WorldWideScience

Sample records for affecting copper bioavailability

  1. Bioavailability of zinc, copper, and manganese from infant diets

    International Nuclear Information System (INIS)

    Bell, J.G.

    1987-01-01

    A series of trace element absorption experiments were performed using the Sprague-Dawley suckling rat put and infant rhesis monkey (Macaca mulatta) with extrinsic radiolabeling to assess the bioavailability of Zn, Cu, and Mn from infant diets and to examine specific factors that affect absorption of these essential nutrients. Bioavailability of Cu as assessed by 6 h liver uptake (% of 64 Cu dose) was highest from human milk and cow milk based formula and significantly lower from cow milk and soy based formula. Copper bioavailability from infant cereal products as assessed by whole body uptake (% of 64 Cu dose) in d 20 rats, 9 h postintubation, was low compared to the bioavailability from cow milk or human milk alone. 65 Zn uptake in d 20 rats, 9 h postintubation, was significantly lower from cereals fed alone or in combination with cow or human milk as compared to the uptake from the milks fed alone. Zn bioavailability varied among cereal diets, (lowest from cereals containing phytate and highest from cereal/fruit products). Mn bioavailability from infant diets was assessed using a modified suckling rat pup model. Bioavailability (24 h whole body retention of 54 Mn) was high from all milks and commercial formulas tested

  2. Temporal assessment of copper speciation, bioavailability and toxicity in UK freshwaters using chemical equilibrium and biotic ligand models: Implications for compliance with copper environmental quality standards.

    Science.gov (United States)

    Lathouri, Maria; Korre, Anna

    2015-12-15

    Although significant progress has been made in understanding how environmental factors modify the speciation, bioavailability and toxicity of metals such as copper in aquatic environments, the current methods used to establish water quality standards do not necessarily consider the different geological and geochemical characteristics of a given site and the factors that affect copper fate, bioavailability potential and toxicity. In addition, the temporal variation in the concentration and bioavailable metal fraction is also important in freshwater systems. The work presented in this paper illustrates the temporal and seasonal variability of a range of water quality parameters, and Cu speciation, bioavailability and toxicity at four freshwaters sites in the UK. Rivers Coquet, Cree, Lower Clyde and Eden (Kent) were selected to cover a broad range of different geochemical environments and site characteristics. The monitoring data used covered a period of around six years at almost monthly intervals. Chemical equilibrium modelling was used to study temporal variations in Cu speciation and was combined with acute toxicity modelling to assess Cu bioavailability for two aquatic species, Daphnia magna and Daphnia pulex. The estimated copper bioavailability, toxicity levels and the corresponding ecosystem risks were analysed in relation to key water quality parameters (alkalinity, pH and DOC). Although copper concentrations did not vary much during the sampling period or between the seasons at the different sites; copper bioavailability varied markedly. In addition, through the chronic-Cu BLM-based on the voluntary risk assessment approach, the potential environmental risk in terms of the chronic toxicity was assessed. A much higher likelihood of toxicity effects was found during the cold period at all sites. It is suggested that besides the metal (copper) concentration in the surface water environment, the variability and seasonality of other important water quality

  3. Chemistry, Toxicity, and Bioavailability of Copper and its Relationship to Regulation in the Marine Environment

    Science.gov (United States)

    1998-11-01

    The majority (70%) of commercial ship hulls still use tributyltin ( TBT ) coatings, which also contain approximately 30% to 40% copper. The Navy spends...TECHNICAL DOCUMENT 3044 November 1998 Chemistry, Toxicity , and Bioavailability of Copper and Its Relationship to Regulation in the Marine Environment...participated in a Workshop on Chemistry, Toxicity , and Bioavailability of Copper and Its Relationship to Regulation in the Marine Environment. The goal

  4. Speciation and bioavailability of copper in Lake Tjeukemeer

    NARCIS (Netherlands)

    Verweij, W.

    1991-01-01

    Chapter 1: introduction

    In this thesis an account is given of a research project dealing with the chemical speciation and bioavailability of copper in Lake Tjeukemeer, a lake in the north of the Netherlands. The reason for the initiation of this project was a lack of

  5. Copper bioavailability from breakfasts containing tea : influence of the addition of milk

    NARCIS (Netherlands)

    Vaquero, M.P.; Veldhuizen, M.; Dokkum, W. van; Hamer, C.J.A. van den; Schaafsma, G.

    1994-01-01

    The influence of drinking tea on copper bioavailability is unclear, particularly when tea is consumed with food. A breakfast meal containing white bread, margarine, strawberry jam, cheese and tea, with or without milk, was digested in; vitro and the dialysis of copper investigated. Reference

  6. Incorporating bioavailability into management limits for copper in sediments contaminated by antifouling paint used in aquaculture.

    Science.gov (United States)

    Simpson, Stuart L; Spadaro, David A; O'Brien, Dom

    2013-11-01

    Although now well embedded within many risk-based sediment quality guideline (SQG) frameworks, contaminant bioavailability is still often overlooked in assessment and management of contaminated sediments. To optimise management limits for metal contaminated sediments, we assess the appropriateness of a range methods for modifying SQGs based on bioavailability considerations. The impairment of reproduction of the amphipod, Melita plumulosa, and harpacticoid copepod, Nitocra spinipes, was assessed for sediments contaminated with copper from antifouling paint, located below aquaculture cages. The measurement of dilute acid-extractable copper (AE-Cu) was found to provide the most useful means for monitoring the risks posed by sediment copper and setting management limits. Acid-volatile sulfide was found to be ineffective as a SQG-modifying factor as these organisms live mostly at the more oxidised sediment water interface. SQGs normalised to %-silt/organic carbon were effective, but the benefits gained were too small to justify this approach. The effectiveness of SQGs based on AE-Cu was attributed to a small portion of the total copper being present in potentially bioavailable forms (typicallycopper was likely present as paint flakes in the form of copper (I) oxide, the active ingredient of the antifoulant formulation. While the concentrations of paint-associated copper are very high in some sediments, as the transformation of this form of copper to AE-Cu appears slow, monitoring and management limits should assess the more bioavailable AE-Cu forms, and further efforts be made to limit the release of paint particles into the environment. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  7. Bioavailability of zinc and copper in biosolids compared to their soluble salts

    International Nuclear Information System (INIS)

    Heemsbergen, Diane A.; McLaughlin, Mike J.; Whatmuff, Mark; Warne, Michael St.J.; Broos, Kris; Bell, Mike; Nash, David; Barry, Glenn; Pritchard, Deb; Penney, Nancy

    2010-01-01

    For essential elements, such as copper (Cu) and zinc (Zn), the bioavailability in biosolids is important from a nutrient release and a potential contamination perspective. Most ecotoxicity studies are done using metal salts and it has been argued that the bioavailability of metals in biosolids can be different to that of metal salts. We compared the bioavailability of Cu and Zn in biosolids with those of metal salts in the same soils using twelve Australian field trials. Three different measures of bioavailability were assessed: soil solution extraction, CaCl 2 extractable fractions and plant uptake. The results showed that bioavailability for Zn was similar in biosolid and salt treatments. For Cu, the results were inconclusive due to strong Cu homeostasis in plants and dissolved organic matter interference in extractable measures. We therefore recommend using isotope dilution methods to assess differences in Cu availability between biosolid and salt treatments. - Metals in biosolids are not necessarily less bioavailable than their soluble salt.

  8. Bioavailability of zinc and copper in biosolids compared to their soluble salts

    Energy Technology Data Exchange (ETDEWEB)

    Heemsbergen, Diane A., E-mail: diane.heemsbergen@csiro.a [Centre for Environmental Contaminants Research, CSIRO Land and Water, PMB 2, Glen Osmond, Adelaide, SA 5064 (Australia); McLaughlin, Mike J., E-mail: mike.mclaughlin@csiro.a [Centre for Environmental Contaminants Research, CSIRO Land and Water, PMB 2, Glen Osmond, Adelaide, SA 5064 (Australia); School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5064 (Australia); Whatmuff, Mark, E-mail: mark.whatmuff@csiro.a [Centre for Environmental Contaminants Research, CSIRO Land and Water, PMB 2, Glen Osmond, Adelaide, SA 5064 (Australia); NSW Department of Primary Industries, Locked Bag 4 Richmond, NSW 2753 (Australia); Warne, Michael St.J., E-mail: michael.warne@csiro.a [Centre for Environmental Contaminants Research, CSIRO Land and Water, PMB 2, Glen Osmond, Adelaide, SA 5064 (Australia); Broos, Kris, E-mail: kris.broos@vito.b [Centre for Environmental Contaminants Research, CSIRO Land and Water, PMB 2, Glen Osmond, Adelaide, SA 5064 (Australia); Bell, Mike, E-mail: Mike.Bell@dpi.qld.gov.a [Department of Primary Industries, Kingaroy, Queensland 4610 (Australia); Nash, David, E-mail: David.Nash@dpi.vic.gov.a [Department of Primary Industries, Ellinbank, Victoria 3821 (Australia); Barry, Glenn, E-mail: Glenn.Barry@nrw.qld.gov.a [Department of Natural Resources and Mines, Indooroopilly, Queensland 4068 (Australia); Pritchard, Deb, E-mail: D.Pritchard@curtin.edu.a [Curtin University of Technology, Muresk Institute, Northam, Western Australia 6401 (Australia); Penney, Nancy, E-mail: Nancy.Penney@WaterCorporation.com.a [Water Corporation of Western Australia, Leederville, Western Australia 6001 (Australia)

    2010-05-15

    For essential elements, such as copper (Cu) and zinc (Zn), the bioavailability in biosolids is important from a nutrient release and a potential contamination perspective. Most ecotoxicity studies are done using metal salts and it has been argued that the bioavailability of metals in biosolids can be different to that of metal salts. We compared the bioavailability of Cu and Zn in biosolids with those of metal salts in the same soils using twelve Australian field trials. Three different measures of bioavailability were assessed: soil solution extraction, CaCl{sub 2} extractable fractions and plant uptake. The results showed that bioavailability for Zn was similar in biosolid and salt treatments. For Cu, the results were inconclusive due to strong Cu homeostasis in plants and dissolved organic matter interference in extractable measures. We therefore recommend using isotope dilution methods to assess differences in Cu availability between biosolid and salt treatments. - Metals in biosolids are not necessarily less bioavailable than their soluble salt.

  9. In Vitro Bioavailability of Calcium, Magnesium, Iron, Zinc, and Copper from Gluten-Free Breads Supplemented with Natural Additives.

    Science.gov (United States)

    Regula, J; Cerba, A; Suliburska, J; Tinkov, A A

    2018-03-01

    The aim of this study was to measure the content of calcium, magnesium, iron, zinc, and copper and determine the bioavailability of these ingredients in gluten-free breads fortified with milk and selected seeds. Due to the increasing prevalence of celiac disease and mineral deficiencies, it has become necessary to produce food with higher nutritional values which maintains the appropriate product characteristics. This study was designed for gluten-free breads fortified with milk and seeds such as flax, poppy, sunflower seeds, pumpkin seeds or nuts, and flour with amaranth. Subsequently, digestion was performed in vitro and the potential bioavailability of the minerals was measured. In the case of calcium, magnesium, iron, and copper, higher bioavailability was observed in rice bread, and, in the case of copper and zinc, in buckwheat bread. This demonstrated a clear increase in bioavailability of all the minerals when the bread were enriched. However, satisfactory results are obtained only for the individual micronutrients.

  10. Bioavailability of copper to rats from various foodstuffs and in the presence of different carbohydrates

    International Nuclear Information System (INIS)

    Johnson, P.E.; Stuart, M.A.; Bowman, T.D.

    1988-01-01

    Copper bioavailability was studied in rats using an extrinsic Cu label. Copper absorption from sunflower seeds (46%), peanuts (41%), cooked shrimp (50%), and cooked beef (40%) was as good or better than copper sulfate (46%). Copper from plant foods (sunflower seeds, garbanzo beans, peanuts) was absorbed equally as well as copper from animal foods (beef, shrimp, chicken liver), 39 +/- 7% vs 43 +/- 7%, P greater than 0.05. There was no significant difference in percentage Cu absorption between intrinsically labeled chicken liver and extrinsically labeled chicken liver. In a second experiment, Cu absorption was measured in the presence of glucose, fructose, sucrose, or cornstarch. There were no significant differences in Cu absorption due to different carbohydrates in a single meal

  11. Recycled water sources influence the bioavailability of copper to earthworms.

    Science.gov (United States)

    Kunhikrishnan, Anitha; Bolan, Nanthi S; Naidu, Ravi; Kim, Won-Il

    2013-10-15

    Re-use of wastewaters can overcome shortfalls in irrigation demand and mitigate environmental pollution. However, in an untreated or partially treated state, these water sources can introduce inorganic contaminants, including heavy metals, to soils that are irrigated. In this study, earthworms (Eisenia fetida) have been used to determine copper (Cu) bioavailability in two contrasting soils irrigated with farm dairy, piggery and winery effluents. Soils spiked with varying levels of Cu (0-1,000 mg/kg) were subsequently irrigated with recycled waters and Milli-Q (MQ) water and Cu bioavailability to earthworms determined by mortality and avoidance tests. Earthworms clearly avoided high Cu soils and the effect was more pronounced in the absence than presence of recycled water irrigation. At the highest Cu concentration (1,000 mg/kg), worm mortality was 100% when irrigated with MQ-water; however, when irrigated with recycled waters, mortality decreased by 30%. Accumulation of Cu in earthworms was significantly less in the presence of recycled water and was dependent on CaCl2-extractable free Cu(2+) concentration in the soil. Here, it is evident that organic carbon in recycled waters was effective in decreasing the toxic effects of Cu on earthworms, indicating that the metal-organic complexes decreased Cu bioavailability to earthworms. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Copper bioavailability and toxicity to Mytilus galloprovincialis in Shelter Island Yacht Basin, San Diego, CA.

    Science.gov (United States)

    Bosse, Casey; Rosen, Gunther; Colvin, Marienne; Earley, Patrick; Santore, Robert; Rivera-Duarte, Ignacio

    2014-08-15

    The bioavailability and toxicity of copper (Cu) in Shelter Island Yacht Basin (SIYB), San Diego, CA, USA, was assessed with simultaneous toxicological, chemical, and modeling approaches. Toxicological measurements included laboratory toxicity testing with Mytilus galloprovincialis (Mediterranean mussel) embryos added to both site water (ambient) and site water spiked with multiple Cu concentrations. Chemical assessment of ambient samples included total and dissolved Cu concentrations, and Cu complexation capacity measurements. Modeling was based on chemical speciation and predictions of bioavailability and toxicity using a marine Biotic Ligand Model (BLM). Cumulatively, these methods assessed the natural buffering capacity of Cu in SIYB during singular wet and dry season sampling events. Overall, the three approaches suggested negligible bioavailability, and isolated observed or predicted toxicity, despite an observed gradient of increasing Cu concentration, both horizontally and vertically within the water body, exceeding current water quality criteria for saltwater. Published by Elsevier Ltd.

  13. Prebiotics increase heme iron bioavailability and do not affect non-heme iron bioavailability in humans.

    Science.gov (United States)

    Weinborn, Valerie; Valenzuela, Carolina; Olivares, Manuel; Arredondo, Miguel; Weill, Ricardo; Pizarro, Fernando

    2017-05-24

    The aim of this study was to establish the effect of a prebiotic mix on heme and non-heme iron (Fe) bioavailability in humans. To this purpose, twenty-four healthy women were randomized into one of two study groups. One group ate one yogurt per day for 12 days with a prebiotic mix (prebiotic group) and the other group received the same yogurt but without the prebiotic mix (control group). Before and after the intake period, the subjects participated in Fe absorption studies. These studies used 55 Fe and 59 Fe radioactive isotopes as markers of heme Fe and non-heme Fe, respectively, and Fe absorption was measured by the incorporation of radioactive Fe into erythrocytes. The results showed that there were no significant differences in heme and non-heme Fe bioavailability in the control group. Heme Fe bioavailability of the prebiotic group increased significantly by 56% post-prebiotic intake. There were no significant differences in non-heme Fe bioavailability in this group. We concluded that daily consumption of a prebiotic mix increases heme Fe bioavailability and does not affect non-heme iron bioavailability.

  14. Copper bioavailability and extractability as related to chemical properties of contaminated soils from a vine-growing area

    International Nuclear Information System (INIS)

    Chaignon, V.; Sanchez-Neira, I.; Herrmann, P.; Jaillard, B.; Hinsinger, P.

    2003-01-01

    Root Cu concentration is a good indicator of soil Cu bioavailability. - Vineyard soils have been contaminated by Cu as a consequence of the long-term use of Cu salts as fungicides against mildew. This work aimed at identifying which soil parameters were the best related to Cu bioavailability, as assessed by measuring the concentrations of Cu in shoots and roots of tomato cropped (in lab conditions) over a range of 29 (24 calcareous and five acidic) Cu-contaminated topsoils from a vine-growing area (22-398 mg Cu kg -1 ). Copper concentrations in tomato shoots remained in the adequate range and were independent of soil properties and soil Cu content. Conversely, strong, positive correlations were found between root Cu concentration, total soil Cu, EDTA- or K-pyrophosphate-extractable Cu and organic C contents in the 24 calcareous soils, suggesting a prominent role of organic matter in the retention and bioavailability of Cu. Such relations were not observed when including the five acidic soils in the investigated population, suggesting a major pH effect. Root Cu concentration appeared as a much more sensitive indicator of soil Cu bioavailability than shoot Cu concentration. Simple extractions routinely used in soil testing procedures (total and EDTA-extractable Cu) were adequate indicators of Cu bioavailability for the investigated calcareous soils, but not when different soil types were considered (e.g. acidic versus calcareous soils)

  15. Evaluation of the measurement of Cu(II) bioavailability in complex aqueous media using a hollow-fiber supported liquid membrane device (HFSLM) and two microalgae species (Pseudokirchneriella subcapitata and Scenedesmus acutus)

    International Nuclear Information System (INIS)

    Rodríguez-Morales, Erik A.; Rodríguez de San Miguel, Eduardo; Gyves, Josefina de

    2015-01-01

    The environmental bioavailability of copper was determined using a hollow-fiber supported liquid membrane (HFSLM) device as a chemical surrogate and two microalgae species (Scenedesmus acutus and Pseudokirchneriella subcapitata). Several experimental conditions were studied: pH, the presence of organic matter, inorganic anions, and concomitant cations. The results indicated a strong relationship between the response given by the HFSLM and the microalgae species with free copper concentrations measured by an ion selective electrode (ISE), in accordance with the free-ion activity model (FIAM). A significant positive correlation was evident when comparing the bioavailability results measured by the HFSLM and the S. acutus microalga species, showing that the synthetic device may emulate biological uptake and, consequently, be used as a chemical test for bioavailability measurements using this alga as a biological reference. - Highlights: • The environmental bioavailability of copper(II) was determined using an HFSLM. • Two microalgae species were used as references for bioavailability evaluation. • Bioavailability is affected by the chemical conditions of the medium. • HFSLM and microalgae bioavailabilities depend on free copper(II) concentrations. • HFSLM emulates better the biological uptake of the Scenedesmus acutus microalga. - An HFSLM device may emulate the biological uptake of copper (II) of the Scenedesmus acutus microalga and, consequently, be used as a chemical test for bioavailability measurements.

  16. Caddisflies as biomonitors identifying thresholds of toxic metal bioavailability that affect the stream benthos

    International Nuclear Information System (INIS)

    Rainbow, Philip S.; Hildrew, Alan G.; Smith, Brian D.; Geatches, Tim; Luoma, Samuel N.

    2012-01-01

    It has been proposed that bioaccumulated concentrations of toxic metals in tolerant biomonitors be used as indicators of metal bioavailability that could be calibrated against the ecological response to metals of sensitive biotic assemblages. Our hypothesis was that metal concentrations in caddisfly larvae Hydropsyche siltalai and Plectrocnemia conspersa, as tolerant biomonitors, indicate metal bioavailability in contaminated streams, and can be calibrated against metal-specific ecological responses of mayflies. Bioaccumulated concentrations of Cu, As, Zn and Pb in H. siltalai from SW English streams were related to the mayfly assemblage. Mayflies were always sparse where bioavailabilities were high and were abundant and diverse where bioavailabilities of all metals were low, a pattern particularly evident when the combined abundance of heptageniid and ephemerellid mayflies was the response variable. The results offer promise that bioaccumulated concentrations of metals in tolerant biomonitors can be used to diagnose ecological impacts on stream benthos from metal stressors. - Highlights: ► Metal concentrations in caddisfly larvae can be calibrated against mayfly ecological responses. ► Cu, As, Zn and Pb concentrations in Hydropsyche siltalai were related to stream mayfly assemblages. ► Mayflies were sparse in high metal bioavailabilities, and abundant in low bioavailabilities. ► Joint heptageniid and ephemerellid mayfly abundance was the most sensitive response variable. ► Copper, arsenic and, in one catchment, lead were the primary stressors limiting mayfly abundance. - Accumulated metal concentrations in tolerant biomonitors can be used to detect and diagnose ecological impacts on freshwater stream benthos from metal stressors.

  17. Flavanol plasma bioavailability is affected by metabolic syndrome in rats

    NARCIS (Netherlands)

    Margalef, M.; Pons, Z.; Iglesias-Carres, L.; Bravo, F.I.; Muguerza, B.; Arola-Arnal, A.

    2017-01-01

    Flavanols, which exert several health benefits, are metabolized after ingestion. Factors such as the host physiological condition could affect the metabolism and bioavailability of flavanols, influencing their bioactivities. This study aimed to qualitatively evaluate whether a pathological state

  18. Comparison of the capacity of two biotic ligand models to predict chronic copper toxicity to two Daphnia magna clones and formulation of a generalized bioavailability model.

    Science.gov (United States)

    Van Regenmortel, Tina; Janssen, Colin R; De Schamphelaere, Karel A C

    2015-07-01

    Although it is increasingly recognized that biotic ligand models (BLMs) are valuable in the risk assessment of metals in aquatic systems, the use of 2 differently structured and parameterized BLMs (1 in the United States and another in the European Union) to obtain bioavailability-based chronic water quality criteria for copper is worthy of further investigation. In the present study, the authors evaluated the predictive capacity of these 2 BLMs for a large dataset of chronic copper toxicity data with 2 Daphnia magna clones, termed K6 and ARO. One BLM performed best with clone K6 data, whereas the other performed best with clone ARO data. In addition, there was an important difference between the 2 BLMs in how they predicted the bioavailability of copper as a function of pH. These modeling results suggested that the effect of pH on chronic copper toxicity is different between the 2 clones considered, which was confirmed with additional chronic toxicity experiments. Finally, because fundamental differences in model structure between the 2 BLMs made it impossible to create an average BLM, a generalized bioavailability model (gBAM) was developed. Of the 3 gBAMs developed, the authors recommend the use of model gBAM-C(uni), which combines a log-linear relation between the 21-d median effective concentration (expressed as free Cu(2+) ion activity) and pH, with more conventional BLM-type competition constants for sodium, calcium, and magnesium. This model can be considered a first step in further improving the accuracy of chronic toxicity predictions of copper as a function of water chemistry (for a variety of Daphnia magna clones), even beyond the robustness of the current BLMs used in regulatory applications. © 2015 SETAC.

  19. Mineralogy affects geoavailability, bioaccessibility and bioavailability of zinc

    International Nuclear Information System (INIS)

    Molina, Ramon M.; Schaider, Laurel A.; Donaghey, Thomas C.; Shine, James P.; Brain, Joseph D.

    2013-01-01

    We correlated mineralogical and particle characteristics of Zn-containing particles with Zn geoavailability, bioaccessibility, and bioavailability following gavage and intranasal (IN) administration in rats. We compared samples of Zn/Pb mine waste and five pulverized pure-phase Zn minerals ( 65 Zn. We assessed geoavailability using sequential extractions and bioaccessibility using in vitro extraction tests simulating various pH and biological conditions. Zn in vivo bioavailability and in vitro bioaccessibility decreased as follows: mine waste > hydrozincite > hemimorphite > zincite ≈ smithsonite >> sphalerite. We found significant correlations among geoavailability, bioaccessibility and bioavailability. In particular, Zn bioavailability post-gavage and post-IN was significantly correlated with bioaccessibility in simulated phagolysosomal fluid and gastric fluid. These data indicate that solid phase speciation influences biological uptake of Zn and that in vitro tests can be used to predict Zn bioavailability in exposure assessment and effective remediation design. Highlights: •Zinc particle mineralogy influences bioaccessibility and bioavailability. •Zn bioavailability via gavage was 1.2–1.6 times higher than via intranasal route. •Zn particle geoavailability correlates with bioaccessibility. •In vitro bioaccessibility tests can predict in vivo Zn bioavailability. •Metal speciation and geochemical alterations can impact Zn bioavailability. -- Zinc mineralogy influences in vitro bioaccessibility and in vivo bioavailability and in vitro extraction tests can be used to predict Zn bioavailability from particles

  20. The impact of tertiary wastewater treatment on copper and zinc complexation.

    Science.gov (United States)

    Constantino, C; Gardner, M; Comber, S D W; Scrimshaw, M D; Ellor, B

    2015-01-01

    Tightening quality standards for European waters has seen a move towards enhanced wastewater treatment technologies such as granulated organic carbon treatment and ozonation. Although these technologies are likely to be successful in degrading certain micro-organic contaminants, these may also destroy compounds which would otherwise complex and render metals significantly less toxic. This study examined the impact of enhanced tertiary treatment on the capacity of organic compounds within sewage effluents to complex copper and zinc. The data show that granulated organic carbon treatment removes a dissolved organic carbon (DOC) fraction that is unimportant to complexation such that no detrimental impact on complexation or metal bioavailability is likely to occur from this treatment type. High concentrations of ozone (>1 mg O3/mg DOC) are, however, likely to impact the complexation capacity for copper although this is unlikely to be important at the concentrations of copper typically found in effluent discharges or in rivers. Ozone treatment did not affect zinc complexation capacity. The complexation profiles of the sewage effluents show these to contain a category of non-humic ligand that appears unaffected by tertiary treatment and which displays a high affinity for zinc, suggesting these may substantially reduce the bioavailability of zinc in effluent discharges. The implication is that traditional metal bioavailability assessment approaches such as the biotic ligand model may overestimate zinc bioavailability in sewage effluents and effluent-impacted waters.

  1. A multi-technique investigation of copper and zinc distribution, speciation and potential bioavailability in biosolids

    International Nuclear Information System (INIS)

    Donner, E.; Ryan, C.G.; Howard, D.L.; Zarcinas, B.; Scheckel, K.G.; McGrath, S.P.; Jonge, M.D. de; Paterson, D.; Naidu, R.; Lombi, E.

    2012-01-01

    The use of biosolids in agriculture continues to be debated, largely in relation to their metal contents. Our knowledge regarding the speciation and bioavailability of biosolids metals is still far from complete. In this study, a multi-technique approach was used to investigate copper and zinc speciation and partitioning in one contemporary and two historical biosolids used extensively in previous research and field trials. Using wet chemistry and synchrotron spectroscopy techniques it was shown that copper/zinc speciation in the biosolids was largely equivalent despite the biosolids being derived from different countries over a 50 year period. Furthermore, copper speciation was consistently dominated by sorption to organic matter whereas Zn partitioned mainly to iron oxides. These data suggest that the results of historical field trials are still relevant for modern biosolids and that further risk assessment studies should concentrate particularly on Cu as this metal is associated with the mineralisable biosolids fraction. - Highlights: ► Complementary techniques were used to investigate Cu and Zn speciation in biosolids. ► Historic and contemporary biosolids with differing metal contents were examined. ► Similarities in Cu/Zn speciation were observed irrespective of biosolids provenance. ► Key binding environments identified were organic matter for Cu and Fe oxides for Zn. ► Similarities show historic field trial results are still relevant for biosolids management. - Historic and contemporary biosolids show similarities in Cu/Zn speciation despite having very different total Zn/Cu contents.

  2. Soil sterilization affects aging-related sequestration and bioavailability of p,p'-DDE and anthracene to earthworms

    International Nuclear Information System (INIS)

    Slizovskiy, Ilya B.; Kelsey, Jason W.

    2010-01-01

    Laboratory experiments investigated the effects of soil sterilization and compound aging on the bioaccumulation of spiked p,p'-DDE and anthracene by Eisenia fetida and Lumbricus terrestris. Declines in bioavailability occurred as pollutant residence time in both sterile and non-sterile soils increased from 3 to 203 d. Accumulation was generally higher in sterile soils during initial periods of aging (from 3-103 d). By 203 d, however, bioavailability of the compounds was unaffected by sterilization. Gamma irradiation and autoclaving may have altered bioavailability by inducing changes in the chemistry of soil organic matter (SOM). The results support a dual-mode partitioning sorption model in which the SOM components associated with short-term sorption (the 'soft' or 'rubbery' phases) are more affected than are the components associated with long-term sorption (the 'glassy' or microcrystalline phases). Risk assessments based on data from experiments in which sterile soil was used could overestimate exposure and bioaccumulation of pollutants. - Soil sterilization affects aging-related sequestration of organic contaminants.

  3. Chemical and biological factors affecting bioavailability of contaminants in seawater

    International Nuclear Information System (INIS)

    Knezovich, J.P.

    1992-09-01

    This paper discusses the influence that salinity has on the bioavailability of the two largest classes of contaminants, trace metals and organic compounds will be discussed. Although data on contaminant toxicity will be used to draw inferences about chemical availability, this discussion will focus on the properties that contaminants are likely to exhibit in waters of varying salinities. In addition, information on physiological changes that are affected by salinity will be used to illustrate how biological effects can alter the apparent availability of contaminants

  4. Dietary factors that affect carotenoid bioavailability

    NARCIS (Netherlands)

    Hof, van het K.H.

    1999-01-01

    Carotenoids are thought to contribute to the beneficial effects of increased vegetable consumption. To better understand the potential benefits of carotenoids, we investigated the bioavailability of carotenoids from vegetables and dietary factors which might influence carotenoid

  5. RHIZOtest: A plant-based biotest to account for rhizosphere processes when assessing copper bioavailability

    Energy Technology Data Exchange (ETDEWEB)

    Bravin, Matthieu N., E-mail: matthieu.bravin@cirad.f [INRA, UMR 1222 Eco and Sols (INRA-IRD-SupAgro), Place Viala, F-34060 Montpellier (France); Michaud, Aurelia M.; Larabi, Bourane; Hinsinger, Philippe [INRA, UMR 1222 Eco and Sols (INRA-IRD-SupAgro), Place Viala, F-34060 Montpellier (France)

    2010-10-15

    The ability of the free ion activity model (FIAM), the terrestrial biotic ligand model (TBLM), the diffusive gradients in thin films (DGT) technique and a plant-based biotest, the RHIZOtest, to predict root copper (Cu) concentration in field-grown durum wheat (Triticum turgidum durum L.) was assessed on 44 soils varying in pH (3.9-7.8) and total Cu (32-184 mg kg{sup -1}). None of the methods adequately predicted root Cu concentration, which was mainly correlated with total soil Cu. Results from DGT measurements and even more so FIAM prediction were negatively correlated with soil pH and over-estimated root Cu concentration in acidic soils. TBLM implementation improved numerically FIAM prediction but still failed to predict adequately root Cu concentration as the TBLM formalism did not considered the rhizosphere alkalisation as observed in situ. In contrast, RHIZOtest measurements accounted for rhizosphere alkalisation and were mainly correlated with total soil Cu. - In contrast with physico-chemical methods, RHIZOtest measurement accounted for the rhizosphere alkalisation altering Cu bioavailability to wheat as observed in situ.

  6. Biodynamics of copper oxide nanoparticles and copper ions in an oligochaete

    DEFF Research Database (Denmark)

    Thit, Amalie; Ramskov, Tina; Croteau, Marie-Noële Croteau

    2016-01-01

    the bioavailability and subcellular distribution of copper oxide (CuO) NPs and aqueous Cu (Cu-Aq) in the sediment-dwelling worm Lumbriculus variegatus. Ten days (d) sediment exposure resulted in marginal Cu bioaccumulation in L. variegatus for both forms of Cu. Bioaccumulation was detected because isotopically...

  7. Identifying Marine Copper-Binding Ligands in Seawater

    Science.gov (United States)

    Whitby, H.; Hollibaugh, J. T.; Maldonado, M. T.; Ouchi, S.; van den Berg, S. M.

    2016-02-01

    Complexation reactions are important because they affect the bioavailability of trace metals such as copper and iron. For example, organic complexation can determine whether copper is a limiting or a toxic micronutrient at natural levels. Copper competes with iron for complexing ligands, and when iron is limiting, copper can also substitute for iron in some metabolic pathways. The speciation of copper can be measured using complexing capacity titrations, which provide the concentration of individual ligand classes (L1, L2 etc.) and the complex stabilities (log K). Using methods recently developed in our laboratory, we show that the ligands within these classes can be measured independently of titrations, thus confirming the titration method and simultaneously identifying the ligands within each class. Thiols were identified as the L1 ligand class and humic compounds as the weaker L2 class in samples from coastal Georgia, USA, collected monthly from April to December. Log K values of the ligand complexes were consistent with values expected for thiols and humic substances. Recent results from culture studies and from samples collected along Line P, a coastal - oceanic transect in the HNLC region of the NE subarctic Pacific, will be presented in comparison to the estuarine results. This comparison will help to broaden our perspective on copper complexation and the ligands responsible, furthering our understanding of ligand sources and life cycles.

  8. Antimony bioavailability in mine soils

    International Nuclear Information System (INIS)

    Flynn, Helen C.; Meharg, Andy A.; Bowyer, Phillipa K.; Paton, Graeme I.

    2003-01-01

    Antimony has low bioavailability in mining and smelting contaminated soils and bacterial biosensors are not suitable for its detection. - Five British former mining and smelting sites were investigated and found to have levels of total Sb of up to 700 mg kg -1 , indicating high levels of contamination which could be potentially harmful. However, this level of Sb was found to be biologically unavailable over a wide range of pH values, indicating that Sb is relatively unreactive and immobile in the surface layers of the soil, remaining where it is deposited rather than leaching into lower horizons and contaminating ground water. Sb, sparingly soluble in water, was unavailable to the bacterial biosensors tested. The bioluminescence responses were correlated to levels of co-contaminants such as arsenic and copper, rather than to Sb concentrations. This suggests that soil contamination by Sb due to mining and smelting operations is not a severe risk to the environment or human health provided that it is present as immobile species and contaminated sites are not used for purposes which increase the threat of exposure to identified receptors. Co-contaminants such as arsenic and copper are more bioavailable and may therefore be seen as a more significant risk

  9. Soil sterilization affects aging-related sequestration and bioavailability of p,p'-DDE and anthracene to earthworms

    Energy Technology Data Exchange (ETDEWEB)

    Slizovskiy, Ilya B. [Program in Environmental Science and Department of Chemistry, Muhlenberg College, Allentown, PA 18104 (United States); Kelsey, Jason W., E-mail: Kelsey@muhlenberg.ed [Program in Environmental Science and Department of Chemistry, Muhlenberg College, Allentown, PA 18104 (United States)

    2010-10-15

    Laboratory experiments investigated the effects of soil sterilization and compound aging on the bioaccumulation of spiked p,p'-DDE and anthracene by Eisenia fetida and Lumbricus terrestris. Declines in bioavailability occurred as pollutant residence time in both sterile and non-sterile soils increased from 3 to 203 d. Accumulation was generally higher in sterile soils during initial periods of aging (from 3-103 d). By 203 d, however, bioavailability of the compounds was unaffected by sterilization. Gamma irradiation and autoclaving may have altered bioavailability by inducing changes in the chemistry of soil organic matter (SOM). The results support a dual-mode partitioning sorption model in which the SOM components associated with short-term sorption (the 'soft' or 'rubbery' phases) are more affected than are the components associated with long-term sorption (the 'glassy' or microcrystalline phases). Risk assessments based on data from experiments in which sterile soil was used could overestimate exposure and bioaccumulation of pollutants. - Soil sterilization affects aging-related sequestration of organic contaminants.

  10. Bioavailability and phytotoxicity of heavy metals in soils affected by nickel-processing industry in northern Fennoscandia

    International Nuclear Information System (INIS)

    Koptsik, G.; Koptsik, S.; Aamlid, D.

    2007-01-01

    Long-term effects of air pollution have caused strong soil contamination and severe damage to trees and ground vegetation in forest ecosystems in Russia and Norway, in areas near the Pechenganikel smelter, one of the largest emitters of sulfur dioxide in Europe. This paper presented the results of a study that analysed the effects of soil pollution, in particular of nickel and copper pollutants on forest vegetation in surroundings of the smelter. The paper discussed the objects and methods for the study which involved collection of plant and soil samples from almost 100 monitoring plots. Results were discussed in terms of heavy metals in trees and ground vegetation, heavy metals in soils, and plant-soil relationships. Phytotoxicological risk of excess metal input and remediation approaches were also discussed. It was concluded that all of the plant species that were tested exhibited high concentrations of heavy metals, especially nickel and copper and that changes in composition of plant tissues could be explained by changes in element concentrations in soil organic layers where the low pH kept the metals in a bioavailable form. 28 refs., 1 tab, 6 figs

  11. Folate bioavailability

    OpenAIRE

    Öhrvik, Veronica

    2009-01-01

    An inadequate folate status is associated with increased risk of anaemia and neural tube defects. In many countries a folate intake below recommendations has been reported for women in childbearing age. However, data on folate intake and status are not always associated, since factors other than intake, e.g. bioavailability, affect folate status. This thesis studied the bioavailability of folate using in vivo and in vitro models. The effect of two pieces of Swedish nutritional advice on folat...

  12. Milk does not affect the bioavailability of cocoa powder flavonoid in healthy human.

    Science.gov (United States)

    Roura, Elena; Andrés-Lacueva, Cristina; Estruch, Ramon; Mata-Bilbao, M Lourdes; Izquierdo-Pulido, Maria; Waterhouse, Andrew L; Lamuela-Raventós, Rosa M

    2007-01-01

    The beneficial effects of cocoa polyphenols depend on the amount consumed, their bioavailability and the biological activities of the formed conjugates. The food matrix is one the factors than can affect their bioavailability, but previous studies have concluded rather contradictory results about the effect of milk on the bioavailability of polyphenols. The objective was to evaluate the possible interaction of milk on the absorption of (-)-epicatechin ((-)-Ec) from cocoa powder in healthy humans. 21 volunteers received three interventions in a randomized crossover design with a 1-week interval (250 ml of whole milk (M-c) (control), 40 g of cocoa powder dissolved in 250 ml of whole milk (CC-M), and 40 g of cocoa powder dissolved with 250 ml of water (CC-W)). Quantification of (-)-Ec in plasma was determined by LC-MS/MS analysis prior to a solid-phase extraction procedure. 2 h after the intake of the two cocoa beverages, (-)-Ec-glucuronide was the only (-)-Ec metabolite detected, showing a mean (SD) plasma concentration of 330.44 nmol/l (156.1) and 273.7 nmol/l (138.42) for CC-W and CC-M, respectively (p = 0.076). Cocoa powder dissolved in milk as one of the most common ways of cocoa powder consumption seems to have a negative effect on the absorption of polyphenols; however, statistical analyses have shown that milk does not impair the bioavailability of polyphenols and thus their potential beneficial effect in chronic and degenerative disease prevention. (c) 2007 S. Karger AG, Basel

  13. Presence and effects of copper in water and soil; Upptraedande och effekter av koppar i vatten och mark

    Energy Technology Data Exchange (ETDEWEB)

    Sternbeck, J.

    2000-01-01

    Copper is one of the most common metals in society. Although Cu is essential to all forms of life, high exposure can lead to toxic effects. It is difficult to assess the risk for eco toxicological effects to appear in a certain situation, because Cu is largely present in chemical species with low bioavailability. In this report it is analysed how the bioavailability of Cu is regulated in natural environments, and how different organism groups may be affected bu Cu. Significant emission sources and exposure pathways are briefly described. It appears that the relationship between concentration and bioavailability is highly dynamic in natural environments. Relatively moderate increases of total-Cu can lead to strongly increasing bioavailability. The ability to control Cu intracellularly differs between different organism groups. This brings about that the sensitivity toward Cu differs widely between different organism groups.

  14. Circulation of copper in the biotic compartments of a freshwater dammed reservoir

    International Nuclear Information System (INIS)

    Vinot, I.; Pihan, J.C.

    2005-01-01

    This study concerns a chronic copper release in an aquatic ecosystem: Mirgenbach reservoir; which is characterized by high salinity, conductivity and hardness, a eutrophic state and a high temperature. To study the bioavailability of copper in the biotic compartments, the sampling covered the entire food chain (phyto- and zooplankton, macroalgae, aquatic plants, crustaceans, mollusks, and fish). Of the organisms present, the filter feeder Dreissena polymorpha, the detritivorous Bithynia tentaculata and Orconectes limosus were most contaminated by copper. The level of copper found in fish was the lowest. Body copper concentrations recorded in the present study show large variability between species even in some that are closely related. In most cases, however, the metal handling strategy, feeding habits, morphology and ecology can, at least partially, explain the metal content recorded. Pollution factors have been used to assess the state of contamination of the food chain. This study showed finally that the copper in the lake is bioavailable and bioaccumulated by organisms up to high levels and some effects of long-term toxicity of copper on benthic community and planktonic biomass were pointed out

  15. Circulation of copper in the biotic compartments of a freshwater dammed reservoir.

    Science.gov (United States)

    Vinot, I; Pihan, J C

    2005-01-01

    This study concerns a chronic copper release in an aquatic ecosystem: Mirgenbach reservoir; which is characterized by high salinity, conductivity and hardness, a eutrophic state and a high temperature. To study the bioavailability of copper in the biotic compartments, the sampling covered the entire food chain (phyto- and zooplankton, macroalgae, aquatic plants, crustaceans, mollusks, and fish). Of the organisms present, the filter feeder Dreissena polymorpha, the detritivorous Bithynia tentaculata and Orconectes limosus were most contaminated by copper. The level of copper found in fish was the lowest. Body copper concentrations recorded in the present study show large variability between species even in some that are closely related. In most cases, however, the metal handling strategy, feeding habits, morphology and ecology can, at least partially, explain the metal content recorded. Pollution factors have been used to assess the state of contamination of the food chain. This study showed finally that the copper in the lake is bioavailable and bioaccumulated by organisms up to high levels and some effects of long-term toxicity of copper on benthic community and planktonic biomass were pointed out.

  16. Circulation of copper in the biotic compartments of a freshwater dammed reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Vinot, I.; Pihan, J.C

    2005-01-01

    This study concerns a chronic copper release in an aquatic ecosystem: Mirgenbach reservoir; which is characterized by high salinity, conductivity and hardness, a eutrophic state and a high temperature. To study the bioavailability of copper in the biotic compartments, the sampling covered the entire food chain (phyto- and zooplankton, macroalgae, aquatic plants, crustaceans, mollusks, and fish). Of the organisms present, the filter feeder Dreissena polymorpha, the detritivorous Bithynia tentaculata and Orconectes limosus were most contaminated by copper. The level of copper found in fish was the lowest. Body copper concentrations recorded in the present study show large variability between species even in some that are closely related. In most cases, however, the metal handling strategy, feeding habits, morphology and ecology can, at least partially, explain the metal content recorded. Pollution factors have been used to assess the state of contamination of the food chain. This study showed finally that the copper in the lake is bioavailable and bioaccumulated by organisms up to high levels and some effects of long-term toxicity of copper on benthic community and planktonic biomass were pointed out.

  17. Bioavailability of Trace Elements in Beans and Zinc-Biofortified Wheat in Pigs

    DEFF Research Database (Denmark)

    Carlson, Dorthe; Nørgaard, Jan Værum; Torun, B

    2012-01-01

    The objectives of this experiment were to study bioavailability of trace elements in beans and wheat containing different levels of zinc and to study how the water solubility of trace elements was related to the bioavailability in pigs. Three wheat and two bean types were used: wheat of Danish...... origin as a control (CtrlW), two Turkish wheat types low (LZnW) and high (HZnW) in zinc, a common bean (Com), and a faba bean (Faba). Two diets were composed by combining 81 % CtrlW and 19 % Com or Faba beans. Solubility was measured as the trace element concentration in the supernatant of feedstuffs......, and diets incubated in distilled water at pH 4 and 38°C for 3 h. The bioavailability of zinc and copper of the three wheat types and the two bean-containing diets were evaluated in the pigs by collection of urine and feces for 7 days. The solubility of zinc was 34–63 %, copper 18–42 %, and iron 3...

  18. Copper as a target for prostate cancer therapeutics: copper-ionophore pharmacology and altering systemic copper distribution

    Science.gov (United States)

    Denoyer, Delphine; Pearson, Helen B.; Clatworthy, Sharnel A.S.; Smith, Zoe M.; Francis, Paul S.; Llanos, Roxana M.; Volitakis, Irene; Phillips, Wayne A.; Meggyesy, Peter M.; Masaldan, Shashank; Cater, Michael A.

    2016-01-01

    Copper-ionophores that elevate intracellular bioavailable copper display significant therapeutic utility against prostate cancer cells in vitro and in TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) mice. However, the pharmacological basis for their anticancer activity remains unclear, despite impending clinical trails. Herein we show that intracellular copper levels in prostate cancer, evaluated in vitro and across disease progression in TRAMP mice, were not correlative with copper-ionophore activity and mirrored the normal levels observed in patient prostatectomy tissues (Gleason Score 7 & 9). TRAMP adenocarcinoma cells harbored markedly elevated oxidative stress and diminished glutathione (GSH)-mediated antioxidant capacity, which together conferred selective sensitivity to prooxidant ionophoric copper. Copper-ionophore treatments [CuII(gtsm), disulfiram & clioquinol] generated toxic levels of reactive oxygen species (ROS) in TRAMP adenocarcinoma cells, but not in normal mouse prostate epithelial cells (PrECs). Our results provide a basis for the pharmacological activity of copper-ionophores and suggest they are amendable for treatment of patients with prostate cancer. Additionally, recent in vitro and mouse xenograft studies have suggested an increased copper requirement by prostate cancer cells. We demonstrated that prostate adenocarcinoma development in TRAMP mice requires a functional supply of copper and is significantly impeded by altered systemic copper distribution. The presence of a mutant copper-transporting Atp7b protein (tx mutation: A4066G/Met1356Val) in TRAMP mice changed copper-integration into serum and caused a remarkable reduction in prostate cancer burden (64% reduction) and disease severity (grade), abrogating adenocarcinoma development. Implications for current clinical trials are discussed. PMID:27175597

  19. Bioavailability of energy-effluent materials in coastal ecosystems

    International Nuclear Information System (INIS)

    Hardy, J.T.

    1987-01-01

    An attempt is made to study the long-term effects of effluents from coastal and offshore nuclear power plants. The original intent of the program was to integrate approaches in chemistry, ocean transport, and biological uptake to quantify the variables that regulate biological availability of energy-effluent materials. Initial work was focused on the fate and effects of copper. In later research, the authors examined the basic environmental variables controlling the bioavailability of energy-related contaminants. They investigated how factors such as dissolved organic compounds, suspended particles, and sediment binding affected chemical speciation and how chemical speciation, in turn, influenced the availability of metals and radionuclides to marine invertebrates. They developed a hydrodynamic model to predict sediment and contaminant transport, and they quantified the bioconcentration of synthetic-fuel residuals in plankton

  20. Relationship between organic matter humification and bioavailability of sludge-borne copper and cadmium during long-term sludge amendment to soil

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongtao, E-mail: liuht@igsnrr.ac.cn

    2016-10-01

    Recycling of sludge as soil amendment poses certain risk of heavy metals contamination. This study investigated the relationship between organic matter in composted sludge and its heavy metals bioavailability over 7 years. Periodic monitoring indicated a gradual increase in organic matter degradation, accompanied by changing degrees of polymerization, i.e., ratio of humic acid (HA)/fulvic acid (FA) coupled with incremental exchangeable fraction of copper (Cu) in sludge, with a growing rate of 74.7%, rather than that in soil. However, cadmium (Cd) in composted sludge exhibited an independent manner. Linear-regression analysis revealed that the total proportion of the Cu active fraction (exchangeable plus carbonate bound) was better correlated with the degree of polymerization (DP) and humification ratio (HR) than the degradation ratio of organic matter. Overall, amount of uptaken Cu was more dependent on the humification degree of organic matter, especially the proportion of HA in humus. - Highlights: • Organic matter in sludge degraded with time goes after sludge was recycled to soil. • DP in sludge is well coupled with incremental uptaken fraction of its borne copper. • Profiles of Cadmium fractions in sludge exhibit an independent manner.

  1. Relative Bioavailability and Bioaccessability and Speciation of ...

    Science.gov (United States)

    Background: Assessment of soil arsenic (As) bioavailability may profoundly affect the extent of remediation required at contaminated sites by improving human exposure estimates. Because small adjustments in soil As bioavailability estimates can significantly alter risk assessments and remediation goals, convenient, rapid, reliable, and inexpensive tools are needed to determine soil As bioavailability. Objectives: We evaluated inexpensive methods for assessing As bioavailability in soil as a means to improve human exposure estimates and potentially reduce remediation costs. Methods: Nine soils from residential sites affected by mining or smelting activity and two National Institute of Standards and Technology standard reference materials were evaluated for As bioavailability, bioaccessibility, and speciation. Arsenic bioavailability was determined using an in vivo mouse model, and As bioaccessibility was determined using the Solubility/Bioavailability Research Consortium in vitro assay. Arsenic speciation in soil and selected soil physicochemical properties were also evaluated to determine whether these parameters could be used as predictors of As bio¬availability and bioaccessibility. Results: In the mouse assay, we compared bioavailabilities of As in soils with that for sodium arsenate. Relative bioavailabilities (RBAs) of soil As ranged from 11% to 53% (mean, 33%). In vitro soil As bioaccessibility values were strongly correlated with soil As RBAs (R

  2. Critical review: Copper runoff from outdoor copper surfaces at atmospheric conditions.

    Science.gov (United States)

    Hedberg, Yolanda S; Hedberg, Jonas F; Herting, Gunilla; Goidanich, Sara; Odnevall Wallinder, Inger

    2014-01-01

    This review on copper runoff dispersed from unsheltered naturally patinated copper used for roofing and facades summarizes and discusses influencing factors, available literature, and predictive models, and the importance of fate and speciation for environmental risk assessment. Copper runoff from outdoor surfaces is predominantly governed by electrochemical and chemical reactions and is highly dependent on given exposure conditions (size, inclination, geometry, degree of sheltering, and orientation), surface parameters (age, patina composition, and thickness), and site-specific environmental conditions (gaseous pollutants, chlorides, rainfall characteristics (amount, intensity, pH), wind direction, temperature, time of wetness, season). The corrosion rate cannot be used to assess the runoff rate. The extent of released copper varies largely between different rain events and is related to dry and wet periods, dry deposition prior to the rain event and prevailing rain and patina characteristics. Interpretation and use of copper runoff data for environmental risk assessment and management need therefore to consider site-specific factors and focus on average data of long-term studies (several years). Risk assessments require furthermore that changes in copper speciation, bioavailability aspects, and potential irreversible retention on solid surfaces are considered, factors that determine the environmental fate of copper runoff from outdoor surfaces.

  3. Soil Copper and Zinc Accumulation and Bioavailability under a Long Term Vineyard Cultivation in South Italy

    Directory of Open Access Journals (Sweden)

    Paolo Lorenzoni

    2007-03-01

    Full Text Available Soil metal contamination, particularly by copper, is a phenomenon which often occurs in the surface layer of vineyard soils, due to the widespread application of Cu-based products in the plant disease management. Our study was focused on soil Cu and Zn accumulation and bioavailability as related to some soil properties under a long term vineyard cultivation, in a D.O.C. wine area of South Italy (Calabria region. Soils selected from different landscape units, ranging from acid to alkaline, under homogeneous climate conditions and vineyard management system, were investigated. Each soil was sampled in both a vineyard and a fallow area, at the depth levels of 0-10 cm, 10-25 cm and 25-50 cm. The experimental data were analysed by ANOVA, correlation and multiple stepwise regression procedures. As expected, the results indicated a contamination of the vineyard soils by Cu due to the repeated application of Cu-based products in the plant disease control, with increments of total Cu content up to 150% against the fallow soils. On the contrary, the results led to exclude any soil Zn pollution due to the vineyard management and to suppose a main pedogenic origin for this metal. According to the relationships between Cu content and soil properties, Cu accumulation was promoted by higher pH, clay and organic matter contents. These soil properties also showed a strong influence on metal bioavailability, which underwent a significant reduction in soils with higher pH and clay contents. A further result of great significance was the adverse impact of soil erosion, enhanced by the application of not suitable management systems in hilly areas, on soil capability to retain polluting metals. Soil pH, organic matter content and texture, as well as soil management system, are key factors in soil capability to limit polluting metal dispersion in the environment.

  4. Soil Copper and Zinc Accumulation and Bioavailability under a Long Term Vineyard Cultivation in South Italy

    Directory of Open Access Journals (Sweden)

    Anna Maria Corea

    2011-02-01

    Full Text Available Soil metal contamination, particularly by copper, is a phenomenon which often occurs in the surface layer of vineyard soils, due to the widespread application of Cu-based products in the plant disease management. Our study was focused on soil Cu and Zn accumulation and bioavailability as related to some soil properties under a long term vineyard cultivation, in a D.O.C. wine area of South Italy (Calabria region. Soils selected from different landscape units, ranging from acid to alkaline, under homogeneous climate conditions and vineyard management system, were investigated. Each soil was sampled in both a vineyard and a fallow area, at the depth levels of 0-10 cm, 10-25 cm and 25-50 cm. The experimental data were analysed by ANOVA, correlation and multiple stepwise regression procedures. As expected, the results indicated a contamination of the vineyard soils by Cu due to the repeated application of Cu-based products in the plant disease control, with increments of total Cu content up to 150% against the fallow soils. On the contrary, the results led to exclude any soil Zn pollution due to the vineyard management and to suppose a main pedogenic origin for this metal. According to the relationships between Cu content and soil properties, Cu accumulation was promoted by higher pH, clay and organic matter contents. These soil properties also showed a strong influence on metal bioavailability, which underwent a significant reduction in soils with higher pH and clay contents. A further result of great significance was the adverse impact of soil erosion, enhanced by the application of not suitable management systems in hilly areas, on soil capability to retain polluting metals. Soil pH, organic matter content and texture, as well as soil management system, are key factors in soil capability to limit polluting metal dispersion in the environment.

  5. Bioavailability and bioaccumulation characterization of essential and heavy metals contents in R. acetosa, S. oleracea and U. dioica from copper polluted and referent areas.

    Science.gov (United States)

    Balabanova, Biljana; Stafilov, Trajče; Bačeva, Katerina

    2015-01-01

    Bioavailability of metals occurring in soil is the basic source of its accumulation in vegetables and herbs. The impact of soil pollution (due to urban and mining areas) on the food chain presents a challenge for many investigations. Availability of metals in a potentially polluted soil and their possible transfer and bioaccumulation in sorrel (Rumex acetosa), spinach (Spinacia oleracea) and common nettle (Urtica dioica), were examined. Microwave digestion was applied for total digestion of the plant tissues, while on the soil samples open wet digestion with a mixture of acids was applied. Three extraction methods were implemented for the bioavailable metals in the soil. Atomic emission spectrometry with inductively coupled plasma was used for determination of the total contents of 21 elements. Significant enrichments in agricultural soil for As, Pb and Zn (in urban area), Cd, Cu and Ni (in a copper mine area), compared with the respective values from European standards were detected. On the basis of three different extraction methods, higher availability was assumed for both lithogenic and anthropogenic elements. Translocation values >1 were obtained for As, Cd, Cu, Ni, Pb and Zn. Higher bioconcentrating value was obtained only for Cd, while the bioaccumulation values vary from 0.17 for Cd to 0.82 for Zn. The potential availability of hazardous metals in urban and mining soils is examined using DTPA-TEA-CaCl2 (urban) and HCl (Cu-mines areas). Our results suggested that S. oleracea and R. acetosa have a phytostabilization potential for Cd, Cu, Ni and Pb, while U. dioica only for Cu. R. acetosa has a potential for phytoextraction of Cd in urban and copper polluted areas.

  6. A cytosolic copper storage protein provides a second level of copper tolerance in Streptomyces lividans.

    Science.gov (United States)

    Straw, Megan L; Chaplin, Amanda K; Hough, Michael A; Paps, Jordi; Bavro, Vassiliy N; Wilson, Michael T; Vijgenboom, Erik; Worrall, Jonathan A R

    2018-01-24

    Streptomyces lividans has a distinct dependence on the bioavailability of copper for its morphological development. A cytosolic copper resistance system is operative in S. lividans that serves to preclude deleterious copper levels. This system comprises of several CopZ-like copper chaperones and P 1 -type ATPases, predominantly under the transcriptional control of a metalloregulator from the copper sensitive operon repressor (CsoR) family. In the present study, we discover a new layer of cytosolic copper resistance in S. lividans that involves a protein belonging to the newly discovered family of copper storage proteins, which we have named Ccsp (cytosolic copper storage protein). From an evolutionary perspective, we find Ccsp homologues to be widespread in Bacteria and extend through into Archaea and Eukaryota. Under copper stress Ccsp is upregulated and consists of a homotetramer assembly capable of binding up to 80 cuprous ions (20 per protomer). X-ray crystallography reveals 18 cysteines, 3 histidines and 1 aspartate are involved in cuprous ion coordination. Loading of cuprous ions to Ccsp is a cooperative process with a Hill coefficient of 1.9 and a CopZ-like copper chaperone can transfer copper to Ccsp. A Δccsp mutant strain indicates that Ccsp is not required under initial copper stress in S. lividans, but as the CsoR/CopZ/ATPase efflux system becomes saturated, Ccsp facilitates a second level of copper tolerance.

  7. Effects of copper amendment on the bacterial community in agricultural soil analyzed by the T-RFLP technique

    DEFF Research Database (Denmark)

    Tom-Petersen, Andreas; Leser, Thomas D.; Marsh, Terence L.

    2003-01-01

    The impact of copper amendment on the bacterial community in agricultural soil was investigated by a 2-year field experiment complemented by short-term microcosm studies. In the field, the amendments led to total copper contents that were close to the safety limits laid down by European authorities....... In parallel, bioavailable copper was determined with a copper-specific bioluminescent Pseudomonas reporter strain. The amounts of total Cu as well as of bioavailable Cu in the field declined throughout the experiment. Bacterial community structure was examined by terminal restriction fragment length...... polymorphism (T-RFLP) analysis of community DNA amplified with primers specific for 16S rDNA from the Bacteria domain, the Rhizobium-Agrobacterium group and the Cytophaga group. Similarity analysis of T-RFLP profiles from field samples demonstrated an impact of copper at the domain level and within...

  8. [Bioavailability and factors influencing its rate].

    Science.gov (United States)

    Vraníková, Barbora; Gajdziok, Jan

    Bioavailability can be defined as the rate and range of active ingredient absorption, when it becomes available in the systemic circulation or at the desired site of drug action, respectively. Drug bioavailability after oral administration is affected by anumber of different factors, including physicochemical properties of the drug, physiological aspects, the type of dosage form, food intake, biorhythms, and intra- and interindividual variability of the human population. This article is the first from the series dealing with the bioavailability and methods leading to its improvement. The aim of the present paper is to provide an overview of aspects influencing the rate of bioavailability after oral administration of the active ingredient. Subsequentarticles will provide detailed descriptions of methods used for dug bioavailability improvement, which are here only summarized.

  9. Biochar and compost as amendments in copper-enriched vineyard soils - stabilization or mobilization of copper?

    Science.gov (United States)

    Soja, Gerhard; Fristak, Vladimir; Wimmer, Bernhard; Bell, Stephen; Chamier Glisczinski, Julia; Pardeller, Georg; Dersch, Georg; Rosner, Franz; Wenzel, Walter; Zehetner, Franz

    2016-04-01

    Copper is an important ingredient for several fungicides that have been used in agriculture. For organic viticulture, several diseases as e.g. downy mildew (Plasmopara viticola) can only be antagonized with Cu-containing fungicides. This long-lasting dependence on Cu-fungicides has led to a gradual Cu enrichment of vineyard soils in traditional wine-growing areas, occasionally exceeding 300 mg/kg. Although these concentrations do not affect the vines or wine quality, they may impair soil microbiological functions in the top soil layer or the root growth of green cover plants. Therefore measures are demanded that reduce the bioavailability of copper, thereby reducing the ecotoxicological effects. The use of biochar and compost as soil amendment has been suggested as a strategy to immobilize Cu and reduce the exchangeable fractions. This study consisted of lab and greenhouse experiments that were designed to test the sorption and desorption behavior of copper in vineyard soils with or without biochar and/or compost as soil amendment. Slightly acidic soils (pHeffects were more evident for a reduction of the ionic form Cu2+ than for total soluble copper, even in alkaline soils. Biochar modified with citric or tartaric acid did not significantly decrease the solubility of copper based on total dissolved concentrations although CEC was higher than in unmodified biochar. Treatments consisting of compost only or that had an equal amount of compost and biochar rather had a mobilizing effect on biochar. Sorption experiments with different DOC concentrations and biochar, however, showed a positive effect on copper sorption. Apparently in vineyard soils the predisposition to form organic-Cu-complexes may outbalance the binding possibilities of these complexes to biochar, occasionally resulting in enhanced mobilization. Presumably immobilization of copper with biochar would work best in acidic soils low in organic carbon and with low or no compost addition although this might

  10. Copper in the sea: a bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.L.

    1977-04-01

    Life in the sea is vulnerable to the influx of trace metals resulting from man's activities. Although many pollutants introduced to the sea eventually degrade to less harmful forms, trace metals accumulate in sediments and have a continued potential for effect on biota. Copper has a toxic potential exceeding all other metals due to the quantity discharged and its toxicological effect. Fortunately, copper in the oceans is rendered less bioavailable or less toxic by its ready interaction with the complex chemical components of seawater. This bibliography was prepared to illustrate the status of current knowledge of the biogeochemistry of copper and to aid the development of research programs to define the effects of copper discharged to the marine environment. The references are categorized to aid the reader to locate literature concerning specific aspects of the biogeochemistry of copper. A brief comment describing the important findings in each category is given. Although this bibliography is not exhaustive, the listed references are likely representative of current knowledge.

  11. Toxicity and deficiency of copper in Elsholtzia splendens affect photosynthesis biophysics, pigments and metal accumulation.

    Science.gov (United States)

    Peng, Hongyun; Kroneck, Peter M H; Küpper, Hendrik

    2013-06-18

    Elsholtzia splendens is a copper-tolerant plant species growing on copper deposits in China. Spatially and spectrally resolved kinetics of in vivo absorbance and chlorophyll fluorescence in mesophyll of E. splendens were used to investigate the copper-induced stress from deficiency and toxicity as well as the acclimation to excess copper stress. The plants were cultivated in nutrient solutions containing either Fe(III)-EDTA or Fe(III)-EDDHA. Copper toxicity affected light-acclimated electron flow much stronger than nonphotochemical quenching (NPQ) or dark-acclimated photochemical efficiency of PSIIRC (Fv/Fm). It also changed spectrally resolved Chl fluorescence kinetics, in particular by strengthening the short-wavelength (<700 nm) part of NPQ altering light harvesting complex II (LHCII) aggregation. Copper toxicity reduced iron accumulation, decreased Chls and carotenoids in leaves. During acclimation to copper toxicity, leaf copper decreased but leaf iron increased, with photosynthetic activity and pigments recovering to normal levels. Copper tolerance in E. splendens was inducible; acclimation seems be related to homeostasis of copper and iron in E. splendens. Copper deficiency appeared at 10 mg copper per kg leaf DW, leading to reduced growth and decreased photosynthetic parameters (F0, Fv/Fm, ΦPSII). The importance of these results for evaluating responses of phytoremediation plants to stress in their environment is discussed.

  12. Marine lipids and the bioavailability of omega-3 fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Müllertz, Anette

    2015-01-01

    of omega-3 fatty acids has been reported to be affected by several factors; among the important factors were the digestion and absorption processes of omega-3 containing lipids in the gastrointestinal tract. Both lipid structures and food structures can affect the bioavailability of omega-3 fatty acids....... In vitro studies provided a mechanistic understanding on the varied bioavailability caused by different lipid structures, the lower relative bioavailability of omega-3 fatty acids from FAEE formulation was closely related to the slower digestion rate of FAEE. Microencapsulated fish oil has often been used...... as a food additive because of its better chemical stability; studies showed that microencapsulation did not affect the bioavailability significantly. Even though food structures also affect the digestion and absorption of omega-3 containing lipids, several studies have shown that long-term intake of fish...

  13. Chemical Speciation of Copper in a Salt Marsh Estuary and Bioavailability to Thaumarchaeota

    Directory of Open Access Journals (Sweden)

    Hannah Whitby

    2017-06-01

    Full Text Available The concentrations of dissolved copper (Cud, copper-binding ligands, thiourea-type thiols, and humic substances (HSCu were measured in estuarine waters adjacent to Sapelo Island, Georgia, USA, on a monthly basis from April to December 2014. Here we present the seasonal cycle of copper speciation within the estuary and compare it to the development of an annually occurring bloom of Ammonia Oxidizing Archaea (AOA, which require copper for many enzymes. Two types of complexing ligands (L1 and L2 were found to dominate with mean complex stabilities (log KCuL′ of 14.5 and 12.8. Strong complexation resulted in lowering the concentration of free cupric ion (Cu2+ to femtomolar (fM levels throughout the study and to sub-fM levels during the summer months. A Thaumarchaeota bloom during this period suggests that this organism manages to grow at very low Cu2+ concentrations. Correlation of the concentration of the L1 ligand class with a thiourea-type thiol and the L2 ligand class with HSCu provide an interesting dimension to the identity of the ligand classes. Due to the stronger complex stability, 82–99% of the copper was bound to L1. Thiourea-type thiols typically form Cu(I species, which would suggest that up to ~90% copper could be present as Cu(I in this region. In view of the very low concentration of free copper (pCu > 15 at the onset and during the bloom and a reputedly high requirement for copper, it is likely that the Thaumarchaeota are able to access thiol-bound copper directly.

