WorldWideScience

Sample records for affecting genetic structure

  1. Processes affecting genetic structure and conservation: a case study of wild and cultivated Brassica rapa

    DEFF Research Database (Denmark)

    Andersen, Naja Steen; Poulsen, Gert; Andersen, Bente Anni;

    2009-01-01

    a clear distinction of B. rapa and B. napus individuals except for three individuals that seemed to be backcrosses. The backcrossed hybrids descended from two Swedish populations, one wild and one escaped. The overall pattern of genetic variation and structure in B. rapa showed that cultivated and wild B...... cultivar. The study point to that many processes, e.g. spontaneous introgression, naturalisation, breeding and agricultural practise affected the genetic structure of wild and cultivated B. rapa populations....

  2. Fine-scale biogeography: tidal elevation strongly affects population genetic structure and demographic history in intertidal fishes

    Directory of Open Access Journals (Sweden)

    Sophie von der Heyden

    2013-04-01

    Full Text Available Numerous studies have demonstrated population genetic structuring in marine species, yet few have investigated the effect of vertical zonation on gene flow and population structure. Here we use three sympatric, closely related clinid species, Clinus cottoides, C. superciliosus and Muraenoclinus dorsalis, to test whether zonation on South African intertidal rocky shores affects phylogeographic patterns. We show that the high‐shore restricted species has reduced gene flow and considerably higher Fst values (Fst = 0.9 than the mid‐ and low‐shore species (Fst

  3. Vector control measures failed to affect genetic structure of Aedes aegypti in a sentinel metropolitan area of Brazil.

    Science.gov (United States)

    Souza, Kathleen R; Ribeiro, Gilmar; Silva dos Santos, Carlos Gustavo; de Lima, Eliaci Couto; Melo, Paulo R S; Reis, Mitermayer G; Blanton, Ronald E; Silva, Luciano K

    2013-12-01

    In order to evaluate subpopulation differentiation, effective population size (Ne) and evidence for population bottlenecks at various geographic levels, Aedes aegypti larvae were collected longitudinally from 2007 to 2009 from four areas in the city of Salvador, Brazil. The DNA from each larva was isolated and genotyped with five independent microsatellite markers. FST and Jost's D revealed significant population structuring (Pcontrol measures did contribute to vector reduction, but this was not enough to decrease A. aegypti population genetic diversity in Salvador. The understanding of A. aegypti population dynamics may be helpful for planning and evaluation of control measures to make them more effective.

  4. Molecular genetics in affective illness

    Energy Technology Data Exchange (ETDEWEB)

    Mendlewicz, J.; Sevy, S.; Mendelbaum, K. (Erasme Univ. Hospital, Brussels (Belgium))

    1993-01-01

    Genetic transmission in manic depressive illness (MDI) has been explored in twins, adoption, association, and linkage studies. The X-linked transmission hypothesis has been tested by using several markers on chromosome X: Xg blood group, color blindness, glucose-6-phosphate dehydrogenase (G6PD), factor IX (hemophilia B), and DNA probes such as DXS15, DXS52, F8C, ST14. The hypothesis of autosomal transmission has been tested by association studies with the O blood group located on chromosome 9, as well as linkage studies on chromosome 6 with the Human Leucocyte Antigens (HLA) haplotypes and on Chromosome 11 with DNA markers for the following genes: D2 dopamine receptor, tyrosinase, C-Harvey-Ras-A (HRAS) oncogene, insuline (ins), and tyrosine hydroxylase (TH). Although linkage studies support the hypothesis of a major locus for the transmission of MDI in the Xq27-28 region, several factors are limiting the results, and are discussed in the present review. 105 refs., 1 fig., 2 tabs.

  5. Genetic search feature selection for affective modeling

    DEFF Research Database (Denmark)

    Martínez, Héctor P.; Yannakakis, Georgios N.

    2010-01-01

    Automatic feature selection is a critical step towards the generation of successful computational models of affect. This paper presents a genetic search-based feature selection method which is developed as a global-search algorithm for improving the accuracy of the affective models built...

  6. Genetic factors affecting dental caries risk.

    Science.gov (United States)

    Opal, S; Garg, S; Jain, J; Walia, I

    2015-03-01

    This article reviews the literature on genetic aspects of dental caries and provides a framework for the rapidly changing disease model of caries. The scope is genetic aspects of various dental factors affecting dental caries. The PubMed database was searched for articles with keywords 'caries', 'genetics', 'taste', 'diet' and 'twins'. This was followed by extensive handsearching using reference lists from relevant articles. The post-genomic era will present many opportunities for improvement in oral health care but will also present a multitude of challenges. We can conclude from the literature that genes have a role to play in dental caries; however, both environmental and genetic factors have been implicated in the aetiology of caries. Additional studies will have to be conducted to replicate the findings in a different population. Identification of genetic risk factors will help screen and identify susceptible patients to better understand the contribution of genes in caries aetiopathogenesis. Information derived from these diverse studies will provide new tools to target individuals and/or populations for a more efficient and effective implementation of newer preventive measures and diagnostic and novel therapeutic approaches in the management of this disease.

  7. Genotyping-by-sequencing approach indicates geographic distance as the main factor affecting genetic structure and gene flow in Brazilian populations of Grapholita molesta (Lepidoptera, Tortricidae).

    Science.gov (United States)

    Silva-Brandão, Karina Lucas; Silva, Oscar Arnaldo Batista Neto E; Brandão, Marcelo Mendes; Omoto, Celso; Sperling, Felix A H

    2015-06-01

    The oriental fruit moth Grapholita molesta is one of the major pests of stone and pome fruit species in Brazil. Here, we applied 1226 SNPs obtained by genotyping-by-sequencing to test whether host species associations or other factors such as geographic distance structured populations of this pest. Populations from the main areas of occurrence of G. molesta were sampled principally from peach and apple orchards. Three main clusters were recovered by neighbor-joining analysis, all defined by geographic proximity between sampling localities. Overall genetic structure inferred by a nonhierarchical amova resulted in a significant ΦST value = 0.19109. Here, we demonstrate for the first time that SNPs gathered by genotyping-by-sequencing can be used to infer genetic structure of a pest insect in Brazil; moreover, our results indicate that those markers are very informative even over a restricted geographic scale. We also demonstrate that host plant association has little effect on genetic structure among Brazilian populations of G. molesta; on the other hand, reduced gene flow promoted by geographic isolation has a stronger impact on population differentiation.

  8. Coalgebraic structure of genetic inheritance.

    Science.gov (United States)

    Tian, Jianjun; Li, Bai-Lian

    2004-09-01

    Although in the broadly defined genetic algebra, multiplication suggests a forward direction of from parents to progeny, when looking from the reverse direction, it also suggests to us a new algebraic structure-coalge- braic structure, which we call genetic coalgebras. It is not the dual coalgebraic structure and can be used in the construction of phylogenetic trees. Math- ematically, to construct phylogenetic trees means we need to solve equations x([n]) = a, or x([n]) = b. It is generally impossible to solve these equations inalgebras. However, we can solve them in coalgebras in the sense of tracing back for their ancestors. A thorough exploration of coalgebraic structure in genetics is apparently necessary. Here, we develop a theoretical framework of the coalgebraic structure of genetics. From biological viewpoint, we defined various fundamental concepts and examined their elementary properties that contain genetic significance. Mathematically, by genetic coalgebra, we mean any coalgebra that occurs in genetics. They are generally noncoassociative and without counit; and in the case of non-sex-linked inheritance, they are cocommutative. Each coalgebra with genetic realization has a baric property. We have also discussed the methods to construct new genetic coalgebras, including cocommutative duplication, the tensor product, linear combinations and the skew linear map, which allow us to describe complex genetic traits. We also put forward certain theorems that state the relationship between gametic coalgebra and gametic algebra. By Brower's theorem in topology, we prove the existence of equilibrium state for the in-evolution operator.

  9. Past climate change and recent anthropogenic activities affect genetic structure and population demography of the greater long-tailed hamster in northern China.

    Science.gov (United States)

    Ye, Junbin; Xiao, Zhenlong; Li, Chuanhai; Wang, Fusheng; Liao, Jicheng; Fu, Jinzhong; Zhang, Zhibin

    2015-09-01

    The genetic diversity and the spatial structure of a species are likely consequences of both past and recent evolutionary processes, but relevant studies are still rare in East Asia where the Pleistocene climate has unique influences. In this study, we examined the impact of past climate change and recent anthropogenic activities on the genetic structure and population size of the greater long-tailed hamster (Tscherskia triton), an agricultural rodent pest species in northern China. DNA sequence data of 2 mitochondrial genes and genotypic data of 11 microsatellite DNA loci from 41 populations (545 individuals) were gathered. Phylogenetic and population genetic analyses, as well as species distribution modeling and coalescent simulations, were conducted to infer its historical and demographic patterns and processes. Two deeply diverged mitochondrial clades were recovered. A small one was restricted to the Shandong Peninsula while the main clade was further divided into 3 geographic clusters by their microsatellite DNA genotypes: Northwest, North-center and Northeast. Divergence dating indicated a Middle-to-Late Pleistocene divergence between the 2 clades. Demographic analysis indicated that all 3 and pooled populations showed consistent long-period expansions during last glacial period; but not during the Holocene, probably due to the impact of climate warming and human disturbances. Conflicting patterns between mtDNA and microsatellite markers imply an anthropogenic impact on North-center populations due to intensified agricultural cultivation in this region. Our study demonstrated that the impact of past glaciation on organisms in East Asia significantly differs from that of Europe and North America, and human activity is an important factor in determining the genetic diversity of a species, as well as its spatial structure.

  10. Somatically acquired structural genetic differences

    DEFF Research Database (Denmark)

    Magaard Koldby, Kristina; Nygaard, Marianne; Christensen, Kaare;

    2016-01-01

    Structural genetic variants like copy number variants (CNVs) comprise a large part of human genetic variation and may be inherited as well as somatically acquired. Recent studies have reported the presence of somatically acquired structural variants in the human genome and it has been suggested t...... with age.European Journal of Human Genetics advance online publication, 20 April 2016; doi:10.1038/ejhg.2016.34.......Structural genetic variants like copy number variants (CNVs) comprise a large part of human genetic variation and may be inherited as well as somatically acquired. Recent studies have reported the presence of somatically acquired structural variants in the human genome and it has been suggested...... that they may accumulate in elderly individuals. To further explore the presence and the age-related acquisition of somatic structural variants in the human genome, we investigated CNVs acquired over a period of 10 years in 86 elderly Danish twins as well as CNV discordances between co-twins of 18 monozygotic...

  11. Factors affecting student performance in an undergraduate genetics course.

    Science.gov (United States)

    Bormann, J Minick; Moser, D W; Bates, K E

    2013-05-01

    The objective of this study was to determine some of the factors that affect student success in a genetics course. Genetics for the Kansas State University College of Agriculture is taught in the Department of Animal Sciences and Industry and covers Mendelian inheritance, molecular genetics, and quantitative/population genetics. Data collected from 1,516 students over 7 yr included year and semester of the course; age; gender; state of residence; population of hometown; Kansas City metro resident or not; instructor of course; American College Testing Program (ACT) scores; number of transfer credits; major; college; preveterinary student or not; freshman, sophomore, junior, and senior grade point average (GPA); semester credits when taking genetics; class standing when enrolled in genetics; cumulative GPA before and after taking genetics; semester GPA in semester taking genetics, number of semesters between the biology prerequisite and genetics; grade in biology; location of biology course; and final percentage in genetics. Final percentage in genetics did not differ due to instructor, gender, state of residence, major, or college (P > 0.16). Transfer students tended to perform better than nontransfer students (P = 0.09), and students from the Kansas City metro outscored students from other areas (P = 0.03). Preveterinary option students scored higher in genetics than non-preveterinary students (P genetics (P = 0.06). Students who took biology at Kansas State University performed better in genetics than students who transferred the credit (P genetics (P genetics, students should take biology from Kansas State, perform well in biology, and wait until at least sophomore standing to enroll in genetics.

  12. Genotyping-by-sequencing approach indicates geographic distance as the main factor affecting genetic structure and gene flow in Brazilian populations of Grapholita molesta (Lepidoptera, Tortricidae)

    OpenAIRE

    Silva-Brandão, Karina Lucas; Oscar Arnaldo Batista Neto E Silva; Brandão, Marcelo Mendes; Omoto, Celso; Sperling, Felix A. H.

    2015-01-01

    The oriental fruit moth Grapholita molesta is one of the major pests of stone and pome fruit species in Brazil. Here, we applied 1226 SNPs obtained by genotyping-by-sequencing to test whether host species associations or other factors such as geographic distance structured populations of this pest. Populations from the main areas of occurrence of G. molesta were sampled principally from peach and apple orchards. Three main clusters were recovered by neighbor-joining analysis, all defined by g...

  13. Genetic and environmental factors affecting the coumarin anticoagulant level

    NARCIS (Netherlands)

    L.E. Visser (Loes)

    2004-01-01

    textabstractThis introductory chapter has illustrated that various factors, such as genetic factors, drugs, diet and intercurrent diseases may affect anticoagulation levels. Most of the clinical and pharmacological data related to coumarin anticoagulants have so far been obtained from studying warfa

  14. Common genetic variants influence human subcortical brain structures

    OpenAIRE

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro,; Desrivieres, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume de...

  15. Genetic and physiological factors affecting repair and mutagenesis in yeast

    Energy Technology Data Exchange (ETDEWEB)

    Lemontt, J F

    1979-01-01

    Current views of DNA repair and mutagenesis in the yeast Saccharomyces cerevisiae are discussed in the light of recent data and with emphasis on the isolation and characterization of genetically well-defined mutations that affect DNA metabolism in general (including replication and recombination). Various pathways of repair are described, particularly in relation to their imvolvement in mutagenic mechanisms. In addition to genetic control, certain physiological factors such as cell age, DNA replication, and the regulatory state of the mating-type locus are shown to also play a role in repair and mutagenesis.

  16. Genetic and physiological factors affecting repair and mutagenesis in yeast

    Energy Technology Data Exchange (ETDEWEB)

    Lemontt, J F

    1979-01-01

    Current views of DNA repair and mutagenesis in the yeast Saccharomyces cerevisiae are discussed in the light of recent data, and with emphasis on the isolation and characterization of genetically well-defined mutations that affect DNA metabolism in general (including replication and recombination). Various pathways of repair are described particularly in relation to their involvement in mutagenic mechanisms. In addition to genetic control, certain physiological factors such as cell age, DNA replication, and the regulatory state of the mating-type locus, are shown to also play a role in repair and mutagenesis.

  17. Bioclimatic regions influence genetic structure of four Jordanian Stipa species.

    Science.gov (United States)

    Hamasha, H R; Schmidt-Lebuhn, A N; Durka, W; Schleuning, M; Hensen, I

    2013-09-01

    Strong environmental gradients can affect the genetic structure of plant populations, but little is known as to whether closely related species respond similarly or idiosyncratically to ecogeographic variation. We analysed the extent to which gradients in temperature and rainfall shape the genetic structure of four Stipa species in four bioclimatic regions in Jordan. Genetic diversity, differentiation and structure of Stipa species were investigated using amplified fragment length polymorphism (AFLP) molecular markers. For each of the four study species, we sampled 120 individuals from ten populations situated in distinct bioclimatic regions and assessed the degree of genetic diversity and genetic differentiation within and among populations. The widespread ruderals Stipa capensis and S. parviflora had higher genetic diversity than the geographically restricted semi-desert species S. arabica and S. lagascae. In three of the four species, genetic diversity strongly decreased with precipitation, while genetic diversity increased with temperature in S. capensis. Most genetic diversity resided among populations in the semi-desert species (Φ(ST) = 0.572/0.595 in S. arabica/lagascae) but within populations in the ruderal species (Φ(ST) = 0.355/0.387 S. capensis/parviflora). Principal coordinate analysis (PCoA) and STRUCTURE analysis showed that Stipa populations of all species clustered ecogeographically. A genome scan revealed that divergent selection at particular AFLP loci contributed to genetic differentiation. Irrespective of their different life histories, Stipa species responded similarly to the bioclimatic gradient in Jordan. We conclude that, in addition to predominant random processes, steep climatic gradients might shape the genetic structure of plant populations.

  18. Ocean currents help explain population genetic structure

    Science.gov (United States)

    White, Crow; Selkoe, Kimberly A.; Watson, James; Siegel, David A.; Zacherl, Danielle C.; Toonen, Robert J.

    2010-01-01

    Management and conservation can be greatly informed by considering explicitly how environmental factors influence population genetic structure. Using simulated larval dispersal estimates based on ocean current observations, we demonstrate how explicit consideration of frequency of exchange of larvae among sites via ocean advection can fundamentally change the interpretation of empirical population genetic structuring as compared with conventional spatial genetic analyses. Both frequency of larval exchange and empirical genetic difference were uncorrelated with Euclidean distance between sites. When transformed into relative oceanographic distances and integrated into a genetic isolation-by-distance framework, however, the frequency of larval exchange explained nearly 50 per cent of the variance in empirical genetic differences among sites over scales of tens of kilometres. Explanatory power was strongest when we considered effects of multiple generations of larval dispersal via intermediary locations on the long-term probability of exchange between sites. Our results uncover meaningful spatial patterning to population genetic structuring that corresponds with ocean circulation. This study advances our ability to interpret population structure from complex genetic data characteristic of high gene flow species, validates recent advances in oceanographic approaches for assessing larval dispersal and represents a novel approach to characterize population connectivity at small spatial scales germane to conservation and fisheries management. PMID:20133354

  19. Structural similarity of genetically interacting proteins

    Directory of Open Access Journals (Sweden)

    Nussinov Ruth

    2008-07-01

    Full Text Available Abstract Background The study of gene mutants and their interactions is fundamental to understanding gene function and backup mechanisms within the cell. The recent availability of large scale genetic interaction networks in yeast and worm allows the investigation of the biological mechanisms underlying these interactions at a global scale. To date, less than 2% of the known genetic interactions in yeast or worm can be accounted for by sequence similarity. Results Here, we perform a genome-scale structural comparison among protein pairs in the two species. We show that significant fractions of genetic interactions involve structurally similar proteins, spanning 7–10% and 14% of all known interactions in yeast and worm, respectively. We identify several structural features that are predictive of genetic interactions and show their superiority over sequence-based features. Conclusion Structural similarity is an important property that can explain and predict genetic interactions. According to the available data, the most abundant mechanism for genetic interactions among structurally similar proteins is a common interacting partner shared by two genetically interacting proteins.

  20. Genetic and non-genetic factors affecting morphometry of Sirohi goats

    Directory of Open Access Journals (Sweden)

    S. D. Dudhe

    2015-11-01

    Full Text Available Aim: The aim was to estimate genetic and non-genetic factors affecting morphometric traits of Sirohi goats under field condition. Materials and Methods: The detailed information of all animals on body measurements at birth, 3, 6, 9, and 12 months of age was collected from farmer’s flock under field condition born during 2007-2013 to analyze the effect of genetic and non-genetic factors. The least squares maximum likelihood program was used to estimate genetic and non-genetic parameters affecting morphometric traits. Results and Discussion: Effect of sire, cluster, year of birth, and sex was found to be highly significant (p<0.01 on all three morphometric traits, parity was highly significant (p<0.01 for body height (BH and body girth (BG at birth. The h2 estimates for morphometric traits ranged among 0.528±0.163 to 0.709±0.144 for BH, 0.408±0.159 to 0.605±0.192 for body length (BL, and 0.503±0.197 to 0.695±0.161 for BG. Conclusion: The effect of sire was highly significant (p<0.01 and also h² estimate of all morphometric traits were medium to high; therefore, it could be concluded on the basis of present findings that animals with higher body measurements at initial phases of growth will perform better with respect to even body weight traits at later stages of growth.

  1. Predicting complex mineral structures using genetic algorithms.

    Science.gov (United States)

    Mohn, Chris E; Kob, Walter

    2015-10-28

    We show that symmetry-adapted genetic algorithms are capable of finding the ground state of a range of complex crystalline phases including layered- and incommensurate super-structures. This opens the way for the atomistic prediction of complex crystal structures of functional materials and mineral phases.

  2. Introduction to Protein Structure through Genetic Diseases

    Science.gov (United States)

    Schneider, Tanya L.; Linton, Brian R.

    2008-01-01

    An illuminating way to learn about protein function is to explore high-resolution protein structures. Analysis of the proteins involved in genetic diseases has been used to introduce students to protein structure and the role that individual mutations can play in the onset of disease. Known mutations can be correlated to changes in protein…

  3. (Genetic structure of natural populations)

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    Our efforts in the first eight months were concentrated in obtaining a genomic clone of the copper-zinc superoxide dismutase (SOD) in Drosophila melanogaster and other Drosophila species. This we have now successfully accomplished. We seek to understand the role of SOD in radioresistance; how genetic variation in this enzyme is maintained in populations; and relevant aspects of its evolution that may contribute to these goals as well as to an understanding of molecular evolution in general. To accomplish these goals we are undertaking the following experiments: cloning and sequencing of (at least) one F allele, one S allele, and the null allele for SOD; cloning and sequencing SOD from species related to D. melanogaster; and cloning and sequencing the SOD gene from several independently sampled S and F alleles in D. melanogaster. We are also preparing to test the radioprotective effects of SOD. 67 refs.

  4. Genetic variation in genes affecting milk composition and quality

    DEFF Research Database (Denmark)

    Bertelsen, Henriette Pasgaard

    In the past decade major advances in next generation sequencing technologies have provided new opportuneties for the detection of genetic variation. Combining the knowlegde of genetic variation with phenotypic distributions provides considerable possibilites for detection of candidate genes....... In addition, exploring genetic variation related to the major milk proteins of bovine milk indntified genetic variations with possitive effects on milk coagulation...

  5. Genetic structuring across marine biogeographic boundaries in rocky shore invertebrates.

    Science.gov (United States)

    Villamor, Adriana; Costantini, Federica; Abbiati, Marco

    2014-01-01

    Biogeography investigates spatial patterns of species distribution. Discontinuities in species distribution are identified as boundaries between biogeographic areas. Do these boundaries affect genetic connectivity? To address this question, a multifactorial hierarchical sampling design, across three of the major marine biogeographic boundaries in the central Mediterranean Sea (Ligurian-Tyrrhenian, Tyrrhenian-Ionian and Ionian-Adriatic) was carried out. Mitochondrial COI sequence polymorphism of seven species of Mediterranean benthic invertebrates was analysed. Two species showed significant genetic structure across the Tyrrhenian-Ionian boundary, as well as two other species across the Ionian Sea, a previously unknown phylogeographic barrier. The hypothesized barrier in the Ligurian-Tyrrhenian cannot be detected in the genetic structure of the investigated species. Connectivity patterns across species at distances up to 800 km apart confirmed that estimates of pelagic larval dispersal were poor predictors of the genetic structure. The detected genetic discontinuities seem more related to the effect of past historical events, though maintained by present day oceanographic processes. Multivariate statistical tools were used to test the consistency of the patterns across species, providing a conceptual framework for across-species barrier locations and strengths. Additional sequences retrieved from public databases supported our findings. Heterogeneity of phylogeographic patterns shown by the 7 investigated species is relevant to the understanding of the genetic diversity, and carry implications for conservation biology.

  6. Genetic structuring across marine biogeographic boundaries in rocky shore invertebrates.

    Directory of Open Access Journals (Sweden)

    Adriana Villamor

    Full Text Available Biogeography investigates spatial patterns of species distribution. Discontinuities in species distribution are identified as boundaries between biogeographic areas. Do these boundaries affect genetic connectivity? To address this question, a multifactorial hierarchical sampling design, across three of the major marine biogeographic boundaries in the central Mediterranean Sea (Ligurian-Tyrrhenian, Tyrrhenian-Ionian and Ionian-Adriatic was carried out. Mitochondrial COI sequence polymorphism of seven species of Mediterranean benthic invertebrates was analysed. Two species showed significant genetic structure across the Tyrrhenian-Ionian boundary, as well as two other species across the Ionian Sea, a previously unknown phylogeographic barrier. The hypothesized barrier in the Ligurian-Tyrrhenian cannot be detected in the genetic structure of the investigated species. Connectivity patterns across species at distances up to 800 km apart confirmed that estimates of pelagic larval dispersal were poor predictors of the genetic structure. The detected genetic discontinuities seem more related to the effect of past historical events, though maintained by present day oceanographic processes. Multivariate statistical tools were used to test the consistency of the patterns across species, providing a conceptual framework for across-species barrier locations and strengths. Additional sequences retrieved from public databases supported our findings. Heterogeneity of phylogeographic patterns shown by the 7 investigated species is relevant to the understanding of the genetic diversity, and carry implications for conservation biology.

  7. How does farmer connectivity influence livestock genetic structure?

    DEFF Research Database (Denmark)

    Berthouly, C; Do, Duy Ngoc; Thévenon, S

    2009-01-01

    Assessing how genes flow across populations is a key component of conservation genetics. Gene flow in a natural population depends on ecological traits and the local environment, whereas for a livestock population, gene flow is driven by human activities. Spatial organization, relationships between...... farmers and their husbandry practices will define the farmer's network and so determine farmer connectivity. It is thus assumed that farmer connectivity will affect the genetic structure of their livestock. To test this hypothesis, goats reared by four different ethnic groups in a Vietnamese province were......, ethnicity and husbandry practices. In this study, we clearly linked the livestock genetic pattern to farmer connectivity and showed the importance of taking into account spatial information in genetic studies....

  8. The genetic structure of the Swedish population.

    Directory of Open Access Journals (Sweden)

    Keith Humphreys

    Full Text Available Patterns of genetic diversity have previously been shown to mirror geography on a global scale and within continents and individual countries. Using genome-wide SNP data on 5174 Swedes with extensive geographical coverage, we analyzed the genetic structure of the Swedish population. We observed strong differences between the far northern counties and the remaining counties. The population of Dalarna county, in north middle Sweden, which borders southern Norway, also appears to differ markedly from other counties, possibly due to this county having more individuals with remote Finnish or Norwegian ancestry than other counties. An analysis of genetic differentiation (based on pairwise F(st indicated that the population of Sweden's southernmost counties are genetically closer to the HapMap CEU samples of Northern European ancestry than to the populations of Sweden's northernmost counties. In a comparison of extended homozygous segments, we detected a clear divide between southern and northern Sweden with small differences between the southern counties and considerably more segments in northern Sweden. Both the increased degree of homozygosity in the north and the large genetic differences between the south and the north may have arisen due to a small population in the north and the vast geographical distances between towns and villages in the north, in contrast to the more densely settled southern parts of Sweden. Our findings have implications for future genome-wide association studies (GWAS with respect to the matching of cases and controls and the need for within-county matching. We have shown that genetic differences within a single country may be substantial, even when viewed on a European scale. Thus, population stratification needs to be accounted for, even within a country like Sweden, which is often perceived to be relatively homogenous and a favourable resource for genetic mapping, otherwise inferences based on genetic data may lead to

  9. Genetic Drift Suppresses Bacterial Conjugation in Spatially Structured Populations

    Science.gov (United States)

    Freese, Peter D.; Korolev, Kirill S.; Jiménez, José I.; Chen, Irene A.

    2014-02-01

    Conjugation is the primary mechanism of horizontal gene transfer that spreads antibiotic resistance among bacteria. Although conjugation normally occurs in surface-associated growth (e.g., biofilms), it has been traditionally studied in well-mixed liquid cultures lacking spatial structure, which is known to affect many evolutionary and ecological processes. Here we visualize spatial patterns of gene transfer mediated by F plasmid conjugation in a colony of Escherichia coli growing on solid agar, and we develop a quantitative understanding by spatial extension of traditional mass-action models. We found that spatial structure suppresses conjugation in surface-associated growth because strong genetic drift leads to spatial isolation of donor and recipient cells, restricting conjugation to rare boundaries between donor and recipient strains. These results suggest that ecological strategies, such as enforcement of spatial structure and enhancement of genetic drift, could complement molecular strategies in slowing the spread of antibiotic resistance genes.

  10. Common genetic variants influence human subcortical brain structures

    Science.gov (United States)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Olde Loohuis, Loes M.; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Nöthen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdés Hernández, Maria C.; van ’t Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Jönsson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  11. Common genetic variants influence human subcortical brain structures.

    Science.gov (United States)

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy

    2015-04-01

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

  12. Genetic Structure of the Spanish Population

    Directory of Open Access Journals (Sweden)

    Gutiérrez Marta

    2010-05-01

    Full Text Available Abstract Background Genetic admixture is a common caveat for genetic association analysis. Therefore, it is important to characterize the genetic structure of the population under study to control for this kind of potential bias. Results In this study we have sampled over 800 unrelated individuals from the population of Spain, and have genotyped them with a genome-wide coverage. We have carried out linkage disequilibrium, haplotype, population structure and copy-number variation (CNV analyses, and have compared these estimates of the Spanish population with existing data from similar efforts. Conclusions In general, the Spanish population is similar to the Western and Northern Europeans, but has a more diverse haplotypic structure. Moreover, the Spanish population is also largely homogeneous within itself, although patterns of micro-structure may be able to predict locations of origin from distant regions. Finally, we also present the first characterization of a CNV map of the Spanish population. These results and original data are made available to the scientific community.

  13. Do Knowledge Arrangements Affect Student Reading Comprehension of Genetics?

    Science.gov (United States)

    Wu, Jen-Yi; Tung, Yu-Neng; Hwang, Bi-Chi; Lin, Chen-Yung; Che-Di, Lee; Chang, Yung-Ta

    2014-01-01

    Various sequences for teaching genetics have been proposed. Three seventh-grade biology textbooks in Taiwan share similar key knowledge assemblages but have different knowledge arrangements. To investigate the influence of knowledge arrangements on student understanding of genetics, we compared students' reading comprehension of the three…

  14. Do Knowledge Arrangements Affect Student Reading Comprehension of Genetics?

    Science.gov (United States)

    Wu, Jen-Yi; Tung, Yu-Neng; Hwang, Bi-Chi; Lin, Chen-Yung; Che-Di, Lee; Chang, Yung-Ta

    2014-01-01

    Various sequences for teaching genetics have been proposed. Three seventh-grade biology textbooks in Taiwan share similar key knowledge assemblages but have different knowledge arrangements. To investigate the influence of knowledge arrangements on student understanding of genetics, we compared students' reading comprehension of the three texts…

  15. Genetic and epigenetic factors affecting meiosis induction in eukaryotes revealed in paramecium research.

    Science.gov (United States)

    Prajer, Małgorzata

    2008-01-01

    This review presents studies of the induction of meiosis undertaken on the ciliate Paramecium, a unicellular model eukaryotic organism. Meiosis in Paramecium, preceding the process of fertilization, appears in starved cells after passing a defined number of divisions (cell generations), starting from the last fertilization. Investigations were performed on clones of cells entering autogamy, a self-fertilization process. Genetic as well as epigenetic factors, i.e. endo- and exogenous factors, affecting the induction ofmeiosis and changing the duration of the interautogamous interval (IAI), were analyzed. The results show that: (1) Meiosis induction is controlled genetically by the somatic macronucleus. However, besides the nuclear factors, the cytoplasmic protein immaturin also affects this process (Haga & Hiwatashi 1981); (2) Epigenetic factors, such as non-genetically disturbed cytoskeleton structures and changes in the cell architecture observed in doublet Paramecium cells, exert internal mechanical stress (Ingber 2003), which constitutes the endogenous impulse accelerating meiosis; (3) Mild osmotic stress, acting as an exogenous factor, can initiate the specific MAP kinases signaling pathway resulting in earlier meiosis induction, as in other unicellular eukaryotes (Seet & Pawson 2004).

  16. Spatial genetic structure of a symbiotic beetle-fungal system: toward multi-taxa integrated landscape genetics.

    Directory of Open Access Journals (Sweden)

    Patrick M A James

    Full Text Available Spatial patterns of genetic variation in interacting species can identify shared features that are important to gene flow and can elucidate co-evolutionary relationships. We assessed concordance in spatial genetic variation between the mountain pine beetle (Dendroctonus ponderosae and one of its fungal symbionts, Grosmanniaclavigera, in western Canada using neutral genetic markers. We examined how spatial heterogeneity affects genetic variation within beetles and fungi and developed a novel integrated landscape genetics approach to assess reciprocal genetic influences between species using constrained ordination. We also compared landscape genetic models built using Euclidean distances based on allele frequencies to traditional pair-wise Fst. Both beetles and fungi exhibited moderate levels of genetic structure over the total study area, low levels of structure in the south, and more pronounced fungal structure in the north. Beetle genetic variation was associated with geographic location while that of the fungus was not. Pinevolume and climate explained beetle genetic variation in the northern region of recent outbreak expansion. Reciprocal genetic relationships were only detectedin the south where there has been alonger history of beetle infestations. The Euclidean distance and Fst-based analyses resulted in similar models in the north and over the entire study area, but differences between methods in the south suggest that genetic distances measures should be selected based on ecological and evolutionary contexts. The integrated landscape genetics framework we present is powerful, general, and can be applied to other systems to quantify the biotic and abiotic determinants of spatial genetic variation within and among taxa.

  17. Do genetic modifications in crops affect soil fungi? a review

    NARCIS (Netherlands)

    Hannula, S.E.; Boer, de W.; Veen, van J.A.

    2014-01-01

    The use of genetically modified (GM) plants in agriculture has been a topic in public debate for over a decade. Despite their potential to increase yields, there may be unintended negative side-effects of GM plants on soil micro-organisms that are essential for functioning of agro-ecosystems. Fungi

  18. Targeting environmental and genetic aspects affecting life history traits

    NARCIS (Netherlands)

    Baldal, Egon Alexander

    2006-01-01

    This thesis comprises elementary work on the evolution of ageing. The issue of ageing, and especially of starvation resistance, has been approached from both the environmental and the genetic sides that are of relevance to the issue. Therewith, this study has a broad orientation, varying from ecophy

  19. The Genetic Structure of Marijuana and Hemp.

    Science.gov (United States)

    Sawler, Jason; Stout, Jake M; Gardner, Kyle M; Hudson, Darryl; Vidmar, John; Butler, Laura; Page, Jonathan E; Myles, Sean

    2015-01-01

    Despite its cultivation as a source of food, fibre and medicine, and its global status as the most used illicit drug, the genus Cannabis has an inconclusive taxonomic organization and evolutionary history. Drug types of Cannabis (marijuana), which contain high amounts of the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC), are used for medical purposes and as a recreational drug. Hemp types are grown for the production of seed and fibre, and contain low amounts of THC. Two species or gene pools (C. sativa and C. indica) are widely used in describing the pedigree or appearance of cultivated Cannabis plants. Using 14,031 single-nucleotide polymorphisms (SNPs) genotyped in 81 marijuana and 43 hemp samples, we show that marijuana and hemp are significantly differentiated at a genome-wide level, demonstrating that the distinction between these populations is not limited to genes underlying THC production. We find a moderate correlation between the genetic structure of marijuana strains and their reported C. sativa and C. indica ancestry and show that marijuana strain names often do not reflect a meaningful genetic identity. We also provide evidence that hemp is genetically more similar to C. indica type marijuana than to C. sativa strains.

  20. The Genetic Structure of Marijuana and Hemp.

    Directory of Open Access Journals (Sweden)

    Jason Sawler

    Full Text Available Despite its cultivation as a source of food, fibre and medicine, and its global status as the most used illicit drug, the genus Cannabis has an inconclusive taxonomic organization and evolutionary history. Drug types of Cannabis (marijuana, which contain high amounts of the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC, are used for medical purposes and as a recreational drug. Hemp types are grown for the production of seed and fibre, and contain low amounts of THC. Two species or gene pools (C. sativa and C. indica are widely used in describing the pedigree or appearance of cultivated Cannabis plants. Using 14,031 single-nucleotide polymorphisms (SNPs genotyped in 81 marijuana and 43 hemp samples, we show that marijuana and hemp are significantly differentiated at a genome-wide level, demonstrating that the distinction between these populations is not limited to genes underlying THC production. We find a moderate correlation between the genetic structure of marijuana strains and their reported C. sativa and C. indica ancestry and show that marijuana strain names often do not reflect a meaningful genetic identity. We also provide evidence that hemp is genetically more similar to C. indica type marijuana than to C. sativa strains.

  1. Genetic factors affecting patient responses to pancreatic cancer treatment

    Science.gov (United States)

    Fotopoulos, George; Syrigos, Konstantinos; Saif, Muhammad Wasif

    2016-01-01

    Cancer of the exocrine pancreas is a malignancy with a high lethal rate. Surgical resection is the only possible curative mode of treatment. Metastatic pancreatic cancer is incurable with modest results from the current treatment options. New genomic information could prove treatment efficacy. An independent review of PubMed and ScienceDirect databases was performed up to March 2016, using combinations of terms such pancreatic exocrine cancer, chemotherapy, genomic profile, pancreatic cancer pharmacogenomics, genomics, molecular pancreatic pathogenesis, and targeted therapy. Recent genetic studies have identified new markers and therapeutic targets. Our current knowledge of pancreatic cancer genetics must be further advanced to elucidate the molecular basis and pathogenesis of the disease, improve the accuracy of diagnosis, and guide tailor-made therapies. PMID:27708512

  2. Genetic Factors Affecting Performance Traits of Sahiwal Cattle in Pakistan

    Directory of Open Access Journals (Sweden)

    Z. Rehman*§ and M. S. Khan1

    2012-06-01

    Full Text Available Data on 23925 lactations of 5897 Sahiwal cows in five Government herds of Punjab province were collected to estimate the genetic control and genetic correlations among performance traits. A repeatability animal model having herd-year-season and parity was used for this purpose. The repeatability estimates for 305-d milk yield, total milk yield, lactation length, dry period, calving interval and service period were 0.40±0.015, 0.40±0.016, 0.33±0.013, 0.14±0.005, 0.15±0.004, and 0.14±0.005 respectively. The heritability estimates for these traits were 0.10±0.016, 0.09±0.016, 0.06±0.013, 0.14±0.009, 0.15±0.010, and 0.14±0.010, respectively. The phenotypic, genetic and environmental correlation of 305-d milk yield with lactation length was 0.71, 0.48 and 0.70, respectively, with dry period was -0.31, -0.43 and -0.22, respectively while with calving interval and service period exhibited similar pattern (0.08, 0.25 and 0.08, respectively. The estimated breeding values ranged from -447 to 1254 kg, -442 to 1265 kg, -24 to 38, -78 to 116, -84 to 107 and -81 to 91, days for 305-day milk yield, total milk yield, lactation length, dry period, calving interval and service period, respectively. No specific genetic trend was observed for performance traits during the period under study. Cows have not improved in their ability to perform in various economic traits. Accurate recording of pedigree and performance is necessary for improving the performance traits of Sahiwal. Due to high repeatability estimates of yield traits selection or culling may be practised from first few records.

  3. Genetic diversity affects colony survivorship in commercial honey bee colonies

    Science.gov (United States)

    Tarpy, David R.; vanEngelsdorp, Dennis; Pettis, Jeffrey S.

    2013-08-01

    Honey bee ( Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirically to confer significant adaptive advantages that result in higher colony productivity and survival. Moreover, honey bees are the primary insect pollinators used in modern commercial production agriculture, and their populations have been in decline worldwide. Here, we compare the mating frequencies of queens, and therefore, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate with various measures of colony health and productivity, particularly the likelihood of queen supersedure and colony survival in functional, intensively managed beehives. We found the average effective paternity frequency ( m e ) of this population of honey bee queens to be 13.6 ± 6.76, which was not significantly different between colonies that superseded their queen and those that did not. However, colonies that were less genetically diverse (headed by queens with m e ≤ 7.0) were 2.86 times more likely to die by the end of the study when compared to colonies that were more genetically diverse (headed by queens with m e > 7.0). The stark contrast in colony survival based on increased genetic diversity suggests that there are important tangible benefits of increased queen mating number in managed honey bees, although the exact mechanism(s) that govern these benefits have not been fully elucidated.

  4. Structural deterioration of tendon collagen in genetic muscular dystrophy.

    Science.gov (United States)

    Stinson, R H

    1975-08-19

    The structure of gastrocnemius tendons from chickens with genetically induced muscular dystrophy has been studied by low-angle X-ray diffraction. Compared with normal samples there is poor alignment of collagen within the tendons. This difference is quite pronounced at eight weeks when the affected birds are still in comparatively good physical condition. Similar changes have been reported for birds with nutritionally induced muscular dystrophy (Bartlett, M. W., Egelstaff, P. A., Holden, T. M., Stinson, R. H. and Sweeny, P. R. (1973) Biochim. Biophys. Acta 328, 213-220).

  5. Genetic algorithms for optimal design and control of adaptive structures

    CERN Document Server

    Ribeiro, R; Dias-Rodrigues, J; Vaz, M

    2000-01-01

    Future High Energy Physics experiments require the use of light and stable structures to support their most precise radiation detection elements. These large structures must be light, highly stable, stiff and radiation tolerant in an environment where external vibrations, high radiation levels, material aging, temperature and humidity gradients are not negligible. Unforeseen factors and the unknown result of the coupling of environmental conditions, together with external vibrations, may affect the position stability of the detectors and their support structures compromising their physics performance. Careful optimization of static and dynamic behavior must be an essential part of the engineering design. Genetic Algorithms ( GA) belong to the group of probabilistic algorithms, combining elements of direct and stochastic search. They are more robust than existing directed search methods with the advantage of maintaining a population of potential solutions. There is a class of optimization problems for which Ge...

  6. Genetic variants in MTNR1B affecting insulin secretion.

    Science.gov (United States)

    Müssig, Karsten; Staiger, Harald; Machicao, Fausto; Häring, Hans-Ulrich; Fritsche, Andreas

    2010-09-01

    The incidence of type 2 diabetes mellitus has markedly increased worldwide over the past decades. Pancreatic beta-cell dysfunction as well as central and peripheral insulin resistance appears to be elementary features in the pathophysiology of type 2 diabetes mellitus. Major environmental conditions predisposing to the development of type 2 diabetes are excessive food intake and sedentary life-style on the background of a genetic predisposition. Recent genome-wide association studies identified several novel type 2 diabetes risk genes, with impaired pancreatic beta-cell function as the underlying mechanism of increased diabetes risk in the majority of genes. Many of the novel type 2 diabetes risk genes, including MTNR1B which encodes one of the two known human melatonin receptors, were unexpected at first glance. However, previous animal as well as human studies already pointed to a significant impact of the melatonin system on the regulation of glucose homeostasis, in addition to its well known role in modulation of sleep and circadian rhythms. This brief review aims to give an overview of how alterations in the melatonin system could contribute to an increased diabetes risk, paying special attention to the role of melatonin receptors in pancreatic beta-cell function.

  7. Attitudes toward prenatal genetic testing for Treacher Collins syndrome among affected individuals and families.

    Science.gov (United States)

    Wu, Rebecca L; Lawson, Cathleen S; Jabs, Ethylin Wang; Sanderson, Saskia C

    2012-07-01

    Treacher Collins syndrome (TCS) is a craniofacial syndrome that is both phenotypically variable and heterogeneous, caused by mutations in the TCOF1, POLR1C, and POLR1D genes. We examined attitudes towards TCS prenatal genetic testing among affected families using a telephone questionnaire. Participants were 31 affected adults and relatives recruited primarily through families cared for in the mid-Atlantic region. Nineteen participants (65%) reported that they would take a TCS prenatal genetic test which could not predict degree of disease severity. Interest in TCS genetic testing was associated with higher income, higher concern about having a child with TCS, lower religiosity, lower concern about genetic testing procedures, and having a sporadic rather than familial mutation. Over half reported that their decision to have TCS genetic testing would be influenced a great deal by their desire to relieve anxiety and attitudes toward abortion. Ten participants (32%) reported that they would be likely to end the pregnancy upon receiving a positive test result; this was lower amongst TCS affected individuals and higher amongst participants with children with TCS. Genetics healthcare providers need to be aware of affected individuals' and families' attitudes and interest in prenatal genetic testing for TCS, and the possible implications for other craniofacial disorders, so that patients' information needs can be met.

  8. An Analysis of Factors Affecting Population Genetic Structure of Oligonychus ununguis Based on the Mitochondrial COI Gene Sequences%基于mtDNA-COI基因序列的针叶小爪螨种群遗传结构影响因素分析

    Institute of Scientific and Technical Information of China (English)

    尹淑艳; 李波; 郭慧玲; 李会; 李杨; 孙绪艮

    2012-01-01

    寄主植物、地理距离、农药胁迫、生境片段化等是影响种群遗传结构和进化的重要因素( Harrison et al.,1996;Hutchinson et al.,1999;Knutsen et al.,2000;罗育发等,2006;褚栋等,2008). 许多有关昆虫与植物间关系的研究发现植食性昆虫具有通过缩小或扩大其寄主范围或转移到新寄主上的进化潜力(Via,1990),这种现象可能使种群间产生完全的生殖隔离进而导致与寄主有关的物种形成.寄主型已在多种植食性节肢动物中有报道(Berlocher et al.,2002).%In order to understand effects of host plant, geographical distance and pesticide stress on the genetic structure of the spruce spider mite ( Oligonychus ununguis) , different populations of the mite were used for analyzing the sequence variation of the mitochondrial cytochrome oxidase I gene (COI) segment. Genetic differentiation was very small in the mites collected from different species of Castanea mollissima, Quercus acutissima, Q. Variabilis, Q. Dentate, which distributed in a narrow range (3 -500 m) , and in the mites from the same species of host plants that distributed in a larger area(25 km). These populations were clustered in the same branch of the NJ phylogenetic tree and the genetic distance between them was 0-0. 001. There was significant genetic differentiation of the mites collected on Q. Variabilis from two different districts, Taian district of Shandong Province and Jiaozuo district of Henan Province. The mites from these two provinces were distributed in two different branches of the NJ phylogenetic tree. The population suffered long period pesticide stress had significant genetic differentiation from the population that had not experienced the pesticide stress, although they were collected from the same host species of Q. Acutissima away from about 500 m. Genetic distance between the two populations was 0.015, and they were clustered in the different branch, of the NJ phylogenetic tree. Results showed

  9. Genetic and environmental structure of Cloninger's temperament and character dimensions.

    Science.gov (United States)

    Ando, Juko; Suzuki, Atsunobu; Yamagata, Shinji; Kijima, Nobuhiko; Maekawa, Hiroko; Ono, Yutaka; Jang, Kerry L

    2004-08-01

    The multivariate genetic and environmental structure of Cloninger's Temperament and Character Inventory (TCI) was investigated in a sample of 617 pairs of adolescent and young adult twins from Japan. Additive genetic factors accounted for 22% to 49% of the variability on all TCI temperament scales. Although the theory predicts lower heritability for the character scales, all character subscales had a substantial genetic contribution, and nonshared environmental influences accounted for the remainder. Multivariate genetic analyses showed that several subscales used to define one dimension shared a common genetic basis with subscales defining others. Using the degree of shared genetic influence as the basis to rearrange the TCI subscales into new dimensions, it was possible to create genetically independent scales. The implications for personality measurement, theory, and molecular genetic research are discussed.

  10. Genetic resources of teak (Tectona grandis Linn. f.)—strong genetic structure among natural populations

    DEFF Research Database (Denmark)

    Hansen, Ole Kim; Changtragoon, Suchitra; Ponoy, Bundit;

    2015-01-01

    Twenty-nine provenances of teak (Tectona grandis Linn. f.) representing the full natural distribution range of the species were genotyped with microsatellite DNA markers to analyse genetic diversity and population genetic structure. Provenances originating from the semi-moist east coast of India...... had the highest genetic diversity while provenances from Laos showed the lowest. In the eastern part of the natural distribution area, comprising Myanmar, Thailand and Laos, there was a strong clinal decrease in genetic diversity the further east the provenance was located. Overall, the pattern...... of the findings for conservation and use of genetic resources of the species are discussed....

  11. Population structure and genetic diversity of black redhorse (Moxostoma duquesnei) in a highly fragmented watershed

    Science.gov (United States)

    Reid, S.M.; Wilson, C.C.; Mandrak, N.E.; Carl, L.M.

    2008-01-01

    Dams have the potential to affect population size and connectivity, reduce genetic diversity, and increase genetic differences among isolated riverine fish populations. Previous research has reported adverse effects on the distribution and demographics of black redhorse (Moxostoma duquesnei), a threatened fish species in Canada. However, effects on genetic diversity and population structure are unknown. We used microsatellite DNA markers to assess the number of genetic populations in the Grand River (Ontario) and to test whether dams have resulted in a loss of genetic diversity and increased genetic differentiation among populations. Three hundred and seventy-seven individuals from eight Grand River sites were genotyped at eight microsatellite loci. Measures of genetic diversity were moderately high and not significantly different among populations; strong evidence of recent population bottlenecks was not detected. Pairwise FST and exact tests identified weak (global FST = 0.011) but statistically significant population structure, although little population structuring was detected using either genetic distances or an individual-based clustering method. Neither geographic distance nor the number of intervening dams were correlated with pairwise differences among populations. Tests for regional equilibrium indicate that Grand River populations were either in equilibrium between gene flow and genetic drift or that gene flow is more influential than drift. While studies on other species have identified strong dam-related effects on genetic diversity and population structure, this study suggests that barrier permeability, river fragment length and the ecological characteristics of affected species can counterbalance dam-related effects. ?? 2007 Springer Science+Business Media B.V.

  12. Population genetic structure of Aedes albopictus in Penang, Malaysia.

    Science.gov (United States)

    Zawani, M K N; Abu, H A; Sazaly, A B; Zary, S Y; Darlina, M N

    2014-10-07

    The mosquito Aedes albopictus is indigenous to Southeast Asian and is a vector for arbovirus diseases. Studies examining the population genetics structure of A. albopictus have been conducted worldwide; however, there are no documented reports on the population genetic structure of A. albopictus in Malaysia, particularly in Penang. We examined the population genetics of A. albopictus based on a 445-base pair segment of the mitochondrial DNA cytochrome oxidase 1 gene among 77 individuals from 9 localities representing 4 regions (Seberang Perai Utara, Seberang Perai Tengah, Northeast, and Southwest) of Penang. A total of 37 haplotypes were detected, including 28 unique haplotypes. The other 9 haplotypes were shared among various populations. These shared haplotypes reflect the weak population genetic structure of A. albopictus. The phylogenetic tree showed a low bootstrap value with no genetic structure, which was supported by minimum spanning network analysis. Analysis of mismatch distribution showed poor fit of equilibrium distribution. The genetic distance showed low genetic variation, while pairwise FST values showed no significant difference between all regions in Penang except for some localities. High haplotype diversity and low nucleotide diversity was observed for cytochrome oxidase 1 mtDNA. We conclude that there is no population genetic structure of A. albopictus mosquitoes in the Penang area.

  13. Correlation between genetic and geographic structure in Europe

    DEFF Research Database (Denmark)

    Lao, Oscar; Lu, Timothy T; Nothnagel, Michael;

    2008-01-01

    Understanding the genetic structure of the European population is important, not only from a historical perspective, but also for the appropriate design and interpretation of genetic epidemiological studies. Previous population genetic analyses with autosomal markers in Europe either had a wide g...... Europe. By including the widely used CEPH from Utah (CEU) samples into our analysis, we could show that these individuals represent northern and western Europeans reasonably well, thereby confirming their assumed regional ancestry....

  14. A Novel Statistical Model to Estimate Host Genetic Effects Affecting Disease Transmission

    Science.gov (United States)

    Anacleto, Osvaldo; Garcia-Cortés, Luis Alberto; Lipschutz-Powell, Debby; Woolliams, John A.; Doeschl-Wilson, Andrea B.

    2015-01-01

    There is increasing recognition that genetic diversity can affect the spread of diseases, potentially affecting plant and livestock disease control as well as the emergence of human disease outbreaks. Nevertheless, even though computational tools can guide the control of infectious diseases, few epidemiological models can simultaneously accommodate the inherent individual heterogeneity in multiple infectious disease traits influencing disease transmission, such as the frequently modeled propensity to become infected and infectivity, which describes the host ability to transmit the infection to susceptible individuals. Furthermore, current quantitative genetic models fail to fully capture the heritable variation in host infectivity, mainly because they cannot accommodate the nonlinear infection dynamics underlying epidemiological data. We present in this article a novel statistical model and an inference method to estimate genetic parameters associated with both host susceptibility and infectivity. Our methodology combines quantitative genetic models of social interactions with stochastic processes to model the random, nonlinear, and dynamic nature of infections and uses adaptive Bayesian computational techniques to estimate the model parameters. Results using simulated epidemic data show that our model can accurately estimate heritabilities and genetic risks not only of susceptibility but also of infectivity, therefore exploring a trait whose heritable variation is currently ignored in disease genetics and can greatly influence the spread of infectious diseases. Our proposed methodology offers potential impacts in areas such as livestock disease control through selective breeding and also in predicting and controlling the emergence of disease outbreaks in human populations. PMID:26405030

  15. Delineation of Behavioral Phenotypes in Genetic Syndromes: Characteristics of Autism Spectrum Disorder, Affect and Hyperactivity

    Science.gov (United States)

    Oliver, Chris; Berg, Katy; Moss, Jo; Arron, Kate; Burbidge, Cheryl

    2011-01-01

    We investigated autism spectrum disorder (ASD) symptomatology, hyperactivity and affect in seven genetic syndromes; Angelman (AS; n = 104), Cri du Chat (CdCS; 58), Cornelia de Lange (CdLS; 101), Fragile X (FXS; 191), Prader-Willi (PWS; 189), Smith-Magenis (SMS; 42) and Lowe (LS; 56) syndromes (age range 4-51). ASD symptomatology was heightened in…

  16. Does the genetic and familial background of males undertaking ICSI affect the outcome?

    NARCIS (Netherlands)

    Maiburg, M.; Alizadeh, B.; Kastrop, P.; Lock, M.; Lans, S.; Giltay, J.

    2009-01-01

    Purpose: To investigate whether the success rate of ICSI is (1) related to the etiology of infertility or (2) adversely affected by a family history of potential genetic disorders. Methods: All men with an ICSI indication in our hospital between 1994 and 2005 were included in our cohort study. Data

  17. Isolation and study of two mutants of Streptomyces cattleya affected in DNA repair and genetic instability.

    Science.gov (United States)

    Hromic, A; Kirby, R

    1989-01-15

    Two mutants of Streptomyces cattleya affecting DNA repair were isolated. These mutants were analysed using spore survival curves and phage reactivation curves in the presence and absence of caffeine and arsenite. Two DNA repair systems (uvr1 and uvr2) were identified, the latter of which seems to influence genetic instability.

  18. Architectural DNA: A genetic exploration of complex structures

    NARCIS (Netherlands)

    Van Embden Andres, M.V.; Turrin, M.; Von Buelow, P.

    2011-01-01

    The approach demonstrated in this paper uses Evolutionary Computation (EC) to enhance and modify structural form based on biological micro structures.The forms are modified to conform to new boundary conditions associated with architectural structures.The process is based on a Genetic Algorithm (GA)

  19. A genetic algorithm approach in interface and surface structure optimization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    The thesis is divided into two parts. In the first part a global optimization method is developed for the interface and surface structures optimization. Two prototype systems are chosen to be studied. One is Si[001] symmetric tilted grain boundaries and the other is Ag/Au induced Si(111) surface. It is found that Genetic Algorithm is very efficient in finding lowest energy structures in both cases. Not only existing structures in the experiments can be reproduced, but also many new structures can be predicted using Genetic Algorithm. Thus it is shown that Genetic Algorithm is a extremely powerful tool for the material structures predictions. The second part of the thesis is devoted to the explanation of an experimental observation of thermal radiation from three-dimensional tungsten photonic crystal structures. The experimental results seems astounding and confusing, yet the theoretical models in the paper revealed the physics insight behind the phenomena and can well reproduced the experimental results.

  20. Spatial genetic structure across a hybrid zone between European rabbit subspecies

    Directory of Open Access Journals (Sweden)

    Fernando Alda

    2014-09-01

    Full Text Available The Iberian Peninsula is the only region in the world where the two existing subspecies of the European rabbit (Oryctolagus cuniculus naturally occur and hybridize. In this study we explore the relative roles of historical and contemporary processes in shaping the spatial genetic structure of the rabbit across its native distribution range, and how they differently affect each subspecies and the hybrid zone. For that purpose we obtained multilocus genotypes and mitochondrial DNA data from 771 rabbits across most of the distribution range of the European rabbit in Spain. Based on the nuclear markers we observed a hierarchical genetic structure firstly comprised by two genetic groups, largely congruent with the mitochondrial lineages and subspecies distributions (O. c. algirus and O. c. cuniculus, which were subsequently subdivided into seven genetic groups. Geographic distance alone emerged as an important factor explaining genetic differentiation across the whole range, without the need to invoke for the effect for geographical barriers. Additionally, the significantly positive spatial correlation up to a distance of only 100 km supported the idea that differentiation at a local level is of greater importance when considering the species overall genetic structure. When looking at the subspecies, northern populations of O. c. cuniculus showed more spatial genetic structure and differentiation than O. c. algirus. This could be due to local geographic barriers, limited resources, soil type and/or social behavior limiting dispersal. The hybrid zone showed similar genetic structure to the southern populations but a larger introgression from the northern lineage genome. These differences have been attributed to selection against the hybrids rather than to behavioral differences between subspecies. Ultimately, the genetic structure of the rabbit in its native distribution range is the result of an ensemble of factors, from geographical and ecological

  1. Assessment of Genetic Diversity and Population Genetic Structure of Corylus mandshurica in China Using SSR Markers.

    Directory of Open Access Journals (Sweden)

    Jian-Wei Zong

    Full Text Available Corylus mandshurica, also known as pilose hazelnut, is an economically and ecologically important species in China. In this study, ten polymorphic simple sequence repeat (SSR markers were applied to evaluate the genetic diversity and population structure of 348 C. mandshurica individuals among 12 populations in China. The SSR markers expressed a relatively high level of genetic diversity (Na = 15.3, Ne = 5.6604, I = 1.8853, Ho = 0.6668, and He = 0.7777. According to the coefficient of genetic differentiation (Fst = 0.1215, genetic variation within the populations (87.85% were remarkably higher than among populations (12.15%. The average gene flow (Nm = 1.8080 significantly impacts the genetic structure of C. mandshurica populations. The relatively high gene flow (Nm = 1.8080 among wild C. mandshurica may be caused by wind-pollinated flowers, highly nutritious seeds and self-incompatible mating system. The UPGMA (unweighted pair group method of arithmetic averages dendrogram was divided into two main clusters. Moreover, the results of STRUCTURE analysis suggested that C. mandshurica populations fell into two main clusters. Comparison of the UPGMA dendrogram and the Bayesian STRUCTURE analysis showed general agreement between the population subdivisions and the genetic relationships among populations of C. mandshurica. Group I accessions were located in Northeast China, while Group II accessions were in North China. It is worth noting that a number of genetically similar populations were located in the same geographic region. The results further showed that there was obvious genetic differentiation among populations from Northeast China to North China. Results from the Mantel test showed a weak but still significant positive correlation between Nei's genetic distance and geographic distance (km among populations (r = 0.419, P = 0.005, suggesting that genetic differentiation in the 12 C. mandshurica populations might be related to geographic

  2. Analysis of a genetically structured variance heterogeneity model using the Box-Cox transformation

    DEFF Research Database (Denmark)

    Yang, Ye; Christensen, Ole Fredslund; Sorensen, Daniel

    2011-01-01

    of the marginal distribution of the data. To investigate how the scale of measurement affects inferences, the genetically structured heterogeneous variance model is extended to accommodate the family of Box–Cox transformations. Litter size data in rabbits and pigs that had previously been analysed...... in the untransformed scale were reanalysed in a scale equal to the mode of the marginal posterior distribution of the Box–Cox parameter. In the rabbit data, the statistical evidence for a genetic component at the level of the environmental variance is considerably weaker than that resulting from an analysis...... in the original metric. In the pig data, the statistical evidence is stronger, but the coefficient of correlation between additive genetic effects affecting mean and variance changes sign, compared to the results in the untransformed scale. The study confirms that inferences on variances can be strongly affected...

  3. Distinct Genetic Influences on Cortical and Subcortical Brain Structures

    Science.gov (United States)

    Wen, Wei; Thalamuthu, Anbupalam; Mather, Karen A.; Zhu, Wanlin; Jiang, Jiyang; de Micheaux, Pierre Lafaye; Wright, Margaret J.; Ames, David; Sachdev, Perminder S.

    2016-09-01

    This study examined the heritability of brain grey matter structures in a subsample of older adult twins (93 MZ and 68 DZ twin pairs; mean age 70 years) from the Older Australian Twins Study. The heritability estimates of subcortical regions ranged from 0.41 (amygdala) to 0.73 (hippocampus), and of cortical regions, from 0.55 (parietal lobe) to 0.78 (frontal lobe). Corresponding structures in the two hemispheres were influenced by the same genetic factors and high genetic correlations were observed between the two hemispheric regions. There were three genetically correlated clusters, comprising (i) the cortical lobes (frontal, temporal, parietal and occipital lobes); (ii) the basal ganglia (caudate, putamen and pallidum) with weak genetic correlations with cortical lobes, and (iii) the amygdala, hippocampus, thalamus and nucleus accumbens grouped together, which genetically correlated with both basal ganglia and cortical lobes, albeit relatively weakly. Our study demonstrates a complex but patterned and clustered genetic architecture of the human brain, with divergent genetic determinants of cortical and subcortical structures, in particular the basal ganglia.

  4. Genetic variations in FSH action affect sex hormone levels and breast tissue size in infant girls

    DEFF Research Database (Denmark)

    Henriksen, Louise Scheutz; Hagen, Casper P; Assens, Maria

    2016-01-01

    , especially FSHR -29G>A and FSHR 2039A>G, affect female hormone profile and glandular breast tissue development already during minipuberty. Thus, genetic variations of FSH signaling appear to determine the individual set point of the hypothalamic-pituitary-gonadal axis already early in life.......Context: Single nucleotide polymorphisms altering FSH action (FSHB -211G>T, FSHR -29G>A, and FSHR 2039A>G) are associated with peripubertal and adult levels of reproductive hormones and age at pubertal onset in girls. Objective: To investigate whether genetic polymorphisms altering FSH action...... present in homozygotes. FSHB -211T carriers had smaller breast tissue size than girls who without a minor allele; GT+TT 10.5 (confidence interval 9.4 -11.5) mm vs GG 12.1 (confidence interval 11.4-12.8) mm, P = .014. Conclusions: Our study indicates that 3 genetic polymorphisms altering FSH action...

  5. Genetic polymorphisms affect efficacy and adverse drug reactions of DMARDs in rheumatoid arthritis.

    Science.gov (United States)

    Zhang, Ling Ling; Yang, Sen; Wei, Wei; Zhang, Xue Jun

    2014-11-01

    Disease-modifying antirheumatic drugs (DMARDs) and biological agents are critical in preventing the severe complications of rheumatoid arthritis (RA). However, the outcome of treatment with these drugs in RA patients is quite variable and unpredictable. Drug-metabolizing enzymes (dihydrofolate reductase, cytochrome P450 enzymes, N-acetyltransferases, etc.), drug transporters (ATP-binding cassette transporters), and drug targets (tumor necrosis factor-α receptors) are coded for by variant alleles. These gene polymorphisms may influence the pharmacokinetics, pharmacodynamics, and side effects of medicines. The cause for differences in efficacy and adverse drug reactions may be genetic variation in drug metabolism among individuals. Polymorphisms in drug transporter genes may change the distribution and excretion of medicines, and the sensitivity of the targets to drugs is strongly influenced by genetic variations. In this article, we review the genetic polymorphisms that affect the efficacy of DMARDs or the occurrence of adverse drug reactions associated with DMARDs in RA.

  6. A genetic algorithm for structure-activity relationships: software implementation

    CERN Document Server

    Jantschi, Lorentz

    2009-01-01

    The design and the implementation of a genetic algorithm are described. The applicability domain is on structure-activity relationships expressed as multiple linear regressions and predictor variables are from families of structure-based molecular descriptors. An experiment to compare different selection and survival strategies was designed and realized. The genetic algorithm was run using the designed experiment on a set of 206 polychlorinated biphenyls searching on structure-activity relationships having known the measured octanol-water partition coefficients and a family of molecular descriptors. The experiment shows that different selection and survival strategies create different partitions on the entire population of all possible genotypes.

  7. Genetic predisposition to chikungunya – a blood group study in chikungunya affected families

    OpenAIRE

    Ramakrishna Vadde; Sarojamma Vemula; Sudarsanareddy Lokireddy

    2009-01-01

    Abstract Chikungunya fever is a viral disease transmitted to humans by the bite of CHIKV virus infected Aedes mosquitoes. During monsoon outbreak of chikungunya fever, we carried out the genetic predisposition to chikungunya in disease affected 100 families by doing blood group (ABO) tests by focusing on individuals who were likely to have a risk of chikungunya and identified the blood group involved in susceptibility/resistance to chikungunya. In the present study, based on blood group antig...

  8. A Decade of Genetic Counseling in Frontotemporal Dementia Affected Families: Few Counseling Requests and much Familial Opposition to Testing

    OpenAIRE

    Riedijk, S. R.; Niermeijer, M. F. N.; Dooijes, D.; Tibben, A.

    2009-01-01

    A decade of genetic counseling of frontotemporal dementia (FTD) affected families has generated two important observations. First, the uptake rate for presymptomatic testing for FTD is low in our department of Clinical Genetics at the Erasmus Medical Center in the Netherlands. Second, FTD at-risk counselees reported substantial familial opposition to genetic testing, which is distinct from the attitude in Huntington Disease affected families. We hypothesize that the low acceptance for FTD gen...

  9. Geographic variation and genetic structure in Spotted Owls

    Science.gov (United States)

    Haig, Susan M.; Wagner, R.S.; Forsman, E.D.; Mullins, Thomas D.

    2001-01-01

    We examined genetic variation, population structure, and definition of conservation units in Spotted Owls (Strix occidentalis). Spotted Owls are mostly non-migratory, long-lived, socially monogamous birds that have decreased population viability due to their occupation of highly-fragmented late successional forests in western North America. To investigate potential effects of habitat fragmentation on population structure, we used random amplified polymorphic DNA (RAPD) to examine genetic variation hierarchically among local breeding areas, subregional groups, regional groups, and subspecies via sampling of 21 breeding areas (276 individuals) among the three subspecies of Spotted Owls. Data from 11 variable bands suggest a significant relationship between geographic distance among local breeding groups and genetic distance (Mantel r = 0.53, P genetic drift. Merging nuclear data with recent mitochondrial data provides support for designation of an Evolutionary Significant Unit for Mexican Spotted Owls and two overlapping Management Units for Northern and California Spotted Owls.

  10. Genetic structure and diversity of Shorea obtusa (Dipterocarpaceae) in Thailand

    Institute of Scientific and Technical Information of China (English)

    Chadaporn SENAKUN; Suchitra CHANGTRAGOON; Pairot PRAMUAL; Preecha PRATHEPHA

    2011-01-01

    Shorea obtusa is a keystone species of the dry deciduous dipterocarp forest in Thailand. In this study,the genetic structure and diversity of this species were evaluated by means of five microsatellite markers. A total of 146 trees were collected from five populations encompassing major forest regions of Thailand. High levels of genetic diversity were found among the five populations with the average He of 0.664. Genetic differentiations between populations, although significant, were low with approximately 3% of genetic variation partitioned among populations. This may indicate that the populations sampled were recently part of a continuous population. A tree constructed using the unweighted pair group method with arithmetic average, based on Nei's genetic distance, divided the populations into three groups. This separation was consistent with the altitudinal zonation of the populations,thus indicating that altitude might play a significant role in the genetic structure of S. obtusa. Areas of high genetic diversity were identified which could be considered priorities for conservation.

  11. The genetic structure of a relict population of wood frogs

    Science.gov (United States)

    Scherer, Rick; Muths, Erin; Noon, Barry; Oyler-McCance, Sara

    2012-01-01

    Habitat fragmentation and the associated reduction in connectivity between habitat patches are commonly cited causes of genetic differentiation and reduced genetic variation in animal populations. We used eight microsatellite markers to investigate genetic structure and levels of genetic diversity in a relict population of wood frogs (Lithobates sylvatica) in Rocky Mountain National Park, Colorado, where recent disturbances have altered hydrologic processes and fragmented amphibian habitat. We also estimated migration rates among subpopulations, tested for a pattern of isolation-by-distance, and looked for evidence of a recent population bottleneck. The results from the clustering algorithm in Program STRUCTURE indicated the population is partitioned into two genetic clusters (subpopulations), and this result was further supported by factorial component analysis. In addition, an estimate of FST (FST = 0.0675, P value \\0.0001) supported the genetic differentiation of the two clusters. Estimates of migration rates among the two subpopulations were low, as were estimates of genetic variability. Conservation of the population of wood frogs may be improved by increasing the spatial distribution of the population and improving gene flow between the subpopulations. Construction or restoration of wetlands in the landscape between the clusters has the potential to address each of these objectives.

  12. Toward a biaxial model of "bipolar" affective disorders: further exploration of genetic, molecular and cellular substrates.

    Science.gov (United States)

    Askland, Kathleen

    2006-08-01

    Current epidemiologic and genetic evidence strongly supports the heritability of bipolar disease. Inconsistencies across linkage and association analyses have been primarily interpreted as suggesting polygenic, nonMendelian and variably-penetrant inheritance (i.e., in terms of interacting disease models). An equally-likely explanation for this genetic complexity is that trait, locus and allelic heterogeneities (i.e., a heterogeneous disease model) are primarily responsible for observed variability at the population level. The two models of genetic complexity are not mutually-exclusive, and are in fact likely to co-exist both in trait determination and disease expression. However, the current model proposes that, while both types of complex genetics are likely central to observable affective trait spectra, inheritance patterns, gross phenotypic categories and treatment-responsiveness in affective disease (as well as the widespread inconsistencies across such studies) may be primarily explained in terms of a heterogeneous disease model. Gene-gene, gene-protein and protein-protein interactions, then, are most likely to serve as trait determinants and 'phenotypic modifiers' rather than as primary pathogenic determinants. Moreover, while locus heterogeneity indicates the presence of multiple susceptibility genes at the population level, it does not necessitate polygenic inheritance at the individual or pedigree level. Rather, it is compatible with the possibility of mono- or bigenic determination of disease susceptibility within individuals/pedigrees. More specifically, the biaxial model proposes that integration of specific findings from genetic linkage and association studies, ion channels research as well as pharmacologic mechanism, phenotypic specificity and effectiveness studies suggests that each gene of potential etiologic significance in primary affective illness might be categorized into one of two classes, according to their primary role in neuronal

  13. Genetic diversity and population structure of cucumber (Cucumis sativus L..

    Directory of Open Access Journals (Sweden)

    Jing Lv

    Full Text Available Knowing the extent and structure of genetic variation in germplasm collections is essential for the conservation and utilization of biodiversity in cultivated plants. Cucumber is the fourth most important vegetable crop worldwide and is a model system for other Cucurbitaceae, a family that also includes melon, watermelon, pumpkin and squash. Previous isozyme studies revealed a low genetic diversity in cucumber, but detailed insights into the crop's genetic structure and diversity are largely missing. We have fingerprinted 3,342 accessions from the Chinese, Dutch and U.S. cucumber collections with 23 highly polymorphic Simple Sequence Repeat (SSR markers evenly distributed in the genome. The data reveal three distinct populations, largely corresponding to three geographic regions. Population 1 corresponds to germplasm from China, except for the unique semi-wild landraces found in Xishuangbanna in Southwest China and East Asia; population 2 to Europe, America, and Central and West Asia; and population 3 to India and Xishuangbanna. Admixtures were also detected, reflecting hybridization and migration events between the populations. The genetic background of the Indian germplasm is heterogeneous, indicating that the Indian cucumbers maintain a large proportion of the genetic diversity and that only a small fraction was introduced to other parts of the world. Subsequently, we defined a core collection consisting of 115 accessions and capturing over 77% of the SSR alleles. Insight into the genetic structure of cucumber will help developing appropriate conservation strategies and provides a basis for population-level genome sequencing in cucumber.

