel cell

    Science.gov (United States)

    Khazaee, I.; Ghazikhani, M.; Esfahani, M. Nasr

    2012-01-01

    A complete three-dimensional and single phase computational dynamics model for annular proton exchange membrane (PEM) fuel cell is used to investigate the effect of changing gas diffusion layer and membrane properties on the performances, current density and gas concentration. The proposed model is a full cell model, which includes all the parts of the PEM fuel cell, flow channels, gas diffusion electrodes, catalyst layers and the membrane. Coupled transport and electrochemical kinetics equations are solved in a single domain; therefore no interfacial boundary condition is required at the internal boundaries between cell components. This computational fluid dynamics code is used as the direct problem solver, which is used to simulate the two-dimensional mass, momentum and species transport phenomena as well as the electron- and proton-transfer process taking place in a PEMFC that cannot be investigated experimentally. The results show that by increasing the thickness and decreasing the porosity of GDL the performance of the cell enhances that it is different with planner PEM fuel cell. Also the results show that by decreasing the thickness of the membrane the performance of the cell increases.

  7. Morphological and transport characteristics of swollen chitosan-based proton exchange membranes studied by molecular modeling.

    Science.gov (United States)

    Bahlakeh, Ghasem; Mahdi Hasani-Sadrabadi, Mohammad; Jacob, Karl I

    2017-01-01

    Chitosan biopolymer has been extensively applied in direct methanol fuel cells (DMFCs) as a potential replacement to conventional Nafion membrane for its considerably reduced methanol crossover. Here, we computationally explored the influences of methanol concentration, temperature, and pH parameters upon the nanostructure and dynamics, particularly the methanol crossover, in chitosan proton-exchange membrane (PEM) through molecular dynamics simulations. Theoretical results demonstrated the increased swelling and radius of gyration of chitosan chains at higher concentrations. Structural examinations further revealed that an increase in methanol loading weakened the water interactions with chitosan functionalities (amineNH2 , hydroxylOH, and methoxyCH2 OH) whereas improved the methanol affinities toward chitosan, reflecting higher methanol sorption capability of chitosan at enhanced concentrations. Additionally, it was found that interactions between solvents and chitosan strengthened under acidic pH conditions on account of amine protonation. The water diffusivity inside the swollen chitosan diminished by increasing CH3 OH uptake, and in contrast diffusivity of methanol was noted to enhance. Furthermore, it was observed that an enhancement in temperature or a decrease in pH intensified solvent mobility. These insights imply that supplying methanol-concentrated and/or acidic feed solutions into DMFCs based on chitosan PEMs could lower membrane performance due to the significant methanol transport dynamics. © 2016 Wiley Periodicals, Inc.

  8. An extended stochastic reconstruction method for catalyst layers in proton exchange membrane fuel cells

    Science.gov (United States)

    Kang, Jinfen; Moriyama, Koji; Kim, Seung Hyun

    2016-09-01

    This paper presents an extended, stochastic reconstruction method for catalyst layers (CLs) of Proton Exchange Membrane Fuel Cells (PEMFCs). The focus is placed on the reconstruction of customized, low platinum (Pt) loading CLs where the microstructure of CLs can substantially influence the performance. The sphere-based simulated annealing (SSA) method is extended to generate the CL microstructures with specified and controllable structural properties for agglomerates, ionomer, and Pt catalysts. In the present method, the agglomerate structures are controlled by employing a trial two-point correlation function used in the simulated annealing process. An off-set method is proposed to generate more realistic ionomer structures. The variations of ionomer structures at different humidity conditions are considered to mimic the swelling effects. A method to control Pt loading, distribution, and utilization is presented. The extension of the method to consider heterogeneity in structural properties, which can be found in manufactured CL samples, is presented. Various reconstructed CLs are generated to demonstrate the capability of the proposed method. Proton transport properties of the reconstructed CLs are calculated and validated with experimental data.

  9. Δ(1232) resonance contribution to two-photon exchange in electron-proton scattering revisited

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hai-Qing [Southeast University, Department of Physics, NanJing (China); Yang, Shin Nan [National Taiwan University, Department of Physics and Center for Theoretical Sciences, Taipei (China)

    2015-08-15

    We revisit the question of the contributions of the two-photon exchange with Δ(1232) excitation to the electron-proton scattering in a hadronic model. Three improvements over the previous calculations are made, namely, correct vertex function for γN→Δ, realistic γNΔ form factors, and coupling constants. The discrepancy between the values of R≡μ{sub p} G{sub E}/G{sub M} extracted from Rosenbluth technique and polarization transfer method can be reasonably accounted for if the data of Andivahis et al. (Phys. Rev. D 50, 5491 (1994)) are analyzed. However, substantial discrepancy remains if the data of Qattan et al. (nucl-ex/0610006) are used. For the ratio R{sup ±} between e{sup ±} p scatterings, our predictions appear to be in satisfactory agreement with the preliminary data from VEPP-3. The agreement between our model predictions and the recent measurements on single spin asymmetry, transverse and longitudinal recoil proton polarizations ranges from good to poor. (orig.)

  10. Does the Nominal Exchange Rate Regime Affect the Long Run Properties of Real Exchange Rates?

    OpenAIRE

    Dreger, Christian; Girardin, Eric

    2007-01-01

    This paper examines whether the behaviour of the real exchange rate is associated with a particular regime for the nominal exchange rate, like fixed and flexible exchange rate arrangements. The analysis is based on 16 annual real exchange rates and covers a long time span, 1870-2006. Four subperiods are distinguished and linked to exchange rate regimes: the Gold Standard, the interwar float, the Bretton Woods system and the managed float thereafter. Panel integration techniques are applied to...

  11. Subtracted dispersion relation formalism for the two-photon exchange correction to elastic electron-proton scattering: Comparison with data

    Energy Technology Data Exchange (ETDEWEB)

    Tomalak, O. [Johannes Gutenberg Universitaet, Institut fuer Kernphysik, Mainz (Germany); Johannes Gutenberg-Universitaet, PRISMA Cluster of Excellence, Mainz (Germany); Taras Shevchenko National University of Kyiv, Department of Physics, Kyiv (Ukraine); Vanderhaeghen, M. [Johannes Gutenberg Universitaet, Institut fuer Kernphysik, Mainz (Germany); Johannes Gutenberg-Universitaet, PRISMA Cluster of Excellence, Mainz (Germany)

    2015-02-01

    We apply a subtracted dispersion relation formalism with the aim to improve predictions for the two-photon exchange corrections to elastic electron-proton scattering observables at finite momentum transfers. We study the formalism on the elastic contribution, and make a detailed comparison with existing data for unpolarized cross sections as well as polarization transfer observables. (orig.)

  12. Importance of Electrode Hot-Pressing Conditions for the Catalyst Performance of Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Dhiman, Rajnish; Larsen, Mikkel Juul;

    2015-01-01

    The catalyst performance in a proton exchange membrane fuel cell (PEMFC) depends on not only the choice of materials, but also on the electrode structure and in particular on the interface between the components. In this work, we demonstrate that the hot-pressing conditions used during electrode...

  13. Employing Hot Wire Anemometry to Directly Measure the Water Balance of a Commercial Proton Exchange Membrane Fuel Cell Stack

    DEFF Research Database (Denmark)

    Shakhshir, Saher Al; Berning, Torsten

    2016-01-01

    Proton exchange membrane fuel cells (PEMFC’s) are currently being commercialized for various applications ranging from automotive (e.g. the Toyota Mirai) to stationary such as powering telecom backup units. In PEMFC’s, oxygen from air is internally combined with hydrogen to form water and produce...

  14. Plasma-induced Styrene Grafting onto the Surface of Polytetrafluoroethylene Powder for Proton Exchange Membrane Application%Plasma-induced Styrene Grafting onto the Surface of Polytetrafluoroethylene Powder for Proton Exchange Membrane Application

    Institute of Scientific and Technical Information of China (English)

    兰彦; 程诚; 张素贞; 倪国华; 陈龙威; 杨光杰; M.NAGATSU; 孟月东

    2011-01-01

    Low-temperature plasma treatment was adopted to graft styrene onto polytetrafluo- roethylene (PTFE) powder, which is widely used in the fabrication of proton exchange membrane (PEM). The grafted PTFE powder was sulfonated in chlorosulfonic acid and fabricated into a membrane, which was used as inexpensive PEM material for a proton exchange membrane fuel cell (PEMFC). Fourier transform infrared spectroscopy attenuated total reflection spectroscopy (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS) analysis were used to characterize the structure of the sulfonated PTFE powder. The results showed that all the PTFE powders were successfully grafted by nitrogen plasma and then sulfonated under such experimental conditions. A scanning electron microscopy (SEM) image indicated that the fabricated membrane exhibits flat morphology and homogenous structure. The ion exchange capacity (IEC) of this kind of PEM was also investigated.

  15. How did China's foreign exchange reform affect the efficiency of foreign exchange market?

    Science.gov (United States)

    Ning, Ye; Wang, Yiming; Su, Chi-wei

    2017-10-01

    This study compares the market efficiency of China's onshore and offshore foreign exchange markets before and after the foreign exchange reform on August 11, 2015. We use the multifractal detrended fluctuation analysis of the onshore and offshore RMB/USD spot exchange rate series as basis. We then find that the onshore foreign exchange market before the reform has the lowest market efficiency, which increased after the reform. The offshore foreign exchange market before the reform has the highest market efficiency, which dropped after the reform. This finding implies the increased efficiency of the onshore foreign exchange market and the loss of efficiency in the offshore foreign exchange market. We also find that the offshore foreign exchange market is more efficient than the onshore market and that the gap shrank after the reform. Changes in intervention of the People's Bank of China since the reform is a possible explanation for the changes in the efficiency of the foreign exchange market.

  16. Studies on Preparation and Properties of Proton Exchange Membranes Based on Phosphotungstic Acid/Silica and Polysulfonamide

    Institute of Scientific and Technical Information of China (English)

    LI Wei-dong; XU Hong; ZHAO Jiong-xin

    2009-01-01

    Membranes formed by polysulfonamide (PSA) and phosphotungstic acid (PWA) supported on nano-silica have been prepared. Fourier transform infrared spectra (FTTR) and thermogravimctric analysis (TGA) were used to characterize the structure and thermal properties of obtained membranes. The analyses of water uptake, proton conductivity and mechanical properties of the membranes revealed that PWA and silica produced a beneficial effect on proton conduction of the membranes. The membranes with 50 wt% of PWA-SiQ2/PSA were mechanically stable and gave proton conductivity of 2. 57 × 10-2 S ?cm-1 at 90℃and 100% relative humidity. According to the obtained results, PWA and SiO2 doped PSA is a promising material for proton exchange membrane.

  17. Does Asia's choice of exchange rate regime affect Europe's exposure to US shocks?

    National Research Council Canada - National Science Library

    B Markovic; L Povoledo

    2011-01-01

    .... This happens because, without nominal exchange rate flexibility, Asian firms react to the shocks originating in the United States by implementing significant price adjustments, which in turn affect...

  18. Highly charged proton-exchange membrane. Sulfonated poly(ether sulfone)-silica polyelectrolyte composite membranes for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Shahi, Vinod K. [Electro-Membrane Processes Division, Central Salt and Marine Chemicals Research Institute, Bhavnagar-364002, Gujarat (India)

    2007-01-15

    Sulfonation of poly(ether sulfone) was carried out with chlorosulphonic acid in chloroform and its composite proton-exchange membrane was prepared using aminopropyltriethoxysilane as inorganic precursor by sol-gel in acidic medium. These membranes were further subjected to phosphorylation with phosphorous acid for introducing phosphonic acid functionality at inorganic segment. Extent of sulphonation was estimated by {sup 1}H-NMR spectroscopy while introduction of phosphonic acid groups was confirmed by FTIR spectroscopy and ion-exchange capacity studies. Different membranes, with varied silica content without and with phosphorylation, were characterized for their thermal and mechanical stabilities, physicochemical and electrochemical properties using thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), aq. methanol uptake studies, proton conductivity and methanol permeability measurements. The silica content in the membrane matrix and effect of phosphorylation was optimized as a function of membrane properties. Activation energy required for the proton transport across the membrane was also estimated and found to be comparable with Nafion 117 membrane. From the frictional interpretation and estimation of selectivity parameter it was observed that SPS-Si composite phosphorylated membrane with 20% silica content (SPS-Si(P)/20) resulted in the best proton-exchange membrane, which exhibited quite higher selectivity parameter in comparison to Nafion 117 for direct methanol fuel cell applications. Also, current-voltage polarization characteristics of SPS-Si(P)/20 membrane measured in direct methanol fuel cell, were found to be comparable to the Nafion 117 membrane. (author)

  19. Characterization of Polyethylene-Graft-Sulfonated Polyarylsulfone Proton Exchange Membranes for Direct Methanol Fuel Cell Applications

    Directory of Open Access Journals (Sweden)

    Hyung Kyu Kim

    2015-12-01

    Full Text Available This paper examines polymer film morphology and several important properties of polyethylene-graft-sulfonated polyarylene ether sulfone (PE-g-s-PAES proton exchange membranes (PEMs for direct methanol fuel cell applications. Due to the extreme surface energy differences between a semi-crystalline and hydrophobic PE backbone and several amorphous and hydrophilic s-PAES side chains, the PE-g-s-PAES membrane self-assembles into a unique morphology, with many proton conductive s-PAES channels embedded in the stable and tough PE matrix and a thin hydrophobic PE layer spontaneously formed on the membrane surfaces. In the bulk, these membranes show good mechanical properties (tensile strength >30 MPa, Young’s modulus >1400 MPa and low water swelling (λ < 15 even with high IEC >3 mmol/g in the s-PAES domains. On the surface, the thin hydrophobic and semi-crystalline PE layer shows some unusual barrier (protective properties. In addition to exhibiting higher through-plane conductivity (up to 160 mS/cm than in-plane conductivity, the PE surface layer minimizes methanol cross-over from anode to cathode with reduced fuel loss, and stops the HO• and HO2• radicals, originally formed at the anode, entering into PEM matrix. Evidently, the thin PE surface layer provides a highly desirable protecting layer for PEMs to reduce fuel loss and increase chemical stability. Overall, the newly developed PE-g-s-PAES membranes offer a desirable set of PEM properties, including conductivity, selectivity, mechanical strength, stability, and cost-effectiveness for direct methanol fuel cell applications.

  20. A Durable Alternative for Proton-Exchange Membranes: Sulfonated Poly(Benzoxazole Thioether Sulfone)s

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dan; Li, Jin Hui; Song, Min Kyu; Yi, Baolian; Zhang, Huamin; Liu, Meilin

    2011-02-24

    To develop a durable proton-exchange membrane (PEM) for fuel-cell applications, a series of sulfonated poly(benzoxazole thioether sulfone)s ( SPTESBOs) are designed and synthesized, with anticipated good dimensional stability (via acid–base cross linking), improved oxidative stability against free radicals (via incorporation of thioether groups), and enhanced inherent stability (via elimination of unstable end groups) of the backbone. The structures and the degree of sulfonation of the copolymers are characterized using Fourier-transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy ({sup 1}H NMR and {sup 19}F NMR). The electrochemical stabilities of the monomers are examined using cyclic voltammetry in a typical three-electrode cell configuration. The physicochemical properties of the membranes vital to fuel-cell performance are also carefully evaluated under conditions relevant to fuel-cell operation, including chemical and thermal stability, proton conductivity, solubility in different solvents, water uptake, and swelling ratio. The new membranes exhibit low dimensional change at 25°C to 90°C and excellent thermal stability up to 250°C. Upon elimination of unstable end groups, the co-polymers display enhanced chemical resistance and oxidative stability in Fenton's test. Further, the SPTESBO-HFB-60 (HFB-60=hexafluorobenzene, 60 mol% sulfone) membrane displays comparable fuel-cell performance to that of an NRE 212 membrane at 80°C under fully humidified condition, suggesting that the new membranes have the potential to be more durable but less expensive for fuel-cell applications.

  1. A durable alternative for proton-exchange membranes: sulfonated poly(benzoxazole thioether sulfone)s

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dan [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Lab of PEMFC Key Materials and Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Liaoning, Dalian 116023 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Li, Jinhuan [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Song, Min-Kyu; Liu, Meilin [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Yi, Baolian; Zhang, Huamin [Lab of PEMFC Key Materials and Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Liaoning, Dalian 116023 (China)

    2011-03-18

    To develop a durable proton-exchange membrane (PEM) for fuel-cell applications, a series of sulfonated poly(benzoxazole thioether sulfone)s (SPTESBOs) are designed and synthesized, with anticipated good dimensional stability (via acid-base cross linking), improved oxidative stability against free radicals (via incorporation of thioether groups), and enhanced inherent stability (via elimination of unstable end groups) of the backbone. The structures and the degree of sulfonation of the copolymers are characterized using Fourier-transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy ({sup 1}H NMR and {sup 19}F NMR). The electrochemical stabilities of the monomers are examined using cyclic voltammetry in a typical three-electrode cell configuration. The physicochemical properties of the membranes vital to fuel-cell performance are also carefully evaluated under conditions relevant to fuel-cell operation, including chemical and thermal stability, proton conductivity, solubility in different solvents, water uptake, and swelling ratio. The new membranes exhibit low dimensional change at 25 C to 90 C and excellent thermal stability up to 250 C. Upon elimination of unstable end groups, the co-polymers display enhanced chemical resistance and oxidative stability in Fenton's test. Further, the SPTESBO-HFB-60 (HFB-60=hexafluorobenzene, 60 mol% sulfone) membrane displays comparable fuel-cell performance to that of an NRE 212 membrane at 80 C under fully humidified condition, suggesting that the new membranes have the potential to be more durable but less expensive for fuel-cell applications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Conductivity Measurements of Synthesized Heteropoly Acid Membranes for Proton Exchange Membrane Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Record, K.A.; Haley, B.T.; Turner, J.

    2006-01-01

    Fuel cell technology is receiving attention due to its potential to be a pollution free method of electricity production when using renewably produced hydrogen as fuel. In a Proton Exchange Membrane (PEM) fuel cell H2 and O2 react at separate electrodes, producing electricity, thermal energy, and water. A key component of the PEM fuel cell is the membrane that separates the electrodes. DuPont’s Nafion® is the most commonly used membrane in PEM fuel cells; however, fuel cell dehydration at temperatures near 100°C, resulting in poor conductivity, is a major hindrance to fuel cell performance. Recent studies incorporating heteropoly acids (HPAs) into membranes have shown an increase in conductivity and thus improvement in performance. HPAs are inorganic materials with known high proton conductivities. The primary objective of this work is to measure the conductivity of Nafion, X-Ionomer membranes, and National Renewable Energy Laboratory (NREL) Developed Membranes that are doped with different HPAs at different concentrations. Four-point conductivity measurements using a third generation BekkTech conductivity test cell are used to determine membrane conductivity. The effect of multiple temperature and humidification levels is also examined. While the classic commercial membrane, Nafion, has a conductivity of approximately 0.10 S/cm, measurements for membranes in this study range from 0.0030 – 0.58 S/cm, depending on membrane type, structure of the HPA, and the relative humidity. In general, the X-ionomer with H6P2W21O71 HPA gave the highest conductivity and the Nafion with the 12-phosphotungstic (PW12) HPA gave the lowest. The NREL composite membranes had conductivities on the order of 0.0013 – 0.025 S/cm.

  3. Graphene oxide based nanohybrid proton exchange membranes for fuel cell applications: An overview.

    Science.gov (United States)

    Pandey, Ravi P; Shukla, Geetanjali; Manohar, Murli; Shahi, Vinod K

    2017-02-01

    In the context of many applications, such as polymer composites, energy-related materials, sensors, 'paper'-like materials, field-effect transistors (FET), and biomedical applications, chemically modified graphene was broadly studied during the last decade, due to its excellent electrical, mechanical, and thermal properties. The presence of reactive oxygen functional groups in the grapheme oxide (GO) responsible for chemical functionalization makes it a good candidate for diversified applications. The main objectives for developing a GO based nanohybrid proton exchange membrane (PEM) include: improved self-humidification (water retention ability), reduced fuel crossover (electro-osmotic drag), improved stabilities (mechanical, thermal, and chemical), enhanced proton conductivity, and processability for the preparation of membrane-electrode assembly. Research carried on this topic may be divided into protocols for covalent grafting of functional groups on GO matrix, preparation of free-standing PEM or choice of suitable polymer matrix, covalent or hydrogen bonding between GO and polymer matrix etc. Herein, we present a brief literature survey on GO based nano-hybrid PEM for fuel cell applications. Different protocols were adopted to produce functionalized GO based materials and prepare their free-standing film or disperse these materials in various polymer matrices with suitable interactions. This review article critically discussed the suitability of these PEMs for fuel cell applications in terms of the dependency of the intrinsic properties of nanohybrid PEMs. Potential applications of these nanohybrid PEMs, and current challenges are also provided along with future guidelines for developing GO based nanohybrid PEMs as promising materials for fuel cell applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Design, integration and control of proton exchange membrane electrolyzer for wind based renewable energy applications

    Science.gov (United States)

    Harrison, Kevin W.

    This research endeavor began with the design and construction of a new hydrogen test facility at the National Renewable Energy Laboratory (NREL). To improve the electrical link of wind-based electrolysis the characterization of a proton exchange membrane (PEM) electrolyzer under varying input power was performed at NRELs new test facility. The commercially available electrolyzer from Proton Energy Systems (PES) was characterized using constant direct current (DC), sinusoidally varying DC, photovoltaics and variable magnitude and frequency energy from a 10 kW wind turbine. At rated stack current and ˜ 40°C the system efficiency of the commercial electrolyzer was measured to be 55%. At lower stack current it was shown that commercial electrolyzer system efficiency falls because of the continuous hydrogen purge (˜0.1 Nm3 hr-1) used to maintain the hydrogen desiccant drying system. A novel thermoelectric-based dew point controller is designed and modeled to reduce the penalty to renewable sources because they do not always operate at 100% of rated stack current. It is predicted that the thermoelectric design when operated 100% of the time at full current to the thermoelectric modules would consume 3.1 kWh kg -1 of hydrogen. Using the higher heating value of hydrogen and a stack efficiency of 60% to produce the hydrogen that is continuously vented, the desiccant system consumes about 5.7 kWh kg-1. Design of the UND electrolyzer sub-systems responsible for all aspects of water, power to the stack, and hydrogen conditioning enables more flexible and precise experimental data to be obtained than from an off-the-shelf system. Current-voltage (IV) characteristic curves were obtained on the UND system at temperatures between 7--70°C. The anode and cathode exchange current densities are fitted to 2.0 E-06 e0.043T and 0.12 e 0.026T A cm-2 respectively. Stack conductivity was fitted to 0.001T + 0.03 S cm-1. The three coefficients represent physical stack parameters and are

  5. Synthesis and characterization of poly(vinylphosphonic acid) for proton exchange membranes in fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Bingoel, Bahar

    2007-07-01

    Vinylphosphonic acid (VPA) was polymerized at 80 C by free radical polymerization to give polymers (PVPA) of different molecular weight depending on the initiator concentration. The highest molecular weight, Mw, achieved was 6.2 x 10{sup 4} g/mol as determined by static light scattering. High resolution nuclear magnetic resonance (NMR) spectroscopy was used to gain microstructure information about the polymer chain. Information based on tetrad probabilities was utilized to deduce an almost atactic configuration. In addition, {sup 13}CNMR gave evidence for the presence of head-head and tail-tail links. Refined analysis of the {sup 1}H NMR spectra allowed for the quantitative determination of the fraction of these links (23.5 percent of all links). Experimental evidence suggested that the polymerization proceeded via cyclopolymerization of the vinylphosphonic acid anhydride as an intermediate. Titration curves indicated that high molecular weight poly(vinylphosphonic acid) PVPA behaved as a monoprotic acid. Proton conductors with phosphonic acid moieties as protogenic groups are promising due to their high charge carrier concentration, thermal stability, and oxidation resistivity. Blends and copolymers of PVPA have already been reported, but PVPA has not been characterized sufficiently with respect to its polymer properties. Therefore, we also studied the proton conductivity behaviour of a well-characterized PVPA. PVPA is a conductor; however, the conductivity depends strongly on the water content of the material. The phosphonic acid functionality in the resulting polymer, PVPA, undergoes condensation leading to the formation of phosphonic anhydride groups at elevated temperature. Anhydride formation was found to be temperature dependent by solid state NMR. Anhydride formation affects the proton conductivity to a large extent because not only the number of charge carriers but also the mobility of the charge carriers seems to change. (orig.)

  6. Synthesis of polymers for proton exchange membrane fuel cell; Synthese de polymeres pour membranes echangeuses de protons

    Energy Technology Data Exchange (ETDEWEB)

    Balland-Longeau, A.; Leninivin, C.; Pereira, F. [CEA Centre d' Etudes du Ripault, 37 - Tours (France)

    2006-05-15

    In the field of fuel cell application, the CEA - DAM has an important contribution in the development of new polymers for protonic conductor membranes. The specifications imposed are very strict in term of mechanical, thermal and chemical properties, in term of protonic conductivity, and for the performances in fuel cell. We have developed new types of per-fluorinated sulfonated polymers starting from poly-para-phenylenes (PPP). New PPP are developed using organometallic chemistry. In this article, we present the synthesis used to prepare these polymers and the very new approach allowing to insert protonic conductor chains (sulfonated and per-fluorinated sulfonated) into the polymers PPP, in the most homogeneous way. (authors)

  7. Recent Progress on the Key Materials and Components for Proton Exchange Membrane Fuel Cells in Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    2016-07-01

    Full Text Available Fuel cells are the most clean and efficient power source for vehicles. In particular, proton exchange membrane fuel cells (PEMFCs are the most promising candidate for automobile applications due to their rapid start-up and low-temperature operation. Through extensive global research efforts in the latest decade, the performance of PEMFCs, including energy efficiency, volumetric and mass power density, and low temperature startup ability, have achieved significant breakthroughs. In 2014, fuel cell powered vehicles were introduced into the market by several prominent vehicle companies. However, the low durability and high cost of PEMFC systems are still the main obstacles for large-scale industrialization of this technology. The key materials and components used in PEMFCs greatly affect their durability and cost. In this review, the technical progress of key materials and components for PEMFCs has been summarized and critically discussed, including topics such as the membrane, catalyst layer, gas diffusion layer, and bipolar plate. The development of high-durability processing technologies is also introduced. Finally, this review is concluded with personal perspectives on the future research directions of this area.

  8. Influence of various carbon nano-forms as supports for Pt catalyst on proton exchange membrane fuel cell performance

    Science.gov (United States)

    Bharti, Abha; Cheruvally, Gouri

    2017-08-01

    In this study, we discuss the influence of various carbon supports for Pt on proton exchange membrane (PEM) fuel cell performance. Here, Pt supported on various carbon nano-forms [Pt/carbon black (Pt/CB), Pt/single-walled carbon nanotubes (Pt/SWCNT), Pt/multi-walled carbon nanotubes (Pt/MWCNT) and Pt/graphene (Pt/G)] are synthesized by a facile, single step, microwave-assisted, modified chemical reduction route. Their physical, chemical and electrochemical characteristics pertaining to oxygen reduction reaction (ORR) catalytic activity and stability in PEM fuel cell are studied in detail by various techniques and compared. The study shows that the different carbon supports does not significantly affect the Pt particle size during synthesis, but leads to different amount of defective sites in the carbon framework which influence both the availability of active metal nano-catalysts and metal-support interaction. In-situ electrochemical investigations reveal that the different carbon supports influence both ORR catalytic activity and stability of the catalyst. This is further corroborated by the demonstration of varying polarization characteristics on PEM fuel cell performance by different carbon supported Pt catalysts. This study reveals MWCNT as the most suitable carbon support for Pt catalyst, exhibiting high activity and stability for ORR in PEM fuel cell.

  9. Parametric analysis of proton exchange membrane fuel cell performance by using the Taguchi method and a neural network

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Sheng-Ju; Shiah, Sheau-Wen [Department of Power Vehicle and Systems Engineering, Chung Cheng Institute of Technology, National Defense University, No. 190, Sanyuan 1st Street, Ta-Hsi, Taoyuan, Taiwan 335 (China); Yu, Wei-Lung [Graduate School of Defense Science, Chung Cheng Institute of Technology, National Defense University, No. 190, Sanyuan 1st Street, Ta-Hsi, Taoyuan, Taiwan 335 (China)

    2009-01-15

    This study proposes a novel parameter optimization method, capable of integrating the neural network and the Taguchi method for parametric analysis of proton exchange membrane fuel cell (PEMFC) performance. Numerous parameters affecting the PEMFC performance are analyzed, such as fuel cell operating temperatures, cathode and anode humidification temperatures, operating pressures, and reactant flow rate. In the traditional design of experiments, the Taguchi method has been popularly utilized in engineering. However, the parameter levels selected to form the orthogonal array in the Taguchi method are discrete, preventing the estimation of the real optimum. This study used the Taguchi method to acquire the primary optimums of the operating parameters in the PEMFC. Each row in the orthogonal array together with its relative responses was used to establish a set of training patterns (input/target pair) to the neural network. The neural network can then construct relationships between the control factors and responses in the PEMFC. The actual optimums of the operating parameters in the PEMFC were obtained by the trained neural network. Experimental results are presented for identifying the proposed approach, which is useful in improving performance for PEMFC and developing electrical system on advanced vehicles and ships. (author)

  10. Analytical Investigation and Improvement of Performance of a Proton Exchange Membrane (Pem Fuel Cell in Mobile Applications

    Directory of Open Access Journals (Sweden)

    Khazaee I.

    2015-05-01

    Full Text Available In this study, the performance of a proton exchange membrane fuel cell in mobile applications is investigated analytically. At present the main use and advantages of fuel cells impact particularly strongly on mobile applications such as vehicles, mobile computers and mobile telephones. Some external parameters such as the cell temperature (Tcell , operating pressure of gases (P and air stoichiometry (λair affect the performance and voltage losses in the PEM fuel cell. Because of the existence of many theoretical, empirical and semi-empirical models of the PEM fuel cell, it is necessary to compare the accuracy of these models. But theoretical models that are obtained from thermodynamic and electrochemical approach, are very exact but complex, so it would be easier to use the empirical and smi-empirical models in order to forecast the fuel cell system performance in many applications such as mobile applications. The main purpose of this study is to obtain the semi-empirical relation of a PEM fuel cell with the least voltage losses. Also, the results are compared with the existing experimental results in the literature and a good agreement is seen.

  11. Effects of proton exchange membrane on the performance and microbial community composition of air-cathode microbial fuel cells.

    Science.gov (United States)

    Lee, Yun-Yeong; Kim, Tae Gwan; Cho, Kyung-Suk

    2015-10-10

    This study investigated the effects of proton exchange membranes (PEMs) on performance and microbial community of air-cathode microbial fuel cells (MFCs). Air-cathode MFCs with reactor volume of 1L were constructed in duplicate with or without PEM (designated as ACM-MFC and AC-MFC, respectively) and fed with a mixture of glucose and acetate (1:1, w:w). The maximum power density and coulombic efficiency did not differ between MFCs in the absence or presence of a PEM. However, PEM use adversely affected maximum voltage production and the rate of organic compound removal (p0.9 and p<0.05). Geobacter, which is known as an exoelectrogen, was positively associated with maximum power density and negatively associated with PEM. Thus, these results suggest that the absence of PEM favored the growth of Geobacter, a key player for electricity generation in MFC systems. Taken together, these findings demonstrate that MFC systems without PEM are more efficient with respect to power production and COD removal as well as exoelectrogen growth.

  12. Proton exchange membranes based on the short-side-chain perfluorinated ionomer

    Science.gov (United States)

    Ghielmi, A.; Vaccarono, P.; Troglia, C.; Arcella, V.

    Due to the renovated availability of the base monomer for the synthesis of the short-side-chain (SSC) perfluorinated ionomer, fuel cell membrane development is being pursued using this well known ionomer structure, which was originally developed by Dow in the 1980s. The new membranes under development have the trade name Hyflon Ion. After briefly reviewing the literature on the Dow ionomer, new characterization data are reported on extruded Hyflon Ion membranes. The data are compared to those available in the literature on the Dow SSC ionomer and membranes. Comparison is made also with data obtained in this work or available in the literature on the long-side-chain (LSC) perfluorinated ionomer (Nafion). Thermal, visco-elastic, water absorption and mechanical properties of Hyflon Ion are studied. While the general behavior is similar to that shown in the past by the Dow membranes, slight differences are evident in the hydration behavior at equivalent weight (EW) glass transition temperature compared to Nafion, which makes it a more promising material for high temperature proton exchange membrane (PEM) fuel cell operation ( T > 100 °C). Beginning of life fuel cell performance has also been confirmed to be higher than that given by a Nafion membrane of equal thickness.

  13. Improving dynamic performance of proton-exchange membrane fuel cell system using time delay control

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Bae [Mechanical Engineering Department, Chonnam National University, Gwangju (Korea)

    2010-10-01

    Transient behaviour is a key parameter for the vehicular application of proton-exchange membrane (PEM) fuel cell. The goal of this presentation is to construct better control technology to increase the dynamic performance of a PEM fuel cell. The PEM fuel cell model comprises a compressor, an injection pump, a humidifier, a cooler, inlet and outlet manifolds, and a membrane-electrode assembly. The model includes the dynamic states of current, voltage, relative humidity, stoichiometry of air and hydrogen, cathode and anode pressures, cathode and anode mass flow rates, and power. Anode recirculation is also included with the injection pump, as well as anode purging, for preventing anode flooding. A steady-state, isothermal analytical fuel cell model is constructed to analyze the mass transfer and water transportation in the membrane. In order to prevent the starvation of air and flooding in a PEM fuel cell, time delay control is suggested to regulate the optimum stoichiometry of oxygen and hydrogen, even when there are dynamical fluctuations of the required PEM fuel cell power. To prove the dynamical performance improvement of the present method, feed-forward control and Linear Quadratic Gaussian (LQG) control with a state estimator are compared. Matlab/Simulink simulation is performed to validate the proposed methodology to increase the dynamic performance of a PEM fuel cell system. (author)

  14. Nafion®/ODF-silica composite membranes for medium temperature proton exchange membrane fuel cells

    KAUST Repository

    Treekamol, Yaowapa

    2014-01-01

    A series of composite membranes were prepared by dispersing fluorinated polyoxadiazole oligomer (ODF)-functionalized silica nanoparticles in a Nafion matrix. Both melt-extrusion and solvent casting processes were explored. Ion exchange capacity, conductivity, water uptake and dimensional stability, thermal stability and morphology were characterized. The inclusion of functionalized nanoparticles proved advantageous, mainly due to a physical crosslinking effect and better water retention, with functionalized nanoparticles performing better than the pristine silica particles. For the same filler loading, better nanoparticle dispersion was achieved for solvent-cast membranes, resulting in higher proton conductivity. Filler agglomeration, however,was more severe for solvent-castmembranes at loadings beyond 5wt.%. The composite membranes showed excellent thermal stability, allowing for operation in medium temperature PEM fuel cells. Fuel cell performance of the compositemembranesdecreaseswithdecreasing relativehumidity, but goodperformance values are still obtained at 34% RHand 90 °C,with the best results obtained for solvent castmembranes loaded with 10 wt.% ODF-functionalized silica. Hydrogen crossover of the composite membranes is higher than that forpureNafion membranes,possiblydue toporosityresulting fromsuboptimalparticle- matrixcompatibility. © 2013 Crown Copyright and Elsevier BV. All rights reserved.

  15. Gas diffusion layer for proton exchange membrane fuel cells - A review

    Energy Technology Data Exchange (ETDEWEB)

    Cindrella, L. [Fuel Cell Research Laboratory, Department of Engineering Technology, Arizona State University, Mesa, AZ 85212 (United States); Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015 (India); Kannan, A.M.; Lin, J.F.; Saminathan, K. [Fuel Cell Research Laboratory, Department of Engineering Technology, Arizona State University, Mesa, AZ 85212 (United States); Ho, Y. [Department of Biotechnology, College of Health Science, Asia University, Taichung 41354 (China); Lin, C.W. [Department of Chemical Engineering, National Yunlin University of Science and Technology, Yunlin 640 (China); Wertz, J. [Hollingsworth and Vose Co., A.K. Nicholson Research Lab, 219 Townsend Road, West Groton, MA 01472 (United States)

    2009-10-20

    Gas diffusion layer (GDL) is one of the critical components acting both as the functional as well as the support structure for membrane-electrode assembly in the proton exchange membrane fuel cell (PEMFC). The role of the GDL is very significant in the H{sub 2}/air PEM fuel cell to make it commercially viable. A bibliometric analysis of the publications on the GDLs since 1992 shows a total of 400+ publications (>140 papers in the Journal of Power Sources alone) and reveals an exponential growth due to reasons that PEMFC promises a lot of potential as the future energy source for varied applications and hence its vital component GDL requires due innovative analysis and research. This paper is an attempt to pool together the published work on the GDLs and also to review the essential properties of the GDLs, the method of achieving each one of them, their characterization and the current status and future directions. The optimization of the functional properties of the GDLs is possible only by understanding the role of its key parameters such as structure, porosity, hydrophobicity, hydrophilicity, gas permeability, transport properties, water management and the surface morphology. This paper discusses them in detail to provide an insight into the structural parts that make the GDLs and also the processes that occur in the GDLs under service conditions and the characteristic properties. The required balance in the properties of the GDLs to facilitate the counter current flow of the gas and water is highlighted through its characteristics. (author)

  16. The influence of hydrogen sulfide on proton exchange membrane fuel cell anodes

    Science.gov (United States)

    Shi, Weiyu; Yi, Baolian; Hou, Ming; Jing, Fenning; Yu, Hongmei; Ming, Pingwen

    The effect of hydrogen sulfide on proton exchange membrane fuel cell (PEMFC) anodes was studied by cyclic voltammetry (CV), potential steps and electrochemical impedance spectroscopy (EIS). The severity of the effect of H 2S varies depending on the H 2S concentration, current density and the cell temperature. The anode humidification does not impact the poisoning rate much when the anode is exposed to H 2S. The adsorption of H 2S on the anode is dissociative and this dissociation can produce adsorbed sulfur. The dissociation potential of H 2S was studied by potential steps, and the values of the dissociation potential are about 0.4 V at 90 °C, 0.5 V at 60 °C and 0.6 V at 30 °C, respectively. The adsorbed sulfur can be oxidized at a higher potential. During CV scans, two oxidation peaks for the adsorbed sulfur at 1.07 and 1.2 V were observed at 90 °C, however a single oxidation peak could be observed at 1.2 V at 60 °C and at 1.27 V at 30 °C. Application of EIS to a H 2S|H 2 half-cell shows that the charge transfer resistance increases when the anode is exposed to H 2S because of H 2S adsorption.

  17. A review of the development of high temperature proton exchange membrane fuel cells

    Institute of Scientific and Technical Information of China (English)

    Suthida Authayanun; Karittha Im-orb; Amornchai Arpornwichanop

    2015-01-01

    Due to the need for clean energy, the development of an efficient fuel cell technology for electricity generation has received considerable attention. Much of the current research efforts have investi‐gated the materials for and process development of fuel cells, including the optimization and simpli‐fication of the fuel cell components, and the modeling of the fuel cell systems to reduce their cost and improve their performance, durability and reliability to enable them to compete with the con‐ventional combustion engine. A high temperature proton exchange membrane fuel cell (HT‐PEMFC) is an interesting alternative to conventional PEMFCs as it is able to mitigate CO poisoning and water management problems. Although the HT‐PEMFC has many attractive features, it also possesses many limitations and presents several challenges to its widespread commercialization. In this re‐view, the trends of HT‐PEMFC research and development with respect to electrochemistry, mem‐brane, modeling, fuel options, and system design were presented.

  18. Nonlinear robust control of proton exchange membrane fuel cell by state feedback exact linearization

    Energy Technology Data Exchange (ETDEWEB)

    Li, Q.; Chen, W. [School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan Province (China); Wang, Y.; Jia, J. [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue 639798, Singapore (Singapore); Han, M. [School of Engineering, Temasek Polytechnic, Tampines 529757, Singapore (Singapore)

    2009-10-20

    By utilizing the state feedback exact linearization approach, a nonlinear robust control strategy is designed based on a multiple-input multiple-output (MIMO) dynamic nonlinear model of proton exchange membrane fuel cell (PEMFC). The state feedback exact linearization approach can achieve the global exact linearization via the nonlinear coordinate transformation and the dynamic extension algorithm such that H{sub {infinity}} robust control strategy can be directly utilized to guarantee the robustness of the system. The proposed dynamic nonlinear model is tested by comparing the simulation results with the experimental data in Fuel Cell Application Centre in Temasek Polytechnic. The comprehensive results of simulation manifest that the dynamic nonlinear model with nonlinear robust control law has better transient and robust stability when the vehicle running process is simulated. The proposed nonlinear robust controller will be very useful to protect the membrane damage by keeping the pressure deviations as small as possible during large disturbances and prolong the stack life of PEMFC. (author)

  19. Tuning surface hydrophilicity/hydrophobicity of hydrocarbon proton exchange membranes (PEMs).

    Science.gov (United States)

    He, Chenfeng; Mighri, Frej; Guiver, Michael D; Kaliaguine, Serge

    2016-03-15

    The effect of annealing on the surface hydrophilicity of various representative classes of hydrocarbon-based proton exchange membranes (PEMs) is investigated. In all cases, a more hydrophilic membrane surface develops after annealing at elevated temperatures. The annealing time also had some influence, but in different ways depending on the class of PEM. Longer annealing times resulted in more hydrophilic membrane surfaces for copolymerized sulfonated poly(ether ether ketone) (SPEEK-HQ), while the opposite behavior occurred in sulfonated poly(aryl ether ether ketone) (Ph-SPEEK), sulfonated poly(aryl ether ether ketone ketone) (Ph-m-SPEEKK) and sulfonated poly (aryl ether ether nitrile) (SPAEEN-B). Increased surface hydrophilicity upon annealing results from ionic cluster decomposition, according to the "Eisenberg-Hird-Moore model" (EHM). The increased surface hydrophilicity is supported by contact angle (CA) measurements, and the cluster decomposition is auxiliarily supported by probing the level of atomic sulfur (sulfonic acid) within different surface depths using angle-dependent XPS as well as ATR-FTIR. Membrane acidification leads to more hydrophilic surfaces by elimination of the hydrogen bonding that occurs between strongly-bound residual solvent (dimethylacetamide, DMAc) and PEM sulfonic acid groups. The study of physicochemical tuning of surface hydrophilicity/hydrophobicity of PEMs by annealing and acidification provides insights for improving membrane electrode assembly (MEA) fabrication in fuel cell (FC).