  14. Biodynamics of copper oxide nanoparticles and copper ions in an oligochaete, Part I

    DEFF Research Database (Denmark)

    Ramskov, Tina; Thit, Amalie; Croteau, Marie-Noelle

    2015-01-01

    Copper oxide (CuO) nanoparticles (NPs) are widely used, and likely released into the aquatic environment. Both aqueous (i.e., dissolved Cu) and particulate Cu can be taken up by organisms. However, how exposure routes influence the bioavailability and subsequent toxicity of Cu remains largely...... unknown. Here, we assess the importance of exposure routes (water and sediment) and Cu forms (aqueous and nanoparticulate) on Cu bioavailability and toxicity to the freshwater oligochaete, Lumbriculus variegatus, a head-down deposit-feeder. We characterize the bioaccumulation dynamics of Cu in L....... In nature, L. variegatus is potentially exposed to Cu via both water and sediment. However, sediment progressively becomes the predominant exposure route for Cu in L. variegatus as Cu partitioning to sediment increases...

  15. Interactive effects of copper pollution, competition and drought on plant growth

    DEFF Research Database (Denmark)

    Pedersen, Marianne Bruus; Kjær, C.

    Previous studies have indicated that the toxicity of copper to plants in the field is enhanced compared to single-species laboratory tests with the same soil, i.e. under similar bioavailability conditions. The purpose of the present study was to examine whether this difference in toxicity between...... laboratory and field conditions may be explained by interactions between copper toxicity and climate (drought) or competition....

  16. Heat-treated hull flour does not affect iron bioavailability in rats.

    Science.gov (United States)

    Martino, Hércia Stampini Duarte; Carvalho, Ariela Werneck de; Silva, Cassiano Oliveira da; Dantas, Maria Inês de Souza; Natal, Dorina Isabel Gomes; Ribeiro, Sônia Machado Rocha; Costa, Neuza Maria Brunoro

    2011-06-01

    In this study the chemical composition and iron bioavailability of hull and hull-less soybean flour from the new cultivar UFVTN 105AP was evaluated. The hemoglobin depletion-repletion method was used in Wistar rats. Soybean hull flour presented 37% more total dietary fiber and higher content of iron than hull-less soybean flour. The phytate:iron molar ratio, however, was 2-fold lower in the soybean hull flour in compared to the hull-less soybean flour. Animals fed soybean hull flour presented hemoglobin gains similar to those of the control diet group (p > 0.05). The Relative Biological Values of hull and hull-less soybean flour were 68.5% and 67.1%, respectively, compared to the control group. Heat-treated soybean hull flour (150 degrees C/30 minutes) showed high content of iron and low phytate, which favors the iron bioavailability. Thus, the soybean hull flour is a better source of dietary fiber and iron than hull-less soybean flour at comparable bioavailabilities.

  17. The tomato sauce making process affects the bioaccessibility and bioavailability of tomato phenolics: a pharmacokinetic study.

    Science.gov (United States)

    Martínez-Huélamo, Miriam; Tulipani, Sara; Estruch, Ramón; Escribano, Elvira; Illán, Montserrat; Corella, Dolores; Lamuela-Raventós, Rosa M

    2015-04-15

    Tomato sauce is the most commonly consumed processed tomato product worldwide, but very little is known about how the manufacturing process may affect the phenolic composition and bioavailability after consumption. In a prospective randomised, cross-over intervention study, we analysed the plasma and urinary levels of tomato phenolic compounds and their metabolites after acute consumption of raw tomatoes and tomato sauce, enriched or not with refined olive oil during production. Respectively, eleven and four phenolic metabolites were found in urine and plasma samples. The plasma concentration and urinary excretion of naringenin glucuronide were both significantly higher after the consumption of tomato sauce than raw tomatoes. The results suggest that the mechanical and thermal treatments during tomato sauce manufacture may help to deliver these potentially bioactive phenolics from the food matrix more effectively than the addition of an oil component, thus increasing their bioavailability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. An overview of BORIS: Bioavailability of Radionuclides in Soils

    International Nuclear Information System (INIS)

    Tamponnet, C.; Martin-Garin, A.; Gonze, M.-A.; Parekh, N.; Vallejo, R.; Sauras-Yera, T.; Casadesus, J.; Plassard, C.; Staunton, S.; Norden, M.; Avila, R.; Shaw, G.

    2008-01-01

    The ability to predict the consequences of an accidental release of radionuclides relies mainly on the level of understanding of the mechanisms involved in radionuclide interactions with different components of agricultural and natural ecosystems and their formalisation into predictive models. Numerous studies and databases on contaminated agricultural and natural areas have been obtained, but their use to enhance our prediction ability has been largely limited by their unresolved variability. Such variability seems to stem from incomplete knowledge about radionuclide interactions with the soil matrix, soil moisture, and biological elements in the soil and additional pollutants, which may be found in such soils. In the 5th European Framework Programme entitled Bioavailability of Radionuclides in Soils (BORIS), we investigated the role of the abiotic (soil components and soil structure) and biological elements (organic compounds, plants, mycorrhiza, and microbes) in radionuclide sorption/desorption in soils and radionuclide uptake/release by plants. Because of the importance of their radioisotopes, the bioavailability of three elements, caesium, strontium, and technetium has been followed. The role of one additional non-radioactive pollutant (copper) has been scrutinised in some cases. Role of microorganisms (e.g., K d for caesium and strontium in organic soils is much greater in the presence of microorganisms than in their absence), plant physiology (e.g., changes in plant physiology affect radionuclide uptake by plants), and the presence of mycorrhizal fungi (e.g., interferes with the uptake of radionuclides by plants) have been demonstrated. Knowledge acquired from these experiments has been incorporated into two mechanistic models CHEMFAST and BIORUR, specifically modelling radionuclide sorption/desorption from soil matrices and radionuclide uptake by/release from plants. These mechanistic models have been incorporated into an assessment model to enhance its

  19. An overview of BORIS: Bioavailability of Radionuclides in Soils

    Energy Technology Data Exchange (ETDEWEB)

    Tamponnet, C. [Institute of Radioprotection and Nuclear Safety, DEI/SECRE, CADARACHE, B.P. 1, 13108 Saint-Paul-lez-Durance, Cedex (France)], E-mail: christian.tamponnet@irsn.fr; Martin-Garin, A.; Gonze, M.-A. [Institute of Radioprotection and Nuclear Safety, DEI/SECRE, CADARACHE, B.P. 1, 13108 Saint-Paul-lez-Durance, Cedex (France); Parekh, N. [Center for Ecology and Hydrology, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Vallejo, R.; Sauras-Yera, T.; Casadesus, J. [Department of Plant Biology, University of Barcelona, 08028 Barcelona (Spain); Plassard, C.; Staunton, S. [INRA, UMR Rhizosphere and Symbiosis, Place Viala, 34060 Montpellier (France); Norden, M. [Swedish Radiation Protection Institute, 171 16 Stockholm (Sweden); Avila, R. [Facilia AB, Valsgaerdevaegen 12, 168 53 Bromma, Stockholm (Sweden); Shaw, G. [Division of Agricultural and Environmental Sciences University Park, Nottingham NG7 2RD (United Kingdom)

    2008-05-15

    The ability to predict the consequences of an accidental release of radionuclides relies mainly on the level of understanding of the mechanisms involved in radionuclide interactions with different components of agricultural and natural ecosystems and their formalisation into predictive models. Numerous studies and databases on contaminated agricultural and natural areas have been obtained, but their use to enhance our prediction ability has been largely limited by their unresolved variability. Such variability seems to stem from incomplete knowledge about radionuclide interactions with the soil matrix, soil moisture, and biological elements in the soil and additional pollutants, which may be found in such soils. In the 5th European Framework Programme entitled Bioavailability of Radionuclides in Soils (BORIS), we investigated the role of the abiotic (soil components and soil structure) and biological elements (organic compounds, plants, mycorrhiza, and microbes) in radionuclide sorption/desorption in soils and radionuclide uptake/release by plants. Because of the importance of their radioisotopes, the bioavailability of three elements, caesium, strontium, and technetium has been followed. The role of one additional non-radioactive pollutant (copper) has been scrutinised in some cases. Role of microorganisms (e.g., K{sub d} for caesium and strontium in organic soils is much greater in the presence of microorganisms than in their absence), plant physiology (e.g., changes in plant physiology affect radionuclide uptake by plants), and the presence of mycorrhizal fungi (e.g., interferes with the uptake of radionuclides by plants) have been demonstrated. Knowledge acquired from these experiments has been incorporated into two mechanistic models CHEMFAST and BIORUR, specifically modelling radionuclide sorption/desorption from soil matrices and radionuclide uptake by/release from plants. These mechanistic models have been incorporated into an assessment model to enhance

  20. Phosphorous bioavailability along a soil chronosequence

    Science.gov (United States)

    Roberts, K.; Vokhshoori, N. L.; Rosenthanl, A.; Turner, B. L.; Condron, L.; Paytan, A.

    2011-12-01

    In humid environments, as soils age nutrient loss through leaching and chemical trasformations affect the succession and composition of the biological communities. In particular phosphorus (P), often a limiting nutrient in terrestrial systems, tends to evolve into less bio-available forms over time, compounding loss through leaching. Thus P availability has the potential to strongly affect community productivity and structure. Low standing stock of P may not necessarily imply P limitation as the bio-available P pool is continuously recycled and re-utilized. Thus extensive recycling can reduce to varying extents the effect of P limitation. The bio-availability and recycling rates of P are difficult to measure; multiple sequential extraction processes have been developed to try to define and quantify the bio-availability of both inorganic and organic forms of P. In this preliminary study, we will present results of P concentrations in different soil fractions and oxygen isotopes in phosphate. These data together increase our understanding of P dynamics as soils age. The work is being done with a well characterized and dated chronosequence from the west coast of the South Island of New Zealand near the Haast River.

  1. Effect of dose increase or cimetidine co-administration on albendazole bioavailability

    NARCIS (Netherlands)

    Schipper, H. G.; Koopmans, R. P.; Nagy, J.; Butter, J. J.; Kager, P. A.; van Boxtel, C. J.

    2000-01-01

    The low bioavailability of albendazole affects the therapeutic response in patients with echinococcosis. Cimetidine co-administration is reported to improve bioavailability. To analyze the assumed dose-dependent bioavailability of albendazole, we administered 5 to 30 mg/kg albendazole to 6 male

  2. Testing the Underlying Chemical Principles of the Biotic Ligand Model (BLM) to Marine Copper Systems: Measuring Copper Speciation Using Fluorescence Quenching.

    Science.gov (United States)

    Tait, Tara N; McGeer, James C; Smith, D Scott

    2018-01-01

    Speciation of copper in marine systems strongly influences the ability of copper to cause toxicity. Natural organic matter (NOM) contains many binding sites which provides a protective effect on copper toxicity. The purpose of this study was to characterize copper binding with NOM using fluorescence quenching techniques. Fluorescence quenching of NOM with copper was performed on nine sea water samples. The resulting stability constants and binding capacities were consistent with literature values of marine NOM, showing strong binding with [Formula: see text] values from 7.64 to 10.2 and binding capacities ranging from 15 to 3110 nmol mg [Formula: see text] Free copper concentrations estimated at total dissolved copper concentrations corresponding to previously published rotifer effect concentrations, in the same nine samples, were statistically the same as the range of free copper calculated for the effect concentration in NOM-free artificial seawater. These data confirms the applicability of fluorescence spectroscopy techniques for NOM and copper speciation characterization in sea water and demonstrates that such measured speciation is consistent with the chemical principles underlying the biotic ligand model approach for bioavailability-based metals risk assessment.

  3. CONSIDERATIONS ON THE INFLUENCE OF COMPLEXATION IN THE COPPER UPTAKE AND TRANSLOCATION

    Directory of Open Access Journals (Sweden)

    SEMAGHIUL BIRGHILA

    2014-07-01

    Full Text Available The actual knowledge about food and the environment underlines the fact that agricultural and environmental sciences must solve various problems regarding copper uptake from soil to plants and its bioaccumulation, being important issues for copper concentration in crops and also for phytoremediation of polluted soils. We studied the relation between the form in which copper is applied to soil and the consequential copper bioavailability, uptake and translocation, using as examples simple and complex copper compounds. The copper concentration in basil plants harvested from soils treated with copper compounds and the calculated values of transfer coefficient, translocation factor, bioaccumulation factor, and uptake coefficient demonstrated that the ionic copper (from simple salts is not necessarily easier to uptake than complex ions, but is easier translocated in plants, while the copper given as complex ions is most likely to be retained by roots. The results indicated that the involvement of copper complexes in agricultural treatments is a solution for soils phytoremediation, concerning the phytostabilization technology.

  4. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy

    Science.gov (United States)

    Rein, Maarit J.; Renouf, Mathieu; Cruz‐Hernandez, Cristina; Actis‐Goretta, Lucas; Thakkar, Sagar K.; da Silva Pinto, Marcia

    2013-01-01

    Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds. PMID:22897361

  5. Bioavailability of Promethazine during Spaceflight

    Science.gov (United States)

    Boyd, Jason L.; Wang, Zuwei; Putcha, Lakshmi

    2009-01-01

    Promethazine (PMZ) is the choice anti-motion sickness medication for treating space motion sickness (SMS) during flight. The side effects associated with PMZ include dizziness, drowsiness, sedation, and impaired psychomotor performance which could impact crew performance and mission operations. Early anecdotal reports from crewmembers indicate that these central nervous system side effects of PMZ are absent or greatly attenuated in microgravity, potentially due to changes in pharmacokinetics (PK) and pharmacodynamics in microgravity. These changes could also affect the therapeutic effectiveness of drugs in general and PMZ, in particular. In this investigation, we examined bioavailability and associated pharmacokinetics of PMZ in astronauts during and after space flight. Methods. Nine astronauts received, per their preference, PMZ (25 or 50 mg as intramuscular injection, oral tablet, or rectal suppository) on flight day one for the treatment of SMS and subsequently collected saliva samples and completed sleepiness scores for 72 h post dose. Thirty days after the astronauts returned to Earth, they repeated the protocol. Bioavailability and PK parameters were calculated and compared between flight and ground. Results. Maximum concentration (Cmax) was lower and time to reach Cmax (tmax) was longer in flight than on the ground. Area under the curve (AUC), a measure of bioavailability, was lower and biological half-life (t1/2) was longer in flight than on the ground. Conclusion. Results indicate that bioavailability of PMZ is reduced during spaceflight. Number of samples, sampling method, and sampling schedule significantly affected PK parameter estimates.

  6. Ionic Strength Differentially Affects the Bioavailability of Neutral and Negatively Charged Inorganic Hg Complexes.

    Science.gov (United States)

    Stenzler, Benjamin; Hinz, Aaron; Ruuskanen, Matti; Poulain, Alexandre J

    2017-09-05

    Mercury (Hg) bioavailability to bacteria in marine systems is the first step toward its bioamplification in food webs. These systems exhibit high salinity and ionic strength that will both alter Hg speciation and properties of the bacteria cell walls. The role of Hg speciation on Hg bioavailability in marine systems has not been teased apart from that of ionic strength on cell wall properties, however. We developed and optimized a whole-cell Hg bioreporter capable of functioning under aerobic and anaerobic conditions and exhibiting no physiological limitations of signal production to changes in ionic strength. We show that ionic strength controls the bioavailability of Hg species, regardless of their charge, possibly by altering properties of the bacterial cell wall. The unexpected anaerobic bioavailability of negatively charged halocomplexes may help explain Hg methylation in marine systems such as the oxygen-deficient zone in the oceanic water column, sea ice or polar snow.

  7. Factors influencing zinc bioavailability in rats

    International Nuclear Information System (INIS)

    Mahalko, J.R.; Johnson, P.E.; Swan, P.B.

    1986-01-01

    The amount of Zn fed, its source, and the Zn status of experimental animals may affect Zn bioavailability. To test this, rats were fed doses of Zn from ZnCl 2 or from various foods labeled extrinsically. Three weeks before and after the test meal, rats were fed an AIN diet modified in Zn content. Absorption was calculated by monitoring whole body retention and extrapolating to zero time. In rats fed 12 ppm Zn and test doses of 6 to 275 μg, absorption decreased from 80 to 50%, and the amount absorbed increased quadratically (r 2 = 0.998), but turnover was unaffected. Rats fed 38 or 77 ppm Zn absorbed less of test doses of 290, 613, or 1700 μg Zn than did those fed 12 ppm, and their Zn turnover rate was higher. In two 2 x 7 factorial experiments, rats fed 12 or 38 ppm Zn were given 16 or 98 μg Zn from 7 Zn sources. Bioavailability from some foods was higher than from ZnCl 2 except in rats eating only 12 ppm Zn and receiving the small dose. There were greater differences in bioavailability among foods when tested at the higher Zn status or dose. This may explain inconsistencies seen in comparing Zn bioavailability by traditional growth assay with that seen in 65 Zn tracer studies. The authors conclude that Zn status of the experimental animal, as well as the amount of Zn and its source, will affect Zn bioavailability

  8. Ethanol Consumption by Wistar Rat Dams Affects Selenium Bioavailability and Antioxidant Balance in Their Progeny

    Directory of Open Access Journals (Sweden)

    Olimpia Carreras

    2009-07-01

    Full Text Available Ethanol consumption affects maternal nutrition, the mothers’ antioxidant balance and the future health of their progeny. Selenium (Se is a trace element cofactor of the enzyme glutathione peroxidase (GPx. We will study the effect of ethanol on Se bioavailability in dams and in their progeny. We have used three experimental groups of dams: control, chronic ethanol and pair-fed; and three groups of pups. Se levels were measured by graphite-furnace atomic absorption spectrometry. Serum and hepatic GPx activity was determined by spectrometry. We have concluded that ethanol decreased Se retention in dams, affecting their tissue Se deposits and those of their offspring, while also compromising their progeny’s weight and oxidation balance. These effects of ethanol are caused by a reduction in Se intake and a direct alcohol-generated oxidation action.

  9. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy.

    Science.gov (United States)

    Rein, Maarit J; Renouf, Mathieu; Cruz-Hernandez, Cristina; Actis-Goretta, Lucas; Thakkar, Sagar K; da Silva Pinto, Marcia

    2013-03-01

    Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds. © 2012 Nestec S. A.. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  10. How historical copper contamination affects soil structure and mobilization and transport of colloids

    DEFF Research Database (Denmark)

    Paradelo, Marcos; Møldrup, Per; Holmstrup, Martin

    between 0.01 to 0.43 pore volumes, with longer times for the most contaminated point, likely related with its higher soil density and lower air permeability. The copper pollution affected colloid and tracer transport in the soil columns. The release of colloids especially in the most contaminated points...

  11. Oral bioavailability of heavy metals and organic compounds from soil ; too complicated to absorb? An inventarisation of factors affecting bioavailability of environmental contaminants from soil

    NARCIS (Netherlands)

    Sips AJAM; Eijkeren JCH van; LBO

    1996-01-01

    Bioavailability plays an important role in risk assessment of environmental contaminants from soil. It is one of the determinants in the assessment of intervention values. In present risk assessment, bioavailability from soil is supposed to be 100% due to a paucity of reliable information. However,

  12. Micronutrient bioavailability: Dietary Reference Intakes and a future perspective1234

    Science.gov (United States)

    2010-01-01

    This article provides a review of how the challenge of bioavailability was approached in establishing the Dietary Reference Intakes, with a special focus on folic acid, vitamin B-12, β-carotene, iron, selenium, and zinc, the targeted micronutrients for this workshop. In a future perspective, the necessity of having a clear working definition of bioavailability is emphasized. The bioavailability of micronutrients should be considered, with advantage, under subheadings determined by the broad factors that affect bioavailability. Special emphasis is given to giving greater and specific attention to factors involved in the maintenance of homeostasis. These factors, it is argued, are best considered separately from even a broad definition of bioavailability and have the potential to provide new insights into some micronutrient requirements. PMID:20200261

  13. The reduced bioavailability of copper by nano-TiO₂ attenuates the toxicity to Microcystis aeruginosa.

    Science.gov (United States)

    Chen, Jinyuan; Qian, Yi; Li, Herong; Cheng, Yanhong; Zhao, Meirong

    2015-08-01

    Nano-TiO2 is a widely applied nanoparticle (NPs) and co-exists with other pollutants such as heavy metals in aquatic environments. However, minimal knowledge is available concerning the ecological risk of these mixtures. Our study reported that at no toxic effect concentrations of TiO2 nanoparticles (5 mg/L), the toxicity of Cu ions to the algae Microcystis aeruginosa was significantly attenuated by TiO2 nanoparticles. Specifically, the concentration of photosynthetic pigments (i.e., concentration of Chla) increased 37% when comparing only Cu ions treated and the nano-TiO2-Cu co-incubation. The levels of phycocyanin (PC), allophycocyanin (APC), phycoerythrin (PE), and phycobiliprotein (PBPs) were also recovered at levels ranging from 23 to 35% after 72 h. For oxidative indexes, the decreased activities of the superoxide dismutase (SOD), peroxidase (POD) content, and malondialdehyde (MDA) with the existence of nano-TiO2 displayed a lower level compared to Cu ions treatment only at 24 and 48 h. This toxicity attenuation can be confirmed by subcellular structures because the impairment to cellular membranes and organelles reduced with the presence of nano-TiO2. The potential mechanisms of the antagonism between the nano-TiO2 and Cu ions can be partially attributed to the sorption of copper onto TiO2 nanoparticles, which fitted the Freundlich isotherm (coefficient = 0.967). The decreased bioavailability of Cu ions protected algae cells from being attacked by free Cu ions. Given the abundance of released nanoparticles and unique physicochemical property of nanoparticles, our results elucidated the ecosafety of nanoparticles and co-substrates in aquatic systems.

  14. Effect of aeration rate, moisture content and composting period on availability of copper and lead during pig manure composting.

    Science.gov (United States)

    Shen, Yujun; Zhao, Lixin; Meng, Haibo; Hou, Yueqing; Zhou, Haibin; Wang, Fei; Cheng, Hongsheng; Liu, Hongbin

    2016-06-01

    Pollution by heavy metals, such as copper and lead, has become a limiting factor for the land application of faecal manures, such as pig manure. This study was conducted to investigate the influence of composting process parameters, including aeration rate, moisture content and composting period, on the distribution of heavy metal species during composting, and to select an optimal parameter for copper and lead inactivation. Results showed that the distribution ratios of exchangeable fractions of copper and lead had a bigger decrease under conditions of aeration rate, 0.1 m(3) min(-1) m(-3), an initial moisture content of 65% and composting period of 50 days. Suboptimal composting process conditions could lead to increased availability of heavy metals. Statistical analysis indicated that the aeration rate was the main factor affecting copper and lead inactivation, while the effects of moisture content and composting period were not significant. The rates of reduction of copper-exchangeable fractions and lead-exchangeable fractions were positively correlated with increased pH. The optimal parameters for reducing heavy metal bioavailability during pig manure composting were aeration rate, 0.1 m(3) min(-1) m(-3), initial moisture content, 65%, and composting period, 20 days. © The Author(s) 2016.

  15. Iron bioavailability: UK Food Standards Agency workshop report.

    Science.gov (United States)

    Singh, Mamta; Sanderson, Peter; Hurrell, Richard F; Fairweather-Tait, Susan J; Geissler, Catherine; Prentice, Ann; Beard, John L

    2006-11-01

    The UK Food Standards Agency convened a group of expert scientists to review current research investigating factors affecting iron status and the bioavailability of dietary iron. Results presented at the workshop show menstrual blood loss to be the major determinant of body iron stores in premenopausal women. In the presence of abundant and varied food supplies, the health consequences of lower iron bioavailability are unclear and require further investigation.

  16. Molasses melanoidin promotes copper uptake for radish sprouts: the potential for an accelerator of phytoextraction.

    Science.gov (United States)

    Hatano, Ken-Ichi; Kanazawa, Kazuki; Tomura, Hiroki; Yamatsu, Takeshi; Tsunoda, Kin-Ichi; Kubota, Kenji

    2016-09-01

    Phytoextraction has been proposed as an alternative remediation technology for heavy metal contamination, and it is well known that chelators may alter the toxicity of heavy metals and the bioavailability in plants. Our previous work demonstrated that an adsorbent-column chromatography can effectively separate melanoidin-like product (MLP) from sugarcane molasses. The aim of this study was to examine the chelating property of MLP and to evaluate the facilitatory influence on the phytoextraction efficiency of Japanese radish. The result showed that MLP binds to all the metal ions examined and the binding capacity of MLP toward Cu(2+) seems to be the highest among them. The metal detoxification by MLP followed the order of Pb(2+) > Zn(2+) > Ni(2+) > Cu(2+) > Fe(2+) > Cd(2+) > Co(2+). Furthermore, in the phytoextraction experiment using copper sulfate, the application of MLP accelerated the detoxification of copper and the bioavailability in radish sprouts. Thus, these results suggest that MLP possesses the potential for an accelerator of phytoextraction in the copper-contaminated media.

  17. Metallic copper corrosion rates, moisture content, and growth medium influence survival of copper ion-resistant bacteria

    DEFF Research Database (Denmark)

    Elguindi, J; Moffitt, S; Hasman, Henrik

    2010-01-01

    of both copper ion-resistant E. coli and E. faecium strains when samples in rich medium were spread in a thin, moist layer on copper alloys with 85% or greater copper content. E. coli strains were rapidly killed under dry conditions, while E. faecium strains were less affected. Electroplated copper...... on electroplated copper surfaces with benzotriazole coating and thermal oxide coating compared to surfaces without anti-corrosion treatment. Control of surface corrosion affected the level of copper ion influx into bacterial cells, which contributed directly to bacterial killing....

  18. Bioavailability and Bioaccumulation of Metal-Based Engineered Nanomaterials in Aquatic Environments

    DEFF Research Database (Denmark)

    Luoma, Samuel; Khan, Farhan R.; Croteau, Marie-Noelle

    2014-01-01

    Bioavailability of Me-ENMs to aquatic organisms links their release into the environment to ecological implications. Close examination shows some important differences in the conceptual models that define bioavailability for metals and Me-ENMs. Metals are delivered to aquatic animals from Me......-ENMs via water, ingestion, and incidental surface exposure. Both metal released from the Me-ENM and uptake of the nanoparticle itself contribute to bioaccumulation. Some mechanisms of toxicity and some of the metrics describing exposure may differ from metals alone. Bioavailability is driven by complex...... interaction of particle attributes, environmental transformations, and biological traits. Characterization of Me-ENMs is an essential part of understanding bioavailability and requires novel methodologies. The relative importance of the array of processes that could affect Me-ENM bioavailability remains...

  19. Evaluation of spatial variability of metal bioavailability in soils using geostatistics

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Hauschild, Michael Zwicky; Rosenbaum, Ralph K.

    2012-01-01

    Soil properties show signifficant spatial variability at local, regional and continental scales. This is a challenge for life cycle impact assessment (LCIA) of metals, because fate, bioavailability and effect factors are controlled by environmental chemistry and can vary orders of magnitude...... is performed using ArcGIS Geostatistical Analyst. Results show that BFs of copper span a range of 6 orders of magnitude, and have signifficant spatial variability at local and continental scales. The model nugget variance is signifficantly higher than zero, suggesting the presence of spatial variability...

  20. Does ascorbic acid supplementation affect iron bioavailability in rats fed micronized dispersible ferric pyrophosphate fortified fruit juice?

    Science.gov (United States)

    Haro-Vicente, Juan Francisco; Pérez-Conesa, Darío; Rincón, Francisco; Ros, Gaspar; Martínez-Graciá, Carmen; Vidal, Maria Luisa

    2008-12-01

    Food iron (Fe) fortification is an adequate approach for preventing Fe-deficiency anemia. Poorly water-soluble Fe compounds have good sensory attributes but low bioavailability. The reduction of the particle size of Fe fortificants and the addition of ascorbic acid might increase the bioavailability of low-soluble compounds. The present work aims to compare the Fe absorption and bioavailability of micronized dispersible ferric pyrophosphate (MDFP) (poorly soluble) to ferrous sufate (FS) (highly soluble) added to a fruit juice in presence or absence of ascorbic acid (AA) by using the hemoglobin repletion assay in rats. After a hemoglobin depletion period, four fruit juices comprised of (1) FS, (2) MDFP, (3) FS + AA, (4) MDFP + AA were produced and administered to a different group of rats (n = 18) over 21 days. During the repletion period, Fe balance, hemoglobin regeneration efficiency (HRE), relative bioavailability (RBV) and Fe tissue content were determined in the short, medium and long term. Fe absorption and bioavailability showed no significant differences between fortifying the fruit juice with FS or MDFP. The addition of AA to the juice enhanced Fe absorption during the long-term balance study within the same Fe source. HRE and Fe utilization increased after AA addition in both FS and MDFP groups in every period. Fe absorption and bioavailability from MDFP were comparable to FS added to a fruit juice in rats. Further, the addition of AA enhanced Fe absorption in the long term, as well as Fe bioavailability throughout the repletion period regardless of the Fe source employed.

  1. Speciation, Sources and Bioavailability of Copper and Zinc in DoD-Impacted Harbors and Estuaries

    National Research Council Canada - National Science Library

    Shafer, Martin; Tang, Degui; Hemming, Jocelyn; Beard, Brian; Armstrong, David

    2007-01-01

    .... The overarching goal of this SERDP project was to advance our understanding of metal-ligand binding in order to further the development of practical and predictive models of trace metal bioavailability...

  2. Copper availability and bioavailability are controlled by rhizosphere pH in rape grown in an acidic Cu-contaminated soil

    International Nuclear Information System (INIS)

    Chaignon, Valerie; Quesnoit, Marie; Hinsinger, Philippe

    2009-01-01

    We evaluated how root-induced changes in rhizosphere pH varied and interacted with Cu availability and bioavailability in an acidic soil. Rape was grown on a Cu-contaminated acidic soil, which had been limed at 10 rates. Soil Cu bioavailability was not influenced by liming. However, liming significantly decreased CaCl 2 -extracted Cu for pH between 3.7 and 5.1. Little effect was found for pH above 5.1. For soil pH 2 -Cu contents were smaller in rhizosphere than uncropped soil. Rhizosphere alkalisation occurred at pH 2 -Cu in the rhizosphere at low pH and the absence of pH dependency of Cu bioavailability to rape. In addition, apoplastic Cu in roots increased with increasing soil pH, most probably as a result of increased dissociation and affinity of cell wall compounds for Cu. - Root-induced increase in pH reduces Cu availability in the rhizosphere and Cu bioavailability to rape.

  3. Computational modeling of human oral bioavailability: what will be next?

    Science.gov (United States)

    Cabrera-Pérez, Miguel Ángel; Pham-The, Hai

    2018-06-01

    The oral route is the most convenient way of administrating drugs. Therefore, accurate determination of oral bioavailability is paramount during drug discovery and development. Quantitative structure-property relationship (QSPR), rule-of-thumb (RoT) and physiologically based-pharmacokinetic (PBPK) approaches are promising alternatives to the early oral bioavailability prediction. Areas covered: The authors give insight into the factors affecting bioavailability, the fundamental theoretical framework and the practical aspects of computational methods for predicting this property. They also give their perspectives on future computational models for estimating oral bioavailability. Expert opinion: Oral bioavailability is a multi-factorial pharmacokinetic property with its accurate prediction challenging. For RoT and QSPR modeling, the reliability of datasets, the significance of molecular descriptor families and the diversity of chemometric tools used are important factors that define model predictability and interpretability. Likewise, for PBPK modeling the integrity of the pharmacokinetic data, the number of input parameters, the complexity of statistical analysis and the software packages used are relevant factors in bioavailability prediction. Although these approaches have been utilized independently, the tendency to use hybrid QSPR-PBPK approaches together with the exploration of ensemble and deep-learning systems for QSPR modeling of oral bioavailability has opened new avenues for development promising tools for oral bioavailability prediction.

  4. Copper availability and bioavailability are controlled by rhizosphere pH in rape grown in an acidic Cu-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Chaignon, Valerie; Quesnoit, Marie [INRA, UMR 1222 Eco and Sols Ecologie fonctionnelle and Biogeochimie des Sols (INRA-IRD-SupAgro), Place Viala, F-34060 Montpellier (France); Hinsinger, Philippe, E-mail: philippe.hinsinger@supagro.inra.f [INRA, UMR 1222 Eco and Sols Ecologie fonctionnelle and Biogeochimie des Sols (INRA-IRD-SupAgro), Place Viala, F-34060 Montpellier (France)

    2009-12-15

    We evaluated how root-induced changes in rhizosphere pH varied and interacted with Cu availability and bioavailability in an acidic soil. Rape was grown on a Cu-contaminated acidic soil, which had been limed at 10 rates. Soil Cu bioavailability was not influenced by liming. However, liming significantly decreased CaCl{sub 2}-extracted Cu for pH between 3.7 and 5.1. Little effect was found for pH above 5.1. For soil pH < 4.4, CaCl{sub 2}-Cu contents were smaller in rhizosphere than uncropped soil. Rhizosphere alkalisation occurred at pH < 4.8, while acidification occurred at greater pH. This explained the changes of CaCl{sub 2}-Cu in the rhizosphere at low pH and the absence of pH dependency of Cu bioavailability to rape. In addition, apoplastic Cu in roots increased with increasing soil pH, most probably as a result of increased dissociation and affinity of cell wall compounds for Cu. - Root-induced increase in pH reduces Cu availability in the rhizosphere and Cu bioavailability to rape.

  5. Prediction of the bioavailability of potentially toxic elements in freshwaters. Comparison between speciation models and passive samplers.

    Science.gov (United States)

    Sierra, Jordi; Roig, Neus; Giménez Papiol, Gemma; Pérez-Gallego, Elena; Schuhmacher, Marta

    2017-12-15

    The aim of this work is to predict the bioavailability of the Potentially Toxic Elements (PTEs) Cd, Pb, Hg, Ni, Cu, Zn, As, Cr and Se in 6 sites within the Ebro River basin. In situ Diffusive gradient in thin-films (DGTs) and classical sampling have been used and compared. The potentially bioavailable fractions of each PTE was estimated by modelling their chemical speciation using three programs (WHAM 7.0, Visual MINTEQ 3.1 and Bio-met), following the suggestions published in recent European regulations. Results of the equilibrium-based models WHAM 7.0 and Visual MINTEQ 3.1 indicate that As, Cd, Ni, Se and Zn, predominate as free metals ions or forming inorganic soluble complexes. Copper, Pb and Hg bioavailability is conditioned by their affinity to dissolved humic substances. According to Visual MINTEQ 3.1, Cr is subjected to redox reactions, being Cr (VI) present (at low concentrations) in the studied rivers. According to Bio-met model, the bioavailability of Cu and Zn is highly influenced by soluble organic matter and water hardness, respectively. For most PTEs, the bioavailability estimated by deploying DGTs in river waters tends to be slightly lower than the estimation obtained with speciation models, since in real conditions more environmental factors take place comparing to the finite number of parameters considered in models. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Flavonoid Bioavailability and Attempts for Bioavailability Enhancement

    Science.gov (United States)

    Thilakarathna, Surangi H.; Rupasinghe, H. P. Vasantha

    2013-01-01

    Flavonoids are a group of phytochemicals that have shown numerous health effects and have therefore been studied extensively. Of the six common food flavonoid classes, flavonols are distributed ubiquitously among different plant foods whereas appreciable amounts of isoflavones are found in leguminous plant-based foods. Flavonoids have shown promising health promoting effects in human cell culture, experimental animal and human clinical studies. They have shown antioxidant, hypocholesterolemic, anti-inflammatory effects as well as ability to modulate cell signaling and gene expression related disease development. Low bioavailability of flavonoids has been a concern as it can limit or even hinder their health effects. Therefore, attempts to improve their bioavailability in order to improve the efficacy of flavonoids are being studied. Further investigations on bioavailability are warranted as it is a determining factor for flavonoid biological activity. PMID:23989753

  7. Bioavailability in rats of metal adsorbed to soils

    International Nuclear Information System (INIS)

    Rubenstein, R.; Griffin, S.; Irene, S.; DeRosa, C.; Choudhury, H.

    1990-01-01

    The toxicity of metals to humans and animals has been well documented, however little data are available on the physiological bioavailability of metals from various soil types. These studies were designed to assess the bioavailability of sodium 75 selenate (NaS), 63 nickel chloride (NiCl) and 109 cadmium chloride (CdCl) adsorbed to sand or clay loam in rats. Each test compound was administered in seven dose groups: Group 1 - intravenously, Group 2 and 3 - oral aqueous solution by gavage, Groups 4-7 - aqueous suspension adsorbed to each soil type by gavage. Blood was collected from the jugular vein at intervals up to 48 hours post dosing and analyzed for radio-activity. Both NiCl and CdCl were poorly adsorbed from the soils. Approximately 3% of the CdCl bound to sand and 1.5% of the NiCl bound to clay loam were absorbed into the bloodstream. Approximately 0.5% and 0.1% of the CdCl bound to sand and clay, respectively were absorbed. NaS was well absorbed following oral administration with approximately 85% of the compound bound to sand and 94% bound to clay being absorbed into the blood. Bioavailability of metals from soil appears to be primarily affected by the ionic state of the metal. Anions, such as selenium, are more mobile in an acid environment and may leach more readily from soil. Cations, such as Ni and Cd may bind to soil more tightly, thus soil type becomes a factor affecting bioavailability

  8. Bioavailability

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, J. [National Environmental Research Inst., Silkeborg (Denmark). Dept. of Terrestrial Ecology

    2003-07-01

    Although commonly discussed and debated the scientific basis for adequately using bioavailability in ecological risk assessment is still relatively weak. One of the first obstacles to solve is to define the term properly. It must be recognised that bioavailability is dynamic processes comprising several distinct phases. One is the adsorption/desorption process (chemical availability) controlled by parameters like pH, clay, CEC and organic matter. Another one is a physiological driven uptake process (biological availability) controlled by species-specific parameters like anatomy, feeding strategy, preferences in micro-habitat etc. The last one is an internal allocation process (toxicological availability) controlled by species specific parameters like metabolism, detoxification, storage, excretion, energy resources etc. The complexity of bioavailability means that there seems no straight way forward how to handle bioavailability in the risk assessment procedure. Nevertheless, what almost all people - from scientists to problem holders and responsible authorities - agree upon is that there is a need for alternatives to the common use of the 'total concentration approach'. From an ecological perspective, biological tools would be preferred when assessing risk to ecosystems. However, due to the lower cost and higher reproducibility chemical tools may often be the best suitable solutions. The outcome of mild extraction procedures like CaCl{sub 2} have for example been shown to correlated relatively well to ecotoxicological effects of heavy metals. Bioavailability of organic pollutants has less frequently been correlated to ecological effects of organisms within the soil compartment and adjacent water systems. It has nevertheless been documented that mild extractors like n-butanol, propanol, ethyl acetate and acetonitrile are useful in predicting the uptake of PAHs in earthworms and plants as well as microbial toxicity. (orig.)

  9. Bioavailability assessment of toxic metals using the technique "acid-volatile sulfide (AVS)-simultaneously extracted metals (SEM)" in marine sediments collected in Todos os Santos Bay, Brazil.

    Science.gov (United States)

    Silva, Jucelino B; Nascimento, Rodrigo A; de Oliva, Sergio T; de Oliveira, Olívia M C; Ferreira, Sergio L C

    2015-10-01

    This paper reports the bioavailability of the metals (cadmium, copper, zinc, lead, and nickel) in sediment samples collected in seven stations from the São Paulo Estuary, Todos os Santos Bay, Brazil. The bioavailability was determined by employing the technique "acid-volatile sulfide (AVS) and simultaneously extracted metal (SEM)". The elements cadmium, copper, lead, and zinc were determined using differential pulse anodic stripping voltammetry (DPASV), while nickel was quantified utilizing electrothermal atomic absorption spectrometry (ET AAS). The accuracy of these methods was confirmed using a certified reference material of estuarine sediment (NIST 1646). The sulfide was quantified using potentiometry with selective electrode and the organic matter determination employing an indirect volumetric method using potassium dichromate and iron(II) sulfate solutions. The bioavailability of the metals was estimated by relationship between the concentration of AVS and the sum of the concentrations of the simultaneously extracted metals (ΣSEM), considering a significant toxicity when (ΣSEM)/(AVS) is higher than 1. The bioavailability values in the seven stations studied varied from 0.93 to 1.31 (June, 2014) and from 0.34 to 0.58 (September, 2014). These results demonstrated a critical condition of toxicity (bioavailability >1) in six of the seven sediment samples collected during the rainy season (June, 2014). In the other period (September, 2014), the bioavailability was always lower than 1 for all sediment samples collected in the seven stations. The individual values of the concentrations of the five metals were compared with the parameters PEL (probable effects level) and TEL (threshold effects level), which are commonly employed for characterization of ecological risk in environmental systems. This comparison revealed that all metals have concentrations lower than the PEL and only zinc and lead in some stations have contents higher than the TEL. The

  10. PHYTOAVAILABILITY OF COPPER IN INDUSTRIAL BY-PRODUCTS AND MINERAL FERTILIZERS

    Directory of Open Access Journals (Sweden)

    Camila Prado Cenciani de Souza

    2015-04-01

    Full Text Available Alternative copper (Cu sources could be used in fertilizer production, although the bioavailability of copper in these materials is unknown. The objective of this study was to evaluate the extractants neutral ammonium citrate (NAC, 2 % citric acid, 1 % acetic acid, 10 % HCl, 10 % H2SO4, buffer solution pH 6.0, DTPA, EDTA, water, and hot water in the quantification of available Cu content in several sources, relating them to the relative agronomic efficiency (RAE of wheat grown in a clayey Latossolo Vermelho eutrófico (Oxisol and Neossolo Quartzarênico (Typic Quartzipsamment. Copper was applied at the rate of 1.5 mg kg-1 as scrap slag, brass slag, Cu ore, granulated copper, and copper sulfate. The extractants 10 % HCl, 10 % H2SO4, and NAC extracted higher Cu concentrations. The RAE values of brass slag and Cu ore were similar to or higher than those of Cu sulfate and granulated Cu. Solubility in the 2nd NAC extractant, officially required for mineral fertilizers with Cu, was lower than 60 % for the scrap slag, Cu ore, and granulated copper sources. This fact indicates that adoption of the NAC extractant may be ineffective for industrial by-products, although no extractant was more efficient in predicting Cu availability for wheat fertilized with the Cu sources tested.

  11. The Nutraceutical Bioavailability Classification Scheme: Classifying Nutraceuticals According to Factors Limiting their Oral Bioavailability.

    Science.gov (United States)

    McClements, David Julian; Li, Fang; Xiao, Hang

    2015-01-01

    The oral bioavailability of a health-promoting dietary component (nutraceutical) may be limited by various physicochemical and physiological phenomena: liberation from food matrices, solubility in gastrointestinal fluids, interaction with gastrointestinal components, chemical degradation or metabolism, and epithelium cell permeability. Nutraceutical bioavailability can therefore be improved by designing food matrices that control their bioaccessibility (B*), absorption (A*), and transformation (T*) within the gastrointestinal tract (GIT). This article reviews the major factors influencing the gastrointestinal fate of nutraceuticals, and then uses this information to develop a new scheme to classify the major factors limiting nutraceutical bioavailability: the nutraceutical bioavailability classification scheme (NuBACS). This new scheme is analogous to the biopharmaceutical classification scheme (BCS) used by the pharmaceutical industry to classify drug bioavailability, but it contains additional factors important for understanding nutraceutical bioavailability in foods. The article also highlights potential strategies for increasing the oral bioavailability of nutraceuticals based on their NuBACS designation (B*A*T*).

  12. Enrichment of copper and recycling of cyanide from copper-cyanide waste by solvent extraction

    Science.gov (United States)

    Gao, Teng-yue; Liu, Kui-ren; Han, Qing; Xu, Bin-shi

    2016-11-01

    The enrichment of copper from copper-cyanide wastewater by solvent extraction was investigated using a quaternary ammonium salt as an extractant. The influences of important parameters, e.g., organic-phase components, aqueous pH values, temperature, inorganic anion impurities, CN/Cu molar ratio, and stripping reagents, were examined systematically, and the optimal conditions were determined. The results indicated that copper was effectively concentrated from low-concentration solutions using Aliquat 336 and that the extraction efficiency increased linearly with increasing temperature. The aqueous pH value and concentrations of inorganic anion impurities only weakly affected the extraction process when varied in appropriate ranges. The CN/Cu molar ratio affected the extraction efficiency by changing the distribution of copper-cyanide complexes. The difference in gold leaching efficiency between using raffinate and fresh water was negligible.

  13. Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil

    International Nuclear Information System (INIS)

    Kumpiene, Jurate; Ore, Solvita; Renella, Giancarlo; Mench, Michel; Lagerkvist, Anders; Maurice, Christian

    2006-01-01

    Stabilization of soil contaminated with trace elements is a remediation practice that does not reduce the total content of contaminants, but lowers the amounts of mobile and bioavailable fractions. This study evaluated the efficiency of Fe to reduce the mobility and bioavailability of Cr, Cu, As and Zn in a chromated copper arsenate (CCA)-contaminated soil using chemical, biochemical and biotoxicity tests. Contaminated soil was stabilized with 1% iron grit. This treatment decreased As and Cr concentrations in leachates (by 98% and 45%, respectively), in soil pore water (by 99% and 94%, respectively) and in plant shoots (by 84% and 95%, respectively). The stabilization technique also restored most of analyzed soil enzyme activities and reduced microbial toxicity, as evaluated by the BioTox TM test. After stabilization, exchangeable and bioaccessible fractions of Cu remained high, causing some residual toxicity in the treated soil. - Zerovalent iron effectively reduces mobility and bioavailability of As and Cr, but does not adequately stabilize Cu

  14. Metals other than uranium affected microbial community composition in a historical uranium-mining site.

    Science.gov (United States)

    Sitte, Jana; Löffler, Sylvia; Burkhardt, Eva-Maria; Goldfarb, Katherine C; Büchel, Georg; Hazen, Terry C; Küsel, Kirsten

    2015-12-01

    To understand the links between the long-term impact of uranium and other metals on microbial community composition, ground- and surface water-influenced soils varying greatly in uranium and metal concentrations were investigated at the former uranium-mining district in Ronneburg, Germany. A soil-based 16S PhyloChip approach revealed 2358 bacterial and 35 archaeal operational taxonomic units (OTU) within diverse phylogenetic groups with higher OTU numbers than at other uranium-contaminated sites, e.g., at Oak Ridge. Iron- and sulfate-reducing bacteria (FeRB and SRB), which have the potential to attenuate uranium and other metals by the enzymatic and/or abiotic reduction of metal ions, were found at all sites. Although soil concentrations of solid-phase uranium were high, ranging from 5 to 1569 μg·g (dry weight) soil(-1), redundancy analysis (RDA) and forward selection indicated that neither total nor bio-available uranium concentrations contributed significantly to the observed OTU distribution. Instead, microbial community composition appeared to be influenced more by redox potential. Bacterial communities were also influenced by bio-available manganese and total cobalt and cadmium concentrations. Bio-available cadmium impacted FeRB distribution while bio-available manganese and copper as well as solid-phase zinc concentrations in the soil affected SRB composition. Archaeal communities were influenced by the bio-available lead as well as total zinc and cobalt concentrations. These results suggest that (i) microbial richness was not impacted by heavy metals and radionuclides and that (ii) redox potential and secondary metal contaminants had the strongest effect on microbial community composition, as opposed to uranium, the primary source of contamination.

  15. Bioavailability and variability of biphasic insulin mixtures

    DEFF Research Database (Denmark)

    Søeborg, Tue; Rasmussen, Christian Hove; Mosekilde, Erik

    2012-01-01

    Absorption of subcutaneously administered insulin is associated with considerable variability. Some of this variability was quantitatively explained for both soluble insulin and insulin suspensions in a recent contribution to this journal (Søeborg et al., 2009). In the present article......, the absorption kinetics for mixtures of insulins is described. This requires that the bioavailability of the different insulins is considered. A short review of insulin bioavailability and a description of the subcutaneous depot thus precede the presentation of possible mechanisms associated with subcutaneous...... insulin degradation. Soluble insulins are assumed to be degraded enzymatically in the subcutaneous tissue. Suspended insulin crystals form condensed heaps that are assumed to be degraded from their surface by invading macrophages. It is demonstrated how the shape of the heaps affects the absorption...

  16. Relative contributions of copper oxide nanoparticles and dissolved copper to Cu uptake kinetics of Gulf killifish (Fundulus grandis) embryos

    Science.gov (United States)

    Jiang, Chuanjia; Castellon, Benjamin T.; Matson, Cole W.; Aiken, George R.; Hsu-Kim, Heileen

    2017-01-01

    The toxicity of soluble metal-based nanomaterials may be due to the uptake of metals in both dissolved and nanoparticulate forms, but the relative contributions of these different forms to overall metal uptake rates under environmental conditions are not quantitatively defined. Here, we investigated the linkage between the dissolution rates of copper(II) oxide (CuO) nanoparticles (NPs) and their bioavailability to Gulf killifish (Fundulus grandis) embryos, with the aim of quantitatively delineating the relative contributions of nanoparticulate and dissolved species for Cu uptake. Gulf killifish embryos were exposed to dissolved Cu and CuO NP mixtures comprising a range of pH values (6.3–7.5) and three types of natural organic matter (NOM) isolates at various concentrations (0.1–10 mg-C L–1), resulting in a wide range of CuO NP dissolution rates that subsequently influenced Cu uptake. First-order dissolution rate constants of CuO NPs increased with increasing NOM concentration and for NOM isolates with higher aromaticity, as indicated by specific ultraviolet absorbance (SUVA), while Cu uptake rate constants of both dissolved Cu and CuO NP decreased with NOM concentration and aromaticity. As a result, the relative contribution of dissolved Cu and nanoparticulate CuO species for the overall Cu uptake rate was insensitive to NOM type or concentration but largely determined by the percentage of CuO that dissolved. These findings highlight SUVA and aromaticity as key NOM properties affecting the dissolution kinetics and bioavailability of soluble metal-based nanomaterials in organic-rich waters. These properties could be used in the incorporation of dissolution kinetics into predictive models for environmental risks of nanomaterials.

  17. Niche partitioning within genus Nitrospira is affected by environmental copper concentration

    DEFF Research Database (Denmark)

    Fowler, Jane; Dechesne, Arnaud; Wagner, Florian Benedikt

    and at times limiting nutrient in nitrifying environments. We sought to examine the effects of copper on niche partitioning within the genus Nitrospira in full-scale filters. Sand samples from the top of an after-filter that displayed incomplete ammonium oxidation at Nærum waterworks were taken prior to Cu...... once copper limitation was removed, likely resulting in the out-competition of Clade B Nitrospira ammonium oxidizers. These results suggest that copper availability plays a role in determining the diversity and distribution of Nitrospira spp. in nitrifying environments....

  18. Effect of infant cereals on zinc and copper absorption during weaning

    International Nuclear Information System (INIS)

    Bell, J.G.; Keen, C.L.; Loennerdal, B.

    1987-01-01

    Zinc and copper absorption from five infant cereal products mixed with water, human milk, or cow's milk was measured using an in vivo absorption model (rat pup) involving gastric intubation of extrinsically radiolabeled diets. Whole-body copper 64 uptake, nine hours after intubation, ranged from 14% to 31% of the dose given for the different cereal combinations. The resultant bioavailability of copper from human milk-cereal combinations (23% to 26%) was significantly lower than that from human milk alone (38%). Whole-body zinc 65 uptake, nine hours after intubation, ranged from 13% to 54% of the dose given for the different cereal combinations. These values were significantly lower than the whole-body zinc 65 uptake from milk alone (61%). Zinc availability was lower (13% to 25%) from dry cereal combinations that contained phytic acid (oatmeal and high-protein varieties) compared with the ready-to-serve cereal-fruit combinations (24% to 54%). The highest zinc uptake (37% to 54%) was from rice-fruit combinations that do not contain phytic acid. We estimated the amounts of zinc and copper that would be absorbed from these cereal products and speculated on the potential impact of these foods on the weaning infant's zinc and copper nutriture. Depending on the feeding practices employed during the weaning period, it is apparent that infant cereals may compromise utilization of zinc and copper from milk diets during weaning

  19. Bioavailability of isoflavones from soy products in equol producers and non-producers in Japanese women

    OpenAIRE

    Ayako Miura; Chitose Sugiyama; Hiroyuki Sakakibara; Kayoko Simoi; Toshinao Goda

    2016-01-01

    Background: The estimated intake of soy isoflavones from a meal has been based on the content in a food, but the health effects of soy isoflavones are possibly affected by their bioavailability. In this study we have evaluated the isoflavone bioavailability after the intake of three kinds of soy foods and a commercial soy isoflavone supplement, and examined whether the isoflavone bioavailability is different between equol producers and non-producers. Methods: Healthy female subjects (n = 2...

  20. Influence of contact time and sediment composition on the bioavailability of Cd in sediments

    International Nuclear Information System (INIS)

    Zhong Huan; Kraemer, Lisa; Evans, Douglas

    2013-01-01

    Stable isotope 111 Cd was spiked into sediments of different organic content levels for 3 days to 2 months. Bioavailability of spiked Cd to deposit-feeders, assessed by in vitro Cd solubilization, generally decreased with contact time but became comparable with that of background Cd after 2 months. This could be explained by the gradual transfer of Cd from the more mobile geochemical phase (carbonate associated phase) to more refractory phases (Fe–Mn oxide associated phase, and organic associated phase) within 2 months. The sedimentary organic content had a weak effect on Cd solubilization, while the distribution of Cd in carbonate or Fe–Mn oxide associated phase could have a larger influence on the solubilization of sedimentary Cd and its change with contact time. The observations in this study emphasize the need to consider Cd sequestration over time in sediments of various compositions, which would be useful in risk assessment of contaminated sediments. Highlights: ► Cd may reach equilibrium in sediments after 2 months of aging. ► Sediment composition could affect change of Cd bioavailability with contact time. ► Sedimentary organic content has a weak effect on Cd bioavailability. ► Cd associated with carbonates is more bioavailable than Cd with Fe/Mn oxides. ► Change in Cd solid speciation explains decrease of Cd bioavailability over time. - Transfer of Cd from carbonate phase to Fe–Mn oxide phase in sediments was important in affecting the decrease of Cd bioavailability over time.

  1. Consumption of organic diets does not affect intake and absorption of zinc and copper in men-evidence from two cross-over trials

    DEFF Research Database (Denmark)

    Mark, Alicja Budek; Kápolna, Emese; Laursen, Kristian H.

    2013-01-01

    diets on intake and absorption of zinc and copper in men. Two double-blinded, cross-over, intervention trials (3 dietary periods of 12 days with 2-week-long wash-out) were performed in 2008 (n = 17) and 2009 (n = 16) in young men. The diets were based on 9 crops grown in rigidly controlled organic......Agricultural methods may affect the nutritional composition of plants and cause complex changes in the food matrix. Whether this affects the dietary absorption of minerals that are important for maintaining health thorough life remains unclear. We compared the effects of organic and conventional......; 12.35 ± 0.47 mg per 10 MJ and 44.6% ± 12.1, respectively) and copper (overall mean ± SD; 2.12 ± 0.28 mg per 10 MJ and 41.2% ± 13.2, respectively) were not different between the organic and conventional diets. The growing season had no effect on zinc intake and absorption, but the copper intake...

  2. Bioavailability of organically bound Fe to model phytoplankton of the Southern Ocean

    Directory of Open Access Journals (Sweden)

    C. S. Hassler

    2009-10-01

    Full Text Available Iron (Fe is known to be mostly bound to organic ligands and to limit primary productivity in the Southern Ocean. It is thus important to investigate the bioavailability of organically bound Fe. In this study, we used four phytoplankton species of the Southern Ocean (Phaeocystis sp., Chaetoceros sp., Fragilariopsis kerguelensis and Thalassiosira antarctica Comber to measure the influence of various organic ligands on Fe solubility and bioavailability. Short-term uptake Fe:C ratios were inversely related to the surface area to volume ratios of the phytoplankton. The ratio of extracellular to intracellular Fe is used to discuss the relative importance of diffusive supply and uptake to control Fe bioavailability. The effect of excess organic ligands on Fe bioavailability cannot be solely explained by their effect on Fe solubility. For most strains studied, the bioavailability of Fe can be enhanced relative to inorganic Fe in the presence of porphyrin, catecholate siderophore and saccharides whereas it was decreased in presence of hydroxamate siderophore and organic amine. For Thalassiosira, iron bioavailability was not affected by the presence of porphyrin, catecholate siderophore and saccharides. The enhancement of Fe bioavailability in presence of saccharides is presented as the result from both the formation of bioavailable (or chemically labile organic form of Fe and the stabilisation of Fe within the dissolved phase. Given the ubiquitous presence of saccharides in the ocean, these compounds might represent an important factor to control the basal level of soluble and bioavailable Fe. Results show that the use of model phytoplankton is promising to improve mechanistic understanding of Fe bioavailability and primary productivity in HNLC regions of the ocean.

  3. Copper absorption from human milk, cow's milk, and infant formulas using a suckling rat model

    International Nuclear Information System (INIS)

    Loennerdal, B.B.; Bell, J.G.; Keen, C.L.

    1985-01-01

    Since copper deficiency is known to occur during infancy, it becomes important to assess copper uptake from various infant diets. The authors have investigated the uptake of copper from human milk, cow's milk, cow's milk formulas, cereal/milk formula and soy formula, compensating for the decay of 64 Cu and using the suckling rat as a model. Radiocopper was added to the diet in trace amounts. Ultracentrifugation, ultrafiltration, and gel filtration were used to show that the added 64 Cu bound to milk fractions and individual binding compounds in a manner analogous to the distribution of native copper, thus validating the use of extrinsically labeled diets. Labeled diets were intubated into 14-day-old suckling rats. Animals were killed after 6 h and tissues removed and counted. Liver copper uptake was 25% from human milk, 23% from cow's milk formula, 18% from cow's milk, 17% from premature (cow's milk based) infant formula, 17% from cereal/milk formula and 10% from soy formula. These results show that the rat pup model may provide a rapid, inexpensive, and sensitive method to assay bioavailability of copper from infant foods

  4. Carbohydrate metabolism in erythrocytes of copper deficient rats.

    Science.gov (United States)

    Brooks, S P J; Cockell, K A; Dawson, B A; Ratnayake, W M N; Lampi, B J; Belonje, B; Black, D B; Plouffe, L J

    2003-11-01

    Dietary copper deficiency is known to adversely affect the circulatory system of fructose-fed rats. Part of the problem may lie in the effect of copper deficiency on intermediary metabolism. To test this, weanling male Long-Evans rats were fed for 4 or 8 weeks on sucrose-based diets containing low or adequate copper content. Copper deficient rats had significantly lower plasma and tissue copper as well as lower plasma copper, zinc-superoxide dismutase activity. Copper deficient rats also had a significantly higher heart:body weight ratio when compared to pair-fed controls. Direct measurement of glycolysis and pentose phosphate pathway flux in erythrocytes using (13)C NMR showed no differences in carbon flux from glucose or fructose to pyruvate but a significantly higher flux through the lactate dehydrogenase locus in copper deficient rats (approximately 1.3 times, average of glucose and glucose + fructose measurements). Copper-deficient animals had significantly higher erythrocyte concentrations of glucose, fructose, glyceraldehyde 3-phosphate and NAD(+). Liver metabolite levels were also affected by copper deficiency being elevated in glycogen and fructose 1-phosphate content. The results show small changes in carbohydrate metabolism of copper deficient rats.

  5. A Review of Mercury Bioavailability in Humans and Fish.

    Science.gov (United States)

    Bradley, Mark A; Barst, Benjamin D; Basu, Niladri

    2017-02-10

    To estimate human exposure to methylmercury (MeHg), risk assessors often assume 95%-100% bioavailability in their models. However, recent research suggests that assuming all, or most, of the ingested mercury (Hg) is absorbed into systemic circulation may be erroneous. The objective of this paper is to review and discuss the available state of knowledge concerning the assimilation or bioavailability of Hg in fish and humans. In fish, this meant reviewing studies on assimilation efficiency, that is the difference between ingested and excreted Hg over a given period of time. In humans, this meant reviewing studies that mostly investigated bioaccessibility (digestive processes) rather than bioavailability (cumulative digestive + absorptive processes), although studies incorporating absorption for a fuller picture of bioavailability were also included where possible. The outcome of this review shows that in a variety of organisms and experimental models that Hg bioavailability and assimilation is less than 100%. Specifically, 25 studies on fish were reviewed, and assimilation efficiencies ranged from 10% to 100% for MeHg and from 2% to 51% for Hg(II). For humans, 20 studies were reviewed with bioaccessibility estimates ranging from 2% to 100% for MeHg and 0.2% to 94% for Hg(II). The overall absorption estimates ranged from 12% to 79% for MeHg and 49% to 69% for Hg(II), and were consistently less than 100%. For both fish and humans, a number of cases are discussed in which factors (e.g., Hg source, cooking methods, nutrients) are shown to affect Hg bioavailability. The summaries presented here challenge a widely-held assumption in the Hg risk assessment field, and the paper discusses possible ways forward for the field.

  6. In vivo and in vitro testing for selenium and selenium compounds bioavailability assessment in foodstuff.

    Science.gov (United States)

    Moreda-Piñeiro, Jorge; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Pilar

    2017-03-04

    The assessment of selenium and selenium species bioavailability in foodstuff is of special concern on the context of human nutrition. In vivo (human and animal), and in vitro tests are important approaches for estimating the bioavailability of toxic and essential compounds to humans. An overview on in vivo and in vitro bioavailability assays for releasing selenium and selenium species in foodstuffs is summarized. Se and Se species content in a foodstuff critically influence Se bioavailability and bioactivity to humans and animals. Se bioavailability is affected by foodstuff-matrix major composition and minor components. Foodstuffs processing and/or treatments could enhancement or decrease Se bioavailability. Experimental conditions such as the selection of healthy status of examined people (in in vivo humans approaches), the selection of animal model (in vivo animals approaches), or the selection of GI conditions (in in vitro tests) could determines the results. Thus, international standardized protocol for in vivo and in vitro approaches assessment is mandatory.

  7. Accumulation and hyperaccumulation of copper in plants

    Science.gov (United States)

    Adam, V.; Trnkova, L.; Huska, D.; Babula, P.; Kizek, R.

    2009-04-01

    Copper is natural component of our environment. Flow of copper(II) ions in the environment depends on solubility of compounds containing this metal. Mobile ion coming from soil and rocks due to volcanic activity, rains and others are then distributed to water. Bio-availability of copper is substantially lower than its concentration in the aquatic environment. Copper present in the water reacts with other compounds and creates a complex, not available for organisms. The availability of copper varies depending on the environment, but moving around within the range from 5 to 25 % of total copper. Thus copper is stored in the sediments and the rest is transported to the seas and oceans. It is common knowledge that copper is essential element for most living organisms. For this reason this element is actively accumulated in the tissues. The total quantity of copper in soil ranges from 2 to 250 mg / kg, the average concentration is 30 mg / kg. Certain activities related to agriculture (the use of fungicides), possibly with the metallurgical industry and mining, tend to increase the total quantity of copper in the soil. This amount of copper in the soil is a problem particularly for agricultural production of food. The lack of copper causes a decrease in revenue and reduction in quality of production. In Europe, shows the low level of copper in total 18 million hectares of farmland. To remedy this adverse situation is the increasing use of copper fertilizers in agricultural soils. It is known that copper compounds are used in plant protection against various illnesses and pests. Mining of minerals is for the development of human society a key economic activity. An important site where the copper is mined in the Slovakia is nearby Smolníka. Due to long time mining in his area (more than 700 years) there are places with extremely high concentrations of various metals including copper. Besides copper, there are also detected iron, zinc and arsenic. Various plant species

  8. Response of copepods to elevated pCO2 and environmental copper as co-stressors--a multigenerational study.

    Directory of Open Access Journals (Sweden)

    Susan C Fitzer

    Full Text Available We examined the impacts of ocean acidification and copper as co-stressors on the reproduction and population level responses of the benthic copepod Tisbe battagliai across two generations. Naupliar production, growth, and cuticle elemental composition were determined for four pH values: 8.06 (control; 7.95; 7.82; 7.67, with copper addition to concentrations equivalent to those in benthic pore waters. An additive synergistic effect was observed; the decline in naupliar production was greater with added copper at decreasing pH than for decreasing pH alone. Naupliar production modelled for the two generations revealed a negative synergistic impact between ocean acidification and environmentally relevant copper concentrations. Conversely, copper addition enhanced copepod growth, with larger copepods produced at each pH compared to the impact of pH alone. Copepod digests revealed significantly reduced cuticle concentrations of sulphur, phosphorus and calcium under decreasing pH; further, copper uptake increased to toxic levels that lead to reduced naupliar production. These data suggest that ocean acidification will enhance copper bioavailability, resulting in larger, but less fecund individuals that may have an overall detrimental outcome for copepod populations.

  9. Assessment of intake of iron and nutrients that affect bioavailability of daily food rations of girls

    Directory of Open Access Journals (Sweden)

    Anna Broniecka

    2014-06-01

    Full Text Available INTRODUCTION AND AIM In a human body iron occurs at a level of 3 to 5 g, 60-70 % of which are in hemoglobin, ca. 10% in myoglobin, and ca. 3% are accumulated in enzymes of cellular respiration or enzymes degrading toxic hydrogen peroxide. The other part of iron is accumulated in liver, spleen, kidneys and bone marrow. The dietary deficiency of iron appears at its insufficient level in a diet and at impaired absorption of iron ions present in food products by a body. Groups at an especially high risk of iron deficiencies include, among others, menstruating girls in the pubescence period and women with heavy and irregular menstruations, as well as vegetarians and patients with chronic enteritis. The aim of this study was to evaluate the intake of iron and nutrients that affect its bioavailability from daily food rations of girls. MATERIAL AND METHODS The study included 159 girls aged 17-18, students of high schools in the city of Wroclaw. The study was conducted between November 2010 and ay 2011. Girls were divided into 3 subgroups according to the BMI score. Girls’ diets were analyzed with the method of a direct interview of the last 24 hours before the test and the interview was repeated seven times. RESULTS The present study demonstrated that the intake of iron from food rations of almost all the girls surveyed was below the requirements defined for this age group. Statistically significant differences were noted in the intake of energy and nutrients among the three distinguished subgroups of girls. CONCLUSIONS Food rations of the surveyed girls were characterized by a low, compared to dietary allowances, calorific value, which resulted in deficiencies of nutrients increasing iron bioavailability.