  14. Genetic connectivity for two bear species at wildlife crossing structures in Banff National Park.

    Science.gov (United States)

    Sawaya, Michael A; Kalinowski, Steven T; Clevenger, Anthony P

    2014-04-01

    Roads can fragment and isolate wildlife populations, which will eventually decrease genetic diversity within populations. Wildlife crossing structures may counteract these impacts, but most crossings are relatively new, and there is little evidence that they facilitate gene flow. We conducted a three-year research project in Banff National Park, Alberta, to evaluate the effectiveness of wildlife crossings to provide genetic connectivity. Our main objective was to determine how the Trans-Canada Highway and crossing structures along it affect gene flow in grizzly (Ursus arctos) and black bears (Ursus americanus). We compared genetic data generated from wildlife crossings with data collected from greater bear populations. We detected a genetic discontinuity at the highway in grizzly bears but not in black bears. We assigned grizzly bears that used crossings to populations north and south of the highway, providing evidence of bidirectional gene flow and genetic admixture. Parentage tests showed that 47% of black bears and 27% of grizzly bears that used crossings successfully bred, including multiple males and females of both species. Differentiating between dispersal and gene flow is difficult, but we documented gene flow by showing migration, reproduction and genetic admixture. We conclude that wildlife crossings allow sufficient gene flow to prevent genetic isolation.

  15. Destination-based seed dispersal homogenizes genetic structure of a tropical palm.

    Science.gov (United States)

    Karubian, Jordan; Sork, Victoria L; Roorda, Tessa; Durães, Renata; Smith, Thomas B

    2010-04-01

    As the dominant seed dispersal agents in many ecosystems, frugivorous animals profoundly impact gene movement and fine-scale genetic structure of plants. Most frugivores engage in some form of destination-based dispersal, in that they move seeds towards specific destinations, resulting in clumped distributions of seeds away from the source tree. Molecular analyses of dispersed seeds and seedlings suggest that destination-based dispersal may often yield clusters of maternal genotypes and lead to pronounced local genetic structure. The long-wattled umbrellabird Cephalopterus penduliger is a frugivorous bird whose lek mating system creates a species-specific pattern of seed dispersal that can potentially be distinguished from background dispersal processes. We used this system to test how destination-based dispersal by umbrellabirds into the lek affects gene movement and genetic structure of one of their preferred food sources Oenocarpus bataua, a canopy palm tree. Relative to background dispersal processes, umbrellabird mating behaviour yielded more diverse seed pools in leks that included on average five times more seed sources and a higher incidence of long-distance dispersal events. This resulted in markedly lower fine-scale spatial genetic structure among established seedlings in leks than background areas. These species-specific impacts of destination-based dispersal illustrate how detailed knowledge of disperser behaviour can elucidate the mechanistic link driving observed patterns of seed movement and genetic structure.

  16. Local Climate Heterogeneity Shapes Population Genetic Structure of Two Undifferentiated Insular Scutellaria Species

    Science.gov (United States)

    Hsiung, Huan-Yi; Huang, Bing-Hong; Chang, Jui-Tse; Huang, Yao-Moan; Huang, Chih-Wei; Liao, Pei-Chun

    2017-01-01

    Spatial climate heterogeneity may not only affect adaptive gene frequencies but could also indirectly shape the genetic structure of neutral loci by impacting demographic dynamics. In this study, the effect of local climate on population genetic variation was tested in two phylogenetically close Scutellaria species in Taiwan. Scutellaria taipeiensis, which was originally assumed to be an endemic species of Taiwan Island, is shown to be part of the widespread species S. barbata based on the overlapping ranges of genetic variation and climatic niches as well as their morphological similarity. Rejection of the scenario of “early divergence with secondary contact” and the support for multiple origins of populations of S. taipeiensis from S. barbata provide strong evolutionary evidence for a taxonomic revision of the species combination. Further tests of a climatic effect on genetic variation were conducted. Regression analyses show nonlinear correlations among any pair of geographic, climatic, and genetic distances. However, significantly, the bioclimatic variables that represent the precipitation from late summer to early autumn explain roughly 13% of the genetic variation of our sampled populations. These results indicate that spatial differences of precipitation in the typhoon season may influence the regeneration rate and colonization rate of local populations. The periodic typhoon episodes explain the significant but nonlinear influence of climatic variables on population genetic differentiation. Although, the climatic difference does not lead to species divergence, the local climate variability indeed impacts the spatial genetic distribution at the population level. PMID:28239386

  17. Detailed genetic structure of European bitterling populations in Central Europe

    Directory of Open Access Journals (Sweden)

    Veronika Bartáková

    2015-11-01

    Full Text Available The European bitterling (Rhodeus amarus is a small cyprinid fish whose populations declined markedly between 1950 and 1980. However, its range currently expands, partly due to human-assisted introductions. We determined the genetic variability and detailed spatial structure among bitterling populations in Central Europe and tested alternative hypotheses about colonization of this area. Twelve polymorphic microsatellite loci on a large sample of 688 individuals had been used to analyse genetic variability and population structure. Samples originated from 27 localities with emphasis on area of the Czech Republic where three major sea drainages (Black, Baltic, and Northern Sea meet. Highly variable level of intrapopulation genetic variability had generally been detected and a recent decrease in numbers (“bottleneck” had been indicated by genetic data among six populations. High level of interpopulation differentiation was identified even within the basins. There was a significant role of genetic drift and indications of low dispersal ability of R. amarus. Surprisingly, the Odra River was inhabited by two distinct populations without any genetic signatures of a secondary contact. Czech part of the Odra (Baltic basin was colonized from the Danubian refugium (similarly to adjacent Danubian basin rivers including the Morava, while Polish part of the Odra was genetically similar to the populations in the Vistula River (Baltic basin, that has been colonized by a different (Eastern phylogeographic lineage of R. amarus. Most Czech R. amarus populations were colonized from the Danubian refugium, suggesting potential for a human-mediated colonization of the Odra or Elbe Rivers by R. amarus. One Elbe basin population was genetically mixed from the two (Danubian and Eastern phylogeographic lineages. In general the Czech populations of R. amarus were genetically stable except for a single population which has probably been recently introduced. This research

  18. Genetic analysis of traits affecting the success of embryo transfer in dairy cattle.

    Science.gov (United States)

    König, S; Bosselmann, F; von Borstel, U U; Simianer, H

    2007-08-01

    The primary aim of this study was to estimate variance components for traits related to embryo transfer (ET) by applying generalized linear mixed models (GLMM) for different distributions of traits (normal, binomial, and Poisson) in a synergistic context. Synergistic models were originally developed for traits affected by several genotypes, denoted as maternal, paternal, and direct effects. In the case of ET, the number of flushed ova (FO) only depends on a donor's maternal genetic effect, whereas paternal fertility must be considered for other embryo survival traits, such as the number of transferable embryos (TE), the number of degenerated embryos (DE), the number of unfertilized oocytes (UO), and the percentage of transferable embryos (PTE). Data for these traits were obtained from 4,196 flushes of 2,489 Holstein cows within 4 regions of northwest Germany from January 1998 through October 2004. Estimates of maternal heritability were 0.231 for FO, 0.096 for TE, 0.021 for DE, 0.135 for UO, and 0.099 for PTE, whereas the relative genetic impact of the paternal component was near zero. Estimates of the genetic correlations between the maternal and the paternal component were slightly negative, indicating a genetic antagonism. For the analysis of pregnancy after ET, 8,239 transfers to 6,819 different Holstein-Friesian recipients were considered by applying threshold methodology. The direct heritability for pregnancy in the recipient after ET was 0.056. The relative genetic impact of maternal and paternal components on pregnancy of recipients describing a donor's and a sire's ability to produce viable embryos was below 1%. The genetic correlations of the direct effect of the recipient with the sire of embryos (paternal effect) and the donor cow (maternal effect) for pregnancy after ET were -0.32 and -0.14, respectively. With the exception of FO and PTE (-0.17), estimates of genetic correlations among traits for the maternal site were distinctly positive, especially

  19. Molecular Models of Genetic and Organismic Structures

    CERN Document Server

    Baianu, I C

    2004-01-01

    In recent studies we showed that the earlier relational theories of organismic sets (Rashevsky,1967), Metabolic-Replication (M,R)-systems (Rosen,1958)and molecular sets (Bartholomay,1968) share a joint foundation that can be studied within a unified categorical framework of functional organismic structures (Baianu,1980. This is possible because all relational theories have a biomolecular basis, that is, complex structures such as genomes, cells,organs and biological organisms are mathematically represented in terms of biomolecular properties and entities,(that are often implicit in their representation axioms. The definition of organismic sets, for example, requires that certain essential quantities be determined from experiment: these are specified by special sets of values of general observables that are derived from physicochemical measurements(Baianu,1970; Baianu,1980; Baianu et al, 2004a.)Such observables are context-dependent and lead directly to natural transformations in categories and Topoi, that are...

  20. Structure and genetics of circular bacteriocins.

    Science.gov (United States)

    van Belkum, Marco J; Martin-Visscher, Leah A; Vederas, John C

    2011-08-01

    Circular bacteriocins are antimicrobial peptides produced by a variety of Gram-positive bacteria. They are part of a growing family of ribosomally synthesized peptides with a head-to-tail cyclization of their backbone that are found in mammals, plants, fungi and bacteria and are exceptionally stable. These bacteriocins permeabilize the membrane of sensitive bacteria, causing loss of ions and dissipation of the membrane potential. Most circular bacteriocins probably adopt a common 3D structure consisting of four or five α-helices encompassing a hydrophobic core. This review compares the various structures, as well as the gene clusters that encode circular bacteriocins, and discusses the biogenesis of this unique class of bacteriocins.

  1. Ice cream structural elements that affect melting rate and hardness.

    Science.gov (United States)

    Muse, M R; Hartel, R W

    2004-01-01

    Statistical models were developed to reveal which structural elements of ice cream affect melting rate and hardness. Ice creams were frozen in a batch freezer with three types of sweetener, three levels of the emulsifier polysorbate 80, and two different draw temperatures to produce ice creams with a range of microstructures. Ice cream mixes were analyzed for viscosity, and finished ice creams were analyzed for air cell and ice crystal size, overrun, and fat destabilization. The ice phase volume of each ice cream were calculated based on the freezing point of the mix. Melting rate and hardness of each hardened ice cream was measured and correlated with the structural attributes by using analysis of variance and multiple linear regression. Fat destabilization, ice crystal size, and the consistency coefficient of the mix were found to affect the melting rate of ice cream, whereas hardness was influenced by ice phase volume, ice crystal size, overrun, fat destabilization, and the rheological properties of the mix.

  2. Genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV)

    DEFF Research Database (Denmark)

    Snow, M.; Bain, N.; Black, J.

    2004-01-01

    The nucleotide sequences of a specific region of the nucleoprotein gene were compared in order to investigate the genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV). Analysis of the sequence from 128 isolates of diverse geographic and host origin renders this the m......The nucleotide sequences of a specific region of the nucleoprotein gene were compared in order to investigate the genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV). Analysis of the sequence from 128 isolates of diverse geographic and host origin renders...

  3. Structural and genetic diversity in antibody repertoires from diverse species.

    Science.gov (United States)

    de los Rios, Miguel; Criscitiello, Michael F; Smider, Vaughn V

    2015-08-01

    The antibody repertoire is the fundamental unit that enables development of antigen specific adaptive immune responses against pathogens. Different species have developed diverse genetic and structural strategies to create their respective antibody repertoires. Here we review the shark, chicken, camel, and cow repertoires as unique examples of structural and genetic diversity. Given the enormous importance of antibodies in medicine and biological research, the novel properties of these antibody repertoires may enable discovery or engineering of antibodies from these non-human species against difficult or important epitopes.

  4. Landscape genetics, adaptive diversity and population structure in Phaseolus vulgaris.

    Science.gov (United States)

    Rodriguez, Monica; Rau, Domenico; Bitocchi, Elena; Bellucci, Elisa; Biagetti, Eleonora; Carboni, Andrea; Gepts, Paul; Nanni, Laura; Papa, Roberto; Attene, Giovanna

    2016-03-01

    Here we studied the organization of genetic variation of the common bean (Phaseolus vulgaris) in its centres of domestication. We used 131 single nucleotide polymorphisms to investigate 417 wild common bean accessions and a representative sample of 160 domesticated genotypes, including Mesoamerican and Andean genotypes, for a total of 577 accessions. By analysing the genetic spatial patterns of the wild common bean, we documented the existence of several genetic groups and the occurrence of variable degrees of diversity in Mesoamerica and the Andes. Moreover, using a landscape genetics approach, we demonstrated that both demographic processes and selection for adaptation were responsible for the observed genetic structure. We showed that the study of correlations between markers and ecological variables at a continental scale can help in identifying local adaptation genes. We also located putative areas of common bean domestication in Mesoamerica, in the Oaxaca Valley, and the Andes, in southern Bolivia-northern Argentina. These observations are of paramount importance for the conservation and exploitation of the genetic diversity preserved within this species and other plant genetic resources.

  5. Maternal environment affects the genetic basis of seed dormancy in Arabidopsis thaliana.

    Science.gov (United States)

    Postma, Froukje M; Ågren, Jon

    2015-02-01

    The genetic basis of seed dormancy, a key life history trait important for adaptive evolution in plant populations, has yet been studied only using seeds produced under controlled conditions in greenhouse environments. However, dormancy is strongly affected by maternal environmental conditions, and interactions between seed genotype and maternal environment have been reported. Consequently, the genetic basis of dormancy of seeds produced under natural field conditions remains unclear. We examined the effect of maternal environment on the genetic architecture of seed dormancy using a recombinant inbred line (RIL) population derived from a cross between two locally adapted populations of Arabidopsis thaliana from Italy and Sweden. We mapped quantitative trait loci (QTL) for dormancy of seeds produced in the greenhouse and at the native field sites of the parental genotypes. The Italian genotype produced seeds with stronger dormancy at fruit maturation than did the Swedish genotype in all three environments, and the maternal field environments induced higher dormancy levels compared to the greenhouse environment in both genotypes. Across the three maternal environments, a total of nine dormancy QTL were detected, three of which were only detected among seeds matured in the field, and six of which showed significant QTL × maternal environment interactions. One QTL had a large effect on dormancy across all three environments and colocalized with the candidate gene DOG1. Our results demonstrate the importance of studying the genetic basis of putatively adaptive traits under relevant conditions.

  6. Factors Affecting the Incidence of Angel Wing in White Roman Geese: Stocking Density and Genetic Selection.

    Science.gov (United States)

    Lin, M J; Chang, S C; Lin, T Y; Cheng, Y S; Lee, Y P; Fan, Y K

    2016-06-01

    The present study investigated stocking density and genetic lines, factors that may alter the severity and incidence of angel wing (AW), in White Roman geese. Geese (n = 384) from two genetically selected lines (normal- winged line, NL, and angel-winged line, AL, respectively) and one commercial line (CL) were raised in four pens. Following common commercial practice, low-stocking-density (LD), medium-stocking-density, and high-stocking-density treatments were respectively administered to 24, 32, and 40 geese per pen at 0 to 3 weeks (1.92 m(2)/pen) and 4 to 6 weeks (13.2 m(2)/pen) of age and to 24, 30, and 36 geese at 7 to 14 weeks (20.0 m(2)/pen) of age. The results revealed that stocking density mainly affected body weight gain in geese younger than 4 weeks, and that geese subjected to LD had a high body weight at 2 weeks of age. However, the effect of stocking density on the severity score of AW (SSAW) and incidence of AW (IAW) did not differ significantly among the treatments. Differences were observed among the genetic stocks; that is, SSAW and IAW were significantly higher in AL than in NL and CL. Genetic selection generally aggravates AW, complicating its elimination. To effectively reduce IAW, stocking density, a suspected causal factor, should be lower than that presently applied commercially.

  7. How genetics affects the brain to produce higher-level dysfunctions in myotonic dystrophy type 1.

    Science.gov (United States)

    Serra, Laura; Petrucci, Antonio; Spanò, Barbara; Torso, Mario; Olivito, Giusy; Lispi, Ludovico; Costanzi-Porrini, Sandro; Giulietti, Giovanni; Koch, Giacomo; Giacanelli, Manlio; Caltagirone, Carlo; Cercignani, Mara; Bozzali, Marco

    2015-01-01

    Myotonic dystrophy type 1 (DM1) is a multisystemic disorder dominated by muscular impairment and brain dysfunctions. Although brain damage has previously been demonstrated in DM1, its associations with the genetics and clinical/neuropsychological features of the disease are controversial. This study assessed the differential role of gray matter (GM) and white matter (WM) damage in determining higher-level dysfunctions in DM1. Ten patients with genetically confirmed DM1 and 16 healthy How genetics affects the brain to produce higher-level dysfunctions in myotonic dystrophy type 1 matched controls entered the study. The patients underwent a neuropsychological assessment and quantification of CTG triplet expansion. All the subjects underwent MR scanning at 3T, with studies including T1-weighted volumes and diffusion-weighted images. Voxel-based morphometry and tractbased spatial statistics were used for unbiased quantification of regional GM atrophy and WM integrity. The DM1 patients showed widespread involvement of both tissues. The extent of the damage correlated with CTG triplet expansion and cognition. This study supports the idea that genetic abnormalities in DM1mainly target the WM, but GM involvement is also crucial in determining the clinical characteristics of DM1.

  8. Genetic Structure Analysis of Human Remains from Khitan Noble Necropolis

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Ancient DNA was extracted from 13 skeletal remains from the burial groups of Khitan nobles, which were excavated in northeast China. The hypervariable segment I sequences ( HVS Ⅰ ) of the mitochondrial DNA control region, in the 13 individuals, were used as genetic markers to determine the genetic relationships between the individuals and the genetic affinity to other interrelated populations by using the known database of mtDNA. Based on the phylogenetic analysis of these ancient DNA sequences, the genetic structures of two Khitan noble kindreds were obtained, including the Yel Yuzhi's kindred and the Xiao He's kindred. Furthermore, the relationships between the Khitan nobles and some modern interrelated populations were analyzed. On the basis of the result of the analysis, the gene flows of the ancient Khitans and their demographic expansion in history was deduced.

  9. Population genetic structure of Attalea vitrivir Zona (Arecaceae) in fragmented areas of southeast Brazil.

    Science.gov (United States)

    Santos, R R M; Cavallari, M M; Pimenta, M A S; Abreu, A G; Costa, M R; Guedes, M L

    2015-06-11

    Attalea vitrivir Zona (synonym Orbignya oleifera) is one of the six species of Arecaceae known as "babassu". This species is used to make cosmetics, food, and detergents due to the high concentration of oil in the seeds. It is found only in fragmented areas of southern Bahia State and northern Minas Gerais State, southeast Brazil, and this fragmentation has affected both its ecological and genetic characteristics. We evaluated the genetic diversity and population genetic structure of A. vitrivir in six areas of two different regions at the extremes of its geographical range, in order to gain a better understanding of the factors that affect the distribution and partitioning of its diversity. Nine inter simple sequence repeat (ISSR) markers amplified 74 polymorphic bands, resulting in large diversity values (Shannon diversity index, 0.37-0.47; intrapopulation genetic diversity, 0.25-0.34). Analysis of molecular variance (AMOVA) revealed considerable differentiation between sampling sites (30.03%) and regions (12.08%), although most of the diversity was observed within sampling sites (69%). Further differentiation between sampling sites was noted more in the northern region than in the southern region, highlighting the genetic connectivity between the sampling sites within Rio Pandeiros Environmental Protection Area (southern region). The identification of two distinct genetic clusters (K = 2) corresponded to the northern and southern regions, and corroborated the AMOVA results. We suggest that the northern area, outside Rio Pandeiros Environmental Protection Area, must be included in future management plans for this species.

  10. Host genetics is associated with the gut microbial community membership rather than the structure.

    Science.gov (United States)

    Zhao, Peihua; Irwin, David M; Dong, Dong

    2016-04-26

    The issue of what factors shape the gut microbiota has been studied for years. However, questions on the contribution of host genetics to the colonizing process of the gut microbiota and to the extent that host genetics affect the gut microbiota have not yet been clearly answered. Most recently published reports have concluded that host genetics make a smaller contribution than other factors, such as diet, in determining the gut microbiota. Here we have exploited the increasing amount of fecal 16S rRNA gene sequencing data that are becoming available to conduct an analysis to assess the influence of host genetics on the diversity of the gut microbiota. By re-analyzing data obtained from over 5000 stool samples, representing individuals living on five continents and ranging in age from 3 days to 87 years, we found that the strength of the various factors affecting the membership or structure of the gut microbiota are quite different, which leads us to a hypothesis that the presence or absence of taxa is largely controlled by host genetics, whereas non-genetic factors regulate the abundance of each taxon. This hypothesis is supported by the finding that the genome similarity positively correlates with the similarity of community membership. Finally, we showed that only severe perturbations are able to alter the gut microbial community membership. In summary, our work provides new insights into understanding the complexities of the gut microbial community and how it responds to changes imposed on it.

  11. Ancient Humans Influenced the Current Spatial Genetic Structure of Common Walnut Populations in Asia.

    Directory of Open Access Journals (Sweden)

    Paola Pollegioni

    Full Text Available Common walnut (Juglans regia L is an economically important species cultivated worldwide for its wood and nuts. It is generally accepted that J. regia survived and grew spontaneously in almost completely isolated stands in its Asian native range after the Last Glacial Maximum. Despite its natural geographic isolation, J. regia evolved over many centuries under the influence of human management and exploitation. We evaluated the hypothesis that the current distribution of natural genetic resources of common walnut in Asia is, at least in part, the product of ancient anthropogenic dispersal, human cultural interactions, and afforestation. Genetic analysis combined with ethno-linguistic and historical data indicated that ancient trade routes such as the Persian Royal Road and Silk Road enabled long-distance dispersal of J. regia from Iran and Trans-Caucasus to Central Asia, and from Western to Eastern China. Ancient commerce also disrupted the local spatial genetic structure of autochthonous walnut populations between Tashkent and Samarkand (Central-Eastern Uzbekistan, where the northern and central routes of the Northern Silk Road converged. A significant association between ancient language phyla and the genetic structure of walnut populations is reported even after adjustment for geographic distances that could have affected both walnut gene flow and human commerce over the centuries. Beyond the economic importance of common walnut, our study delineates an alternative approach for understanding how the genetic resources of long-lived perennial tree species may be affected by the interaction of geography and human history.

  12. The future in clinical genetics: affective forecasting biases in patient and clinician decision making.

    Science.gov (United States)

    Peters, S A; Laham, S M; Pachter, N; Winship, I M

    2014-04-01

    When clinicians facilitate and patients make decisions about predictive genetic testing, they often base their choices on the predicted emotional consequences of positive and negative test results. Research from psychology and decision making suggests that such predictions may often be biased. Work on affective forecasting-predicting one's future emotional states-shows that people tend to overestimate the impact of (especially negative) emotional events on their well-being; a phenomenon termed the impact bias. In this article, we review the causes and consequences of the impact bias in medical decision making, with a focus on applying such findings to predictive testing in clinical genetics. We also recommend strategies for reducing the impact bias and consider the ethical and practical implications of doing so.

  13. Large-scale natural disturbance alters genetic population structure of the sailfin molly, Poecilia latipinna.

    Science.gov (United States)

    Apodaca, Joseph J; Trexler, Joel C; Jue, Nathaniel K; Schrader, Matthew; Travis, Joseph

    2013-02-01

    Many inferences about contemporary rates of gene flow are based on the assumption that the observed genetic structure among populations is stable. Recent studies have uncovered several cases in which this assumption is tenuous. Most of those studies have focused on the effects that regular environmental fluctuations can have on genetic structure and gene flow patterns. Occasional catastrophic disturbances could also alter either the distribution of habitat or the spatial distribution of organisms in a way that affects population structure. However, evidence of such effects is sparse in the literature because it is difficult to obtain. Hurricanes, in particular, have the potential to exert dramatic effects on population structure of organisms found on islands or coral reefs or in near shore and coastal habitats. Here we draw on a historic genetic data set and new data to suggest that the genetic structure of sailfin molly (Poecilia latipinna) populations in north Florida was altered dramatically by an unusually large and uncommon type of storm surge associated with Hurricane Dennis in 2005. We compare the spatial pattern of genetic variation in these populations after Hurricane Dennis to the patterns described in an earlier study in this same area. We use comparable genetic data from another region of Florida, collected in the same two periods, to estimate the amount of change expected from typical temporal variation in population structure. The comparative natural history of sailfin mollies in these two regions indicates that the change in population structure produced by the storm surge is not the result of many local extinctions with recolonization from a few refugia but emerged from a pattern of mixing and redistribution.

  14. Silicified structures affect leaf optical properties in grasses and sedge.

    Science.gov (United States)

    Klančnik, Katja; Vogel-Mikuš, Katarina; Gaberščik, Alenka

    2014-01-05

    Silicon (Si) is an important structural element that can accumulate at high concentrations in grasses and sedges, and therefore Si structures might affect the optical properties of the leaves. To better understand the role of Si in light/leaf interactions in species rich in Si, we examined the total Si and silica phytoliths, the biochemical and morphological leaf properties, and the reflectance and transmittance spectra in grasses (Phragmites australis, Phalaris arundinacea, Molinia caerulea, Deschampsia cespitosa) and sedge (Carex elata). We show that these grasses contain >1% phytoliths per dry mass, while the sedge contains only 0.4%. The data reveal the variable leaf structures of these species and significant differences in the amount of Si and phytoliths between developing and mature leaves within each species and between grasses and sedge, with little difference seen among the grass species. Redundancy analysis shows the significant roles of the different near-surface silicified leaf structures (e.g., prickle hairs, cuticle, epidermis), phytoliths and Si contents, which explain the majority of the reflectance and transmittance spectra variability. The amount of explained variance differs between mature and developing leaves. The transmittance spectra are also significantly affected by chlorophyll a content and calcium levels in the leaf tissue.

  15. Population genetic structure of a colonising, triploid weed, Hieracium lepidulum.

    Science.gov (United States)

    Chapman, H; Robson, B; Pearson, M L

    2004-03-01

    Understanding the breeding system and population genetic structure of invasive weed species is important for biocontrol, and contributes to our understanding of the evolutionary processes associated with invasions. Hieracium lepidulum is an invasive weed in New Zealand, colonising a diverse range of habitats including native Nothofagus forest, pine plantations, scrubland and tussock grassland. It is competing with native subalpine and alpine grassland and herbfield vegetation. H. lepidulum is a triploid, diplosporous apomict, so theoretically all seed is clonal, and there is limited potential for the creation of variation through recombination. We used intersimple sequence repeats (ISSRs) to determine the population genetic structure of New Zealand populations of H. lepidulum. ISSR analysis of five populations from two regions in the South Island demonstrated high intrapopulation genotypic diversity, and high interpopulation genetic structuring; PhiST = 0.54 over all five populations. No private alleles were found in any of the five populations, and allelic differentiation was correlated to geographic distance. Cladistic compatibility analysis indicated that both recombination and mutation were important in the creation of genotypic diversity. Our data will contribute to any biocontrol program developed for H. lepidulum. It will also be a baseline data set for future comparisons of genetic structure during the course of H. lepidulum invasions.

  16. Flexibility of the genetic code with respect to DNA structure

    DEFF Research Database (Denmark)

    Baisnée, P. F.; Baldi, Pierre; Brunak, Søren;

    2001-01-01

    acids allows only for the superimposition of punctual and loosely positioned signals to conserved amino acid sequences. The degree of flexibility of the genetic code is low or average with respect to several classes of alternative codes. This result is consistent with the view that DNA structure...

  17. Population Genetic Structure of Aedes fluviatilis (Diptera: Culicidae)

    Science.gov (United States)

    Multini, Laura Cristina; Suesdek, Lincoln; Marrelli, Mauro Toledo

    2016-01-01

    Although Aedes fluviatilis is an anthropophilic mosquito found abundantly in urban environments, its biology, epidemiological potential and genetic characteristics are poorly understood. Climate change and urbanization processes that result in environmental modifications benefit certain anthropophilic mosquito species such as Ae. fluviatilis, greatly increasing their abundance in urban areas. To gain a better understanding of whether urbanization processes modulate the genetic structure of this species in the city of São Paulo, we used eight microsatellite loci to genetically characterize Ae. fluviatilis populations collected in nine urban parks in the city of São Paulo. Our results show that there is high gene flow among the populations of this species, heterozygosity deficiency and low genetic structure and that the species may have undergone a recent population expansion. There are two main hypotheses to explain these findings: (i) Ae. fluviatilis populations have undergone a population expansion as a result of urbanization; and (ii) as urbanization of the city of São Paulo occurred recently and was quite intense, the structuring of these populations cannot be observed yet, apart from in the populations of Ibirapuera and Piqueri parks, where the first signs of structuring have appeared. We believe that the expansion found in Ae. fluviatilis populations is probably correlated with the unplanned urbanization of the city of São Paulo, which transformed green areas into urbanized areas, as well as the increasing population density in the city. PMID:27598889

  18. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); J.L. Stein; M.E. Rentería (Miguel); A. Arias-Vásquez (Alejandro); S. Desrivières (Sylvane); N. Jahanshad (Neda); R. Toro (Roberto); K. Wittfeld (Katharina); L. Abramovic; M. Andersson (Micael); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); M. Bernard (Manon); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.A. Brown (Andrew); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); G. Cuellar-Partida (Gabriel); A. den Braber (Anouk); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); O. Grimm (Oliver); T. Guadalupe (Tulio); J. Hass (Johanna); G. Woldehawariat (Girma); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil H.); L.M. Olde Loohuis (Loes M.); M. Luciano (Michelle); C. MacAre (Christine); R. Mather; M. Mattheisen (Manuel); Y. Milaneschi (Yuri); K. Nho (Kwangsik); M. Papmeyer (Martina); A. Ramasamy (Adaikalavan); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); E.J. Rose (Emma); A. Salami (Alireza); P.G. Sämann (Philipp); L. Schmaal (Lianne); N.J. Schork (Nicholas); J. Shin (Jean); V.M. Strike (Vanessa); A. Teumer (Alexander); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); R.K. Walters (Raymond); L.T. Westlye (Lars); C.D. Whelan (Christopher); A.M. Winkler (Anderson); M.P. Zwiers (Marcel); S. Alhusaini (Saud); L. Athanasiu (Lavinia); S.M. Ehrlich (Stefan); M. Hakobjan (Marina); C.B. Hartberg (Cecilie B.); U.K. Haukvik (Unn); A.J.G.A.M. Heister (Angelien J. G. A. M.); D. Hoehn (David); D. Kasperaviciute (Dalia); D.C. Liewald (David C.); L.M. Lopez (Lorna); R.R.R. Makkinje (Remco R. R.); M. Matarin (Mar); M.A.M. Naber (Marlies A. M.); D. Reese McKay; M. Needham (Margaret); A.C. Nugent (Allison); B. Pütz (Benno); N.A. Royle (Natalie); L. Shen (Li); R. Sprooten (Roy); D. Trabzuni (Danyah); S.S.L. Van Der Marel (Saskia S. L.); K.J.E. Van Hulzen (Kimm J. E.); E. Walton (Esther); A. Björnsson (Asgeir); L. Almasy (Laura); D. Ames (David); S. Arepalli (Sampath); A.A. Assareh; M.E. Bastin (Mark); H. Brodaty (Henry); K. Bulayeva (Kazima); M.A. Carless (Melanie); S. Cichon (Sven); A. Corvin (Aiden); J.E. Curran (Joanne); M. Czisch (Michael); G.I. de Zubicaray (Greig); A. Dillman (Allissa); A. Duggirala (Aparna); M.D. Dyer (Matthew); S. Erk; I. Fedko (Iryna); L. Ferrucci (Luigi); T. Foroud (Tatiana); P.T. Fox (Peter); M. Fukunaga (Masaki); J. Raphael Gibbs; H.H.H. Göring (Harald H.); R.C. Green (Robert C.); S. Guelfi (Sebastian); N.K. Hansell (Narelle); C.A. Hartman (Catharina); K. Hegenscheid (Katrin); J. Heinz (Judith); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); P.J. Hoekstra (Pieter); F. Holsboer; G. Homuth (Georg); J.J. Hottenga (Jouke Jan); M. Ikeda (Masashi); C.R. Jack Jr. (Clifford); S. Jenkinson (Sarah); R. Johnson (Robert); R. Kanai (Ryota); M. Keil (Maria); J.W. Kent (Jack W.); P. Kochunov (Peter); J.B. Kwok (John B.); S. Lawrie (Stephen); X. Liu (Xinmin); D.L. Longo (Dan L.); K.L. Mcmahon (Katie); E. Meisenzahl (Eva); I. Melle (Ingrid); S. Mohnke (Sebastian); G.W. Montgomery (Grant); J.C. Mostert (Jeanette C.); T.W. Mühleisen (Thomas); M.A. Nalls (Michael); T.E. Nichols (Thomas); L.G. Nilsson; M.M. Nöthen (Markus); K. Ohi (Kazutaka); R.L. Olvera (Rene); R. Perez-Iglesias (Rocio); G. Bruce Pike; S.G. Potkin (Steven); I. Reinvang (Ivar); S. Reppermund; M. Rietschel (M.); N. Seiferth (Nina); G.D. Rosen (Glenn D.); D. Rujescu (Dan); K. Schnell (Kerry); C.J. Schofield (Christopher); C. Smith (Colin); V.M. Steen (Vidar); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); J. Turner (Jessica); M.C. Valdés Hernández (Maria); D. van 't Ent (Dennis); M.P. van der Brug (Marcel); N.J. van der Wee (Nic); M.J.D. van Tol (Marie-José); D.J. Veltman (Dick); A.M.J. Wassink (Annemarie); E. Westman (Eric); R.H. Zielke (Ronald H.); A.B. Zonderman (Alan B.); D.G. Ashbrook (David G.); R. Hager (Reinmar); L. Lu (Lu); F.J. Mcmahon (Francis J); D.W. Morris (Derek W); R.W. Williams (Robert W.); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan K.); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); G. Cavalleri (Gianpiero); B. Crespo-Facorro (Benedicto); A.M. Dale (Anders); G.E. Davies (Gareth); N. Delanty; C. Depondt (Chantal); S. Djurovic (Srdjan); D.A. Drevets (Douglas); T. Espeseth (Thomas); R.L. Gollub (Randy); B.C. Ho (Beng ); W. Hoffmann (Wolfgang); N. Hosten (Norbert); R. Kahn; S. Le Hellard (Stephanie); A. Meyer-Lindenberg; B. Müller-Myhsok (B.); M. Nauck (Matthias); L. Nyberg (Lars); M. Pandolfo (Massimo); B.W.J.H. Penninx (Brenda); J.L. Roffman (Joshua); S.M. Sisodiya (Sanjay); J.W. Smoller; H. van Bokhoven (Hans); N.E.M. van Haren (Neeltje E.); H. Völzke (Henry); H.J. Walter (Henrik); M.W. Weiner (Michael); W. Wen (Wei); T.J.H. White (Tonya); I. Agartz (Ingrid); O.A. Andreassen (Ole A.); J. Blangero (John); D.I. Boomsma (Dorret); R.M. Brouwer (Rachel); D.M. Cannon (Dara); M.R. Cookson (Mark); E.J.C. de Geus (Eco); I.J. Deary (Ian J.); D.J. Donohoe (Dennis); G. Fernandez (Guillén); S.E. Fisher (Simon); C. Francks (Clyde); D.C. Glahn (David); H.J. Grabe (Hans Jörgen); O. Gruber (Oliver); J. Hardy (John); R. Hashimoto (Ryota); H.E. Hulshoff Pol (Hilleke); E.G. Jönsson (Erik); I. Kloszewska (Iwona); S. Lovestone (Simon); V.S. Mattay (Venkata S.); P. Mecocci (Patrizia); C. McDonald (Colm); A.M. McIntosh (Andrew); R.A. Ophoff (Roel); T. Paus (Tomas); Z. Pausova (Zdenka); M. Ryten (Mina); P.S. Sachdev (Perminder); A.J. Saykin (Andrew); A. Simmons (Andrew); A. Singleton (Andrew); H. Soininen (H.); J.M. Wardlaw (J.); M.E. Weale (Michael); D.R. Weinberger (Daniel); H.H.H. Adams (Hieab); L.J. Launer (Lenore); S. Seiler (Stephan); R. Schmidt (Reinhold); G. Chauhan (Ganesh); C.L. Satizabal (Claudia L.); J.T. Becker (James); L.R. Yanek (Lisa); S. van der Lee (Sven); M. Ebling (Maritza); B. Fischl (Bruce); W.T. Longstreth Jr; D. Greve (Douglas); R. Schmidt (Reinhold); P. Nyquist (Paul); L.N. Vinke (Louis N.); C.M. van Duijn (Cock); L. Xue (Luting); B. Mazoyer (Bernard); J.C. Bis (Joshua); V. Gudnason (Vilmundur); S. Seshadri (Sudha); M.A. Ikram (Arfan); N.G. Martin (Nicholas); M.J. Wright (Margaret); G. Schumann (Gunter); B. Franke (Barbara); P.M. Thompson (Paul); S.E. Medland (Sarah Elizabeth)

    2015-01-01

    textabstractThe highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate h

  19. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivieres, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Loohuis, Loes M. Olde; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santianez, Roberto; Rose, Emma J.; Salami, Alireza; Saemann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Puetz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Goering, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzah, Eva; Melle, Ingrid; Mahnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Muehleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Noethen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdes Hernandez, Maria C.; van't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffman, Wolfgang; Hosten, Norbert; Kahn, Rene S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Mueller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Voelzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernandez, Guillen; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Pol, Hilleke E. Hulshoff; Joensson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To investigat

  20. Genetic diversity and population structure of cucumber (Cucumis sativus L.)

    NARCIS (Netherlands)

    Lv, J.; Qi, J.; Shi, Q.; Shen, D.; Zhang, S.; Shao, G.; Li, H.; Sun, Z.; Weng, Y.; Shang, Y.; Gu, X.; Li, X.; Zhu, X.; Zhang, J.; Treuren, van R.; Dooijeweert, van W.; Zhang, Z.; Huang, S.

    2012-01-01

    Knowing the extent and structure of genetic variation in germplasm collections is essential for the conservation and utilization of biodiversity in cultivated plants. Cucumber is the fourth most important vegetable crop worldwide and is a model system for other Cucurbitaceae, a family that also incl

  1. Fine-scaled human genetic structure revealed by SNP microarrays.

    Science.gov (United States)

    Xing, Jinchuan; Watkins, W Scott; Witherspoon, David J; Zhang, Yuhua; Guthery, Stephen L; Thara, Rangaswamy; Mowry, Bryan J; Bulayeva, Kazima; Weiss, Robert B; Jorde, Lynn B

    2009-05-01

    We report an analysis of more than 240,000 loci genotyped using the Affymetrix SNP microarray in 554 individuals from 27 worldwide populations in Africa, Asia, and Europe. To provide a more extensive and complete sampling of human genetic variation, we have included caste and tribal samples from two states in South India, Daghestanis from eastern Europe, and the Iban from Malaysia. Consistent with observations made by Charles Darwin, our results highlight shared variation among human populations and demonstrate that much genetic variation is geographically continuous. At the same time, principal components analyses reveal discernible genetic differentiation among almost all identified populations in our sample, and in most cases, individuals can be clearly assigned to defined populations on the basis of SNP genotypes. All individuals are accurately classified into continental groups using a model-based clustering algorithm, but between closely related populations, genetic and self-classifications conflict for some individuals. The 250K data permitted high-level resolution of genetic variation among Indian caste and tribal populations and between highland and lowland Daghestani populations. In particular, upper-caste individuals from Tamil Nadu and Andhra Pradesh form one defined group, lower-caste individuals from these two states form another, and the tribal Irula samples form a third. Our results emphasize the correlation of genetic and geographic distances and highlight other elements, including social factors that have contributed to population structure.

  2. Hitchhiker's guide to genetic diversity in socially structured populations

    Institute of Scientific and Technical Information of China (English)

    L.S.PREMO

    2012-01-01

    When selection increases the frequency of a beneficial gene substitution it can also increase the frequencies of linked neutral alleles through a process called genetic hitchhiking.A model built to investigate reduced genetic diversity in Pleistocene hominins shows that genetic hitchhiking can have a strong effect on neutral diversity in the presence of culturally mediated migration.Under conditions in which genetic and cultural variants are transmitted symmetrically,neutral genes may also hitchhike to higher frequencies on the coattails of adaptive cultural traits through a process called cultural hitchhiking.Cultural hitchhiking has been proposed to explain why some species of matrilineal whales display relatively low levels of mitochondrial DNA diversity,and it may be applicable to humans as well.This paper provides a critical review of recent models of both types of hitchhiking in socially structured populations.The models' assumptions and predictions are compared and discussed in the hope that studies of reduced genetic diversity in humans might improve our understanding of reduced genetic diversity in other species,and vice versa [Current Zoology 58 (1):287-297,2012].

  3. Genetic structure of spatial and verbal working memory.

    Science.gov (United States)

    Ando, J; Ono, Y; Wright, M J

    2001-11-01

    Working memory (WM) encompasses both short-term memory (storage) and executive functions that play an essential role in all forms of cognition. In this study, the genetic structure of storage and executive functions engaged in both a spatial and verbal WM span task is investigated using a twin sample. The sample consists of 143 monozygotic (MZ) and 93 dizygotic (DZ) Japanese twin pairs, ages 16 to 29 years. In 155 (87 MZ, 62 DZ) of these pairs, cognitive ability scores from the Kyodai Japanese IQ test are also obtained. The phenotypic relationship between WM and cognitive ability is confirmed (r = 0.26-0.44). Individual differences in WM storage and executive functions are found to be significantly influenced by genes, with heritability estimates all moderately high (43%-49%), and estimates for cognitive ability comparable to previous studies (65%). A large part of the genetic variance in storage and executive functions in both spatial and verbal modalities is due to a common genetic factor that accounts for 11% to 43% of the variance. In the reduced sample, this common genetic factor accounts for 64% and 26% of the variance in spatial and verbal cognitive ability, respectively. Additional genetic variance in WM (7%-30%) is due to modality specific factors (spatial and verbal) and a storage specific factor that may be particularly important for the verbal modality. None of the variance in cognitive ability is accounted for by the modality and storage genetic factors, suggesting these may be specific to WM.

  4. Genetic structure and phylogeography of European catfish (Silurus glanis) populations.

    Science.gov (United States)

    Triantafyllidis, A; Krieg, F; Cottin, C; Abatzopoulos, T J; Triantaphyllidis, C; Guyomard, R

    2002-06-01

    The genetic structure of Silurus glanis (Europe's largest freshwater fish species) across most of its natural distribution was investigated using 10 microsatellite loci. The revealed levels of genetic diversity were much higher than previous allozyme and restriction fragment length polymorphism mitochondrial DNA analyses had shown; relative levels of variability among populations were however, in good agreement with the previous studies. Populations from large basins (Volga and Danube rivers) were the most polymorphic, while samples from the smaller Greek rivers, which are more prone to genetic bottleneck, exhibited the lowest levels of genetic diversity. Microsatellite multilocus genotyping permitted the assignment of individual fish to their population of origin with a score as high as 98.3%. Despite the great genetic differentiation of S. glanis populations, no consistent pattern of geographical structuring was revealed, in contrast to previous studies of European freshwater fish species. A model of isolation by distance seems more probable and a hypothesis of recent dispersion from only one glacial refugium is proposed. The discovery of the highest levels of microsatellite and mitochondrial diversity in the Volga sample and the presence of river connections, during the Pleistocene, between this area and all major areas of the present catfish distribution, place this refugium around the Ponto-Caspian region. Combining these data with those from previous studies, a number of markers are now available to monitor wild and hatchery populations even at the individual level.

  5. Genetic variation and population structure in native Americans.

    Directory of Open Access Journals (Sweden)

    Sijia Wang

    2007-11-01

    Full Text Available We examined genetic diversity and population structure in the American landmass using 678 autosomal microsatellite markers genotyped in 422 individuals representing 24 Native American populations sampled from North, Central, and South America. These data were analyzed jointly with similar data available in 54 other indigenous populations worldwide, including an additional five Native American groups. The Native American populations have lower genetic diversity and greater differentiation than populations from other continental regions. We observe gradients both of decreasing genetic diversity as a function of geographic distance from the Bering Strait and of decreasing genetic similarity to Siberians--signals of the southward dispersal of human populations from the northwestern tip of the Americas. We also observe evidence of: (1 a higher level of diversity and lower level of population structure in western South America compared to eastern South America, (2 a relative lack of differentiation between Mesoamerican and Andean populations, (3 a scenario in which coastal routes were easier for migrating peoples to traverse in comparison with inland routes, and (4 a partial agreement on a local scale between genetic similarity and the linguistic classification of populations. These findings offer new insights into the process of population dispersal and differentiation during the peopling of the Americas.

  6. Community structure and population genetics of Eastern Mediterranean polychaetes

    Directory of Open Access Journals (Sweden)

    Giorgos eChatzigeorgiou

    2014-10-01

    Full Text Available Species and genetic diversity are often found to co-vary since they are influenced by external factors in similar ways. In this paper, we analyse the genetic differences of the abundant polychaete Hermodice carunculata (Pallas, 1776 during two successive years at two locations in northern Crete (Aegean Sea and compare them to other populations in the Mediterranean Sea and the Atlantic Ocean. The genetic analysis is combined with an analysis of ecological divergence of the total polychaete community structure (beta diversity at these locations. The phylogenetic analysis of all included H. carunculata populations revealed two main clades, one exclusively found in the Mediterranean and a second occurring in both the Mediterranean and the Atlantic. Genetic diversity indices reveal unexpectedly high differences between the two Cretan populations, despite the absence of apparent oceanographic barriers. A similarly high divergence, represented by a high beta diversity index, was observed between the polychaete communities at the two locations. This comparatively high divergence of the genetic structure of a dominant species and the total polychaete community might be explained by the strong influence of local environmental factors as well as inter-specific interactions between the dominance of a single species and the members of the community.

  7. Affective journeys: the emotional structuring of medical tourism in India.

    Science.gov (United States)

    Solomon, Harris

    2011-04-01

    This paper examines the grid of sentiment that structures medical travel to India. In contrast to studies that render emotion as ancillary, the paper argues that affect is fundamental to medical travel's ability to ease the linked somatic, emotional, financial, and political injuries of being ill 'back home'. The ethnographic approach follows the scenes of medical travel within the Indian corporate hospital room, based on observations and interviews among foreign patients, caregivers, and hospital staff in Mumbai, New Delhi, Chennai, and Bangalore. Foreign patients conveyed diverse sentiments about their journey to India ranging from betrayal to gratitude, and their expressions of risk, healthcare costs, and cultural difference help sustain India's popularity as a medical travel destination. However, although the affective dimensions of medical travel promise a remedy for foreign patients, they also reveal the fault lines of market medicine in India.

  8. Factors Affecting the Adoption of Genetically Modified Animals in the Food and Pharmaceutical Chains

    Directory of Open Access Journals (Sweden)

    Cristina Mora

    2013-03-01

    Full Text Available The production of genetically modified (GM animals is an emerging technique that could potentially impact the livestock and pharmaceutical industries. Currently, food products derived from GM animals have not yet entered the market whilst two pharmaceutical products have. The objective of this paper is twofold: first it aims to explore the socio-economic drivers affecting the use of GM animals and, second, to review the risks and benefits from the point of view of the life sciences. A scoping study was conducted to assess research relevant to understanding the main drivers influencing the adoption of GM applications and their potential risks and benefits. Public and producers’ acceptance, public policies, human health, animal welfare, environmental impact and sustainability are considered as the main factors affecting the application of GM animal techniques in livestock and pharmaceutical chains.

  9. Geography has more influence than language on maternal genetic structure of various northeastern Thai ethnicities.

    Science.gov (United States)

    Kutanan, Wibhu; Ghirotto, Silvia; Bertorelle, Giorgio; Srithawong, Suparat; Srithongdaeng, Kanokpohn; Pontham, Nattapon; Kangwanpong, Daoroong

    2014-09-01

    Several literatures have shown the influence of geographic and linguistic factors in shaping genetic variation patterns, but their relative impact, if any, in the very heterogeneous northeastern region of Thailand has not yet been studied. This area, called Isan, is geographically structured in two wide basins, the Sakon Nakorn Basin and the Korat Basin, serving today as home to diverse ethnicities encompassing two different linguistic families, that is, the Austro-Asiatic; Suay (Kui), Mon, Chaobon (Nyahkur), So and Khmer, and the Tai-Kadai; Saek, Nyaw, Phu Tai, Kaleung and Lao Isan. In this study, we evaluated the relative role of geographic distance and barriers as well as linguistic differences as possible causes affecting the maternal genetic distances among northeastern Thai ethnicities. A 596-bp segment of the hypervariable region I mitochondrial DNA was utilized to elucidate the genetic structure and biological affinity from 433 individuals. Different statistical analyses agreed in suggesting that most ethnic groups in the Sakon Nakorn Basin are closely related. Mantel test revealed that genetic distances were highly associated to geographic (r = 0.445, P0.01) distances. Three evolutionary models were compared by Approximate Bayesian Computation. The posterior probability of the scenario, which assumed an initial population divergence possibly related to reduced gene flow among basins, was equal or higher than 0.87. All analyses exhibited concordant results supporting that geography was the most relevant factor in determining the maternal genetic structure of northeastern Thai populations.

  10. Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape

    Science.gov (United States)

    Funk, W.C.; Blouin, M.S.; Corn, P.S.; Maxell, B.A.; Pilliod, D.S.; Amish, S.; Allendorf, F.W.

    2005-01-01

    Landscape features such as mountains, rivers, and ecological gradients may strongly affect patterns of dispersal and gene flow among populations and thereby shape population dynamics and evolutionary trajectories. The landscape may have a particularly strong effect on patterns of dispersal and gene flow in amphibians because amphibians are thought to have poor dispersal abilities. We examined genetic variation at six microsatellite loci in Columbia spotted frogs (Rana luteiventris) from 28 breeding ponds in western Montana and Idaho, USA, in order to investigate the effects of landscape structure on patterns of gene flow. We were particularly interested in addressing three questions: (i) do ridges act as barriers to gene flow? (ii) is gene flow restricted between low and high elevation ponds? (iii) does a pond equal a 'randomly mating population' (a deme)? We found that mountain ridges and elevational differences were associated with increased genetic differentiation among sites, suggesting that gene flow is restricted by ridges and elevation in this species. We also found that populations of Columbia spotted frogs generally include more than a single pond except for very isolated ponds. There was also evidence for surprisingly high levels of gene flow among low elevation sites separated by large distances. Moreover, genetic variation within populations was strongly negatively correlated with elevation, suggesting effective population sizes are much smaller at high elevation than at low elevation. Our results show that landscape features have a profound effect on patterns of genetic variation in Columbia spotted frogs.

  11. Genetic mouse models for otitis media

    Institute of Scientific and Technical Information of China (English)

    Qingyin Zheng; Ken R Johnson

    2003-01-01

    @@ Genetics of Otitis Media (OM): OM is affected by multiple factors including eustachian tube (ET) structure and function, immune status, innate mucosal defense, genetic susceptibility, and pathogens.

  12. A decade of genetic counseling in frontotemporal dementia affected families: Few counseling requests and much familial opposition to testing

    NARCIS (Netherlands)

    S.R. Riedijk (Samantha); M.F. Niermeijer (Martinus); D. Dooijes (Dennis); A. Tibben (Arend)

    2009-01-01

    textabstractA decade of genetic counseling of frontotemporal dementia (FTD) affected families has generated two important observations. First, the uptake rate for presymptomatic testing for FTD is low in our department of Clinical Genetics at the Erasmus Medical Center in the Netherlands. Second, FT

  13. Are languages really independent from genes? If not, what would a genetic bias affecting language diversity look like?

    Science.gov (United States)

    Dediu, Dan

    2011-04-01

    It is generally accepted that the relationship between human genes and language is very complex and multifaceted. This has its roots in the “regular” complexity governing the interplay among genes and between genes and environment for most phenotypes, but with the added layer of supraontogenetic and supra-individual processes defining culture. At the coarsest level, focusing on the species, it is clear that human-specific--but not necessarily faculty-specific--genetic factors subtend our capacity for language and a currently very productive research program is aiming at uncovering them. At the other end of the spectrum, it is uncontroversial that individual-level variations in different aspects related to speech and language have an important genetic component and their discovery and detailed characterization have already started to revolutionize the way we think about human nature. However, at the intermediate, glossogenetic/population level, the relationship becomes controversial, partly due to deeply ingrained beliefs about language acquisition and universality and partly because of confusions with a different type of gene-languages correlation due to shared history. Nevertheless, conceptual, mathematical and computational models--and, recently, experimental evidence from artificial languages and songbirds--have repeatedly shown that genetic biases affecting the acquisition or processing of aspects of language and speech can be amplified by population-level intergenerational cultural processes and made manifest either as fixed “universal” properties of language or as structured linguistic diversity. Here, I review several such models as well as the recently proposed case of a causal relationship between the distribution of tone languages and two genes related to brain growth and development, ASPM and Microcephalin, and I discuss the relevance of such genetic biasing for language evolution, change, and diversity.

  14. Healing Temperature of Hybrid Structures Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    赵中伟; 陈志华; 刘红波

    2016-01-01

    The healing temperature of suspen-dome with stacked arches(SDSA)and arch-supported single-layer lattice shell structures was investigated based on the genetic algorithm. The temperature field of arch under solar radiation was derived by FLUENT to investigate the influence of solar radiation on the determination of the healing temperature. Moreover, a multi-scale model was established to apply the complex temperature field under solar radiation. The change in the mechanical response of these two kinds of structures with the healing temperature was discussed. It can be concluded that solar radiation has great influence on the healing temperature, and the genetic algorithm can be effectively used in the optimization of the healing temperature for hybrid structures.

  15. Susceptibility to chronic pain following nerve injury is genetically affected by CACNG2.

    Science.gov (United States)

    Nissenbaum, Jonathan; Devor, Marshall; Seltzer, Ze'ev; Gebauer, Mathias; Michaelis, Martin; Tal, Michael; Dorfman, Ruslan; Abitbul-Yarkoni, Merav; Lu, Yan; Elahipanah, Tina; delCanho, Sonia; Minert, Anne; Fried, Kaj; Persson, Anna-Karin; Shpigler, Hagai; Shabo, Erez; Yakir, Benjamin; Pisanté, Anne; Darvasi, Ariel

    2010-09-01

    Chronic neuropathic pain is affected by specifics of the precipitating neural pathology, psychosocial factors, and by genetic predisposition. Little is known about the identity of predisposing genes. Using an integrative approach, we discovered that CACNG2 significantly affects susceptibility to chronic pain following nerve injury. CACNG2 encodes for stargazin, a protein intimately involved in the trafficking of glutamatergic AMPA receptors. The protein might also be a Ca(2+) channel subunit. CACNG2 has previously been implicated in epilepsy. Initially, using two fine-mapping strategies in a mouse model (recombinant progeny testing [RPT] and recombinant inbred segregation test [RIST]), we mapped a pain-related quantitative trait locus (QTL) (Pain1) into a 4.2-Mb interval on chromosome 15. This interval includes 155 genes. Subsequently, bioinformatics and whole-genome microarray expression analysis were used to narrow the list of candidates and ultimately to pinpoint Cacng2 as a likely candidate. Analysis of stargazer mice, a Cacng2 hypomorphic mutant, provided electrophysiological and behavioral evidence for the gene's functional role in pain processing. Finally, we showed that human CACNG2 polymorphisms are associated with chronic pain in a cohort of cancer patients who underwent breast surgery. Our findings provide novel information on the genetic basis of neuropathic pain and new insights into pain physiology that may ultimately enable better treatments.

  16. Autism risk assessment in siblings of affected children using sex-specific genetic scores

    Directory of Open Access Journals (Sweden)

    Carayol Jerome

    2011-10-01

    Full Text Available Abstract Background The inheritance pattern in most cases of autism is complex. The risk of autism is increased in siblings of children with autism and previous studies have indicated that the level of risk can be further identified by the accumulation of multiple susceptibility single nucleotide polymorphisms (SNPs allowing for the identification of a higher-risk subgroup among siblings. As a result of the sex difference in the prevalence of autism, we explored the potential for identifying sex-specific autism susceptibility SNPs in siblings of children with autism and the ability to develop a sex-specific risk assessment genetic scoring system. Methods SNPs were chosen from genes known to be associated with autism. These markers were evaluated using an exploratory sample of 480 families from the Autism Genetic Resource Exchange (AGRE repository. A reproducibility index (RI was proposed and calculated in all children with autism and in males and females separately. Differing genetic scoring models were then constructed to develop a sex-specific genetic score model designed to identify individuals with a higher risk of autism. The ability of the genetic scores to identify high-risk children was then evaluated and replicated in an independent sample of 351 affected and 90 unaffected siblings from families with at least 1 child with autism. Results We identified three risk SNPs that had a high RI in males, two SNPs with a high RI in females, and three SNPs with a high RI in both sexes. Using these results, genetic scoring models for males and females were developed which demonstrated a significant association with autism (P = 2.2 × 10-6 and 1.9 × 10-5, respectively. Conclusions Our results demonstrate that individual susceptibility associated SNPs for autism may have important differential sex effects. We also show that a sex-specific risk score based on the presence of multiple susceptibility associated SNPs allow for the identification of

  17. Genetic Structure of Native Sheep Populations in East and South Asia

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Variations of structural loci among 4 sheep populations in China were examined by the method of multiloci electrophoresis, and similar data from 11 sheep populations were taken as basic references to analyze the genetic structure of the native sheep populations in East and South Asia. The results showed that the average heterozygosity and effective number of alleles among 15 populations were 0.2746 and 1.559, respectively. Mongolian sheep possessed the largest average heterozygosity and effective number of alleles. Genetic diversity of sheep populations in Mongolia, China, Vietnam,Bangladesh and Nepal was reduced in this order. The coefficients of genetic differentiation were between 0.0126 and 0.3083, with the average of 0.148, demonstrating that genetic variations lay mainly in populations with 85.2% of the total variations. There exists no correlation between geographical distances and genetic distances. Gene flow was smooth among most populations, which led to inconsistency between geographical distances and genetic distances. The 15 native sheep populations in East and South Asia could be divided into two groups: One group included part populations of China and Mongolia, and the other included Yunnan populations of China, and part populations of Nepal and Bangladesh.Other populations did not cluster together and divide into the above-mentioned two groups. This study indicated genetic differentiation of the 15 native sheep populations in East and South Asia was relatively low, geographical isolation was not the main reason affecting genetic differentiation, and the fifteen sheep populations could be divided into two groups according to phylogenetic relationships.

  18. Population genetic structure of Venezuelan chiropterophilous columnar cacti (Cactaceae).

    Science.gov (United States)

    Nassar, Jafet M; Hamrick, J L; Fleming, Theodore H

    2003-11-01

    We conducted allozyme surveys of three Venezuelan self-incompatible chiropterophilous columnar cacti: two diploid species, Stenocereus griseus and Cereus repandus, and one tetraploid, Pilosocereus lanuginosus. The three cacti are pollinated by bats, and both bats and birds disperse seeds. Population sampling comprised two spatial scales: all Venezuelan arid zones (macrogeographic) and two arid regions in northwestern Venezuela (regional). Ten to 15 populations and 17-23 loci were analyzed per species. Estimates of genetic diversity were compared with those of other allozyme surveys in the Cactaceae to examine how bat-mediated gene dispersal affects the population genetic attributes of the three cacti. Genetic diversity was high for both diploid (P(s) = 94.1-100, P(p) = 56.7-72.3, H(s) = 0.182-0.242, H(p) = 0.161-0.205) and tetraploid (P(s) = 93.1, P(p) = 76.1, H(s) = 0.274, H(p) = 0.253) species. Within-population heterozygote deficit was detected in the three cacti at macrogeographic (F(IS) = 0.145-0.182) and regional (F(IS) = 0.057-0.174) levels. Low genetic differentiation was detected at both macrogeographic (G(ST) = 0.043-0.126) and regional (G(ST) = 0.009-0.061) levels for the three species, suggesting substantial gene flow among populations. Gene exchange among populations seems to be regulated by distance among populations. Our results support the hypothesis that bat-mediated gene dispersal confers high levels of genetic exchange among populations of the three columnar cacti, a process that enhances levels of genetic diversity within their populations.

  19. Heterogeneous genetic structure in a Fagus crenata population in an old-growth beech forest revealed by microsatellite markers.

    Science.gov (United States)

    Asuka, Y; Tomaru, N; Nisimura, N; Tsumura, Y; Yamamoto, S

    2004-05-01

    The within-population genetic structure of Fagus crenata in a 4-ha plot (200 x 200 m) of an old-growth beech forest was analysed using microsatellite markers. To assess the genetic structure, Moran's I spatial autocorrelation coefficient was calculated. Correlograms of Moran's I showed significant positive values less than 0.100 for short-distance classes, indicating weak genetic structure. The genetic structure within the population is created by limited seed dispersal, and is probably weakened by overlapping seed shadow, secondary seed dispersal, extensive pollen flow and the thinning process. Genetic structure was detected in a western subplot of 50 x 200 m with immature soils and almost no dwarf bamboos (Sasa spp.), where small and intermediate-sized individuals were distributed in aggregations with high density because of successful regeneration. By contrast, genetic structure was not found in an eastern subplot of the same size with mature soils and Sasa cover, where successful regeneration was prevented, and the density of the small and intermediate-sized individuals was low. Moreover, genetic structure of individuals in a small-size class (diameter at breast height large-size class (diameter at breast height >/= 12 cm). The apparent genetic structure detected in the 4-ha plot was therefore probably the result of the structure in the western portion of the plot and in small and intermediate-sized individuals that successfully regenerated under the favourable environment. The heterogeneity in genetic structure presumably reflects variation in the density that should be affected by differences in regeneration dynamics associated with heterogeneity in environmental conditions.

  20. Octopus vulgaris (Cuvier, 1797 in the Mediterranean Sea: Genetic Diversity and Population Structure.

    Directory of Open Access Journals (Sweden)

    Daniele De Luca

    Full Text Available The common octopus, Octopus vulgaris Cuvier 1797, is a largely exploited cephalopod species in the Mediterranean Sea and the Atlantic Ocean, as well as along the coasts of Africa, Brazil and Japan, where its taxonomic identity is still debated. The assessment of its genetic structure is a pressing need to correctly manage the resource and to avoid overfishing and collapsing of local stocks. Here we analysed genetic variation and population structure of O. vulgaris using thirteen microsatellite loci in seven sampling localities from the Mediterranean Sea and one from the Atlantic Ocean. We also used a DNA barcoding approach by COI gene fragment to understand the phylogenetic relationships among the specimens here investigated and the ones whose sequences are available in literature. Our results reveal high levels of allelic richness and moderate heterozygosity in all samples investigated, and a pronounced differentiation of the Atlantic and Sicilian specimens. This latter aspect seems to support the isolation of the biota within the Strait of Messina. A certain degree of differentiation was detected among the other geographic samples within the Mediterranean Sea, which is more compatible with an island model than isolation by distance. The occurrence of null alleles affected more genetic diversity indices than population structure estimations. This study provides new insights about the genetic diversity and structure of O. vulgaris in the area of interest, which can be used as guidelines for a fisheries management perspective.

  1. Octopus vulgaris (Cuvier, 1797) in the Mediterranean Sea: Genetic Diversity and Population Structure.

    Science.gov (United States)

    De Luca, Daniele; Catanese, Gaetano; Procaccini, Gabriele; Fiorito, Graziano

    2016-01-01

    The common octopus, Octopus vulgaris Cuvier 1797, is a largely exploited cephalopod species in the Mediterranean Sea and the Atlantic Ocean, as well as along the coasts of Africa, Brazil and Japan, where its taxonomic identity is still debated. The assessment of its genetic structure is a pressing need to correctly manage the resource and to avoid overfishing and collapsing of local stocks. Here we analysed genetic variation and population structure of O. vulgaris using thirteen microsatellite loci in seven sampling localities from the Mediterranean Sea and one from the Atlantic Ocean. We also used a DNA barcoding approach by COI gene fragment to understand the phylogenetic relationships among the specimens here investigated and the ones whose sequences are available in literature. Our results reveal high levels of allelic richness and moderate heterozygosity in all samples investigated, and a pronounced differentiation of the Atlantic and Sicilian specimens. This latter aspect seems to support the isolation of the biota within the Strait of Messina. A certain degree of differentiation was detected among the other geographic samples within the Mediterranean Sea, which is more compatible with an island model than isolation by distance. The occurrence of null alleles affected more genetic diversity indices than population structure estimations. This study provides new insights about the genetic diversity and structure of O. vulgaris in the area of interest, which can be used as guidelines for a fisheries management perspective.

  2. Genetic structure of colline and montane populations of an endangered plant species.

    Science.gov (United States)

    Maurice, Tiphaine; Matthies, Diethart; Muller, Serge; Colling, Guy

    2016-08-12

    Due to land-use intensification, lowland and colline populations of many plants of nutrient-poor grasslands have been strongly fragmented in the last decades, with potentially negative consequences for their genetic diversity and persistence. Populations in mountains might represent a genetic reservoir for grassland plants, because they have been less affected by land-use changes. We studied the genetic structure and diversity of colline and montane Vosges populations of the threatened perennial plant Arnica montana in western central Europe using AFLP markers. Our results indicate that in contrast to our expectation even strongly fragmented colline populations of A. montana have conserved a considerable amount of genetic diversity. However, mean seed mass increased with the proportion of polymorphic loci, suggesting inbreeding effects in low diversity populations. At a similar small geographical scale there was a clear IBD pattern for the montane Vosges but not for the colline populations. However, there was a strong IBD-pattern for the colline populations at a large geographical scale suggesting that this pattern is a legacy of historical gene flow, as most of the colline populations are today strongly isolated from each other. Genetic differentiation between colline and montane Vosges populations was strong. Moreover, results of a genome scan study indicated differences in loci under selection, suggesting that plants from montane Vosges populations might be maladapted to conditions at colline sites. Our results suggest caution in using material from montane populations of rare plants for the reinforcement of small genetically depauperate lowland populations.

  3. Genetic structure of colline and montane populations of an endangered plant species

    Science.gov (United States)

    Maurice, Tiphaine; Matthies, Diethart; Muller, Serge; Colling, Guy

    2016-01-01

    Due to land-use intensification, lowland and colline populations of many plants of nutrient-poor grasslands have been strongly fragmented in the last decades, with potentially negative consequences for their genetic diversity and persistence. Populations in mountains might represent a genetic reservoir for grassland plants, because they have been less affected by land-use changes. We studied the genetic structure and diversity of colline and montane Vosges populations of the threatened perennial plant Arnica montana in western central Europe using AFLP markers. Our results indicate that in contrast to our expectation even strongly fragmented colline populations of A. montana have conserved a considerable amount of genetic diversity. However, mean seed mass increased with the proportion of polymorphic loci, suggesting inbreeding effects in low diversity populations. At a similar small geographical scale, there was a clear IBD pattern for the montane Vosges but not for the colline populations. However, there was a strong IBD-pattern for the colline populations at a large geographical scale suggesting that this pattern is a legacy of historical gene flow, as most of the colline populations are today strongly isolated from each other. Genetic differentiation between colline and montane Vosges populations was strong. Moreover, results of a genome scan study indicated differences in loci under selection, suggesting that plants from montane Vosges populations might be maladapted to conditions at colline sites. Our results suggest caution in using material from montane populations of rare plants for the reinforcement of small genetically depauperate lowland populations. PMID:27519913

  4. Strong spatial genetic structure reduces reproductive success in the critically endangered plant genus Pseudomisopates.

    Science.gov (United States)

    Amat, María E; Silvertown, Jonathan; Vargas, Pablo

    2013-01-01

    Clonal growth can be a double-edged sword for endangered species, because the short-term insurance against extinction may incur a longer-term hazard of creating small inbred populations with low fecundity. In the present study, we quantify the advantages and disadvantages of clonal growth regarding the fitness of the central Iberian monotypic endangered genus Pseudomisopates. Preliminary studies showed that the species is self-incompatible and exhibits extensive clonal growth with plants flowering profusely. However, seeds at many sites seemed to be unviable, and no seedlings have been observed in the field. A fully replicated nested sampling design (n = 100) was conducted to explore genetic (using seven SSR loci) and environmental factors potentially affecting seed viability, such as: 1) clonal and genetic diversity, 2) spatial genetic structure, and 3) environmental factors (shrub cover and grazing). Generalized Linear Mixed Models were fitted relating genetic and environmental variables to reproductive variables (seed viability and flower display). Our results indicate that the relatively low genotypic diversity of the population (PD = 0.23), as quantified by SSRs, and the strong spatial genetic structure observed are congruent with intense clonal growth. This clonal growth is enhanced by unfavorable environmental conditions, such as canopy closure and grazing. Under these circumstances, both flower display and mate availability decrease, thus hindering sexual reproduction. Indeed, a mixed reproductive system (clonal and sexual) to escape environmental stochasticity is crucial for the survival of Pseudomisopates, a species inhabiting a disturbance-prone ecosystem.

  5. Influence of landscape features on the microgeographic genetic structure of a resident songbird.

    Science.gov (United States)

    Adams, R V; Lazerte, S E; Otter, K A; Burg, T M

    2016-08-01

    Landscape features influence individual dispersal and as a result can affect both gene flow and genetic variation within and between populations. The landscape of British Columbia, Canada, is already highly heterogeneous because of natural ecological and geological transitions, but disturbance from human-mediated processes has further fragmented continuous habitat, particularly in the central plateau region. In this study, we evaluated the effects of landscape heterogeneity on the genetic structure of a common resident songbird, the black-capped chickadee (Poecile atricapillus). Previous work revealed significant population structuring in British Columbia that could not be explained by physical barriers, so our aim was to assess the pattern of genetic structure at a microgeographic scale and determine the effect of different landscape features on genetic differentiation. A total of 399 individuals from 15 populations were genotyped for fourteen microsatellite loci revealing significant population structuring in this species. Individual- and population-based analyses revealed as many as nine genetic clusters with isolation in the north, the central plateau and the south. Moreover, a mixed modelling approach that accounted for non-independence of pairwise distance values revealed a significant effect of land cover and elevation resistance on genetic differentiation. These results suggest that barriers in the landscape influence dispersal which has led to the unexpectedly high levels of population isolation. Our study demonstrates the importance of incorporating landscape features when interpreting patterns of population differentiation. Despite taking a microgeographic approach, our results have opened up additional questions concerning the processes influencing dispersal and gene flow at the local scale.