  20. Improving dynamic performance of proton-exchange membrane fuel cell system using time delay control

    Science.gov (United States)

    Kim, Young-Bae

    Transient behaviour is a key parameter for the vehicular application of proton-exchange membrane (PEM) fuel cell. The goal of this presentation is to construct better control technology to increase the dynamic performance of a PEM fuel cell. The PEM fuel cell model comprises a compressor, an injection pump, a humidifier, a cooler, inlet and outlet manifolds, and a membrane-electrode assembly. The model includes the dynamic states of current, voltage, relative humidity, stoichiometry of air and hydrogen, cathode and anode pressures, cathode and anode mass flow rates, and power. Anode recirculation is also included with the injection pump, as well as anode purging, for preventing anode flooding. A steady-state, isothermal analytical fuel cell model is constructed to analyze the mass transfer and water transportation in the membrane. In order to prevent the starvation of air and flooding in a PEM fuel cell, time delay control is suggested to regulate the optimum stoichiometry of oxygen and hydrogen, even when there are dynamical fluctuations of the required PEM fuel cell power. To prove the dynamical performance improvement of the present method, feed-forward control and Linear Quadratic Gaussian (LQG) control with a state estimator are compared. Matlab/Simulink simulation is performed to validate the proposed methodology to increase the dynamic performance of a PEM fuel cell system.

  1. A review of fault tolerant control strategies applied to proton exchange membrane fuel cell systems

    Science.gov (United States)

    Dijoux, Etienne; Steiner, Nadia Yousfi; Benne, Michel; Péra, Marie-Cécile; Pérez, Brigitte Grondin

    2017-08-01

    Fuel cells are powerful systems for power generation. They have a good efficiency and do not generate greenhouse gases. This technology involves a lot of scientific fields, which leads to the appearance of strongly inter-dependent parameters. This makes the system particularly hard to control and increases fault's occurrence frequency. These two issues call for the necessity to maintain the system performance at the expected level, even in faulty operating conditions. It is called ;fault tolerant control; (FTC). The present paper aims to give the state of the art of FTC applied to the proton exchange membrane fuel cell (PEMFC). The FTC approach is composed of two parts. First, a diagnosis part allows the identification and the isolation of a fault; it requires a good a priori knowledge of all the possible faults. Then, a control part allows an optimal control strategy to find the best operating point to recover/mitigate the fault; it requires the knowledge of the degradation phenomena and their mitigation strategies.

  2. System identification and robust control of a portable proton exchange membrane full-cell system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fu-Cheng; Yang, Yee-Pien; Huang, Chi-Wei; Chen, Hsuan-Tsung [Department of Mechanical Engineering, National Taiwan University, Taipei (Taiwan); Chang, Hsin-Ping [Chung Shan Institute of Science and Technology (CSIST), Armaments Bureau, M.N.D (Taiwan)

    2007-02-10

    This paper will discuss the application of system identification techniques and robust control strategies to a proton exchange membrane fuel-cell system. The fuel-cell system's dynamic behaviour is influenced by many factors, such as the reaction mechanism, pressure, flow-rate, composition and temperature change, and is inherently non-linear and time varying. From a system point of view, however, the system can be modelled as a two-input, two-output linear time-invariant system whose inputs are hydrogen and air flow rates, and whose outputs are cell voltage and current. On the other hand, the system's non-linearities and time-varying characteristics can be regarded as system uncertainties and disturbances that are treated by the designed robust controllers. This paper is comprised of three parts. First, system identification techniques were adopted to model the system's transfer functions. Second, the H{sub {infinity}} robust control strategies were applied to stabilise the system. Finally, the system's stability and performance were compromised by introducing weighting functions to the controller's design. From the experimental results, the designed H{sub {infinity}} robust controllers were deemed effective. (author)

  3. Low power proton exchange membrane fuel cell system identification and adaptive control

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yee-Pien; Wang, Fu-Cheng; Ma, Ying-Wei [Department of Mechanical Engineering, National Taiwan University, Taipei (Taiwan); Chang, Hsin-Ping; Weng, Biing-Jyh [Chung Shan Institute of Science and Technology (CSIST), Armaments Bureau, M.N.D. (Taiwan)

    2007-02-10

    This paper proposes a systematic method of system identification and control of a proton exchange membrane (PEM) fuel cell. This fuel cell can be used for low-power communication devices involving complex electrochemical reactions of nonlinear and time-varying dynamic properties. From a system point of view, the dynamic model of PEM fuel cell is reduced to a configuration of two inputs, hydrogen and air flow rates, and two outputs, cell voltage and current. The corresponding transfer functions describe linearized subsystem dynamics with finite orders and time-varying parameters, which are expressed as discrete-time auto-regression moving-average with auxiliary input models for system identification by the recursive least square algorithm. In the experiments, a pseudo-random binary sequence of hydrogen or air flow rate is fed to a single fuel cell device to excite its dynamics. By measuring the corresponding output signals, each subsystem transfer function of reduced order is identified, while the unmodeled, higher-order dynamics and disturbances are described by the auxiliary input term. This provides a basis of adaptive control strategy to improve the fuel cell performance in terms of efficiency, as well as transient and steady state specifications. Simulation shows that adaptive controller is robust to the variation of fuel cell system dynamics, and it has proved promising from the experimental results. (author)

  4. Superhydrophobic PAN nanofibers for gas diffusion layers of proton exchange membrane fuel cells

    Science.gov (United States)

    Salahuddin, Mohammad; Hwang, Gisuk; Asmatulu, Ramazan

    2016-04-01

    Proton exchange membrane (PEM) fuel cells are considered to be the promising alternatives of natural resources for generating electricity and power. An optimal water management in the gas diffusion layers (GDL) is critical to high fuel cell performance. Its basic functions include transportation of the reactant gas from flow channels to catalyst effectively, draining out the liquid water from catalyst layer to flow channels, and conducting electrons with low humidity. In this study, polyacrylonitrile (PAN) was dissolved in a solvent and electrospun at various conditions to produce PAN nanofibers prior to the stabilization at 280 °C for 1 hour in the atmospheric pressure and carbonization at 850 °C for 1 hour. The surface hydrophobicity values of the carbonized PAN nanofibers were adjusted using superhydrophobic and hydrophilic agents. The thermal, mechanical, and electrical properties of the new GDLs depicted much better results compared to the conventionally used ones. The water condensation tests on the surfaces (superhydrophobic and hydrophilic) of the GDL showed a crucial step towards improved water managements in the fuel cell. This study may open up new possibilities for developing high- performing GDL materials for future PEM fuel cell applications.

  5. Erythrocyte-like hollow carbon capsules and their application in proton exchange membrane fuel cells.

    Science.gov (United States)

    Kim, Jung Ho; Yu, Jong-Sung

    2010-12-14

    Hierarchical nanostructured erythrocyte-like hollow carbon (EHC) with a hollow hemispherical macroporous core of ca. 230 nm in diameter and 30-40 nm thick mesoporous shell was synthesized and explored as a cathode catalyst support in a proton exchange membrane fuel cell (PEMFC). The morphology control of EHC was successfully achieved using solid core/mesoporous shell (SCMS) silica template and different styrene/furfuryl alcohol mixture compositions by a nanocasting method. The EHC-supported Pt (20 wt%) cathodes prepared have demonstrated markedly enhanced catalytic activity towards oxygen reduction reactions (ORRs) and greatly improved PEMFC polarization performance compared to carbon black Vulcan XC-72 (VC)-supported ones, probably due to the superb structural characteristics of the EHC such as uniform size, well-developed porosity, large specific surface area and pore volume. In particular, Pt/EHC cathodes exhibited ca. 30-60% higher ORR activity than a commercial Johnson Matthey Pt catalyst at a low catalyst loading of 0.2 mg Pt cm(-2).

  6. Impact of heat and water management on proton exchange membrane fuel cells degradation in automotive application

    Science.gov (United States)

    Nandjou, F.; Poirot-Crouvezier, J.-P.; Chandesris, M.; Blachot, J.-F.; Bonnaud, C.; Bultel, Y.

    2016-09-01

    In Proton Exchange Membrane Fuel Cells, local temperature is a driving force for many degradation mechanisms such as hygrothermal deformation and creep of the membrane, platinum dissolution and bipolar plates corrosion. In order to investigate and quantify those effects in automotive application, durability testing is conducted in this work. During the ageing tests, the local performance and temperature are investigated using in situ measurements of a printed circuit board. At the end of life, post-mortem analyses of the aged components are conducted. The experimental results are compared with the simulated temperature and humidity in the cell obtained from a pseudo-3D multiphysics model in order to correlate the observed degradations to the local conditions inside the stack. The primary cause of failure in automotive cycling is pinhole/crack formation in the membrane, induced by high variations of its water content over time. It is also observed that water condensation largely increases the probability of the bipolar plates corrosion while evaporation phenomena induce local deposits in the cell.

  7. Modeling of cold start processes and performance optimization for proton exchange membrane fuel cell stacks

    Science.gov (United States)

    Zhou, Yibo; Luo, Yueqi; Yu, Shuhai; Jiao, Kui

    2014-02-01

    In this study, a cold start model for proton exchange membrane fuel cell (PEMFC) stacks is developed, and a novel start-up method, variable heating and load control (VHLC), is proposed and evaluated. The main idea is to only apply load to the neighboring still-active cells, and to apply external heating to certain cells inside the stack simultaneously (load is not applied to the cells fully blocked by ice, although these cells can gain heat from neighboring cells). With the VHLC method, it is found that the stack voltage first increases, then decreases due to the full blockage of ice in some of the individual cells, and finally the dead cells are heated by the other active cells and activated again one by one. Based on this method, the external heating power and the stack self-heating ability are utilized more efficiently. With proper implementation of the VHLC method, it is demonstrated that the cold stat performance can be improved significantly, which is critically important for PEMFC in automotive applications.

  8. Highly efficient single-layer gas diffusion layers for the proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Hung, T.F.; Bai, S.H.; Lai, Y.J.; Chen-Yang, Y.W. [Department of Chemistry and Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023 (China); Huang, J. [Yeu Ming Tai Chemical Industrial Co., Ltd., Taichung 40768 (China); Chuang, H.J. [Materials and Electro-Optics Research Division, Electric Energy Section, Chung Shan Institute of Science and Technology, Lung-Tan 32544 (China)

    2008-09-15

    In the present study, a series of highly efficient single-layer gas diffusion layers (SL-GDLs) was successfully prepared by the addition of a vapor grown carbon nanofiber (VGCF) in the carbon black/poly(tetrafluoroethylene) composite-based SL-GDL through a simple and inexpensive process. The scanning electron micrographs of the as-prepared VGCF-containing SL-GDLs (SL-GDL-CFs) showed that the GDLs had a microporous layer (MPL)-like structure, while the wire-like VGCFs were well dispersed and crossed among the carbon black particles in the SL-GDL matrix. Utilization of the SL-GDL-CFs for MEA fabrication was also done by direct coating with the catalyst layer. Due to the presence of VGCFs, the properties of the SL-GDL-CFs, including electronic resistivity, mechanical characteristic, gas permeability, and water repellency, varied with the VGCF content, with the overall effect beneficial to the performance of the proton exchange membrane fuel cell (PEMFC). The best performances obtained from the PEMFC with VGCFs at 15 wt.% was approximately 63% higher than those without VGCFs, and about 85% as efficient as ELAT GDL, a commercial dual-layer GDL, for both the H{sub 2}/O{sub 2} and H{sub 2}/air systems. (author)

  9. Proton Exchange Membrane Fuel Cell Engineering Model Powerplant. Test Report: Benchmark Tests in Three Spatial Orientations

    Science.gov (United States)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    Proton exchange membrane (PEM) fuel cell technology is the leading candidate to replace the aging alkaline fuel cell technology, currently used on the Shuttle, for future space missions. This test effort marks the final phase of a 5-yr development program that began under the Second Generation Reusable Launch Vehicle (RLV) Program, transitioned into the Next Generation Launch Technologies (NGLT) Program, and continued under Constellation Systems in the Exploration Technology Development Program. Initially, the engineering model (EM) powerplant was evaluated with respect to its performance as compared to acceptance tests carried out at the manufacturer. This was to determine the sensitivity of the powerplant performance to changes in test environment. In addition, a series of tests were performed with the powerplant in the original standard orientation. This report details the continuing EM benchmark test results in three spatial orientations as well as extended duration testing in the mission profile test. The results from these tests verify the applicability of PEM fuel cells for future NASA missions. The specifics of these different tests are described in the following sections.

  10. Analysis of Heat Transport in a Proton Exchange Membrane (PEM Fuel Cell

    Directory of Open Access Journals (Sweden)

    E. Afshari

    2009-01-01

    Full Text Available In this study a two-phases, single-domain and non-isothermal model of a Proton Exchange Membrane (PEM fuel cell has been studied to investigate thermal management effects on fuel cell performance. A set of governing equations, conservation of mass, momentum, species, energy and charge for gas diffusion layers, catalyst layers and the membrane regions are considered. These equations are solved numerically in a single domain, using finite-volume-based computational fluid dynamics technique. Also the effects of four critical parameters that are thermal conductivity of gas diffusion layer, relative humidity, operating temperature and current density on the PEM fuel cell performance is investigated. In low operating temperatures the resistance within the membrane increases and this could cause rapid decrease in potential. High operating temperature would also reduce transport losses and it would lead to increase in electrochemical reaction rate. This could virtually result in decreasing the cell potential due to an increasing water vapor partial pressure and the membrane water dehydration. Another significant result is that the temperature distribution in GDL is almost linear but within membrane is highly non-linear. However at low current density the temperature across all regions of the cell dose not change significantly. The cell potential increases with relative humidity and improved hydration which reduces ohmic losses. Also the temperature within the cell is much higher with reduced GDL thermal conductivities. The numerical model which is developed is validated with published experimental data and the results are in good agreement.

  11. A Protons Exchanged Montmorillonite Clay as an Efficient Catalyst for the Reaction of Isobutylene Polymerization

    Directory of Open Access Journals (Sweden)

    Mohammed Belbachir

    2002-07-01

    Full Text Available Abstract: “Maghnite” a montmorillonite sheet silicate clay, exchanged with protons to produce “H-Maghnite” is an efficient catalyst for cationic polymerization of many vinylic and heterocyclic monomers (Belbachir, M. U.S. Patent. 066969.0101 –2001. The structure compositions of both “Maghnite” and “H-Maghnite” have been developed. Isobutylene monomer, wich is polymerizable only by cationic process (Odian,G. La Polymerisation :principes et Applications; Ed.Technica: New York, 1994; pp 222-226, was used to elucidate the cationic character of polymerization. The polymerization was performed under suitable conditions at isobutylene vaporization temperature (–7°C. Experiments revealed that polymerization induced by “H-Maghnite” proceed in bulk and in solution. In contrast to findings with methylene chloride CH2Cl2 as a polar solvent, polymerization yields with hexane C6H14 non-polar solvent is very significant. In bulk polymerization, Isobutylene conversion increases with increasing “H-Maghnite” proportion.

  12. Polycondensation of Tetrahydrofuran with Phthalic Anhydride Induced By a Proton Exchanged Montmorillonite Clay

    Directory of Open Access Journals (Sweden)

    Mohammed Belbachir

    2003-05-01

    Full Text Available Abstract: “Maghnite” a montmorillonite sheet silicate clay, exchanged with protons to produce “H-Maghnite” is an efficient catalyst for polymerization of many vinylic and heterocyclic monomers (Belbachir, M. U.S. Patent. 066969.0101 –2001. The structure compositions of both “Maghnite” and “H-Maghnite” have been developed. This catalyst was used for the polycondensation of the tetrahydrofuran with phthalic anhydride. The polymerization was performed under suitable conditions at temperature (40°C, in presence of acetic anhydride. Experiments revealed that polymerization induced by “H-Maghnite”, proceed in bulk and the conversion increases with increasing “H-Maghnite” proportion.

  13. Parametric analysis of the proton exchange membrane fuel cell performance using design of experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wei-Lung [School of Defense Science, Chung Cheng Institute of Technology, National Defense University, No. 190, Sanyuan 1st Street, Ta-Hsi, Taoyuan, Taiwan 335 (China); Wu, Sheng-Ju; Shiah, Sheau-Wen [Department of Power Vehicle and Systems Engineering, Chung Cheng Institute of Technology, National Defense University, No. 190, Sanyuan 1st Street, Ta-Hsi, Taoyuan, Taiwan 335 (China)

    2008-05-15

    Proton exchange membrane fuel cell (PEMFC) performance depends on different fuel cell operating temperatures, humidification temperatures, operating pressures, flow rates, and various combinations of these parameters. This study employed the method of the design of experiments (DOE) to obtain the optimal combination of the six primary operating parameters (fuel cell operating temperatures, operating pressures, anode and cathode humidification temperatures, anode and cathode stoichiometric flow ratios). In the first stage, this study adopted a 2{sup k-2} fractional factorial design of the DOE to determine whether these factors have significant effects on a response and the interactions between various parameters. Second, the L{sub 27}(3{sup 13}) orthogonal array of the Taguchi method is utilized to determine the optimal combination of factors for a fuel cell. Based on this study, the operating pressure, the operating temperature, and the interactions between operating temperature and operating pressure have a significant effect on the fuel cell performance. Among them, the operating pressure is the most important contributor. When the operating pressure increases, it should simultaneously lower the effects of other factors. While both the operating temperature and pressure increase simultaneously with that, the other factors are at appropriate conditions, it is possible to improve the fuel cell performance. (author)

  14. Current short circuit implementation for performance improvement and lifetime extension of proton exchange membrane fuel cell

    Science.gov (United States)

    Zhan, Yuedong; Guo, Youguang; Zhu, Jianguo; Li, Li

    2014-12-01

    To improve its performance, extend its lifetime, and overcome the problem of the slow dynamic during the start-up and the operation process of a proton exchange membrane fuel cell (PEMFC), this paper presents current short circuit and smart energy management approaches for a main PEMFC with auxiliary PEMFC, battery and supercapacitor as hybrid power source in parallel with an intelligent uninterrupted power supply (UPS) system. The hybrid UPS system consists of two low-cost 63-cell 300 W PEMFC stacks, 3-cell lead-acid battery, and 20-cell series-connected supercapacitors. Based on the designed intelligent hybrid UPS system, experimental tests and theoretical studies are conducted. Firstly, the modeling of PEMFC is obtained and evaluated. Then the performance improvement mechanism of the current short circuit is proposed and analyzed based on the Faradaic process and non-Faradaic process of electrochemical theory. Finally, the performances of the main PEMFC with the auxiliary PEMFC/battery/supercapacitor hybrid power source and intelligent energy management are experimentally measured and analyzed. The proposed current short circuit method can significantly extend the lifetime, improve the performance of PEMFC and decrease the size of the main FC for stationary, backup power sources and vehicular applications.

  15. Rechargeable Metal-Air Proton-Exchange Membrane Batteries for Renewable Energy Storage.

    Science.gov (United States)

    Nagao, Masahiro; Kobayashi, Kazuyo; Yamamoto, Yuta; Yamaguchi, Togo; Oogushi, Akihide; Hibino, Takashi

    2016-02-01

    Rechargeable proton-exchange membrane batteries that employ organic chemical hydrides as hydrogen-storage media have the potential to serve as next-generation power sources; however, significant challenges remain regarding the improvement of the reversible hydrogen-storage capacity. Here, we address this challenge through the use of metal-ion redox couples as energy carriers for battery operation. Carbon, with a suitable degree of crystallinity and surface oxygenation, was used as an effective anode material for the metal redox reactions. A Sn0.9In0.1P2O7-based electrolyte membrane allowed no crossover of vanadium ions through the membrane. The V(4+)/V(3+), V(3+)/V(2+), and Sn(4+)/Sn(2+) redox reactions took place at a more positive potential than that for hydrogen reduction, so that undesired hydrogen production could be avoided. The resulting electrical capacity reached 306 and 258 mAh g(-1) for VOSO4 and SnSO4, respectively, and remained at 76 and 91 % of their respective initial values after 50 cycles.

  16. Carbon composite bipolar plate for high-temperature proton exchange membrane fuel cells (HT-PEMFCs)

    Science.gov (United States)

    Lee, Dongyoung; Lee, Dai Gil

    2016-09-01

    A carbon/epoxy composite bipolar plate is an ideal substitute for the brittle graphite bipolar plate for lightweight proton exchange membrane fuel cells (PEMFCs) because of its high specific strength and stiffness. However, conventional carbon/epoxy composite bipolar plates are not applicable for high-temperature PEMFCs (HT-PEMFCs) because these systems are operated at higher temperatures than the glass transition temperatures of conventional epoxies. Therefore, in this study, a cyanate ester-modified epoxy is adopted for the development of a carbon composite bipolar plate for HT-PEMFCs. The composite bipolar plate with exposed surface carbon fibers is produced without any surface treatments or coatings to increase the productivity and is integrated with a silicone gasket to reduce the assembly cost. The developed carbon composite bipolar plate exhibits not only superior electrical properties but also high thermo-mechanical properties. In addition, a unit cell test is performed, and the results are compared with those of the conventional graphite bipolar plate.

  17. A new stochastic algorithm for proton exchange membrane fuel cell stack design optimization

    Science.gov (United States)

    Chakraborty, Uttara

    2012-10-01

    This paper develops a new stochastic heuristic for proton exchange membrane fuel cell stack design optimization. The problem involves finding the optimal size and configuration of stand-alone, fuel-cell-based power supply systems: the stack is to be configured so that it delivers the maximum power output at the load's operating voltage. The problem apparently looks straightforward but is analytically intractable and computationally hard. No exact solution can be found, nor is it easy to find the exact number of local optima; we, therefore, are forced to settle with approximate or near-optimal solutions. This real-world problem, first reported in Journal of Power Sources 131, poses both engineering challenges and computational challenges and is representative of many of today's open problems in fuel cell design involving a mix of discrete and continuous parameters. The new algorithm is compared against genetic algorithm, simulated annealing, and (1+1)-EA. Statistical tests of significance show that the results produced by our method are better than the best-known solutions for this problem published in the literature. A finite Markov chain analysis of the new algorithm establishes an upper bound on the expected time to find the optimum solution.

  18. Electrochemical stability of carbon nanofibers in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Garbine [Energy Department, CIDETEC-IK4, Po Miramon, 196, 20009 San Sebastian (Spain); Alcaide, Francisco, E-mail: falcaide@cidetec.es [Energy Department, CIDETEC-IK4, Po Miramon, 196, 20009 San Sebastian (Spain); Miguel, Oscar [Energy Department, CIDETEC-IK4, Po Miramon, 196, 20009 San Sebastian (Spain); Cabot, Pere L. [Laboratori d' Electroquimica de Materials i del Medi Ambient, Dept. Quimica Fisica, Universitat de Barcelona, Marti i Franques, 1-11, 08028 Barcelona (Spain); Martinez-Huerta, M.V.; Fierro, J.L.G. [Instituto de Catalisis y Petroleoquimica (CSIC), Marie Curie 2, Cantoblanco, 28049 Madrid (Spain)

    2011-10-30

    This fundamental study deals with the electrochemical stability of several non-conventional carbon based catalyst supports, intended for low temperature proton exchange membrane fuel cell (PEMFC) cathodes. Electrochemical surface oxidation of raw and functionalized carbon nanofibers, and carbon black for comparison, was studied following a potential step treatment at 25.0 deg. C in acid electrolyte, which mimics the operating conditions of low temperature PEMFCs. Surface oxidation was characterized using cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), and contact angle measurements. Cyclic voltammograms clearly showed the presence of the hydroquinone/quinone couple. Furthermore, identification of carbonyl, ether, hydroxyl and carboxyl surface functional groups were made by deconvolution of the XPS spectra. The relative increase in surface oxides on carbon nanofibers during the electrochemical oxidation treatment is significantly smaller than that on carbon black. This suggests that carbon nanofibers are more resistant to the electrochemical corrosion than carbon black under the experimental conditions used in this work. This behaviour could be attributed to the differences found in the microstructure of both kinds of carbons. According to these results, carbon nanofibers possess a high potential as catalyst support to increase the durability of catalysts used in low temperature PEMFC applications.

  19. Contact behavior modelling and its size effect on proton exchange membrane fuel cell

    Science.gov (United States)

    Qiu, Diankai; Peng, Linfa; Yi, Peiyun; Lai, Xinmin; Janßen, Holger; Lehnert, Werner

    2017-10-01

    Contact behavior between the gas diffusion layer (GDL) and bipolar plate (BPP) is of significant importance for proton exchange membrane fuel cells. Most current studies on contact behavior utilize experiments and finite element modelling and focus on fuel cells with graphite BPPs, which lead to high costs and huge computational requirements. The objective of this work is to build a more effective analytical method for contact behavior in fuel cells and investigate the size effect resulting from configuration alteration of channel and rib (channel/rib). Firstly, a mathematical description of channel/rib geometry is outlined in accordance with the fabrication of metallic BPP. Based on the interface deformation characteristic and Winkler surface model, contact pressure between BPP and GDL is then calculated to predict contact resistance and GDL porosity as evaluative parameters of contact behavior. Then, experiments on BPP fabrication and contact resistance measurement are conducted to validate the model. The measured results demonstrate an obvious dependence on channel/rib size. Feasibility of the model used in graphite fuel cells is also discussed. Finally, size factor is proposed for evaluating the rule of size effect. Significant increase occurs in contact resistance and porosity for higher size factor, in which channel/rib width decrease.

  20. Low power proton exchange membrane fuel cell system identification and adaptive control

    Science.gov (United States)

    Yang, Yee-Pien; Wang, Fu-Cheng; Chang, Hsin-Ping; Ma, Ying-Wei; Weng, Biing-Jyh

    This paper proposes a systematic method of system identification and control of a proton exchange membrane (PEM) fuel cell. This fuel cell can be used for low-power communication devices involving complex electrochemical reactions of nonlinear and time-varying dynamic properties. From a system point of view, the dynamic model of PEM fuel cell is reduced to a configuration of two inputs, hydrogen and air flow rates, and two outputs, cell voltage and current. The corresponding transfer functions describe linearized subsystem dynamics with finite orders and time-varying parameters, which are expressed as discrete-time auto-regression moving-average with auxiliary input models for system identification by the recursive least square algorithm. In the experiments, a pseudo-random binary sequence of hydrogen or air flow rate is fed to a single fuel cell device to excite its dynamics. By measuring the corresponding output signals, each subsystem transfer function of reduced order is identified, while the unmodeled, higher-order dynamics and disturbances are described by the auxiliary input term. This provides a basis of adaptive control strategy to improve the fuel cell performance in terms of efficiency, as well as transient and steady state specifications. Simulation shows that adaptive controller is robust to the variation of fuel cell system dynamics, and it has proved promising from the experimental results.

  1. Binary and ternary nano-catalysts as cathode materials in proton exchange membrane fuel cells

    Science.gov (United States)

    Trimm, Bryan Dunning

    The need for alternative energy, in order to reduce dependence on petroleum based fuels, has increased in recent years. Public demand is at an all-time high for low emitting or none polluting energy sources, driving the research for cleaner technology. Lithium batteries and fuel cells have the ability to produce this alternative energy with much cleaner standards, while allowing for portability and high energy densities. This work focuses on the performance of nanocatalysts in Proton Exchange Membrane Fuel Cell or PEMFC. A key technical challenge is the sluggish rate for oxygen reduction reaction at the cathode of PEMFC, which requires highly-active and stable catalysts. Our investigation is directed at increasing stability and durability as well as reducing high loading of noble metals in these catalyst materials. Binary and ternary structured nanomaterials, e.g., Pt51V1Co48/C and Pd xCu1-x/C, have been synthesized and tested in a PEMFC, in order to gain a better understanding of their durability and efficiency. In addition to electrochemical characterization, synchrotron x-ray techniques at the Advance Photon Source in Argonne National Lab have also been used for the structural characterization.

  2. Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells.

    Science.gov (United States)

    Girishkumar, G; Rettker, Matthew; Underhile, Robert; Binz, David; Vinodgopal, K; McGinn, Paul; Kamat, Prashant

    2005-08-30

    A membrane electrode assembly (MEA) for hydrogen fuel cells has been fabricated using single-walled carbon nanotubes (SWCNTs) support and platinum catalyst. Films of SWCNTs and commercial platinum (Pt) black were sequentially cast on a carbon fiber electrode (CFE) using a simple electrophoretic deposition procedure. Scanning electron microscopy and Raman spectroscopy showed that the nanotubes and the platinum retained their nanostructure morphology on the carbon fiber surface. Electrochemical impedance spectroscopy (EIS) revealed that the carbon nanotube-based electrodes exhibited an order of magnitude lower charge-transfer reaction resistance (R(ct)) for the hydrogen evolution reaction (HER) than did the commercial carbon black (CB)-based electrodes. The proton exchange membrane (PEM) assembly fabricated using the CFE/SWCNT/Pt electrodes was evaluated using a fuel cell testing unit operating with H(2) and O(2) as input fuels at 25 and 60 degrees C. The maximum power density obtained using CFE/SWCNT/Pt electrodes as both the anode and the cathode was approximately 20% better than that using the CFE/CB/Pt electrodes.

  3. Performance of Cassava Starch as a Proton Exchange Membrane in a Dual Chambered Microbial Fuel Cell.

    Directory of Open Access Journals (Sweden)

    Livinus A. Obasi

    2012-01-01

    Full Text Available This research work shows the feasibility of power generation in a mediatorless dual chambered microbial fuel cell, utilizing cassava starch as the proton exchange membrane (PEM. The study employed swine house effluent (a serious environmental threat as the substrate (fuel (pH, 7.2, BOD: 1200mg/l, COD: 3800mg/l in the anode chamber prepared with a phosphate buffer solution (K2HPO4+KH2PO4, potassium ferry cyanide solution served as the oxygen acceptor in the cathode chamber using graphite electrodes, the cell operating at room temperature (27 ± 30C. The PEM (gelatinized cassava starch was prepared with varying degrees of modifications for three cells, ranging from the untreated pure starch (A, starch treated with 5.9% sodium chloride (B and starch modified with sodium alginate (a gum and activated carbon (C. The open circuit voltages (OCV and powerperformances of the three cells were monitored for ten days. Each of the cells was inoculated with the adopted consortium in soil solution obtained from mangrove forest. The maximum power outputs from the cells were 945.69mW/m2, 1068.54 mW/m2 and 570.83 mW/m2 for A, B and C respectively.

  4. Enhanced catalytic properties from platinum nanodots covered carbon nanotubes for proton-exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhe; Chua, Daniel H.C. [Department of Materials Science and Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574 (Singapore); Poh, Chee Kok; Tian, Zhiqun; Lin, Jianyi [Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Lee, Kian Keat [NUS Nanoscience and Nanotechnology Initiative (NUSNNI), 2 Science Drive 3, Singapore 117542 (Singapore)

    2010-01-01

    An efficient fabrication method for carbon nanotube (CNT)-based electrode with a nanosized Pt catalyst is developed for high efficiency proton-exchange membrane fuel cells (PEMFC). The integrated Pt/CNT layer is prepared by in situ growth of a CNT layer on carbon paper and subsequent direct sputter-deposition of the Pt catalyst. Both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrate that this Pt/CNT layer consists of a highly porous CNT layer covered by well-dispersed Pt nanodots with a narrow size distribution. Compared with conventional gas-diffusion layer assisted electrodes, the CNT-based electrode with a Pt/CNT layer acting as a combined gas-diffusion layer and catalyst layer shows pronounced improvement in polarization tests. A high maximum power density of 595 mW cm{sup -2} is observed for a low Pt loading of 0.04 mg cm{sup -2} at the cathode. (author)

  5. Prognostics of Proton Exchange Membrane Fuel Cells stack using an ensemble of constraints based connectionist networks

    Science.gov (United States)

    Javed, Kamran; Gouriveau, Rafael; Zerhouni, Noureddine; Hissel, Daniel

    2016-08-01

    Proton Exchange Membrane Fuel Cell (PEMFC) is considered the most versatile among available fuel cell technologies, which qualify for diverse applications. However, the large-scale industrial deployment of PEMFCs is limited due to their short life span and high exploitation costs. Therefore, ensuring fuel cell service for a long duration is of vital importance, which has led to Prognostics and Health Management of fuel cells. More precisely, prognostics of PEMFC is major area of focus nowadays, which aims at identifying degradation of PEMFC stack at early stages and estimating its Remaining Useful Life (RUL) for life cycle management. This paper presents a data-driven approach for prognostics of PEMFC stack using an ensemble of constraint based Summation Wavelet- Extreme Learning Machine (SW-ELM) models. This development aim at improving the robustness and applicability of prognostics of PEMFC for an online application, with limited learning data. The proposed approach is applied to real data from two different PEMFC stacks and compared with ensembles of well known connectionist algorithms. The results comparison on long-term prognostics of both PEMFC stacks validates our proposition.

  6. Detecting proton exchange membrane fuel cell hydrogen leak using electrochemical impedance spectroscopy method

    Science.gov (United States)

    Mousa, Ghassan; Golnaraghi, Farid; DeVaal, Jake; Young, Alan

    2014-01-01

    When a proton exchange membrane (PEM) fuel cell runs short of hydrogen, it suffers from a reverse potential fault that, when driven by neighboring cells, can lead to anode catalyst degradation and holes in the membrane due to local heat generation. As a result, hydrogen leaks through the electrically-shorted membrane-electrode assembly (MEA) without being reacted, and a reduction in fuel cell voltage is noticed. Such voltage reduction can be detected by using electrochemical impedance spectroscopy (EIS). To fully understand the reverse potential fault, the effect of hydrogen crossover leakage in a commercial MEA is measured by EIS at different differential pressures between the anode and cathode. Then the signatures of these leaky cells were compared with the signatures of a no-leaky cells at different oxygen concentrations with the same current densities. The eventual intent of this early stage work is to develop an on-board diagnostics system that can be used to detect and possibly prevent cell reversal failures, and to permit understanding the status of crossover or transfer leaks versus time in operation.

  7. Development of large aperture projection scatterometry for catalyst loading evaluation in proton exchange membrane fuel cells

    Science.gov (United States)

    Stocker, Michael T.; Barnes, Bryan M.; Sohn, Martin; Stanfield, Eric; Silver, Richard M.

    2017-10-01

    Widespread commercialization of proton exchange membrane fuel cells remains curbed by various manufacturing and infrastructure challenges. One such technical barrier identified by the U. S. Department of Energy is the need for high-speed, in-line process control of platinum-based catalyst layers in the membrane electrode assembly of the fuel cell. Using multiple reflectivity-based optical methods, such as optical scatterometry and large aperture projection scatterometry, we demonstrate in-line-capable catalyst loading measurements of carbon-supported Pt nanoparticle and Pt-alloy nanostructured thin film catalyst coated membranes. Large aperture projection scatterometry is a new high-throughput approach developed at the National Institute of Standards and Technology specifically for fuel cell manufacturing metrology. Angle- and wavelength-resolved measurements of these fuel cell soft goods validate the ability of reflectivity-based measurements to produce industrially relevant sensitivities to changes in Pt and Pt-alloy loading. The successful application of these optical methods to fuel cell manufacturing metrology directly addresses the shortage of high-throughput process control approaches needed to facilitate performance improvements and manufacturing cost-reductions required to make fuel cells commercially viable.

  8. Fabrication of Proton-Exchange Waveguide Using Stoichiometric LiTaO3 for Guided Wave Electrooptic Modulators with Polarization-Reversed Structure

    Directory of Open Access Journals (Sweden)

    Hiroshi Murata

    2008-01-01

    Full Text Available Optical waveguides were fabricated on z-cut stoichiometric LiTaO3 (SLT by using the proton-exchange method. The surface index change for the extraordinary ray on the SLT substrate resulting from the proton exchange was 0.017, which coincided well with congruent LiTaO3 substrates. The proton exchange coefficient in the SLT was 0.25×10−12 cm2/s. The application of the SLT waveguide to a quasi-velocity-matched travelling-wave electrooptic modulator with periodically polarization-reversed structure is also reported.

  9. Route, mechanism, and implications of proton import during Na+/K+ exchange by native Na+/K+-ATPase pumps.

    Science.gov (United States)

    Vedovato, Natascia; Gadsby, David C

    2014-04-01

    A single Na(+)/K(+)-ATPase pumps three Na(+) outwards and two K(+) inwards by alternately exposing ion-binding sites to opposite sides of the membrane in a conformational sequence coupled to pump autophosphorylation from ATP and auto-dephosphorylation. The larger flow of Na(+) than K(+) generates outward current across the cell membrane. Less well understood is the ability of Na(+)/K(+) pumps to generate an inward current of protons. Originally noted in pumps deprived of external K(+) and Na(+) ions, as inward current at negative membrane potentials that becomes amplified when external pH is lowered, this proton current is generally viewed as an artifact of those unnatural conditions. We demonstrate here that this inward current also flows at physiological K(+) and Na(+) concentrations. We show that protons exploit ready reversibility of conformational changes associated with extracellular Na(+) release from phosphorylated Na(+)/K(+) pumps. Reversal of a subset of these transitions allows an extracellular proton to bind an acidic side chain and to be subsequently released to the cytoplasm. This back-step of phosphorylated Na(+)/K(+) pumps that enables proton import is not required for completion of the 3 Na(+)/2 K(+) transport cycle. However, the back-step occurs readily during Na(+)/K(+) transport when external K(+) ion binding and occlusion are delayed, and it occurs more frequently when lowered extracellular pH raises the probability of protonation of the externally accessible carboxylate side chain. The proton route passes through the Na(+)-selective binding site III and is distinct from the principal pathway traversed by the majority of transported Na(+) and K(+) ions that passes through binding site II. The inferred occurrence of Na(+)/K(+) exchange and H(+) import during the same conformational cycle of a single molecule identifies the Na(+)/K(+) pump as a hybrid transporter. Whether Na(+)/K(+) pump-mediated proton inflow may have any physiological or

  10. Thermal and water management of low temperature Proton Exchange Membrane Fuel Cell in fork-lift truck power system

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Rokni, Masoud; Rabbani, Raja Abid

    2013-01-01

    A general zero-dimensional Proton Exchange Membrane Fuel Cell (PEMFC) model has been developed for forklift truck application. The balance of plant (BOP) comprises of a compressor, an air humidifier, a set of heat exchangers and a recirculation pump. Water and thermal management of the fuel cell...... voltage when membrane is fully hydrated otherwise it causes a drastic voltage drop in the stack. Furthermore, by substituting liquid water with water-ethylene glycol mixture of 50%, the mass flow of coolant increases by about 32-33% in the inner loop and 60-65% in the outer loop for all ranges of current...

  11. Synthesis and characterization of polystyrene-poly(arylene ether sulfone)-polystyrene triblock copolymer for proton exchange membrane applications.

    Science.gov (United States)

    Yang, Jung-Eun; Hong, Young Talk; Lee, Jae-Suk

    2006-11-01

    The polystyrene-poly(arylene ether sulfone)-polystyrene (PS-PAES-PS) coil-semirod-coil triblock copolymer was synthesized by the condensation reaction of PS-COCI and H2N-PAES-NH2 telechelic polymers. The reaction was facile characterized by high yields with a perfect control over the block lengths. Following a known reaction protocol it was possible to selectively sulfonate the PS block of the triblock copolymer that led to the sulfonated copolymer sPS-PAES-sPS. Studies on its proton conductivity and methanol permeability were carried out to evaluate its use as the proton exchange membrane in direct methanol fuel cells. Proton conductivity of the membranes was increased depending on the sulfonic acid group content in the sulfonated polymer. The membranes exhibited good dimensional and thermal stability, and low methanol permeability compared to Nafion 117.

  12. The applications of 3D-hexagonal mesoporous SiO2 in proton exchange membranes of fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, B.; Tang, H.; Pan, M.; Chen, L.; Liang, C. [Wuhan Univ. of Technology, Wuhan (China). State Key Laboratory of Advanced Technology for Materials Synthesis and Processing

    2010-07-01

    The advantages of 3D hexagonal ordered mesoporous silica include a homogeneous ordered pore, a large surface area, narrow pore size distribution and excellent thermal stability. Hetropolyacids (HPAs) are high conductivity solid proton conductors that can be loaded onto the channel of mesoporous silica as a carrier for the proton exchange membrane of fuel cells. In this study, an ordered 3D hexagonal structure HPW/SiO{sub 2} nano composite materials was prepared using the sol-gel method with a nonionic surfactant (Brij-76) as the template. The HPW/SiO{sub 2} composite was characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and N2 adsorption-desorption. The study showed that the synthesis method can effectively make the HPW disperse uniformly in mesoporous framework, ensuring that the synthesized material has ordered mesoscopic structure. Impedance analysis revealed that the HPW/silica nano-materials have good proton conductivity without humidification at room temperature.

  13. Processes of depositing platinum on carbon nanotubes and their effect on performance of proton exchange membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    Yanhui Li; Jun Ding; Junfeng Chen; Zongqiang Mao; Cailu Xu; Dehai Wu

    2004-01-01

    The ultrafine platinum nanoparticles deposited on the surfaces of carbon nanotubes (Pt/CNTs) were prepared by a chemical precipitation method and used as the catalyst of proton exchange membrane fuel cell. The depositing process parameters such as the solution pH value, Pt content and treatment temperature were analyzed. The experimental results show that the optimum process parameters to prepare Pt/CNTs are the solution pH value of 7.0, the theoretical Pt content of 25% (mass fraction) and the heating temperature of 500℃, under the conditions the best performance of the proton exchange membrane fuel cell can be obtained and its voltage can reach 580 mV at a current density of 500 mA/cm2.

  14. Characterization of creatine guanidinium proton exchange by water-exchange (WEX) spectroscopy for absolute-pH CEST imaging in vitro.

    Science.gov (United States)

    Goerke, Steffen; Zaiss, Moritz; Bachert, Peter

    2014-05-01

    Chemical exchange saturation transfer (CEST) enables indirect detection of small metabolites in tissue by MR imaging. To optimize and interpret creatine-CEST imaging we characterized the dependence of the exchange-rate constant k(sw) of creatine guanidinium protons in aqueous creatine solutions as a function of pH and temperature T in vitro. Model solutions in the low pH range (pH = 5-6.4) were measured by means of water-exchange (WEX)-filtered ¹H NMR spectroscopy on a 3 T whole-body MR tomograph. An extension of the Arrhenius equation with effective base-catalyzed Arrhenius parameters yielded a general expression for k(sw) (pH, T). The defining parameters were identified as the effective base-catalyzed rate constant k(b,eff) (298.15 K) = (3.009 ± 0.16) × 10⁹  Hz l/mol and the effective activation energy E(A,b,eff)  = (32.27 ± 7.43) kJ/mol at a buffer concentration of c(buffer)  = (1/15) M. As expected, a strong dependence of k(sw) on temperature was observed. The extrapolation of the exchange-rate constant to in vivo conditions (pH = 7.1, T = 37 °C) led to the value of the exchange-rate constant k(sw)  = 1499 Hz. With the explicit function k(sw) (pH, T) available, absolute-pH CEST imaging could be realized and experimentally verified in vitro. By means of our calibration method it is possible to adjust the guanidinium proton exchange-rate constant k(sw) to any desired value by preparing creatine model solutions with a specific pH and temperature.