  10. Evolution of Bioavailable Copper and Major Soil Cations in Contaminated Soils Treated with Ethylenediaminedisuccinate: A Two-Year Experiment

    Czech Academy of Sciences Publication Activity Database

    Komárek, M.; Michálková, Z.; Száková, J.; Vaněk, A.; Grygar, Tomáš

    2011-01-01

    Roč. 86, č. 5 (2011), s. 525-530 ISSN 0007-4861 Institutional research plan: CEZ:AV0Z40320502 Keywords : soil remediation * chelating agent * metal * bioavailability Subject RIV: DD - Geochemistry Impact factor: 1.018, year: 2011

  11. Food Stabilizing Antioxidants Increase Nutrient Bioavailability in the in Vitro Model.

    Science.gov (United States)

    Mika, Magdalena; Wikiera, Agnieszka; Antończyk, Anna; Grabacka, Maja

    2017-01-01

    We investigated whether antioxidants may enhance bioavailability of lipids and carbohydrates and therefore increase the risk of obesity development. We tested how supplementation with antioxidants (0.01% butylated hydroxytoluene [BHT], α-tocopherol, and green tea catechins) of a diet containing butter and wheat bread affects bioavailability of fats and carbohydrates. The absorption of the in vitro digested diet was estimated in the intestinal epithelia model of the Caco-2 cells cultured in Transwell chambers. In the case of the antioxidant-supplemented diets, we observed increased bioavailability of glucose, cholesterol, and lipids, as well as elevated secretion of the main chylomicron protein apoB-48 to the basal compartment. Importantly, we did not detect any rise in the concentrations of lipid peroxidation products (malondialdehyde, MDA) in the control samples prepared without antioxidants. Addition of antioxidants (in particular BHT) to the diet increases bioavailability of lipids and carbohydrates, which consequently may increase the risk of obesity development. The dose of antioxidants is a factor of fundamental importance, particularly for catechins: low doses increase absorption of lipids, whereas high doses exert the opposite effect.

  12. A Review of Mercury Bioavailability in Humans and Fish

    Directory of Open Access Journals (Sweden)

    Mark A. Bradley

    2017-02-01

    Full Text Available To estimate human exposure to methylmercury (MeHg, risk assessors often assume 95%–100% bioavailability in their models. However, recent research suggests that assuming all, or most, of the ingested mercury (Hg is absorbed into systemic circulation may be erroneous. The objective of this paper is to review and discuss the available state of knowledge concerning the assimilation or bioavailability of Hg in fish and humans. In fish, this meant reviewing studies on assimilation efficiency, that is the difference between ingested and excreted Hg over a given period of time. In humans, this meant reviewing studies that mostly investigated bioaccessibility (digestive processes rather than bioavailability (cumulative digestive + absorptive processes, although studies incorporating absorption for a fuller picture of bioavailability were also included where possible. The outcome of this review shows that in a variety of organisms and experimental models that Hg bioavailability and assimilation is less than 100%. Specifically, 25 studies on fish were reviewed, and assimilation efficiencies ranged from 10% to 100% for MeHg and from 2% to 51% for Hg(II. For humans, 20 studies were reviewed with bioaccessibility estimates ranging from 2% to 100% for MeHg and 0.2% to 94% for Hg(II. The overall absorption estimates ranged from 12% to 79% for MeHg and 49% to 69% for Hg(II, and were consistently less than 100%. For both fish and humans, a number of cases are discussed in which factors (e.g., Hg source, cooking methods, nutrients are shown to affect Hg bioavailability. The summaries presented here challenge a widely-held assumption in the Hg risk assessment field, and the paper discusses possible ways forward for the field.

  13. Bioavailability: implications for science/cleanup policy

    Energy Technology Data Exchange (ETDEWEB)

    Denit, Jeffery; Planicka, J. Gregory

    1998-12-01

    This paper examines the role of bioavailability in risk assessment and cleanup decisions. Bioavailability refers to how chemicals ''behave'' and their ''availability'' to interact with living organisms. Bioavailability has significant implications for exposure risks, cleanup goals, and site costs. Risk to human health and the environment is directly tied to the bioavailability of the chemicals of concern.

  14. Responses of Lyngbya wollei to exposures of copper-based algaecides: the critical burden concept.

    Science.gov (United States)

    Bishop, W M; Rodgers, J H

    2012-04-01

    The formulation of a specific algaecide can greatly influence the bioavailability, uptake, and consequent control of the targeted alga. In this research, three copper-based algaecide formulations were evaluated in terms of copper sorption to a specific problematic alga and amount of copper required to achieve control. The objectives of this study were (1) to compare the masses of copper required to achieve control of Lyngbya wollei using the algaecide formulations Algimycin-PWF, Clearigate, and copper sulfate pentahydrate in laboratory toxicity experiments; (2) to relate the responses of L. wollei to the masses of copper adsorbed and absorbed (i.e., dose) as well as the concentrations of copper in the exposure water; and (3) to discern the relation between the mass of copper required to achieve control of a certain mass of L. wollei among different algaecide formulations. The critical burden of copper (i.e., threshold algaecide concentration that must be absorbed or adsorbed to achieve control) for L. wollei averaged 3.3 and 1.9 mg Cu/g algae for Algimycin-PWF and Clearigate, respectively, in experiments with a series of aqueous copper concentrations, water volumes, and masses of algae. With reasonable exposures in these experiments, control was not achieved with single applications of copper sulfate despite copper sorption >13 mg Cu/g algae in one experiment. Factors governing the critical burden of copper required for control of problematic cyanobacteria include algaecide formulation and concentration, volume of water, and mass of algae. By measuring the critical burden of copper from an algaecide formulation necessary to achieve control of the targeted algae, selection of an effective product and treatment rate can be calculated at a given field site.

  15. Bioavailability of particulate metal to zebra mussels: Biodynamic modelling shows that assimilation efficiencies are site-specific

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeault, Adeline, E-mail: bourgeault@ensil.unilim.fr [Cemagref, Unite de Recherche Hydrosystemes et Bioprocedes, 1 rue Pierre-Gilles de Gennes, 92761 Antony (France); FIRE, FR-3020, 4 place Jussieu, 75005 Paris (France); Gourlay-France, Catherine, E-mail: catherine.gourlay@cemagref.fr [Cemagref, Unite de Recherche Hydrosystemes et Bioprocedes, 1 rue Pierre-Gilles de Gennes, 92761 Antony (France); FIRE, FR-3020, 4 place Jussieu, 75005 Paris (France); Priadi, Cindy, E-mail: cindy.priadi@eng.ui.ac.id [LSCE/IPSL CEA-CNRS-UVSQ, Avenue de la Terrasse, 91198 Gif-sur-Yvette (France); Ayrault, Sophie, E-mail: Sophie.Ayrault@lsce.ipsl.fr [LSCE/IPSL CEA-CNRS-UVSQ, Avenue de la Terrasse, 91198 Gif-sur-Yvette (France); Tusseau-Vuillemin, Marie-Helene, E-mail: Marie-helene.tusseau@ifremer.fr [IFREMER Technopolis 40, 155 rue Jean-Jacques Rousseau, 92138 Issy-Les-Moulineaux (France)

    2011-12-15

    This study investigates the ability of the biodynamic model to predict the trophic bioaccumulation of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni) and zinc (Zn) in a freshwater bivalve. Zebra mussels were transplanted to three sites along the Seine River (France) and collected monthly for 11 months. Measurements of the metal body burdens in mussels were compared with the predictions from the biodynamic model. The exchangeable fraction of metal particles did not account for the bioavailability of particulate metals, since it did not capture the differences between sites. The assimilation efficiency (AE) parameter is necessary to take into account biotic factors influencing particulate metal bioavailability. The biodynamic model, applied with AEs from the literature, overestimated the measured concentrations in zebra mussels, the extent of overestimation being site-specific. Therefore, an original methodology was proposed for in situ AE measurements for each site and metal. - Highlights: > Exchangeable fraction of metal particles did not account for the bioavailability of particulate metals. > Need for site-specific biodynamic parameters. > Field-determined AE provide a good fit between the biodynamic model predictions and bioaccumulation measurements. - The interpretation of metal bioaccumulation in transplanted zebra mussels with biodynamic modelling highlights the need for site-specific assimilation efficiencies of particulate metals.

  16. Bioavailability of particulate metal to zebra mussels: biodynamic modelling shows that assimilation efficiencies are site-specific.

    Science.gov (United States)

    Bourgeault, Adeline; Gourlay-Francé, Catherine; Priadi, Cindy; Ayrault, Sophie; Tusseau-Vuillemin, Marie-Hélène

    2011-12-01

    This study investigates the ability of the biodynamic model to predict the trophic bioaccumulation of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni) and zinc (Zn) in a freshwater bivalve. Zebra mussels were transplanted to three sites along the Seine River (France) and collected monthly for 11 months. Measurements of the metal body burdens in mussels were compared with the predictions from the biodynamic model. The exchangeable fraction of metal particles did not account for the bioavailability of particulate metals, since it did not capture the differences between sites. The assimilation efficiency (AE) parameter is necessary to take into account biotic factors influencing particulate metal bioavailability. The biodynamic model, applied with AEs from the literature, overestimated the measured concentrations in zebra mussels, the extent of overestimation being site-specific. Therefore, an original methodology was proposed for in situ AE measurements for each site and metal. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Roadside soils show low plant available zinc and copper concentrations

    International Nuclear Information System (INIS)

    Morse, Natalie; Walter, M. Todd; Osmond, Deanna; Hunt, William

    2016-01-01

    Vehicle combustion and component wear are a major source of metal contamination in the environment, which could be especially concerning where road ditches are actively farmed. The objective of this study was to assess how site variables, namely age, traffic (vehicles day"−"1), and percent carbon (%C) affect metal accumulation in roadside soils. A soil chronosequence was established with sites ranging from 3 to 37 years old and bioavailable, or mobile, concentrations of Zinc (Zn) and Copper (Cu) were measured along major highways in North Carolina using a Mehlich III extraction. Mobile Zn and Cu concentrations were low overall, and when results were scaled via literature values to “total metal”, the results were still generally lower than previous roadside studies. This could indicate farming on lands near roads would pose a low plant toxicity risk. Zinc and Cu were not correlated with annual average traffic count, but were positively correlated with lifetime traffic load (the product of site age and traffic count). This study shows an often overlooked variable, site age, should be included when considering roadside pollution accumulation. Zinc and Cu were more strongly associated with %C, than traffic load. Because vehicle combustion is also a carbon source, it is not obvious whether the metals and carbon are simply co-accumulating or whether the soil carbon in roadside soils may facilitate previously overlooked roles in sequestering metals on-site. - Highlights: • Low plant available zinc and copper concentrations in roadside soils of the southeast U.S. • Metals from vehicular traffic may not be adversely affecting plants in roadside environment. • Traffic volume and site age better predictor of metal pollution than traffic volume alone. - Mobile concentrations of Zn and Cu in roadside soils were below toxic levels. Zn and Cu concentrations were better correlated with lifetime vehicle load, as opposed to traffic volume.

  18. Copper intoxication in sheep

    Energy Technology Data Exchange (ETDEWEB)

    Gazaryan, V.S.; Sogoyan, I.S.; Agabalov, G.A.; Mesropyan, V.V.

    1966-01-01

    Of 950 sheep fed hay from a vineyard sprayed regularly with copper sulfate, 143 developed clinical copper poisoning and 103 died. The Cu content of the hay was 10.23 mg%, of the liver of dead sheep 17-52 mg%, and of the blood serum of affected sheep 0.86 mg%. The symptoms and the histological findings in kidneys and liver are described.

  19. Transportation and Bioavailability of Copper and Zinc in a Storm Water Retention Pond

    Science.gov (United States)

    Camponelli, K.; Casey, R. E.; Wright, M. E.; Lev, S. M.; Landa, E. R.

    2006-05-01

    Highway runoff has been identified as a non-point source of metals to storm water retention ponds. Zinc and copper are major components of tires and brake pads, respectively. As these automobile parts degrade, they deposit particulates onto the roadway surface. During a storm event, these metal containing particulates are washed into a storm water retention pond where they can then accumulate over time. These metals may be available to organisms inhabiting the pond and surrounding areas. This study focuses on tracking the metals from their deposition on the roadway to their transport and accumulation into a retention pond. The retention pond is located in Owings Mills, MD and collects runoff from an adjacent four lane highway. Pond sediments, background soils, road dust samples, and storm events were collected and analyzed. Copper and zinc concentrations in the pond sediments are higher than local background soils indicating that the pond is storing anthropogenically derived metals. Storm event samples also reveal elevated levels of copper and zinc transported through runoff, along with a large concentration of total suspended solids. After looking at the particulate and dissolved fractions of both metals in the runoff, the majority of the Zn and Cu are in the particulate fraction. Changes in TSS are proportional with changes in particulate bound Zn, indicating that the solid particulates that are entering into the pond are a major contributor of the total metal loading. Sequential extractions carried out on the road dust show that the majority of zinc is extracted in the second and third fractions and could become available to organisms in the pond. There is a small amount of Cu that is being released in the more available stages of the procedure; however the bulk of the Cu is seen in the more recalcitrant steps. In the pond sediments however, both Cu and Zn are only being released from the sediments in the later steps and are most likely not highly available.

  20. Origins and bioavailability of dissolved organic matter in groundwater

    Science.gov (United States)

    Shen, Yuan; Chapelle, Francis H.; Strom, Eric W.; Benner, Ronald

    2015-01-01

    Dissolved organic matter (DOM) in groundwater influences water quality and fuels microbial metabolism, but its origins, bioavailability and chemical composition are poorly understood. The origins and concentrations of dissolved organic carbon (DOC) and bioavailable DOM were monitored during a long-term (2-year) study of groundwater in a fractured-rock aquifer in the Carolina slate belt. Surface precipitation was significantly correlated with groundwater concentrations of DOC, bioavailable DOM and chromophoric DOM, indicating strong hydrological connections between surface and ground waters. The physicochemical and biological processes shaping the concentrations and compositions of DOM during its passage through the soil column to the saturated zone are conceptualized in the regional chromatography model. The model provides a framework for linking hydrology with the processes affecting the transformation, remineralization and microbial production of DOM during passage through the soil column. Lignin-derived phenols were relatively depleted in groundwater DOM indicating substantial removal in the unsaturated zone, and optical properties of chromophoric DOM indicated lower molecular weight DOM in groundwater relative to surface water. The prevalence of glycine, γ-aminobutyric acid, and d-enantiomers of amino acids indicated the DOM was highly diagenetically altered. Bioassay experiments were used to establish DOC-normalized yields of amino acids as molecular indicators of DOM bioavailability in groundwater. A relatively small fraction (8 ± 4 %) of DOC in groundwater was bioavailable. The relatively high yields of specific d-enantiomers of amino acids indicated a substantial fraction (15–34 %) of groundwater DOC was of bacterial origin.

  1. The cardiac copper chaperone proteins Sco1 and CCS are up-regulated, but Cox 1 and Cox4 are down-regulated, by copper deficiency.

    Science.gov (United States)

    Getz, Jean; Lin, Dingbo; Medeiros, Denis M

    2011-10-01

    Copper is ferried in a cell complexed to chaperone proteins, and in the heart much copper is required for cytochrome c oxidase (Cox). It is not completely understood how copper status affects the levels of these proteins. Here we determined if dietary copper deficiency could up- or down-regulate select copper chaperone proteins and Cox subunits 1 and 4 in cardiac tissue of rats. Sixteen weanling male Long-Evans rats were randomized into treatment groups, one group receiving a copper-deficient diet (CCS, Sco1, Ctr1, Cox17, Cox1, and Cox4 by SDS-PAGE and Western blotting. No changes were observed in the concentrations of CTR1 and Cox17 between copper-adequate and copper-deficient rats. CCS and Sco1 were up-regulated and Cox1 and Cox4 were both down-regulated as a result of copper deficiency. These data suggest that select chaperone proteins and may be up-regulated, and Cox1 and 4 down-regulated, by a dietary copper deficiency, whereas others appear not to be affected by copper status.

  2. Sorption–bioavailability nexus of arsenic and cadmium in variable-charge soils

    International Nuclear Information System (INIS)

    Bolan, Nanthi; Mahimairaja, Santiago; Kunhikrishnan, Anitha; Naidu, Ravi

    2013-01-01

    Highlights: ► Demonstrates the nexus between sorption and bioavailability of As and Cd in variable-charge soils. ► Liming variable-charge soils increase negative charge, thereby decreasing Cd bioavailability. ► Ageing of As and Cd increases their immobilization, thereby decreasing bioavailability. ► Phosphate enhances desorption and phytoavailability of As from sheep dip soil. ► Metal(loid)s transfer to food chain can be managed by controlling sorption reactions. -- Abstract: In this work, the nexus between sorption and bioavailability of arsenic (As) and cadmium (Cd) as affected by soil type, soil pH, ageing, and mobilizing agents were examined. The adsorption of As and Cd was examined using a number of allophanic and non-allophanic soils which vary in their charge components. The effect of pH and ageing on the bioavailability of As and Cd was examined using spiked soils in a plant growth experiment. The effect of phosphate (P)-induced mobility of As on its bioavailability was examined using a naturally contaminated sheep dip soil. The results indicated that the adsorption of both As and Cd varied amongst the soils, and the difference in Cd adsorption is attributed to the difference in surface charge. An increase in soil pH increased net negative charge by an average of 45.7 mmol/kg/pH thereby increasing cation (Cd) adsorption; whereas, the effect of pH on anion (As) adsorption was inconsistent. The bioavailability of As and Cd decreased by 3.31- and 2.30-fold, respectively, with ageing which may be attributed to increased immobilization. Phosphate addition increased the mobility and bioavailability of As by 4.34- and 3.35-fold, respectively, in the sheep dip soil. However, the net effect of P on As phytoavailability depends on the extent of P-induced As mobilization in soils and P-induced competition for As uptake by roots. The results demonstrate the nexus between sorption and bioavailability of As and Cd in soils, indicating that the effects of

  3. Sorption–bioavailability nexus of arsenic and cadmium in variable-charge soils

    Energy Technology Data Exchange (ETDEWEB)

    Bolan, Nanthi, E-mail: Nanthi.Bolan@unisa.edu.au [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA (Australia); CRC for Contamination Assessment and Remediation in the Environment, University of South Australia, Mawson Lakes, SA (Australia); Mahimairaja, Santiago [Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu (India); Kunhikrishnan, Anitha [Chemical Safety Division, Department of Agro-Food Safety, National Academy of Agricultural Science, Suwon-si, Gyeonggi-do 441-707 (Korea, Republic of); Naidu, Ravi [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA (Australia); CRC for Contamination Assessment and Remediation in the Environment, University of South Australia, Mawson Lakes, SA (Australia)

    2013-10-15

    Highlights: ► Demonstrates the nexus between sorption and bioavailability of As and Cd in variable-charge soils. ► Liming variable-charge soils increase negative charge, thereby decreasing Cd bioavailability. ► Ageing of As and Cd increases their immobilization, thereby decreasing bioavailability. ► Phosphate enhances desorption and phytoavailability of As from sheep dip soil. ► Metal(loid)s transfer to food chain can be managed by controlling sorption reactions. -- Abstract: In this work, the nexus between sorption and bioavailability of arsenic (As) and cadmium (Cd) as affected by soil type, soil pH, ageing, and mobilizing agents were examined. The adsorption of As and Cd was examined using a number of allophanic and non-allophanic soils which vary in their charge components. The effect of pH and ageing on the bioavailability of As and Cd was examined using spiked soils in a plant growth experiment. The effect of phosphate (P)-induced mobility of As on its bioavailability was examined using a naturally contaminated sheep dip soil. The results indicated that the adsorption of both As and Cd varied amongst the soils, and the difference in Cd adsorption is attributed to the difference in surface charge. An increase in soil pH increased net negative charge by an average of 45.7 mmol/kg/pH thereby increasing cation (Cd) adsorption; whereas, the effect of pH on anion (As) adsorption was inconsistent. The bioavailability of As and Cd decreased by 3.31- and 2.30-fold, respectively, with ageing which may be attributed to increased immobilization. Phosphate addition increased the mobility and bioavailability of As by 4.34- and 3.35-fold, respectively, in the sheep dip soil. However, the net effect of P on As phytoavailability depends on the extent of P-induced As mobilization in soils and P-induced competition for As uptake by roots. The results demonstrate the nexus between sorption and bioavailability of As and Cd in soils, indicating that the effects of

  4. Effects of mine drainage on the River Hayle, Cornwall. Factors affecting concentrations of copper, zinc, and iron in water, sediments and dominant invertebrate fauna

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B.E.

    1977-02-15

    Concentrations of copper, zinc and iron were measured in waters, sediments and invertebrates collected from the River Hayle. In river water at least 70% of copper and iron was associated with the ''particulate'' fraction whereas 80% of zinc was in the ''soluble'' form. Although total concentrations of zinc in water exceeded those of copper approximately ten fold, copper predominated over zinc in the sediments by a factor of approximately three. Iron was the most abundant metal recorded in both water and sediments. Seasonal differences in ''total'' metal content of waters suggested that concentrations of copper, zinc and iron increased during periods of high flow and decreased during lower flows. Copper concentrations in the sediment, unlike zinc and iron, showed markedly higher values during the summer sampling period when flows were minimal. In the ''free-living'' Trichoptera larvae, concentrations of copper and zinc in the tissue appeared to follow copper and zinc levels in the water. Similar relationships in Odonata and Plecoptera larvae were not obtained. Factors affecting animal/metal relationships are discussed with particular reference to adaptation shown by organisms exposed to high concentrations of heavy metals in their environment.

  5. Influence of ageing on zinc bioavailability in soils

    Energy Technology Data Exchange (ETDEWEB)

    Lock, K.; Janssen, C.R

    2003-12-01

    Currently, soil quality criteria or soil risk assessments of metals are based on laboratory toxicity tests which are carried out in soils freshly spiked with metal salts. With these data, species sensitivity distributions are fitted, from which hazardous concentrations and predicted no effect concentrations are derived. However, due to long-term processes, called ageing, soil metal availability decreases with time. Here we show that pH is the most important parameter determining the effect of ageing on zinc partitioning in soils, with the effect of ageing becoming more important with increasing pH. Furthermore, zinc bioavailability, expressed as the internal zinc concentrations in red clover (Trifolium pratense) is closely related to pore water zinc concentration. In addition, there is a clear dose-response relationship between the survival of the earthworm Eisenia fetida and the calcium chloride-extracted zinc fraction. These results indicate that zinc partitioning can be used to predict zinc bioavailability to terrestrial organisms. However, the use of spiked soils in toxicity assays can result in an over-estimation of the effects of zinc, especially at a high pH. - Zn ageing is affected by pH, while Zn partitioning can be used to predict its bioavailability.

  6. Copper anode corrosion affects power generation in microbial fuel cells

    KAUST Repository

    Zhu, Xiuping

    2013-07-16

    Non-corrosive, carbon-based materials are usually used as anodes in microbial fuel cells (MFCs). In some cases, however, metals have been used that can corrode (e.g. copper) or that are corrosion resistant (e.g. stainless steel, SS). Corrosion could increase current through galvanic (abiotic) current production or by increasing exposed surface area, or decrease current due to generation of toxic products from corrosion. In order to directly examine the effects of using corrodible metal anodes, MFCs with Cu were compared with reactors using SS and carbon cloth anodes. MFCs with Cu anodes initially showed high current generation similar to abiotic controls, but subsequently they produced little power (2 mW m-2). Higher power was produced with microbes using SS (12 mW m-2) or carbon cloth (880 mW m-2) anodes, with no power generated by abiotic controls. These results demonstrate that copper is an unsuitable anode material, due to corrosion and likely copper toxicity to microorganisms. © 2013 Society of Chemical Industry.

  7. Copper anode corrosion affects power generation in microbial fuel cells

    KAUST Repository

    Zhu, Xiuping; Logan, Bruce E.

    2013-01-01

    Non-corrosive, carbon-based materials are usually used as anodes in microbial fuel cells (MFCs). In some cases, however, metals have been used that can corrode (e.g. copper) or that are corrosion resistant (e.g. stainless steel, SS). Corrosion could increase current through galvanic (abiotic) current production or by increasing exposed surface area, or decrease current due to generation of toxic products from corrosion. In order to directly examine the effects of using corrodible metal anodes, MFCs with Cu were compared with reactors using SS and carbon cloth anodes. MFCs with Cu anodes initially showed high current generation similar to abiotic controls, but subsequently they produced little power (2 mW m-2). Higher power was produced with microbes using SS (12 mW m-2) or carbon cloth (880 mW m-2) anodes, with no power generated by abiotic controls. These results demonstrate that copper is an unsuitable anode material, due to corrosion and likely copper toxicity to microorganisms. © 2013 Society of Chemical Industry.

  8. Bioavailability and Toxicity of Copper, Manganese, and Nickel in Paronychiurus kimi (Collembola), and Biomarker Discovery for Their Exposure.

    Science.gov (United States)

    Son, Jino; Lee, Yun-Sik; Lee, Sung-Eun; Shin, Key-Il; Cho, Kijong

    2017-01-01

    Bioavailability and toxicity of Cu, Mn, and Ni in Paronychiurus kimi were investigated after 28 days of exposure to OECD artificial soil spiked with these metals. Uptake and effect of Cu, Mn, and Ni on the reproduction of P. kimi were related to different metal fractions (water-soluble, 0.01 M CaCl 2 -extractable or porewater metal concentrations). Cu and Mn concentrations in P. kimi increased with increasing Cu and Mn concentrations in the soil, while Ni contents in P. kimi reached a plateau at a concentration higher than 200 mg/kg in soil. Both uptake and juvenile production related well to different metal fractions, suggesting that these metal fractions are suitable for assessing bioavailability and toxicity of metals in P. kimi. When toxicity for reproduction was compared, as reflected by EC 50 values, the order of metal toxicity varied depending upon how exposure concentration was expressed. Moreover, the results of proteomic analysis showed that several proteins involved in the immune system, neuronal outgrowth, and metal ion binding were up-regulated in P. kimi following short-term (7 days) exposure to sublethal level (corresponding to 50% of the EC 50 ) of Cu, Mn, or Ni, respectively. This suggests that the ecotoxicoproteomic approach seems to be a promising tool for early exposure warnings below which significant adverse effects are unlikely to occur. This study demonstrated that a combination of chemical and biological measures can provide information about metal bioavailability and toxicity to which P. kimi has been exposed.

  9. Statistical Evaluation and Optimization of Factors Affecting the Leaching Performance of Copper Flotation Waste

    OpenAIRE

    Çoruh, Semra; Elevli, Sermin; Geyikçi, Feza

    2012-01-01

    Copper flotation waste is an industrial by-product material produced from the process of manufacturing copper. The main concern with respect to landfilling of copper flotation waste is the release of elements (e.g., salts and heavy metals) when in contact with water, that is, leaching. Copper flotation waste generally contains a significant amount of Cu together with trace elements of other toxic metals, such as Zn, Co, and Pb. The release of heavy metals into the environment has resulted in ...

  10. Unexpected role of the copper transporter ATP7A in PDGF-induced vascular smooth

    Energy Technology Data Exchange (ETDEWEB)

    Ashino, T.; Varadarajan, S.; Urao, N.; Oshikawa, J.; Chen, G. -F.; Wang, H.; Huo, Y.; Finney, L.; Vogt, S.; McKinney, R. D.; Maryon, E. B.; Kaplan, J. H.; Ushio-Fukai, M.; Fukai, T. (Biosciences Division); ( XSD); ( PSC-USR); (Univ. of Illinois at Chicago); (Univ. of Minnesota)

    2010-09-09

    Copper, an essential nutrient, has been implicated in vascular remodeling and atherosclerosis with unknown mechanism. Bioavailability of intracellular copper is regulated not only by the copper importer CTR1 (copper transporter 1) but also by the copper exporter ATP7A (Menkes ATPase), whose function is achieved through copper-dependent translocation from trans-Golgi network (TGN). Platelet-derived growth factor (PDGF) promotes vascular smooth muscle cell (VSMC) migration, a key component of neointimal formation. To determine the role of copper transporter ATP7A in PDGF-induced VSMC migration. Depletion of ATP7A inhibited VSMC migration in response to PDGF or wound scratch in a CTR1/copper-dependent manner. PDGF stimulation promoted ATP7A translocation from the TGN to lipid rafts, which localized at the leading edge, where it colocalized with PDGF receptor and Rac1, in migrating VSMCs. Mechanistically, ATP7A small interfering RNA or CTR small interfering RNA prevented PDGF-induced Rac1 translocation to the leading edge, thereby inhibiting lamellipodia formation. In addition, ATP7A depletion prevented a PDGF-induced decrease in copper level and secretory copper enzyme precursor prolysyl oxidase (Pro-LOX) in lipid raft fraction, as well as PDGF-induced increase in LOX activity. In vivo, ATP7A expression was markedly increased and copper accumulation was observed by synchrotron-based x-ray fluorescence microscopy at neointimal VSMCs in wire injury model. These findings suggest that ATP7A plays an important role in copper-dependent PDGF-stimulated VSMC migration via recruiting Rac1 to lipid rafts at the leading edge, as well as regulating LOX activity. This may contribute to neointimal formation after vascular injury. Our findings provide insight into ATP7A as a novel therapeutic target for vascular remodeling and atherosclerosis.

  11. Potential phytoextraction and phytostabilization of perennial peanut on copper-contaminated vineyard soils and copper mining waste.

    Science.gov (United States)

    Andreazza, Robson; Bortolon, Leandro; Pieniz, Simone; Giacometti, Marcelo; Roehrs, Dione D; Lambais, Mácio R; Camargo, Flávio A O

    2011-12-01

    This study sought to evaluate the potential of perennial peanut (Arachis pintoi) for copper phytoremediation in vineyard soils (Inceptisol and Mollisol) contaminated with copper and copper mining waste. Our results showed high phytomass production of perennial peanut in both vineyard soils. Macronutrient uptakes were not negatively affected by perennial peanut cultivated in all contaminated soils. Plants cultivated in Mollisol showed high copper concentrations in the roots and shoots of 475 and 52 mg kg(-1), respectively. Perennial peanut plants showed low translocation factor values for Cu, although these plants showed high bioaccumulation factor (BCF) for both vineyard soils, Inceptisol and Mollisol, with BCF values of 3.83 and 3.24, respectively, being characterized as a copper hyperaccumulator plant in these soils. Copper phytoextraction from Inceptisol soil was the highest for both roots and entire plant biomass, with more than 800 mg kg(-1) of copper in whole plant. The highest potential copper phytoextraction by perennial peanut was in Inceptisol soil with copper removal of 2,500 g ha(-1). Also, perennial peanut showed high potential for copper phytoremoval in copper mining waste and Mollisol with 1,700 and 1,500 g of copper per hectare, respectively. In addition, perennial peanuts characterized high potential for phytoextraction and phytostabilization of copper in vineyard soils and copper mining waste.

  12. Biogeochemical controls of uranium bioavailability from the dissolved phase in natural freshwaters

    Science.gov (United States)

    Croteau, Marie-Noele; Fuller, Christopher C.; Cain, Daniel J.; Campbell, Kate M.; Aiken, George R.

    2016-01-01

    To gain insights into the risks associated with uranium (U) mining and processing, we investigated the biogeochemical controls of U bioavailability in the model freshwater speciesLymnaea stagnalis (Gastropoda). Bioavailability of dissolved U(VI) was characterized in controlled laboratory experiments over a range of water hardness, pH, and in the presence of complexing ligands in the form of dissolved natural organic matter (DOM). Results show that dissolved U is bioavailable under all the geochemical conditions tested. Uranium uptake rates follow first order kinetics over a range encompassing most environmental concentrations. Uranium uptake rates in L. stagnalis ultimately demonstrate saturation uptake kinetics when exposure concentrations exceed 100 nM, suggesting uptake via a finite number of carriers or ion channels. The lack of a relationship between U uptake rate constants and Ca uptake rates suggest that U does not exclusively use Ca membrane transporters. In general, U bioavailability decreases with increasing pH, increasing Ca and Mg concentrations, and when DOM is present. Competing ions did not affect U uptake rates. Speciation modeling that includes formation constants for U ternary complexes reveals that the aqueous concentration of dicarbonato U species (UO2(CO3)2–2) best predicts U bioavailability to L. stagnalis, challenging the free-ion activity model postulate.

  13. Bioavailability is improved by enzymatic modification of the citrus flavonoid hesperidin in humans

    DEFF Research Database (Denmark)

    Nielsen, Inge Lise F; Chee, Winnie S S; Poulsen, Lea

    2006-01-01

    Hesperidin is the predominant polyphenol consumed from citrus fruits and juices. However, hesperidin is proposed to have limited bioavailability due to the rutinoside moiety attached to the flavonoid. The aim of this study was to demonstrate in human subjects that the removal of the rhamnose group...... to yield the corresponding flavonoid glucoside (i.e., hesperetin-7-glucoside) will improve the bioavailability of the aglycone hesperetin. Healthy volunteers (n=16) completed the double-blind, randomized, crossover study. Subjects randomly consumed hesperetin equivalents supplied as orange juice...... that the bioavailability of hesperidin was modulated by enzymatic conversion to hesperetin-7-glucoside, thus changing the absorption site from the colon to the small intestine. This may affect future interventions concerning the health benefits of citrus flavonoids....

  14. Meta-analysis of effects of microbial phytase on digestibility and bioavailability of copper and zinc in growing pigs

    NARCIS (Netherlands)

    Bikker, P.; Jongbloed, A.W.; Thissen, J.T.N.M.

    2012-01-01

    A meta-analysis was conducted to determine the effect of microbial phytase in pig diets on digestibility and bioavailability of Cu and Zn. Studies (n = 22) into effects of microbial phytase on digestibility and plasma levels of Cu and Zn were included in a dataset and regression analysis was

  15. Potassium Intake, Bioavailability, Hypertension, and Glucose Control

    Directory of Open Access Journals (Sweden)

    Michael S. Stone

    2016-07-01

    Full Text Available Potassium is an essential nutrient. It is the most abundant cation in intracellular fluid where it plays a key role in maintaining cell function. The gradient of potassium across the cell membrane determines cellular membrane potential, which is maintained in large part by the ubiquitous ion channel the sodium-potassium (Na+-K+ ATPase pump. Approximately 90% of potassium consumed (60–100 mEq is lost in the urine, with the other 10% excreted in the stool, and a very small amount lost in sweat. Little is known about the bioavailability of potassium, especially from dietary sources. Less is understood on how bioavailability may affect health outcomes. Hypertension (HTN is the leading cause of cardiovascular disease (CVD and a major financial burden ($50.6 billion to the US public health system, and has a significant impact on all-cause morbidity and mortality worldwide. The relationship between increased potassium supplementation and a decrease in HTN is relatively well understood, but the effect of increased potassium intake from dietary sources on blood pressure overall is less clear. In addition, treatment options for hypertensive individuals (e.g., thiazide diuretics may further compound chronic disease risk via impairments in potassium utilization and glucose control. Understanding potassium bioavailability from various sources may help to reveal how specific compounds and tissues influence potassium movement, and further the understanding of its role in health.

  16. Kolliphor surfactants affect solubilization and bioavailability of fenofibrate. Studies of in vitro digestion and absorption in rats

    DEFF Research Database (Denmark)

    Berthelsen, Ragna; Holm, Rene; Jacobsen, Jette

    2015-01-01

    formulations only comprised an aqueous micellar solution of the model drug (fenofibrate) in varying concentrations (2–25% (w/v)) of the three tested surfactants. Increased concentrations of Kolliphor ELP and EL led to increased fenofibrate AUC0–24h values. For the Kolliphor RH40 formulations, an apparent...... fenofibrate absorption optimum was seen at 15% (w/v) surfactant, displaying both the highest AUC0–24h and Cmax. The reduced absorption of fenofibrate from the formulation containing the highest level of surfactant (25% w/v) was thought to be caused by some degree of trapping within Kolliphor RH40 micelles....... In vitro, Kolliphor ELP and EL were found to be more prone to digestion than Kolliphor RH40, though not affecting the in vivo results. The highest fenofibrate bioavailability was attained from formulations with high Kolliphor ELP/EL levels (25% (w/v)), indicating that these surfactants are the better...

  17. Zinc bioavailability in the chick

    International Nuclear Information System (INIS)

    Hempe, J.M.

    1987-01-01

    Methods for assessing zinc bioavailability were evaluated in the chick. A low-zinc chick diet was developed using rehydrated, spray-dried egg white autoclaved at 121 C for 30 min as the primary protein source. The relative bioavailability of zinc from soy flour and beef was determined by whole-body retention of extrinsic 65 Zn, and in slope ratio assays for growth rate and tissue zinc. Compared to zinc carbonate added to an egg white-based diet, all methods gave similar estimates of approximately 100% zinc bioavailability for beef but estimates for soy flour varied widely. The slope ratio assay for growth rate gave the best estimate of zinc bioavailability for soy flour. True absorption, as measured by percent isotope retention from extrinsically labeled soy flour, was 47%

  18. Current trends in copper theft prevention

    Energy Technology Data Exchange (ETDEWEB)

    Mastrofrancesco, A. [Electrical Safety Authority, ON (Canada)

    2009-07-01

    Copper is used in electrical wiring, water and gas piping, currency, and in household items. An increase in the price and demand for copper has made copper theft a profitable venture for some thieves. Copper consumed in North America is typically supplied by recycling. Scrap dealers may pay near-market prices for pure copper wires. However, copper theft poses a serious threat to the safety of utility workers and the public. Power outages caused by copper theft are now affecting grid reliability. This paper examined technologies and techniques used to prevent copper theft as part of a security strategy for utilities. Attempts to steal copper can leave utility substations unsecured and accessible to children. The theft of neutral grounds will cause the local distribution company (LDC) to malfunction and may cause power surges in homes as well as appliance fires. Utilities are now looking at using a hybrid steel and copper alternative to prevent copper theft. Asset identification techniques are also being used to identify the original owners of the copper and more easily prosecute thieves. Automated monitoring techniques are also being used to increase substation security. Utilities are also partnering with law enforcement agencies and pressuring governments to require scrap dealers to record who they buy from. It was concluded that strategies to prevent copper theft should be considered as part of an overall security strategy for utilities. tabs., figs.

  19. Copper-associated hepatitis in dogs; pathogenesis, diagnosis and treatment

    NARCIS (Netherlands)

    Dirksen, K.|info:eu-repo/dai/nl/412424428

    2016-01-01

    Copper is an essential trace element for living organisms, but can have deleterious consequences when present in excess. Because the liver has a central role in copper metabolism, this is the predominant organ affected. Copper-accumulating disorders are recognized as hereditary diseases in man and

  20. Bioavailability and bioaccumulation of metal-based engineered nanomaterials in aquatic environments: concepts and processes: chapter 5

    Science.gov (United States)

    Luoma, Samuel N.; Khan, Farhan R.; Croteau, Marie-Noële

    2014-01-01

    Bioavailability of Me-ENMs to aquatic organisms links their release into the environment to ecological implications. Close examination shows some important differences in the conceptual models that define bioavailability for metals and Me-ENMs. Metals are delivered to aquatic animals from Me-ENMs via water, ingestion, and incidental surface exposure. Both metal released from the Me-ENM and uptake of the nanoparticle itself contribute to bioaccumulation. Some mechanisms of toxicity and some of the metrics describing exposure may differ from metals alone. Bioavailability is driven by complex interaction of particle attributes, environmental transformations, and biological traits. Characterization of Me-ENMs is an essential part of understanding bioavailability and requires novel methodologies. The relative importance of the array of processes that could affect Me-ENM bioavailability remains poorly known, but new approaches and models are developing rapidly. Enough is known, however, to conclude that traditional approaches to exposure assessment for metals would not be adequate to assess risks from Me-ENMs.

  1. The bioavailability of chemicals in soil for earthworms

    Science.gov (United States)

    Lanno, R.; Wells, J.; Conder, Jason M.; Bradham, K.; Basta, N.

    2004-01-01

    The bioavailability of chemicals to earthworms can be modified dramatically by soil physical/chemical characteristics, yet expressing exposure as total chemical concentrations does not address this problem. In order to understand the effects of modifying factors on bioavailability, one must measure and express chemical bioavailability to earthworms in a consistent, logical manner. This can be accomplished by direct biological measures of bioavailability (e.g., bioaccumulation, critical body residues), indirect biological measures of bioavailability (e.g., biomarkers, reproduction), or indirect chemical measures of bioavailability (e.g., chemical or solid-phase extracts of soil). If indirect chemical measures of bioavailability are to be used, they must be correlated with some biological response. Bioavailability can be incorporated into ecological risk assessment during risk analysis, primarily in the estimation of exposure. However, in order to be used in the site-specific ecological risk assessment of chemicals, effects concentrations must be developed from laboratory toxicity tests based on exposure estimates utilizing techniques that measure the bioavailable fraction of chemicals in soil, not total chemical concentrations. ?? 2003 Elsevier Inc. All rights reserved.

  2. Statistical Evaluation and Optimization of Factors Affecting the Leaching Performance of Copper Flotation Waste

    Directory of Open Access Journals (Sweden)

    Semra Çoruh

    2012-01-01

    Full Text Available Copper flotation waste is an industrial by-product material produced from the process of manufacturing copper. The main concern with respect to landfilling of copper flotation waste is the release of elements (e.g., salts and heavy metals when in contact with water, that is, leaching. Copper flotation waste generally contains a significant amount of Cu together with trace elements of other toxic metals, such as Zn, Co, and Pb. The release of heavy metals into the environment has resulted in a number of environmental problems. The aim of this study is to investigate the leaching characteristics of copper flotation waste by use of the Box-Behnken experimental design approach. In order to obtain the optimized condition of leachability, a second-order model was examined. The best leaching conditions achieved were as follows: pH = 9, stirring time = 5 min, and temperature = 41.5°C.

  3. Statistical evaluation and optimization of factors affecting the leaching performance of copper flotation waste.

    Science.gov (United States)

    Coruh, Semra; Elevli, Sermin; Geyikçi, Feza

    2012-01-01

    Copper flotation waste is an industrial by-product material produced from the process of manufacturing copper. The main concern with respect to landfilling of copper flotation waste is the release of elements (e.g., salts and heavy metals) when in contact with water, that is, leaching. Copper flotation waste generally contains a significant amount of Cu together with trace elements of other toxic metals, such as Zn, Co, and Pb. The release of heavy metals into the environment has resulted in a number of environmental problems. The aim of this study is to investigate the leaching characteristics of copper flotation waste by use of the Box-Behnken experimental design approach. In order to obtain the optimized condition of leachability, a second-order model was examined. The best leaching conditions achieved were as follows: pH = 9, stirring time = 5 min, and temperature = 41.5 °C.

  4. 21 CFR 320.38 - Retention of bioavailability samples.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Retention of bioavailability samples. 320.38... (CONTINUED) DRUGS FOR HUMAN USE BIOAVAILABILITY AND BIOEQUIVALENCE REQUIREMENTS Procedures for Determining the Bioavailability or Bioequivalence of Drug Products § 320.38 Retention of bioavailability samples...

  5. The impact of sediment bioturbation by secondary organisms on metal bioavailability, bioaccumulation and toxicity to target organisms in benthic bioassays: Implications for sediment quality assessment

    International Nuclear Information System (INIS)

    Remaili, Timothy M.; Simpson, Stuart L.; Amato, Elvio D.; Spadaro, David A.; Jarolimek, Chad V.; Jolley, Dianne F.

    2016-01-01

    Bioturbation alters the properties of sediments and modifies contaminant bioavailability to benthic organisms. These naturally occurring disturbances are seldom considered during the assessment of sediment quality. We investigated how the presence (High bioturbation) and absence (Low bioturbation) of a strongly bioturbating amphipod within three different sediments influenced metal bioavailability, survival and bioaccumulation of metals to the bivalve Tellina deltoidalis. The concentrations of dissolved copper decreased and manganese increased with increased bioturbation. For copper a strong correlation was observed between increased bivalve survival (53–100%) and dissolved concentrations in the overlying water. Increased bioturbation intensity resulted in greater tissue concentrations for chromium and zinc in some test sediments. Overall, the results highlight the strong influence that the natural bioturbation activities from one organism may have on the risk contaminants pose to other organisms within the local environment. The characterisation of field-based exposure conditions concerning the biotic or abiotic resuspension of sediments and the rate of attenuation of released contaminants through dilution or readsorption may enable laboratory-based bioassay designs to be adapted to better match those of the assessed environment. - Highlights: • Bioturbation intensity modifies metal exposure and outcomes of sediment bioassays. • Sediment fluxes of Cu decrease and Mn and Zn increase with increased bioturbation. • Strong correlations between bioaccumulated and dissolved Cd, Cr, Pb, Zn, Cu and Ni. • Weak correlations between bioaccumulated and particulate metals. - This study investigated the impact of sediment bioturbation intensity on metal bioavailability and toxicity to aquatic organisms, and the implications of this to toxicity test design.

  6. Study on copper kinetics in processing sulphide ore mixed with copper and zinc with sulfuric acid leaching under pressure

    Science.gov (United States)

    Wen-bo, LUO; Ji-kun, WANG; Yin, GAN

    2018-01-01

    Sulphide ore mixed with copper and zinc is processed with pressure acid leaching. Research is conducted on the copper kinetic. The stirring rate is set at 600 rpm which could eliminate the influence of external diffusions. Research is conducted on the factors affecting the copper leaching kinetic are temperature, pressure, concentration of sulfuric acid, particle size. The result shows that the apparent activity energy is 50.7 KJ/mol. We could determine that the copper leaching process is shrinking core model of chemical reaction control and work out the leaching equation.

  7. Ingested soil: Bioavailability of sorbed lead, cadmium, cesium, iodine, and mercury

    International Nuclear Information System (INIS)

    Sheppard, S.C.; Evenden, W.G.; Schwartz, W.J.

    1994-01-01

    Ingestion of soil, inadvertent or otherwise, is an important route of exposure for contaminants that are not geochemically or biologically mobile. There is little known about the bioavailability of these contaminants, especially when the contaminants are sorbed onto native soil particles. We investigated this with in vitro acid-extraction and enzymolysis experiments and with in vivo single and chronic exposure studies with mice (Mus musculus). The only anion studied was 125 I, and soil in the diet had no effect on the carcass 125 I content. The bioavailability of the cations tested decreased in the order of 134 Cs > 203 Hg > 115 Cd = 210 Pb, and the effect of soil in the diet on concentrations in the carcass decreased in the same order. Soil in the diet significantly decreased the bioavailability of 134 Cs, by more than fourfold, whereas the effect on 210 Pb was only ∼ 1.1-fold and was not significant. The results of the in vitro digestions ordered the elements in the same way as observed in the in vivo analyses. These results indicate that for contaminants that are not very mobile and are sorbed onto native soil particles, the presence of soil in the diet does not markedly affect bioavailability in the gut. (author)

  8. Environmental fate of TCDD and Agent Orange and bioavailability to troops in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Karch, N.J.; Watkins, D.K.; Ginevan, M.E. [Exponent, Inc., Washington, DC (United States); Young, A.L. [Oklahoma Univ., Norman, OK (United States)

    2004-09-15

    This paper reviews the environmental fate of Agent Orange and the contaminant, 2,3,7,8- tetrachlorodibenzo-p-dioxin (TCDD), and discusses how this affects the bioavailability of TCDD for ground troops in Vietnam.

  9. Copper affects biofilm inductiveness to larval settlement of the serpulid polychaete Hydroides elegans (Haswell)

    KAUST Repository

    Bao, Wei Yang; Lee, On On; Chung, Hong Chun; Li, Mu; Qian, Pei Yuan

    2010-01-01

    Copper (Cu) contamination is a potential threat to the marine environment due to the use of Cu-based antifouling paints. Cu stress on larval settlement of the polychaete Hydroides elegans was investigated, and this was linked to Cu stress on biofilms and on the biofilm development process. The inductiveness of young biofilms was more easily altered by Cu stress than that of old biofilms, indicating the relative vulnerability of young biofilms. This might result from changes in bacterial survival, the bacterial community composition and the chemical profiles of young biofilms. Cu also affected biofilm development and the chemical high performance liquid chromatograph fingerprint profile. The results indicate that Cu affected larval settlement mainly through its effect on the process of biofilm development in the marine environment, and the chemical profile was crucial to biofilm inductiveness. It is strongly recommended that the effects of environmentally toxic substances on biofilms are evaluated in ecotoxicity bioassays using larval settlement of invertebrates as the end point. © 2010 Taylor & Francis.

  10. United States copper metal and scrap use and trade patterns, 1995‒2014

    Science.gov (United States)

    Goonan, Thomas G.

    2016-06-17

    In 1995, China accounted for 10 percent of world copper consumption. By 2014, China accounted for about 49 percent of world copper consumption. This change has affected global copper and copper scrap prices, the sources of copper supply, and U.S. trade of copper-containing materials.

  11. Pathogenic adaptations to host-derived antibacterial copper

    Science.gov (United States)

    Chaturvedi, Kaveri S.; Henderson, Jeffrey P.

    2014-01-01

    Recent findings suggest that both host and pathogen manipulate copper content in infected host niches during infections. In this review, we summarize recent developments that implicate copper resistance as an important determinant of bacterial fitness at the host-pathogen interface. An essential mammalian nutrient, copper cycles between copper (I) (Cu+) in its reduced form and copper (II) (Cu2+) in its oxidized form under physiologic conditions. Cu+ is significantly more bactericidal than Cu2+ due to its ability to freely penetrate bacterial membranes and inactivate intracellular iron-sulfur clusters. Copper ions can also catalyze reactive oxygen species (ROS) generation, which may further contribute to their toxicity. Transporters, chaperones, redox proteins, receptors and transcription factors and even siderophores affect copper accumulation and distribution in both pathogenic microbes and their human hosts. This review will briefly cover evidence for copper as a mammalian antibacterial effector, the possible reasons for this toxicity, and pathogenic resistance mechanisms directed against it. PMID:24551598

  12. The influence of bioavailable heavy metals and microbial parameters of soil on the metal accumulation in rice grain.

    Science.gov (United States)

    Xiao, Ling; Guan, Dongsheng; Peart, M R; Chen, Yujuan; Li, Qiqi; Dai, Jun

    2017-10-01

    A field-based study was undertaken to analyze the effects of soil bioavailable heavy metals determined by a sequential extraction procedure, and soil microbial parameters on the heavy metal accumulation in rice grain. The results showed that Cd, Cr, Cu, Ni, Pb and Zn concentrations in rice grain decreases by 65.9%, 78.9%, 32.6%, 80.5%, 61.0% and 15.7%, respectively in the sites 3 (far-away), compared with those in sites 1 (close-to). Redundancy analysis (RDA) indicated that soil catalase activity, the MBC/MBN ratio, along with bioavailable Cd, Cr and Ni could explain 68.9% of the total eigenvalue, indicating that these parameters have a great impact on the heavy metal accumulation in rice grain. The soil bioavailable heavy metals have a dominant impact on their accumulation in rice grain, with a variance contribution of 60.1%, while the MBC/MBN has a regulatory effect, with a variance contribution of 4.1%. Stepwise regression analysis showed that the MBC/MBN, urease and catalase activities are the key microbial parameters that affect the heavy metal accumulation in rice by influencing the soil bioavailable heavy metals or the translocation of heavy metals in rice. RDA showed an interactive effect between Cu, Pb and Zn in rice grain and the soil bioavailable Cd, Cr and Ni. The heavy metals in rice grain, with the exception of Pb, could be predicted by their respective soil bioavailable heavy metals. The results suggested that Pb accumulation in rice grain was mainly influenced by the multi-metal interactive effects, and less affected by soil bioavailable Pb. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Bioavailability in the boris assessment model

    International Nuclear Information System (INIS)

    Norden, M.; Avila, R.; Gonze, M.A.; Tamponnet, C.

    2004-01-01

    The fifth framework EU project BORIS (Bioavailability Of Radionuclides In Soils: role of biological components and resulting improvement of prediction models) has three scientific objectives. The first is to improve understanding of the mechanisms governing the transfer of radionuclides to plants. The second is to improve existing predictive models of radionuclide interaction with soils by incorporating the knowledge acquired from the experimental results. The last and third objective is to extract from the experimental results some scientific basis for the development of bioremediation methods of radionuclides contaminated soils and to apprehend the role of additional non-radioactive pollutants on radionuclide bio-availability. This paper is focused on the second objective. The purpose of the BORIS assessment model is to describe the behaviour of radionuclides in the soil-plant system with the aim of making predictions of the time dynamics of the bioavailability of radionuclides in soil and the radionuclides concentrations in plants. To be useful the assessment model should be rather simple and use only a few parameters, which are commonly available or possible to measure for different sites. The model shall take into account, as much as possible, the results of the experimental studies and the mechanistic models developed in the BORIS project. One possible approach is to introduce in the assessment model a quantitative relationship between bioavailability of the radionuclides in soil and the soil properties. To do this an operational definition of bioavailability is needed. Here operational means experimentally measurable, directly or indirectly, and that the bioavailability can be translated into a mathematical expression. This paper describes the reasoning behind the chosen definition of bioavailability for the assessment model, how to derive operational expressions for the bioavailability and how to use them in the assessment model. (author)

  14. Bioavailability of intranasal metoclopramide.

    OpenAIRE

    Ward, M J; Buss, D C; Ellershaw, J; Nash, A; Routledge, P A

    1989-01-01

    After intranasal administration of metoclopramide, (5 mg in 0.5 ml sterile water) the maximum plasma concentration of 13.5 +/- 7.3 (mean +/- s.d.) ng ml-1 was achieved. Absolute bioavailability was 50.5 +/- 29.5%, 110 +/- 41 min later. We conclude that the intranasal route does not allow rapid absorption of the drug and is not associated with greater bioavailability than the oral route.

  15. Increased iron bioavailability from lactic-fermented vegetables is likely an effect of promoting the formation of ferric iron (Fe(3+)).

    Science.gov (United States)

    Scheers, Nathalie; Rossander-Hulthen, Lena; Torsdottir, Inga; Sandberg, Ann-Sofie

    2016-02-01

    Lactic fermentation of foods increases the availability of iron as shown in a number of studies throughout the years. Several explanations have been provided such as decreased content of inhibitory phytate, increased solubility of iron, and increased content of lactic acid in the fermented product. However, to our knowledge, there are no data to support that the bioavailability of iron is affected by lactic fermentation. The objective of the present study was to investigate whether the bioavailability of iron from a vegetable mix was affected by lactic fermentation and to propose a mechanism for such an event, by conducting human and cell (Caco-2, HepG2) studies and iron speciation measurements (voltammetry). We also investigated whether the absorption of zinc was affected by the lactic fermentation. In human subjects, we observed that lactic-fermented vegetables served with both a high-phytate and low-phytate meal increased the absorption of iron, but not zinc. In vitro digested fermented vegetables were able to provoke a greater hepcidin response per ng Fe than fresh vegetables, indicating that Fe in the fermented mixes was more bioavailable, independent on the soluble Fe content. We measured that hydrated Fe(3+) species were increased after the lactic fermentation, while there was no significant change in hydrated Fe(2+). Furthermore, lactate addition to Caco-2 cells did not affect ferritin formation in response to Fe nor did lactate affect the hepcidin response in the Caco-2/HepG2 cell system. The mechanism for the increased bioavailability of iron from lactic-fermented vegetables is likely an effect of the increase in ferric iron (Fe(3+)) species caused by the lactic fermentation. No effect on zinc bioavailability was observed.

  16. Bioavailable concentrations of germanium and rare earth elements in soil as affected by low molecular weight organic acids and root exudates

    Science.gov (United States)

    Wiche, Oliver; Székely, Balázs; Kummer, Nicolai-Alexeji; Heinemann, Ute; Tesch, Silke; Heilmeier, Hermann

    2014-05-01

    , lanthan, neodymium, gadolinium and erbium in the rhizosphere and therefore the enhancement of bioavailability of the mentioned elements to plants. Based on the suction cup experiment we conclude that in vertical soil profile the bioavailable germanium is heavily affected by the activity of exudates, as the complexation processes of germanium take place at the root zone and below affected by the interplay of the infiltration of citric acid solutions and the actually produced exudates. These studies have been carried out in the framework of the PhytoGerm project, financed by the Federal Ministry of Education and Research, Germany. BS contributed as an Alexander von Humboldt Research Fellow. The authors are grateful to students and laboratory assistants contributing in the field work and sample preparation.

  17. Adsorption of copper from the sulphate solution of low copper contents using the cationic resin Amberlite IR 120

    International Nuclear Information System (INIS)

    Jha, Manis Kumar; Nghiem Van Nguyen; Lee, Jae-chun; Jeong, Jinki; Yoo, Jae-Min

    2009-01-01

    In view of the increasing importance of the waste processing and recycling to meet the strict environmental regulations, the present investigation reports an adsorption process using the cationic exchanger Amberlite IR 120 for the recovery/removal of copper from the synthetic sulphate solution containing copper ≤0.7 mg/mL similar to the CMP waste effluent of electronic industry. Various process parameters, viz. contact time, solution pH, resin dose, and acid concentration of eluant were investigated for the adsorption of copper from the effluents. The 99.99% copper was found to be adsorbed from the sulphate solution containing copper 0.3-0.7 mg/mL of solution (feed pH 5) at A/R ratio 100 and eq. pH 2.5 in contact time 14 min. The mechanism for the adsorption of copper was found to follow Langmuir isotherm and second order rate. From the loaded organic, copper was eluted effectively by 1.8 M sulphuric acid at A/R ratio 25. The raffinate obtained after the recovery copper could be disposed safely without affecting the environment.

  18. Homogeneous weldings of copper

    International Nuclear Information System (INIS)

    Campurri, C.; Lopez, M.; Fernandez, R.; Osorio, V.

    1995-01-01

    This research explored the metallurgical and mechanical properties of arc welding of copper related with influence of Argon, Helium and mixtures of them. Copper plates of 6 mm thickness were welded with different mixtures of the mentioned gases. The radiography of welded specimens with 100% He and 100% Ar does not show show any porosity. On the other hand, the copper plates welded different gas mixtures presented uniform porosity in the welded zone. The metallographies show recrystallized grain in the heat affected zone, while the welding zone showed a dendritic structure. The results of the tensile strength vary between a maximum of 227 MPa for 100% He and a minimum of 174 MOa for the mixture of 60% He and 40% Ar. For the elongation after fracture the best values, about 36%, were obtained for pure gases. As a main conclusion, we can say that arc welding of copper is possible without loosing the mechanical and metallurgical properties of base metal. 6 refs

  19. Copper speciation in highway stormwater runoff as related to bioavailability and toxicity to ESA-listed salmon.

    Science.gov (United States)

    2011-04-01

    The objectives of this study were to 1) identify the effects of site location, storm hydrology, and water quality parameters on the concentration of dissolved copper (Cu2+diss) in Oregon highway runoff; 2) establish an analytical technique suitable f...

  20. Oral bioavailability of arsenic, antimony and a selection of metals in ashes; Oral biotillgaenglighet av arsenik, antimon och ett urval av metaller i askor

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Christel; Bendz, David; Jones, Celia

    2008-06-15

    In an earlier study, financed by Varmeforsk, 'Q4-238 Environmental guidelines for reuse of ash in civil engineering applications', the total content of arsenic and lead was shown to determine whether or not reuse of some of the ashes in construction work is feasible. The model used to calculate the guidelines uses the total concentration of metals to evaluate the health risks resulting from exposure to the ashes. The use of total concentration can lead to overly conservative risk assessments if a significant fraction of the total metal content is not bioavailable. Better precision in the risk assessment can be given by the use of the bioavailable fraction of arsenic and lead in the model. As a result, ashes which are rejected on the basis of total metal concentration may be acceptable for use in engineering construction when the assessment is based on the bioavailable fraction. The purpose of the study was to (i) compile information on the oral bioavailability of arsenic, antimony and a selection of metals in ashes and similar materials, and on in vitro methods for determination of oral bioavailability, and (ii) experimentally estimate oral bioavailability of arsenic, antimony and some metals in a selection of ashes by analysis of the gastrointestinal bioaccessibility of these elements. The investigated elements were antimony, arsenic, lead, cadmium, copper, chromium, nickel and zinc. In the literature study performed within the project a number of static and dynamic in vitro methods simulating gastrointestinal processes of contaminants were compiled. The methods include one or several segments, i.e. mouth, stomach and intestine. Among the compiled methods, the RIVM (Rijksinstituut voor volksgesundheid en milieu) in vitro method was used in the experimental part of the project. The advantages with the method was that: the method to a high degree mimicked the human gastrointestinal processes (the method included three segments mouth, stomach, and intestine

  1. From conceptual model to remediation: bioavailability, a key to clean up heavy metal contaminated soils.

    Science.gov (United States)

    Petruzzelli, Gianniantonio; Pedron, Francesca; Pezzarossa, Beatrice

    2013-04-01

    Processes of metal bioavailability in the soil To know the bioavailability processes at site specific levels is essential to understand in detail the risks associated with pollution, and to support the decision-making process, i.e. description of the conceptual model and choice of clean up technologies. It is particularly important to assess how chemical, physical and biological processes in the soil affect the reactions leading to adsorption, precipitation or release of contaminants. The measurement of bioavailability One of the main difficulties in the practical application of the bioavailability concept in soil remediation is the lack of consensus on the method to be used to measure bioavailability. The best strategy is to apply a series of tests to assess bioavailability, since no applicable method is universally valid under all conditions. As an example, bioavailability tests for phytotechnology application should consider two distinct aspects: a physico-chemical driven solubilization process and a physiologically driven uptake process. Soil and plant characteristics strongly influence bioavailability. Bioavailability as a tool in remediation strategies Bioavailability can be used at all stages in remediation strategies: development of the conceptual model, evaluation of risk assessment, and selection of the best technology, considering different scenarios and including different environmental objectives. Two different strategies can be followed: the reduction and the increase of bioavailability. Procedures that reduce bioavailability aim to prevent the movement of pollutants from the soil to the living organisms, essentially by: i) removal of the labile phase of the contaminant, i.e. the fraction which is intrinsic to the processes of bioavailability (phytostabilization); ii) conversion of the labile fraction into a stable fraction (precipitation or adsorption); iii) increase of the resistance to mass transfer of the contaminants (inertization). Procedures

  2. The bioavailability of oxalate from Oca (Oxalis tuberosa).

    Science.gov (United States)

    Albihn, P B; Savage, G P

    2001-08-01

    It is believed that soluble oxalate has higher bioavailability than insoluble oxalate. Oca (Oxalis tuberosa) is moderately high in oxalate and contains oxalate in soluble form only. We estimated the bioavailability of oxalate in oca based on the urinary excretion of oxalate after oxalate loading with oca to estimate the bioavailability of oxalate in oca. We also clarified whether bioavailability differs in various oxalate loads from the same food source and studied the effect of an additional calcium source on the bioavailability of oxalate from oca. Four men and 4 women ingested 50, 100 and 150 gm. oca as well as 100 gm. oca with 100 gm. sour cream. Oxalate was measured in a 6-hour urine sample from each volunteer. The mean bioavailability of oxalate from oca plus or minus standard deviation was 1.44% +/- 1.31% during the 6-hour period after intake. There was no significant difference in oxalate bioavailability among oxalate intake levels in this study, although oca consumption with sour cream significantly decreased the uptake of oxalate (p oca appears to be similar to that in spinach. However, bioavailability varies among individuals and depends on other constituents of a combined meal.

  3. Assessment of metals bioavailability to vegetables under field conditions using DGT, single extractions and multivariate statistics

    Science.gov (United States)

    2012-01-01

    Background The metals bioavailability in soils is commonly assessed by chemical extractions; however a generally accepted method is not yet established. In this study, the effectiveness of Diffusive Gradients in Thin-films (DGT) technique and single extractions in the assessment of metals bioaccumulation in vegetables, and the influence of soil parameters on phytoavailability were evaluated using multivariate statistics. Soil and plants grown in vegetable gardens from mining-affected rural areas, NW Romania, were collected and analysed. Results Pseudo-total metal content of Cu, Zn and Cd in soil ranged between 17.3-146 mg kg-1, 141–833 mg kg-1 and 0.15-2.05 mg kg-1, respectively, showing enriched contents of these elements. High degrees of metals extractability in 1M HCl and even in 1M NH4Cl were observed. Despite the relatively high total metal concentrations in soil, those found in vegetables were comparable to values typically reported for agricultural crops, probably due to the low concentrations of metals in soil solution (Csoln) and low effective concentrations (CE), assessed by DGT technique. Among the analysed vegetables, the highest metal concentrations were found in carrots roots. By applying multivariate statistics, it was found that CE, Csoln and extraction in 1M NH4Cl, were better predictors for metals bioavailability than the acid extractions applied in this study. Copper transfer to vegetables was strongly influenced by soil organic carbon (OC) and cation exchange capacity (CEC), while pH had a higher influence on Cd transfer from soil to plants. Conclusions The results showed that DGT can be used for general evaluation of the risks associated to soil contamination with Cu, Zn and Cd in field conditions. Although quantitative information on metals transfer from soil to vegetables was not observed. PMID:23079133

  4. Co-ordinated research programme on isotope-aided studies of the bioavailability of iron and zinc from human diets

    International Nuclear Information System (INIS)

    1992-01-01

    Nutritional deficiencies of essential micronutrients (particularly of iron, but also of zinc and selenium) are known to affect hundreds of millions of people throughout the world, mainly in developing countries. Such deficiencies can lead to significant deficits in mental development, growth, work performance, immune competence and other biological parameters. In many of the population groups that are affected, the deficiencies are thought to be due not to an absolute lack of the element in the diet but rather to is poor bioavailability. Much work has already been done on this subject, particularly in some developed countries and particularly with respect to iron. However, there is still appears to be a need for more research on factors affecting bioavailability and the means to improve it by simple dietary modification and fortification using food products of the kind that may be locally available in developing countries. Isotope techniques potentially have a large role to play in studies of the bioavailability of iron and other trace elements. To support work in this area, the IAEA initiated a Co-ordinated Research Programme (CRP) at the end of 1990 on ''Isotope-Aided Studies of the Bioavailability of Iron and Zinc from Human Diets''. The first Research Co-ordination Meeting (RCM) of participants in this CRP is the subject of the present report. Refs, figs and tabs

  5. Subacute toxicity of copper and glyphosate and their interaction to earthworm (Eisenia fetida)

    International Nuclear Information System (INIS)

    Zhou, Chui-Fan; Wang, Yu-Jun; Li, Cheng-Cheng; Sun, Rui-Juan; Yu, Yuan-Chun; Zhou, Dong-Mei

    2013-01-01

    Glyphosate (GPS) and copper (Cu) are common pollutants in soils, and commonly co-exist. Due to the chemical structure of GPS, it can form complexes of heavy metals and interface their bioavailability in soil environment. In order to explore the interactions between GPS and Cu, subacute toxicity tests of Cu and GPS on soil invertebrate earthworms (Eisenia fetida) were conducted. The relative weight loss and whole-worm metal burdens increased significantly with the increasing exposure concentration of Cu, while the toxicity of GPS was insignificant. The joint toxicity data showed that the relative weight loss and the uptake of Cu, as well as the superoxide dismutase, catalase and malondialdehyde activities, were significantly alleviated in the present of GPS, which indicated that GPS could reduce the toxicity and bioavailability of Cu in the soil because of its strong chelating effects. Highlights: •Cu markedly increased the weight loss ratio of earthworm. •Cu decreased the cocoon production of earthworm. •The toxicity of GPS on earthworm was insignificant. •The presence of GPS could reduce the toxicity of Cu on earthworm. -- The presence of glyphosate could reduce the toxicity and bioavailability of Cu in the soil because of its strong chelating effects

  6. Transformation and bioavailability of metal oxide nanoparticles in aquatic and terrestrial environments. A review

    International Nuclear Information System (INIS)

    Amde, Meseret; Liu, Jing-fu; Tan, Zhi-Qiang; Bekana, Deribachew

    2017-01-01

    Metal oxide nanoparticles (MeO-NPs) are among the most consumed NPs and also have wide applications in various areas which increased their release into the environmental system. Aquatic (water and sediments) and terrestrial compartments are predicted to be the destination of the released MeO-NPs. In these compartments, the particles are subjected to various dynamic processes such as physical, chemical and biological processes, and undergo transformations which drive them away from their pristine state. These transformation pathways can have strong implications for the fate, transport, persistence, bioavailability and toxic-effects of the NPs. In this critical review, we provide the state-of-the-knowledge on the transformation processes and bioavailability of MeO-NPs in the environment, which is the topic of interest to researchers. We also recommend future research directions in the area which will support future risk assessments by enhancing our knowledge of the transformation and bioavailability of MeO-NPs. - Highlights: • Current state-of-the-knowledge on the transformation and bioavailability of MeO-NPs in the environment has been provided. • Effects of MeO-NPs behavior on their transformations have been reviewed. • Role of the transformation processes on bioavailability of the NPs have been discussed. • Future research directions required to fill the existing research gaps have been provided. - Transformations of MeO-NPs depend on nature of the NPs themselves and chemistry of the medium, and can significantly affect their fate, bioavailability and toxic-effects.