  6. Genetic diversity affects the strength of population regulation in a marine fish.

    Science.gov (United States)

    Johnson, D W; Freiwald, J; Bernardi, G

    2016-03-01

    Variation is an essential feature of biological populations, yet much of ecological theory treats individuals as though they are identical. This simplifying assumption is often justified by the perception that variation among individuals does not have significant effects on the dynamics of whole populations. However, this perception may be skewed by a historic focus on studying single populations. A true evaluation of the extent to which among-individual variation affects the dynamics of populations requires the study of multiple populations. In this study, we examined variation in the dynamics of populations of a live-bearing, marine fish (black surfperch; Embiotoca jacksoni). In collaboration with an organization of citizen scientists (Reef Check California), we were able to examine the dynamics of eight populations that were distributed throughout approximately 700 km of coastline, a distance that encompasses much of this species' range. We hypothesized that genetic variation within a local population would be related to the intensity of competition and to the strength of population regulation. To test this hypothesis, we examined whether genetic diversity (measured by the diversity of mitochondrial DNA haplotypes) was related to the strength of population regulation. Low-diversity populations experienced strong density dependence in population growth rates and population sizes were regulated much more tightly than they were in high-diversity populations. Mechanisms that contributed to this pattern include links between genetic diversity, habitat use, and spatial crowding. On average, low-diversity populations used less of the available habitat and exhibited greater spatial clustering (and more intense competition) for a given level of density (measured at the scale of the reef). Although the populations we studied also varied with respect to exogenous characteristics (habitat complexity, densities of predators, and interspecific competitors), none of these

  7. Does Question Structure Affect Exam Performance in the Geosciences?

    Science.gov (United States)

    Day, E. A.; D'Arcy, M. K.; Craig, L.; Streule, M. J.; Passmore, E.; Irving, J. C. E.

    2015-12-01

    The jump to university level exams can be challenging for some students, often resulting in poor marks, which may be detrimental to their confidence and ultimately affect their overall degree class. Previous studies have found that question structure can have a strong impact on the performance of students in college level exams (see Gibson et al., 2015, for a discussion of its impact on physics undergraduates). Here, we investigate the effect of question structure on the exam results of geology and geophysics undergraduate students. Specifically, we analyse the performance of students in questions that have a 'scaffolded' framework and compare them to their performance in open-ended questions and coursework. We also investigate if observed differences in exam performance are correlated with the educational background and gender of students, amongst other factors. It is important for all students to be able to access their degree courses, no matter what their backgrounds may be. Broadening participation in the geosciences relies on removing systematic barriers to achievement. Therefore we recommend that exams are either structured with scaffolding in questions at lower levels, or students are explicitly prepared for this transition. We also recommend that longitudinal studies of exam performance are conducted within individual departments, and this work outlines one approach to analysing performance data.

  8. Genetic Diversity and Population Structure of Theileria annulata in Oman.

    Directory of Open Access Journals (Sweden)

    Salama Al-Hamidhi

    Full Text Available Theileriosis, caused by a number of species within the genus Theileria, is a common disease of livestock in Oman. It is a major constraint to the development of the livestock industry due to a high rate of morbidity and mortality in both cattle and sheep. Since little is currently known about the genetic diversity of the parasites causing theileriosis in Oman, the present study was designed to address this issue with specific regard to T. annulata in cattle.Blood samples were collected from cattle from four geographically distinct regions in Oman for genetic analysis of the Theileria annulata population. Ten genetic markers (micro- and mini-satellites representing all four chromosomes of T. annulata were applied to these samples using a combination of PCR amplification and fragment analysis. The resultant genetic data was analysed to provide a first insight into the structure of the T. annulata population in Oman.We applied ten micro- and mini-satellite markers to a total of 310 samples obtained from different regions (174 [56%] from Dhofar, 68 [22%] from Dhira, 44 [14.5%] from Batinah and 24 [8%] from Sharqia. A high degree of allelic diversity was observed among the four parasite populations. Expected heterozygosity for each site ranged from 0.816 to 0.854. A high multiplicity of infection was observed in individual hosts, with an average of 3.3 to 3.4 alleles per locus, in samples derived from Batinah, Dhofar and Sharqia regions. In samples from Dhira region, an average of 2.9 alleles per locus was observed. Mild but statistically significant linkage disequilibrium between pairs of markers was observed in populations from three of the four regions. In contrast, when the analysis was performed at farm level, no significant linkage disequilibrium was observed. Finally, no significant genetic differentiation was seen between the four populations, with most pair-wise FST values being less than 0.03. Slightly higher FST values (GST' = 0.075,

  9. Surface Appendages of Archaea: Structure, Function, Genetics and Assembly

    Directory of Open Access Journals (Sweden)

    Sarah Siu

    2013-01-01

    Full Text Available Organisms representing diverse subgroupings of the Domain Archaea are known to possess unusual surface structures. These can include ones unique to Archaea such as cannulae and hami as well as archaella (archaeal flagella and various types of pili that superficially resemble their namesakes in Bacteria, although with significant differences. Major advances have occurred particularly in the study of archaella and pili using model organisms with recently developed advanced genetic tools. There is common use of a type IV pili-model of assembly for several archaeal surface structures including archaella, certain pili and sugar binding structures termed bindosomes. In addition, there are widespread posttranslational modifications of archaellins and pilins with N-linked glycans, with some containing novel sugars. Archaeal surface structures are involved in such diverse functions as swimming, attachment to surfaces, cell to cell contact resulting in genetic transfer, biofilm formation, and possible intercellular communication. Sometimes functions are co-dependent on other surface structures. These structures and the regulation of their assembly are important features that allow various Archaea, including thermoacidophilic, hyperthermophilic, halophilic, and anaerobic ones, to survive and thrive in the extreme environments that are commonly inhabited by members of this domain.

  10. Novel genetic algorithm search procedure for LEED surface structure determination.

    Science.gov (United States)

    Viana, M L; dos Reis, D D; Soares, E A; Van Hove, M A; Moritz, W; de Carvalho, V E

    2014-06-04

    Low Energy Electron Diffraction (LEED) is one of the most powerful experimental techniques for surface structure analysis but until now only a trial-and-error approach has been successful. So far, fitting procedures developed to optimize structural and nonstructural parameters-by minimization of the R-factor-have had a fairly small convergence radius, suitable only for local optimization. However, the identification of the global minimum among the several local minima is essential for complex surface structures. Global optimization methods have been applied to LEED structure determination, but they still require starting from structures that are relatively close to the correct one, in order to find the final structure. For complex systems, the number of trial structures and the resulting computation time increase so rapidly that the task of finding the correct model becomes impractical using the present methodologies. In this work we propose a new search method, based on Genetic Algorithms, which is able to determine the correct structural model starting from completely random structures. This method-called here NGA-LEED for Novel Genetic Algorithm for LEED-utilizes bond lengths and symmetry criteria to select reasonable trial structures before performing LEED calculations. This allows a reduction of the parameter space and, consequently of the calculation time, by several orders of magnitude. A refinement of the parameters by least squares fit of simulated annealing is performed only at some intermediate stages and in the final step. The method was successfully tested for two systems, Ag(1 1 1)(4 × 4)-O and Au(1 1 0)-(1 × 2), both in theory versus theory and in theory versus experiment comparisons. Details of the implementation as well as the results for these two systems are presented.

  11. Analysis of genetic structure and relationship among nine indigenous Chinese chicken populations by the Structure program

    Indian Academy of Sciences (India)

    H. F. Li; W. Han; Y. F. Zhu; J. T. Shu; X. Y. Zhang; K. W. Chen

    2009-08-01

    The multi-locus model-based clustering method Structure program was used to infer the genetic structure of nine indigenous Chinese chicken (Gallus gallus) populations based on 16 microsatellite markers. Twenty runs were carried out at each chosen value of predefined cluster numbers $(K)$ under admixture model. The Structure program properly inferred the presence of genetic structure with 0.999 probabilities. The genetic structure not only indicated that the nine kinds of chicken populations were defined actually by their locations, phenotypes or culture, but also reflected the underlying genetic variations. At $K = 2$, nine chicken populations were divided into two main clusters, one light-body type, including Chahua chicken (CHA), Tibet chicken (TIB), Xianju chicken (XIA), Gushi chicken (GUS) and Baier chicken (BAI); and the other heavy-body type, including Beijing You chicken (YOU), Xiaoshan chicken (XIA), Luyuan chicken (LUY) and Dagu chicken (DAG). GUS and DAG were divided into independent clusters respectively when equaled 4, 5, or 6. XIA and BIA chicken, XIA and LUY chicken, TIB and CHA chicken still clustered together when equaled 6, 7, and 8, respectively. These clustering results were consistent with the breeding directions of the nine chicken populations. The Structure program also identified migrants or admixed individuals. The admixed individuals were distributed in all the nine chicken populations, while migrants were only distributed in TIB, XIA and LUY populations. These results indicated that the clustering analysis using the Structure program might provide an accurate representation of the genetic relationship among the breeds.

  12. Genetic population structure of Anopheles gambiae in Equatorial Guinea

    Directory of Open Access Journals (Sweden)

    Caccone Adalgisa

    2007-10-01

    Full Text Available Abstract Background Patterns of genetic structure among mosquito vector populations in islands have received particular attention as these are considered potentially suitable sites for experimental trials on transgenic-based malaria control strategies. In this study, levels of genetic differentiation have been estimated between populations of Anopheles gambiae s.s. from the islands of Bioko and Annobón, and from continental Equatorial Guinea (EG and Gabon. Methods Genotyping of 11 microsatellite loci located in chromosome 3 was performed in three island samples (two in Bioko and one in Annobón and three mainland samples (two in EG and one in Gabon. Four samples belonged to the M molecular form and two to the S-form. Microsatellite data was used to estimate genetic diversity parameters, perform demographic equilibrium tests and analyse population differentiation. Results High levels of genetic differentiation were found between the more geographically remote island of Annobón and the continent, contrasting with the shallow differentiation between Bioko island, closest to mainland, and continental localities. In Bioko, differentiation between M and S forms was higher than that observed between island and mainland samples of the same molecular form. Conclusion The observed patterns of population structure seem to be governed by the presence of both physical (the ocean and biological (the M-S form discontinuity barriers to gene flow. The significant degree of genetic isolation between M and S forms detected by microsatellite loci located outside the "genomic islands" of speciation identified in A. gambiae s.s. further supports the hypothesis of on-going incipient speciation within this species. The implications of these findings regarding vector control strategies are discussed.

  13. Hyperlipidemia affects multiscale structure and strength of murine femur.

    Science.gov (United States)

    Ascenzi, Maria-Grazia; Lutz, Andre; Du, Xia; Klimecky, Laureen; Kawas, Neal; Hourany, Talia; Jahng, Joelle; Chin, Jesse; Tintut, Yin; Nackenhors, Udo; Keyak, Joyce

    2014-07-18

    To improve bone strength prediction beyond limitations of assessment founded solely on the bone mineral component, we investigated the effect of hyperlipidemia, present in more than 40% of osteoporotic patients, on multiscale structure of murine bone. Our overarching purpose is to estimate bone strength accurately, to facilitate mitigating fracture morbidity and mortality in patients. Because (i) orientation of collagen type I affects, independently of degree of mineralization, cortical bone׳s micro-structural strength; and, (ii) hyperlipidemia affects collagen orientation and μCT volumetric tissue mineral density (vTMD) in murine cortical bone, we have constructed the first multiscale finite element (mFE), mouse-specific femoral model to study the effect of collagen orientation and vTMD on strength in Ldlr(-/-), a mouse model of hyperlipidemia, and its control wild type, on either high fat diet or normal diet. Each µCT scan-based mFE model included either element-specific elastic orthotropic properties calculated from collagen orientation and vTMD (collagen-density model) by experimentally validated formulation, or usual element-specific elastic isotropic material properties dependent on vTMD-only (density-only model). We found that collagen orientation, assessed by circularly polarized light and confocal microscopies, and vTMD, differed among groups and that microindentation results strongly correlate with elastic modulus of collagen-density models (r(2)=0.85, p=10(-5)). Collagen-density models yielded (1) larger strains, and therefore lower strength, in simulations of 3-point bending and physiological loading; and (2) higher correlation between mFE-predicted strength and 3-point bending experimental strength, than density-only models. This novel method supports ongoing translational research to achieve the as yet elusive goal of accurate bone strength prediction.

  14. What consumers don't know about genetically modified food, and how that affects beliefs.

    Science.gov (United States)

    McFadden, Brandon R; Lusk, Jayson L

    2016-09-01

    In the debates surrounding biotechnology and genetically modified (GM) food, data from consumer polls are often presented as evidence for precaution and labeling. But how much do consumers actually know about the issue? New data collected from a nationwide U.S. survey reveal low levels of knowledge and numerous misperceptions about GM food. Nearly equal numbers of consumers prefer mandatory labeling of foods containing DNA as do those preferring mandatory labeling of GM foods. When given the option, the majority of consumers prefer that decisions about GM food be taken out of their hands and be made by experts. After answering a list of questions testing objective knowledge of GM food, subjective, self-reported knowledge declines somewhat, and beliefs about GM food safety increase slightly. Results suggest that consumers think they know more than they actually do about GM food, and queries about GM facts cause respondents to reassess how much they know. The findings question the usefulness of results from opinion polls as a motivation for creating public policy surrounding GM food.-McFadden, B. R., Lusk, J. L. What consumers don't know about genetically modified food, and how that affects beliefs.

  15. On Natural Genetic Engineering: Structural Dynamism in Random Boolean Networks

    CERN Document Server

    Bull, Larry

    2012-01-01

    This short paper presents an abstract, tunable model of genomic structural change within the cell lifecycle and explores its use with simulated evolution. A well-known Boolean model of genetic regulatory networks is extended to include changes in node connectivity based upon the current cell state, e.g., via transposable elements. The underlying behaviour of the resulting dynamical networks is investigated before their evolvability is explored using a version of the NK model of fitness landscapes. Structural dynamism is found to be selected for in non-stationary environments and subsequently shown capable of providing a mechanism for evolutionary innovation when such reorganizations are inherited.

  16. Detecting structural breaks in time series via genetic algorithms

    DEFF Research Database (Denmark)

    Doerr, Benjamin; Fischer, Paul; Hilbert, Astrid

    2016-01-01

    Detecting structural breaks is an essential task for the statistical analysis of time series, for example, for fitting parametric models to it. In short, structural breaks are points in time at which the behaviour of the time series substantially changes. Typically, no solid background knowledge...... and mutation operations for this problem, we conduct extensive experiments to determine good choices for the parameters and operators of the genetic algorithm. One surprising observation is that use of uniform and one-point crossover together gave significantly better results than using either crossover...

  17. Population genetic structure in the Holstein breed in Brazil.

    Science.gov (United States)

    Magalhães Araújo da Silva, Mário Henrique; Malhado, Carlos Henrique Mendes; Costa, José Lauro; Cobuci, Jaime Araujo; Costa, Claudio Napolis; Carneiro, Paulo Luiz Souza

    2016-02-01

    We evaluated the population genetic structure of the Holstein breed in Brazil through pedigree analysis with the aim of supporting genetic management of extant herds. We used data from genealogical records of 204,511 animals in farms from south and southeast Brazil. Pedigree records between 1943 and 2005 were divided into seven periods of 8 years to estimate the effective population size (N e ). N e varied during the study periods, ranging from 0.19 to 3016.25. There was an increase in the percentage of inbred animals over time, from 0.18 to 5.0 %. However, this figure may be an underestimate due to the low completeness of pedigree, primarily related to paternal pedigree. The effective number of founders (fe) was 473 animals and ancestors (fa) was 471. The genetic contribution of 260 ancestors (founders or not) accounted for 50 % of the genetic variability in the population. The average relatedness coefficient (AR) and inbreeding coefficient indicate that the Holstein breed in Brazil is being effectively managed, despite a moderate founder effect and the low number of animals that are responsible for the population variance.

  18. Genetic structure of Balearic honeybee populations based on microsatellite polymorphism

    Directory of Open Access Journals (Sweden)

    Moritz Robin FA

    2003-05-01

    Full Text Available Abstract The genetic variation of honeybee colonies collected in 22 localities on the Balearic Islands (Spain was analysed using eight polymorphic microsatellite loci. Previous studies have demonstrated that these colonies belong either to the African or west European evolutionary lineages. These populations display low variability estimated from both the number of alleles and heterozygosity values, as expected for the honeybee island populations. Although genetic differentiation within the islands is low, significant heterozygote deficiency is present, indicating a subpopulation genetic structure. According to the genetic differentiation test, the honeybee populations of the Balearic Islands cluster into two groups: Gimnesias (Mallorca and Menorca and Pitiusas (Ibiza and Formentera, which agrees with the biogeography postulated for this archipelago. The phylogenetic analysis suggests an Iberian origin of the Balearic honeybees, thus confirming the postulated evolutionary scenario for Apis mellifera in the Mediterranean basin. The microsatellite data from Formentera, Ibiza and Menorca show that ancestral populations are threatened by queen importations, indicating that adequate conservation measures should be developed for protecting Balearic bees.

  19. Molecular Diversity and Genetic Structure of Durum Wheat Landraces

    Directory of Open Access Journals (Sweden)

    GULNAR SHIKHSEYIDOVA

    2015-06-01

    Full Text Available To determine the genetic diversity of durum wheat, 41 accessions from Morocco, Ethiopia, Turkey, Lebanon, Kazakhstan, China, and Mongolia were analyzed through Inter-Simple Sequence Repeats (ISSR molecular markers. Out of the used twenty primers, 15 primers that included a considerable polymorphism were selected for the analyses. Among the genotypes under study, 163 fragments (73.7% were polymorph. Several indexes were used to determine the most appropriate primers. While UBC812, UBC864, UBC840, and UBC808 primers were among those markers which produced the highest number of bands and polymorphic bands, they also dedicated the highest rate of polymorphic index content (PIC. These primers also possessed the highest amounts of effective multiplex ratio (EMR and marker index (MI. Therefore, these primers can be recommended for genetic evaluation of the durum wheat. The results of cluster analysis and principle component analysis indicated that the observed genetic diversity in wheat materials under study is geographically structured. The results also indicated that the genetic diversity index based on ISSR markers was higher for Turkey, Lebanon, Morocco, and Ethiopia accessions than for other countries. The high level of polymorphism in this collections durum wheat would agree with the suggestion that Fertile Crescent and parts of Africa are first possible diversity center of this crop.

  20. A Discussion on Possible Indicators Related to Genetic Structure Changes in Plant Germplasm Conservation

    Institute of Scientific and Technical Information of China (English)

    GAI Jun-yi

    2004-01-01

    The purpose of the present paper is to study and develop indicators and procedures for the evaluation of genetic structure changes in germplasm conservation due to social and natural environment reasons.Some basic concepts in germplasm study were introduced at first. Then, six kinds of indicators for genetic diversity as a measure of genetic potential of a germplasm collection were presented, i.e.,numbers of different entities at certain level, evenness of the entity distribution, genetic similarityand genetic distance, genetic variance and genetic coefficient of variation, multivariate genetic variation indices, and coefficient of parentage. It was pointed out that genetic dispersion did not provide a complete concept of genetic diversity if without any information from genetic richness. Based on the above, the indicators for genetic erosion as the genetic structure changes of germplasm conservation due to social reasons, the indicators of genetic vulnerability as the genetic structure changes of germplasm conservation due to environmental stresses, the measurement of genetic drift and genetic shift as the genetic structure changes of germplasm collection during reproduction or seed increase were reviewed and developed. Furthermore, the estimation procedures of the indicators by using molecular markers were suggested. Finally, the case studies on suitable conservation sample size of self-pollinated and open-pollinated populations were given for reference.

  1. Do structural oil-market shocks affect stock prices?

    Energy Technology Data Exchange (ETDEWEB)

    Apergis, Nicholas [Department of Banking and Financial Management, University of Piraeus, 80 Karaoli and Dimitriou Str, 18534 Piraeus (Greece); Miller, Stephen M. [Department of Economics, University of Nevada, Las Vegas, Nevada (United States)

    2009-07-15

    This paper investigates how explicit structural shocks that characterize the endogenous character of oil price changes affect stock-market returns in a sample of eight countries - Australia, Canada, France, Germany, Italy, Japan, the United Kingdom, and the United States. For each country, the analysis proceeds in two steps. First, modifying the procedure of Kilian [Not All Oil Price Shocks are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market. American Economic Review.], we employ a vector error-correction or vector autoregressive model to decompose oil-price changes into three components: oil-supply shocks, global aggregate-demand shocks, and global oil-demand shocks. The last component relates to specific idiosyncratic features of the oil market, such as changes in the precautionary demand concerning the uncertainty about the availability of future oil supplies. Second, recovering the oil-supply shocks, global aggregate-demand shocks, and global oil-demand shocks from the first analysis, we then employ a vector autoregressive model to determine the effects of these structural shocks on the stock market returns in our sample of eight countries. We find that international stock market returns do not respond in a large way to oil market shocks. That is, the significant effects that exist prove small in magnitude. (author)

  2. Genetic diversity, but not hatching success, is jointly affected by postglacial colonization and isolation in the threatened frog, Rana latastei.

    Science.gov (United States)

    Ficetola, Gentile Francesco; Garner, Trenton W J; De Bernardi, Fiorenza

    2007-05-01

    Both postglacial colonization and habitat fragmentation can reduce the genetic diversity of populations, which in turn can affect fitness. However, since these processes occur at different spatial and temporal scales, the consequences of either process may differ. To disentangle the relative role of isolation and postglacial colonization in determining genetic diversity and fitness, we studied microsatellite diversity of 295 individuals from 10 populations and measured the hatch rate of 218 clutches from eight populations of a threatened frog, R. latastei. The populations that were affected by fragmentation to a greater extent suffered higher embryo mortality and reduced hatch rate, while no effects of distance from glacial refugium on hatch rate were detected. Altogether, distance from glacial refugium and isolation explained > 90% of variation in genetic diversity. We found that the genetic diversity was lowest in populations both isolated and far from the glacial refugium, and that distance from refugium seems to have the primary role in determining genetic diversity. The relationship between genetic diversity and hatch rate was not significant. However, the proportion of genetic diversity lost through recent isolation had a significant, negative effect on fitness. It is possible that selection at least partially purged the negative effects of the ancestral loss of genetic diversity.

  3. Contrasting effects of geographical separation on the genetic population structure of sympatric species of mites in avocado orchards.

    Science.gov (United States)

    Guzman-Valencia, S; Santillán-Galicia, M T; Guzmán-Franco, A W; González-Hernández, H; Carrillo-Benítez, M G; Suárez-Espinoza, J

    2014-10-01

    Oligonychus punicae and Oligonychus perseae (Acari: Tetranychidae) are the most important mite species affecting avocado orchards in Mexico. Here we used nucleotide sequence data from segments of the nuclear ribosomal internal transcribed spacers (ITS1 and ITS2) and mitochondrial cytochrome oxidase subunit I (COI) genes to assess the phylogenetic relationships between both sympatric mite species and, using only ITS sequence data, examine genetic variation and population structure in both species, to test the hypothesis that, although both species co-occur, their genetic population structures are different in both Michoacan state (main producer) and Mexico state. Phylogenetic analysis showed a clear separation between both species using ITS and COI sequence information. Haplotype network analysis done on 24 samples of O. punicae revealed low genetic diversity with only three haplotypes found but a significant geographical population structure confirmed by analysis of molecular variance (AMOVA) and Kimura-2-parameter (K2P) analyses. In addition, a Mantel test revealed that geographical isolation was a factor responsible for the genetic differentiation. In contrast, analyses of 22 samples of O. perseae revealed high genetic diversity with 15 haplotypes found but no geographical structure confirmed by the AMOVA, K2P and Mantel test analyses. We have suggested that geographical separation is one of the most important factors driving genetic variation, but that it affected each species differently. The role of the ecology of these species on our results, and the importance of our findings in the development of monitoring and control strategies are discussed.

  4. Population structure and genetic diversity of moose in Alaska.

    Science.gov (United States)

    Schmidt, Jennifer I; Hundertmark, Kris J; Bowyer, R Terry; McCracken, Kevin G

    2009-01-01

    Moose (Alces alces) are highly mobile mammals that occur across arboreal regions of North America, Europe, and Asia. Alaskan moose (Alces alces gigas) range across much of Alaska and are primary herbivore consumers, exerting a prominent influence on ecosystem structure and functioning. Increased knowledge gained from population genetics provides insights into their population dynamics, history, and dispersal of these unique large herbivores and can aid in conservation efforts. We examined the genetic diversity and population structure of moose (n = 141) with 8 polymorphic microsatellites from 6 regions spanning much of Alaska. Expected heterozygosity was moderate (H(E) = 0.483-0.612), and private alleles ranged from 0 to 6. Both F(ST) and R(ST) indicated significant population structure (P moose from the Yakutat and Tetlin regions versus all other moose, with slight substructure observed among the second population. Estimates of dispersal differed between analytical approaches, indicating a high level of historical or current gene flow. Mantel tests indicated that isolation-by-distance partially explained observed structure among moose populations (R(2) = 0.45, P moose in Alaska with population expansion from interior Alaska westward toward the coast.

  5. The genetic population structure of northern Sweden and its implications for mapping genetic diseases.

    Science.gov (United States)

    Einarsdottir, Elisabet; Egerbladh, Inez; Beckman, Lars; Holmberg, Dan; Escher, Stefan A

    2007-11-01

    The northern Swedish population has a history of admixture of three ethnic groups and a dramatic population growth from a relatively small founder population. This has resulted in founder effects that together with unique resources for genealogical analyses provide excellent conditions for genetic mapping of monogenic diseases. Several recent examples of successful mapping of genetic factors underlying susceptibility to complex diseases have suggested that the population of northern Sweden may also be an important tool for efficient mapping of more complex phenotypes. A potential factor contributing to these effects may be population sub-isolates within the large river valleys, constituting a central geographic characteristic of this region. We here provide evidence that marriage patterns as well as the distribution of gene frequencies in a set of marker loci are compatible with this notion. The possible implications of this population structure on linkage- and association based strategies for identifying genes contributing risk to complex diseases are discussed.

  6. Genetic structure characterization of Chileans reflects historical immigration patterns.

    Science.gov (United States)

    Eyheramendy, Susana; Martinez, Felipe I; Manevy, Federico; Vial, Cecilia; Repetto, Gabriela M

    2015-03-17

    Identifying the ancestral components of genomes of admixed individuals helps uncovering the genetic basis of diseases and understanding the demographic history of populations. We estimate local ancestry on 313 Chileans and assess the contribution from three continental populations. The distribution of ancestry block-length suggests an average admixing time around 10 generations ago. Sex-chromosome analyses confirm imbalanced contribution of European men and Native-American women. Previously known genes under selection contain SNPs showing large difference in allele frequencies. Furthermore, we show that assessing ancestry is harder at SNPs with higher recombination rates and easier at SNPs with large difference in allele frequencies at the ancestral populations. Two observations, that African ancestry proportions systematically decrease from North to South, and that European ancestry proportions are highest in central regions, show that the genetic structure of Chileans is under the influence of a diffusion process leading to an ancestry gradient related to geography.

  7. Genetic structure of West Greenland populations of lumpfish Cyclopterus lumpus

    DEFF Research Database (Denmark)

    Mayoral, Elsa Garcia; Olsen, M.; Hedeholm, R.

    2016-01-01

    In this study, 11 microsatellite markers were used to determine the structure of West Greenlandic lumpfish Cyclopterus lumpus populations across six spawning locations spanning >1500 km and compared with neighbouring populations in Canada and Iceland. To evaluate whether data allow for identifica......In this study, 11 microsatellite markers were used to determine the structure of West Greenlandic lumpfish Cyclopterus lumpus populations across six spawning locations spanning >1500 km and compared with neighbouring populations in Canada and Iceland. To evaluate whether data allow...... for identification of origin of C. lumpus in Greenlandic waters, genetic assignment analysis was performed for 86 C. lumpus sampled on a feeding migration. Significant structuring with isolation by distance was observed in the West Greenland samples and two major subpopulations, north and south, were suggested...

  8. Frequency selective surface structure optimized by genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    Lu Jun; Wang Jian-Bo; Sun Guan-Cheng

    2009-01-01

    Frequency selective surface(FSS)is a two-dimensional periodic structure which has prominent characteristics of bandpass or bandblock when interacting with electromagnetic waves.In this paper,the thickness,the dielectric constant,the element graph and the arrangement periodicity of an FSS medium are investigated by Genetic Algorithm(GA)when an electromagnetic wave is incident on the FSS at a wide angle,and an optimized FSS structure and transmission characteristics are obtained.The results show that the optimized structure has better stability in relation to incident angle of electromagnetic wave and preserves the stability of centre frequency even at an incident angle as large as 80°,thereby laying the foundation for the application of FSS to curved surfaces at wide angles.

  9. Landscape structure affects the provision of multiple ecosystem services

    Science.gov (United States)

    Lamy, T.; Liss, K. N.; Gonzalez, A.; Bennett, E. M.

    2016-12-01

    Understanding how landscape structure, the composition and configuration of land use/land cover (LULC) types, affects the relative supply of ecosystem services (ES), is critical to improving landscape management. While there is a long history of studies on landscape composition, the importance of landscape configuration has only recently become apparent. To understand the role of landscape structure in the provision of multiple ES, we must understand how ES respond to different measures of both composition and configuration of LULC. We used a multivariate framework to quantify the role of landscape configuration and composition in the provision of ten ES in 130 municipalities in an agricultural region in Southern Québec. We identified the relative influence of composition and configuration in the provision of these ES using multiple regression, and on bundles of ES using canonical redundancy analysis. We found that both configuration and composition play a role in explaining variation in the supply of ES, but the relative contribution of composition and configuration varies significantly among ES. We also identified three distinct ES bundles (sets of ES that regularly appear together on the landscape) and found that each bundle was associated with a unique area in the landscape, that mapped to a gradient in the composition and configuration of forest and agricultural LULC. These results show that the distribution of ES on the landscape depends upon both the overall composition of LULC types and their configuration on the landscape. As ES become more widely used to steer land use decision-making, quantifying the roles of configuration and composition in the provision of ES bundles can improve landscape management by helping us understand when and where the spatial pattern of land cover is important for multiple services.

  10. The relative importance of host-plant genetic diversity in structuring the associated herbivore community.

    Science.gov (United States)

    Tack, Ayco J M; Roslin, Tomas

    2011-08-01

    Recent studies suggest that intraspecific genetic diversity in one species may leave a substantial imprint on the surrounding community and ecosystem. Here, we test the hypothesis that genetic diversity within host-plant patches translates into consistent and ecologically important changes in the associated herbivore community. More specifically, we use potted, grafted oak saplings to construct 41 patches of four saplings each, with one, two, or four tree genotypes represented among the host plants. These patches were divided among two common gardens. Focusing first at the level of individual trees, we assess how tree-specific genotypic identity, patch-level genetic diversity, garden-level environmental variation, and their interactions affect the structure of the herbivore community. At the level of host-plant patches, we analyze whether the joint responses of herbivore species to environmental variation and genetic diversity result in differences in species diversity among tree quartets. Strikingly, both species-specific abundances and species diversity varied substantially among host-tree genotypes, among common gardens, and among specific locations within individual gardens. In contrast, the genetic diversity of the patch left a detectable imprint on local abundances of only two herbivore taxa. In both cases, the effect of genetic diversity was inconsistent among gardens and among host-plant genotypes. While the insect community differed significantly among individual host-plant genotypes, there were no interactive effects of the number of different genotypes within the patch. Overall, additive effects of intraspecific genetic diversity of the host plant explained a similar or lower proportion (7-10%) of variation in herbivore species diversity than did variation among common gardens. Combined with the few previous studies published to date, our study suggests that the impact of host-plant genetic diversity on the herbivore community can range from none to

  11. Disentangling the effects of evolutionary, demographic, and environmental factors influencing genetic structure of natural populations: Atlantic herring as a case study

    DEFF Research Database (Denmark)

    Gaggiotti, Oscar E.; Bekkevold, Dorte; Jørgensen, Hanne B.H.;

    2009-01-01

    carried out separate analyses of neutral and selected genetic variation, which allowed us to establish that the two most important factors affecting population structure were selection due to salinity at spawning sites and feeding migrations. The genetic signal left by the demographic history of herring...

  12. Application of Modified Genetic Algorithm to Optimal Design of Supporting Structure

    Institute of Scientific and Technical Information of China (English)

    ZHOU Rui-zhong; PAN Shi-wei

    2003-01-01

    The modified genetic algorithm was used for the optimal design of supporting structure in deep pits.Based on the common genetic algorithm, using niche technique and reserving the optimum individual the modified genetic algorithm was presented. By means of the practical engineering, the modified genetic algorithm not only has more expedient convergence, but also can enhance security and operation efficiency.

  13. Genetic and environmental factors that affect gestation length in dairy cattle.

    Science.gov (United States)

    Norman, H D; Wright, J R; Kuhn, M T; Hubbard, S M; Cole, J B; VanRaden, P M

    2009-05-01

    Genetic and environmental factors that might affect gestation length (GL) were investigated. Data included information from >11 million parturitions from 1999 through 2006 for 7 US dairy breeds. Effects examined were year, herd-year, month, and age within parity of conception; parturition code (sex and multiple-birth status); lactation length and standardized milk yield of cow; service sire; cow sire; and cow. All effects were fixed except for service sire, cow sire, and cow. Mean GL for heifers and cows, respectively, were 277.8 and 279.4 d for Holsteins, 278.4 and 280.0 d for Jerseys, 279.3 and 281.1 d for Milking Shorthorns, 281.6 and 281.7 d for Ayrshires, 284.8 and 285.7 d for Guernseys, and 287.2 and 287.5 d for Brown Swiss. Estimated standard deviations of GL were greatly affected by data restrictions but generally were approximately 5 to 6 d. Year effects on GL were extremely small, but month effects were moderate. For Holstein cows, GL was 2.0 d shorter for October conceptions than for January and February conceptions; 4.7 and 5.6 d shorter for multiple births of the same sex than for single-birth females and males, respectively; 0.8 d longer for lactations of or =501 d; and 0.6 d shorter for standardized yield of or =14,001 kg. Estimates for GL heritability from parities 2 to 5 were 33 to 36% for service sire and 7 to 12% for cow sire; corresponding estimates from parity 1 were 46 to 47% and 10 to 12%. Estimates of genetic correlations between effects of service sire and cow sire on GL were 0.70 to 0.85 for Brown Swiss, Holsteins, and Jerseys, which indicates that those traits likely are controlled by many of the same genes and can be used to evaluate each other. More accurate prediction of calving dates can help dairy producers to meet management requirements of pregnant animals and to administer better health care during high-risk phases of animals' lives. However, intentional selection for either shorter or longer GL is not recommended without

  14. Local genetic structure in a white-bearded manakin population.

    Science.gov (United States)

    Höglund, Jacob; Shorey, Lisa

    2003-09-01

    Local genetic structure was studied in lekking white-bearded manakins in a study area on northern Trinidad, West Indies. The study population consisted of nine leks, at which a total of 238 birds were caught. By genotyping the individuals at eight polymorphic microsatellite loci we inferred some males on leks to be related (r = 0.25) as we found an average number of 14.8 half-sib relationships and two full-sib relationships per lek. We found that the sampled birds belonged to one genetic population that was slightly inbred (FIS and FIT = 0.02). Kinship coefficients decreased with increasing geographical distance, indicating that related birds displayed at the same or nearby leks. However, leks did not consist of only one family group because the average genetic distance (aij) between males within leks was higher than when comparing males on leks within close proximity. These patterns suggest limited male dispersal, that some type of kin recognition process between individuals may exist in this species and that males on leks may be more likely to establish themselves as territory-holding birds if a relative is already present.

  15. Breed locally, disperse globally: fine-scale genetic structure despite landscape-scale panmixia in a fire-specialist.

    Directory of Open Access Journals (Sweden)

    Jennifer C Pierson

    Full Text Available An exciting advance in the understanding of metapopulation dynamics has been the investigation of how populations respond to ephemeral patches that go 'extinct' during the lifetime of an individual. Previous research has shown that this scenario leads to genetic homogenization across large spatial scales. However, little is known about fine-scale genetic structuring or how this changes over time in ephemeral patches. We predicted that species that specialize on ephemeral habitats will delay dispersal to exploit natal habitat patches while resources are plentiful and thus display fine-scale structure. To investigate this idea, we evaluated the effect of frequent colonization of ephemeral habitats on the fine-scale genetic structure of a fire specialist, the black-backed woodpecker (Picoides arcticus and found a pattern of fine-scale genetic structure. We then tested for differences in spatial structure between sexes and detected a pattern consistent with male-biased dispersal. We also detected a temporal increase in relatedness among individuals within newly burned forest patches. Our results indicate that specialist species that outlive their ephemeral patches can accrue significant fine-scale spatial structure that does not necessarily affect spatial structure at larger scales. This highlights the importance of both spatial and temporal scale considerations in both sampling and data interpretation of molecular genetic results.

  16. Breed locally, disperse globally: fine-scale genetic structure despite landscape-scale panmixia in a fire-specialist.

    Science.gov (United States)

    Pierson, Jennifer C; Allendorf, Fred W; Drapeau, Pierre; Schwartz, Michael K

    2013-01-01

    An exciting advance in the understanding of metapopulation dynamics has been the investigation of how populations respond to ephemeral patches that go 'extinct' during the lifetime of an individual. Previous research has shown that this scenario leads to genetic homogenization across large spatial scales. However, little is known about fine-scale genetic structuring or how this changes over time in ephemeral patches. We predicted that species that specialize on ephemeral habitats will delay dispersal to exploit natal habitat patches while resources are plentiful and thus display fine-scale structure. To investigate this idea, we evaluated the effect of frequent colonization of ephemeral habitats on the fine-scale genetic structure of a fire specialist, the black-backed woodpecker (Picoides arcticus) and found a pattern of fine-scale genetic structure. We then tested for differences in spatial structure between sexes and detected a pattern consistent with male-biased dispersal. We also detected a temporal increase in relatedness among individuals within newly burned forest patches. Our results indicate that specialist species that outlive their ephemeral patches can accrue significant fine-scale spatial structure that does not necessarily affect spatial structure at larger scales. This highlights the importance of both spatial and temporal scale considerations in both sampling and data interpretation of molecular genetic results.

  17. The double-edged sword of genetic accounts of criminality: causal attributions from genetic ascriptions affect legal decision making.

    Science.gov (United States)

    Cheung, Benjamin Y; Heine, Steven J

    2015-12-01

    Much debate exists surrounding the applicability of genetic information in the courtroom, making the psychological processes underlying how people consider this information important to explore. This article addresses how people think about different kinds of causal explanations in legal decision-making contexts. Three studies involving a total of 600 Mechanical Turk and university participants found that genetic, versus environmental, explanations of criminal behavior lead people to view the applicability of various defense claims differently, perceive the perpetrator's mental state differently, and draw different causal attributions. Moreover, mediation and path analyses highlight the double-edged nature of genetic attributions-they simultaneously reduce people's perception of the perpetrator's sense of control while increasing people's tendencies to attribute the cause to internal factors and to expect the perpetrator to reoffend. These countervailing relations, in turn, predict sentencing in opposite directions, although no overall differences in sentencing or ultimate verdicts were found.

  18. Initial genetic diversity enhances population establishment and alters genetic structuring of a newly established Daphnia metapopulation.

    Science.gov (United States)

    Holmes, Christopher J; Pantel, Jelena H; Schulz, Kimberly L; Cáceres, Carla E

    2016-07-01

    When newly created habitats are initially colonized by genotypes with rapid population growth rates, later arriving colonists may be prevented from establishing. Although these priority effects have been documented in multiple systems, their duration may be influenced by the diversity of the founding population. We conducted a large-scale field manipulation to investigate how initial clonal diversity influences temporal and landscape patterns of genetic structure in a developing metapopulation. Six genotypes of obligately asexual Daphnia pulex were stocked alone (no clonal diversity) or in combination ('high' clonal diversity) into newly created experimental woodland ponds. We also measured the population growth rate of all clones in the laboratory when raised on higher-quality and lower-quality resources. Our predictions were that in the 3 years following stocking, clonally diverse populations would be more likely to persist than nonclonally diverse populations and exhibit evidence for persistent founder effects. We expected that faster growing clones would be found in more pools and comprise a greater proportion of individuals genotyped from the landscape. Genetic composition, both locally and regionally, changed significantly following stocking. Six of 27 populations exhibited evidence for persistent founder effects, and populations stocked with 'high' clonal diversity were more likely to exhibit these effects than nonclonally diverse populations. Performance in the laboratory was not predictive of clonal persistence or overall dominance in the field. Hence, we conclude that although laboratory estimates of fitness did not fully explain metapopulation genetic structure, initial clonal diversity did enhance D. pulex population establishment and persistence in this system.

  19. Environmental and genetic factors affecting mutability to aminoglycoside antibiotics among Escherichia coli K12 strains

    Directory of Open Access Journals (Sweden)

    Monteiro A.C.M.

    2003-01-01

    Full Text Available Environmental and genetic factors affecting the in vitro spontaneous mutation frequencies to aminoglycoside resistance in Escherichia coli K12 were investigated. Spontaneous mutation frequencies to kanamycin resistance were at least 100 fold higher on modified Luria agar (L2 plates, when compared to results obtained in experiments carried out with Nutrient agar (NA plates. In contrast to rifampincin, the increased mutability to kanamycin resistance could not be attributed to a mutator phenotype expressed by DNA repair defective strains. Kanamycin mutant selection windows and mutant preventive concentrations on L2 plates were at least fourfold higher than on NA plates, further demonstrating the role of growth medium composition on the mutability to aminoglycosides. Mutability to kanamycin resistance was increased following addition of sorbitol, suggesting that osmolarity is involved on the spontaneous mutability of E. coli K12 strains to aminoglycosides. The spontaneous mutation rates to kanamycin resistance on both L2 and NA plates were strictly associated with the selective antibiotic concentrations. Moreover, mutants selected at different antibiotic concentrations expressed heterogeneous resistance levels to kanamycin and most of them expressing multiple resistance to all tested aminoglycoside antibiotics (gentamicin, neomycin, amykacin and tobramycin. These results will contribute to a better understanding of the complex nature of aminoglycoside resistance and the emergence of spontaneous resistant mutants among E. coli K12 strains.

  20. Epigenetic and Genetic Alterations Affect the WWOX Gene in Head and Neck Squamous Cell Carcinoma

    Science.gov (United States)

    Ekizoglu, Seda; Bulut, Pelin; Karaman, Emin; Kilic, Erkan; Buyru, Nur

    2015-01-01

    Different types of genetic and epigenetic changes are associated with HNSCC. The molecular mechanisms of HNSCC carcinogenesis are still undergoing intensive investigation. WWOX gene expression is altered in many cancers and in a recent work reduced WWOX expression has been associated with miR-134 expression in HNSCC. In this study we investigated the WWOX messenger RNA expression levels in association with the promoter methylation of the WWOX gene and miR-134 expression levels in 80 HNSCC tumor and non-cancerous tissue samples. Our results show that WWOX expression is down-regulated especially in advanced-stage tumor samples or in tumors with SCC. This down-regulation was associated with methylation of the WWOX promoter region but not with miR-134 expression. There was an inverse correlation between the expression level and promoter methylation. We also analyzed whole exons and exon/intron boundries of the WWOX gene by direct sequencing. In our study group we observed 10 different alterations in the coding sequences and 18 different alterations in the non-coding sequences of the WWOX gene in HNSCC tumor samples. These results indicate that the WWOX gene can be functionally inactivated by promoter methylation, epigenetically or by mutations affecting the sequences coding for the enzymatic domain of the gene, functionally. We conclude that inactivation of WWOX gene contributes to the progression of HNSCC. PMID:25612104

  1. A heterogeneity test for fine-scale genetic structure.

    Science.gov (United States)

    Smouse, Peter E; Peakall, Rod; Gonzales, Eva

    2008-07-01

    For organisms with limited vagility and/or occupying patchy habitats, we often encounter nonrandom patterns of genetic affinity over relatively small spatial scales, labelled fine-scale genetic structure. Both the extent and decay rate of that pattern can be expected to depend on numerous interesting demographic, ecological, historical, and mating system factors, and it would be useful to be able to compare different situations. There is, however, no heterogeneity test currently available for fine-scale genetic structure that would provide us with any guidance on whether the differences we encounter are statistically credible. Here, we develop a general nonparametric heterogeneity test, elaborating on standard autocorrelation methods for pairs of individuals. We first develop a 'pooled within-population' correlogram, where the distance classes (lags) can be defined as functions of distance. Using that pooled correlogram as our null-hypothesis reference frame, we then develop a heterogeneity test of the autocorrelations among different populations, lag-by-lag. From these single-lag tests, we construct an analogous test of heterogeneity for multilag correlograms. We illustrate with a pair of biological examples, one involving the Australian bush rat, the other involving toadshade trillium. The Australian bush rat has limited vagility, and sometimes occupies patchy habitat. We show that the autocorrelation pattern diverges somewhat between continuous and patchy habitat types. For toadshade trillium, clonal replication in Piedmont populations substantially increases autocorrelation for short lags, but clonal replication is less pronounced in mountain populations. Removal of clonal replicates reduces the autocorrelation for short lags and reverses the sign of the difference between mountain and Piedmont correlograms.

  2. Characterization of large structural genetic mosaicism in human autosomes.

    Science.gov (United States)

    Machiela, Mitchell J; Zhou, Weiyin; Sampson, Joshua N; Dean, Michael C; Jacobs, Kevin B; Black, Amanda; Brinton, Louise A; Chang, I-Shou; Chen, Chu; Chen, Constance; Chen, Kexin; Cook, Linda S; Crous Bou, Marta; De Vivo, Immaculata; Doherty, Jennifer; Friedenreich, Christine M; Gaudet, Mia M; Haiman, Christopher A; Hankinson, Susan E; Hartge, Patricia; Henderson, Brian E; Hong, Yun-Chul; Hosgood, H Dean; Hsiung, Chao A; Hu, Wei; Hunter, David J; Jessop, Lea; Kim, Hee Nam; Kim, Yeul Hong; Kim, Young Tae; Klein, Robert; Kraft, Peter; Lan, Qing; Lin, Dongxin; Liu, Jianjun; Le Marchand, Loic; Liang, Xiaolin; Lissowska, Jolanta; Lu, Lingeng; Magliocco, Anthony M; Matsuo, Keitaro; Olson, Sara H; Orlow, Irene; Park, Jae Yong; Pooler, Loreall; Prescott, Jennifer; Rastogi, Radhai; Risch, Harvey A; Schumacher, Fredrick; Seow, Adeline; Setiawan, Veronica Wendy; Shen, Hongbing; Sheng, Xin; Shin, Min-Ho; Shu, Xiao-Ou; VanDen Berg, David; Wang, Jiu-Cun; Wentzensen, Nicolas; Wong, Maria Pik; Wu, Chen; Wu, Tangchun; Wu, Yi-Long; Xia, Lucy; Yang, Hannah P; Yang, Pan-Chyr; Zheng, Wei; Zhou, Baosen; Abnet, Christian C; Albanes, Demetrius; Aldrich, Melinda C; Amos, Christopher; Amundadottir, Laufey T; Berndt, Sonja I; Blot, William J; Bock, Cathryn H; Bracci, Paige M; Burdett, Laurie; Buring, Julie E; Butler, Mary A; Carreón, Tania; Chatterjee, Nilanjan; Chung, Charles C; Cook, Michael B; Cullen, Michael; Davis, Faith G; Ding, Ti; Duell, Eric J; Epstein, Caroline G; Fan, Jin-Hu; Figueroa, Jonine D; Fraumeni, Joseph F; Freedman, Neal D; Fuchs, Charles S; Gao, Yu-Tang; Gapstur, Susan M; Patiño-Garcia, Ana; Garcia-Closas, Montserrat; Gaziano, J Michael; Giles, Graham G; Gillanders, Elizabeth M; Giovannucci, Edward L; Goldin, Lynn; Goldstein, Alisa M; Greene, Mark H; Hallmans, Goran; Harris, Curtis C; Henriksson, Roger; Holly, Elizabeth A; Hoover, Robert N; Hu, Nan; Hutchinson, Amy; Jenab, Mazda; Johansen, Christoffer; Khaw, Kay-Tee; Koh, Woon-Puay; Kolonel, Laurence N; Kooperberg, Charles; Krogh, Vittorio; Kurtz, Robert C; LaCroix, Andrea; Landgren, Annelie; Landi, Maria Teresa; Li, Donghui; Liao, Linda M; Malats, Nuria; McGlynn, Katherine A; McNeill, Lorna H; McWilliams, Robert R; Melin, Beatrice S; Mirabello, Lisa; Peplonska, Beata; Peters, Ulrike; Petersen, Gloria M; Prokunina-Olsson, Ludmila; Purdue, Mark; Qiao, You-Lin; Rabe, Kari G; Rajaraman, Preetha; Real, Francisco X; Riboli, Elio; Rodríguez-Santiago, Benjamín; Rothman, Nathaniel; Ruder, Avima M; Savage, Sharon A; Schwartz, Ann G; Schwartz, Kendra L; Sesso, Howard D; Severi, Gianluca; Silverman, Debra T; Spitz, Margaret R; Stevens, Victoria L; Stolzenberg-Solomon, Rachael; Stram, Daniel; Tang, Ze-Zhong; Taylor, Philip R; Teras, Lauren R; Tobias, Geoffrey S; Viswanathan, Kala; Wacholder, Sholom; Wang, Zhaoming; Weinstein, Stephanie J; Wheeler, William; White, Emily; Wiencke, John K; Wolpin, Brian M; Wu, Xifeng; Wunder, Jay S; Yu, Kai; Zanetti, Krista A; Zeleniuch-Jacquotte, Anne; Ziegler, Regina G; de Andrade, Mariza; Barnes, Kathleen C; Beaty, Terri H; Bierut, Laura J; Desch, Karl C; Doheny, Kimberly F; Feenstra, Bjarke; Ginsburg, David; Heit, John A; Kang, Jae H; Laurie, Cecilia A; Li, Jun Z; Lowe, William L; Marazita, Mary L; Melbye, Mads; Mirel, Daniel B; Murray, Jeffrey C; Nelson, Sarah C; Pasquale, Louis R; Rice, Kenneth; Wiggs, Janey L; Wise, Anastasia; Tucker, Margaret; Pérez-Jurado, Luis A; Laurie, Cathy C; Caporaso, Neil E; Yeager, Meredith; Chanock, Stephen J

    2015-03-05

    Analyses of genome-wide association study (GWAS) data have revealed that detectable genetic mosaicism involving large (>2 Mb) structural autosomal alterations occurs in a fraction of individuals. We present results for a set of 24,849 genotyped individuals (total GWAS set II [TGSII]) in whom 341 large autosomal abnormalities were observed in 168 (0.68%) individuals. Merging data from the new TGSII set with data from two prior reports (the Gene-Environment Association Studies and the total GWAS set I) generated a large dataset of 127,179 individuals; we then conducted a meta-analysis to investigate the patterns of detectable autosomal mosaicism (n = 1,315 events in 925 [0.73%] individuals). Restricting to events >2 Mb in size, we observed an increase in event frequency as event size decreased. The combined results underscore that the rate of detectable mosaicism increases with age (p value = 5.5 × 10(-31)) and is higher in men (p value = 0.002) but lower in participants of African ancestry (p value = 0.003). In a subset of 47 individuals from whom serial samples were collected up to 6 years apart, complex changes were noted over time and showed an overall increase in the proportion of mosaic cells as age increased. Our large combined sample allowed for a unique ability to characterize detectable genetic mosaicism involving large structural events and strengthens the emerging evidence of non-random erosion of the genome in the aging population.

  3. MICRONEEDLE STRUCTURE DESIGN AND OPTIMIZATION USING GENETIC ALGORITHM

    Directory of Open Access Journals (Sweden)

    N. A. ISMAIL

    2015-07-01

    Full Text Available This paper presents a Genetic Algorithm (GA based microneedle design and analysis. GA is an evolutionary optimization technique that mimics the natural biological evolution. The design of microneedle structure considers the shape of microneedle, material used, size of the array, the base of microneedle, the lumen base, the height of microneedle, the height of the lumen, and the height of the drug container or reservoir. The GA is executed in conjunction with ANSYS simulation system to assess the design specifications. The GA uses three operators which are reproduction, crossover and mutation to manipulate the genetic composition of the population. In this research, the microneedle is designed to meet a number of significant specifications such as nodal displacement, strain energy, equivalent stress and flow rate of the fluid / drug that flow through its channel / lumen. A comparison study is conducted to investigate the design of microneedle structure with and without the implementation of GA model. The results showed that GA is able to optimize the design parameters of microneedle and is capable to achieve the required specifications with better performance.

  4. Genetic resources of teak (Tectona grandis Linn. f.)—strong genetic structure among natural populations

    DEFF Research Database (Denmark)

    Hansen, Ole Kim; Changtragoon, Suchitra; Ponoy, Bundit

    2015-01-01

    Twenty-nine provenances of teak (Tectona grandis Linn. f.) representing the full natural distribution range of the species were genotyped with microsatellite DNA markers to analyse genetic diversity and population genetic structure. Provenances originating from the semi-moist east coast of India ...

  5. Microsatellite based genetic diversity and population structure of the endangered Spanish Guadarrama goat breed

    Science.gov (United States)

    Serrano, Magdalena; Calvo, Jorge H; Martínez, Marta; Marcos-Carcavilla, Ane; Cuevas, Javier; González, Carmen; Jurado, Juan J; de Tejada, Paloma Díez

    2009-01-01

    Background Assessing genetic biodiversity and population structure of minor breeds through the information provided by neutral molecular markers, allows determination of their extinction risk and to design strategies for their management and conservation. Analysis of microsatellite loci is known to be highly informative in the reconstruction of the historical processes underlying the evolution and differentiation of animal populations. Guadarrama goat is a threatened Spanish breed which actual census (2008) consists of 3057 females and 203 males distributed in 22 populations more or less isolated. The aim of this work is to study the genetic status of this breed through the analysis of molecular data from 10 microsatellites typed in historic and actual live animals. Results The mean expected heterozygosity across loci within populations ranged from 0.62 to 0.77. Genetic differentiation measures were moderate, with a mean FST of 0.074, GST of 0.081 and RST of 0.085. Percentages of variation among and within populations were 7.5 and 92.5, respectively. Bayesian clustering analyses pointed out a population subdivision in 16 clusters, however, no correlation between geographical distances and genetic differences was found. Management factors such as the limited exchange of animals between farmers (estimated gene flow Nm = 3.08) mostly due to sanitary and social constraints could be the major causes affecting Guadarrama goat population subdivision. Conclusion Genetic diversity measures revealed a good status of biodiversity in the Guadarrama goat breed. Since diseases are the first cause affecting the census in this breed, population subdivision would be an advantage for its conservation. However, to maintain private alleles present at low frequencies in such small populations minimizing the inbreeding rate, it would necessitate some mating designs of animals carrying such alleles among populations. The systematic use of molecular markers will facilitate the

  6. Microsatellite based genetic diversity and population structure of the endangered Spanish Guadarrama goat breed

    Directory of Open Access Journals (Sweden)

    Jurado Juan J

    2009-09-01

    Full Text Available Abstract Background Assessing genetic biodiversity and population structure of minor breeds through the information provided by neutral molecular markers, allows determination of their extinction risk and to design strategies for their management and conservation. Analysis of microsatellite loci is known to be highly informative in the reconstruction of the historical processes underlying the evolution and differentiation of animal populations. Guadarrama goat is a threatened Spanish breed which actual census (2008 consists of 3057 females and 203 males distributed in 22 populations more or less isolated. The aim of this work is to study the genetic status of this breed through the analysis of molecular data from 10 microsatellites typed in historic and actual live animals. Results The mean expected heterozygosity across loci within populations ranged from 0.62 to 0.77. Genetic differentiation measures were moderate, with a mean FST of 0.074, GST of 0.081 and RST of 0.085. Percentages of variation among and within populations were 7.5 and 92.5, respectively. Bayesian clustering analyses pointed out a population subdivision in 16 clusters, however, no correlation between geographical distances and genetic differences was found. Management factors such as the limited exchange of animals between farmers (estimated gene flow Nm = 3.08 mostly due to sanitary and social constraints could be the major causes affecting Guadarrama goat population subdivision. Conclusion Genetic diversity measures revealed a good status of biodiversity in the Guadarrama goat breed. Since diseases are the first cause affecting the census in this breed, population subdivision would be an advantage for its conservation. However, to maintain private alleles present at low frequencies in such small populations minimizing the inbreeding rate, it would necessitate some mating designs of animals carrying such alleles among populations. The systematic use of molecular markers will

  7. Breeding system, colony structure, and genetic differentiation in the Camponotus festinatus species complex of carpenter ants.

    Science.gov (United States)

    Goodisman, Michael A D; Hahn, Daniel A

    2005-10-01

    All social insects live in highly organized societies. However, different social insect species display striking variation in social structure. This variation can significantly affect the genetic structure within populations and, consequently, the divergence between species. The purpose of this study was to determine if variation in social structure was associated with species diversification in the Camponotus festinatus desert carpenter ant species complex. We used polymorphic DNA microsatellite markers to dissect the breeding system of these ants and to determine if distinct C. festinatus forms hybridized in their natural range. Our analysis of single-queen colonies established in the laboratory revealed that queens typically mated with only a single male. The genotypes of workers sampled from a field population suggested that multiple, related queens occasionally reproduced within colonies and that colonies inhabited multiple nests. Camponotus festinatus workers derived from colonies of the same form originating at different locales were strongly differentiated, suggesting that gene flow was geographically restricted. Overall, our data indicate that C. festinatus populations are highly structured. Distinct C. festinatus forms possess similar social systems but are genetically isolated. Consequently, our data suggest that diversification in the C. festinatus species complex is not necessarily associated with a shift in social structure.

  8. Advertisement call and genetic structure conservatism: good news for an endangered Neotropical frog

    Directory of Open Access Journals (Sweden)

    Lucas R. Forti

    2016-05-01

    Full Text Available Background: Many amphibian species are negatively affected by habitat change due to anthropogenic activities. Populations distributed over modified landscapes may be subject to local extinction or may be relegated to the remaining—likely isolated and possibly degraded—patches of available habitat. Isolation without gene flow could lead to variability in phenotypic traits owing to differences in local selective pressures such as environmental structure, microclimate, or site-specific species assemblages. Methods: Here, we tested the microevolution hypothesis by evaluating the acoustic parameters of 349 advertisement calls from 15 males from six populations of the endangered amphibian species Proceratophrys moratoi. In addition, we analyzed the genetic distances among populations and the genetic diversity with a haplotype network analysis. We performed cluster analysis on acoustic data based on the Bray-Curtis index of similarity, using the UPGMA method. We correlated acoustic dissimilarities (calculated by Euclidean distance with geographical and genetic distances among populations. Results: Spectral traits of the advertisement call of P. moratoi presented lower coefficients of variation than did temporal traits, both within and among males. Cluster analyses placed individuals without congruence in population or geographical distance, but recovered the species topology in relation to sister species. The genetic distance among populations was low; it did not exceed 0.4% for the most distant populations, and was not correlated with acoustic distance. Discussion: Both acoustic features and genetic sequences are highly conserved, suggesting that populations could be connected by recent migrations, and that they are subject to stabilizing selective forces. Although further studies are required, these findings add to a growing body of literature suggesting that this species would be a good candidate for a reintroduction program without negative

  9. Structural health monitoring feature design by genetic programming

    Science.gov (United States)

    Harvey, Dustin Y.; Todd, Michael D.

    2014-09-01

    Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and other high-capital or life-safety critical structures. Conventional data processing involves pre-processing and extraction of low-dimensional features from in situ time series measurements. The features are then input to a statistical pattern recognition algorithm to perform the relevant classification or regression task necessary to facilitate decisions by the SHM system. Traditional design of signal processing and feature extraction algorithms can be an expensive and time-consuming process requiring extensive system knowledge and domain expertise. Genetic programming, a heuristic program search method from evolutionary computation, was recently adapted by the authors to perform automated, data-driven design of signal processing and feature extraction algorithms for statistical pattern recognition applications. The proposed method, called Autofead, is particularly suitable to handle the challenges inherent in algorithm design for SHM problems where the manifestation of damage in structural response measurements is often unclear or unknown. Autofead mines a training database of response measurements to discover information-rich features specific to the problem at hand. This study provides experimental validation on three SHM applications including ultrasonic damage detection, bearing damage classification for rotating machinery, and vibration-based structural health monitoring. Performance comparisons with common feature choices for each problem area are provided demonstrating the versatility of Autofead to produce significant algorithm improvements on a wide range of problems.

  10. Genetic structure in the coral, Montastraea cavernosa: assessing genetic differentiation among and within Mesophotic reefs.

    Directory of Open Access Journals (Sweden)

    Daniel A Brazeau

    Full Text Available Mesophotic coral reefs (30-150 m have recently received increased attention as a potential source of larvae (e.g., the refugia hypothesis to repopulate a select subset of the shallow water (<30 m coral fauna. To test the refugia hypothesis we used highly polymorphic Amplified Fragment Length Polymorphism (AFLP markers as a means to assess small-scale genetic heterogeneity between geographic locations and across depth clines in the Caribbean coral, Montastraea cavernosa. Zooxanthellae-free DNA extracts of coral samples (N = 105 were analyzed from four depths, shallow (3-10 m, medium (15-25 m, deep (30-50 m and very deep (60-90 m from Little Cayman Island (LCI, Lee Stocking Island (LSI, Bahamas and San Salvador (SS, Bahamas which range in distance from 170 to 1,600 km apart. Using AMOVA analysis there were significant differences in ΦST values in pair wise comparisons between LCI and LSI. Among depths at LCI, there was significant genetic differentiation between shallow and medium versus deep and very deep depths in contrast there were no significant differences in ΦST values among depths at LSI. The assignment program AFLPOP, however, correctly assigned 95.7% of the LCI and LSI samples to the depths from which they were collected, differentiating among populations as little as 10 to 20 m in depth from one another. Discriminant function analysis of the data showed significant differentiation among samples when categorized by collection site as well as collection depth. FST outlier analyses identified 2 loci under positive selection and 3 under balancing selection at LCI. At LSI 2 loci were identified, both showing balancing selection. This data shows that adult populations of M. cavernosa separated by depths of tens of meters exhibits significant genetic structure, indicative of low population connectivity among and within sites and are not supplying successful recruits to adjacent coral reefs less than 30 m in depth.

  11. Genetic factors affecting gene transcription and catalytic activity of UDP-glucuronosyltransferases in human liver.

    Science.gov (United States)

    Liu, Wanqing; Ramírez, Jacqueline; Gamazon, Eric R; Mirkov, Snezana; Chen, Peixian; Wu, Kehua; Sun, Chang; Cox, Nancy J; Cook, Edwin; Das, Soma; Ratain, Mark J

    2014-10-15

    The aim of this study was to discover cis- and trans-acting factors significantly affecting mRNA expression and catalytic activity of human hepatic UDP-glucuronosyltransferases (UGTs). Transcription levels of five major hepatic UGT1A (UGT1A1, UGT1A3, UGT1A4, UGT1A6 and UGT1A9) and five UGT2B (UGT2B4, UGT2B7, UGT2B10, UGT2B15 and UGT2B17) genes were quantified in human liver tissue samples (n = 125) using real-time PCR. Glucuronidation activities of 14 substrates were measured in 47 livers. We genotyped 167 tagSNPs (single-nucleotide polymorphisms) in UGT1A (n = 43) and UGT2B (n = 124), as well as the known functional UGT1A1*28 and UGT2B17 CNV (copy number variation) polymorphisms. Transcription levels of 15 transcription factors (TFs) known to regulate these UGTs were quantified. We found that UGT expression and activity were highly variable among the livers (median and range of coefficient of variations: 135%, 74-217% and 52%, 39-105%, respectively). CAR, PXR and ESR1 were found to be the most important trans-regulators of UGT transcription (median and range of correlation coefficients: 46%, 6-58%; 47%, 9-58%; and 52%, 24-75%, respectively). Hepatic UGT activities were mainly determined by UGT gene transcription levels. Twenty-one polymorphisms were significantly (FDR-adjusted P transcription and testosterone glucuronidation rate, in addition to that attributable to the UGT2B17 CNV. Our study discovered novel pharmacogenetic markers and provided detailed insight into the genetic network regulating hepatic UGTs.

  12. Genetic structure of autochthonous populations of Meso-America: Mexico.

    Science.gov (United States)

    Lisker, R; Ramírez, E; Babinsky, V

    1996-06-01

    We analyze the possible effect of gene flow on the genetic structure of present-day Mexicans. For this purpose we reviewed previous admixture estimates for various Indian and Mestizo groups. Several facts seem clear: (1) There are no pure Indian groups in Mexico, because all Indian groups show variable degrees of admixture, mostly with whites (range, 0.088 in the Huichol to 0.373 in the Huasteco); (2) the main ancestral contribution to the noncoastal lower middle class Mestizo populations is Indian (above 50%) so that from a genetic standpoint Indians and lower middle class Mestizos are not much different; and (3) black ancestry is quite high on the coasts, ranging from 0.127 to 0.405 on the east coast, and is present in other Mestizos, ranging in large urban centers from 0.027 in Oaxaca to 0.107 in Puebla and in smaller cities from 0.08 in Tlaxcala to 0.181 in Cuanalán.

  13. Extensive genetic diversity, unique population structure and evidence of genetic exchange in the sexually transmitted parasite Trichomonas vaginalis.

    Directory of Open Access Journals (Sweden)

    Melissa D Conrad

    Full Text Available Trichomonas vaginalis is the causative agent of human trichomoniasis, the most common non-viral sexually transmitted infection world-wide. Despite its prevalence, little is known about the genetic diversity and population structure of this haploid parasite due to the lack of appropriate tools. The development of a panel of microsatellite makers and SNPs from mining the parasite's genome sequence has paved the way to a global analysis of the genetic structure of the pathogen and association with clinical phenotypes.Here we utilize a panel of T. vaginalis-specific genetic markers to genotype 235 isolates from Mexico, Chile, India, Australia, Papua New Guinea, Italy, Africa and the United States, including 19 clinical isolates recently collected from 270 women attending New York City sexually transmitted disease clinics. Using population genetic analysis, we show that T. vaginalis is a genetically diverse parasite with a unique population structure consisting of two types present in equal proportions world-wide. Parasites belonging to the two types (type 1 and type 2 differ significantly in the rate at which they harbor the T. vaginalis virus, a dsRNA virus implicated in parasite pathogenesis, and in their sensitivity to the widely-used drug, metronidazole. We also uncover evidence of genetic exchange, indicating a sexual life-cycle of the parasite despite an absence of morphologically-distinct sexual stages.Our study represents the first robust and comprehensive evaluation of global T. vaginalis genetic diversity and population structure. Our identification of a unique two-type structure, and the clinically relevant phenotypes associated with them, provides a new dimension for understanding T. vaginalis pathogenesis. In addition, our demonstration of the possibility of genetic exchange in the parasite has important implications for genetic research and control of the disease.

  14. How genetic modification of roots affects rhizosphere processes and plant performance

    NARCIS (Netherlands)

    Kabouw, P.; Dam, van N.M.; Putten, van der W.H.; Biere, A.

    2012-01-01

    Genetic modification of plants has become common practice. However, root-specific genetic modifications have only recently been advocated. Here, a review is presented regarding how root-specific modifications can have both plant internal and rhizosphere-mediated effects on aboveground plant properti

  15. The Major Genetic Determinants of HIV-1 Control Affect HLA Class I Peptide Presentation

    NARCIS (Netherlands)

    F. Pereyra; X. Jia; P.J. McLaren; A. Telenti; P.I.W. de Bakker; B.D. Walker; S. Ripke; C.J. Brumme; S.L. Pulit; M. Carrington; C.M. Kadie; J.M. Carlson; D. Heckerman; R.R. Graham; R.M. Plenge; S.G. Deeks; L. Gianniny; G. Crawford; J. Sullivan; E. Gonzalez; L. Davies; A. Camargo; J.M. Moore; N. Beattie; S. Gupta; A. Crenshaw; N.P. Burtt; C. Guiducci; N. Gupta; X. Gao; Y. Qi; Y. Yuki; A. Piechocka-Trocha; E. Cutrell; R. Rosenberg; K.L. Moss; P. Lemay; J. O'Leary; T. Schaefer; P. Verma; I. Toth; B. Block; B. Baker; A. Rothchild; J. Lian; J. Proudfoot; D.M.L. Alvino; S. Vine; M.M. Addo; T.M. Allen; M. Altfeld; M.R. Henn; S. Le Gall; H. Streeck; D.W. Haas; D.R. Kuritzkes; G.K. Robbins; R.W. Shafer; R.M. Gulick; C.M. Shikuma; R. Haubrich; S. Riddler; P.E. Sax; E.S. Daar; H.J. Ribaudo; B. Agan; S. Agarwal; R.L. Ahern; B.L. Allen; S. Altidor; E.L. Altschuler; S. Ambardar; K. Anastos; B. Anderson; V. Anderson; U. Andrady; D. Antoniskis; D. Bangsberg; D. Barbaro; W. Barrie; J. Bartczak; S. Barton; P. Basden; N. Basgoz; S. Bazner; N.C. Bellos; A.M. Benson; J. Berger; N.F. Bernard; A.M. Bernard; C. Birch; S.J. Bodner; R.K. Bolan; E.T. Boudreaux; M. Bradley; J.F. Braun; J.E. Brndjar; S.J. Brown; K. Brown

    2010-01-01

    Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide as

  16. Exploring the structure of attitudes toward genetically modified food.

    Science.gov (United States)

    Poortinga, Wouter; Pidgeon, Nick F

    2006-12-01

    Although it is often thought that the British public is opposed to genetically modified (GM) food, recent qualitative work suggests that most people are ambivalent about GM food and crops. In this article we explore the structure of attitudes in order to examine whether attitudinal ambivalence can be captured by more quantitative methods. Based on the finding that the perceived risks and benefits of GM food can be treated as independent dimensions, we propose a four-way typology of attitudes, consisting of a positive, negative, indifferent, and ambivalent group. This study showed that the differences between the four groups could best be described by three main dimensions: (1) a general evaluative dimension, (2) an involvement dimension, and (3) an attitudinal certainty dimension. While these different attitudinal dimensions have generally been studied in isolation, we argue that they should be studied collectively.

  17. Final Technical Report for the grant entitled "Genetic Factors Affecting Susceptibility to Low-Dose Radiation"

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, William, F., Ph.D., D.Sc.

    2006-11-22

    The goal of this proposal was to test the hypothesis that mice heterozygous for the Nijmegen Breakage Syndrome (NBS1) gene are genetically susceptible to low doses of ionizing radiation. The rationale for this is that patients with NBS are radiation sensitive, because of defects in cellular responses to radiation induced genetic damage and haploinsufficiency at this genetic locus provides the potential for genetic susceptibility to low doses of ionizing radiation. Wild type and heterozygous NBS1 mice were irradiated and followed over their lifetime for radiation induced genomic instability, carcinogenesis and non-specific life shortening. No differences in cytogenetic damage, cancer induction or life span were observed between the hypomorphic mice indicating that genetic imbalance at the NBS1 loci does not modulate low dose radiation sensitivity.