  15. Synthesis and Water Uptake of Sulfonated Poly (phthalazinone ether sulfone ketone)/Polyacrylic Acid Proton Exchange Membranes

    Institute of Scientific and Technical Information of China (English)

    Xue Mei WU; Gao Hong HE; Lin GAO; Shuang GU; Zheng Wen HU; Ping Jing YAO

    2006-01-01

    Novel SPPESK/PAA composite proton exchange membranes with semi-interpenetrating polymer network (sIPN) structure have been synthesized through the in-situ polymerization of acrylic acid (AA) in the presence of sulfonated poly (phthalazinone ether sulfone ketone) (SPPESK). The composite membranes were identified by FT-IR analysis. Water uptake of the composite membranes was as high as 89.7% at 90℃, nearly one time higher than that of the corresponding SPPESK membrane.

  16. Mach-Zehnder Type Annealed Proton Exchange Waveguide and Coplanar Waveguide Modulation Electrode LiNbO3 Intensity Modulator

    Institute of Scientific and Technical Information of China (English)

    HE Jian; ZHU Xue-jun

    2007-01-01

    The characteristics of a conventional LiNbO3 intensity modulator made up of a Mach-Zehnder(MZ) type annealed proton exchange(APE) waveguide and coplanar waveguide(CPW) modulation electrode are presented. The APE waveguide characteristics and their relations with process parameters are analyzed. At the same time, the electrical characteristics of modulation electrode, such as modulation voltage, microwave effective index associated with modulation bandwidth, characteristics impedance, are also investigated in detail.

  17. Analyze of Impedance for Water Management in Proton Exchange Membrane Fuel Cells Using Factorial Design of (DoE) Methodology

    OpenAIRE

    Khaled Mammar; Abdelkader Chaker

    2014-01-01

    Electrochemical impedance spectroscopy (EIS) is a very powerful tool for exploitation as a rich source of Proton Exchange Membrane Fuel Cell (PEMFC) diagnostic information. A primary goal of this work is to develop a suitable PEMFC impedance model, which can be used to analyze flooding and drying of the fuel cell. For this one a novel optimization method based on Factorial Design methodology is used. It was applied to parametric analysis of electrochemical impedance Thus it is pos...

  18. Employing Hot Wire Anemometry to Directly Measure the Water Balance in a Proton Exchange membrane Fuel Cell

    DEFF Research Database (Denmark)

    Shakhshir, Saher Al; Hussain, Nabeel; Berning, Torsten

    2015-01-01

    Water management in proton exchange membrane fuel cells (PEMFC’s) remains a critical problem for their durability, cost, and performance. Because the anode side of this fuel cell has the tendency to become dehydrated, measuring the water balance can be an important diagnosis tool during fuel cell...... can be directly converted into the fuel cell water balance. In this work, experimental ex-situ results are presented and the elegance and usefulness of this method is demonstrated....

  19. Modified nanocrystal cellulose/fluorene-containing sulfonated poly(ether ether ketone ketone) composites for proton exchange membranes

    Science.gov (United States)

    Wei, Yingcong; Shang, Yabei; Ni, Chuangjiang; Zhang, Hanyu; Li, Xiaobai; Liu, Baijun; Men, Yongfeng; Zhang, Mingyao; Hu, Wei

    2017-09-01

    Highly sulfonated poly(ether ether ketone ketone)s (SFPEEKKs) with sulfonation degrees of 2.34 (SFPEEKK5) and 2.48 (SFPEEKK10) were synthesized through the direct sulfonation of a fluorene-containing poly(ether ether ketone ketone) under a relatively mild reaction condition. Using the solution blending method, sulfonated nanocrystal cellulose (sNCC)-enhanced SFPEEKK composites (SFPEEKK/sNCC) were successfully prepared for investigation as proton exchange membranes. Transmission electron microscopy showed that sNCC was uniformly distributed in the composite membranes. The properties of the composite membranes, including thermal stability, mechanical properties, water uptake, swelling ratio, oxidative stability and proton conductivity were thoroughly evaluated. Results indicated that the insertion of sNCC could contribute to water management and improve the mechanical performance of the membranes. Notably, the proton conductivity of SFPEEKK5/sNCC-5 was as high as 0.242 S cm-1 at 80 °C. All data proved the potential of SFPEEKK/sNCC composites for proton exchange membranes in medium-temperature fuel cells.

  20. Nanocomposite membranes based on polybenzimidazole and ZrO2 for high-temperature proton exchange membrane fuel cells.

    Science.gov (United States)

    Nawn, Graeme; Pace, Giuseppe; Lavina, Sandra; Vezzù, Keti; Negro, Enrico; Bertasi, Federico; Polizzi, Stefano; Di Noto, Vito

    2015-04-24

    Owing to the numerous benefits obtained when operating proton exchange membrane fuel cells at elevated temperature (>100 °C), the development of thermally stable proton exchange membranes that demonstrate conductivity under anhydrous conditions remains a significant goal for fuel cell technology. This paper presents composite membranes consisting of poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI4N) impregnated with a ZrO2 nanofiller of varying content (ranging from 0 to 22 wt %). The structure-property relationships of the acid-doped and undoped composite membranes have been studied using thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, wide-angle X-ray scattering, infrared spectroscopy, and broadband electrical spectroscopy. Results indicate that the level of nanofiller has a significant effect on the membrane properties. From 0 to 8 wt %, the acid uptake as well as the thermal and mechanical properties of the membrane increase. As the nanofiller level is increased from 8 to 22 wt % the opposite effect is observed. At 185 °C, the ionic conductivity of [PBI4N(ZrO2 )0.231 ](H3 PO4 )13 is found to be 1.04×10(-1)  S cm(-1) . This renders membranes of this type promising candidates for use in high-temperature proton exchange membrane fuel cells.

  1. Using the water signal to detect invisible exchanging protons in the catalytic triad of a serine protease

    Energy Technology Data Exchange (ETDEWEB)

    Lauzon, Carolyn B.; Zijl, Peter van [Johns Hopkins University School of Medicine, Department of Radiology and Radiological Sciences (United States); Stivers, James T., E-mail: jstivers@jhmi.edu [Johns Hopkins University School of Medicine, Department of Pharmacology and Molecular Sciences (United States)

    2011-08-15

    Chemical Exchange Saturation Transfer (CEST) is an MRI approach that can indirectly detect exchange broadened protons that are invisible in traditional NMR spectra. We modified the CEST pulse sequence for use on high-resolution spectrometers and developed a quantitative approach for measuring exchange rates based upon CEST spectra. This new methodology was applied to the rapidly exchanging H{delta}1 and H{epsilon}2 protons of His57 in the catalytic triad of bovine chymotrypsinogen-A (bCT-A). CEST enabled observation of H{epsilon}2 at neutral pH values, and also allowed measurement of solvent exchange rates for His57-H{delta}1 and His57-H{epsilon}2 across a wide pH range (3-10). H{delta}1 exchange was only dependent upon the charge state of the His57 (k{sub ex,Im+} = 470 s{sup -1}, k{sub ex,Im} = 50 s{sup -1}), while H{epsilon}2 exchange was found to be catalyzed by hydroxide ion and phosphate base (k(OH){sup -} = 1.7 Multiplication-Sign 10{sup 10} M{sup -1} s{sup -1}, K(HPO){sub 4}{sup 2-} = 1.7 Multiplication-Sign 10{sup 6} M{sup -1} s{sup -1}), reflecting its greater exposure to solute catalysts. Concomitant with the disappearance of the H{epsilon}2 signal as the pH was increased above its pK{sub a}, was the appearance of a novel signal ({delta} = 12 ppm), which we assigned to H{gamma} of the nearby Ser195 nucleophile, that is hydrogen bonded to N{epsilon}2 of neutral His57. The chemical shift of H{gamma} is about 7 ppm downfield from a typical hydroxyl proton, suggesting a highly polarized O-H{gamma} bond. The significant alkoxide character of O{gamma} indicates that Ser195 is preactivated for nucleophilic attack before substrate binding. CEST should be generally useful for mechanistic investigations of many enzymes with labile protons involved in active site chemistry.

  2. Polypyrrole layered SPEES/TPA proton exchange membrane for direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Neelakandan, S.; Kanagaraj, P. [PG & Research Department of Chemistry, Polymeric Materials Research Lab, Alagappa Government Arts College, Karaikudi 630003 (India); Sabarathinam, R.M. [Functional Material Division, Central Electrochemical Research Institute, Karaikudi 630006 (India); Nagendran, A., E-mail: nagimmm@yahoo.com [PG & Research Department of Chemistry, Polymeric Materials Research Lab, Alagappa Government Arts College, Karaikudi 630003 (India)

    2015-12-30

    Graphical abstract: - Highlights: • A series of Ppy layered SPEES/TPA composite membranes were prepared. • SPEES/TPA-Ppy hybrid membranes displayed efficient methanol resistance than Nafion 117. • SPEES/TPA-Ppy4 membrane exhibits highest relative selectivity of 2.86 × 104 S cm{sup 3} s. • Increasing Ppy layer on membrane surface reduces the leaching out of tungstophosphoric acid. - Abstract: Hybrid membranes based on sulfonated poly(1,4-phenylene ether ether sulfone) (SPEES)/tungstophosphoric acid (TPA) were prepared. SPEES/TPA membrane surfaces were modified with polypyrrole (Ppy) by in situ polymerization method to reduce the TPA leaching. The morphology and electrochemical property of the surface coated membranes were studied by SEM, AFM, water uptake, ion exchange capacity, proton conductivity, methanol permeability and tensile strength. The water uptake and the swelling ratio of the surface coated membranes decreased with increasing the Ppy layer. The surface roughness of the hybrid membrane was decreased with an increase in Ppy layer on the membrane surface. The methanol permeability of SPEES/TPA-Ppy4 hybrid membrane was significantly suppressed and found to be 2.1 × 10{sup −7} cm{sup 2} s{sup −1}, which is 1.9 times lower than pristine SPEES membrane. The SPEES/TPA-Ppy4 membrane exhibits highest relative selectivity (2.86 × 10{sup 4} S cm{sup −3} s) than the other membrane with low TPA leaching. The tensile strength of hybrid membranes was improved with the introduction of Ppy layer. Combining their lower swelling ratio, high thermal stability and selectivity, SPEES/TPA-Ppy4 membranes could be a promising material as PEM for DMFC applications.

  3. Transient computation fluid dynamics modeling of a single proton exchange membrane fuel cell with serpentine channel

    Science.gov (United States)

    Hu, Guilin; Fan, Jianren

    The proton exchange membrane fuel cell (PEMFC) has become a promising candidate for the power source of electrical vehicles because of its low pollution, low noise and especially fast startup and transient responses at low temperatures. A transient, three-dimensional, non-isothermal and single-phase mathematical model based on computation fluid dynamics has been developed to describe the transient process and the dynamic characteristics of a PEMFC with a serpentine fluid channel. The effects of water phase change and heat transfer, as well as electrochemical kinetics and multicomponent transport on the cell performance are taken into account simultaneously in this comprehensive model. The developed model was employed to simulate a single laboratory-scale PEMFC with an electrode area about 20 cm 2. The dynamic behavior of the characteristic parameters such as reactant concentration, pressure loss, temperature on the membrane surface of cathode side and current density during start-up process were computed and are discussed in detail. Furthermore, transient responses of the fuel cell characteristics during step changes and sinusoidal changes in the stoichiometric flow ratio of the cathode inlet stream, cathode inlet stream humidity and cell voltage are also studied and analyzed and interesting undershoot/overshoot behavior of some variables was found. It was also found that the startup and transient response time of a PEM fuel cell is of the order of a second, which is similar to the simulation results predicted by most models. The result is an important guide for the optimization of PEMFC designs and dynamic operation.

  4. Novel proton exchange membrane fuel cell electrodes to improve performance of reversible fuel cell systems

    Science.gov (United States)

    Brown, Tim Matthew

    Proton exchange membrane (PEM) fuel cells react fuel and oxidant to directly and efficiently produce electrical power, without the need for combustion, heat engines, or motor-generators. Additionally, PEM fuel cell systems emit zero to virtually zero criteria pollutants and have the ability to reduce CO2 emissions due to their efficient operation, including the production or processing of fuel. A reversible fuel cell (RFC) is one particular application for a PEM fuel cell. In this application the fuel cell is coupled with an electrolyzer and a hydrogen storage tank to complete a system that can store and release electrical energy. These devices can be highly tailored to specific energy storage applications, potentially surpassing the performance of current and future secondary battery technology. Like all PEM applications, RFCs currently suffer from performance and cost limitations. One approach to address these limitations is to improve the cathode performance by engineering more optimal catalyst layer geometry as compared to the microscopically random structure traditionally used. Ideal configurations are examined and computer modeling shows promising performance improvements are possible. Several novel manufacturing methods are used to build and test small PEM fuel cells with novel electrodes. Additionally, a complete, dynamic model of an RFC system is constructed and the performance is simulated using both traditional and novel cathode structures. This work concludes that PEM fuel cell microstructures can be tailored to optimize performance based on design operating conditions. Computer modeling results indicate that novel electrode microstructures can improve fuel cell performance, while experimental results show similar performance gains that bolster the theoretical predictions. A dynamic system model predicts that novel PEM fuel cell electrode structures may enable RFC systems to be more competitive with traditional energy storage technology options.

  5. Portable proton exchange membrane fuel-cell systems for outdoor applications

    Science.gov (United States)

    Oszcipok, M.; Zedda, M.; Hesselmann, J.; Huppmann, M.; Wodrich, M.; Junghardt, M.; Hebling, C.

    A hydrogen fuelled, 30 W proton exchange membrane fuel-cell (PEMFC) system is presented that is able to operate at an ambient temperature between -20 and 40 °C. The system, which comprises the fuel-cell stack, pumps, humidifier, valves and blowers is fully characterized in a climatic chamber under various ambient temperatures. Successful cold start-up and stable operation at -20 °C are reported as well as the system behaviour during long-term at 40 °C. A simple thermal model of the stack is developed and validated, and accounts for heat losses by radiation and convection. Condensation of steam is addressed as well as reaction gas depletion. The stack is regarded as a uniform heat source. The electrochemical reaction is not resolved. General design rules for the cold start-up of a portable fuel-cell stack are deduced by the thermal model and are taken into consideration for the design. The model is used for a comparison between active-assisted cold start-up procedures with a passive cold start-up from temperatures below 0 °C. It is found that a passive cold start-up may not be the most efficient strategy. Additionally, the influence of different stack concepts on the start-up behaviour is analysed by the thermal model. Three power classes of PEMFC stacks are compared: a Ballard Mk902 module for automotive applications with 85 kW, the forerunner stack Ballard Mk5 (5 kW) for medium power applications, and the developed OutdoorFC stack (30 W), for portable applications.

  6. Transport phenomena within the porous cathode for a proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juanfang; Oshima, Nobuyuki; Kurihara, Eru; Saha, Litan Kumar [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)

    2010-10-01

    A two-phase, one-dimensional steady model is developed to analyze the coupled phenomena of cathode flooding and mass-transport limiting for the porous cathode electrode of a proton exchange membrane fuel cell. In the model, the catalyst layer is treated not as an interface between the membrane and gas diffusion layer, but as a separate computational domain with finite thickness and pseudo-homogenous structure. Furthermore, the liquid water transport across the porous electrode is driven by the capillary force based on Darcy's law. And the gas transport is driven by the concentration gradient based on Fick's law. Additionally, through Tafel kinetics, the transport processes of gas and liquid water are coupled. From the numerical results, it is found that although the catalyst layer is thin, it is very crucial to better understand and more correctly predict the concurrent phenomena inside the electrode, particularly, the flooding phenomena. More importantly, the saturation jump at the interface of the gas diffusion layer and catalyst layers is captured, when the continuity of the capillary pressure is imposed on the interface. Elsewise, the results show further that the flooding phenomenon in the CL is much more serious than that in the GDL, which has a significant influence on the mass transport of the reactants. Moreover, the saturation level inside the cathode is determined, to a great extent, by the surface overpotential, the absolute permeability of the porous electrode, and the boundary value of saturation at the gas diffusion layer-gas channel interface. In order to prevent effectively flooding, it should remove firstly the liquid water accumulating inside the CL and keep the boundary value of liquid saturation as low as possible. (author)

  7. State-of-the-art in bipolar of proton exchange membrane fuel cell

    Science.gov (United States)

    Wang, Yun; Wang, Jingjing; Yin, Bi-feng; Xu, Zhen-ying; Ding, Sheng

    2010-10-01

    Proton exchange membrane fuel cell (PEMFC) has been the research focus because of the characteristics of compact structure, low-temperature starting, high specific energy density and power, environmental protection, prolonged service time. The bipolar plate in PEMFC has the function of isolating and uniformly distributing reactants, removing reaction products, collecting and inducing current, providing mechanical support for the cells in the stack collects, etc. The bipolar plate, which influences not only the cell stack performance but also the stack cost, is a vital component of PEMFC that is the choke point of industrialization. Compared with the conventional graphite bipolar plate, the metallic bipolar plate has the advantages of excellent electrical and thermal conductivity, high mechanical strength and power density, no leakage and good workability. Furthermore, the metal plate is especially suitable for production in mass. Therefore, metallic bipolar plate is considered to be a promising alternative for PEMFC bipolar. A review of the research work involves the material selection and processing of bipolar plate, flow-field type and the corresponding design, the forming methods of metallic bipolar plates. The materials of bipolar plate for PEMFC are focused on graphite, metal or alloy, and all kinds of composite materials. The disadvantages and advantages of these materials are compared. The flow channels of bipolar include dot-type, web-type, serpentine-type and the interdigital shape. Among them, serpentine-type flow channel plates are mentioned in detail. In this paper, we introduced the forming methods of metallic bipolar plates such as the electrochemical micro-fabrication, electroforming, thermoforming, micro-stamping and micro-milling. Finally, it points out that the prospective research about the PEMFC is minimization and industrialization.

  8. Hygrothermal characterization of the viscoelastic properties of Gore-Select® 57 proton exchange membrane

    Science.gov (United States)

    Patankar, Kshitish A.; Dillard, David A.; Case, Scott W.; Ellis, Michael W.; Lai, Yeh-Hung; Budinski, Michael K.; Gittleman, Craig S.

    2008-09-01

    When a proton exchange membrane (PEM) based fuel cell is placed in service, hygrothermal stresses develop within the membrane and vary widely with internal operating environment. These hygrothermal stresses associated with hygral contraction and expansion at the operating conditions are believed to be critical in membrane mechanical integrity and durability. Understanding and accurately modeling the viscoelastic constitutive properties of a PEM is important for making hygrothermal stress predictions in the cyclic temperature and humidity environment of operating fuel cells. The tensile stress relaxation moduli of a commercially available PEM, Gore-Select® 57, were obtained over a range of humidities and temperatures. These tests were performed using TA Instruments 2980 and Q800 dynamic mechanical analyzers (DMA), which are capable of applying specified tensile loading conditions on small membrane samples at a given temperature. A special humidity chamber was built in the form of a cup that encloses tension clamps of the DMA. The chamber was inserted in the heating furnace of the DMA and connected to a gas humidification unit by means of plastic tubing through a slot in the chamber. Stress relaxation data over a temperature range of 40 90°C and relative humidity range of 30 90% were obtained. Thermal and hygral master curves were constructed using thermal and hygral shift factors and were used to form a hygrothermal master curve using the time temperature moisture superposition principle. The master curve was also constructed independently using just one shift factor. The hygrothermal master curve was fitted with a 10-term Prony series for use in finite element software. The hygrothermal master curve was then validated using longer term tests. The relaxation modulus from longer term data matches well with the hygrothermal master curve. The long term test showed a plateau at longer times, suggesting an equilibrium modulus.

  9. Efficient C-N bond formations catalyzed by a proton-exchanged montmorillonite as a heterogeneous Brønsted acid.

    Science.gov (United States)

    Motokura, Ken; Nakagiri, Nobuaki; Mori, Kohsuke; Mizugaki, Tomoo; Ebitani, Kohki; Jitsukawa, Koichiro; Kaneda, Kiyotomi

    2006-09-28

    Nucleophilic addition of sulfonamides and carboxamides to simple alkenes proceeded smoothly using a proton-exchanged montmorillonite catalyst. The spent catalyst was recovered easily from the reaction mixture and was reusable at least five times without any loss of activity. The unique acidity of the proton-exchanged montmorillonite (H-mont) catalyst was found to be applicable to additional reactions: substitution of hydroxyl groups of alcohols with amides and anilines.

  10. Theoretical study of annealed proton-exchanged Nd $LiNbO_{3}$ channel waveguide lasers with variational method

    CERN Document Server

    De Long Zhang; Yuan Guo Xie; Guilan, Ding; Yuming, Cui; Cai He Chen

    2001-01-01

    The controllable fabrication parameters, including anneal time, initial exchange time, channel width, dependences of TM/sub 00/ mode size, corresponding effective refractive index, effective pump area, and coupling efficiency between pump and laser modes in z-cut annealed proton-exchanged (APE) Nd:LiNbO/sub 3/ channel waveguide lasers were studied by using variational method. The effect of channel width on the surface index increment and the waveguide depth was taken into account. The features of mode size and effective refractive index were summarized, discussed, and compared with previously published experimental results. The effective pump area, which is directly proportional to threshold pump power, increases strongly, slightly, and very slightly with the increase of anneal time, channel width, and initial exchange time, respectively. However, the coupling efficiency, which is directly proportional to slope efficiency, remains constant (around 0.82) no matter what changes made to these parameters. The var...

  11. 高温质子交换膜研究进展%Research progress in high temperature proton exchange membranes

    Institute of Scientific and Technical Information of China (English)

    吴魁; 解东来

    2012-01-01

    High temperature proton exchange membrane fuel cell(PEMFC) is a solution to the most important issues which exist in the operation of traditional PEMFC,including CO poisoning and complexity in water and heat management,thus becomes the main focus in fuel cell development.High temperature proton exchange membrane(HT-PEM)is the key component for high temperature operation.The present state-of-art of HT-PEMs is analyzed,including polymers with water as proton solvents,anhydrous membranes and solid-state protonic conductors,with the consideration of the proton conducting mechanism in the membranes.Inorganic/organic composite membranes and anhydrous membranes(especially phosphoric acid doped polybenzimidazole(PBI) membranes) are regarded as the future focus of HT-PEMs development.%高温质子交换膜燃料电池解决了传统质子交换膜燃料电池催化剂易受CO等杂质气体毒化、水热管理复杂等问题,成为当今燃料电池发展的主要方向。高温质子交换膜是实现高温操作的关键部分。本文结合质子传递机理,分析了以水作为质子溶剂、非水质子溶剂质子交换膜以及无机固态质子导体膜的研究现状,认为有机/无机复合膜和非水质子溶剂膜,尤其是其中的磷酸掺杂的PBI膜是高温质子交换膜的发展方向。

  12. Hydroxyl pyridine containing polybenzimidazole membranes for proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Xu, Yixin; Zhou, Lu

    2013-01-01

    , but also benefited the proton conduction, which was proved by the results of acid conductivities of the membranes with comparable acid doping levels. At an acid doping level of 8.6, i.e. 8.6mol acids per molar repeat unit of the polymer, the OHPyPBI membrane exhibited a proton conductivity of 0.102Scm-1...

  13. Daily Social Exchanges and Affect in Middle and Later Adulthood: The Impact of Loneliness and Age

    Science.gov (United States)

    Russell, Alissa; Bergeman, C. S.; Scott, Stacey B.

    2012-01-01

    Although daily social exchanges are important for well-being, it is unclear how different types of exchanges affect daily well-being, as well as which factors influence the way in which individuals react to their daily social encounters. The present study included a sample of 705 adults aged 31 to 91, and using Multilevel Modeling analyses…

  14. Contribution at thermal and fluidic characterization for a proton exchange membrane fuel cell (PEMFC); Contribution a la caracterisation thermique et fluidique d'une pile a combustible a membrane echangeuse de protons (PEMFC)

    Energy Technology Data Exchange (ETDEWEB)

    Dumercy, L.

    2004-10-01

    The aim of this thesis is the thermal and fluidic model of a proton exchange membrane fuel cell. The management of the internal temperature of the fuel cell affect performance, in one hand directly on the electrochemical reaction, in the other hand by determination of their internal characteristics (hydratation of the membrane, diffusion resistance in the porous area). The modeling is made between two axis. At first, the thermal behavior is taken into account in the global form. The fuel cell is studied as a whole with a thermal resistance network and heat sources (heat supply by electrochemical reaction, exchanges with fluids). Dirichlet boundary conditions have been used to force surface temperatures. The meshing of the network is shrink for modeling the central cell. Specific boundary conditions are applied at this cell for quantify interference of neighboring cells. The studied cell can be used, in this case, on many situations: adiabatic, in serial or with a external flux. In addition, anode and cathode channel have been studied with a specific model, based on the counting by finite differences of a differential equations system. Taking into account the most important physical and thermophysical quantities (pressures, flow rates, water and heat exchange coefficients), it couples internal quantities off the channel and thermal state of the overall system. The studies of the phase change of water in the channel, his transfer between the anode and the cathode and his influence on the thermal balance are studied. (author)

  15. THE USE OF CHLOROSULFONIC ACID ON SULFONATION OF cPTFE FILM GRAFTED STYRENE FOR PROTON EXCHANGE MEMBRANE

    Directory of Open Access Journals (Sweden)

    Yohan Yohan

    2010-06-01

    Full Text Available Sulfonation of g-ray iradiated and styrene-grafted crosslinked polytetrafluoro ethylene film (cPTFE-g-S film have been done. The aim of the research was to make hydrophyl membrane as proton exchange membrane fuel cell. Sulfonation was prepared by using chlorosulfonic acid in chloroethane under various conditions. The impact of the percentage of grafting, the concentration of chlorosulfonic acid, the reaction time,and the reaction temperature on the properties of sulfonated film were examined. The results show that sulfonation of surface-grafted films was incomplete at room temperature. Increasing concentration of chlorosulfonic acid and reaction temperature accelerate the reaction but they also favor side reactions. These lead to the decrease of the ion-exchange capacity, water uptake, and proton conductivity but the increase of the resistance to oxidation in a perhydrol solution. The resulted cPTFE-g-SS membraneis stabile in a H2O2 30% solution for 20 h.   Keywords: Chorosulfonic acid, sulfonation, PTFE film, proton excange membrane.

  16. Synthesis and properties of reprocessable sulfonated polyimides cross-linked via acid stimulation for use as proton exchange membranes

    Science.gov (United States)

    Zhang, Boping; Ni, Jiangpeng; Xiang, Xiongzhi; Wang, Lei; Chen, Yongming

    2017-01-01

    Cross-linked sulfonated polyimides are one of the most promising materials for proton exchange membrane (PEM) applications. However, these cross-linked membranes are difficult to reprocess because they are insoluble. In this study, a series of cross-linkable sulfonated polyimides with flexible pendant alkyl side chains containing trimethoxysilyl groups is successfully synthesized. The cross-linkable polymers are highly soluble in common solvents and can be used to prepare tough and smooth films. Before the cross-linking reaction is complete, the membranes can be reprocessed, and the recovery rate of the prepared films falls within an acceptable range. The cross-linked membranes are obtained rapidly when the cross-linkable membranes are immersed in an acid solution, yielding a cross-linking density of the gel fraction of greater than 90%. The cross-linked membranes exhibit high proton conductivities and tensile strengths under hydrous conditions. Compared with those of pristine membranes, the oxidative and hydrolytic stabilities of the cross-linked membranes are significantly higher. The CSPI-70 membrane shows considerable power density in a direct methanol fuel cell (DMFC) test. All of these results suggest that the prepared cross-linked membranes have great potential for applications in proton exchange membrane fuel cells.

  17. Identification of hydroxyl protons, determination of their exchange dynamics, and characterization of hydrogen bonding in a microcrystallin protein.

    Science.gov (United States)

    Agarwal, Vipin; Linser, Rasmus; Fink, Uwe; Faelber, Katja; Reif, Bernd

    2010-03-10

    Heteronuclear correlation experiments employing perdeuterated proteins enable the observation of all hydroxyl protons in a microcrystalline protein by MAS solid-state NMR. Dipolar-based sequences allow magnetization transfers that are >50 times faster compared to scalar-coupling-based sequences, which significantly facilitates their assignment. Hydroxyl exchange rates were measured using EXSY-type experiments. We find a biexponential decay behavior for those hydroxyl groups that are involved in side chain-side chain C-O-H...O horizontal lineC hydrogen bonds. The quantification of the distances between the hydroxyl proton and the carbon atoms in the hydrogen-bonding donor as well as acceptor group is achieved via a REDOR experiment. In combination with X-ray data and isotropic proton chemical shifts, availability of (1)H,(13)C distance information can aid in the quantitative description of the geometry of these hydrogen bonds. Similarly, correlations between backbone amide proton and carbonyl atoms are observed, which will be useful in the analysis of the registry of beta-strand arrangement in amyloid fibrils.

  18. Study of polyaniline doped with trifluoromethane sulfonic acid in gas-diffusion electrodes for proton-exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Gharibi, Hussein; Zhiani, Mohammad; Kheirmand, Mehdi; Kakaei, Karim [Department of Physical Chemistry, Faculty of Science, Tarbiat Modarres University, P.O. Box 14115-175, Tehran (Iran); Entezami, Ali Akbar [Faculty of Chemistry, Tabriz University, Tabriz (Iran); Mirzaie, Rasol Abdullah [Department of Chemistry, Faculty of Science, Shahid Rajaee University, Tehran (Iran)

    2006-04-21

    Polytetrafluoroethylene (PTFE)-bonded gas-diffusion electrodes (GDEs), modified with polyaniline as an electron and proton conductor in the catalyst layer, are prepared and evaluated for use in proton-exchange membrane fuel cells (PEMFCs). Polyaniline is coated on the GDE by electropolymerization of aniline and trifluoromethane sulfonic acid as the proton-conductive monomer. The electrodes are characterized by cyclic voltammetry, current-potential measurements, electrochemical impedance spectroscopy, and chronoamperometry. The polyaniline is found to be homogenously dispersed in the catalyst layer, making it a good candidate proton and electron conductor. Use of polyaniline instead of Nafion in the catalyst layer, increases the utility of the electrocatalyst by 18%. The results are consistent with the presence of polyaniline as a conductive polymer in the reaction layer reducing the polarization resistance of the electrode in comparison with that of a corresponding electrode containing Nafion. Thus, the present results indicate that PEMFCs using polyaniline-containing electrocatalysts should give superior performance to those using catalysts containing traditional ionomers. (author)

  19. Improved measurement of labile proton concentration-weighted chemical exchange rate (kws) with experimental factor-compensated and T1-normalized quantitative chemical exchange saturation transfer (CEST) MRI

    Science.gov (United States)

    Wu, Renhua; Liu, Charng-Ming; Liu, Philip K; Sun, Phillip Zhe

    2012-01-01

    Chemical exchange saturation transfer (CEST) MRI enables measurement of dilute CEST agents and microenvironment properties such as pH and temperature, holding great promise for in vivo applications. However, because of confounding concomitant RF irradiation and relaxation effects, the CEST-weighted MRI contrast may not fully characterize the underlying CEST phenomenon. We postulated that the accuracy of quantitative CEST MRI could be improved if the experimental factors (labeling efficiency and RF spillover effect) were estimated and taken into account. Specifically, the experimental factor was evaluated as a function of exchange rate and CEST agent concentration ratio, which remained relatively constant for intermediate RF irradiation power levels. Hence, the experimental factors can be calculated based on the reasonably estimated exchange rate and labile proton concentration ratio, which significantly improved quantification. The simulation was confirmed with Creatine phantoms of serially varied concentration titrated to the same pH, whose reverse exchange rate (kws) was found to be linearly correlated with the concentration. In summary, the proposed solution provides simplified yet reasonably accurate quantification of the underlying CEST system, which may help guide the ongoing development of quantitative CEST MRI. PMID:22649044

  20. Effective proton conductivity of catalyst layers in proton exchange membrane fuel cells%质子交换膜燃料电池催化层的有效质子电导率

    Institute of Scientific and Technical Information of China (English)

    杜春雨; 史鹏飞; 程新群; 尹鸽平

    2005-01-01

    A numerical model was presented to predict the specific proton conductivity of the catalyst layer in Proton Exchange Membrane Fuel Cells (PEMFC). This model was derived from the random packed spheres with simple cubic, body-centered cubic and face-centered cubic structures. The effects of sphe reradius rs, bulk proton conductivity kb, contact parameter γ and contact angle a on proton transfer within a homogeneous agglomerate sphere consisting of carbon-supported catalyst and electrolyte were analyzed. A correlation equation of specific proton conductivity was obtained by data fitting. The real effective proton conductivity in the catalyst layer was measured by addition to a standard Membrane Electrolyte Assembly of an inactive composite layer in the electrolyte path between the anode and cathode. The model was validated by good agreement between calculations and measured data.

  1. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Oei, D.; Adams, J.A.; Kinnelly, A.A. [and others

    1997-07-01

    In partial fulfillment of the U.S. Department of Energy Contract No. DE-ACO2-94CE50389, {open_quotes}Direct Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell System for Transportation Applications{close_quotes}, this conceptual vehicle design report addresses the design and packaging of battery augmented fuel cell powertrain vehicles. This report supplements the {open_quotes}Conceptual Vehicle Design Report - Pure Fuel Cell Powertrain Vehicle{close_quotes} and includes a cost study of the fuel cell power system. The three classes of vehicles considered in this design and packaging exercise are the same vehicle classes that were studied in the previous report: the Aspire, representing the small vehicle class; the AIV (Aluminum Intensive Vehicle) Sable, representing the mid-size vehicle; and the E-150 Econoline, representing the van-size class. A preliminary PEM fuel cell power system manufacturing cost study is also presented. As in the case of the previous report concerning the {open_quotes}Pure Fuel Cell Powertrain Vehicle{close_quotes}, the same assumptions are made for the fuel cell power system. These assumptions are fuel cell system power densities of 0.33 kW/ka and 0.33 kW/l, platinum catalyst loading of less than or equal to 0.25 mg/cm{sup 2} total, and hydrogen tanks containing compressed gaseous hydrogen under 340 atm (5000 psia) pressure. The batteries considered for power augmentation of the fuel cell vehicle are based on the Ford Hybrid Electric Vehicle (HEV) program. These are state-of-the-art high power lead acid batteries with power densities ranging from 0.8 kW/kg to 2 kW/kg. The results reported here show that battery augmentation provides the fuel cell vehicle with a power source to meet instant high power demand for acceleration and start-up. Based on the assumptions made in this report, the packaging of the battery augmented fuel cell vehicle appears to be as feasible as the packaging of the pure fuel cell powered vehicle.

  2. Oxidation-resistant catalyst supports for proton exchange membrane fuel cells

    Science.gov (United States)

    Chhina, Harmeet

    In automotive applications, when proton exchange membrane fuel cells (PEMFCs) are subjected to frequent startup-shutdown cycles, a significant drop in performance is observed. One reason for this drop in performance is oxidation of the carbon in the catalyst layer when cathode potential excursions as high as 1.5V are observed. In this work, non-carbon based catalyst support materials were studied. The materials investigated include: tungsten carbide (WC), tungsten oxide (WOx), and niobium (Nb) or tungsten (W) doped titania. Platinum was dispersed on commercial samples of WC and WO x. Stability tests were performed by stepping the materials between 0.6 to 1.8V. Higher stability of both WC and WOx was observed compared to carbon based commercial catalyst (HiSpec 4000). The performance of Pt supported on WC or WOx was found to be lower than that of Pt/C due to poor dispersion of Pt on these low surface area commercial powders. High surface area Nb and W doped titania materials synthesized using sol-gel techniques were subjected to several heat treatments and atmospheres, and their resulting physical properties characterized. The materials' phase changes and their impact on electrical conductivity were evaluated. W doped titania was found to be resistive, and for Nb doped titania, the rutile phase was found to be more conductive than the anatase phase. Conventionally, 10-50 wt% Pt is supported on carbon, but as the non-carbon catalyst support materials have different densities, similar mass ratios of catalyst to support will not result in directly comparable performances. It is recommended that the ratio of Pt surface area to the support surface area should be similar when comparing Pt supported on carbon to Pt supported on a non-carbon support. A normalization approach was investigated in this work, and the ORR performance of 40wt.%Pt/C was found to be similar to that of 10wt.%Pt/Nb-TiO2. Fuel cell performance tests showed significantly higher stability of Pt on Nb

  3. Design and Development of Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cell

    Science.gov (United States)

    Kasat, Harshal Anil

    This work aimed to characterize and optimize the variables that influence the Gas Diffusion Layer (GDL) preparation using design of experiment (DOE) approach. In the process of GDL preparation, the quantity of carbon support and Teflon were found to have significant influence on the Proton Exchange Membrane Fuel Cell (PEMFC). Characterization methods like surface roughness, wetting characteristics, microstructure surface morphology, pore size distribution, thermal conductivity of GDLs were examined using laser interferometer, Goniometer, SEM, porosimetry and thermal conductivity analyzer respectively. The GDLs were evaluated in single cell PEMFC under various operating conditions of temperature and relative humidity (RH) using air as oxidant. Electrodes were prepared with different PUREBLACKRTM and poly-tetrafluoroethylene (PTFE) content in the diffusion layer and maintaining catalytic layer with a Pt-loading (0.4 mg cm-2). In the study, a 73.16 wt.% level of PB and 34 wt.% level of PTFE was the optimal compositions for GDL at 70°C for 70% RH under air atmosphere. For most electrochemical processes the oxygen reduction is very vita reaction. Pt loading in the electrocatalyst contributes towards the total cost of electrochemical devices. Reducing the Pt loading in electrocatalysts with high efficiency is important for the development of fuel cell technologies. To this end, this thesis work reports the approach to lower down the Pt loading in electrocatalyst based on N-doped carbon nanotubes derived from Zeolitic Imidazolate Frameworks (ZIF-67) for oxygen reduction. This electrocatalyst perform with higher electrocatalytic activity and stability for oxygen reduction in fuel cell testing. The electrochemical properties are mainly due to the synergistic effect from N-doped carbon nanotubes derived from ZIF and Pt loading. The strategy with low Pt loading forecasts in emerging highly active and less expensive electrocatalysts in electrochemical energy devices. This

  4. Modeling and simulation of the dynamic behavior of portable proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, C.

    2005-07-01

    In order to analyze the operational behavior, a mathematical model of planar self-breathing fuel cells is developed and validated in Chapter 3 of this thesis. The multicomponent transport of the species is considered as well as the couplings between the transport processes of heat, charge, and mass and the electrochemical reactions. Furthermore, to explain the oxygen mass transport limitation in the porous electrode of the cathode side an agglomerate model for the oxygen reduction reaction is developed. In Chapter 4 the important issue of liquid water generation and transport in PEMFCs is addressed. One of the major tasks when operating this type of fuel cell is avoiding the complete flooding of the PEMFC during operation. A one-dimensional and isothermal model is developed that is based on a coupled system of partial differential equations. The model contains a dynamic and two-phase description of the proton exchange membrane fuel cell. The mass transport in the gas phase and in the liquid phase is considered as well as the phase transition between liquid water and water vapor. The transport of charges and the electrochemical reactions are part of the model. Flooding effects that are caused by liquid water accumulation are described by this model. Moreover, the model contains a time-dependent description of the membrane that accounts for Schroeder's paradox. The model is applied to simulate cyclic voltammograms. Chapter 5 is focused on the dynamic investigation of PEMFC stacks. Understanding the dynamic behavior of fuel cell stacks is important for the operation and control of fuel cell stacks. Using the single cell model of Chapter 3 and the dynamic model of Chapter 4 as basis, a mathematical model of a PEMFC stack is developed. However, due to the complexity of a fuel cell stack, the spatial resolution and dynamic description of the liquid water transport are not accounted for. These restrictions allow for direct comparison between the solution variables of

  5. Proton exchange nanocomposite membranes based on 3-glycidoxypropyltrimethoxysilane, silicotungstic acid and {alpha}-zirconium phosphate hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong-il; Nagai, Masayuki [Advanced Research Center for Energy and Environment, Musashi Institute of Technology, 1-28-1 Tamazutsumi, Tokyo 158-8557 Setagaya (Japan)

    2001-12-01

    Novel fast proton-conducting GPTS-STA-SiO{sub 2} and GPTS-STA-ZrP composites were successfully fabricated. The polymer matrix obtained through hydrolysis and condensation reaction of 3-glycidoxypropyltrimethoxysilane (GPTS) showed apparent proton conduction at high relative humidity with conductivity from 1.0x10{sup -7} to 3.6x10{sup -6} S/cm, although no proton donor was incorporated. The proton conductivities of the fabricated composites were high, and increased up to 1.9x10{sup -2} S/cm by addition of silicotungstic acid (STA). By incorporating {alpha}-zirconium phosphate (ZrP) into the GPTS-STA polymer matrix, the composite showed increased conductivity at low temperature (80C), indicating weak dependence on humidity by molecular water in ZrP. The high proton conductivity of the composites is due to the proton conducting path through the GPTS-derived 'pseudo-polyethylene oxide (pseudo-PEO)' networks, which also contains a trapped solid acid (silicotungstic acid) as a proton donor.

  6. Electrocatalytic reduction of acetone in a proton-exchange-membrane reactor: a model reaction for the electrocatalytic reduction of biomass.

    Science.gov (United States)

    Green, Sara K; Tompsett, Geoffrey A; Kim, Hyung Ju; Bae Kim, Won; Huber, George W

    2012-12-01

    Acetone was electrocatalytically reduced to isopropanol in a proton-exchange-membrane (PEM) reactor on an unsupported platinum cathode. Protons needed for the reduction were produced on the unsupported Pt-Ru anode from either hydrogen gas or electrolysis of water. The current efficiency (the ratio of current contributing to the desired chemical reaction to the overall current) and reaction rate for acetone conversion increased with increasing temperature or applied voltage for the electrocatalytic acetone/water system. The reaction rate and current efficiency went through a maximum with respect to acetone concentration. The reaction rate for acetone conversion increased with increasing temperature for the electrocatalytic acetone/hydrogen system. Increasing the applied voltage for the electrocatalytic acetone/hydrogen system decreased the current efficiency due to production of hydrogen gas. Results from this study demonstrate the commercial feasibility of using PEM reactors to electrocatalytically reduce biomass-derived oxygenates into renewable fuels and chemicals.