  7. Effect of type of TAG fatty acids on lutein and zeaxanthin bioavailability.

    Science.gov (United States)

    Gleize, Béatrice; Tourniaire, Franck; Depezay, Laurence; Bott, Romain; Nowicki, Marion; Albino, Lionel; Lairon, Denis; Kesse-Guyot, Emmanuelle; Galan, Pilar; Hercberg, Serge; Borel, Patrick

    2013-07-14

    The xanthophylls lutein and zeaxanthin probably play a role in visual function and may participate in the prevention of age-related eye diseases. Although a minimum amount of TAG is required for an optimal bioavailability of these carotenoids, the effect of the type of TAG fatty acids (FA) is less clear. The aim was to assess the effect of the type of TAG FA on bioavailability of these xanthophylls. A total of three complementary models were used: an in vitro digestion model to study bioaccessibility, Caco-2 cells to study uptake efficiency and orally administered rats to study in vivo bioavailability. Results showed that lutein and zeaxanthin bioaccessibility was greater (about 20-30 %, Pxanthophyll uptake by Caco-2 cells, but some compounds present in natural oils significantly affected xanthophyll uptake. Oral administration of rats with spinach and butter over 3 d led to a higher fasting plasma lutein concentration than oral administration with olive or fish oils. In conclusion, dietary fats rich in SFA lead to a higher bioavailability of lutein and zeaxanthin, as compared with fats rich in MUFA and PUFA. This is due partly to the higher bioaccessibility of these xanthophylls in the smaller mixed micelles produced when SFA are incorporated into mixed micelles.

  8. Identification of copper-induced genes in Pseudomonas fluorescens and use of a reporter strain to monitor bioavailable copper in soil

    DEFF Research Database (Denmark)

    Tom-Petersen, Andreas; Hosbond, Carsten; Nybroe, Ole

    2001-01-01

    -amended soil microcosms in a concentration-dependent manner. The chelator EDTA reduced the availability of Cu to P. fluorescens in soil. This showed that complex-bound Cu is not necessarily available to bacteria, We compared chemical analysis of soluble Cu and the reporter assay on soil solutions from Cu-containing......-Cu15, the gene interrupted by the transposon encoded a protein carrying a Cu-binding domain but with low homology to known proteins. DF57-Cu15 was the most suitable Cu reporter due to its high specific response and tolerance to Cu in pure culture. DF57-Cu15 responded to soil solutions from Cu...... soil microcosms supplemented with either manure or straw. Organic matter increased the amount of soluble Cu but not the amount of bioavailable Cu. Probably, Cu binds with high affinity to organic constituents in pig manure or barley straw. Hence, determination of soluble Cu by chemical analysis cannot...

  9. Biomonitoring of trace metal bioavailabilities to the barnacle Amphibalanus amphitrite along the Iranian coast of the Persian Gulf.

    Science.gov (United States)

    Nasrolahi, A; Smith, B D; Ehsanpour, M; Afkhami, M; Rainbow, P S

    2014-10-01

    The fouling barnacle Amphibalanus amphitrite is a cosmopolitan biomonitor of trace metal bioavailabilities, with an international comparative data set of body metal concentrations. Bioavailabilities of As, Cd, Cr, Cu, Fe, Mn, Pb, V and Zn to A. amphitrite were investigated at 19 sites along the Iranian coast of the understudied Persian Gulf. Commercial and fishing ports showed extremely high Cu bioavailabilities, associated with high Zn bioavailabilities, possibly from antifouling paints and procedures. V availability was raised at one port, perhaps associated with fuel leakage. Cd bioavailabilities were raised at sites near the Strait of Hormuz, perhaps affected by adjacent upwelling off Oman. The As data allow a reinterpretation of the typical range of accumulated As concentrations in A. amphitrite. The Persian Gulf data add a new region to the A. amphitrite database, confirming its importance in assessing the ecotoxicologically significant trace metal contamination of coastal waters across the world. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Interactions between copper(II) and DOM in the urban stormwater runoff: modeling and characterizations.

    Science.gov (United States)

    Zhao, Chen; Wang, Chong-Chen; Li, Jun-Qi; Wang, Peng; Ou, Jia-Qi; Cui, Jing-Rui

    2018-01-01

    Dissolved organic matter (DOM) can strongly interact with both organic and inorganic contaminants to influence their transportation, transformation, bioavailability, toxicity and even their ultimate fate. Within this work, DOM was extracted from urban stormwater runoff samples collected from a regular sampling site of a typical residential area in Beijing, China. Copper(II) ions were selected as model to investigate the interactions between DOM and typical heavy metals. Both ultraviolet (UV) absorbance and fluorescence titration methods were introduced to determine the complex capacities (C L ) and conditional stability constants (log K M ) of bonding between DOM and copper (II) ions, which revealed that the values of C L were 85.62 and 87.23 μmol mg -1 and the log K M values were 5.37 and 5.48, respectively. The results suggested the successful complexation between DOM and copper(II) ions. Furthermore, morphology of the DOM binding to copper(II) ions was confirmed by both energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS), which can facilitate to clarify the corresponding mechanism. The Cu 2p 3/2 peak at 933.7 eV and the characteristic shake-up peaks of Cu-O were found in the XPS spectra, implying that copper(II) ions might coordinate with hydroxyl (aliphatic or phenolic) or carboxyl groups. With these profitable results, it can be concluded that DOM in urban stormwater runoff has a strong binding affinity with copper(II) ions, which may further lead to potentially significant influence on their migration and transformation.

  11. Zinc and copper status of women by physical activity and menstrual status

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.; Deuster, P.A.; Kyle, S.B.; Moser, P.B.

    1986-03-01

    The zinc and copper status of 33 eumenorrheic (EU) and 12 amenorrheic (AM) female marathon runners and 19 EU and 8 AM nonrunners were determined from 3-day diet records and plasma and erythrocyte (RBC) levels. The study was conducted as a completely randomized 2 x 2 factorial. Mean daily zinc intakes of all groups fell below the recommended dietary allowances. Copper intakes of runners (EU = 1.3 mg; AM = 1.3 mg) were not significantly different. Menstrual status did not affect plasma zinc, RBC zinc or plasma copper levels. Physical activity however, affected RBC zinc and plasma copper levels. Both these parameters were significantly higher in runners. These findings suggest that exercise influences blood zinc and copper levels.

  12. The effects of bio-available copper on macrolide antibiotic resistance genes and mobile elements during tylosin fermentation dregs co-composting.

    Science.gov (United States)

    Zhang, Bo; Wang, Meng Meng; Wang, Bing; Xin, Yanjun; Gao, Jiaqi; Liu, Huiling

    2018-03-01

    In this study, aerobic co-composting of tylosin fermentation dregs (TFDs) and sewage sludge with different adding concentrations of copper (Cu) was investigated to inspect the fate of antibiotic resistance genes (ARGs), metal resistance genes (MRGs) and mobile genetic elements (MGEs). Results showed that two concentrations of Cu did affect not only the abiotic factors but the relative abundances of resistance genes. High concentration of Cu inhibited the metabolic capacity of microbial community and the nitrogen-fixing process while had little effect on the degradation of TYL and TOC. The abundance of ermT, mefA, mphA increased partly attributed to the toxic effects and co-selective pressure from heavy metal reflected by MRGs. There was significant correlation among some environmental factors like pH, bio-Cu, organic matters and ARGs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Bioavailability of omega-3 long-chain polyunsaturated fatty acids from foods

    DEFF Research Database (Denmark)

    Mu, Huiling

    2008-01-01

    Increasing recognition of the importance of the omega-3 long chain polyunsaturated fatty acids (LCPUFA) has caused greater attention about dietary intake of these fatty acids. Fatty fish is the major dietary source of these fatty acids. Because of the low intake of fish at many places, foods...... enriched with omega-3 LCPUFA can be good alternatives to improve the intake of these fatty acids. Effects of lipid structures and food matrices on bioavailability of omega-3 LCPUFA have been investigated. Short term studies showed that both lipid structure and food matrix affect the bioavailability...... of these fatty acids, whereas diverse results have been reported from long-term studies. Therefore more studies are encouraged to clarify the long-term effects....

  14. Use of chemical methods to assess Cd and Pb bioavailability to the snail Cantareus aspersus: A first attempt taking into account soil characteristics

    International Nuclear Information System (INIS)

    Pauget, B.; Gimbert, F.; Coeurdassier, M.; Scheifler, R.; Vaufleury, A. de

    2011-01-01

    Highlights: → New methodology to identify chemical method able to assess metal bioavailability to snails. → Bioavailability of cadmium and lead to snails was determined by assessing accumulation kinetics. → Toxicokinetics were used to as a measure of bioavailability and related with chemical measures of metal availability. → Bioavailability of cadmium and lead was affected by different pH and organic matter content but not by clay content. → Concentrations of CaCl 2 extract and total dissolved metal estimate were not able to predict bioavailability to the snails. - Abstract: Bioavailability is a key parameter in conditioning contaminant transfer to biota. However, in risk assessment of terrestrial contamination, insufficient attention is being paid to the influence of soil type on trace metal bioavailability. This paper addresses the influence of soil properties on the chemical availability of cadmium (Cd) and lead (Pb) (CaCl 2 extraction and ionic activity) and bioavailability (accumulation kinetics) to the land snail Cantareus aspersus. Snails were exposed to nine contaminated soils differing by a single characteristic (pH or organic matter content or clay content) for 28 days. Toxicokinetic models were applied to determine metal uptake and excretion rates in snails and multivariate regression was used to relate uptake parameters to soil properties. The results showed that alkalinisation of soil and an increase of the organic matter content decreased Pb and Cd bioavailability to snails whereas kaolin clay had no significant influence. The CaCl 2 -extractable concentrations tended to overestimate the effects of pH when used to explain metal uptake rate. We conclude that factors other than those controlling the extractable fraction affect metal bioavailability to snails, confirming the requirement of biota measurements in risk assessment procedures.

  15. Use of chemical methods to assess Cd and Pb bioavailability to the snail Cantareus aspersus: A first attempt taking into account soil characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Pauget, B. [Department Chrono-Environment, UMR UFC/CNRS 6249 USC INRA, University of Franche-Comte, Place Leclerc, F-25030 Besancon Cedex (France); Gimbert, F., E-mail: frederic.gimbert@univ-fcomte.fr [Department Chrono-Environment, UMR UFC/CNRS 6249 USC INRA, University of Franche-Comte, Place Leclerc, F-25030 Besancon Cedex (France); Coeurdassier, M.; Scheifler, R.; Vaufleury, A. de [Department Chrono-Environment, UMR UFC/CNRS 6249 USC INRA, University of Franche-Comte, Place Leclerc, F-25030 Besancon Cedex (France)

    2011-09-15

    Highlights: {yields} New methodology to identify chemical method able to assess metal bioavailability to snails. {yields} Bioavailability of cadmium and lead to snails was determined by assessing accumulation kinetics. {yields} Toxicokinetics were used to as a measure of bioavailability and related with chemical measures of metal availability. {yields} Bioavailability of cadmium and lead was affected by different pH and organic matter content but not by clay content. {yields} Concentrations of CaCl{sub 2} extract and total dissolved metal estimate were not able to predict bioavailability to the snails. - Abstract: Bioavailability is a key parameter in conditioning contaminant transfer to biota. However, in risk assessment of terrestrial contamination, insufficient attention is being paid to the influence of soil type on trace metal bioavailability. This paper addresses the influence of soil properties on the chemical availability of cadmium (Cd) and lead (Pb) (CaCl{sub 2} extraction and ionic activity) and bioavailability (accumulation kinetics) to the land snail Cantareus aspersus. Snails were exposed to nine contaminated soils differing by a single characteristic (pH or organic matter content or clay content) for 28 days. Toxicokinetic models were applied to determine metal uptake and excretion rates in snails and multivariate regression was used to relate uptake parameters to soil properties. The results showed that alkalinisation of soil and an increase of the organic matter content decreased Pb and Cd bioavailability to snails whereas kaolin clay had no significant influence. The CaCl{sub 2}-extractable concentrations tended to overestimate the effects of pH when used to explain metal uptake rate. We conclude that factors other than those controlling the extractable fraction affect metal bioavailability to snails, confirming the requirement of biota measurements in risk assessment procedures.

  16. CHARACTERIZATION OF LOCALIZED CORROSION OF COPPER PIPES USED IN DRINKING WATER

    Science.gov (United States)

    Localized corrosion of copper, or "copper pitting" in water distribution tubing is a large problem at many utilities. Pitting can lead to pinhole leaks less than a year. Tubing affected by copper pitting will often fail in ultiple locations, resulting in a frustrating situation ...

  17. Wilson’s Disease: An Inherited, Silent, Copper Intoxication Disease

    Directory of Open Access Journals (Sweden)

    Uta Merle

    2016-07-01

    Full Text Available Wilson’s disease is a rare, autosomal recessive, genetic, copper overload disease, which evokes multiple motor or neuropsychiatric symptoms and liver disease. It is the consequence of a variety of different mutations affecting the ATP7B gene. This gene encodes for a class IB, P-type, copper-transporting ATPase, which is located in the trans-Golgi network of the liver and brain, and mediates the excretion of excess copper into the bile. When functionally inactive, the excess copper is deposited in the liver, brain, and other tissues. Free copper induces oxidative stress, lipid peroxidation, and lowers the apoptotic threshold of the cell. The symptoms in affected persons can vary widely and usually appear between the ages of 6 years and 20 years, but there are also cases in which the disease manifests in advanced age. In this review, we discuss the considerations in diagnosis, clinical management, and treatment of Wilson’s disease. In addition, we highlight experimental efforts that address the pathogenesis of Wilson’s disease in ATP7B deficient mice, novel analytical techniques that will improve the diagnosis at an early stage of disease onset, and treatment results with copper-chelating agents.

  18. Copper Regulates Maturation and Expression of an MITF:Tryptase Axis in Mast Cells.

    Science.gov (United States)

    Hu Frisk, Jun Mei; Kjellén, Lena; Kaler, Stephen G; Pejler, Gunnar; Öhrvik, Helena

    2017-12-15

    Copper has previously been implicated in the regulation of immune responses, but the impact of this metal on mast cells is poorly understood. In this article, we address this issue and show that copper starvation of mast cells causes increased granule maturation, as indicated by higher proteoglycan content, stronger metachromatic staining, and altered ultrastructure in comparison with nontreated cells, whereas copper overload has the opposite effects. In contrast, copper status did not impact storage of histamine in mast cells, nor did alterations in copper levels affect the ability of mast cells to degranulate in response to IgER cross-linking. A striking finding was decreased tryptase content in mast cells with copper overload, whereas copper starvation increased tryptase content. These effects were associated with corresponding shifts in tryptase mRNA levels, suggesting that copper affects tryptase gene regulation. Mechanistically, we found that alterations in copper status affected the expression of microphthalmia-associated transcription factor, a transcription factor critical for driving tryptase expression. We also found evidence supporting the concept that the effects on microphthalmia-associated transcription factor are dependent on copper-mediated modulation of MAPK signaling. Finally, we show that, in MEDNIK syndrome, a condition associated with low copper levels and a hyperallergenic skin phenotype, including pruritis and dermatitis, the number of tryptase-positive mast cells is increased. Taken together, our findings reveal a hitherto unrecognized role for copper in the regulation of mast cell gene expression and maturation. Copyright © 2017 by The American Association of Immunologists, Inc.

  19. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA

    Science.gov (United States)

    Besser, J.M.; Brumbaugh, W.G.; Ivey, C.D.; Ingersoll, C.G.; Moran, P.W.

    2008-01-01

    We studied the bioavailability and toxicity of copper, zinc, arsenic, cadmium, and lead in sediments from Lake Roosevelt (LR), a reservoir on the Columbia River in Washington, USA that receives inputs of metals from an upstream smelter facility. We characterized chronic sediment toxicity, metal bioaccumulation, and metal concentrations in sediment and pore water from eight study sites: one site upstream in the Columbia River, six sites in the reservoir, and a reference site in an uncontaminated tributary. Total recoverable metal concentrations in LR sediments generally decreased from upstream to downstream in the study area, but sediments from two sites in the reservoir had metal concentrations much lower than adjacent reservoir sites and similar to the reference site, apparently due to erosion of uncontaminated bank soils. Concentrations of acid-volatile sulfide in LR sediments were too low to provide strong controls on metal bioavailability, and selective sediment extractions indicated that metals in most LR sediments were primarily associated with iron and manganese oxides. Oligochaetes (Lumbriculus variegatus) accumulated greatest concentrations of copper from the river sediment, and greatest concentrations of arsenic, cadmium, and lead from reservoir sediments. Chronic toxic effects on amphipods (Hyalella azteca; reduced survival) and midge larvae (Chironomus dilutus; reduced growth) in whole-sediment exposures were generally consistent with predictions of metal toxicity based on empirical and equilibrium partitioning-based sediment quality guidelines. Elevated metal concentrations in pore waters of some LR sediments suggested that metals released from iron and manganese oxides under anoxic conditions contributed to metal bioaccumulation and toxicity. Results of both chemical and biological assays indicate that metals in sediments from both riverine and reservoir habitats of Lake Roosevelt are available to benthic invertebrates. These findings will be used as

  20. Do high levels of diffuse and chronic metal pollution in sediments of Rhine and Meuse floodplains affect structure and functioning of terrestrial ecosystems?

    International Nuclear Information System (INIS)

    Rozema, Jelte; Notten, Martje J.M.; Aerts, Rien; Gestel, Cornelis A.M. van; Hobbelen, Peter H.F.; Hamers, Timo H.M.

    2008-01-01

    This paper (re)considers the question if chronic and diffuse heavy metal pollution (cadmium, copper, lead and zinc) affects the structure and functioning of terrestrial ecosystems of Biesbosch National Park, the floodplain area of rivers Meuse and Rhine. To reach this aim, we integrated the results of three projects on: 1. the origin, transfer and effects of heavy metals in a soil-plant-snail food chain; 2. the impact of bioavailability on effects of heavy metals on the structure and functioning of detritivorous communities; 3. the risk assessment of heavy metals for an herbivorous and a carnivorous small mammal food chain. Metal pollution levels of the Biesbosch floodplain soils are high. The bioavailability of metals in the soils is low, causing low metal levels in plant leaves. Despite this, metal concentrations in soil dwelling detritivores and in land snails at polluted locations are elevated in comparison to animals from 'non-polluted' reference sites. However, no adverse effects on ecosystem structure (species richness, density, biomass) and functioning (litter decomposition, leaf consumption, reproduction) have been found. Sediment metal pollution may pose a risk to the carnivorous small mammal food chain, in which earthworms with elevated metal concentrations are eaten by the common shrew. Additional measurements near an active metal smelter, however, show reduced leaf consumption rates and reduced reproduction by terrestrial snails, reflecting elevated metal bioavailability at this site. Since future management may also comprise reintroduction of tidal action in the Biesbosch area, changes in metal bioavailability, and as a consequence future ecosystem effects, cannot be excluded

  1. Bioavailability of voriconazole in hospitalised patients

    NARCIS (Netherlands)

    Veringa, Anette; Geling, Sanne; Span, Lambert F R; Vermeulen, Karin M; Zijlstra, Jan G; van der Werf, Tjip S; Kosterink, Jos G W; Alffenaar, Jan-Willem C

    An important element in antimicrobial stewardship programmes is early switch from intravenous (i.v.) to oral antimicrobial treatment, especially for highly bioavailable drugs. The antifungal agent voriconazole is available both in i.v. and oral formulations and bioavailability is estimated to be

  2. Viscosity and density models for copper electrorefining electrolytes

    OpenAIRE

    Kalliomäki Taina; Aji Arif T.; Aromaa Jari; Lundström Mari

    2016-01-01

    Viscosity and density are highly important physicochemical properties of copper electrolyte since they affect the purity of cathode copper and energy consumption [1, 2] affecting the mass and heat transfer conditions in the cell [3]. Increasing viscosity and density decreases the rate in which the anode slime falls to the bottom of the cell [4, 5] and lowers the diffusion coefficient of cupric ion (DCu2+) [6]. Decreasing the falling rate of anode slime increases movement of the slime to other...

  3. Copper Induces Vasorelaxation and Antagonizes Noradrenaline -Induced Vasoconstriction in Rat Mesenteric Artery

    Directory of Open Access Journals (Sweden)

    Yu-Chun Wang

    2013-11-01

    Full Text Available Background/Aims: Copper is an essential trace element for normal cellular function and contributes to critical physiological or pathological processes. The aim of the study was to investigate the effects of copper on vascular tone of rat mesenteric artery and compare the effects of copper on noradrenaline (NA and high K+ induced vasoconstriction. Methods: The rat mesenteric arteries were isolated and the vessel tone was measured by using multi wire myograph system in vitro. Blood pressure of carotid artery in rabbits was measured by using physiological data acquisition and analysis system in vivo. Results: Copper dose-dependently blunted NA-induced vasoconstriction of rat mesenteric artery. Copper-induced vasorelaxation was inhibited when the vessels were pretreated with NG-nitro-L-arginine methyl ester (L-NAME. Copper did not blunt high K+-induced vasoconstriction. Copper preincubation inhibited NA-evoked vasoconstriction and the inhibition was not affected by the presence of L-NAME. Copper preincubation showed no effect on high K+-evoked vasoconstriction. Copper chelator diethyldithiocarbamate trihydrate (DTC antagonized the vasoactivity induced by copper in rat mesenteric artery. In vivo experiments showed that copper injection (iv significantly decreased blood pressure of rabbits and NA or DTC injection (iv did not rescue the copper-induced hypotension and animal death. Conclusion: Copper blunted NA but not high K+-induced vasoconstriction of rat mesenteric artery. The acute effect of copper on NA-induced vasoconstriction was depended on nitric oxide (NO, but the effect of copper pretreatment on NA-induced vasoconstriction was independed on NO, suggesting that copper affected NA-induced vasoconstriction by two distinct mechanisms.

  4. Bioavailability in ecological risk. Assessment for radionuclides

    International Nuclear Information System (INIS)

    Garnier-Laplace, J.; Gilbin, R.; Della-Vedova, C.; Adam, C.; Simon, O.; Denison, F.; Beaugelin, K.

    2005-01-01

    The guidance for performing Ecological Risk Assessments (ERA) in Europe has been published in 2003 in the EC's Technical Guidance Document. This document constitutes the official reference in which current water quality standards and risk assessment approach for metals/metalloids are still mainly based on total or dissolved concentrations. However, it has been recognized that accurate assessment of the bio-available metal fraction is crucial, even if the way to incorporate bioavailability into these procedures is still under discussion. The speciation of a pollutant in the exposure medium is the first factor that regulates its bioavailability and consequently its bioaccumulation and the induced biological effects. Therefore, within any ecological risk assessment, bioavailability has obvious implications: firstly in exposure analysis which aim is to determine Predicted Exposure Concentration (PEC); secondly in effect analysis while deriving the so-called Predicted No-Effect Concentrations (PNEC) as toxicity is often linked to the amount of the contaminant incorporated into the tissues of biota. Similarities between metals/metalloids and radionuclides are limited to the biogeochemical behaviour of the element considered and to the need to use bioavailability models. In addition, for radionuclides, emitted ionising radiations (type and energy) need to be taken into account for both exposure and effect analyses whilst performing dosimetric calculations appropriate to the exposure scenarios. A methodology for properly implementing bioavailability models is explained and illustrated for aqueous U(VI), starting from a comprehensive review of the thermodynamic data relevant to environmentally-realistic physico-chemical conditions. Then, the use of thermodynamic equilibrium modelling as a tool for interpreting the bioavailability of U(VI) is presented. Using a systematic approach, different bioavailability models of increasing complexity were tested to model U bio

  5. Selenium bioavailability and uptake as affected by four different plants in a loamy clay soil with particular attention to mycorrhizae inoculated ryegrass

    International Nuclear Information System (INIS)

    Munier-Lamy, C.; Deneux-Mustin, S.; Mustin, C.; Merlet, D.; Berthelin, J.; Leyval, C.

    2007-01-01

    The aim of this study was to investigate the influence of plant species, especially of their rhizosphere soil, and of inoculation with an arbuscular mycorrhizal (AM) fungus on the bioavailability of selenium and its transfer in soil-plant systems. A pot experiment was performed with a loamy clay soil and four plant species: maize, lettuce, radish and ryegrass, the last one being inoculated or not with an arbuscular mycorrhizal fungus (Glomus mosseae). Plant biomass and Se concentration in shoots and roots were estimated at harvest. Se bioavailability in rhizosphere and unplanted soil was evaluated using sequential extractions. Plant biomass and selenium uptake varied with plant species. The quantity of rhizosphere soil also differed between plants and was not proportional to plant biomass. The highest plant biomass, Se concentration in plants, and soil to plant transfer factor were obtained with radish. The lowest Se transfer factors were obtained with ryegrass. For the latter, mycorrhizal inoculation did not significantly affect plant growth, but reduced selenium transfer from soil to plant by 30%. In unplanted soil after 65 days aging, more than 90% of added Se was water-extractable. On the contrary, Se concentration in water extracts of rhizosphere soil represented less than 1% and 20% of added Se for ryegrass and maize, respectively. No correlation was found between the water-extractable fraction and Se concentration in plants. The speciation of selenium in the water extracts indicated that selenate was reduced, may be under organic forms, in the rhizosphere soil

  6. Chronic copper poisoning in lambs

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D B

    1964-08-08

    This communication presented evidence of the elevation of plasma GOT (glutamic oxaloacetic transaminase or aspartate transaminase) concentration during the development of copper toxicity in some experimental lambs, and also demonstrated that plasma GOT concentration can be used to assess the course of the disease during treatment. A group of Kerry Hill lambs were fed 1 1/2 lb per day of a proprietary concentrate containing 40 parts of copper per million on a dry-matter basis in addition to hay and water ad lib. Data was included for the plasma GOT concentrations of the lambs, bled weekly after weaning from pasture to this diet. There was some variation between the individual lambs, and in one there was no increase in plasma GOT by the 20th week when all the surviving lambs were slaughtered. The concentrations of copper found in the caudate lobe of the liver and in the kidney cortex post mortem were given. The overall findings showed that the liver gave a reliable indication of the copper status of an animal whereas the kidney cortex copper concentration was a better criterion for the diagnosis of copper poisoning and was in agreement with the results of Eden, Todd, and Grocey and Thompson. Observations demonstrated the benefits resulting from the early diagnosis of chronic copper poisoning in lambs, when treatment of affected animals may be commenced before the haemolytic crisis develops. Treatment included reducing the copper intake and dosing with ammonium molybdate and sodium sulfate, and the plasma GOT concentration may be used to assess the rate of recovery. 4 references, 3 tables.

  7. Nanoparticulation improves bioavailability of Erlotinib.

    Science.gov (United States)

    Yang, Kyung Mi; Shin, In Chul; Park, Joo Won; Kim, Kab-Sig; Kim, Dae Kyong; Park, Kyungmoon; Kim, Kunhong

    2017-09-01

    Nanoparticulation using fat and supercritical fluid (NUFS TM ) is a drug delivery platform technology enabling efficient and effective formulation of poorly soluble drugs. We performed experiments to examine whether NUFS™ could improve poor bioavailability and reduce fed-fasted bioavailability variances of erlotinib (Ert). NUFS-Ert was prepared using NUFS™ technology; its physical properties were characterized, and drug release was measured. Furthermore, in vitro and in vivo efficacy tests and pharmacokinetic analysis were performed. NUFS-Ert nanoparticles had an average size of 250 nm and were stable for 2 months at 40 °C, 4 °C, and room temperature. The dissolution rate of NUFS-Ert increased in bio-relevant dissolution media. NUFS-Ert was more potent in inhibiting EGF signaling and in suppressing the proliferation of A549, a human non-small cell lung cancer cell line. Furthermore, A549 xenografts in BALB/c nude mice treated with NUFS-Ert regressed more efficiently than those in the mice treated with vehicle or Tarceva ® . In addition, experimental lung metastasis was more efficiently inhibited by NUFS-Ert than by Tarceva ® . The relative bioavailability of NUFS-Ert compared with that of Tarceva ® was 550% and the ratio of the area under the concentration-time curve (AUC) of fed state to the AUC of fasted state was 1.8 for NUFS-Ert and 5.8 for Tarceva ® . NUFS-Ert could improve poor bioavailability and reduce fed-fasted bioavailability variances of Ert. NUFS-Ert was more efficacious than Tarceva ® .

  8. Development of photosynthetic biofilms affected by dissolved and sorbed copper in a eutrophic river

    NARCIS (Netherlands)

    Barranguet, C.; Plans, M.; Van der Grinten, E.; Sinke, J.J.; Admiraal, W.

    2002-01-01

    Photosynthetic biofilms are capable of immobilizing important concentrations of metals, therefore reducing bioavailability to organisms. But also metal pollution is believed to produce changes in the microalgal species composition of biofilms. We investigated the changes undergone by natural

  9. Influence of copper on Euplotes sp. and associated bacterial population

    Directory of Open Access Journals (Sweden)

    Guilherme Oliveira Andrade da Silva

    2014-05-01

    Full Text Available The influence of copper on the ciliate Euplotes sp. and associated bacteria isolated from sediment samples of Guanabara Bay were investigated in bioassays. This region is highly affected by heavy metals such as copper, from solid waste constantly dumped in the bay and other sources such as industrial effluents, antifouling paints, atmospheric deposition and urban drainage, and even today there are few data on the metal toxicity to the ecosystem of the Bay of Guanabara. Bioassays were conducted to estimate the LC50-24 h of copper, in order to determine the concentration of metal bearing 50% of the population mortality. The results indicated that the concentrations of 0.05 and 0.009 mg L-1 presented no toxicity to Euplotes sp. The associated bacteria are tolerant to copper concentrations used in bioassays, and suggest that they could be used as a potential agent in the bioremediation of areas affected by copper.

  10. Incorporation of Heavy metals bioavailability into risk characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Hyerim; Chung, Jae Shik; Nam, Taekwoo; Nam, Kyoungphile [Department of Civil and Environmental Engineering, Seoul National University, Seoul (Korea, Republic of); Moon, Hee Sun [School of Earth and Environmental Sciences, Seoul National University, Seoul (Korea, Republic of)

    2010-09-15

    The bioavailability of field-aged Cd and Cu was calculated, and compared to the total concentrations determined by acid digestion. Only 0.60-4.15% for Cd and 0.59-9.43% for Cu were found to be bioavailable when determined by stomach-phase extraction. The incorporation of bioavailability reduced more than 90% of the calculated risk of the metals at the site of study. It should be noted that such a reduction may not be generalized and the site-specific bioavailability needs to be determined case by case. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  11. Bioavailability of indomethacin-saccharin cocrystals.

    Science.gov (United States)

    Jung, Min-Sook; Kim, Jeong-Soo; Kim, Min-Soo; Alhalaweh, Amjad; Cho, Wonkyung; Hwang, Sung-Joo; Velaga, Sitaram P

    2010-11-01

    Pharmaceutical cocrystals are new solid forms with physicochemical properties that appear promising for drug product development. However, the in-vivo bioavailability of cocrystals has rarely been addressed. The cocrystal of indomethacin (IND), a Biopharmaceutical Classification System class II drug, with saccharin (SAC) has been shown to have higher solubility than IND at all pH. In this study, we aimed to evaluate the in-vitro dissolution and in-vivo bioavailability of IND-SAC cocrystals in comparison with IND in a physical mixture and the marketed product Indomee. Scale-up of the cocrystals was undertaken using cooling batch crystallisation without seeding. The chemical and physical purity of the up-scaled material was verified using high-performance liquid chromatography, differential scanning calorimetry and powder X-ray diffraction. The IND-SAC cocrystals and IND plus SAC were mixed with lactose and the formulations were placed into gelatin capsules. In-vitro dissolution studies were then performed using the rotating basket dissolution method. The intrinsic dissolution rate of IND and IND-SAC cocrystals was also determined. Finally, a bioavailability study for the formulations was conducted in beagle dogs. The plasma samples were analysed using high-performance liquid chromatography and the pharmacokinetic data were analysed using standard methodologies.   The bulk cocrystals (i.e. scaled-up material) were chemically and physically pure. The in-vitro dissolution rate of the cocrystals was higher than that of IND and similar to that of Indomee at pH 7.4 and pH 1.2. The in-vivo bioavailability of the IND-SAC cocrystals in dogs was significantly higher (ANOVA, P0.05). The study indicates that the improved aqueous solubility of the cocrystals leads to improved bioavailability of IND. Thus, the cocrystals are a viable alternative solid form that can improve the dissolution rate and bioavailability of poorly soluble drugs. © 2010 The Authors. JPP © 2010 Royal

  12. Hologram QSAR model for the prediction of human oral bioavailability.

    Science.gov (United States)

    Moda, Tiago L; Montanari, Carlos A; Andricopulo, Adriano D

    2007-12-15

    A drug intended for use in humans should have an ideal balance of pharmacokinetics and safety, as well as potency and selectivity. Unfavorable pharmacokinetics can negatively affect the clinical development of many otherwise promising drug candidates. A variety of in silico ADME (absorption, distribution, metabolism, and excretion) models are receiving increased attention due to a better appreciation that pharmacokinetic properties should be considered in early phases of the drug discovery process. Human oral bioavailability is an important pharmacokinetic property, which is directly related to the amount of drug available in the systemic circulation to exert pharmacological and therapeutic effects. In the present work, hologram quantitative structure-activity relationships (HQSAR) were performed on a training set of 250 structurally diverse molecules with known human oral bioavailability. The most significant HQSAR model (q(2)=0.70, r(2)=0.93) was obtained using atoms, bond, connection, and chirality as fragment distinction. The predictive ability of the model was evaluated by an external test set containing 52 molecules not included in the training set, and the predicted values were in good agreement with the experimental values. The HQSAR model should be useful for the design of new drug candidates having increased bioavailability as well as in the process of chemical library design, virtual screening, and high-throughput screening.

  13. Genetic Variations Associated with Vitamin A Status and Vitamin A Bioavailability

    Directory of Open Access Journals (Sweden)

    Patrick Borel

    2017-03-01

    Full Text Available Blood concentration of vitamin A (VA, which is present as different molecules, i.e., mainly retinol and provitamin A carotenoids, plus retinyl esters in the postprandial period after a VA-containing meal, is affected by numerous factors: dietary VA intake, VA absorption efficiency, efficiency of provitamin A carotenoid conversion to VA, VA tissue uptake, etc. Most of these factors are in turn modulated by genetic variations in genes encoding proteins involved in VA metabolism. Genome-wide association studies (GWAS and candidate gene association studies have identified single nucleotide polymorphisms (SNPs associated with blood concentrations of retinol and β-carotene, as well as with β-carotene bioavailability. These genetic variations likely explain, at least in part, interindividual variability in VA status and in VA bioavailability. However, much work remains to be done to identify all of the SNPs involved in VA status and bioavailability and to assess the possible involvement of other kinds of genetic variations, e.g., copy number variants and insertions/deletions, in these phenotypes. Yet, the potential usefulness of this area of research is exciting regarding the proposition of more personalized dietary recommendations in VA, particularly in populations at risk of VA deficiency.

  14. Assessing the bioavailability and risk from metal-contaminated ...

    Science.gov (United States)

    Exposure to contaminated soil and dust is an important pathway in human health risk assessment. Physical and chemical characteristics, as well as biological factors, determine the bioaccessibility/bioavailability of soil and dust contaminants. Within a single sample, contamination may arise from multiple sources of toxic elements that may exist as different forms (species) which impact bioavailability. In turn, the bioaccessibility/bioavailability of soil and dust contaminants has a direct impact on human health risk assessment and risk management practices. Novel research efforts focusing on development and application of in vitro and in vivo methods to measure the bioaccessibility/bioavailability of metal contaminated soils have advanced in the past few years. The objective of this workshop was to focus on recent developments in assessing the bioaccessibility/bioavailability of arsenic contaminated soils, metal contamination in urban residences in Canada and potential children’s exposures to toxic elements in house dust, a community-based study known as the West Oakland Residential Lead Assessment , studies of the bioavailability of soil cadmium, chromium, nickel and mercury and human exposures to contaminated Brownfield soils. These presentations covered issues related to human health and bioavailability along with the most recent studies on community participation in assessing metal contamination, studies of exposures to residential contamination, and

  15. Bioavailability and biodistribution of nanodelivered lutein

    Science.gov (United States)

    The aim of the study was to evaluate the ability of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NP) to enhance lutein bioavailability. The bioavailability of free lutein and PLGA-NP lutein in rats was assessed by determining plasma pharmacokinetics and deposition in selected tissues. Lutein ...

  16. Inhibitory effects of copper on marine dinoflagellates

    Energy Technology Data Exchange (ETDEWEB)

    Saifullah, S.M.

    1978-01-01

    The effect of copper on three species of marine dinoflagellates (Scrippsiella faeroense (Paulsen) Balech et Soares, Prorocentrum micans Ehrenberg, Gymnodinium splendens Lebour) was studied. It inhibited the growth of all species and was lethal to one species in batch cultures. The effect was more pronounced in semicontinuous culture than in batch cultures. Chlorophyll concentrations and rate of uptake of radioactive carbon by cells of S. faeroense were affected in a manner similar to cell numbers. Copper inhibited growth of cells, most probably either by arresting cell division or by penetrating inside the cell and affecting metabolism.

  17. Thermodynamic data for copper. Implications for the corrosion of copper under repository conditions

    International Nuclear Information System (INIS)

    Puigdomenech, I.; Taxen, C.

    2000-08-01

    The stability of copper canisters has a central role in the safety concept for the planned nuclear spent fuel repository in Sweden. The corrosion of copper canisters will be influenced by the chemical and physical environment in the near-field of the repository, and thermodynamic equilibrium calculations provide the basis for understanding this system. Thermodynamic data have been selected in this work for solids and aqueous species in the system: Cu - H 2 O - H + - H 2 - F - - Cl - - S 2- - SO 4 2- - NO 3 - - NO 2 - - NH 4 + PO 4 3- - CO 3 2+ . For some reactions and compounds, for which no experimental information on temperature effects was available, entropy and heat capacity values have been estimated. The compiled data were used to calculate thermodynamic equilibria for copper systems up to 100 deg C. The stability of copper in contact with granitic groundwaters has been illustrated using chemical equilibrium diagrams, with he following main conclusions: Dissolved sulphide and O 2 in groundwater are the most damaging components for copper corrosion. If available, HS - will react quantitatively with copper to form a variety of sulphides. However, sulphide concentrations in natural waters are usually low, because it forms sparingly soluble solids with transition metals, including Fe(II), which is wide-spread in reducing environments. Chloride can affect negatively copper corrosion. High concentrations (e.g., [Cl - ]TOT > 60 g/l) may be unfavourable for the general corrosion of copper in combination with in the following circumstances: Low pH ( + . The negative effects of Cl - are emphasised at higher temperatures. The chloride-enhancement of general corrosion may be beneficial for localised corrosion: pitting and stress corrosion cracking. The concept of redox potential, E H , has been found to be inadequate to describe copper corrosion in a nuclear repository. The available amounts of oxidants/reductants, and the stoichiometry of the corrosion reactions are

  18. Pharmaceutical and pharmacological approaches for bioavailability

    Indian Academy of Sciences (India)

    Much research has been done to determine drug–drug and herb–drug interactions for improving the bioavailability of etoposide. The present article gives insight on pharmaceutical and pharmacological attempts made from time to time to overcome the erratic inter- and intra-patient variability for improving the bioavailability ...

  19. Modelling chelate-Induced phytoextraction: functional models predicting bioavailability of metals in soil, metal uptake and shoot biomass

    Directory of Open Access Journals (Sweden)

    Pasqualina Sacco

    2006-06-01

    Full Text Available Chelate-induced phytoextraction of heavy metals from contaminated soils requires special care to determine, a priori, the best method of chelate application, in terms of both dose and timing. In fact, the chelate dose must assure the bioavailability of the metal to the plant without increasing leaching risk and giving toxic effects. Three mathematical models are here proposed for usefully interpreting the processes taking place: a increased soil bioavailability of metals by chelants; b metal uptake by plants; c variation in plant biomass. The models are implemented and validated using data from pot and lysimeter trials. Both the chelate dose and the time elapsed since its application affected metal bioavailability and plant response. Contrariwise, the distribution strategy (single vs. split application seems to produce significant differences both in plant growth and metal uptake, but not in soil metal bioavailability. The proposed models may help to understand and predict the chelate dose – effect relationship with less experimental work.

  20. Modelling chelate-Induced phytoextraction: functional models predicting bioavailability of metals in soil, metal uptake and shoot biomass

    Directory of Open Access Journals (Sweden)

    Pasqualina Sacco

    Full Text Available Chelate-induced phytoextraction of heavy metals from contaminated soils requires special care to determine, a priori, the best method of chelate application, in terms of both dose and timing. In fact, the chelate dose must assure the bioavailability of the metal to the plant without increasing leaching risk and giving toxic effects. Three mathematical models are here proposed for usefully interpreting the processes taking place: a increased soil bioavailability of metals by chelants; b metal uptake by plants; c variation in plant biomass. The models are implemented and validated using data from pot and lysimeter trials. Both the chelate dose and the time elapsed since its application affected metal bioavailability and plant response. Contrariwise, the distribution strategy (single vs. split application seems to produce significant differences both in plant growth and metal uptake, but not in soil metal bioavailability. The proposed models may help to understand and predict the chelate dose – effect relationship with less experimental work.

  1. Colloidal silver ingestion with copper and caeruloplasmin deficiency.

    Science.gov (United States)

    Stepien, Karolina M; Taylor, Andrew

    2012-05-01

    The copper concentration in serum can be affected by the presence of other trace elements such as silver. Low serum copper may result in decreased caeruloplasmin synthesis. We report the case of a 59-year-old woman, who was admitted to hospital with acute psychosis and who had been ingesting chronically, colloidal silver.

  2. Aluminum bioavailability from tea infusion.

    Science.gov (United States)

    Yokel, Robert A; Florence, Rebecca L

    2008-12-01

    The objective was to estimate oral Al bioavailability from tea infusion in the rat, using the tracer (26)Al. (26)Al citrate was injected into tea leaves. An infusion was prepared from the dried leaves and given intra-gastrically to rats which received concurrent intravenous (27)Al infusion. Oral Al bioavailability (F) was calculated from the area under the (26)Al, compared to (27)Al, serum concentration x time curves. Bioavailability from tea averaged 0.37%; not significantly different from water (F=0.3%), or basic sodium aluminum phosphate (SALP) in cheese (F=0.1-0.3%), but greater than acidic SALP in a biscuit (F=0.1%). Time to maximum serum (26)Al concentration was 1.25, 1.5, 8 and 4.8h, respectively. These results of oral Al bioavailability x daily consumption by the human suggest tea can provide a significant amount of the Al that reaches systemic circulation. This can allow distribution to its target organs of toxicity, the central nervous, skeletal and hematopoietic systems. Further testing of the hypothesis that Al contributes to Alzheimer's disease may be more warranted with studies focusing on total average daily food intake, including tea and other foods containing appreciable Al, than drinking water.

  3. Sequential Extraction as Novel Approach to Compare 12 Medicinal Plants From Kenya Regarding Their Potential to Release Chromium, Manganese, Copper, and Zinc.

    Science.gov (United States)

    Mogwasi, R; Zor, S; Kariuki, D K; Getenga, M Z; Nischwitz, V

    2018-04-01

    This study is focusing on a novel approach to screen a large number of medicinal plants from Kenya regarding their contents and availability of selected metals potentially relevant for treatment of diabetes patients. For this purpose, total levels of zinc, chromium, manganese, and copper were determined by flame atomic absorption spectrometry and inductively coupled plasma mass spectrometry as well as BCR sequential extraction to fractionate the elemental species in anti-diabetic medicinal plants collected from five natural locations in two sub counties in Nyamira County, Kenya. Solanum mauense had the highest zinc level of 123.0 ± 3.1 mg/kg while Warburgia ugandensis had the lowest level of 13.9 ± 0.4 mg/kg. The highest level of copper was in Bidens pilosa (29.0 ± 0.6 mg/kg) while the lowest was in Aloe vera (3.0 ± 0.1 mg/kg). Croton macrostachyus had the highest manganese level of 1630 ± 40 mg/kg while Clerodendrum myricoides had the lowest (80.2 ± 1.2 mg/kg). The highest level of chromium was in Solanum mauense (3.20 ± 0.06 mg/kg) while the lowest (0.04 ± 0.01 mg/kg) were in Clerodendrum myricoides and Warburgia ugandesis among the medicinal plants from Nyamira and Borabu, respectively. The levels of the elements were statistically different from that of other elements while the level of a given element was not statistically different in the medicinal plants from the different sub counties. Sequential extraction was performed to determine the solubility and thus estimate the bioavailability of the four investigated essential and potentially therapeutically relevant metals. The results showed that the easily bioavailable fraction (EBF) of chromium, manganese, zinc, and copper ranged from 6.7 to 13.8%, 4.1 to 10%, 2.4 to 10.2%, and 3.2 to 12.0% while the potentially bioavailable fraction (PBF) ranged from 50.1 to 67.6%, 32.2 to 48.7%, 23.0 to 41.1%, and 34.6 to 53.1%, respectively. Bidens pilosa, Croton macrostachyus, Ultrica dioica

  4. Comparative effects of dissolved copper and copper oxide nanoparticle exposure to the sea anemone, Exaiptasia pallida

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Samreen; Goddard, Russell H.; Bielmyer-Fraser, Gretchen K., E-mail: gkbielmyer@valdosta.edu

    2015-03-15

    Highlights: • Differences between CuO NP and CuCl{sub 2} exposure were characterized. • Copper accumulation in E. pallida was concentration-dependent. • E. pallida exposed to CuCl{sub 2} accumulated higher copper tissue burdens. • The oxidative stress response was greater in E. pallida exposed to CuO NP. • Both forms of copper inhibited CA activity in E. pallida. - Abstract: Increasing use of metal oxide nanoparticles (NP) by various industries has resulted in substantial output of these NP into aquatic systems. At elevated concentrations, NP may interact with and potentially affect aquatic organisms. Environmental implications of increased NP use are largely unknown, particularly in marine systems. This research investigated and compared the effects of copper oxide (CuO) NP and dissolved copper, as copper chloride (CuCl{sub 2}), on the sea anemone, Exaiptasia pallida. Sea anemones were collected over 21 days and tissue copper accumulation and activities of the enzymes: catalase, glutathione peroxidase, glutathione reductase, and carbonic anhydrase were quantified. The size and shape of CuO NP were observed using a ecanning electron microscope (SEM) and the presence of copper was confirmed by using Oxford energy dispersive spectroscopy systems (EDS/EDX). E. pallida accumulated copper in their tissues in a concentration- and time-dependent manner, with the animals exposed to CuCl{sub 2} accumulating higher tissue copper burdens than those exposed to CuO NP. As a consequence of increased copper exposure, as CuO NP or CuCl{sub 2}, anemones increased activities of all of the antioxidant enzymes measured to some degree, and decreased the activity of carbonic anhydrase. Anemones exposed to CuO NP generally had higher anti-oxidant enzyme activities than those exposed to the same concentrations of CuCl{sub 2}. This study is useful in discerning differences between CuO NP and dissolved copper exposure and the findings have implications for exposure of aquatic

  5. Reaction and nucleation mechanisms of copper electrodeposition on disposable pencil graphite electrode

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, M.R. [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 29th Bahman Bolvard, Tabriz 51664 (Iran, Islamic Republic of)], E-mail: sr.majidi@gmail.com; Asadpour-Zeynali, K.; Hafezi, B. [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 29th Bahman Bolvard, Tabriz 51664 (Iran, Islamic Republic of)

    2009-01-01

    The reaction and nucleation mechanism of copper electrodeposition on disposable pencil graphite electrode (PGE) in acidic sulphate solution were investigated using cyclic voltammetry (CV) and chronoamperometry (CA) techniques, respectively. Electrochemical experiments were followed by morphological studies with scanning electron microscopy (SEM). The effect of some experimental parameters, namely copper concentration, pH, scan rate, background electrolyte, deposition potential, and conditioning surface of the electrode were described. At the surface of PGE, Cu{sup 2+} ions were reduced at -250 mV vs. SCE. It was found that electrodeposition of copper is affected by rough surface of PGE. The nucleation mechanisms were examined by fitting the experimental CA data into Scharifker-Hills nucleation models. The nuclei population densities were also determined by means of two common fitting models developed for three-dimensional nucleation and growth (Scharifker-Mostany and Mirkin-Nilov-Herrman-Tarallo). It was found that deposition potential and background electrolyte affect the distribution of the deposited copper. The morphology of the deposited copper is affected by background electrolyte.

  6. Methotrexate bioavailability

    NARCIS (Netherlands)

    van Roon, E. N.; van de Laar, M. A. F. J.

    2010-01-01

    The clinical relevance of the concept of bioavailability rests on two main principles. First, that measurement of the active component at the site of action is generally not possible and, secondly, that a relationship exists between on the one hand efficacy and/or safely and on the other hand

  7. Assessing arsenic bioavailability through the use of bioassays

    Science.gov (United States)

    Diesel, E.; Nadimpalli, M.; Hull, M.; Schreiber, M. E.; Vikesland, P.

    2009-12-01

    Various methods have been used to characterize the bioavailability of a contaminant, including chemical extractions from soils, toxicity tests, bioaccumulation measurements, estimation from soil properties, in vitro/in vivo tests, and microbial biossays. Unfortunately, these tests are all unique (i.e. they measure bioavailability through different mechanisms) and it is difficult to compare measurements collected using one method to those collected from another. Additionally, there are fundamental aspects of bioavailability research that require further study. In particular, changes in bioavailability over time are not well understood, as well as what the geochemical controls are on changes in bioavailability. In addition, there are no studies aimed at the integration of bioavailability measurements and potential geochemical controls. This research project seeks to find a standard set of assays and sensors that can be used to assess arsenic bioavailability at any field site, as well as to use these tools and techniques to better understand changes in, and controls on, arsenic bioavailability. The bioassays to be utilized in this research are a bioluminescent E. coli assay and a Corbicula fluminea (Asian clam) assay. Preliminary experiments to determine the suitability of the E. coli and C. fluminea assays have been completed. The E. coli assay can be utilized to analyze As(III) and As(V) with a linear standard curve between 5 and 200 ppb for As(III) and 100 ppb and 5 ppm for As(V); no bioluminescent response above background was elicited in the presence of Roxarsone, an organoarsenical. The C. fluminea assay is capable of bioaccumulating As(III), As(V), Roxarsone, and MSMA, with As(III) being the most readily accumulated, followed by As(V), Roxarsone and MSMA, respectively. Additional research will include assessing bioavailability of various arsenic species adsorbed to natural colloidal materials (i.e. clays, iron oxides, NOM) to the E. coli and C. fluminea assays

  8. Effects of copper on CHO cells: cellular requirements and product quality considerations.

    Science.gov (United States)

    Yuk, Inn H; Russell, Stephen; Tang, Yun; Hsu, Wei-Ting; Mauger, Jacob B; Aulakh, Rigzen P S; Luo, Jun; Gawlitzek, Martin; Joly, John C

    2015-01-01

    Recent reports highlight the impact of copper on lactate metabolism: CHO cell cultures with higher initial copper levels shift to net lactate consumption and yield lower final lactate and higher titers. These studies investigated the effects of copper on metabolite and transcript profiles, but did not measure in detail the dependences of cell culture performance and product quality on copper concentrations. To more thoroughly map these dependences, we explored the effects of various copper treatments on four recombinant CHO cell lines. In the first cell line, when extracellular copper remained above the limit of detection (LOD), cultures shifted to net lactate consumption and yielded comparable performances irrespective of the differences in copper levels; when extracellular copper dropped below LOD (∼13 nM), cultures failed to shift to net lactate consumption, and yielded significantly lower product titers. Across the four cell lines, the ability to grow and consume lactate seemed to depend on the presence of a minimum level of copper, beyond which there were no further gains in culture performance. Although this minimum cellular copper requirement could not be directly quantified, we estimated its probable range for the first cell line by applying several assumptions. Even when different copper concentrations did not affect cell culture performance, they affected product quality profiles: higher initial copper concentrations increased the basic variants in the recombinant IgG1 products. Therefore, in optimizing chemically defined media, it is important to select a copper concentration that is adequate and achieves desired product quality attributes. © 2014 American Institute of Chemical Engineers.

  9. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil

    Energy Technology Data Exchange (ETDEWEB)

    Beesley, Luke, E-mail: L.Beesley@2007.ljmu.ac.u [Faculty of Science, Liverpool John Moores University, Liverpool L3 3AF (United Kingdom); Moreno-Jimenez, Eduardo [Departamento de Quimica Agricola, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Gomez-Eyles, Jose L. [University of Reading, Department of Soil Science, Whiteknights, Reading RG6 6DW (United Kingdom)

    2010-06-15

    Applying amendments to multi-element contaminated soils can have contradictory effects on the mobility, bioavailability and toxicity of specific elements, depending on the amendment. Trace elements and PAHs were monitored in a contaminated soil amended with biochar and greenwaste compost over 60 days field exposure, after which phytotoxicity was assessed by a simple bio-indicator test. Copper and As concentrations in soil pore water increased more than 30 fold after adding both amendments, associated with significant increases in dissolved organic carbon and pH, whereas Zn and Cd significantly decreased. Biochar was most effective, resulting in a 10 fold decrease of Cd in pore water and a resultant reduction in phytotoxicity. Concentrations of PAHs were also reduced by biochar, with greater than 50% decreases of the heavier, more toxicologically relevant PAHs. The results highlight the potential of biochar for contaminated land remediation. - Biochar was more effective than greenwaste compost at reducing bioavailable fractions of phytotoxic Cd and Zn as well as the heavier, more toxicologically relevant PAHs.

  10. Hydrostatic pressure and temperature affect the tolerance of the free-living marine nematode Halomonhystera disjuncta to acute copper exposure.

    Science.gov (United States)

    Mevenkamp, Lisa; Brown, Alastair; Hauton, Chris; Kordas, Anna; Thatje, Sven; Vanreusel, Ann

    2017-11-01

    Potential deep-sea mineral extraction poses new challenges for ecotoxicological research since little is known about effects of abiotic conditions present in the deep sea on the toxicity of heavy metals. Due to the difficulty of collecting and maintaining deep-sea organisms alive, a first step would be to understand the effects of high hydrostatic pressure and low temperatures on heavy metal toxicity using shallow-water relatives of deep-sea species. Here, we present the results of acute copper toxicity tests on the free-living shallow-water marine nematode Halomonhystera disjuncta, which has close phylogenetic and ecological links to the bathyal species Halomonhystera hermesi. Copper toxicity was assessed using a semi-liquid gellan gum medium at two levels of hydrostatic pressure (0.1MPa and 10MPa) and temperature (10°C and 20°C) in a fully crossed design. Mortality of nematodes in each treatment was assessed at 4 time intervals (24 and 48h for all experiments and additionally 72 and 96h for experiments run at 10°C). LC 50 values ranged between 0.561 and 1.864mg Cu 2+ L -1 and showed a decreasing trend with incubation time. Exposure to high hydrostatic pressure significantly increased sensitivity of nematodes to copper, whereas lower temperature resulted in an apparently increased copper tolerance, possibly as a result of a slower metabolism under low temperatures. These results indicate that hydrostatic pressure and temperature significantly affect metal toxicity and therefore need to be considered in toxicity assessments for deep-sea species. Any application of pollution limits derived from studies of shallow-water species to the deep-sea mining context must be done cautiously, with consideration of the effects of both stressors. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. CopM is a novel copper-binding protein involved in copper resistance in Synechocystis sp. PCC 6803

    Science.gov (United States)

    Giner-Lamia, Joaquín; López-Maury, Luis; Florencio, Francisco J

    2015-01-01

    Copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803 comprises two operons, copMRS and copBAC, which are expressed in response to copper in the media. copBAC codes for a heavy-metal efflux–resistance nodulation and division (HME-RND) system, while copMRS codes for a protein of unknown function, CopM, and a two-component system CopRS, which controls the expression of these two operons. Here, we report that CopM is a periplasmic protein able to bind Cu(I) with high affinity (KD ∼3 × 10−16). Mutants lacking copM showed a sensitive copper phenotype similar to mutants affected in copB, but lower than mutants of the two-component system CopRS, suggesting that CopBAC and CopM constitute two independent resistance mechanisms. Moreover, constitutive expression of copM is able to partially suppress the copper sensitivity of the copR mutant strain, pointing out that CopM per se is able to confer copper resistance. Furthermore, constitutive expression of copM was able to reduce total cellular copper content of the copR mutant to the levels determined in the wild-type (WT) strain. Finally, CopM was localized not only in the periplasm but also in the extracellular space, suggesting that CopM can also prevent copper accumulation probably by direct copper binding outside the cell. PMID:25545960

  12. Copper and Copper Proteins in Parkinson's Disease

    Science.gov (United States)

    Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology. PMID:24672633

  13. Pan-Arctic Distribution of Bioavailable Dissolved Organic Matter and Linkages With Productivity in Ocean Margins

    Science.gov (United States)

    Shen, Yuan; Benner, Ronald; Kaiser, Karl; Fichot, Cédric G.; Whitledge, Terry E.

    2018-02-01

    Rapid environmental changes in the Arctic Ocean affect plankton productivity and the bioavailability of dissolved organic matter (DOM) that supports microbial food webs. We report concentrations of dissolved organic carbon (DOC) and yields of amino acids (indicators of labile DOM) in surface waters across major Arctic margins. Concentrations of DOC and bioavailability of DOM showed large pan-Arctic variability that corresponded to varying hydrological conditions and ecosystem productivity, respectively. Widespread hot spots of labile DOM were observed over productive inflow shelves (Chukchi and Barents Seas), in contrast to oligotrophic interior margins (Kara, Laptev, East Siberian, and Beaufort Seas). Amino acid yields in outflow gateways (Canadian Archipelago and Baffin Bay) indicated the prevalence of semilabile DOM in sea ice covered regions and sporadic production of labile DOM in ice-free waters. Comparing these observations with surface circulation patterns indicated varying shelf subsidies of bioavailable DOM to Arctic deep basins.

  14. Influence of lifestyle on vitamin bioavailability.

    Science.gov (United States)

    van den Berg, Henk; van der Gaag, Martijn; Hendriks, Henk

    2002-01-01

    In this review the effects of lifestyle factors, especially alcohol consumption, on vitamin bioavailability are summarized and discussed. Alcohol effects are clearly dose-dependent. Excessive chronic alcohol intake is generally associated with vitamin deficiency (especially folate, thiamine, and vitamin B6) due to malnutrition, malabsorption, and ethanol toxicity. Effects of moderate alcohol use are mainly explained by a lower vitamin intake. In the case of vitamin A and beta-carotene, effects on post-absorptive (lipoprotein) metabolism have been demonstrated. In one diet-controlled crossover study, alcohol consumption resulted in an increase in the plasma vitamin B6 (PLP) content, especially after beer consumption (containing vitamin B6), but also after wine and spirit consumption (not containing vitamin B6). Smoking is also associated with a lower dietary vitamin intake. In the case of vitamin C, B12, folate, and beta-carotene, evidence has been presented for effects on postabsorptive metabolism, due to smoke-induced oxidative stress and/or vitamin inactivation. For vitamin E a direct effect of smoking on absorption has been demonstrated. There is no convincing evidence that low-fat diets negatively affect fat-soluble vitamin absorption, but cholesterol-lowering compounds (diets), or unabsorbable fat substitutes, may do so. Vitamin bioavailability may be compromised from certain vegetables (particularly raw), and/or from high-fiber foods, because of limited digestion and inefficient release of vitamins from the food matrix.

  15. Separation of copper-64 from copper phthalocyanine

    International Nuclear Information System (INIS)

    Battaglin, R.I.M.

    1979-01-01

    The separation of copper-64 from irradiated copper phthalocyanine by Szilard-Chalmers effect is studied. Two methods of separation are used: one of them is based on the dissolution of the irradiated dry compound in concentrated sulfuric acid following its precipitation in water. In the other one the compound is irradiated with water in paste form following treatment with water and hydrochloric acid. The influence of the crystal form of the copper phthalocyanine on the separation yield of copper-64 is shown. Preliminary tests using the ionic exchange technique for purification and changing of copper-64 sulfate to chloride form are carried out. The specific activity using the spectrophotometric technique, after the determination of the copper concentration in solution of copper-64, is calculated. (Author) [pt

  16. Analysis Of Coppers Market And Price-Focus On The Last Decades Change And Its Future Trend

    OpenAIRE

    Eugie Kabwe; Wang Yiming

    2015-01-01

    Abstract it is important to analyse the major players within a copper supply chain as well as current market dynamics relevant international guidelines major impacts affecting the sustainability of the whole system and policy drivers affecting its price on the global market. Focusis on understanding major and provisional factors affecting copper price on themarketlong-term copper prices are determined by the fundamentals of supply and demand. Short term however are driven by financial market...

  17. Evolution of the microstructure in electrochemically deposited copper films at room temperature

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A. J.

    2007-01-01

    The room temperature evolution of the microstructure in copper electrodeposits (self-annealing) was investigated by means of X-ray diffraction analysis and simultaneous measurement of the electrical resistivity as a function of time with an unprecedented time resolution. Independent of the copper...... the crystallographic texture changes by a multiple twinning mechanism. The kinetics of self-annealing is strongly affected by the thickness of the deposit. Storage of the copper films at sub-zero temperatures effectively hinders self-annealing and does not affect the kinetics of self-annealing upon reheating to room...... temperature....

  18. Crystallization of copper metaphosphate glass

    Science.gov (United States)

    Bae, Byeong-Soo; Weinberg, Michael C.

    1993-01-01

    The effect of the valence state of copper in copper metaphosphate glass on the crystallization behavior and glass transition temperature has been investigated. The crystallization of copper metaphosphate is initiated from the surface and its main crystalline phase is copper metaphosphate (Cu(PO)3),independent of the (Cu sup 2+)/(Cu(total)). However, the crystal morphology, the relative crystallization rates, and their temperature dependences are affected by the (Cu sup 2+)/(Cu (total)) ratio in the glass. On the other hand, the totally oxidized glass crystallizes from all over the surface. The relative crystallization rate of the reduced glass to the totally oxidized glass is large at low temperature, but small at high temperature. The glass transition temperature of the glass increases as the (Cu sup 2+)/(Cu(total)) ratio is raised. It is also found that the atmosphere used during heat treatment does not influence the crystallization of the reduced glass, except for the formation of a very thin CuO surface layer when heated in air.

  19. Exogenous addition of histidine reduces copper availability in the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Daisuke Watanabe

    2014-07-01

    Full Text Available The basic amino acid histidine inhibited yeast cell growth more severely than lysine and arginine. Overexpression of CTR1, which encodes a high-affinity copper transporter on the plasma membrane, or addition of copper to the medium alleviated this cytotoxicity. However, the intracellular level of copper ions was not decreased in the presence of excess histidine. These results indicate that histidine cytotoxicity is associated with low copper availability inside cells, not with impaired copper uptake. Furthermore, histidine did not affect cell growth under limited respiration conditions, suggesting that histidine cytotoxicity is involved in deficiency of mitochondrial copper.

  20. Exogenous addition of histidine reduces copper availability in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Watanabe, Daisuke; Kikushima, Rie; Aitoku, Miho; Nishimura, Akira; Ohtsu, Iwao; Nasuno, Ryo; Takagi, Hiroshi

    2014-07-07

    The basic amino acid histidine inhibited yeast cell growth more severely than lysine and arginine. Overexpression of CTR1 , which encodes a high-affinity copper transporter on the plasma membrane, or addition of copper to the medium alleviated this cytotoxicity. However, the intracellular level of copper ions was not decreased in the presence of excess histidine. These results indicate that histidine cytotoxicity is associated with low copper availability inside cells, not with impaired copper uptake. Furthermore, histidine did not affect cell growth under limited respiration conditions, suggesting that histidine cytotoxicity is involved in deficiency of mitochondrial copper.