  18. Characterization of Large Structural Genetic Mosaicism in Human Autosomes

    Science.gov (United States)

    Machiela, Mitchell J.; Zhou, Weiyin; Sampson, Joshua N.; Dean, Michael C.; Jacobs, Kevin B.; Black, Amanda; Brinton, Louise A.; Chang, I-Shou; Chen, Chu; Chen, Constance; Chen, Kexin; Cook, Linda S.; Crous Bou, Marta; De Vivo, Immaculata; Doherty, Jennifer; Friedenreich, Christine M.; Gaudet, Mia M.; Haiman, Christopher A.; Hankinson, Susan E.; Hartge, Patricia; Henderson, Brian E.; Hong, Yun-Chul; Hosgood, H. Dean; Hsiung, Chao A.; Hu, Wei; Hunter, David J.; Jessop, Lea; Kim, Hee Nam; Kim, Yeul Hong; Kim, Young Tae; Klein, Robert; Kraft, Peter; Lan, Qing; Lin, Dongxin; Liu, Jianjun; Le Marchand, Loic; Liang, Xiaolin; Lissowska, Jolanta; Lu, Lingeng; Magliocco, Anthony M.; Matsuo, Keitaro; Olson, Sara H.; Orlow, Irene; Park, Jae Yong; Pooler, Loreall; Prescott, Jennifer; Rastogi, Radhai; Risch, Harvey A.; Schumacher, Fredrick; Seow, Adeline; Setiawan, Veronica Wendy; Shen, Hongbing; Sheng, Xin; Shin, Min-Ho; Shu, Xiao-Ou; VanDen Berg, David; Wang, Jiu-Cun; Wentzensen, Nicolas; Wong, Maria Pik; Wu, Chen; Wu, Tangchun; Wu, Yi-Long; Xia, Lucy; Yang, Hannah P.; Yang, Pan-Chyr; Zheng, Wei; Zhou, Baosen; Abnet, Christian C.; Albanes, Demetrius; Aldrich, Melinda C.; Amos, Christopher; Amundadottir, Laufey T.; Berndt, Sonja I.; Blot, William J.; Bock, Cathryn H.; Bracci, Paige M.; Burdett, Laurie; Buring, Julie E.; Butler, Mary A.; Carreón, Tania; Chatterjee, Nilanjan; Chung, Charles C.; Cook, Michael B.; Cullen, Michael; Davis, Faith G.; Ding, Ti; Duell, Eric J.; Epstein, Caroline G.; Fan, Jin-Hu; Figueroa, Jonine D.; Fraumeni, Joseph F.; Freedman, Neal D.; Fuchs, Charles S.; Gao, Yu-Tang; Gapstur, Susan M.; Patiño-Garcia, Ana; Garcia-Closas, Montserrat; Gaziano, J. Michael; Giles, Graham G.; Gillanders, Elizabeth M.; Giovannucci, Edward L.; Goldin, Lynn; Goldstein, Alisa M.; Greene, Mark H.; Hallmans, Goran; Harris, Curtis C.; Henriksson, Roger; Holly, Elizabeth A.; Hoover, Robert N.; Hu, Nan; Hutchinson, Amy; Jenab, Mazda; Johansen, Christoffer; Khaw, Kay-Tee; Koh, Woon-Puay; Kolonel, Laurence N.; Kooperberg, Charles; Krogh, Vittorio; Kurtz, Robert C.; LaCroix, Andrea; Landgren, Annelie; Landi, Maria Teresa; Li, Donghui; Liao, Linda M.; Malats, Nuria; McGlynn, Katherine A.; McNeill, Lorna H.; McWilliams, Robert R.; Melin, Beatrice S.; Mirabello, Lisa; Peplonska, Beata; Peters, Ulrike; Petersen, Gloria M.; Prokunina-Olsson, Ludmila; Purdue, Mark; Qiao, You-Lin; Rabe, Kari G.; Rajaraman, Preetha; Real, Francisco X.; Riboli, Elio; Rodríguez-Santiago, Benjamín; Rothman, Nathaniel; Ruder, Avima M.; Savage, Sharon A.; Schwartz, Ann G.; Schwartz, Kendra L.; Sesso, Howard D.; Severi, Gianluca; Silverman, Debra T.; Spitz, Margaret R.; Stevens, Victoria L.; Stolzenberg-Solomon, Rachael; Stram, Daniel; Tang, Ze-Zhong; Taylor, Philip R.; Teras, Lauren R.; Tobias, Geoffrey S.; Viswanathan, Kala; Wacholder, Sholom; Wang, Zhaoming; Weinstein, Stephanie J.; Wheeler, William; White, Emily; Wiencke, John K.; Wolpin, Brian M.; Wu, Xifeng; Wunder, Jay S.; Yu, Kai; Zanetti, Krista A.; Zeleniuch-Jacquotte, Anne; Ziegler, Regina G.; de Andrade, Mariza; Barnes, Kathleen C.; Beaty, Terri H.; Bierut, Laura J.; Desch, Karl C.; Doheny, Kimberly F.; Feenstra, Bjarke; Ginsburg, David; Heit, John A.; Kang, Jae H.; Laurie, Cecilia A.; Li, Jun Z.; Lowe, William L.; Marazita, Mary L.; Melbye, Mads; Mirel, Daniel B.; Murray, Jeffrey C.; Nelson, Sarah C.; Pasquale, Louis R.; Rice, Kenneth; Wiggs, Janey L.; Wise, Anastasia; Tucker, Margaret; Pérez-Jurado, Luis A.; Laurie, Cathy C.; Caporaso, Neil E.; Yeager, Meredith; Chanock, Stephen J.

    2015-01-01

    Analyses of genome-wide association study (GWAS) data have revealed that detectable genetic mosaicism involving large (>2 Mb) structural autosomal alterations occurs in a fraction of individuals. We present results for a set of 24,849 genotyped individuals (total GWAS set II [TGSII]) in whom 341 large autosomal abnormalities were observed in 168 (0.68%) individuals. Merging data from the new TGSII set with data from two prior reports (the Gene-Environment Association Studies and the total GWAS set I) generated a large dataset of 127,179 individuals; we then conducted a meta-analysis to investigate the patterns of detectable autosomal mosaicism (n = 1,315 events in 925 [0.73%] individuals). Restricting to events >2 Mb in size, we observed an increase in event frequency as event size decreased. The combined results underscore that the rate of detectable mosaicism increases with age (p value = 5.5 × 10−31) and is higher in men (p value = 0.002) but lower in participants of African ancestry (p value = 0.003). In a subset of 47 individuals from whom serial samples were collected up to 6 years apart, complex changes were noted over time and showed an overall increase in the proportion of mosaic cells as age increased. Our large combined sample allowed for a unique ability to characterize detectable genetic mosaicism involving large structural events and strengthens the emerging evidence of non-random erosion of the genome in the aging population. PMID:25748358

  19. Sucrose prevents protein fibrillation through compaction of the tertiary structure but hardly affects the secondary structure.

    Science.gov (United States)

    Estrela, Nídia; Franquelim, Henri G; Lopes, Carlos; Tavares, Evandro; Macedo, Joana A; Christiansen, Gunna; Otzen, Daniel E; Melo, Eduardo P

    2015-11-01

    Amyloid fibers, implicated in a wide range of diseases, are formed when proteins misfold and stick together in long rope-like structures. As a natural mechanism, osmolytes can be used to modulate protein aggregation pathways with no interference with other cellular functions. The osmolyte sucrose delays fibrillation of the ribosomal protein S6 leading to softer and less shaped-defined fibrils. The molecular mechanism used by sucrose to delay S6 fibrillation was studied based on the two-state unfolding kinetics of the secondary and tertiary structures. It was concluded that the delay in S6 fibrillation results from stabilization and compaction of the slightly expanded tertiary native structure formed under fibrillation conditions. Interestingly, this compaction extends to almost all S6 tertiary structure but hardly affects its secondary structure. The part of the S6 tertiary structure that suffered more compaction by sucrose is known to be the first part to unfold, indicating that the native S6 has entered the unfolding pathway under fibrillation conditions.

  20. How Knowledge Management Is Affected by Organizational Structure

    Science.gov (United States)

    Mahmoudsalehi, Mehdi; Moradkhannejad, Roya; Safari, Khalil

    2012-01-01

    Purpose: Identifying the impact of organizational structure on knowledge management (KM) is the aim of this study, as well as recognizing the importance of each variable indicator in creating, sharing and utility of knowledge. Design/methodology/approach: For understanding relationships between the main variables (organizational structure-KM), the…

  1. Comparison of genetic diversity structure analyses of SSR molecular marker data within apple (Malus×domestica) genetic resources.

    Science.gov (United States)

    Patzak, Josef; Paprštein, František; Henychová, Alena; Sedlák, Jiří

    2012-09-01

    The aim of this study was to compare traditional hierarchical clustering techniques and principal coordinate analysis (PCoA) with the model-based Bayesian cluster analyses in relation to subpopulation differentiation based on breeding history and geographical origin of apple (Malus×domestica Borkh.) cultivars and landraces. We presented the use of a set of 10 microsatellite (SSR) loci for genetic diversity structure analyses of 273 apple accessions from national genetic resources. These SSR loci yielded a total of 113 polymorphic SSR alleles, with 5-18 alleles per locus. SSR molecular data were successfully used in binary and allelic input format for all genetic diversity analyses, but allelic molecular data did not reveal reliable results with the NTSYS-pc and BAPS softwares. A traditional cluster analysis still provided an easy and effective way for determining genetic diversity structure in the apple germplasm collection. A model-based Bayesian analysis also provided the clustering results in accordance to traditional cluster analysis, but the analyses were distorted by the presence of a dominant group of apple genetic resources owing to the narrow origin of the apple genome. PCoA confirmed that there were no noticeable differences in genetic diversity structure of apple genetic resources during the breeding history. The results of our analyses are useful in the context of enhancing apple collection management, sampling of core collections, and improving breeding processes.

  2. Mother-offspring distances reflect sex differences in fine-scale genetic structure of eastern grey kangaroos.

    Science.gov (United States)

    King, Wendy J; Garant, Dany; Festa-Bianchet, Marco

    2015-05-01

    Natal dispersal affects life history and population biology and causes gene flow. In mammals, dispersal is usually male-biased so that females tend to be philopatric and surrounded by matrilineal kin, which may lead to preferential associations among female kin. Here we combine genetic analyses and behavioral observations to investigate spatial genetic structure and sex-biased dispersal patterns in a high-density population of mammals showing fission-fusion group dynamics. We studied eastern grey kangaroos (Macropus giganteus) over 2 years at Wilsons Promontory National Park, Australia, and found weak fine-scale genetic structure among adult females in both years but no structure among adult males. Immature male kangaroos moved away from their mothers at 18-25 months of age, while immature females remained near their mothers until older. A higher proportion of male (34%) than female (6%) subadults and young adults were observed to disperse, although median distances of detected dispersals were similar for both sexes. Adult females had overlapping ranges that were far wider than the maximum extent of spatial genetic structure found. Female kangaroos, although weakly philopatric, mostly encounter nonrelatives in fission-fusion groups at high density, and therefore kinship is unlikely to strongly affect sociality.

  3. Mother–offspring distances reflect sex differences in fine-scale genetic structure of eastern grey kangaroos

    Science.gov (United States)

    King, Wendy J; Garant, Dany; Festa-Bianchet, Marco

    2015-01-01

    Natal dispersal affects life history and population biology and causes gene flow. In mammals, dispersal is usually male-biased so that females tend to be philopatric and surrounded by matrilineal kin, which may lead to preferential associations among female kin. Here we combine genetic analyses and behavioral observations to investigate spatial genetic structure and sex-biased dispersal patterns in a high-density population of mammals showing fission–fusion group dynamics. We studied eastern grey kangaroos (Macropus giganteus) over 2 years at Wilsons Promontory National Park, Australia, and found weak fine-scale genetic structure among adult females in both years but no structure among adult males. Immature male kangaroos moved away from their mothers at 18–25 months of age, while immature females remained near their mothers until older. A higher proportion of male (34%) than female (6%) subadults and young adults were observed to disperse, although median distances of detected dispersals were similar for both sexes. Adult females had overlapping ranges that were far wider than the maximum extent of spatial genetic structure found. Female kangaroos, although weakly philopatric, mostly encounter nonrelatives in fission–fusion groups at high density, and therefore kinship is unlikely to strongly affect sociality. PMID:26045958

  4. Few genetic and environmental correlations between life history and stress resistance traits affect adaptation to fluctuating thermal regimes.

    Science.gov (United States)

    Manenti, T; Sørensen, J G; Moghadam, N N; Loeschcke, V

    2016-09-01

    Laboratory selection in thermal regimes that differed in the amplitude and the predictability of daily fluctuations had a marked effect on stress resistance and life history traits in Drosophila simulans. The observed evolutionary changes are expected to be the result of both direct and correlated responses to selection. Thus, a given trait might not evolve independently from other traits because of genetic correlations among these traits. Moreover, different test environments can induce novel genetic correlations because of the activation of environmentally dependent genes. To test whether and how genetic correlations among stress resistance and life history traits constrain evolutionary adaptation, we used three populations of D. simulans selected for 20 generations in constant, predictable and unpredictable daily fluctuating thermal regimes and tested each of these selected populations in the same three thermal regimes. We explored the relationship between genetic correlations between traits and the evolutionary potential of D. simulans by comparing genetic correlation matrices in flies selected and tested in different thermal test regimes. We observed genetic correlations mainly between productivity, body size, starvation and desiccation tolerance, suggesting that adaptation to the three thermal regimes was affected by correlations between these traits. We also found that the correlations between some traits such as body size and productivity or starvation tolerance and productivity were determined by test regime rather than selection regime that is expected to limit genetic adaptation to thermal regimes in these traits. The results of this study suggest that several traits and several environments are needed to explore adaptive responses, as genetic and environmentally induced correlations between traits as results obtained in one environment cannot be used to predict the response of the same population in another environment.

  5. Genetic and non-genetic factors affecting rabbit doe sexual receptivity as estimated from one generation of divergent selection

    Directory of Open Access Journals (Sweden)

    M. Theau.Clément

    2015-09-01

    Full Text Available Sexual receptivity of rabbit does at insemination greatly influences fertility and is generally induced by hormones or techniques known as “biostimulation”. Searching for more sustainable farming systems, an original alternative would be to utilise the genetic pathway to increase the does’receptivity. The purpose of the present study was to identify genetic and non-genetic factors that influence rabbit doe sexual receptivity, in the context of a divergent selection experiment over 1 generation. The experiment spanned 2 generations: the founder generation (G0 consisting of 140 rabbit does, and the G1 generation comprising 2 divergently selected lines (L and H lines with 70 does each and 2 successive batches from each generation. The selection rate of the G0 females to form the G1 lines was 24/140. The selection tests consisted of 16 to 18 successive receptivity tests at the rate of 3 tests per week. On the basis of 4716 tests from 275 females, the average receptivity was 56.6±48.2%. A batch effect and a test operator effect were revealed. The contribution of females to the total variance was 20.0%, whereas that of bucks was only 1.1%. Throughout the experiment, 18.2% of does expressed a low receptivity (< 34%, 50.7% a medium one and 33.1% a high one (>66%. Some does were frequently receptive, whereas others were rarely receptive. The repeatability of sexual receptivity was approximately 20%. The results confirmed the high variability of sexual receptivity of non-lactating rabbit does maintained without any biostimulation or hormonal treatment. A lack of selection response on receptivity was observed. Accordingly, the heritability of receptivity was estimated at 0.01±0.02 from an animal model and at 0.02±0.03 from a  sire and dam model. The heritability of the average receptivity of a doe was calculated as 0.04. In agreement with the low estimated heritability, the heritability determined was no different from zero

  6. Genetic diversity and population structure of cucumber (Cucumis sativus L.)

    Science.gov (United States)

    Understanding genetic variation in germplasm collection is essential for the conservation and their efficient use in plant breeding. Cucumber is an important vegetable crop worldwide. Previous studies revealed a low genetic diversity in cucumber, but detailed insights into the crop’s genetic structu...

  7. Natural selection affects multiple aspects of genetic variation at putatively peutral sites across the human genome

    DEFF Research Database (Denmark)

    Lohmueller, Kirk E; Albrechtsen, Anders; Li, Yingrui;

    2011-01-01

    throughout the genome. Further, we show that the widespread presence of weakly deleterious alleles, rather than a small number of strongly positively selected mutations, is responsible for the correlation between neutral genetic diversity and recombination rate. This work suggests that natural selection has......A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination rates. However, it is unclear whether other summaries...... and that human diversity, human-chimp divergence, and average minor allele frequency are reduced near genes. Population genetic simulations show that either positive natural selection acting on favorable mutations or negative natural selection acting against deleterious mutations can explain these correlations...

  8. Are Genetics and Environment Substitutes or Complements in Affecting Entrepreneurial Choice?

    DEFF Research Database (Denmark)

    Zunino, Diego

    whether the genetic effect is different across genders, based on the stylized fact that barriers to entrepreneurship entry are stronger for females than for males. Using regression analysis, the study confirms earlier findings showing substantial genetic effects. More interestingly, the study finds......Recent twin and adoption studies have shown that genes matter for entrepreneurial choice. This related study addresses how a genetic predisposition to entrepreneurship interacts with the (entrepreneurship friendliness of the) environment, using a dataset of Italian twins. In particular, we study...... that the genetic effect drops when the environment is less favorable – namely when the individual is female. The result of a positive interaction between predisposition and environment implies that the environment and predisposition can be considered complements rather than substitutes, that institutions play...

  9. Natural selection affects multiple aspects of genetic variation at putatively peutral sites across the human genome

    DEFF Research Database (Denmark)

    Lohmueller, Kirk E; Albrechtsen, Anders; Li, Yingrui;

    2011-01-01

    A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination rates. However, it is unclear whether other summaries...... and that human diversity, human-chimp divergence, and average minor allele frequency are reduced near genes. Population genetic simulations show that either positive natural selection acting on favorable mutations or negative natural selection acting against deleterious mutations can explain these correlations...... of genetic variation, like allele frequencies, are also correlated with recombination rate and whether these correlations can be explained solely by negative selection against deleterious mutations or whether positive selection acting on favorable alleles is also required. Here we attempt to address...

  10. Genetic and environmental factors affecting peak bone mass in premenopausal Japanese women

    OpenAIRE

    Hayakawa, Yoshika; Yanagi, Hisako; Hara, Shuichi; Amagai, Hitoshi; Endo, Kazue; Hamaguchi, Hideo; Tomura, Shigeo

    2001-01-01

    The purpose of this study was to examine the relationships between peak bone mass and genetic and environmental factors. We measured whole-body bone mineral density (BMD), lumbar spine BMD, and radius BMD with dual-energy X-ray absorptiometry (DXA) and analyzed eight genetic factors: vitamin D receptor (VDR)-3′, VDR-5′, estrogen receptor (ER), calcitonin receptor (CTR), parathyroid hormone (PTH), osteocalcin (OC), apolipoprotein E (ApoE), and fatty acid binding protein 2 (FABP2) allelic polym...

  11. Genetics

    Science.gov (United States)

    ... Inheritance; Heterozygous; Inheritance patterns; Heredity and disease; Heritable; Genetic markers ... The chromosomes are made up of strands of genetic information called DNA. Each chromosome contains sections of ...

  12. Hydraulic Self Servo Swing Cylinder Structure Optimization and Dynamic Characteristics Analysis Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    Lin Jiang; Ruolin Wu∗and Zhichao Zhu

    2015-01-01

    The dynamic characteristics of hydraulic self servo swing cylinder were analyzed according to the hydraulic system natural frequency formula. Based on that, a method of the hydraulic self servo swing cylinder structure optimization based on genetic algorithm was proposed in this paper. By analyzing the four parameters that affect the dynamic characteristics, we had to optimize the structure to obtain as larger the Dm ( displacement) as possible under the condition with the purpose of improving the dynamic characteristics of hydraulic self servo swing cylinder. So three state equations were established in this paper. The paper analyzed the effect of the four parameters in hydraulic self servo swing cylinder natural frequency equation and used the genetic algorithm to obtain the optimal solution of structure parameters. The model was simulated by substituting the parameters and initial value to the simulink model. Simulation results show that: using self servo hydraulic swing cylinder natural frequency equation to study its dynamic response characteristics is very effective. Compared with no optimization, the overall system dynamic response speed is significantly improved.

  13. How do institutions affect structural unemployment in times of crises?

    Directory of Open Access Journals (Sweden)

    Furceri Davide

    2012-01-01

    Full Text Available This paper examines the effect of economic crises on structural unemployment using an Autoregressive Distributed Lags model and accounting for the role of institutional settings on an unbalanced panel of 30 OECD economies from 1960 to 2006. We found that downturns have, on average, a significant positive impact on the level of structural unemployment rate. The maximum impact varies with the severity of the downturn. Institutions (such as employment protection legislation, average replacement ratio and product market regulation influence both the extent of the initial shock and the adjustment pattern in the aftermath of an economic downturn.

  14. Microbial community structure affects marine dissolved organic matter composition

    Directory of Open Access Journals (Sweden)

    Elizabeth B Kujawinski

    2016-04-01

    Full Text Available Marine microbes are critical players in the global carbon cycle, affecting both the reduction of inorganic carbon and the remineralization of reduced organic compounds back to carbon dioxide. Members of microbial consortia all depend on marine dissolved organic matter (DOM and in turn, affect the molecules present in this heterogeneous pool. Our understanding of DOM produced by marine microbes is biased towards single species laboratory cultures or simplified field incubations, which exclude large phototrophs and protozoan grazers. Here we explore the interdependence of DOM composition and bacterial diversity in two mixed microbial consortia from coastal seawater: a whole water community and a <1.0-μm community dominated by heterotrophic bacteria. Each consortium was incubated with isotopically-labeled glucose for 9 days. Using stable-isotope probing techniques and electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry, we show that the presence of organisms larger than 1.0-μm is the dominant factor affecting bacterial diversity and low-molecular-weight (<1000 Da DOM composition over this experiment. In the <1.0-μm community, DOM composition was dominated by compounds with lipid and peptide character at all time points, confirmed by fragmentation spectra with peptide-containing neutral losses. In contrast, DOM composition in the whole water community was nearly identical to that in the initial coastal seawater. These differences in DOM composition persisted throughout the experiment despite shifts in bacterial diversity, underscoring an unappreciated role for larger microorganisms in constraining DOM composition in the marine environment.

  15. Genetic Diversity and Genetic Structure of Different Types of Natural Populations in Osmanthus fragrans Lour. and the Relationships with Sex Ratio, Population Structure, and Geographic Isolation

    Directory of Open Access Journals (Sweden)

    Shaoqing Hu

    2014-01-01

    Full Text Available Osmanthus fragrans Lour., an evergreen small tree, has the rare sexual system of androdioecy (coexistence of males and hermaphrodites, once with wide-spread natural distribution in the areas of the South Yangzi river basin. However, due to excessive human utilization, natural distribution became fragmented and the number and size of natural populations reduced sharply. With four different types of natural populations from the same region as research object, we aim to provide a comparative analysis on the relationships among genetic diversity, sexual system, population structure and size, and geographic isolation by ISSR. In genetic parameters of Ne, He, and I, the LQGC population had the highest value and the LQZGQ population had the lowest value. These indicated that LQGC population showed the highest genetic diversity, followed by QDH and JN population, and LQZGQ population exhibited the lowest genetic diversity. Genetic diversity in populations is closely related to population structure, reproduction mode, and sex ratio. However, there seems to be no obvious correlation between genetic diversity and population size. The results of AMOVA showed that genetic variations mostly occurred within populations. It indicates that no significant genetic differentiation among populations occurs, and geographic isolation has no significant effect on genetic diversity.

  16. Genetic diversity and genetic structure of different types of natural populations in Osmanthus fragrans Lour. and the relationships with sex ratio, population structure, and geographic isolation.

    Science.gov (United States)

    Hu, Shaoqing; Wu, Shuai; Wang, Yiguang; Zhao, Hongbo; Zhang, Yuanyan

    2014-01-01

    Osmanthus fragrans Lour., an evergreen small tree, has the rare sexual system of androdioecy (coexistence of males and hermaphrodites), once with wide-spread natural distribution in the areas of the South Yangzi river basin. However, due to excessive human utilization, natural distribution became fragmented and the number and size of natural populations reduced sharply. With four different types of natural populations from the same region as research object, we aim to provide a comparative analysis on the relationships among genetic diversity, sexual system, population structure and size, and geographic isolation by ISSR. In genetic parameters of N e , H e , and I, the LQGC population had the highest value and the LQZGQ population had the lowest value. These indicated that LQGC population showed the highest genetic diversity, followed by QDH and JN population, and LQZGQ population exhibited the lowest genetic diversity. Genetic diversity in populations is closely related to population structure, reproduction mode, and sex ratio. However, there seems to be no obvious correlation between genetic diversity and population size. The results of AMOVA showed that genetic variations mostly occurred within populations. It indicates that no significant genetic differentiation among populations occurs, and geographic isolation has no significant effect on genetic diversity.

  17. Genetic structure and diversity in an isolated population of an endemic mole salamander (Ambystoma rivulare Taylor, 1940) of central Mexico.

    Science.gov (United States)

    Heredia-Bobadilla, Rosa-Laura; Monroy-Vilchis, Octavio; Zarco-González, Martha M; Martínez-Gómez, Daniel; Mendoza-Martínez, Germán David; Sunny, Armando

    2016-12-01

    Human activities are affecting the distribution of species worldwide by causing fragmentation and isolation of populations. Isolation and fragmentation lead to populations with lower genetic variability and an increased chance of inbreeding and genetic drift, which results in a loss of biological fitness over time. Studies of the genetic structure of small and isolated populations are critically important for management and conservation decisions. Ambystoma rivulare is a micro-endemic Mexican mole salamander from central Mexico. It is found in the most ecologically disturbed region in Mexico, the Trans-Mexican Volcanic Belt. The goal of this study of the population genetics of the micro-endemic mole salamander was to provide information to be used as a basis for future research and conservation planning of this species and other species of the Ambystoma genus in Mexico. The structural analysis found two subpopulations, one for each river sampled, with no signs of admixture and very high levels of genetic differentiation. Medium to high levels of heterozygosity and few alleles and genotypes were observed. Evidence of an ancestral genetic bottleneck, low values of effective population size, small inbreeding coefficients, and low gene flow were also found.

  18. Population genetic structure of Japanese wild soybean (Glycine soja) based on microsatellite variation.

    Science.gov (United States)

    Kuroda, Y; Kaga, A; Tomooka, N; Vaughan, D A

    2006-04-01

    The research objectives were to determine aspects of the population dynamics relevant to effective monitoring of gene flow in the soybean crop complex in Japan. Using 20 microsatellite primers, 616 individuals from 77 wild soybean (Glycine soja) populations were analysed. All samples were of small seed size ( 10 km) events among populations, and spatial autocorrelation analysis revealed that populations within a radius of 100 km showed a close genetic relationship to one another. When analysis of graphical ordination was applied to compare the microsatellite variation of wild soybean with that of 53 widely grown Japanese varieties of cultivated soybean (Glycine max), the primary factor of genetic differentiation was based on differences between wild and cultivated soybeans and the secondary factor was geographical differentiation of wild soybean populations. Admixture analysis revealed that 6.8% of individuals appear to show introgression from cultivated soybeans. These results indicated that population genetic structure of Japanese wild soybean is (i) strongly affected by the founder effect due to seed dispersal and inbreeding strategy, (ii) generally well differentiated from cultivated soybean, but (iii) introgression from cultivated soybean occurs. The implications of the results for the release of transgenic soybeans where wild soybeans grow are discussed.

  19. How evaluation and need for structure affect motivation and creativity

    NARCIS (Netherlands)

    Slijkhuis, Marjette; Rietzschel, Eric F.; Van Yperen, Nico W.

    2013-01-01

    Research has shown that evaluation can have negative effects when it is perceived as controlling rather than informational. We hypothesized that Personal Need for Structure (PNS) would moderate the effects of (perceptions of) evaluative situations. Specifically, we expected that informational evalua

  20. Genetic population structure of the white sifaka (Propithecus verreauxi verreauxi) at Beza Mahafaly Special Reserve, southwest Madagascar (1992-2001).

    Science.gov (United States)

    Lawler, Richard R; Richard, Alison F; Riley, Margaret A

    2003-09-01

    Gene flow within and between social groups is contingent on behaviourally mediated patterns of mating and dispersal. To understand how these patterns affect the genetic structure of primate populations, long-term data are required. In this study, we analyse 10 years of demographic and genetic data from a wild lemur population (Propithecus verreauxi verreauxi) at Beza Mahafaly Special Reserve, southwest Madagascar. Our goal is to specify how patterns of mating and dispersal determine kinship and genetic diversity among animals in the population. Specifically, we use microsatellite, parentage, and census data to obtain estimates of genetic subdivision (FST), within group homozygosity (FIS), and relatedness (r) within and among social groups in the population. We analyse different classes of individuals (i.e. adults, offspring, males, females) separately in order to discern which classes most strongly influence aspects of population structure. Microsatellite data reveal that, across years, offspring are consistently more heterozygous than expected within social groups (FIS mean = -0.068) while adults show both positive and negative deviations from expected genotypic frequencies within groups (FIS mean = 0.003). Offspring cohorts are more genetically subdivided than adults (FST mean = 0.108 vs. 0.052) and adult females are more genetically subdivided than adult males (FST mean = 0.098 vs. 0.046). As the proportion of females in social groups increases, the proportion of offspring sired by resident males decreases. Offspring are characterized by a heterozygote excess as resident males (vs. nonresident males) sire the majority of offspring within groups. We link these genetic data to patterns of female philopatry, male dispersal, exogamy, and offspring sex-ratio. Overall, these data reveal how mating and dispersal tactics influence the genetic population structure in this species.

  1. Spinocerebellar ataxia: patient and health professional perspectives on whether and how patents affect access to clinical genetic testing.

    Science.gov (United States)

    Powell, Ashton; Chandrasekharan, Subhashini; Cook-Deegan, Robert

    2010-04-01

    Genetic testing for spinocerebellar ataxia is used in diagnosis of rare movement disorders. Such testing generally does not affect treatment, but confirmation of mutations in a known gene can confirm diagnosis and end an often years-long quest for the cause of distressing and disabling symptoms. Through interviews and a web forum hosted by the National Ataxia Foundation, patients and health professionals related their experiences with the effect of patents on access to genetic testing for spinocerebellar ataxia. In the United States, Athena Diagnostics holds either a patent or an exclusive license to a patent in the case of six spinocerebellar ataxia variants (spinocerebellar ataxia 1-3 and 6-8) and two other hereditary ataxias (Friedreich's Ataxia and Early Onset Ataxia). Athena has enforced its exclusive rights to spinocerebellar ataxia-related patents by sending notification letters to multiple laboratories offering genetic testing for inherited neurological conditions, including spinocerebellar ataxia. Roughly half of web forum respondents had decided not to get genetic tests. Price, coverage and reimbursement by insurers and health plans, and fear of genetic discrimination were the main reasons cited for deciding not to get tested. Price was cited as an access concern by the physicians, and as sole US provider, coverage and reimbursement depend on having payment agreements between Athena and payers. In cases in which payers do not reimburse, the patient is responsible for payment, although some patients can apply to the voluntary Athena Access and Patient Protection Plan offered by the company.

  2. Can microcystins affect zooplankton structure community in tropical eutrophic reservoirs?

    Directory of Open Access Journals (Sweden)

    T. A. S. V. Paes

    Full Text Available Abstract The aim of our study was to assess whether cyanotoxins (microcystins can affect the composition of the zooplankton community, leading to domination of microzooplankton forms (protozoans and rotifers. Temporal variations in concentrations of microcystins and zooplankton biomass were analyzed in three eutrophic reservoirs in the semi-arid northeast region of Brazil. The concentration of microcystins in water proved to be correlated with the cyanobacterial biovolume, indicating the contributions from colonial forms such as Microcystis in the production of cyanotoxins. At the community level, the total biomass of zooplankton was not correlated with the concentration of microcystin (r2 = 0.00; P > 0.001, but in a population-level analysis, the biomass of rotifers and cladocerans showed a weak positive correlation. Cyclopoid copepods, which are considered to be relatively inefficient in ingesting cyanobacteria, were negatively correlated (r2 = – 0.01; P > 0.01 with the concentration of cyanotoxins. Surprisingly, the biomass of calanoid copepods was positively correlated with the microcystin concentration (r2 = 0.44; P > 0.001. The results indicate that allelopathic control mechanisms (negative effects of microcystin on zooplankton biomass do not seem to substantially affect the composition of mesozooplankton, which showed a constant and high biomass compared to the microzooplankton (rotifers. These results may be important to better understand the trophic interactions between zooplankton and cyanobacteria and the potential effects of allelopathic compounds on zooplankton.

  3. Current and historical drivers of landscape genetic structure differ in core and peripheral salamander populations.

    Directory of Open Access Journals (Sweden)

    Rachael Y Dudaniec

    Full Text Available With predicted decreases in genetic diversity and greater genetic differentiation at range peripheries relative to their cores, it can be difficult to distinguish between the roles of current disturbance versus historic processes in shaping contemporary genetic patterns. To address this problem, we test for differences in historic demography and landscape genetic structure of coastal giant salamanders (Dicamptodon tenebrosus in two core regions (Washington State, United States versus the species' northern peripheral region (British Columbia, Canada where the species is listed as threatened. Coalescent-based demographic simulations were consistent with a pattern of post-glacial range expansion, with both ancestral and current estimates of effective population size being much larger within the core region relative to the periphery. However, contrary to predictions of recent human-induced population decline in the less genetically diverse peripheral region, there was no genetic signature of population size change. Effects of current demographic processes on genetic structure were evident using a resistance-based landscape genetics approach. Among core populations, genetic structure was best explained by length of the growing season and isolation by resistance (i.e. a 'flat' landscape, but at the periphery, topography (slope and elevation had the greatest influence on genetic structure. Although reduced genetic variation at the range periphery of D. tenebrosus appears to be largely the result of biogeographical history rather than recent impacts, our analyses suggest that inherent landscape features act to alter dispersal pathways uniquely in different parts of the species' geographic range, with implications for habitat management.

  4. Human-modified habitats change patterns of population genetic structure and group relatedness in Peter's tent-roosting bats.

    Science.gov (United States)

    Sagot, Maria; Phillips, Caleb D; Baker, Robert J; Stevens, Richard D

    2016-09-01

    Although coloniality is widespread among mammals, it is still not clear what factors influence composition of social groups. As animals need to adapt to multiple habitat and environmental conditions throughout their range, variation in group composition should be influenced by adaptive adjustment to different ecological factors. Relevant to anthropogenic disturbance, increased habitat modification by humans can alter species' presence, density, and population structure. Therefore, it is important to understand the consequences of changes to landscape composition, in particular how habitat modification affects social structure of group-forming organisms. Here, we combine information on roosting associations with genetic structure of Peter's tent-roosting bats, Uroderma bilobatum to address how different habitat characteristics at different scales affect structure of social groups. By dividing analyses by age and sex, we determined that genetic structure was greater for adult females than adult males or offspring. Habitat variables explained 80% of the variation in group relatedness (mainly influenced by female relatedness) with roost characteristics contributing the most explained variation. This suggests that females using roosts of specific characteristics exhibit higher relatedness and seem to be philopatric. These females mate with more males than do more labile female groups. Results describe ecological and microevolutionary processes, which affect relatedness and social structure; findings are highly relevant to species distributions in both natural and human-modified environments.

  5. Structural and leakage integrity of tubes affected by circumferential cracking

    Energy Technology Data Exchange (ETDEWEB)

    Hernalsteen, P. [TRACTEBEL, Brussels (Belgium)

    1997-02-01

    In this paper the author deals with the notion that circumferential cracks are generally considered unacceptable. He argues for the need to differentiate two facets of such cracks: the issue of the size and growth rate of a crack; and the issue of the structural strength and leakage potential of the tube in the presence of the crack. In this paper the author tries to show that the second point is not a major concern for such cracks. The paper presents data on the structural strength or burst pressure characteristics of steam generator tubes derived from models and data bases of experimental work. He also presents a leak rate model, and compares the performance of circumferential and axial cracks as far as burst strength and leak rate. The final conclusion is that subject to improvement in NDE capabilities (sizing, detection, growth), that Steam Generator Defect Specific Management can be used to allow circumferentially degraded tubes to remain in service.

  6. Pubertal Onset in Girls is Strongly Influenced by Genetic Variation Affecting FSH Action

    Science.gov (United States)

    Hagen, Casper P.; Sørensen, Kaspar; Aksglaede, Lise; Mouritsen, Annette; Mieritz, Mikkel G.; Tinggaard, Jeanette; Wohlfart-Veje, Christine; Petersen, Jørgen Holm; Main, Katharina M.; Meyts, Ewa Rajpert-De; Almstrup, Kristian; Juul, Anders

    2014-01-01

    Age at pubertal onset varies substantially in healthy girls. Although genetic factors are responsible for more than half of the phenotypic variation, only a small part has been attributed to specific genetic polymorphisms identified so far. Follicle-stimulating hormone (FSH) stimulates ovarian follicle maturation and estradiol synthesis which is responsible for breast development. We assessed the effect of three polymorphisms influencing FSH action on age at breast deveopment in a population-based cohort of 964 healthy girls. Girls homozygous for FSHR -29AA (reduced FSH receptor expression) entered puberty 7.4 (2.5–12.4) months later than carriers of the common variants FSHR -29GG+GA, p = 0.003. To our knowledge, this is the strongest genetic effect on age at pubertal onset in girls published to date. PMID:25231187

  7. The Genetics of Mexico Recapitulates Native American Substructure and Affects Biomedical Traits

    Science.gov (United States)

    Moreno-Estrada, Andrés; Gignoux, Christopher R.; Fernández-López, Juan Carlos; Zakharia, Fouad; Sikora, Martin; Contreras, Alejandra V.; Acuña-Alonzo, Victor; Sandoval, Karla; Eng, Celeste; Romero-Hidalgo, Sandra; Ortiz-Tello, Patricia; Robles, Victoria; Kenny, Eimear E.; Nuño-Arana, Ismael; Barquera-Lozano, Rodrigo; Macín-Pérez, Gastón; Granados-Arriola, Julio; Huntsman, Scott; Galanter, Joshua M.; Via, Marc; Ford, Jean G.; Chapela, Rocío; Rodriguez-Cintron, William; Rodríguez-Santana, Jose R.; Romieu, Isabelle; Sienra-Monge, Juan José; Navarro, Blanca del Rio; London, Stephanie J.; Ruiz-Linares, Andrés; Garcia-Herrera, Rodrigo; Estrada, Karol; Hidalgo-Miranda, Alfredo; Jimenez-Sanchez, Gerardo; Carnevale, Alessandra; Soberón, Xavier; Canizales-Quinteros, Samuel; Rangel-Villalobos, Héctor; Silva-Zolezzi, Irma; Burchard, Esteban Gonzalez; Bustamante, Carlos D.

    2014-01-01

    Mexico harbors great cultural and ethnic diversity, yet fine-scale patterns of human genome-wide variation from this region remain largely uncharacterized. We studied genomic variation within Mexico from over 1,000 individuals representing 20 indigenous and 11 mestizo populations. We found striking genetic stratification among indigenous populations within Mexico at varying degrees of geographic isolation. Some groups were as differentiated as Europeans are from East Asians. Pre-Columbian genetic substructure is recapitulated in the indigenous ancestry of admixed mestizo individuals across the country. Furthermore, two independently phenotyped cohorts of Mexicans and Mexican Americans showed a significant association between sub-continental ancestry and lung function. Thus, accounting for fine-scale ancestry patterns is critical for medical and population genetic studies within Mexico, in Mexican-descent populations, and likely in many other populations worldwide. PMID:24926019

  8. Temporal structure and complexity affect audio-visual correspondence detection

    Directory of Open Access Journals (Sweden)

    Rachel N Denison

    2013-01-01

    Full Text Available Synchrony between events in different senses has long been considered the critical temporal cue for multisensory integration. Here, using rapid streams of auditory and visual events, we demonstrate how humans can use temporal structure (rather than mere temporal coincidence to detect multisensory relatedness. We find psychophysically that participants can detect matching auditory and visual streams via shared temporal structure for crossmodal lags of up to 200 ms. Performance on this task reproduced features of past findings based on explicit timing judgments but did not show any special advantage for perfectly synchronous streams. Importantly, the complexity of temporal patterns influences sensitivity to correspondence. Stochastic, irregular streams – with richer temporal pattern information – led to higher audio-visual matching sensitivity than predictable, rhythmic streams. Our results reveal that temporal structure and its complexity are key determinants for human detection of audio-visual correspondence. The distinctive emphasis of our new paradigms on temporal patterning could be useful for studying special populations with suspected abnormalities in audio-visual temporal perception and multisensory integration.

  9. Stage structure alters how complexity affects stability of ecological networks

    Science.gov (United States)

    Rudolf, V.H.W.; Lafferty, Kevin D.

    2011-01-01

    Resolving how complexity affects stability of natural communities is of key importance for predicting the consequences of biodiversity loss. Central to previous stability analysis has been the assumption that the resources of a consumer are substitutable. However, during their development, most species change diets; for instance, adults often use different resources than larvae or juveniles. Here, we show that such ontogenetic niche shifts are common in real ecological networks and that consideration of these shifts can alter which species are predicted to be at risk of extinction. Furthermore, niche shifts reduce and can even reverse the otherwise stabilizing effect of complexity. This pattern arises because species with several specialized life stages appear to be generalists at the species level but act as sequential specialists that are hypersensitive to resource loss. These results suggest that natural communities are more vulnerable to biodiversity loss than indicated by previous analyses.

  10. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function

    DEFF Research Database (Denmark)

    Hentzer, Morten; Teitzel, G.M.; Balzer, G.J.;

    2001-01-01

    During the course of chronic cystic fibrosis (CF) infections, Pseudomonas aeruginosa undergoes a conversion to a mucoid phenotype, which is characterized by overproduction of the exopolysaccharide alginate. Chronic P. aeruginosa infections involve surface-attached, highly antibiotic-resistant com......During the course of chronic cystic fibrosis (CF) infections, Pseudomonas aeruginosa undergoes a conversion to a mucoid phenotype, which is characterized by overproduction of the exopolysaccharide alginate. Chronic P. aeruginosa infections involve surface-attached, highly antibiotic......-resistant communities of microorganisms organized in biofilms. Although biofilm formation and the conversion to mucoidy are both important aspects of CF pathogenesis, the relationship between them is at the present unclear. In this study, we report that the overproduction of alginate affects biofilm development...

  11. Fine-Scale Ecological and Genetic Population Structure of Two Whitefish (Coregoninae) Species in the Vicinity of Industrial Thermal Emissions.

    Science.gov (United States)

    Graham, Carly F; Eberts, Rebecca L; Morgan, Thomas D; Boreham, Douglas R; Lance, Stacey L; Manzon, Richard G; Martino, Jessica A; Rogers, Sean M; Wilson, Joanna Y; Somers, Christopher M

    2016-01-01

    Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species (Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ13C and δ15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearby reference locations. Isotopic niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (Fst, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Thus, future research should focus on the potential impacts of thermal emissions on development and recruitment.

  12. Fine-Scale Ecological and Genetic Population Structure of Two Whitefish (Coregoninae Species in the Vicinity of Industrial Thermal Emissions.

    Directory of Open Access Journals (Sweden)

    Carly F Graham

    Full Text Available Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species (Coregonus clupeaformis and Prosopium cylindraceum on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ13C and δ15N stable isotopes showed high levels of overlap (48.6 to 94.5% in resource use by adult fish captured in areas affected by thermal effluent compared to nearby reference locations. Isotopic niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (Fst, STRUCTURE and DAPC indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Thus, future research should focus on the potential impacts of thermal emissions on development and recruitment.

  13. Population genetic structure in the paddyfield warbler (Acrocephalus agricola Jerd.)

    Institute of Scientific and Technical Information of China (English)

    Pavel ZEHTINDJIEV; Mihaela ILIEVA; Bengt HANSSON; Olga OPARINA; Mihail OPARIN; Staffan BENSCH

    2011-01-01

    Population genefc structure was studied in paddyfield warblers Acrocephalus agricola breeding in NE Bulgaria, SE Russia and S Kazakhstan. We were particularly interested in the degree of genetic differentiation and gene flow of the Bulgarian population due to its geographical isolation, recent origin and unique migratory strategy. Analyses of mitochondrial DNA (mtDNA) showed that there was no divergence between Bulgarian and Russian populations (FST = 0.007), whereas those in Kazakhstan differed significantly from the European breeding populations (Russia: FST = 0.058; Bulgaria: Fsr = 0.114). The degree of differentiation between populations at nuclear markers (five microsatellite loci; FsT ≈ 0) was weaker than for mtDNA. We suggest that this relatively weak differentiation over the range of this species reflects a recent postglacial expansion, and results from mismatch distribution analyses and Fu's Fs tests are in agreement. Preservation of small and geographically isolated populations which may contain individuals with unique adaptive traits, such as the studied Bulgarian population of paddyfield warbler,is valuable for the long-term conservation of expanding migratory bird species.

  14. Informational structure of genetic sequences and nature of gene splicing

    Science.gov (United States)

    Trifonov, E. N.

    1991-10-01

    Only about 1/20 of DNA of higher organisms codes for proteins, by means of classical triplet code. The rest of DNA sequences is largely silent, with unclear functions, if any. The triplet code is not the only code (message) carried by the sequences. There are three levels of molecular communication, where the same sequence ``talks'' to various bimolecules, while having, respectively, three different appearances: DNA, RNA and protein. Since the molecular structures and, hence, sequence specific preferences of these are substantially different, the original DNA sequence has to carry simultaneously three types of sequence patterns (codes, messages), thus, being a composite structure in which one had the same letter (nucleotide) is frequently involved in several overlapping codes of different nature. This multiplicity and overlapping of the codes is a unique feature of the Gnomic, language of genetic sequences. The coexisting codes have to be degenerate in various degrees to allow an optimal and concerted performance of all the encoded functions. There is an obvious conflict between the best possible performance of a given function and necessity to compromise the quality of a given sequence pattern in favor of other patterns. It appears that the major role of various changes in the sequences on their ``ontogenetic'' way from DNA to RNA to protein, like RNA editing and splicing, or protein post-translational modifications is to resolve such conflicts. New data are presented strongly indicating that the gene splicing is such a device to resolve the conflict between the code of DNA folding in chromatin and the triplet code for protein synthesis.

  15. Genetic diversity and structure found in samples of Eritrean bread wheat

    DEFF Research Database (Denmark)

    Desta, Zeratsion Abera; Orabi, Jihad; Jahoor, Ahmed;

    2014-01-01

    Genetic diversity and structure plays a key role in the selection of parents for crosses in plant breeding programmes. The aim of the present study was to analyse the genetic diversity and structure of Eritrean bread wheat accessions. We analysed 284 wheat accessions from Eritrea using 30 simple ...

  16. Genetic variation in serotonin transporter function affects human fear expression indexed by fear-potentiated startle

    NARCIS (Netherlands)

    Klumpers, F.; Heitland, I.; Oosting, R.S.; Kenemans, J.L.; Baas, J.M.

    2012-01-01

    The serotonin transporter (SERT) plays a crucial role in anxiety. Accordingly, variance in SERT functioning appears to constitute an important pathway to individual differences in anxiety. The current study tested the hypothesis that genetic variation in SERT function is associated with variability

  17. Population size and habitat quality affect genetic diversity and fitness in the clonal herb Cirsium dissectum

    NARCIS (Netherlands)

    Vere, de N.; Jongejans, E.; Plowman, A.; Williams, E.

    2009-01-01

    Remaining populations of plant species in fragmented landscapes are threatened by declining habitat quality and reduced genetic diversity, but the interactions of these major factors are rarely studied together for species conservation. In this study, the interactions between population size, habita

  18. Helicobacter pylori infection affects mitochondrial function and DNA repair, thus, mediating genetic instability in gastric cells

    DEFF Research Database (Denmark)

    Machado, Ana Manuel Dantas; Madsen, Claus Desler; Bøggild, Cecilie Sisse Line

    2013-01-01

    Helicobacter pylori infection is an important factor for the development of atrophic gastritis and gastric carcinogenesis. However, the mechanisms explaining the effects of H. pylori infection are not fully elucidated. H. pylori infection is known to induce genetic instability in both nuclear...

  19. Factors affecting the adoption of genetically modified animals in the food and pharmaceutical chains

    NARCIS (Netherlands)

    Mora, C.; Menozzi, D.; Kleter, G.A.; Aramyan, L.H.; Valeeva, N.I.; Zimmermann, K.L.; Pakky Reddy, G.

    2012-01-01

    The production of genetically modified (GM) animals is an emerging technique that could potentially impact the livestock and pharmaceutical industries. Currently, food products derived from GM animals have not yet entered the market whilst two pharmaceutical products have. The objective of this pape

  20. Dehydration affects brain structure and function in healthy adolescents.

    Science.gov (United States)

    Kempton, Matthew J; Ettinger, Ulrich; Foster, Russell; Williams, Steven C R; Calvert, Gemma A; Hampshire, Adam; Zelaya, Fernando O; O'Gorman, Ruth L; McMorris, Terry; Owen, Adrian M; Smith, Marcus S

    2011-01-01

    It was recently observed that dehydration causes shrinkage of brain tissue and an associated increase in ventricular volume. Negative effects of dehydration on cognitive performance have been shown in some but not all studies, and it has also been reported that an increased perceived effort may be required following dehydration. However, the effects of dehydration on brain function are unknown. We investigated this question using functional magnetic resonance imaging (fMRI) in 10 healthy adolescents (mean age = 16.8, five females). Each subject completed a thermal exercise protocol and nonthermal exercise control condition in a cross-over repeated measures design. Subjects lost more weight via perspiration in the thermal exercise versus the control condition (P Dehydration following the thermal exercise protocol led to a significantly stronger increase in fronto-parietal blood-oxygen-level-dependent (BOLD) response during an executive function task (Tower of London) than the control condition, whereas cerebral perfusion during rest was not affected. The increase in BOLD response after dehydration was not paralleled by a change in cognitive performance, suggesting an inefficient use of brain metabolic activity following dehydration. This pattern indicates that participants exerted a higher level of neuronal activity in order to achieve the same performance level. Given the limited availability of brain metabolic resources, these findings suggest that prolonged states of reduced water intake may adversely impact executive functions such as planning and visuo-spatial processing.

  1. Detection of genetic variants affecting cattle behaviour and their impact on milk production: a genome-wide association study.

    Science.gov (United States)

    Friedrich, Juliane; Brand, Bodo; Ponsuksili, Siriluck; Graunke, Katharina L; Langbein, Jan; Knaust, Jacqueline; Kühn, Christa; Schwerin, Manfred

    2016-02-01

    Behaviour traits of cattle have been reported to affect important production traits, such as meat quality and milk performance as well as reproduction and health. Genetic predisposition is, together with environmental stimuli, undoubtedly involved in the development of behaviour phenotypes. Underlying molecular mechanisms affecting behaviour in general and behaviour and productions traits in particular still have to be studied in detail. Therefore, we performed a genome-wide association study in an F2 Charolais × German Holstein cross-breed population to identify genetic variants that affect behaviour-related traits assessed in an open-field and novel-object test and analysed their putative impact on milk performance. Of 37,201 tested single nucleotide polymorphism (SNPs), four showed a genome-wide and 37 a chromosome-wide significant association with behaviour traits assessed in both tests. Nine of the SNPs that were associated with behaviour traits likewise showed a nominal significant association with milk performance traits. On chromosomes 14 and 29, six SNPs were identified to be associated with exploratory behaviour and inactivity during the novel-object test as well as with milk yield traits. Least squares means for behaviour and milk performance traits for these SNPs revealed that genotypes associated with higher inactivity and less exploratory behaviour promote higher milk yields. Whether these results are due to molecular mechanisms simultaneously affecting behaviour and milk performance or due to a behaviour predisposition, which causes indirect effects on milk performance by influencing individual reactivity, needs further investigation.

  2. The genetic diversity and spatial genetic structure of the Corso-Sardinian endemic Ferula arrigonii Bocchieri (Apiaceae).

    Science.gov (United States)

    Dettori, C A; Sergi, S; Tamburini, E; Bacchetta, G

    2014-09-01

    Corsica and Sardinia represent major hotspots of plant diversity in the Mediterranean area and are priority regions for conservation due to their high number of endemic plant species. However, information supporting human decision-making on the conservation of these species is still scarce, especially at the genetic level. In this work, the first assessment is reported of the species-wide spatial genetic structure and diversity of Ferula arrigonii Bocchieri, a Corso-Sardinian endemic located in a few coastal sites and on small islands. Nine populations covering the entire natural range of the species were investigated by means of AFLP (amplified fragment length polymorphism) markers. Results indicate that this species is characterised by high levels of genetic polymorphism (92% polymorphic fragments) and of genetic diversity (H(w) = 0.317) and by relatively low differentiation among populations (F(st) = 0.057). PCoA, Bayesian analysis and neighbour-joining clustering were also employed to investigate the genetic structure of this species. Three genetically distinct groups were detected, although with considerable overlap between populations.

  3. Genetic factors that affect nonalcoholic fatty liver disease: A systematic clinical review

    Science.gov (United States)

    Severson, Tyler J; Besur, Siddesh; Bonkovsky, Herbert L

    2016-01-01

    AIM: To investigate roles of genetic polymorphisms in non-alcoholic fatty liver disease (NAFLD) onset, severity, and outcome through systematic literature review. METHODS: The authors conducted both systematic and specific searches of PubMed through December 2015 with special emphasis on more recent data (from 2012 onward) while still drawing from more historical data for background. We identified several specific genetic polymorphisms that have been most researched and, at this time, appear to have the greatest clinical significance on NAFLD and similar hepatic diseases. These were further investigated to assess their specific effects on disease onset and progression and the mechanisms by which these effects occur. RESULTS: We focus particularly on genetic polymorphisms of the following genes: PNPLA3, particularly the p. I148M variant, TM6SF2, particularly the p. E167K variant, and on variants in FTO, LIPA, IFNλ4, and iron metabolism, specifically focusing on HFE, and HMOX-1. We discuss the effect of these genetic variations and their resultant protein variants on the onset of fatty liver disease and its severity, including the effect on likelihood of progression to cirrhosis and hepatocellular carcinoma. While our principal focus is on NAFLD, we also discuss briefly effects of some of the variants on development and severity of other hepatic diseases, including hepatitis C and alcoholic liver disease. These results are briefly discussed in terms of clinical application and future potential for personalized medicine. CONCLUSION: Polymorphisms and genetic factors of several genes contribute to NAFLD and its end results. These genes hold keys to future improvements in diagnosis and management. PMID:27547017

  4. A New Genetic Algorithm Methodology for Design Optimization of Truss Structures: Bipopulation-Based Genetic Algorithm with Enhanced Interval Search

    Directory of Open Access Journals (Sweden)

    Tugrul Talaslioglu

    2009-01-01

    Full Text Available A new genetic algorithm (GA methodology, Bipopulation-Based Genetic Algorithm with Enhanced Interval Search (BGAwEIS, is introduced and used to optimize the design of truss structures with various complexities. The results of BGAwEIS are compared with those obtained by the sequential genetic algorithm (SGA utilizing a single population, a multipopulation-based genetic algorithm (MPGA proposed for this study and other existing approaches presented in literature. This study has two goals: outlining BGAwEIS's fundamentals and evaluating the performances of BGAwEIS and MPGA. Consequently, it is demonstrated that MPGA shows a better performance than SGA taking advantage of multiple populations, but BGAwEIS explores promising solution regions more efficiently than MPGA by exploiting the feasible solutions. The performance of BGAwEIS is confirmed by better quality degree of its optimal designations compared to algorithms proposed here and described in literature.

  5. Genetic structure and diversity of Oryza sativa L.in Guizhou, China

    Institute of Scientific and Technical Information of China (English)

    ZHANG DongLing; CAO YongSheng; WANG XiangKun; LI ZiChao; ZHANG HongLiang; WEI XingHua; QI YongWen; WANG MeiXing; SUN JunLi; DING Li; TANG ShengXiang; QIU Zong'En

    2007-01-01

    Preserving many kinds of rice resources and rich variations, Guizhou Province is one of the districts with the highest genetic diversity of cultivated rice (Oryza sativa L.) in China. In the current research, genetic diversity and structure of 537 accessions of cultivated rice from Guizhou were studied using 36 microsatellite markers and 39 phenotypic characters. The results showed that the model-based genetic structure was the same as genetic-distance-based one using SSRs but somewhat different from the documented classification (mainly based on phenotype) of two subspecies. The accessions being classified into indica by phenotype but japonica by genetic structure were much more than that being classified into japonica by phenotype but indica by genetic structure. Like Ding Ying's taxonomic system of cultivated rice, the subspecific differentiation was the most distinct differentiation within cultivated rice. But the differentiation within indica or japonica population was different: japonica presented clearer differentiation between soil-watery ecotypes than indica, and indica presented clearer differentiation between seasonal ecotypes than japonica. Cultivated rices in Guizhou revealed high genetic diversity at both DNA and phenotypic levels. Possessing the highest genetic diversity and all the necessary conditions as a center of genetic diversity, region Southwestern of Guizhou was suggested as the center of genetic diversity of O. sativa L. from Guizhou.

  6. Hemicellulose fine structure is affected differently during ripening of tomato lines with contrasted texture.

    Science.gov (United States)

    Lahaye, Marc; Quemener, Bernard; Causse, Mathilde; Seymour, Graham B

    2012-11-01

    The impact of genetic and fruit ripening on hemicelluloses fine structure was studied in twelve near isogenic lines of tomato fruits harboring firmness QTL. The sugar composition and the MALDI-TOF MS oligosaccharides profile after glucanase hydrolysis of the cell walls were determined from all green and red fruits pericarp tissue. MS profiles showed two major series of oligomers attributed to xyloglucan (XG) and glucomannan (GM) with minor peaks for xylan and ions attributed to galacto-oligomers. The oligosaccharides MS intensity varied significantly with the fruit genetic and ripening status. Correlations between MS intensity indicated structural regulations of both XG and GM structures with genetics and ripening. These results point to a region on the tomato chromosome 9 controlling cell wall galactose metabolism.

  7. Affective and cognitive attitudes, uncertainty avoidance and intention to obtain genetic testing: an extension of the Theory of Planned Behaviour.

    Science.gov (United States)

    Wolff, Katharina; Nordin, Karin; Brun, Wibecke; Berglund, Gunilla; Kvale, Gerd

    2011-09-01

    To ensure successful implementation of genetic screening and counselling according to patients best interests, the attitudes and motives of the public are important to consider. The aim of this study was to apply a theoretical framework in order to investigate which individual and disease characteristics might facilitate the uptake of genetic testing. A questionnaire using an extended version of the Theory of Planned Behaviour was developed to assess the predictive value of affective and cognitive expected outcomes, subjective norms, perceived control and uncertainty avoidance on the intention to undergo genetic testing. In addition to these individual characteristics, the predictive power of two disease characteristics was investigated by systematically varying the diseases fatality and penetrance (i.e. the probability of getting ill in case one is a mutation carrier). This resulted in four versions of the questionnaire which was mailed to a random sample of 2400 Norwegians. Results showed genetic test interest to be quite high, and to vary depending on the characteristics of the disease, with participants preferring tests for highly penetrant diseases. The most important individual predictor was uncertainty avoidance.

  8. Composite Polymer Electrolytes: Nanoparticles Affect Structure and Properties

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2016-11-01

    Full Text Available Composite polymer electrolytes (CPEs can significantly improve the performance in electrochemical devices such as lithium-ion batteries. This review summarizes property/performance relationships in the case where nanoparticles are introduced to polymer electrolytes. It is the aim of this review to provide a knowledge network that elucidates the role of nano-additives in the CPEs. Central to the discussion is the impact on the CPE performance of properties such as crystalline/amorphous structure, dielectric behavior, and interactions within the CPE. The amorphous domains of semi-crystalline polymer facilitate the ion transport, while an enhanced mobility of polymer chains contributes to high ionic conductivity. Dielectric properties reflect the relaxation behavior of polymer chains as an important factor in ion conduction. Further, the dielectric constant (ε determines the capability of the polymer to dissolve salt. The atom/ion/nanoparticle interactions within CPEs suggest ways to enhance the CPE conductivity by generating more free lithium ions. Certain properties can be improved simultaneously by nanoparticle addition in order to optimize the overall performance of the electrolyte. The effects of nano-additives on thermal and mechanical properties of CPEs are also presented in order to evaluate the electrolyte competence for lithium-ion battery applications.

  9. Gall structure affects ecological associations of Dryocosmus kuriphilus (Hymenoptera: Cynipidae).

    Science.gov (United States)

    Cooper, W Rodney; Rieske, Lynne K

    2010-06-01

    Gall wasps (Hymenoptera: Cynipidae) induce structures (galls) on their host plants that house developing wasps and provide them with protection from natural enemies. The Asian chestnut gall wasp, Dryocosmus kuriphilus Yasumatsu, is an invasive pest that is destructive to chestnut (Castanea spp.). An improved understanding of the interactions among D. kuriphilus, its host, and its natural enemies is critical for the development of effective management strategies against this pest. The objective of our study was to evaluate the D. kuriphilus community interactions, and relate these interactions to variations among gall traits. Galls were collected from four locations throughout the eastern United States from May (gall initiation) through August (after gall wasp emergence), and January. Gall characteristics (volume, weight, and schlerenchyma layer thickness), gall inhabitants (D. kuriphilus, parasitoids, and chamber fungi), and other community associates (insect herbivores and lesions thought to be caused by endophytes) were evaluated and correlated using canonical correlation analyses. The primary mortality factors for D. kuriphilus were parasitism, gall chamber-invading fungi, and failure of adult gall wasps to emerge. Larger gall size and thicker schlerenchyma layers surrounding the larval chambers were negatively correlated with parasitoids and chamber fungi, indicating these gall traits are important defenses. External fungal lesions and insect herbivory were positively correlated with the absence of D. kuriphilus within galls. This study provides support for the protective role of cynipid galls for the gall inducer, identifies specific gall traits that influence gall wasp mortality, and improves our knowledge of D. kuriphilus ecology in North America.

  10. Low genetic diversity and intrapopulation spatial genetic structure of the Atlantic Forest tree, Esenbeckia leiocarpa Engl. (Rutaceae

    Directory of Open Access Journals (Sweden)

    G. Forti

    2014-12-01

    Full Text Available Studies on population genetics are the key to designing effective in situ management plans for tree species, in particular, those subjected to pressure from anthropogenic processes, such as forest fragmentation and logging. To investigate genetic diversity, inbreeding and intrapopulation spatial genetic structure (SGS in a fragmented population of the insect-pollinated tropical tree, Esenbeckia leiocarpa, we developed specific microsatellite markers for this species and mapped and sampled 100 individuals in a forest plot. Two issues were addressed in particular: (i the level of genetic diversity, inbreeding and effective population size, (ii whether intrapopulation spatial genetic structure exists. Among the 14 loci developed, we only used the three that presented polymorphism to estimate the genetic parameters. Genetic diversity was low, whereby the average number of alleles per locus (A was 3.3 and observed (H0 and expected heterozygosities (He were 0.336 and 0.298, respectively. The average fixation index was significantly higher than zero (F = 0.112, suggesting inbreeding. Significant SGS was found up to 7 m and between 31 to 38 m, indicating that trees growing within these distances may be related. Estimates of the effective population size indicated that the 100 sampled trees correspond to 14 individuals that are neither related nor inbred. Our results suggest that the microsatellite markers developed in this study are suitable for studies on geneticdiversity and structure, mating systems, gene flow and SGS in this species.

  11. Genetic structure of Rajaka caste and affinities with other caste populations of Andhra Pradesh, India.

    Science.gov (United States)

    Parvatheesam, C; Babu, B V; Babu, M C

    1997-01-01

    The present study gives an account of the genetic structure in terms of distribution of a few genetic markers, viz., A1A2B0, Rh(D), G6PD deficiency and haemoglobin among the Rajaka caste population of Andhra Pradesh, India. The genetic relationships of the Rajaka caste with other Andhra caste populations were investigated in terms of genetic distance, i.e., Sq B (mn) of Balakrishnan and Sanghvi. Relatively lesser distance was established between the Rajaka and two Panchama castes. Also, the pattern of genetic distance corroborates the hierarchical order of the Hindu varna system.

  12. The major genetic determinants of HIV-1 control affect HLA class I peptide presentation.

    Science.gov (United States)

    Pereyra, Florencia; Jia, Xiaoming; McLaren, Paul J; Telenti, Amalio; de Bakker, Paul I W; Walker, Bruce D; Ripke, Stephan; Brumme, Chanson J; Pulit, Sara L; Carrington, Mary; Kadie, Carl M; Carlson, Jonathan M; Heckerman, David; Graham, Robert R; Plenge, Robert M; Deeks, Steven G; Gianniny, Lauren; Crawford, Gabriel; Sullivan, Jordan; Gonzalez, Elena; Davies, Leela; Camargo, Amy; Moore, Jamie M; Beattie, Nicole; Gupta, Supriya; Crenshaw, Andrew; Burtt, Noël P; Guiducci, Candace; Gupta, Namrata; Gao, Xiaojiang; Qi, Ying; Yuki, Yuko; Piechocka-Trocha, Alicja; Cutrell, Emily; Rosenberg, Rachel; Moss, Kristin L; Lemay, Paul; O'Leary, Jessica; Schaefer, Todd; Verma, Pranshu; Toth, Ildiko; Block, Brian; Baker, Brett; Rothchild, Alissa; Lian, Jeffrey; Proudfoot, Jacqueline; Alvino, Donna Marie L; Vine, Seanna; Addo, Marylyn M; Allen, Todd M; Altfeld, Marcus; Henn, Matthew R; Le Gall, Sylvie; Streeck, Hendrik; Haas, David W; Kuritzkes, Daniel R; Robbins, Gregory K; Shafer, Robert W; Gulick, Roy M; Shikuma, Cecilia M; Haubrich, Richard; Riddler, Sharon; Sax, Paul E; Daar, Eric S; Ribaudo, Heather J; Agan, Brian; Agarwal, Shanu; Ahern, Richard L; Allen, Brady L; Altidor, Sherly; Altschuler, Eric L; Ambardar, Sujata; Anastos, Kathryn; Anderson, Ben; Anderson, Val; Andrady, Ushan; Antoniskis, Diana; Bangsberg, David; Barbaro, Daniel; Barrie, William; Bartczak, J; Barton, Simon; Basden, Patricia; Basgoz, Nesli; Bazner, Suzane; Bellos, Nicholaos C; Benson, Anne M; Berger, Judith; Bernard, Nicole F; Bernard, Annette M; Birch, Christopher; Bodner, Stanley J; Bolan, Robert K; Boudreaux, Emilie T; Bradley, Meg; Braun, James F; Brndjar, Jon E; Brown, Stephen J; Brown, Katherine; Brown, Sheldon T; Burack, Jedidiah; Bush, Larry M; Cafaro, Virginia; Campbell, Omobolaji; Campbell, John; Carlson, Robert H; Carmichael, J Kevin; Casey, Kathleen K; Cavacuiti, Chris; Celestin, Gregory; Chambers, Steven T; Chez, Nancy; Chirch, Lisa M; Cimoch, Paul J; Cohen, Daniel; Cohn, Lillian E; Conway, Brian; Cooper, David A; Cornelson, Brian; Cox, David T; Cristofano, Michael V; Cuchural, George; Czartoski, Julie L; Dahman, Joseph M; Daly, Jennifer S; Davis, Benjamin T; Davis, Kristine; Davod, Sheila M; DeJesus, Edwin; Dietz, Craig A; Dunham, Eleanor; Dunn, Michael E; Ellerin, Todd B; Eron, Joseph J; Fangman, John J W; Farel, Claire E; Ferlazzo, Helen; Fidler, Sarah; Fleenor-Ford, Anita; Frankel, Renee; Freedberg, Kenneth A; French, Neel K; Fuchs, Jonathan D; Fuller, Jon D; Gaberman, Jonna; Gallant, Joel E; Gandhi, Rajesh T; Garcia, Efrain; Garmon, Donald; Gathe, Joseph C; Gaultier, Cyril R; Gebre, Wondwoosen; Gilman, Frank D; Gilson, Ian; Goepfert, Paul A; Gottlieb, Michael S; Goulston, Claudia; Groger, Richard K; Gurley, T Douglas; Haber, Stuart; Hardwicke, Robin; Hardy, W David; Harrigan, P Richard; Hawkins, Trevor N; Heath, Sonya; Hecht, Frederick M; Henry, W Keith; Hladek, Melissa; Hoffman, Robert P; Horton, James M; Hsu, Ricky K; Huhn, Gregory D; Hunt, Peter; Hupert, Mark J; Illeman, Mark L; Jaeger, Hans; Jellinger, Robert M; John, Mina; Johnson, Jennifer A; Johnson, Kristin L; Johnson, Heather; Johnson, Kay; Joly, Jennifer; Jordan, Wilbert C; Kauffman, Carol A; Khanlou, Homayoon; Killian, Robert K; Kim, Arthur Y; Kim, David D; Kinder, Clifford A; Kirchner, Jeffrey T; Kogelman, Laura; Kojic, Erna Milunka; Korthuis, P Todd; Kurisu, Wayne; Kwon, Douglas S; LaMar, Melissa; Lampiris, Harry; Lanzafame, Massimiliano; Lederman, Michael M; Lee, David M; Lee, Jean M L; Lee, Marah J; Lee, Edward T Y; Lemoine, Janice; Levy, Jay A; Llibre, Josep M; Liguori, Michael A; Little, Susan J; Liu, Anne Y; Lopez, Alvaro J; Loutfy, Mono R; Loy, Dawn; Mohammed, Debbie Y; Man, Alan; Mansour, Michael K; Marconi, Vincent C; Markowitz, Martin; Marques, Rui; Martin, Jeffrey N; Martin, Harold L; Mayer, Kenneth Hugh; McElrath, M Juliana; McGhee, Theresa A; McGovern, Barbara H; McGowan, Katherine; McIntyre, Dawn; Mcleod, Gavin X; Menezes, Prema; Mesa, Greg; Metroka, Craig E; Meyer-Olson, Dirk; Miller, Andy O; Montgomery, Kate; Mounzer, Karam C; Nagami, Ellen H; Nagin, Iris; Nahass, Ronald G; Nelson, Margret O; Nielsen, Craig; Norene, David L; O'Connor, David H; Ojikutu, Bisola O; Okulicz, Jason; Oladehin, Olakunle O; Oldfield, Edward C; Olender, Susan A; Ostrowski, Mario; Owen, William F; Pae, Eunice; Parsonnet, Jeffrey; Pavlatos, Andrew M; Perlmutter, Aaron M; Pierce, Michael N; Pincus, Jonathan M; Pisani, Leandro; Price, Lawrence Jay; Proia, Laurie; Prokesch, Richard C; Pujet, Heather Calderon; Ramgopal, Moti; Rathod, Almas; Rausch, Michael; Ravishankar, J; Rhame, Frank S; Richards, Constance Shamuyarira; Richman, Douglas D; Rodes, Berta; Rodriguez, Milagros; Rose, Richard C; Rosenberg, Eric S; Rosenthal, Daniel; Ross, Polly E; Rubin, David S; Rumbaugh, Elease; Saenz, Luis; Salvaggio, Michelle R; Sanchez, William C; Sanjana, Veeraf M; Santiago, Steven; Schmidt, Wolfgang; Schuitemaker, Hanneke; Sestak, Philip M; Shalit, Peter; Shay, William; Shirvani, Vivian N; Silebi, Vanessa I; Sizemore, James M; Skolnik, Paul R; Sokol-Anderson, Marcia; Sosman, James M; Stabile, Paul; Stapleton, Jack T; Starrett, Sheree; Stein, Francine; Stellbrink, Hans-Jurgen; Sterman, F Lisa; Stone, Valerie E; Stone, David R; Tambussi, Giuseppe; Taplitz, Randy A; Tedaldi, Ellen M; Telenti, Amalio; Theisen, William; Torres, Richard; Tosiello, Lorraine; Tremblay, Cecile; Tribble, Marc A; Trinh, Phuong D; Tsao, Alice; Ueda, Peggy; Vaccaro, Anthony; Valadas, Emilia; Vanig, Thanes J; Vecino, Isabel; Vega, Vilma M; Veikley, Wenoah; Wade, Barbara H; Walworth, Charles; Wanidworanun, Chingchai; Ward, Douglas J; Warner, Daniel A; Weber, Robert D; Webster, Duncan; Weis, Steve; Wheeler, David A; White, David J; Wilkins, Ed; Winston, Alan; Wlodaver, Clifford G; van't Wout, Angelique; Wright, David P; Yang, Otto O; Yurdin, David L; Zabukovic, Brandon W; Zachary, Kimon C; Zeeman, Beth; Zhao, Meng

    2010-12-10

    Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide association analysis in a multiethnic cohort of HIV-1 controllers and progressors, and we analyzed the effects of individual amino acids within the classical human leukocyte antigen (HLA) proteins. We identified >300 genome-wide significant single-nucleotide polymorphisms (SNPs) within the MHC and none elsewhere. Specific amino acids in the HLA-B peptide binding groove, as well as an independent HLA-C effect, explain the SNP associations and reconcile both protective and risk HLA alleles. These results implicate the nature of the HLA-viral peptide interaction as the major factor modulating durable control of HIV infection.