  7. Platinum catalysts recovery of the proton exchange membrane fuel cell; Recuperacao de catalisadores de platina da celula a combustibel de membrana polimerica trocadora de protons

    Energy Technology Data Exchange (ETDEWEB)

    Fukurozaki, S.H.; Seo, E.S.M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencia e Tecnologia de Materiais. Lab. de Processamento de Residuos

    2006-07-01

    Currently, platinum is the most feasible catalyst for the Proton Exchange Membrane Fuel Cells - PEMFC. Along with platinum's significant importance in this energy system are the high cost of this noble metal and its detrimental effects on the environment. Therefore, recycling this material seems as an alternative to decrease its impacts on the environment and, at the same time, to provide a reduction of the system's costs. A search was conducted for literature and studies about platinum recycling methods. However, only two techniques of platinum recovery, which are still in development, were found. In face of this situation, a recovery method of platinum from deactivated Membrane Electrode Assembly - MEA's was developed, with attention to aspects related to the environment and the necessary requirements for its primary recycling. The results found showed a high recovery ratio and a possibility to reintroduce this metal into the production cycle. (author)

  8. 14N NQR and proton NMR study of ferroelectric phase transition and proton exchange in organic ferroelectric (H2-TPPZ)(Hca)2.

    Science.gov (United States)

    Seliger, Janez; Zagar, Veselko; Asaji, Tetsuo; Hasegawa, Yumi

    2010-04-07

    The complete (14)N nuclear quadrupole resonance spectrum has been measured in ferroelectric (H(2)-TPPZ)(Hca)(2) using nuclear quadrupole double resonance. The quadrupole coupling tensors are assigned to various nitrogen positions in the crystal structure. Two types of asymmetric N-H(+)...N hydrogen bonds are observed in the ferroelectric phase. A slow dynamics influencing the (14)N NQR spectrum and relaxation has been observed in the paraelectric phase. The analysis of the (14)N NQR spectra in the paraelectric phase shows that above T(c) each hydrogen bond exchanges between the two types observed in the ferroelectric phase. The change of the type of hydrogen bond is associated with the transfer of protons within the bond.

  9. Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tantalate reverse proton exchanged waveguide

    CERN Document Server

    Lobino, M; Xiong, C; Clark, A S; Bonneau, D; Natarajan, C M; Tanner, M G; Hadfield, R H; Dorenbos, S N; Zijlstra, T; Zwiller, V; Marangoni, M; Ramponi, R; Thompson, M G; Eggleton, B J; O'Brien, J L

    2011-01-01

    We demonstrate photon-pair generation in a reverse proton exchanged waveguide fabricated on a periodically poled magnesium doped stoichiometric lithium tantalate substrate. Detected pairs are generated via a cascaded second order nonlinear process where a pump laser at wavelength of 1.55 $\\mu$m is first doubled in frequency by second harmonic generation and subsequently downconverted around the same spectral region. Pairs are detected at a rate of 42 per second with a coincidence to accidental ratio of 0.7. This cascaded pair generation process is similar to four-wave-mixing where two pump photons annihilate and create a correlated photon pair.

  10. The Investigation and Development of Low Cost Hardware Components for Proton-Exchange Membrane Fuel Cells - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    George A. Marchetti

    1999-12-15

    Proton exchange membrane (PEM) fuel cell components, which would have a low-cost structure in mass production, were fabricated and tested. A fuel cell electrode structure, comprising a thin layer of graphite (50 microns) and a front-loaded platinum catalyst layer (600 angstroms), was shown to produce significant power densities. In addition, a PEM bipolar plate, comprising flexible graphite, carbon cloth flow-fields and an integrated polymer gasket, was fabricated. Power densities of a two-cell unit using this inexpensive bipolar plate architecture were shown to be comparable to state-of-the-art bipolar plates.

  11. UV-visible spectroscopy method for screening the chemical stability of potential antioxidants for proton exchange membrane fuel cells

    Science.gov (United States)

    Banham, Dustin; Ye, Siyu; Knights, Shanna; Stewart, S. Michael; Wilson, Mahlon; Garzon, Fernando

    2015-05-01

    A novel method based on UV-visible spectroscopy is reported for screening the chemical stability of potential antioxidant additives for proton exchange membrane fuel cells, and the chemical stabilities of three CeOx samples of varying crystallite sizes (6, 13, or 25 nm) are examined. The chemical stabilities predicted by this new screening method are compared to in-situ membrane electrode assembly (MEA) accelerated stress testing, with the results confirming that this rapid and inexpensive method can be used to accurately predict performance impacts of antioxidants.

  12. Controlling fuel crossover and hydration in ultrathin proton exchange membrane-based fuel cells using Pt-nanosheet catalysts

    DEFF Research Database (Denmark)

    Wang, Rujie; Zhang, Wenjing (Angela); He, Gaohong

    2014-01-01

    An ultra-thin proton exchange membrane with Pt-nanosheet catalysts was designed for a self-humidifying fuel cell running on H2 and O2. In this design, an ultra-thin Nafion membrane was used to reduce ohmic resistance. Pt nanocatalysts were uniformly anchored on exfoliated, layered double hydroxide...... (LDH) nanosheets by chemical vapor deposition. After embedding Pt-LDH nanocatalysts in 9 mm-thick Nafion membranes, exfoliated LDH nanosheets effectively captured crossovered H2 and O2 through the membranes. Meanwhile, Pt nanocatalysts on LDH nanosheets catalyzed reactions between captured H2 and O2...

  13. Optimization of multi-function integrated optics chip fabricated by proton exchange in LiNbO3

    Science.gov (United States)

    Kostritskii, S. M.; Korkishko, Yu. N.; Fedorov, V. A.

    2013-11-01

    Multi-function integrated optics chips consisting of a linear polarizer, phase electro-optic modulators and Y-branching power divider were fabricated in x-cut LiNbO3 wafers with the aid of annealed proton exchange technique. Insertion losses, power transfer coefficient, splitting ratio and its spectral dependence were measured for Y-branching power dividers of different branching topologies based on channel waveguides. The parasitic spectral selectivity and photorefractive damage were suppressed by optimization of branching topology, introducing an extra taper with variable parameters.

  14. The Effect of Inhomogeneous Compression on Water Transport in the Cathode of a Proton Exchange Membrane Fuel Cell

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Berning, Torsten; Kær, Søren Knudsen

    2012-01-01

    A three-dimensional, multicomponent, two-fluid model developed in the commercial CFD package CFX 13 (ANSYS Inc.) is used to investigate the effect of porous media compression on water transport in a proton exchange membrane fuel cell (PEMFC). The PEMFC model only consist of the cathode channel, gas...... diffusion layer, microporous layer, and catalyst layer, excluding the membrane and anode. In the porous media liquid water transport is described by the capillary pressure gradient, momentum loss via the Darcy-Forchheimer equation, and mass transfer between phases by a nonequilibrium phase change model...

  15. Analyze of Impedance for Water Management in Proton Exchange Membrane Fuel Cells Using Factorial Design of (DoE Methodology

    Directory of Open Access Journals (Sweden)

    Khaled Mammar

    2014-12-01

    Full Text Available Electrochemical impedance spectroscopy (EIS is a very powerful tool for exploitation as a rich source of Proton Exchange Membrane Fuel Cell (PEMFC diagnostic information. A primary goal of this work is to develop a suitable PEMFC impedance model, which can be used to analyze flooding and drying of the fuel cell. For this one a novel optimization method based on Factorial Design methodology is used. It was applied to parametric analysis of electrochemical impedance Thus it is possible to evaluate the relative importance of each parameter to the simulation accuracy. Furthermore this work presents an analysis of the PEMFC impedance behavior in the case of flooding and drying.

  16. Second-order optical nonlinearities in dilute melt proton exchange waveguides in z-cut LiNbO3

    DEFF Research Database (Denmark)

    Veng, Torben Erik; Skettrup, Torben; Pedersen, Kjeld

    1996-01-01

    Planar optical waveguides with different refractive indices are made in z-cut LiNbO3 with a dilute proton exchange method using a system of glycerol containing KHSO4 and lithium benzoate. The optical second-order susceptibilities of these waveguides are measured by detecting the 266 nm reflected...... second-harmonic signal generated by a 532 nm beam directed onto the waveguide surface. It is found for this kind of waveguides that in the waveguide region all the second-order susceptibilities take values of at least 90% of the original LiNbO; values for refractive index changes less than similar to 0...

  17. Presolvated Electron Reactions with Methyl Acetoacetate: Electron Localization, Proton-Deuteron Exchange, and H-Atom Abstraction

    Directory of Open Access Journals (Sweden)

    Alex Petrovici

    2014-09-01

    Full Text Available Radiation-produced electrons initiate various reaction processes that are important to radiation damage to biomolecules. In this work, the site of attachment of the prehydrated electrons with methyl acetoacetate (MAA, CH3-CO-CH2-COOCH3 at 77 K and subsequent reactions of the anion radical (CH3-CO•−-CH2-COOCH3 in the 77 to ca. 170 K temperature range have been investigated in homogeneous H2O and D2O aqueous glasses by electron spin resonance (ESR spectroscopy. At 77 K, the prehydrated electron attaches to MAA forming the anion radical in which the electron is delocalized over the two carbonyl groups. This species readily protonates to produce the protonated electron adduct radical CH3-C(•OH-CH2-COOCH3. The ESR spectrum of CH3-C(•OH-CH2-COOCH3 in H2O shows line components due to proton hyperfine couplings of the methyl and methylene groups. Whereas, the ESR spectrum of CH3-C(•OH-CH2-COOCH3 in D2O glass shows only the line components due to proton hyperfine couplings of CH3 group. This is expected since the methylene protons in MAA are readily exchangeable in D2O. On stepwise annealing to higher temperatures (ca. 150 to 170 K, CH3-C(•OH-CH2-COOCH3 undergoes bimolecular H-atom abstraction from MAA to form the more stable radical, CH3-CO-CH•-COOCH3. Theoretical calculations using density functional theory (DFT support the radical assignments.

  18. Spin Dependence in Neutron-Proton Charge Exchange at 790 MeV

    Science.gov (United States)

    Ransome, R. D.; Hollas, C. L.; Riley, P. J.; Bonner, B. E.; Gibbs, W. R.; McNaughton, M. W.; Simmons, J. E.; Bhatia, T. S.; Glass, G.; Hiebert, J. C.; Northcliffe, L. C.; Tippens, W. B.

    1982-03-01

    The analyzing power A and spin-transfer parameters KNN, KSS, KSL, and KLL have been measured in the np charge-exchange (np-->pn) region at 790 MeV. These data provide new and unique information on the spin dependence of the np interaction in the charge-exchange region. Models which explain the charge-exchange peak in the np elastic differential cross section as being due to interference between one-pion exchange and a slowly varying background are in basic agreement with the data.

  19. Multiblock copolymers with highly sulfonated blocks containing di- and tetrasulfonated arylene sulfone segments for proton exchange membrane fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Takamuku, Shogo; Jannasch, Patric [Polymer and Materials Chemistry, Department of Chemistry, Lund University (Sweden)

    2012-01-15

    Multiblock copoly(arylene ether sulfone)s with different block lengths and ionic contents are tailored for durable and proton-conducting electrolyte membranes. Two series of fully aromatic copolymers are prepared by coupling reactions between non-sulfonated hydrophobic precursor blocks and highly sulfonated hydrophilic precursor blocks containing either fully disulfonated diarylsulfone or fully tetrasulfonated tetraaryldisulfone segments. The sulfonic acid groups are exclusively introduced in ortho positions to the sulfone bridges to impede desulfonation reactions and give the blocks ion exchange capacities (IECs) of 4.1 and 4.6 meq. g{sup -1}, respectively. Solvent cast block copolymer membranes show well-connected hydrophilic nanophase domains for proton transport and high decomposition temperatures above 310 C under air. Despite higher IEC values, membranes containing tetrasulfonated tetraaryldisulfone segments display a markedly lower water uptake than the corresponding ones with disulfonated diarylsulfone segments when immersed in water at 100 C, presumably because of the much higher chain stiffness and glass transition temperature of the former segments. The former membranes have proton conductivities in level of a perfluorosulfonic acid membrane (NRE212) under fully humidified conditions. A membrane with an IEC of 1.83 meq. g{sup -1} reaches above 6 mS cm{sup -1} under 30% relative humidity at 80 C, to be compared with 10 mS cm{sup -1} for NRE212 under the same conditions. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Proton exchange membranes based on semi-interpenetrating polymer networks of fluorine-containing polyimide and Nafion {sup registered}

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Haiyan; Pu, Hongting; Wan, Decheng; Jin, Ming; Chang, Zhihong [Institute of Functional Polymers, School of Materials Science and Engineering, Tongji University, Shanghai 200092 (China)

    2010-05-15

    A series of reinforced composite membranes as proton exchange membranes were prepared from Nafion {sup registered} 212 and crosslinkable fluorine-containing polyimides (FPI). FPI was prepared from the polymerization of 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl (TFMB), and 3,5-diaminobenzoic acid (DABA). Then FPI was thermally crosslinked during the membrane preparation and formed the semi-interpenetrating polymer networks (semi-IPN) structure in the composite membranes. The thermal properties of the composite membranes were characterized by thermogravimetric analysis. The crosslinking density of FPI in the composite membranes was evaluated by the gel fraction. These membranes showed excellent thermal stabilities and good oxidative stabilities. Compared with Nafion {sup registered} 212, the obtained composite membranes displayed much improved mechanical properties and dimensional stabilities. The tensile strength of the composite membranes was more than twice that of Nafion {sup registered} 212. The composite membranes exhibited high proton conductivity, which ranged from 2.3 x 10{sup -2} S cm{sup -1} to 9.1 x 10{sup -2} S cm{sup -1}. All membranes showed an increase in proton conductivity with temperature elevation. (author)

  1. Proton exchange membranes based on semi-interpenetrating polymer networks of fluorine-containing polyimide and Nafion ®

    Science.gov (United States)

    Pan, Haiyan; Pu, Hongting; Wan, Decheng; Jin, Ming; Chang, Zhihong

    A series of reinforced composite membranes as proton exchange membranes were prepared from Nafion ®212 and crosslinkable fluorine-containing polyimides (FPI). FPI was prepared from the polymerization of 4,4‧-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), 2,2‧-bis(trifluoromethyl)-4,4‧-diaminobiphenyl (TFMB), and 3,5-diaminobenzoic acid (DABA). Then FPI was thermally crosslinked during the membrane preparation and formed the semi-interpenetrating polymer networks (semi-IPN) structure in the composite membranes. The thermal properties of the composite membranes were characterized by thermogravimetric analysis. The crosslinking density of FPI in the composite membranes was evaluated by the gel fraction. These membranes showed excellent thermal stabilities and good oxidative stabilities. Compared with Nafion ®212, the obtained composite membranes displayed much improved mechanical properties and dimensional stabilities. The tensile strength of the composite membranes was more than twice that of Nafion ®212. The composite membranes exhibited high proton conductivity, which ranged from 2.3 × 10 -2 S cm -1 to 9.1 × 10 -2 S cm -1. All membranes showed an increase in proton conductivity with temperature elevation.

  2. Effect of "bridge" on the performance of organic-inorganic crosslinked hybrid proton exchange membranes via KH550

    Science.gov (United States)

    Han, Hailan; Li, Hai Qiang; Liu, Meiyu; Xu, Lishuang; Xu, Jingmei; Wang, Shuang; Ni, Hongzhe; Wang, Zhe

    2017-02-01

    A series of novel organic-inorganic crosslinked hybrid proton exchange membranes were prepared using sulfonated poly(arylene ether ketone sulfone) polymers containing carboxyl groups (C-SPAEKS), (3-aminopropyl)-triethoxysilane (KH550), and tetraethoxysilane (TEOS). KH550 acted as a "bridge" after reacting with carboxyl and sulfonic groups of C-SPAEKS to form covalent and ionic crosslinked structure between the C-SPAEKS and SiO2 phase. The crosslinked hybrid membranes (C-SPAEKS/K-SiO2) were characterized by FT-IR spectroscopy, TGA, and electrochemistry, etc. The thermal stability, mechanical properties and proton conductivity of the crosslinked hybrid membranes were improved by the presence of both crosslinked structure and inorganic phase. The proton conductivity of C-SPAEKS/K-SiO2-8 was recorded as 0.110 S cm-1, higher than that of Nafion® (0.028 S cm-1) at 120 °C. Moreover, the methanol permeability of the C-SPAEKS/K-SiO2-8 was measured as 3.86 × 10-7 cm2 s-1, much lower than that of Nafion® 117 membranes (29.4 × 10-7 cm2 s-1) at 25 °C.

  3. Stochastic reconstruction and a scaling method to determine effective transport coefficients of a proton exchange membrane fuel cell catalyst layer

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, R. [Centro de Investigacion en Energia, UNAM, Privada Xochicalco S/N, 62580 Temixco (Mexico); Andaverde, J. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, UAEM, Av. Universidad 1001, Col. Chamilpa, 62210 Cuernavaca (Mexico); Escobar, B. [Instituto Tecnologico de Cancun, Av. Kabah 3, 77515 Cancun (Mexico); Cano, U. [Instituto de Investigaciones Electricas, Av. Reforma 113, col. Palmira, 62490 Cuernavaca (Mexico)

    2011-02-01

    This work uses a method for the stochastic reconstruction of catalyst layers (CLs) proposing a scaling method to determine effective transport properties in proton exchange membrane fuel cell (PEMFC). The algorithm that generates the numerical grid makes use of available information before and after manufacturing the CL. The structures so generated are characterized statistically by two-point correlation functions and by the resultant pore size distribution. As an example of this method, the continuity equation for charge transport is solved directly on the three-dimensional grid of finite control volumes (FCVs), to determine effective electrical and proton conductivities of different structures. The stochastic reconstruction and the electrical and proton conductivity of a 45 {mu}m side size cubic sample of a CL, represented by more than 3.3 x 10{sup 12} FVCs were realized in a much shorter time compared with non-scaling methods. Variables studied in an example of CL structure were: (i) volume fraction of dispersed electrolyte, (ii) total CL porosity and (iii) pore size distribution. Results for the conduction efficiency for this example are also presented. (author)

  4. Improving the Conductivity of Sulfonated Polyimides as Proton Exchange Membranes by Doping of a Protic Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Bor-Kuan Chen

    2014-10-01

    Full Text Available Proton exchange membranes (PEMs are a key component of a proton exchange membrane fuel cell. Sulfonated polyimides (SPIs were doped by protic ionic liquid (PIL to prepare composite PEMs with substantially improved conductivity. SPIs were synthesized from diamine, 2,2-bis[4-(4-amino-phenoxyphenyl]propane (BAPP, sulfonated diamine, 4,4'-diamino diphenyl ether-2,2'-disulfonic acid (ODADS and aromatic anhydride. BAPP improved the mechanical and thermal properties of SPIs, while ODADS enhanced conductivity. A PIL, 1-vinylimidazolium trifluoromethane-sulfonate ([VIm][OTf], was utilized. [VIm][OTf] offered better conductivity, which can be attributed to its vinyl chemical structure attached to an imidazolium ring that contributed to ionomer-PIL interactions. We prepared sulfonated polyimide/ionic liquid (SPI/IL composite PEMs using 50 wt% [VIm][OTf] with a conductivity of 7.17 mS/cm at 100 °C, and in an anhydrous condition, 3,3',4,4'-diphenyl sulfone tetracarboxylic dianhydride (DSDA was used in the synthesis of SPIs, leading to several hundred-times improvement in conductivity compared to pristine SPIs.

  5. Multinuclear solid state nuclear magnetic resonance investigation of water penetration in proton exchange membrane Nafion-117 by mechanical spinning.

    Science.gov (United States)

    Sabarinathan, Venkatachalam; Wu, Zhen; Cheng, Ren-Hao; Ding, Shangwu

    2013-05-30

    (1)H, (17)O, and (19)F solid state NMR spectroscopies have been used to investigate water penetration in Nafion-117 under mechanical spinning. It is found that both (1)H and (17)O spectra depend on the orientation of the membrane with respect to the magnetic field. The intensities of the side chain (19)F spectra depend slightly on the orientation of membrane with respect to the magnetic field, but the backbone (19)F spectra do not exhibit orientation dependence. By analyzing the orientation dependent (1)H and (17)O spectra and time-resolved (1)H spectra, we show that the water loaded in Nafion-117, under high spinning speed, may penetrate into regions that are normally inaccessible by water. Water penetration is enhanced as the spinning speed is increased or the spinning time is increased. In the meantime, mechanical spinning accelerates water exchange. It is also found that water penetration by mechanical spinning is persistent; i.e., after spinning, water remains in those newly found regions. While water penetration changes the pores and channels in Nafion, (19)F spectra indicate that the chemical environments of the polymer backbone do not show change. These results provide new insights about the structure and dynamics of Nafion-117 and related materials. They are relevant to proton exchange membrane aging and offer enlightening points of view on antiaging and modification of this material for better proton conductivity. It is also interesting to view this phenomenon in the perspective of forced nanofiltration.

  6. Experimental Investigation and Discussion on the Mechanical Endurance Limit of Nafion Membrane Used in Proton Exchange Membrane Fuel Cell

    Directory of Open Access Journals (Sweden)

    Yang Xiao

    2014-10-01

    Full Text Available As a solution of high efficiency and clean energy, fuel cell technologies, especially proton exchange membrane fuel cell (PEMFC, have caught extensive attention. However, after decades of development, the performances of PEMFCs are far from achieving the target from the Department of Energy (DOE. Thus, further understanding of the degradation mechanism is needed to overcome this obstacle. Due to the importance of proton exchange membrane in a PEMFC, the degradation of the membrane, such as hygrothermal aging effect on its properties, are particularly necessary. In this work, a thick membrane (Nafion N117, which is always used as an ionic polymer for the PEMFCs, has been analyzed. Experimental investigation is performed for understanding the mechanical endurance of the bare membranes under different loading conditions. Tensile tests are conducted to compare the mechanical property evolution of two kinds of bare-membrane specimens including the dog-bone and the deeply double edge notched (DDEN types. Both dog-bone and DDEN specimens were subjected to a series of degradation tests with different cycling times and wide humidity ranges. The tensile tests are repeated for both kinds of specimens to assess the strain-stress relations. Furthermore, Fourier transform infrared spectroscopy (FT-IR, X-ray diffraction (XRD and Scanning electron microscope (SEM observation and water absorption measurement were conducted to speculate the cause of this variation. The initial cracks along with the increasing of bound water content were speculated as the primary cause.

  7. Surface modification of a proton exchange membrane and hydrogen storage in a metal hydride for fuel cells

    Science.gov (United States)

    Andrews, Lisa

    Interest in fuel cell technology is rising as a result of the need for more affordable and available fuel sources. Proton exchange membrane fuel cells involve the catalysis of a fuel to release protons and electrons. It requires the use of a polymer electrolyte membrane to transfer protons through the cell, while the electrons pass through an external circuit, producing electricity. The surface modification of the polymer, NafionRTM, commonly researched as a proton exchange membrane, may improve efficiency of a fuel cell. Surface modification can change the chemistry of the surface of a polymer while maintaining bulk properties. Plasma modification techniques such as microwave discharge of an argon and oxygen gas mixture as well as vacuum-ultraviolet (VUV) photolysis may cause favorable chemical and physical changes on the surface of Nafion for improved fuel cell function. A possible increase in hydrophilicity as a result of microwave discharge experiments may increase proton conductivity. Grafting of acrylic acid from the surface of modified Nafion may decrease the permeation of methanol in a direct methanol fuel cell, a process which can decrease efficiency. Modification of the surface of Nafion samples were carried out using: 1) An indirect Ar/O2 gas mixture plasma investigating the reaction of oxygen radicals with the surface, 2) A direct Ar/O2 gas mixture plasma investigating the reaction of oxygen radicals and VUV radiation with the surface and, 3) VUV photolysis investigating exclusively the interaction of VUV radiation with the surface and any possible oxidation upon exposure to air. Acrylic acid was grafted from the VUV photolysed Nafion samples. All treated surfaces were analyzed using X-ray photoelectron spectroscopy (XPS). Fourier transform infrared spectroscopy (FTIR) was used to analyze the grafted Nafion samples. Scanning electron microscopy (SEM) and contact angle measurements were used to analyze experiments 2 and 3. Using hydrogen as fuel is a

  8. Simultaneous experimental determination of labile proton fraction ratio and exchange rate with irradiation radio frequency power-dependent quantitative CEST MRI analysis.

    Science.gov (United States)

    Sun, Phillip Zhe; Wang, Yu; Xiao, Gang; Wu, Renhua

    2013-01-01

    Chemical exchange saturation transfer (CEST) imaging is sensitive to dilute proteins/peptides and microenvironmental properties, and has been increasingly evaluated for molecular imaging and in vivo applications. However, the experimentally measured CEST effect depends on the CEST agent concentration, exchange rate and relaxation time. In addition, there may be non-negligible direct radio-frequency (RF) saturation effects, particularly severe for diamagnetic CEST (DIACEST) agents owing to their relatively small chemical shift difference from that of the bulk water resonance. As such, the commonly used asymmetry analysis only provides CEST-weighted information. Recently, it has been shown with numerical simulation that both labile proton concentration and exchange rate can be determined by evaluating the RF power dependence of DIACEST effect. To validate the simulation results, we prepared and imaged two CEST phantoms: a pH phantom of serially titrated pH at a fixed creatine concentration and a concentration phantom of serially varied creatine concentration titrated to the same pH, and solved the labile proton fraction ratio and exchange rate per-pixel. For the concentration phantom, we showed that the labile proton fraction ratio is proportional to the CEST agent concentration with negligible change in the exchange rate. Additionally, we found the exchange rate of the pH phantom is dominantly base-catalyzed with little difference in the labile proton fraction ratio. In summary, our study demonstrated quantitative DIACEST MRI, which remains promising to augment the conventional CEST-weighted MRI analysis.

  9. Antimony doped tin oxides and their composites with tin pyrophosphates as catalyst supports for oxygen evolution reaction in proton exchange membrane water electrolysis

    DEFF Research Database (Denmark)

    Xu, Junyuan; Li, Qingfeng; Hansen, Martin Kalmar

    2012-01-01

    Proton exchange membrane water electrolysers operating at typically 80 °C or at further elevated temperatures suffer from insufficient catalyst activity and durability. In this work, antimony doped tin oxide nanoparticles were synthesized and further doped with an inorganic proton conducting phase...... based on tin pyrophosphates as the catalyst support. The materials showed an overall conductivity of 0.57 S cm−1 at 130 °C under the water vapor atmosphere with a contribution of the proton conduction. Using this composite support, iridium oxide nanoparticle catalysts were prepared and characterized...

  10. Semiempirical model based on thermodynamic principles for determining 6 kW proton exchange membrane electrolyzer stack characteristics

    Science.gov (United States)

    Dale, N. V.; Mann, M. D.; Salehfar, H.

    The performance of a 6 kW proton exchange membrane (PEM) electrolyzer was modeled using a semiempirical equation. Total cell voltage was represented as a sum of the Nernst voltage, activation overpotential and ohmic overpotential. A temperature and pressure dependent Nernst potential, derived from thermodynamic principles, was used to model the 20 cell PEM electrolyzer stack. The importance of including the temperature dependence of various model components is clearly demonstrated. The reversible potential without the pressure effect decreases with increasing temperature in a linear fashion. The exchange current densities at both the electrodes and the membrane conductivity were the coefficients of the semiempirical equation. An experimental system designed around a 6 kW PEM electrolyzer was used to obtain the current-voltage characteristics at different stack temperatures. A nonlinear curve fitting method was employed to determine the equation coefficients from the experimental current-voltage characteristics. The modeling results showed an increase in the anode and cathode exchange current densities with increasing electrolyzer stack temperature. The membrane conductivity was also increased with increasing temperature and was modeled as a function of temperature. The electrolyzer energy efficiencies at different temperatures were evaluated using temperature dependent higher heating value voltages instead of a fixed value of 1.48 V.

  11. Doping phosphoric acid in polybenzimidazole membranes for high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    He, Ronghuan; Li, Qingfeng; Jensen, Jens Oluf;

    2007-01-01

    Polybenzimidazole (PBI) membranes were doped in phosphoric acid solutions of different concentrations at room temperature. The doping chemistry was studied using the Scatchard method. The energy distribution of the acid complexation in polymer membranes is heterogeneous, that is, there are two...... different types of sites in PBI for the acid doping. The protonation constants of PBI by phosphoric acid are found to be 12.7 L mol(-1) (K-1) for acid complexing sites with higher affinity, and 0.19 L mol(-1) (K-2) for the sites with lower affinity. The dissociation constants for the complexing acid onto...... these two types of PBI sites are found to be 5.4 X 10(-4) and 3.6 X 10(-2), respectively, that is, about 10 times smaller than that of aqueous phosphoric acid in the first case but 5 times higher in the second. The proton conducting mechanism is also discussed....

  12. Performance evaluation and characterization of metallic bipolar plates in a proton exchange membrane (PEM) fuel cell

    Science.gov (United States)

    Hung, Yue

    Bipolar plate and membrane electrode assembly (MEA) are the two most repeated components of a proton exchange membrane (PEM) fuel cell stack. Bipolar plates comprise more than 60% of the weight and account for 30% of the total cost of a fuel cell stack. The bipolar plates perform as current conductors between cells, provide conduits for reactant gases, facilitate water and thermal management through the cell, and constitute the backbone of a power stack. In addition, bipolar plates must have excellent corrosion resistance to withstand the highly corrosive environment inside the fuel cell, and they must maintain low interfacial contact resistance throughout the operation to achieve optimum power density output. Currently, commercial bipolar plates are made of graphite composites because of their relatively low interfacial contact resistance (ICR) and high corrosion resistance. However, graphite composite's manufacturability, permeability, and durability for shock and vibration are unfavorable in comparison to metals. Therefore, metals have been considered as a replacement material for graphite composite bipolar plates. Since bipolar plates must possess the combined advantages of both metals and graphite composites in the fuel cell technology, various methods and techniques are being developed to combat metallic corrosion and eliminate the passive layer formed on the metal surface that causes unacceptable power reduction and possible fouling of the catalyst and the electrolyte. The main objective of this study was to explore the possibility of producing efficient, cost-effective and durable metallic bipolar plates that were capable of functioning in the highly corrosive fuel cell environment. Bulk materials such as Poco graphite, graphite composite, SS310, SS316, incoloy 800, titanium carbide and zirconium carbide were investigated as potential bipolar plate materials. In this work, different alloys and compositions of chromium carbide coatings on aluminum and SS316

  13. Knowledge Exchange in Intra-Organizational Innovation Communities: The Role of Cognitive and Affective States

    Directory of Open Access Journals (Sweden)

    Bastian Bansemir

    2012-05-01

    Full Text Available Many aspects in the area of designing platforms for intra-organizational innovation communities are not well understood. In this article, we examine the impact of technologically induced psychological factors on knowledge exchange in such communities. Using two experimental pretest-posttest experiments, we find that the implementation of (i technologically induced self-efficacy (expressed by a ‘hurray’ message and (ii technologically induced positive affect (expressed by playing some 30 seconds of rock-‘n’-roll music in the design of the platform results in an influential increase of knowledge exchange. Importantly, the studies suggest that the integration of technologically induced self-efficacy leads to a higher extent of knowledge exchange than technologically induced positive affect. The implications of these results for future research and practice as well as for the design of a platform for such communities are discussed.

  14. Oxygen reduction and methanol oxidation behaviour of SiC based Pt nanocatalysts for proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Dhiman, Rajnish; Stamatin, Serban Nicolae; Andersen, Shuang Ma

    2013-01-01

    Research with proton exchange membrane fuel cells has demonstrated their important potential as providers of clean energy. The commercialization of this type of fuel cell needs a breakthrough in electrocatalyst technology to reduce the relatively large amount of noble metal platinum used...... with the present carbon based substrates. We have recently examined suitably sized silicon carbide (SiC) particles as catalyst supports for fuel cells based on the stable chemical and mechanical properties of this material. In the present study, we have continued our work with studies of the oxygen reduction...... and methanol oxidation reactions of SiC supported catalysts and measured them against commercially available carbon based catalysts. The deconvolution of the hydrogen desorption signals in CV cycles shows a higher contribution of Pt (110) & Pt (111) peaks compared to Pt (100) for SiC based supports than...

  15. Modelling static and dynamic behaviour of proton exchange membrane fuel cells on the basis of electro-chemical description

    Science.gov (United States)

    Ceraolo, M.; Miulli, C.; Pozio, A.

    A simplified dynamical model of a fuel cell of the proton exchange membrane (PEM) type, based on physical-chemical knowledge of the phenomena occurring inside the cell has been developed by the authors. The model has been implemented in the MATLAB/SIMULINK environment. Lab tests have been carried out at ENEA's laboratories; and a good agreement has been found between tests and simulations, both in static and dynamic conditions. In a previous study [M. Ceraolo, R. Giglioli, C. Miulli, A. Pozio, in: Proceedings of the 18th International Electric Fuel Cell and Hybrid Vehicle Symposium (EVS18), Berlin, 20-24 October 2001, p. 306] the basic ideas of the model, as well as its experimental validation have been published. In the present paper, the full implementation of the model is reported in detail. Moreover, a procedure for evaluating all the needed numerical parameters is presented.

  16. Two-photon exchange contribution in elastic electron-proton scattering, experiment at the VEPP-3 storage ring

    Directory of Open Access Journals (Sweden)

    Nikolenko D.M.

    2014-03-01

    Full Text Available We describe a precise measurement of the ratio of the (e+ p to (e− p elastic scattering cross sections. This comparison is sensitive to the effect of two-photon exchange contributions which may be the cause for inconsistent extractions of the proton form factors obtained using different methods. The experiment was performed at storage ring VEPP–3, Novosibirsk at energies of positron/electron beams of 1.0 and 1.6 GeV with electron/positron scattering angles θ = 65÷105° for the first case and 15÷25° and 55÷75° for the second case. Details of the experiment and the preliminary results are presented.

  17. Electrolyte incorporation into composite electrodes for proton-exchange membrane fuel cells and lithium-ion batteries

    Science.gov (United States)

    Oh, Jung Min

    2011-12-01

    This dissertation describes research on the preparation and characterization of composite electrodes for use in proton-exchange membrane (PEM) fuel cells and lithium ion batteries. The general focus of the research was on high-surface-area carbon supports for platinum catalysts in fuel cells, and integration of electrolytes, particularly fluoropolymer electrolytes, into composite electrodes both batteries and fuel cells. Results are described for work in the following three specific topical areas. (1) Carbon nanofibers for use as platinum (Pt) catalyst supports in fuel cells were prepared by carbonization of electrospun acrylic fibers. The resulting carbon nanofibers were found to contain mainly micropores. Following grinding to a powder form, the carbon nanofibers were used as supports for Pt nanoparticles. The pulverized carbon nanofibers were found to be not suitable as supports for Pt catalysts because the microporosity of the individual carbon nanofibers cannot provide continuous porous channels in the electrode. As a result, the Pt utilization was found to be low. (2) Mesoporous carbon composites containing nanoscale embedded zirconia particles (ZCS) were prepared and found to be highly porous and electrically conductive. Surface modification of the composites with organic compounds having phenylphosphonic acid groups (e.g., phenylphosphonic acid, m-sulfophenylphosphonic acid, or sulfonated fluoropolymer ionomer having terminal phosphonic acid groups) was accomplished by simple exposure of the carbon composite to organophosphonate solutions. Nanoscale ZrO2 surfaces present in the composite skeleton acted as reactive sites for anchoring of phosphonates through formation of robust Zr--O--P bonding. Proton-exchange sites were introduced onto the nanocomposite surface by grafting m-sulfophenylphosphonic acid or a sulfonated fluoropolymer ionomer. Modification with the ionomer provided an increase in proton-exchange capacity relative to that found following

  18. Electrochemical durability of heat-treated carbon nanospheres as catalyst supports for proton exchange membrane fuel cells.

    Science.gov (United States)

    Lv, Haifeng; Wu, Peng; Wan, Wei; Mu, Shichun

    2014-09-01

    Carbon nanospheres is wildly used to support noble metal nanocatalysts in proton exchange membrane (PEM) fuel cells, however they show a low resistance to electrochemical corrosion. In this study, the N-doped treatment of carbon nanospheres (Vulcan XC-72) is carried out in ammonia gas. The effect of heating treatment (up to 1000 degrees C) on resistances to electrochemical oxidation of the N-doped carbon nanospheres (HNC) is investigated. The resistance to electrochemical oxidation of carbon supports and stability of the catalysts are investigated with potentiostatic oxidation and accelerated durability test by simulating PEM fuel cell environment. The HNC exhibit a higher resistance to electrochemical oxidation than traditional Vulcan XC-72. The results show that the N-doped carbon nanospheres have a great potential application in PEM fuel cells.

  19. Novel single-layer gas diffusion layer based on PTFE/carbon black composite for proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Chen-Yang, Y.W.; Hung, T.F.; Yang, F.L. [Department of Chemistry and Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023 (China); Huang, J. [Yeu Ming Tai Chemical Industrial Co., Ltd, Taichung 40768 (China)

    2007-11-08

    A series of poly(tetrafluoroethylene)/carbon black composite-based single-layer gas diffusion layers (PTFE/CB-GDLs) for proton exchange membrane fuel cell (PEMFC) was successfully prepared from carbon black and un-sintered PTFE, which included powder resin and colloidal dispersion, by a simple inexpensive method. The scanning electron micrographs of PTFE/CB-GDLs indicated that the PTFE resins were homogeneously dispersed in the carbon black matrix and showed a microporous layer (MPL)-like structure. The as-prepared PTFE/CB-GDLs exhibited good mechanical property, high gas permeability, and sufficient water repellency. The best current density obtained from the PEMFC with the single-layer PTFE/CB-GDL was 1.27 and 0.42 A cm{sup -2} for H{sub 2}/O{sub 2} and H{sub 2}/air system, respectively. (author)

  20. Non-noble metal based electro-catalyst compositions for proton exchange membrane based water electrolysis and methods of making

    Energy Technology Data Exchange (ETDEWEB)

    Kumta, Prashant N.; Kadakia, Karan Sandeep; Datta, Moni Kanchan; Velikokhatnyi, Oleg

    2017-02-07

    The invention provides electro-catalyst compositions for an anode electrode of a proton exchange membrane-based water electrolysis system. The compositions include a noble metal component selected from the group consisting of iridium oxide, ruthenium oxide, rhenium oxide and mixtures thereof, and a non-noble metal component selected from the group consisting of tantalum oxide, tin oxide, niobium oxide, titanium oxide, tungsten oxide, molybdenum oxide, yttrium oxide, scandium oxide, cooper oxide, zirconium oxide, nickel oxide and mixtures thereof. Further, the non-noble metal component can include a dopant. The dopant can be at least one element selected from Groups III, V, VI and VII of the Periodic Table. The compositions can be prepared using a surfactant approach or a sol gel approach. Further, the compositions are prepared using noble metal and non-noble metal precursors. Furthermore, a thin film containing the compositions can be deposited onto a substrate to form the anode electrode.

  1. Catalytic hydrogen/oxygen reaction assisted the proton exchange membrane fuel cell (PEMFC) startup at subzero temperature

    Science.gov (United States)

    Sun, Shucheng; Yu, Hongmei; Hou, Junbo; Shao, Zhigang; Yi, Baolian; Ming, Pingwen; Hou, Zhongjun

    Fuel cells for automobile application need to operate in a wide temperature range including freezing temperature. However, the rapid startup of a proton exchange membrane fuel cell (PEMFC) at subfreezing temperature, e.g., -20 °C, is very difficult. A cold-start procedure was developed, which made hydrogen and oxygen react to heat the fuel cell considering that the FC flow channel was the characteristic of microchannel reactor. The effect of hydrogen and oxygen reaction on fuel cell performance at ambient temperature was also investigated. The electrochemical characterizations such as I- V plot and cyclic voltammetry (CV) were performed. The heat generated rate for either the single cell or the stack was calculated. The results showed that the heat generated rate was proportional to the gas flow rate when H 2 concentration and the active area were constant. The fuel cell temperature rose rapidly and steadily by controlling gas flow rate.

  2. Properties and degradation of the gasket component of a proton exchange membrane fuel cell--a review.

    Science.gov (United States)

    Basuli, Utpal; Jose, Jobin; Lee, Ran Hee; Yoo, Yong Hwan; Jeong, Kwang-Un; Ahn, Jou-Hyeon; Nah, Changwoon

    2012-10-01

    Proton exchange membrane (PEM) fuel cell stack requires gaskets and seals in each cell to keep the reactant gases within their respective regions. Gasket performance is integral to the successful long-term operation of a fuel cell stack. This review focuses on properties, performance and degradation mechanisms of the different polymer gasket materials used in PEM fuel cell under normal operating conditions. The different degradation mechanisms and their corresponding representative mitigation strategies are also presented here. Summary of various properties of elastomers and their advantages and disadvantages in fuel cell'environment are presented. By considering the level of chemical degradation, mechanical properties and cost effectiveness, it can be proposed that EPDM is one of the best choices for gasket material in PEM fuel cell. Finally, the challenges that remain in using rubber component as in PEM fuel cell, as well as the prospects for exploiting them in the future are discussed.

  3. Reactant gas transport and cell performance of proton exchange membrane fuel cells with tapered flow field design

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.C.; Yan, W.M. [Department of Mechatronic Engineering, Huafan University, Shih-Ting, Taipei 223, Taiwan (ROC); Soong, C.Y. [Department of Aerospace and Systems Engineering, Feng Chia University, Seatwen, Taichung 407, Taiwan (ROC); Chen, Falin [Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan (ROC); Chu, H.S. [Department of Mechanical Engineering, National Chiao-Tung University, Hsinchu 300, Taiwan (ROC)

    2006-07-14

    The objective of this work is to examine the reactant gas transport and the cell performance of a proton exchange membrane fuel cell (PEMFC) with a tapered flow channel design. It is expected that, with the reduction in the channel depth along the streamwise direction, the reactant fuel gas in the tapered channel can be accelerated as well as forced into the gas diffuser layer to enhance the electrochemical reaction and thus augment the cell performance. The effects of liquid water formation on the reactant gas transport are taken into account in the present study. Numerical predictions show that the cell performance can be enhanced with the fuel channel tapered, and the enhancement is more noticeable at a lower voltage. The results also reveal that the liquid water effect in general influences the cell performance and the effect becomes significant at lower voltages. (author)

  4. Experimental factors that influence carbon monoxide tolerance of high-temperature proton-exchange membrane fuel cells

    Science.gov (United States)

    Kwon, Kyungjung; Yoo, Duck Young; Park, Jung Ock

    The poisoning effect of carbon monoxide (CO) on high-temperature proton-exchange membrane fuel cells (PEMFCs) is investigated with respect to CO concentration, operating temperature, fuel feed mode, and anode Pt loading. The loss in cell voltage when CO is added to pure hydrogen anode gas is a function of fuel utilization and anode Pt loading as well as obvious factors such as CO concentration, temperature and current density. The tolerance to CO can be varied significantly using a different experimental design of fuel utilization and anode Pt loading. A difference in cell performance with CO-containing hydrogen is observed when two cells with different flow channel geometries are used, although the two cells show similar cell performance with pure hydrogen. A different combination of fuel utilization, anode Pt loading and flow channel design can cause an order of magnitude difference in CO tolerance under identical experimental conditions of temperature and current density.