  1. Effects of a copper-tolerant grass (Agrostis capillaris) on the ecosystem of a copper-contaminated arable soil

    Energy Technology Data Exchange (ETDEWEB)

    Boon, G.T. [State Univ. Groningen (Netherlands); Bouwman, L.A.; Bloem, J.; Roemkens, P.F.A.M. [Research Inst. for Agrobiology and Soil Fertility, Haren (Netherlands)

    1998-10-01

    To test how a dysfunctioning ecosystem of a severely metal-polluted soil responds to renewed plant growth, a pot experiment was conducted with soil from an experimental arable field with pH and copper gradients imposed 13 years ago. In this experiment, four pH/copper combinations from this field were either planted with a pH- and copper-resistant grass cultivar or remained fallow. During a 10-week period, the dynamics of the microbial activity and of the abundances of bacteria, protozoa. and nematodes were measured, as were the dynamics of several chemical soil parameters. After 13 years of copper, which had resulted in severely reduced crop growth, no effects were observed on bacterial numbers, respiration, or protozoan numbers, but bacterial growth was strongly reduced in the low pH plots, and even more so in low pH plots enriched with copper. Of the organisms, only nematodes were negatively affected under conditions of high copper load at low pH. In these plots, numbers belonging to all feeding categories were strongly reduced. Planting of a copper-tolerant grass variety, Agrostis capillaris L. var. Parys Mountain, resulted within 10 weeks in faster bacterial growth and more protozoa and bacterivorous nematodes in comparison with fallow controls; these effects were markedly strongest in the acidic, copper-enriched soils. During incubation, fungivorous nematodes increased in all treatments, in fallow and in planted pots and in the pots with high-copper, low-pH soil. The results of this experiment suggest that introduction of plant growth is one of the major causes of increased biological activity in acidic contaminated soils. Planting such soils with metal-tolerant plant species can reestablish the necessary food base to support soil organism growth, and this can lead to numerous positive effects, reversing the loss of soil functions due to the high copper levels under acidic conditions.

  2. Thermodynamic data for copper. Implications for the corrosion of copper under repository conditions

    Energy Technology Data Exchange (ETDEWEB)

    Puigdomenech, I. [Royal Inst. of Tech., Stockholm (Sweden); Taxen, C. [Swedish Corrosion Inst., Stockholm (Sweden)

    2000-08-01

    The stability of copper canisters has a central role in the safety concept for the planned nuclear spent fuel repository in Sweden. The corrosion of copper canisters will be influenced by the chemical and physical environment in the near-field of the repository, and thermodynamic equilibrium calculations provide the basis for understanding this system. Thermodynamic data have been selected in this work for solids and aqueous species in the system: Cu - H{sub 2}O - H{sup +} - H{sub 2} - F{sup -} - Cl{sup -} - S{sup 2-} - SO{sub 4}{sup 2-} - NO{sub 3}{sup -} - NO{sub 2}{sup -} - NH{sub 4}{sup +} PO{sub 4}{sup 3-} - CO{sub 3}{sup 2+} . For some reactions and compounds, for which no experimental information on temperature effects was available, entropy and heat capacity values have been estimated. The compiled data were used to calculate thermodynamic equilibria for copper systems up to 100 deg C. The stability of copper in contact with granitic groundwaters has been illustrated using chemical equilibrium diagrams, with he following main conclusions: Dissolved sulphide and O{sub 2} in groundwater are the most damaging components for copper corrosion. If available, HS{sup -} will react quantitatively with copper to form a variety of sulphides. However, sulphide concentrations in natural waters are usually low, because it forms sparingly soluble solids with transition metals, including Fe(II), which is wide-spread in reducing environments. Chloride can affect negatively copper corrosion. High concentrations (e.g., [Cl{sup -}]TOT > 60 g/l) may be unfavourable for the general corrosion of copper in combination with in the following circumstances: Low pH (< 4 at 25 deg C, or < 5 at 100 deg C). The presence of other oxidants than H{sup +}. The negative effects of Cl{sup -} are emphasised at higher temperatures. The chloride-enhancement of general corrosion may be beneficial for localised corrosion: pitting and stress corrosion cracking. The concept of redox potential, E

  3. Dietary bioavailability of Cu adsorbed to colloidal hydrous ferric oxide

    Science.gov (United States)

    Cain, Daniel J.; Croteau, Marie-Noële; Fuller, Christopher C.

    2013-01-01

    The dietary bioavailability of copper (Cu) adsorbed to synthetic colloidal hydrous ferric oxide (HFO) was evaluated from the assimilation of 65Cu by two benthic grazers, a gastropod and a larval mayfly. HFO was synthesized, labeled with 65Cu to achieve a Cu/Fe ratio comparable to that determined in naturally formed HFO, and then aged. The labeled colloids were mixed with a food source (the diatom Nitzschia palea) to yield dietary 65Cu concentrations ranging from 211 to 2204 nmol/g (dry weight). Animals were pulse fed the contaminated diet and assimilation of 65Cu from HFO was determined following 1–3 days of depuration. Mass transfer of 65Cu from HFO to the diatom was less than 1%, indicating that HFO was the source of 65Cu to the grazers. Estimates of assimilation efficiency indicated that the majority of Cu ingested as HFO was assimilated (values >70%), implying that colloidal HFO potentially represents a source of dietary Cu to benthic grazers, especially where there is active formation and infiltration of these particles into benthic substrates.

  4. Consideration of the bioavailability of metal/metalloid species in freshwaters: experiences regarding the implementation of biotic ligand model-based approaches in risk assessment frameworks.

    Science.gov (United States)

    Rüdel, Heinz; Díaz Muñiz, Cristina; Garelick, Hemda; Kandile, Nadia G; Miller, Bradley W; Pantoja Munoz, Leonardo; Peijnenburg, Willie J G M; Purchase, Diane; Shevah, Yehuda; van Sprang, Patrick; Vijver, Martina; Vink, Jos P M

    2015-05-01

    After the scientific development of biotic ligand models (BLMs) in recent decades, these models are now considered suitable for implementation in regulatory risk assessment of metals in freshwater bodies. The BLM approach has been described in many peer-reviewed publications, and the original complex BLMs have been applied in prospective risk assessment reports for metals and metal compounds. BLMs are now also recommended as suitable concepts for the site-specific evaluation of monitoring data in the context of the European Water Framework Directive. However, the use is hampered by the data requirements for the original BLMs (about 10 water parameters). Recently, several user-friendly BLM-based bioavailability software tools for assessing the aquatic toxicity of relevant metals (mainly copper, nickel, and zinc) became available. These tools only need a basic set of commonly determined water parameters as input (i.e., pH, hardness, dissolved organic matter, and dissolved metal concentration). Such tools seem appropriate to foster the implementation of routine site-specific water quality assessments. This work aims to review the existing bioavailability-based regulatory approaches and the application of available BLM-based bioavailability tools for this purpose. Advantages and possible drawbacks of these tools (e.g., feasibility, boundaries of validity) are discussed, and recommendations for further implementation are given.

  5. Impairment of Interrelated Iron- and Copper Homeostatic Mechanisms in Brain Contributes to the Pathogenesis of Neurodegenerative Disorders

    Science.gov (United States)

    Skjørringe, Tina; Møller, Lisbeth Birk; Moos, Torben

    2012-01-01

    Iron and copper are important co-factors for a number of enzymes in the brain, including enzymes involved in neurotransmitter synthesis and myelin formation. Both shortage and an excess of iron or copper will affect the brain. The transport of iron and copper into the brain from the circulation is strictly regulated, and concordantly protective barriers, i.e., the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCB) have evolved to separate the brain environment from the circulation. The uptake mechanisms of the two metals interact. Both iron deficiency and overload lead to altered copper homeostasis in the brain. Similarly, changes in dietary copper affect the brain iron homeostasis. Moreover, the uptake routes of iron and copper overlap each other which affect the interplay between the concentrations of the two metals in the brain. The divalent metal transporter-1 (DMT1) is involved in the uptake of both iron and copper. Furthermore, copper is an essential co-factor in numerous proteins that are vital for iron homeostasis and affects the binding of iron-response proteins to iron-response elements in the mRNA of the transferrin receptor, DMT1, and ferroportin, all highly involved in iron transport. Iron and copper are mainly taken up at the BBB, but the BCB also plays a vital role in the homeostasis of the two metals, in terms of sequestering, uptake, and efflux of iron and copper from the brain. Inside the brain, iron and copper are taken up by neurons and glia cells that express various transporters. PMID:23055972

  6. Bioavailability as a tool in site management

    NARCIS (Netherlands)

    Harmsen, J.; Naidu, R.

    2013-01-01

    Bioavailability can form the basis for describing potential risks that contaminants pose to the environment and human health, and for determining remedial options to reduce risks of contaminant dispersal and toxicity. In assessments of polluted sites, methods to measure bioavailability can lead to a

  7. Effects of Particle Size on Chemical Speciation and Bioavailability of Copper to Earthworms ( Eisenia fetida ) Exposed to Copper Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    J Unrine; O Tsyusko; S Hunyadi; J Judy; P Bertsch

    2011-12-31

    To investigate the role of particle size on the oxidation, bioavailability, and adverse effects of manufactured Cu nanoparticles (NPs) in soils, we exposed the earthworm Eisenia fetida to a series of concentrations of commercially produced NPs labeled as 20- to 40-nm or <100-nm Cu in artificial soil media. Effects on growth, mortality, reproduction, and expression of a variety of genes associated with metal homeostasis, general stress, and oxidative stress were measured. We also used X-ray absorption spectroscopy and scanning X-ray fluorescence microscopy to characterize changes in chemical speciation and spatial distribution of the NPs in soil media and earthworm tissues. Exposure concentrations of Cu NPs up to 65 mg kg{sup -1} caused no adverse effects on ecologically relevant endpoints. Increases in metallothionein expression occurred at concentrations exceeding 20 mg kg-1 of Cu NPs and concentrations exceeding 10 mg kg{sup -1} of CuSO{sub 4} Based on the relationship of Cu tissue concentration to metallothionein expression level and the spatial distribution and chemical speciation of Cu in the tissues, we conclude that Cu ions and oxidized Cu NPs were taken up by the earthworms. This study suggests that oxidized Cu NPs may enter food chains from soil but that adverse effects in earthworms are likely to occur only at relatively high concentrations (>65 mg Cu kg{sup -1} soil).

  8. Bioavailability enhancers of herbal origin: An overview

    Science.gov (United States)

    Kesarwani, Kritika; Gupta, Rajiv

    2013-01-01

    Recently, the use of herbal medicines has been increased all over the world due to their therapeutic effects and fewer adverse effects as compared to the modern medicines. However, many herbal drugs and herbal extracts despite of their impressive in-vitro findings demonstrates less or negligible in-vivo activity due to their poor lipid solubility or improper molecular size, resulting in poor absorption and hence poor bioavailability. Nowadays with the advancement in the technology, novel drug delivery systems open the door towards the development of enhancing bioavailability of herbal drug delivery systems. For last one decade many novel carriers such as liposomes, microspheres, nanoparticles, transferosomes, ethosomes, lipid based systems etc. have been reported for successful modified delivery of various herbal drugs. Many herbal compounds including quercetin, genistein, naringin, sinomenine, piperine, glycyrrhizin and nitrile glycoside have demonstrated capability to enhance the bioavailability. The objective of this review is to summarize various available novel drug delivery technologies which have been developed for delivery of drugs (herbal), and to achieve better therapeutic response. An attempt has also been made to compile a profile on bioavailability enhancers of herbal origin with the mechanism of action (wherever reported) and studies on improvement in drug bioavailability, exhibited particularly by natural compounds. PMID:23620848

  9. Bioavailability of curcumin: problems and promises.

    Science.gov (United States)

    Anand, Preetha; Kunnumakkara, Ajaikumar B; Newman, Robert A; Aggarwal, Bharat B

    2007-01-01

    Curcumin, a polyphenolic compound derived from dietary spice turmeric, possesses diverse pharmacologic effects including anti-inflammatory, antioxidant, antiproliferative and antiangiogenic activities. Phase I clinical trials have shown that curcumin is safe even at high doses (12 g/day) in humans but exhibit poor bioavailability. Major reasons contributing to the low plasma and tissue levels of curcumin appear to be due to poor absorption, rapid metabolism, and rapid systemic elimination. To improve the bioavailability of curcumin, numerous approaches have been undertaken. These approaches involve, first, the use of adjuvant like piperine that interferes with glucuronidation; second, the use of liposomal curcumin; third, curcumin nanoparticles; fourth, the use of curcumin phospholipid complex; and fifth, the use of structural analogues of curcumin (e.g., EF-24). The latter has been reported to have a rapid absorption with a peak plasma half-life. Despite the lower bioavailability, therapeutic efficacy of curcumin against various human diseases, including cancer, cardiovascular diseases, diabetes, arthritis, neurological diseases and Crohn's disease, has been documented. Enhanced bioavailability of curcumin in the near future is likely to bring this promising natural product to the forefront of therapeutic agents for treatment of human disease.

  10. Factors modulating bioavailability of quercetin-related flavonoids and the consequences of their vascular function.

    Science.gov (United States)

    Terao, Junji

    2017-09-01

    Nowadays dietary flavonoids attract much attention in the prevention of chronic diseases. Epidemiological and intervention studies strongly suggest that flavonoid intake has beneficial effects on vascular health. It is unlikely that flavonoids act as direct antioxidants, although oxidative stress profoundly contributes to vascular impairment leading to cardiovascular diseases. Instead, flavonoids may exert their function by tuning the cellular redox state to an adaptive response or tolerable stress. However, the optimum intake of flavonoids from supplements or diet has not been clarified yet, because a number of exogenous and endogenous factors modulating their bioavailability affect their vascular function. This review will focus on the current knowledge of the bioavailability and vascular function of quercetin as a representative of antioxidative flavonoids. Current intervention studies imply that intake of quercetin-rich onion improves vascular health. Onion may be superior to quercetin supplement from the viewpoint of quercetin bioavailability, probably because the food matrix enhances the intestinal absorption of quercetin. α-Glucosylation increases its bioavailability by elevating the accessibility to the absorptive cells. Prenylation may enhance bioaccumulation at the target site by increasing the cellular uptake. However, these chemical modifications do not guarantee health benefits to the vascular system. Dietary quercetin is exclusively present as their conjugated form in the blood stream. Quercetin may exert its vascular function as an aglycone within macrophage cells after inflammation-induced deconjugation and as conjugated metabolites by targeting endothelial cells. The relationship between the bioavailability and bio-efficacy should be clarified, to evaluate the vascular function of a wide variety of dietary flavonoids. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Copper and copper-nickel alloys as zebra mussel antifoulants

    Energy Technology Data Exchange (ETDEWEB)

    Dormon, J.M.; Cottrell, C.M.; Allen, D.G.; Ackerman, J.D.; Spelt, J.K. [Univ. of Toronto, Ontario (Canada)

    1996-04-01

    Copper has been used in the marine environment for decades as cladding on ships and pipes to prevent biofouling by marine mussels (Mytilus edulis L.). This motivated the present investigation into the possibility of using copper to prevent biofouling in freshwater by both zebra mussels and quagga mussels (Dreissena polymorpha and D. bugensis collectively referred to as zebra mussels). Copper and copper alloy sheet proved to be highly effective in preventing biofouling by zebra mussels over a three-year period. Further studies were conducted with copper and copper-nickel mesh (lattice of expanded metal) and screen (woven wire with a smaller hole size), which reduced the amount of copper used. Copper screen was also found to be strongly biofouling-resistant with respect to zebra mussels, while copper mesh reduced zebra mussel biofouling in comparison to controls, but did not prevent it entirely. Preliminary investigations into the mechanism of copper antifouling, using galvanic couples, indicated that the release of copper ions from the surface of the exposed metal into the surrounding water is directly or indirectly responsible for the biofouling resistance of copper.

  12. High temperature oxidation of copper and copper aluminium alloys: Impact on furnace side wall cooling systems

    Science.gov (United States)

    Plascencia Barrera, Gabriel

    The high temperature oxidation behaviours of copper and dilute Cu-Al alloys were investigated. Experiments were carried out by: (i) Oxidizing under various oxygen potentials at different temperatures using a combined TG-DTA apparatus. (ii) Oxidizing in a muffle furnace (in air) at different temperatures for extended periods of time. The oxidation mechanisms were evaluated based upon the kinetic data obtained as well as by X-ray diffraction and microscopical (SEM and optical) analyses. It was found that oxidation of copper strongly depends on the temperature. Two distinct mechanisms were encountered. Between 300 and 500°C, the oxidation rate is controlled by lateral growth of the oxide on the metal surface, whereas between 600 and 1000°C oxidation is controlled by lattice diffusion of copper ions through the oxide scale. On the other hand, the partial pressure of oxygen only has a small effect on the oxidation of copper. Alloy oxidation is also dependent on the temperature. As temperature increases, more aluminium is required to protect copper from being oxidized. It was shown that if the amount of oxygen that dissolves in the alloy exceeds the solubility limit of oxygen in copper, an internal oxidation layer will develop, leading to the formation of a tarnishing scale. On the other hand if the oxygen content in the alloy lies below the solubility limit of oxygen in copper, no oxidation products will form since a tight protective alumina layer will form on the alloy surface. Surface phenomena may affect the oxidation behaviour of dilute Cu-Al alloys. Immersion tests in molten copper matte and copper converting slag, using laboratory scale cooling elements with various copper based materials, were conducted. Results from these tests showed that alloying copper with 3 to 4 wt% Al decreases the oxidation rate of pure copper by 4 orders of magnitude; however due to a significant drop in thermal conductivity, the ability to extract heat is compromised, leading to

  13. Speciation and bioavailability of lead in complementary medicines

    International Nuclear Information System (INIS)

    Bolan, S.; Naidu, R.; Kunhikrishnan, A.; Seshadri, B.; Ok, Y.S.; Palanisami, T.; Dong, M.; Clark, I.

    2016-01-01

    Complementary medicines have associated risks which include toxic heavy metal(loid) and pesticide contamination. The objective of this study was to examine the speciation and bioavailability of lead (Pb) in selected complementary medicines. Six herbal and six ayurvedic medicines were analysed for: (i) total heavy metal(loid) contents including arsenic (As), cadmium (Cd), Pb and mercury (Hg); (ii) speciation of Pb using sequential fractionation and extended x-ray absorption fine structure (EXAFS) techniques; and (iii) bioavailability of Pb using a physiologically-based in vitro extraction test (PBET). The daily intake of Pb through the uptake of these medicines was compared with the safety guidelines for Pb. The results indicated that generally ayurvedic medicines contained higher levels of heavy metal(loid)s than herbal medicines with the amount of Pb much higher than the other metal(loid)s. Sequential fractionation indicated that while organic-bound Pb species dominated the herbal medicines, inorganic-bound Pb species dominated the ayurvedic medicines. EXAFS data indicated the presence of various Pb species in ayurvedic medicines. This implies that Pb is derived from plant uptake and inorganic mineral input in herbal and ayurvedic medicines, respectively. Bioavailability of Pb was higher in ayurvedic than herbal medicines, indicating that Pb added as a mineral therapeutic input is more bioavailable than that derived from plant uptake. There was a positive relationship between soluble Pb fraction and bioavailability indicating that solubility is an important factor controlling bioavailability. The daily intake values for Pb as estimated by total and bioavailable metal(loid) contents are likely to exceed the safe threshold level in certain ayurvedic medicines. This research demonstrated that Pb toxicity is likely to result from the regular intake of these medicines which requires further investigation. - Highlights: • Pb species in complementary medicines was

  14. Effects of copper source and concentration on in vitro phytate phosphorus hydrolysis by phytase.

    Science.gov (United States)

    Pang, Yanfang; Applegate, Todd J

    2006-03-08

    Five copper (Cu) sources were studied at pH 2.5, 5.5, and 6.5 to determine how Cu affects phytate phosphorus (PP) hydrolysis by phytase at concentrations up to 500 mg/kg diet (60 min, 40-41 degrees C). Subsequently, Cu solubility with and without sodium phytate was measured. Adding Cu inhibited PP hydrolysis at pH 5.5 and pH 6.5 (P copper chloride and copper lysinate inhibited PP hydrolysis much less than copper sulfate pentahydrate, copper chloride, and copper citrate (P copper-phytin complexes.

  15. Polyphenol bioavailability in nuts and seeds by an in vitro dialyzability approach.

    Science.gov (United States)

    Herbello-Hermelo, Paloma; Lamas, Juan Pablo; Lores, Marta; Domínguez-González, Raquel; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2018-07-15

    An in vitro dialyzability approach has been undertaken to elucidate the bioavailable fraction of the total polyphenols (TPs) of edible nuts and seeds. The TP contents in samples and in dialyzates were assessed by the Folin-Ciocalteu spectrophotometric method. Antioxidant activity was determined in selected samples, using a modified method against Trolox®. TPs and antioxidant activity in nuts/seeds were determined after applying a pressurized liquid extraction sample pre-treatment. High dialyzability ratios were assessed in most nuts/seeds (TP dialyzability percentages within the 25-91% range). The highest TP dialyzability ratios were found in raw Brazil nuts (81 ± 5%), toasted pistachios (88 ± 9%), and fried cashews (89 ± 9%), whereas TPs in pumpkin seeds were found to be very low (TPs were not detected in the dialyzable fraction). TP dialyzability was correlated with the copper content in nuts and seeds. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Effects of soil water content and organic matter addition on the speciation and bioavailability of heavy metals

    International Nuclear Information System (INIS)

    Hernandez-Soriano, Maria C.; Jimenez-Lopez, Jose C.

    2012-01-01

    The mobility and bioavailability of cadmium, copper, lead and zinc were evaluated in three soils amended with different organic materials for two moisture regimes. Agricultural and reclamation activities impose fresh inputs of organic matter on soil while intensive irrigation and rainstorm increase soil waterlogging incidence. Moreover, scarcity of irrigation water has prompted the use of greywater, which contain variable concentrations of organic compounds such as anionic surfactants. Soils added with hay, maize straw or peat at 1% w/w were irrigated, at field capacity (FC) or saturated (S), with an aqueous solution of the anionic surfactant Aerosol 22 (A22), corresponding to an addition of 200 mg C/kg soil/day. Soil solution was extracted after one month and analysed for total soluble metals, dissolved soil organic matter and UV absorbance at 254 nm. Speciation analyses were performed with WHAM VI for Cd, Cu, Pb, and Zn. For selected scenarios, metal uptake by barley was determined. Metal mobility increased for all treatments and soils (Pb > Cu > Cd ≥ Zn) compared to control assays. The increase was significantly correlated (p < 0.05) with soil organic matter solubilisation for Cd (R = 0.68), Cu (R = 0.73) and Zn (R = 0.86). Otherwise, Pb release was related to aluminium solubilisation (R = 0.75), which suggests that Pb was originally co-precipitated with Al–DOC complexes in the solid phase. The effect of A22 in metal bioavailability, determined as free ion activities (FIA), was mainly controlled by soil moisture regime. For soil 3, metal bioavailability was up to 20 times lower for soil amended with hay, peat or maize compared to soil treated only with A22. When soil was treated with A22 at FC barley yield significantly decreased (p < 0.05) for the increase of Pb (R = 0.71) and Zn (R = 0.79) concentrations in shoot, while for saturated conditions such uptake was up to 3 times lower. Overall, metal bioavailability was controlled by solubilisation of soil

  17. Effects of soil water content and organic matter addition on the speciation and bioavailability of heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Soriano, Maria C., E-mail: maria.HernandezSoriano@ees.kuleuven.be [Department of Soil Science, College of Agriculture and Life Sciences, North Carolina State University, Campus Box 7619, 101 Derieux Street, 2232 Williams Hall, Raleigh, NC 27695 (United States); Jimenez-Lopez, Jose C. [Department of Biological Sciences, College of Science, Purdue University, 201 S. University Street, West Lafayette, IN 47907 (United States)

    2012-04-15

    The mobility and bioavailability of cadmium, copper, lead and zinc were evaluated in three soils amended with different organic materials for two moisture regimes. Agricultural and reclamation activities impose fresh inputs of organic matter on soil while intensive irrigation and rainstorm increase soil waterlogging incidence. Moreover, scarcity of irrigation water has prompted the use of greywater, which contain variable concentrations of organic compounds such as anionic surfactants. Soils added with hay, maize straw or peat at 1% w/w were irrigated, at field capacity (FC) or saturated (S), with an aqueous solution of the anionic surfactant Aerosol 22 (A22), corresponding to an addition of 200 mg C/kg soil/day. Soil solution was extracted after one month and analysed for total soluble metals, dissolved soil organic matter and UV absorbance at 254 nm. Speciation analyses were performed with WHAM VI for Cd, Cu, Pb, and Zn. For selected scenarios, metal uptake by barley was determined. Metal mobility increased for all treatments and soils (Pb > Cu > Cd {>=} Zn) compared to control assays. The increase was significantly correlated (p < 0.05) with soil organic matter solubilisation for Cd (R = 0.68), Cu (R = 0.73) and Zn (R = 0.86). Otherwise, Pb release was related to aluminium solubilisation (R = 0.75), which suggests that Pb was originally co-precipitated with Al-DOC complexes in the solid phase. The effect of A22 in metal bioavailability, determined as free ion activities (FIA), was mainly controlled by soil moisture regime. For soil 3, metal bioavailability was up to 20 times lower for soil amended with hay, peat or maize compared to soil treated only with A22. When soil was treated with A22 at FC barley yield significantly decreased (p < 0.05) for the increase of Pb (R = 0.71) and Zn (R = 0.79) concentrations in shoot, while for saturated conditions such uptake was up to 3 times lower. Overall, metal bioavailability was controlled by solubilisation of soil

  18. Analysis Of Coppers Market And Price-Focus On The Last Decades Change And Its Future Trend

    Directory of Open Access Journals (Sweden)

    Eugie Kabwe

    2015-08-01

    Full Text Available Abstract it is important to analyse the major players within a copper supply chain as well as current market dynamics relevant international guidelines major impacts affecting the sustainability of the whole system and policy drivers affecting its price on the global market. Focusis on understanding major and provisional factors affecting copper price on themarketlong-term copper prices are determined by the fundamentals of supply and demand. Short term however are driven by financial market and other variables. Through analysis of the major factors and present market dynamics global copper consumption increased since 1970 regardless of the economic slump in 2007-2009 growth is likely to continuechiefly driven by increasing demand in China and India. Since 2004 the price of copper on the global market increased drastically its consumption was mainly concentrated in developed industrial countries. The economic situation of developed countries has a greater impact on copper prices addition of Asian nations increased urbanization and industrialization. Forecasts remain progressive asAsia advance with urbanization and industrializationplans. Anticipated to account for a major growth in global copper in the next 20 years will present a large task to double copper supply output. Urbanization and industrialization will continue to surge copper demand projected to overcome global copper production high demandbut lesser supply on the market.The decline of copper supply would cause a mountingdeficit in turn increase demand by 2025. Asias level of economic activity and urbanization is far from complete it will be a chief source of copper demand in the decades to come.

  19. Copper and Copper Proteins in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sergio Montes

    2014-01-01

    Full Text Available Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson’s disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson’s disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson’s disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson’s disease and that a mutation in ATP7B could be associated with Parkinson’s disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology.

  20. The influence of dissolved phosphorus molecular form on recalcitrance and bioavailability

    International Nuclear Information System (INIS)

    Li, Bo; Brett, Michael T.

    2013-01-01

    Several studies have shown Soluble Reactive Phosphorus (SRP) analyses provide a poor index of dissolved phosphorus (P) bioavailability in natural systems. We tested 21 inorganic and organic P containing compounds with series of nutrient uptake and bioavailability bioassay experiments and chemical characterizations. Our results show that in 81% of cases, these compounds did not fit the classic assumption that SRP approximately equals Bioavailable P (BAP). Many organic compounds were classified as non-reactive, but had very rapid uptake kinetics and were nearly entirely bioavailable (e.g., several nucleic acids, ATP, RNA, DNA and phosphatidylcholine). Several inorganic compounds also classified as non-reactive but had high bioavailability (i.e., sodium tripolyphosphate and phosphorus pentoxide). Conversely, apatite was operationally classified as reactive, but had low bioavailability. Due to their tendency to alias as SRP, but recalcitrance and very low bioavailability, humic-(Al/Fe)-phosphorus complexes may play an especially important role in the dissolved phosphorus dynamics of natural systems. Highlights: •We tested 21 P containing compounds with bioassay and chemical speciation. •The acid molybdate method does not consistently predict the bioavailability of P compounds. •The P in humic substances was bounded with Al/Fe and could not be taken up by algal. •A new classification scheme divided P species based on bioavailability and chemical speciation. -- SRP is a poor indicator of the bioavailability of many of P containing compounds and much of what is classified as SRP in nature could be associated with humic-metal complexes with low bioavailability

  1. Economic Booms and Risky Sexual Behavior: Evidence from Zambian Copper Mining Cities

    OpenAIRE

    Nicholas Wilson

    2010-01-01

    Existing studies suggest that individual and household level economic shocks affect the demand for and supply of risky sex. However, little evidence exists on the effects of an aggregate shock on equilibrium risky sexual behavior. This paper examines the effects of the early twenty-first century copper boom on risky sexual behavior in Zambian copper mining cities. The results indicate that the copper boom substantially reduced rates of transactional sex and multiple partnerships in copper min...

  2. Processing of copper anodic-slimes for extraction of valuable metals.

    Science.gov (United States)

    Amer, A M

    2003-01-01

    This work focuses on processing of anodic slimes obtained from an Egyptian copper electrorefining plant. The anodic slimes are characterized by high concentrations of copper, lead, tin and silver. The proposed hydrometallurgical process consists of two leaching stages for the extraction of copper (H(2)SO(4)-O(2)) and silver (thiourea-Fe3+), and pyrometallurgical treatment of the remaining slimes for production of Pb-Sn soldering alloy. Factors affecting both the leaching and smelting stages were studied.

  3. [Changes in bio-availability of immobilized Cu and Zn bound to phosphate in contaminated soils with different nutrient addition].

    Science.gov (United States)

    Xu, Ming-Gang; Zhang, Qian; Sun, Nan; Shen, Hua-Ping; Zhang, Wen-Ju

    2009-07-15

    Bio-availability of Cu and Zn fixed by phosphate in contaminated soils with application of nutrients were measured by pot experiment. It was simulated for the third national standardization of copper and zinc polluted soils by adding copper and zinc nitrate into red and paddy soils, respectively and together. Phosphate amendment was added to the soils to fix Cu and Zn, then added KCl and NH4Cl or K2SO4 and (NH4)2SO4 fertilizers following to plant Ryegrass, which was harvested after 40 d. Available Cu/Zn content in soils and biomass, Cu/Zn content in the shoot of Ryegrass were determined. Results showed that, compared with no nutrient application, adding KCl and NH4 Cl/K2SO4 and (NH4)2SO4 to polluted red and paddy soils increased the available Cu and Zn content in red soil significantly. The increasing order was KCl and NH4 Cl > K2SO4 and (NH4)2SO4. Especially in single Zn polluted red soil, the available Zn content increased by 133.4% in maximum. Although adding K2SO4 and (NH4)2SO4 could promote the growth of Ryegrass on red soil, and the largest increasing was up to 22.2%, it increased Cu and Zn content in the shoot of Ryegrass for 21.5%-112.6% remarkably. These nutrient effects on available Cu and Zn were not significantly in paddy soil. It was suggested that application of nitrogen and potassium fertilizers to soils could change the bioavailability of Cu/Zn. So it is necessary to take full account of the nutrient influence to the heavy metal stability which fixed by phosphate in contaminated soils when consider contaminated soils remediation by fertilization.

  4. Bioavailability of nanoparticulate hematite to Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Marusenko, Yevgeniy; Shipp, Jessie; Hamilton, George A.; Morgan, Jennifer L.L.; Keebaugh, Michael; Hill, Hansina; Dutta, Arnab; Zhuo, Xiaoding; Upadhyay, Nabin; Hutchings, James; Herckes, Pierre; Anbar, Ariel D.; Shock, Everett; Hartnett, Hilairy E.

    2013-01-01

    The environmental effects and bioavailability of nanoparticulate iron (Fe) to plants are currently unknown. Here, plant bioavailability of synthesized hematite Fe nanoparticles was evaluated using Arabidopsis thaliana (A. thaliana) as a model. Over 56-days of growing wild-type A. thaliana, the nanoparticle-Fe and no-Fe treatments had lower plant biomass, lower chlorophyll concentrations, and lower internal Fe concentrations than the Fe-treatment. Results for the no-Fe and nanoparticle-Fe treatments were consistently similar throughout the experiment. These results suggest that nanoparticles (mean diameter 40.9 nm, range 22.3–67.0 nm) were not taken up and therefore not bioavailable to A. thaliana. Over 14-days growing wild-type and transgenic (Type I/II proton pump overexpression) A. thaliana, the Type I plant grew more than the wild-type in the nanoparticle-Fe treatment, suggesting Type I plants cope better with Fe limitation; however, the nanoparticle-Fe and no-Fe treatments had similar growth for all plant types. -- Highlights: ► Iron nanoparticles were synthesized and assessed for bioavailability to Arabidopsis. ► Arabidopsis grew better in the presence of EDTA-bound iron than nanoparticulate iron. ► Arabidopsis grew the same in the presence of nanoparticulate iron compared to no iron. -- Synthesized iron nanoparticles were not bioavailable to Arabidopsis thaliana in agar nutrient media

  5. Copper carrier protein in copper toxic sheep liver

    Energy Technology Data Exchange (ETDEWEB)

    Harris, A L; Dean, P D.G.

    1973-01-01

    The livers of copper-toxic sheep have been analyzed by gel electrophoresis followed by staining the gels for copper with diethyldithiocarbamate and for protein with amido schwartz. These gels were compared with similar gels obtained from the livers of normal and copper-deficient animals. The copper-toxic livers contained an extra protein band which possessed relatively weakly bound copper. Possible origins of this protein are discussed. 8 references, 1 figure, 2 tables.

  6. Normal macrophage function in copper deficient mice

    International Nuclear Information System (INIS)

    Lukasewycz, O.A.; Kolquist, K.L.; Prohaska, J.R.

    1986-01-01

    Copper deficiency (-Cu) was produced in C57 BL and C58 mice by feeding a low copper diet (modified AIN-76A) from birth. Mice given supplemental copper in the drinking water (+Cu) served as controls. Copper status was monitored by assay of ceruloplasmin (CP) activity. Macrophages (M0) were obtained from matched +Cu and -Cu male 7 week-old mice by peritoneal lavage 3 days after thioglycollate stimulation. M0 were assayed in terms of lipopolysaccharide-induced hexose monophosphate shunt activity by monitoring 14 CO 2 production from [1- 14 C]-glucose and by the determination of phagocytic index using fluorescein labelled latex bead ingestion. M0 from -Cu mice were equivalent to those of +Cu mice in both these parameters. However, superoxide dismutase and cytochrome oxidase activities were both significantly lower in -Cu M0, confirming a functional copper deficiency. Previous results from this laboratory have shown that -Cu mice have a decreased antibody response to sheep erythrocyte antigens and a diminished reactivity to B and T cell mitogens. These immunological insufficiencies appear to be proportional to the severity of copper depletion as determined by CP levels. Furthermore, -Cu lymphocytes exhibit depressed mixed lymphocyte reactivity consistent with alterations at the membrane surface. The present results suggest that M0/monocytes are less severely affected than lymphocytes in copper deficiency states

  7. Improved Chromatographic Bioavailability Estimations

    National Research Council Canada - National Science Library

    Dorsey, John

    1996-01-01

    .... Since the inception of reversed phase liquid chromatography there have been many attempts to correlate chromatographic retention with bioavailability and the most often used bulk measure, the octanol...

  8. Assessment of the bioavailability and depuration of uranium, cesium and thorium in snails (Cantareus aspersus) using kinetics models

    Energy Technology Data Exchange (ETDEWEB)

    Pauget, B., E-mail: benjamin.pauget@tesora.fr [Tésora, Le Visium, 22 Av. Aristide Briand, 94110 Arcueil (France); Andra, R& D Division, Centre de Meuse/Haute-Marne, RD 960, 55290 Bure (France); University of Bourgogne Franche-Comté, Department Chrono-Environnement, UMR UFC/CNRS 6249, 16 Route de Gray, 25030 Besançon Cedex (France); Villeneuve, A.; Redon, P.O. [Tésora, Le Visium, 22 Av. Aristide Briand, 94110 Arcueil (France); Cuvier, A. [ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse (France); IRSN/PRP-ENV/SESURE/Laboratoire d’études radioécologiques en milieu continental et marin, BP 1, 13108 Saint-Paul-lès-Durance Cedex (France); Vaufleury, A. de [University of Bourgogne Franche-Comté, Department Chrono-Environnement, UMR UFC/CNRS 6249, 16 Route de Gray, 25030 Besançon Cedex (France)

    2017-08-05

    Highlights: • Kinetic studies allow to take into account the dynamic mechanisms of bioavailability. • An absence of Cs and Th accumulation is evidenced showing their low bioavailability. • The uranium accumulation is not only a function of the soil contamination. - Abstract: Uranium ore waste has led to soil contamination that may affect both environmental and soil health. To analyze the risk of metal transfer, metal bioavailability must be estimated by measuring biological parameters. Kinetic studies allow taking into account the dynamic mechanisms of bioavailability, as well as the steady state concentration in organisms necessary to take into account for relevant risk assessment. In this way, this work aims to model the snail accumulation and excretion kinetics of uranium (U), cesium (Cs) and thorium (Th). Results indicate an absence of Cs and Th accumulation showing the low bioavailability of these two elements and a strong uranium accumulation in snails related to the levels of soil contamination. During the depuration phase, most of the uranium ingested was excreted by the snails. After removing the source of uranium by soil remediation, continued snails excretion of accumulated uranium would lead to the return of their initial internal concentration, thus the potential trophic transfer of this hazardous element would stop.

  9. Assessment of the bioavailability and depuration of uranium, cesium and thorium in snails (Cantareus aspersus) using kinetics models

    International Nuclear Information System (INIS)

    Pauget, B.; Villeneuve, A.; Redon, P.O.; Cuvier, A.; Vaufleury, A. de

    2017-01-01

    Highlights: • Kinetic studies allow to take into account the dynamic mechanisms of bioavailability. • An absence of Cs and Th accumulation is evidenced showing their low bioavailability. • The uranium accumulation is not only a function of the soil contamination. - Abstract: Uranium ore waste has led to soil contamination that may affect both environmental and soil health. To analyze the risk of metal transfer, metal bioavailability must be estimated by measuring biological parameters. Kinetic studies allow taking into account the dynamic mechanisms of bioavailability, as well as the steady state concentration in organisms necessary to take into account for relevant risk assessment. In this way, this work aims to model the snail accumulation and excretion kinetics of uranium (U), cesium (Cs) and thorium (Th). Results indicate an absence of Cs and Th accumulation showing the low bioavailability of these two elements and a strong uranium accumulation in snails related to the levels of soil contamination. During the depuration phase, most of the uranium ingested was excreted by the snails. After removing the source of uranium by soil remediation, continued snails excretion of accumulated uranium would lead to the return of their initial internal concentration, thus the potential trophic transfer of this hazardous element would stop.

  10. Bioavailability of phosphorus from composts and struvite in acid soils

    Directory of Open Access Journals (Sweden)

    Carmo Horta

    Full Text Available ABSTRACT The objective of this study was to assess the type and fractions of phosphorus (P forms in composts and struvite and how these P forms affect the bioavailability of P in the soil. P fertilization was performed with compost from sewage sludge (CSS, compost from poultry litter (CPL and struvite (SV and compared with single superphosphate (SSP. P forms were quantified through a sequential fractionation scheme. The first extraction was performed with H2O, the second with 0.5 M NaHCO3, the third with 0.1 M NaOH and the fourth with 1 M HCl. The release of P over time, after soil P fertilization, was assessed by incubating the fertilizers with a low-P acid soil. P bioavailability was assessed through a micro-pot experiment with the incubated soils in a growth chamber using rye plants (Secale cereale L.. Inorganic P forms in the first two fractions represented ~50% (composts, 32% (SV and 86% (SSP of the total P; and in the HCl fraction, ~40% (composts, 26% (SV and 13% (SSP of the total P. Despite the variability of the P form fractions in the composts and struvite, the P release and bioavailability were similar among the fertilized treatments. The acidic nature of the soil, which improve solubility of Ca-P forms, and the high efficiency of rye, which favors P uptake, were factors that contributed to these results.

  11. NA{sup +}, K{sup +}-ATPase, histopathological, and genetic responses of Corbicula fluminea to sediment-associated copper

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S. [Univ. of Mississippi, Oxford, MS (United States)

    1995-12-31

    Time-dependent responses to sediment-associated copper were studies at hierarchical levels of biological organization along an extreme concentration gradient (40 to 40,000 mg/kg total Cu). Laboratory and in situ estimates of molecular to tissue-level responses (Na/K-ATPase activity, DNA content, histopathology) were monitored in Corbicula fluminea (Asiatic clam), and compared with laboratory and field based survival of Corbicula and Elimia teres (an indigenous Gastropoda). Mollusc survival was, in turn, compared with effects on macrobenthic community composition along the stream/[Cu] gradient. Relationships between selected sediment characteristics and the bioavailability and toxicity of sediment associated copper were also investigated. Sediment-associated copper depressed Na/K-ATPase activity and led to histopathological damage of renal and gill epithelia (vacuolization, degeneration), indicating that impaired ion regulation was an important mechanism of toxicity. Concurrent reductions in DNA content were believed to be secondary effects due to cell death, not an indication of genotoxicity. Sublethal responses were significantly correlated with survival in both species; however, while survival in situ was indicative of differences in community structure, laboratory-based survival was not. Copper levels in tissues were indicative of exposure, but were not significantly correlated with adverse effects. Copper levels in sediments, interstitial water, and overlying water varied independently of sediment characteristics except pH. Cu/AVS ratios were predictive of Corbicula and Elimia survival, but were not significantly related to differences in community structure. Instead, macrobenthic community structure was influenced by other sediment factors (grain size, Eh, pH).

  12. Evaluation of Iodine Bioavailability in Seaweed Using in Vitro Methods.

    Science.gov (United States)

    Domínguez-González, M Raquel; Chiocchetti, Gabriela M; Herbello-Hermelo, Paloma; Vélez, Dinoraz; Devesa, Vicenta; Bermejo-Barrera, Pilar

    2017-09-27

    Due to the high levels of iodine present in seaweed, the ingestion of a large amount of this type of food can produce excessive intake of iodine. However, the food after ingestion undergoes different chemistry and physical processes that can modify the amount of iodine that reaches the systemic circulation (bioavailability). Studies on the bioavailability of iodine from food are scarce and indicate that the bioavailable amount is generally lower than ingested. Iodine in vitro bioavailability estimation from different commercialized seaweed has been studied using different in vitro approaches (solubility, dialyzability, and transport and uptake by intestinal cells). Results indicate that iodine is available after gastrointestinal digestion for absorption (bioaccessibility: 49-82%), kombu being the seaweed with the highest bioaccessibility. The incorporation of dialysis cell cultures to elucidate bioavailability modifies the estimation of the amount of iodine that may reach the systemic circulation (dialysis, 5-28%; cell culture, ≤3%). The paper discusses advantages and drawbacks of these methodologies for iodine bioavailability in seaweed.

  13. Effect of activated carbon on microbial bioavailability of phenanthrene in soils

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y.; Hunter, W.; Tao, S.; Crowley, D.; Gan, J. [University of California Riverside, Riverside, CA (United States). Dept. of Environmental Science

    2009-11-15

    Bioavailability is a governing factor that controls the rate of biological degradation of hydrophobic organic contaminants in soil. Among the solid phases that can adsorb hydrophobic organic contaminants in soil, black carbon (BC) exerts a particularly significant effect on phase distribution. However, knowledge on the effect of BC on the microbial availability of polycyclic aromatic hydrocarbons in soil is still limited. In the present study, the effect of a coal-derived activated carbon on the bioavailability of phenanthrene (PHE) during its degradation by Mycobacterium vanbaalenii PYR-1 was measured in three soils. The freely dissolved concentration of PHE was concurrently determined in soil solutions using disposable polydimethylsiloxane fibers. The results showed that PHE mineralization was significantly inhibited after addition of activated carbon in all test soils. After 216 h, only 5.20, 5.83, and 6.85% of PHE was degraded in the 0.5% BC-amended soils initially containing organic carbon at 0.23, 2.1, and 7.1%, respectively. Significant correlation was found between PHE degradability and freely dissolved concentration, suggesting that BC affected PHE bioavailability by decreasing chemical activity. The effect of activated carbon in the amended soils was attributed to its enhancement of soil surface areas and pore volumes. Results from the present study clearly highlighted the importance of BC for influencing the microbial availability of polycyclic aromatic hydrocarbons in soils.

  14. On definition and use of the term bioavailability.

    Science.gov (United States)

    Rescigno, A; Thakur, A K; Marzo, A

    1994-10-01

    In common usage, the rate of absorption of an active ingredient or its therapeutic moiety is generally not mentioned in the context of bioavailability. In this communication it is shown that exclusion of the rate of absorption may have serious consequence on the interpretation of bioavailability depending on the underlying model for the system under study. In the case of endogenous substances, the term "bioavailability" is ambiguous unless one specifies whether it refers to availability of the exogenous substance only or the sum total of the exogenous and endogenous substances.

  15. The effect of dietary factors on strawberry anthocyanins oral bioavailability.

    Science.gov (United States)

    Xiao, Di; Sandhu, Amandeep; Huang, Yancui; Park, Eunyoung; Edirisinghe, Indika; Burton-Freeman, Britt M

    2017-11-15

    Strawberries are a dietary source of anthocyanins, particularly pelargonidin glycosides. Dietary anthocyanins have received increasing attention among researchers and consumers due to their health benefits. The oral bioavailability of anthocyanins is reported to be low and various dietary factors may influence their oral bioavailability further. Milk is suggested to reduce (poly)phenols' oral bioavailability. However, the effect of milk on anthocyanin oral bioavailability remains uncertain. Likewise, mixed nutrient meals may influence the oral bioavailability of anthocyanins. Therefore, the purpose of this study was to assess the effect of milk on the oral bioavailability and other pharmacokinetic (PK) variables of strawberry anthocyanins consumed with and without a meal. Nine healthy participants consumed a strawberry beverage prepared in milk or water with a standard meal on two occasions. On two additional occasions, the beverages were given to a subset (n = 4) of participants to determine the impact of the meal on anthocyanin PK variables, including oral bioavailability. Independent of the meal, beverages prepared in milk significantly reduced the peak plasma concentrations (C max ) of pelargonidin-3-O-glucoside (P-3-G), pelargonidin-glucuronide (PG) and pelargonidin-3-O-rutinoside (P-3-R), as well as the PG and P-3-R area under the curve (AUC) (p bioavailability of pelargonidin anthocyanins under meal conditions; however, the oral relative bioavailability of pelargonidin anthocyanins was reduced by ∼50% by milk under without meal conditions (p < 0.05). Consuming strawberry beverages made with milk and consuming those made with water with and without a meal influenced different aspects of strawberry anthocyanin PKs. The significance of this effect on clinical efficacy requires additional research.

  16. Copper in Surface Soil of Veles Region, Macedonia

    International Nuclear Information System (INIS)

    Panchevski, Zlatko; Stafilov, Trajche; Frontasyeva, Marina V.

    2006-01-01

    For the first time a systematic study of copper distribution in surface soil over of the Veles region, known for its lead and zinc industrial activity, was undertaken. A total of 201 soil samples were collected according to a dense net (0.5 km) in urban and less dense net (1 km) in rural areas. Copper was determined by flame atomic absorption spectrometry (FAAS) using microwave digestion technique with two different types of solvents: aqua regia (HCI and HNO 3 )and the mixture of strong acids (HNO 3 , HCI, and HF). So far the same soil samples were subjected to reactor non-destructive multi-element instrumental neutron activation analysis (INAA), it served as a reference analytical technique for bulk copper determination. The results obtained by two methods of FAAS and INAA are discussed. GIS technology was applied to reveal the areas most affected by copper contamination. It was found that the content of copper in soil samples around the lead and zinc smelter plant is the highest and reaches 1800 mg/kg. Copper content in surface soil all around the town of Veles exceeds maximum permissible level for urban surface soil. Elevated copper content in some rural areas of the Veles region most likely could be explained through using copper containing fungicides for agricultural needs. (Author)

  17. Influence of hardness on the bioavailability of silver to a freshwater snail after waterborne exposure to silver nitrate and silver nanoparticles

    Science.gov (United States)

    Stoiber, Tasha L.; Croteau, Marie-Noele; Romer, Isabella; Tejamaya, Mila; Lead, Jamie R.; Luoma, Samuel N.

    2015-01-01

    The release of Ag nanoparticles (AgNPs) into the aquatic environment is likely, but the influence of water chemistry on their impacts and fate remains unclear. Here, we characterize the bioavailability of Ag from AgNO3 and from AgNPs capped with polyvinylpyrrolidone (PVP AgNP) and thiolated polyethylene glycol (PEG AgNP) in the freshwater snail, Lymnaea stagnalis, after short waterborne exposures. Results showed that water hardness, AgNP capping agents, and metal speciation affected the uptake rate of Ag from AgNPs. Comparison of the results from organisms of similar weight showed that water hardness affected the uptake of Ag from AgNPs, but not that from AgNO3. Transformation (dissolution and aggregation) of the AgNPs was also influenced by water hardness and the capping agent. Bioavailability of Ag from AgNPs was, in turn, correlated to these physical changes. Water hardness increased the aggregation of AgNPs, especially for PEG AgNPs, reducing the bioavailability of Ag from PEG AgNPs to a greater degree than from PVP AgNPs. Higher dissolved Ag concentrations were measured for the PVP AgNPs (15%) compared to PEG AgNPs (3%) in moderately hard water, enhancing Ag bioavailability of the former. Multiple drivers of bioavailability yielded differences in Ag influx between very hard and deionized water where the uptake rate constants (kuw, l g-1 d-1 ± SE) varied from 3.1 ± 0.7 to 0.2 ± 0.01 for PEG AgNPs and from 2.3 ± 0.02 to 1.3 ± 0.01 for PVP AgNPs. Modeling bioavailability of Ag from NPs revealed that Ag influx into L. stagnalis comprised uptake from the NPs themselves and from newly dissolved Ag.

  18. Bioavailability of the sodium pertechnetate and morphometry of organs isolated from rats: study of possible pharmacokinetic interactions of a ginkgo biloba extract

    International Nuclear Information System (INIS)

    Moreno, Silvana Ramos Farias; Arnobio, Adriano; Caldas, Luiz Querino de Araujo; Carvalho, Jorge Jose; Nascimento, Ana Lucia; Pereira, Mario; Dire, Glaucio; Bernardo Filho, Mario; Rocha, Emely Kazan

    2005-01-01

    Many compounds affect the bioavailability of radiobiocomplexes as radiopharmaceuticals. Ginkgo Biloba extract (EGb) has several effects. The influence of an EGb on the bioavailability of the radiobiocomplex sodium pertechnetate (Na 99m TcO 4 ) and on the morphometry of the organs was evaluated. Rats were treated with EGb and Na 99m TcO 4 was injected. The animals were sacrificed; the radioactivity in the organs was counted. The results showed that EGb altered the Na 99m TcO 4 bioavailability in the kidneys, liver and duodenum. Morphometric analysis of the organs showed significant alterations (P 99m TcO 4 . (author)

  19. Bioavailability of syrup and tablet formulations of cefetamet pivoxil.

    Science.gov (United States)

    Ducharme, M P; Edwards, D J; McNamara, P J; Stoeckel, K

    1993-12-01

    Two studies examining the bioavailability of cefetamet pivoxil in healthy male subjects were conducted. In the first, the bioavailabilities of the 250-mg (M250) and M500 tablet formulations of cefetamet pivoxil to be marketed were compared with that of a tablet used in clinical trials. All products were given with food at a dose of 500 mg. In the second study, the bioavailability of the syrup formulation was evaluated under both fasting and nonfasting conditions and compared with that of the M500 tablet formulation given with food. The absolute bioavailabilities of the M500 and M250 tablets (55.0% +/- 8.0% and 55.7% +/- 7.0%, respectively) were not significantly different from that of the clinical-trial formulation (49.8% +/- 8.5%). The newer tablet formulations exhibited faster absorption as evidenced by higher peak concentrations (3.8 [M500] and 3.9 [M250] mg/liter compared with 3.2 mg/liter for the clinical-trial formulation), a shorter time to peak concentration, and a shorter mean absorption time. The syrup formulation was found to have significantly lower absolute bioavailability (37.9% +/- 6.0%) compared with that of the M500 tablet (58.4% +/- 9.0%) when both were given with food. Food had no significant effect on the bioavailability of the syrup, which averaged 34.0% +/- 8.6% under fasting conditions, although absorption was delayed by food (mean absorption time increased from 2.2 to 3.9 h). This contrasts with the results of previous studies documenting significant increases in tablet bioavailability with food. Despite the lower bioavailability of the syrup, unbound-cefetamet concentrations are expected to remain above the MICs for 90% of the strains tested for susceptible organisms for approximately 10 h of the usual 12-h dosing interval with both syrup and tablet formulations of cefetamet pivoxil given with food.

  20. Bioaccessibility tests accurately estimate bioavailability of lead to quail

    Science.gov (United States)

    Beyer, W. Nelson; Basta, Nicholas T; Chaney, Rufus L.; Henry, Paula F.; Mosby, David; Rattner, Barnett A.; Scheckel, Kirk G.; Sprague, Dan; Weber, John

    2016-01-01

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from five Pb-contaminated Superfund sites had relative bioavailabilities from 33%-63%, with a mean of about 50%. Treatment of two of the soils with phosphorus significantly reduced the bioavailability of Pb. Bioaccessibility of Pb in the test soils was then measured in six in vitro tests and regressed on bioavailability. They were: the “Relative Bioavailability Leaching Procedure” (RBALP) at pH 1.5, the same test conducted at pH 2.5, the “Ohio State University In vitro Gastrointestinal” method (OSU IVG), the “Urban Soil Bioaccessible Lead Test”, the modified “Physiologically Based Extraction Test” and the “Waterfowl Physiologically Based Extraction Test.” All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the RBALP pH 2.5 and OSU IVG tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter (24%), or present as Pb sulfate (18%). Additional Pb was associated with P (chloropyromorphite, hydroxypyromorphite and tertiary Pb phosphate), and with Pb carbonates, leadhillite (a lead sulfate carbonate hydroxide), and Pb sulfide. The formation of chloropyromorphite reduced the bioavailability of Pb and the amendment of Pb-contaminated soils with P may be a thermodynamically favored means to sequester Pb.

  1. Copper and copper-nickel-alloys - An overview

    Energy Technology Data Exchange (ETDEWEB)

    Klassert, Anton; Tikana, Ladji [Deutsches Kupferinstitut e.V. Am Bonneshof 5, 40474 Duesseldorf (Germany)

    2004-07-01

    With the increasing level of industrialization the demand for and the number of copper alloys rose in an uninterrupted way. Today, the copper alloys take an important position amongst metallic materials due to the large variety of their technological properties and applications. Nowadays there exist over 3.000 standardized alloys. Copper takes the third place of all metals with a worldwide consumption of over 15 millions tons per year, following only to steel and aluminum. In a modern industrial society we meet copper in all ranges of the life (electro-technology, building and construction industry, mechanical engineering, automotive, chemistry, offshore, marine engineering, medical applications and others.). Copper is the first metal customized by humanity. Its name is attributed to the island Cyprus, which supplied in the antiquity copper to Greece, Rome and the other Mediterranean countries. The Romans called it 'ore from Cyprus' (aes cyprium), later cuprum. Copper deposited occasionally also dapper and could be processed in the recent stone age simply by hammering. Already in early historical time copper alloys with 20 to 50 percent tin was used for the production of mirrors because of their high reflecting power. Although the elementary nickel is an element discovered only recently from a historical perspective, its application in alloys - without any knowledge of the alloy composition - occurred at least throughout the last 2.000 years. The oldest copper-nickel coin originates from the time around 235 B.C.. Only around 1800 AD nickel was isolated as a metallic element. In particular in the sea and offshore technology copper nickel alloys found a broad field of applications in piping systems and for valves and armatures. The excellent combination of characteristics like corrosion resistance, erosion stability and bio-fouling resistance with excellent mechanical strength are at the basis of this success. An experience of many decades supports the use

  2. Differential sexual survival of Drosophila melanogaster on copper sulfate.

    Science.gov (United States)

    Balinski, Michael A; Woodruff, Ronny C

    2017-04-01

    Based on studies of the influence of X-chromosomes on the viability of Drosophila melanogaster exposed to cadmium, and on the role of X-linked genes on copper homeostasis, we examined the effect of copper sulfate (CuSO 4 ) on offspring viability using three independent, inbred D. melanogaster crosses (ensuring identical autosomes for males and females within each cross). Each cross was performed with attached X-chromosome females and males with a single X-chromosome. As female D. melanogaster have less metallothionein RNA expression than males, we predicted fewer female offspring than male offspring in crosses exposed to CuSO 4 , even though females have two copies of X-chromosome genes, possibly resulting in overdominant heterozygosity. In two of three crosses, CuSO 4 caused significantly higher numbers of male offspring compared to female offspring. We hypothesized that these gender-based viability differences to copper exposure are caused by X-chromosome ploidy and X-linked genetic variation affecting metallothionein expression. Observed differential offspring viability responses among crosses to copper exposure also showed that different genetic backgrounds (autosomal and/or X-chromosome) can result in significant differences in heavy metal and metallothionein regulation. These results suggest that the effect of copper on offspring viability depends on both genetic background and gender, as both factors can affect the regulation of metallothionein proteins as well as homeostasis of biologically necessary heavy metals.

  3. Estimating Lead (Pb) Bioavailability In A Mouse Model

    Science.gov (United States)

    Children are exposed to Pb through ingestion of Pb-contaminated soil. Soil Pb bioavailability is estimated using animal models or with chemically defined in vitro assays that measure bioaccessibility. However, bioavailability estimates in a large animal model (e.g., swine) can be...

  4. Stabilizing Agents for Drug Nanocrystals: Effect on Bioavailability

    Directory of Open Access Journals (Sweden)

    Annika Tuomela

    2016-05-01

    Full Text Available Drug nanocrystals are a versatile option for drug delivery purposes, and while the number of poorly soluble drug materials is all the time increasing, more research in this area is performed. Drug nanocrystals have a simple structure—a solid drug core is surrounded by a layer of stabilizing agent. However, despite the considerably simple structure, the selection of an appropriate stabilizer for a certain drug can be challenging. Mostly, the stabilizer selection is based purely on the requirement of physical stability, e.g., maintaining the nanosized particle size as long as possible after the formation of drug nanocrystals. However, it is also worth taking into account that stabilizer can affect the bioavailability in the final formulation via interactions with cells and cell layers. In addition, formation of nanocrystals is only one process step, and for the final formulation, more excipients are often added to the composition. The role of the stabilizers in the final formulation can be more than only stabilizing the nanocrystal particle size. A good example is the stabilizer’s role as cryoprotectant during freeze drying. In this review, the stabilizing effect, role of stabilizers in final nanocrystalline formulations, challenges in reaching in vitro–in vivo correlation with nanocrystalline products, and stabilizers’ effect on higher bioavailability are discussed.

  5. Assessing soil and plant parameters affecting uranium availability and plant uptake

    International Nuclear Information System (INIS)

    Vandenhove, H.

    2009-01-01

    In the assessment of the potential impact of contaminants in soils and the requirement for the implementation of corrective actions, it is important to determine the contaminant's mobility and bioavailability and to identify the processes and parameters ruling it. Mobility and bioavailability of contaminants are among others affected by the physicochemical characteristics of the environment itself and plant properties. This is also the case for uranium (U), reported to be the most frequent radionuclide contaminant in ground and surface water and soils. The actual failure of the available transfer factor (TF) data and their broad relation to soil type to be an appropriate measure for food chain transfer in assessment models, calls for a more mechanistic understanding of the individual processes affecting bioavailability. The objectives of this study were (1) to test if Diffusive Gradient in Thin film (DGT) measured concentrations adequately assess U bioavailability and (2) to evaluate if differences in U uptake by plants can be explained by variation in root-mediated changes in selected soil properties and assess the role of organic acids in this process

  6. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    Science.gov (United States)

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  7. Enhanced bioavailable contaminant stripping (EBCS): metal bioavailability for evaluation of phytoextraction success

    OpenAIRE

    Petruzzelli, Gianniantonio; Pedron, Francesca; Gorini, Francesca; Pezzarossa, Beatrice; Tassi, Eliana; Barbafieri, Meri

    2013-01-01

    Phytoextraction may be applied at field scale when the removal of bioavailable metals is the specific target of the technology. Residual metals in soil can be considered substantially inert or to be evaluated by site specific risk analysis.

  8. Systems biological approach of molecular descriptors connectivity: optimal descriptors for oral bioavailability prediction.

    Science.gov (United States)

    Ahmed, Shiek S S J; Ramakrishnan, V

    2012-01-01

    Poor oral bioavailability is an important parameter accounting for the failure of the drug candidates. Approximately, 50% of developing drugs fail because of unfavorable oral bioavailability. In silico prediction of oral bioavailability (%F) based on physiochemical properties are highly needed. Although many computational models have been developed to predict oral bioavailability, their accuracy remains low with a significant number of false positives. In this study, we present an oral bioavailability model based on systems biological approach, using a machine learning algorithm coupled with an optimal discriminative set of physiochemical properties. The models were developed based on computationally derived 247 physicochemical descriptors from 2279 molecules, among which 969, 605 and 705 molecules were corresponds to oral bioavailability, intestinal absorption (HIA) and caco-2 permeability data set, respectively. The partial least squares discriminate analysis showed 49 descriptors of HIA and 50 descriptors of caco-2 are the major contributing descriptors in classifying into groups. Of these descriptors, 47 descriptors were commonly associated to HIA and caco-2, which suggests to play a vital role in classifying oral bioavailability. To determine the best machine learning algorithm, 21 classifiers were compared using a bioavailability data set of 969 molecules with 47 descriptors. Each molecule in the data set was represented by a set of 47 physiochemical properties with the functional relevance labeled as (+bioavailability/-bioavailability) to indicate good-bioavailability/poor-bioavailability molecules. The best-performing algorithm was the logistic algorithm. The correlation based feature selection (CFS) algorithm was implemented, which confirms that these 47 descriptors are the fundamental descriptors for oral bioavailability prediction. The logistic algorithm with 47 selected descriptors correctly predicted the oral bioavailability, with a predictive accuracy

  9. Bioaccumulation and bioavailability of polybrominated diphynel ethers (PBDEs) in soil

    International Nuclear Information System (INIS)

    Liang Xianwei; Zhu Shuzhen; Chen Peng; Zhu Lingyan

    2010-01-01

    Earthworms were exposed to artificially contaminated soils of DE-71 and DE-79 to investigate the bioaccumulation and bioavailability of PBDEs in soil. All major congeners were bioavailable to earthworms. The uptake and elimination rate coefficients of PBDEs decreased with their logK ow s. The biota soil accumulation factors of PBDEs also declined with logK ow . These may be due to the large molecular size and the high affinity of PBDEs to soil particles. The concentrations extracted by Tenax for 6 h correlated very well with those found in earthworms, suggesting that the bioavailability of PBDEs in soil is related to the fraction of rapid desorption from soil. This also indicates that 6 h Tenax extraction is a good proxy for the bioavailability of PBDEs to earthworms in soil. The BSAFs of PBDEs in aged soil decreased 22-84% compared to freshly spiked soil, indicating that aging may diminish the bioavailability of PBDEs in soil significantly. - PBDEs are bioavailable to earthworms in soil and the uptake and elimination rate coefficients and BSAFs declined with their logK ow s.

  10. Economic booms and risky sexual behavior: evidence from Zambian copper mining cities.

    Science.gov (United States)

    Wilson, Nicholas

    2012-12-01

    Existing studies suggest that individual and household level economic shocks affect the demand for and supply of risky sex. However, little evidence exists on the effects of an aggregate shock on equilibrium risky sexual behavior. This paper examines the effects of the early twenty-first century copper boom on risky sexual behavior in Zambian copper mining cities. The results suggest that the copper boom substantially reduced rates of transactional sex and multiple partnerships in copper mining cities. These effects were partly concentrated among young adults and copper boom induced in-migration to mining cities appears to have contributed to these reductions. Copyright © 2012. Published by Elsevier B.V.

  11. Levels, distribution and bioavailability of transuranic elements released in the Palomares accident (Spain).

    Science.gov (United States)

    Jiménez-Ramos, M C; Vioque, I; García-Tenorio, R; García León, M

    2008-11-01

    The current levels and distribution of the remaining transuranic contamination present in the terrestrial area affected by the nuclear Palomares accident have been evaluated through the determination of the Pu-isotopes and (241)Am concentrations in soils collected 35 years after the accident. In addition, after confirming that most of the contamination is present in particulate form, some bioavailability laboratory-based experiments, based on the use of single extractants, were performed as an essential step in order to study the behaviour of the Pu contamination in the soils from the affected areas.

  12. Advanced Copper Composites Against Copper-Tolerant Xanthomonas perforans and Tomato Bacterial Spot.

    Science.gov (United States)

    Strayer-Scherer, A; Liao, Y Y; Young, M; Ritchie, L; Vallad, G E; Santra, S; Freeman, J H; Clark, D; Jones, J B; Paret, M L

    2018-02-01

    Bacterial spot, caused by Xanthomonas spp., is a widespread and damaging bacterial disease of tomato (Solanum lycopersicum). For disease management, growers rely on copper bactericides, which are often ineffective due to the presence of copper-tolerant Xanthomonas strains. This study evaluated the antibacterial activity of the new copper composites core-shell copper (CS-Cu), multivalent copper (MV-Cu), and fixed quaternary ammonium copper (FQ-Cu) as potential alternatives to commercially available micron-sized copper bactericides for controlling copper-tolerant Xanthomonas perforans. In vitro, metallic copper from CS-Cu and FQ-Cu at 100 μg/ml killed the copper-tolerant X. perforans strain within 1 h of exposure. In contrast, none of the micron-sized copper rates (100 to 1,000 μg/ml) from Kocide 3000 significantly reduced copper-tolerant X. perforans populations after 48 h of exposure compared with the water control (P copper-based treatments killed the copper-sensitive X. perforans strain within 1 h. Greenhouse studies demonstrated that all copper composites significantly reduced bacterial spot disease severity when compared with copper-mancozeb and water controls (P copper composites significantly reduced disease severity when compared with water controls, using 80% less metallic copper in comparison with copper-mancozeb in field studies (P copper composites have the potential to manage copper-tolerant X. perforans and tomato bacterial spot.