  13. The Major Genetic Determinants of HIV-1 Control Affect HLA Class I Peptide Presentation

    Science.gov (United States)

    Pereyra, Florencia; Jia, Xiaoming; McLaren, Paul J.; Telenti, Amalio; de Bakker, Paul I.W.; Walker, Bruce D.; Jia, Xiaoming; McLaren, Paul J.; Ripke, Stephan; Brumme, Chanson J.; Pulit, Sara L.; Telenti, Amalio; Carrington, Mary; Kadie, Carl M.; Carlson, Jonathan M.; Heckerman, David; de Bakker, Paul I.W.; Pereyra, Florencia; de Bakker, Paul I.W.; Graham, Robert R.; Plenge, Robert M.; Deeks, Steven G.; Walker, Bruce D.; Gianniny, Lauren; Crawford, Gabriel; Sullivan, Jordan; Gonzalez, Elena; Davies, Leela; Camargo, Amy; Moore, Jamie M.; Beattie, Nicole; Gupta, Supriya; Crenshaw, Andrew; Burtt, Noël P.; Guiducci, Candace; Gupta, Namrata; Carrington, Mary; Gao, Xiaojiang; Qi, Ying; Yuki, Yuko; Pereyra, Florencia; Piechocka-Trocha, Alicja; Cutrell, Emily; Rosenberg, Rachel; Moss, Kristin L.; Lemay, Paul; O’Leary, Jessica; Schaefer, Todd; Verma, Pranshu; Toth, Ildiko; Block, Brian; Baker, Brett; Rothchild, Alissa; Lian, Jeffrey; Proudfoot, Jacqueline; Alvino, Donna Marie L.; Vine, Seanna; Addo, Marylyn M.; Allen, Todd M.; Altfeld, Marcus; Henn, Matthew R.; Le Gall, Sylvie; Streeck, Hendrik; Walker, Bruce D.; Haas, David W.; Kuritzkes, Daniel R.; Robbins, Gregory K.; Shafer, Robert W.; Gulick, Roy M.; Shikuma, Cecilia M.; Haubrich, Richard; Riddler, Sharon; Sax, Paul E.; Daar, Eric S.; Ribaudo, Heather J.; Agan, Brian; Agarwal, Shanu; Ahern, Richard L.; Allen, Brady L.; Altidor, Sherly; Altschuler, Eric L.; Ambardar, Sujata; Anastos, Kathryn; Anderson, Ben; Anderson, Val; Andrady, Ushan; Antoniskis, Diana; Bangsberg, David; Barbaro, Daniel; Barrie, William; Bartczak, J.; Barton, Simon; Basden, Patricia; Basgoz, Nesli; Bazner, Suzane; Bellos, Nicholaos C.; Benson, Anne M.; Berger, Judith; Bernard, Nicole F.; Bernard, Annette M.; Birch, Christopher; Bodner, Stanley J.; Bolan, Robert K.; Boudreaux, Emilie T.; Bradley, Meg; Braun, James F.; Brndjar, Jon E.; Brown, Stephen J.; Brown, Katherine; Brown, Sheldon T.; Burack, Jedidiah; Bush, Larry M.; Cafaro, Virginia; Campbell, Omobolaji; Campbell, John; Carlson, Robert H.; Carmichael, J. Kevin; Casey, Kathleen K.; Cavacuiti, Chris; Celestin, Gregory; Chambers, Steven T.; Chez, Nancy; Chirch, Lisa M.; Cimoch, Paul J.; Cohen, Daniel; Cohn, Lillian E.; Conway, Brian; Cooper, David A.; Cornelson, Brian; Cox, David T.; Cristofano, Michael V.; Cuchural, George; Czartoski, Julie L.; Dahman, Joseph M.; Daly, Jennifer S.; Davis, Benjamin T.; Davis, Kristine; Davod, Sheila M.; Deeks, Steven G.; DeJesus, Edwin; Dietz, Craig A.; Dunham, Eleanor; Dunn, Michael E.; Ellerin, Todd B.; Eron, Joseph J.; Fangman, John J.W.; Farel, Claire E.; Ferlazzo, Helen; Fidler, Sarah; Fleenor-Ford, Anita; Frankel, Renee; Freedberg, Kenneth A.; French, Neel K.; Fuchs, Jonathan D.; Fuller, Jon D.; Gaberman, Jonna; Gallant, Joel E.; Gandhi, Rajesh T.; Garcia, Efrain; Garmon, Donald; Gathe, Joseph C.; Gaultier, Cyril R.; Gebre, Wondwoosen; Gilman, Frank D.; Gilson, Ian; Goepfert, Paul A.; Gottlieb, Michael S.; Goulston, Claudia; Groger, Richard K.; Gurley, T. Douglas; Haber, Stuart; Hardwicke, Robin; Hardy, W. David; Harrigan, P. Richard; Hawkins, Trevor N.; Heath, Sonya; Hecht, Frederick M.; Henry, W. Keith; Hladek, Melissa; Hoffman, Robert P.; Horton, James M.; Hsu, Ricky K.; Huhn, Gregory D.; Hunt, Peter; Hupert, Mark J.; Illeman, Mark L.; Jaeger, Hans; Jellinger, Robert M.; John, Mina; Johnson, Jennifer A.; Johnson, Kristin L.; Johnson, Heather; Johnson, Kay; Joly, Jennifer; Jordan, Wilbert C.; Kauffman, Carol A.; Khanlou, Homayoon; Killian, Robert K.; Kim, Arthur Y.; Kim, David D.; Kinder, Clifford A.; Kirchner, Jeffrey T.; Kogelman, Laura; Kojic, Erna Milunka; Korthuis, P. Todd; Kurisu, Wayne; Kwon, Douglas S.; LaMar, Melissa; Lampiris, Harry; Lanzafame, Massimiliano; Lederman, Michael M.; Lee, David M.; Lee, Jean M.L.; Lee, Marah J.; Lee, Edward T.Y.; Lemoine, Janice; Levy, Jay A.; Llibre, Josep M.; Liguori, Michael A.; Little, Susan J.; Liu, Anne Y.; Lopez, Alvaro J.; Loutfy, Mono R.; Loy, Dawn; Mohammed, Debbie Y.; Man, Alan; Mansour, Michael K.; Marconi, Vincent C.; Markowitz, Martin; Marques, Rui; Martin, Jeffrey N.; Martin, Harold L.; Mayer, Kenneth Hugh; McElrath, M. Juliana; McGhee, Theresa A.; McGovern, Barbara H.; McGowan, Katherine; McIntyre, Dawn; Mcleod, Gavin X.; Menezes, Prema; Mesa, Greg; Metroka, Craig E.; Meyer-Olson, Dirk; Miller, Andy O.; Montgomery, Kate; Mounzer, Karam C.; Nagami, Ellen H.; Nagin, Iris; Nahass, Ronald G.; Nelson, Margret O.; Nielsen, Craig; Norene, David L.; O’Connor, David H.; Ojikutu, Bisola O.; Okulicz, Jason; Oladehin, Olakunle O.; Oldfield, Edward C.; Olender, Susan A.; Ostrowski, Mario; Owen, William F.; Pae, Eunice; Parsonnet, Jeffrey; Pavlatos, Andrew M.; Perlmutter, Aaron M.; Pierce, Michael N.; Pincus, Jonathan M.; Pisani, Leandro; Price, Lawrence Jay; Proia, Laurie; Prokesch, Richard C.; Pujet, Heather Calderon; Ramgopal, Moti; Rathod, Almas; Rausch, Michael; Ravishankar, J.; Rhame, Frank S.; Richards, Constance Shamuyarira; Richman, Douglas D.; Robbins, Gregory K.; Rodes, Berta; Rodriguez, Milagros; Rose, Richard C.; Rosenberg, Eric S.; Rosenthal, Daniel; Ross, Polly E.; Rubin, David S.; Rumbaugh, Elease; Saenz, Luis; Salvaggio, Michelle R.; Sanchez, William C.; Sanjana, Veeraf M.; Santiago, Steven; Schmidt, Wolfgang; Schuitemaker, Hanneke; Sestak, Philip M.; Shalit, Peter; Shay, William; Shirvani, Vivian N.; Silebi, Vanessa I.; Sizemore, James M.; Skolnik, Paul R.; Sokol-Anderson, Marcia; Sosman, James M.; Stabile, Paul; Stapleton, Jack T.; Starrett, Sheree; Stein, Francine; Stellbrink, Hans-Jurgen; Sterman, F. Lisa; Stone, Valerie E.; Stone, David R.; Tambussi, Giuseppe; Taplitz, Randy A.; Tedaldi, Ellen M.; Telenti, Amalio; Theisen, William; Torres, Richard; Tosiello, Lorraine; Tremblay, Cecile; Tribble, Marc A.; Trinh, Phuong D.; Tsao, Alice; Ueda, Peggy; Vaccaro, Anthony; Valadas, Emilia; Vanig, Thanes J.; Vecino, Isabel; Vega, Vilma M.; Veikley, Wenoah; Wade, Barbara H.; Walworth, Charles; Wanidworanun, Chingchai; Ward, Douglas J.; Warner, Daniel A.; Weber, Robert D.; Webster, Duncan; Weis, Steve; Wheeler, David A.; White, David J.; Wilkins, Ed; Winston, Alan; Wlodaver, Clifford G.; Wout, Angelique van’t; Wright, David P.; Yang, Otto O.; Yurdin, David L.; Zabukovic, Brandon W.; Zachary, Kimon C.; Zeeman, Beth; Zhao, Meng

    2011-01-01

    Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide association analysis in a multiethnic cohort of HIV-1 controllers and progressors, and we analyzed the effects of individual amino acids within the classical human leukocyte antigen (HLA) proteins. We identified >300 genome-wide significant single-nucleotide polymorphisms (SNPs) within the MHC and none elsewhere. Specific amino acids in the HLA-B peptide binding groove, as well as an independent HLA-C effect, explain the SNP associations and reconcile both protective and risk HLA alleles. These results implicate the nature of the HLA–viral peptide interaction as the major factor modulating durable control of HIV infection. PMID:21051598

  14. Allelic Dropout in the ENG Gene, Affecting the Results of Genetic Testing in Hereditary Hemorrhagic Telangiectasia

    DEFF Research Database (Denmark)

    Tørring, Pernille M; Kjeldsen, A.D.; Ousager, L.B.;

    2012-01-01

    Background: Hereditary hemorrhagic telangiectasia (HHT) is an autosomal-dominant vascular disorder with three disease-causing genes identified to date: ENG, ACVRL1, and SMAD4. We report an HHT patient with allelic dropout that on routine sequence analysis for a known mutation in the family (c.817...... can be the cause of allelic dropout, creating unforeseen errors in genotyping. Our finding emphasizes the need for careful quality control in all molecular genetic studies. © Copyright 2012, Mary Ann Liebert, Inc....

  15. The Potential of Genetic Engineering in Agriculture to Affect Global Stability

    Science.gov (United States)

    2013-04-17

    resulted in the global expansion of their interests and opened new markets for genetic engineering.19 In addition, the interests of the newly acquired...corporations controlled more than 75% of the global seed market . Of these eight, six led the market in the production and sale of agricultural chemicals...one of the best examples, as it relates to agriculture, is Given its global use, the impact of pests developing resistance to Bt would have the

  16. Circumpolar Genetic Structure and Recent Gene Flow of Polar Bears: A Reanalysis.

    Directory of Open Access Journals (Sweden)

    René M Malenfant

    Full Text Available Recently, an extensive study of 2,748 polar bears (Ursus maritimus from across their circumpolar range was published in PLOS ONE, which used microsatellites and mitochondrial haplotypes to apparently show altered population structure and a dramatic change in directional gene flow towards the Canadian Archipelago-an area believed to be a future refugium for polar bears as their southernmost habitats decline under climate change. Although this study represents a major international collaborative effort and promised to be a baseline for future genetics work, methodological shortcomings and errors of interpretation undermine some of the study's main conclusions. Here, we present a reanalysis of this data in which we address some of these issues, including: (1 highly unbalanced sample sizes and large amounts of systematically missing data; (2 incorrect calculation of FST and of significance levels; (3 misleading estimates of recent gene flow resulting from non-convergence of the program BayesAss. In contrast to the original findings, in our reanalysis we find six genetic clusters of polar bears worldwide: the Hudson Bay Complex, the Western and Eastern Canadian Arctic Archipelago, the Western and Eastern Polar Basin, and-importantly-we reconfirm the presence of a unique and possibly endangered cluster of bears in Norwegian Bay near Canada's expected last sea-ice refugium. Although polar bears' abundance, distribution, and population structure will certainly be negatively affected by ongoing-and increasingly rapid-loss of Arctic sea ice, these genetic data provide no evidence of strong directional gene flow in response to recent climate change.

  17. The W303 genetic background affects the isw2 delta mutant phenotype in Saccharomyces cerevisiae.

    Science.gov (United States)

    Trachtulcová, P; Frýdlová, I; Janatová, I; Dorosh, A; Hasek, J

    2003-01-01

    We performed detailed phenotypic analysis of the isw2 delta strains of the W303 genetic background and compared its results with those obtained previously in BY-derived genetic background. Shmoolike morphology was observed in the isw2 delta strain of alpha-mating type of the BY strains, but not in its W303-derived counterpart. On the other hand, derepression of a-specific genes in the isw2 delta (MAT alpha) strain was observed in both genetic backgrounds, although to a different extent. Unlike in BY-derived strain hyperactivation of the Ras2/cAMP pathway reduced invasiveness of the isw2 delta strain (MAT alpha) of the W303 background. Sensitivity to Calcofluor White indicating a cell wall-integrity defect was significantly increased in the isw2 delta strains of the W303 background in contrast to BY-derived strains. Our data indicate that the effects of the isw2 deletion strongly depend on the background in which the deletion, is made.

  18. How genetics affects the brain to produce higher-level dysfunctions in myotonic dystrophy type 1

    Science.gov (United States)

    Serra, Laura; Petrucci, Antonio; Spanò, Barbara; Torso, Mario; Olivito, Giusy; Lispi, Ludovico; Costanzi-Porrini, Sandro; Giulietti, Giovanni; Koch, Giacomo; Giacanelli, Manlio; Caltagirone, Carlo; Cercignani, Mara; Bozzali, Marco

    2015-01-01

    Summary Myotonic dystrophy type 1 (DM1) is a multisystemic disorder dominated by muscular impairment and brain dysfunctions. Although brain damage has previously been demonstrated in DM1, its associations with the genetics and clinical/neuropsychological features of the disease are controversial. This study assessed the differential role of gray matter (GM) and white matter (WM) damage in determining higher-level dysfunctions in DM1. Ten patients with genetically confirmed DM1 and 16 healthy matched controls entered the study. The patients underwent a neuropsychological assessment and quantification of CTG triplet expansion. All the subjects underwent MR scanning at 3T, with studies including T1-weighted volumes and diffusion-weighted images. Voxel-based morphometry and tract-based spatial statistics were used for unbiased quantification of regional GM atrophy and WM integrity. The DM1 patients showed widespread involvement of both tissues. The extent of the damage correlated with CTG triplet expansion and cognition. This study supports the idea that genetic abnormalities in DM1 mainly target the WM, but GM involvement is also crucial in determining the clinical characteristics of DM1. PMID:26214024

  19. Twins and virtual twins: Do genetic (as well as experiential) factors affect developmental risks?

    Science.gov (United States)

    Segal, Nancy L; Tan, Tony Xing; Graham, Jamie L

    2015-08-01

    Factors underlying developmental delays and psychosocial risks are of interest to international adoption communities. The current study administered a Pre-Adoption Adversity (PAA) Questionnaire to mostly American parents raising (a) adopted Chinese twins or (b) same-age unrelated adopted siblings. A goal was to replicate earlier analyses of pre-adoption adversity/adjustment among adopted preschool-age Chinese girls. A second goal was to conduct genetic analyses of four content areas (Developmental Delays at Adoption, Initial Adaptation to Adoption, Crying/Clinging, and Refusal/Avoidance) derived from the PAA Questionnaire. A key finding was that age at adoption added less than other predictors to adoptees' externalizing and internalizing behaviors. Family factors (e.g., parental education) contributed significantly to behavioral outcomes among the adopted Chinese twins. Genetic effects were indicated for all four content areas, with shared environmental effects evident for Developmental Delays at Adoption and Crying/Clinging. Future investigators should consider incorporating genetically sensitive designs into developmental research programs.

  20. Genetic variability of rice recurrent selection populations as affected by male sterility or manual recombination

    Directory of Open Access Journals (Sweden)

    Letícia da Silveira Pinheiro

    2012-06-01

    Full Text Available The objective of this work was to determine the effect of male sterility or manual recombination on genetic variability of rice recurrent selection populations. The populations CNA-IRAT 4, with a gene for male sterility, and CNA 12, which was manually recombined, were evaluated. Genetic variability among selection cycles was estimated using14 simple sequence repeat (SSR markers. A total of 926 plants were analyzed, including ten genitors and 180 individuals from each of the evaluated cycles (1, 2 and 5 of the population CNA-IRAT 4, and 16 genitors and 180 individuals from each of the cycles (1 and 2 of CNA 12. The analysis allowed the identification of alleles not present among the genitors for both populations, in all cycles, especially for the CNA-IRAT 4 population. These alleles resulted from unwanted fertilization with genotypes that were not originally part of the populations. The parameters of Wright's F-statistic (F IS and F IT indicated that the manual recombination expands the genetic variability of the CNA 12 population, whereas male sterility reduces the one of CNA-IRAT 4.

  1. Genetic differentiation and spatial structure of Geosmithia morbida, the causal agent of thousand cankers disease in black walnut (Juglans nigra).

    Science.gov (United States)

    Hadziabdic, Denita; Vito, Lisa M; Windham, Mark T; Pscheidt, Jay W; Trigiano, Robert N; Kolarik, Miroslav

    2014-05-01

    The main objectives of this study were to evaluate genetic composition of Geosmithia morbida populations in the native range of black walnut and provide a better understanding regarding demography of the pathogen. The fungus G. morbida, and the walnut twig beetle, Pityophthorus juglandis, have been associated with a disease complex of black walnut (Juglans nigra) known as thousand cankers disease (TCD). The disease is manifested as branch dieback and canopy loss, eventually resulting in tree death. In 2010, the disease was detected in black walnut in Tennessee, and subsequently in Virginia and Pennsylvania in 2011 and North Carolina in 2012. These were the first incidences of TCD east of Colorado, where the disease has been established for more than a decade on indigenous walnut species. A genetic diversity and population structure study of 62 G. morbida isolates from Tennessee, Pennsylvania, North Carolina and Oregon was completed using 15 polymorphic microsatellite loci. The results revealed high haploid genetic diversity among seven G. morbida populations with evidence of gene flow, and significant differentiation among two identified genetic clusters. There was a significant correlation between geographic and genetic distance. Understanding the genetic composition and demography of G. morbida can provide valuable insight into recognizing factors affecting the persistence and spread of an invasive pathogen, disease progression, and future infestation predictions. Overall, these data support the hypotheses of two separate, highly diverse pathogen introductions into the native range of black walnut.

  2. Comparison of Population Genetic Structure of Two Seashore-Dwelling Animal Species, Periwinkle Littorina brevicula and Acorn Barnacle Fistulobalanus albicostatus from Korea

    Directory of Open Access Journals (Sweden)

    Kim, Yuhyun

    2016-04-01

    Full Text Available The genetic structure of marine animals that inhabit the seashore is affected by numerous factors. Of these, gene flow and natural selection during recruitment have strong influences on the genetic structure of seashore-dwelling species that have larval periods. Relative contributions of these two factors to the genetic structure of marine species would be determined mainly by the duration of larval stage. The relationship between larval period and genetic structure of population has been rarely studied in Korea. In this study, genetic variations of cytochrome oxidase subunit I (COI were analyzed in two dominant species on rocky shore habitats in the Korean peninsula: periwinkle Littorina brevicula and acorn barnacle Fistulobalanus albicostatus. Both species are not strongly structured and may have experienced recent population expansion. Unlike periwinkle, however, barnacle populations have considerable genetic variation, and show a bimodal pattern of mismatch distribution. These results suggest that barnacle populations are more affected by local adaptation rather than gene flow via larval migration. The bimodal patterns of barnacle populations observed in mismatch distribution plots imply that they may have experienced secondary contact. Further studies on seashore-dwelling species are expected to be useful in understanding the evolution of the coastal ecosystem around Korean waters.

  3. Peripheral genetic structure of Helicoverpa zea indicates asymmetrical panmixia

    Science.gov (United States)

    Seasonal climatic shifts create peripheral habitats that alternate between habitable and uninhabitable for migratory species. Such dynamic peripheral habitats are potential sites where migratory species could evolve high genetic diversity resulting from convergence of immigrants from multiple region...

  4. Alu polymorphic insertions reveal genetic structure of north Indian populations.

    Science.gov (United States)

    Tripathi, Manorama; Tripathi, Piyush; Chauhan, Ugam Kumari; Herrera, Rene J; Agrawal, Suraksha

    2008-10-01

    The Indian subcontinent is characterized by the ancestral and cultural diversity of its people. Genetic input from several unique source populations and from the unique social architecture provided by the caste system has shaped the current genetic landscape of India. In the present study 200 individuals each from three upper-caste and four middle-caste Hindu groups and from two Muslim populations in North India were examined for 10 polymorphic Alu insertions (PAIs). The investigated PAIs exhibit high levels of polymorphism and average heterozygosity. Limited interpopulation variance and genetic flow in the present study suggest admixture. The results of this study demonstrate that, contrary to common belief, the caste system has not provided an impermeable barrier to genetic exchange among Indian groups.

  5. Geography of Genetic Structure in Barley Wild Relative Hordeum vulgare subsp. spontaneum in Jordan

    Science.gov (United States)

    Reeves, Patrick; Reilley, Ann; Engels, Johannes M. M.; Lohwasser, Ulrike; Börner, Andreas; Pillen, Klaus; Richards, Christopher M.

    2016-01-01

    Informed collecting, conservation, monitoring and utilization of genetic diversity requires knowledge of the distribution and structure of the variation occurring in a species. Hordeum vulgare subsp. spontaneum (K. Koch) Thell., a primary wild relative of barley, is an important source of genetic diversity for barley improvement and co-occurs with the domesticate within the center of origin. We studied the current distribution of genetic diversity and population structure in H. vulgare subsp. spontaneum in Jordan and investigated whether it is correlated with either spatial or climatic variation inferred from publically available climate layers commonly used in conservation and ecogeographical studies. The genetic structure of 32 populations collected in 2012 was analyzed with 37 SSRs. Three distinct genetic clusters were identified. Populations were characterized by admixture and high allelic richness, and genetic diversity was concentrated in the northern part of the study area. Genetic structure, spatial location and climate were not correlated. This may point out a limitation in using large scale climatic data layers to predict genetic diversity, especially as it is applied to regional genetic resources collections in H. vulgare subsp. spontaneum. PMID:27513459

  6. Sampling strategy for wild soybean (Glycine soja) populations based on their genetic diversity and fine-scale spatial genetic structure

    Institute of Scientific and Technical Information of China (English)

    ZHU Weiyue; ZHOU Taoying; ZHONG Ming; LU Baorong

    2007-01-01

    A total of 892 individuals sampled from a wild soybean population in a natural reserve near the Yellow River estuary located in Kenli of Shandong Province (China) were investigated.Seventeen SSR (simple sequence repeat) primer pairs from cultivated soybeans were used to estimate the genetic diversity of the population and its variation pattern versus changes of the sample size (sub-samples),in addition to investigating the fine-scale spatial genetic structure within the population.The results showed relatively high genetic diversity of the population with the mean value of allele number (A) being 2.88,expected heterozygosity (He) 0.431,Shannon diversity index (/) 0.699,and percentage of polymorphic loci (P) 100%.Sub-samples of different sizes (ten groups) were randomly drawn from the population and their genetic diversity was calculated by computer simulation.The regression model of the four diversity indexes with the change of sample sizes was computed.As a result,27-52 individuals can reach 95% of total genetic variability of the population.Spatial autocorrelation analysis revealed that the genetic patch size of this wild soybean population is about 18 m.The study provided a scientific basis for the sampling strategy of wild soybean populations.

  7. Imidacloprid induces changes in the structure, genetic diversity and catabolic activity of soil microbial communities.

    Science.gov (United States)

    Cycoń, Mariusz; Markowicz, Anna; Borymski, Sławomir; Wójcik, Marcin; Piotrowska-Seget, Zofia

    2013-12-15

    This is the first report describing the effect of imidacloprid applied at field rate (FR, 1 mg/kg of soil) and 10 times the FR (10*FR, 10 mg/kg of soil) on the structural, genetic and physiological diversity of soil bacterial community as determined by the phospholipid fatty acid (PLFA), the denaturing gradient gel electrophoresis (DGGE), and the community level physiological profile (CLPP) approaches. PLFA profiles showed that imidacloprid significantly shifted the microbial community structure and decreased the biomass of the total, bacterial and fungal PLFAs, however, this effect was transient at the FR dosage. The alterations in DGGE patterns caused by imidacloprid application, confirmed considerable changes in the overall richness and diversity of dominant bacteria. Although, as a result of imidacloprid application, the metabolic activity of microbial communities was generally lower, the richness and functional biodiversity of the soil microbial community were not negatively affected. In general, the analysis of the variance indicated that the measured parameters were significantly affected by treatment and the incubation time, however, the incubation time effect explained most of the observed variance. Imidacloprid degradation and the appearance of some new bands in DGGE profiles suggest the evolution of bacteria capable of degrading imidacloprid among indigenous microflora.

  8. Genetic polymorphisms affecting susceptibility to mercury neurotoxicity in children: summary findings from the Casa Pia Children's Amalgam clinical trial.

    Science.gov (United States)

    Woods, James S; Heyer, Nicholas J; Russo, Joan E; Martin, Michael D; Farin, Federico M

    2014-09-01

    Mercury (Hg) is neurotoxic, and children may be particularly susceptible to this effect. A current major challenge is identification of children who may be uniquely susceptible to Hg toxicity because of genetic predisposition. We examined the possibility that common genetic variants that are known to affect neurologic functions or Hg handling in adults would modify the adverse neurobehavioral effects of Hg exposure in children. Three hundred thirty subjects who participated as children in the recently completed Casa Pia Clinical Trial of Dental Amalgams in Children were genotyped for 27 variants of 13 genes that are reported to affect neurologic functions and/or Hg disposition in adults. Urinary Hg concentrations, reflecting Hg exposure from any source, served as the Hg exposure index. Regression modeling strategies were employed to evaluate potential associations between allelic status for individual genes or combinations of genes, Hg exposure, and neurobehavioral test outcomes assessed at baseline and for 7 subsequent years during the clinical trial. Among boys, significant modification of Hg effects on neurobehavioral outcomes over a broad range of neurologic domains was observed with variant genotypes for 4 of 13 genes evaluated. Modification of Hg effects on a more limited number of neurobehavioral outcomes was also observed for variants of another 8 genes. Cluster analyses suggested some genes interacting in common processes to affect Hg neurotoxicity. In contrast, significant modification of Hg effects on neurobehavioral functions among girls with the same genotypes was substantially more limited. These observations suggest increased susceptibility to the adverse neurobehavioral effects of Hg among children, particularly boys, with genetic variants that are relatively common to the general human population. These findings advance public health goals to identify factors underlying susceptibility to Hg toxicity and may contribute to strategies for preventing

  9. Genetic Structure in a Small Pelagic Fish Coincides with a Marine Protected Area: Seascape Genetics in Patagonian Fjords.

    Science.gov (United States)

    Canales-Aguirre, Cristian B; Ferrada-Fuentes, Sandra; Galleguillos, Ricardo; Hernández, Cristián E

    2016-01-01

    Marine environmental variables can play an important role in promoting population genetic differentiation in marine organisms. Although fjord ecosystems have attracted much attention due to the great oscillation of environmental variables that produce heterogeneous habitats, species inhabiting this kind of ecosystem have received less attention. In this study, we used Sprattus fuegensis, a small pelagic species that populates the inner waters of the continental shelf, channels and fjords of Chilean Patagonia and Argentina, as a model species to test whether environmental variables of fjords relate to population genetic structure. A total of 282 individuals were analyzed from Chilean Patagonia with eight microsatellite loci. Bayesian and non-Bayesian analyses were conducted to describe the genetic variability of S. fuegensis and whether it shows spatial genetic structure. Results showed two well-differentiated genetic clusters along the Chilean Patagonia distribution (i.e. inside the embayment area called TicToc, and the rest of the fjords), but no spatial isolation by distance (IBD) pattern was found with a Mantel test analysis. Temperature and nitrate were correlated to the expected heterozygosities and explained the allelic frequency variation of data in the redundancy analyses. These results suggest that the singular genetic differences found in S. fuegensis from inside TicToc Bay (East of the Corcovado Gulf) are the result of larvae retention bya combination of oceanographic mesoscale processes (i.e. the west wind drift current reaches the continental shelf exactly in this zone), and the local geographical configuration (i.e. embayment area, islands, archipelagos). We propose that these features generated an isolated area in the Patagonian fjords that promoted genetic differentiation by drift and a singular biodiversity, adding support to the existence of the largest marine protected area (MPA) of continental Chile, which is the Tic-Toc MPA.

  10. Genetic investigations on 8 patients affected by ring 20 chromosome syndrome

    Directory of Open Access Journals (Sweden)

    Giordano Lucio

    2010-10-01

    Full Text Available Abstract Background Mosaic Chromosome 20 ring [r(20] is a chromosomal disorder associated with a rare syndrome characterized by a typical seizure phenotype, a particular electroclinical pattern, cognitive impairment, behavioural problems and absence of a consistent pattern of dysmorphology. The pathogenic mechanism underlying seizures disorders in r(20 syndrome is still unknown. We performed a detailed clinical and genetic study on 8 patients with r(20 chromosome, aimed at detecting the genetic mechanism underlying r(20 syndrome. Methods We submitted 8 subjects with a previous diagnosis of ring 20 chromosome mosaicism to a clinical re-evaluation, followed by cytogenetic, FISH, array-CGH and molecular analyses. The genetic study was also extended to their available parents. Results FISH and array-CGH experiments indicate that cryptic deletions on chromosome 20 are not the cause of the r(20 chromosome associated disease. Moreover, no evidence of chromosome 20 uniparental disomy was found. Analysis of FISH signals given by variant in size alphoid tandem repeats probes on the normal chromosome 20 and the r(20 chromosome in the mosaic carriers suggests that the r(20 chromosome is the same chromosome not circularized in the "normal" cell line. Conclusions Higher percentages of r(20 chromosome cells were observed to be related with precocious age at seizure onset and with resistance to antiepileptic drug treatment. Behavioural problems also seem to be associated with higher percentages of r(20 chromosome cells. Our results suggest that an epigenetic mechanism perturbing the expression of genes close to the telomeric regions, rather than deletion of genes located at the distal 20p and/or 20q regions, may underlie the manifestation of r(20 syndrome.

  11. Non Genetic Factors Affecting Pre-Weaning Weight and Growth Rate of Ettawah Grade Goats

    Directory of Open Access Journals (Sweden)

    A. Sodiq

    2012-04-01

    Full Text Available The present study was carried out to evaluate the effect of various non-genetic factors on live weights at different ages (at birth, 30, 60, 90, and 120 d of age, and on average daily gains (from birth to 30, 60, 90, and 120 d of Ettawah Grade kids. Data from 314 records kids at the national village breeding centre of Kaligesing Purworejo Central Java province were analyzed. Results showed that average live weights at birth (BW= 3.44 kg, 30 d of age (W30= 7.19 kg, 60 d of age (W60= 11.05 kg, 90 d of age (W90= 14.75 kg, 120 d of age (W120= 18.86 kg, and average daily gain from birth until 30 d of age (ADG30= 125.6 g, 60 d of age (ADG60= 126.97 g, 90 d of age (ADG90= 125.87 g, 120 d of age (ADG120= 128.78 g were influenced by sex, litter size, and age of dams. Means of BW, W30, W60, W90, W120, ADG30, ADG60, ADG90, and ADG120 of males were higher than females. Multiple (twin and triplets born kids were lighter than single. Mean of body weight and average daily gain increased with the dam’s age. The implication of these findings should be accounted in genetic evaluations and also should consider maternal ability for the improvement of Ettawah Grade.

  12. Genetic structure in dwarf bamboo (Bashania fangiana clonal populations with different genet ages.

    Directory of Open Access Journals (Sweden)

    Qing-qing Ma

    Full Text Available Amplified fragment length polymorphism (AFLP fingerprints were used to reveal genotypic diversity of dwarf bamboo (Bashania fangiana clonal populations with two different genet ages (≤30 years versus >70 years at Wolong National Natural Reserve, Sichuan province, China. We generated AFLP fingerprints for 96 leaf samples, collected at 30 m intervals in the two populations, using ten selective primer pairs. A total of 92 genotypes were identified from the both populations. The mean proportion of distinguishable genotypes (G/N was 0.9583 (0.9375 to 0.9792 and Simpson's index of diversity (D was 0.9982 (0.9973 to 0.9991. So, two B. fangiana populations were multiclonal and highly diverse. The largest single clone may occur over a distance of about 30 m. Our results demonstrated that the genotypic diversity and genet density of B. fangiana clonal population did not change significantly (47 versus 45 with genet aging and low partitioned genetic differentiation was between the two populations (Gst = 0.0571. The analysis of molecular variance consistently showed that a large proportion of the genetic variation (87.79% existed among the individuals within populations, whereas only 12.21% were found among populations. In addition, the high level of genotypic diversity in the two populations implies that the further works were needed to investigate the reasons for the poor seed set in B. fangiana after flowering.

  13. Improving the structural quality of UML class diagrams with the genetic algorithm

    Directory of Open Access Journals (Sweden)

    Deryugina Olga

    2016-01-01

    Full Text Available The problem of improving the structural quality of UML class diagrams can be formulated as an optimization problem. The Genetic algorithm is concerned to be able to solve such problems. This paper focuses on the ways in which the Genetic algorithm can be applied to the problem of improving structural quality of UML class diagrams. It develops the theme of semantically equivalent transformations of UML class diagrams during the evolutionary search. This paper suggests the structural semantics of the UML class diagrams. It also formulates the problem of improving the structural quality of a UML class diagram during the evolutionary search and proposes a solution of the problem based on the Genetic algorithm. The paper presents the results of the computational experiment aimed at improving of the structural quality of the UML class diagram with the help of the Genetic algorithm and identifies issues for future work.

  14. Genetic and perinatal determinants of structural brain deficits in schizophrenia.

    Science.gov (United States)

    Cannon, T D; Mednick, S A; Parnas, J

    1989-10-01

    Using a subsample from the Copenhagen schizophrenia high-risk project, we examined the contributions of schizophrenic genetic liability and perinatal complications to computed tomographic (CT) measurements of ventricular enlargement and cortical and cerebellar abnormalities. A factor analysis of six CT measurements yielded two significant factors. One factor reflected multisite neural deficits as evidenced by abnormality of the cerebellar vermis and widening of the sylvian and interhemispheric fissures and cortical sulci. The other factor reflected periventricular damage as evidenced by enlargement of the third and lateral ventricles. Because all of the subjects had schizophrenic mothers, the major source of genetic variation is contributed by the diagnostic status of their fathers. In a stepwise multiple-regression analysis, it was determined that the multisite neural deficits factor was significantly related to genetic risk for schizophrenia (as measured by schizophrenia spectrum illness in the subjects' fathers) but was unrelated to pregnancy or delivery complications or to weight at birth. Periventricular damage was highly and significantly correlated with the number of complications suffered at delivery, but only among subjects with an elevated genetic risk. Although limited by a small sample size, these results suggest that the two types of CT abnormalities in schizophrenia may reflect partially independent processes based on different combinations of genetic and perinatal influences.

  15. Genetic diversity and structure of Brazilian ginger germplasm (Zingiber officinale) revealed by AFLP markers.

    Science.gov (United States)

    Blanco, Eleonora Zambrano; Bajay, Miklos Maximiliano; Siqueira, Marcos Vinícius Bohrer Monteiro; Zucchi, Maria Imaculada; Pinheiro, José Baldin

    2016-12-01

    Ginger is a vegetable with medicinal and culinary properties widely cultivated in the Southern and Southeastern Brazil. The knowledge of ginger species' genetic variability is essential to direct correctly future studies of conservation and genetic improvement, but in Brazil, little is known about this species' genetic variability. In this study, we analyzed the genetic diversity and structure of 55 Brazilian accessions and 6 Colombian accessions of ginger, using AFLP (Amplified Fragment Length Polymorphism) molecular markers. The molecular characterization was based on 13 primers combinations, which generated an average of 113.5 polymorphic loci. The genetic diversity estimates of Nei (Hj), Shannon-Weiner index (I) and an effective number of alleles (n e ) were greater in the Colombian accessions in relation to the Brazilian accessions. The analysis of molecular variance showed that most of the genetic variation occurred between the two countries while in the Brazilian populations there is no genetic structure and probably each region harbors 100 % of genetic variation found in the samples. The bayesian model-based clustering and the dendrogram using the dissimilarity's coefficient of Jaccard were congruent with each other and showed that the Brazilian accessions are highly similar between themselves, regardless of the geographic region of origin. We suggested that the exploration of the interspecific variability and the introduction of new varieties of Z.officinale are viable alternatives for generating diversity in breeding programs in Brazil. The introduction of new genetic materials will certainly contribute to a higher genetic basis of such crop.

  16. Effect of domestication on the genetic diversity and structure of Saccharina japonica populations in China

    Science.gov (United States)

    Zhang, Jie; Wang, Xiuliang; Yao, Jianting; Li, Qiuying; Liu, Fuli; Yotsukura, Norishige; Krupnova, Tatiana N.; Duan, Delin

    2017-01-01

    Saccharina japonica is a commercially and ecologically important seaweed and is an excellent system for understanding the effects of domestication on marine crops. In this study, we used 19 selected simple sequence repeat (SSR) markers to investigate the influence of domestication on the genetic diversity and structure of S. japonica populations. Wild kelp populations exhibited higher genetic diversity than cultivated populations based on total NA, HE, HO, NP and AR. Discriminant analysis of principal components (DAPC), a neighbour-joining (NJ) tree and STRUCTURE analyses indicated that S. japonica populations could be divided into two groups (a cultivated/introduced group and a wild indigenous group) with significant genetic differentiation (P < 0.0001). Divergent selection, continuous inbreeding and inter-specific hybridization have caused the divergence of these two genetically separate gene pools. The significant genetic differentiation between northern and southern cultivated populations appears to be due to inter-specific hybridization and wild germplasm introduction during the domestication process. In addition, the cultivation of S. japonica has not resulted in any serious genetic disturbance of wild introduced S. japonica populations. An understanding of the genetic diversity and genetic structure of domesticated S. japonica will be necessary for further genetic improvement and effective use of germplasm. PMID:28176848

  17. Variation and Genetic Structure in Platanus mexicana (Platanaceae along Riparian Altitudinal Gradient

    Directory of Open Access Journals (Sweden)

    Dulce M. Galván-Hernández

    2015-01-01

    Full Text Available Platanus mexicana is a dominant arboreal species of riparian ecosystems. These ecosystems are associated with altitudinal gradients that can generate genetic differences in the species, especially in the extremes of the distribution. However, studies on the altitudinal effect on genetic variation to riparian species are scarce. In Mexico, the population of P. mexicana along the Colipa River (Veracruz State grows below its reported minimum altitude range, possibly the lowest where this tree grows. This suggests that altitude might be an important factor in population genetics differentiation. We examined the genetic variation and population structuring at four sites with different altitudes (70, 200, 600 and 1700 m a.s.l. using ten inter-simple sequence repeats (ISSR markers. The highest value for Shannon index and Nei’s gene diversity was obtained at 1700 m a.s.l. (He = 0.27, Ne = 1.47, I = 0.42 and polymorphism reached the top value at the middle altitude (% p = 88.57. Analysis of molecular variance (AMOVA and STRUCTURE analysis indicated intrapopulation genetic differentiation. The arithmetic average (UPGMA dendrogram identified 70 m a.s.l. as the most genetically distant site. The genetic structuring resulted from limited gene flow and genetic drift. This is the first report of genetic variation in populations of P. mexicana in Mexico. This research highlights its importance as a dominant species, and its ecological and evolutionary implications in altitudinal gradients of riparian ecosystems.

  18. Emergent patterns of population genetic structure for a coral reef community.

    Science.gov (United States)

    Selkoe, Kimberly A; Gaggiotti, Oscar E; Bowen, Brian W; Toonen, Robert J

    2014-06-01

    What shapes variation in genetic structure within a community of codistributed species is a central but difficult question for the field of population genetics. With a focus on the isolated coral reef ecosystem of the Hawaiian Archipelago, we assessed how life history traits influence population genetic structure for 35 reef animals. Despite the archipelago's stepping stone configuration, isolation by distance was the least common type of genetic structure, detected in four species. Regional structuring (i.e. division of sites into genetically and spatially distinct regions) was most common, detected in 20 species and nearly in all endemics and habitat specialists. Seven species displayed chaotic (spatially unordered) structuring, and all were nonendemic generalist species. Chaotic structure also associated with relatively high global FST. Pelagic larval duration (PLD) was not a strong predictor of variation in population structure (R2=0.22), but accounting for higher FST values of chaotic and invertebrate species, compared to regionally structured and fish species, doubled the power of PLD to explain variation in global FST (adjusted R2=0.50). Multivariate correlation of eight species traits to six genetic traits highlighted dispersal ability, taxonomy (i.e. fish vs. invertebrate) and habitat specialization as strongest influences on genetics, but otherwise left much variation in genetic traits unexplained. Considering that the study design controlled for many sampling and geographical factors, the extreme interspecific variation in spatial genetic patterns observed for Hawaìi marine species may be generated by demographic variability due to species-specific abundance and migration patterns and/or seascape and historical factors.

  19. Characterization of Soybean Storage and Allergen Proteins Affected by Environmental and Genetic Factors.

    Science.gov (United States)

    Natarajan, Savithiry; Khan, Farooq; Song, Qijian; Lakshman, Sukla; Cregan, Perry; Scott, Roy; Shipe, Emerson; Garrett, Wesley

    2016-02-17

    There is limited information on the influence of genetic and environmental variability on soybean protein composition. This study aimed to determine the role of genotype (G), environments (E), and the interrelationship of genotype and environment (G×E) on soybean seed protein. Three sets of nine soybean genotypes were grown in replicated trials at Maryland, South Carolina, and South Dakota. At each location, the nine genotypes were grown with two planting/sowing dates. We applied two-dimensional gel electrophoresis and mass spectrometry to study the variability of soybean storage and allergen proteins. Statistical analysis of 47 storage and 8 allergen proteins, in terms of differentially expressed protein spots significant at the p<0.005 level, was performed. We found more spots that showed statistically significant differences in expression among E compared to G and G×E interaction.

  20. Genetic Diversity Affects the Daily Transcriptional Oscillations of Marine Microbial Populations.

    Science.gov (United States)

    Shilova, Irina N; Robidart, Julie C; DeLong, Edward F; Zehr, Jonathan P

    2016-01-01

    Marine microbial communities are genetically diverse but have robust synchronized daily transcriptional patterns at the genus level that are similar across a wide variety of oceanic regions. We developed a microarray-inspired gene-centric approach to resolve transcription of closely-related but distinct strains/ecotypes in high-throughput sequence data. Applying this approach to the existing metatranscriptomics datasets collected from two different oceanic regions, we found unique and variable patterns of transcription by individual taxa within the abundant picocyanobacteria Prochlorococcus and Synechococcus, the alpha Proteobacterium Pelagibacter and the eukaryotic picophytoplankton Ostreococcus. The results demonstrate that marine microbial taxa respond differentially to variability in space and time in the ocean. These intra-genus individual transcriptional patterns underlie whole microbial community responses, and the approach developed here facilitates deeper insights into microbial population dynamics.

  1. A European Concern? Genetic Structure and Expansion of Golden Jackals (Canis aureus in Europe and the Caucasus.

    Directory of Open Access Journals (Sweden)

    Robert Rutkowski

    Full Text Available In the first continent-wide study of the golden jackal (Canis aureus, we characterised its population genetic structure and attempted to identify the origin of European populations. This provided a unique insight into genetic characteristics of a native carnivore population with rapid large-scale expansion. We analysed 15 microsatellite markers and a 406 base-pair fragment of the mitochondrial control region. Bayesian-based and principal components methods were applied to evaluate whether the geographical grouping of samples corresponded with genetic groups. Our analysis revealed low levels of genetic diversity, reflecting the unique history of the golden jackal among Europe's native carnivores. The results suggest ongoing gene flow between south-eastern Europe and the Caucasus, with both contributing to the Baltic population, which appeared only recently. The population from the Peloponnese Peninsula in southern Greece forms a common genetic cluster with samples from south-eastern Europe (ΔK approach in STRUCTURE, Principal Components Analysis [PCA], although the results based on BAPS and the estimated likelihood in STRUCTURE indicate that Peloponnesian jackals may represent a distinct population. Moreover, analyses of population structure also suggest either genetic distinctiveness of the island population from Samos near the coast of Asia Minor (BAPS, most STRUCTURE, PCA, or possibly its connection with the Caucasus population (one analysis in STRUCTURE. We speculate from our results that ancient Mediterranean jackal populations have persisted to the present day, and have merged with jackals colonising from Asia. These data also suggest that new populations of the golden jackal may be founded by long-distance dispersal, and thus should not be treated as an invasive alien species, i.e. an organism that is "non-native to an ecosystem, and which may cause economic or environmental harm or adversely affect human health". These insights into the

  2. Oxytocin and vasopressin are dysregulated in Williams Syndrome, a genetic disorder affecting social behavior.

    Directory of Open Access Journals (Sweden)

    Li Dai

    Full Text Available The molecular and neural mechanisms regulating human social-emotional behaviors are fundamentally important but largely unknown; unraveling these requires a genetic systems neuroscience analysis of human models. Williams Syndrome (WS, a condition caused by deletion of ~28 genes, is associated with a gregarious personality, strong drive to approach strangers, difficult peer interactions, and attraction to music. WS provides a unique opportunity to identify endogenous human gene-behavior mechanisms. Social neuropeptides including oxytocin (OT and arginine vasopressin (AVP regulate reproductive and social behaviors in mammals, and we reasoned that these might mediate the features of WS. Here we established blood levels of OT and AVP in WS and controls at baseline, and at multiple timepoints following a positive emotional intervention (music, and a negative physical stressor (cold. We also related these levels to standardized indices of social behavior. Results revealed significantly higher median levels of OT in WS versus controls at baseline, with a less marked increase in AVP. Further, in WS, OT and AVP increased in response to music and to cold, with greater variability and an amplified peak release compared to controls. In WS, baseline OT but not AVP, was correlated positively with approach, but negatively with adaptive social behaviors. These results indicate that WS deleted genes perturb hypothalamic-pituitary release not only of OT but also of AVP, implicating more complex neuropeptide circuitry for WS features and providing evidence for their roles in endogenous regulation of human social behavior. The data suggest a possible biological basis for amygdalar involvement, for increased anxiety, and for the paradox of increased approach but poor social relationships in WS. They also offer insight for translating genetic and neuroendocrine knowledge into treatments for disorders of social behavior.

  3. Simulation analysis to test the influence of model adequacy and data structure on the estimation of genetic parameters for traits with direct and maternal effects

    Directory of Open Access Journals (Sweden)

    Bouix Jacques

    2001-07-01

    Full Text Available Abstract Simulations were used to study the influence of model adequacy and data structure on the estimation of genetic parameters for traits governed by direct and maternal effects. To test model adequacy, several data sets were simulated according to different underlying genetic assumptions and analysed by comparing the correct and incorrect models. Results showed that omission of one of the random effects leads to an incorrect decomposition of the other components. If maternal genetic effects exist but are neglected, direct heritability is overestimated, and sometimes more than double. The bias depends on the value of the genetic correlation between direct and maternal effects. To study the influence of data structure on the estimation of genetic parameters, several populations were simulated, with different degrees of known paternity and different levels of genetic connectedness between flocks. Results showed that the lack of connectedness affects estimates when flocks have different genetic means because no distinction can be made between genetic and environmental differences between flocks. In this case, direct and maternal heritabilities are under-estimated, whereas maternal environmental effects are overestimated. The insufficiency of pedigree leads to biased estimates of genetic parameters.

  4. A genome wide survey of SNP variation reveals the genetic structure of sheep breeds.

    Directory of Open Access Journals (Sweden)

    James W Kijas

    Full Text Available The genetic structure of sheep reflects their domestication and subsequent formation into discrete breeds. Understanding genetic structure is essential for achieving genetic improvement through genome-wide association studies, genomic selection and the dissection of quantitative traits. After identifying the first genome-wide set of SNP for sheep, we report on levels of genetic variability both within and between a diverse sample of ovine populations. Then, using cluster analysis and the partitioning of genetic variation, we demonstrate sheep are characterised by weak phylogeographic structure, overlapping genetic similarity and generally low differentiation which is consistent with their short evolutionary history. The degree of population substructure was, however, sufficient to cluster individuals based on geographic origin and known breed history. Specifically, African and Asian populations clustered separately from breeds of European origin sampled from Australia, New Zealand, Europe and North America. Furthermore, we demonstrate the presence of stratification within some, but not all, ovine breeds. The results emphasize that careful documentation of genetic structure will be an essential prerequisite when mapping the genetic basis of complex traits. Furthermore, the identification of a subset of SNP able to assign individuals into broad groupings demonstrates even a small panel of markers may be suitable for applications such as traceability.

  5. Genetic structure in a dynamic baboon hybrid zone corroborates behavioural observations in a hybrid population

    NARCIS (Netherlands)

    Charpentier, M J E; Fontaine, M C; Cherel, E; Renoult, J P; Jenkins, T; Benoit, L; Barthès, N; Alberts, S C; Tung, J

    2012-01-01

    Behaviour and genetic structure are intimately related: mating patterns and patterns of movement between groups or populations influence the movement of genetic variation across the landscape and from one generation to the next. In hybrid zones, the behaviour of the hybridizing taxa can also impact

  6. Genetic sub-structure in western Mediterranean populations revealed by 12 Y-chromosome STR loci

    DEFF Research Database (Denmark)

    Rodríguez, V; Tomas Mas, Carmen; Sánchez, J J;

    2008-01-01

    .9988 +/- 0.0002. These Y-STRs markers showed a low capacity of discrimination (56.3%) in the Ibiza population probably due to genetic drift. Comparisons between the populations studied and other neighbouring populations showed a clear genetic sub-structure in the western Mediterranean area....

  7. Genetic structure associated with diversity and geographic distribution in the USDA rice world collection

    Science.gov (United States)

    Asian cultivated rice (Oryza sativa L.) is structured into five genetic groups, indica, AUS, tropical japonica, temperate japonica and aromatic. Genetic characterization of a global rice collection could help better serve the global research community. Collecting worldwide rice germplasm started in ...

  8. Quantitative genetics of shape in cricket wings: developmental integration in a functional structure.

    Science.gov (United States)

    Klingenberg, Christian Peter; Debat, Vincent; Roff, Derek A

    2010-10-01

    The role of developmental and genetic integration for evolution is contentious. One hypothesis states that integration acts as a constraint on evolution, whereas an alternative is that developmental and genetic systems evolve to match the functional modularity of organisms. This study examined a morphological structure, the cricket wing, where developmental and functional modules are discordant, making it possible to distinguish the two alternatives. Wing shape was characterized with geometric morphometrics, quantitative genetic information was extracted using a full-sibling breeding design, and patterns of developmental integration were inferred from fluctuating asymmetry of wing shape. The patterns of genetic, phenotypic, and developmental integration were clearly similar, but not identical. Heritabilities for different shape variables varied widely, but no shape variables were devoid of genetic variation. Simulated selection for specific shape changes produced predicted responses with marked deflections due to the genetic covariance structure. Three hypotheses of modularity according to the wing structures involved in sound production were inconsistent with the genetic, phenotypic, or developmental covariance structure. Instead, there appears to be strong integration throughout the wing. The hypothesis that genetic and developmental integration evolve to match functional modularity can therefore be rejected for this example.

  9. Large family with both parents affected by distinct BRCA1 mutations: implications for genetic testing

    Directory of Open Access Journals (Sweden)

    Sokolenko Anna P

    2009-01-01

    Full Text Available Abstract Although the probability of both parents being affected by BRCA1 mutations is not negligible, such families have not been systematically described in the literature. Here we present a large breast-ovarian cancer family, where 3 sisters and 1 half-sister inherited maternal BRCA1 5382insC mutation while the remaining 2 sisters carried paternal BRCA1 1629delC allele. No BRCA1 homozygous mutations has been detected, that is consistent with the data on lethality of BRCA1 knockout mice. This report exemplifies that the identification of a single cancer-predisposing mutation within the index patient may not be sufficient in some circumstances. Ideally, all family members affected by breast or ovarian tumor disease have to be subjected to the DNA testing, and failure to detect the mutation in any of them calls for the search of the second cancer-associated allele.

  10. Large family with both parents affected by distinct BRCA1 mutations: implications for genetic testing

    Science.gov (United States)

    Sokolenko, Anna P; Voskresenskiy, Dmitry A; Iyevleva, Aglaya G; Bit-Sava, Elena M; Gutkina, Nadezhda I; Anisimenko, Maxim S; Yu Sherina, Nathalia; Mitiushkina, Nathalia V; Ulibina, Yulia M; Yatsuk, Olga S; Zaitseva, Olga A; Suspitsin, Evgeny N; Togo, Alexandr V; Pospelov, Valery A; Kovalenko, Sergey P; Semiglazov, Vladimir F; Imyanitov, Evgeny N

    2009-01-01

    Although the probability of both parents being affected by BRCA1 mutations is not negligible, such families have not been systematically described in the literature. Here we present a large breast-ovarian cancer family, where 3 sisters and 1 half-sister inherited maternal BRCA1 5382insC mutation while the remaining 2 sisters carried paternal BRCA1 1629delC allele. No BRCA1 homozygous mutations has been detected, that is consistent with the data on lethality of BRCA1 knockout mice. This report exemplifies that the identification of a single cancer-predisposing mutation within the index patient may not be sufficient in some circumstances. Ideally, all family members affected by breast or ovarian tumor disease have to be subjected to the DNA testing, and failure to detect the mutation in any of them calls for the search of the second cancer-associated allele. PMID:19338681

  11. Genetic Variants in the STMN1 Transcriptional Regulatory Region Affect Promoter Activity and Fear Behavior in English Springer Spaniels.

    Directory of Open Access Journals (Sweden)

    Xiaolin Ding

    Full Text Available Stathmin 1 (STMN1 is a neuronal growth-associated protein that is involved in microtubule dynamics and plays an important role in synaptic outgrowth and plasticity. Given that STMN1 affects fear behavior, we hypothesized that genetic variations in the STMN1 transcriptional regulatory region affect gene transcription activity and control fear behavior. In this study, two single nucleotide polymorphisms (SNPs, g. -327 A>G and g. -125 C>T, were identified in 317 English Springer Spaniels. A bioinformatics analysis revealed that both were loci located in the canine STMN1 putative promoter region and affected transcription factor binding. A statistical analysis revealed that the TT genotype at g.-125 C>T produced a significantly greater fear level than that of the CC genotype (P < 0.05. Furthermore, the H4H4 (GTGT haplotype combination was significantly associated with canine fear behavior (P < 0.01. Using serially truncated constructs of the STMN1 promoters and the luciferase reporter, we found that a 395 bp (-312 nt to +83 nt fragment constituted the core promoter region. The luciferase assay also revealed that the H4 (GT haplotype promoter had higher activity than that of other haplotypes. Overall, our results suggest that the two SNPs in the canine STMN1 promoter region could affect canine fear behavior by altering STMN1 transcriptional activity.

  12. Non-genetic Factors Affecting Gestation Lenght and Postpartum Intervals in Gudali Zebu Cattle of the Adamawa Highlands of Cameroon

    Directory of Open Access Journals (Sweden)

    Mbah, DA.

    2007-01-01

    Full Text Available The effects of non-genetic factors (sex of calf, calf birth weight, age of cow, season of calving affecting gestation length (GL and open days period (OP in the Ngaoundere Gudali cattle of the Adamawa (Cameroon was investigated. Mean GL was 293.4 ± 0.4 d. Sex of the calf significantly (P< 0.05 affected GL, with male calves being carried in utero approximately 3 days longer than the females (294.1 ± 1.2 vs 291.1 ± 1.2 d. Calf birth weight tended to increase as gestation lengthened. Parity and age of the cow had no significant (P> 0.05 effect on GL. The mean duration of the OP (from calving to conception was 267.7 ± 7.4 d. Approximately 23.2% of the cows conceived within 90 days of calving and a total of 55.6% had conceived by 360 days. The distribution of the OP was bimodal, and could have been influenced by seasonal availability of feed, or long (6 months mating season allowing cows to calve during the following mating season. Calving to conception interval was significantly (P< 0.001 affected by month of calving and parity. Sex of the calf did not affect significantly the duration of the postpartum period, although this period was 5 days longer following the birth of a male calf.

  13. The Internal Structure of Positive and Negative Affect: A Confirmatory Factor Analysis of the PANAS

    Science.gov (United States)

    Tuccitto, Daniel E.; Giacobbi, Peter R., Jr.; Leite, Walter L.

    2010-01-01

    This study tested five confirmatory factor analytic (CFA) models of the Positive Affect Negative Affect Schedule (PANAS) to provide validity evidence based on its internal structure. A sample of 223 club sport athletes indicated their emotions during the past week. Results revealed that an orthogonal two-factor CFA model, specifying error…

  14. Genetic diversity and genetic structure of consecutive breeding generations of golden mandarin fish (Siniperca scherzeri Steindachner) using microsatellite markers.

    Science.gov (United States)

    Luo, X N; Yang, M; Liang, X F; Jin, K; Lv, L Y; Tian, C X; Yuan, Y C; Sun, J

    2015-09-25

    In this study, 12 polymorphic microsatellites were inves-tigated to determine the genetic diversity and structure of 5 consecu-tive selected populations of golden mandarin fish (Siniperca scherzeri Steindachner). The total numbers of alleles, average heterozyosity, and average polymorphism information content showed that the genetic diversity of these breeding populations was decreasing. Additionally, pairwise fixation index FST values among populations and Da values in-creased from F1 generation to subsequent generations (FST values from 0.0221-0.1408; Da values from 0.0608-0.1951). Analysis of molecular variance indicated that most genetic variations arise from individuals within populations (about 92.05%), while variation among populations accounted for only 7.95%. The allele frequency of the loci SC75-220 and SC101-222 bp changed regularly in the 5 breeding generations. Their frequencies were gradually increased and showed an enrichment trend, indicating that there may be genetic correlations between these 2 loci and breeding traits. Our study indicated that microsatellite markers are effective for assessing the genetic variability in the golden mandarin fish breeding program.

  15. Subpopulation genetic structure of a plant panmictic population of Castanea sequinii as revealed by microsatellite markers

    Institute of Scientific and Technical Information of China (English)

    WANG Ying; KANG Ming; HUANG Hongwen

    2007-01-01

    Castanea squinii Dode,an endemic tree widely distributed in China,plays an important role both in chestnut breeding and forest ecosystem function.The spatial genetic structure within and among populations is an important part of the evolutionary and ecological genetic dynamics of natural populations,and can provide insights into effective conservation of genetic resources.In the present study,the spatial genetic structure of a panmictic natural population of C.sequinii in the Dabie Mountain region was investigated using microsatellite markers.Nine prescreened microsatellite loci generated 29-33 alleles each,and were used for spatial autocorrelation analysis.Based on Moran's I coefficient,a panmictic population of C.sequinii in the Dabie Mountain region was found to be lacking a spatial genetic structure.These results suggest that a high pollen-mediated gene flow among subpopulations counteract genetic drift and/or genetic differentiation and plays an important role in maintaining a random and panmictic population structure in C.sequinii populations.Further,a spatial genetic structure was detected in each subpopulation's scale (0.228 km),with all three subpopulations showing significant fine-scale structure.The genetic variation was found to be nonrandomly distributed within 61 m in each subpopulation (Moran's I positive values).Although Moran's I values varied among the different subpopulations,Moran's I in all the three subpopulations reached the expected values with an increase in distances,suggesting a generally patchy distribution in the subpopulations.The fine-scale structure seems to reflect restricted seed dispersal and microenvironment selection in C.sequinii.These results have important implications for understanding the evolutionary history and ecological process of the natural population of C.sequinii and provide baseline data for formulating a conservation strategy of Castanea species.

  16. Molecular genetic diversity and genetic structure of Vietnamese indigenous pig populations

    DEFF Research Database (Denmark)

    Pham, L. D.; Do, Duy Ngoc; Nam, L. Q.

    2014-01-01

    in 236 samples. All estimated loci were very polymorphic indicated by high values of polymorphism information content (from 0.76 in S0225 to 0.92 in Sw2410). Indigenous populations had very high level of genetic diversity (mean He = 0.75); of all indigenous breeds, Lung Pu showed highest mean number...

  17. Genetic structure and domestication history of the grape

    Science.gov (United States)

    The grape is one of the earliest domesticated fruit crops and, since antiquity, it has been widely cultivated and prized for its fruit and wine. Here, we characterize genome-wide patterns of genetic variation in over 1,000 samples of the domesticated grape, Vitis vinifera subsp. vinifera, and its wi...

  18. Genetic diversity and population structure of begomoviruses infecting sweet potato

    Science.gov (United States)

    Begomoviruses infecting sweet potatoes (Ipomoea batatas) exhibit high genetic diversity, and approximately eight species including Sweet potato leaf curl virus (SPLCV) have been described from different regions around the world. In this study, the complete genomic sequences of 17 geographically dist...

  19. The impact of clonality on parasite population genetic structure

    Directory of Open Access Journals (Sweden)

    Prugnolle F.

    2008-09-01

    Full Text Available In this paper, we briefly review the consequences of clonal reproduction on the apportionment of genetic diversity in parasite populations. We distinguish three kinds of parasite life-cycle where clonal reproduction occurs. The consequences of this mode of reproduction for the different kinds of parasite life-cycles are described. We here particularly focus on clonal diploids.

  20. Somatic structural rearrangements in genetically engineered mouse mammary tumors

    NARCIS (Netherlands)

    Varela, I.; Klijn, C.N.; Stephens, P.J.; Mudie, L.J.; Stebbings, L.; Galappaththige, D.; Van der Gulden, H.; Schut, E.; Klarenbeek, S.; Campbell, P.J.; Wessels, L.F.A.; Stratton, M.R.; Jonkers, J.; Futreal, P.A.; Adams, D.J.

    2010-01-01

    Background: Here we present the first paired-end sequencing of tumors from genetically engineered mouse models of cancer to determine how faithfully these models recapitulate the landscape of somatic rearrangements found in human tumors. These were models of Trp53-mutated breast cancer, Brca1- and B

  1. Response to dietary phosphorus deficiency is affected by genetic background in growing pigs.

    Science.gov (United States)

    Alexander, L S; Qu, A; Cutler, S A; Mahajan, A; Lonergan, S M; Rothschild, M F; Weber, T E; Kerr, B J; Stahl, C H

    2008-10-01

    Concern over the environmental effect of P excretion from pig production has led to reduced dietary P supplementation. To examine how genetics influence P utilization, 94 gilts sired by 2 genetic lines (PIC337 and PIC280) were housed individually and fed either a P-adequate diet (PA) or a 20% P-deficient diet (PD) for 14 wk. Initially and monthly, blood samples were collected and BW recorded after an overnight fast. Growth performance and plasma indicators of P status were determined monthly. At the end of the trial, carcass traits, meat quality, bone strength, and ash percentage were determined. Pigs fed the PD diet had decreased (P < 0.05) plasma P concentrations and poorer G:F (P < 0.05) over the length of the trial. After 4 wk on trial, pigs fed the PD diet had increased (P < 0.05) plasma 1,25(OH)(2)D(3) and decreased (P < 0.05) plasma parathyroid hormone compared with those fed the PA diet. At the end of the trial, pigs fed the PD diet had decreased (P < 0.05) BW, HCW, and percentage fat-free lean and tended to have decreased LM area (P = 0.06) and marbling (P = 0.09) and greater (P = 0.12) 10th-rib backfat than pigs fed the PA diet. Additionally, animals fed the PD diet had weaker bones and also decreased (P < 0.05) ash percentage and increased (P < 0.05) concentrations of 1alpha-hydroxylase and parathyroid hormone receptor mRNA in kidney tissue. Regardless of dietary treatment, PIC337-sired pigs consumed more feed and gained more BW than their PIC280-sired counterparts (P < 0.05) during the study. The PIC337-sired pigs also had greater (P < 0.05) HCW, larger (P < 0.01) LM area, and tended to have (P = 0.07) greater dressing percentage. Meat from the PIC337-sired pigs also tended to have greater (P = 0.12) concentrations of lactate but decreased (P = 0.07) concentrations of total glucose units 24 h postslaughter. Although plasma 1,25(OH)(2)D(3) concentrations were elevated (P < 0.05) in all the animals fed the PD diet, this elevation due to P deficiency

  2. Genetic diversity and population structure of Plasmodium vivax isolates from Sudan, Madagascar, French Guiana and Armenia.

    Science.gov (United States)

    Menegon, Michela; Durand, Patrick; Menard, Didier; Legrand, Eric; Picot, Stéphane; Nour, Bakri; Davidyants, Vladimir; Santi, Flavia; Severini, Carlo

    2014-10-01

    Polymorphic genetic markers and especially microsatellite analysis can be used to investigate multiple aspects of the biology of Plasmodium species. In the current study, we characterized 7 polymorphic microsatellites in a total of 281 Plasmodium vivax isolates to determine the genetic diversity and population structure of P. vivax populations from Sudan, Madagascar, French Guiana, and Armenia. All four parasite populations were highly polymorphic with 3-32 alleles per locus. Mean genetic diversity values was 0.83, 0.79, 0.78 and 0.67 for Madagascar, French Guiana, Sudan, and Armenia, respectively. Significant genetic differentiation between all four populations was observed.

  3. Genetic Diversity and Structure of Brazilian Populations of Diatraea saccharalis (Lepidoptera: Crambidae): Implications for Pest Management.

    Science.gov (United States)

    Silva-Brandão, Karina L; Santos, Thiago V; Cônsoli, Fernando L; Omoto, Celso

    2015-02-01

    The sugarcane borer, Diatraea saccharalis (F.), is the main pest of sugarcane in Brazil. Genetic variability and gene flow among 13 Brazilian populations of the species were evaluated based on mitochondrial DNA sequences to estimate the exchange of genetic information within and among populations. We found high genetic structure among sampled localities (ΦST=0.50923), and pairwise genetic distances were significantly correlated to geographic distances. Demographic analysis and genealogical network of mitochondrial sequences indicate population growth and admixture of D. saccharalis populations, events likely related to the sequential expansion of the corn and sugarcane crops in Brazil. The implications of these findings for pest management are discussed.

  4. Genetic diversity and population structure in Polygonum cespitosum: insights to an ongoing plant invasion.

    Directory of Open Access Journals (Sweden)

    Silvia Matesanz

    Full Text Available Molecular markers can help elucidate how neutral evolutionary forces and introduction history contribute to genetic variation in invaders. We examined genetic diversity, population structure and colonization patterns in the invasive Polygonum cespitosum, a highly selfing, tetraploid Asian annual introduced to North America. We used nine diploidized polymorphic microsatellite markers to study 16 populations in the introduced range (northeastern North America, via the analyses of 516 individuals, and asked the following questions: 1 Do populations have differing levels of within-population genetic diversity? 2 Do populations form distinct genetic clusters? 3 Does population structure reflect either geographic distances or habitat similarities? We found low heterozygosity in all populations, consistent with the selfing mating system of P. cespitosum. Despite the high selfing levels, we found substantial genetic variation within and among P. cespitosum populations, based on the percentage of polymorphic loci, allelic richness, and expected heterozygosity. Inferences from individual assignment tests (Bayesian clustering and pairwise FST values indicated high among-population differentiation, which indicates that the effects of gene flow are limited relative to those of genetic drift, probably due to the high selfing rates and the limited seed dispersal ability of P. cespitosum. Population structure did not reflect a pattern of isolation by distance nor was it related to habitat similarities. Rather, population structure appears to be the result of the random movement of propagules across the introduced range, possibly associated with human dispersal. Furthermore, the high population differentiation, genetic diversity, and fine-scale genetic structure (populations founded by individuals from different genetic sources in the introduced range suggest that multiple introductions to this region may have occurred. High genetic diversity may further

  5. Genetic structure of the fungal grapevine pathogen Eutypa lata from four continents

    Science.gov (United States)

    The generalist ascomycete fungus Eutypa lata causes Eutypa dieback of grapevine (Vitis vinifera) worldwide. To decipher the cosmopolitan distribution of this fungus, the population genetic structure of 17 geographic samples was investigated from four continental regions (Australia, California, Europ...

  6. General asymmetric neutral networks and structure design by genetic algorithms: A learning rule for temporal patterns

    Energy Technology Data Exchange (ETDEWEB)

    Bornholdt, S. [Heidelberg Univ., (Germany). Inst., fuer Theoretische Physik; Graudenz, D. [Lawrence Berkeley Lab., CA (United States)

    1993-07-01

    A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback.

  7. Comparison of genetic population structure of the large blue butterflies Maculinea nausithous and M. teleius

    DEFF Research Database (Denmark)

    Figurny-Puchalska, Edyta; Gadeberg, Rebekka M.E.; Boomsma, Jacobus Jan

    2000-01-01

    We investigated the genetic population structure of two rare myrmecophilous lycaenid butterflies, Maculinea nausithous and M. teleius, which often live sympatrically and have similar biology. In Europe, both species occur in highly fragmented populations and are vulnerable to local extinction...

  8. Lack of genetic structure and female-specific effect of dispersal barriers in a rabies vector, the striped skunk (Mephitis mephitis.

    Directory of Open Access Journals (Sweden)

    Benoit Talbot

    Full Text Available Evaluating the permeability of potential barriers to movement, dispersal and gene exchanges can help describe spreading patterns of wildlife diseases. Here, we used landscape genetics methods to assess the genetic structure of the striped skunk (Mephitis mephitis, which is a frequent vector of rabies, a lethal zoonosis of great concern for public health. Our main objective was to identify landscape elements shaping the genetic structure of this species in Southern Québec, Canada, in an area where the raccoon rabies variant has been detected. We hypothesised that geographic distance and landscape barriers, such as highways and major rivers, would modulate genetic structure. We genotyped a total of 289 individuals sampled across a large area (22,000 km² at nice microsatellite loci. Genetic structure analyses identified a single genetic cluster in the study area. Major rivers and highways, however, influenced the genetic relatedness among sampled individuals. Sex-specific analyses revealed that rivers significantly limited dispersal only for females while highways only had marginal effects. Rivers and highways did not significantly affect male dispersal. These results support the contention that female skunks are more philopatric than males. Overall, our results suggest that the effects of major rivers and highways on dispersal are sex-specific and rather weak and are thus unlikely to prevent the spread of rabies within and among striped skunk populations.