  5. Experimental factors that influence carbon monoxide tolerance of high-temperature proton-exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kyungjung; Yoo, Duck Young; Park, Jung Ock [Energy and Environment Lab, Samsung Advanced Institute of Technology, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-712 (Korea)

    2008-10-15

    The poisoning effect of carbon monoxide (CO) on high-temperature proton-exchange membrane fuel cells (PEMFCs) is investigated with respect to CO concentration, operating temperature, fuel feed mode, and anode Pt loading. The loss in cell voltage when CO is added to pure hydrogen anode gas is a function of fuel utilization and anode Pt loading as well as obvious factors such as CO concentration, temperature and current density. The tolerance to CO can be varied significantly using a different experimental design of fuel utilization and anode Pt loading. A difference in cell performance with CO-containing hydrogen is observed when two cells with different flow channel geometries are used, although the two cells show similar cell performance with pure hydrogen. A different combination of fuel utilization, anode Pt loading and flow channel design can cause an order of magnitude difference in CO tolerance under identical experimental conditions of temperature and current density. (author)

  6. Reactant gas transport and cell performance of proton exchange membrane fuel cells with tapered flow field design

    Science.gov (United States)

    Liu, H. C.; Yan, W. M.; Soong, C. Y.; Chen, Falin; Chu, H. S.

    The objective of this work is to examine the reactant gas transport and the cell performance of a proton exchange membrane fuel cell (PEMFC) with a tapered flow channel design. It is expected that, with the reduction in the channel depth along the streamwise direction, the reactant fuel gas in the tapered channel can be accelerated as well as forced into the gas diffuser layer to enhance the electrochemical reaction and thus augment the cell performance. The effects of liquid water formation on the reactant gas transport are taken into account in the present study. Numerical predictions show that the cell performance can be enhanced with the fuel channel tapered, and the enhancement is more noticeable at a lower voltage. The results also reveal that the liquid water effect in general influences the cell performance and the effect becomes significant at lower voltages.

  7. Polarization creation in proton-rich {sup 28}P via charge exchange reactions and measurement of its electric quadrupole moment

    Energy Technology Data Exchange (ETDEWEB)

    Matsuta, K., E-mail: matsuta@vg.phys.sci.osaka-u.ac.jp; Mihara, M. [Osaka University, Department of Physics (Japan); Zhou, D. M.; Zheng, Y. N. [CIAE (China); Nishimura, D. [Osaka University, Department of Physics (Japan); Nagatomo, T. [International Christian University (Japan); Yuan, D. Q. [CIAE (China); Momota, S. [Kochi University of Technology (Japan); Izumikawa, T. [Niigata University, RI Center (Japan); Zuo, Y.; Fan, P.; Zhu, S. Y. [CIAE (China); Ohtsubo, T. [Niigata University (Japan); Fukuda, M. [Osaka University, Department of Physics (Japan); Namiki, Y.; Nagashima, M. [Niigata University (Japan); Minamisono, T. [Fukui University of Technology (Japan); Kameda, D. [RIKEN (Japan); Sumikama, T. [Tokyo University of Science (Japan); Kitagawa, A. [NIRS (Japan); and others

    2010-06-15

    The degrees of polarization of proton rich nucleus {sup 28}P produced in charge exchange reactions {sup 28}Si + {sup 9}Be {yields} {sup 28}P + X, and {sup 28}Si + {sup 1}H {yields} {sup 28}P + X have been observed at 100A MeV. Utilizing thus obtained polarized nuclei, the magnetic moment of {sup 28}P was remeasured, and vertical bar {mu}({sup 28}P) vertical bar = 0.3115 (34) {mu}{sub N} was obtained. {beta}-nuclear quadrupole resonance ({beta}-NQR) of {sup 28}P implanted in {alpha}-Al{sub 2}O{sub 3} have been observed for the first time, in order to measure the electric quadrupole moment of this nucleus.

  8. Applying hot wire anemometry to directly measure the water balance in a proton exchange membrane fuel cell - Part 1

    DEFF Research Database (Denmark)

    Berning, Torsten; Al Shakhshir, Saher

    2015-01-01

    In order to accurately determine the water balance of a proton exchange membrane fuel cell it has recently been suggested to employ constant temperature anemometry (CTA), a frequently used method to measure the velocity of a fluid stream. CTA relies on convective heat transfer around a heated wire...... at around 200 °C. The heat loss to the fluid stream is balanced by electrical power dissipation, and the required voltage E is the output signal which is highly sensitive to the heat transfer coefficient of the wire and therefore provides accurate readings. This work explains the theory and summarizes...... the equations required to calculate the heat transfer coefficient and the resulting voltage signal as function of the fuel cell water balance. The most critical and least understood part is the determination of the Nusselt number to calculate the heat transfer between the wire and the gas stream. Different...

  9. Numerical simulation of three-dimensional gas/liquid two-phase flow in a proton exchange membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    ZHUGE Weilin; ZHANG Yangjun; MING Pingwen; LAO Xingsheng; CHEN Xiao

    2007-01-01

    Investigation into the formation and transport of liquid water in proton exchange membrane fuel cells (PEMFCs) is the key to fuel cell water management.A threedimensional gas/liquid two-phase flow and heat transfer model is developed based on the multiphase mixture theory.The reactant gas flow,diffusion,and chemical reaction as well as the liquid water transport and phase change process are modeled.Numerical simulations on liquid water distribution and its effects on the performance of a PEMFC are conducted.Results show that liquid water distributes mostly in the cathode,and predicted cell performance decreases quickly at high current density due to the obstruction of liquid water to oxygen diffusion.The simulation results agree well with experimental data.

  10. Fabrication of a carbon nanofiber sheet as a micro-porous layer for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Qiongjuan; Wang, Jiong; Lu, Yonggen [College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); Wang, Biao; Wang, Huaping [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Material Science and Engineering, Donghua University, Shanghai 201620 (China)

    2010-12-15

    A carbon nanofiber sheet (CNFS) has been prepared by electrospinning, stabilisation and subsequent carbonisation processes. Imaging with scanning electron microscope (SEM) indicates that the CNFS is formed by nonwoven nanofibers with diameters between 400 and 700 nm. The CNFS, with its three-dimensional pores, shows excellent electrical conductivity and hydrophobicity. In addition, it is found that the CNFS can be successfully applied as a micro-porous layer (MPL) in the cathode gas diffusion layer (GDL) of a proton exchange membrane fuel cell (PEMFC). The GDL with the CNFS as a MPL has higher gas permeability than a conventional GDL. Moreover, the resultant cathode GDL exhibits excellent fuel cell performance with a higher peak power density than that of a cathode GDL fabricated with a conventional MPL under the same test condition. (author)

  11. The Structure and Properties of Pulsed dc Sputtered Nanocrystalline NbN Coatings for Proton Exchange Membrane Fuel Cell.

    Science.gov (United States)

    Chun, Sung-Yong

    2016-02-01

    Niobium nitride coatings for the surface modified proton exchange membrane fuel cells with various pulse parameters have been prepared using dc (direct current) and asymmetric-bipolar pulsed dc magnetron sputtering. The pulse frequency and the duty cycle were varied from 5 to 50 kHz and 50 to 95%, respectively. The deposition rate, grain size and resistivity of pulsed dc sputtered films were decreased when the pulse frequency increased, while the nano hardness of niobium nitride films increased. We present in detail coatings (e.g., deposition rate, grain size, prefer-orientation, resistivity and hardness). Our studies show that niobium nitride coatings with superior properties can be prepared using asymmetric-bipolar pulsed dc sputtering.

  12. Effect of chloride impurities on the performance and durability of polybenzimidazole-based high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Ali, Syed Talat; Li, Qingfeng; Pan, Chao

    2011-01-01

    The effect of chloride as an air impurity and as a catalyst contaminant on the performance and durability of polybenzimidazole (PBI)-based high temperature proton exchange membrane fuel cell (HT-PEMFC) was studied. The ion chromatographic analysis reveals the existence of chloride contaminations...... temperatures in 85% phosphoric acid containing chloride ions showed both increase in oxidation and reduction current densities. The fuel cell performance, i.e. the current density at a constant voltage of 0.4 V and 0.5 V was found to be degraded as soon as HCl was introduced in the air humidifier...... in the Pt/C catalysts. Linear sweep voltammetry was employed to study the redox behavior of platinum in 85% phosphoric acid containing chloride ions, showing increase in oxidation and decrease in reduction current densities during the potential scans at room temperature. The potential scans at high...

  13. Mother-Toddler Affect Exchanges and Children's Mastery Behaviours during Preschool Years

    Science.gov (United States)

    Wang, Jun; Morgan, George A.; Biringen, Zeynep

    2014-01-01

    This study examined the longitudinal relations of mother-child affect exchanges at 18?months with children's mastery motivation at 39?months. Observation and questionnaire data were collected from mother-child dyads when children were 18?months; 43 mothers again rated their children's mastery motivation at 39?months. Results suggested…

  14. Performance of Platinum Nanoparticles / Multiwalled Carbon Nanotubes / Bacterial Cellulose Composite as Anode Catalyst for Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Henry Fonda Aritonang

    2017-05-01

    Full Text Available Highly dispersed platinum (Pt nanoparticles / multiwalled carbon nanotubes (MWCNTs on bacterial cellulose (BC as anode catalysts for proton exchange membrane fuel cells (PEMFC were prepared with various precursors and their electro-catalytic activities towards hydrogen oxidation at 70 oC under non-humidified conditions. The composite was prepared by deposition of Pt nanoparticles and MWCNTs on BC gel by impregnation method using a water solution of metal precursors and MWCNTs followed by reducing reaction using a hydrogen gas. The composite was characterized by using TEM (transmission electron microscopy, EDS (energy dispersive spectroscopy, and XRD (X-ray diffractometry techniques. TEM images and XRD patterns both lead to the observation of spherical metallic Pt nanoparticles with mean diameter of 3-11 nm well impregnated into the BC fibrils. Preliminary tests on a single cell indicate that renewable BC is a good prospect to be explored as a membrane in fuel cell field. Copyright © 2017 BCREC Group. All rights reserved Received: 21st November 2016; Revised: 26th February 2017; Accepted: 27th February 2017 How to Cite: Aritonang, H.F., Kamu, V.S., Ciptati, C., Onggo, D., Radiman, C.L. (2017. Performance of Platinum Nanoparticles / Multiwalled Carbon Nanotubes / Bacterial Cellulose Composite as Anode Catalyst for Proton Exchange Membrane Fuel Cells. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2: 287-292 (doi:10.9767/bcrec.12.2.803.287-292 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.803.287-292

  15. Flexible and rigid structures in HIV-1 p17 matrix protein monitored by relaxation and amide proton exchange with NMR.

    Science.gov (United States)

    Ohori, Yuka; Okazaki, Honoka; Watanabe, Satoru; Tochio, Naoya; Arai, Munehito; Kigawa, Takanori; Nishimura, Chiaki

    2014-03-01

    The HIV-1 p17 matrix protein is a multifunctional protein that interacts with other molecules including proteins and membranes. The dynamic structure between its folded and partially unfolded states can be critical for the recognition of interacting molecules. One of the most important roles of the p17 matrix protein is its localization to the plasma membrane with the Gag polyprotein. The myristyl group attached to the N-terminus on the p17 matrix protein functions as an anchor for binding to the plasma membrane. Biochemical studies revealed that two regions are important for its function: D14-L31 and V84-V88. Here, the dynamic structures of the p17 matrix protein were studied using NMR for relaxation and amide proton exchange experiments at the physiological pH of 7.0. The results revealed that the α12-loop, which includes the 14-31 region, was relatively flexible, and that helix 4, including the 84-88 region, was the most protected helix in this protein. However, the residues in the α34-loop near helix 4 had a low order parameter and high exchange rate of amide protons, indicating high flexibility. This region is probably flexible because this loop functions as a hinge for optimizing the interactions between helices 3 and 4. The C-terminal long region of K113-Y132 adopted a disordered structure. Furthermore, the C-terminal helix 5 appeared to be slightly destabilized due to the flexible C-terminal tail based on the order parameters. Thus, the dynamic structure of the p17 matrix protein may be related to its multiple functions.

  16. Physico-chemical study of the degradation of membrane-electrode assemblies in a proton exchange membrane fuel cell stack

    Science.gov (United States)

    Ferreira-Aparicio, P.; Gallardo-López, B.; Chaparro, A. M.; Daza, L.

    A proton exchange membrane fuel cell stack integrated by 8-elements has been evaluated in an accelerated stress test. The application of techniques such as TEM analyses of ultramicrotome-sliced sections of some samples and XRD, XPS and TGA of spent electrodes reveal the effects of several degradation processes contributing to reduce the cells performance. The reduction of the Pt surface area at the cathode is favored by the oxidation of carbon black agglomerates in the catalytic layer, the agglomeration of Pt particles and by the partial dissolution of Pt, which migrates towards the anode and precipitates within the membrane. In the light of the TEM, EDAX and XPS results, two combined effects are probably responsible of the increase of the internal resistance of the stack cells: (i) a lower proton conductivity of the membranes due to the high affinity of the sulfonic acid groups for ions originated from Pt crystallites and other peripherical elements such as the silicone elastomeric gaskets and (ii) the increment of electrically isolated islands in the cathode gas diffusion electrodes resulting from carbon corrosion and the degradation of the perfluorinated polymers. Water accumulation and inhomogeneous gas distribution throughout the stack cells originate different degradation rates in them.

  17. Synthesis and characterization of sulfonated cardo poly(arylene ether sulfone)s for fuel cell proton exchange membrane application

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.M.; Jang, H.H.; Lim, Y.D.; Seo, D.W.; Kim, W.G. [Department of Applied Chemistry, Konkuk University, Chungju, Chungbuk (Korea, Republic of); Kim, T.H.; Hong, Y.T. [Energy Material Research Center, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Kim, D.M. [Material Engineering and Science, Hongik Univ, Jochiwon-eup, Yeongi-gun, Chungnam (Korea, Republic of)

    2012-12-15

    Sulfonated cardo poly(arylene ether sulfone)s (SPPA-PES) with various degrees of sulfonation (DS) were prepared by post-sulfonation of synthesized phenolphthalein anilide (PPA; N-phenyl-3,3'-bis(4-hydroxyphenyl)-1-isobenzopyrolidone) poly(arylene ether sulfone)s (PPA-PES) by using concentrated sulfuric acid. PPA-PES copolymers were synthesized by direct polycondensation of PPA with bis-(4-fluorophenyl)-sulfone and 4,4'-sulfonyldiphenol. The DS was varied with different mole ratios of PPA (24, 30, 40, 50 mol.%) in the polymer. The structure of the resulting SPPA-PES copolymers and the different contents of the sulfonated unit were studied by Fourier transform infrared (FT-IR) spectroscopy, {sup 1}H NMR spectroscopy, and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymer with water. The ion exchange capacity (IEC) and proton conductivity of SPPA-PES were evaluated according to the increase of DS. The water uptake (WU) of the resulting SPPA-PES membranes was in the range of 20-72%, compared with 28% for Nafion 211 registered. The SPPA-PES membranes showed proton conductivities of 23-82 mS cm{sup -1}, compared with 194 mS cm{sup -1} for Nafion 211 registered, under 100% relative humidity (RH) at 80 C. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. High energy efficiency and high power density proton exchange membrane fuel cells: Electrode kinetics and mass transport

    Science.gov (United States)

    Srinivasan, Supramaniam; Velev, Omourtag A.; Parthasathy, Arvind; Manko, David J.; Appleby, A. John

    1991-01-01

    The development of proton exchange membrane (PEM) fuel cell power plants with high energy efficiencies and high power densities is gaining momentum because of the vital need of such high levels of performance for extraterrestrial (space, underwater) and terrestrial (power source for electric vehicles) applications. Since 1987, considerable progress has been made in achieving energy efficiencies of about 60 percent at a current density of 200 mA/sq cm and high power densities (greater than 1 W/sq cm) in PEM fuel cells with high (4 mg/sq cm) or low (0.4 mg/sq cm) platinum loadings in electrodes. The following areas are discussed: (1) methods to obtain these high levels of performance with low Pt loading electrodes - by proton conductor impregnation into electrodes, localization of Pt near front surface; (2) a novel microelectrode technique which yields electrode kinetic parameters for oxygen reduction and mass transport parameters; (3) demonstration of lack of water transport from anode to cathode; (4) modeling analysis of PEM fuel cell for comparison with experimental results and predicting further improvements in performance; and (5) recommendations of needed research and development for achieving the above goals.

  19. Dimensionally-stable phosphoric acid-doped polybenzimidazoles for high-temperature proton exchange membrane fuel cells

    Science.gov (United States)

    Li, Xiaobai; Ma, Hongwei; Shen, Yanchao; Hu, Wei; Jiang, Zhenhua; Liu, Baijun; Guiver, Michael D.

    2016-12-01

    Phosphoric acid-doped polybenzimidazole (PA-m-PBI) membranes are widely investigated for high temperature proton exchange membrane fuel cells because of their low cost and high performance. For this system, a major challenge is in achieving a good compromise between the phosphoric acid doping level and the membrane dimensional-mechanical stability. Different from the established PA-m-PBI system, the present work investigates two types of PA-PBI membranes incorporating flexible ether linkages and asymmetric bulky pendants (phenyl and methylphenyl), which exhibit much better dimensional-mechanical stability after immersing in PA solution, even at high temperature for an extended period. This superior stability allowed higher acid doping levels (20.6 and 24.6) to be achieved, thus increasing proton conductivity (165 and 217 mS cm-1 at 200 °C under anhydrous conditions) as well as significantly improving fuel cell performance. The peak power densities in hydrogen/air fuel cell were 279 and 320 mW cm-2 at 160 °C, without humidification. Molecular simulation, density and fractional free volume, and wide-angle X-ray diffraction were used to investigate their structure-property relationships.

  20. Preparation of Sulfonated Poly(aryl ether sulfone) Electrospun Mat/Phosphosilicate Composite Proton Exchange Membrane

    Science.gov (United States)

    Wang, Limei; Dou, Liyan; Guan, Guoying

    2017-03-01

    Side-chain-type sulfonated poly(aryl ether sulfone) (SPES) was synthesized and then electrospun into mats. Phosphosilicate glass (PS) via in situ sol-gel synthesis was enclosed in the mats to form a new reinforced composite membrane. The SPES/PS composite membranes showed satisfactory dimensional change behavior with varying humidity. Especially, the composite membrane exhibits excellent proton conductivity at harsh measurement conditions of low humidity at 80°C. The composite membrane with outstanding combined properties has potential applications for high temperature polymer electrolyte membrane fuel cells.

  1. Preparation of Sulfonated Poly(aryl ether sulfone) Electrospun Mat/Phosphosilicate Composite Proton Exchange Membrane

    Science.gov (United States)

    Wang, Limei; Dou, Liyan; Guan, Guoying

    2017-01-01

    Side-chain-type sulfonated poly(aryl ether sulfone) (SPES) was synthesized and then electrospun into mats. Phosphosilicate glass (PS) via in situ sol-gel synthesis was enclosed in the mats to form a new reinforced composite membrane. The SPES/PS composite membranes showed satisfactory dimensional change behavior with varying humidity. Especially, the composite membrane exhibits excellent proton conductivity at harsh measurement conditions of low humidity at 80°C. The composite membrane with outstanding combined properties has potential applications for high temperature polymer electrolyte membrane fuel cells.

  2. Quantitative chemical exchange saturation transfer (qCEST) MRI - omega plot analysis of RF-spillover-corrected inverse CEST ratio asymmetry for simultaneous determination of labile proton ratio and exchange rate.

    Science.gov (United States)

    Wu, Renhua; Xiao, Gang; Zhou, Iris Yuwen; Ran, Chongzhao; Sun, Phillip Zhe

    2015-03-01

    Chemical exchange saturation transfer (CEST) MRI is sensitive to labile proton concentration and exchange rate, thus allowing measurement of dilute CEST agent and microenvironmental properties. However, CEST measurement depends not only on the CEST agent properties but also on the experimental conditions. Quantitative CEST (qCEST) analysis has been proposed to address the limitation of the commonly used simplistic CEST-weighted calculation. Recent research has shown that the concomitant direct RF saturation (spillover) effect can be corrected using an inverse CEST ratio calculation. We postulated that a simplified qCEST analysis is feasible with omega plot analysis of the inverse CEST asymmetry calculation. Specifically, simulations showed that the numerically derived labile proton ratio and exchange rate were in good agreement with input values. In addition, the qCEST analysis was confirmed experimentally in a phantom with concurrent variation in CEST agent concentration and pH. Also, we demonstrated that the derived labile proton ratio increased linearly with creatine concentration (P exchange rate followed a dominantly base-catalyzed exchange relationship (P exchange rate in a relatively complex in vitro CEST system.

  3. Hyperbranched-linear poly(ether sulfone) blend films for proton exchange membranes

    Energy Technology Data Exchange (ETDEWEB)

    Grunzinger, Stephen J.; Watanabe, Masatoshi; Fukagawa, Kiyotaka; Kikuchi, Ryohei; Tominaga, Yoichi; Hayakawa, Teruaki; Kakimoto, Masa-aki [Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2008-01-03

    Hyperbranched poly(ether sulfone) polymers having sulfonyl chloride end-groups is blended at up to 30 w% with linear poly(ether ether ether sulfone)s and a two-phase system is generated via spinodal decomposition upon drying from a DMAc solution. Conversion of the end-groups from sulfonyl chloride to sulfonic acid is accomplished using 16 M H{sub 2}SO{sub 4} that is also believed to introduce additional sulfonic acid groups at the interface of the linear polymer. The blend films before and after conversion to sulfonic acid have similar tensile strengths as films composed of solely linear polymer (yield stress >40 MPa and Young's modulus >3 GPa m). These films are designed to test the viability of hyperbranched polymers as fuel cell membranes. Proton conductivities of up to 0.03 S cm{sup -1} are observed at 80 C and 90% R.H indicating a good potential for use of hyperbranched polymers as a proton conduction material. (author)

  4. PVDF- g-PSSA and Al 2O 3 composite proton exchange membranes

    Science.gov (United States)

    Shen, Yi; Qiu, Xinping; Shen, Juan; Xi, Jingyu; Zhu, Wentao

    Poly(vinylidene fluoride) grafted polystyrene sulfonated acid (PVDF- g-PSSA) membranes doped with different amount of Al 2O 3 (PVDF/Al 2O 3- g-PSSA) were prepared based on the solution-grafting technique. The microstructure of the membranes was characterized by IR-spectra and scanning electron microscope (SEM). The thermal stability was measured by thermal gravity analysis (TGA). The degree of grafting, water-uptake, proton conductivity and methanol permeability were measured. The results show that the PVDF- g-PSSA membrane doped with 10% Al 2O 3 has a lower methanol permeability of 6.6 × 10 -8 cm 2 s -1, which is almost one-fortieth of that of Nafion-117, and this membrane has moderate proton conductivity of 4.5 × 10 -2 S cm -1. Tests on cells show that a DMFC with the PVDF/10%Al 2O 3- g-PSSA has a better performance than Nafion-117. Although Al 2O 3 has some influence on the stability of the membrane, it can still be used in direct methanol fuel cells in the moderate temperature.

  5. Electrochemical properties of proton exchange membranes: the role of composition and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Holdcroft, S.; Beattie, P.D.; Basura, V.I.; Schmeisser, J.; Chuy, C.; Orfino, F.; Ding, J. [Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Chemistry

    2001-06-01

    To measure electrochemical and proton conduction properties of a large variety of different polyelectrolyte membranes that possess a wide array of equivalent weights and water contents, a number of analytical techniques were employed and the results presented in this paper. At the electrocatalyst/polymer electrolyte interface, kinetic and mass transport parameters play an important role in fuel cell operation, the authors used microelectrodes to study the effects of temperature and pressure on the electrochemical reduction of oxygen at platinum/solid polymer electrolyte interfaces in solid polymer electrolytes under controlled humidity. Under conditions of controlled humidity and temperature, proton conductivity was measured transverse and normal to the membrane surface using an alternate current (a.c.) impedance spectroscopy. A wide array of membranes were investigated, including those based on sulfonated polystyrene-block-hydrogenated butadiene, polystyrenesulfonic acid grafted onto ethylenetetrafluoroethylene, sulfonated trifluorostyrene-copolymers, and a novel series of membranes where the internal biphasic morphology is controlled to yield materials with low water and high conductivity and prepared in house. Transmission electron microscopy and small angle X-ray scattering was used for the analysis of the microstructure of selected membranes. Modelling the scattered intensities was used to quantify aspects of the microstructure.

  6. Lattice damage and waveguide properties of a proton-exchanged LiNbO3 crystal after oxygen-ion implantation

    Science.gov (United States)

    Huang, Qing; Liu, Peng; Liu, Tao; Guo, Sha-Sha; Zhang, Lian; Wang, Xue-Lin

    2012-09-01

    A z-cut LiNbO3 crystal was immersed in a molten benzoic acid for 10 min and then was implanted with 6-MeV oxygen ions at a fluence of 6 × 1014 ions/cm2. Lattice damage in this crystal was measured by a Rutherford backscattering and channeling technique and was compared with lattice damage in a proton-exchanged LiNbO3 crystal and an oxygen-ion-implanted LiNbO3 crystal. A totally amorphous layer was formed at the crystal's surface after both proton exchange and oxygen-ion implantation processes were performed, even though either process alone never led to a relative disorder of the lattice up to 0.2. It indicates that the crystal lattice in the proton-exchanged layer is unstable and can be easily damaged by ion implantation subsequently. The waveguide structure formed by proton exchange was destroyed by oxygen-ion implantation. Oxygen-ion implantation induced an increase in extraordinary refractive index and formed another waveguide structure underneath the amorphous surface layer.

  7. Teledyne Energy Systems, Inc., Proton Exchange Member (PEM) Fuel Cell Engineering Model Powerplant. Test Report: Initial Benchmark Tests in the Original Orientation

    Science.gov (United States)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    Proton Exchange Membrane (PEM) fuel cell technology is the leading candidate to replace the alkaline fuel cell technology, currently used on the Shuttle, for future space missions. During a 5-yr development program, a PEM fuel cell powerplant was developed. This report details the initial performance evaluation test results of the powerplant.

  8. Applying hot-wire anemometry to directly measure the water balance in a proton exchange membrane fuel cell for a pre-humidified hydrogen stream

    DEFF Research Database (Denmark)

    Berning, Torsten; Shakhshir, Saher Al

    2016-01-01

    In a recent publication it has been shown how the water balance in a proton exchange membrane fuel cell can be determined employing hot wire anemometry. The hot wire sensor has to be placed into the anode outlet pipe of the operating fuel cell, and the voltage signal E that is read from the senso...

  9. Review on the Recent Developments of Photovoltaic Thermal (PV/T and Proton Exchange Membrane Fuel Cell (PEMFC Based Hybrid System

    Directory of Open Access Journals (Sweden)

    Zulkepli Afzam

    2016-01-01

    Full Text Available Photovoltaic Thermal (PV/T system emerged as one of the convenient type of renewable energy system acquire the ability to generate power and thermal energy in the absence of moving parts. However, the power output of PV/T is intermittent due to dependency on solar irradiation condition. Furthermore, its efficiency decreases because of cells instability at high temperature. On the other hand, fuel cell co-generation system (CGS is another technology that can generate power and heat simultaneously. Integration of PV/T and fuel cell CGS could enhance the reliability and sustainability of both systems as well as increasing the overall system performance. Hence, this paper intended to present the parameters that affect performance of PV/T and Proton Exchange Membrane Fuel Cell (PEMFC CGS. Moreover, recent developments on PV/T-fuel cell hybrid system are also presented. Based on literates, mass flow rate of moving fluid in PV/T was found to affect the system efficiency. For the PEMFC, when the heat is utilized, the system performance can be increased where the heat efficiency is similar to electrical efficiency which is about 50%. Recent developments of hybrid PV/T and fuel cell show that most of the studies only focus on the power generation of the system. There are less study on the both power and heat utilization which is indeed necessary in future development in term of operation strategy, optimization of size, and operation algorithm.

  10. Dynamic Simulation of a Proton Exchange Membrane Fuel Cell System For Automotive Applications

    DEFF Research Database (Denmark)

    Rabbani, Raja Abid; Rokni, Masoud

    2012-01-01

    A dynamic model of the PEMFC system is developed to investigate the behaviour and transient response of the fuel cell system for automotive applications. The system accounts for the fuel cell stack with coolant, humidifier, heat exchangers and pumps. Governing equations for fuel cell and humidifier...... sufficient insight for further in-depth analysis of PEMFC and prove to be a basis for efficient control and design methodologies....

  11. Thermal-Conductivity Characterization of Gas Diffusion Layer in Proton Exchange Membrane Fuel Cells and Electrolyzers Under Mechanical Loading

    Science.gov (United States)

    Hamour, M.; Garnier, J. P.; Grandidier, J. C.; Ouibrahim, A.; Martemianov, S.

    2011-05-01

    Accurate information on the temperature field and associated heat transfer rates is particularly important for proton exchange membrane fuel cells (PEMFC) and PEM electrolyzers. An important parameter in fuel cell and electrolyzer performance analysis is the effective thermal conductivity of the gas diffusion layer (GDL) which is a solid porous medium. Usually, this parameter is introduced in modeling and performance analysis without taking into account the dependence of the GDL thermal conductivity λ (in W · m-1 · K-1) on mechanical compression. Nevertheless, mechanical stresses arising in an operating system can change significantly the thermal conductivity and heat exchange. Metrology allowing the characterization of the GDL thermal conductivity as a function of the applied mechanical compression has been developed in this study using the transient hot-wire technique (THW). This method is the best for obtaining standard reference data in fluids, but it is rarely used for thermal-conductivity measurements in solids. The experiments provided with Quintech carbon cloth indicate a strong dependence (up to 300%) of the thermal conductivity λ on the applied mechanical load. The experiments have been provided in the pressure range 0 resistances. For this purpose, measurements with a different number of carbon cloth layers have been provided. The conducted experiments indicate the independence of the measured thermal conductivity on the number of GDL layers and, thus, justify the robustness of the developed method and apparatus for this type of application.

  12. Non-covalent bonding interaction of surfactants with functionalized carbon nanotubes in proton exchange membranes for fuel cell applications.

    Science.gov (United States)

    Sayeed, M Abu; Kim, Young Ho; Park, Younjin; Gopalan, A I; Lee, Kwang-Pill; Choi, Sang-June

    2013-11-01

    Dispersion of functionalized multiwalled carbon nanotubes (MWCNTs) in proton exchange membranes (PEMs) was conducted via non-covalent bonding between benzene rings of various surfactants and functionalized MWCNTs. In the solution casting method, dispersion of functionalized MWCNTs in PEMs such as Nafion membranes is a critical issue. In this study, 1 wt.% pristine MWCNTs (p-MWCNTs) and oxidized MWCNTs (ox-MWCNTs) were reinforced in Nafion membranes by adding 0.1-0.5 wt.% of a surfactant such as benzalkonium chloride (BKC) as a cationic surfactant with a benzene ring, Tween-80 as a nonanionic surfactant without a benzene ring, sodium dodecylsulfonate (SDS) as an anionic surfactant without a benzene ring, or sodium dodecylben-zenesulfonate (SDBS) as an anionic surfactant with a benzene ring and their effects on the dispersion of nanocomposites were then observed. Among these surfactants, those with benzene rings such as BKC and SDBS produced enhanced dispersion via non-covalent bonding interaction between CNTs and surfactants. Specifically, the surfactants were adsorbed onto the surface of functionalized MWCNTs, where they prevented re-aggregation of MWCNTs in the nanocomposites. Furthermore, the prepared CNTs reinforced nanocomposite membranes showed reduced methanol uptake values while the ion exchange capacity values were maintained. The enhanced properties, including thermal property of the CNTs reinforced PEMs with surfactants, could be applicable to fuel cell applications.

  13. Formation and properties of proton-exchanged and annealed $LiNbO_{3}$ waveguides for surface acoustic wave

    CERN Document Server

    Chien Chuan Cheng; Ying Chung Chen

    2001-01-01

    The proton-exchanged (PE) and annealed PE (APE) z-cut LiNbO/sub 3/ waveguides were fabricated using H/sub 4/P/sub 2/O/sub 7/. The positive strain, c-axis lattice constant change ( Delta c/c), was calculated to be about +0.43%, which was almost independent of the exchanged conditions. The penetration depth of H measured by secondary ion mass spectrometry (SIMS) exhibited a step-like profile, which was assumed to be equal to the waveguide depth (d). The surface acoustic wave (SAW) properties of PE and APE z-cut LiNbO/sub 3/ samples were investigated. The phase velocity (V/sub p/) and electromechanical coupling coefficient (K/sup 2/) of PE samples were significantly decreased by the increase of kd, where k was the wavenumber (2 pi / lambda ). The insertion loss (IL) of PE samples was increased by the increase of kd and became nearly constant at kd >0.064. The temperature coefficient of frequency (TCF) of PE samples allowed an apparent increase with kd, reaching a maximum at kd=0.292, then slightly decreased at h...

  14. On the estimation of high frequency parameters of Proton Exchange Membrane Fuel Cells via Electrochemical Impedance Spectroscopy

    Science.gov (United States)

    Mainka, J.; Maranzana, G.; Dillet, J.; Didierjean, S.; Lottin, O.

    2014-05-01

    This paper is a discussion on the estimation of impedance parameters of H2/air fed Proton Exchange Membrane Fuel Cells (PEMFC). The impedance model corresponds to the Randles electrical equivalent circuit accounting for charge separation and transport processes in the cathode catalyst layer, as well as for oxygen diffusion through the backing layer. A sensitivity analysis confirms that the cathode parameters are not correlated and that the consideration of the anode has no significant impact on the estimation of their values. In addition, it is shown that the diffusion parameters have a significant impact in the low frequency domain only, at least with this model. The parameters characterizing charge separation and transport processes at the cathode can thus be estimated with the high frequency impedance data, independently of the oxygen transport model. Consequently, even in the absence of a fully validated oxygen transport impedance, EIS can be used as an alternative method (to classical steady-state methods) for the estimation of the parameters characterizing the cathode reaction: the Tafel slope b, the charge transfer coefficient α and possibly, the exchange current density j0. This reduces significantly the measuring time while enhancing the accuracy by comparison with steady-state methods.

  15. THE IMPORTANCE OF AFFECT TO BUILD CONSUMER TRUST IN HIGH-CONSEQUENCES EXCHANGES

    Directory of Open Access Journals (Sweden)

    Mellina da Silva Terres

    2012-12-01

    Full Text Available The present article investigates the importance of affect displayed by service provider to build consumer trust in high consequence exchanges. High-consequence exchanges are difficult situations in which the choices present a dilemma that can cause stress and severe emotional reactions (KAHN; LUCE, 2003. In this specific case, trust based on affect seems to become important; mainly because consumers may not have ability to evaluate the cognitive aspects of the situation, and moreover, a medical services failure can be highly problematic or even fatal (LEISEN; HYMAN, 2004. On the other hand, in low-consequence choices, we are predicting that cognition will be more important than affect in building trust. In this kind of situation, patients are more self-confident, less sensitive, and don’t perceive a high probability of loss (KUNREUTHER et al., 2002, and therefore focuses more on the rational outcomes.

  16. Modeling the dynamic behavior of proton-exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Llapade, Peter O [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Davey, John R [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Meyers, Jeremy P [UNIV OF TEXAS-AUSTIN

    2010-01-01

    A two-phase transient model that incorporates the permanent hysteresis observed in the experimentally measured capillary pressure of GDL has been developed. The model provides explanation for the difference in time constant between membrane hydration and dehydration observed in the HFR experiment conducted at LANL. When there is liquid water at the cathode catalyst layer, time constant of the water content in the membrane is closely tied to that of liquid water saturation in the CCL, as the vapor is already saturated. The water content in the membrane will not reach steady state as long as the liquid water flow in the CCL is not at steady state. Also, Increased resistance to proton transport in the membrane is observed when the cell voltage is stepped down to a very low value.

  17. Nanocomposite Membranes based on Perlfuorosulfonic Acid/Ceramic for Proton Exchange Membrane Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    LI Qiong; WANG Guangjin; YE Hong; YAN Shilin

    2015-01-01

    Perlfuorosulfonic acid/ceramic nanocomposite membranes were investigated as electrolytes for polymer electrolyte membrane fuel cell applications under low relative humidity. Different nanosized ceramics (SiO2, ZrO2, TiO2) with diameters in the range of 2-6 nm were synthesized in situ in Nafion solution through a sol-gel process and the formed nanosized ceramics were well-dispersed in the solution. The nanocomposite membranes were formed through a casting process. The nanocomposite membrane showes enhanced water retention ability and improved proton conductivity compared to those of pure Naifon membrane. The mechanical strength of the formed nanocomposite membranes is slightly less than that of pure Naifon membrane. The experimental results demonstrate that the polymer ceramic nanocompsite membranes are potential electrolyte for fuel cells operating at elevated temperature.

  18. Studies on synthesis and property of novel acid-base proton exchange membranes

    Institute of Scientific and Technical Information of China (English)

    Yong Fang Liang; Hai Yan Pan; Xiu Ling Zhu; Yao Xia Zhang; Xi Gao Jian

    2007-01-01

    Sulfonated poly(phthalazinone)s (SPPENK, SPPESK and SPPBEK) were prepared by direct polymerization reaction from sulfonated monomers. The novel acid-base membranes were composed of sulfonated polymers as the acidic compounds, and polyetherimide (PEI) as the basic compounds, casting from their N-methylpyrrolidone (NMP) solution directly onto clean glass plates at 60 ℃ aiming at enhancing membrane toughness and other relative properties. The resulted acid-base composite membranes had excellent resistance to swelling, thermo-stability, hydrolysis resistance and oxidative resistance properties with highly ion-exchange capacity (IEC).

  19. Pionic charge exchange on the proton from 40 to 250 MeV

    Science.gov (United States)

    Breitschopf, J.; Bauer, M.; Clement, H.; Cröni, M.; Denz, H.; Friedman, E.; Gibson, E. F.; Meier, R.; Wagner, G. J.

    2006-08-01

    The total cross sections for pionic charge exchange on hydrogen were measured using a transmission technique on thin CH2 and C targets. Data were taken for π- lab energies from 39 to 247 MeV with total errors of typically 2% over the Δ-resonance and up to 10% at the lowest energies. Deviations from the predictions of the SAID phase shift analysis in the 60-80 MeV region are interpreted as evidence for isospin-symmetry breaking in the s-wave amplitudes. The charge dependence of the Δ-resonance properties appears to be smaller than previously reported.

  20. The study of flow and proton exchange interactions in the cylindrical solid oxide fuel cell

    CERN Document Server

    Saievar-Iranizad, E

    2002-01-01

    The solid oxide fuel cell operates at high temperature of about 1000 deg C. In this temperature, some known materials such as Ni, ... which is abundant in the nature, can be used as a catalyst in the electrodes. The electrolytes of such cell solid oxide fuel cell can be made through non-porous solid ceramics such as Zircon's (ZrO sub 2). It can be stabilized using a doped Yttrium oxide. The importance of Yttria-stabilised Zirconia at high temperature belongs to the transport of oxygen ions through the electrolyte. Oxygen using in the hot cathode side causes a considerable reduction in the concentration of oxygen molecules. The oxygen ions exchange through the electrolyte relates to the molecular oxygen concentration gradient between the anode and cathode. Applying fuels such as hydrogen or natural gas in the anode and its chemical reaction with oxygen ions transfer from cathode through the electrolyte, produce electricity, water and heat. To study the ion exchange and its interaction into solid oxide fuel cel...

  1. SPEEK/PVDF/PES Composite as Alternative Proton Exchange Membrane for Vanadium Redox Flow Batteries

    Science.gov (United States)

    Fu, Zhimin; Liu, Jinying; Liu, Qifeng

    2016-01-01

    A membrane consisting of a blend of sulfonated poly(ether ether ketone) (SPEEK), poly(vinylidene fluoride) (PVDF), and poly(ether sulfone) (PES) has been fabricated and used as an ion exchange membrane for application in vanadium redox flow batteries (VRBs). The vanadium ion permeability of the SPEEK/PVDF/PES membrane was one order of magnitude lower than that of Nafion 117 membrane. The low-cost composite membrane exhibited better performance than Nafion 117 membrane at the same operating condition. A VRB single cell with SPEEK/PVDF/PES membrane showed significantly lower capacity loss, higher coulombic efficiency (>95%), and higher energy efficiency (>82%) compared with Nafion 117 membrane. In the self-discharge test, the duration of the cell with the SPEEK/PVDF/PES membrane was nearly two times longer than that with Nafion 117 membrane. Considering these good properties and its low cost, SPEEK/PVDF/PES membrane is expected to have excellent commercial prospects as an ion exchange membrane for VRB systems.

  2. Leader-member exchange and affective organizational commitment: the contribution of supervisor's organizational embodiment.

    Science.gov (United States)

    Eisenberger, Robert; Karagonlar, Gokhan; Stinglhamber, Florence; Neves, Pedro; Becker, Thomas E; Gonzalez-Morales, M Gloria; Steiger-Mueller, Meta

    2010-11-01

    In order to account for wide variation in the relationship between leader-member exchange and employees' affective organizational commitment, we propose a concept termed supervisor's organizational embodiment (SOE), which involves the extent to which employees identify their supervisor with the organization. With samples of 251 social service employees in the United States (Study 1) and 346 employees in multiple Portuguese organizations (Study 2), we found that as SOE increased, the association between leader-member exchange and affective organizational commitment became greater. This interaction carried through to in-role and extra-role performance. With regard to antecedents, we found in Study 1 that supervisor's self-reported identification with the organization increased supervisor's expression of positive statements about the organization, which in turn increased subordinates' SOE.