  13. Effects of Copper Addition on Copper Resistance, Antibiotic Resistance Genes, and intl1 during Swine Manure Composting

    Science.gov (United States)

    Yin, Yanan; Gu, Jie; Wang, Xiaojuan; Song, Wen; Zhang, Kaiyu; Sun, Wei; Zhang, Xin; Zhang, Yajun; Li, Haichao

    2017-01-01

    Copper is one of the most abundant heavy metals present in swine manure. In this study, a laboratory-scale aerobic composting system was amended with Cu at three levels (0, 200, and 2000 mg kg-1, i.e., control, Cu200, and Cu2000 treatments, respectively) to determine its effect on the fate of copper resistance genes [copper resistance genes (CRGs): pcoA, cusA, copA, and tcrB], antibiotic resistance genes [antibiotic resistance genes (ARGs): erm(A) and erm(B)], and intl1. The results showed that the absolute abundances of pcoA, tcrB, erm(A), erm(B), and intl1 were reduced, whereas those of copA and cusA increased after swine manure composting. Redundancy analysis showed that temperature significantly affected the variations in CRGs, ARGs, and intl1. The decreases in CRGs, ARGs, and intI1 were positively correlated with the exchangeable Cu levels. The bacterial community could be grouped according to the composting time under different treatments, where the high concentration of copper had a more persistent effect on the bacterial community. Network analysis determined that the co-occurrence of CRGs, ARGs, and intI1, and the bacterial community were the main contributors to the changes in CRGs, ARG, and intl1. Thus, temperature, copper, and changes in the bacterial community composition had important effects on the variations in CRGs, ARGs, and intl1 during manure composting in the presence of added copper. PMID:28316595

  14. ASSESSING SOIL ARSENIC BIOAVAILABILITY IN THE LABORATORY MOUSE

    Science.gov (United States)

    Variation among soils in the bioavailability of arsenic can be a critical determinant of the risk posed by exposure to these soils. Although in vitro techniques can provide vital data on aspects of bioavailability of metals and metalloids from soils, these results must be valida...

  15. The sublethal effects of copper and lead on the haematology and ...

    African Journals Online (AJOL)

    Toxicity bioassays were conducted on groovy mullet, Liza dumerili, using copper and lead, in order to assess how these metals affected their blood haematology and acid-base balance. Short-term (96 hours) exposure to lead caused significantly more haematological response [PCO2] than copper, when compared to the ...

  16. Impacts of boat paint chips on the distribution and availability of copper in an English ria

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Andrew [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA (United Kingdom)], E-mail: aturner@plymouth.ac.uk; Fitzer, Susan; Glegg, Gillian A. [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA (United Kingdom)

    2008-01-15

    Discarded paint chips collected from a leisure boat maintenance facility on the Kingsbridge estuary, SW England, have been fractionated to <63 {mu}m and chemically characterised. At about 16% by weight, Cu was the most abundant metallic component, reflecting its biocidal application in antifouling paint. Bioavailability of Cu in the chips, determined by protein digestion, was about 4%, and sea water leachability was about 8%. Copper concentrations in fractionated intertidal sediment from the estuary were highly variable (<10-460 {mu}g g{sup -1}). Specifically, greatest concentrations and greatest variability among replicates were found in samples collected near boat maintenance facilities. Bioavailability of Cu in sediment averaged 7% but was also variable. We attribute Cu 'hot spots' to heterogeneous contamination of local sediment by small quantities of paint chips. Contamination may arise directly, from relatively inert particulates, or indirectly, via release of Cu from chips to interstitial waters and its subsequent adsorption to local sediment. - Discarded paint chips from boat cleaning are a potentially significant source of local Cu contamination in marine environments.

  17. Candesartan cilexetil loaded nanodelivery systems for improved oral bioavailability.

    Science.gov (United States)

    Dudhipala, Narendar; Veerabrahma, Kishan

    2017-02-01

    Candesartan cilexetil (CC), an antihypertensive drug, has low oral bioavailability due to poor solubility and hepatic first-pass metabolism. These are major limitations in oral delivery of CC. Several approaches are known to reduce the problems of solubility and improve the bioavailability of CC. Among various approaches, nanotechnology-based delivery of CC has potential to overcome the challenges associated with the oral administration. This review focuses on various nano-based delivery systems available and tried for improving the aqueous solubility, dissolution and consequently bioavailability of CC upon oral administration. Of all, solid lipid nanoparticles appear to be promising delivery system, based on current reported results, for delivery of CC, as this system improved the oral bioavailability and possessed prolonged pharmacodynamic effect.

  18. Comparing soluble ferric pyrophosphate to common iron salts and chelates as sources of bioavailable iron in a Caco-2 cell culture model.

    Science.gov (United States)

    Zhu, Le; Glahn, Raymond P; Nelson, Deanna; Miller, Dennis D

    2009-06-10

    Iron bioavailability from supplements and fortificants varies depending upon the form of the iron and the presence or absence of iron absorption enhancers and inhibitors. Our objectives were to compare the effects of pH and selected enhancers and inhibitors and food matrices on the bioavailability of iron in soluble ferric pyrophosphate (SFP) to other iron fortificants using a Caco-2 cell culture model with or without the combination of in vitro digestion. Ferritin formation was the highest in cells treated with SFP compared to those treated with other iron compounds or chelates. Exposure to pH 2 followed by adjustment to pH 7 markedly decreased FeSO(4) bioavailability but had a smaller effect on bioavailabilities from SFP and sodium iron(III) ethylenediaminetetraacetate (NaFeEDTA), suggesting that chelating agents minimize the effects of pH on iron bioavailability. Adding ascorbic acid (AA) and cysteine to SFP in a 20:1 molar ratio increased ferritin formation by 3- and 2-fold, respectively, whereas adding citrate had no significant effect on the bioavailability of SFP. Adding phytic acid (10:1) and tannic acid (1:1) to iron decreased iron bioavailability from SFP by 91 and 99%, respectively. The addition of zinc had a marked inhibitory effect on iron bioavailability. Calcium and magnesium also inhibited iron bioavailability but to a lesser extent. Incorporating SFP in rice greatly reduced iron bioavailability from SFP, but this effect can be partially reversed with the addition of AA. SFP and FeSO(4) were taken up similarly when added to nonfat dry milk. Our results suggest that dietary factors known to enhance and inhibit iron bioavailability from various iron sources affect iron bioavailability from SFP in similar directions. However, the magnitude of the effects of iron absorption inhibitors on SFP iron appears to be smaller than on iron salts, such as FeSO(4) and FeCl(3). This supports the hypothesis that SFP is a promising iron source for food fortification

  19. Enhanced Bioavailable Contaminant Stripping (EBCS: metal bioavailability for evaluation of phytoextraction success

    Directory of Open Access Journals (Sweden)

    Petruzzelli G.

    2013-04-01

    Full Text Available Phytoextraction may be applied at field scale when the removal of bioavailable metals is the specific target of the technology. Residual metals in soil can be considered substantially inert or to be evaluated by site specific risk analysis.

  20. Biokinetics of copper in black-banded rainbowfish (Melanotaenia nigrans) tolerant to elevated copper concentrations, using the radioisotope 64Cu

    International Nuclear Information System (INIS)

    Gale, S.; Jeffree, R.; Smith, S.; Lim, R.

    2000-01-01

    Full text: For over 40 years black-banded rainbowfish (Melanotaenia nigrans) living in the East Branch of the Finniss River, Northern Territory have been exposed to elevated copper concentrations due to mine waste from the Rum Jungle uranium/copper mine. In the 1970s prior to remediation of the mine, fish kills were observed along the length of the East Branch. While copper concentrations remain comparatively high (up to 2000 μg/L) in the East Branch since remediation of the mine site, M. nigrans have been observed in the area. It was, therefore, hypothesised that due to selective pressure of lethal exposure, the population of black-banded rainbowfish in the East Branch have developed a tolerance to elevated copper concentrations. This project aimed to demonstrate copper tolerance and evaluate possible mechanism(s). In May 2000, fish were collected from the East Branch (exposed fish) and from a catchment previously unexposed to elevated metal concentrations (reference fish). The 96-hour EC 50 , fish imbalance (i.e. the concentration of copper that affects 50% of fish over 96 hours) for the exposed fish was over 8 times higher than the reference fish. Using the radioisotope, 64 Cu, the biokinetics of newly accumulated copper was traced in exposed and reference fish at low and elevated copper concentrations. The uptake rate, and therefore body burden, were significantly (p=0.000) lower in exposed fish, at both low and elevated copper concentrations compared to reference fish. Possible mechanisms of reducing copper uptake will be discussed. Tolerance was not lost when fish were maintained in relatively low copper concentrations in the laboratory. Also, the two populations of fish were genetically dissimilar based on allozyme analysis, which suggests that the mechanism is genetically mediated. The outcome of this project will be important in assisting accurate risk assessment and the development of environmental management strategies for the conservation of biota. The

  1. Nitric oxide bioavailability dysfunction involves in atherosclerosis.

    Science.gov (United States)

    Chen, Jing-Yi; Ye, Zi-Xin; Wang, Xiu-Fen; Chang, Jian; Yang, Mei-Wen; Zhong, Hua-Hua; Hong, Fen-Fang; Yang, Shu-Long

    2018-01-01

    The pathological characteristics of atherosclerosis (AS) include lipid accumulation, fibrosis formation and atherosclerotic plaque produced in artery intima, which leads to vascular sclerosis, lumen stenosis and irritates the ischemic changes of corresponding organs. Endothelial dysfunction was closely associated with AS. Nitric oxide (NO) is a multifunctional signaling molecule involved in the maintenance of metabolic and cardiovascular homeostasis. NO is also a potent endogenous vasodilator and enters for the key processes that suppresses the formation vascular lesion even AS. NO bioavailability indicates the production and utilization of endothelial NO in organisms, its decrease is related to oxidative stress, lipid infiltration, the expressions of some inflammatory factors and the alteration of vascular tone, which plays an important role in endothelial dysfunction. The enhancement of arginase activity and the increase in asymmetric dimethylarginine and hyperhomocysteinemia levels all contribute to AS by intervening NO bioavailability in human beings. Diabetes mellitus, obesity, chronic kidney disease and smoking, etc., also participate in AS by influencing NO bioavailability and NO level. Here, we reviewed the relationship between NO bioavailability and AS according the newest literatures. Copyright © 2017. Published by Elsevier Masson SAS.

  2. Comparison of soil solution speciation and diffusive gradients in thin-films measurement as an indicator of copper bioavailability to plants.

    Science.gov (United States)

    Zhao, Fang-Jie; Rooney, Corinne P; Zhang, Hao; McGrath, Steve P

    2006-03-01

    The toxicity effect concentrations (10% effective concentration [EC10] and 50% effective concentration [EC50]) of total added Cu derived from barley root elongation and tomato growth assays varied widely among 18 European soils. We investigated whether this variation could be explained by the solubility or speciation of Cu in soil solutions or the diffusive gradients in thin-films (DGT) measurement. Solubility and Cu speciation varied greatly among the soils tested. However, the EC10 and EC50 of soil solution Cu or free Cu2+ activity varied even more widely than those based on the total added Cu, indicating that solubility or soil solution speciation alone could not explain intersoil variation in Cu toxicity. Estimated EC10 and EC50 of free Cu2+ activity correlated closely and negatively with soil pH, indicating a protective effect of H+, which is consistent with the biotic ligand model concept. The DGT measurement was found to narrow the intersoil variation in EC50 considerably and to be a better predictor of plant Cu concentrations than either soil solution Cu or free Cu2+ activity. We conclude that plant bioavailability of Cu in soil depends on Cu speciation, interactions with protective ions (particularly H+), and the resupply from the solid phase, and we conclude that the DGT measurement provides a useful indicator of Cu bioavailability in soil.

  3. In Vitro Iron Bioavailability of Brazilian Food-Based by-Products.

    Science.gov (United States)

    Chiocchetti, Gabriela M; De Nadai Fernandes, Elisabete A; Wawer, Anna A; Fairweather-Tait, Susan; Christides, Tatiana

    2018-05-16

    Background : Iron deficiency is a public health problem in many low- and middle-income countries. Introduction of agro-industrial food by-products, as additional source of nutrients, could help alleviate this micronutrient deficiency, provide alternative sources of nutrients and calories in developed countries, and be a partial solution for disposal of agro-industry by-products. Methods : The aim of this study was to determine iron bioavailability of 5 by-products from Brazilian agro-industry (peels from cucumber, pumpkin, and jackfruit, cupuaçu seed peel, and rice bran), using the in vitro digestion/ Caco-2 cell model; with Caco-2 cell ferritin formation as a surrogate marker of iron bioavailability. Total and dialyzable Fe, macronutrients, the concentrations of iron-uptake inhibitors (phytic acid, tannins, fiber) and their correlation with iron bioavailability were also evaluated. Results : The iron content of all by-products was high, but the concentration of iron and predicted bioavailability were not related. Rice bran and cupuaçu seed peel had the highest amount of phytic acid and tannins, and lowest iron bioavailability. Cucumber peels alone, and with added extrinsic Fe, and pumpkin peels with extrinsic added iron, had the highest iron bioavailability. Conclusion : The results suggest that cucumber and pumpkin peel could be valuable alternative sources of bioavailable Fe to reduce iron deficiency in at-risk populations.

  4. Facilitated transport of diuron and glyphosate in high copper vineyard soils.

    Science.gov (United States)

    Dousset, Sylvie; Jacobson, Astrid R; Dessogne, Jean-Baptiste; Guichard, Nathalie; Baveye, Philippe C; Andreux, Francis

    2007-12-01

    The fate of organic herbicides applied to agricultural fields may be affected by other soil amendments, such as copper applied as a fungicide. The effect of copper on the leaching of diuron and glyphosate through a granitic and a calcareous soil was studied in the laboratory using sieved-soil columns. Each soil was enriched with copper sulfate to obtain soil copper concentrations of 125, 250, 500, and 1000 mg kg(-1). Glyphosate leaching was influenced by soil pH and copper concentration, whereas diuron leaching was not. In the calcareous soil, glyphosate leaching decreased as copper levels increased from 17 mg kg(-1) (background) to 500 mg kg(-1). In the granitic soil, glyphosate leaching increased as copper levels increased from 34 mg kg(-1) (background) to 500 mg kg(-1). The shapes of the copper elution curves in presence of glyphosate were similar to shapes of the glyphosate curves, suggesting the formation of Cu-glyphosate complexes that leach through the soil. Soil copper concentration does not influence diuron leaching. In contrast, increasing copper concentrations reduces glyphosate leaching through calcareous soils, and conversely, increases glyphosate leaching through granitic soils. Our findings suggest that the risk of groundwater contamination by glyphosate increases in granitic soils with elevated copper concentrations.

  5. Hypoxia targeting copper complexes

    International Nuclear Information System (INIS)

    Dearling, J.L.

    1998-11-01

    The importance and incidence of tumour hypoxia, its measurement and current treatments available, including pharmacological and radiopharmacological methods of targeting hypoxia, are discussed. A variety of in vitro and in vivo methods for imposing hypoxia have been developed and are reviewed. Copper, its chemistry, biochemistry and radiochemistry, the potential for use of copper radionuclides and its use to date in this field is considered with particular reference to the thiosemicarbazones. Their biological activity, metal chelation, in vitro and in vivo studies of their radiocopper complexes and the potential for their use as hypoxia targeting radiopharmaceuticals is described. The reduction of the copper(II) complex to copper(l), its pivotal importance in their biological behaviour, and the potential for manipulation of this to effect hypoxia selectivity are described. An in vitro method for assessing the hypoxia selectivity of radiopharmaceuticals is reported. The rapid deoxygenation and high viability of a mammalian cell culture in this system is discussed and factors which may affect the cellular uptake of a radiopharmaceutical are described. The design, synthesis and complexation with copper and radiocopper of a range of bis(thiosemicarbazones) is reported. Synthesis of these compounds is simple giving high yields of pure products. The characteristics of the radiocopper complexes ( 64 Cu) including lipophilicity and redox activity are reported (reduction potentials in the range -0.314 - -0.590 V). High cellular uptakes of the radiocopper complexes of the ligands, in hypoxic and normoxic EMT6 and CHO320 cells, were observed. Extremes of selectivity are shown ranging from the hypoxia selective 64 Cu(II)ATSM to normoxic cell selective 64 Cu(II)GTS. The selectivities observed are compared with the physico chemical characteristics of the complexes. A good correlation exists between selectivity of the complex and its Cu(II)/Cu(I) reduction potential, with hypoxia

  6. Bioavailability enhancement of atovaquone using hot melt extrusion technology.

    Science.gov (United States)

    Kate, Laxman; Gokarna, Vinod; Borhade, Vivek; Prabhu, Priyanka; Deshpande, Vinita; Pathak, Sulabha; Sharma, Shobhona; Patravale, Vandana

    2016-04-30

    Emerging parasite resistance and poor oral bioavailability of anti-malarials are the two cardinal issues which hinder the clinical success of malaria chemotherapy. Atovaquone-Proguanil is a WHO approved fixed dose combination used to tackle the problem of emerging resistance. However, Atovaquone is a highly lipophilic drug having poor aqueous solubility (less than 0.2 μg/ml) thus reducing its oral bioavailability. The aim of the present investigation was to explore hot melt extrusion (HME) as a solvent-free technique to enhance solubility and oral bioavailability of Atovaquone and to develop an oral dosage form for Atovaquone-Proguanil combination. Solid dispersion of Atovaquone was successfully developed using HME. The solid dispersion was characterized for DSC, FTIR, XRD, SEM, and flow properties. It was filled in size 2 hard gelatin capsules. The formulation showed better release as compared to Malarone® tablets, and 3.2-fold and 4.6-fold higher bioavailability as compared to Malarone® tablets and Atovaquone respectively. The enhanced bioavailability also resulted in 100% anti-malarial activity in murine infection model at 1/8(th) therapeutic dose. Thus the developed methodology shows promising potential to solve the problems associated with Atovaquone therapy, namely its high cost and poor oral bioavailability, resulting in increased therapeutic efficacy of Atovaquone. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Iron Bioavailability Studies of the First Generation of Iron-Biofortified Beans Released in Rwanda.

    Science.gov (United States)

    Glahn, Raymond; Tako, Elad; Hart, Jonathan; Haas, Jere; Lung'aho, Mercy; Beebe, Steve

    2017-07-21

    This paper represents a series of in vitro iron (Fe) bioavailability experiments, Fe content analysis and polyphenolic profile of the first generation of Fe biofortified beans ( Phaseolus vulgaris ) selected for human trials in Rwanda and released to farmers of that region. The objective of the present study was to demonstrate how the Caco-2 cell bioassay for Fe bioavailability can be utilized to assess the nutritional quality of Fe in such varieties and how they may interact with diets and meal plans of experimental studies. Furthermore, experiments were also conducted to directly compare this in vitro approach with specific human absorption studies of these Fe biofortified beans. The results show that other foods consumed with beans, such as rice, can negatively affect Fe bioavailability whereas potato may enhance the Fe absorption when consumed with beans. The results also suggest that the extrinsic labelling approach to measuring human Fe absorption can be flawed and thus provide misleading information. Overall, the results provide evidence that the Caco-2 cell bioassay represents an effective approach to evaluate the nutritional quality of Fe-biofortified beans, both separate from and within a targeted diet or meal plan.

  8. Native copper as a natural analogue for copper canisters

    International Nuclear Information System (INIS)

    Marcos, N.

    1989-12-01

    This paper discusses the occurrence of native copper as found in geological formations as a stability analogue of copper canisters that are planned to be used for the disposal of spent nuclear fuel in the Finnish bedrock. A summary of several publications on native copper occurrences is presented. The present geochemical and geohydrological conditions in which copper is met with in its metallic state show that metallic copper is stable in a wide range of temperatures. At low temperatures native copper is found to be stable where groundwater has moderate pH (about 7), low Eh (< +100 mV), and low total dissolved solids, especially chloride. Microscopical and microanalytical studies were carried out on a dozen of rock samples containing native copper. The results reveal that the metal shows no significant alteration. Only the surface of copper grains is locally coated. In the oldest samples there exist small corrosion cracks; the age of the oldest samples is over 1,000 million years. A review of several Finnish groundwater studies suggests that there are places in Finland where the geohydrological conditions are favourable for native copper stability. (orig.)

  9. Arsenic mobility and bioavailability in paddy soil under iron compound amendments at different growth stages of rice.

    Science.gov (United States)

    Yu, Huan-Yun; Wang, Xiangqin; Li, Fangbai; Li, Bin; Liu, Chuanping; Wang, Qi; Lei, Jing

    2017-05-01

    Iron (Fe)-based solids can reduce arsenic (As) mobility and bioavailability in soils, which has been well recognized. However, to our knowledge, there are few studies on As uptake at different growth stages of rice under Fe compound amendments. In addition, the formation of Fe plaques at different growth stages of rice has also been rarely reported. Therefore, the present study was undertaken to investigate As mobility and bioavailability in paddy soil under Fe compound amendments throughout the whole growth stage of rice plants. Amendments of poorly crystalline Fe oxides (PC-Fe), FeCl 2 +NaNO 3 and FeCl 2 reduced grain As by 54% ± 3.0%, 52% ± 3.0% and 46% ± 17%, respectively, compared with that of the non-amended control. The filling stage was suggested to be the key stage to take measures to reduce As uptake. At this stage, all soil amendments significantly reduced As accumulation in rice plants. At the maturation stage, PC-Fe amendment significantly reduced mobile pools and increased immobile pools of soil As. Besides, PC-Fe treatment promoted the transformation of Fe fractions from dissolved Fe to adsorbed, poorly crystalline and free Fe oxides. Moreover, significant positive correlations between soil Fe fractions and As fractions were found. Accordingly, we hypothesized that Fe compound amendments might affect the concentration distribution of Fe fractions first and then affect As fractionation in soil and its bioavailability to rice plants indirectly. The formation of Fe plaques varied with growth stages and different treatments. Significantly negative correlations between mobile pools of As and Fe or As in Fe plaques indicated that Fe plaques could immobilize mobile As in soils and thus affect As bioavailability. Overall, the effect of the soil amendments on reduction of As uptake varied with growth stages and different treatments, and further research on the key stage for reducing As uptake is still required. Copyright © 2017 Elsevier Ltd. All

  10. Effects of copper on invertebrate–sediment interactions

    International Nuclear Information System (INIS)

    Hunting, E.R.; Mulder, C.; Kraak, M.H.S.; Breure, A.M.; Admiraal, W.

    2013-01-01

    Toxicants potentially decouple links between biodiversity and ecosystem processes. This study aimed to evaluate how toxicants affect invertebrate bioturbation and decomposition. Effects of copper on functionally distinct macrofaunal species (Asellus aquaticus and Tubifex spp.), decomposition (release of dissolved organic carbon, DOC) and Average Metabolic Response (AMR) and Community Metabolic Diversity (CMD) of bacteria were determined in 5-day microcosm experiments. Bioturbation was assessed as sediment redox potential (Eh) profiles. Concentration–response curves of the functional parameters DOC, and the faunal mediated AMR and CMD in the presence of Tubifex spp. depended on Tubifex spp. survival, i.e. similar EC 50 values for both endpoints. In contrast, functional parameters in the presence of A. aquaticus were more sensitive than survival. Sediment Eh-profiles showed that reduced decomposition was caused by reduced sediment reworking by A. aquaticus at sub-lethal copper concentrations. These observations hint at a decoupling of invertebrate community structure and ecosystem functioning upon stress. -- Highlights: •We compared invertebrate survival and functional responses to copper amendment. •Differential functional responses depending on invertebrate species. •Reduced functional responses with A. aquaticus at sub-lethal copper concentrations. •Sub-lethal copper concentrations reduced the bioturbating activities of A. aquaticus. •Stress decouples invertebrate community structure and ecosystem functioning. -- Sub-lethal copper concentrations reduced the bioturbating activities of A. aquaticus and invertebrate effects on decomposition, bacterial activity and community metabolic diversity

  11. Enhanced oral bioavailability of docetaxel in rats combined with myricetin: In situ and in vivo evidences.

    Science.gov (United States)

    Hao, Tianyun; Ling, Yunni; Wu, Meijuan; Shen, Yajing; Gao, Yu; Liang, Shujun; Gao, Yuan; Qian, Shuai

    2017-04-01

    The purpose of this study was to investigate the effect of myricetin on the pharmacokinetics of docetaxel in rats. In comparison to oral docetaxel alone (40mg/kg), the bioavailability of docetaxel could be significantly enhanced by 1.6-2.4-fold via oral co-administration with various flavonoids (apigenin, naringenin, baicalein, quercetin and myricetin) at a dosage of 10mg/kg, and myricetin showed the highest bioavailability improvement. Further pharmacokinetic studies demonstrated that the presence of myricetin (5-20mg/kg) enhanced both C max and AUC of docetaxel with the highest C max (162ng/mL, 2.3-fold) and relative bioavailability (244%) achieved at 10mg/kg of myricetin, while t 1/2 was not influenced. In order to explore the reasons for such bioavailability enhancement of docetaxel, rat in situ single-pass intestinal perfusion model and intravenous docetaxel co-administrated with oral myricetin were carried out. After combining with myricetin, the permeability coefficient (P blood ) of docetaxel based on its appearance in mesenteric blood was significantly increased up to 3.5-fold in comparison to that of docetaxel alone. Different from oral docetaxel, the intravenous pharmacokinetics of docetaxel was not affected by co-administration of myricetin, indicating the limited effect of myricetin on the elimination of docetaxel. The above findings suggested that the oral bioavailability enhancement of docetaxel via co-administration with myricetin might be mainly attributed to the enhanced absorption in gastrointestinal tract rather than modulating the elimination of docetaxel. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Factors that Affect the Content of Cadmium, Nickel, Copper and Zinc in Tissues of the Knee Joint.

    Science.gov (United States)

    Roczniak, Wojciech; Brodziak-Dopierała, Barbara; Cipora, Elżbieta; Jakóbik-Kolon, Agata; Kluczka, Joanna; Babuśka-Roczniak, Magdalena

    2017-08-01

    Osteoarthritis causes the degradation of the articular cartilage and periarticular bones. Trace elements influence the growth, development and condition of the bone tissue. Changes to the mineral composition of the bone tissue can cause degenerative changes and fractures. The aim of the research was to determine the content of cadmium (Cd), nickel (Ni), copper (Cu) and zinc (Zn) in the tibia, the femur and the meniscus in men and women who underwent a knee replacement surgery. Samples were collected from 50 patients, including 36 women and 14 men. The determination of trace elements content were performed by ICP-AES method, using Varian 710-ES. Average concentration in the tissues of the knee joint teeth amounted for cadmium 0.015, nickel 0.60, copper 0.89 and zinc 80.81 mg/kg wet weight. There were statistically significant differences in the content of cadmium, copper and zinc in different parts of the knee joint. There were no statistically significant differences in the content of cadmium, nickel, copper and zinc in women and men in the examined parts of the knee joint. Among the elements tested, copper and nickel showed a high content in the connective tissue (the meniscus) compared to the bone tissue (the tibia and the femur).

  13. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    Science.gov (United States)

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; Van Hest, Maikel [Lakewood, CO; Ginley, David S [Evergreen, CO; Nekuda, Jennifer A [Lakewood, CO

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  14. Bioaccumulation and bioavailability of polybrominated diphynel ethers (PBDEs) in soil

    Energy Technology Data Exchange (ETDEWEB)

    Liang Xianwei; Zhu Shuzhen; Chen Peng [College of Environmental Science and Engineering, Nankai University, Weijin Road 94, Tianjin 300071 (China); Key Laboratory of Pollution Processes and Environmental Criteria (Nankai University), Ministry of Education, Tianjin 300071 (China); Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, Nankai University, Tianjin 300071 (China); Zhu Lingyan, E-mail: zhuly@nankai.edu.c [College of Environmental Science and Engineering, Nankai University, Weijin Road 94, Tianjin 300071 (China); Key Laboratory of Pollution Processes and Environmental Criteria (Nankai University), Ministry of Education, Tianjin 300071 (China); Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, Nankai University, Tianjin 300071 (China)

    2010-07-15

    Earthworms were exposed to artificially contaminated soils of DE-71 and DE-79 to investigate the bioaccumulation and bioavailability of PBDEs in soil. All major congeners were bioavailable to earthworms. The uptake and elimination rate coefficients of PBDEs decreased with their logK{sub ow}s. The biota soil accumulation factors of PBDEs also declined with logK{sub ow}. These may be due to the large molecular size and the high affinity of PBDEs to soil particles. The concentrations extracted by Tenax for 6 h correlated very well with those found in earthworms, suggesting that the bioavailability of PBDEs in soil is related to the fraction of rapid desorption from soil. This also indicates that 6 h Tenax extraction is a good proxy for the bioavailability of PBDEs to earthworms in soil. The BSAFs of PBDEs in aged soil decreased 22-84% compared to freshly spiked soil, indicating that aging may diminish the bioavailability of PBDEs in soil significantly. - PBDEs are bioavailable to earthworms in soil and the uptake and elimination rate coefficients and BSAFs declined with their logK{sub ow}s.

  15. COPPER AND COPPER-CONTAINING PESTICIDES: METABOLISM, TOXICITY AND OXIDATIVE STRESS

    Directory of Open Access Journals (Sweden)

    Viktor Husak

    2015-05-01

    Full Text Available The purpose of this paper is to provide a brief review of the current knowledge regarding metabolism and toxicity of copper and copper-based pesticides in living organisms. Copper is an essential trace element in all living organisms (bacteria, fungi, plants, and animals, because it participates in different metabolic processes and maintain functions of organisms. The transport and metabolism of copper in living organisms is currently the subject of many studies. Copper is absorbed, transported, distributed, stored, and excreted in the body via the complex of homeostatic processes, which provide organisms with a needed constant level of this micronutrient and avoid excessive amounts. Many aspects of copper homeostasis were studied at the molecular level. Copper based-pesticides, in particularly fungicides, bacteriocides and herbicides, are widely used in agricultural practice throughout the world. Copper is an integral part of antioxidant enzymes, particularly copper-zinc superoxide dismutase (Cu,Zn-SOD, and plays prominent roles in iron homeostasis. On the other hand, excess of copper in organism has deleterious effect, because it stimulates free radical production in the cell, induces lipid peroxidation, and disturbs the total antioxidant capacity of the body. The mechanisms of copper toxicity are discussed in this review also.

  16. Uptake and internalisation of copper by three marine microalgae: comparison of copper-sensitive and copper-tolerant species.

    Science.gov (United States)

    Levy, Jacqueline L; Angel, Brad M; Stauber, Jennifer L; Poon, Wing L; Simpson, Stuart L; Cheng, Shuk Han; Jolley, Dianne F

    2008-08-29

    Although it has been well established that different species of marine algae have different sensitivities to metals, our understanding of the physiological and biochemical basis for these differences is limited. This study investigated copper adsorption and internalisation in three algal species with differing sensitivities to copper. The diatom Phaeodactylum tricornutum was particularly sensitive to copper, with a 72-h IC50 (concentration of copper to inhibit growth rate by 50%) of 8.0 microg Cu L(-1), compared to the green algae Tetraselmis sp. (72-h IC50 47 microg Cu L(-1)) and Dunaliella tertiolecta (72-h IC50 530 microg Cu L(-1)). At these IC50 concentrations, Tetraselmis sp. had much higher intracellular copper (1.97+/-0.01 x 10(-13)g Cu cell(-1)) than P. tricornutum (0.23+/-0.19 x 10(-13)g Cu cell(-1)) and D. tertiolecta (0.59+/-0.05 x 10(-13)g Cu cell(-1)), suggesting that Tetraselmis sp. effectively detoxifies copper within the cell. By contrast, at the same external copper concentration (50 microg L(-1)), D. tertiolecta appears to better exclude copper than Tetraselmis sp. by having a slower copper internalisation rate and lower internal copper concentrations at equivalent extracellular concentrations. The results suggest that the use of internal copper concentrations and net uptake rates alone cannot explain differences in species-sensitivity for different algal species. Model prediction of copper toxicity to marine biota and understanding fundamental differences in species-sensitivity will require, not just an understanding of water quality parameters and copper-cell binding, but also further knowledge of cellular detoxification mechanisms.

  17. Enhanced Dissolution and Oral Bioavailability of Piroxicam Formulations: Modulating Effect of Phospholipids

    Directory of Open Access Journals (Sweden)

    Muhammad D. Hussain

    2010-10-01

    Full Text Available Several biologically relevant phospholipids were assessed as potential carriers/additives for rapidly dissolving solid formulations of piroxicam (Biopharmaceutics Classification System Class II drug. On the basis of in vitro dissolution studies, dimyristoylphosphatidylglycerol (DMPG was ranked as the first potent dissolution rate enhancer for the model drug. Subsequently, the solid dispersions of varying piroxicam/DMPG ratios were prepared and further investigated. Within the concentration range studied (6.4-16.7 wt %, the dissolution rate of piroxicam from the solid dispersions appeared to increase as a function of the carrier weight fraction, whereas the cumulative drug concentration was not significantly affected by piroxicam/DMPG ratio, presumably due to a unique phase behavior of the aqueous dispersions of this carrier phospholipid. Solid state analysis of DMPG-based formulations reveled that they are two-component systems, with a less thermodynamically stable form of piroxicam (Form II being dispersed within the carrier. Finally, oral bioavailability of piroxicam from the DMPG-based formulations in rats was found to be superior to that of the control, as indicated by the bioavailability parameters, cmax and especially Tmax (53 µg/mL within 2 h vs. 39 µg/mL within 5.5 h, respectively. Hence, DMPG was regarded as the most promising carrier phospholipid for enhancing oral bioavailability of piroxicam and potentially other Class II drugs.

  18. Bioavailability of glucosinolates and their breakdown products

    DEFF Research Database (Denmark)

    Barba Orellana, Francisco Jose; Nikmaram, Nooshin; Roohinejad, Shahin

    2016-01-01

    Glucosinolates are a large group of plant secondary metabolites with nutritional effects, and are mainly found in cruciferous plants. After ingestion, glucosinolates could be partially absorbed in their intact form through the gastrointestinal mucosa. However, the largest fraction is metabolized ...... the bioavailability of glucosinolates and their breakdown products. This review paper summarizes the assimilation, absorption, and elimination of these molecules, as well as the impact of processing on their bioavailability....

  19. Grain boundary corrosion of copper canister material

    International Nuclear Information System (INIS)

    Fennell, P.A.H.; Graham, A.J.; Smart, N.R.; Sofield, C.J.

    2001-03-01

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast inner container fitted inside a corrosion-resistant copper canister. During fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow they will tend to concentrate impurities within the copper at the new grain boundaries. The work described in this report was undertaken to determine whether there is any possibility of enhanced corrosion at grain boundaries within the copper canister. The potential for grain boundary corrosion was investigated by exposing copper specimens, which had undergone different heat treatments and hence had different grain sizes, to aerated artificial bentonite-equilibrated groundwater with two concentrations of chloride, for increasing periods of time. The degree of grain boundary corrosion was determined by atomic force microscopy (AFM) and optical microscopy. AFM showed no increase in grain boundary 'ditching' for low chloride groundwater. In high chloride groundwater the surface was covered uniformly with a fine-grained oxide. No increases in oxide thickness were observed. No significant grain boundary attack was observed using optical microscopy either. The work suggests that in aerated artificial groundwaters containing chloride ions, grain boundary corrosion of copper is unlikely to adversely affect SKB's copper canisters

  20. Microstructure of the regions on a plane copper electrode surface affected by a spark discharge in air in the point-plane gap

    Science.gov (United States)

    Tren'kin, A. A.; Karelin, V. I.; Shibitov, Yu. M.; Blinova, O. M.; Yasnikov, I. S.

    2017-09-01

    The microstructure of the regions affected by spark discharge on the surface of a plane copper electrode in atmospheric air in the point-plane gap has been studied using a scanning electron microscope for both the positive and negative polarity of the point electrode. It has been found that the affected regions have the shape of round spots or groups of spots with diameters of individual spots varying in the range of 20-200 μm. It has been revealed that the spots have an internal spatial structure in the form of an aggregate of concentric rings. These rings are aggregates of a large number of microscopic craters with diameters of 0.1-1.0 μm.

  1. Grain boundary corrosion of copper canister weld material

    International Nuclear Information System (INIS)

    Gubner, Rolf; Andersson, Urban; Linder, Mats; Nazarov, Andrej; Taxen, Claes

    2006-01-01

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast inner container fitted inside a corrosion-resistant copper canister. During fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow, they will tend to concentrate impurities within the copper at the new grain boundaries. The work described in this report was undertaken to determine whether there is any possibility of enhanced corrosion at grain boundaries within the copper canister, based on the recommendations of the report SKB-TR--01-09 (INIS ref. 32025363). Grain boundary corrosion of copper is not expected to be a problem for the copper canisters in a repository. However, as one step in the experimental verification it is necessary to study grain boundary corrosion of copper in an environment where it may occur. A literature study aimed to find one or several solutions that are aggressive with respect to grain boundary corrosion of copper. Copper specimens cut from welds of real copper canisters where exposed to aerated ammonium hydroxide solution for a period of 14 days at 80 degrees C and 10 bar pressure. The samples were investigated prior to exposure using the scanning Kelvin probe technique to characterize anodic and cathodic areas on the samples. The degree of corrosion was determined by optical microscopy. No grain boundary corrosion could be observed in the autoclave experiments, however, a higher rate of corrosion was observed for the weld material compared to the base material. The work suggests that grain boundary corrosion of copper weld material is most unlikely to adversely affect SKB's copper canisters under the conditions in the repository

  2. Grain boundary corrosion of copper canister weld material

    Energy Technology Data Exchange (ETDEWEB)

    Gubner, Rolf; Andersson, Urban; Linder, Mats; Nazarov, Andrej; Taxen, Claes [Corrosion and Metals Research Inst. (KIMAB), Stockholm (Sweden)

    2006-01-15

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast inner container fitted inside a corrosion-resistant copper canister. During fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow, they will tend to concentrate impurities within the copper at the new grain boundaries. The work described in this report was undertaken to determine whether there is any possibility of enhanced corrosion at grain boundaries within the copper canister, based on the recommendations of the report SKB-TR--01-09 (INIS ref. 32025363). Grain boundary corrosion of copper is not expected to be a problem for the copper canisters in a repository. However, as one step in the experimental verification it is necessary to study grain boundary corrosion of copper in an environment where it may occur. A literature study aimed to find one or several solutions that are aggressive with respect to grain boundary corrosion of copper. Copper specimens cut from welds of real copper canisters where exposed to aerated ammonium hydroxide solution for a period of 14 days at 80 degrees C and 10 bar pressure. The samples were investigated prior to exposure using the scanning Kelvin probe technique to characterize anodic and cathodic areas on the samples. The degree of corrosion was determined by optical microscopy. No grain boundary corrosion could be observed in the autoclave experiments, however, a higher rate of corrosion was observed for the weld material compared to the base material. The work suggests that grain boundary corrosion of copper weld material is most unlikely to adversely affect SKB's copper canisters under the conditions in the repository.

  3. Cancer risk in relation to serum copper levels.

    Science.gov (United States)

    Coates, R J; Weiss, N S; Daling, J R; Rettmer, R L; Warnick, G R

    1989-08-01

    A nested, matched case-control study was conducted to assess the relationship between serum levels of copper and the subsequent risk of cancer. One hundred thirty-three cases of cancer were identified during 1974-1984 among 5000 members of a northwest Washington State employee cohort from whom serum specimens had been previously obtained and stored. Two hundred forty-one controls were selected at random from the cohort and were matched to the cases on the basis of age, sex, race, and date of blood draw. Serum copper levels were measured by atomic absorption spectrometry. Risk of a subsequent diagnosis of cancer was positively associated with serum copper levels, but only among those cases diagnosed within 4 years of the time the serum specimens were collected. Among cases diagnosed more than 4 years after specimen collection, there was no consistent association between serum copper levels and risk. Adjustment for age, sex, race, occupational status, cigarette smoking, family history of cancer, alcohol consumption, and, among females, use of exogenous hormones had no appreciable effect on these relationships. The findings suggest that the presence of cancer may increase serum copper levels several years prior to its diagnosis. They are less supportive of the hypothesis that serum copper levels affect cancer risk.

  4. Lesions of Copper Toxicosis in Captive Marine Invertebrates With Comparisons to Normal Histology.

    Science.gov (United States)

    LaDouceur, E E B; Wynne, J; Garner, M M; Nyaoke, A; Keel, M K

    2016-05-01

    Despite increasing concern for coral reef ecosystem health within the last decade, there is scant literature concerning the histopathology of diseases affecting the major constituents of coral reef ecosystems, particularly marine invertebrates. This study describes histologic findings in 6 species of marine invertebrates (California sea hare [Aplysia californica], purple sea urchin [Strongylocentrotus purpuratus], sunburst anemone [Anthopleura sola], knobby star [Pisaster giganteus], bat star [Asterina miniata], and brittle star [Ophiopteris papillosa]) with spontaneous copper toxicosis, 4 purple sea urchins with experimentally induced copper toxicosis, and 1 unexposed control of each species listed. The primary lesions in the California sea hare with copper toxicosis were branchial and nephridial necrosis. Affected echinoderms shared several histologic lesions, including epidermal necrosis and ulceration and increased numbers of coelomocytes within the water-vascular system. The sunburst anemone with copper toxicosis had necrosis of both epidermis and gastrodermis, as well as expulsion of zooxanthellae from the gastrodermis. In addition to the lesions attributed to copper toxicosis, our results describe normal microscopic features of these animals that may be useful for histopathologic assessment of marine invertebrates. © The Author(s) 2015.

  5. A new method to measure effective soil solution concentration predicts copper availability to plants.

    Science.gov (United States)

    Zhang, H; Zhao, F J; Sun, B; Davison, W; McGrath, S P

    2001-06-15

    Risk assessments of metal contaminated soils need to address metal bioavailability. To predict the bioavailability of metals to plants, it is necessary to understand both solution and solid phase supply processes in soils. In striving to find surrogate chemical measurements, scientists have focused either on soil solution chemistry, including free ion activities, or operationally defined fractions of metals. Here we introduce the new concept of effective concentration, CE, which includes both the soil solution concentration and an additional term, expressed as a concentration, that represents metal supplied from the solid phase. CE was measured using the technique of diffusive gradients in thin films (DGT) which, like a plant, locally lowers soil solution concentrations, inducing metal supply from the solid phase, as shown by a dynamic model of the DGT-soil system. Measurements of Cu as CE, soil solution concentration, by EDTA extraction and as free Cu2+ activity in soil solution were made on 29 different soils covering a large range of copper concentrations. Theywere compared to Cu concentrations in the plant material of Lepidium heterophyllum grown on the same soils. Plant concentrations were linearly related and highly correlated with CE but were more scattered and nonlinear with respect to free Cu2+ activity, EDTA extraction, or soil solution concentrations. These results demonstrate that the dominant supply processes in these soils are diffusion and labile metal release, which the DGT-soil system mimics. The quantity CE is shown to have promise as a quantitative measure of the bioavailable metal in soils.

  6. Enhanced bioavailability of opiates after intratracheal administration

    International Nuclear Information System (INIS)

    Findlay, J.W.A.; Jones, E.C.; McNulty, M.J.

    1986-01-01

    Several opiate analgesics have low oral bioavailabilities in the dog because of presystemic metabolism. Intratracheal administration may circumvent this first-pass effect. Three anesthetized beagles received 5-mg/kg doses of codeine phosphate intratracheally (i.t.), orally (p.o.) and intravenously (i.v.) in a crossover study. The following drugs were also studied in similar experiments: ethylmorphine hydrochloride (5 mg/kg), pholcodine bitartrate (10 mg/kg, hydrocodone bitartrate (4 mg/kg) and morphine sulfate (2.5 mg/kg). Plasma drug concentrations over the 24- to 48-hr periods after drug administrations were determined by radioimmunoassays. I.t. bioavailabilities [codeine (84%), ethylmorphine (100%), and morphine (87%)] of drugs with poor oral availabilities were all markedly higher than the corresponding oral values (14, 26, and 23%, respectively). I.t. bioavailabilities of pholcodine (93%) and hydrocodone (92%), which have good oral availabilities (74 and 79%, respectively), were also enhanced. In all cases, peak plasma concentrations occurred more rapidly after i.t. (0.08-0.17 hr) than after oral (0.5-2 hr) dosing and i.t. disposition often resembled i.v. kinetics. I.t. administration may be a valuable alternative dosing route, providing rapid onset of pharmacological activity for potent drugs with poor oral bioavailability

  7. Roadside soils show low plant available zinc and copper concentrations.

    Science.gov (United States)

    Morse, Natalie; Walter, M Todd; Osmond, Deanna; Hunt, William

    2016-02-01

    Vehicle combustion and component wear are a major source of metal contamination in the environment, which could be especially concerning where road ditches are actively farmed. The objective of this study was to assess how site variables, namely age, traffic (vehicles day(-1)), and percent carbon (%C) affect metal accumulation in roadside soils. A soil chronosequence was established with sites ranging from 3 to 37 years old and bioavailable, or mobile, concentrations of Zinc (Zn) and Copper (Cu) were measured along major highways in North Carolina using a Mehlich III extraction. Mobile Zn and Cu concentrations were low overall, and when results were scaled via literature values to "total metal", the results were still generally lower than previous roadside studies. This could indicate farming on lands near roads would pose a low plant toxicity risk. Zinc and Cu were not correlated with annual average traffic count, but were positively correlated with lifetime traffic load (the product of site age and traffic count). This study shows an often overlooked variable, site age, should be included when considering roadside pollution accumulation. Zinc and Cu were more strongly associated with %C, than traffic load. Because vehicle combustion is also a carbon source, it is not obvious whether the metals and carbon are simply co-accumulating or whether the soil carbon in roadside soils may facilitate previously overlooked roles in sequestering metals on-site. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Biomarkers of waterborne copper exposure in the guppy Poecilia vivipara acclimated to salt water

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Anderson Abel de Souza [Universidade Federal do Rio Grande, Programa de Pós-Graduação em Oceanografia Biológica, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Hoff, Mariana Leivas Müller [Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Klein, Roberta Daniele [Universidade Federal do Rio Grande, Programa de Pós-Graduação em Ciências Fisiológicas – Fisiologia Animal Comparada, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Cardozo, Janaina Goulart [Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Giacomin, Marina Mussoi [Universidade Federal do Rio Grande, Programa de Pós-Graduação em Ciências Fisiológicas – Fisiologia Animal Comparada, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Pinho, Grasiela Lopes Leães [Universidade Federal do Rio Grande, Instituto de Oceanografia, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); and others

    2013-08-15

    Highlights: •Acute effects of waterborne copper were evaluated in the estuarine guppy Poecilia vivipara. •Fishes were acutely exposed to waterborne copper in salt water. •Waterborne copper affects the response of several biochemical and genetic endpoints. •Catalase, reactive oxygen species, antioxidant capacity and lipid peroxidation are responsive to copper exposure. •Copper exposure induces DNA damages in fish erythrocytes. -- Abstract: The responses of a large suite of biochemical and genetic parameters were evaluated in tissues (liver, gills, muscle and erythrocytes) of the estuarine guppy Poecilia vivipara exposed to waterborne copper in salt water (salinity 24 ppt). Activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione reductase, and glutathione S-transferase), metallothionein-like protein concentration, reactive oxygen species (ROS) content, antioxidant capacity against peroxyl radicals (ACAP), and lipid peroxidation (LPO) were evaluated in liver, gills, and muscle. Comet assay score and nuclear abnormalities and micronucleated cell frequency were analyzed in peripheral erythrocytes. The responses of these parameters were evaluated in fish exposed (96 h) to environmentally relevant copper concentrations (5, 9 and 20 μg L{sup −1}). In control and copper-exposed fish, no mortality was observed over the experimental period. Almost all biochemical and genetic parameters proved to be affected by waterborne copper exposure. However, the response of catalase activity in liver, ROS, ACAP and LPO in muscle, gills and liver, and DNA damages in erythrocytes clearly showed to be dependent on copper concentration in salt water. Therefore, the use of these parameters could be of relevance in the scope of biomonitoring programs in salt water environments contaminated with copper.

  9. In vitro–in vivo studies of the quantitative effect of calcium, multivitamins and milk on single dose ciprofloxacin bioavailability

    Directory of Open Access Journals (Sweden)

    Baishakhi Dey

    2015-12-01

    Full Text Available Ciprofloxacin, commonly used in India as an anti-microbial for prolonged use in chronic and non-specific indications, may affect the bioavailability of the drug. The drug prescribed is commonly taken with multivitamins, calcium and milk. A simple and reliable analytical methodology obtaining a correlation with in vivo urinary excretion studies using UV and HPLC and in vitro dissolution studies (IVIVC has shown a significant increase in elimination rate of ciprofloxacin co-administered with multivitamins, calcium and milk. Appreciable IVIVC results proved that dissolution studies could serve as an alternative to in vivo bioavailability and also support bio-waivers.

  10. Sorption, transport and biodegradation - An insight into bioavailability of persistent organic pollutants in soil.

    Science.gov (United States)

    Ren, Xiaoya; Zeng, Guangming; Tang, Lin; Wang, Jingjing; Wan, Jia; Liu, Yani; Yu, Jiangfang; Yi, Huan; Ye, Shujing; Deng, Rui

    2018-01-01

    Contamination of soils with persistent organic pollutants (POPs), such as organochlorine pesticide, polybrominated diphenyl ethers, halohydrocarbon, polycyclic aromatic hydrocarbons (PAHs) is of increasing concern. Microbial degradation is potential mechanism for the removal of POPs, but it is often restricted by low bioavailability of POPs. Thus, it is important to enhance bioavailability of POPs in soil bioremediation. A series of reviews on bioavailability of POPs has been published in the past few years. However, bioavailability of POPs in relation to soil organic matter, minerals and soil microbes has been little studied. To fully understand POPs bioavailability in soil, research on interactions of POPs with soil components and microbial responses in bioavailability limitation conditions are needed. This review focuses on bioavailability mechanisms of POPs in terms of sorption, transport and microbial adaptation, which is particularly novel. In consideration of the significance of bioavailability, further studies should investigate the influence of various bioremediation strategies on POPs bioavailability. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Recovery of Copper from Slow Cooled Ausmelt Furnace Slag by Floatation

    Science.gov (United States)

    Xue, Ping; Li, Guangqiang; Qin, Qingwei

    Ausmelt furnace slag contains about 0.9% Cu (mass %). With increasing the amount of Ausmelt furnace slag, the recovery of copper from it will produce an enormous economic yield. The recovery of copper by floatation from slow cooled Ausmelt furnace slag was studied in this paper. The phases and composition of the slow cooled slag were analyzed. The factors which affected the copper recovery efficiency such as grinding fineness, pH value of flotation medium, different collectors and floating process were investigated. It was shown that the size distribution of the primary grinding and secondary grinding of middling were 75% for particles less than 0.074mm and 82% for particles less than 0.043mm respectively. The closed-circuit experimental results with butyl xanthate as collector in laboratory showed that the copper grade reached 16.11% and the recovery rate of copper reached 69.90% and the copper grade of tailings was only 0.2%.

  12. Rice and Bean Targets for Biofortification Combined with High Carotenoid Content Crops Regulate Transcriptional Mechanisms Increasing Iron Bioavailability

    Science.gov (United States)

    Dias, Desirrê Morais; de Castro Moreira, Maria Eliza; Gomes, Mariana Juste Contin; Lopes Toledo, Renata Celi; Nutti, Marilia Regini; Pinheiro Sant’Ana, Helena Maria; Martino, Hércia Stampini Duarte

    2015-01-01

    Iron deficiency affects thousands of people worldwide. Biofortification of staple food crops aims to support the reduction of this deficiency. This study evaluates the effect of combinations of common beans and rice, targets for biofortification, with high carotenoid content crops on the iron bioavailability, protein gene expression, and antioxidant effect. Iron bioavailability was measured by the depletion/repletion method. Seven groups were tested (n = 7): Pontal bean (PB); rice + Pontal bean (R + BP); Pontal bean + sweet potato (PB + SP); Pontal bean + pumpkin (PB + P); Pontal bean + rice + sweet potato (PB + R + P); Pontal bean + rice + sweet potato (PB + R + SP); positive control (Ferrous Sulfate). The evaluations included: hemoglobin gain, hemoglobin regeneration efficiency (HRE), gene expression of divalente metal transporter 1 (DMT-1), duodenal citocromo B (DcytB), ferroportin, hephaestin, transferrin and ferritin and total plasma antioxidant capacity (TAC). The test groups, except the PB, showed higher HRE (p bioavailability and antioxidant capacity. PMID:26610564

  13. Chronic Exposure to Deoxynivalenol Has No Influence on the Oral Bioavailability of Fumonisin B1 in Broiler Chickens

    Science.gov (United States)

    Antonissen, Gunther; Devreese, Mathias; Van Immerseel, Filip; De Baere, Siegrid; Hessenberger, Sabine; Martel, An; Croubels, Siska

    2015-01-01

    Both deoxynivalenol (DON) and fumonisin B1 (FB1) are common contaminants of feed. Fumonisins (FBs) in general have a very limited oral bioavailability in healthy animals. Previous studies have demonstrated that chronic exposure to DON impairs the intestinal barrier function and integrity, by affecting the intestinal surface area and function of the tight junctions. This might influence the oral bioavailability of FB1, and possibly lead to altered toxicity of this mycotoxin. A toxicokinetic study was performed with two groups of 6 broiler chickens, which were all administered an oral bolus of 2.5 mg FBs/kg BW after three-week exposure to either uncontaminated feed (group 1) or feed contaminated with 3.12 mg DON/kg feed (group 2). No significant differences in toxicokinetic parameters of FB1 could be demonstrated between the groups. Also, no increased or decreased body exposure to FB1 was observed, since the relative oral bioavailability of FB1 after chronic DON exposure was 92.2%. PMID:25690690

  14. Lingual dyskinesia and tics: a novel presentation of copper-metabolism disorder.

    Science.gov (United States)

    Goez, Helly R; Jacob, Francois D; Yager, Jerome Y

    2011-02-01

    Copper is a trace element that is required for cellular respiration, neurotransmitter biosynthesis, pigment formation, antioxidant defense, peptide amidation, and formation of connective tissue. Abnormalities of copper metabolism have been linked with neurologic disorders that affect movement, such as Wilson disease and Menkes disease; however, the diagnosis of non-Wilson, non-Menkes-type copper-metabolism disorders has been more elusive, especially in cases with atypical characteristics. We present here the case of an adolescent with a novel presentation of copper-metabolism disorder who exhibited acute severe hemilingual dyskinesia and prominent tics, with ballismus of the upper limbs, but had normal brain and spinal MRI results and did not show any signs of dysarthria or dysphagia. His serum copper and ceruloplasmin levels were low, but his urinary copper level was elevated after penicillamine challenge. We conclude that copper-metabolism disorders should be included in the differential diagnosis for movement disorders, even in cases with highly unusual presentations, because many of them are treatable. Moreover, a connection between copper-metabolism disorders and tics is presented, to our knowledge, for the first time in humans; further investigation is needed to better establish this connection and understand its underlying pathophysiology.

  15. The influence of copper-based fungicide use in soils and aquatic sediments. Case study: Aetoliko lagoon, Western Greece

    Science.gov (United States)

    Avramidis, Pavlos; Barouchas, Pantelis; Dünwald, Thomas; Unkel, Ingmar

    2017-04-01

    /kg and 71.87 mg/kg. The values for DTPA-extractable copper are relatively very low, while the highest fractions of bioavailable copper are found on the eastern shore of the lagoon. Our study can be used as a valuable reference for future studies on this subject at the Aetoliko lagoon and similar ecosystems.

  16. Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): Effect of agricultural amendments on plant uptake.

    Science.gov (United States)

    Doolette, Casey L; McLaughlin, Michael J; Kirby, Jason K; Navarro, Divina A

    2015-12-30

    Silver nanoparticles (AgNPs) can enter terrestrial systems as sulfidised AgNPs (Ag2S-NPs) through the application of biosolids to soil. However, the bioavailability of Ag2S-NPs in soils is unknown. The two aims of this study were to investigate (1) the bioavailability of Ag to lettuce (Lactuca sativa) using a soil amended with biosolids containing Ag2S-NPs and (2) the effect of commonly used agricultural fertilisers/amendments on the bioavailability of Ag, AgNPs and Ag2S-NPs to lettuce. The study used realistic AgNP exposure pathways and exposure concentrations. The plant uptake of Ag from biosolids-amended soil containing Ag2S-NPs was very low for all Ag treatments (0.02%). Ammonium thiosulfate and potassium chloride fertilisation significantly increased the Ag concentrations of plant roots and shoots. The extent of the effect varied depending on the type of Ag. Ag2S-NPs, the realistic form of AgNPs in soil, had the lowest bioavailability. The potential risk of AgNPs in soils is low; even in the plants that had the highest Ag concentrations (Ag(+)+thiosulfate), only 0.06% of added Ag was found in edible plant parts (shoots). Results from the study suggest that agricultural practises must be considered when carrying out risk assessments of AgNPs in terrestrial systems; such practises can affect AgNP bioavailability. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Vanadium bioavailability in soils amended with blast furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Maja A., E-mail: maja.larsson@slu.se [Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 750 07 Uppsala (Sweden); Baken, Stijn, E-mail: stijn.baken@ees.kuleuven.be [Department of Earth and Environmental Sciences, Leuven University, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven (Belgium); Smolders, Erik, E-mail: erik.smolders@ees.kuleuven.be [Department of Earth and Environmental Sciences, Leuven University, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven (Belgium); Cubadda, Francesco, E-mail: francesco.cubadda@iss.it [Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161 (Italy); Gustafsson, Jon Petter, E-mail: jon-petter.gustafsson@slu.se [Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 750 07 Uppsala (Sweden); Division of Land and Water Resources Engineering, KTH Royal Institute of Technology, Brinellvägen 28, 100 44 Stockholm (Sweden)

    2015-10-15

    Blast furnace (BF) slags are commonly applied as soil amendments and in road fill material. In Sweden they are also naturally high in vanadium. The aim of this study was to assess the vanadium bioavailability in BF slags when applied to soil. Two soils were amended with up to 29% BF slag (containing 800 mg V kg{sup −1}) and equilibrated outdoors for 10 months before conducting a barley shoot growth assay. Additional soil samples were spiked with dissolved vanadate(V) for which assays were conducted two weeks (freshly spiked) and 10 months (aged) after spiking. The BF slag vanadium was dominated by vanadium(III) as shown by V K-edge XANES spectroscopy. In contrast, results obtained by HPLC-ICP-MS showed that vanadium(V), the most toxic vanadium species, was predominant in the soil solution. Barley shoot growth was not affected by the BF slag additions. This was likely due to limited dissolution of vanadium from the BF slag, preventing an increase of dissolved vanadium above toxic thresholds. The difference in vanadium bioavailability among treatments was explained by the vanadium concentration in the soil solution. It was concluded that the vanadium in BF slag is sparingly available. These findings should be of importance in environmental risk assessment.

  18. Phase behavior and oral bioavailability of amorphous Curcumin.

    Science.gov (United States)

    Pawar, Yogesh B; Shete, Ganesh; Popat, Dharmesh; Bansal, Arvind K

    2012-08-30

    Amorphous form has been used as a means to improve aqueous solubility and oral bioavailability of poorly water soluble drugs. The objective of present study was to characterize thermodynamic and kinetic parameters of amorphous form of Curcumin (CRM-A). CRM-A was found to be a good glass former with glass transition temperature (T(g)) of 342.64K and critical cooling rate below 1K/min. CRM-A had a moderate tendency of crystallization and exhibited Kauzmann temperature (T(KS)) of 294.23 K. CRM-A was found to be fragile in nature as determined by T(m)/T(g) (1.32), C(p)(1 iq):C(p)(glass) (1.22), strength parameter (D75), T(K)/T(g) (0.85), and T(g)-T(K) (48.41). Theoretically predicted aqueous solubility advantage of 43.15-folds, was reduced to 17-folds under practical conditions. This reduction in solubility was attributed to water induced devitrification, as evident through PXRD and SEM analysis. Further, oral bioavailability study of CRM-A was undertaken to investigate bioavailability benefits, if any. C(max) was improved by 1.97-folds (statistically significant difference over control). However, oral bioavailability (AUC(0-)(∞)) was improved by 1.45-folds (statistically non significant difference over control). These observations pointed towards role of rapid devitrification of CRM-A in GIT milieu, thus limiting its oral bioavailability advantage. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Electrical conduction in composites containing copper core-copper

    Indian Academy of Sciences (India)

    Composites of nanometre-sized copper core-copper oxide shell with diameters in the range 6.1 to 7.3 nm dispersed in a silica gel were synthesised by a technique comprising reduction followed by oxidation of a suitably chosen precursor gel. The hot pressed gel powders mixed with nanometre-sized copper particles ...

  20. Effect of Sucralfate on the Relative Bioavailability of Enrofloxacin and Ciprofloxacin in Healthy Fed Dogs.

    Science.gov (United States)

    KuKanich, K; KuKanich, B; Guess, S; Heinrich, E

    2016-01-01

    Sucralfate impairs absorption of ciprofloxacin and other fluoroquinolones in humans, but no sucralfate-fluoroquinolone interaction has been reported in dogs. Veterinary formularies recommend avoiding concurrent administration of these medications, which might impact compliance, therapeutic success, and resistance selection from fluoroquinolones. To determine whether a drug interaction exists when sucralfate is administered to fed dogs concurrently with ciprofloxacin or enrofloxacin, and whether a 2 hour delay between fluoroquinolone and sucralfate affects fluoroquinolone absorption. Five healthy Greyhounds housed in a research colony. This was a randomized crossover study. Treatments included oral ciprofloxacin (C) or oral enrofloxacin (E) alone, each fluoroquinolone concurrently with an oral suspension of sucralfate (CS, ES), and sucralfate suspension 2 hours after each fluoroquinolone (C2S, E2S). Fluoroquinolone concentrations were evaluated using liquid chromatography with mass spectrometry. Drug exposure of ciprofloxacin was highly variable (AUC 5.52-22.47 h μg/mL) compared to enrofloxacin (AUC 3.86-7.50 h μg/mL). The mean relative bioavailability for ciprofloxacin and concurrent sucralfate was 48% (range 8-143%) compared to ciprofloxacin alone. Relative bioavailability of ciprofloxacin improved to 87% (range 37-333%) when sucralfate was delayed by 2 hours. By contrast, relative bioavailability for enrofloxacin and concurrent sucralfate was 104% (94-115%). A possible clinically relevant drug interaction for the relative bioavailability of ciprofloxacin with sucralfate was found. No significant difference in bioavailability was documented for enrofloxacin with sucralfate. Further research is warranted in fasted dogs and clinical cases requiring enrofloxacin or other approved fluoroquinolones in combination with sucralfate. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc on behalf of the American

  1. Pharmacokinetics and Bioavailability of Inhaled Esketamine in Healthy Volunteers.

    Science.gov (United States)

    Jonkman, Kelly; Duma, Andreas; Olofsen, Erik; Henthorn, Thomas; van Velzen, Monique; Mooren, René; Siebers, Liesbeth; van den Beukel, Jojanneke; Aarts, Leon; Niesters, Marieke; Dahan, Albert

    2017-10-01

    Esketamine is traditionally administered via intravenous or intramuscular routes. In this study we developed a pharmacokinetic model of inhalation of nebulized esketamine with special emphasis on pulmonary absorption and bioavailability. Three increasing doses of inhaled esketamine (dose escalation from 25 to 100 mg) were applied followed by a single intravenous dose (20 mg) in 19 healthy volunteers using a nebulizer system and arterial concentrations of esketamine and esnorketamine were obtained. A multicompartmental pharmacokinetic model was developed using population nonlinear mixed-effects analyses. The pharmacokinetic model consisted of three esketamine, two esnorketamine disposition and three metabolism compartments. The inhalation data were best described by adding two absorption pathways, an immediate and a slower pathway, with rate constant 0.05 ± 0.01 min (median ± SE of the estimate). The amount of esketamine inhaled was reduced due to dose-independent and dose-dependent reduced bioavailability. The former was 70% ± 5%, and the latter was described by a sigmoid EMAX model characterized by the plasma concentration at which absorption was impaired by 50% (406 ± 46 ng/ml). Over the concentration range tested, up to 50% of inhaled esketamine is lost due to the reduced dose-independent and dose-dependent bioavailability. We successfully modeled the inhalation of nebulized esketamine in healthy volunteers. Nebulized esketamine is inhaled with a substantial reduction in bioavailability. Although the reduction in dose-independent bioavailability is best explained by retention of drug and particle exhalation, the reduction in dose-dependent bioavailability is probably due to sedation-related loss of drug into the air.

  2. Protein and amino acid bioavailability estimates for canine foods

    NARCIS (Netherlands)

    Hendriks, W.H.; Bakker, E.J.; Bosch, G.

    2015-01-01

    Estimates of nutrient bioavailability are required for establishing dietary nutrient requirements and to evaluate the nutritional value of food ingredients or foods that are exposed to processing or extended storage. This study aimed to generate estimates for the bioavailability of dietary CP and AA

  3. Metabolism of manganese, iron, copper, and selenium in calves

    International Nuclear Information System (INIS)

    Ho, S.Y.