  9. GENETIC VARIABILITY ASSESSMENT OF FUSARIUM WILT PATHOGEN RACES AFFECTING CHICKPEA USING MOLECULAR MARKERS

    Directory of Open Access Journals (Sweden)

    Jhuma Datta

    2013-06-01

    Full Text Available Genetic diversity in Chickpea wilt pathogen has been characterized using 14 isolates of Fusarium oxysporum f. sp. ciceri (foc collected from major pulse growing regions of India. Out of 247 bands produced by 24 Random Amplified Polymorphic DNA (RAPD primers in Foc isolates, 210 (85% were polymorphic. A maximum of 14 amplicons were generated by primer OPF 05 whereas minimum 7 amplicons were generated by primer K7. A total of 24 alleles were produced by twelve simple sequence repeat (SSR primers with an average of two alleles per marker in foc isolates. The maximum number of 4 alleles was obtained with primer SSR 12. SSR amplicon size ranged from 100 to 400 bp. The Unweighted Pair Group Method with Arithmetic Mean (UPGMA cluster analysis based on RAPD and SSR profiles grouped the fourteen foc isolates into four major clusters. The universal Inter Transcribed Spacer (ITS primer pair amplified 630 bp bands in all fourteen foc isolates while significant length polymorphism was obtained only when analysed by restriction digestion with EcoRI and MspI enzymes. The cluster analysis of ITS-RFLP grouped all 14 Foc isolates into three major clusters. The cluster analysis using RAPD, SSR and ITS-RFLP markers show the grouping of Fusarium isolates strictly according to their cultural characteristics and degree of pathogenicity and not the geographical origin. This information will be helpful for pathologists and plant breeders to design effective resistance breeding programs in chickpea taking into account the diversity in wilt pathogen.

  10. Genetic variation of the serotonin 2a receptor affects hippocampal novelty processing in humans.

    Directory of Open Access Journals (Sweden)

    Björn H Schott

    Full Text Available Serotonin (5-hydroxytryptamine, 5-HT is an important neuromodulator in learning and memory processes. A functional genetic polymorphism of the 5-HT 2a receptor (5-HTR2a His452Tyr, which leads to blunted intracellular signaling, has previously been associated with explicit memory performance in several independent cohorts, but the underlying neural mechanisms are thus far unclear. The human hippocampus plays a critical role in memory, particularly in the detection and encoding of novel information. Here we investigated the relationship of 5-HTR2a His452Tyr and hippocampal novelty processing in 41 young, healthy subjects using functional magnetic resonance imaging (fMRI. Participants performed a novelty/familiarity task with complex scene stimuli, which was followed by a delayed recognition memory test 24 hours later. Compared to His homozygotes, Tyr carriers exhibited a diminished hippocampal response to novel stimuli and a higher tendency to judge novel stimuli as familiar during delayed recognition. Across the cohort, the false alarm rate during delayed recognition correlated negatively with the hippocampal novelty response. Our results suggest that previously reported effects of 5-HTR2a on explicit memory performance may, at least in part, be mediated by alterations of hippocampal novelty processing.

  11. Genetic variation of the serotonin 2a receptor affects hippocampal novelty processing in humans.

    Science.gov (United States)

    Schott, Björn H; Seidenbecher, Constanze I; Richter, Sylvia; Wüstenberg, Torsten; Debska-Vielhaber, Grazyna; Schubert, Heike; Heinze, Hans-Jochen; Richardson-Klavehn, Alan; Düzel, Emrah

    2011-01-18

    Serotonin (5-hydroxytryptamine, 5-HT) is an important neuromodulator in learning and memory processes. A functional genetic polymorphism of the 5-HT 2a receptor (5-HTR2a His452Tyr), which leads to blunted intracellular signaling, has previously been associated with explicit memory performance in several independent cohorts, but the underlying neural mechanisms are thus far unclear. The human hippocampus plays a critical role in memory, particularly in the detection and encoding of novel information. Here we investigated the relationship of 5-HTR2a His452Tyr and hippocampal novelty processing in 41 young, healthy subjects using functional magnetic resonance imaging (fMRI). Participants performed a novelty/familiarity task with complex scene stimuli, which was followed by a delayed recognition memory test 24 hours later. Compared to His homozygotes, Tyr carriers exhibited a diminished hippocampal response to novel stimuli and a higher tendency to judge novel stimuli as familiar during delayed recognition. Across the cohort, the false alarm rate during delayed recognition correlated negatively with the hippocampal novelty response. Our results suggest that previously reported effects of 5-HTR2a on explicit memory performance may, at least in part, be mediated by alterations of hippocampal novelty processing.

  12. Use of neuropathological tissue for molecular genetic studies: parameters affecting DNA extraction and polymerase chain reaction.

    Science.gov (United States)

    Kösel, S; Graeber, M B

    1994-01-01

    Nuclear and mitochondrial DNA were extracted from gray matter of human cerebral cortex which had either been formalin-fixed and embedded into paraffin or stored in formalin for up to 26 years. Extraction conditions were optimized for proteinase K digestion, i.e., enzyme concentration, digestion temperature and incubation time. Using the polymerase chain reaction (PCR), DNA was successfully amplified from archival material and sequenced employing a direct nonradioactive cycle sequencing protocol. In general, tissue embedded into paraffin following brief fixation in formalin gave good quantitative results, i.e., up to 1 microgram DNA/mg tissue were extracted. This yield was at least one order of magnitude higher than that obtained with tissue stored in formalin. However, paraffin-embedded neuropathological material was found to contain an as-yet-unidentified PCR inhibitor, and a deleterious effect of long-term fixation in unbuffered low-grade formalin was clearly detectable. Importantly, both paraffin-embedded tissue blocks and human brain that had been stored in formalin for many years yielded DNA sufficient for qualitative analysis. The implications of these findings for the use of neuropathological material in molecular genetic studies are discussed.

  13. Is the genetic landscape of the deep subsurface biosphere affected by viruses?

    Directory of Open Access Journals (Sweden)

    Rika E Anderson

    2011-11-01

    Full Text Available Viruses are powerful manipulators of microbial diversity, biogeochemistry, and evolution in the marine environment. Viruses can directly influence the genetic capabilities and the fitness of their hosts through the use of fitness factors and through horizontal gene transfer. However, the impact of viruses on microbial ecology and evolution is often overlooked in studies of the deep subsurface biosphere. Subsurface habitats connected to hydrothermal vent systems are characterized by constant fluid flux, dynamic environmental variability and high microbial diversity. In such conditions, high adaptability would be an evolutionary asset, and the potential for frequent host-virus interactions would be high, increasing the likelihood that cellular hosts could acquire novel functions. Here, we review evidence supporting this hypothesis, including data indicating that microbial communities in subsurface hydrothermal fluids are exposed to a high rate of viral infection, as well as viral metagenomic data suggesting that the vent viral assemblage is particularly enriched in genes that facilitate horizontal gene transfer and host adaptability. Therefore, viruses are likely to play a crucial role in facilitating adaptability to the extreme conditions of these regions of the deep subsurface biosphere. We also discuss how these results might apply to other regions of the deep subsurface, where the nature of virus-host interactions would be altered, but possibly no less important, compared to more energetic hydrothermal systems.

  14. Is the genetic landscape of the deep subsurface biosphere affected by viruses?

    Science.gov (United States)

    Anderson, Rika E; Brazelton, William J; Baross, John A

    2011-01-01

    Viruses are powerful manipulators of microbial diversity, biogeochemistry, and evolution in the marine environment. Viruses can directly influence the genetic capabilities and the fitness of their hosts through the use of fitness factors and through horizontal gene transfer. However, the impact of viruses on microbial ecology and evolution is often overlooked in studies of the deep subsurface biosphere. Subsurface habitats connected to hydrothermal vent systems are characterized by constant fluid flux, dynamic environmental variability, and high microbial diversity. In such conditions, high adaptability would be an evolutionary asset, and the potential for frequent host-virus interactions would be high, increasing the likelihood that cellular hosts could acquire novel functions. Here, we review evidence supporting this hypothesis, including data indicating that microbial communities in subsurface hydrothermal fluids are exposed to a high rate of viral infection, as well as viral metagenomic data suggesting that the vent viral assemblage is particularly enriched in genes that facilitate horizontal gene transfer and host adaptability. Therefore, viruses are likely to play a crucial role in facilitating adaptability to the extreme conditions of these regions of the deep subsurface biosphere. We also discuss how these results might apply to other regions of the deep subsurface, where the nature of virus-host interactions would be altered, but possibly no less important, compared to more energetic hydrothermal systems.

  15. Genetic variation and structure in remnant population of critically endangered Melicope zahlbruckneri

    Science.gov (United States)

    Raji, J. A.; Atkinson, Carter T.

    2016-01-01

    The distribution and amount of genetic variation within and between populations of plant species are important for their adaptability to future habitat changes and also critical for their restoration and overall management. This study was initiated to assess the genetic status of the remnant population of Melicope zahlbruckneri–a critically endangered species in Hawaii, and determine the extent of genetic variation and diversity in order to propose valuable conservation approaches. Estimated genetic structure of individuals based on molecular marker allele frequencies identified genetic groups with low overall differentiation but identified the most genetically diverse individuals within the population. Analysis of Amplified Fragment Length Polymorphic (AFLP) marker loci in the population based on Bayesian model and multivariate statistics classified the population into four subgroups. We inferred a mixed species population structure based on Bayesian clustering and frequency of unique alleles. The percentage of Polymorphic Fragment (PPF) ranged from 18.8 to 64.6% for all marker loci with an average of 54.9% within the population. Inclusion of all surviving M. zahlbruckneri trees in future restorative planting at new sites are suggested, and approaches for longer term maintenance of genetic variability are discussed. To our knowledge, this study represents the first report of molecular genetic analysis of the remaining population of M. zahlbruckneri and also illustrates the importance of genetic variability for conservation of a small endangered population.

  16. Peer Observed Interaction and Structured Evaluation (POISE): a Canadian experience with peer supervision for genetic counselors.

    Science.gov (United States)

    Goldsmith, Claire; Honeywell, Christina; Mettler, Gabrielle

    2011-04-01

    Peer observation, while often used in other professions, has not been formally applied in genetic counseling. The objective of this study was to pilot a method of peer evaluation whereby genetic counselors observed, and were observed by, each other during patient interaction. All of the available genetic counselors participated in both rounds of the pilot study (six in round one, seven in round two). The genetic counselors that observed the session used an observation room. Most participants reported learning a new skill. Sensitivity to, and comfort with, the feedback process improved. We conclude that Peer-Observed Interaction and Structured Evaluation (POISE) provides an opportunity to refresh counseling approaches and develop feedback skills without causing undue team discord. This new approach to peer supervision in genetic counselling offers a live observation approach for genetic counsellor supervision.

  17. Evolution of antibiotic resistance is linked to any genetic mechanism affecting bacterial duration of carriage

    Science.gov (United States)

    Lehtinen, Sonja; Blanquart, François; Croucher, Nicholas J.; Turner, Paul; Lipsitch, Marc; Fraser, Christophe

    2017-01-01

    Understanding how changes in antibiotic consumption affect the prevalence of antibiotic resistance in bacterial pathogens is important for public health. In a number of bacterial species, including Streptococcus pneumoniae, the prevalence of resistance has remained relatively stable despite prolonged selection pressure from antibiotics. The evolutionary processes allowing the robust coexistence of antibiotic sensitive and resistant strains are not fully understood. While allelic diversity can be maintained at a locus by direct balancing selection, there is no evidence for such selection acting in the case of resistance. In this work, we propose a mechanism for maintaining coexistence at the resistance locus: linkage to a second locus that is under balancing selection and that modulates the fitness effect of resistance. We show that duration of carriage plays such a role, with long duration of carriage increasing the fitness advantage gained from resistance. We therefore predict that resistance will be more common in strains with a long duration of carriage and that mechanisms maintaining diversity in duration of carriage will also maintain diversity in antibiotic resistance. We test these predictions in S. pneumoniae and find that the duration of carriage of a serotype is indeed positively correlated with the prevalence of resistance in that serotype. These findings suggest heterogeneity in duration of carriage is a partial explanation for the coexistence of sensitive and resistant strains and that factors determining bacterial duration of carriage will also affect the prevalence of resistance. PMID:28096340

  18. Pharmacological and Genetic Modulation of REV-ERB Activity and Expression Affects Orexigenic Gene Expression.

    Directory of Open Access Journals (Sweden)

    Ariadna Amador

    Full Text Available The nuclear receptors REV-ERBα and REV-ERBβ are transcription factors that play pivotal roles in the regulation of the circadian rhythm and various metabolic processes. The circadian rhythm is an endogenous mechanism, which generates entrainable biological changes that follow a 24-hour period. It regulates a number of physiological processes, including sleep/wakeful cycles and feeding behaviors. We recently demonstrated that REV-ERB-specific small molecules affect sleep and anxiety. The orexinergic system also plays a significant role in mammalian physiology and behavior, including the regulation of sleep and food intake. Importantly, orexin genes are expressed in a circadian manner. Given these overlaps in function and circadian expression, we wanted to determine whether the REV-ERBs might regulate orexin. We found that acute in vivo modulation of REV-ERB activity, with the REV-ERB-specific synthetic ligand SR9009, affects the circadian expression of orexinergic genes in mice. Long term dosing with SR9009 also suppresses orexinergic gene expression in mice. Finally, REV-ERBβ-deficient mice present with increased orexinergic transcripts. These data suggest that the REV-ERBs may be involved in the repression of orexinergic gene expression.

  19. Dispersal capacity predicts both population genetic structure and species richness in reef fishes.

    Science.gov (United States)

    Riginos, Cynthia; Buckley, Yvonne M; Blomberg, Simon P; Treml, Eric A

    2014-07-01

    Dispersal is a fundamental species characteristic that should directly affect both rates of gene flow among spatially distributed populations and opportunities for speciation. Yet no single trait associated with dispersal has been demonstrated to affect both micro- and macroevolutionary patterns of diversity across a diverse biological assemblage. Here, we examine patterns of genetic differentiation and species richness in reef fishes, an assemblage of over 7,000 species comprising approximately one-third of the extant bony fishes and over one-tenth of living vertebrates. In reef fishes, dispersal occurs primarily during a planktonic larval stage. There are two major reproductive and parental investment syndromes among reef fishes, and the differences between them have implications for dispersal: (1) benthic guarding fishes lay negatively buoyant eggs, typically guarded by the male parent, and from these eggs hatch large, strongly swimming larvae; in contrast, (2) pelagic spawning fishes release small floating eggs directly into the water column, which drift unprotected before small weakly swimming larvae hatch. Using phylogenetic comparative methods, we show that benthic guarders have significantly greater population structure than pelagic spawners and additionally that taxonomic families of benthic guarders are more species rich than families of pelagic spawners. Our findings provide a compelling case for the continuity between micro- and macroevolutionary processes of biological diversification and underscore the importance of dispersal-related traits in influencing the mode and tempo of evolution.

  20. Genetic and environmental influences on the longitudinal structure of neuroticism: a trait-state approach.

    Science.gov (United States)

    Laceulle, Odilia M; Ormel, Johan; Aggen, Steven H; Neale, Michael C; Kendler, Kenneth S

    2013-09-01

    In this study, we sought to elucidate both stable and changing factors in the longitudinal structure of neuroticism using a behavioral genetic twin design. We tested whether this structure is best accounted for by a trait-state, a trait-only, or a state-only model. In line with classic views on personality, our results revealed substantial trait and state components. The contributions of genetic and environmental influences on the trait component were nearly equal, whereas environmental influences on the state component were much stronger than genetic influences. Although the overall findings were similar for older and younger twins, genetic influences on the trait component were stronger than environmental influences in younger twins, whereas the opposite was found for older twins. The current findings help to elucidate how the complex interplay between genetic and environmental factors contributes to both stability and change in neuroticism.

  1. Genetic structure of the carnivorous plant Pinguicula moranensis (Lentibulariaceae) on the transvolcanic Mexican belt.

    Science.gov (United States)

    Alcalá, Raúl E; Domínguez, César A

    2012-06-01

    Most species of Pinguicula present a montane distribution with populations located at high altitudes. In this context, we proposed that populations of Pinguicula species could be genetically differentiated even at a local scale. This study supported that prediction, as a RAPD-based analysis of molecular variance revealed a high degree of genetic structure (Φ (st) = 0.157, P = 0.001) and low gene flow (Nm = 1.0) among four central populations of Pinguicula moranensis in Mexico, with a maximum geographic separation of about 140 km. The four populations also exhibited high levels of genetic diversity (mean Nei's genetic diversity = 0.3716; % polymorphism = 95.45%). The evolutionary implications of the genetic structure found in P. moranensis for other species in the genus are discussed in the context of the naturally fragmented distribution and a set of life history traits shared by most Pinguicula species that could promote geographic isolation and limited gene flow.

  2. Population genetic structure of a three-host tick, Amblyomma dissimile, in eastern Venezuela.

    Science.gov (United States)

    Lampo, M; Rangel, Y; Mata, A

    1998-12-01

    Patterns of genetic variation for the tick Amblyomma dissimile were analyzed from a total of 200 ticks collected on 12 toads (Bufo marinus), 14 snakes (Boa constrictor), and 8 lizards (Iguana iguana) at 11 localities. The analyses were performed on electrophoretic data from 8 isozyme loci. Mean heterozygosity per locus was 6% (+/-3.1) per population. Differences in allelic frequencies among ticks from different individual hosts were the major source of genetic variability in this study. Host species was a smaller source of genetic variation. Genetic distances between localities varied according to which host species was present in each locality, and these appeared to be related to the extent of habitat overlap between host species. The smallest genetic distances between samples from different host species were recorded for I. iguana and B. constrictor. In contrast, the genetic distances between tick samples from B. marinus and either of the reptile species were significantly larger than between tick samples from this amphibian species. Ecological variables or the geographic distance did not explain the local patterns of differentiation observed in A. dissimile. Major genetic differences between island and mainland sites (0.03702) suggested an association between genetic distances and geographic isolation. The consistency between patterns of genetic variation and those of host home range overlap suggests that host dispersion is the main force structuring the genetic variation within this tick species.

  3. Population Structure, Genetic Variation, and Linkage Disequilibrium in Perennial Ryegrass Populations Divergently Selected for Freezing Tolerance.

    Science.gov (United States)

    Kovi, Mallikarjuna Rao; Fjellheim, Siri; Sandve, Simen R; Larsen, Arild; Rudi, Heidi; Asp, Torben; Kent, Matthew Peter; Rognli, Odd Arne

    2015-01-01

    Low temperature is one of the abiotic stresses seriously affecting the growth of perennial ryegrass (Lolium perenne L.), and freezing tolerance is a complex trait of major agronomical importance in northern and central Europe. Understanding the genetic control of freezing tolerance would aid in the development of cultivars of perennial ryegrass with improved adaptation to frost. The plant material investigated in this study was an experimental synthetic population derived from pair-crosses among five European perennial ryegrass genotypes, representing adaptations to a range of climatic conditions across Europe. A total number of 80 individuals (24 of High frost [HF]; 29 of Low frost [LF], and 27 of Unselected [US]) from the second generation of the two divergently selected populations and an unselected (US) control population were genotyped using 278 genome-wide SNPs derived from perennial ryegrass transcriptome sequences. Our studies investigated the genetic diversity among the three experimental populations by analysis of molecular variance and population structure, and determined that the HF and LF populations are very divergent after selection for freezing tolerance, whereas the HF and US populations are more similar. Linkage disequilibrium (LD) decay varied across the seven chromosomes and the conspicuous pattern of LD between the HF and LF population confirmed their divergence in freezing tolerance. Furthermore, two F st outlier methods; finite island model (fdist) by LOSITAN and hierarchical structure model using ARLEQUIN, both detected six loci under directional selection. These outlier loci are most probably linked to genes involved in freezing tolerance, cold adaptation, and abiotic stress. These six candidate loci under directional selection for freezing tolerance might be potential marker resources for breeding perennial ryegrass cultivars with improved freezing tolerance.

  4. Do Political Attitudes Affect Consumer Choice? Evidence from a Large-Scale Field Study with Genetically Modified Bread in Switzerland

    Directory of Open Access Journals (Sweden)

    Philipp Aerni

    2011-09-01

    Full Text Available Independent of the left-right model of ideological structure, genetically modified organisms (GMOs in food and agriculture are resented across the political spectrum in Switzerland. In the absence of any real experience with genetically modified (GM food but faced with continuous exposure to warning messages in the media, conditioned feelings related to such a politically sensitive product may have a significant influence on revealed consumer choice. In our large-scale field study, we examined this assumption by selling three types of bread labeled as ‘made with organic corn’, ‘made with genetically modified corn’ and ‘made with conventional corn’ respectively in five locations across Switzerland using different price scenarios and selling groups. Customers who decided to buy bread also received an envelope containing a questionnaire about their prior political attitude expressed through their voting decision in a national referendum on a five-year ban on GMOs in 2005. The results demonstrate that consumer purchase decisions are determined by contextual factors not captured by general political attitudes. Surprisingly, the mere presence of GM food did have a positive impact on overall sales. The assumption that consumers would feel turned off by the mere presence of GM food for political reasons can therefore be safely discarded.

  5. Population genetic structure and historical demography of Oratosquilla oratoria revealed by mitochondrial DNA sequences.

    Science.gov (United States)

    Zhang, D; Ding, Ge; Ge, B; Zhang, H; Tang, B

    2012-12-01

    Genetic diversity, population genetic structure and molecular phylogeographic pattern of mantis shrimp Oratosquilla oratoria in Bohai Sea and South China Sea were analyzed by mitochondrial DNA sequences. Nucleotide and haplotype diversities were 0.00409-0.00669 and 0.894-0.953 respectively. Neighbor-Joining phylogenetic tree clustered two distinct lineages. Both phylogenetic tree and median-joining network showed the consistent genetic structure corresponding to geographical distribution. Mismatch distributions, negative neutral test and "star-like" network supported a sudden population expansion event. And the time was estimated about 44000 and 50000 years ago.

  6. Genetic structure of arbuscular mycorrhizal populations in fallow and cultivated soils

    DEFF Research Database (Denmark)

    Rosendahl, Søren; Matzen, Hans

    2008-01-01

    protein-coding genes GmFOX2 and GmTOR2 were used as co-dominant genetic markers together with the large subunit (LSU) rDNA. The gene diversity and genetic structure of Glomus mosseae, Glomus geosporum and Glomus caledonium were compared within and between the fields. •  Spores of G. caledonium and G...... be attributed to variation between plots rather than subplots, suggesting that the lack of soil cultivation resulted in more heterogeneous population genetic structures. Analyses of haplotype networks of the fungi suggested a subdivision of G. mosseae haplotypes between the two fields, whereas no such division...

  7. Assessment of genetic diversity and population structure of Vietnamese indigenous cattle populations by microsatellites

    DEFF Research Database (Denmark)

    Pham, Lan Doan; Do, Duy Ngoc; Binh, Nguyen Trong;

    2013-01-01

    geographic distances. Structure analysis indicated five homogeneous clusters. The Brahman, Lang Son, Ha Giang and U Dau Riu cattle were assigned to independent clusters while Nghe An, Thanh Hoa and Phu Yen cattle were grouped in a single cluster. We conclude that Vietnamese indigenous cattle have high levels...... of genetic diversity and distinct genetic structures. Based on these results, we recommend that for conservation homogenous populations (Nghe An, Thanh Hoa and Phu Yen) can be grouped to reduce costs and U Dau Riu, Lang Son and Ha Giang populations should be conserved separately to avoid loss of genetic...

  8. Genetic variation of the RASGRF1 regulatory region affects human hippocampus-dependent memory

    Directory of Open Access Journals (Sweden)

    Adriana eBarman

    2014-04-01

    Full Text Available The guanine nucleotide exchange factor RASGRF1 is an important regulator of intracellular signaling and neural plasticity in the brain. RASGRF1-deficient mice exhibit a complex phenotype with learning deficits and ocular abnormalities. Also in humans, a genome-wide association study has identified the single nucleotide polymorphism (SNP rs8027411 in the putative transcription regulatory region of RASGRF1 as a risk variant of myopia. Here we aimed to assess whether, in line with the RASGRF1 knockout mouse phenotype, rs8027411 might also be associated with human memory function. We performed computer-based neuropsychological learning experiments in two independent cohorts of young, healthy participants. Tests included the Verbal Learning and Memory Test (VLMT and the logical memory section of the Wechsler Memory Scale (WMS. Two sub-cohorts additionally participated in functional magnetic resonance imaging (fMRI studies of hippocampus function. 119 participants performed a novelty encoding task that had previously been shown to engage the hippocampus, and 63 subjects participated in a reward-related memory encoding study. RASGRF1 rs8027411 genotype was indeed associated with memory performance in an allele dosage-dependent manner, with carriers of the T allele (i.e. the myopia risk allele showing better memory performance in the early encoding phase of the VLMT and in the recall phase of the WMS logical memory section. In fMRI, T allele carriers exhibited increased hippocampal activation during presentation of novel images and during encoding of pictures associated with monetary reward. Taken together, our results provide evidence for a role of the RASGRF1 gene locus in hippocampus-dependent memory and, along with the previous association with myopia, point towards pleitropic effects of RASGRF1 genetic variations on complex neural function in humans.

  9. Does wheat genetically modified for disease resistance affect root-colonizing pseudomonads and arbuscular mycorrhizal fungi?

    Directory of Open Access Journals (Sweden)

    Joana Beatrice Meyer

    Full Text Available This study aimed to evaluate the impact of genetically modified (GM wheat with introduced pm3b mildew resistance transgene, on two types of root-colonizing microorganisms, namely pseudomonads and arbuscular mycorrhizal fungi (AMF. Our investigations were carried out in field trials over three field seasons and at two locations. Serial dilution in selective King's B medium and microscopy were used to assess the abundance of cultivable pseudomonads and AMF, respectively. We developed a denaturing gradient gel electrophoresis (DGGE method to characterize the diversity of the pqqC gene, which is involved in Pseudomonas phosphate solubilization. A major result was that in the first field season Pseudomonas abundances and diversity on roots of GM pm3b lines, but also on non-GM sister lines were different from those of the parental lines and conventional wheat cultivars. This indicates a strong effect of the procedures by which these plants were created, as GM and sister lines were generated via tissue cultures and propagated in the greenhouse. Moreover, Pseudomonas population sizes and DGGE profiles varied considerably between individual GM lines with different genomic locations of the pm3b transgene. At individual time points, differences in Pseudomonas and AMF accumulation between GM and control lines were detected, but they were not consistent and much less pronounced than differences detected between young and old plants, different conventional wheat cultivars or at different locations and field seasons. Thus, we conclude that impacts of GM wheat on plant-beneficial root-colonizing microorganisms are minor and not of ecological importance. The cultivation-independent pqqC-DGGE approach proved to be a useful tool for monitoring the dynamics of Pseudomonas populations in a wheat field and even sensitive enough for detecting population responses to altered plant physiology.

  10. Assessment of factors affecting Agrobacterium-mediated genetic transformation of the unicellular green alga, Chlorella vulgaris.

    Science.gov (United States)

    Cha, Thye San; Yee, Willy; Aziz, Ahmad

    2012-04-01

    The successful establishment of an Agrobacterium-mediated transformation method and optimisation of six critical parameters known to influence the efficacy of Agrobacterium T-DNA transfer in the unicellular microalga Chlorella vulgaris (UMT-M1) are reported. Agrobacterium tumefaciens strain LBA4404 harbouring the binary vector pCAMBIA1304 containing the gfp:gusA fusion reporter and a hygromycin phosphotransferase (hpt) selectable marker driven by the CaMV35S promoter were used for transformation. Transformation frequency was assessed by monitoring transient β-glucuronidase (GUS) expression 2 days post-infection. It was found that co-cultivation temperature at 24°C, co-cultivation medium at pH 5.5, 3 days of co-cultivation, 150 μM acetosyringone, Agrobacterium density of 1.0 units (OD(600)) and 2 days of pre-culture were optimum variables which produced the highest number of GUS-positive cells (8.8-20.1%) when each of these parameters was optimised individually. Transformation conducted with the combination of all optimal parameters above produced 25.0% of GUS-positive cells, which was almost a threefold increase from 8.9% obtained from un-optimised parameters. Evidence of transformation was further confirmed in 30% of 30 randomly-selected hygromycin B (20 mg L(-1)) resistant colonies by polymerase chain reaction (PCR) using gfp:gusA and hpt-specific primers. The developed transformation method is expected to facilitate the genetic improvement of this commercially-important microalga.

  11. Using forensic microsatellites to decipher the genetic structure of linguistic and geographic isolates: A survey in the eastern Italian Alps.

    Science.gov (United States)

    Montinaro, Francesco; Boschi, Ilaria; Trombetta, Federica; Merigioli, Sara; Anagnostou, Paolo; Battaggia, Cinzia; Capocasa, Marco; Crivellaro, Federica; Destro Bisol, Giovanni; Coia, Valentina

    2012-12-01

    The study of geographically and/or linguistically isolated populations could represent a potential area of interaction between population and forensic genetics. These investigations may be useful to evaluate the suitability of loci which have been selected using forensic criteria for bio-anthropological studies. At the same time, they give us an opportunity to evaluate the efficiency of forensic tools for parentage testing in groups with peculiar allele frequency profiles. Within the frame of a long-term project concerning Italian linguistic isolates, we studied 15 microsatellite loci (Identifiler kit) comprising the CODIS panel in 11 populations from the north-eastern Italian Alps (Veneto, Trentino and Friuli Venezia Giulia regions). All our analyses of inter-population differentiation highlight the genetic distinctiveness of most Alpine populations comparing them either to each other or with large and non-isolated Italian populations. Interestingly, we brought to light some aspects of population genetic structure which cannot be detected using unilinear polymorphisms. In fact, the analysis of genotypic disequilibrium between loci detected signals of population substructure when all the individuals of Alpine populations are pooled in a single group. Furthermore, despite the relatively low number of loci analyzed, genetic differentiation among Alpine populations was detected at individual level using a Bayesian method to cluster multilocus genotypes. Among the various populations studied, the four linguistic minorities (Fassa Valley, Luserna, Sappada and Sauris) showed the most pronounced diversity and signatures of a peculiar genetic ancestry. Finally, we show that database replacement may affect estimates of probability of paternity even when the local database is replaced by another based on populations which share a common genetic background but which differ in their demographic history. These findings point to the importance of considering the demographic and

  12. Ocean circulation model predicts high genetic structure observed in a long-lived pelagic developer.

    Science.gov (United States)

    Sunday, J M; Popovic, I; Palen, W J; Foreman, M G G; Hart, M W

    2014-10-01

    Understanding the movement of genes and individuals across marine seascapes is a long-standing challenge in marine ecology and can inform our understanding of local adaptation, the persistence and movement of populations, and the spatial scale of effective management. Patterns of gene flow in the ocean are often inferred based on population genetic analyses coupled with knowledge of species' dispersive life histories. However, genetic structure is the result of time-integrated processes and may not capture present-day connectivity between populations. Here, we use a high-resolution oceanographic circulation model to predict larval dispersal along the complex coastline of western Canada that includes the transition between two well-studied zoogeographic provinces. We simulate dispersal in a benthic sea star with a 6-10 week pelagic larval phase and test predictions of this model against previously observed genetic structure including a strong phylogeographic break within the zoogeographical transition zone. We also test predictions with new genetic sampling in a site within the phylogeographic break. We find that the coupled genetic and circulation model predicts the high degree of genetic structure observed in this species, despite its long pelagic duration. High genetic structure on this complex coastline can thus be explained through ocean circulation patterns, which tend to retain passive larvae within 20-50 km of their parents, suggesting a necessity for close-knit design of Marine Protected Area networks.

  13. Demography and genetic structure of a recovering grizzly bear population

    Science.gov (United States)

    Kendall, K.C.; Stetz, J.B.; Boulanger, J.; Macleod, A.C.; Paetkau, David; White, Gary C.

    2009-01-01

    Grizzly bears (brown bears; Ursus arctos) are imperiled in the southern extent of their range worldwide. The threatened population in northwestern Montana, USA, has been managed for recovery since 1975; yet, no rigorous data were available to monitor program success. We used data from a large noninvasive genetic sampling effort conducted in 2004 and 33 years of physical captures to assess abundance, distribution, and genetic health of this population. We combined data from our 3 sampling methods (hair trap, bear rub, and physical capture) to construct individual bear encounter histories for use in Huggins-Pledger closed mark-recapture models. Our population estimate, N?? = 765 (95% CI = 715-831) was more than double the existing estimate derived from sightings of females with young. Based on our results, the estimated known, human-caused mortality rate in 2004 was 4.6% (95% CI = 4.2-4.9%), slightly above the 4% considered sustainable; however, the high proportion of female mortalities raises concern. We used location data from telemetry, confirmed sightings, and genetic sampling to estimate occupied habitat. We found that grizzly bears occupied 33,480 km2 in the Northern Continental Divide Ecosystem (NCDE) during 1994-2007, including 10,340 km beyond the Recovery Zone. We used factorial correspondence analysis to identify potential barriers to gene flow within this population. Our results suggested that genetic interchange recently increased in areas with low gene flow in the past; however, we also detected evidence of incipient fragmentation across the major transportation corridor in this ecosystem. Our results suggest that the NCDE population is faring better than previously thought, and they highlight the need for a more rigorous monitoring program.

  14. How Obstacles Perturb Population Fronts and Alter Their Genetic Structure.

    Directory of Open Access Journals (Sweden)

    Wolfram Möbius

    2015-12-01

    Full Text Available As populations spread into new territory, environmental heterogeneities can shape the population front and genetic composition. We focus here on the effects of an important building block of heterogeneous environments, isolated obstacles. With a combination of experiments, theory, and simulation, we show how isolated obstacles both create long-lived distortions of the front shape and amplify the effect of genetic drift. A system of bacteriophage T7 spreading on a spatially heterogeneous Escherichia coli lawn serves as an experimental model system to study population expansions. Using an inkjet printer, we create well-defined replicates of the lawn and quantitatively study the population expansion of phage T7. The transient perturbations of the population front found in the experiments are well described by a model in which the front moves with constant speed. Independent of the precise details of the expansion, we show that obstacles create a kink in the front that persists over large distances and is insensitive to the details of the obstacle's shape. The small deviations between experimental findings and the predictions of the constant speed model can be understood with a more general reaction-diffusion model, which reduces to the constant speed model when the obstacle size is large compared to the front width. Using this framework, we demonstrate that frontier genotypes just grazing the side of an isolated obstacle increase in abundance, a phenomenon we call 'geometry-enhanced genetic drift', complementary to the founder effect associated with spatial bottlenecks. Bacterial range expansions around nutrient-poor barriers and stochastic simulations confirm this prediction. The effect of the obstacle on the genealogy of individuals at the front is characterized by simulations and rationalized using the constant speed model. Lastly, we consider the effect of two obstacles on front shape and genetic composition of the population illuminating the

  15. Aphid–parasitoid community structure on genetically modified wheat

    OpenAIRE

    2011-01-01

    Since the introduction of genetically modified (GM) plants, one of the main concerns has been their potential effect on non-target insects. Many studies have looked at GM plant effects on single non-target herbivore species or on simple herbivore–natural enemy food chains. Agro-ecosystems, however, are characterized by numerous insect species which are involved in complex interactions, forming food webs. In this study, we looked at transgenic disease-resistant wheat (Triticum aestivum) and it...

  16. Nortriptyline mediates behavioral effects without affecting hippocampal cytogenesis in a genetic rat depression model

    DEFF Research Database (Denmark)

    Petersén, Asa; Wörtwein, Gitta; Gruber, Susanne H M

    2009-01-01

    A prevailing hypothesis is that neurogenesis is reduced in depression and that the common mechanism for antidepressant treatments is to increase it in adult hippocampus. Reduced neurogenesis has been shown in healthy rats exposed to stress, but it has not yet been demonstrated in depressed patients....... Emerging studies now indicate that selective serotonin reuptake inhibitors can, exert behavioral effects without affecting neurogenesis in mice. Here we extend our previous findings demonstrating that the number of BrdU positive cells in hippocampus was significantly higher in a rat model of depression....... These results strengthen the arguments against hypothesis of neurogenesis being necessary in etiology of depression and as requisite for effects of antidepressants, and illustrate the importance of using a disease model and not healthy animals to assess effects of potential therapies for major depressive...

  17. Structural brain network analysis in families multiply affected with bipolar I disorder

    NARCIS (Netherlands)

    Forde, Natalie J.; O'Donoghue, Stefani; Scanlon, Cathy; Emsell, Louise; Chaddock, Chris; Leemans, Alexander; Jeurissen, Ben; Barker, Gareth J.; Cannon, Dara M.; Murray, Robin M.; McDonald, Colm

    2015-01-01

    Disrupted structural connectivity is associated with psychiatric illnesses including bipolar disorder (BP). Here we use structural brain network analysis to investigate connectivity abnormalities in multiply affected BP type I families, to assess the utility of dysconnectivity as a biomarker and its

  18. A century of landscape disturbance and urbanization of the San Francisco Bay region affects the present-day genetic diversity of the California Ridgway’s Rail (Rallus obsoletus obsoletus)

    Science.gov (United States)

    Wood, Dustin A.; Bui, Thuy-Vy D.; Overton, Cory T.; Vandergast, Amy; Casazza, Michael L.; Hull, Joshua M.; Takekawa, John Y.

    2016-01-01

    Fragmentation and loss of natural habitat have important consequences for wild populations and can negatively affect long-term viability and resilience to environmental change. Salt marsh obligate species, such as those that occupy the San Francisco Bay Estuary in western North America, occupy already impaired habitats as result of human development and modifications and are highly susceptible to increased habitat loss and fragmentation due to global climate change. We examined the genetic variation of the California Ridgway’s rail ( Rallus obsoletus obsoletus), a state and federally endangered species that occurs within the fragmented salt marsh of the San Francisco Bay Estuary. We genotyped 107 rails across 11 microsatellite loci and a single mitochondrial gene to estimate genetic diversity and population structure among seven salt marsh fragments and assessed demographic connectivity by inferring patterns of gene flow and migration rates. We found pronounced genetic structuring among four geographically separate genetic clusters across the San Francisco Bay. Gene flow analyses supported a stepping stone model of gene flow from south-to-north. However, contemporary gene flow among the regional embayments was low. Genetic diversity among occupied salt marshes and genetic clusters were not significantly different. However, we detected low effective population sizes and significantly high relatedness among individuals within salt marshes. Preserving genetic diversity and connectivity throughout the San Francisco Bay may require attention to salt marsh restoration in the Central Bay where habitat is both most limited and most fragmented. Incorporating periodic genetic sampling in to the management regime may help evaluate population trends and guide long-term management priorities.These data support the following in-press publication: Wood, D.A., Bui, T.D., Overton, C.T., Vandergast, A.G., Casazza, M.L., Hull, J.M., and Takekawa, J.Y. Conservation Genetics (2016

  19. Genetic Factors Affecting Susceptibility to Low Dose & Low Dose-Rate Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bedford, Joel

    2014-04-18

    Our laboratory has, among other things, developed and used the gamma H2AX focus assay and other chromosomal and cell killing assays to show that differences in this DNA double strand break (dsb) related response can be clearly and distinctly demonstrated for cells which are mildly hyper-radiosensitive such as those associated with A-T heterozygosity. We have found this level of mild hypersensitivity for cells from some 20 to 30 % of apparently normal individuals and from apparently normal parents of Retinoblastoma patients. We found significant differences in gene expression in somatic cells from unaffected parents of Rb patients as compared with normal controls, suggesting that these parents may harbor some as yet unidentified genetic abnormality. In other experiments we sought to determine the extent of differences in normal human cellular reaponses to radiation depending on their irradiation in 2D monolayer vs 3D organized acinar growth conditions. We exmined cell reproductive death, chromosomal aberration induction, and the levels of γ-H2AX foci in cells after single acute gamma-ray doses and immediately after 20 hours of irradiation at a dose rate of 0.0017 Gy/min. We found no significant differences in the dose-responses of these cells under the 2D or 3D growth conditions. While this does not mean such differences cannot occur in other situations, it does mean that they do not generally or necessarily occur. In another series of studies in collaboration with Dr Chuan Li, with supprt from this current grant. We reported a role for apoptotic cell death in promoting wound healing and tissue regeneration in mice. Apoptotic cells released growth signals that stimulated the proliferation of progenitor or stem cells. In yet another collaboration with Dr, B. Chen with funds from this grant, the relative radiosensitivity to cell killing as well as chromosomal instability of 13 DNA-PKcs site-directed mutant cell lines (defective at phosphorylation sites or kinase

  20. Factor analysis models for structuring covariance matrices of additive genetic effects: a Bayesian implementation

    Directory of Open Access Journals (Sweden)

    Gianola Daniel

    2007-09-01

    Full Text Available Abstract Multivariate linear models are increasingly important in quantitative genetics. In high dimensional specifications, factor analysis (FA may provide an avenue for structuring (covariance matrices, thus reducing the number of parameters needed for describing (codispersion. We describe how FA can be used to model genetic effects in the context of a multivariate linear mixed model. An orthogonal common factor structure is used to model genetic effects under Gaussian assumption, so that the marginal likelihood is multivariate normal with a structured genetic (covariance matrix. Under standard prior assumptions, all fully conditional distributions have closed form, and samples from the joint posterior distribution can be obtained via Gibbs sampling. The model and the algorithm developed for its Bayesian implementation were used to describe five repeated records of milk yield in dairy cattle, and a one common FA model was compared with a standard multiple trait model. The Bayesian Information Criterion favored the FA model.

  1. Population genetic structure of the prairie dog flea and plague vector, Oropsylla hirsuta.

    Science.gov (United States)

    Brinkerhoff, R Jory; Martin, Andrew P; Jones, Ryan T; Collinge, Sharon K

    2011-01-01

    Oropsylla hirsuta is the primary flea of the black-tailed prairie dog and is a vector of the plague bacterium, Yersinia pestis. We examined the population genetic structure of O. hirsuta fleas collected from 11 prairie dog colonies, 7 of which had experienced a plague-associated die-off in 1994. In a sample of 332 O. hirsuta collected from 226 host individuals, we detected 24 unique haplotype sequences in a 480 nucleotide segment of the cytochrome oxidase II gene. We found significant overall population structure but we did not detect a signal of isolation by distance, suggesting that O. hirsuta may be able to disperse relatively quickly at the scale of this study. All 7 colonies that were recently decimated by plague showed signs of recent population expansion, whereas 3 of the 4 plague-negative colonies showed haplotype patterns consistent with stable populations. These results suggest that O. hirsuta populations are affected by plague-induced prairie dog die-offs and that flea dispersal among prairie dog colonies may not be dependent exclusively on dispersal of prairie dogs. Re-colonization following plague events from plague-free refugia may allow for rapid flea population expansion following plague epizootics.

  2. Genetic deletion of dectin-1 does not affect the course of murine experimental colitis

    Directory of Open Access Journals (Sweden)

    Heinsbroek Sigrid EM

    2012-04-01

    Full Text Available Abstract Background It is believed that inflammatory bowel diseases (IBD result from an imbalance in the intestinal immune response towards the luminal microbiome. Dectin-1 is a widely expressed pattern recognition receptor that recognizes fungi and upon recognition it mediates cytokine responses and skewing of the adaptive immune system. Hence, dectin-1 may be involved in the pathogenesis of IBD. Methods We assessed the responses of dectin-1 deficient macrophages to the intestinal microbiota and determined the course of acute DSS and chronic Helicobacter hepaticus induced colitis in dectin-1 deficient mice. Results We show that the mouse intestinal microbiota contains fungi and the cytokine responses towards this microbiota were significantly reduced in dectin-1 deficient macrophages. However, in two different colitis models no significant differences in the course of inflammation were found in dectin-1 deficient mice compared to wild type mice. Conclusions Together our data suggest that, although at the immune cell level there is a difference in response towards the intestinal flora in dectin-1 deficient macrophages, during intestinal inflammation this response seems to be redundant since dectin-1 deficiency in mice does not affect intestinal inflammation in experimental colitis.

  3. Genetic and management factors affecting beef quality in grazing Hereford steers.

    Science.gov (United States)

    Melucci, L M; Panarace, M; Feula, P; Villarreal, E L; Grigioni, G; Carduza, F; Soria, L A; Mezzadra, C A; Arceo, M E; Papaleo Mazzucco, J; Corva, P M; Irurueta, M; Rogberg-Muñoz, A; Miquel, M C

    2012-12-01

    Attributes contributing to differences in beef quality of 206 Hereford steers finished on pasture were assessed. Beef quality traits evaluated were: Warner-Bratzler meat tenderness and muscle and fat color at one and seven days after slaughter and trained sensory panel traits (tenderness, juiciness, flavor, and marbling) at seven days. Molecular markers were CAPN1 316 and an SNP in exon 2 on the leptin gene (E2FB). Average daily live weight gain, ultrasound monthly backfat thickness gain and rib-eye area gain were estimated. Molecular markers effects on meat quality traits were analyzed by mixed models. Association of meat quality with post weaning growth traits was analyzed by canonical correlations. Muscle color and marbling were affected by CAPN1 316 and E2FB and Warner-Bratzler meat tenderness by the former. The results confirm that marker assisted selection for tenderness is advisable only when beef aging is a common practice. The most important sources of variation in tenderness and color of meat remained unaccounted for.

  4. Genetic Manipulation of Glycogen Allocation Affects Replicative Lifespan in E. coli.

    Science.gov (United States)

    Boehm, Alex; Arnoldini, Markus; Bergmiller, Tobias; Röösli, Thomas; Bigosch, Colette; Ackermann, Martin

    2016-04-01

    In bacteria, replicative aging manifests as a difference in growth or survival between the two cells emerging from division. One cell can be regarded as an aging mother with a decreased potential for future survival and division, the other as a rejuvenated daughter. Here, we aimed at investigating some of the processes involved in aging in the bacterium Escherichia coli, where the two types of cells can be distinguished by the age of their cell poles. We found that certain changes in the regulation of the carbohydrate metabolism can affect aging. A mutation in the carbon storage regulator gene, csrA, leads to a dramatically shorter replicative lifespan; csrA mutants stop dividing once their pole exceeds an age of about five divisions. These old-pole cells accumulate glycogen at their old cell poles; after their last division, they do not contain a chromosome, presumably because of spatial exclusion by the glycogen aggregates. The new-pole daughters produced by these aging mothers are born young; they only express the deleterious phenotype once their pole is old. These results demonstrate how manipulations of nutrient allocation can lead to the exclusion of the chromosome and limit replicative lifespan in E. coli, and illustrate how mutations can have phenotypic effects that are specific for cells with old poles. This raises the question how bacteria can avoid the accumulation of such mutations in their genomes over evolutionary times, and how they can achieve the long replicative lifespans that have recently been reported.

  5. Genetic Manipulation of Glycogen Allocation Affects Replicative Lifespan in E. coli.

    Directory of Open Access Journals (Sweden)

    Alex Boehm

    2016-04-01

    Full Text Available In bacteria, replicative aging manifests as a difference in growth or survival between the two cells emerging from division. One cell can be regarded as an aging mother with a decreased potential for future survival and division, the other as a rejuvenated daughter. Here, we aimed at investigating some of the processes involved in aging in the bacterium Escherichia coli, where the two types of cells can be distinguished by the age of their cell poles. We found that certain changes in the regulation of the carbohydrate metabolism can affect aging. A mutation in the carbon storage regulator gene, csrA, leads to a dramatically shorter replicative lifespan; csrA mutants stop dividing once their pole exceeds an age of about five divisions. These old-pole cells accumulate glycogen at their old cell poles; after their last division, they do not contain a chromosome, presumably because of spatial exclusion by the glycogen aggregates. The new-pole daughters produced by these aging mothers are born young; they only express the deleterious phenotype once their pole is old. These results demonstrate how manipulations of nutrient allocation can lead to the exclusion of the chromosome and limit replicative lifespan in E. coli, and illustrate how mutations can have phenotypic effects that are specific for cells with old poles. This raises the question how bacteria can avoid the accumulation of such mutations in their genomes over evolutionary times, and how they can achieve the long replicative lifespans that have recently been reported.

  6. The effect of close relatives on unsupervised Bayesian clustering algorithms in population genetic structure analysis.

    Science.gov (United States)

    Rodríguez-Ramilo, Silvia T; Wang, Jinliang

    2012-09-01

    The inference of population genetic structures is essential in many research areas in population genetics, conservation biology and evolutionary biology. Recently, unsupervised Bayesian clustering algorithms have been developed to detect a hidden population structure from genotypic data, assuming among others that individuals taken from the population are unrelated. Under this assumption, markers in a sample taken from a subpopulation can be considered to be in Hardy-Weinberg and linkage equilibrium. However, close relatives might be sampled from the same subpopulation, and consequently, might cause Hardy-Weinberg and linkage disequilibrium and thus bias a population genetic structure analysis. In this study, we used simulated and real data to investigate the impact of close relatives in a sample on Bayesian population structure analysis. We also showed that, when close relatives were identified by a pedigree reconstruction approach and removed, the accuracy of a population genetic structure analysis can be greatly improved. The results indicate that unsupervised Bayesian clustering algorithms cannot be used blindly to detect genetic structure in a sample with closely related individuals. Rather, when closely related individuals are suspected to be frequent in a sample, these individuals should be first identified and removed before conducting a population structure analysis.

  7. Genetic diversity and population structure of Plasmodium falciparum in Thailand, a low transmission country

    Directory of Open Access Journals (Sweden)

    Sitthi-amorn Chitr

    2009-07-01

    Full Text Available Abstract Background The population structure of the causative agents of human malaria, Plasmodium sp., including the most serious agent Plasmodium falciparum, depends on the local epidemiological and demographic situations, such as the incidence of infected people, the vector transmission intensity and migration of inhabitants (i.e. exchange between sites. Analysing the structure of P. falciparum populations at a large scale, such as continents, or with markers that are subject to non-neutral selection, can lead to a masking and misunderstanding of the effective process of transmission. Thus, knowledge of the genetic structure and organization of P. falciparum populations in a particular area with neutral genetic markers is needed to understand which epidemiological factors should be targeted for disease control. Limited reports are available on the population genetic diversity and structure of P. falciparum in Thailand, and this is of particular concern at the Thai-Myanmar and Thai-Cambodian borders, where there is a reported high resistance to anti-malarial drugs, for example mefloquine, with little understanding of its potential gene flow. Methods The diversity and genetic differentiation of P. falciparum populations were analysed using 12 polymorphic apparently neutral microsatellite loci distributed on eight of the 14 different chromosomes. Samples were collected from seven provinces in the western, eastern and southern parts of Thailand. Results A strong difference in the nuclear genetic structure was observed between most of the assayed populations. The genetic diversity was comparable to the intermediate level observed in low P. falciparum transmission areas (average HS = 0.65 ± 0.17, where the lowest is observed in South America and the highest in Africa. However, uniquely the Yala province, had only a single multilocus genotype present in all samples, leading to a strong geographic differentiation when compared to the other Thai

  8. Genetic diversity and population structure of endangered Aquilaria malaccensis revealed potential for future conservation.

    Science.gov (United States)

    Singh, Pradeep; Nag, Akshay; Parmar, Rajni; Ghosh, Sneha; Bhau, Brijmohan Singh; Sharma, Ram Kumar

    2015-12-01

    The endangered Aquilaria malaccensis,is an important plant with high economic values. Characterization of genetic diversity and population structure is receiving tremendous attention for effective conservation of genetic resources. Considering important repositories of biological diversity, the genetic relationships of 127 A. malaccensis accessions from 10 home gardens of three states of northeast India were assessed using amplified fragment length polymorphism (AFLP). Of the 1153 fragments amplified with four AFLP primer combinations, 916 (79.4%) were found to be polymorphic. Polymorphic information content (PIC) and marker index (MI) of each primer combination correlate significantly with the number of genotypes resolved. Overall, a high genetic diversity (avg. 71.85%) was recorded. Further, high gene flow (Nm: 3.37), low genetic differentiation (FST: 0.069) and high within population genetic variation (93%) suggests that most of the genetic diversity is restricted within population. Neighbour joining (NJ), principal coordinate analysis (PCoA) and Bayesian-based STRUCTURE grouped all the accessions in two clusters with significant intermixing between populations, therefore, revealed that two genetically distinct gene pools are operating in the A. malaccensis populations cultivated in home gardens. Based on the various diversity inferences, five diverse populations (JOH, FN, HLF, DHM and ITN) were identified, which can be potentially exploited to develop conservation strategies for A. malaccensis.

  9. Developmental, genetic and environmental factors affect the expression of flavonoid genes, enzymes and metabolites in strawberry fruits.

    Science.gov (United States)

    Carbone, Fabrizio; Preuss, Anja; De Vos, Ric C H; D'Amico, Eleonora; Perrotta, Gaetano; Bovy, Arnaud G; Martens, Stefan; Rosati, Carlo

    2009-08-01

    The influence of internal (genetic and developmental) and external (environmental) factors on levels of flavonoid gene transcripts, enzyme activity and metabolites was studied in fruit of six cultivated strawberry (Fragaria x ananassa Duch.) genotypes grown at two Italian locations. Gene expression and enzyme activity showed development- and genotype-associated patterns, revealing gene coordination. Analysis clarified the regulation mechanism of the hydroxylation status of the B-ring of the major flavonoid pools and pointed out examples of genotype-specific post-transcriptional regulation mechanisms and key steps of pathway regulation in strawberry fruits. Metabolite profiles were strongly affected by development and genotype. Flavan-3-ols, their proanthocyanidin (PA) derivatives and anthocyanins were the most abundant metabolites. Flavonol levels and PA-associated traits (epicatechin/catechin ratio and mean degree of polymerization) showed significant environmental effects. Multivariate and correlation analyses determined the relationships among genes, enzymes and metabolites. The combined molecular and biochemical information elucidated more in depth the role of genetic and environmental factors on flavonoid metabolism during strawberry fruit development, highlighting the major impact of developmental processes, and revealing genotype-dependent differences and environmental effects on PA-related traits.

  10. Genetic structure of the paternal lineage of the Roma people.

    Science.gov (United States)

    Pamjav, Horolma; Zalán, Andrea; Béres, Judit; Nagy, Melinda; Chang, Yuet Meng

    2011-05-01

    According to written sources, Roma (Romanies, Gypsies) arrived in the Balkans around 1,000 years ago from India and have subsequently spread through several parts of Europe. Genetic data, particularly from the Y chromosome, have supported this model, and can potentially refine it. We now provide an analysis of Y-chromosomal markers from five Roma and two non-Roma populations (N = 787) in order to investigate the genetic relatedness of the Roma population groups to one another, and to gain further understanding of their likely Indian origins, the genetic contribution of non-Roma males to the Roma populations, and the early history of their splits and migrations in Europe. The two main sources of the Roma paternal gene pool were identified as South Asian and European. The reduced diversity and expansion of H1a-M82 lineages in all Roma groups imply shared descent from a single paternal ancestor in the Indian subcontinent. The Roma paternal gene pool also contains a specific subset of E1b1b1a-M78 and J2a2-M67 lineages, implying admixture during early settlement in the Balkans and the subsequent influx into the Carpathian Basin. Additional admixture, evident in the low and moderate frequencies of typical European haplogroups I1-M253, I2a-P37.2, I2b-M223, R1b1-P25, and R1a1-M198, has occurred in a more population-specific manner.

  11. Detection of genetic association and functional polymorphisms of UGDH affecting milk production trait in Chinese Holstein cattle

    Directory of Open Access Journals (Sweden)

    Xu Qing

    2012-11-01

    Full Text Available Abstract Background We previously localized a quantitative trait locus (QTL on bovine chromosome 6 affecting milk production traits to a 1.5-Mb region between BMS483 and MNB-209 via genome scanning followed by fine mapping. Results Totally 15 genes were mapped within such linkage region through bioinformatic analysis of the cattle-human comparative map and bovine genome assembly. Of them, the UDP-glucose dehydrogenase (UGDH was suggested as a potential positional candidate gene for milk production traits based on its corresponding physiological and biochemical functions and genetic effects. By sequencing all the coding exons and the untranslated regions in UGDH with pooled DNA of 8 sires represented the separated families detected in our previous studies, a total of ten SNPs were identified and genotyped in 1417 Holstein cows of 8 separation families. Individual SNP-based association analysis revealed 4 significant associations of SNP Ex1-1, SNP Int3-1, SNP Int5-1, and SNP Ex12-3 with milk yield (P protein percentage (F=4.15; P=0.0418 and fat percentage (F=5.18~7.25; P=0.0072~0.0231. Finally, by using an in vitro expression assay, we demonstrated that the A allele of SNP Ex1-1 and T allele of SNP Ex11-1of UGDH significantly decreases the expression of UGDH by 68.0% at the RNA, and 50.1% at the protein level, suggesting that SNP Ex1-1 and Ex11-1 represent two functional polymorphisms affecting expression of UGDH and may partly contributed to the observed association of the gene with milk production traits in our samples. Conclusions Taken together, our findings strongly indicate that UGDH gene could be involved in genetic variation underlying the QTL for milk production traits.

  12. Genetic variants in ABCA1 promoter affect transcription activity and plasma HDL level in pigs.

    Science.gov (United States)

    Dang, Xiao-yong; Chu, Wei-wei; Shi, Heng-chuan; Yu, Shi-gang; Han, Hai-yin; Gu, Shu-Hua; Chen, Jie

    2015-01-25

    Excess accumulation of cholesterol in plasma may result in coronary artery disease. Numerous studies have demonstrated that ATP-binding cassette protein A1 (ABCA1) mediates the efflux of cholesterol and phospholipids to apolipoproteins, a process necessary for plasma high density lipoprotein (HDL) formation. Higher plasma levels of HDL are associated with lower risk for cardiovascular disease. Studies of human disease and animal models had shown that an increased hepatic ABCA1 activity relates to an enhanced plasma HDL level. In this study, we hypothesized that functional mutations in the ABCA1 promoter in pigs may affect gene transcription activity, and consequently the HDL level in plasma. The promoter region of ABCA1 was comparatively scanned by direct sequencing with pool DNA of high- and low-HDL groups (n=30 for each group). Two polymorphisms, c. - 608A>G and c. - 418T>A, were revealed with reverse allele distribution in the two groups. The two polymorphisms were completely linked and formed only G-A or A-T haplotypes when genotyped in a larger population (n=526). Furthermore, we found that the G-A/G-A genotype was associated with higher HDL and ABCA1 mRNA level than A-T/A-T genotype. Luciferase assay also revealed that G-A haplotype promoter had higher activity than A-T haplotype. Single-nucleotide mutant assay showed that c.-418T>A was the causal mutation for ABCA1 transcription activity alteration. Conclusively, we identified two completely linked SNPs in porcine ABCA1 promoter region which have influence on the plasma HDL level by altering ABCA1 gene transcriptional activity.

  13. Multiscale Genetic Structure of Yellowstone Cutthroat Trout in the Upper Snake River Basin.

    Energy Technology Data Exchange (ETDEWEB)

    Cegelski, Christine C.; Campbell, Matthew R.

    2006-05-30

    Populations of Yellowstone cutthroat trout Oncorhynchus clarkii bouvierii have declined throughout their native range as a result of habitat fragmentation, overharvest, and introductions of nonnative trout that have hybridized with or displaced native populations. The degree to which these factors have impacted the current genetic population structure of Yellowstone cutthroat trout populations is of primary interest for their conservation. In this study, we examined the genetic diversity and genetic population structure of Yellowstone cutthroat trout in Idaho and Nevada with data from six polymorphic microsatellite loci. A total of 1,392 samples were analyzed from 45 sample locations throughout 11 major river drainages. We found that levels of genetic diversity and genetic differentiation varied extensively. The Salt River drainage, which is representative of the least impacted migration corridors in Idaho, had the highest levels of genetic diversity and low levels of genetic differentiation. High levels of genetic differentiation were observed at similar or smaller geographic scales in the Portneuf River, Raft River, and Teton River drainages, which are more altered by anthropogenic disturbances. Results suggested that Yellowstone cutthroat trout are naturally structured at the major river drainage level but that habitat fragmentation has altered this structuring. Connectivity should be restored via habitat restoration whenever possible to minimize losses in genetic diversity and to preserve historical processes of gene flow, life history variation, and metapopulation dynamics. However, alternative strategies for management and conservation should also be considered in areas where there is a strong likelihood of nonnative invasions or extensive habitat fragmentation that cannot be easily ameliorated.

  14. [Molecular genetic analysis of wild soybean (Glycine soja Sieb. & Zucc.) population structure in anthropogenic and natural landscapes of Primorskii krai].

    Science.gov (United States)

    Nedoluzhko, A V; Tikhonov, A V; Dorokhov, D B

    2008-08-01

    The data are presented on genetic population structure of wild soybean growing in natural and anthropogenically disturbed landscapes of Primorskii krai of the Russian Federation. Comparative analysis showed that wild soybean populations exposed to anthropogenic influence exhibited lower genetic diversity than natural populations. Recommendations on conservation of the wild plant gene pools using comparative data on population genetic structures are made.

  15. Genetic Diversity and Population Structure of Mesoamerican Jaguars (Panthera onca): Implications for Conservation and Management

    Science.gov (United States)

    Wultsch, Claudia; Caragiulo, Anthony; Dias-Freedman, Isabela; Quigley, Howard; Rabinowitz, Salisa; Amato, George

    2016-01-01

    Mesoamerican jaguars (Panthera onca) have been extirpated from over 77% of their historic range, inhabiting fragmented landscapes at potentially reduced population sizes. Maintaining and restoring genetic diversity and connectivity across human-altered landscapes has become a major conservation priority; nonetheless large-scale genetic monitoring of natural populations is rare. This is the first regional conservation genetic study of jaguars to primarily use fecal samples collected in the wild across five Mesoamerican countries: Belize, Costa Rica, Guatemala, Honduras, and Mexico. We genotyped 445 jaguar fecal samples and examined patterns of genetic diversity and connectivity among 115 individual jaguars using data from 12 microsatellite loci. Overall, moderate levels of genetic variation were detected (NA = 4.50 ± 1.05, AR = 3.43 ± 0.22, HE = 0.59 ± 0.04), with Mexico having the lowest genetic diversity, followed by Honduras, Guatemala, Belize, and Costa Rica. Population-based gene flow measures (FST = 0.09 to 0.15, Dest = 0.09 to 0.21), principal component analysis, and Bayesian clustering applied in a hierarchical framework revealed significant genetic structure in Mesoamerican jaguars, roughly grouping individuals into four genetic clusters with varying levels of admixture. Gene flow was highest among Selva Maya jaguars (northern Guatemala and central Belize), whereas genetic differentiation among all other sampling sites was moderate. Genetic subdivision was most pronounced between Selva Maya and Honduran jaguars, suggesting limited jaguar movement between these close geographic regions and ultimately refuting the hypothesis of contemporary panmixia. To maintain a critical linkage for jaguars dispersing through the Mesoamerican landscape and ensure long-term viability of this near threatened species, we recommend continued management and maintenance of jaguar corridors. The baseline genetic data provided by this study underscores the importance of

  16. Genetic and environmental factors associated with laboratory rearing affect survival and assortative mating but not overall mating success in Anopheles gambiae sensu stricto.

    Science.gov (United States)

    Paton, Doug; Touré, Mahamoudou; Sacko, Adama; Coulibaly, Mamadou B; Traoré, Sékou F; Tripet, Frédéric

    2013-01-01

    Anopheles gambiae sensu stricto, the main vector of malaria in Africa, is characterized by its vast geographical range and complex population structure. Assortative mating amongst the reproductively isolated cryptic forms that co-occur in many areas poses unique challenges for programs aiming to decrease malaria incidence via the release of sterile or genetically-modified mosquitoes. Importantly, whether laboratory-rearing affects the ability of An. gambiae individuals of a given cryptic taxa to successfully mate with individuals of their own form in field conditions is still unknown and yet crucial for mosquito-releases. Here, the independent effects of genetic and environmental factors associated with laboratory rearing on male and female survival, mating success and assortative mating were evaluated in the Mopti form of An. gambiae over 2010 and 2011. In semi-field enclosures experiments and despite strong variation between years, the overall survival and mating success of male and female progeny from a laboratory strain was not found to be significantly lower than those of the progeny of field females from the same population. Adult progeny from field-caught females reared at the larval stage in the laboratory and from laboratory females reared outdoors exhibited a significant decrease in survival but not in mating success. Importantly, laboratory individuals reared as larvae indoors were unable to mate assortatively as adults, whilst field progeny reared either outdoors or in the laboratory, as well as laboratory progeny reared outdoors all mated significantly assortatively. These results highlight the importance of genetic and environment interactions for the development of An. gambiae's full mating behavioral repertoire and the challenges this creates for mosquito rearing and release-based control strategies.

  17. The omega-class glutathione transferases: structure, function, and genetics.

    Science.gov (United States)

    Board, Philip G

    2011-05-01

    The omega class of glutathione transferases (GSTs) is a relatively ancient member of the cytosolic GST superfamily, and the omega-class GSTs are found in plants, animals, and some microbial species. The omega-class GSTs exhibit the canonical GST fold, but, unlike other GSTs, the omega-class GSTs have a cysteine residue in their active site. Consequently, the omega-class GSTs catalyze a range of thiol transferase and reduction reactions that are not catalyzed by members of the other classes. Human GSTO1-1 can catalyze the reduction of monomethylarsonic acid (V), but this does not appear to be physiologically important in cases of high environmental arsenic exposure. GSTO1-1 also plays an important role in the biotransformation of reactive α-haloketones to nontoxic acetophenones. Genetic variation is common in the omega-class GST genes, and variants that result in deficiency of GSTO1-1 have been characterized. Genetic linkage studies have discovered associations between GSTO genes and the age at onset of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The mechanism underlying this association with neurological disease may derive from the capacity of omega-class GSTs to mitigate oxidative stress or their role in activating the proinflammatory cytokine, interleukin-1β.

  18. Fine-scale population genetic structure in a fission-fusion society.

    Science.gov (United States)

    Archie, Elizabeth A; Maldonado, Jésus E; Hollister-Smith, Julie A; Poole, Joyce H; Moss, Cynthia J; Fleischer, Robert C; Alberts, Susan C

    2008-06-01

    Nonrandom patterns of mating and dispersal create fine-scale genetic structure in natural populations - especially of social mammals - with important evolutionary and conservation genetic consequences. Such structure is well-characterized for typical mammalian societies; that is, societies where social group composition is stable, dispersal is male-biased, and males form permanent breeding associations in just one or a few social groups over the course of their lives. However, genetic structure is not well understood for social mammals that differ from this pattern, including elephants. In elephant societies, social groups fission and fuse, and males never form permanent breeding associations with female groups. Here, we combine 33 years of behavioural observations with genetic information for 545 African elephants (Loxodonta africana), to investigate how mating and dispersal behaviours structure genetic variation between social groups and across age classes. We found that, like most social mammals, female matrilocality in elephants creates co-ancestry within core social groups and significant genetic differentiation between groups (Phi(ST) = 0.058). However, unlike typical social mammals, male elephants do not bias reproduction towards a limited subset of social groups, and instead breed randomly across the population. As a result, reproductively dominant males mediate gene flow between core groups, which creates cohorts of similar-aged paternal relatives across the population. Because poaching tends to eliminate the oldest elephants from populations, illegal hunting and poaching are likely to erode fine-scale genetic structure. We discuss our results and their evolutionary and conservation genetic implications in the context of other social mammals.

  19. Testing the influence of habituation on genetic structure of brown bear (Ursus arctos

    Directory of Open Access Journals (Sweden)

    Ancuţa Cotovelea

    2015-04-01

    Full Text Available Adult bear individuals live solitary and haveprolonged parent–offspring relationships, therefore the share of learned skills compared to the inherited ones is much larger than in other carnivores. This promotes acquisition of deviated behavior and simultaneously establishment of a kinship structure. However, deviated bear behavior and human food conditioning are the symptoms of habituation. The aim of this paper is to test the genetic structuring of habituated and non-habituated individuals located in the central region of Romania (Braşov and Prahova districts, a hotspot in terms of human-bear conflicts. Seven microsatellites were used to genotype 145 samples (ear clips and tissue, out of which 82 were classified as habituated and 63 as wild individuals, respectively. Our results suggest the presence of kinship structures in habituated bear group and a reduction of genetic diversity (He = 0.75, while the group located in the wild registered a higher genetic diversity (He = 0.78 and more private alleles. The genetic differentiation suggested by the Neighbor joining cluster analysis has been strengthened by the two percent (AMOVA differences between the two groups and highlights the negative impact of brown bear kinship structure, caused by the human expansion on wilderness. The genetic analyses indicated that the two groups share genetic variants due to the dispersal and breeding patterns of male adult bears. The emergence of genetic differences between the two groups can be avoided by preventing bears to become human-food conditioned; over time, kinship structure can pose a threat to genetic diversity.

  20. Life history and past demography maintain genetic structure, outcrossing rate, contemporary pollen gene flow of an understory herb in a highly fragmented rainforest

    Directory of Open Access Journals (Sweden)

    Pilar Suárez-Montes

    2016-12-01

    Full Text Available Introduction Theory predicts that habitat fragmentation, by reducing population size and increasing isolation among remnant populations, can alter their genetic diversity and structure. A cascade of effects is expected: genetic drift and inbreeding after a population bottleneck, changes in biotic interactions that may affect, as in the case of plants, pollen dynamics, mating system, reproductive success. The detection of the effects of contemporary habitat fragmentation on the genetic structure of populations are conditioned by the magnitude of change, given the few number of generations since the onset of fragmentation, especially for long-lived organisms. However, the present-day genetic structure of populations may bear the signature of past demography events. Here, we examine the effects of rainforest fragmentation on the genetic diversity, population structure, mating system (outcrossing rate, indirect gene flow and contemporary pollen dynamics in the understory herb Aphelandra aurantiaca. Also, we assessed its present-day genetic structure under different past demographic scenarios. Methods Twelve populations of A. aurantiaca were sampled in large (4, medium (3, and small (5 forest fragments in the lowland tropical rainforest at Los Tuxtlas region. Variation at 11 microsatellite loci was assessed in 28–30 reproductive plants per population. In two medium- and two large-size fragments we estimated the density of reproductive plants, and the mating system by analyzing the progeny of different mother plants per population. Results Despite prevailing habitat fragmentation, populations of A. aurantiaca possess high genetic variation (He = 0.61, weak genetic structure (Rst = 0.037, and slight inbreeding in small fragments. Effective population sizes (Ne were large, but slightly lower in small fragments. Migrants derive mostly from large and medium size fragments. Gene dispersal is highly restricted but long distance gene dispersal events

  1. The role of river drainages in shaping the genetic structure of capybara populations.

    Science.gov (United States)

    Byrne, María Soledad; Quintana, Rubén Darío; Bolkovic, María Luisa; Cassini, Marcelo H; Túnez, Juan Ignacio

    2015-12-01

    The capybara, Hydrochoerus hydrochaeris, is an herbivorous rodent widely distributed throughout most of South American wetlands that lives closely associated with aquatic environments. In this work, we studied the genetic structure of the capybara throughout part of its geographic range in Argentina using a DNA fragment of the mitochondrial control region. Haplotypes obtained were compared with those available for populations from Paraguay and Venezuela. We found 22 haplotypes in 303 individuals. Hierarchical AMOVAs were performed to evaluate the role of river drainages in shaping the genetic structure of capybara populations at the regional and basin scales. In addition, two landscape genetic models, isolation by distance and isolation by resistance, were used to test whether genetic distance was associated with Euclidean distance (i.e. isolation by distance) or river corridor distance (i.e. isolation by resistance) at the basin scale. At the regional scale, the results of the AMOVA grouping populations by mayor river basins showed significant differences between them. At the basin scale, we also found significant differences between sub-basins in Paraguay, together with a significant correlation between genetic and river corridor distance. For Argentina and Venezuela, results were not significant. These results suggest that in Paraguay, the current genetic structure of capybaras is associated with the lack of dispersion corridors through permanent rivers. In contrast, limited structuring in Argentina and Venezuela is likely the result of periodic flooding facilitating dispersion.