  3. Characterization of SPEEK/Y2O3 proton exchange membrane treated with high magnetic field

    Institute of Scientific and Technical Information of China (English)

    TONG Juying; GUO Qiang; TAN Xiaolin; LI Xia; LI Dan; DONG Yunfeng

    2011-01-01

    The membranes of sulfonated poly(etheretherketone) of 48.3% sulfonation degree doped with Y2O3 were prepared, and then treated with parallel high magnetic field of 6 and 12 T at 120 ℃ for 4 h, respectively. The small-angle X-ray scattering revealed that the structure of the composite membranes would be changed by high magnetic field treatment. The cross-section morphology of the composite membranes by a scanning electron microscope showed that the Y2O3 could be dispersed evenly in the composite membranes which were relatively smooth and compact but formed small conglomeration with increasing Y2O3 content and treating high magnetic field. The water uptake of membranes would be reduced with Y2O3 content increasing, but not be modified by the treatment of high magnetic field. The proton conductivity of membranes would be increased with temperature rising from 20 to 60 ℃, and improved under high magnetic field, which could all exceed 10-2 S/cm at 75% relative humidity, but decrease with doping content of Y2O3 from 2 wt.% to 8 wt.%. The methanol permeability of the composite membranes would be decreased with Y2O3 content increasing and slightly reduced after high magnetic field treatment.

  4. Determination of the efficiency of ethanol oxidation in a proton exchange membrane electrolysis cell

    Science.gov (United States)

    Altarawneh, Rakan M.; Majidi, Pasha; Pickup, Peter G.

    2017-05-01

    Products and residual ethanol in the anode and cathode exhausts of an ethanol electrolysis cell (EEC) have been analyzed by proton NMR and infrared spectrometry under a variety of operating conditions. This provides a full accounting of the fate of ethanol entering the cell, including the stoichiometry of the ethanol oxidation reaction (i.e. the average number of electrons transferred per ethanol molecule), product distribution and the crossover of ethanol and products through the membrane. The reaction stoichiometry (nav) is the key parameter that determines the faradaic efficiency of both EECs and direct ethanol fuel cells. Values determined independently from the product distribution, amount of ethanol consumed, and a simple electrochemical method based on the dependence of the current on the flow rate of the ethanol solution are compared. It is shown that the electrochemical method yields results that are consistent with those based on the product distribution, and based on the consumption of ethanol when crossover is accounted for. Since quantitative analysis of the cathode exhaust is challenging, the electrochemical method provides a valuable alternative for routine determination of nav, and hence the faradaic efficiency of the cell.

  5. Nafion/Silicon Oxide Composite Membrane for High Temperature Proton Exchange Membrane Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Nafion/Silicon oxide composite membranes were produced via in situ sol-gel reaction of tetraethylorthosilicate (TEOS) in Nafion membranes. The physicochemical properties of the membranes were studied by FT-IR, TG-DSC and tensile strength. The results show that the silicon oxide is compatible with the Nafion membrane and the thermo stability of Nafion/Silicon oxide composite membrane is higher than that of Nafion membrane. Furthermore, the tensile strength of Nafion/Silicon oxide composite membrane is similar to that of the Nafion membrane. The proton conductivity of Nafion/Silicon oxide composite membrane is higher than that of Nafion membrane. When the Nafion/Silicon oxide composite membrane was employed as an electrolyte in H2/O2 PEMFC, a higher current density value (1 000 mA/cm2 at 0.38 V) than that of the Nafion 1135 membrane (100 mA/cm2 at 0.04 V) was obtained at 110 ℃.

  6. Issues associated with modelling of proton exchange membrane fuel cell by computational fluid dynamics

    Science.gov (United States)

    Bednarek, Tomasz; Tsotridis, Georgios

    2017-03-01

    The objective of the current study is to highlight possible limitations and difficulties associated with Computational Fluid Dynamics in PEM single fuel cell modelling. It is shown that an appropriate convergence methodology should be applied for steady-state solutions, due to inherent numerical instabilities. A single channel fuel cell model has been taken as numerical example. Results are evaluated for quantitative as well qualitative points of view. The contribution to the polarization curve of the different fuel cell components such as bi-polar plates, gas diffusion layers, catalyst layers and membrane was investigated via their effects on the overpotentials. Furthermore, the potential losses corresponding to reaction kinetics, due to ohmic and mas transport limitations and the effect of the exchange current density and open circuit voltage, were also investigated. It is highlighted that the lack of reliable and robust input data is one of the issues for obtaining accurate results.

  7. High temperature proton exchange membranes based on polybenzimidazole and clay composites for fuel cells

    DEFF Research Database (Denmark)

    Plackett, David; Siu, Ana; Li, Qingfeng

    2011-01-01

    and pyridinium salts with varying polarity and hydrogen-bonding capacity. Clay modification by ion-exchange reactions involving replacement of interlayer inorganic cations was confirmed using X-ray photoelectron and infrared spectroscopy techniques. The cast PBI membranes were characterized by their water uptake......, acid doping and swelling, tensile strength, conductivity and hydrogen permeability as well as by fuel cell tests. For the composite membranes, high acid doping levels were achieved with sufficient mechanical strength and improved dimensional stability or reduced membrane swelling. At an acid doping......-doped pristine PBI membranes. In accordance with the hydrogen permeability measurements, fuel cell tests exhibited high open circuit voltages (i.e., 1.02 V) at room temperature as well as high I–V performance compared with normal PBI membranes....

  8. The affect of erbium hydride on the conversion efficience to accelerated protons from ultra-shsort pulse laser irradiated foils

    Energy Technology Data Exchange (ETDEWEB)

    Offermann, Dustin Theodore [The Ohio State Univ., Columbus, OH (United States)

    2008-01-01

    This thesis work explores, experimentally, the potential gains in the conversion efficiency from ultra-intense laser light to proton beams using erbium hydride coatings. For years, it has been known that contaminants at the rear surface of an ultra-intense laser irradiated thin foil will be accelerated to multi-MeV. Inertial Confinement Fusion fast ignition using proton beams as the igniter source requires of about 1016 protons with an average energy of about 3MeV. This is far more than the 1012 protons available in the contaminant layer. Target designs must include some form of a hydrogen rich coating that can be made thick enough to support the beam requirements of fast ignition. Work with computer simulations of thin foils suggest the atomic mass of the non-hydrogen atoms in the surface layer has a strong affect on the conversion efficiency to protons. For example, the 167amu erbium atoms will take less energy away from the proton beam than a coating using carbon with a mass of 12amu. A pure hydrogen coating would be ideal, but technologically is not feasible at this time. In the experiments performed for my thesis, ErH3 coatings on 5 μm gold foils are compared with typical contaminants which are approximately equivalent to CH1.7. It will be shown that there was a factor of 1.25 ± 0.19 improvement in the conversion efficiency for protons above 3MeV using erbium hydride using the Callisto laser. Callisto is a 10J per pulse, 800nm wavelength laser with a pulse duration of 200fs and can be focused to a peak intensity of about 5 x 1019W/cm2. The total number of protons from either target type was on the order of 1010. Furthermore, the same experiment was performed on the Titan laser, which has a 500fs pulse duration, 150J of energy and can be focused to about 3 x 1020 W/cm2. In this experiment 1012 protons were seen from both erbium hydride and

  9. Modeling of Membrane-Electrode-Assembly Degradation in Proton-Exchange-Membrane Fuel Cells - Local H2 Starvation and Start-Stop Induced Carbon-Support Corrosion

    Science.gov (United States)

    Gu, Wenbin; Yu, Paul T.; Carter, Robert N.; Makharia, Rohit; Gasteiger, Hubert A.

    Carbon-support corrosion causes electrode structure damage and thus electrode degradation. This chapter discusses fundamental models developed to predict cathode carbon-support corrosion induced by local H2 starvation and start-stop in a proton-exchange-membrane (PEM) fuel cell. Kinetic models based on the balance of current among the various electrode reactions are illustrative, yielding much insight on the origin of carbon corrosion and its implications for future materials developments. They are particularly useful in assessing carbon corrosion rates at a quasi-steady-state when an H2-rich region serves as a power source that drives an H2-free region as a load. Coupled kinetic and transport models are essential in predicting when local H2 starvation occurs and how it affects the carbon corrosion rate. They are specifically needed to estimate length scales at which H2 will be depleted and time scales that are valuable for developing mitigation strategies. To predict carbon-support loss distributions over an entire active area, incorporating the electrode pseudo-capacitance appears necessary for situations with shorter residence times such as start-stop events. As carbon-support corrosion is observed under normal transient operations, further model improvement shall be focused on finding the carbon corrosion kinetics associated with voltage cycling and incorporating mechanisms that can quantify voltage decay with carbon-support loss.

  10. In-Situ Measurement of High-Temperature Proton Exchange Membrane Fuel Cell Stack Using Flexible Five-in-One Micro-Sensor.

    Science.gov (United States)

    Lee, Chi-Yuan; Weng, Fang-Bor; Kuo, Yzu-Wei; Tsai, Chao-Hsuan; Cheng, Yen-Ting; Cheng, Chih-Kai; Lin, Jyun-Ting

    2016-10-18

    In the chemical reaction that proceeds in a high-temperature proton exchange membrane fuel cell stack (HT-PEMFC stack), the internal local temperature, voltage, pressure, flow and current nonuniformity may cause poor membrane material durability and nonuniform fuel distribution, thus influencing the performance and lifetime of the fuel cell stack. In this paper micro-electro-mechanical systems (MEMS) are utilized to develop a high-temperature electrochemical environment-resistant five-in-one micro-sensor embedded in the cathode channel plate of an HT-PEMFC stack, and materials and process parameters are appropriately selected to protect the micro-sensor against failure or destruction during long-term operation. In-situ measurement of the local temperature, voltage, pressure, flow and current distributions in the HT-PEMFC stack is carried out. This integrated micro-sensor has five functions, and is favorably characterized by small size, good acid resistance and temperature resistance, quick response, real-time measurement, and the goal is being able to be put in any place for measurement without affecting the performance of the battery.

  11. In-Situ Measurement of High-Temperature Proton Exchange Membrane Fuel Cell Stack Using Flexible Five-in-One Micro-Sensor

    Directory of Open Access Journals (Sweden)

    Chi-Yuan Lee

    2016-10-01

    Full Text Available In the chemical reaction that proceeds in a high-temperature proton exchange membrane fuel cell stack (HT-PEMFC stack, the internal local temperature, voltage, pressure, flow and current nonuniformity may cause poor membrane material durability and nonuniform fuel distribution, thus influencing the performance and lifetime of the fuel cell stack. In this paper micro-electro-mechanical systems (MEMS are utilized to develop a high-temperature electrochemical environment-resistant five-in-one micro-sensor embedded in the cathode channel plate of an HT-PEMFC stack, and materials and process parameters are appropriately selected to protect the micro-sensor against failure or destruction during long-term operation. In-situ measurement of the local temperature, voltage, pressure, flow and current distributions in the HT-PEMFC stack is carried out. This integrated micro-sensor has five functions, and is favorably characterized by small size, good acid resistance and temperature resistance, quick response, real-time measurement, and the goal is being able to be put in any place for measurement without affecting the performance of the battery.

  12. Study of the acetonitrile poisoning of platinum cathodes on proton exchange membrane fuel cell spatial performance using a segmented cell system

    Science.gov (United States)

    Reshetenko, Tatyana V.; St-Pierre, Jean

    2015-10-01

    Due to the wide applications of acetonitrile as a solvent in the chemical industry, acetonitrile can be present in the air and should be considered a possible pollutant. In this work, the spatial proton exchange membrane fuel cell performance exposed to air with 20 ppm CH3CN was studied using a segmented cell system. The injection of CH3CN led to performance losses of 380 mV at 0.2 A cm-2 and 290 mV at 1.0 A cm-2 accompanied by a significant change in the current density distribution. The observed local currents behavior is likely attributed to acetonitrile chemisorption and the subsequent two consecutive reduction/oxidation reactions. The hydrolysis of CH3CN and its intermediate imine species resulted in NH4+ formation, which increased the high-frequency resistance of the cell and affected oxygen reduction and performance. Other products of hydrolysis can be oxidized to CO2 under the operating conditions. The reintroduction of pure air completely recovered cell performance within 4 h at 1.0 A cm-2, while at 0.2 A cm-2 the cell recovery was only partial. A detailed analysis of the current density distribution, its correlation with spatial electrochemical impedance spectroscopy data, possible CH3CN oxidation/reduction mechanisms and mitigation strategies are presented and discussed.

  13. Study of the aromatic hydrocarbons poisoning of platinum cathodes on proton exchange membrane fuel cell spatial performance using a segmented cell system

    Science.gov (United States)

    Reshetenko, Tatyana V.; St-Pierre, Jean

    2016-11-01

    Aromatic hydrocarbons are produced and used in many industrial processes, which makes them hazardous air pollutants. Currently, air is the most convenient oxidant for proton exchange membrane fuel cells (PEMFCs), and air quality is an important consideration because airborne contaminants can negatively affect fuel cell performance. The effects of exposing the cathode of PEMFCs to benzene and naphthalene were investigated using a segmented cell system. The introduction of 2 ppm C6H6 resulted in moderate performance loss of 40-45 mV at 0.2 A cm-2 and 100-110 mV at 1.0 A cm-2 due to benzene adsorption on Pt and its subsequent electrooxidation to CO2 under operating conditions and cell voltages of 0.5-0.8 V. In contrast, PEMFC poisoning by ∼2 ppm of naphthalene led to a decrease in cell performance from 0.66 to 0.13 V at 1.0 A cm-2, which was caused by the strong adsorption of C10H8 onto Pt at cell voltages of 0.2-1.0 V. Naphthalene desorption and hydrogenation only occurred at potentials below 0.2 V. The PEMFCs' performance loss due to each contaminant was recoverable, and the obtained results demonstrated that the fuel cells' exposure to benzene and naphthalene should be limited to concentrations less than 2 ppm.

  14. Plasmid-encoded asp operon confers a proton motive metabolic cycle catalyzed by an aspartate-alanine exchange reaction.

    Science.gov (United States)

    Abe, Keietsu; Ohnishi, Fumito; Yagi, Kyoko; Nakajima, Tasuku; Higuchi, Takeshi; Sano, Motoaki; Machida, Masayuki; Sarker, Rafiquel I; Maloney, Peter C

    2002-06-01

    Tetragenococcus halophila D10 catalyzes the decarboxylation of L-aspartate with nearly stoichiometric release of L-alanine and CO(2). This trait is encoded on a 25-kb plasmid, pD1. We found in this plasmid a putative asp operon consisting of two genes, which we designated aspD and aspT, encoding an L-aspartate-beta-decarboxylase (AspD) and an aspartate-alanine antiporter (AspT), respectively, and determined the nucleotide sequences. The sequence analysis revealed that the genes of the asp operon in pD1 were in the following order: promoter --> aspD --> aspT. The deduced amino acid sequence of AspD showed similarity to the sequences of two known L-aspartate-beta-decarboxylases from Pseudomonas dacunhae and Alcaligenes faecalis. Hydropathy analyses suggested that the aspT gene product encodes a hydrophobic protein with multiple membrane-spanning regions. The operon was subcloned into the Escherichia coli expression vector pTrc99A, and the two genes were cotranscribed in the resulting plasmid, pTrcAsp. Expression of the asp operon in E. coli coincided with appearance of the capacity to catalyze the decarboxylation of aspartate to alanine. Histidine-tagged AspD (AspDHis) was also expressed in E. coli and purified from cell extracts. The purified AspDHis clearly exhibited activity of L-aspartate-beta-decarboxylase. Recombinant AspT was solubilized from E. coli membranes and reconstituted in proteoliposomes. The reconstituted AspT catalyzed self-exchange of aspartate and electrogenic heterologous exchange of aspartate with alanine. Thus, the asp operon confers a proton motive metabolic cycle consisting of the electrogenic aspartate-alanine antiporter and the aspartate decarboxylase, which keeps intracellular levels of alanine, the countersubstrate for aspartate, high.

  15. Effect of System Contaminants on the Performance of a Proton Exchange Membrane Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    Mehrabadi, Bahareh Alsadat Tavakoli; Dinh, Huyen N.; Bender, Guido; Weidner, John W.

    2016-01-01

    The performance loss and recovery of the fuel cell due to Balance of Plant (BOP) contaminants was identified via a combination of experimental data and a mathematical model. The experiments were designed to study the influence of organic contaminants (e.g. those from BOP materials) on the resistance of the catalyst, ionomer and membrane, and a mathematical model was developed that allowed us to separate these competing resistances from the data collected on an operating fuel cell. For this reason, based on the functional groups, four organic contaminants found in BOP materials, diethylene glycol monoethyl ether (DGMEE), diethylene glycol monoethyl ether acetate (DGMEA), benzyl alcohol (BzOH) and 2,6-diaminotoluene (2,6-DAT) were infused separately to the cathode side of the fuel cell. The cell voltage and high frequency impedance resistance was measured as a function of time. The contaminant feed was then discontinued and voltage recovery was measured. It was determined that compounds with ion exchange properties like 2,6-DAT can cause voltage loss with non-reversible recovery, so this compound was studied in more detail. The degree of voltage loss increased with an increase in concentration, and/or infusion time, and increased with a decrease in catalyst loadings.

  16. A boron phosphate-phosphoric acid composite membrane for medium temperature proton exchange membrane fuel cells

    Science.gov (United States)

    Mamlouk, M.; Scott, K.

    2015-07-01

    A composite membrane based on a non-stoichiometric composition of BPO4 with excess of PO4 (BPOx) was synthesised and characterised for medium temperature fuel cell use (120-180 °C). The electrolyte was characterised by FTIR, SS-NMR, TGA and XRD and showed that the B-O is tetrahedral, in agreement with reports in the literature that boron phosphorus oxide compounds at B:P < 1 are exclusively built of borate and phosphate tetrahedra. Platinum micro electrodes were used to study the electrolyte compatibility and stability towards oxygen reduction at 150 °C and to obtain kinetic and mass transport parameters. The conductivities of the pure BPOx membrane electrolyte and a Polybenzimidazole (PBI)-4BPOx composite membrane were 7.9 × 10-2 S cm-1 and 4.5 × 10-2 S cm-1 respectively at 150 °C, 5%RH. Fuel cell tests showed a significant enhancement in performance of BPOx over that of typical 5.6H3PO4-PBI membrane electrolyte. The enhancement is due to the improved ionic conductivity (3×), a higher exchange current density of the oxygen reduction (30×) and a lower membrane gas permeability (10×). Fuel cell current densities at 0.6 V were 706 and 425 mA cm-2 for BPOx and 5.6H3PO4-PBI, respectively, at 150 °C with O2 (atm).

  17. Performance of a proton exchange membrane fuel cell stack with thermally conductive pyrolytic graphite sheets for thermal management

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Chih-Yung; Lin, Yu-Sheng; Lu, Chien-Heng [Department of Aeronautics and Astronautics, National Cheng-Kung University, Tainan 70101 (China)

    2009-04-15

    This work experimentally investigates the effects of the pyrolytic graphite sheets (PGS) on the performance and thermal management of a proton exchange membrane fuel cell (PEMFC) stack. These PGS with the features of light weight and high thermal conductivity serve as heat spreaders in the fuel cell stack for the first time to reduce the volume and weight of cooling systems, and homogenizes the temperature in the reaction areas. A PEMFC stack with an active area of 100 cm{sup 2} and 10 cells in series is constructed and used in this research. Five PGS of thickness 0.1 mm are cut into the shape of flow channels and bound to the central five cathode gas channel plates. Four thermocouples are embedded on the cathode gas channel plates to estimate the temperature variation in the stack. It is shown that the maximum power of the stack increase more than 15% with PGS attached. PGS improve the stack performance and alleviate the flooding problem at low cathode flow rates significantly. Results of this study demonstrate the feasibility of application of PGS to the thermal management of a small-to-medium-sized fuel cell stack. (author)

  18. Highly Stable and Active Pt/Nb-TiO2 Carbon-Free Electrocatalyst for Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Shuhui Sun

    2012-01-01

    Full Text Available The current materials used in proton exchange membrane fuel cells (PEMFCs are not sufficiently durable for commercial deployment. One of the major challenges lies in the development of an inexpensive, efficient, and highly durable and active electrocatalyst. Here a new type of carbon-free Pt/Nb-TiO2 electrocatalyst has been reported. Mesoporous Nb-TiO2 hollow spheres were synthesized by the sol-gel method using polystyrene (PS sphere templates. Pt nanoparticles (NPs were then deposited onto mesoporous Nb-TiO2 hollow spheres via a simple wet-chemical route in aqueous solution, without the need for surfactants or potentiostats. The growth densities of Pt NPs on Nb-TiO2 supports could be easily modulated by simply adjusting the experimental parameters. Electrochemical studies of Pt/Nb-TiO2 show much enhanced activity and stability than commercial E-TEK Pt/C catalyst. PtNP/Nb-TiO2 is a promising new cathode catalyst for PEMFC applications.

  19. Hybrid approach combining multiple characterization techniques and simulations for microstructural analysis of proton exchange membrane fuel cell electrodes

    Science.gov (United States)

    Cetinbas, Firat C.; Ahluwalia, Rajesh K.; Kariuki, Nancy; De Andrade, Vincent; Fongalland, Dash; Smith, Linda; Sharman, Jonathan; Ferreira, Paulo; Rasouli, Somaye; Myers, Deborah J.

    2017-03-01

    The cost and performance of proton exchange membrane fuel cells strongly depend on the cathode electrode due to usage of expensive platinum (Pt) group metal catalyst and sluggish reaction kinetics. Development of low Pt content high performance cathodes requires comprehensive understanding of the electrode microstructure. In this study, a new approach is presented to characterize the detailed cathode electrode microstructure from nm to μm length scales by combining information from different experimental techniques. In this context, nano-scale X-ray computed tomography (nano-CT) is performed to extract the secondary pore space of the electrode. Transmission electron microscopy (TEM) is employed to determine primary C particle and Pt particle size distributions. X-ray scattering, with its ability to provide size distributions of orders of magnitude more particles than TEM, is used to confirm the TEM-determined size distributions. The number of primary pores that cannot be resolved by nano-CT is approximated using mercury intrusion porosimetry. An algorithm is developed to incorporate all these experimental data in one geometric representation. Upon validation of pore size distribution against gas adsorption and mercury intrusion porosimetry data, reconstructed ionomer size distribution is reported. In addition, transport related characteristics and effective properties are computed by performing simulations on the hybrid microstructure.

  20. Characterization of polyethyleneterephthalate (PET) based proton exchange membranes prepared by UV-radiation-induced graft copolymerization of styrene

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Mostak; Khan, Mohammad B.; Alam, S. Shamsul; Khan, M. Anwar H. [Department of Chemistry, Shahjalal University of Science and Technology, Sylhet 3114 (Bangladesh); Khan, Mubarak A. [Radiation and Polymer Chemistry Laboratory, Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, P.O. Box 3787, Dhaka (Bangladesh); Halim, Md. Abdul [Department of Chemistry, Jahangirnagar University, savar, Dhaka (Bangladesh)

    2011-01-15

    Polymer electrolyte membranes (PEMs) were successfully prepared by simultaneous ultraviolet (UV) radiation-induced graft copolymerization of styrene (35 vol.% concentration) onto poly(ethyleneterephthalate) (PET) film, followed by sulfonation on the styrene monomer units in the grafting chain using 0.05 M chlorosulfonic acid (ClSO{sub 3}H). The radiation grafting and the sulfonation have been confirmed by titrimetric and gravimetric analyses as well as Fourier Transform Infrared (FTIR) spectroscopy. The maximum ion-exchange capacity (IEC) of the PEM was measured to be 0.04385 mmol g{sup -1} at its highest level of grafting and sulfonation. They exhibited high thermal and mechanical properties as well as oxidative stability. They are highly stable in H{sub 2}SO{sub 4} solutions and can be used in the acidic fuel cells. The membranes showed low water uptake as well as low proton conductivity than Nafion. In this study, the preparation of PEMs from commodity-type polymers is found to be very inexpensive and is a suitable candidate for applications in fuel cells. (author)

  1. Influence of the cathode architecture in the frequency response of self-breathing proton exchange membrane fuel cells

    Science.gov (United States)

    Ferreira-Aparicio, P.; Chaparro, A. M.

    2014-12-01

    Self-breathing proton exchange membrane fuel cells are apparently simple devices, but efficient water management is critical for their performance. The cathode configuration should guarantee balanced rates between O2 accessibility from the circumventing air and H2O removal, and a good electric contact between catalyst layers and current collectors at the same time. By applying progressive modifications to the initial concept of a conventional PEMFC, the effect of the cathode architecture on cell performance has been analyzed. Frequency response analyses of the cell during steady-state potentiostatic stepping have yielded relevant information regarding limitations originated by the cathode impedance under high current load conditions. The primitive cell design has been optimized for self-breathing operation by means of this diagnostic tool. The thickness of the perforated plate in the cathode has been found to be one of the main factors contributing to limit oxygen accessibility when a high current load is demanded. Adequate cathode architecture is critical for reducing mass transport limitations in the catalytic layer and enhancing performance under self-breathing conditions.

  2. Application of proton exchange membrane fuel cells for the monitoring and direct usage of biohydrogen produced by Chlamydomonas reinhardtii

    Science.gov (United States)

    Oncel, S.; Vardar-Sukan, F.

    Photo-biologically produced hydrogen by Chlamydomonas reinhardtii is integrated with a proton exchange (PEM) fuel cell for online electricity generation. To investigate the fuel cell efficiency, the effect of hydrogen production on the open circuit fuel cell voltage is monitored during 27 days of batch culture. Values of volumetric hydrogen production, monitored by the help of the calibrated water columns, are related with the open circuit voltage changes of the fuel cell. From the analysis of this relation a dead end configuration is selected to use the fuel cell in its best potential. After the open circuit experiments external loads are tested for their effects on the fuel cell voltage and current generation. According to the results two external loads are selected for the direct usage of the fuel cell incorporating with the photobioreactors (PBR). Experiments with the PEM fuel cell generate a current density of 1.81 mA cm -2 for about 50 h with 10 Ω load and 0.23 mA cm -2 for about 80 h with 100 Ω load.

  3. Application of proton exchange membrane fuel cells for the monitoring and direct usage of biohydrogen produced by Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Oncel, S.; Vardar-Sukan, F. [Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir (Turkey)

    2011-01-01

    Photo-biologically produced hydrogen by Chlamydomonas reinhardtii is integrated with a proton exchange (PEM) fuel cell for online electricity generation. To investigate the fuel cell efficiency, the effect of hydrogen production on the open circuit fuel cell voltage is monitored during 27 days of batch culture. Values of volumetric hydrogen production, monitored by the help of the calibrated water columns, are related with the open circuit voltage changes of the fuel cell. From the analysis of this relation a dead end configuration is selected to use the fuel cell in its best potential. After the open circuit experiments external loads are tested for their effects on the fuel cell voltage and current generation. According to the results two external loads are selected for the direct usage of the fuel cell incorporating with the photobioreactors (PBR). Experiments with the PEM fuel cell generate a current density of 1.81 mA cm{sup -2} for about 50 h with 10 {omega} load and 0.23 mA cm{sup -2} for about 80 h with 100 {omega} load. (author)

  4. Alumina-carbon nanofibers nanocomposites obtained by spark plasma sintering for proton exchange membrane fuel cell bipolar plates

    Energy Technology Data Exchange (ETDEWEB)

    Borrell, A.; Torrecillas, R. [Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN) Consejo Superior de Investigaciones Cientificas, Universidad de Oviedo, Principado de Asturias, Parque Tecnologico de Asturias, Llanera Asturias (Spain); Rocha, V.G.; Fernandez, A. [ITMA Materials Technology, Parque Tecnologico de Asturias, Llanera Asturias (Spain)

    2012-08-15

    There is an increasing demand of multifunctional materials for a wide variety of technological developments. Bipolar plates for proton exchange membrane fuel cells are an example of complex functionality components that must show among other properties high mechanical strength, electrical, and thermal conductivity. The present research explored the possibility of using alumina-carbon nanofibers (CNFs) nanocomposites for this purpose. In this study, it was studied for the first time the whole range of powder compositions in this system. Homogeneous powders mixtures were prepared and subsequently sintered by spark plasma sintering. The materials obtained were thoroughly characterized and compared in terms of properties required to be used as bipolar plates. The control on material microstructure and composition allows designing materials where mechanical or electrical performances are enhanced. A 50/50 vol.% alumina-CNFs composite appears to be a very promising material for this kind of application. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Degradation of graphene coated copper in simulated proton exchange membrane fuel cell environment: Electrochemical impedance spectroscopy study

    Science.gov (United States)

    Ren, Y. J.; Anisur, M. R.; Qiu, W.; He, J. J.; Al-Saadi, S.; Singh Raman, R. K.

    2017-09-01

    Metallic materials are most suitable for bipolar plates of proton exchange membrane fuel cell (PEMFC) because they possess the required mechanical strength, durability, gas impermeability, acceptable cost and are suitable for mass production. However, metallic bipolar plates are prone to corrosion or they can passivate under PEMFC environment and interrupt the fuel cell operation. Therefore, it is highly attractive to develop corrosion resistance coating that is also highly conductive. Graphene fits these criteria. Graphene coating is developed on copper by chemical vapor deposition (CVD) with an aim to improving corrosion resistance of copper under PEMFC condition. The Raman Spectroscopy shows the graphene coating to be multilayered. The electrochemical degradation of graphene coated copper is investigated by electrochemical impedance spectroscopy (EIS) in 0.5 M H2SO4 solution at room temperature. After exposure to the electrolyte for up to 720 h, the charge transfer resistance (Rt) of the graphene coated copper is ∼3 times greater than that of the bare copper, indicating graphene coatings could improve the corrosion resistance of copper bipolar plates.

  6. Isothermal Ice Crystallization Kinetics in the Gas-Diffusion Layer of a Proton-Exchange-Membrane Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    Dursch, Thomas J. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ciontea, Monica A. [Univ. of California, Berkeley, CA (United States); Radke, Clayton J. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Weber, Adam Z. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-12-01

    Nucleation and growth of ice in the fibrous gas-diffusion layer (GDL) of a proton-exchange membrane fuel cell (PEMFC) are studied using isothermal differential scanning calorimetry (DSC). Isothermal crystallization rates and pseudo-steady-state nucleation rates are obtained as a function of subcooling from heat-flow and induction-time measurements. Kinetics of ice nucleation and growth are studied at two polytetrafluoroethylene (PTFE) loadings (0 and 10 wt %) in a commercial GDL for temperatures between 240 and 273 K. A nonlinear ice-crystallization rate expression is developed using Johnson–Mehl–Avrami–Kolmogorov (JMAK) theory, in which the heat-transfer-limited growth rate is determined from the moving-boundary Stefan problem. Induction times follow a Poisson distribution and increase upon addition of PTFE, indicating that nucleation occurs more slowly on a hydrophobic fiber than on a hydrophilic fiber. The determined nucleation rates and induction times follow expected trends from classical nucleation theory. Finally, a validated rate expression is now available for predicting ice-crystallization kinetics in GDLs.

  7. Coupled modeling of water transport and air-droplet interaction in the electrode of a proton exchange membrane fuel cell

    Science.gov (United States)

    Esposito, Angelo; Pianese, Cesare; Guezennec, Yann G.

    In this work, an accurate and computationally fast model for liquid water transport within a proton exchange membrane fuel cell (PEMFC) electrode is developed by lumping the space-dependence of the relevant variables. Capillarity is considered as the main transport mechanism within the gas diffusion layer (GDL). The novelty of the model lies in the coupled simulation of the water transport at the interface between gas diffusion layer and gas flow channel (GFC). This is achieved with a phenomenological description of the process that allows its simulation with relative simplicity. Moreover, a detailed two-dimensional visualization of such interface is achieved via geometric simulation of water droplets formation, growth, coalescence and detachment on the surface of the GDL. The model is useful for optimization analysis oriented to both PEMFC design and balance of plant. Furthermore, the accomplishment of reduced computational time and good accuracy makes the model suitable for control strategy implementation to ensure PEM fuel cells operation within optimal electrode water content.

  8. Three-dimensional two-phase flow model of proton exchange membrane fuel cell with parallel gas distributors

    Science.gov (United States)

    Liu, Xunliang; Lou, Guofeng; Wen, Zhi

    A non-isothermal, steady-state, three-dimensional (3D), two-phase, multicomponent transport model is developed for proton exchange membrane (PEM) fuel cell with parallel gas distributors. A key feature of this work is that a detailed membrane model is developed for the liquid water transport with a two-mode water transfer condition, accounting for the non-equilibrium humidification of membrane with the replacement of an equilibrium assumption. Another key feature is that water transport processes inside electrodes are coupled and the balance of water flux is insured between anode and cathode during the modeling. The model is validated by the comparison of predicted cell polarization curve with experimental data. The simulation is performed for water vapor concentration field of reactant gases, water content distribution in the membrane, liquid water velocity field and liquid water saturation distribution inside the cathode. The net water flux and net water transport coefficient values are obtained at different current densities in this work, which are seldom discussed in other modeling works. The temperature distribution inside the cell is also simulated by this model.

  9. Performance evaluation and parametric optimization of a proton exchange membrane fuel cell/heat-driven heat pump hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.; Chen, J. [Department of Physics, Xiamen University, Xiamen 361005 (China)

    2012-06-15

    With the help of the current models of proton exchange membrane (PEM) fuel cells and three-heat-source heat pumps, a generic model of a PEM fuel cell/heat-driven heat pump hybrid system is established, so that the waste heat produced in the PEM fuel cell may be availably utilized. Based on the theory of electrochemistry and non-equilibrium thermodynamics, expressions for the efficiency and power output of the PEM fuel cell, the coefficient of performance and rate of pumping heat of the heat-driven heat pump, and the equivalent efficiency and power output of the hybrid system are derived. The curves of the equivalent efficiency and power output of the hybrid system varying with the electric current density and the equivalent power output versus efficiency curves are represented through numerical calculation. The general performance characteristics of the hybrid system are analyzed. The optimally operating regions of some important parameters of the hybrid system are determined. The influence of some main irreversible losses on the performance of the hybrid system is discussed in detail. The advantages of the hybrid system are revealed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Study of the two-phase dummy load shut-down strategy for proton exchange membrane fuel cells

    Science.gov (United States)

    Zhang, Q.; Lin, R.; Cui, X.; Xia, S. X.; Yang, Z.; Chang, Y. T.

    2017-02-01

    This paper presents a new system strategy designed to alleviate the performance decay caused by start-up/shut-down (SU/SD) conditions in proton exchange membrane fuel cells (PEMFCs). The innovative method was tested using a two-phase dummy load composed of a linearly declined main load and a fixed small auxiliary load. The initial value of the main load must be controlled within a proper range, and a closed-ended air exhaust is necessary. According to the analysis of in-situ current density distribution during SD processes, the two-phase dummy load can continuously fit the process of oxygen reduction in the cathode, whereas the conventional dummy load leads to local air starvation. Polarization curves and cyclic voltammetry (CV) were employed to evaluate the performance decay during SU/SD repetition. After tests of 900 cycles, the highest voltage degradation rate of the PEMFC was 3.33 μV cycle-1 (800 mA cm-2), and the electrochemical surface area (ECSA) loss was 0.0046 m2 g-1 cycle-1 with the two-phase dummy load strategy. After comparing results with similar work on a single PEMFC, the authors confirmed the preeminent effectiveness of this strategy. This strategy will also improve fuel cell stack performance due to controllable SD duration and comparatively low performance decay rates.

  11. Application of a self-supporting microporous layer to gas diffusion layers of proton exchange membrane fuel cells

    Science.gov (United States)

    Ito, Hiroshi; Heo, Yun; Ishida, Masayoshi; Nakano, Akihiro; Someya, Satoshi; Munakata, Tetsuo

    2017-02-01

    The intrinsic effect of properties of a self-supporting microporous layer (MPL) on the performance of proton exchange membrane fuel cells (PEMFCs) is identified. First, a self-supporting MPL is fabricated and applied to a gas diffusion layer (GDL) of a PEMFC, when the GDL is either an integrated sample composed of a gas diffusion backing (GDB, i.e., carbon paper) combined with MPL or a sample with only MPL. Cell performance tests reveal that, the same as the MPL fabricated by the coating method, the self-supporting MPL on the GDB improves the cell performance at high current density. Furthermore, the GDL composed only of the MPL (i.e., GDB-free GDL) shows better performance than does the integrated GDB/MPL GDL. These results along with literature data strongly suggest that the low thermal conductivity of MPL induces a high temperature throughout the GDL, and thus vapor diffusion is dominant in the transport of product water through the MPL.

  12. New insights into non-precious metal catalyst layer designs for proton exchange membrane fuel cells: Improving performance and stability

    Science.gov (United States)

    Banham, Dustin; Kishimoto, Takeaki; Sato, Tetsutaro; Kobayashi, Yoshikazu; Narizuka, Kumi; Ozaki, Jun-ichi; Zhou, Yingjie; Marquez, Emil; Bai, Kyoung; Ye, Siyu

    2017-03-01

    The activity of non-precious metal catalysts (NPMCs) has now reached a stage at which they can be considered as possible alternatives to Pt for some proton exchange membrane fuel cell (PEMFC) applications. However, despite significant efforts over the past 50 years on catalyst development, only limited studies have been performed on NPMC-based cathode catalyst layer (CCL) designs. In this work, an extensive ionomer study is performed to investigate the impact of ionomer equivalent weight on performance, which has uncovered two crucial findings. Firstly, it is demonstrated that beyond a critical CCL conductance, no further improvement in performance is observed. The procedure used to determine this critical conductance can be used by other researchers in this field to aid in their design of high performing NPMC-based CCLs. Secondly, it is shown that the stability of NPMC-based CCLs can be improved through the use of low equivalent weight ionomers. This represents a completely unexplored pathway for further stability improvements, and also provides new insights into the possible degradation mechanisms occurring in NPMC-based CCLs. These findings have broad implications on all future NPMC-based CCL designs.

  13. Improving a free air breathing proton exchange membrane fuel cell through the Maximum Efficiency Point Tracking method

    Science.gov (United States)

    Higuita Cano, Mauricio; Mousli, Mohamed Islam Aniss; Kelouwani, Sousso; Agbossou, Kodjo; Hammoudi, Mhamed; Dubé, Yves

    2017-03-01

    This work investigates the design and validation of a fuel cell management system (FCMS) which can perform when the fuel cell is at water freezing temperature. This FCMS is based on a new tracking technique with intelligent prediction, which combined the Maximum Efficiency Point Tracking with variable perturbation-current step and the fuzzy logic technique (MEPT-FL). Unlike conventional fuel cell control systems, our proposed FCMS considers the cold-weather conditions, the reduction of fuel cell set-point oscillations. In addition, the FCMS is built to respond quickly and effectively to the variations of electric load. A temperature controller stage is designed in conjunction with the MEPT-FL in order to operate the FC at low-temperature values whilst tracking at the same time the maximum efficiency point. The simulation results have as well experimental validation suggest that propose approach is effective and can achieve an average efficiency improvement up to 8%. The MEPT-FL is validated using a Proton Exchange Membrane Fuel Cell (PEMFC) of 500 W.

  14. Research on proton exchange membrane fuel cell%质子交换膜燃料电池研究

    Institute of Scientific and Technical Information of China (English)

    章晖

    2015-01-01

    Proton exchange membrane fuel cell(PEMFC) has an extensive application respective in EV, portable electronic device, stationary power plant and special power with the advantages of high energy conversion efficiency and quick startup at ambient temperature. The technology and mechanism of PEMFC was researched, and its structure defects were analyzed. It is concluded that to research novel catalysts with high activity and excellent stability is very important for the future fuel cell.%质子交换膜燃料电池(PEMFC)因无电解质腐蚀问题,能量转换效率高,可室温快速启动,在电动车、便携式电子设备、固定电站和军用特种电源等方面都有广阔的应用前景。研究了质子交换膜燃料电池实用化的技术及机理,对其结构缺陷进行了分析,认为开拓新的催化剂体系,合成出活性更高、稳定性更好的催化剂对于燃料电池来说意义重大。

  15. Low platinum loading for high temperature proton exchange membrane fuel cell developed by ultrasonic spray coating technique

    Science.gov (United States)

    Su, Huaneng; Jao, Ting-Chu; Barron, Olivia; Pollet, Bruno G.; Pasupathi, Sivakumar

    2014-12-01

    This paper reports use of an ultrasonic-spray for producing low Pt loadings membrane electrode assemblies (MEAs) with the catalyst coated substrate (CCS) fabrication technique. The main MEA sub-components (catalyst, membrane and gas diffusion layer (GDL)) are supplied from commercial manufacturers. In this study, high temperature (HT) MEAs with phosphoric acid (PA)-doped poly(2,5-benzimidazole) (AB-PBI) membrane are fabricated and tested under 160 °C, hydrogen and air feed 100 and 250 cc min-1 and ambient pressure conditions. Four different Pt loadings (from 0.138 to 1.208 mg cm-2) are investigated in this study. The experiment data are determined by in-situ electrochemical methods such as polarization curve, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The high Pt loading MEA exhibits higher performance at high voltage operating conditions but lower performances at peak power due to the poor mass transfer. The Pt loading 0.350 mg cm-2 GDE performs the peak power density and peak cathode mass power to 0.339 W cm-2 and 0.967 W mgPt-1, respectively. This work presents impressive cathode mass power and high fuel cell performance for high temperature proton exchange membrane fuel cells (HT-PEMFCs) with low Pt loadings.

  16. CO-Tolerant Pt–BeO as a Novel Anode Electrocatalyst in Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Kyungjung Kwon

    2016-05-01

    Full Text Available Commercialization of proton exchange membrane fuel cells (PEMFCs requires less expensive catalysts and higher operating voltage. Substantial anodic overvoltage with the usage of reformed hydrogen fuel can be minimized by using CO-tolerant anode catalysts. Carbon-supported Pt–BeO is manufactured so that Pt particles with an average diameter of 4 nm are distributed on a carbon support. XPS analysis shows that a peak value of the binding energy of Be matches that of BeO, and oxygen is bound with Be or carbon. The hydrogen oxidation current of the Pt–BeO catalyst is slightly higher than that of a Pt catalyst. CO stripping voltammetry shows that CO oxidation current peaks at ~0.85 V at Pt, whereas CO is oxidized around 0.75 V at Pt–BeO, which confirms that the desorption of CO is easier in the presence of BeO. Although the state-of-the-art PtRu anode catalyst is dominant as a CO-tolerant hydrogen oxidation catalyst, this study of Be-based CO-tolerant material can widen the choice of PEMFC anode catalyst.