    1981-01-01

    Sixteen male Holstein calves were used to study manganese and iron metabolism. The calves were fed one of the following diets for 18 days: control, control + iron, control + manganese, and control + iron and manganese. All calves were dosed orally with manganese-54. Tissue concentrations of manganese, iron and manganese-54 were determined. Small intestinal iron was lower in calves fed the high manganese diet than in controls. Tissue manganese-54 was lower in calves fed a high manganese diet. Fecal manganese content increased in calves fed both high manganese and high manganese-high iron diets. Serum total iron was not affected by the dietary treatments. To study the effects of high dietary levels of copper and selenium on the intracellular distributions of these two elements in liver and kidney cytosol, calves were fed one of four diets for 15 days. These were 0 and 100 ppM supplemental copper and 0 and 1 ppM added selenium. The control diet containing 0.1 ppM of selenium and 15 ppM of copper. All calves were orally dosed 48 hrs prior to sacrifice with selenium-75. A high copper diet increased copper concentrations in all intracellular liver fractions and most kidney fractions. Only the effects in the liver were significant. Less copper was found in the mitochondria fractions in liver and kidney of calves fed a high selenium diet. Three major copper-binding protein peaks were separated from the soluble fractions of calf liver and kidney. Peak 1 appeared to be the major copper-binding protein in liver and kidney cytosol of copper-loaded animals. Added selenium alone or in combination with copper accentuated the copper accumulation in this peak. Most of selenium-75 was recovered in the same peak as the copper. The results of this experiment indicated that the large molecular proteins in liver and kidney cytosol of calves play an important role in copper and selenium-75 metabolism

  4. Effect of cysteine and humic acids on bioavailability of Ag from Ag nanoparticles to a freshwater snail

    Science.gov (United States)

    Luoma, Samuel N.; Tasha Stoiber,; Croteau, Marie-Noele; Isabelle Romer,; Ruth Merrifeild,; Lead, Jamie

    2016-01-01

    Metal-based engineered nanoparticles (NPs) will undergo transformations that will affect their bioavailability, toxicity and ecological risk when released to the environment, including interactions with dissolved organic material. The purpose of this paper is to determine how interactions with two different types of organic material affect the bioavailability of silver nanoparticles (AgNPs). Silver uptake rates by the pond snail Lymnaea stagnalis were determined after exposure to 25 nmol l-1 of Ag as PVP AgNPs, PEG AgNPs or AgNO3, in the presence of either Suwannee River humic acid or cysteine, a high-affinity thiol-rich organic ligand. Total uptake rate of Ag from the two NPs was either increased or not strongly affected in the presence of 1 – 10 mg 1-1 humic acid. Humic substances contain relatively few strong ligands for Ag explaining their limited effects on Ag uptake rate. In contrast, Ag uptake rate was substantially reduced by cysteine. Three components of uptake from the AgNPs were quantified in the presence of cysteine using a biodynamic modeling approach: uptake of dissolved Ag released by the AgNPs, uptake of a polymer or large (>3kD) Ag-cysteine complex and uptake of the nanoparticle itself. Addition of 1:1 Ag:cysteine reduced concentrations of dissolved Ag, which contributed to, but did not fully explain the reductions in uptake. A bioavailable Ag-cysteine complex (> 3kD) appeared to be the dominant avenue of uptake from both PVP AgNPs and PEG AgNPs in the presence of cysteine. Quantifying the different avenues of uptake sets the stage for studies to assess toxicity unique to NPs.

  5. Reagent conditions of the flotation of copper, copper - molybdenum and copper -zinc ores in foreing countries

    International Nuclear Information System (INIS)

    Nevaeva, L.M.

    1983-01-01

    Reagents-collectors and frothers, used abroad in reagent regimes of flotation of copper, copper-molybdenum and copper zinc ores, have been considered. Xanthogenates, aerofloats, xanthogenformiates, thionocarbamates are mainly used as reagents-collectors. Methylizobutylcarbinol and Daufros are used as reagents-frothers

  6. A potent, selective, and orally bioavailable inhibitor of the protein-tyrosine phosphatase PTP1B improves insulin and leptin signaling in animal models.

    Science.gov (United States)

    Krishnan, Navasona; Konidaris, Konstantis F; Gasser, Gilles; Tonks, Nicholas K

    2018-02-02

    The protein-tyrosine phosphatase PTP1B is a negative regulator of insulin and leptin signaling and a highly validated therapeutic target for diabetes and obesity. Conventional approaches to drug development have produced potent and specific PTP1B inhibitors, but these inhibitors lack oral bioavailability, which limits their potential for drug development. Here, we report that DPM-1001, an analog of the specific PTP1B inhibitor trodusquemine (MSI-1436), is a potent, specific, and orally bioavailable inhibitor of PTP1B. DPM-1001 also chelates copper, which enhanced its potency as a PTP1B inhibitor. DPM-1001 displayed anti-diabetic properties that were associated with enhanced signaling through insulin and leptin receptors in animal models of diet-induced obesity. Therefore, DPM-1001 represents a proof of concept for a new approach to therapeutic intervention in diabetes and obesity. Although the PTPs have been considered undruggable, the findings of this study suggest that allosteric PTP inhibitors may help reinvigorate drug development efforts that focus on this important family of signal-transducing enzymes. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Improved oral bioavailability of probucol by dry media-milling.

    Science.gov (United States)

    Li, Jia; Yang, Yan; Zhao, Meihui; Xu, Hui; Ma, Junyuan; Wang, Shaoning

    2017-09-01

    The polymer/probucol co-milled mixtures were prepared to improve drug dissolution rate and oral bioavailability. Probucol, a BCS II drug, was co-milled together with Copovidone (Kollidon VA64, VA64), Soluplus, or MCC using the dry media-milling process with planetary ball-milling equipment. The properties of the milled mixtures including morphology, crystal form, vitro drug dissolution and in vivo oral bioavailability in rats were evaluated. Probucol existed as an amorphous in the matrix of the co-milled mixtures containing VA64, which helped to enhance drug dissolution. The ternary mixture composed of VA64, RH40, and probucol showed increased dissolution rates in both sink and non-sink conditions. It also had a higher oral bioavailability compared to the reference formulation. Dry-media milling of binary or ternary mixtures composed of drug, polymer and surfactant possibly have wide applications to improve dissolution rate and oral bioavailability of water-insoluble drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Solid-state dependent dissolution and oral bioavailability of piroxicam in rats.

    Science.gov (United States)

    Lust, Andres; Laidmäe, Ivo; Palo, Mirja; Meos, Andres; Aaltonen, Jaakko; Veski, Peep; Heinämäki, Jyrki; Kogermann, Karin

    2013-01-23

    The aim of this study was to gain understanding about the effects of different solid-state forms of a poorly water-soluble piroxicam on drug dissolution and oral bioavailability in rats. Three different solid-state forms of piroxicam were studied: anhydrate I (AH), monohydrate (MH), and amorphous form in solid dispersion (SD). In addition, the effect of a new polymeric excipient Soluplus® (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer) on oral bioavailability of piroxicam was investigated. Significant differences in the dissolution and oral bioavailability were found between the solid-state forms of piroxicam. Amorphous piroxicam in SD showed the fastest dissolution in vitro and a solid-state transformation to MH in the dissolution medium. Despite the presence of solid-state transformation, SD exhibited the highest rate and extent of oral absorption in rats. Oral bioavailability of other two solid-state forms decreased in the order AH and MH. The use of Soluplus® was found to enhance the dissolution and oral bioavailability of piroxicam in rats. The present study shows the importance of solid-state form selection for oral bioavailability of a poorly water-soluble drug. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Research progress on berberine with a special focus on its oral bioavailability.

    Science.gov (United States)

    Liu, Chang-Shun; Zheng, Yu-Rong; Zhang, Ying-Feng; Long, Xiao-Ying

    2016-03-01

    The natural product berberine (BBR) has become a potential drug in the treatment of diabetes, hyperlipidemia, and cancer. However, the oral delivery of BBR is challenged by its poor bioavailability. It is necessary to improve the oral bioavailability of BBR before it can be used in many clinical applications. Understanding the pharmacokinetic characteristics of BBR will enable the development of suitable formulas that have improved oral bioavailability. The key considerations for BBR are how to enhance the drug absorption and to avoid the intestinal first-pass effect. This review summarizes the pharmacological activities of BBR and analyzes the factors that lead to its poor oral bioavailability. In particular, the therapeutic potential of BBR in new indications from the aspect of oral bioavailability is discussed. In conclusion, BBR is a promising drug candidate for metabolic disorders and cancer but faces considerable challenges due to its poor oral bioavailability. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Short-term bioavailability of carbon in soil organic matter fractions of different particle sizes and densities in grassland ecosystems.

    Science.gov (United States)

    Breulmann, Marc; Masyutenko, Nina Petrovna; Kogut, Boris Maratovich; Schroll, Reiner; Dörfler, Ulrike; Buscot, François; Schulz, Elke

    2014-11-01

    The quality, stability and availability of organic carbon (OC) in soil organic matter (SOM) can vary widely between differently managed ecosystems. Several approaches have been developed for isolating SOM fractions to examine their ecological roles, but links between the bioavailability of the OC of size-density fractions and soil microbial communities have not been previously explored. Thus, in the presented laboratory study we investigated the potential bioavailability of OC and the structure of associated microbial communities in different particle-size and density fractions of SOM. For this we used samples from four grassland ecosystems with contrasting management intensity regimes and two soil types: a Haplic Cambisol and a typical Chernozem. A combined size-density fractionation protocol was applied to separate clay-associated SOM fractions (CF1, <1 μm; CF2, 1-2 μm) from light SOM fractions (LF1, <1.8 g cm(-3); LF2, 1.8-2.0 g cm(-3)). These fractions were used as carbon sources in a respiration experiment to determine their potential bioavailability. Measured CO2-release was used as an index of substrate accessibility and linked to the soil microbial community structure, as determined by phospholipid fatty acids (PLFA) analysis. Several key factors controlling decomposition processes, and thus the potential bioavailability of OC, were identified: management intensity and the plant community composition of the grasslands (both of which affect the chemical composition and turnover of OC) and specific properties of individual SOM fractions. The PLFA patterns highlighted differences in the composition of microbial communities associated with the examined grasslands, and SOM fractions, providing the first broad insights into their active microbial communities. From observed interactions between abiotic and biotic factors affecting the decomposition of SOM fractions we demonstrate that increasing management intensity could enhance the potential bioavailability of

  11. Hydrological regime and salinity alter the bioavailability of Cu and Zn in wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Speelmans, M. [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, J. Plateaustraat 22, B-9000 Ghent (Belgium); Lock, K., E-mail: koen.lock@UGent.b [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, J. Plateaustraat 22, B-9000 Ghent (Belgium); Vanthuyne, D.R.J. [Laboratory of Analytical Chemistry and Applied Ecochemistry, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); Hendrickx, F. [Terrestrial Ecology Unit (TEREC), Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent (Belgium); Du Laing, G.; Tack, F.M.G. [Laboratory of Analytical Chemistry and Applied Ecochemistry, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); Janssen, C.R. [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, J. Plateaustraat 22, B-9000 Ghent (Belgium)

    2010-05-15

    In the context of the European Water Framework Directive, controlled flooding of lowlands is considered as a potential water management strategy to minimise the risk of flooding of inhabited areas. However, due to historical pollution and overbank sedimentation, metal levels are elevated in most wetlands, which can cause adverse effects on the ecosystem's dynamics. Additionally, salinity affects the bioavailability of metals present or imported into these systems. The effect of different flooding regimes and salinity exposure scenarios (fresh- and brackish water conditions) on Cu and Zn accumulation in the oligochaete Tubifex tubifex (Mueller, 1774) was examined. Metal mobility was closely linked to redox potential, which is directly related to the prevalent hydrological regime. Flooded, and thus more reduced, conditions minimized the availability of metals, while oxidation of the substrates during a drier period was associated with a rapid increase of metal availability and accumulation in the oligochaetes. - Metal bioavailability in wetlands.

  12. Improving Beneficiation of Copper and Iron from Copper Slag by Modifying the Molten Copper Slag

    Directory of Open Access Journals (Sweden)

    Zhengqi Guo

    2016-04-01

    Full Text Available In the paper, a new technology was developed to improve the beneficiation of copper and iron components from copper slag, by modifying the molten slag to promote the mineralization of valuable minerals and to induce the growth of mineral grains. Various parameters, including binary basicity, dosage of compound additive, modification temperature, cooling rate and the end point temperature of slow cooling were investigated. Meanwhile, optical microscope, scanning electron microscope and energy dispersive spectrometer (SEM-EDS was employed to determine the mineralogy of the modified and unmodified slag, as well as to reveal the mechanisms of enhancing beneficiation. The results show that under the proper conditions, the copper grade of rougher copper concentrate was increased from 6.43% to 11.04%, iron recovery of magnetic separation was increased significantly from 32.40% to 63.26%, and other evaluation indexes were changed slightly, in comparison with unmodified copper slag. Moreover, matte and magnetite grains in the modified slag aggregated together and grew obviously to the mean size of over 50 μm, resulting in an improvement of beneficiation of copper and iron.

  13. Mouse Assay for Determination of Arsenic Bioavailability in Contaminated Soils

    Science.gov (United States)

    Background: Accurate assessment of human exposure estimates from arsenic-contaminated soils depends upon estimating arsenic (As) soil bioavailability. Development of bioavailability assays provides data needed for human health risk assessments and supports development and valida...

  14. Bioavailability of cadmium from linseed and cocoa

    DEFF Research Database (Denmark)

    Hansen, Max; Rasmussen, Rie Romme; Sloth, Jens Jørgen

    2014-01-01

    The exposure of the European population to cadmium from food is high compared with the tolerable weekly intake of 2.5 μg/kg bodyweight set by EFSA in 2009. Only few studies on the bioavailability of cadmium from different food sources has been performed but this information in very important...... for the food authorities in order to give correct advises to the population. The aim of this study was to investigate the bioavailability of cadmium from whole linseed, crushed linseed, cocoa and cadmium chloride in rats. An experiment where 40 rats were divided into 4 groups and a control group and dosed...... be measured in the kidney compared to the calculated total intake was as follows: Control 2.0 %, Crushed linseed 0.9 %, whole linseed, 1.5 %, cocoa 0.7 % and CdCl2 4.6 %. Based on this study it could not be concluded that the bioavailability in rats form whole linseed is lower that for crushed linseed...

  15. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). 73.1125 Section 73.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT....1125 Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). (a) Identity. (1) The color...

  16. 21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). 73.2125 Section 73.2125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... § 73.2125 Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). (a) Identity and...

  17. Adsorption of copper to different biogenic oyster shell structures

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiong; Chen, Jie [College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108 (China); Clark, Malcolm [Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Lismore, NSW 2480 (Australia); Yu, Yan, E-mail: yuyan_1972@126.com [College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108 (China)

    2014-08-30

    Graphical abstract: - Highlights: • Adsorption of copper to waste oyster shell occurs rapidly at pH 5.5. • Copper adsorbs to the different structures of oyster shell at different rates. • The prismatic layer dominates copper sorption rather than the nacreous layer. • SEM analysis shows a porous open network structure to the prismatic layer. • Surface ζ-potentials establish electrostatic attraction to drive copper sorption. - Abstract: The removal of copper from solution by oyster shell powder was investigated for potential wastewater treatment uses. In particular, adsorption behavior differences between the prismatic (PP) and nacreous (NP) shell layers, and how this affects copper removal, were investigated. Experimental results indicated that copper adsorption was highly pH-dependent with optimal copper removal at pH 5.5, where the powdered whole raw shell (RP) removed up to 99.9% of the copper within 24 h at a 10 mg/L initial copper concentration. Langmuir and Freundlich models were used to analyze the isotherm PP, NP and RP data. These results showed a strong homogeneous Langmuir model for low initial copper concentrations (5–30 mg/L) to both RP and PP layer, while strong agreement with a heterogeneous Freundlich model for high initial copper concentrations (30–200 mg/L); nevertheless, a homogeneous Langmuir model provided the best fit for the more dense NP layer across the initial concentration range (5–200 mg/L). The distribution coefficient (K{sub d}) value of PP layer for each initial concentration investigated was substantially higher than the NP layer and it was also found that the PP layer dominated the adsorption process with an adsorption capacity of 8.9 mg/g, while the adsorption capacity of the NP layer was 2.6 mg/g. These differences are believed to be because of the more porous structure of the PP layer, which was confirmed by scanning electron microscopy, infrared spectroscopy, energy-dispersive X-ray spectroscopy, and

  18. Adsorption of copper to different biogenic oyster shell structures

    International Nuclear Information System (INIS)

    Wu, Qiong; Chen, Jie; Clark, Malcolm; Yu, Yan

    2014-01-01

    Graphical abstract: - Highlights: • Adsorption of copper to waste oyster shell occurs rapidly at pH 5.5. • Copper adsorbs to the different structures of oyster shell at different rates. • The prismatic layer dominates copper sorption rather than the nacreous layer. • SEM analysis shows a porous open network structure to the prismatic layer. • Surface ζ-potentials establish electrostatic attraction to drive copper sorption. - Abstract: The removal of copper from solution by oyster shell powder was investigated for potential wastewater treatment uses. In particular, adsorption behavior differences between the prismatic (PP) and nacreous (NP) shell layers, and how this affects copper removal, were investigated. Experimental results indicated that copper adsorption was highly pH-dependent with optimal copper removal at pH 5.5, where the powdered whole raw shell (RP) removed up to 99.9% of the copper within 24 h at a 10 mg/L initial copper concentration. Langmuir and Freundlich models were used to analyze the isotherm PP, NP and RP data. These results showed a strong homogeneous Langmuir model for low initial copper concentrations (5–30 mg/L) to both RP and PP layer, while strong agreement with a heterogeneous Freundlich model for high initial copper concentrations (30–200 mg/L); nevertheless, a homogeneous Langmuir model provided the best fit for the more dense NP layer across the initial concentration range (5–200 mg/L). The distribution coefficient (K d ) value of PP layer for each initial concentration investigated was substantially higher than the NP layer and it was also found that the PP layer dominated the adsorption process with an adsorption capacity of 8.9 mg/g, while the adsorption capacity of the NP layer was 2.6 mg/g. These differences are believed to be because of the more porous structure of the PP layer, which was confirmed by scanning electron microscopy, infrared spectroscopy, energy-dispersive X-ray spectroscopy, and

  19. Metavanadate causes cellular accumulation of copper and decreased lysyl oxidase activity

    International Nuclear Information System (INIS)

    Cui, Changtai T.; Uriu-Adams, Janet Y.; Tchaparian, Eskouhie H.; Keen, Carl L.; Rucker, Robert B.

    2004-01-01

    Selected indices of copper metabolism in weanling rats and fibroblast cultures were progressively altered in response to increased levels of sodium metavanadate. In diets, vanadium was added in amounts ranging from 0 to 80 μg V/g of diet, that is, 0-1.6 μmol V/g of diet. In fibroblast cultures, vanadium ranged from 0 to 400 nmol V/ml. The inhibition of P-ATPase-7A activity by metavanadate, important to copper egress from cells, was a primary focus. In skin, and tendon, the copper concentration was increased in response to increased dietary levels of metavanadate, whereas lysyl oxidase activity, a secreted cuproprotein, was reduced. The reduction in lysyl oxidase activity was also accompanied by reduced redox cycling potential of isolated fractions of lysyl oxidase, presumably due to reduced lysyltyrosyl quinone (LTQ) formation at the active site of lysyl oxidase. In contrast, liver copper concentrations and plasma ceruloplasmin activity were not affected by metavanadate exposure. However, semicarbazide-sensitive benzylamine oxidase (SCBO) activity, which was taken as an indirect measure of vascular adhesive protein-1 (VAP-1), was increased. In cultured fibroblasts, cellular copper was also increased and lysyl oxidase decreased in response to metavanadate. Moreover, the steady-state levels of atp7a and lysyl oxidase mRNAs were not affected by addition of metavanadate to culture medium up to 200 nmol/ml. Taken together, these data suggest that pathways involving copper egress and lysyl oxidase activation are particularly sensitive to metavanadate exposure through processes that are predominately posttranslational

  20. Improving the accuracy of effect-directed analysis: the role of bioavailability.

    Science.gov (United States)

    You, Jing; Li, Huizhen

    2017-12-13

    Aquatic ecosystems have been suffering from contamination by multiple stressors. Traditional chemical-based risk assessment usually fails to explain the toxicity contributions from contaminants that are not regularly monitored or that have an unknown identity. Diagnosing the causes of noted adverse outcomes in the environment is of great importance in ecological risk assessment and in this regard effect-directed analysis (EDA) has been designed to fulfill this purpose. The EDA approach is now increasingly used in aquatic risk assessment owing to its specialty in achieving effect-directed nontarget analysis; however, a lack of environmental relevance makes conventional EDA less favorable. In particular, ignoring the bioavailability in EDA may cause a biased and even erroneous identification of causative toxicants in a mixture. Taking bioavailability into consideration is therefore of great importance to improve the accuracy of EDA diagnosis. The present article reviews the current status and applications of EDA practices that incorporate bioavailability. The use of biological samples is the most obvious way to include bioavailability into EDA applications, but its development is limited due to the small sample size and lack of evidence for metabolizable compounds. Bioavailability/bioaccessibility-based extraction (bioaccessibility-directed and partitioning-based extraction) and passive-dosing techniques are recommended to be used to integrate bioavailability into EDA diagnosis in abiotic samples. Lastly, the future perspectives of expanding and standardizing the use of biological samples and bioavailability-based techniques in EDA are discussed.

  1. Improved bioavailability

    Directory of Open Access Journals (Sweden)

    Nadia M. Morsi

    2016-09-01

    Full Text Available Timolol maleate (TiM, a nonselective β-adrenergic blocker, is a potent highly effective agent for management of hypertension. The drug suffers from extensive first pass effect, resulting in a reduction of oral bioavailability (F% to 50% and a short elimination half-life of 4 h; parameters necessitating its frequent administration. The current study was therefore, designed to formulate and optimize the transfersomal TiM gel for transdermal delivery. TiM loaded transfersomal gel was optimized using two 23 full factorial designs; where the effects of egg phosphatidyl choline (PC: surfactant (SAA molar ratio, solvent volumetric ratio, and the drug amount were evaluated. The formulation variables; including particle size, drug entrapment efficiency (%EE, and release rate were characterized. The optimized transfersomal gel was prepared with 4.65:1 PC:SAA molar ratio, 3:1 solvent volumetric ratio, and 13 mg drug amount with particle size of 2.722 μm, %EE of 39.96%, and a release rate of 134.49 μg/cm2/h. The permeation rate of the optimized formulation through the rat skin was excellent (151.53 μg/cm2/h and showed four times increase in relative bioavailability with prolonged plasma profile up to 72 h compared with oral aqueous solution. In conclusion, a potential transfersomal transdermal system was successfully developed and the factorial design was found to be a smart tool, when optimized.

  2. Interactions and Toxicity of Cu-Zn mixtures to Hordeum vulgare in Different Soils Can Be Rationalized with Bioavailability-Based Prediction Models.

    Science.gov (United States)

    Qiu, Hao; Versieren, Liske; Rangel, Georgina Guzman; Smolders, Erik

    2016-01-19

    Soil contamination with copper (Cu) is often associated with zinc (Zn), and the biological response to such mixed contamination is complex. Here, we investigated Cu and Zn mixture toxicity to Hordeum vulgare in three different soils, the premise being that the observed interactions are mainly due to effects on bioavailability. The toxic effect of Cu and Zn mixtures on seedling root elongation was more than additive (i.e., synergism) in soils with high and medium cation-exchange capacity (CEC) but less than additive (antagonism) in a low-CEC soil. This was found when we expressed the dose as the conventional total soil concentration. In contrast, antagonism was found in all soils when we expressed the dose as free-ion activities in soil solution, indicating that there is metal-ion competition for binding to the plant roots. Neither a concentration addition nor an independent action model explained mixture effects, irrespective of the dose expressions. In contrast, a multimetal BLM model and a WHAM-Ftox model successfully explained the mixture effects across all soils and showed that bioavailability factors mainly explain the interactions in soils. The WHAM-Ftox model is a promising tool for the risk assessment of mixed-metal contamination in soils.

  3. Assessing the bioavailability and bioaccessibility of metals and metalloids.

    Science.gov (United States)

    Ng, Jack C; Juhasz, Albert; Smith, Euan; Naidu, Ravi

    2015-06-01

    Bioavailability (BA) determines the potential harm of a contaminant that exerts on the receptor. However, environmental guidelines for site contamination assessment are often set assuming the contaminant is 100 % bioavailable. This conservative approach to assessing site risk may result in the unnecessary and expensive remediation of a contaminated site. The National Environmental Protection Measures in Australia has undergone a statutory 5-year review that recommended that contaminant bioavailability and bioaccessibility (BAC) measures be adopted as part of the contaminated site risk assessment process by the National Environment Protection Council. We undertook a critical review of the current bioavailability and bioaccessibility approaches, methods and their respective limitations. The 'gold' standard to estimate the portion of a contaminant that reaches the system circulatory system (BA) of its receptor is to determine BA in an in vivo system. Various animal models have been utilised for this purpose. Because of animal ethics issues, and the expenses associated with performing in vivo studies, several in vitro methods have been developed to determine BAC as a surrogate model for the estimation of BA. However, few in vitro BAC studies have been calibrated against a reliable animal model, such as immature swine. In this review, we have identified suitable methods for assessing arsenic and lead BAC and proposed a decision tree for the determination of contaminant bioavailability and bioaccessibility for health risk assessment.

  4. The use of radioisotopes and low abundance stable isotopes for the study of bioavailability and the metabolism of iron, zinc and copper

    International Nuclear Information System (INIS)

    Aggett, P.J.; Fairweather Tait, S.

    1994-01-01

    The use of whole body counting and imaging with ''area of interest'' counting to monitor the metabolism of zinc in healthy volunteers and patients with coeliac diseases and cirrhosis is described as are studies of interaction between iron and copper. Stable isotopes of iron, copper and zinc have been used to investigate the metabolism of these elements in young infants and have proved useful in assessing the validity of current estimated requirements particularly of iron. Stable isotopes have also been used to improve the classic metabolic balance approach to the study of the homeostasis of zinc in zinc deprived volunteers, and have progressed to studies using plasma kinetic curves of the systemic compartmentation of zinc

  5. Iron bioavailability of maize hemoglobin in a Caco-2 cell culture model

    Science.gov (United States)

    Maize is an important staple crop in many parts of the world but has low iron bioavailability, in part due to its high phytate content. Hemoglobin is a form of iron that is highly bioavailable and its bioavailability is not inhibited by phytate. We hypothesize that maize hemoglobin is a highly bioav...

  6. Encapsulation and retention of chelated-copper inside hydrophobic nanoparticles

    DEFF Research Database (Denmark)

    Hervella, Pablo; Ortiz, Elisa Parra; Needham, David

    2016-01-01

    ) Chelate copper into the octaethyl porphyrin; (3) Encapsulate OEP-Cu in nanoparticles: the encapsulation efficiency of copper into liquid nanoparticles (LNP), solid nanoparticles (SNP) and phospholipid liposomes (PL) was evaluated by UV-Vis and atomic absorption spectroscopy; (4) Retain the encapsulated...... OEP-Cu in the liquid or solid cores of the nanoparticles in the presence of a lipid sink. RESULTS: (1) The size of the nanoparticles was found to be strongly dependent on the Reynolds number and the initial concentration of components for the fast injection technique. At high Reynolds number (2181......), a minimum value for the particle diameter of ∼30nm was measured. (2) Copper was chelated by OEP in a 1:1mol ratio with an association constant of 2.57×10(5)M(-1). (3) The diameter of the nanoparticles was not significantly affected by the presence of OEP or OEP-Cu. The percentage of encapsulation of copper...

  7. Geochemical partitioning of Cu and Ni in mangrove sediments: Relationships with their bioavailability

    International Nuclear Information System (INIS)

    Chakraborty, Parthasarathi; Ramteke, Darwin; Chakraborty, Sucharita

    2015-01-01

    Highlights: • Metal speciation controls bioavailability in mangrove ecosystem. • Bioavailability of Ni was controlled by Fe/Mn-oxyhydroxide and organic phases • Bioavailability of Cu in mangrove roots was controlled by organic phase in the sediments. • Cu interacts more strongly with organic phases than Ni in mangrove sediment. - Abstract: Sequential extraction study was performed to determine the concentrations of non-residual metal-complexes in the mangrove sediments from the Divar Island, (west coast of India). Accumulation of metal in the mangrove roots (from the same location) was determined and used as an indicator of bioavailability of metal. An attempt was made to establish a mechanistic linkage between the non-residual metal complexes and their bioavailability in the mangrove system. The non-residual fractions of Cu and Ni were mainly associated with Fe/Mn oxyhydroxide and organic phases in the sediments. A part of these metal fractions were bioavailable in the system. These two phases were the major controlling factors for Ni speciation and their bioavailability in the studied sediments. However, Cu was found to interact more strongly with the organic phases than Ni in the mangrove sediments. Organic phases in the mangrove sediments acted as buffer to control the speciation and bioavailability of Cu in the system

  8. Application of a mer-lux biosensor for estimating bioavailable mercury in soil

    DEFF Research Database (Denmark)

    Rasmussen, Lasse Dam; Sørensen, S. J.; Turner, R. R.

    2000-01-01

    A previously described bioassay using a mer-lux gene fusion for detection of bioavailable mercury was applied for the estimation of the bioavailable fraction of mercury in soil. The bioavailable fraction is defined here as being part of the water leachable fraction. Due to masking of light emission...... responses. The utility of the mer-lux biosensor assay was tested by relating measurements of bioavailable and total mercury to the response of the soil microbial community to mercury exposure. Two different soil types (an agricultural and a beech forest soil) were spiked with 2.5 µg Hg(II) g-1 in microcosms...... in resistance or diversity. This study showed that the bioassay using the mer-lux biosensor is a useful and sensitive tool for estimation of bioavailable mercury in soil....

  9. Nickel, copper and cobalt coalescence in copper cliff converter slag

    Directory of Open Access Journals (Sweden)

    Wolf A.

    2016-01-01

    Full Text Available The aim of this investigation is to assess the effect of various additives on coalescence of nickel, copper and cobalt from slags generated during nickel extraction. The analyzed fluxes were silica and lime while examined reductants were pig iron, ferrosilicon and copper-silicon compound. Slag was settled at the different holding temperatures for various times in conditions that simulated the industrial environment. The newly formed matte and slag were characterized by their chemical composition and morphology. Silica flux generated higher partition coefficients for nickel and copper than the addition of lime. Additives used as reducing agents had higher valuable metal recovery rates and corresponding partition coefficients than fluxes. Microstructural studies showed that slag formed after adding reductants consisted of primarily fayalite, with some minute traces of magnetite as the secondary phase. Addition of 5 wt% of pig iron, ferrosilicon and copper-silicon alloys favored the formation of a metallized matte which increased Cu, Ni and Co recoveries. Addition of copper-silicon alloys with low silicon content was efficient in copper recovery but coalescence of the other metals was low. Slag treated with the ferrosilicon facilitated the highest cobalt recovery while copper-silicon alloys with silicon content above 10 wt% resulted in high coalescence of nickel and copper, 87 % and 72 % respectively.

  10. pH-dependent solubility and permeability profiles: A useful tool for prediction of oral bioavailability.

    Science.gov (United States)

    Sieger, P; Cui, Y; Scheuerer, S

    2017-07-15

    pH-dependent solubility - permeability profiles offer a simple way to predict bioavailability after oral application, if bioavailability is only solubility and permeability driven. Combining both pH-dependent solubility and pH-dependent permeability in one diagram provides a pH-window (=ΔpH sol-perm ) from which the conditions for optimal oral bioavailability can be taken. The size of this window is directly proportional to the observed oral bioavailability. A set of 21 compounds, with known absolute human oral bioavailability, was used to establish this correlation. Compounds with ΔpH sol-perm bioavailability (bioavailability typically by approximately 25%. For compounds where ΔpH sol-perm ≥3 but still showing poor bioavailability, most probably other pharmacokinetic aspects (e.g. high clearance), are limiting exposure. Interestingly, the location of this pH-window seems to have a negligible influence on the observed oral bioavailability. In scenarios, where the bioavailability is impaired by certain factors, like for example proton pump inhibitor co-medication or food intake, the exact position of this pH-window might be beneficial for understanding the root cause. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Diagenesis and bioavailability of mercury in the contaminated sediments of Ulhas Estuary, India

    Digital Repository Service at National Institute of Oceanography (India)

    Ram, A.; Borole, D.V.; Rokade, M.A.; Zingde, M.D.

    ), and determining the retention of particle-bound elements in the sedimentary record (Shaw et al., 1990). Bioavailable metals are defined as metals in such a biologically available chemical state that they can be taken up by an organism and can react with its..., characterized by particular hydrodynamics and physical, 3 chemical and biological conditions. The estuary can be considered a natural chemical reactor in which material is constantly imported, transformed and exported. It is heavily affected by anthropogenic...

  12. Synthetic and tomato-based lycopene have identical bioavailability in humans

    NARCIS (Netherlands)

    Hoppe, P.P.; Krämer, K.; Berg, H. van den; Steenge, G.; Vliet, T. van

    2003-01-01

    Background: Bioavailability studies with lycopene have focused on natural sources. A synthetic source has recently become available. Aim of the study: To determine the relative bioavailabilities of synthetic and tomato-based lycopene in free living volunteers in a single-blind, randomized,

  13. Do constructed wetlands remove metals or increase metal bioavailability?

    Science.gov (United States)

    Xu, Xiaoyu; Mills, Gary L

    2018-07-15

    The H-02 wetland was constructed to treat building process water and storm runoff water from the Tritium Processing Facility on the Department of Energy's Savannah River Site (Aiken, SC). Monthly monitoring of copper (Cu) and zinc (Zn) concentrations and water quality parameters in surface waters continued from 2014 to 2016. Metal speciation was modeled at each sampling occasion. Total Cu and Zn concentrations released to the effluent stream were below the NPDES limit, and the average removal efficiency was 65.9% for Cu and 71.1% for Zn. The metal-removal processes were found out to be seasonally regulated by sulfur cycling indicated by laboratory and model results. High temperature, adequate labile organic matter, and anaerobic conditions during the warm months (February to August) favored sulfate reduction that produced sulfide minerals to significantly remove metals. However, the dominant reaction in sulfur cycling shifted to sulfide oxidation during the cool months (September to next March). High concentrations of metal-organic complexes were observed, especially colloidal complexes of metal and fulvic acid (FA), demonstrating adsorption to organic matter became the primary process for metal removal. Meanwhile, the accumulation of metal-FA complexes in the wetland system will cause negative effects to the surrounding environment as they are biologically reactive, highly bioavailable, and can be easily taken up and transferred to ecosystems by trophic exchange. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Physical conditions affecting pyrethroid toxicity in arthropods

    NARCIS (Netherlands)

    Jagers op Akkerhuis, G.

    1993-01-01

    The aim of this thesis was to obtain mechanistic information about how the toxicity of pesticides in the field is affected by physical factors, pesticide bioavailability and arthropod behaviour. The pyrethroid insecticide deltamethrin and linyphiid spiders were selected as pesticide-effect

  15. Antwerp Copper Plates

    DEFF Research Database (Denmark)

    Wadum, Jørgen

    1999-01-01

    In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes.......In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes....

  16. Ultrasonic-assisted chemical reduction synthesis and structural characterization of copper nanoparticles

    Science.gov (United States)

    Anh-Nga, Nguyen T.; Tuan-Anh, Nguyen; Thanh-Quoc, Nguyen; Ha, Do Tuong

    2018-04-01

    Copper nanoparticles, due to their special properties, small dimensions and low-cost preparation, have many potential applications such as in optical, electronics, catalysis, sensors, antibacterial agents. In this study, copper nanoparticles were synthesized by chemical reduction method with different conditions in order to investigate the optimum conditions which gave the smallest (particle diameter) dimensions. The synthesis step used copper (II) acetate salt as precursor, ascorbic acid as reducing agent, glycerin and polyvinylpyrrolidone (PVP) as protector and stabilizer. The assistance of ultrasonic was were considered as the significant factor affecting the size of the synthesized particles. The results showed that the copper nanoparticles have been successfully synthesized with the diameter as small as 20-40 nm and the conditions of ultrasonic waves were 48 kHz of frequency, 20 minutes of treated time and 65-70 °C of temperature. The synthesized copper nanoparticles were characterized by optical absorption spectrum, scanning electron microscopy (SEM), and Fourier Transform Infrared Spectrometry.

  17. Uranium Speciation and Bioavailability in Aquatic Systems: An Overview

    Directory of Open Access Journals (Sweden)

    Scott J. Markich

    2002-01-01

    Full Text Available The speciation of uranium (U in relation to its bioavailability is reviewed for surface waters (fresh- and seawater and their sediments. A summary of available analytical and modeling techniques for determining U speciation is also presented. U(VI is the major form of U in oxic surface waters, while U(IV is the major form in anoxic waters. The bioavailability of U (i.e., its ability to bind to or traverse the cell surface of an organism is dependent on its speciation, or physicochemical form. U occurs in surface waters in a variety of physicochemical forms, including the free metal ion (U4+ or UO22+ and complexes with inorganic ligands (e.g., uranyl carbonate or uranyl phosphate, and humic substances (HS (e.g., uranyl fulvate in dissolved, colloidal, and/or particulate forms. Although the relationship between U speciation and bioavailability is complex, there is reasonable evidence to indicate that UO22+ and UO2OH+ are the major forms of U(VI available to organisms, rather than U in strong complexes (e.g., uranyl fulvate or adsorbed to colloidal and/or particulate matter. U(VI complexes with inorganic ligands (e.g., carbonate or phosphate and HS apparently reduce the bioavailability of U by reducing the activity of UO22+ and UO2OH+. The majority of studies have used the results from thermodynamic speciation modeling to support these conclusions. Time-resolved laser-induced fluorescence spectroscopy is the only analytical technique able to directly determine specific U species, but is limited in use to freshwaters of low pH and ionic strength. Nearly all of the available information relating the speciation of U to its bioavailability has been derived using simple, chemically defined experimental freshwaters, rather than natural waters. No data are available for estuarine or seawater. Furthermore, there are no available data on the relationship between U speciation and bioavailability in sediments. An understanding of this relationship has been

  18. Food synergies for improving bioavailability of micronutrients from plant foods.

    Science.gov (United States)

    Nair, K Madhavan; Augustine, Little Flower

    2018-01-01

    Plant foods are endowed with micronutrients but an understanding of bioavailability is essential in countries primarily dependent on plant based foods. Bioavailability depends majorly on food synergies. This review examines the nature of certain food synergies and methods to screen and establish it as a strategy to control micronutrient deficiency in the populations. Strong evidence on the synergistic effect of inclusion of vitamin C rich fruits and non-vegetarian foods in enhancing the bioavailability of iron has been demonstrated. Fat is found to be synergistic for vitamin A absorption. Red wine and protein have been explored for zinc absorption and effect of fat has been studied for vitamin D. Methods for screening of bioavailability, and biomarkers to demonstrate the synergistic effects of foods are required. Translation of food synergy as a strategy requires adaptation to the context and popularization of intelligent food synergies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. EPR monitoring of the bioavailability of an organic xenobiotic (4-hydroxy-TEMPO) in model clay suspensions and pastes

    Energy Technology Data Exchange (ETDEWEB)

    Dumestre, Alain [Laboratory of Geoenvironmental Science and Engineering, Bradfield Hall, Cornell University, Ithaca, NY 14853 (United States); Spagnuolo, Matteo [Dipartimento di Biologia e Chimica Agro-forestale ed Ambientale, Universita degli Studi di Bari, via Amendola 165/a, 70126 Bari (Italy); Bladon, Rebecca [158 Kottinger Drive, Pleasanton, CA (United States); Berthelin, Jacques [CNRS-LIMOS Laboratoire des Interactions Microorganismes-Mineraux-Matieres Organiques, UMR 7137 du CNRS, Universite Henri Poincare, B.P. 239, F-54506 Vandoeuvre les Nancy (France); Baveye, Philippe [Laboratory of Geoenvironmental Science and Engineering, Bradfield Hall, Cornell University, Ithaca, NY 14853 (United States)]. E-mail: philippe.baveye@cornell.edu

    2006-09-15

    Electron paramagnetic resonance spectroscopy is used to monitor the bioavailability of a nitroxide spin probe, 4-hydroxy-Tempo or Tempol, in Ca-hectorite suspensions and pastes, to bacteria capable of degrading this probe co-metabolically. In nutrient solutions with an initial probe concentration of 1.2 mM and in the absence of hectorite, bacteria are able to denature Tempol and eliminate its paramagnetic signal within 48 h. In the presence of hectorite and after flocculation, the effect of bacteria is significantly delayed, but almost complete denaturation still occurs, after roughly 120 h. When hectorite is added but the bacterial/clay suspension is not centrifuged, Tempol denaturation levels off after about 24 h and reaches a plateau with approximately 45% of Tempol remaining. This plateau does not constitute evidence of limited bioavailability, as is widely assumed, since subsequent addition of nutrients causes the denaturation reaction to proceed to a second plateau, with merely 10% of Tempol remaining. - Spectroscopic data demonstrate that the bioavailability of an organic compound in clay suspensions and pastes strongly depends on conditions that affect bacterial metabolism.

  20. Biosurfactants and increased bioavailability of sorbed organic contaminants: Measurements using a biosensor

    International Nuclear Information System (INIS)

    Strong-Gunderson, J.M.; Palumbo, A.V.; Applegate, B.; Saylor, G.S.

    1993-01-01

    Bioremediation of sites contaminated with hydrophobic materials that sorb onto the soil matrix is very difficult due to reduced microbial (bio)availability. Following biosurfactant addition, we have measured an increase in contaminant bioavailability by using a lux biosensor. Direct microbial bioavailability was determined by using a genetically engineered microbial bioreporter strain of Pseudomonas putida. This strain was engineered so the lux genes, which code for light production, are transcriptionally fused with genes that code for contaminant degradation and are thus induced in the presence of specific compounds. By using a bioreporter we can quantify the actual microbial bioavailability of the contaminants and compare it to concentrations measured by other analytical methods (e.g. gas chromatograph). It is possible that these values are not equal to each other. Thus, bioremediation rates may not be accurately predicted if bioavailability is not considered

  1. Arsenic in industrial waste water from copper production technological process

    OpenAIRE

    Biljana Jovanović; Milana Popović

    2013-01-01

    Investigation of arsenic in industrial waste water is of a great importance for environment. Discharge of untreated waste water from a copper production process results in serious pollution of surface water, which directly affects flora and fauna, as well as humans. There is a need for efficient and environmentally acceptable treament of waste waters containing heavy metals and arsenic. The paper presents an analyisis of the waste water from The Copper Smelter which is discharged into the Bor...

  2. Effect of deposition rate on melting point of copper film catalyst substrate at atomic scale

    Science.gov (United States)

    Marimpul, Rinaldo; Syuhada, Ibnu; Rosikhin, Ahmad; Winata, Toto

    2018-03-01

    Annealing process of copper film catalyst substrate was studied by molcular dynamics simulation. This copper film catalyst substrate was produced using thermal evaporation method. The annealing process was limited in nanosecond order to observe the mechanism at atomic scale. We found that deposition rate parameter affected the melting point of catalyst substrate. The change of crystalline structure of copper atoms was observed before it had been already at melting point. The optimum annealing temperature was obtained to get the highest percentage of fcc structure on copper film catalyst substrate.

  3. Speciation and leachability of copper in mine tailings from porphyry copper mining

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Yianatos, Juan B; Ottosen, Lisbeth M.

    2005-01-01

    Mine tailing from the El Teniente-Codelco copper mine situated in VI Region of Chile was analysed in order to evaluate the mobility and speciation of copper in the solid material. Mine tailing was sampled after the rougher flotation circuits, and the copper content was measured to 1150mgkg^-^1 dry...... matter. This tailing was segmented into fractions of different size intervals: 0-38, 38-45, 45-53, 53-75, 75-106, 106-150, 150-212, and >212@mm, respectively. Copper content determination, sequential chemical extraction, and desorption experiments were carried out for each size interval in order...... to evaluate the speciation of copper. It was found that the particles of smallest size contained 50-60% weak acid leachable copper, whereas only 32% of the copper found in largest particles could be leached in weak acid. Copper oxides and carbonates were the dominating species in the smaller particles...

  4. Tribological properties of copper-based composites with copper coated NbSe2 and CNT

    International Nuclear Information System (INIS)

    Chen, Beibei; Yang, Jin; Zhang, Qing; Huang, Hong; Li, Hongping; Tang, Hua; Li, Changsheng

    2015-01-01

    Graphical abstract: Morphology of copper coated NbSe 2 and CNT; friction coefficient and wear rate of copper-based composites. - Highlights: • NbSe 2 and CNT were coated with copper layers by the means of electroless plating. • The mechanical and tribological properties of copper composites were studied. • The enhancement mechanisms of copper coated NbSe 2 and CNT were proposed. • Copper–copper coated (12 wt.%NbSe 2 –3 wt.%CNT) composite had the best wear resistance. - Abstract: Copper-based composites with copper coated NbSe 2 and/or CNT were fabricated by the powder metallurgy technique. The morphology and phase composition of copper coated NbSe 2 and carbon nanotube (CNT) were observed using high solution transmission electronic microscope (HRTEM), scanning electronic microscope (SEM equipped with EDS) and X-ray diffraction (XRD). The density, hardness, and bending strength of as-prepared copper-based composites were measured, and their tribological properties were investigated using UMT-2 tester. Results indicated that all copper-based composites showed decreased density and bending strength, but increased hardness in comparison with copper matrix. Besides, the incorporation of copper coated NbSe 2 improved the friction-reducing and anti-wear properties of copper matrix. Addition of copper coated CNT greatly enhanced the mechanical and tribological properties. In particular, when the content of copper coated CNT was 3 wt.%, the corresponding composite exhibited the best tribological properties. This was because NbSe 2 was distributed chaotically in matrix, which greatly improved the friction-reducing property of copper, while CNT with superior mechanical strength enhanced the wear resistance by increasing the load-carrying capacity. More importantly, copper layers coated on NbSe 2 and CNT favored the good interfacial combination between fillers and copper matrix showing beneficial effect for the stresses transferring from matrix to fillers

  5. Copper and Anesthesia: Clinical Relevance and Management of Copper Related Disorders

    OpenAIRE

    Langley, Adrian; Dameron, Charles T.

    2013-01-01

    Recent research has implicated abnormal copper homeostasis in the underlying pathophysiology of several clinically important disorders, some of which may be encountered by the anesthetist in daily clinical practice. The purpose of this narrative review is to summarize the physiology and pharmacology of copper, the clinical implications of abnormal copper metabolism, and the subsequent influence of altered copper homeostasis on anesthetic management.

  6. Predicting Metal Speciation & Bioavailability via Estimation of Metal-Organic Thermodynamic Properties

    Science.gov (United States)

    Prasad, A.; Howells, A. E.; Shock, E.

    2017-12-01

    The biological fate of any metal depends on its chemical form in the environment. Arsenic for example, is extremely toxic in the form of inorganic As+3 but completely benign in the organic form of arsenobetaine. Thus, given an exhaustive set of reactions and their equilibrium constants (logK), the bioavailability of any metal can be obtained for blood plasma, hydrothermal fluids or any system of interest. While many data exist for metal-inorganic ligands, logK data covering the temperature range of life for metal-organic complexes are sparse. Hence, we decided to estimate metal-organic logK values from correlations with the commonly available values of ligand pKa. Metal ion specific correlations were made with ligands classified according to their electron donor atoms, denticity and other chemical factors. While this approach has been employed before (Carbonaro et al. 2007, GCA 71, 3958-3968), new correlations were developed that provide estimates even when no metal-organic logK is available. In addition, we have used the same methods to make estimates of metal-organic entropy of association (ΔaS), which can provide logK for any temperature of biological relevance. Our current correlations employ logK and ΔaS data from 30 metal ions (like the biologically relevant Fe+3 & Zn+2) and 74 ligands (like formate and ethylenediamine), which can be expanded to estimate the metal-ligand reaction properties for these 30 metal ions with a possibly limitless number of ligands that may belong to our categories of ligands. With the help of such data, copper speciation was obtained for a defined growth medium for methanotrophs employed by Morton et al. (2000, AEM 66, 1730-1733) that agrees with experimental measurements showing that the free metal ion may not be the bioavailable form in all conditions. These results encourage us to keep filling the gaps in metal-organic logK data and continue finding relationships between biological responses (like metal-accumulation ratios

  7. Hyperbranched Polyglycerol Derivatives as Prospective Copper Nanotransporter Candidates

    Directory of Open Access Journals (Sweden)

    Mohiuddin Quadir

    2018-05-01

    Full Text Available Hyperbranched polyglycerol (hPG has been used as a multivalent scaffold to develop a series of nanocarriers capable of high-affinity encapsulation of copper (Cu. A rationally selected set of Cu-complexing motifs has been conjugated to hPG hydroxyl groups to render the constructs potentially usable as exogenous sources of Cu for addressing different pathological conditions associated with Cu-deficiency. We have utilized a newly discovered route to attach Cu-binding domains exclusively within a hPG core by selective differentiation between the primary and secondary hydroxyl groups of the polyol. These hPG-derivatives were found to form a stable complex with Cu ions depending on the type of immobilized ligands and corresponding degree of functionalization. In addition, these Cu-bearing nano-complexes demonstrated moderately cationic surface charge resulting in adjustable protein-binding characteristics and low cellular toxicity profile. We envision that these Cu-loaded hPG nanocarriers can be used as a stable platform to transport the metal ion across the systemic circulation to supply bioavailable quantity of Cu in disease-afflicted tissues.

  8. Geochemical fractionation of metals and metalloids in tailings and appraisal of environmental pollution in the abandoned Musina Copper Mine, South Africa.

    Science.gov (United States)

    Gitari, M W; Akinyemi, S A; Ramugondo, L; Matidza, M; Mhlongo, S E

    2018-04-30

    The economic benefits of mining industry have often overshadowed the serious challenges posed to the environments through huge volume of tailings generated and disposed in tailings dumps. Some of these challenges include the surface and groundwater contamination, dust, and inability to utilize the land for developmental purposes. The abandoned copper mine tailings in Musina (Limpopo province, South Africa) was investigated for particle size distribution, mineralogy, physicochemical properties using arrays of granulometric, X-ray diffraction, and X-ray fluorescence analyses. A modified Community Bureau of Reference (BCR) sequential chemical extraction method followed by inductively coupled plasma mass spectrometry/atomic emission spectrometry (ICP-MS/AES) technique was employed to assess bioavailability of metals. Principal component analysis was performed on the sequential extraction data to reveal different loadings and mobilities of metals in samples collected at various depths. The pH ranged between 7.5 and 8.5 (average ≈ 8.0) indicating alkaline medium. Samples composed mostly of poorly grated sands (i.e. 50% fine sand) with an average permeability of about 387.6 m/s. Samples have SiO 2 /Al 2 O 3 and Na 2 O/(Al 2 O 3  + SiO 2 ) ratios and low plastic index (i.e. PI ≈ 2.79) suggesting non-plastic and very low dry strength. Major minerals were comprised of quartz, epidote, and chlorite while the order of relative abundance of minerals in minor quantities is plagioclase > muscovite > hornblende > calcite > haematite. The largest percentage of elements such as As, Cd and Cr was strongly bound to less extractable fractions. Results showed high concentration and easily extractable Cu in the Musina Copper Mine tailings, which indicates bioavailability and poses environmental risk and potential health risk of human exposure. Principal component analysis revealed Fe-oxide/hydroxides, carbonate and clay components, and copper ore process

  9. Biosorption of lead and copper by heavy-metal tolerant Micrococcus luteus DE2008.

    Science.gov (United States)

    Puyen, Zully M; Villagrasa, Eduard; Maldonado, Juan; Diestra, Elia; Esteve, Isabel; Solé, Antoni

    2012-12-01

    Micrococcus luteus DE2008 has the ability to absorb lead and copper. The effect of these metals on biomass and viability of this microorganism were investigated and removal of the metals from culture media was determined. Lead had no effect on the biomass expressed as mg Carbon/cm(3) of M. Iuteus DE2008, but in the case of copper, the minimum metal concentration that affected the biomass was 0.1 mM Cu(II). According to these results this microorganism shows a greater tolerance for lead. The minimum metal concentration that affected viability (expressed as the percentage of live cells) was 0.5 mM for both metals. M. luteus DE2008 exhibited a specific removal capacity of 408 mg/g for copper and 1965 mg/g for lead. This microorganism has a greater ability to absorb Pb(II) than Cu(II). M. luteus DE2008 could be seen as a microorganism capable of restoring environments polluted by lead and copper. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Higher iron bioavailability of a human-like collagen iron complex.

    Science.gov (United States)

    Zhu, Chenhui; Yang, Fan; Fan, Daidi; Wang, Ya; Yu, Yuanyuan

    2017-07-01

    Iron deficiency remains a public health problem around the world due to low iron intake and/or bioavailability. FeSO 4 , ferrous succinate, and ferrous glycinate chelate are rich in iron but have poor bioavailability. To solve the problem of iron deficiency, following previous research studies, a thiolated human-like collagen-ironcomplex supplement with a high iron content was prepared in an anaerobic workstation. In addition, cell viability tests were evaluated after conducting an MTT assay, and a quantitative analysis of the thiolated human-like collagen-iron digesta samples was performed using the SDS-PAGE method coupled with gel filtration chromatography. The iron bioavailability was assessed using Caco-2 cell monolayers and iron-deficiency anemia mice models. The results showed that (1) one mole of thiolated human-like collagen-iron possessed approximately 35.34 moles of iron; (2) thiolated human-like collagen-iron did not exhibit cytotoxity and (3) thiolated human-like collagen- iron digesta samples had higher bioavailability than other iron supplements, including FeSO 4 , ferrous succinate, ferrous glycine chelate and thiolated human-like collagen-Fe iron. Finally, the iron bioavailability was significantly enhanced by vitamin C. These results indicated that thiolated human-like collagen-iron is a promising iron supplement for use in the future.

  11. Bacterial metal resistance genes and metal bioavailability in contaminated sediments

    International Nuclear Information System (INIS)

    Roosa, Stéphanie; Wattiez, Ruddy; Prygiel, Emilie; Lesven, Ludovic; Billon, Gabriel; Gillan, David C.

    2014-01-01

    In bacteria a metal may be defined as bioavailable if it crosses the cytoplasmic membrane to reach the cytoplasm. Once inside the cell, specific metal resistance systems may be triggered. In this research, specific metal resistance genes were used to estimate metal bioavailability in sediment microbial communities. Gene levels were measured by quantitative PCR and correlated to metals in sediments using five different protocols to estimate dissolved, particle-adsorbed and occluded metals. The best correlations were obtained with czcA (a Cd/Zn/Co efflux pump) and Cd/Zn adsorbed or occluded in particles. Only adsorbed Co was correlated to czcA levels. We concluded that the measurement of czcA gene levels by quantitative PCR is a promising tool which may complement the classical approaches used to estimate Cd/Zn/Co bioavailability in sediment compartments. - Highlights: • Metal resistance genes were used to estimate metal bioavailability in sediments. • Gene levels were correlated to metals using 5 different metal extraction protocols. • CzcA gene levels determined by quantitative PCR is a promising tool for Cd/Zn/Co. - Capsule Bacterial czcA is a potential biomarker of Cd, Zn and Co bioavailability in aquatic sediments as shown by quantitative PCR and sequential metal extraction

  12. Bioaccessibility and bioavailability of phenolic compounds in bread: a review.

    Science.gov (United States)

    Angelino, Donato; Cossu, Marta; Marti, Alessandra; Zanoletti, Miriam; Chiavaroli, Laura; Brighenti, Furio; Del Rio, Daniele; Martini, Daniela

    2017-07-19

    Cereal-based products, like breads, are a vehicle for bioactive compounds, including polyphenols. The health effects of polyphenols like phenolic acids (PAs) are dependent on their bioaccessibility and bioavailability. The present review summarizes the current understanding of potential strategies to improve phenolic bioaccessibility and bioavailability and the main findings of in vitro and in vivo studies investigating these strategies applied to breads, including the use of raw ingredients with greater phenolic content and different pre-processing technologies, such as fermentation and enzymatic treatment of ingredients. There is considerable variability between in vitro studies, mainly resulting from the use of different methodologies, highlighting the need for standardization. Of the few in vivo bioavailability studies identified, acute, single-dose studies demonstrate that modifications to selected raw materials and bioprocessing of bran could increase the bioavailability, but not necessarily the net content, of bread phenolics. The two medium-term identified dietary interventions also demonstrated greater phenolic content, resulting from the modification of the raw materials used. Overall, the findings suggest that several strategies can be used to develop new bread products with greater phenolic bioaccessibility and bioavailability. However, due to the large variability and the few studies available, further investigations are required to determine better the usefulness of these innovative processes.

  13. Industrial Tests to Modify Molten Copper Slag for Improvement of Copper Recovery

    Science.gov (United States)

    Guo, Zhengqi; Zhu, Deqing; Pan, Jian; Zhang, Feng; Yang, Congcong

    2018-04-01

    In this article, to improve the recovery of copper from copper slag by flotation process, industrial tests of the modification process involving addition of a composite additive into molten copper slag were conducted, and the modified slag was subjected to the flotation process to confirm the modification effect. The phase evolution of the slag in the modification process was revealed by thermodynamic calculations, x-ray diffraction, optical microscopy and scanning electron microscopy. The results show that more copper was transformed and enriched in copper sulfide phases. The magnetite content in the modified slag decreased, and that of "FeO" increased correspondingly, leading to a better fluidity of the molten slag, which improved the aggregation and growth of fine particles of the copper sulfide minerals. Closed-circuit flotation tests of the original and modified slags were conducted, and the results show that the copper recovery increased obviously from 69.15% to 73.38%, and the copper grade of concentrates was elevated slightly from 20.24% to 21.69%, further confirming that the industrial tests of the modification process were successful. Hence, the modification process has a bright future in industrial applications for enhancing the recovery of copper from the copper slag.

  14. Biodynamics of copper oxide nanoparticles and copper ions in an oligochaete: Part I: relative importance of water and sediment as exposure routes

    Science.gov (United States)

    Ramskov, Tina; Thit, Amalie; Croteau, Marie-Noele; Selck, Henriette

    2015-01-01

    Copper oxide (CuO) nanoparticles (NPs) are widely used, and likely released into the aquatic environment. Both aqueous (i.e., dissolved Cu) and particulate Cu can be taken up by organisms. However, how exposure routes influence the bioavailability and subsequent toxicity of Cu remains largely unknown. Here, we assess the importance of exposure routes (water and sediment) and Cu forms (aqueous and nanoparticulate) on Cu bioavailability and toxicity to the freshwater oligochaete, Lumbriculus variegatus, a head-down deposit-feeder. We characterize the bioaccumulation dynamics of Cu in L. variegatus across a range of exposure concentrations, covering both realistic and worst-case levels of Cu contamination in the environment. Both aqueous Cu (Cu-Aq; administered as Cu(NO3)2) and nanoparticulate Cu (CuO NPs), whether dispersed in artificial moderately hard freshwater or mixed into sediment, were weakly accumulated by L. variegatus. Once incorporated into tissues, Cu elimination was negligible, i.e., elimination rate constants were in general not different from zero for either exposure route or either Cu form. Toxicity was only observed after waterborne exposure to Cu-Aq at very high concentration (305 µgL-1), where all worms died. There was no relationship between exposure route, Cu form or Cu exposure concentration on either worm survival or growth. Slow feeding rates and low Cu assimilation efficiency (approximately 30%) characterized the uptake of Cu from the sediment for both Cu forms. In nature, L. variegatus is potentially exposed to Cu via both water and sediment. However, sediment progressively becomes the predominant exposure route for Cu in L. variegatus as Cu partitioning to sediment increases.

  15. The Influence of Multiwalled Carbon Nanotubes on Polycyclic Aromatic Hydrocarbon (PAH) Bioavailability and Toxicity to Soil Microbial Communities in Alfalfa Rhizosphere

    Science.gov (United States)

    Carbon nanotubes (CNTs) may affect bioavailability and toxicity of organic contaminants due to their adsorption properties. Recent studies have observed the influence of multiwalled carbon nanotubes (MWNTs) on the fate of polycyclic aromatic hydrocarbons (PAHs) and other organic contaminants. Greenh...

  16. Improved Dissolution and Oral Bioavailability of Celecoxib by a Dry Elixir System.

    Science.gov (United States)

    Cho, Kwan Hyung; Jee, Jun-Pil; Yang, Da A; Kim, Sung Tae; Kang, Dongjin; Kim, Dae-Young; Sim, Taeyong; Park, Sang Yeob; Kim, Kyeongsoon; Jang, Dong-Jin

    2018-02-01

    The purpose of this study was to develop and evaluate a dry elixir (DE) system for enhancing the dissolution rate and oral bioavailability of celecoxib. DE system has been used for improving solubility, oral bioavailability of poorly water-soluble drugs. The encapsulated drugs or solubilized drugs in the matrix are rapidly dissolved due to the co-solvent effect, resting in both an enhanced dissolution and bioavailability. DEs containing celecoxib were prepared by spray-drying method and characterized by morphology, drug/ethanol content, drug crystallinity, dissolution rate and oral bioavailability. The ethanol content and drug content in DE system could be easily altered by controlling the spraydrying conditions. The dissolution profile of celecoxib from DE proved to be much higher than that of celecoxib powder due to the nano-structured matrix, amorphous state and encapsulated ethanol. The bioavailability of celecoxib from DEs was compared with celecoxib powder alone and commercial product (Celebrex®) in rats. In particular, blood concentrations of celecoxib form DE formulation were much greater than those of native celecoxib and market product. The data demonstrate that the DE system could provide an useful solid dosage form to enhance the solubility, dissolution rate and oral bioavailability of celecoxib.

  17. Bioavailability of lead in rats fed human diets

    International Nuclear Information System (INIS)

    Kostial, K.; Kello, D.

    1979-01-01

    The bioavailability of lead was studied in rats fed various baby foods (Babymix-turkey, Babymix-vegetables, Frutolino-fruit, Frutamix-bananas, Babyron-S-26, Truefood), cow's milk, bread, liver and standard rat diet. Lead absorption was determined by measuring the whole body retention of 203 Pb 6 days after a single oral application. Highest absorption values ranging from 17 to 20% were obtained in animals fed cow's milk and fruit foods. Rats on other human diets absorbed between 3 and 8% of the radioactive lead dose. Only in animals on rat diet lead absorption was below 1%. It is concluded that rats fed human diets show absorption values similar to those in humans. This might indicate that the bioavailability of lead is primarily dependent on dietary habits. This experimental model, if confirmed by further work, might be useful for obtaining preliminary data on the bioavailability of metals from various foods

  18. Bioavailability and Pharmacodynamics of Promethazine in Human Subjects

    Science.gov (United States)

    Putcha, Lakshmi; Flynn, Chris; Paloski, W. H. (Technical Monitor)

    2000-01-01

    Space Motion Sickness (SMS) is often treated in space with promethazine (PMZ). Anecdotal reports indicate that the common side effects of drowsiness and decrements in cognitive performance that are associated with PMZ administration (50 mg IM on the ground, are absent or less pronounced in space suggesting I that-the bioavailability and/or pharmacodynamic behavior of PMZ may be altered during space flight. There are limited flight opportunities available for clinical research in space, the NRA-99, therefore, solicits research required to improve, or answer specific questions about in-flight diagnosis, therapy, and post-flight rehabilitation. We propose here, to establish a noninvasive method for pharmacodynamic and therapeutic assessment of PMZ. The specific objectives of the proposed research are to, 1. Establish a saliva to plasma ratio of PMZ after administration, 2. Estimate the relative bioavailability of the three flight-specific dosage forms of PMZ, and 3. Establish the dose-response relationship of PMZ. We will estimate the bioavailability of intramuscular injection (IM), oral tablets and rectal suppositories in normal subjects during ambulatory and antiorthostatic; bed rest (ABR) conditions using novel stable isotope techniques. Drowsiness, cognitive performance and salivary flow rate will be measured as a function of circulating drug concentrations after administration of three IM doses of PMZ. We will compare and contrast the bioavailability of PMZ during normal and ABR conditions to examine whether or not ABR can simulate changes in drug, absorption and availability similar to those anticipated in a microgravity environment. Results of this study will validate methods for an approved study with this medication awaiting a flight opportunity for manifestation. These data will also provide the much needed information on the dynamics and therapeutic index. of this medication and their implications on crew fatigue and performance in space. Key words

  19. How do anthropogenic contaminants (ACs) affect behaviour? Multi-level analysis of the effects of copper on boldness in hermit crabs.

    Science.gov (United States)

    White, Stephen J; Briffa, Mark

    2017-02-01

    Natural animal populations are increasingly exposed to human impacts on the environment, which could have consequences for their behaviour. Among these impacts is exposure to anthropogenic contaminants. Any environmental variable that influences internal state could impact behaviour across a number of levels: at the sample mean, at the level of among-individual differences in behaviour ('animal personality') and at the level of within-individual variation in behaviour (intra-individual variation, 'IIV'). Here we examined the effect of exposure to seawater-borne copper on the startle response behaviour of European hermit crabs, Pagurus bernhardus across these levels. Copper exposure rapidly led to longer startle responses on average, but did not lead to any change in repeatability indicating that individual differences were present and equally consistent in the presence and absence of copper. There was no strong evidence that copper exposure led to changes in IIV. Our data show that exposure to copper for 1 week produces sample mean level changes in the behaviour of hermit crabs. However, there is no evidence that this exposure led to changes in repeatability through feedback loops.

  20. In vitro evaluation of dietary compounds to reduce mercury bioavailability.

    Science.gov (United States)

    Jadán-Piedra, Carlos; Vélez, Dinoraz; Devesa, Vicenta

    2018-05-15

    Mercury in foods, in inorganic form [Hg(II)] or as methylmercury (CH 3 Hg), can have adverse effects. Its elimination from foods is not technologically viable. To reduce human exposure, possible alternatives might be based on reducing its intestinal absorption. This study evaluates the ability of 23 dietary components to reduce the amount of mercury that is absorbed and reaches the bloodstream (bioavailability). We determined their effect on uptake of mercury in Caco-2 cells, a model of intestinal epithelium, exposed to Hg(II) and CH 3 Hg standards and to swordfish bioaccessible fractions. Cysteine, homocysteine, glutathione, quercetin, albumin and tannic reduce bioavailability of both mercury species. Fe(II), lipoic acid, pectin, epigallocatechin and thiamine are also effective for Hg(II). Some of these strategies also reduce Hg bioavailability in swordfish (glutathione, cysteine, homocysteine). Moreover, extracts and supplements rich in these compounds are also effective. This knowledge may help to define dietary strategies to reduce in vivo mercury bioavailability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Food matrices affect the bioavailability of (n-3) polyunsaturated fatty acids in a single meal study in humans

    DEFF Research Database (Denmark)

    Schram, Laurine B; Nielsen, Carina J.; Porsgaard, Trine

    2007-01-01

    The aim of this study was to investigate the role of the food matrix on bioavailability of (n - 3) PUFA and oxidative stress in plasma. The study was a randomized, cross-over study and included 12 healthy male participants. The participants ingested a test meal, which consisted of a fitness bar...... products were absorbed differently from those simply administered as supplements alongside of food products, and yoghurt was the best matrix for providing fast absorption of lipids in general, including (n - 3) fatty acids. No significant difference was observed in the level of plasma alpha...