  2. Genetic structure analysis of Eufriesea violacea (Hymenoptera, Apidae populations from southern Brazilian Atlantic rainforest remnants

    Directory of Open Access Journals (Sweden)

    Silvia H. Sofia

    2005-09-01

    Full Text Available Random amplified polymorphic DNA (RAPD markers were used to analyze the genetic structure of Eufriesea violacea populations in three fragments (85.47, 832.58 and 2800 ha of Atlantic rainforest located in the north of the Brazilian state of Paraná. A total of twelve primers produced 206 loci, of which 129 were polymorphic (95% criterion. The proportions of polymorphic loci in each population ranged from 57.28% to 59.2%, revealing very similar levels of genetic variability in the groups of bees from each fragment. Unbiased genetic distances between groups ranged from 0.0171 to 0.0284, the smallest genetic distance occurring between bees from the two larger fragments. These results suggest that the E. violacea populations from the three fragments have maintained themselves genetically similar to native populations of this species originally present in northern Paraná.

  3. Do recent US Supreme Court rulings on patenting of genes and genetic diagnostics affect the practice of genetic screening and diagnosis in prenatal and reproductive care?

    Science.gov (United States)

    Chandrasekharan, Subhashini; McGuire, Amy L; Van den Veyver, Ignatia B

    2014-10-01

    Thousands of patents have been awarded that claim human gene sequences and their uses, and some have been challenged in court. In a recent high-profile case, Association for Molecular Pathology, et al. v. Myriad Genetics, Inc., et al., the US Supreme Court ruled that genes are natural occurring substances and therefore not patentable through 'composition of matter' claims. The consequences of this ruling will extend well beyond ending Myriad's monopoly over BRCA testing and may affect similar monopolies of other commercial laboratories for tests involving other genes. It could also simplify intellectual property issues surrounding genome-wide clinical sequencing, which can generate results for genes covered by intellectual property. Non-invasive prenatal testing (NIPT) for common aneuploidies using cell-free fetal (cff) DNA in maternal blood is currently offered through commercial laboratories and is also the subject of ongoing patent litigation. The recent Supreme Court decision in the Myriad case has already been invoked by a lower district court in NIPT litigation and resulted in invalidation of primary claims in a patent on currently marketed cffDNA-based testing for chromosomal aneuploidies.

  4. Moroccan Leishmania infantum: genetic diversity and population structure as revealed by multi-locus microsatellite typing.

    Directory of Open Access Journals (Sweden)

    Ahmad Amro

    Full Text Available Leishmania infantum causes Visceral and cutaneous leishmaniasis in northern Morocco. It predominantly affects children under 5 years with incidence of 150 cases/year. Genetic variability and population structure have been investigated for 33 strains isolated from infected dogs and humans in Morocco. A multilocus microsatellite typing (MLMT approach was used in which a MLMtype based on size variation in 14 independent microsatellite markers was compiled for each strain. MLMT profiles of 10 Tunisian, 10 Algerian and 21 European strains which belonged to zymodeme MON-1 and non-MON-1 according to multilocus enzyme electrophoresis (MLEE were included for comparison. A Bayesian model-based approach and phylogenetic analysis inferred two L.infantum sub-populations; Sub-population A consists of 13 Moroccan strains grouped with all European strains of MON-1 type; and sub-population B consists of 15 Moroccan strains grouped with the Tunisian and Algerian MON-1 strains. Theses sub-populations were significantly different from each other and from the Tunisian, Algerian and European non MON-1 strains which constructed one separate population. The presence of these two sub-populations co-existing in Moroccan endemics suggests multiple introduction of L. infantum from/to Morocco; (1 Introduction from/to the neighboring North African countries, (2 Introduction from/to the Europe. These scenarios are supported by the presence of sub-population B and sub-population A respectively. Gene flow was noticed between sub-populations A and B. Five strains showed mixed A/B genotypes indicating possible recombination between the two populations. MLMT has proven to be a powerful tool for eco-epidemiological and population genetic investigations of Leishmania.

  5. Genetic and Environmental Influences on the Longitudinal Structure of Neuroticism A Trait-State Approach

    NARCIS (Netherlands)

    Laceulle, Odilia M.; Ormel, Johan; Aggen, Steven H.; Neale, Michael C.; Kendler, Kenneth S.

    2013-01-01

    In this study, we sought to elucidate both stable and changing factors in the longitudinal structure of neuroticism using a behavioral genetic twin design. We tested whether this structure is best accounted for by a trait-state, a trait-only, or a state-only model. In line with classic views on pers

  6. Genetically altering the expression of neutral trehalase gene affects conidiospore thermotolerance of the entomopathogenic fungus Metarhizium acridum

    Directory of Open Access Journals (Sweden)

    Peng Guoxiong

    2011-02-01

    Full Text Available Abstract Background The entomopathogenic fungus Metarhizium acridum has been used as an important biocontrol agent instead of insecticides for controlling crop pests throughout the world. However, its virulence varies with environmental factors, especially temperature. Neutral trehalase (Ntl hydrolyzes trehalose, which plays a role in environmental stress response in many organisms, including M. acridum. Demonstration of a relationship between Ntl and thermotolerance or virulence may offer a new strategy for enhancing conidiospore thermotolerance of entomopathogenic fungi through genetic engineering. Results We selected four Ntl over-expression and four Ntl RNA interference (RNAi transformations in which Ntl expression is different. Compared to the wild-type, Ntl mRNA expression was reduced to 35-66% in the RNAi mutants and increased by 2.5-3.5-fold in the over-expression mutants. The RNAi conidiospores exhibited less trehalase activity, accumulated more trehalose, and were much more tolerant of heat stress than the wild-type. The opposite effects were found in conidiospores of over-expression mutants compared to RNAi mutants. Furthermore, virulence was not altered in the two types of mutants compared to the wild type. Conclusions Ntl controlled trehalose accumulation in M. acridum by degrading trehalose, and thus affected conidiospore thermotolerance. These results offer a new strategy for enhancing conidiospore thermotolerance of entomopathogenic fungi without affecting virulence.

  7. Lessons learned from whole exome sequencing in multiplex families affected by a complex genetic disorder, intracranial aneurysm.

    Directory of Open Access Journals (Sweden)

    Janice L Farlow

    Full Text Available Genetic risk factors for intracranial aneurysm (IA are not yet fully understood. Genomewide association studies have been successful at identifying common variants; however, the role of rare variation in IA susceptibility has not been fully explored. In this study, we report the use of whole exome sequencing (WES in seven densely-affected families (45 individuals recruited as part of the Familial Intracranial Aneurysm study. WES variants were prioritized by functional prediction, frequency, predicted pathogenicity, and segregation within families. Using these criteria, 68 variants in 68 genes were prioritized across the seven families. Of the genes that were expressed in IA tissue, one gene (TMEM132B was differentially expressed in aneurysmal samples (n=44 as compared to control samples (n=16 (false discovery rate adjusted p-value=0.023. We demonstrate that sequencing of densely affected families permits exploration of the role of rare variants in a relatively common disease such as IA, although there are important study design considerations for applying sequencing to complex disorders. In this study, we explore methods of WES variant prioritization, including the incorporation of unaffected individuals, multipoint linkage analysis, biological pathway information, and transcriptome profiling. Further studies are needed to validate and characterize the set of variants and genes identified in this study.

  8. Transferrin variation and genetic structure of reindeer populations in Scandinavia

    Directory of Open Access Journals (Sweden)

    Knut H. Røed

    1987-06-01

    Full Text Available Polyacrylamide gel electrophoresis was used to analyse transferrin variation in herds of semi-domestic reindeer from Scandinavia. The results are compared with previously reported values for other populations of both semi-domestic and wild reindeer using the same techniques as in the present study. In all populations the number of alleles was high, ranging from seven to eleven, and the heterozygosity was correspondingly high, with a mean of 0.749. This high genetic variation in all populations suggests that inbreeding is not widespread among Scandinavian reindeer. The pattern of allele frequency distribution indicates a high degree of genetic heterogeneity in the transferrin locus, both between the different semi-domestic herds and between the different wild populations. The mean value of genetic distance was 0.069 between semi-domestic herds and 0.091 between wild populations. Between semi-domestic and wild populations the genetic distance was particularly high, with a mean of 0.188. This high value was mainly due to a different pattern in the distribution of the two most common transferrin alleles: Tfu was most common among semi-domestic herds, while TfEI was most common among wild populations. These differences in transferrin allele distribution are discussed in relation to possible different origins of semi-domestic and wild reindeer in Scandinavia, or alternatively, to different selection forces acting on transferrin genotypes in semi-domestic and wild populations.Transferrin-variasjon og genetisk struktur hos rein i Skandinavia.Abstact in Norwegian / Sammendrag: Transferrin-variasjon i tamreinflokker ble analysert ved hjelp av polyacrylamid gel elektroforese. Resultatene er sammenlignet med verdier som tidligere er beskrevet for både tamrein og villrein hvor det ble benyttet samme metode som i denne undersøkelsen. I alle populasjonene ble det registrert et høyt antall alleler (7-11 og heterozygositeten var tilsvarende høy med en

  9. Genetic population structure in the Antarctic benthos: insights from the widespread amphipod, Orchomenella franklini.

    Science.gov (United States)

    Baird, Helena Phoenix; Miller, Karen Joy; Stark, Jonathan Sean

    2012-01-01

    Currently there is very limited understanding of genetic population structure in the Antarctic benthos. We conducted one of the first studies of microsatellite variation in an Antarctic benthic invertebrate, using the ubiquitous amphipod Orchomenella franklini (Walker, 1903). Seven microsatellite loci were used to assess genetic structure on three spatial scales: sites (100 s of metres), locations (1-10 kilometres) and regions (1000 s of kilometres) sampled in East Antarctica at Casey and Davis stations. Considerable genetic diversity was revealed, which varied between the two regions and also between polluted and unpolluted sites. Genetic differentiation among all populations was highly significant (F(ST) = 0.086, R(ST) = 0.139, pbenthos. These results provide insights into processes of speciation in Antarctic brooders, and will help inform the design of spatial management initiatives recently endorsed for the Antarctic benthos.

  10. Nuclear power plant life extension: How aging affects performance of containments & other structures

    Institute of Scientific and Technical Information of China (English)

    Robert A Dameron; Sun Junling

    2013-01-01

    This paper focuses on how aging can affect performance of safety-related structures in nuclear power plant (NPP).Knowledge and assessment of impacts of aging on structures are essential to plant life extension analysis,especially performance to severe loadings such as loss-of-coolant-accidents or major seismic events.Plant life extension issues are of keen interest in countries (like the United States) which have a large,aging fleet of NPPs.This paper addresses the overlap and relationship of structure aging to severe loading performance,with particular emphasis on containment structures.

  11. Lack of sex-biased dispersal promotes fine-scale genetic structure in alpine ungulates

    Science.gov (United States)

    Roffler, Gretchen H.; Talbot, Sandra L.; Luikart, Gordon; Sage, George K.; Pilgrim, Kristy L.; Adams, Layne G.; Schwartz, Michael K.

    2014-01-01

    Identifying patterns of fine-scale genetic structure in natural populations can advance understanding of critical ecological processes such as dispersal and gene flow across heterogeneous landscapes. Alpine ungulates generally exhibit high levels of genetic structure due to female philopatry and patchy configuration of mountain habitats. We assessed the spatial scale of genetic structure and the amount of gene flow in 301 Dall’s sheep (Ovis dalli dalli) at the landscape level using 15 nuclear microsatellites and 473 base pairs of the mitochondrial (mtDNA) control region. Dall’s sheep exhibited significant genetic structure within contiguous mountain ranges, but mtDNA structure occurred at a broader geographic scale than nuclear DNA within the study area, and mtDNA structure for other North American mountain sheep populations. No evidence of male-mediated gene flow or greater philopatry of females was observed; there was little difference between markers with different modes of inheritance (pairwise nuclear DNA F ST = 0.004–0.325; mtDNA F ST = 0.009–0.544), and males were no more likely than females to be recent immigrants. Historical patterns based on mtDNA indicate separate northern and southern lineages and a pattern of expansion following regional glacial retreat. Boundaries of genetic clusters aligned geographically with prominent mountain ranges, icefields, and major river valleys based on Bayesian and hierarchical modeling of microsatellite and mtDNA data. Our results suggest that fine-scale genetic structure in Dall’s sheep is influenced by limited dispersal, and structure may be weaker in populations occurring near ancestral levels of density and distribution in continuous habitats compared to other alpine ungulates that have experienced declines and marked habitat fragmentation.

  12. Genetic structure of a bird-dispersed tropical tree (Dendropanax arboreus) in a fragmented landscape in Mexico

    OpenAIRE

    Elsa M. Figueroa-Esquivel; Fernando Puebla-Olivares; EGUIARTE, LUIS E.; Juan Núñez-Farfán

    2010-01-01

    We analyzed the genetic structure of the tropical tree Dendropanax arboreus (Araliaceae) in relation to habitat fragmentation. Genetic variation, structure, and genetic differentiation among populations from Los Tuxtlas tropical rainforest were estimated using ISSRs as molecular markers. DNA from 219 individuals belonging to 9 populations was amplified with 4 primers yielding a total of 75 loci. Adults and juveniles from each population were analyzed to assess the genetic diversity and struct...

  13. Molecular genetic variability, population structure and mating system in tropical forages

    Directory of Open Access Journals (Sweden)

    Melissa Garcia

    2013-09-01

    Full Text Available Microsatellite (SSR markers were developed for the following tropical forage species, using accessions available from the plant genetic resources (PGR collections held by EMBRAPA (Brazilian Agricultural Research Corporation: Brachiaria brizantha, B. humidicola, Panicum maximum, Paspalum spp., Stylosanthes capitata, S. guianensis, S. macrocephala, Calopogonium mucunoides and Centrosema spp. The markers were used to analyze population structure and genetic diversity, evolution and origin of the genetic variability in the center of origin, mating systems and genetic resources in EMBRAPA’s germplasm bank. The results shed light on the amount of genetic variation within and between populations, revealed the need in some cases for further plant collection to adequately represent the species in PGR collections, allowed us to assemble core collections (subsets of the total collections that should contain most of the available diversity and (in the case of the legumes showed the need to avoid unwanted outcrossing when regenerating conserved material. The data will allow plant breeders to better select accessions for hybrid production, discriminate between genotypes and use marker-assisted selection in breeding programs. Our results will also underpin the construction of genetic maps, mapping of genes of agronomic interest and numerous other studies on genetic variability, population structure, gene flow and reproductive systems for the tropical forage species studied in this work.

  14. Physiological vagility: correlations with dispersal and population genetic structure of amphibians.

    Science.gov (United States)

    Hillman, Stanley S; Drewes, Robert C; Hedrick, Michael S; Hancock, Thomas V

    2014-01-01

    Physiological vagility represents the capacity to move sustainably and is central to fully explaining the processes involved in creating fine-scale genetic structure of amphibian populations, because movement (vagility) and the duration of movement determine the dispersal distance individuals can move to interbreed. The tendency for amphibians to maintain genetic differentiation over relatively short distances (isolation by distance) has been attributed to their limited dispersal capacity (low vagility) compared with other vertebrates. Earlier studies analyzing genetic isolation and population differentiation with distance treat all amphibians as equally vagile and attempt to explain genetic differentiation only in terms of physical environmental characteristics. We introduce a new quantitative metric for vagility that incorporates aerobic capacity, body size, body temperature, and the cost of transport and is independent of the physical characteristics of the environment. We test our metric for vagility with data for dispersal distance and body mass in amphibians and correlate vagility with data for genetic differentiation (F'(ST)). Both dispersal distance and vagility increase with body size. Differentiation (F'(ST)) of neutral microsatellite markers with distance was inversely and significantly (R2=0.61) related to ln vagility. Genetic differentiation with distance was not significantly related to body mass alone. Generalized observations are validated with several specific amphibian studies. These results suggest that interspecific differences in physiological capacity for movement (vagility) can contribute to genetic differentiation and metapopulation structure in amphibians.

  15. Genetic variability and population structure of endangered Panax ginseng in the Russian Primorye

    Directory of Open Access Journals (Sweden)

    Muzarok Tamara I

    2010-06-01

    Full Text Available Abstract Background The natural habitat of wild P. ginseng is currently found only in the Russian Primorye and the populations are extremely exhausted and require restoration. Analysis of the genetic diversity and population structure of an endangered species is a prerequisite for conservation. The present study aims to investigate the patterns and levels of genetic polymorphism and population structures of wild P. ginseng with the AFLP method to (1 estimate the level of genetic diversity in the P. ginseng populations in the Russian Primorsky Krai, (2 calculate the distribution of variability within a population and among populations and (3 examine the genetic relationship between the populations. Methods Genetic variability and population structure of ten P. ginseng populations were investigated with Amplified Fragment Length Polymorphism (AFLP markers. The genetic relationships among P. ginseng plants and populations were delineated. Results The mean genetic variability within populations was high. The mean level of polymorphisms was 55.68% at the population level and 99.65% at the species level. The Shannon's index ranged between 0.1602 and 0.3222 with an average of 0.2626 at the population level and 0.3967 at the species level. The analysis of molecular variances (AMOVA showed a significant population structure in P. ginseng. The partition of genetic diversity with AMOVA suggested that the majority of the genetic variation (64.5% was within populations of P. ginseng. The inter-population variability was approximately 36% of the total variability. The genetic relationships among P. ginseng plants and populations were reconstructed by Minimum Spanning tree (MS-tree on the basis of Euclidean distances with ARLEQUIN and NTSYS, respectively. The MS-trees suggest that the southern Uss, Part and Nad populations may have promoted P. ginseng distribution throughout the Russian Primorye. Conclusion The P. ginseng populations in the Russian Primorye

  16. Molecular variability and genetic structure of Chrysodeixis includens (Lepidoptera: Noctuidae), an important soybean defoliator in Brazil.

    Science.gov (United States)

    Palma, Janine; Maebe, Kevin; Guedes, Jerson Vanderlei Carús; Smagghe, Guy

    2015-01-01

    This study provides the first genetic characterization of the soybean looper, Chrysodeixis includens (Walker, 1857), an important defoliating pest species of soybean crops in Brazil. Population genetic variability and the genetic structure of C. includens populations were evaluated by using ISSR markers with samples from the major soybean producing regions in Brazil in the growing seasons 2011/2012. Seven different primers were applied for population characterization of the molecular variability and genetic structure of 8 soybean looper populations from 8 states of Brazil. The seven ISSR loci generated 247 bands in 246 individuals of C. includens sampled. The expected heterozygosity (HE) in the populations varied between 0.093 and 0.106, while the overall HE was 0.099, indicating low genetic diversity. The analysis of molecular variance indicated that 98% of the variability was expressed among individuals within populations (FST = 0.021, p = 0.001). The low level of polymorphism over all populations, the high levels of gene flow, and the low genetic structure are indicatives of the exchange of genetic information between the different sampled regions. Population structuring suggests the presence of two major groups which do not correlate with their geographic sampling location in Brazil. These results may indicate recent recolonization of C. includens in Brazil or migration patterns following source-sink dynamics. Furthermore, the presence of two groups within C. includens suggests that a study on development of resistance or any other genetic-based trait needs to be evaluated on both groups, and pest management in soybean fields should be aware that differences may come to the control strategies they use.

  17. Molecular variability and genetic structure of Chrysodeixis includens (Lepidoptera: Noctuidae, an important soybean defoliator in Brazil.

    Directory of Open Access Journals (Sweden)

    Janine Palma

    Full Text Available This study provides the first genetic characterization of the soybean looper, Chrysodeixis includens (Walker, 1857, an important defoliating pest species of soybean crops in Brazil. Population genetic variability and the genetic structure of C. includens populations were evaluated by using ISSR markers with samples from the major soybean producing regions in Brazil in the growing seasons 2011/2012. Seven different primers were applied for population characterization of the molecular variability and genetic structure of 8 soybean looper populations from 8 states of Brazil. The seven ISSR loci generated 247 bands in 246 individuals of C. includens sampled. The expected heterozygosity (HE in the populations varied between 0.093 and 0.106, while the overall HE was 0.099, indicating low genetic diversity. The analysis of molecular variance indicated that 98% of the variability was expressed among individuals within populations (FST = 0.021, p = 0.001. The low level of polymorphism over all populations, the high levels of gene flow, and the low genetic structure are indicatives of the exchange of genetic information between the different sampled regions. Population structuring suggests the presence of two major groups which do not correlate with their geographic sampling location in Brazil. These results may indicate recent recolonization of C. includens in Brazil or migration patterns following source-sink dynamics. Furthermore, the presence of two groups within C. includens suggests that a study on development of resistance or any other genetic-based trait needs to be evaluated on both groups, and pest management in soybean fields should be aware that differences may come to the control strategies they use.

  18. Polygyny and strong genetic structuring within an isolated population of the wood ant Formica rufa

    Directory of Open Access Journals (Sweden)

    Wouter Dekoninck

    2014-12-01

    Full Text Available Social structuring of populations within some Formica species exhibits considerable variation going from monodomous and monogynous populations to polydomous, polygynous populations. The wood ant species Formica rufa appears to be mainly monodomous and monogynous throughout most of its distribution area in central and northern Europe. Only occasionally it was mentioned that F. rufa can have both polygynous and monogynous colonies in the same geographical region. We studied an isolated polydomous F. rufa population in a deciduous mixed forest in the north-west of Belgium. The level of polydomy within the colonies varied from monodomous to 11 nests per colony. Our genetic analysis of eight variable microsatellites suggest an oligo- to polygynous structure for at least the major part of the sampled nests. Relatedness amongst nest mate workers varies considerable within the population and colonies but confirms in general a polygynous structure. Additionally high genetic diversity (e.g. up to 8 out of 11 alleles per nest for the most variable locus and high within nest genetic variance (93% indicate that multiple queens contribute to the gene pool of workers of the same nest. Moreover significant genetic structuring among colonies indicates that gene flow between colonies is restricted and that exchange of workers between colonies is very limited. Finally we explain how possible factors as budding and the absence of Serviformica can explain the differences in genetic structure within this polygynous F. rufa population.

  19. Genetic Structure and Indica/Japonica Component Changes in Major Inbred Rice Varieties in China

    Institute of Scientific and Technical Information of China (English)

    YU Ping; YUAN Xiao-ping; XU Qun; WANG Cai-hong; YU Han-yong; WANG Yi-ping; TANG Sheng-xiang

    2013-01-01

    We used 39 SSR markers to analyze the genetic structure of 304 major Chinese inbred rice varieties,and to compare changes in the indica or japonica components in these varieties that have been widely cultivated from the 1950s to the 1990s in China.The genetic structure analysis showed that these rice varieties were distinctly divided into two populations,indica and japonica.The sub-structure of indica varieties was more complex than that of japonica ones.Among the various lines,late-season indica and early season japonica varieties had simpler genetic backgrounds.The seasonal ecotypes were not quite consistent with the subtypes of genetic structure.Twelve SSR loci with specific differentiation between indica and japonica were used to calculate the indica/japonica components.The differences in indica/japonica components among the five decades were not significant,except for late-season indica varieties in the 1990s,which had a significantly higher japonica component.These results will help to understand the genetic structure of the major Chinese inbred rice varieties and will be useful for indica-japonica hybrid breeding in China.

  20. Identification of Genetic Associations and Functional Polymorphisms of SAA1 Gene Affecting Milk Production Traits in Dairy Cattle

    Science.gov (United States)

    Zhang, Shengli; Zhang, Qin; Sun, Dongxiao

    2016-01-01

    Our initial RNA sequencing (RNA-seq) revealed that the Serum amyloid A1 (SAA1) gene was differentially expressed in the mammary glands of lactating Holstein cows with extremely high versus low phenotypic values of milk protein and fat percentage. To further validate the genetic effect and potential molecular mechanisms of SAA1 gene involved in regulating milk production traits in dairy cattle, we herein performed a study through genotype-phenotype associations. Six identified SNPs were significantly associated with one or more milk production traits (0.00002milk production traits in dairy cows. Subsequently, both luciferase assay and electrophoretic mobility shift assay (EMSA) clearly demonstrated that the allele A of g.-963C>A increased the promoter activity by binding the PARP factor while allele C did not. Bioinformatics analysis indicated that the secondary structure of SAA protein changed by the substitution A/G in the locus c. +2510A>G. Our findings were the first to reveal the significant associations of the SAA1 gene with milk production traits, providing basis for further biological function validation, and two identified SNPs, g.-963C>A and c. +2510A>G, may be considered as genetic markers for breeding in dairy cattle. PMID:27610623

  1. Genetic structure of Indian populations based on fifteen autosomal microsatellite loci

    Directory of Open Access Journals (Sweden)

    Bindu G Hima

    2006-05-01

    Full Text Available Abstract Background Indian populations endowed with unparalleled genetic complexity have received a great deal of attention from scientists world over. However, the fundamental question over their ancestry, whether they are all genetically similar or do exhibit differences attributable to ethnicity, language, geography or socio-cultural affiliation is still unresolved. In order to decipher their underlying genetic structure, we undertook a study on 3522 individuals belonging to 54 endogamous Indian populations representing all major ethnic, linguistic and geographic groups and assessed the genetic variation using autosomal microsatellite markers. Results The distribution of the most frequent allele was uniform across populations, revealing an underlying genetic similarity. Patterns of allele distribution suggestive of ethnic or geographic propinquity were discernible only in a few of the populations and was not applicable to the entire dataset while a number of the populations exhibited distinct identities evident from the occurrence of unique alleles in them. Genetic substructuring was detected among populations originating from northeastern and southern India reflective of their migrational histories and genetic isolation respectively. Conclusion Our analyses based on autosomal microsatellite markers detected no evidence of general clustering of population groups based on ethnic, linguistic, geographic or socio-cultural affiliations. The existence of substructuring in populations from northeastern and southern India has notable implications for population genetic studies and forensic databases where broad grouping of populations based on such affiliations are frequently employed.

  2. Acrocomia emensis (Arecaceae) genetic structure and diversity using SSR molecular markers.

    Science.gov (United States)

    Neiva, D S; Melo Júnior, A F; Oliveira, D A; Royo, V A; Brandão, M M; Menezes, E V

    2016-03-24

    Acrocomia emensis, popularly known as the creeping tucum, belongs to the family Arecaceae, and is an oilseed specie of the Brazilian Savannah. The expansion of agricultural activity has rapidly destroyed its natural habitat, leading to a decrease in its population size. Genetic studies can be used to investigate the genetic variability, and may assist with the charting future conservation strategies. In this study the genetic diversity and structure of 150 individuals sampled in three locations in Minas Gerais were analysed, based on the transferability of six microsatellite markers, previously developed for A. aculeata. The results indicate that the populations studied have low levels of genetic variability (Ho = 0.148) and high, positive and significant inbreeding coefficient, indicating an excess of homozygotes. The average heterozygosity within the population (Hs = 0.700) accounted for 95.03% of the total genetic diversity, indicating that there is greater variability within population than between them, consistent with low genetic differentiation between population (GST = 0.046). Bayesian analysis identified three distinct groups; however, populations shared large numbers of alleles, which can be explained by the reduced distance between populations. These results reveal the need to implement genetic conservation programs for the maintenance of this species and to prioritize population from Bonito and Brasília, which showed the lowest values of genetic diversity.

  3. The genetic and environmental structure of verbal and visuospatial memory in young adults and children.

    Science.gov (United States)

    van Leeuwen, Marieke; van den Berg, Stéphanie M; Hoekstra, Rosa A; Boomsma, Dorret I

    2009-11-01

    The extent to which verbal (VM) and visuospatial memory (VSM) tests measure the same or multiple constructs is unclear. Likewise the relationship between VM and VSM across development is not known. These questions are addressed using genetically informative data, studying two age cohorts (young adults and children) of twins and siblings. VM and VSM were measured in the working memory and short-term memory domain. Multivariate genetic analyses revealed that two highly correlated common genetic factors, one for VM and one for VSM, gave the best description of the covariance structure among the measures. Only in children, specific genetic factors were also present. This led to the following conclusions: In children, one genetic factor is responsible for linking VM and VSM. Specific genetic factors create differences between these two domains. During the course of development, the influence of genetic factors unique to each of these domains disappears and the genetic factor develops into two highly correlated factors, which are specific to VM and VSM respectively. At the environmental level, in both age cohorts, environmental factors create differences between these domains.

  4. Genetics

    DEFF Research Database (Denmark)

    Christensen, Kaare; McGue, Matt

    2016-01-01

    The sequenced genomes of individuals aged ≥80 years, who were highly educated, self-referred volunteers and with no self-reported chronic diseases were compared to young controls. In these data, healthy ageing is a distinct phenotype from exceptional longevity and genetic factors that protect...

  5. Comparison of algorithms to infer genetic population structure from unlinked molecular markers.

    Science.gov (United States)

    Peña-Malavera, Andrea; Bruno, Cecilia; Fernandez, Elmer; Balzarini, Monica

    2014-08-01

    Identifying population genetic structure (PGS) is crucial for breeding and conservation. Several clustering algorithms are available to identify the underlying PGS to be used with genetic data of maize genotypes. In this work, six methods to identify PGS from unlinked molecular marker data were compared using simulated and experimental data consisting of multilocus-biallelic genotypes. Datasets were delineated under different biological scenarios characterized by three levels of genetic divergence among populations (low, medium, and high FST) and two numbers of sub-populations (K=3 and K=5). The relative performance of hierarchical and non-hierarchical clustering, as well as model-based clustering (STRUCTURE) and clustering from neural networks (SOM-RP-Q). We use the clustering error rate of genotypes into discrete sub-populations as comparison criterion. In scenarios with great level of divergence among genotype groups all methods performed well. With moderate level of genetic divergence (FST=0.2), the algorithms SOM-RP-Q and STRUCTURE performed better than hierarchical and non-hierarchical clustering. In all simulated scenarios with low genetic divergence and in the experimental SNP maize panel (largely unlinked), SOM-RP-Q achieved the lowest clustering error rate. The SOM algorithm used here is more effective than other evaluated methods for sparse unlinked genetic data.

  6. SSR-based genetic diversity and structure of garlic accessions from Brazil.

    Science.gov (United States)

    da Cunha, Camila Pinto; Resende, Francisco Vilela; Zucchi, Maria Imaculada; Pinheiro, José Baldin

    2014-10-01

    Garlic is a spice and a medicinal plant; hence, there is an increasing interest in 'developing' new varieties with different culinary properties or with high content of nutraceutical compounds. Phenotypic traits and dominant molecular markers are predominantly used to evaluate the genetic diversity of garlic clones. However, 24 SSR markers (codominant) specific for garlic are available in the literature, fostering germplasm researches. In this study, we genotyped 130 garlic accessions from Brazil and abroad using 17 polymorphic SSR markers to assess the genetic diversity and structure. This is the first attempt to evaluate a large set of accessions maintained by Brazilian institutions. A high level of redundancy was detected in the collection (50 % of the accessions represented eight haplotypes). However, non-redundant accessions presented high genetic diversity. We detected on average five alleles per locus, Shannon index of 1.2, HO of 0.5, and HE of 0.6. A core collection was set with 17 accessions, covering 100 % of the alleles with minimum redundancy. Overall FST and D values indicate a strong genetic structure within accessions. Two major groups identified by both model-based (Bayesian approach) and hierarchical clustering (UPGMA dendrogram) techniques were coherent with the classification of accessions according to maturity time (growth cycle): early-late and midseason accessions. Assessing genetic diversity and structure of garlic collections is the first step towards an efficient management and conservation of accessions in genebanks, as well as to advance future genetic studies and improvement of garlic worldwide.

  7. Structural mapping: how to study the genetic architecture of a phenotypic trait through its formation mechanism.

    Science.gov (United States)

    Tong, Chunfa; Shen, Lianying; Lv, Yafei; Wang, Zhong; Wang, Xiaoling; Feng, Sisi; Li, Xin; Sui, Yihan; Pang, Xiaoming; Wu, Rongling

    2014-01-01

    Traditional approaches for genetic mapping are to simply associate the genotypes of a quantitative trait locus (QTL) with the phenotypic variation of a complex trait. A more mechanistic strategy has emerged to dissect the trait phenotype into its structural components and map specific QTLs that control the mechanistic and structural formation of a complex trait. We describe and assess such a strategy, called structural mapping, by integrating the internal structural basis of trait formation into a QTL mapping framework. Electrical impedance spectroscopy (EIS) has been instrumental for describing the structural components of a phenotypic trait and their interactions. By building robust mathematical models on circuit EIS data and embedding these models within a mixture model-based likelihood for QTL mapping, structural mapping implements the EM algorithm to obtain maximum likelihood estimates of QTL genotype-specific EIS parameters. The uniqueness of structural mapping is to make it possible to test a number of hypotheses about the pattern of the genetic control of structural components. We validated structural mapping by analyzing an EIS data collected for QTL mapping of frost hardiness in a controlled cross of jujube trees. The statistical properties of parameter estimates were examined by simulation studies. Structural mapping can be a powerful alternative for genetic mapping of complex traits by taking account into the biological and physical mechanisms underlying their formation.

  8. The importance of building construction materials relative to other factors affecting structure survival during wildfire

    Science.gov (United States)

    Syphard, Alexandra D.; Brennan, Teresa J.; Keeley, Jon E.

    2017-01-01

    Structure loss to wildfire is a serious problem in wildland-urban interface areas across the world. Laboratory experiments suggest that fire-resistant building construction and design could be important for reducing structure destruction, but these need to be evaluated under real wildfire conditions, especially relative to other factors. Using empirical data from destroyed and surviving structures from large wildfires in southern California, we evaluated the relative importance of building construction and structure age compared to other local and landscape-scale variables associated with structure survival. The local-scale analysis showed that window preparation was especially important but, in general, creating defensible space adjacent to the home was as important as building construction. At the landscape scale, structure density and structure age were the two most important factors affecting structure survival, but there was a significant interaction between them. That is, young structure age was most important in higher-density areas where structure survival overall was more likely. On the other hand, newer-construction structures were less likely to survive wildfires at lower density. Here, appropriate defensible space near the structure and accessibility to major roads were important factors. In conclusion, community safety is a multivariate problem that will require a comprehensive solution involving land use planning, fire-safe construction, and property maintenance.

  9. Contemporary genetic structure, phylogeography and past demographic processes of wild boar Sus scrofa population in Central and Eastern Europe.

    Science.gov (United States)

    Kusza, Szilvia; Podgórski, Tomasz; Scandura, Massimo; Borowik, Tomasz; Jávor, András; Sidorovich, Vadim E; Bunevich, Aleksei N; Kolesnikov, Mikhail; Jędrzejewska, Bogumiła

    2014-01-01

    The wild boar (Sus scrofa) is one of the most widely distributed mammals in Europe. Its demography was affected by various events in the past and today populations are increasing throughout Europe. We examined genetic diversity, structure and population dynamics of wild boar in Central and Eastern Europe. MtDNA control region (664 bp) was sequenced in 254 wild boar from six countries (Poland, Hungary, Belarus, Ukraine, Moldova and the European part of Russia). We detected 16 haplotypes, all known from previous studies in Europe; 14 of them belonged to European 1 (E1) clade, including 13 haplotypes from E1-C and one from E1-A lineages. Two haplotypes belonged respectively to the East Asian and the Near Eastern clade. Both haplotypes were found in Russia and most probably originated from the documented translocations of wild boar. The studied populations showed moderate haplotype (0.714±0.023) and low nucleotide diversity (0.003±0.002). SAMOVA grouped the genetic structuring of Central and Eastern European wild boar into three subpopulations, comprising of: (1) north-eastern Belarus and the European part of Russia, (2) Poland, Ukraine, Moldova and most of Belarus, and (3) Hungary. The multimodal mismatch distribution, Fu's Fs index, Bayesian skyline plot and the high occurrence of shared haplotypes among populations did not suggest strong demographic fluctuations in wild boar numbers in the Holocene and pre-Holocene times. This study showed relatively weak genetic diversity and structure in Central and Eastern European wild boar populations and underlined gaps in our knowledge on the role of southern refugia and demographic processes shaping genetic diversity of wild boar in this part of Europe.

  10. Genetic diversity of microsatellite loci in hierarchically structured populations.

    Science.gov (United States)

    Song, Seongho; Dey, Dipak K; Holsinger, Kent E

    2011-08-01

    Microsatellite loci are widely used for investigating patterns of genetic variation within and among populations. Those patterns are in turn determined by population sizes, migration rates, and mutation rates. We provide exact expressions for the first two moments of the allele frequency distribution in a stochastic model appropriate for studying microsatellite evolution with migration, mutation, and drift under the assumption that the range of allele sizes is bounded. Using these results, we study the behavior of several measures related to Wright's F(ST), including Slatkin's R(ST). Our analytical approximations for F(ST) and R(ST) show that familiar relationships between N(e)m and F(ST) or R(ST) hold when the migration and mutation rates are small. Using the exact expressions for F(ST) and R(ST), our numerical results show that, when the migration and mutation rates are large, these relationships no longer hold. Our numerical results also show that the diversity measures most closely related to F(ST) depend on mutation rates, mutational models (stepwise versus two-phase), migration rates, and population sizes. Surprisingly, R(ST) is relatively insensitive to the mutation rates and mutational models. The differing behaviors of R(ST) and F(ST) suggest that properties of the among-population distribution of allele frequencies may allow the roles of mutation and migration in producing patterns of diversity to be distinguished, a topic of continuing investigation.

  11. Clinical, genetic, and structural basis of congenital adrenal hyperplasia due to 11β-hydroxylase deficiency.

    Science.gov (United States)

    Khattab, Ahmed; Haider, Shozeb; Kumar, Ameet; Dhawan, Samarth; Alam, Dauood; Romero, Raquel; Burns, James; Li, Di; Estatico, Jessica; Rahi, Simran; Fatima, Saleel; Alzahrani, Ali; Hafez, Mona; Musa, Noha; Razzghy Azar, Maryam; Khaloul, Najoua; Gribaa, Moez; Saad, Ali; Charfeddine, Ilhem Ben; Bilharinho de Mendonça, Berenice; Belgorosky, Alicia; Dumic, Katja; Dumic, Miroslav; Aisenberg, Javier; Kandemir, Nurgun; Alikasifoglu, Ayfer; Ozon, Alev; Gonc, Nazli; Cheng, Tina; Kuhnle-Krahl, Ursula; Cappa, Marco; Holterhus, Paul-Martin; Nour, Munier A; Pacaud, Daniele; Holtzman, Assaf; Li, Sun; Zaidi, Mone; Yuen, Tony; New, Maria I

    2017-03-07

    Congenital adrenal hyperplasia (CAH), resulting from mutations in CYP11B1, a gene encoding 11β-hydroxylase, represents a rare autosomal recessive Mendelian disorder of aberrant sex steroid production. Unlike CAH caused by 21-hydroxylase deficiency, the disease is far more common in the Middle East and North Africa, where consanguinity is common often resulting in identical mutations. Clinically, affected female newborns are profoundly virilized (Prader score of 4/5), and both genders display significantly advanced bone ages and are oftentimes hypertensive. We find that 11-deoxycortisol, not frequently measured, is the most robust biochemical marker for diagnosing 11β-hydroxylase deficiency. Finally, computational modeling of 25 missense mutations of CYP11B1 revealed that specific modifications in the heme-binding (R374W and R448C) or substrate-binding (W116C) site of 11β-hydroxylase, or alterations in its stability (L299P and G267S), may predict severe disease. Thus, we report clinical, genetic, hormonal, and structural effects of CYP11B1 gene mutations in the largest international cohort of 108 patients with steroid 11β-hydroxylase deficiency CAH.

  12. Amphibian DNA shows marked genetic structure and tracks pleistocene climate change in northeastern Brazil.

    Science.gov (United States)

    Carnaval, Ana Carolina; Bates, John M

    2007-12-01

    The glacial refugia paradigm has been broadly applied to patterns of species dynamics and population diversification. However, recent geological studies have demonstrated striking Pleistocene climate changes in currently semiarid northeastern Brazil at time intervals much more frequent than the climatic oscillations associated with glacial and interglacial periods. These geomorphic data documented recurrent pulses of wet regimes in the past 210,000 years that correlate with climate anomalies affecting multiple continents. While analyzing DNA sequences of two mitochondrial genes (cytochrome b and NADH-dehydrogenase subunit 2) and one nuclear marker (cellular-myelocytomatosis proto-oncogene) in the forest-associated frogs Proceratophrys boiei and Ischnocnema gr. ramagii, we found evidence of biological responses consistent with these pluvial maxima events. Sampled areas included old, naturally isolated forest enclaves within the semiarid Caatinga, as well as recent man-made fragments of humid coastal Atlantic forest. Results show that mtDNA lineages in enclave populations are monophyletic or nearly so, whereas nonenclave populations are polyphyletic and more diverse. The studied taxa show evidence of demographic expansions at times that match phases of pluvial maxima inferred from geological data. Divergence times between several populations fall within comparatively drier intervals suggested by geomorphology. Mitochondrial and nuclear data show local populations to be genetically structured, with some high levels of differentiation that suggest the need of further taxonomic work.

  13. Population structure, genetic variation and linkage disequilibrium in perennial ryegrass populations divergently selected for freezing tolerance

    Directory of Open Access Journals (Sweden)

    Mallikarjuna Rao eKovi

    2015-11-01

    Full Text Available Low temperature is one of the abiotic stresses seriously affecting the growth of perennial ryegrass (Lolium perenne L. Understanding the genetic control of freezing tolerance would aid in the development of cultivars of perennial ryegrass with improved adaptation to frost. A total number of 80 individuals (24 of High frost [HF]; 29 of Low frost [LF] and 27 of Unselected [US] from the second generation of the two divergently selected populations and an unselected control population were genotyped using 278 genome-wide SNPs derived from Lolium perenne L. transcriptome sequence. Our studies showed that the HF and LF populations are very divergent after selection for freezing tolerance, whereas the HF and US populations are more similar. Linkage disequilibrium (LD decay varied across the seven chromosomes and the conspicuous pattern of LD between the HF and LF population confirmed their divergence in freezing tolerance. Furthermore, two Fst outlier methods; finite island model (fdist by LOSITAN and hierarchical structure model using ARLEQUIN detected six loci under directional selection. These outlier loci are most probably linked to genes involved in freezing tolerance, cold adaptation and abiotic stress and might be the potential marker resources for breeding perennial ryegrass cultivars with improved freezing tolerance.

  14. Genetic analysis identifies DDR2 as a novel gene affecting bone mineral density and osteoporotic fractures in Chinese population.

    Directory of Open Access Journals (Sweden)

    Yan Guo

    Full Text Available DDR2 gene, playing an essential role in regulating osteoblast differentiation and chondrocyte maturation, may influence bone mineral density (BMD and osteoporosis, but the genetic variations actually leading to the association remain to be elucidated. Therefore, the aim of this study was to investigate whether the genetic variants in DDR2 are associated with BMD and fracture risk. This study was performed in three samples from two ethnicities, including 1,300 Chinese Han subjects, 700 Chinese Han subjects (350 with osteoporotic hip fractures and 350 healthy controls and 2,286 US white subjects. Twenty-eight SNPs in DDR2 were genotyped and tested for associations with hip BMD and fractures. We identified 3 SNPs in DDR2 significantly associated with hip BMD in the Chinese population after multiple testing adjustments, which were rs7521233 (P = 1.06×10-4, β: -0.018 for allele C, rs7553831 (P = 1.30×10-4, β: -0.018 for allele T, and rs6697469 (P = 1.59×10-3, β: -0.015 for allele C, separately. These three SNPs were in high linkage disequilibrium. Haplotype analyses detected two significantly associated haplotypes, including one haplotype in block 2 (P = 9.54×10-4, β: -0.016 where these three SNPs located. SNP rs6697469 was also associated with hip fractures (P = 0.043, OR: 1.42 in the Chinese population. The effect on fracture risk was consistent with its association with lower BMD. However, in the white population, we didn't observe significant associations with hip BMD. eQTL analyses revealed that SNPs associated with BMD also affected DDR2 mRNA expression levels in Chinese. Our findings, together with the prior biological evidence, suggest that DDR2 could be a new candidate for osteoporosis in Chinese population. Our results also reveal an ethnic difference, which highlights the need for further genetic studies in each ethnic group.

  15. Genetic analysis identifies DDR2 as a novel gene affecting bone mineral density and osteoporotic fractures in Chinese population.

    Science.gov (United States)

    Guo, Yan; Yang, Tie-Lin; Dong, Shan-Shan; Yan, Han; Hao, Ruo-Han; Chen, Xiao-Feng; Chen, Jia-Bin; Tian, Qing; Li, Jian; Shen, Hui; Deng, Hong-Wen

    2015-01-01

    DDR2 gene, playing an essential role in regulating osteoblast differentiation and chondrocyte maturation, may influence bone mineral density (BMD) and osteoporosis, but the genetic variations actually leading to the association remain to be elucidated. Therefore, the aim of this study was to investigate whether the genetic variants in DDR2 are associated with BMD and fracture risk. This study was performed in three samples from two ethnicities, including 1,300 Chinese Han subjects, 700 Chinese Han subjects (350 with osteoporotic hip fractures and 350 healthy controls) and 2,286 US white subjects. Twenty-eight SNPs in DDR2 were genotyped and tested for associations with hip BMD and fractures. We identified 3 SNPs in DDR2 significantly associated with hip BMD in the Chinese population after multiple testing adjustments, which were rs7521233 (P = 1.06×10-4, β: -0.018 for allele C), rs7553831 (P = 1.30×10-4, β: -0.018 for allele T), and rs6697469 (P = 1.59×10-3, β: -0.015 for allele C), separately. These three SNPs were in high linkage disequilibrium. Haplotype analyses detected two significantly associated haplotypes, including one haplotype in block 2 (P = 9.54×10-4, β: -0.016) where these three SNPs located. SNP rs6697469 was also associated with hip fractures (P = 0.043, OR: 1.42) in the Chinese population. The effect on fracture risk was consistent with its association with lower BMD. However, in the white population, we didn't observe significant associations with hip BMD. eQTL analyses revealed that SNPs associated with BMD also affected DDR2 mRNA expression levels in Chinese. Our findings, together with the prior biological evidence, suggest that DDR2 could be a new candidate for osteoporosis in Chinese population. Our results also reveal an ethnic difference, which highlights the need for further genetic studies in each ethnic group.

  16. Integrated fuzzy logic and genetic algorithms for multi-objective control of structures using MR dampers

    Science.gov (United States)

    Yan, Gang; Zhou, Lily L.

    2006-09-01

    This study presents a design strategy based on genetic algorithms (GA) for semi-active fuzzy control of structures that have magnetorheological (MR) dampers installed to prevent damage from severe dynamic loads such as earthquakes. The control objective is to minimize both the maximum displacement and acceleration responses of the structure. Interactive relationships between structural responses and input voltages of MR dampers are established by using a fuzzy controller. GA is employed as an adaptive method for design of the fuzzy controller, which is here known as a genetic adaptive fuzzy (GAF) controller. The multi-objectives are first converted to a fitness function that is used in standard genetic operations, i.e. selection, crossover, and mutation. The proposed approach generates an effective and reliable fuzzy logic control system by powerful searching and self-learning adaptive capabilities of GA. Numerical simulations for single and multiple damper cases are given to show the effectiveness and efficiency of the proposed intelligent control strategy.

  17. Demographic histories, isolation and social factors as determinants of the genetic structure of Alpine linguistic groups.

    Science.gov (United States)

    Coia, Valentina; Capocasa, Marco; Anagnostou, Paolo; Pascali, Vincenzo; Scarnicci, Francesca; Boschi, Ilaria; Battaggia, Cinzia; Crivellaro, Federica; Ferri, Gianmarco; Alù, Milena; Brisighelli, Francesca; Busby, George B J; Capelli, Cristian; Maixner, Frank; Cipollini, Giovanna; Viazzo, Pier Paolo; Zink, Albert; Destro Bisol, Giovanni

    2013-01-01

    Great European mountain ranges have acted as barriers to gene flow for resident populations since prehistory and have offered a place for the settlement of small, and sometimes culturally diverse, communities. Therefore, the human groups that have settled in these areas are worth exploring as an important potential source of diversity in the genetic structure of European populations. In this study, we present new high resolution data concerning Y chromosomal variation in three distinct Alpine ethno-linguistic groups, Italian, Ladin and German. Combining unpublished and literature data on Y chromosome and mitochondrial variation, we were able to detect different genetic patterns. In fact, within and among population diversity values observed vary across linguistic groups, with German and Italian speakers at the two extremes, and seem to reflect their different demographic histories. Using simulations we inferred that the joint effect of continued genetic isolation and reduced founding group size may explain the apportionment of genetic diversity observed in all groups. Extending the analysis to other continental populations, we observed that the genetic differentiation of Ladins and German speakers from Europeans is comparable or even greater to that observed for well known outliers like Sardinian and Basques. Finally, we found that in south Tyroleans, the social practice of Geschlossener Hof, a hereditary norm which might have favored male dispersal, coincides with a significant intra-group diversity for mtDNA but not for Y chromosome, a genetic pattern which is opposite to those expected among patrilocal populations. Together with previous evidence regarding the possible effects of "local ethnicity" on the genetic structure of German speakers that have settled in the eastern Italian Alps, this finding suggests that taking socio-cultural factors into account together with geographical variables and linguistic diversity may help unveil some yet to be understood

  18. Demographic histories, isolation and social factors as determinants of the genetic structure of Alpine linguistic groups.

    Directory of Open Access Journals (Sweden)

    Valentina Coia

    Full Text Available Great European mountain ranges have acted as barriers to gene flow for resident populations since prehistory and have offered a place for the settlement of small, and sometimes culturally diverse, communities. Therefore, the human groups that have settled in these areas are worth exploring as an important potential source of diversity in the genetic structure of European populations. In this study, we present new high resolution data concerning Y chromosomal variation in three distinct Alpine ethno-linguistic groups, Italian, Ladin and German. Combining unpublished and literature data on Y chromosome and mitochondrial variation, we were able to detect different genetic patterns. In fact, within and among population diversity values observed vary across linguistic groups, with German and Italian speakers at the two extremes, and seem to reflect their different demographic histories. Using simulations we inferred that the joint effect of continued genetic isolation and reduced founding group size may explain the apportionment of genetic diversity observed in all groups. Extending the analysis to other continental populations, we observed that the genetic differentiation of Ladins and German speakers from Europeans is comparable or even greater to that observed for well known outliers like Sardinian and Basques. Finally, we found that in south Tyroleans, the social practice of Geschlossener Hof, a hereditary norm which might have favored male dispersal, coincides with a significant intra-group diversity for mtDNA but not for Y chromosome, a genetic pattern which is opposite to those expected among patrilocal populations. Together with previous evidence regarding the possible effects of "local ethnicity" on the genetic structure of German speakers that have settled in the eastern Italian Alps, this finding suggests that taking socio-cultural factors into account together with geographical variables and linguistic diversity may help unveil some yet

  19. Genetic structure of Europeans: a view from the North-East.

    Directory of Open Access Journals (Sweden)

    Mari Nelis

    Full Text Available Using principal component (PC analysis, we studied the genetic constitution of 3,112 individuals from Europe as portrayed by more than 270,000 single nucleotide polymorphisms (SNPs genotyped with the Illumina Infinium platform. In cohorts where the sample size was >100, one hundred randomly chosen samples were used for analysis to minimize the sample size effect, resulting in a total of 1,564 samples. This analysis revealed that the genetic structure of the European population correlates closely with geography. The first two PCs highlight the genetic diversity corresponding to the northwest to southeast gradient and position the populations according to their approximate geographic origin. The resulting genetic map forms a triangular structure with a Finland, b the Baltic region, Poland and Western Russia, and c Italy as its vertexes, and with d Central- and Western Europe in its centre. Inter- and intra- population genetic differences were quantified by the inflation factor lambda (lambda (ranging from 1.00 to 4.21, fixation index (F(st (ranging from 0.000 to 0.023, and by the number of markers exhibiting significant allele frequency differences in pair-wise population comparisons. The estimated lambda was used to assess the real diminishing impact to association statistics when two distinct populations are merged directly in an analysis. When the PC analysis was confined to the 1,019 Estonian individuals (0.1% of the Estonian population, a fine structure emerged that correlated with the geography of individual counties. With at least two cohorts available from several countries, genetic substructures were investigated in Czech, Finnish, German, Estonian and Italian populations. Together with previously published data, our results allow the creation of a comprehensive European genetic map that will greatly facilitate inter-population genetic studies including genome wide association studies (GWAS.

  20. Genetic population structure accounts for contemporary ecogeographic patterns in tropic and subtropic-dwelling humans.

    Science.gov (United States)

    Hruschka, Daniel J; Hadley, Craig; Brewis, Alexandra A; Stojanowski, Christopher M

    2015-01-01

    Contemporary human populations conform to ecogeographic predictions that animals will become more compact in cooler climates and less compact in warmer ones. However, it remains unclear to what extent this pattern reflects plastic responses to current environments or genetic differences among populations. Analyzing anthropometric surveys of 232,684 children and adults from across 80 ethnolinguistic groups in sub-Saharan Africa, Asia and the Americas, we confirm that body surface-to-volume correlates with contemporary temperature at magnitudes found in more latitudinally diverse samples (Adj. R2 = 0.14-0.28). However, far more variation in body surface-to-volume is attributable to genetic population structure (Adj. R2 = 0.50-0.74). Moreover, genetic population structure accounts for nearly all of the observed relationship between contemporary temperature and body surface-to-volume among children and adults. Indeed, after controlling for population structure, contemporary temperature accounts for no more than 4% of the variance in body form in these groups. This effect of genetic affinity on body form is also independent of other ecological variables, such as dominant mode of subsistence and household wealth per capita. These findings suggest that the observed fit of human body surface-to-volume with current climate in this sample reflects relatively large effects of existing genetic population structure of contemporary humans compared to plastic response to current environments.

  1. Factors Affecting Higher Order Thinking Skills of Students: A Meta-Analytic Structural Equation Modeling Study

    Science.gov (United States)

    Budsankom, Prayoonsri; Sawangboon, Tatsirin; Damrongpanit, Suntorapot; Chuensirimongkol, Jariya

    2015-01-01

    The purpose of the research is to develop and identify the validity of factors affecting higher order thinking skills (HOTS) of students. The thinking skills can be divided into three types: analytical, critical, and creative thinking. This analysis is done by applying the meta-analytic structural equation modeling (MASEM) based on a database of…

  2. Microsatellite analyses reveal fine-scale genetic structure in grey mouse lemurs (Microcebus murinus).

    Science.gov (United States)

    Fredsted, T; Pertoldi, C; Schierup, M H; Kappeler, P M

    2005-07-01

    Information on genetic structure can be used to complement direct inferences on social systems and behaviour. We studied the genetic structure of the solitary grey mouse lemur (Microcebus murinus), a small, nocturnal primate endemic to western Madagascar, with the aim of getting further insight on its breeding structure. Tissue samples from 167 grey mouse lemurs in an area covering 12.3 km2 in Kirindy Forest were obtained from trapping. The capture data indicated a noncontinuous distribution of individuals in the study area. Using 10 microsatellite markers, significant genetic differentiation in the study area was demonstrated and dispersal was found to be significantly male biased. Furthermore, we observed an overall excess of homozygotes in the total population (F(IT) = 0.131), which we interpret as caused by fine-scale structure with breeding occurring in small units. Evidence for a clumped distribution of identical homozygotes was found, supporting the notion that dispersal distance for breeding was shorter than that for foraging, i.e. the breeding neighbourhood size is smaller than the foraging neighbourhood size. In conclusion, we found a more complex population structure than what has been previously reported in studies performed on smaller spatial scales. The noncontinuous distribution of individuals and the effects of social variables on the genetic structure have implications for the interpretation of social organization and the planning of conservation activities that may apply to other solitary and endangered mammals as well.

  3. Phenotypic and genetic diversity in Sinorhizobium meliloti and S. medicae from drought and salt affected regions of Morocco

    Directory of Open Access Journals (Sweden)

    Udupa Sripada M

    2010-01-01

    Full Text Available Abstract Background Sinorhizobium meliloti and S. medicae are symbiotic nitrogen fixing bacteria in root nodules of forage legume alfalfa (Medicago sativa L.. In Morocco, alfalfa is usually grown in marginal soils of arid and semi-arid regions frequently affected by drought, extremes of temperature and soil pH, soil salinity and heavy metals, which affect biological nitrogen fixing ability of rhizobia and productivity of the host. This study examines phenotypic diversity for tolerance to the above stresses and genotypic diversity at Repetitive Extragenic Pallindromic DNA regions of Sinorhizobium nodulating alfalfa, sampled from marginal soils of arid and semi-arid regions of Morocco. Results RsaI digestion of PCR amplified 16S rDNA of the 157 sampled isolates, assigned 136 isolates as S. meliloti and the rest as S. medicae. Further phenotyping of these alfalfa rhizobia for tolerance to the environmental stresses revealed a large degree of variation: 55.41%, 82.16%, 57.96% and 3.18% of the total isolates were tolerant to NaCl (>513 mM, water stress (-1.5 MPa, high temperature (40°C and low pH (3.5, respectively. Sixty-seven isolates of S. meliloti and thirteen isolates of S. medicae that were tolerant to salinity were also tolerant to water stress. Most of the isolates of the two species showed tolerance to heavy metals (Cd, Mn and Zn and antibiotics (chloramphenicol, spectinomycin, streptomycin and tetracycline. The phenotypic clusters observed by the cluster analysis clearly showed adaptations of the S. meliloti and S. medicae strains to the multiple stresses. Genotyping with rep-PCR revealed higher genetic diversity within these phenotypic clusters and classified all the 157 isolates into 148 genotypes. No relationship between genotypic profiles and the phenotypes was observed. The Analysis of Molecular Variance revealed that largest proportion of significant (P Conclusion High degree of phenotypic and genotypic diversity is present in S

  4. Genetic structure among greater white-fronted goose populations of the Pacific Flyway

    Science.gov (United States)

    Ely, Craig R.; Wilson, Robert E.; Talbot, Sandra

    2017-01-01

    An understanding of the genetic structure of populations in the wild is essential for long-term conservation and stewardship in the face of environmental change. Knowledge of the present-day distribution of genetic lineages (phylogeography) of a species is especially important for organisms that are exploited or utilize habitats that may be jeopardized by human intervention, including climate change. Here, we describe mitochondrial (mtDNA) and nuclear genetic (microsatellite) diversity among three populations of a migratory bird, the greater white-fronted goose (Anser albifrons), which breeds discontinuously in western and southwestern Alaska and winters in the Pacific Flyway of North America. Significant genetic structure was evident at both marker types. All three populations were differentiated for mtDNA, whereas microsatellite analysis only differentiated geese from the Cook Inlet Basin. In sexual reproducing species, nonrandom mate selection, when occurring in concert with fine-scale resource partitioning, can lead to phenotypic and genetic divergence as we observed in our study. If mate selection does not occur at the time of reproduction, which is not uncommon in long-lived organisms, then mechanisms influencing the true availability of potential mates may be obscured, and the degree of genetic and phenotypic diversity may appear incongruous with presumed patterns of gene flow. Previous investigations revealed population-specific behavioral, temporal, and spatial mechanisms that likely influence the amount of gene flow measured among greater white-fronted goose populations. The degree of observed genetic structuring aligns well with our current understanding of population differences pertaining to seasonal movements, social structure, pairing behavior, and resource partitioning.

  5. Microsatellite based genetic structure of regional transboundary Istrian sheep breed populations in Croatia and Slovenia

    Directory of Open Access Journals (Sweden)

    Beatriz Gutierrez-Gil

    2015-02-01

    Full Text Available Istrian dairy sheep is a local breed essential for the identity and development of the Northern- Adriatic karstic region through high-quality products, primarily the hard sheep artisanal cheese. Border changes fragmented the initial Istrian dairy sheep population in three genetically isolated sub-populations in Italy (1000 animals, Slovenia (1150 animals and Croatia (2500 animals. Due to the drastic reduction of their population sizes and fragmentation, the populations in Croatia and Slovenia are included in governmentally supported conservation programs. The initial subpopulation in Italy was restored after near extinction with stock from Slovenia, and is used today in meat production. The aim of this study was to provide an initial understanding of the current genetic structure and distribution of the genetic variability that exists in Istrian sheep by analysing individuals sampled in two regional groups of Istrian sheep from Croatia and Slovenia. Cres island sheep and Lika pramenka sheep were used as out-groups for comparison. Genetic differentiation was analysed using factorial correspondence analysis and structure clustering over 26 microsatellite loci for a total of 104 sheep belonging to three breeds from Croatia and Slovenia. Factorial correspondence analysis and clustering-based structure analysis both showed three distinct populations: Lika pramenka sheep, Cres island sheep and Istrian sheep. We did not find a marked genetic divergence of the regional groups of Istrian sheep. Istrian sheep regional group from Slovenia showed lower genetic variability compared to the one from Croatia. Variability and structure information obtained in this study considered alongside with socio-cultural-contexts and economic goals for the Istrian sheep reared in Croatia and Slovenia indicate that the cross-border exchange of genetic material of animals carrying private alleles among populations would maintain these alleles at low frequencies and minimize

  6. Heterogeneous road networks have no apparent effect on the genetic structure of small mammal populations.

    Science.gov (United States)

    Grilo, Clara; Del Cerro, Irene; Centeno-Cuadros, Alejandro; Ramiro, Victor; Román, Jacinto; Molina-Vacas, Guillem; Fernández-Aguilar, Xavier; Rodríguez, Juan; Porto-Peter, Flávia; Fonseca, Carlos; Revilla, Eloy; Godoy, José A

    2016-09-15

    Roads are widely recognized to represent a barrier to individual movements and, conversely, verges can act as potential corridors for the dispersal of many small mammals. Both barrier and corridor effects should generate a clear spatial pattern in genetic structure. Nevertheless, the effect of roads on the genetic structure of small mammal populations still remains unclear. In this study, we examine the barrier effect that different road types (4-lane highway, 2-lane roads and single-lane unpaved roads) may have on the population genetic structure of three species differing in relevant life history traits: southern water vole Arvicola sapidus, the Mediterranean pine vole Microtus duodecimcostatus and the Algerian mouse Mus spretus. We also examine the corridor effect of highway verges on the Mediterranean pine vole and the Algerian mouse. We analysed the population structure through pairwise estimates of FST among subpopulations bisected by roads, identified genetic clusters through Bayesian assignment approaches, and used simple and partial Mantel tests to evaluate the relative barrier or corridor effect of roads. No strong evidences were found for an effect of roads on population structure of these three species. The barrier effect of roads seems to be site-specific and no corridor effect of verges was found for the pine vole and Algerian mouse populations. The lack of consistent results among species and for each road type lead us to believe that the ability of individual dispersers to use those crossing structures or the habitat quality in the highway verges may have a relatively higher influence on gene flow among populations than the presence of crossing structures per se. Further research should include microhabitat analysis and the estimates of species abundance to understand the mechanisms that underlie the genetic structure observed at some sites.

  7. An affected core drives network integration deficits of the structural connectome in 22q11.2 deletion syndrome

    Directory of Open Access Journals (Sweden)

    František Váša

    2016-01-01

    Full Text Available Chromosome 22q11.2 deletion syndrome (22q11DS is a genetic disease known to lead to cerebral structural alterations, which we study using the framework of the macroscopic white-matter connectome. We create weighted connectomes of 44 patients with 22q11DS and 44 healthy controls using diffusion tensor magnetic resonance imaging, and perform a weighted graph theoretical analysis. After confirming global network integration deficits in 22q11DS (previously identified using binary connectomes, we identify the spatial distribution of regions responsible for global deficits. Next, we further characterize the dysconnectivity of the deficient regions in terms of sub-network properties, and investigate their relevance with respect to clinical profiles. We define the subset of regions with decreased nodal integration (evaluated using the closeness centrality measure as the affected core (A-core of the 22q11DS structural connectome. A-core regions are broadly bilaterally symmetric and consist of numerous network hubs — chiefly parietal and frontal cortical, as well as subcortical regions. Using a simulated lesion approach, we demonstrate that these core regions and their connections are particularly important to efficient network communication. Moreover, these regions are generally densely connected, but less so in 22q11DS. These specific disturbances are associated to a rerouting of shortest network paths that circumvent the A-core in 22q11DS, “de-centralizing” the network. Finally, the efficiency and mean connectivity strength of an orbito-frontal/cingulate circuit, included in the affected regions, correlate negatively with the extent of negative symptoms in 22q11DS patients, revealing the clinical relevance of present findings. The identified A-core overlaps numerous regions previously identified as affected in 22q11DS as well as in schizophrenia, which approximately 30–40% of 22q11DS patients develop.

  8. Correlation analysis of genetic diversity and population structure of Houttuynia cordata Thunb with regard to environment.

    Science.gov (United States)

    Zhong, J; Wu, F-C; Qiu, P; Dai, L-J

    2016-01-01

    To study the levels of genetic diversity, and population structure, of Houttuynia cordata Thunb, the genetic background and relationships of populations were analyzed in terms of environmental factors. The genetic diversity and population structure of H. cordata were investigated using sequence-related amplified polymorphisms and correlation with environmental factors was analyzed using the SPSS software. Two thousand one hundred sixty-three sites were amplified from 41 pairs of primers, 1825 of which were polymorphic, and the percentage of polymorphic loci was 84.37%; the percentage of polymorphic sites was 72.14 and 67.77% at the species and population level, respectively. The observed number of alleles was 1.52 and 1.30 at species and population level, respectively. The effective number of alleles was 1.38 and 1.24 at species and population level, respectively. The Nei's diversity was 0.26 and 0.15 at species and population level, respectively. The Shannon's information index was 0.87 and 0.63 at species and population level, respectively. The genetic differentiation coefficient of populations was 0.51, and 12 populations were divided into three classes based on D = 0.20; the genetic diversities of different populations are correlated at different significance levels (P Genetic differentiation existed among populations and the populations exhibited heteroplasmy.

  9. Genetic diversity, population structure and marker trait associations for seed quality traits in cotton (Gossypium hirsutum)

    Indian Academy of Sciences (India)

    Ashok Badigannavar; Gerald O. Myers

    2015-03-01

    Cottonseed contains 16% seed oil and 23% seed protein by weight. High levels of palmitic acid provides a degree of stability to the oil, while the presence of bound gossypol in proteins considerably changes their properties, including their biological value. This study uses genetic principles to identify genomic regions associated with seed oil, protein and fibre content in upland cotton cultivars. Cotton association mapping panel representing the US germplasm were genotyped using amplified fragment length polymorphism markers, yielding 234 polymorphic DNA fragments. Phenotypic analysis showed high genetic variability for the seed traits, seed oil range from 6.47–25.16%, protein from 1.85–28.45% and fibre content from 15.88–37.12%. There were negative correlations between seed oil and protein content. With reference to genetic diversity, the average estimate of ST was 8.852 indicating a low level of genetic differentiation among subpopulations. The AMOVA test revealed that variation was 94% within and 6% among subpopulations. Bayesian population structure identified five subpopulations and was in agreement with their geographical distribution. Among the mixed models analysed, mixed linear model (MLM) identified 21 quantitative trait loci for lint percentage and seed quality traits, such as seed protein and oil. Establishing genetic diversity, population structure and marker trait associations for the seed quality traits could be valuable in understanding the genetic relationships and their utilization in breeding programmes.

  10. Population genetic structure of moose (Alces Alces) of South-central Alaska.

    Science.gov (United States)

    Wilson, Robert E.; McDonough, John T.; Barboza, Perry S.; Talbot, Sandra L.; Farley, Sean D.

    2015-01-01

    The location of a population can influence its genetic structure and diversity by impacting the degree of isolation and connectivity to other populations. Populations at range margins areoften thought to have less genetic variation and increased genetic structure, and a reduction in genetic diversity can have negative impacts on the health of a population. We explored the genetic diversity and connectivity between 3 peripheral populations of moose (Alces alces) with differing potential for connectivity to other areas within interior Alaska. Populations on the Kenai Peninsula and from the Anchorage region were found to be significantly differentiated (FST= 0.071, P < 0.0001) with lower levels of genetic diversity observed within the Kenai population. Bayesian analyses employing assignment methodologies uncovered little evidence of contemporary gene flow between Anchorage and Kenai, suggesting regional isolation. Although gene flow outside the peninsula is restricted, high levels of gene flow were detected within the Kenai that is explained by male-biased dispersal. Furthermore, gene flow estimates differed across time scales on the Kenai Peninsula which may have been influenced by demographic fluctuations correlated, at least in part, with habitat change.

  11. Genetic diversity and structure of natural fragmented Chamaecyparis obtusa populations as revealed by microsatellite markers.

    Science.gov (United States)

    Matsumoto, Asako; Uchida, Kohji; Taguchi, Yuriko; Tani, Naoki; Tsumura, Yoshihiko

    2010-09-01

    The genetic diversity and population structure of hinoki (Chamaecyparis obtusa) in Japan were investigated by examining the distribution of alleles at 13 microsatellite loci in 25 natural populations from Iwaki in northern Japan to Yakushima Island in southern Japan. On average, 26.9 alleles per locus were identified across all populations and 4.0% of the genetic variation was retained among populations (G(ST) = 0.040). According to linkage disequilibrium analysis, estimates of effective population size and detected evidence of bottleneck events, the genetic diversity of some populations may have declined as a result of fragmentation and/or over-exploitation. The central populations located in the Chubu district appear to have relatively large effective population sizes, while marginal populations, such as the Yakushima, Kobayashi and Iwaki populations, have smaller effective population sizes and are isolated from the other populations. Microsatellite analysis revealed the genetic uniqueness of the Yakushima population. Although genetic differentiation between populations was low, we detected a gradual cline in the genetic structure and found that locus Cos2619 may be non-neutral with respect to natural selection.

  12. Population genetic structure in natural and reintroduced beaver (Castor fiber populations in Central Europe

    Directory of Open Access Journals (Sweden)

    Kautenburger, R.

    2008-12-01

    Full Text Available Castor fiber Linnaeus, 1758 is the only indigenous species of the genus Castor in Europe and Asia. Due to extensive hunting until the beginning of the 20th century, the distribution of the formerly widespread Eurasian beaver was dramatically reduced. Only a few populations remained and these were in isolated locations, such as the region of the German Elbe River. The loss of genetic diversity in small or captive populations throughgenetic drift and inbreeding is a severe conservation problem. However, the reintroduction of beaver populations from several regions in Europe has shown high viability and populations today are growing fast. In the present study we analysed the population genetic structure of a natural and two reintroduced beaver populations in Germany and Austria. Furthermore, we studied the genetic differentiation between two beaver species, C. fiber and the American beaver (C. canadensis, using RAPD (Random Amplified Polymorphic DNA as a genetic marker. The reintroduced beaver populations of different origins and the autochthonous population of the Elbe River showed a similar low genetic heterogeneity. There was an overall high genetic similarity in the species C. fiber, and no evidence was found for a clear subspecific structure in the populations studied.