  17. Optimization of the polypyrrole-coating parameters for proton exchange membrane fuel cell bipolar plates using the Taguchi method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan; Northwood, Derek O. [Department of Mechanical, Automotive, and Materials Engineering, University of Windsor, 401 Sunset Avenue, Windsor, Ontario (Canada)

    2008-10-15

    In order to overcome the high price, weight and volume of non-porous graphite bipolar plates, metallic bipolar plates are being investigated as a substitute material. However, metallic materials can corrode under proton exchange membrane fuel cell (PEMFC) working conditions, leading to a degradation in the performance of the membrane. Previous work had shown that a polypyrrole coating on SS316L can significantly increase the corrosion resistance of the base material. In this study, a Taguchi design of experiment method was used to optimize the process parameters for the polypyrrole coating so as to produce the maximum corrosion resistance. Potentiodynamic and potentiostatic tests were used to determine the corrosion resistance of the polypyrrole-coated SS316L. Scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) was used to characterize the coating thickness and coating appearance. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to determine the metal ion concentration in the solution after corrosion. The interfacial contact resistance of SS316L with carbon paper was measured both before and after coating with polypyrrole. (author)

  18. Investigation of bio-inspired flow channel designs for bipolar plates in proton exchange membrane fuel cells

    Science.gov (United States)

    Kloess, Jason P.; Wang, Xia; Liu, Joan; Shi, Zhongying; Guessous, Laila

    Proton exchange membrane (PEM) fuel cell performance is directly related to the flow channel design on bipolar plates. Power gains can be found by varying the type, size, or arrangement of channels. The objective of this paper is to present two new flow channel patterns: a leaf design and a lung design. These bio-inspired designs combine the advantages of the existing serpentine and interdigitated patterns with inspiration from patterns found in nature. Both numerical simulation and experimental testing have been conducted to investigate the effects of two new flow channel patterns on fuel cell performance. From the numerical simulation, it was found that there is a lower pressure drop from the inlet to outlet in the leaf or lung design than the existing serpentine or interdigitated flow patterns. The flow diffusion to the gas diffusion layer was found be to more uniform for the new flow channel patterns. A 25 cm 2 fuel cell was assembled and tested for four different flow channels: leaf, lung, serpentine and interdigitated. The polarization curve has been obtained under different operating conditions. It was found that the fuel cell with either leaf or lung design performs better than the convectional flow channel design under the same operating conditions. Both the leaf and lung design show improvements over previous designs by up to 30% in peak power density.

  19. Investigation of bio-inspired flow channel designs for bipolar plates in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kloess, Jason P. [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI (United States); Wang, Xia; Shi, Zhongying; Guessous, Laila [Department of Mechanical Engineering, Oakland University, Rochester, MI 48309 (United States); Liu, Joan [Department of Mechanical Engineering, Olin College of Engineering, MA (United States)

    2009-03-01

    Proton exchange membrane (PEM) fuel cell performance is directly related to the flow channel design on bipolar plates. Power gains can be found by varying the type, size, or arrangement of channels. The objective of this paper is to present two new flow channel patterns: a leaf design and a lung design. These bio-inspired designs combine the advantages of the existing serpentine and interdigitated patterns with inspiration from patterns found in nature. Both numerical simulation and experimental testing have been conducted to investigate the effects of two new flow channel patterns on fuel cell performance. From the numerical simulation, it was found that there is a lower pressure drop from the inlet to outlet in the leaf or lung design than the existing serpentine or interdigitated flow patterns. The flow diffusion to the gas diffusion layer was found be to more uniform for the new flow channel patterns. A 25 cm{sup 2} fuel cell was assembled and tested for four different flow channels: leaf, lung, serpentine and interdigitated. The polarization curve has been obtained under different operating conditions. It was found that the fuel cell with either leaf or lung design performs better than the convectional flow channel design under the same operating conditions. Both the leaf and lung design show improvements over previous designs by up to 30% in peak power density. (author)

  20. Compact Design of 10 kW Proton Exchange Membrane Fuel Cell Stack Systems with Microcontroller Units

    Directory of Open Access Journals (Sweden)

    Hsiaokang Ma

    2014-04-01

    Full Text Available In this study, fuel, oxidant supply and cooling systems with microcontroller units (MCU are developed in a compact design to fit two 5 kW proton exchange membrane fuel cell (PEMFC stacks. At the initial stage, the testing facility of the system has a large volume (2.0 m × 2.0 m × 1.5 m with a longer pipeline and excessive control sensors for safe testing. After recognizing the performance and stability of stack, the system is redesigned to fit in a limited space (0.4 m × 0.5 m × 0.8 m. Furthermore, the stack performance is studied under different hydrogen recycling modes. Then, two similar 5 kW stacks are directly coupled with diodes to obtain a higher power output and safe operation. The result shows that the efficiency of the 5 kW stack is 43.46% with a purge period of 2 min with hydrogen recycling and that the hydrogen utilization rate µf is 66.31%. In addition, the maximum power output of the twin-coupled module (a power module with two stacks in electrical cascade/parallel arrangement is 9.52 kW.

  1. Experimental study on the optimal purge duration of a proton exchange membrane fuel cell with a dead-ended anode

    Science.gov (United States)

    Lin, Yu-Fen; Chen, Yong-Song

    2017-02-01

    When a proton exchange membrane fuel cell (PEMFC) is operated with a dead-ended anode, impurities gradually accumulate within the anode, resulting in a performance drop. An anode purge is thereby ultimately required to remove impurities within the anode. A purge strategy comprises purge interval (valve closed) and purge duration (valve is open). A short purge interval causes frequent and unnecessary activation of the valve, whereas a long purge interval leads to excessive impurity accumulation. A short purge duration causes an incomplete performance recovery, whereas a long purge duration results in low hydrogen utilization. In this study, a series of experimental trials was conducted to simultaneously measure the hydrogen supply rate and power generation of a PEMFC at a frequency of 50 Hz for various operating current density levels and purge durations. The effect of purge duration on the cell's energy efficiency was subsequently analyzed and discussed. The results showed that the optimal purge duration for the PEMFC was approximately 0.2 s. Based on the results of this study, a methodical process for determining optimal purge durations was ultimately proposed for widespread application. Purging approximately one-fourth of anode gas can obtain optimal energy efficiency for a PEMFC with a dead-ended anode.

  2. Modeling two-phase flow in three-dimensional complex flow-fields of proton exchange membrane fuel cells

    Science.gov (United States)

    Kim, Jinyong; Luo, Gang; Wang, Chao-Yang

    2017-10-01

    3D fine-mesh flow-fields recently developed by Toyota Mirai improved water management and mass transport in proton exchange membrane (PEM) fuel cell stacks, suggesting their potential value for robust and high-power PEM fuel cell stack performance. In such complex flow-fields, Forchheimer's inertial effect is dominant at high current density. In this work, a two-phase flow model of 3D complex flow-fields of PEMFCs is developed by accounting for Forchheimer's inertial effect, for the first time, to elucidate the underlying mechanism of liquid water behavior and mass transport inside 3D complex flow-fields and their adjacent gas diffusion layers (GDL). It is found that Forchheimer's inertial effect enhances liquid water removal from flow-fields and adds additional flow resistance around baffles, which improves interfacial liquid water and mass transport. As a result, substantial improvements in high current density cell performance and operational stability are expected in PEMFCs with 3D complex flow-fields, compared to PEMFCs with conventional flow-fields. Higher current density operation required to further reduce PEMFC stack cost per kW in the future will necessitate optimizing complex flow-field designs using the present model, in order to efficiently remove a large amount of product water and hence minimize the mass transport voltage loss.

  3. Proton exchange membrane fuel cell model for aging predictions: Simulated equivalent active surface area loss and comparisons with durability tests

    Science.gov (United States)

    Robin, C.; Gérard, M.; Quinaud, M.; d'Arbigny, J.; Bultel, Y.

    2016-09-01

    The prediction of Proton Exchange Membrane Fuel Cell (PEMFC) lifetime is one of the major challenges to optimize both material properties and dynamic control of the fuel cell system. In this study, by a multiscale modeling approach, a mechanistic catalyst dissolution model is coupled to a dynamic PEMFC cell model to predict the performance loss of the PEMFC. Results are compared to two 2000-h experimental aging tests. More precisely, an original approach is introduced to estimate the loss of an equivalent active surface area during an aging test. Indeed, when the computed Electrochemical Catalyst Surface Area profile is fitted on the experimental measures from Cyclic Voltammetry, the computed performance loss of the PEMFC is underestimated. To be able to predict the performance loss measured by polarization curves during the aging test, an equivalent active surface area is obtained by a model inversion. This methodology enables to successfully find back the experimental cell voltage decay during time. The model parameters are fitted from the polarization curves so that they include the global degradation. Moreover, the model captures the aging heterogeneities along the surface of the cell observed experimentally. Finally, a second 2000-h durability test in dynamic operating conditions validates the approach.

  4. Design and optimization of anode flow field of a large proton exchange membrane fuel cell for high hydrogen utilization

    Science.gov (United States)

    Yesilyurt, Serhat; Rizwandi, Omid

    2016-11-01

    We developed a CFD model of the anode flow field of a large proton exchange membrane fuel cell that operates under the ultra-low stoichiometric (ULS) flow conditions which intend to improve the disadvantages of the dead-ended operation such as severe voltage transient and carbon corrosion. Very small exit velocity must be high enough to remove accumulated nitrogen, and must be low enough to retain hydrogen in the active area. Stokes equations are used to model the flow distribution in the flow field, Maxwell-Stefan equations are used to model the transport of the species, and a voltage model is developed to model the reactions kinetics. Uniformity of the distribution of hydrogen concentration is quantified as the normalized area of the region in which the hydrogen mole fraction remains above a certain level, such as 0.9. Geometry of the anode flow field is modified to obtain optimal configuration; the number of baffles at the inlet, width of the gaps between baffles, width of the side gaps, and length of the central baffle are used as design variables. In the final design, the hydrogen-depleted region is less than 0.2% and the hydrogen utilization is above 99%. This work was supported by The Scientific and Technolo-gical Research Council of Turkey, TUBITAK-213M023.

  5. Analysis of the control structures for an integrated ethanol processor for proton exchange membrane fuel cell systems

    Science.gov (United States)

    Biset, S.; Nieto Deglioumini, L.; Basualdo, M.; Garcia, V. M.; Serra, M.

    The aim of this work is to investigate which would be a good preliminary plantwide control structure for the process of Hydrogen production from bioethanol to be used in a proton exchange membrane (PEM) accounting only steady-state information. The objective is to keep the process under optimal operation point, that is doing energy integration to achieve the maximum efficiency. Ethanol, produced from renewable feedstocks, feeds a fuel processor investigated for steam reforming, followed by high- and low-temperature shift reactors and preferential oxidation, which are coupled to a polymeric fuel cell. Applying steady-state simulation techniques and using thermodynamic models the performance of the complete system with two different control structures have been evaluated for the most typical perturbations. A sensitivity analysis for the key process variables together with the rigorous operability requirements for the fuel cell are taking into account for defining acceptable plantwide control structure. This is the first work showing an alternative control structure applied to this kind of process.

  6. Direct alcohol fuel cells: toward the power densities of hydrogen-fed proton exchange membrane fuel cells.

    Science.gov (United States)

    Chen, Yanxin; Bellini, Marco; Bevilacqua, Manuela; Fornasiero, Paolo; Lavacchi, Alessandro; Miller, Hamish A; Wang, Lianqin; Vizza, Francesco

    2015-02-01

    A 2 μm thick layer of TiO2 nanotube arrays was prepared on the surface of the Ti fibers of a nonwoven web electrode. After it was doped with Pd nanoparticles (1.5 mgPd  cm(-2) ), this anode was employed in a direct alcohol fuel cell. Peak power densities of 210, 170, and 160 mW cm(-2) at 80 °C were produced if the cell was fed with 10 wt % aqueous solutions of ethanol, ethylene glycol, and glycerol, respectively, in 2 M aqueous KOH. The Pd loading of the anode was increased to 6 mg cm(-2) by combining four single electrodes to produce a maximum peak power density with ethanol at 80 °C of 335 mW cm(-2) . Such high power densities result from a combination of the open 3 D structure of the anode electrode and the high electrochemically active surface area of the Pd catalyst, which promote very fast kinetics for alcohol electro-oxidation. The peak power and current densities obtained with ethanol at 80 °C approach the output of H2 -fed proton exchange membrane fuel cells.

  7. The preparation technique optimization of epoxy/compressed expanded graphite composite bipolar plates for proton exchange membrane fuel cells

    Science.gov (United States)

    Du, Chao; Ming, Pingwen; Hou, Ming; Fu, Jie; Fu, Yunfeng; Luo, Xiaokuan; Shen, Qiang; Shao, Zhigang; Yi, Baolian

    Vacuum resin impregnation method has been used to prepare polymer/compressed expanded graphite (CEG) composite bipolar plates for proton exchange membrane fuel cells (PEMFCs). In this research, three different preparation techniques of the epoxy/CEG composite bipolar plate (Compression-Impregnation method, Impregnation-Compression method and Compression-Impregnation-Compression method) are optimized by the physical properties of the composite bipolar plates. The optimum conditions and the advantages/disadvantages of the different techniques are discussed respectively. Although having different characteristics, bipolar plates obtained by these three techniques can all meet the demands of PEMFC bipolar plates as long as the optimum conditions are selected. The Compression-Impregnation-Compression method is shown to be the optimum method because of the outstanding properties of the bipolar plates. Besides, the cell assembled with these optimum composite bipolar plates shows excellent stability after 200 h durability testing. Therefore the composite prepared by vacuum resin impregnation method is a promising candidate for bipolar plate materials in PEMFCs.

  8. Analysis of the control structures for an integrated ethanol processor for proton exchange membrane fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Biset, S.; Nieto Deglioumini, L.; Basualdo, M. [GIAIP-CIFASIS (UTN-FRRo-CONICET-UPCAM-UNR), BV. 27 de Febrero 210 Bis, S2000EZP Rosario (Argentina); Garcia, V.M.; Serra, M. [Institut de Robotica i Informatica Industrial, C. Llorens i Artigas 4-6, 08028 Barcelona (Spain)

    2009-07-01

    The aim of this work is to investigate which would be a good preliminary plantwide control structure for the process of Hydrogen production from bioethanol to be used in a proton exchange membrane (PEM) accounting only steady-state information. The objective is to keep the process under optimal operation point, that is doing energy integration to achieve the maximum efficiency. Ethanol, produced from renewable feedstocks, feeds a fuel processor investigated for steam reforming, followed by high- and low-temperature shift reactors and preferential oxidation, which are coupled to a polymeric fuel cell. Applying steady-state simulation techniques and using thermodynamic models the performance of the complete system with two different control structures have been evaluated for the most typical perturbations. A sensitivity analysis for the key process variables together with the rigorous operability requirements for the fuel cell are taking into account for defining acceptable plantwide control structure. This is the first work showing an alternative control structure applied to this kind of process. (author)

  9. Scanning transmission X-ray microscopy of nano structured thin film catalysts for proton-exchange-membrane fuel cells

    Science.gov (United States)

    Lee, Vincent; Berejnov, Viatcheslav; West, Marcia; Kundu, Sumit; Susac, Darija; Stumper, Jürgen; Atanasoski, Radoslav T.; Debe, Mark; Hitchcock, Adam P.

    2014-10-01

    Scanning transmission X-ray microscopy (STXM) has been applied to characterize nano structured thin film (NSTF) catalysts implemented as electrode materials in proton-exchange-membrane (PEM) fuel cells. STXM is used to study all chemical constituents at various stages in the fabrication process, from the perylene red (PR149) starting material, through the formation of the uncoated perylene whiskers, their coated form with Pt-based catalyst, and toward the NSTF anode fully integrated into the catalyst coated membrane (CCM). CCM samples were examined prior to operational testing and after several different accelerated testing protocols: start-up/shut-down (SU/SD), and reversal tests. It was found that, while the perylene support material is present in the pre-test samples, it was completely absent in the post-test samples. We attribute this loss of perylene material to the presence of cracks in the catalyst combined with intensive hydrogenation processes happening at the anode during operation. Despite the loss of the perylene support, the platinum shells forming the NSTF anode catalyst layer performed well during the tests.

  10. Effects of Straight and Serpentine Flow Field Designs on Temperature Distribution in Proton Exchange Membrane (PEM Fuel Cell

    Directory of Open Access Journals (Sweden)

    Zaman Izzuddin

    2016-01-01

    Full Text Available Proton exchange membrane fuel cells or sometimes called as polymer electrolyte membrane (PEM fuel cells is a device for energy transformation in a changing process from one form of energy to another form of energy. It became as an alternative especially for future use in stationary and vehicular applications. PEM fuel cells provide high efficiency and power density with null emission, low operating temperature, quickly start and long life. One of the aspects that are crucial in optimizing the PEM fuel cells performance is a flow field geometry. In this paper, a simulation case of PEM fuel cells was simulated to determine effects of a straight and serpentine flow field on temperature distribution in PEM fuel cells. ANSYS Fluent software was used to simulate 3-dimensional models of single PEM fuel cells in order to determine the effects of changes in the geometry flow field on temperature distributions. Results showed that the serpentine flow field design produces a better temperature distribution along the membrane. The simulation result shows a good agreement with the experiment, thus boost a higher confidence in the results to determine the effectiveness of the flow field design in PEM fuel cells.

  11. A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: Materials, fabrication, and material selection

    Science.gov (United States)

    Taherian, Reza

    2014-11-01

    Proton exchange membrane (PEM) fuel cells offer exceptional potential for a clean, efficient, and reliable power source. The bipolar plate (BP) is a key component in this device, as it connects each cell electrically, supplies reactant gases to both anode and cathode, and removes reaction products from the cell. BPs have primarily been fabricated from high-density graphite, but in recent years, much attention has been paid to develop the cost-effective and feasible alternative materials. Recently, two different classes of materials have been attracted attention: metals and composite materials. This paper offers a comprehensive review of the current researches being carried out on the metallic and composite BPs, covering materials and fabrication methods. In this research, the phenomenon of ionic contamination due to the release of the corrosion products of metallic BP and relative impact on the durability as well as performance of PEM fuel cells is extensively investigated. Furthermore, in this paper, upon several effective parameters on commercialization of PEM fuel cells, such as stack cost, weight, volume, durability, strength, ohmic resistance, and ionic contamination, a material selection is performed among the most common BPs currently being used. This material selection is conducted by using Simple Additive Weighting Method (SAWM).

  12. Performance comparison between high temperature and traditional proton exchange membrane fuel cell stacks using electrochemical impedance spectroscopy

    Science.gov (United States)

    Zhu, Ying; Zhu, Wenhua H.; Tatarchuk, Bruce J.

    2014-06-01

    A temperature above 100 °C is always desired for proton exchange membrane (PEM) fuel cell operation. It not only improves kinetic and mass transport processes, but also facilitates thermal and water management in fuel cell systems. Increased carbon monoxide (CO) tolerance at higher operating temperature also simplifies the pretreatment of fuel supplement. The novel phosphoric acid (PA) doped polybenzimidazole (PBI) membranes achieve PEM fuel cell operations above 100 °C. The performance of a commercial high temperature (HT) PEM fuel cell stack module is studied by measuring its impedance under various current loads when the operating temperature is set at 160 °C. The contributions of kinetic and mass transport processes to stack impedance are analyzed qualitatively and quantitatively by equivalent circuit (EC) simulation. The performance of a traditional PEM fuel cell stack module operated is also studied by impedance measurement and EC simulation. The operating temperature is self-stabilized between 40 °C and 65 °C. An enhancement of the HT-PEM fuel cell stack in polarization impedance is evaluated by comparing to the traditional PEM fuel cell stack. The impedance study on two commercial fuel cell stacks reveals the real situation of current fuel cell development.

  13. Development of a method to estimate the lifespan of proton exchange membrane fuel cell using electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju-hyung; Lee, Jong-Hak; Choi, Woojin [Department of Electrical Engineering, Soongsil University, 1-1 Sangdo-dong, Dongjak-gu, Seoul 156-743 (Korea); Park, Kyung-Won [Department of Chemical/Environmental Engineering, Soongsil University, 1-1 Sangdo-dong, Dongjak-gu, Seoul 156-743 (Korea); Sun, Hee-Young [Samsung Advanced Institute of Technology, Mt. 14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-712 (Korea); Oh, Jae-Hyuk [Samsung Electronics, 416 Maetan-dong, Youngtong-gu, Suwon-si, Gyeonggi-do 443-370 (Korea)

    2010-09-15

    This paper proposes a new method for estimating the state and lifespan of fuel cells in operation by fuel cell equivalent impedance modeling by electrochemical impedance spectroscopy (EIS) and observing degradation. The performance change of fuel cells takes place in the form of changes in each parameter value comprising an equivalent AC impedance circuit; monitoring such changes allows for the prediction of the state and lifespan of a fuel cell. In the experiments, the AC impedance of high-temperature proton exchange membrane (PEM) fuel cells was measured at constant time intervals during their continuous operation for over 2200 h. The expression for the lifespan of a fuel cell was deduced by curve fitting the changes in each parameter to a polynomial. Electric double layer capacitance and charge transfer resistance, which show the reduction reaction of the cathode, were used as major parameters for judging the degradation; a method of using time constants is proposed to more accurately estimate the degree of degradation. In addition, an algorithm that can evaluate the soundness and lifespan of a fuel cell is proposed; it compares the measured time constant of the fuel cell being tested with that of average lifespan fuel cell. (author)

  14. Ezrin is required for the functional regulation of the epithelial sodium proton exchanger, NHE3.

    Directory of Open Access Journals (Sweden)

    Hisayoshi Hayashi

    Full Text Available The sodium hydrogen exchanger isoform 3 (NHE3 mediates absorption of sodium, bicarbonate and water from renal and intestinal lumina. This activity is fundamental to the maintenance of a physiological plasma pH and blood pressure. To perform this function NHE3 must be present in the apical membrane of renal tubular and intestinal epithelia. The molecular determinants of this localization have not been conclusively determined, although linkage to the apical actin cytoskeleton through ezrin has been proposed. We set out to evaluate this hypothesis. Functional studies of NHE3 activity were performed on ezrin knockdown mice (Vil2(kd/kd and NHE3 activity similar to wild-type animals detected. Interpretation of this finding was difficult as other ERM (ezrin/radixin/moesin proteins were present. We therefore generated an epithelial cell culture model where ezrin was the only detectable ERM. After knockdown of ezrin expression with siRNA, radixin and moesin expression remained undetectable. Consistent with the animal ultrastructural data, cells lacking ezrin retained an epithelial phenotype but had shortened and thicker microvilli. NHE3 localization was identical to cells transfected with non-targeting siRNA. The attachment of NHE3 to the apical cytoskeleton was unaltered as assessed by fluorescent recovery after photobleaching (FRAP and the solubility of NHE3 in Triton X-100. Baseline NHE3 activity was unaltered, however, cAMP-dependent inhibition of NHE3 was largely lost even though NHE3 was phosphorylated at serines 552 and 605. Thus, ezrin is not necessary for the apical localization, attachment to the cytoskeleton, baseline activity or cAMP induced phosphrylation of NHE3, but instead is required for cAMP mediated inhibition.

  15. Influence of Silica/Sulfonated Polyether-Ether Ketone as Polymer Electrolyte Membrane for Hydrogen Fueled Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Sri Handayani

    2011-12-01

    Full Text Available The operation of non-humidified condition of proton exchange membrane fuel cell (PEMFC using composite sPEEK-silica membrane is reported. Sulfonated membrane of PEEK is known as hydrocarbon polyelectrolyte membrane for PEMFC and direct methanol fuel cell (DMFC. The state of the art of fuel cells is based on the perluorosulfonic acid membrane (Nafion. Nafion has been the most used in both PEMFC and DMFC due to good performance although in low humidified condition showed poor current density. Here we reported the effect of silica in hydrocarbon sPEEK membrane that contributes for a better water management system inside the cell, and showed 0.16 W/cm2 of power density which is 78% higher than that of non-silica modified [Keywords: composite membrane, polyether-ether ketone, silica, proton exchange membrane fuel cell].

  16. 1H and 15N NMR Analyses on Heparin, Heparan Sulfates and Related Monosaccharides Concerning the Chemical Exchange Regime of the N-Sulfo-Glucosamine Sulfamate Proton

    Directory of Open Access Journals (Sweden)

    Vitor H. Pomin

    2016-09-01

    Full Text Available Heparin and heparan sulfate are structurally related glycosaminoglycans (GAGs. Both GAGs present, although in different concentrations, N-sulfo-glucosamine (GlcNS as one of their various composing units. The conditional fast exchange property of the GlcNS sulfamate proton in these GAGs has been pointed as the main barrier to its signal detection via NMR experiments, especially 1H-15N HSQC. Here, a series of NMR spectra is collected on heparin, heparan sulfate and related monosaccharides. The N-acetyl glucosamine-linked uronic acid types of these GAGs were properly assigned in the 1H-15N HSQC spectra. Dynamic nuclear polarization (DNP was employed in order to facilitate 1D spectral acquisition of the sulfamate 15N signal of free GlcNS. Analyses on the multiplet pattern of scalar couplings of GlcNS 15N has helped to understand the chemical properties of the sulfamate proton in solution. The singlet peak observed for GlcNS happens due to fast chemical exchange of the GlcNS sulfamate proton in solution. Analyses on kinetics of alpha-beta anomeric mutarotation via 1H NMR spectra have been performed in GlcNS as well as other glucose-based monosaccharides. 1D 1H and 2D 1H-15N HSQC spectra recorded at low temperature for free GlcNS dissolved in a proton-rich solution showed signals from all exchangeable protons, including those belonging to the sulfamate group. This work suits well to the current grand celebration of one-century-anniversary of the discovery of heparin.

  17. ¹H and (15)N NMR Analyses on Heparin, Heparan Sulfates and Related Monosaccharides Concerning the Chemical Exchange Regime of the N-Sulfo-Glucosamine Sulfamate Proton.

    Science.gov (United States)

    Pomin, Vitor H

    2016-09-07

    Heparin and heparan sulfate are structurally related glycosaminoglycans (GAGs). Both GAGs present, although in different concentrations, N-sulfo-glucosamine (GlcNS) as one of their various composing units. The conditional fast exchange property of the GlcNS sulfamate proton in these GAGs has been pointed as the main barrier to its signal detection via NMR experiments, especially ¹H-(15)N HSQC. Here, a series of NMR spectra is collected on heparin, heparan sulfate and related monosaccharides. The N-acetyl glucosamine-linked uronic acid types of these GAGs were properly assigned in the ¹H-(15)N HSQC spectra. Dynamic nuclear polarization (DNP) was employed in order to facilitate 1D spectral acquisition of the sulfamate (15)N signal of free GlcNS. Analyses on the multiplet pattern of scalar couplings of GlcNS (15)N has helped to understand the chemical properties of the sulfamate proton in solution. The singlet peak observed for GlcNS happens due to fast chemical exchange of the GlcNS sulfamate proton in solution. Analyses on kinetics of alpha-beta anomeric mutarotation via ¹H NMR spectra have been performed in GlcNS as well as other glucose-based monosaccharides. 1D ¹H and 2D ¹H-(15)N HSQC spectra recorded at low temperature for free GlcNS dissolved in a proton-rich solution showed signals from all exchangeable protons, including those belonging to the sulfamate group. This work suits well to the current grand celebration of one-century-anniversary of the discovery of heparin.

  18. Distribution of Exchangeable Calcium,Magnesium and Potassium as Affected by Fertilizer Application to Red Soil

    Institute of Scientific and Technical Information of China (English)

    SHENREN-FANG; ZHAOQI-GUO

    1995-01-01

    A leaching experiment was Carried out with repacked soil columns in laboratory to study the leaching process of a red soil derived from sandstone as affected by various fertilization practices.The treatments were CK(as a control),CaCO3,CaSO4,MgCO3,Ca(H2PO4)2,Urea,KCl,Multiple(a mixture of the above mentioned fertilizers) and KNO3,The fertilizers were added to the bare surface of the soil columns,and then the columns were leached with 120 mL deionized water daily through perstaltic pumps over a period of 92 days,At the end of leaching process,soils were sampled from different depths of the soil profiles ,i.o.,of 92 days,At the end of leaching process,soils were sampled from different depths of the soil profiles,I.e.0-5cm,5-10cm,10-20cm,20-40cm,and 40-60cm,The results showed when applying Ca,Mg,and K to the bare surface of the soil columns,exchangeable Ca2+,Mg2+,and K+ in the upper layer of the soil profile increased correspondingly,with an extent depending mainly on the application rates of Ca,Mg,and K and showing a downward trend,CaCO3,CaSO4,MgCO3,and Ca(H2PO4)2 treatments had scarcely and effect on movement of exchangeable K+,while CaCO3,and CaSO4 treatments singnificantly promoted the downward movement of exchangealble Mg2+ although these two treatments had no obvious effect on leaching losses of Mg,The fact that under Urea treatment,exchangeable Ca2+ and Mg2+,were higher as compared to CK treatment showed urea could prevent leaching of exchangeable Ca2+and Mg2+,the obvious downward movement of exchangeable Ca2+and Mg2+ was noticed in KCl treatment ,In Multiple treatment,the downward movement of exchangeable Ca2+ and Mg2+ was evident,while that of K+ was less evident,Application of KNO3 strongly promoted the downward movement of exchangeable Ca2+and Mg2+ in the soil profile.

  19. Estimation of Membrane Hydration Status for Standby Proton Exchange Membrane Fuel Cell Systems by Impedance Measurement: First Results on Variable Temperature Stack Characterization

    DEFF Research Database (Denmark)

    Bidoggia, Benoit; Kær, Søren Knudsen

    2013-01-01

    Fuel cells are getting growing interest in both backup systems and electric vehicles. Although these systems are characterized by periods of standby, they must be able to start at any instant in the shortest possible time. However, the membranes of which proton exchange membrane fuel cells are made...... way for estimating the hydration status and the temperature of its membrane before the system is started up. A summarizing table with the complete characterization of the fuel cell stack is included in this article....

  20. Pore network model of the cathode catalyst layer of proton exchange membrane fuel cells: Analysis of water management and electrical performance

    OpenAIRE

    El Hannach, Mohamed; Prat, Marc; Pauchet, Joël

    2012-01-01

    International audience; A pore network modeling approach is developed to study multiphase transport phenomena inside a porous structure representative of the Cathode Catalyst Layer (CCL) of Proton Exchange Membrane Fuel Cell. A full coupling between two-phase transport, charge transport and heat transport is considered. The liquid water evaporation is also taken into account. The current density profile and the liquid water distribution and production are investigated to understand the liquid...

  1. Electrochemical Behavior and Hydrophobic Properties of CrN and CrNiN Coatings in Simulated Proton Exchange Membrane Fuel Cell Environment

    OpenAIRE

    JIN, Jie; HAN Sui-wu; An, Teng; Ma, Jun-Jie; ZHANG Wei

    2016-01-01

    The CrN and CrNiN coatings were prepared on the surface of 304 stainless steel by closed field unbalanced magnetron sputtering.X ray diffraction and field emission scanning electron microscopy were used to characterize the structure and morphology of the coatings.The electrochemical corrosion properties under the simulated proton exchange membrane fuel cell(PEMFC) environment, interfacial contact resistance and hydrophobic properties of the two kinds of different coatings were investigated by...

  2. The production of sulfonated chitosan-sodium alginate found in brown algae (Sargassum sp.) composite membrane as proton exchange membrane fuel cell (PEMFC)

    Science.gov (United States)

    Wafiroh, Siti; Pudjiastuti, Pratiwi; Sari, Ilma Indana

    2016-03-01

    The majority of energy was used in this period is from fossil fuel, which getting decreased in the future. The objective of this research is production and characterization of sulfonated chitosan-sodium alginate found in brown algae (Sargassum sp.) composite membrane as Proton Exchange Membrane Fuel Cell (PEMFC) for alternative energy. PEMFC was produced with 4 variations (w/w) ratio between chitosan and sodium alginate, 8 : 0, 8 : 1, 8 : 2, 8 : 4 (w/w). The production of membrane was mixed sodium alginate solution into chitosan solution and sulfonated with H2SO4 0.72 N. The characterization of the PEM was uses Modulus Young analysis, water swelling, ion exchange capacity, FTIR, SEM, DTA, methanol permeability and proton conductivity. The result of the research, showed that the optimum membrane was with ratio 8 : 2 (w/w) that the Modulus Young 8564 kN/m2, water swelling 31.86%, ion exchange capacity 1.020 meq/g, proton conductivity 8,8 × 10-6 S/cm, methanol permeability 1.90 × 10-8 g/cm2s and glass transition temperature (Tg) 100.9 °C, crystalline temperature (Tc) 227.6 °C, and the melting temperature (Tm) 267.9 °C.

  3. Tolerance of non-platinum group metals cathodes proton exchange membrane fuel cells to air contaminants

    Science.gov (United States)

    Reshetenko, Tatyana; Serov, Alexey; Artyushkova, Kateryna; Matanovic, Ivana; Sarah Stariha; Atanassov, Plamen

    2016-08-01

    The effects of major airborne contaminants (SO2, NO2 and CO) on the spatial performance of Fe/N/C cathode membrane electrode assemblies were studied using a segmented cell system. The injection of 2-10 ppm SO2 in air stream did not cause any performance decrease and redistribution of local currents due to the lack of stably adsorbed SO2 molecules on Fe-Nx sites, as confirmed by density functional theory (DFT) calculations. The introduction of 5-20 ppm of CO into the air stream also did not affect fuel cell performance. The exposure of Fe/N/C cathodes to 2 and 10 ppm NO2 resulted in performance losses of 30 and 70-75 mV, respectively. DFT results showed that the adsorption energies of NO2 and NO were greater than that of O2, which accounted for the observed voltage decrease and slight current redistribution. The cell performance partially recovered when the NO2 injection was stopped. The long-term operation of the fuel cells resulted in cell performance degradation. XPS analyses of Fe/N/C electrodes revealed that the performance decrease was due to catalyst degradation and ionomer oxidation. The latter was accelerated in the presence of air contaminants. The details of the spatial performance and electrochemical impedance spectroscopy results are presented and discussed.

  4. Double-peak elution profile of a monoclonal antibody in cation exchange chromatography is caused by histidine-protonation-based charge variants.

    Science.gov (United States)

    Luo, Haibin; Cao, Mingyan; Newell, Kelcy; Afdahl, Christopher; Wang, Jihong; Wang, William K; Li, Yuling

    2015-12-11

    We have systemically investigated unusual elution behaviors of an IgG4 (mAb A) in cation exchange chromatography (CEX). This mAb A exhibited two elution peaks under certain conditions when being purified by several strong CEX columns. When either of the two peaks was isolated and re-injected on the same column, the similar pattern was observed again during elution. The protein distribution between the two peaks could be altered by NaCl concentration in the feed, or NaCl concentration in wash buffer, or elution pH, suggesting two pH-associated strong-and-weak binding configurations. The protein distributions under different pH values showed good correlation with protonated/un-protonated fractions of a histidine residue. These results suggest that the double-peak elution profile associates with histidine-protonation-based charge variants. By conducting pepsin digestion, amino-acid specific chemical modifications, peptide mapping, and measuring the effects of elution residence time, a histidine in the variable fragment (Fab) was identified to be the root cause. Besides double-peak pattern, mAb A can also exhibit peak-shouldering or single elution peak on different CEX resins, reflecting different resins' resolving capability on protonated/un-protonated forms. This work characterizes a novel cause for unusual elution behaviors in CEX and also provides alternative avenues of purification development for mAbs with similar behaviors.

  5. Simplified quantification of labile proton concentration-weighted chemical exchange rate (k(ws) ) with RF saturation time dependent ratiometric analysis (QUESTRA): normalization of relaxation and RF irradiation spillover effects for improved quantitative chemical exchange saturation transfer (CEST) MRI.

    Science.gov (United States)

    Sun, Phillip Zhe

    2012-04-01

    Chemical exchange saturation transfer MRI is an emerging imaging technique capable of detecting dilute proteins/peptides and microenvironmental properties, with promising in vivo applications. However, chemical exchange saturation transfer MRI contrast is complex, varying not only with the labile proton concentration and exchange rate, but also with experimental conditions such as field strength and radiofrequency (RF) irradiation scheme. Furthermore, the optimal RF irradiation power depends on the exchange rate, which must be estimated in order to optimize the chemical exchange saturation transfer MRI experiments. Although methods including numerical fitting with modified Bloch-McConnell equations, quantification of exchange rate with RF saturation time and power (QUEST and QUESP), have been proposed to address this relationship, they require multiple-parameter non-linear fitting and accurate relaxation measurement. Our work extended the QUEST algorithm with ratiometric analysis (QUESTRA) that normalizes the magnetization transfer ratio at labile and reference frequencies, which effectively eliminates the confounding relaxation and RF spillover effects. Specifically, the QUESTRA contrast approaches its steady state mono-exponentially at a rate determined by the reverse exchange rate (k(ws) ), with little dependence on bulk water T(1) , T(2) , RF power and chemical shift. The proposed algorithm was confirmed numerically, and validated experimentally using a tissue-like phantom of serially titrated pH compartments.

  6. Preparation and characterization of sulfonated amine-poly(ether sulfone)s for proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dong-Wan; Lim, Young-Don; Lee, Soon-Ho; Jeong, Young-Gi; Kim, Whan-Gi [Department of Applied Chemistry/RIC-ReSEM, Konkuk University, Chungju-si, Chungbuk 380-701 (Korea, Republic of); Hong, Tae-Whan [Department of Materials Sci and Engineering/RIC-ReSEM, Chungju National University, Chungju, Chungbuk (Korea, Republic of)

    2010-12-15

    Sulfonated amine-poly(ether sulfone)s (S-APES)s were prepared by nitration, reduction and sulfonation of poly(ether sulfone) (ultrason {sup registered} -S6010). Poly(ether sulfone) was reacted with ammonium nitrate and trifluoroacetic anhydride to produce the nitrated poly(ether sulfone), and was followed by reduction using tin(II)chloride and sodium iodide as reducing agents to give the amino-poly(ether sulfone). The S-APES was obtained by reaction of 1,3-propanesultone and the amino-poly(ether sulfone) (NH{sub 2}-PES) with sodium methoxide. The different degrees of nitration and reduction of poly(ether sulfone) were successfully synthesized by an optimized process. The reduction of nitro group to amino was done quantitatively, and this controlled the contents of the sulfonic acid group. The films were converted from salt to acid forms with dilute hydrochloric acid. Different contents of sulfonated unit of the S-APES were studied by FT-IR, {sup 1}H NMR spectroscopy, differential scanning calorimetry (DSC), and thermo gravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymers with water and methanol. The ion exchange capacity (IEC), a measure of proton conductivity, was evaluated. The S-APES membranes exhibit conductivities (25 C) from 1.05 x 10{sup -3} to 4.83 x 10{sup -3} S/cm, water swell from 30.25 to 66.50%, IEC from 0.38 to 0.82 meq/g, and methanol diffusion coefficients from 3.10 x 10{sup -7} to 4.82 x 10{sup -7} cm{sup 2}/S at 25 C. (author)

  7. Solid alkaline membrane fuel cell : what are they advantages and drawbacks compared to proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Coutanceau, C.; Baranton, S.; Simoes, M. [Univ. de Poitiers, Poitiers (France). Laboratoire de Catalyse en Chimie Organique, UMR CNRS

    2010-07-01

    Low temperature fuel cells such as proton exchange membrane fuel cells (PEMFCs) and direct alcohol fuel cells (DAFCs) are promising power sources for portable electronics and transportation applications. However, these fuel cells require high amounts of platinum at the anodes to achieve high cell performance. Although alkaline membrane fuel cells (AFCs) may be an alternative to PEMFCs, the technology of low temperature fuel cells is less developed than that of fuel cells working with a solid acid electrolyte. Interest in solid alkaline membrane fuel cells (SAMFCs) has increased in recent years because it is easier to activate the oxidation and reduction reactions in alkaline medium than in acidic medium. Fewer platinum based catalysts are needed due to higher electrode kinetics. The development of hydroxyl conductive membrane makes this technology available, but the fuel to be used in the system must be considered. Pure hydrogen or hydrogen-rich gases offer high electric efficiency, but their production, storage, and distribution are not sufficient for a large-scale development. This paper discussed the relatively good electroreactivity of polyols such as glycerol and ethylene glycol in a SAMFC, as well as sodium borohydride (NaBH{sub 4}) as an alternative. The working principle of SAMFCs was also presented along with considerations regarding the electrochemical reactions occurring at the electrodes, and requirements concerning the catalysts, the triple phase boundary in the electrode and the anionic membrane. Palladium based catalysts were found to be an interesting alternative to platinum in SAMFCs. In situ FTIR measurements and oxidation products analysis was used to determine the electrooxidation pathways of alcohol and NaBH{sub 4}in alkaline medium. The study also included a comparison with oxidation mechanisms in acid medium. 8 refs.

  8. Carbon corrosion of proton exchange membrane fuel cell catalyst layers studied by scanning transmission X-ray microscopy

    Science.gov (United States)

    Hitchcock, Adam P.; Berejnov, Viatcheslav; Lee, Vincent; West, Marcia; Colbow, Vesna; Dutta, Monica; Wessel, Silvia

    2014-11-01

    Scanning Transmission X-ray Microscopy (STXM) at the C 1s, F 1s and S 2p edges has been used to investigate degradation of proton exchange membrane fuel cell (PEM-FC) membrane electrode assemblies (MEA) subjected to accelerated testing protocols. Quantitative chemical maps of the catalyst, carbon support and ionomer in the cathode layer are reported for beginning-of-test (BOT), and end-of-test (EOT) samples for two types of carbon support, low surface area carbon (LSAC) and medium surface area carbon (MSAC), that were exposed to accelerated stress testing with upper potentials (UPL) of 1.0, 1.2, and 1.3 V. The results are compared in order to characterize catalyst layer degradation in terms of the amounts and spatial distributions of these species. Pt agglomeration, Pt migration and corrosion of the carbon support are all visualized, and contribute to differing degrees in these samples. It is found that there is formation of a distinct Pt-in-membrane (PTIM) band for all EOT samples. The cathode thickness shrinks due to loss of the carbon support for all MSAC samples that were exposed to the different upper potentials, but only for the most aggressive testing protocol for the LSAC support. The amount of ionomer per unit volume significantly increases indicating it is being concentrated in the cathode as the carbon corrosion takes place. S 2p spectra and mapping of the cathode catalyst layer indicates there are still sulfonate groups present, even in the most damaged material.

  9. The Statistical and Numerical Study of the Longitudinally Asymmetric Distribution of Solar Proton Events Affecting the Earth Environment of 1996-2011

    CERN Document Server

    He, Hongqing

    2015-01-01

    Large solar proton events (SPEs) affect the solar-terrestrial space environment and become a very important aspect in space weather research. In this work, we statistically investigate 78 solar proton events of 1996-2011 and find that there exists a longitudinally asymmetric distribution of flare sources of the solar proton events observed near 1 AU, namely, with the same longitude separation between magnetic field line footpoint of observer and flare sources, the number of the solar proton events originating from sources located at eastern side of the nominal magnetic footpoint of observer is much larger than that of the solar proton events originating from sources located at western side. A complete model calculation of solar energetic particle (SEP) propagation in the three-dimensional Parker interplanetary magnetic field is presented to give a numerical explanation for this longitudinally asymmetric distribution phenomenon. We find that the longitudinally asymmetric distribution of solar proton events res...