  13. Genetic structure and diversity in Juniperus communis populations in Saxony, Germany

    Directory of Open Access Journals (Sweden)

    Reim Stefanie

    2016-06-01

    Full Text Available In recent years, land use changes led to a rapid decline and fragmentation of J. communis populations in Germany. Population isolation may lead to a restricted gene flow and, further, to negative effects on genetic variation. In this study, genetic diversity and population structure in seven fragmented J. communis populations in Saxony, Germany, were investigated using nuclear microsatellites (nSSR and chloroplast single nucleotide polymorphism (cpSNP. In all Saxony J. communis populations, a high genetic diversity was determined but no population differentiation could be detected whatever method was applied (Bayesian cluster analysis, F-statistics, AMOVA. The same was true for three J. communis out-group samples originating from Italy, Slovakia and Norway, which also showed high genetic diversity and low genetic differences regarding other J. communis populations. Low genetic differentiation among the J. communis populations ascertained with nuclear and chloroplast markers indicated high levels of gene flow by pollen and also by seeds between the sampled locations. Low genetic differentiation may also provide an indicator of Juniper survival during the last glacial maximum (LGM in Europe. The results of this study serve as a basis for the implementation of appropriate conservation measures in Saxony.

  14. Pollution and genetic structure of North American populations of the common dandelion (Taraxacum officinale).

    Science.gov (United States)

    Keane, Brian; Collier, Matthew H; Rogstad, Steven H

    2005-06-01

    Assessing the genetic structure of natural populations differentially impacted by anthropogenic contaminants can be a useful tool for evaluating the population genetic consequences of exposure to pollution. In this study, measures of genetic diversity at variable-number-tandem-repeat loci in six dandelion populations (3 urban and 3 rural) showed patterns that may have been influenced by exposure to environmental contaminants. Mean genetic similarity among individuals within a population was significantly and positively correlated with increasing levels of airborne particulate matter (< or = 10 microm, PM10) and soil concentrations of four metals (Cd, Fe, Ni and Pb). In addition, mean genetic similarity was always significantly higher at the urban sites compared to rural sites. There was a significant negative correlation between the number of genotypes at a site and increasing amounts of PM10, concentrations of five soil metals (Cd, Cu, Fe, Ni and Pb), leaf tissue levels of Fe and a significant positive correlation between the extent of clonality at a site and levels of PM10 and soil concentrations of five metals (Cd, Cu, Fe, Ni and Pb). Although, this study does not directly establish a causal link between the specific contaminants detected at the study sites and differences in genetic diversity, our data are consistent with the hypothesis that pollution-induced selection has contributed in some fashion to the lower genetic diversity found at the urban sites.

  15. Population genetic structure of an endangered Utah endemic, Astragalus ampullarioides (Fabaceae).

    Science.gov (United States)

    Breinholt, Jesse W; Van Buren, Renee; Kopp, Olga R; Stephen, Catherine L

    2009-03-01

    The endangered Shivwits milkvetch, Astragalus ampullarioides, is a perennial, herbaceous plant. This Utah endemic was federally listed as endangered in 2001 because of its high habitat specificity and low numbers of individuals and populations. All habitat currently occupied by A. ampullarioides was designated as critical by the U.S. Fish and Wildlife Service in 2006 as a result of conservation litigation. We used AFLP markers to assess genetic differentiation among the seven extant populations and quantified genetic diversity in each. Six different AFLP markers resulted in 217 unambiguous polymorphic loci. We used multiple methods to examine any changes in population genetic structure in this species over time. Results indicate that A. ampullarioides had much higher gene flow among populations in the past, but has since fragmented into regional genetic units. These regions further fragmented genetically, and extant populations have differentiated through genetic drift. Populations had low levels of gene flow, even between geographically close populations. Rapid urban development reduces gene flow among regions and encroaches on populations of A. ampullarioides and remaining patches of unoccupied habitat. The genetic makeup of each of the extant populations should be carefully considered in management decisions such as population establishment or augmentation.

  16. Genetic structure of Tibetan populations in Gansu revealed by forensic STR loci

    Science.gov (United States)

    Yao, Hong-Bing; Wang, Chuan-Chao; Wang, Jiang; Tao, Xiaolan; Shang, Lei; Wen, Shao-Qing; Du, Qiajun; Deng, Qiongying; Xu, Bingying; Huang, Ying; Wang, Hong-Dan; Li, Shujin; Bin Cong; Ma, Liying; Jin, Li; Krause, Johannes; Li, Hui

    2017-01-01

    The origin and diversification of Sino-Tibetan speaking populations have been long-standing hot debates. However, the limited genetic information of Tibetan populations keeps this topic far from clear. In the present study, we genotyped 15 forensic autosomal short tandem repeats (STRs) from 803 unrelated Tibetan individuals from Gansu Province (635 from Gannan and 168 from Tianzhu) in northwest China. We combined these data with published dataset to infer a detailed population affinities and genetic substructure of Sino-Tibetan populations. Our results revealed Tibetan populations in Gannan and Tianzhu are genetically very similar with Tibetans from other regions. The Tibetans in Tianzhu have received more genetic influence from surrounding lowland populations. The genetic structure of Sino-Tibetan populations was strongly correlated with linguistic affiliations. Although the among-population variances are relatively small, the genetic components for Tibetan, Lolo-Burmese, and Han Chinese were quite distinctive, especially for the Deng, Nu, and Derung of Lolo-Burmese. Han Chinese but not Tibetans are suggested to share substantial genetic component with southern natives, such as Tai-Kadai and Hmong-Mien speaking populations, and with other lowland East Asian populations, which implies there might be extensive gene flow between those lowland groups and Han Chinese after Han Chinese were separated from Tibetans. The dataset generated in present study is also valuable for forensic identification and paternity tests in China. PMID:28112227

  17. Population Genetic Structure of a Widespread Bat-Pollinated Columnar Cactus.

    Science.gov (United States)

    Bustamante, Enriquena; Búrquez, Alberto; Scheinvar, Enrique; Eguiarte, Luis Enrique

    2016-01-01

    Bats are the main pollinators and seed dispersers of Stenocereus thurberi, a xenogamous columnar cactus of northwestern Mexico and a good model to illustrate spatial dynamics of gene flow in long-lived species. Previous studies in this cactus showed differences among populations in the type and abundance of pollinators, and in the timing of flowering and fruiting. In this study we analyzed genetic variability and population differentiation among populations. We used three primers of ISSR to analyze within and among populations genetic variation from eight widely separated populations of S. thurberi in Sonora, Mexico. Sixty-six out of 99 of the ISSR bands (P = 66.7%) were polymorphic. Total heterozygosity for all populations sampled revealed high genetic diversity (Hsp = 0.207, HBT = 0.224). The AMOVA showed that most of the genetic variation was within populations (80.5%). At the species level, estimates of population differentiation, θ = 0.175 and θB = 0.194, indicated moderate gene flow among populations. The absence of a significant correlation between genetic and geographic distances indicated little isolation by geographic distance. The large genetic variation and diversity found in S. thurberi is consistent with its open reproductive system and the high mobility of bats, a major pollinator. However, small changes in number or kind of pollinators and seed dispersal agents, in the directionality of migratory routes, and/or in the timing of flowering and fruiting among populations, can critically affect gene flow dynamics.

  18. Genetic and environmental structure of the Tridimensional Personality Questionnaire: three or four temperament dimensions?

    Science.gov (United States)

    Stallings, M C; Hewitt, J K; Cloninger, C R; Heath, A C; Eaves, L J

    1996-01-01

    Previous phenotypic factor analyses suggest that C. R. Cloninger's Tridimensional Personality Questionnaire (TPQ; 1987c) assesses 4 rather than 3 temperament dimensions. The purpose of this study was to determine whether Cloninger's revised 4-factor model showed incremental validity over his original model and to investigate the convergent and discriminant validity of Cloninger's dimensions in comparison to the personality dimensions proposed by H. J. Eysenck (1981) and J. A. Gray (1970). The sample included 2,420 women and 870 men (aged 50-96) from a volunteer population-based sample of twins. Joint phenotypic factor analyses supported Cloninger's 4-dimensional temperament model. A 4-dimensional genetical factor structure was also confirmed in genetic analyses of the TPQ higher order dimensions in women. For men only 3 genetic factors were necessary to explain the genetic variance among the TPQ dimensions.

  19. Characterization of Genetic Variability and Population Structure of the Tick Amblyomma aureolatum (Acari: Ixodidae).

    Science.gov (United States)

    Ogrzewalska, Maria; Schwarcz, Kaiser; Bajay, Miklos M; Bajay, Stephanie K; Pinheiro, José B; Zucchi, Maria I; Pinter, Adriano; Labruna, Marcelo B

    2016-07-01

    The hard tick Amblyomma aureolatum (Pallas) is a vector of the bacterium Rickettsia rickettsii, the etiologic agent of Brazilian spotted fever (BSF) in parts of Brazil. Despite its wide distribution in southeastern South America and its public health importance, there is no information about genetic variation of this species that might help to understand the epidemiology of BSF. Using data from eight microsatellite markers and ticks from six localities, we used a population genetics approach to test the hypothesis that tick populations from areas with the presence of R. rickettsii are genetically different from ticks from areas without R. rickettsii Contrary to expectations, we found low genetic structure between studied regions. Thus, the presence of R. rickettsii in the specific area is more likely correlated with ecological and the environmental conditions or due to unknown gene coding regions of A. aureolatum genome that would be related to R. rickettsii infection resistance.

  20. The Genetic Response to Short-term Interventions Affecting Cardiovascular Function: Rationale and Design of the HAPI Heart Study

    Science.gov (United States)

    Mitchell, Braxton D.; McArdle, Patrick F.; Shen, Haiqing; Rampersaud, Evadnie; Pollin, Toni I.; Bielak, Lawrence F.; Jaquish, Cashell; Douglas, Julie A.; Roy-Gagnon, Marie-Hélène; Sack, Paul; Naglieri, Rosalie; Hines, Scott; Horenstein, Richard B.; Chang, Yen-Pei C.; Post, Wendy; Ryan, Kathleen A.; Brereton, Nga Hong; Pakyz, Ruth E.; Sorkin, John; Damcott, Coleen M.; O’Connell, Jeffrey R.; Mangano, Charles; Corretti, Mary; Vogel, Robert; Herzog, William; Weir, Matthew R.; Peyser, Patricia A.; Shuldiner, Alan R.

    2008-01-01

    Background The etiology of cardiovascular disease (CVD) is multifactorial. Efforts to identify genes influencing CVD risk have met with limited success to date, likely due to the small effect sizes of common CVD risk alleles and the presence of gene by gene and gene by environment interactions. Methods The Heredity and Phenotype Intervention (HAPI) Heart Study was initiated in 2002 to measure the cardiovascular response to four short-term interventions affecting cardiovascular risk factors and to identify the genetic and environmental determinants of these responses. The measurements included blood pressure responses to the cold pressor stress test and to a high salt diet, triglyceride excursion in response to a high fat challenge, and response in platelet aggregation to aspirin therapy. Results The interventions were carried out in 868 relatively healthy Amish adults from large families. The heritabilities of selected response traits for each intervention ranged from 8–38%, suggesting that some of the variation associated with response to each intervention can be attributed to the additive effects of genes. Conclusions Identifying these response genes may identify new mechanisms influencing CVD and may lead to individualized preventive strategies and improved early detection of high-risk individuals. PMID:18440328

  1. Carcass and meat quality traits of Iberian pig as affected by sex and crossbreeding with different Duroc genetic lines

    Directory of Open Access Journals (Sweden)

    A. Robina

    2013-11-01

    Full Text Available A total of 144 pigs were used to study the effects of sex (barrows or gilts and terminal sire line (Iberian or three genetic lines of Duroc: Duroc 1, Duroc 2 and Duroc 3 on performance and carcass and meat quality traits. Gilts showed slightly lower average daily gain, shoulder weight and trimming losses, but slightly better primal cuts yields and higher loin weight, while there was no significant effect of sex on meat quality traits or on the fatty acid composition of lard and muscle. There were important differences in performance and in carcass and primal cuts quality traits between pure Iberian pigs and all Iberian × Duroc crossbreeds evaluated, partly due to the lower slaughter weights reached by the formers. The different sire lines showed differences in several traits; Duroc 1 group showed lower backfat thickness and ham and shoulder trimming losses, and higher primal cut yields than Duroc 2 and Duroc 3 groups. Intramuscular fat (IMF content remained unaffected by crossbreeding, but meat color resulted more intense and redder in crosses from the Duroc 1 sire line. The accumulation of fatty acids in lard was not affected by Duroc sire line, while animals of the group Duroc 2 showed higher levels of monounsaturated fatty acid and lower of polyunsaturated ones in IMF. These results highlight the importance of considering not only performance, but also carcass and meat quality traits when deciding the Duroc sire line for crossbreeding in Iberian pig production.

  2. Baseline determination in social, health, and genetic areas in communities affected by glyphosate aerial spraying on the northeastern Ecuadorian border.

    Science.gov (United States)

    Paz-y-Miño, César; Muñoz, María José; Maldonado, Adolfo; Valladares, Carolina; Cumbal, Nadia; Herrera, Catalina; Robles, Paulo; Sánchez, María Eugenia; López-Cortés, Andrés

    2011-01-01

    The northeastern Ecuadorian border has undergone aerial spraying with an herbicide mix that contains surfactants and adjuvants, executed by the Colombian Government. The purpose of this study was to diagnose social, health, and genetic aspects of the people affected by glyphosate. For this objective to be achieved, 144 people were interviewed, and 521 medical diagnoses and 182 peripheral blood samples were obtained. Genotyping of GSTP1 Ile105Val, GPX-1 Pro198Leu, and XRCC1 Arg399Gln polymorphisms were analyzed, using PCR-RFLP technique. The assessment of chromosomal aberrations was performed, obtaining 182 karyotypes. Malnutrition in children was 3%. Of the total population, 7.7% had children with malformations, and the percentage of abortions was 12.7%. Concerning genotyping, individuals with GSTP1 Val/Val obtained an odds ratio of 4.88 (p < 0.001), and Ile/Val individuals, together with Val/Val individuals, had an odds ratio of 2.6 (p < 0.05). In addition, GPX-1 Leu/Leu individuals presented an odds ratio (OR) of 8.5 (p < 0.05). Regarding karyotyping, the 182 individuals had normal karyotypes. In conclusion, the study population did not present significant chromosomal and DNA alterations. The most important social impact was fear. We recommend future prospective studies to assess the communities.

  3. Genetic factors and diet affect long-bone length in the F34 LG,SM advanced intercross.

    Science.gov (United States)

    Norgard, Elizabeth A; Lawson, Heather A; Pletscher, L Susan; Wang, Bing; Brooks, Victoria R; Wolf, Jason B; Cheverud, James M

    2011-04-01

    Previous studies on the LG,SM advanced intercross line have identified approximately 40 quantitative trait loci (QTL) for long -bone (humerus, ulna, femur, and tibia) lengths. In this study, long-bone-length QTL were fine-mapped in the F(34) generation (n = 1424) of the LG,SM advanced intercross. Environmental effects were assessed by dividing the population by sex between high-fat and low-fat diets, producing eight sex/diet cohorts. We identified 145 individual bone-length QTL comprising 45 pleiotropic QTL; 69 replicated QTL from previous studies, 35 were new traits significant at previously identified loci, and 41 were novel QTL. Many QTL affected only a subset of the population based on sex and/or diet. Eight of ten known skeletal growth genes were upregulated in 3-week-old LG/J male proximal tibial growth plates relative to SM/J. The sequences of parental strains LG/J and SM/J indicated the presence of over half a million polymorphisms in the confidence intervals of these 45 QTL. We examined 526 polymorphisms and found that 97 represented radical changes to amino acid composition while 40 were predicted to be deleterious to protein function. Additional experimentation is required to understand how changes in gene regulation or protein function can alter the genetic architecture and interact with the environment to produce phenotypic variation.

  4. Genetic stability of murine pluripotent and somatic hybrid cells may be affected by conditions of their cultivation.

    Science.gov (United States)

    Ivanovna, Shramova Elena; Alekseevich, Larionov Oleg; Mikhailovich, Khodarovich Yurii; Vladimirovna, Zatsepina Olga

    2011-01-01

    Using mouse pluripotent teratocarcinoma PCC4azal cells and proliferating spleen lymphocytes we obtained a new type of hybrids, in which marker lymphocyte genes were suppressed, but expression the Oct-4 gene was not effected; the hybrid cells were able to differentiate to cardiomyocytes. In order to specify the environmental factors which may affect the genetic stability and other hybrid properties, we analyzed the total chromosome number and differentiation potencies of hybrids respectively to conditions of their cultivation. Particular attention was paid to the number and transcription activity of chromosomal nucleolus organizing regions (NORs), which harbor the most actively transcribed - ribosomal - genes. The results showed that the hybrids obtained are characterized by a relatively stable chromosome number which diminished less than in 5% during 27 passages. However, a long-term cultivation of hybrid cells in non-selective conditions resulted in preferential elimination of some NO- chromosomes, whereas the number of active NORs per cell was increased due to activation of latent NORs. On the contrary, in selective conditions, i.e. in the presence of hypoxantine, aminopterin and thymidine, the total number of NOR-bearing chromosomes was not changed, but a partial inactivation of remaining NORs was observed. The higher number of active NORs directly correlated with the capability of hybrid cells for differentiation to cardiomyocytes.

  5. Fine-scale genetic structure in Pinus clausa (Pinaceae) populations: effects of disturbance history.

    Science.gov (United States)

    Parker, K C; Hamrick, J L; Parker, A J; Nason, J D

    2001-07-01

    Spatial autocorrelation analyses of 12 allozyme loci were used to compare genetic structure within populations of two varieties of Pinus clausa. P. clausa var. immuginata populations tend to be uneven-aged, with continuous recruitment in small gaps created by wind damage, whereas P. clausa var. clausa populations are more even-aged, with recruitment postdating periodic canopy fires. Three var. immuginata populations and three matched pairs of var. clausa populations, including both a mature and a nearby recently burned population, were examined. Aggregation of multilocus genotypes at small distances was evident in all young var. clausa populations. Little inbreeding was apparent among juveniles or adults in these populations; their genetic structure is likely to have resulted from limited seed dispersal. Genotypes were not significantly spatially structured in nearby matched mature populations. Genetic structure was less evident in var. immuginata populations. Aggregated genotypes were only apparent in the population where patches included juveniles of similar ages; dense juvenile clumps in the other two var. immuginata populations comprised a variety of ages. Interannual variability in allele frequencies of surviving seedlings may account for the absence of genetic structure in these populations.

  6. Genetics, Biosynthesis, Structure, and Mode of Action of Lantibiotics

    Science.gov (United States)

    Kuipers, Anneke; Rink, Rick; Moll, Gert N.

    Lantibiotics are lanthionine-containing peptide antibiotics. They are characterized by having meso-lanthionine(s) and/or β-methyllanthionine(s) or both. These intramolecular monosulfide cross-links render the peptide resistant against breakdown by peptidases. Moreover, in several cases, the (methyl)lanthionines are essential for interaction with the so-called docking molecule lipid II. The best known lantibiotic, nisin, highly effectively inhibits growth of target cells via two mechanisms: (1) abduction of the cell wall precursor lipid II from the septum and (2) formation of pores composed of lipid II and nisin. (Methyl)lanthionines result from two enzyme-catalyzed posttranslational modifications: dehydration of serines/threonines and coupling of the resulting dehydro amino acids to cysteines. Besides the localization of the thioether bridges and dehydro amino acids in the lantibiotics, also the three-dimensional structure of some lantibiotics has been resolved by NMR. Genes encoding proteins involved in the biosynthesis of lantibiotics are present in clusters and may comprise combinations of the following genes in varying order: a structural gene that encodes a leader peptide and the lantibiotic propeptide, modification enzyme(s), a transporter responsible for the export of the lantibiotic and in some cases for cleavage of the leader peptide, a leader peptidase, a so-called immunity protein involved in self-protection of the host cell, components of a transporter also involved in self-protection, and two components of an autoinduction system.

  7. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations

    Directory of Open Access Journals (Sweden)

    Balloux François

    2010-10-01

    Full Text Available Abstract Background The dramatic progress in sequencing technologies offers unprecedented prospects for deciphering the organization of natural populations in space and time. However, the size of the datasets generated also poses some daunting challenges. In particular, Bayesian clustering algorithms based on pre-defined population genetics models such as the STRUCTURE or BAPS software may not be able to cope with this unprecedented amount of data. Thus, there is a need for less computer-intensive approaches. Multivariate analyses seem particularly appealing as they are specifically devoted to extracting information from large datasets. Unfortunately, currently available multivariate methods still lack some essential features needed to study the genetic structure of natural populations. Results We introduce the Discriminant Analysis of Principal Components (DAPC, a multivariate method designed to identify and describe clusters of genetically related individuals. When group priors are lacking, DAPC uses sequential K-means and model selection to infer genetic clusters. Our approach allows extracting rich information from genetic data, providing assignment of individuals to groups, a visual assessment of between-population differentiation, and contribution of individual alleles to population structuring. We evaluate the performance of our method using simulated data, which were also analyzed using STRUCTURE as a benchmark. Additionally, we illustrate the method by analyzing microsatellite polymorphism in worldwide human populations and hemagglutinin gene sequence variation in seasonal influenza. Conclusions Analysis of simulated data revealed that our approach performs generally better than STRUCTURE at characterizing population subdivision. The tools implemented in DAPC for the identification of clusters and graphical representation of between-group structures allow to unravel complex population structures. Our approach is also faster than

  8. The relationship between cognitive processing of affective verbal material and the basic personality structure

    Directory of Open Access Journals (Sweden)

    Orlić Ana

    2010-01-01

    Full Text Available The aim of this study was to investigate the relationship between cognitive processing of affective verbal material and the basic personality structure. For the purposes of research a new experiment was created, where affective priming was measured in a lexical decision task. The term affective priming stands for facilitation in recognition of the stimuli that comes after the presentation of stimuli of the same valence. In this experiment, two words were presented on a screen in front of the subject (stimuli-prime and stimuli-target. Those two words were of the same or different affective valence, and the subject's were instructed to respond whether the second word on the screen had a meaning or not. The basic personality structure was defined by the 'Big five' model and the Disintegration model and measured by NEO PI-R and Delta 10 questionnaires. The results of the affective priming experiment indicated a strong effect of positive facilitation and much weaker effect off negative facilitation. Two significant functions were extracted by quasicanonical correlation analysis. The first function showed correlation between the effect of positive facilitation and all of the subscales of Neuroticism, Extraversion and Conscientiousness (NEO PI-R, as well as all sub dimensions of Disintegration (DELTA 10. The second one indicated to a correlation between the negative facilitation effect and some subscales of Neuroticism, Extraversion and Agreeableness (NEO PI-R, as well as all subscales of Disintegration (DELTA 10.

  9. Population genetic structure of peninsular Malaysia Malay sub-ethnic groups.

    Science.gov (United States)

    Hatin, Wan Isa; Nur-Shafawati, Ab Rajab; Zahri, Mohd-Khairi; Xu, Shuhua; Jin, Li; Tan, Soon-Guan; Rizman-Idid, Mohammed; Zilfalil, Bin Alwi

    2011-04-05

    Patterns of modern human population structure are helpful in understanding the history of human migration and admixture. We conducted a study on genetic structure of the Malay population in Malaysia, using 54,794 genome-wide single nucleotide polymorphism genotype data generated in four Malay sub-ethnic groups in peninsular Malaysia (Melayu Kelantan, Melayu Minang, Melayu Jawa and Melayu Bugis). To the best of our knowledge this is the first study conducted on these four Malay sub-ethnic groups and the analysis of genotype data of these four groups were compiled together with 11 other populations' genotype data from Indonesia, China, India, Africa and indigenous populations in Peninsular Malaysia obtained from the Pan-Asian SNP database. The phylogeny of populations showed that all of the four Malay sub-ethnic groups are separated into at least three different clusters. The Melayu Jawa, Melayu Bugis and Melayu Minang have a very close genetic relationship with Indonesian populations indicating a common ancestral history, while the Melayu Kelantan formed a distinct group on the tree indicating that they are genetically different from the other Malay sub-ethnic groups. We have detected genetic structuring among the Malay populations and this could possibly be accounted for by their different historical origins. Our results provide information of the genetic differentiation between these populations and a valuable insight into the origins of the Malay sub-ethnic groups in Peninsular Malaysia.

  10. Population genetic structure of peninsular Malaysia Malay sub-ethnic groups.

    Directory of Open Access Journals (Sweden)

    Wan Isa Hatin

    Full Text Available Patterns of modern human population structure are helpful in understanding the history of human migration and admixture. We conducted a study on genetic structure of the Malay population in Malaysia, using 54,794 genome-wide single nucleotide polymorphism genotype data generated in four Malay sub-ethnic groups in peninsular Malaysia (Melayu Kelantan, Melayu Minang, Melayu Jawa and Melayu Bugis. To the best of our knowledge this is the first study conducted on these four Malay sub-ethnic groups and the analysis of genotype data of these four groups were compiled together with 11 other populations' genotype data from Indonesia, China, India, Africa and indigenous populations in Peninsular Malaysia obtained from the Pan-Asian SNP database. The phylogeny of populations showed that all of the four Malay sub-ethnic groups are separated into at least three different clusters. The Melayu Jawa, Melayu Bugis and Melayu Minang have a very close genetic relationship with Indonesian populations indicating a common ancestral history, while the Melayu Kelantan formed a distinct group on the tree indicating that they are genetically different from the other Malay sub-ethnic groups. We have detected genetic structuring among the Malay populations and this could possibly be accounted for by their different historical origins. Our results provide information of the genetic differentiation between these populations and a valuable insight into the origins of the Malay sub-ethnic groups in Peninsular Malaysia.

  11. Regional Genetic Structure and Environmental Variables Influence our Conservation Approach for Feather Heads (Ptilotus macrocephalus).

    Science.gov (United States)

    Ahrens, Collin W; James, Elizabeth A

    2016-05-01

    Continued alterations to the Australian environment compromise the long-term viability of many plant species. We investigate the population genetics of Ptilotus macrocephalus, a perennial herb that occurs in 2 nationally endangered communities on the Victorian Volcanic Plain Bioregion (VVP), Australia, to answer key questions regarding regional differentiation and to guide conservation strategies. We evaluate genetic structure and diversity within and among 17 P. macrocephalus populations from 3 regions of southeastern Australia using 17 microsatellite markers developed de novo. Genetic structure was present in P. macrocephalus between the 3 regions but not at the population level. Environmental factors, namely temperature and precipitation, significantly explained differentiation between the North region and the other 2 regions indicating isolation by environment. Within regions, genetic structure currently shows a high level of gene flow and genetic variation. Our results suggest that within-region gene flow does not reflect current habitat fragmentation in southeastern Australia whereas temperature and precipitation are likely to be responsible for the differentiation detected among regions. Climate change may severely impact P. macrocephalus on the VVP and test its evolutionary resilience. We suggest taking a proactive conservation approach to improve long-term viability by sourcing material for restoration to assist gene flow to the VVP region to promote an increased adaptive capacity.

  12. Spatial genetic structuring of baobab (Adansonia digitata, Malvaceae) in the traditional agroforestry systems of West Africa.

    Science.gov (United States)

    Kyndt, Tina; Assogbadjo, Achille E; Hardy, Olivier J; Glele Kakaï, Romain; Sinsin, Brice; Van Damme, Patrick; Gheysen, Godelieve

    2009-05-01

    This study evaluates the spatial genetic structure of baobab (Adansonia digitata) populations from West African agroforestry systems at different geographical scales using AFLP fingerprints. Eleven populations from four countries (Benin, Ghana, Burkina Faso, and Senegal) had comparable levels of genetic diversity, although the two populations in the extreme west (Senegal) had less diversity. Pairwise F(ST) ranged from 0.02 to 0.28 and increased with geographic distance, even at a regional scale. Gene pools detected by Bayesian clustering seem to be a byproduct of the isolation-by-distance pattern rather than representing actual discrete entities. The organization of genetic diversity appears to result essentially from spatially restricted gene flow, with some influences of human seed exchange. Despite the potential for relatively long-distance pollen and seed dispersal by bats within populations, statistically significant spatial genetic structuring within populations (SGS) was detected and gave a mean indirect estimate of neighborhood size of ca. 45. This study demonstrated that relatively high levels of genetic structuring are present in baobab at both large and within-population level, which was unexpected in regard to its dispersal by bats and the influence of human exchange of seeds. Implications of these results for the conservation of baobab populations are discussed.

  13. Genetic variation and structure of the people of Uttarakhand, central Himalayas, India.

    Science.gov (United States)

    Chahal, S M S; Singh, Parminder; Singh, Harjit; Bansal, Rupinder; Bansal, I J S

    2008-08-01

    The Indian Himalayas, being semi-isolated geographically, provide ideal conditions for population genetics investigations. The main aim of this study is to genetically characterize and analyze the genetic structure of the people of Uttarakhand, a newly created North Indian hill state in the Central Himalayas, using original phenotype and allele-frequency data on a battery of seven red cell enzyme polymorphisms. For this analysis, blood samples were collected from 3,222 unrelated subjects belonging to various endogamous caste populations (Brahmin, Rajput, and Shilpkar) and tribal Bhotia inhabiting seven different districts in the Garhwal (northern) and Kumaon (southern) regions of Uttarakhand. Hemolysates were typed for isozymes of ESD, PGM1, ADA, AK1, GLO1, ACP1, and GPI using standard electrophoretic techniques. The genetic structure of these regional caste and tribal population groups was investigated with the help of different statistical measures. The present biochemical marker results show that the overall genetic constitution of the different populations of Uttarakhand is rather heterogeneous but similar to that of various caste and tribal populations of the neighboring hill state of Himachal Pradesh, situated on Uttarakhand's western border. The extent of genic differentiation observed in different contemporary populations of Garhwal was twice as high as that of Kumaon. Interestingly, in genetic distance dendrograms of both the regions and of all of Uttarakhand, all the Shilpkar groups are differentiated from the remaining groups of Brahmin, Rajput, and Bhotia. The genetic constitution of the Shilpkar (a scheduled caste population of Uttarakhand) and to a lesser extent that of the Bhotia (a scheduled tribe population of Uttarakhand) are rather different from both the Brahmin and Rajput high-caste populations, which tend to show genetic similarities between them. These observations are corroborated by the known ethnohistory of different populations of

  14. Common genetic variants of the mitochondrial trafficking system and mitochondrial uncoupling proteins affect the development of two slowly developing demyelinating disorders, leukoaraiosis and multiple sclerosis.

    Science.gov (United States)

    Szolnoki, Z

    2010-01-01

    As the central energy source, the mitochondria are of great importance in the maintenance of the glia cells of the brain. It is presumed that mitochondrial energy production is affected not only by well-characterized genetic mutations of the mitochondria, which are associated with severe malfunctions and resultant acute glia and neuronal cell death, but also by a number of other unfavorable genetic variants. The genetic variants of the kinesin motor proteins and mitochondrial uncoupling proteins (UCPs) are believed to influence the mitochondrial energy production in different distress states of the glia cells. The kinesin motor proteins carry the mitochondria from the central parts to the peripheral parts of the glia cells, where myelin protein synthesis takes place. The UCPs are essential for regulation of the mitochondrial membrane potential under different physiological conditions, thereby finally attuning mitochondrial energy production in environmental states such as cold exposure, fasting or chronic mild hypoxia. While the capacity of the kinesin motor proteins can affect the number of mitochondria in the peripheral parts of the glia cells, the functional features of the UCPs can affect the degree of energy production of the mitochondria by influencing the mitochondrial membrane potential. The different genetic variants may display different activities, and some may result in a slowly developing energy shortage in the glia cells. In this context, this article discusses the roles of genetic variants of the kinesin motor proteins and UCPs in slowly developing diseases of the white matter of the brain as multiple sclerosis and leukoaraiosis.

  15. The Legal Past, Present and Future of Prenatal Genetic Testing: Professional Liability and Other Legal Challenges Affecting Patient Access to Services.

    Science.gov (United States)

    Pergament, Deborah; Ilijic, Katie

    2014-12-15

    This chapter is an overview of the current status of the law in the United States regarding prenatal genetic testing with an emphasis on issues related to professional liability and other challenges affecting patient access to prenatal genetic testing. The chapter discusses the roles that federal regulations, promulgated by the Centers for Medicare and Medicaid Services (CMS), the Food and Drug Administration (FDA) and the Federal Trade Commission (FTC), play in the regulation of prenatal genetic tests. The chapter discusses tort litigation based on allegations of malpractice in the provision of prenatal genetic testing and how courts have analyzed issues related to causation, damages and mitigation of damages. The chapter provides reference information regarding how individual states address causes of action under the tort theories of wrongful birth and wrongful life. The chapter concludes with a discussion of future legal issues that may affect clinical prenatal genetic testing services arising from the continued expansion of prenatal genetic testing, legal restrictions on access to abortion and the potential development of embryonic treatments.

  16. The Legal Past, Present and Future of Prenatal Genetic Testing: Professional Liability and Other Legal Challenges Affecting Patient Access to Services

    Directory of Open Access Journals (Sweden)

    Deborah Pergament

    2014-12-01

    Full Text Available This chapter is an overview of the current status of the law in the United States regarding prenatal genetic testing with an emphasis on issues related to professional liability and other challenges affecting patient access to prenatal genetic testing. The chapter discusses the roles that federal regulations, promulgated by the Centers for Medicare and Medicaid Services (CMS, the Food and Drug Administration (FDA and the Federal Trade Commission (FTC, play in the regulation of prenatal genetic tests. The chapter discusses tort litigation based on allegations of malpractice in the provision of prenatal genetic testing and how courts have analyzed issues related to causation, damages and mitigation of damages. The chapter provides reference information regarding how individual states address causes of action under the tort theories of wrongful birth and wrongful life. The chapter concludes with a discussion of future legal issues that may affect clinical prenatal genetic testing services arising from the continued expansion of prenatal genetic testing, legal restrictions on access to abortion and the potential development of embryonic treatments.

  17. Development of genetic diversity, differentiation and structure over 500 years in four ponderosa pine populations.

    Science.gov (United States)

    Lesser, M R; Parchman, T L; Jackson, S T

    2013-05-01

    Population history plays an important role in shaping contemporary levels of genetic variation and geographic structure. This is especially true in small, isolated range-margin populations, where effects of inbreeding, genetic drift and gene flow may be more pronounced than in large continuous populations. Effects of landscape fragmentation and isolation distance may have implications for persistence of range-margin populations if they are demographic sinks. We studied four small, disjunct populations of ponderosa pine over a 500-year period. We coupled demographic data obtained through dendroecological methods with microsatellite data to discern how and when contemporary levels of allelic diversity, among and within-population levels of differentiation, and geographic structure, arose. Alleles accumulated rapidly following initial colonization, demonstrating proportionally high levels of gene flow into the populations. At population sizes of approximately 100 individuals, allele accumulation saturated. Levels of genetic differentiation among populations (F(ST) and Jost's D(est)) and diversity within populations (F(IS)) remained stable through time. There was no evidence of geographic genetic structure at any time in the populations' history. Proportionally, high gene flow in the early stages of population growth resulted in rapid accumulation of alleles and quickly created relatively homogenous genetic patterns among populations. Our study demonstrates that contemporary levels of genetic diversity were formed quickly and early in population development. How contemporary genetic diversity accumulates over time is a key facet of understanding population growth and development. This is especially relevant given the extent and speed at which species ranges are predicted to shift in the coming century.

  18. Genetic structure of the threatened Dipterocarpus costatus populations in lowland tropical rainforests of southern Vietnam.

    Science.gov (United States)

    Duc, N M; Duy, V D; Xuan, B T T; Thang, B V; Ha, N T H; Tam, N M

    2016-10-24

    Dipterocarpus costatus is an endangered species restricted to the lowland forests of southern Vietnam. Habitat loss and over-exploitation of D. costatus wood are the major threats to this species. We investigated the level of genetic variability within and among populations of D. costatus in order to provide guidelines for the conservation, management, and restoration of this species to the Forest Protection Department, Vietnam. Nine microsatellite markers were used to analyze 114 samples from four populations representing the natural range of D. costatus in southeast Vietnam. We indicated the low allelic diversity (NA = 2.3) and low genetic diversities with an average observed and expected heterozygosity of 0.130 and 0.151, respectively, in the lowland forests of southeast Vietnam. The low genetic diversity might be a consequence of inbreeding within the small and isolated populations of D. costatus owing to its habitat loss and over-exploitation. All populations deviated from Hardy-Weinberg equilibrium showing reduced heterozygosity. Alleles were lost from the populations by genetic drift. Genetic differentiation among populations was high (average pairwise FST = 0.405), indicating low gene flow (<1) and isolated populations due to its destructed habitat and large geographical distances (P < 0.05) among populations. Heterozygosity excess tests (except of Bu Gia Map only under infinite allele model) were negative. The high genetic variation (62.7%) was found within populations. The STRUCTURE and neighbor joining tree results suggest strong differentiation among D. costatus populations, with the three genetic clusters, Phu Quoc, Tan Phu and Bu Gia Map, and Lo Go-Xa Mat due to habitat fragmentation and isolation. The threatened status of D. costatus was related to a lack of genetic diversity, with all its populations isolated in small forest patches. We recommend the establishment of an ex situ conservation site for D. costatus with a new big population comprising

  19. High genetic diversity and population structure in the endangered Canarian endemic Ruta oreojasme (Rutaceae).

    Science.gov (United States)

    Meloni, Marilena; Reid, Andrea; Caujapé-Castells, Juli; Soto, Moisés; Fernández-Palacios, José María; Conti, Elena

    2015-10-01

    Insular species are expected to have low genetic diversity, for their populations are often small and isolated, and characterized by restricted gene flow and increased incidence of inbreeding. However, empirical results do not always match this expectation. For example, population genetic analyses of several Canarian endemics, based mainly on allozymes, show levels of genetic diversity exceptionally high for insular species. To investigate whether genetic variation in rare species endemic to Canary Islands is low, as predicted by theoretical expectations, or high, as documented in some previous studies, we analysed genetic diversity of the endangered Ruta oreojasme, a rare endemic of the island of Gran Canaria, using microsatellite markers, which are more variable than allozymes. Our analyses identified very high levels of genetic diversity (A = 7.625, P = 0.984, H o = 0.558, H e = 0.687) for R. oreojasme. Even though the distribution of the species is restricted to the South of Gran Canaria, only one population shows low genetic diversity, isolation and signs of a recent bottleneck/founder event. Some intrinsic characteristics of R. oreojasme (hermaphroditism, proterandry and polyploidy), the relative climatic stability of the Canarian archipelago during Quaternary glacials/interglacials, the size of most populations (thousands of individuals), its age, and the relative proximity of the archipelago to the mainland might have contributed to the high diversity that characterises this endemic. As expected, given the marked topographic complexity of Gran Canaria, we found marked genetic structure in R. oreojasme populations. Our results support the observation that Canarian endemics are characterised by unexpectedly high genetic diversity and provides important insights for potential applications to the conservation of R. oreojasme.

  20. Contrasting patterns of clonality and fine-scale genetic structure in two rare sedges with differing geographic distributions.

    Science.gov (United States)

    Binks, R M; Millar, M A; Byrne, M

    2015-09-01

    For plants with mixed reproductive capabilities, asexual reproduction is more frequent in rare species and is considered a strategy for persistence when sexual recruitment is limited. We investigate whether asexual reproduction contributes to the persistence of two co-occurring, rare sedges that both experience irregular seed set and if their differing geographic distributions have a role in the relative contribution of clonality. Genotypic richness was high (R=0.889±0.02) across the clustered populations of Lepidosperma sp. Mt Caudan and, where detected, clonal patches were small, both in ramet numbers (⩽3 ramets/genet) and physical size (1.3±0.1 m). In contrast, genotypic richness was lower in the isolated L. sp. Parker Range populations, albeit more variable (R=0.437±0.13), with genets as large as 17 ramets and up to 5.8 m in size. Aggregated clonal growth generated significant fine-scale genetic structure in both species but to a greater spatial extent and with additional genet-level structure in L. sp. Parker Range that is likely due to restricted seed dispersal. Despite both species being rare, asexual reproduction clearly has a more important role in the persistence of L. sp. Parker Range than L. sp. Mt Caudan. This is consistent with our prediction that limitations to sexual reproduction, via geographic isolation to effective gene exchange, can lead to greater contributions of asexual reproduction. These results demonstrate the role of population isolation in affecting the balance of alternate reproductive modes and the contextual nature of asexual reproduction in rare species.

  1. The use of noncrystallographic symmetry averaging to solve structures from data affected by perfect hemihedral twinning

    Energy Technology Data Exchange (ETDEWEB)

    Sabin, Charles; Plevka, Pavel, E-mail: pavel.plevka@ceitec.muni.cz [Central European Institute of Technology – Masaryk University, Kamenice 653/25, 625 00 Brno (Czech Republic)

    2016-02-16

    Molecular replacement and noncrystallographic symmetry averaging were used to detwin a data set affected by perfect hemihedral twinning. The noncrystallographic symmetry averaging of the electron-density map corrected errors in the detwinning introduced by the differences between the molecular-replacement model and the crystallized structure. Hemihedral twinning is a crystal-growth anomaly in which a specimen is composed of two crystal domains that coincide with each other in three dimensions. However, the orientations of the crystal lattices in the two domains differ in a specific way. In diffraction data collected from hemihedrally twinned crystals, each observed intensity contains contributions from both of the domains. With perfect hemihedral twinning, the two domains have the same volumes and the observed intensities do not contain sufficient information to detwin the data. Here, the use of molecular replacement and of noncrystallographic symmetry (NCS) averaging to detwin a 2.1 Å resolution data set for Aichi virus 1 affected by perfect hemihedral twinning is described. The NCS averaging enabled the correction of errors in the detwinning introduced by the differences between the molecular-replacement model and the crystallized structure. The procedure permitted the structure to be determined from a molecular-replacement model that had 16% sequence identity and a 1.6 Å r.m.s.d. for C{sup α} atoms in comparison to the crystallized structure. The same approach could be used to solve other data sets affected by perfect hemihedral twinning from crystals with NCS.

  2. Population genetic structuring in Opisthorchis viverrini over various spatial scales in Thailand and Lao PDR.

    Science.gov (United States)

    Laoprom, Nonglak; Sithithaworn, Paiboon; Andrews, Ross H; Ando, Katsuhiko; Laha, Thewarach; Klinbunga, Sirawut; Webster, Joanne P; Petney, Trevor N

    2012-01-01

    Khon Kaen Province in northeast Thailand is known as a hot spot for opisthorchiasis in Southeast Asia. Preliminary allozyme and mitochondrial DNA haplotype data from within one endemic district in this Province (Ban Phai), indicated substantial genetic variability within Opisthorchis viverrini. Here, we used microsatellite DNA analyses to examine the genetic diversity and population structure of O. viverrini from four geographically close localities in Khon Kaen Province. Genotyping based on 12 microsatellite loci yielded a mean number of alleles per locus that ranged from 2.83 to 3.7 with an expected heterozygosity in Hardy-Weinberg equilibrium of 0.44-0.56. Assessment of population structure by pairwise F(ST) analysis showed inter-population differentiation (Pviverrini over a small spatial scale which is similar to that found at a larger scale. This provides the basis for the investigation of the role of parasite genetic diversity and differentiation in transmission dynamics and control of O. viverrini.

  3. Landscape structure affects specialists but not generalists in naturally fragmented grasslands

    Science.gov (United States)

    Miller, Jesse E.D.; Damschen, Ellen Ingman; Harrison, Susan P.; Grace, James B.

    2015-01-01

    Understanding how biotic communities respond to landscape spatial structure is critically important for conservation management as natural landscapes become increasingly fragmented. However, empirical studies of the effects of spatial structure on plant species richness have found inconsistent results, suggesting that more comprehensive approaches are needed. In this study, we asked how landscape structure affects total plant species richness and the richness of a guild of specialized plants in a multivariate context. We sampled herbaceous plant communities at 56 dolomite glades (insular, fire-adapted grasslands) across the Missouri Ozarks, and used structural equation modeling (SEM) to analyze the relative importance of landscape structure, soil resource availability, and fire history for plant communities. We found that landscape spatial structure-defined as the area-weighted proximity of glade habitat surrounding study sites (proximity index)-had a significant effect on total plant species richness, but only after we controlled for environmental covariates. Richness of specialist species, but not generalists, was positively related to landscape spatial structure. Our results highlight that local environmental filters must be considered to understand the influence of landscape structure on communities, and that unique species guilds may respond differently to landscape structure than the community as a whole. These findings suggest that both local environment and landscape context should be considered when developing management strategies for species of conservation concern in fragmented habitats.

  4. Landscape structure affects specialists but not generalists in naturally fragmented grasslands.

    Science.gov (United States)

    Miller, Jesse E D; Damschen, Ellen I; Harrison, Susan P; Grace, James B

    2015-12-01

    Understanding how biotic communities respond to landscape spatial structure is critically important for conservation management as natural habitats become increasingly fragmented. However, empirical studies of the effects of spatial structure on plant species richness have found inconsistent results, suggesting that more comprehensive approaches are needed. We asked how landscape structure affects total plant species richness and the richness of a guild of specialized plants in a multivariate context. We sampled herbaceous plant communities at 56 dolomite glades (insular, fire-adapted grasslands) across the Missouri Ozarks, USA, and used structural equation modeling (SEM) to analyze the relative importance of landscape structure, soil resource availability, and fire history for plant communities. We found that landscape spatial structure, defined as the area-weighted proximity of glade habitat surrounding study sites (proximity index), had a significant effect on total plant species richness, but only after we controlled for environmental covariates. Richness of specialist species, but not generalists, was positively related to landscape spatial structure. Our results highlight that local environmental filters must be considered to understand the influence of landscape structure on communities and that unique species guilds may respond differently to landscape structure than the community as a whole. These findings suggest that both local environment and landscape context should be considered when developing management strategies for species of conservation concern in fragmented habitats.

  5. Structural studies of Au-Pd bimetallic nanoparticles by a genetic algorithm method

    Science.gov (United States)

    Shao, Gui-Fang; Tu, Na-Na; Liu, Tun-Dong; Xu, Liang-You; Wen, Yu-Hua

    2015-06-01

    Metallic nanoparticles have attracted particular interests due to their excellent electronic, catalytic and optical properties over the past decades. Atomic-level understanding of structural characteristics of metallic nanoparticles is of great importance for their syntheses and applications because the structural characteristics strongly determine their chemical and physical properties. In this article, we systematically investigated the structural stability and structural features of Au-Pd nanoparticles by using the genetic algorithm with the quantum correction Sutton-Chen potentials. Layered coordinate ranking method and an effective fitness function have been introduced into the genetic algorithm to enhance its searching ability of low-energy configurations. Here were addressed eight representative nanoshapes including single-crystalline and multiple-twinned structures. The results reveal that the developed genetic algorithm exhibits superior searching ability. In all polyhedra, the truncated octahedron possessed the best stability, while the icosahedron did the worst. Moreover, segregation of Au to the surface and that of Pd to the core were disclosed in these polyhedral Au-Pd nanoparticles. Particularly, for Au composition of 50%, the optimized structures of Au-Pd nanoparticles were predicted to exhibit core-shell structures.

  6. AB Initio Protein Tertiary Structure Prediction: Comparative-Genetic Algorithm with Graph Theoretical Methods

    Energy Technology Data Exchange (ETDEWEB)

    Gregurick, S. K.

    2001-04-20

    During the period from September 1, 1998 until September 1, 2000 I was awarded a Sloan/DOE postdoctoral fellowship to work in collaboration with Professor John Moult at the Center for Advanced Research in Biotechnology (CARB). Our research project, ''Ab Initio Protein Tertiary Structure Prediction and a Comparative Genetic algorithm'', yielded promising initial results. In short, the project is designed to predict the native fold, or native tertiary structure, of a given protein by inputting only the primary sequence of the protein (one or three letter code). The algorithm is based on a general learning, or evolutionary algorithm and is called Genetic Algorithm (GAS). In our particular application of GAS, we search for native folds, or lowest energy structures, using two different descriptions for the interactions of the atoms and residues in a given protein sequence. One potential energy function is based on a free energy description, while the other function is a threading potential derived by Moult and Samudrala. This modified genetic algorithm was loosely termed a Comparative Genetic Algorithm and was designed to search for native folded structures on both potential energy surfaces, simultaneously. We tested the algorithm on a series of peptides ranging from 11 to 15 residues in length, which are thought to be independent folding units and thereby will fold to native structures independent of the larger protein environment. Our initial results indicated a modest increase in accuracy, as compared to a standard Genetic Algorithm. We are now in the process of improving the algorithm to increase the sensitivity to other inputs, such as secondary structure requirements. The project did not involve additional students and as of yet, the work has not been published.

  7. Genetic structure of the Common Eider in the western Aleutian Islands prior to fox eradication

    Science.gov (United States)

    Sonsthagen, Sarah A.; Talbot, Sandra L.; Wilson, Robert E.; Petersen, Margaret R.; Williams, Jeffrey C.; Byrd, G. Vernon; McCracken, Kevin G.

    2013-01-01

    Since the late 18th century bird populations residing in the Aleutian Archipelago have been greatly reduced by introduced arctic foxes (Alopex lagopus). We analyzed data from microsatellite, nuclear intron, and mitochondrial (mtDNA) loci to examine the spatial genetic structure, demography, and gene flow among four Aleutian Island populations of the Common Eider (Somateria mollissima) much reduced by introduced foxes. In mtDNA, we found high levels of genetic structure within and between island groups (ΦST = 0.643), but we found no population subdivision in microsatellites or nuclear introns. Differences in genetic structure between the mitochondrial and nuclear genomes are consistent with the Common Eider's breeding and winter biology, as females are highly philopatric and males disperse. Nevertheless, significant differences between islands in the mtDNA of males and marginal significance (P =0.07) in the Z-linked locus Smo 1 suggest that males may also have some level of fidelity to island groups. Severe reduction of populations by the fox, coupled with females' high philopatry, may have left the genetic signature of a bottleneck effect, resulting in the high levels of genetic differentiation observed in mtDNA (ΦST = 0.460–0.807) between islands only 440 km apart. Reestablishment of the Common Eider following the fox's eradication was likely through recruitment from within the islands and bolstered by dispersal from neighboring islands, as suggested by the lack of genetic structure and asymmetry in gene flow between Attu and the other Near Islands.

  8. Analysis of population structure and genetic diversity of Egyptian and exotic rice (Oryza sativa L.) genotypes.

    Science.gov (United States)

    Salem, Khaled F M; Sallam, Ahmed

    2016-01-01

    Understanding the population structure and genetic diversity is a very important goal to improve the economic value of crops. In rice, a loss of genetic diversity in the last few centuries is observed. To address this challenge, a set of 22 lines from three different regions - India (two), and Philippines (six), and Egypt (14) - were used to assess the genetic diversity and the features of population structure. These genotypes were analyzed using 106 SSR alleles that showed a clear polymorphism among the lines. Genetic diversity was estimated based on the number of different alleles, polymorphism information content (PIC), and gene diversity. A total of 106 SSR alleles was identified from the 23 SSR loci and used to study the population structure and carry out a cluster analysis. All SSR loci showed a wide range of the number of different alleles extended from two (one loci) to seven alleles (three loci). Five and eight loci showed high PIC and gene diversity (≥0.70), respectively. The results of population structure are in agreement with cluster analysis results. Both analyses revealed two different subpopulations (G1 and G2) with different genetic properties in number of private alleles, number of different alleles (Na), number of effective alleles (Ne), expected heterozygosity (He), and Shannon's Information Index (SII). Our findings indicate that five SSR loci (RM 111, RM 307, RM 22, RM 19, and RM 271) could be used in breeding programs to enhance the marker-assisted selection through QTL mapping and association studies. A high genetic diversity found between genotypes which can be exploited to improve and produce rice cultivars for important traits (e.g. high agronomic features and tolerance to biotic or/and abiotic stresses).

  9. Strong population genetic structure and larval dispersal capability of the burrowing ghost shrimp (Neotrypaea californiensis)

    Science.gov (United States)

    The burrowing ghost shrimp, Neotrypaea californiensis, is a vital member of the estuarine benthic community. Dense populations of shrimp are found in the major estuaries of Washington and Oregon. Our study determines the genetic structure of shrimp populations in order to gain ...

  10. Assessment of the effects of genetically modified potatoes on structure and functioning of soil fungal communities

    NARCIS (Netherlands)

    Hannula, Emilia

    2012-01-01

    This thesis investigates the effects of genetic modification of the starch quality in potato on the structure and function of the soil fungal community via changes in root-exudates and litter composition, and compares the observed differences between the GM- and its parental variety in the context o

  11. Characterization of Genetic Structures of the QepA3 Gene in Clinical Isolates of Enterobacteriaceae

    Directory of Open Access Journals (Sweden)

    Dongguo eWang

    2015-10-01

    Full Text Available QepA is one of the genes that confer quinolone resistance in bacteria. The aim of this study was to analyze the genetic structures of plasmids that carry a qepA3, a recently discovered allele of qepA in Enterobacteriaceae clinical isolates. 656 non-redundant Enterobacteriaceae clinical isolates were screened for the qepA3 gene and five isolated were identified to carry the gene. Plasmids were isolated from these isolates and were found to increase antibiotic resistance once the plasmids were transferred to Escherichia coli. These plasmids were subcloned and sequenced to analyze the genetic structures surrounding the the qepA3 gene. The results showed that the five plasmids had different genetic structures; one of qepA3-containning isolates had either the blaCTX-M-14 or blaTEM-12 gene in place of the blaTEM-1 gene. The structures of both pKP3764 and pECL3786 have not been previously described. In comparison with pHPA, there were a number of changes in DNA sequences up- and down-stream the qepA3 gene. These findings provide better understanding of the genetic variations in qepA3 and would be useful for diagnosis and control of quinolone resistance in clinical settings.

  12. Genetic structure of Polytrichum formosum in relation to the breeding system as revealed by microsatellites

    NARCIS (Netherlands)

    Van der Velde, M; Van de Zande, L; Bijlsma, R

    2001-01-01

    Microsatellite variation was determined for three Danish and three Dutch populations of the haploid moss species Polytrichum formosum to gain insight into the relative importance of sexual vs. asexual reproduction for the amount and structure of genetic variation. In general, low levels of microsate

  13. Characterization of genetic structures of the QepA3 gene in clinical isolates of Enterobacteriaceae

    Science.gov (United States)

    Wang, Dongguo; Huang, Xitian; Chen, Jiayu; Mou, Yonghua; Li, Haijun; Yang, Liqin

    2015-01-01

    QepA is one of the genes that confer quinolone resistance in bacteria. The aim of this study was to analyze the genetic structures of plasmids that carry a qepA3, a recently discovered allele of qepA in Enterobacteriaceae clinical isolates. 656 non-redundant Enterobacteriaceae clinical isolates were screened for the qepA3 gene and five isolates were identified to carry the gene. Plasmids were isolated from these isolates and were found to increase antibiotic resistance once the plasmids were transferred to Escherichia coli. These plasmids were subcloned and sequenced to analyze the genetic structures surrounding the qepA3 gene. The results showed that the five plasmids had different genetic structures; two of the qepA3-containning isolates had either the blaCTX-M-14 or blaTEM-12 gene instead of the blaTEM-1 gene. The structures of both pKP3764 and pECL3786 have not been previously described. In comparison with pHPA, there were a number of changes in DNA sequences up- and down-stream of the qepA3 gene. These findings provide better understanding of the genetic variations in qepA3 and would be useful for diagnosis and control of quinolone resistance in clinical settings. PMID:26528280

  14. Genetic structural analysis for germplasm accessions in the USDA Rice World Collection

    Science.gov (United States)

    Rice is grouped into five genetic structures including indica, aus, aromatic, temperate japonica, and tropical japonica. A core collection having 1,785 accessions from 114 countries has been developed that is representative of the USDA rice world collection which includes over 18,000 accessions. The...

  15. Development of a leafy Brassica rapa fixed line collection for genetic diversity and population structure analysis

    NARCIS (Netherlands)

    Pang, W.; Li, X.; Choi, S.R.; Dhandapani, V.; Im, S.; Park, M.Y.; Jang, C.S.; Yang, M.S.; Ham, I.K.; Lee, E.M.; Kim, W.; Lee, S.S.; Bonnema, A.B.; Park, S.; Piao, Z.; Lim, Y.P.

    2015-01-01

    Brassica rapa is an economically important crop with a wide range of morphologies. Developing a set of fixed lines and understanding their diversity has been challenging, but facilitates resource conservation. We investigated the genetic diversity and population structure of 238 fixed lines of leafy

  16. PRELIMINARY ANALYSIS OF COMMON LOON GENETIC STRUCTURE IN NORTH AMERICA BASED ON FIVE MICROSATELLITE LOCI

    Science.gov (United States)

    This study seeks to determine fine-scale genetic structure of Common Loon breeding populations in order to link wintering birds with their breeding regions. Common Loons are large piscivorous birds that breed in lakes of northern North America and Iceland. Loons are highly phil...

  17. GSEVM v.2: MCMC software to analyse genetically structured environmental variance models

    DEFF Research Database (Denmark)

    Ibáñez-Escriche, N; Garcia, M; Sorensen, D

    2010-01-01

    This note provides a description of software that allows to fit Bayesian genetically structured variance models using Markov chain Monte Carlo (MCMC). The gsevm v.2 program was written in Fortran 90. The DOS and Unix executable programs, the user's guide, and some example files are freely availab...

  18. Structure Refinement for Vulnerability Estimation Models using Genetic Algorithm Based Model Generators

    Directory of Open Access Journals (Sweden)

    2009-01-01

    Full Text Available In this paper, a method for model structure refinement is proposed and applied in estimation of cumulative number of vulnerabilities according to time. Security as a quality characteristic is presented and defined. Vulnerabilities are defined and their importance is assessed. Existing models used for number of vulnerabilities estimation are enumerated, inspecting their structure. The principles of genetic model generators are inspected. Model structure refinement is defined in comparison with model refinement and a method for model structure refinement is proposed. A case study shows how the method is applied and the obtained results.

  19. Market structure, opportunities, limitations and strategies for penetrating the Ukrainian market with Norsvin genetics

    OpenAIRE

    Kutsyba, Yuliya

    2010-01-01

    English: The purpose of this study is to investigate the market structure of pig breeding in Ukraine, competitor survey, opportunities and limitations for penetrating the Ukrainian market with Norsvin genetics. In the first part, I review the structure of the pork chain on the international swine market. The current situation in the pig breeding and production sector is then reviewed and evaluated in detail. In addition, geographical and socio-economic factors expected to influ...

  20. Into the depth of population genetics: pattern of structuring in mesophotic red coral populations

    Science.gov (United States)

    Costantini, Federica; Abbiati, Marco

    2016-03-01

    Deep-sea reef-building corals are among the most conspicuous invertebrates inhabiting the hard-bottom habitats worldwide and are particularly susceptible to human threats. The precious red coral ( Corallium rubrum, L. 1758) has a wide bathymetric distribution, from shallow up to 800 m depth, and represents a key species in the Mediterranean mesophotic reefs. Several studies have investigated genetic variability in shallow-water red coral populations, while geographic patterns in mesophotic habitats are largely unknown. This study investigated genetic variability of C. rubrum populations dwelling between 55 and 120 m depth, from the Ligurian to the Ionian Sea along about 1500 km of coastline. A total of 18 deep rocky banks were sampled. Colonies were analyzed by means of a set of microsatellite loci and the putative control region of the mitochondrial DNA. Collected data were compared with previous studies. Both types of molecular markers showed high genetic similarity between populations within the northern (Ligurian Sea and Tuscan Archipelago) and the southern (Tyrrhenian and Ionian seas) study areas. Variability in habitat features between the sampling sites did not affect the genetic variability of the populations. Conversely, the patchy distribution of suitable habitats affected populations' connectivity within and among deep coral banks. Based on these results and due to the emphasis on red coral protection in the Mediterranean Sea by international institutions, red coral could be promoted as a `focal species' to develop management plans for the conservation of deep coralligenous reefs, a reservoir of marine biodiversity.

  1. Maximum credible earthquake (MCE) magnitude of structures affecting the Ujung Lemahabang site

    Energy Technology Data Exchange (ETDEWEB)

    Soerjodibroto, M. [National Atomic Energy Agency, Jakarta (Indonesia)

    1997-03-01

    This report analyse the geological structures in/around Muria Peninsula that might originating potential earthquake hazard toward the selected site for NPP, Ujung Lemahabang (ULA). Analysis was focused on the Lasem fault and AF-1/AF-4 offshore faults that are considered as the determinant structures affecting the seismicity of ULA (Nira, 1979, Newjec, 1994). Methods for estimating the MCE of the structures include maximum historical earthquake, and relationship between the length of the fault and the magnitude of earthquake originating from the known structure (Tocher, Iida, Matsuda, Wells and Coopersmith). The MCE magnitude estimating by these method for earthquake originating along the Lasem and AF-1/AF-4 faults vary from 2,1M to 7,0M. Comparison between the result of historical data and fault-magnitude relationship, however, suggest a MCE magnitude of Ms=7,0M for both fault zones. (author)

  2. The structure and size of sensory bursts encode stimulus information but only size affects behavior.

    Science.gov (United States)

    Marsat, Gary; Pollack, Gerald S

    2010-04-01

    Cricket ultrasound avoidance is a classic model system for neuroethology. Avoidance steering is triggered by high-firing-rate bursts of spikes in the auditory command neuron AN2. Although bursting is common among sensory neurons, and although the detailed structure of bursts may encode information about the stimulus, it is as yet unclear whether this information is decoded. We address this question in two ways: from an information coding point of view, by showing the relationship between stimulus and burst structure; and also from a functional point of view by showing the relationship between burst structure and behavior. We conclude that the burst structure carries detailed temporal information about the stimulus but that this has little impact on the behavioral response, which is affected mainly by burst size.

  3. Hitchhiker’s guide to genetic diversity in socially structured populations

    Directory of Open Access Journals (Sweden)

    L. S. PREMO

    2012-02-01

    Full Text Available When selection increases the frequency of a beneficial gene substitution it can also increase the frequencies of linked neutral alleles through a process called genetic hitchhiking. A model built to investigate reduced genetic diversity in Pleistocene hominins shows that genetic hitchhiking can have a strong effect on neutral diversity in the presence of culturally mediated migration. Under conditions in which genetic and cultural variants are transmitted symmetrically, neutral genes may also hitchhike to higher frequencies on the coattails of adaptive cultural traits through a process called cultural hitchhiking. Cultural hitchhiking has been proposed to explain why some species of matrilineal whales display relatively low levels of mitochondrial DNA diversity, and it may be applicable to humans as well. This paper provides a critical review of recent models of both types of hitch­­hi­king in socially structured populations. The models’ assumptions and predictions are compared and discussed in the hope that studies of reduced genetic diversity in humans might improve our understanding of reduced genetic diversity in other species, and vice versa [Current Zoology 58 (1: 287-297, 2012].

  4. Genetic diversity and population structure of the Guinea pig (Cavia porcellus, Rodentia, caviidae in Colombia

    Directory of Open Access Journals (Sweden)

    William Burgos-Paz

    2011-01-01

    Full Text Available The aim was to establish the genetic diversity and population structure of three guinea pig lines, from seven production zones located in Nariño, southwest Colombia. A total of 384 individuals were genotyped with six microsatellite markers. The measurement of intrapopulation diversity revealed allelic richness ranging from 3.0 to 6.56, and observed heterozygosity (Ho from 0.33 to 0.60, with a deficit in heterozygous individuals. Although statistically significant (p < 0.05, genetic differentiation between population pairs was found to be low. Genetic distance, as well as clustering of guinea-pig lines and populations, coincided with the historical and geographical distribution of the populations. Likewise, high genetic identity between improved and native lines was established. An analysis of group probabilistic assignment revealed that each line should not be considered as a genetically homogeneous group. The findings corroborate the absorption of native genetic material into the improved line introduced into Colombia from Peru. It is necessary to establish conservation programs for native-line individuals in Nariño, and control genealogical and production records in order to reduce the inbreeding values in the populations.

  5. Genetic diversity and structure in the Endangered Allen Cays Rock Iguana, Cyclura cychlura inornata

    Directory of Open Access Journals (Sweden)

    Andrea C. Aplasca

    2016-03-01

    Full Text Available The Endangered Allen Cays Rock Iguana (Cyclura cychlura inornata is endemic to the Allen Cays, a tiny cluster of islands in the Bahamas. Naturally occurring populations exist on only two cays (<4 ha each. However, populations of unknown origin were recently discovered on four additional cays. To investigate patterns of genetic variation among these populations, we analyzed nuclear and mitochondrial markers for 268 individuals. Analysis of three mitochondrial gene regions (2,328 bp and data for eight nuclear microsatellite loci indicated low genetic diversity overall. Estimates of effective population sizes based on multilocus genotypes were also extremely low. Despite low diversity, significant population structuring and variation in genetic diversity measures were detected among cays. Genetic data confirm the source population for an experimentally translocated population while raising concerns regarding other, unauthorized, translocations. Reduced heterozygosity is consistent with a documented historical population decline due to overharvest. This study provides the first range-wide genetic analysis of this subspecies. We suggest strategies to maximize genetic diversity during ongoing recovery including additional translocations to establish assurance populations and additional protective measures for the two remaining natural populations.

  6. Population Genetic Structure of the Endangered Kaiser's Mountain Newt, Neurergus kaiseri (Amphibia: Salamandridae.

    Directory of Open Access Journals (Sweden)

    Hossein Farasat

    Full Text Available Species often exhibit different levels of genetic structuring correlated to their environment. However, understanding how environmental heterogeneity influences genetic variation is difficult because the effects of gene flow, drift and selection are confounded. We investigated the genetic variation and its ecological correlates in an endemic and critically endangered stream breeding mountain newt, Neurergus kaiseri, within its entire range in southwestern Iran. We identified two geographic regions based on phylogenetic relationships using Bayesian inference and maximum likelihood of 779 bp mtDNA (D-loop in 111 individuals from ten of twelve known breeding populations. This analysis revealed a clear divergence between northern populations, located in more humid habitats at higher elevation, and southern populations, from drier habitats at lower elevations regions. From seven haplotypes found in these populations none was shared between the two regions. Analysis of molecular variance (AMOVA of N. kaiseri indicates that 94.03% of sequence variation is distributed among newt populations and 5.97% within them. Moreover, a high degree of genetic subdivision, mainly attributable to the existence of significant variance among the two regions is shown (θCT = 0.94, P = 0.002. The positive and significant correlation between geographic and genetic distances (r = 0.61, P = 0.002 following controlling for environmental distance suggests an important influence of geographic divergence of the sites in shaping the genetic variation and may provide tools for a possible conservation based prioritization policy for the endangered species.

  7. Genetic diversity and matrilineal structure in Chinese tree shrews inhabiting Kunming, China.

    Science.gov (United States)

    Chen, Shi-Yi; Xu, Ling; Lü, Long-Bao; Yao, Yong-Gang

    2011-02-01

    Due to their special phylogenetic position in the Euarchontoglires and close affinity to primates, tree shrews have been proposed as an alternative experimental animal to primates in biomedical research. However, the population genetic structure of tree shrews has largely remained unknown and this has hindered the development of tree shrew breeding and selection. Here we sampled 80 Chinese tree shrews (Tupaia belangeri chinensis) in Kunming, China, and analyzed partial mtDNA control region sequence variation. Based on our samples and two published sequences from northern tree shrews (T. belangeri), we identified 29 substitutions in the mtDNA control region fragment (~604 bp) across 82 individuals and defined 13 haplotypes. Seventeen samples were selected for sequencing of the cytochrome b (Cyt b; 1134 bp) gene based on control region sequence variation and were analyzed in combination with 34 published sequences to solidify the phylogenetic pattern obtained from control region data. Overall, tree shrews from Kunming have high genetic diversity and present a remarkable long genetic distance to the two reported northern tree shrews outside China. Our results provide some caution when using tree shrews to establish animal models because of this apparent genetic difference. In addition, the high genetic diversity of Chinese tree shrews inhabiting Kunming suggests that systematic genetic investigations should be conducted before establishing an inbred strain for medical and biological research.

  8. Genetic and Environmental Contributions to the Relationships between Brain Structure and Average Lifetime Cigarette Use

    Science.gov (United States)

    Prom-Wormley, Elizabeth; Maes, Hermine H.M.; Schmitt, J. Eric; Panizzon, Matthew S.; Xian, Hong; Eyler, Lisa T.; Franz, Carol E.; Lyons, Michael J.; Tsuang, Ming T.; Dale, Anders M.; Fennema-Notestine, Christine; Kremen, William S.; Neale, Michael C.

    2015-01-01

    Chronic cigarette use has been consistently associated with differences in the neuroanatomy of smokers relative to nonsmokers in case-control studies. However, the etiology underlying the relationships between brain structure and cigarette use is unclear. A community-based sample of male twin pairs ages 51-59 (110 monozygotic pairs, 92 dizygotic pairs) was used to determine the extent to which there are common genetic and environmental influences between brain structure and average lifetime cigarette use. Brain structure was measured by high-resolution structural magnetic resonance imaging, from which subcortical volume and cortical volume, thickness and surface area were derived. Bivariate genetic models were fitted between these measures and average lifetime cigarette use measured as cigarette pack-years. Widespread, negative phenotypic correlations were detected between cigarette pack-years and several cortical as well as subcortical structures. Shared genetic and unique environmental factors contributed to the phenotypic correlations shared between cigarette pack-years and subcortical volume as well as cortical volume and surface area. Brain structures involved in many of the correlations were previously reported to play a role in specific aspects of networks of smoking-related behaviors. These results provide evidence for conducting future research on the etiology of smoking-related behaviors using measures of brain morphology. PMID:25690561

  9. Analysis of genetic diversity and population structure of Chinese yak breeds (Bos grunniens) using microsatellite markers

    Institute of Scientific and Technical Information of China (English)

    Guixiang Zhang; Weisheng Chen; Ming Xue; Zhigang Wang; Hong Chang; Xu Han; Xinjun Liao; Donglei Wang

    2008-01-01

    Nine Chinese yak breeds (Maiwa,Tianzhu White,Qinghai Plateau,Sibu,Zhongdian,Pall,Tibetan High Mountain,Jiulong,and Xin-jiang) and Gayal were analyzed by means of 16 microsatellite markers to determine the level of genetic variation within populations,genetic relationship between populations,and population structure for each breed.A total of 206 microsatellite alleles were observed.Mean F-statistics (0.056) for 9 yak breeds indicated that 94.4% of the genetic variation was observed within yak breeds and 5.6% of the genetic variation existed amongst breeds.The Neighbor-Joining phylogenetic free was constructed based on Nei's standard genetic dis-tances and two clusters were obtained.The Gayal separated from the yaks far away and formed one cluster and 9 yak breeds were grouped together.The analysis of population structure for 9 yak breeds and the Gayal showed that they resulted in four clusters; one clus-ter includes yaks from Tibet Autonomous Region and Qinghai Province,one cluster combines Zhongdian,Maiwa,and Tianzhu White,and Jiulong and Xinjiang come into the third cluster.Pali was mainly in the first cluster (90%),Jiulong was mainly in the second cluster (87.1%),Zhongdian was primarily in the third cluster (83%),and the other yak breeds were distributed in two to three clusters.The Gayal was positively left in the fourth cluster (99.3%).

  10. Population structure and genetic diversity of native and invasive populations of Solanum rostratum (Solanaceae.

    Directory of Open Access Journals (Sweden)

    Jial