  10. Development of Highly Proton-conductive Polymers for Proton Exchange Membrane Fuel Cells%用于质子交换膜的高质子传导率聚合物研究进展

    Institute of Scientific and Technical Information of China (English)

    付彪; 刘海燕; 张甄; 王智强; 张中标

    2013-01-01

    质子传导率超过Nafion膜的质子交换膜是近年来研究的焦点.质子交换膜的质子传导率与它们的IEC值和形态有关.形成离子通道是开发高质子传导率的质子交换膜的一种有效方法.形成离子通道主要有3种:1)用嵌段共聚物的微相分离;2)侧链和支链磺化的聚合物;3)局部区域的高密集磺化.此外,与无机纳米材料形成纳米复合材料的质子交换膜也能提高质子交换膜的质子传导率及质子交换膜的机械强度、尺寸稳定性、耐氧化稳定性等性能.综述了关于用于高质子传导率的燃料电池质子交换膜(PEM)的聚合物的研究进展.对高质子传导率的燃料电池膜聚合物的发展趋势进行了展望.%The proton exchange membranes (PEMs) presenting proton conductivities exceeding that of Nafion membrane were especially focused on in recent years.The proton conductivities of PEMs have been correlated to their ion exchange values and morphological phase separation.Formation of ionic channels is an effective approach to develop highly proton-conductive PEMs.There are three ways to the formation of ionic channels:1) development of microphase-separation with block copolymers,2) side-chain and grafted sulfonated polymers,and 3) locally and densely sulfonated polymers.Formation of nanocomposites of PEMs with nanofillers has also shown great ability to increase the proton conductivities of the existed PEMs.Besides proton conductivities,the formation of nanocomposites also improves some PEM properties including mechanical strength,dimensional stability and oxidative stability.The recent development of polymers for highly proton-conductive membrane was reviewed in this paper,and the future of these materials were also proposed.

  11. Thermal signature and thermal conductivities of PEM fuel cells; PEM = Proton Exchange Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Burheim, Odne Stokke

    2009-11-15

    the PTL thermal conductivity as broad, detailed and brand specific as the present in the literature. In addition to this the study opens up for a mechanistic study on how water and Teflon seem to affect the overall heat conduction. As a part of the thermal studies of PEMFCs, a calorimeter was constructed. The construction and the use of the calorimeter may be regarded as a second motivation for the thermal fuel cell modeling, hoping it would lead to a better understanding of the possibilities and limitations of the calorimeter. The calorimeter measured both the heat and the available work from the fuel cell reaction at constant pressure. The sum of these two is equal to the enthalpy of the cell reaction. The control temperature was kept at 50 deg. Celsius, in order to make sure that the product water would leave the fuel cell in its liquid state. It is important to state this because the reaction enthalpy depends on the state of the product.

  12. Affecting proton mobility in activated peptide and whole protein ions via lysine guanidination.

    Science.gov (United States)

    Pitteri, Sharon J; Reid, Gavin E; McLuckey, Scott A

    2004-01-01

    We have evaluated the effect of lysine guanidination in peptides and proteins on the dissociation of protonated ions in the gas phase. The dissociation of guanidinated model peptide ions compared to their unmodified forms showed behavior consistent with concepts of proton mobility as a major factor in determining favored fragmentation channels. Reduction of proton mobility associated with lysine guanidination was reflected by a relative increase in cleavages occurring C-terminal to aspartic acid residues as well as increases in small molecule losses. To evaluate the effect of guanidination on the dissociation behavior of whole protein ions, bovine ubiquitin was selected as a model. Essentially, all of the amide bond cleavages associated with the +10 charge state of fully guanidinated ubiquitin were observed to occur C-terminal to aspartic acid residues, unlike the dissociation behavior of the +10 ion of the unmodified protein, where competing cleavage N-terminal to proline and nonspecific amide bond cleavages were also observed. The +8 and lower charge states of the guanidinated protein showed prominent losses of small neutral molecules. This overall fragmentation behavior is consistent with current hypotheses regarding whole protein dissociation that consider proton mobility and intramolecular charge solvation as important factors in determining favored dissociation channels, and are also consistent with the fragmentation behaviors observed for the guanidinated model peptide ions. Further evaluation of the utility of condensed phase guanidination of whole proteins is necessary but the results described here confirm that guanidination can be an effective strategy for enhancing C-terminal aspartic acid cleavages. Gas phase dissociation exclusively at aspartic acid residues, especially for whole protein ions, could be useful in identifying and characterizing proteins via tandem mass spectrometry of whole protein ions.

  13. Highly Durable Supportless Pt Hollow Spheres Designed for Enhanced Oxygen Transport in Cathode Catalyst Layers of Proton Exchange Membrane Fuel Cells.

    Science.gov (United States)

    Dogan, Didem C; Cho, Seonghun; Hwang, Sun-Mi; Kim, Young-Min; Guim, Hwanuk; Yang, Tae-Hyun; Park, Seok-Hee; Park, Gu-Gon; Yim, Sung-Dae

    2016-10-10

    Supportless Pt catalysts have several advantages over conventional carbon-supported Pt catalysts in that they are not susceptible to carbon corrosion. However, the need for high Pt loadings in membrane electrode assemblies (MEAs) to achieve state-of-the-art fuel cell performance has limited their application in proton exchange membrane fuel cells. Herein, we report a new approach to the design of a supportless Pt catalyst in terms of catalyst layer architecture, which is crucial for fuel cell performance as it affects water management and oxygen transport in the catalyst layers. Large Pt hollow spheres (PtHSs) 100 nm in size were designed and prepared using a carbon template method. Despite their large size, the unique structure of the PtHSs, which are composed of a thin-layered shell of Pt nanoparticles (ca. 7 nm thick), exhibited a high surface area comparable to that of commercial Pt black (PtB). The PtHS structure also exhibited twice the durability of PtB after 2000 potential cycles (0-1.3 V, 50 mV/s). A MEA fabricated with PtHSs showed significant improvement in fuel cell performance compared to PtB-based MEAs at high current densities (>800 mA/cm(2)). This was mainly due to the 2.7 times lower mass transport resistance in the PtHS-based catalyst layers compared to that in PtB, owing to the formation of macropores between the PtHSs and high porosity (90%) in the PtHS catalyst layers. The present study demonstrates a successful example of catalyst design in terms of catalyst layer architecture, which may be applied to a real fuel cell system.

  14. High expression in leaves of the zinc hyperaccumulator Arabidopsis halleri of AhMHX, a homolog of an Arabidopsis thaliana vacuolar metal/proton exchanger.

    Science.gov (United States)

    Elbaz, Benayahu; Shoshani-Knaani, Noa; David-Assael, Ora; Mizrachy-Dagri, Talya; Mizrahi, Keren; Saul, Helen; Brook, Emil; Berezin, Irina; Shaul, Orit

    2006-06-01

    Zn hyperaccumulator plants sequester Zn into their shoot vacuoles. To date, the only transporters implicated in Zn sequestration into the vacuoles of hyperaccumulator plants are cation diffusion facilitators (CDFs). We investigated the expression in Arabidopsis halleri of a homolog of AtMHX, an A. thaliana tonoplast transporter that exchanges protons with Mg, Zn and Fe ions. A. halleri has a single copy of a homologous gene, encoding a protein that shares 98% sequence identity with AtMHX. Western blot analysis with vacuolar-enriched membrane fractions suggests localization of AhMHX in the tonoplast. The levels of MHX proteins are much higher in leaves of A. halleri than in leaves of the non-accumulator plant A. thaliana. At the same time, the levels of MHX transcripts are similar in leaves of the two species. This suggests that the difference in MHX levels is regulated at the post-transcriptional level. In vitro translation studies indicated that the difference between AhMHX and AtMHX expression is not likely to result from the variations in the sequence of their 5' untranslated regions (5'UTRs). The high expression of AhMHX in A. halleri leaves is constitutive and not significantly affected by the metal status of the plants. In both species, MHX transcript levels are higher in leaves than in roots, but the difference is higher in A. halleri. Metal sequestration into root vacuoles was suggested to inhibit hyperaccumulation in the shoot. Our data implicate AhMHX as a candidate gene in metal accumulation or tolerance in A. halleri.

  15. Optimum design of the slotted-interdigitated channels flow field for proton exchange membrane fuel cells with consideration of the gas diffusion layer intrusion

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Linfa; Mai, Jianming; Hu, Peng; Lai, Xinmin; Lin, Zhongqin [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2011-05-15

    The design of the flow field greatly affects the flow distribution and the final performance of the proton exchange membrane fuel cell (PEMFC) system. The clamping force between the gas diffusion layer (GDL) and the flow field plate (FFP) will cause the inhomogeneous compression of the GDL. Then the GDL will be intruded into the reactant gas channels and eventually change the flow distribution. This paper presents a study on the effect of the intrusion of the GDL on the flow field in a PEMFC, and tries to explain the reason for poor performance of the previous design of the flow field other than those have been studied in other papers such as GDL roughness, porosity, etc. First of all, a linear analytical model is used to analyze the sensitivities of the flow field to the GDL intrusion, and then used to estimate the effect of the GDL intrusion on the flow field distribution. Secondly, a multi-objective optimization model is proposed to eliminate the nonuniform distribution in the flow field with the GDL intrusion taken into consideration. Subsequently, three different designs are analyzed and compared with each other as a demonstration to show the effect of the GDL intrusion. From the analysis results, it is recommended that the effect of the GDL intrusion on the multi-depth flow field should be taken into consideration and the flow field should be insensitive to the GDL intrusion to obtain high robust performance. The results obtained in the study provide the designer some useful guidelines in the concept design of flow field configurations. (author)

  16. alpha-Latrotoxin affects mitochondrial potential and synaptic vesicle proton gradient of nerve terminals.

    Science.gov (United States)

    Tarasenko, A S; Storchak, L G; Himmelreich, N H

    2008-02-01

    Ca(2+)-independent [(3)H]GABA release induced by alpha-latrotoxin was found to consist of two sequential processes: a fast initial release realized via exocytosis and more delayed outflow through the plasma membrane GABA transporters [Linetska, M.V., Storchak, L.G., Tarasenko, A.S., Himmelreich, N.H., 2004. Involvement of membrane GABA transporters in alpha-latrotoxin-stimulated [(3)H]GABA release. Neurochem. Int. 44, 303-312]. To characterize the toxin-stimulated events attributable to the transporter-mediated [(3)H]GABA release from rat brain synaptosomes we studied the effect of alpha-latrotoxin on membrane potentials and generation of the synaptic vesicles proton gradient, using fluorescent dyes: potential-sensitive rhodamine 6G and pH-sensitive acridine orange. We revealed that alpha-latrotoxin induced a progressive dose-dependent depolarization of mitochondrial membrane potential and an irreversible run-down of the synaptic vesicle proton gradient. Both processes were insensitive to the presence of cadmium, a potent blocker of toxin-formed transmembrane pores, indicating that alpha-latrotoxin-induced disturbance of the plasma membrane permeability was not responsible to these effects. A gradual dissipation of the synaptic vesicle proton gradient closely coupled with lowering the vesicular GABA transporter activity results in a leakage of the neurotransmitter from synaptic vesicles to cytoplasm. As a consequence, there is an essential increase in GABA concentration in a soluble cytosolic pool that appears to be critical parameter for altering the mode of the plasma membrane GABA transporter operation from inward to outward. Thus, our data allow clarifying what cell processes underlain a recruitment of the plasma membrane transporter-mediated pathway in alpha-LTX-stimulated secretion.

  17. Oxygen evolution catalysts on supports with a 3-D ordered array structure and intrinsic proton conductivity for proton exchange membrane steam electrolysis

    DEFF Research Database (Denmark)

    Xu, Junyuan; Aili, David; Li, Qingfeng;

    2014-01-01

    with a contribution of around 10−2 S cm−1 proton conductivity. The support structure of three-dimensionally ordered hexagonal arrays displays a high specific surface area of 180 m2 g−1. Benefiting from the mixed conductivities and porous structure in the composite support materials, the supported IrO2 catalysts......, composite support materials for iridium oxide are synthesized via in situ phosphorization reaction on tin doped indium oxide and possess functionalities of high electronic and intrinsic proton conductivity. At 130 °C under a water vapor atmosphere an overall conductivity of 0.72 S cm−1 is achieved...... exhibit about five times enhancement of the OER activity in acidic electrolytes. The improved catalytic performance for the OER was further confirmed by PEM electrolyzer tests at 130 °C. A test of such a steam electrolyzer cell at 350 mA cm−2 shows good durability within a period of up to 1150 hours....

  18. Ozone affects gas exchange, growth and reproductive development in Brassica campestris (Wisconsin fast plants).

    Science.gov (United States)

    Black, V J; Stewart, C A; Roberts, J A; Black, C R

    2007-01-01

    Exposure to ozone (O(3)) may affect vegetative and reproductive development, although the consequences for yield depend on the effectiveness of the compensatory processes induced. This study examined the impact on reproductive development of exposing Brassica campestris (Wisconsin Fast Plants) to ozone during vegetative growth. Plants were exposed to 70 ppb ozone for 2 d during late vegetative growth or 10 d spanning most of the vegetative phase. Effects on gas exchange, vegetative growth, reproductive development and seed yield were determined. Impacts on gas exchange and foliar injury were related to pre-exposure stomatal conductance. Exposure for 2 d had no effect on growth or reproductive characteristics, whereas 10-d exposure reduced vegetative growth and reproductive site number on the terminal raceme. Mature seed number and weight per pod and per plant were unaffected because seed abortion was reduced. The observation that mature seed yield per plant was unaffected by exposure during the vegetative phase, despite adverse effects on physiological, vegetative and reproductive processes, shows that indeterminate species such as B. campestris possess sufficient compensatory flexibility to avoid reductions in seed production.

  19. The silica-doped sulfonated poly(fluorenyl ether ketone)s membrane using hydroxypropyl methyl cellulose as dispersant for high temperature proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.F.; Wang, S.J.; Xiao, M.; Bian, S.G.; Meng, Y.Z. [State Key Laboratory of Optoelectronic Materials and Technologies, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-sen University, Xingangxi Road, Guangzhou 510275 (China)

    2009-05-15

    The sulfonated poly(fluorenyl ether ketone)s (SPFEK) membranes doped with SiO{sub 2} and dispersed by hydroxypropyl methyl cellulose (HPMC) were prepared and investigated for polymer electrolyte membrane fuel cells (PEMFCs) used at high temperature and low relative humidity (RH). The above membrane was prepared by solution dispersion of SPFEK and SiO{sub 2} using HPMC as dispersant. The physio-chemical properties of the hybrid membrane were studied by means of scanning electron microscope (SEM), ion-exchange capacity (IEC), proton conductivity, and single cell performance tests. The hybrid membranes dispersed by HPMC were well dispersed when compared with common organic/inorganic hybrid membranes. The hybrid membranes showed superior characteristics as a proton exchange membrane (PEM) for PEMFC application, such as high ionic exchange content (IEC) of 1.51 equiv/g, high temperature operation properties, and the satisfactory ability of anti-H{sub 2} crossover. The single cell performances of the hybrid membranes were examined in a 5 cm{sup 2} commercial single cell at both 80 C and 120 C under different relative humidity (RH) conditions. The hybrid membrane dispersed by HPMC gave the best performance of 260 mW/cm{sup 2} under conditions of 0.4 V, 120 C, 50% RH and ambient pressure. The results demonstrated HPMC being an efficient dispersant for the organic/inorganic hybrid membrane used for PEM fuel cell. (author)

  20. Assessment of ischemic penumbra in patients with hyperacute stroke using amide proton transfer (APT) chemical exchange saturation transfer (CEST) MRI.

    Science.gov (United States)

    Tietze, Anna; Blicher, Jakob; Mikkelsen, Irene Klaerke; Østergaard, Leif; Strother, Megan K; Smith, Seth A; Donahue, Manus J

    2014-02-01

    Chemical exchange saturation transfer (CEST)-derived, pH-weighted, amide proton transfer (APT) MRI has shown promise in animal studies for the prediction of infarction risk in ischemic tissue. Here, APT MRI was translated to patients with acute stroke (1-24 h post-symptom onset), and assessments of APT contrast, perfusion, diffusion, disability and final infarct volume (23-92 days post-stroke) are reported. Healthy volunteers (n = 5) and patients (n = 10) with acute onset of symptoms (0-4 h, n = 7; uncertain onset diffusion- and perfusion-weighted MRI, fluid-attenuated inversion recovery (FLAIR) and CEST. Traditional asymmetry and a Lorentzian-based APT index were calculated in the infarct core, at-risk tissue (time-to-peak, TTP; lengthening) and final infarct volume. On average (mean ± standard deviation), control white matter APT values (asymmetry, 0.019 ± 0.005; Lorentzian, 0.045 ± 0.006) were not significantly different (p > 0.05) from APT values in normal-appearing white matter (NAWM) of patients (asymmetry, 0.022 ± 0.003; Lorentzian, 0.048 ± 0.003); however, ischemic regions in patients showed reduced (p = 0.03) APT effects compared with NAWM. Representative cases are presented, whereby the APT contrast is compared quantitatively with contrast from other imaging modalities. The findings vary between patients; in some patients, a trend for a reduction in the APT signal in the final infarct region compared with at-risk tissue was observed, consistent with tissue acidosis. However, in other patients, no relationship was observed in the infarct core and final infarct volume. Larger clinical studies, in combination with focused efforts on sequence development at clinically available field strengths (e.g. 3.0 T), are necessary to fully understand the potential of APT imaging for guiding the hyperacute management of patients.

  1. Nanoscale study of reactive transport in catalyst layer of proton exchange membrane fuel cells with precious and non-precious catalysts using lattice Boltzmann method

    CERN Document Server

    Chen, Li; Kang, Qinjun; Holby, Edward F; Tao, Wen-Quan

    2014-01-01

    High-resolution porous structures of catalyst layer (CL) with multicomponent in proton exchange membrane fuel cells are reconstructed using a reconstruction method called quartet structure generation set. Characterization analyses of nanoscale structures are implemented including pore size distribution, specific area and phase connectivity. Pore-scale simulation methods based on the lattice Boltzmann method are developed and used to predict the macroscopic transport properties including effective diffusivity and proton conductivity. Nonuniform distributions of ionomer in CL generates more tortuous pathway for reactant transport and greatly reduces the effective diffusivity. Tortuosity of CL is much higher than conventional Bruggeman equation adopted. Knudsen diffusion plays a significant role in oxygen diffusion and significantly reduces the effective diffusivity. Reactive transport inside the CL is also investigated. Although the reactive surface area of non-precious metal catalyst (NPMC) CL is much higher t...

  2. Simplified quantification of labile proton concentration-weighted chemical exchange rate (kws) with RF saturation time dependent ratiometric analysis (QUESTRA) - Normalization of relaxation and RF irradiation spillover effects for improved quantitative chemical exchange saturation transfer (CEST) MRI

    Science.gov (United States)

    Sun, Phillip Zhe

    2012-01-01

    Chemical exchange saturation transfer (CEST) MRI is an emerging imaging technique capable of detecting dilute proteins/peptides and microenvironmental properties, with promising in vivo applications. However, CEST MRI contrast is complex, varying not only with the labile proton concentration and exchange rate, but also with experimental conditions such as field strength and RF irradiation scheme. Furthermore, the optimal RF irradiation power depends on the exchange rate, which must be estimated in order to optimize the CEST MRI experiments. Although methods including numerical fitting with modified Bloch-McConnell equations, quantification of exchange rate with RF saturation time and power (QUEST and QUESP), have been proposed to address this relationship, they require multiple-parameter non-linear fitting and accurate relaxation measurement. Our work here extended the QUEST algorithm with ratiometric analysis (QUESTRA) that normalizes the magnetization transfer ratio (MTR) at labile and reference frequencies, which effectively eliminates the confounding relaxation and RF spillover effects. Specifically, the QUESTRA contrast approaches its steady state mono-exponentially at a rate determined by the reverse exchange rate (kws), with little dependence on bulk water T1, T2, RF power and chemical shift. The proposed algorithm was confirmed numerically, and validated experimentally using a tissue-like phantom of serially titrated pH compartments. PMID:21842497

  3. 3D Double-Quantum/Double-Quantum Exchange Spectroscopy of Protons under 100 kHz Magic Angle Spinning.

    Science.gov (United States)

    Zhang, Rongchun; Duong, Nghia Tuan; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy

    2017-06-22

    Solid-state (1)H NMR spectroscopy has attracted much attention in the recent years due to the remarkable spectral resolution improvement by ultrafast magic-angle-spinning (MAS) as well as due to the sensitivity enhancement rendered by proton detection. Although these developments have enabled the investigation of a variety of challenging chemical and biological solids, the proton spectral resolution is still poor for many rigid solid systems owing to the presence of conformational heterogeneity and the unsuppressed residual proton-proton dipolar couplings even with the use of the highest currently feasible sample spinning speed of ∼130 kHz. Although a further increase in the spinning speed of the sample could be beneficial to some extent, there is a need for alternate approaches to enhance the spectral resolution. Herein, by fully utilizing the benefits of double-quantum (DQ) coherences, we propose a single radio frequency channel proton-based 3D pulse sequence that correlates double-quantum (DQ), DQ, and single-quantum (SQ) chemical shifts of protons. In addition to the two-spin homonuclear proximity information, the proposed 3D DQ/DQ/SQ experiment also enables the extraction of three-spin and four-spin proximities, which could be beneficial for revealing the dipolar coupled proton network in the solid state. Besides, the 2D DQ/DQ spectrum sliced at different isotropic SQ chemical shift values of the 3D DQ/DQ/SQ spectrum will also facilitate the identification of DQ correlation peaks and improve the spectral resolution, as it only provides the local homonuclear correlation information associated with the specific protons selected by the SQ chemical shift frequency. The 3D pulse sequence and its efficiency are demonstrated experimentally on small molecular compounds in the solid state. We expect that this approach would create avenues for further developments by suitably combining the benefits of partial deuteration of samples, selective excitation

  4. The 3rd CARISMA international conference on medium and high temperature proton exchange membrane fuel cells: Three approaches to better platinum catalysts at biannual conference

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Cleemann, Lars Nilausen; Li, Qingfeng

    2013-01-01

    The 3rd CARISMA International Conference was held at the Axelborg venue in Copenhagen, Denmark, from September 3-5, 2012. The CARISMA conference series was specifically devoted to challenges in the development and testing of fuel cell materials and membrane electrode assemblies (MEAs) for proton...... exchange membrane fuel cells (PEMFCs) to be operated at intermediate and high temperatures. The conference series was initiated by the European CARISMA Coordination Action for Research on Intermediate and High Temperature Specialized Membrane Electrode Assemblies. The 2012 event in Copenhagen had around...

  5. Effect of different surface treatments on the stability of stainless steels for use as bipolar plates in low and high temperature proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Richards, J.; Schmidt, K. [Fraunhofer-Institut fuer Chemische Technologie (ICT), Wolfsburg (Germany); Tuebke, J.; Cremers, C. [Fraunhofer-Institut fuer Chemische Technologie (ICT), Pfinztal (Germany)

    2010-07-01

    The stability of different stainless steels against corrosion under simulated low and high temperature proton exchange membrane fuel cell (PEMFC) operating conditions was studied. These investigations showed a moderate corrosion resistance for a couple of steels under LT-PEMFC conditions. However, for the HT-PEMFC conditions all specimens except one exhibit visible corrosion traces. With regards to their corrosion resistance after different surface treatments results show a minor improvement in corrosion resistance after the electro polishing process for most of the tested stainless steel samples. (orig.)

  6. Estimation of Membrane Hydration Status for Standby Proton Exchange Membrane Fuel Cell Systems by Impedance Measurement: First Results on Stack Characterization

    DEFF Research Database (Denmark)

    Bidoggia, Benoit; Kær, Søren Knudsen

    Fuel cells have started replacing traditional lead-acid battery banks in backup systems. Although these systems are characterized by long periods of standby, they must be able to start at any instant in the shortest time. In the case of low temperature proton exchange membrane fuel cell systems...... was applied, and the relationship between module of impedance and relative humidity was found. The results showed that measuring the impedance of a fuel cell during standby can be a viable way for estimating the hydration status of its membrane....

  7. Applying hot-wire anemometry to directly measure the water balance in a proton exchange membrane fuel cell - Part 2: Experimental

    DEFF Research Database (Denmark)

    Al Shakhshir, Saher; Andreasen, Søren Juhl; Berning, Torsten

    2016-01-01

    can be directly converted into the fuel cell water balance. In this work an ex-situ experimental investigation is performed to examine the effect of the wire diameter and the outlet pipe diameter on the voltage signal. For a laboratory fuel cell where the mass flow rate the anode outlet is small......In order to better understand and more accurately measure the water balance in a proton exchange membrane fuel cell, our group has recently proposed to apply hot wire anemometry in the fuel cell's anode outlet. It was theoretically shown that the electrical signal obtained from the hot wire sensor...

  8. Modification of Nafion membrane with biofunctional SiO2 nanofiber for proton exchange membrane fuel cells

    Science.gov (United States)

    Wang, Hang; Li, Xiaojie; Zhuang, Xupin; Cheng, Bowen; Wang, Wei; Kang, Weimin; Shi, Lei; Li, Hongjun

    2017-02-01

    Proton currents are an integral part of the most important energy-converting structures in biology. We prepared a new type of bioinspired Nafion (Bio-Nafion) membrane composited of biofunctional SiO2 (Bio-SiO2) nanofiber and Nafion matrix. SiO2 nanofibers were prepared by electrospinning silica sol prepared from tetraethyl orthosilicate. Meanwhile, Bio-SiO2 nanofibers were synthesized by immobilizing amino acids (cysteine, serine, lysine, and glycine) on SiO2 nanofibers, which acted as efficient proton-conducting pathways that involved numerous H+ transport sites. In our study, the SiO2 nanofibers biofunctionalized with cysteine were further oxidized, and the composite membranes were designated as Nafion-Cys, Nafion-Lys, Nafion-Ser, and Nafion-Gly, respectively. We then investigated the different polar groups (sbnd SO3H, sbnd OH, and sbnd NH2) of the amino acids that contributed to membrane properties of thermal stability, water uptake (WU), dimensional stability, proton conductivity, and methanol permeability. Nafion-Cys exhibited the highest proton conductivity of 0.2424 S/cm (80 °C). Nafion-Gly showed the lowest proton conductivity and WU because glycine contains the least number of hydrophilic groups among the amino acids. Overall, the introduction of Bio-SiO2 nanofiber to composite membranes significantly improved proton conductivity, dimensional stability, and methanol permeability.

  9. How do Macroeconomic and Political Variables Affect the Flexibility of Exchange Rate Regime?

    OpenAIRE

    Mehmet Guclu

    2009-01-01

    The choice of exchange rate regime has become one of the most important issues once more in many economies after the financial crises in recent years. In the wake of the financial crises, many countries, especially emerging market economies, opted for floating exchange rate regimes by forsaking the pegged regimes. Consequently, an old debate on the choice and determinants of exchange rate regimes has been triggered. Economists have started to debate what appropriate exchange rate regime for a...

  10. Determination of the equilibrium micelle-inserting position of the fusion peptide of gp41 of human immunodeficiency virus type 1 at amino acid resolution by exchange broadening of amide proton resonances

    Energy Technology Data Exchange (ETDEWEB)

    Chang, D.-K.; Cheng, S.-F. [Academia Sinica, Institute of Chemistry (China)

    1998-11-15

    The exchange broadening of backbone amide proton resonances of a 23-mer fusion peptide of the transmembrane subunit of HIV-1 envelope glycoprotein gp41, gp41-FP, was investigated at pH 5 and 7 at room temperature in perdeuterated sodium dodecyl sulfate (SDS) micellar solution. Comparison of resonance peaks for these pHs revealed an insignificant change in exchange rate between pH 5 and 7 for amide protons of residues 4 through 14, while the exchange rate increase at neutral pH was more prominent for amide protons of the remaining residues, with peaks from some protons becoming undetectable. The relative insensitivity to pH of the exchange for the amide protons of residues 4 through 14 is attributable to the drastic reduction in [OH-] in the micellar interior, leading to a decreased exchange rate. The A15-G16 segment represents a transition between these two regimes. The data are thus consistent with the notion that the peptide inserts into the hydrophobic core of a membrane-like structure and the A15-G16 dipeptide is located at the micellar-aqueous boundary.

  11. The development and implementation of high-throughput tools for discovery and characterization of proton exchange membranes

    Science.gov (United States)

    Reed, Keith Gregory

    The need for sustainable energy use has motivated the exploration of renewable alternative fuels and fuel conversion technology on a global scale. Fuel cells, which convert chemical energy directly into electrical energy with high efficiency and low emissions, provide a promising strategy for achieving energy sustainability. The current progress in fuel cell commercialization is mainly in portable and stationary applications, but fuel cell technology for transportation applications, which make up a substantial portion of the global energy market, have seen little commercial success. Proton exchange membrane fuel cells (PEMFCs) have high potential for addressing the future energy needs of the transportation energy sector. However, one of the prevailing limitations of the PEMFC is the availability of high-performance, cost-effective electrolyte materials. These materials may be realized in the near future by developing multifunctional polymer blends targeted at specific performance capabilities. Since the number of available polymer combinations and numerous processing variations provide an almost infinite source of PEMFC membrane candidates, efficient methods of discovering high-performance PEM materials are necessary. Combinatorial methods meet these needs using gradient or discrete techniques to capture process variations such as annealing temperature, thickness, and chemical composition into a single polymer sample that serves as a library of materials. To characterize these heterogeneous samples for fuel cell performance, specific high-throughput measurement techniques are necessary. In this work, a high-throughput mass transport assay (HT-MTA) has been developed to characterize water flux and permeability at multiple sample locations in parallel. The functionality of HT-MTA was evaluated using standard NafionRTM films and a model semi-interpenetrated polymer network with commercial polyvinylidine fluoride as the host matrix for a proprietary polyelectrolyte

  12. Preparation and properties of composite membrane of bisphenol A-based sulfonated poly(arylene ether sulfone) and phosphotungstic acid for proton exchange membranes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ni; LIU Hui-ling; LI Jun-jing; XIA Zhi

    2010-01-01

    A series of bi A-SPAES (Ds=0.4)/phosphotungstic acid (PWA/bi A-SPAES) composite membranes with various contents of PWA were prepared and characterized by FT-IR.Scanning electron microscopy (SEM) images indicated the PWA were well dispersed within polymer matrix.These composite membranes were evaluated for proton exchange membranes (PEM) in direct methanol fuel cell (DMFC).These membranes showed good thermal stability.It was found that the water uptake of these membranes increased with the increase of the PWA content in the hybrid membranes.Meanwhile,the introduction of inorganic particles increased both the proton conductivity and the methanol permeability.The proton conductivities of composite membranes were increased from 0.017 S/cm to 0.045 S/cm at 20 ℃ and from 0.054 S/cm to 0.093 S/cm at 100 ℃ with the increase of PWA content from 0 to 50 %.Especially,all the methanol diffusion coefficients (4.20×10-8-1.05×10-7 cm2/s) of bi A-SPAES/PWA hybrid membranes are much lower than that of Nafion 117 membrane (2.1×10-6 cm2/s).Bi A-SPAES/PWA hybrid membranes were therefore proposed as candidates of material for PEM in DMFC.

  13. Sulfonated poly(ether sulfone) (SPES)/boron phosphate (BPO{sub 4}) composite membranes for high-temperature proton-exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Sheng [Faculty of Chemistry and Material Science, Xiaogan University, Xiaogan, Hubei 432100 (China); Ministry of Education, Key Laboratory for the Green, Preparation and Application of Functional Materials, Institute of Composite Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); Gong, Chunli [Faculty of Chemistry and Material Science, Xiaogan University, Xiaogan, Hubei 432100 (China); Tsen, Wen-Chin; Shu, Yao-Chi [Department of Polymer Materials, Vanung University, Tao-Yuan, Taiwan 32045 (China); Tsai, Fang-Chang [Ministry of Education, Key Laboratory for the Green, Preparation and Application of Functional Materials, Institute of Composite Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China)

    2009-11-15

    A new series of sulfonated poly(ether sulfone) (SPES)/boron phosphate (BPO{sub 4}) composite membranes for proton-exchange membrane fuel cells (PEMFCs) applications, with a BPO{sub 4} content up to 40 wt%, were prepared by a sol-gel method using tripropylborate and phosphoric acid as precursors. Compared to a pure SPES membrane, BPO{sub 4} doping in the membranes led to a higher thermal stability and glass-transition temperature (T{sub g}) as revealed by TGA-FTIR, DSC and DMTA. Water uptake and oxidative stability were significantly increased by increasing the content of BPO{sub 4}. At both operating temperature conditions, namely 20 C and 100 C, the tensile strength of all the composite membranes were lower than that of the SPES membrane. However, even when the content of BPO{sub 4} was as high as 30%, the composite membrane still possessed strength similar to the Nafion 112 membrane. SEM-EDX indicated that the BPO{sub 4} particles were uniformly embedded throughout the SPES matrix, which may facilitate proton transport. Proton conductivities increased from 0.0065 to 0.022 S cm{sup -1} at room temperature as BPO{sub 4} increased from 0 to 40%. The conductivities also increased with the temperature. The SPES/BPO{sub 4} composite membrane is a promising candidate for PEMFCs applications, especially at higher temperatures. (author)

  14. Long-term testing of a high-temperature proton exchange membrane fuel cell short stack operated with improved polybenzimidazole-based composite membranes

    Science.gov (United States)

    Pinar, F. Javier; Cañizares, Pablo; Rodrigo, Manuel A.; Úbeda, Diego; Lobato, Justo

    2015-01-01

    In this work, the feasibility of a 150 cm2 high-temperature proton exchange membrane fuel cell (HT-PEMFC) stack operated with modified proton exchange membranes is demonstrated. The short fuel cell stack was manufactured using a total of three 50 cm2 membrane electrode assemblies (MEAs). The PEM technology is based on a polybenzimidazole (PBI) membrane. The obtained results were compared with those obtained using a HT-PEMFC stack with unmodified membranes. The membranes were cast from a PBI polymer synthesized in the laboratory, and the modified membranes contained 2 wt.% micro-sized TiO2 as a filler. Long-term tests were performed in both constant and dynamic loading modes. The fuel cell stack with 2 wt.% TiO2 composite PBI membranes exhibited an irreversible voltage loss of less than 2% after 1100 h of operation. In addition, the acid loss was reduced from 2% for the fuel cell stack with unmodified membranes to 0.6% for the fuel cell stack with modified membranes. The results demonstrate that introducing filler into the membranes enhances the durability and stability of this type of fuel cell technology. Moreover, the fuel cell stack system also exhibits very rapid and stable power and voltage output responses under dynamic load regimes.

  15. CeO2 nanocubes-graphene oxide as durable and highly active catalyst support for proton exchange membrane fuel cell.

    Science.gov (United States)

    Lei, M; Wang, Z B; Li, J S; Tang, H L; Liu, W J; Wang, Y G

    2014-12-10

    Rapid degradation of cell performance still remains a significant challenge for proton exchange membrane fuel cell (PEMFC). In this work, we develop novel CeO2 nanocubes-graphene oxide nanocomposites as durable and highly active catalyst support for proton exchange membrane fuel cell. We show that the use of CeO2 as the radical scavenger in the catalysts remarkably improves the durability of the catalyst. The catalytic activity retention of Pt-graphene oxide-8 wt.% CeO2 nanocomposites reaches as high as 69% after 5000 CV-cycles at a high voltage range of 0.8-1.23 V, in contrast to 19% for that of the Pt-graphene oxide composites. The excellent durability of the Pt-CeO2 nanocubes-graphene oxide catalyst is attributed to the free radical scavenging activity of CeO2, which significantly slows down the chemical degradation of Nafion binder in catalytic layers, and then alleviates the decay of Pt catalysts, resulting in the excellent cycle life of Pt-CeO2-graphene oxide nanocomposite catalysts. Additionally, the performance of single cell assembled with Nafion 211 membrane and Pt-CeO2-graphene oxide catalysts with different CeO2 contents in the cathode as well as the Pt-C catalysts in the anode are also recorded and discussed in this study.

  16. Improved measurement of labile proton concentration-weighted chemical exchange rate (k(ws)) with experimental factor-compensated and T(1) -normalized quantitative chemical exchange saturation transfer (CEST) MRI.

    Science.gov (United States)

    Wu, Renhua; Liu, Charng-Ming; Liu, Philip K; Sun, Phillip Zhe

    2012-01-01

    Chemical exchange saturation transfer (CEST) MRI enables measurement of dilute CEST agents and microenvironment properties such as pH and temperature, holding great promise for in vivo applications. However, because of confounding concomitant radio frequency (RF) irradiation and relaxation effects, the CEST-weighted MRI contrast may not fully characterize the underlying CEST phenomenon. We postulated that the accuracy of quantitative CEST MRI could be improved if the experimental factors (labeling efficiency and RF spillover effect) were estimated and taken into account. Specifically, the experimental factor was evaluated as a function of exchange rate and CEST agent concentration ratio, which remained relatively constant for intermediate RF irradiation power levels. Hence, the experimental factors can be calculated based on the reasonably estimated exchange rate and labile proton concentration ratio, which significantly improved quantification. The simulation was confirmed with creatine phantoms of serially varied concentration titrated to the same pH, whose reverse exchange rate (k(ws)) was found to be linearly correlated with the concentration. In summary, the proposed solution provides simplified yet reasonably accurate quantification of the underlying CEST system, which may help guide the ongoing development of quantitative CEST MRI.

  17. Crosslinking and alkyl substitution in nano-structured grafted fluoropolymer for use as proton-exchange membranes in fuel cells

    DEFF Research Database (Denmark)

    Larsen, Mikkel Juul; Ma, Yue; Lund, Peter Brilner;

    2009-01-01

    of the crosslinking agent divinylbenzene has been investigated and its amount optimized. Substitution of styrene by methylstyrene and t-butylstyrene has been performed with the purpose of improving the chemical stability of the membranes. Grafting with a fraction of divinylbenzene in the order of 1-2 vol......-% of the total monomers has been found to be the best compromise between high grafting yield, good chemical stability, and high proton conductivity of the final membrane. The use of methylstyrene and t-butylstyrene as grafting monomers instead of styrene results in substantially increased chemical stability......, with reasonable proton conductivity still being possible to obtain....

  18. Factors Affecting the Individual Decision Making: a Case Study of Islamabad Stock Exchange

    Directory of Open Access Journals (Sweden)

    Mona Akbar

    2016-03-01

    Full Text Available In recent era, stock market trading has increased rapidly; rapid trading can give benefits to brokerage firms. Stock market of country is an indicator of economic growth and development of country. Individual investment decision making is increasing rapidly so it is necessary to know the behavior of individual investors. The study identifies the factors that affect the investment decision making. The study used adapted questionnaire to gather the primary data from 253 individual investors of Islamabad stock exchange. The advanced econometric techniques are used to conduct in-depth analysis of gathered data with the help of SPSS 22. The descriptive statistics, regression analysis and exploratory factor analysis are employed. The findings of present study reveal positive significant relationship between advocate recommendations, neutral information, self-image/firm image coincidence and individual investor investment decision making. The study did not find any evidence on relationship between accounting information, classical wealth maximization and personal financial needs. It can say that most of investors in Pakistan are not making rational decisions on the basis of accounting information and most of times their decisions depend on the recommendations of stock brokers, co-works, friends and family. It is suggested that higher authorizes should focus on this issue because stock markets can be easily manipulated if investors rely on other recommendations while making investment decisions.

  19. Improvement of proton exchange membrane fuel cell electrical performance by optimization of operating parameters and electrodes preparation

    Energy Technology Data Exchange (ETDEWEB)

    Kadjo, A.J.-J.; Garnier, J.-P.; Martemianov, S. [Laboratoire d' Etudes Thermiques, UMR6608, ESIP-Universite de Poitiers, CNRS, Poitiers F-86022 (France); Brault, P.; Caillard, A. [Groupe de Recherche sur l' Energetique des Milieux Ionises, UMR6606 Universite d' Orleans, CNRS Polytech' Orleans BP6744, F-45067 Orleans Cedex 2 (France); Coutanceau, C. [Laboratoire de Catalyse en Chimie Organique, UMR6503 Universite de Poitiers, CNRS, Poitiers F-86022 (France)

    2007-10-25

    The effect of operating parameters (cell temperature, humidifiers temperature, gases flows and pressures) on the performance of a 25 cm{sup 2} surface area fuel cell is performed. After optimization, a homemade MEA fitted with electrodes prepared via the colloidal route leads to achieve reproducibly maximum power densities higher than 1.2 W cm{sup -2} with a total catalyst loading of 0.7 mg{sub Pt} cm{sup -2} (corresponding to 1.7kW g{sub Pt}{sup -1}). This electrical performance is higher to that obtained with a commercial MEA provided by fuel cell store (total platinum loading of 1.2 mg cm{sup -2} and power density close to 1 W cm{sup -2}, corresponding to 0.75kW g{sub Pt}{sup -1}). Based on this experience, two different homemade MEAs are tested under optimal operating conditions and compared to the commercial one. The final goal is to decrease significantly the platinum loading preserving at least equivalent PEMFC electrical performance. The method of catalyst deposition by plasma sputtering is used to further decrease the total catalyst loading down to 0.45 mg{sub Pt} cm{sup -2}. Very interesting performances (close to 0.7 W cm{sup -2}) were obtained with this low-platinum loading MEA (corresponding to 1.6kW g{sub Pt}{sup -1}). However, it was shown that the decrease of the platinum loading in the cathode from 0.35 to 0.1 mg cm{sup -2} affects the kinetics of oxygen reduction (exchange current density j{sub 0} and Tafel slope b) and the resistance of the cell R, and hence the cell electrical performance. (author)

  20. ON THE CURRENT RMB EXCHANGE RATE REGIME AFFECTING THE EFFECTIVENESS OF MONETARY POLICY

    Institute of Scientific and Technical Information of China (English)

    黄燕君

    2001-01-01

    The current exchange rate regime of China is just like the US dollar-pegged exchange rate regime, which weakens the effectiveness of monetary policy but increases the effectiveness of fiscal policy. Since the scope of implementing the fiscal policy is quite narrow, it is necessary to promote the effectiveness of monetary policy by enlarging the elasticity of the RMB exchange rate regime so as to stimulate the rapid development of the Chinese economy effectively.