  2. Bioavailability of Metal Ions and Evolutionary Adaptation

    Directory of Open Access Journals (Sweden)

    Rolando P. Hong Enriquez

    2012-10-01

    Full Text Available The evolution of life on earth has been a long process that began nearly 3,5 x 109 years ago. In their initial moments, evolution was mainly influenced by anaerobic environments; with the rise of O2 and the corresponding change in bioavailability of metal ions, new mechanisms of survival were created. Here we review the relationships between ancient atmospheric conditions, metal ion bioavailability and adaptation of metals homeostasis during early evolution. A general picture linking geochemistry, biochemistry and homeostasis is supported by the reviewed literature and is further illustrated in this report using simple database searches.

  3. Synthesis of carbon-supported copper catalyst and its catalytic performance in methanol dehydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Shelepova, Ekaterina V. [Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, Novosibirsk, 630090 (Russian Federation); National Research Tomsk Polytechnic University, Lenin av., 30, Tomsk, 634050 (Russian Federation); Vedyagin, Aleksey A., E-mail: vedyagin@catalysis.ru [Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, Novosibirsk, 630090 (Russian Federation); National Research Tomsk Polytechnic University, Lenin av., 30, Tomsk, 634050 (Russian Federation); Ilina, Ludmila Yu.; Nizovskii, Alexander I. [Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, Novosibirsk, 630090 (Russian Federation); Tsyrulnikov, Pavel G. [Institute of Hydrocarbon Processing SB RAS, Neftezavodskaya st., 54, Omsk, 644040 (Russian Federation)

    2017-07-01

    Highlights: • Carbon-supported copper catalyst was studied in dehydrogenation of methanol. • Reduction temperature affected size of Cu particles and Cu{sup 0}/Cu{sup 2+} ratio. • Reduction at 400 °C was required to obtain high methyl formate yield. - Abstract: Carbon-supported copper catalyst was prepared by incipient wetness impregnation of Sibunit with an aqueous solution of copper nitrate. Copper loading was 5 wt.%. Temperature of reductive pretreatment was varied within a range of 200–400 °C. The samples were characterized by transmission electron microscopy, X-ray diffraction analysis, X-ray photoelectron and X-ray absorption spectroscopies. Catalytic activity of the samples was studied in a reaction of methanol dehydrogenation. Silica-based catalyst with similar copper loading was used as a reference. It was found that copper is distributed over the surface of support in the form of metallic and partially oxidized particles of about 12–17 nm in size. Diminished interaction of copper with support was supposed to be responsible for high catalytic activity.

  4. Copper nitrate redispersion to arrive at highly active silica-supported copper catalysts

    NARCIS (Netherlands)

    Munnik, P.|info:eu-repo/dai/nl/328228524; Wolters, M.|info:eu-repo/dai/nl/304829560; Gabrielsson, A.; Pollington, S.D.; Headdock, G.; Bitter, J.H.|info:eu-repo/dai/nl/160581435; de Jongh, P.E.|info:eu-repo/dai/nl/186125372; de Jong, K.P.|info:eu-repo/dai/nl/06885580X

    2011-01-01

    In order to obtain copper catalysts with high dispersions at high copper loadings, the gas flow rate and gas composition was varied during calcination of silica gel impregnated with copper nitrate to a loading of 18 wt % of copper. Analysis by X-ray diffraction (XRD), N2O chemisorption, and

  5. Copper economy in Chlamydomonas: Prioritized allocation and reallocation of copper to respiration vs. photosynthesis

    Science.gov (United States)

    Kropat, Janette; Gallaher, Sean D.; Urzica, Eugen I.; Nakamoto, Stacie S.; Strenkert, Daniela; Tottey, Stephen; Mason, Andrew Z.; Merchant, Sabeeha S.

    2015-01-01

    Inorganic elements, although required only in trace amounts, permit life and primary productivity because of their functions in catalysis. Every organism has a minimal requirement of each metal based on the intracellular abundance of proteins that use inorganic cofactors, but elemental sparing mechanisms can reduce this quota. A well-studied copper-sparing mechanism that operates in microalgae faced with copper deficiency is the replacement of the abundant copper protein plastocyanin with a heme-containing substitute, cytochrome (Cyt) c6. This switch, which is dependent on a copper-sensing transcription factor, copper response regulator 1 (CRR1), dramatically reduces the copper quota. We show here that in a situation of marginal copper availability, copper is preferentially allocated from plastocyanin, whose function is dispensable, to other more critical copper-dependent enzymes like Cyt oxidase and a ferroxidase. In the absence of an extracellular source, copper allocation to Cyt oxidase includes CRR1-dependent proteolysis of plastocyanin and quantitative recycling of the copper cofactor from plastocyanin to Cyt oxidase. Transcriptome profiling identifies a gene encoding a Zn-metalloprotease, as a candidate effecting copper recycling. One reason for the retention of genes encoding both plastocyanin and Cyt c6 in algal and cyanobacterial genomes might be because plastocyanin provides a competitive advantage in copper-depleted environments as a ready source of copper. PMID:25646490

  6. Canine Copper-Associated Hepatitis

    NARCIS (Netherlands)

    Dirksen, Karen; Fieten, Hille

    2017-01-01

    Copper-associated hepatitis is recognized with increasing frequency in dogs. The disease is characterized by centrolobular hepatic copper accumulation, leading to hepatitis and eventually cirrhosis. The only way to establish the diagnosis is by histologic assessment of copper distribution and copper

  7. Role of organic acids on the bioavailability of selenium in soil: A review.

    Science.gov (United States)

    Dinh, Quang Toan; Li, Zhe; Tran, Thi Anh Thu; Wang, Dan; Liang, Dongli

    2017-10-01

    Organic Acids (OAs) are important components in the rhizosphere soil and influence Se bioavailability in soil. OAs have a bidirectional contrasting effect on Se bioavailability. Understanding the interaction of OAs with Se is essential to assessing Se bioavailability in soil and clarifying the role of OAs in controlling the behavior and fate of Se in soil. This review examines the mechanisms for the (im)mobilization of Se by OAs and discusses the practical implications of these mechanisms in relation to sequestration and bioavailability of Se in soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Earth's copper resources estimated from tectonic diffusion of porphyry copper deposits

    Science.gov (United States)

    Kesler, Stephen E.; Wilkinson, Bruce H.

    2008-03-01

    Improved estimates of global mineral endowments are relevantto issues ranging from strategic planning to global geochemicalcycling. We have used a time-space model for the tectonic migrationof porphyry copper deposits vertically through the crust tocalculate Earth's endowment of copper in mineral deposits. Themodel relies only on knowledge of numbers and ages of porphyrycopper deposits, Earth's most widespread and important sourceof copper, in order to estimate numbers of eroded and preserveddeposits in the crust. Model results indicate that 125,895 porphyrycopper deposits were formed during Phanerozoic time, that only47,789 of these remain at various crustal depths, and that thesecontain 1.7 x 1011 tonnes (t) of copper. Assuming that othertypes of copper deposits behave similarly in the crust and haveabundances proportional to their current global production yieldsan estimate of 3 x 1011 t for total global copper resourcesat all levels in Earth's crust. Thus, 0.25% of the copper inthe crust has been concentrated into deposits through Phanerozoictime, and about two-thirds of this has been recycled by upliftand erosion. The amount of copper in deposits above 3.3 km,a likely limit of future mining, could supply current worldmine production for 5500 yr, thus quantifying the highly unusualand nonrenewable nature of mineral deposits.

  9. Measurement of soil lead bioavailability and influence of soil types and properties: A review.

    Science.gov (United States)

    Yan, Kaihong; Dong, Zhaomin; Wijayawardena, M A Ayanka; Liu, Yanju; Naidu, Ravi; Semple, Kirk

    2017-10-01

    Lead (Pb) is a widespread heavy metal which is harmful to human health, especially to young children. To provide a human health risk assessment that is more relevant to real conditions, Pb bioavailability in soils is increasingly employed in the assessment procedure. Both in vivo and in vitro measurements for lead bioavailability are available. In vivo models are time- consuming and expensive, while in vitro models are rapid, economic, reproducible, and reliable while involving more uncertainties. Uncertainties in various measurements create difficulties in accurately predicting Pb bioavailability, resulting in the unnecessary remediation of sites. In this critical review, we utilised available data from in vivo and in vitro studies to identify the key parameters influencing the in vitro measurements, and presented uncertainties existing in Pb bioavailability measurements. Soil type, properties and metal content are reported to influence lead bioavailability; however, the differences in methods for assessing bioavailability and the differences in Pb source limit one's ability to conduct statistical analyses on influences of soil factors on Pb bioavailability. The information provided in the review is fundamentally useful for the measurement of bioavailability and risk assessment practices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Temporal aspects of copper homeostasis and its crosstalk with hormones

    Directory of Open Access Journals (Sweden)

    Lola ePeñarrubia

    2015-04-01

    Full Text Available To cope with the dual nature of copper as being essential and toxic for cells, plants temporarily adapt the expression of copper homeostasis components to assure its delivery to cuproproteins while avoiding the interference of potential oxidative damage derived from both copper uptake and photosynthetic reactions during light hours. The circadian clock participates in the temporal organization of coordination of plant nutrition adapting metabolic responses to the daily oscillations. This timely control improves plant fitness and reproduction and holds biotechnological potential to drive increased crop yields. Hormonal pathways, including those of abscisic acid, gibberellins, ethylene, auxins, and jasmonates are also under direct clock and light control, both in mono and dicotyledons. In this review, we focus on copper transport in Arabidopsis thaliana and Oryza sativa and the presumable role of hormones in metal homeostasis matching nutrient availability to growth requirements and preventing metal toxicity. The presence of putative hormone-dependent regulatory elements in the promoters of copper transporters genes suggests hormonal regulation to match special copper requirements during plant development. Spatial and temporal processes that can be affected by hormones include the regulation of copper uptake into roots, intracellular trafficking and compartmentalisation, and long-distance transport to developing vegetative and reproductive tissues. In turn, hormone biosynthesis and signalling are also influenced by copper availability, which suggests reciprocal regulation subjected to temporal control by the central oscillator of the circadian clock. This transcriptional regulatory network, coordinates environmental and hormonal signalling with developmental pathways to allow enhanced micronutrient acquisition efficiency.

  11. Development of lycopene micelle and lycopene chylomicron and a comparison of bioavailability

    Science.gov (United States)

    Jyun Chen, Yi; Inbaraj, Baskaran Stephen; Shiau Pu, Yeong; Chen, Bing Huei

    2014-04-01

    The objectives of this study were to develop lycopene micelles and lycopene chylomicrons from tomato extracts for the enhancement and comparison of bioavailability. Lycopene micelles and chylomicrons were prepared by a microemulsion technique involving tomato extract, soybean oil, water, vitamin E and surfactant Tween 80 or lecithin in different proportions. The encapsulation efficiency of lycopene was 78% in micelles and 80% in chylomicrons, with shape being roughly spherical and mean particle size being 7.5 and 131.5 nm. A bioavailability study was conducted in rats by both gavage and i.v. administration, with oral bioavailability of lycopene, phytoene and phytofluene being 6.8, 4.3 and 3.1% in micelles and 9.5, 9.4 and 7.1% in chylomicrons, respectively. This outcome reveals higher lycopene bioavailability through incorporation into micelle or chylomicron systems. Both size and shape should be considered for oral bioavailability determination. For i.v. injection, lycopene micelles should be more important than lycopene chylomicrons for future clinical applications.

  12. Acute effect of copper exposure on serum biochemical characteristics of common carp (Cyprinus carpio L.

    Directory of Open Access Journals (Sweden)

    Melika Ghelichpour

    2014-07-01

    Full Text Available Effects of ambient copper was investigated on serum stress markers, sodium and enzyme levels in Common carp (Cyprinus carpio L. over a 14-d exposure period. Fish were exposed to 0, 25 and 100 μg L-1 copper (as copper sulfate and blood was sampled at 0, 3, 7 and 14 d after exposure. Serum profile was significantly affected by copper concentration, sampling time and their interaction. Increase in serum levels of cortisol, glucose, alanine aminotransferase and aspartate aminotransferase and decrease in serum sodium levels were observed in both copper-exposed groups, 3 d after copper exposure, which lasted until the end of the experiment. It is concluded that copper exposure causes stress response and sodium loss in common carp. Likewise alanine aminotransferase and aspartate aminotransferase increase after exposure which might be as results of either tissue damage or stress.

  13. Electrokinetic remediation of copper mine tailings

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Rojo, Adrián; Ottosen, Lisbeth M.

    2007-01-01

    Important process parameters to optimize in electrokinetic soil remediation are those influencing remediation time and power consumption since these directly affect the cost of a remediation action. This work shows how the electrokinetic remediation (EKR) process could be improved by implementing...... bipolar electrodes in the porous material. The bipolar electrodes in EKR meant two improvements: (1) a shorter migration pathway for the contaminant, and (2) an increased electrical conductivity in the remediation system. All together the remediation proceeded faster with lower electrical resistance than...... in similar experiments but without the bipolar electrodes. The new electrokinetic remediation design was tested on copper mine tailings with different applied electric fields, remediation times and pre-treatment. The results showed that the copper removal was increased from 8% (applying 20V for 8 days...

  14. Anaerobic Copper Toxicity and Iron-Sulfur Cluster Biogenesis in Escherichia coli.

    Science.gov (United States)

    Tan, Guoqiang; Yang, Jing; Li, Tang; Zhao, Jin; Sun, Shujuan; Li, Xiaokang; Lin, Chuxian; Li, Jianghui; Zhou, Huaibin; Lyu, Jianxin; Ding, Huangen

    2017-08-15

    While copper is an essential trace element in biology, pollution of groundwater from copper has become a threat to all living organisms. Cellular mechanisms underlying copper toxicity, however, are still not fully understood. Previous studies have shown that iron-sulfur proteins are among the primary targets of copper toxicity in Escherichia coli under aerobic conditions. Here, we report that, under anaerobic conditions, iron-sulfur proteins in E. coli cells are even more susceptible to copper in medium. Whereas addition of 0.2 mM copper(II) chloride to LB (Luria-Bertani) medium has very little or no effect on iron-sulfur proteins in wild-type E. coli cells under aerobic conditions, the same copper treatment largely inactivates iron-sulfur proteins by blocking iron-sulfur cluster biogenesis in the cells under anaerobic conditions. Importantly, proteins that do not have iron-sulfur clusters (e.g., fumarase C and cysteine desulfurase) in E. coli cells are not significantly affected by copper treatment under aerobic or anaerobic conditions, indicating that copper may specifically target iron-sulfur proteins in cells. Additional studies revealed that E. coli cells accumulate more intracellular copper under anaerobic conditions than under aerobic conditions and that the elevated copper content binds to the iron-sulfur cluster assembly proteins IscU and IscA, which effectively inhibits iron-sulfur cluster biogenesis. The results suggest that the copper-mediated inhibition of iron-sulfur proteins does not require oxygen and that iron-sulfur cluster biogenesis is the primary target of anaerobic copper toxicity in cells. IMPORTANCE Copper contamination in groundwater has become a threat to all living organisms. However, cellular mechanisms underlying copper toxicity have not been fully understood up to now. The work described here reveals that iron-sulfur proteins in Escherichia coli cells are much more susceptible to copper in medium under anaerobic conditions than they

  15. Investigating the bioavailability of graphene quantum dots in lung tissues via Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Tabish, Tanveer A; Lin, Liangxu; Ali, Muhammad; Jabeen, Farhat; Ali, Muhammad; Iqbal, Rehana; Horsell, David W; Winyard, Paul G; Zhang, Shaowei

    2018-06-06

    Biomolecular fractions affect the fate and behaviour of quantum dots (QDs) in living systems but how the interactions between biomolecules and QDs affect the bioavailability of QDs is a major knowledge gap in risk assessment analysis. The transport of QDs after release into a living organism is a complex process. The majority accumulate in the lungs where they can directly affect the inhalation process and lung architecture. Here, we investigate the bioavailability of graphene quantum dots (GQDs) to the lungs of rats by measuring the alterations in macromolecular fractions via Fourier transform infrared spectroscopy (FTIR). GQDs were intravenously injected into the rats in a dose-dependent manner (low (5 mg kg -1 ) and high (15 mg kg -1 ) doses of GQDs per body weight of rat) for 7 days. The lung tissues were isolated, processed and haematoxylin-eosin stained for histological analysis to identify cell death. Key biochemical differences were identified by spectral signatures: pronounced changes in cholesterol were found in two cases of low and high doses; a change in phosphorylation profile of substrate proteins in the tissues was observed in low dose at 24 h. This is the first time biomolecules have been measured in biological tissue using FTIR to investigate the biocompatibility of foreign material. We found that highly accurate toxicological changes can be investigated with FTIR measurements of tissue sections. As a result, FTIR could form the basis of a non-invasive pre-diagnostic tool for predicting the toxicity of GQDs.

  16. Stage specific effects of soluble copper and copper oxide nanoparticles during sea urchin embryo development and their relation to intracellular copper uptake.

    Science.gov (United States)

    Torres-Duarte, Cristina; Ramos-Torres, Karla M; Rahimoff, René; Cherr, Gary N

    2017-08-01

    The effects of exposure to either soluble copper (copper sulfate) or copper oxide nanoparticles (nano-CuO) during specific early developmental stages of sea urchin embryos were analyzed. Soluble copper caused significant malformations in embryos (skeletal malformations, delayed development or gut malformations) when present at any given stage, while cleavage stage was the most sensitive to nano-CuO exposure causing skeletal malformations and decreased total antioxidant capacity. The stage specificity was linked to higher endocytic activity during the first hours of development that leads to higher accumulation of copper in specific cells critical for development. Results indicate that nano-CuO results in higher accumulation of copper inside of embryos and this intracellular copper is more persistent as compared to soluble copper. The possible implications later in development are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Accounting for metal bioavailability in assessing water quality: A step change?

    Science.gov (United States)

    Merrington, Graham; Peters, Adam; Schlekat, Christian E

    2016-02-01

    Bioavailability of metals to aquatic organisms can be considered to be a combination of the physicochemical factors governing metal behavior and the specific pathophysiological characteristics of the organism's biological receptor. Effectively this means that a measure of bioavailability will reflect the exposures that organisms in the water column actually "experience". This is important because it has long been established that measures of total metal in waters have limited relevance to potential environmental risk. The concept of accounting for bioavailability in regard to deriving and implementing environmental water quality standards is not new, but the regulatory reality has lagged behind the development of scientific evidence supporting the concept. Practical and technical reasons help to explain this situation. For example, concerns remain from regulators and the regulated that the efforts required to change existing systems of metal environmental protection that have been in place for over 35 yr are so great as not to be commensurate with likely benefits. However, more regulatory jurisdictions are now considering accounting for metal bioavailability in assessments of water quality as a means to support evidence-based decision-making. In the past decade, both the US Environmental Protection Agency and the European Commission have established bioavailability-based standards for metals, including Cu and Ni. These actions have shifted the debate toward identifying harmonized approaches for determining when knowledge is adequate to establish bioavailability-based approaches and how to implement them. © 2016 SETAC.

  18. A review of methods for assessment of trace element bioavailability in humans

    International Nuclear Information System (INIS)

    Ahmad, T.; Bilal, R.

    2001-01-01

    Deficiency of micronutrients is widespread among the low socio-economic strata of population. Different intervention strategies are used to eradicate these deficiencies. The most important step in the confirmation of the efficacy/success of an intervention is bioavailability. There are a number of methods for determining the bioavailability, involving both nuclear and non-nuclear techniques. Traditionally, bioavailability of different micronutrients was determined using the chemical balance method, that is, amount excreted subtracted from the amount ingested. Nowadays, methodologies have been developed for measuring the bioavailability of different trace elements incorporating the use of isotopes. The isotopic techniques are very accurate and highly specific. This paper summarizes the various methodologies available with special emphasis on nuclear methods. (author)

  19. Using deuterated PAH amendments to validate chemical extraction methods to predict PAH bioavailability in soils

    International Nuclear Information System (INIS)

    Gomez-Eyles, Jose L.; Collins, Chris D.; Hodson, Mark E.

    2011-01-01

    Validating chemical methods to predict bioavailable fractions of polycyclic aromatic hydrocarbons (PAHs) by comparison with accumulation bioassays is problematic. Concentrations accumulated in soil organisms not only depend on the bioavailable fraction but also on contaminant properties. A historically contaminated soil was freshly spiked with deuterated PAHs (dPAHs). dPAHs have a similar fate to their respective undeuterated analogues, so chemical methods that give good indications of bioavailability should extract the fresh more readily available dPAHs and historic more recalcitrant PAHs in similar proportions to those in which they are accumulated in the tissues of test organisms. Cyclodextrin and butanol extractions predicted the bioavailable fraction for earthworms (Eisenia fetida) and plants (Lolium multiflorum) better than the exhaustive extraction. The PAHs accumulated by earthworms had a larger dPAH:PAH ratio than that predicted by chemical methods. The isotope ratio method described here provides an effective way of evaluating other chemical methods to predict bioavailability. - Research highlights: → Isotope ratios can be used to evaluate chemical methods to predict bioavailability. → Chemical methods predicted bioavailability better than exhaustive extractions. → Bioavailability to earthworms was still far from that predicted by chemical methods. - A novel method using isotope ratios to assess the ability of chemical methods to predict PAH bioavailability to soil biota.

  20. Using deuterated PAH amendments to validate chemical extraction methods to predict PAH bioavailability in soils

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Eyles, Jose L., E-mail: j.l.gomezeyles@reading.ac.uk [University of Reading, School of Human and Environmental Sciences, Soil Research Centre, Reading, RG6 6DW Berkshire (United Kingdom); Collins, Chris D.; Hodson, Mark E. [University of Reading, School of Human and Environmental Sciences, Soil Research Centre, Reading, RG6 6DW Berkshire (United Kingdom)

    2011-04-15

    Validating chemical methods to predict bioavailable fractions of polycyclic aromatic hydrocarbons (PAHs) by comparison with accumulation bioassays is problematic. Concentrations accumulated in soil organisms not only depend on the bioavailable fraction but also on contaminant properties. A historically contaminated soil was freshly spiked with deuterated PAHs (dPAHs). dPAHs have a similar fate to their respective undeuterated analogues, so chemical methods that give good indications of bioavailability should extract the fresh more readily available dPAHs and historic more recalcitrant PAHs in similar proportions to those in which they are accumulated in the tissues of test organisms. Cyclodextrin and butanol extractions predicted the bioavailable fraction for earthworms (Eisenia fetida) and plants (Lolium multiflorum) better than the exhaustive extraction. The PAHs accumulated by earthworms had a larger dPAH:PAH ratio than that predicted by chemical methods. The isotope ratio method described here provides an effective way of evaluating other chemical methods to predict bioavailability. - Research highlights: > Isotope ratios can be used to evaluate chemical methods to predict bioavailability. > Chemical methods predicted bioavailability better than exhaustive extractions. > Bioavailability to earthworms was still far from that predicted by chemical methods. - A novel method using isotope ratios to assess the ability of chemical methods to predict PAH bioavailability to soil biota.

  1. Genome Sequences of Two Copper-Resistant Escherichia coli Strains Isolated from Copper-Fed Pigs

    DEFF Research Database (Denmark)

    Lüthje, Freja L.; Hasman, Henrik; Aarestrup, Frank Møller

    2014-01-01

    The draft genome sequences of two copper-resistant Escherichia coli strains were determined. These had been isolated from copper-fed pigs and contained additional putative operons conferring copper and other metal and metalloid resistances.......The draft genome sequences of two copper-resistant Escherichia coli strains were determined. These had been isolated from copper-fed pigs and contained additional putative operons conferring copper and other metal and metalloid resistances....

  2. Copper toxicity and organic matter: Resiliency of watersheds in the Duluth Complex, Minnesota, USA

    Science.gov (United States)

    Piatak, Nadine; Seal, Robert; Jones, Perry M.; Woodruff, Laurel G.

    2015-01-01

    We estimated copper (Cu) toxicity in surface water with high dissolved organic matter (DOM) for unmined mineralized watersheds of the Duluth Complex using the Biotic Ligand Model (BLM), which evaluates the effect of DOM, cation competition for biologic binding sites, and metal speciation. A sediment-based BLM was used to estimate stream-sediment toxicity; this approach factors in the cumulative effects of multiple metals, incorporation of metals into less bioavailable sulfides, and complexation of metals with organic carbon. For surface water, the formation of Cu-DOM complexes significantly reduces the amount of Cu available to aquatic organisms. The protective effects of cations, such as calcium (Ca) and magnesium (Mg), competing with Cu to complex with the biotic ligand is likely not as important as DOM in water with high DOM and low hardness. Standard hardness-based water quality criteria (WQC) are probably inadequate for describing Cu toxicity in such waters and a BLM approach may yield more accurate results. Nevertheless, assumptions about relative proportions of humic acid (HA) and fulvic acid (FA) in DOM significantly influence BLM results; the higher the HA fraction, the higher calculated resiliency of the water to Cu toxicity. Another important factor is seasonal variation in water chemistry, with greater resiliency to Cu toxicity during low flow compared to high flow.Based on generally low total organic carbon and sulfur content, and equivalent metal ratios from total and weak partial extractions, much of the total metal concentration in clastic streambedsediments may be in bioavailable forms, sorbed on clays or hydroxide phases. However, organicrich fine-grained sediment in the numerous wetlands may sequester significant amount of metals, limiting their bioavailability. A high proportion of organic matter in waters and some sediments will play a key role in the resiliency of these watersheds to potential additional metal loads associated with future

  3. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    NARCIS (Netherlands)

    Berg, van den G.J.; de Goeij, J.J.M.; Bock, I.; Gijbels, M.J.J.; Brouwer, A.; Lei, K.Y.; Hendriks, H.F.J.

    1991-01-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (<1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver,

  4. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    NARCIS (Netherlands)

    Berg, G.J. van den; Goeij, J.J.M. de; Bock, I.; Gijbels, M.J.J.; Brouwer, A.; Lei, K.Y.; Hendruiks, H.F.J.

    1991-01-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (< 1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver,

  5. Effects of copper on early developmental stages of Lessonia nigrescens Bory (Phaeophyceae)

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, Loretto [Departamento de Ecologia, Center for Advanced Studies in Ecology and Biodiversity, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Post-code 6513677, Alameda 340, Santiago (Chile); Medina, Matias H. [Departamento de Ecologia, Center for Advanced Studies in Ecology and Biodiversity, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Post-code 6513677, Alameda 340, Santiago (Chile); CIIMAR - Centro Interdisciplinar de Investigacao Marinha e Ambiental, Laboratory of Ecotoxicology, Universidade do Porto (Portugal); Andrade, Santiago [Departamento de Ecologia, Center for Advanced Studies in Ecology and Biodiversity, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Post-code 6513677, Alameda 340, Santiago (Chile); Oppliger, Valeria [Departamento de Ecologia, Center for Advanced Studies in Ecology and Biodiversity, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Post-code 6513677, Alameda 340, Santiago (Chile); Correa, Juan A. [Departamento de Ecologia, Center for Advanced Studies in Ecology and Biodiversity, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Post-code 6513677, Alameda 340, Santiago (Chile)]. E-mail: jcorrea@bio.puc.cl

    2007-01-15

    Copper effects on the early developmental gametophytic and sporophytic stages of the kelp Lessonia nigrescens were tested in gradients of increasing concentrations of ASV-labile copper. The results demonstrated a high sensitivity to copper of all life-history stages of the alga, where even the lowest tested concentration affected spore release as well as their subsequent settlement. More significant, concentrations higher than 7.87 {mu}g L{sup -1} totally interrupted the development of the spores after they settle. This effect led to a failure in the formation of male and female gametophytes and, as a consequence, to a complete disruption of the normal life cycle of the kelp. Thus, we suggest that the absence of L. nigrescens from copper-enriched environments results from the high sensitivity of its early life cycle stages, which limits growth and maturation of the gametophytic microscopic phase and, as a consequence, prevents development of the macroscopic sporophytic phase. - Early developmental stages of Lessonia nigrescens are highly sensitive to copper.

  6. Effects of copper on early developmental stages of Lessonia nigrescens Bory (Phaeophyceae)

    International Nuclear Information System (INIS)

    Contreras, Loretto; Medina, Matias H.; Andrade, Santiago; Oppliger, Valeria; Correa, Juan A.

    2007-01-01

    Copper effects on the early developmental gametophytic and sporophytic stages of the kelp Lessonia nigrescens were tested in gradients of increasing concentrations of ASV-labile copper. The results demonstrated a high sensitivity to copper of all life-history stages of the alga, where even the lowest tested concentration affected spore release as well as their subsequent settlement. More significant, concentrations higher than 7.87 μg L -1 totally interrupted the development of the spores after they settle. This effect led to a failure in the formation of male and female gametophytes and, as a consequence, to a complete disruption of the normal life cycle of the kelp. Thus, we suggest that the absence of L. nigrescens from copper-enriched environments results from the high sensitivity of its early life cycle stages, which limits growth and maturation of the gametophytic microscopic phase and, as a consequence, prevents development of the macroscopic sporophytic phase. - Early developmental stages of Lessonia nigrescens are highly sensitive to copper

  7. Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado

    International Nuclear Information System (INIS)

    McCormick, Stephen F.

    2016-01-01

    This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/

  8. Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Stephen F. [Front Range Scientific, Inc., Lake City, CO (United States)

    2016-03-25

    This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/.

  9. Radioisotope application to studies of copper electrolytic refining

    International Nuclear Information System (INIS)

    Shul'ts, U.; Lange, Kh.; Gajdel', B.

    1976-01-01

    Silver and selenium behaviour was studied using sup(110m)Ag and 75 Se radioisotopes in the copper electrolysis process. sup(110m)Ag and 75 Se distribution in the electrorefining products was also studied. It was found that Ag/Se mass ratio affected greatly the silver content in the copper cathode. It was found that the tracer technique made it possible to determine 0,1gSe/tCu and 1gAg/t Cu simultaneously and accurately with small material and time expenses. Using sup(110m)Ag radioisotope, the reduction in electrolyte silver content dependent on time may be determined quickly and accurately

  10. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  11. Nearly 60% Copper Rod & Wire Companies Neutral about Future Copper Price

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>How about the trend of copper price recently? According to the survey result of Shanghai Metals Market, amongst 21 domestic copper rod & wire companies, 57% of the companies are neutral about the future copper price, while 14% and 19% of the companies consider that

  12. Determination of the potential bioavailability of plant microRNAs using a simulated human digestion process.

    Science.gov (United States)

    Philip, Anna; Ferro, Valerie A; Tate, Rothwelle J

    2015-10-01

    The "dietary xenomiR hypothesis" proposes that microRNAs (miRNAs) in foodstuffs survive transit through the mammalian gastrointestinal tract and pass into cells intact to affect gene regulation. However, debate continues as to whether dietary intake poses a feasible route for such exogenous gene regulators. Understanding on miRNA levels during pretreatments of human diet is essential to test their bioavailability during digestion. This study makes the novel first use of an in vitro method to eliminate the inherent complexities and variability of in vivo approaches used to test this hypothesis. Plant miRNA levels in soybean and rice were measured during storage, processing, cooking, and early digestion using real-time PCR. We have demonstrated for the first time that storage, processing, and cooking does not abolish the plant miRNAs present in the foodstuffs. In addition, utilizing a simulated human digestion system revealed significant plant miRNA bioavailability after early stage digestion for 75 min. Attenuation of plant messenger RNA and synthetic miRNA was observed under these conditions. Even after an extensive pretreatment, plant-derived miRNA, delivered by typical dietary ingestion, has a robustness that could make them bioavailable for uptake during early digestion. The potential benefit of these regulatory molecules in pharma nutrition could be explored further. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Bioavailability of contaminants estimated from uptake rates into soil invertebrates

    International Nuclear Information System (INIS)

    Straalen, N.M. van; Donker, M.H.; Vijver, M.G.; Gestel, C.A.M. van

    2005-01-01

    It is often argued that the concentration of a pollutant inside an organism is a good indicator of its bioavailability, however, we show that the rate of uptake, not the concentration itself, is the superior predictor. In a study on zinc accumulation and toxicity to isopods (Porcellio scaber) the dietary EC 50 for the effect on body growth was rather constant and reproducible, while the internal EC 50 varied depending on the accumulation history of the animals. From the data a critical value for zinc accumulation in P. scaber was estimated as 53 μg/g/wk. We review toxicokinetic models applicable to time-series measurements of concentrations in invertebrates. The initial slope of the uptake curve is proposed as an indicator of bioavailability. To apply the dynamic concept of bioavailability in risk assessment, a set of representative organisms should be chosen and standardized protocols developed for exposure assays by which suspect soils can be evaluated. - Sublethal toxicity of zinc to isopods suggests that bioavailability of soil contaminants is best measured by uptake rates, not by body burdens

  14. EFFECT OF SOIL PROPERTIES ON LEAD BIOAVAILABILITY AND TOXCITY TO EARTHWORMS

    Science.gov (United States)

    Soil properties are important factors modifying metal bioavailability to ecological receptors. Twenty-one soils with a wide range of soil properties were amended with a single concentration of Pb (2000 mg/kg) to determine the effects of soil properties on Pb bioavailability and ...

  15. Red wine is a poor source of bioavailable flavonols in men

    NARCIS (Netherlands)

    De Vries, Jeanne H M; Hollman, Peter C H; Van Amersfoort, Ingrid; Olthof, Margreet R.; Katan, Martijn B.

    2001-01-01

    Red wine is a source of polyphenolic antioxidants, of which flavonols such as quercetin are representatives. Red wine might therefore prevent LDL oxidation and atherosclerosis. However, data on the bioavailability of flavonols from wine are lacking. Therefore, we compared the bioavailability of

  16. Bioavailability of cadmium, copper, mercury, lead, and zinc in subtropical coastal lagoons from the southeast Gulf of California using mangrove oysters (Crassostrea corteziensis and Crassostrea palmula).

    Science.gov (United States)

    Páez-Osuna, Federico; Osuna-Martínez, Carmen C

    2015-02-01

    Cadmium (Cd), copper (Cu), mercury (Hg), lead (Pb), and zinc (Zn) were assessed in the edible tissues of Crassrotrea corteziensis oysters collected during the rainy and dry seasons in 27 sites from 8 coastal lagoons of the southeast Gulf of California. In addition, C. palmula oysters were sampled at 9 sites from the same mangrove roots where C. corteziensis oysters were collected. Metal analyses were performed by flame atomic absorption spectrophotometry (Cd, Cu, and Zn), graphite furnace (Pb), and cold vapor detection (Hg). The obtained mean levels were (µg g(-1) dry weight) as follows: Cd 6.05 ± 2.77, Cu 60.0 ± 33.4, Hg 0.38 ± 0.17, Pb 1.11 ± 0.63, and Zn 777 ± 528 µg g(-1). For all metals except Hg, the concentrations were greater during dry season than during rainy seasons. The high levels, particularly that for Cd, were related to upwelling along the eastern Gulf of California. High Hg levels in the rainy season were associated with the transport of materials from the watershed to the lagoon. Shrimp farming, agriculture, and other sources were considered as potential sources to explain the differences in metal bioavailability in the 8 lagoons. The mean concentrations of Cd (Santa María-La Reforma lagoon), Cu [San Ignacio-Navachiste-El Macapule (SINM), Urías (URI), and Altata-Ensenada del Pabellón lagoons], and zinc (Zn) (URI, Santa María-Ohuira-Topolobampo, El Colorado, and SINM lagoons) during the dry season were greater than the maximum permissible limits. C. palmula collected in 8 sites where they were present simultaneously with C. corteziensis had consistently greater metal levels than C. corteziensis, but correlation analyses showed a high and significant (P < 0.05) correlation between metal concentrations in both species. The correlation equations obtained are useful where the same species is not distributed and is necessary to compare results from distinct regions.

  17. PAH effects on meio- and microbial benthic communities strongly depend on bioavailability.

    Science.gov (United States)

    Lindgren, J Fredrik; Hassellöv, Ida-Maja; Dahllöf, Ingela

    2014-01-01

    The effects of anthropogenic pollutants in dissimilar habitats can vary depending on differences in bioavailability. The factors determining bioavailability are not yet fully understood. This study was performed to evaluate whether analysis of total PAH concentrations in sediments is a satisfactory measurement to indicate environmental effects or if bioavailability is needed to be taken into account. We have here performed a 60-day experiment, where nominal PAH concentrations of 1,300 μg/kg sediment were added to three different marine sediments. Meiofaunal and microbial communities were analyzed for alterations in community response at 30 and 60 days. Results showed that bioavailability of PAHs varied between the three different sediments. Nonetheless, the petroleum addition gave rise to significant negative effects on all three sediments at both time points. The two direct measurements of toxicity on the microbial community, potential nitrification and denitrification, displayed a lower effect of the PAH addition in the muddy sediment at both time points, compared to the other two sediment types. No effects were seen in the analysis of meiofaunal community structure. Measurements of PAH bioavailability in the three sediment types concurred with the results from the microbial community, revealing a lower bioavailability in the muddy sediment compared to the other two sediment types, 34% compared to sandy and 18% compared to organic at day 0. At day 60 it was 61% lower compared to sandy and 20% lower compared to organic. The negative effects of the PAH addition on the microbial nitrogen cycle were in six out of eight cases best correlated to the amount of alkylated bioavailable PAH in the sediments, and thus microbial nitrogen cycle is a possible good indicator for assessing PAH-induced stress. The results presented here have implications for risk analysis studies of petroleum-contaminated marine sediments; consequently, sediment characteristics and its effects on

  18. The effects of copper oxy chloride waste contamination on selected soil biochemical properties at disposal site

    International Nuclear Information System (INIS)

    Masaka, J.; Muunganirwa, M.

    2007-01-01

    A study was carried out at a sanitary waste disposal site for Kutsaga Tobacco Research Station, Zimbabwe, which uses large amounts of copper oxy chloride for sterilization of recycled float trays in flooded bench tobacco seedling production systems. Soil samples randomly collected from six stream bank zones (bands up the valley slope) varying in their distance ranges from the centre of both the wastewater-free and wastewater-affected paths [0-5 m (B1); 6-10 m (B2); 11-15 m (B3); 16-20 m (B4); 21-25 m (B5) and 26-30 m (B6)] in two sample depths (0-15; 15-30 cm) were analysed for metal copper, organic matter contents, and soil pH and subjected to agarized incubation for microbial counts. Results suggest that the repeated disposals of copper oxy chloride waste from tobacco float tray sanitation sinks into a creek amplify metal copper loads in the soil by 500 fold. The greatest concentrations of copper in both the topsoil and upper subsoil were recorded in the B3, B4 and B5 stream bank zones of the wastewater path. The concentration of copper was significantly lower in the middle of the waste-affected creek than that in the stream bank zones. This trend in the copper concentration coincided with the lowest acidity of the soil. Overloading the soil with copper, surprisingly, enhances the content of soil organic matter. The repeated release of copper oxy chloride waste into a stream causes an accelerated build-up of metal copper and soil acidity in the stream bank on-site while contamination is translocated to either underground water reserve or surface stream water flow in the middle of the wastewater path

  19. Immunotoxicity of copper nanoparticle and copper sulfate in a common Indian earthworm.

    Science.gov (United States)

    Gautam, Arunodaya; Ray, Abhishek; Mukherjee, Soumalya; Das, Santanu; Pal, Kunal; Das, Subhadeep; Karmakar, Parimal; Ray, Mitali; Ray, Sajal

    2018-02-01

    Copper oxide nanoparticles and copper sulfate are established contaminants of water and soil. Metaphire posthuma is a common variety of earthworm distributed in moist soil of Indian subcontinent. Comparative toxicity of copper nanoparticles and copper sulfate were investigated with reference to selected immune associated parameters of earthworm. Total count, phagocytic response, generation of cytotoxic molecules (superoxide anion, nitric oxide), activities of enzymes like phenoloxidase, superoxide dismutase, catalase, acid phosphatase, alkaline phosphatase and total protein of coelomocytes were estimated under the exposures of 100, 500, 1000mg of copper oxide nanoparticles and copper sulfate per kg of soil for 7 and 14 d. A significant decrease in the total coelomocyte count were recorded with maximum depletion as 15.45 ± 2.2 and 12.5 ± 2 × 10 4 cells/ml under the treatment of 1000mg/kg of copper nanoparticles and copper sulfate for 14 d respectively. A significant decrease in generation of nitric oxide and activity of phenoloxidase were recorded upon exposure of both toxins for 7 and 14 d indicating possible decline in cytotoxic status of the organism. A maximum inhibition of superoxide dismutase activity was recorded as 0.083 ± 0.0039 and 0.055 ± 0.0057 unit/mg protein/minute against 1000mg/kg of copper nanoparticles and copper sulfate treatment for 14 d respectively. Activities of catalase and alkaline phosphatase were inhibited by all experimental concentrations of both toxins in the coelomocytes of earthworm. These toxins were recorded to be modifiers of the major immune associated parameters of M. posthuma. Unrestricted contamination of soil by sulfate and oxide nanoparticles of copper may lead to an undesirable shift in the innate immunological status of earthworm leading to a condition of immune compromisation and shrinkage in population density of this species in its natural habitat. This article is the first time report of immunological toxicity of

  20. Biliary copper excretion by hepatocyte lysosomes in the rat. Major excretory pathway in experimental copper overload

    International Nuclear Information System (INIS)

    Gross, J.B. Jr.; Myers, B.M.; Kost, L.J.; Kuntz, S.M.; LaRusso, N.F.

    1989-01-01

    We investigated the hypothesis that lysosomes are the main source of biliary copper in conditions of hepatic copper overload. We used a rat model of oral copper loading and studied the relationship between the biliary output of copper and lysosomal hydrolases. Male Sprague-Dawley rats were given tap water with or without 0.125% copper acetate for up to 36 wk. Copper loading produced a 23-fold increase in the hepatic copper concentration and a 30-65% increase in hepatic lysosomal enzyme activity. Acid phosphatase histochemistry showed that copper-loaded livers contained an increased number of hepatocyte lysosomes; increased copper concentration of these organelles was confirmed directly by both x ray microanalysis and tissue fractionation. The copper-loaded rats showed a 16-fold increase in biliary copper output and a 50-300% increase in biliary lysosomal enzyme output. In the basal state, excretory profiles over time were similar for biliary outputs of lysosomal enzymes and copper in the copper-loaded animals but not in controls. After pharmacologic stimulation of lysosomal exocytosis, biliary outputs of copper and lysosomal hydrolases in the copper-loaded animals remained coupled: injection of colchicine or vinblastine produced an acute rise in the biliary output of both lysosomal enzymes and copper to 150-250% of baseline rates. After these same drugs, control animals showed only the expected increase in lysosomal enzyme output without a corresponding increase in copper output. We conclude that the hepatocyte responds to an increased copper load by sequestering excess copper in an increased number of lysosomes that then empty their contents directly into bile. The results provide direct evidence that exocytosis of lysosomal contents into biliary canaliculi is the major mechanism for biliary copper excretion in hepatic copper overload

  1. Effect of particle size on solubility, dissolution rate, and oral bioavailability: evaluation using coenzyme Q10 as naked nanocrystals

    Directory of Open Access Journals (Sweden)

    Sun J

    2012-11-01

    Full Text Available Jiao Sun,1 Fan Wang,1,2 Yue Sui,1 Zhennan She,1 Wenjun Zhai,1 Chunling Wang,1 Yihui Deng11College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China; 2Beijing Zhijianjinrui Applied Pharmaceutical Science Inc, Beijing, ChinaAbstract: In this paper work, four naked nanocrystals (size range 80–700 nm were prepared without any surfactant or polymer using the solvent/nonsolvent method. The effects of particle size on their solubility, dissolution, and oral bioavailability were investigated. Solubility and dissolution testing were performed in three types of dissolution medium, and the studies demonstrated that the equilibrium solubilities of coenzyme Q10 nanocrystals and bulk drugs were not affected by the dissolution media but the kinetic solubilities were. Kinetic solubility curves and changes in particle size distribution were determined and well explained by the proposed solubilization model for the nanocrystals and bulk drugs. The particle size effect on dissolution was clearly influenced by the diffusion coefficients of the various dissolution media, and the dissolution velocity of coenzyme Q10 increased as particle size decreased. The bioavailability of coenzyme Q10 after oral administration in beagle dogs was improved by reducing the particle size. For 700 nm nanocrystals, the AUC0–48 was 4.4-fold greater than that for the coarse suspensions, but a further decrease in particle size from 700 nm to 120 nm did not contribute to improvement in bioavailability until the particle size was reduced to 80 nm, when bioavailability was increased by 7.3-fold.Keywords: particle size, solubility, dissolution, nanocrystal, bioavailability, coenzyme Q10

  2. Copper and selenium supplementation in the diet of Brangus steers on the nutritional characteristics of meat

    Directory of Open Access Journals (Sweden)

    Arlindo Saran Netto

    2013-01-01

    Full Text Available Twenty-eight Brangus cattle were used to determine the effect of copper and selenium supplementation on the carcass characteristics, fatty acid composition of the longissimus dorsi muscle and on the copper and selenium concentrations in the liver. The treatments were: no supplementation of copper or selenium; 2 mg Se/kg DM as sodium selenite; 40 mg Cu/kg DM as copper sulfate; and 2 mg Se/kg DM as sodium selenite and 40 mg Cu/kg DM as copper sulfate. The fat thickness, rib eye area and fatty acid composition of the longissimus dorsi muscle were not affected by treatments. There was no effect on carcass yield and cooling loss with the supplementation of copper, selenium or selenium × copper in the levels studied. For the ether extract concentration in the longissimus dorsi muscle, no differences were found according to the treatments with selenium, copper or selenium × copper. The treatments with selenium and selenium × copper showed higher selenium concentrations in the liver than the control and copper treatments. For the copper concentration in the liver, the copper and selenium × copper treatments showed higher values than the control and selenium treatments. Despite the little effect on the meat composition, the results of this experiment demonstrate no interaction between selenium and copper in the levels studied.

  3. Pollutants bioavailability and toxicological risk from microplastics to marine mussels

    International Nuclear Information System (INIS)

    Avio, Carlo Giacomo; Gorbi, Stefania; Milan, Massimo; Benedetti, Maura; Fattorini, Daniele; D'Errico, Giuseppe; Pauletto, Marianna; Bargelloni, Luca; Regoli, Francesco

    2015-01-01

    Microplastics represent a growing environmental concern for the oceans due to their potential of adsorbing chemical pollutants, thus representing a still unexplored source of exposure for aquatic organisms. In this study polyethylene (PE) and polystyrene (PS) microplastics were shown to adsorb pyrene with a time and dose-dependent relationship. Results also indicated a marked capability of contaminated microplastics to transfer this model PAH to exposed mussels Mytilus galloprovincialis; tissue localization of microplastics occurred in haemolymph, gills and especially digestive tissues where a marked accumulation of pyrene was also observed. Cellular effects included alterations of immunological responses, lysosomal compartment, peroxisomal proliferation, antioxidant system, neurotoxic effects, onset of genotoxicity; changes in gene expression profile was also demonstrated through a new DNA microarray platform. The study provided the evidence that microplastics adsorb PAHs, emphasizing an elevated bioavailability of these chemicals after the ingestion, and the toxicological implications due to responsiveness of several molecular and cellular pathways to microplastics. - Highlights: • Polyethylene and polystyrene microplastics efficiently adsorbed pyrene. • Pyrene adsorbed on microplastics was readily bioavailable for mussels. • Microplastics affected several molecular and cellular pathways. • Potential toxicological risk can arise from virgin and contaminated microplastics. - Pyrene adsorbed on microplastics is accumulated in tissues of marine mussels. Transcriptional and cellular responses highlight the potential risk of virgin and contaminated polymers

  4. Bioavailability of cyanide and metal-cyanide mixtures to aquatic life.

    Science.gov (United States)

    Redman, Aaron; Santore, Robert

    2012-08-01

    Cyanide can be toxic to aquatic organisms, and the U.S. Environmental Protection Agency has developed ambient water-quality criteria to protect aquatic life. Recent work suggests that considering free, rather than total, cyanide provides a more accurate measure of the biological effects of cyanides and provides a basis for water-quality criteria. Aquatic organisms are sensitive to free cyanide, although certain metals can form stable complexes and reduce the amount of free cyanide. As a result, total cyanide is less toxic when complexing metals are present. Cyanide is often present in complex effluents, which requires understanding how other components within these complex effluents can affect cyanide speciation and bioavailability. The authors have developed a model to predict the aqueous speciation of cyanide and have shown that this model can predict the toxicity of metal-cyanide complexes in terms of free cyanide in solutions with varying water chemistry. Toxicity endpoints based on total cyanide ranged over several orders of magnitude for various metal-cyanide mixtures. However, predicted free cyanide concentrations among these same tests described the observed toxicity data to within a factor of 2. Aquatic toxicity can be well-described using free cyanide, and under certain conditions the toxicity was jointly described by free cyanide and elevated levels of bioavailable metals. Copyright © 2012 SETAC.

  5. Underwater explosive compaction-sintering of tungsten-copper coating on a copper surface

    Science.gov (United States)

    Chen, Xiang; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Chen, Saiwei

    2018-01-01

    This study investigated underwater explosive compaction-sintering for coating a high-density tungsten-copper composite on a copper surface. First, 50% W-50% Cu tungsten-copper composite powder was prepared by mechanical alloying. The composite powder was pre-compacted and sintered by hydrogen. Underwater explosive compaction was carried out. Finally, a high-density tungsten-copper coating was obtained by diffusion sintering of the specimen after explosive compaction. A simulation of the underwater explosive compaction process showed that the peak value of the pressure in the coating was between 3.0 and 4.8 GPa. The hardness values of the tungsten-copper layer and the copper substrate were in the range of 87-133 and 49 HV, respectively. The bonding strength between the coating and the substrate was approximately 100-105 MPa.

  6. Bioavailability of sediment-bound contaminants to marine organisms

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B. [Battelle/Marine Sciences Lab., Sequim, WA (United States)]|[Colby Coll., Waterville, ME (United States); Neff, J. [Battelle/Marine Sciences Lab., Sequim, WA (United States)]|[Battelle Ocean Sciences, Duxbury, MA (United States)

    1993-09-01

    The bioavailability of sediment-bound contaminants to marine organisms indicates that there exists a potential for transfer of these contaminants through marine food webs to commercial fisheries products consumed by humans. However, there has been relatively little effort to combine and synthesize data on chemical/biological interactions between benthic animals and seagrasses and the sediments in which they reside on the one hand, and on the chemistry of bioaccumulation on the other. This report provides a conceptual basis for an approach to bioavailability and biomagnification of sediment-bound contaminants that reviews biological and chemical approaches.

  7. Effect of coastal eutrophication on heavy metal bioaccumulation and oral bioavailability in the razor clam, Sinonovacula constricta

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Tengxiu [College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000 (China); Li, Shunxing, E-mail: lishunxing@mnnu.edu.cn [College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000 (China); Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology (China); Chen, Lihui [College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000 (China); Zheng, Fengying; Huang, Xu-Guang [College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000 (China); Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology (China)

    2014-10-15

    Graphical abstract: - Highlights: • Razor clams are often exposed to coastal eutrophication. • The bioaccumulation of Fe, Ni, V, and As was promoted by eutrophication. • Bionic gastrointestinal tract was used for metal oral bioavailability assessment. • Eutrophication decreased oral bioavailability of Fe and Pb but enhanced for V. • The daily maximum allowable intakes are controlled by eutrophication levels. - Abstract: As traditional seafoods, the razor clams are widely distributed from tropical to temperate areas. Coastal razor clams are often exposed to eutrophication. Heavy metal contamination is critical for seafood safety. However, how eutrophication affects bioaccumulation and oral bioavailability of heavy metals in the razor clams is unknown. After a four-month field experimental cultivation, heavy metals (Fe, Cu, Ni, V, As, and Pb) could be bioaccumulated by the razor clams (Sinonovacula constricta) through exposure to metals present in water and sediments or in the food chain, and then transferred to human via consumption of razor clams. Bionic gastrointestinal digestion and monolayer liposome extraction are used for metal oral bioavailability (OBA) assessment. The influence of eutrophication on OBA is decreased for Fe and Pb and increased for V. A significant positive linear correlation was observed between the bioaccumulation factors of Fe, Ni, V, and As in razor clams and the coastal eutrophication. These results may be due to the effect of eutrophication on metal species transformation in coastal seawater and subcellular distribution in razor clams. The maximum allowable daily intakes of razor clams are controlled by eutrophication status and the concentration of affinity-liposome As in razor clams.

  8. Effect of coastal eutrophication on heavy metal bioaccumulation and oral bioavailability in the razor clam, Sinonovacula constricta

    International Nuclear Information System (INIS)

    Tu, Tengxiu; Li, Shunxing; Chen, Lihui; Zheng, Fengying; Huang, Xu-Guang

    2014-01-01

    Graphical abstract: - Highlights: • Razor clams are often exposed to coastal eutrophication. • The bioaccumulation of Fe, Ni, V, and As was promoted by eutrophication. • Bionic gastrointestinal tract was used for metal oral bioavailability assessment. • Eutrophication decreased oral bioavailability of Fe and Pb but enhanced for V. • The daily maximum allowable intakes are controlled by eutrophication levels. - Abstract: As traditional seafoods, the razor clams are widely distributed from tropical to temperate areas. Coastal razor clams are often exposed to eutrophication. Heavy metal contamination is critical for seafood safety. However, how eutrophication affects bioaccumulation and oral bioavailability of heavy metals in the razor clams is unknown. After a four-month field experimental cultivation, heavy metals (Fe, Cu, Ni, V, As, and Pb) could be bioaccumulated by the razor clams (Sinonovacula constricta) through exposure to metals present in water and sediments or in the food chain, and then transferred to human via consumption of razor clams. Bionic gastrointestinal digestion and monolayer liposome extraction are used for metal oral bioavailability (OBA) assessment. The influence of eutrophication on OBA is decreased for Fe and Pb and increased for V. A significant positive linear correlation was observed between the bioaccumulation factors of Fe, Ni, V, and As in razor clams and the coastal eutrophication. These results may be due to the effect of eutrophication on metal species transformation in coastal seawater and subcellular distribution in razor clams. The maximum allowable daily intakes of razor clams are controlled by eutrophication status and the concentration of affinity-liposome As in razor clams

  9. Feasibility assessment of copper-base waste package container materials in a tuff repository

    International Nuclear Information System (INIS)

    Acton, C.F.; McCright, R.D.

    1986-01-01

    This report discussed progress made during the second year of a two-year study on the feasibility of using copper or a copper-base alloy as a container material for a waste package in a potential repository in tuff rock at the Yucca Mountain site in Nevada. Corrosion testing in potentially corrosive irradiated environments received emphasis during the feasibility study. Results of experiments to evaluate the effect of a radiation field on the uniform corrosion rate of the copper-base materials in repository-relevant aqueous environments are given as well as results of an electrochemical study of the copper-base materials in normal and concentrated J-13 water. Results of tests on the irradiation of J-13 water and on the subsequent formation of hydrogen peroxide are given. A theoretical study was initiated to predict the long-term corrosion behavior of copper in the repository. Tests were conducted to determine whether copper would adversely affect release rates of radionuclides to the environment because of degradation of the Zircaloy cladding. A manufacturing survey to determine the feasibility of producing copper containers utilizing existing equipment and processes was completed. The cost and availability of copper was also evaluated and predicted to the year 2000. Results of this feasibility assessment are summarized

  10. Microstructure and Service Properties of Copper Alloys

    Directory of Open Access Journals (Sweden)

    Polok-Rubiniec M.

    2016-09-01

    Full Text Available This elaboration shows the effect of combined heat treatment and cold working on the structure and utility properties of alloyed copper. As the test material, alloyed copper CuTi4 was employed. The samples were subjected to treatment according to the following schema: 1st variant – supersaturation and ageing, 2nd variant – supersaturation, cold rolling and ageing. The paper presents the results of microstructure, hardness, and abrasion resistance. The analysis of the wipe profile geometry was realized using a Zeiss LSM 5 Exciter confocal microscope. Cold working of the supersaturated solid solution affects significantly its hardness but the cold plastic deformation causes deterioration of the wear resistance of the finally aged CuTi4 alloy.

  11. Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin.

    Science.gov (United States)

    Mohanty, Chandana; Das, Manasi; Sahoo, Sanjeeb K

    2012-11-01

    Curcumin is a safe, affordable and natural bioactive molecule of turmeric (Curcuma longa). It has gained considerable attention in recent years for its multiple pharmacological activities. However, its optimum pharmaceutical potential has been limited by its lack of aqueous solubility and poor bioavailability. To mitigate the above limitations, recently various nanostructured water-soluble delivery systems were developed to increase the solubility and bioavailability of curcumin. Major reasons contributing to the low bioavailability of curcumin appear to be owing to its poor solubility, low absorption, rapid metabolism and rapid systemic elimination. The present review summarizes the strategies using curcumin in various nanocarrier delivery systems to overcome poor solubility and inconsistent bioavailability of curcumin and describes the current status and challenges for the future. The development of various drug delivery systems to deliver curcumin will certainly provide a step up towards augmenting the therapeutic activity of curcumin thereby increasing the solubility and bioavailability of curcumin. However, the future of such delivery technology will be highly dependent on the development of safe, non-toxic and non-immunogenic nanocarriers.

  12. The European programme boris (bioavailability of radionuclides in soils): a global analysis of results

    International Nuclear Information System (INIS)

    Tamponnet, C.; Martin-Garin, A.; Gonzr, M.A.; Parekh, N.; Vallejo, R.; Sauras, T.; Casadesus, J.; Plassard, C.; Staunton, S.; Norden, M.; Avila, R.; Shaw, G.; Wells, C.

    2004-01-01

    The ability to predict the consequences of an accidental release of radioactive nuclides relies mainly on the level of understanding of the mechanisms involved in radioactive nuclides interactions with different components of agricultural and natural ecosystems and their formalization into predictive models. Numerous studies and databases about contaminated agricultural and natural areas have been obtained but their use to enhance our prediction ability has been largely limited by their unresolved variability. Such variability seems to stem from an incomplete knowledge about radioactive nuclide interactions with the soil matrix, soil moisture, biological elements in the soil and additional pollutants, which may be found in such soils. In this project, we investigated mainly the role of the biological elements (plants, mycorrhizas, microbes) in: radioactive nuclide sorption/desorption in soils and radioactive nuclide uptake/release by plants. Because of the importance of the chemical nature of the involved radioactive nuclides, we followed the bioavailability of three radioactive nuclides: caesium, strontium, and technetium. The role of one additional non-radioactive pollutant (copper) has been scrutinised. Role of microorganisms (K d for caesium and strontium in organic soils is much greater in the presence of microorganisms than in their absence), plant physiology (changes in plant physiology affect radionuclide uptake by plants), the presence of mycorrhizal fungi (interferes with the uptake of radionuclides by plants), have been demonstrated. Knowledge acquired from these experiments has been incorporated into two mechanistic models CHEMFAST (a soil Column Heuristic Model of radionuclide Fixation and Solution Transport) and BIORUR specifically modelling radioactive nuclide sorption/desorption from soil matrices and radioactive nuclide uptake by/release from plants. These mechanistic models have been incorporated into an assessment model to enhance its prediction

  13. Modification of soil microbial activity and several hydrolases in a forest soil artificially contaminated with copper

    Science.gov (United States)

    Bellas, Rosa; Leirós, Mā Carmen; Gil-Sotres, Fernando; Trasar-Cepeda, Carmen

    2010-05-01

    Soils have long been exposed to the adverse effects of human activities, which negatively affect soil biological activity. As a result of their functions and ubiquitous presence microorganisms can serve as environmental indicators of soil pollution. Some features of soil microorganisms, such as the microbial biomass size, respiration rate, and enzyme activity are often used as bioindicators of the ecotoxicity of heavy metals. Although copper is essential for microorganisms, excessive concentrations have a negative influence on processes mediated by microorganisms. In this study we measured the response of some microbial indicators to Cu pollution in a forest soil, with the aim of evaluating their potential for predicting Cu contamination. Samples of an Ah horizon from a forest soil under oakwood vegetation (Quercus robur L.) were contaminated in the laboratory with copper added at different doses (0, 120, 360, 1080 and 3240 mg kg-1) as CuCl2×2H2O. The soil samples were kept for 7 days at 25 °C and at a moisture content corresponding to the water holding capacity, and thereafter were analysed for carbon and nitrogen mineralization capacity, microbial biomass C, seed germination and root elongation tests, and for urease, phosphomonoesterase, catalase and ß-glucosidase activities. In addition, carbon mineralization kinetics were studied, by plotting the log of residual C against incubation time, and the metabolic coefficient, qCO2, was estimated. Both organic carbon and nitrogen mineralization were lower in polluted samples, with the greatest decrease observed in the sample contaminated with 1080 mg kg-1. In all samples carbon mineralization followed first order kinetics; the C mineralization constant was lower in contaminated than in uncontaminated samples and, in general, decreased with increasing doses of copper. Moreover, it appears that copper contamination not only reduced the N mineralization capacity, but also modified the N mineralization process, since in

  14. Sulfidation treatment of copper-containing plating sludge towards copper resource recovery.

    Science.gov (United States)

    Kuchar, D; Fukuta, T; Onyango, M S; Matsuda, H

    2006-11-02

    The present study is concerned with the sulfidation treatment of copper-containing plating sludge towards copper resource recovery by flotation of copper sulfide from treated sludge. The sulfidation treatment was carried out by contacting simulated or real copper plating sludge with Na(2)S solution for a period of 5 min to 24 h. The initial molar ratio of S(2-) to Cu(2+) (S(2-) to Me(2+) in the case of real sludge) was adjusted to 1.00, 1.25 or 1.50, while the solid to liquid ratio was set at 1:50. As a result, it was found that copper compounds were converted to various copper sulfides within the first 5 min. In the case of simulated copper sludge, CuS was identified as the main sulfidation product at the molar ratio of S(2-) to Cu(2+) of 1.00, while Cu(7)S(4) (Roxbyite) was mainly found at the molar ratios of S(2-) to Cu(2+) of 1.50 and 1.25. Based on the measurements of oxidation-reduction potential, the formation of either CuS or Cu(7)S(4) at different S(2-) to Cu(2+) molar ratios was attributed to the changes in the oxidation-reduction potential. By contrast, in the case of sulfidation treatment of real copper sludge, CuS was predominantly formed, irrespective of S(2-) to Me(2+) molar ratio.

  15. The Bioavailability of Soluble Cigarette Smoke Extract Is Reduced through Interactions with Cells and Affects the Cellular Response to CSE Exposure.

    Science.gov (United States)

    Bourgeois, Jeffrey S; Jacob, Jeeva; Garewal, Aram; Ndahayo, Renata; Paxson, Julia

    2016-01-01

    Cellular exposure to cigarette smoke leads to an array of complex responses including apoptosis, cellular senescence, telomere dysfunction, cellular aging, and neoplastic transformation. To study the cellular response to cigarette smoke, a common in vitro model exposes cultured cells to a nominal concentration (i.e. initial concentration) of soluble cigarette smoke extract (CSE). However, we report that use of the nominal concentration of CSE as the only measure of cellular exposure is inadequate. Instead, we demonstrate that cellular response to CSE exposure is dependent not only on the nominal concentration of CSE, but also on specific experimental variables, including the total cell number, and the volume of CSE solution used. As found in other similar xenobiotic assays, our work suggests that the effective dose of CSE is more accurately related to the amount of bioavailable chemicals per cell. In particular, interactions of CSE components both with cells and other physical factors limit CSE bioavailability, as demonstrated by a quantifiably reduced cellular response to CSE that is first modified by such interactions. This has broad implications for the nature of cellular response to CSE exposure, and for the design of in vitro assays using CSE.

  16. Incorporation of metal bioavailability into regulatory frameworks-metal exposure in water and sediment

    Energy Technology Data Exchange (ETDEWEB)

    Ahlf, Wolfgang [Inst. of Environmental Tech. and Energy Economics, TUHH, Hamburg (Germany); Drost, Wiebke [Umweltpruefung Chemikalien IV, Umweltbundesamt, Dessau (Germany); Heise, Susanne [Dept. of Life Sciences, HAW, Hamburg (Germany)

    2009-10-15

    Background, aim, and scope The cause for this position paper is the impression that risk assessors consider primarily the concentration of free metal ions dissolved in solution controlling metal bioavailability in aquatic systems. Aiming at a more realistic risk assessment of metals, bioavailability has to be discussed under the scope of main uptake routes of metals to organisms. Materials and methods On the basis of a review on the literature relating to bioavailability approaches, this work discusses the incorporation of metal bioavailability into the risk assessment of metals in the context of metal exposure. Results The biotic ligand model (BLM) and the concept of sulfide bound metals described by the ratio of simultaneously extracted metals and acid volatile sulfide concept (AVS) have been developed to consider the bioavailability of metals. Both approaches assume that the free ion concentration is the most relevant exposure pathway. However, apart from geochemical conditions, which control free metal concentration, bioavailability is additionally a result of contaminant/particle interaction and of organisms' activity. Asking for the relevant exposure pathways for inorganic metals to organisms, the compartments' water and sediment have been evaluated and also the importance of contaminated food. (orig.)

  17. Octacosanol educes physico-chemical attributes, release and bioavailability as modified nanocrystals.

    Science.gov (United States)

    Sen Gupta, Surashree; Ghosh, Mahua

    2017-10-01

    Octacosanol is a lesser known nutraceutical with the potential for treatment of several inflammatory diseases, high cholesterol, Parkinson's symptoms and tumour growth along with the capacity to improve athletic performance. But its lipophilicity and large structure inhibits extended solubility in water resulting in poor absorption and a low bioavailability. In the present work, sodium salt of octacosyl sulfate was synthesized. It displayed improved water solubility. Its nanocrystals, synthesized by means of nanoprecipitation technique, enhanced diffusion velocity, antioxidant capacity, shelf-life, penetrability and bioavailability. Particle size of the nanocrystals ranged between 197 and 220nm. Both modified octacosanol and its nanocrystals displayed maximum lipid peroxidation activities at a concentration 1000ppm, but nanocrystals demonstrated higher prevention. From freeze-thaw cycles it was evident that normal octacosanol crystals were far more prone to temperature variations than the nanocrystals. A pronounced increase in release/diffusion rate and bioavailability was observed for the nanocrystals of the modified octacosanol. In vitro release kinetics, bioavailability and bioequivalence were studied. Relative bioavailability for gastric passage and pancreatic passage of nanocrystals was 2.58 times and 1.81 times that of normal crystals respectively. Furthermore the nanocrystals displayed a superior in vitro release rate, while following a non-Fickian mode. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Influence of feedstock on the copper removal capacity of waste-derived biochars.

    Science.gov (United States)

    Arán, Diego; Antelo, Juan; Fiol, Sarah; Macías, Felipe

    2016-07-01

    Biochar samples were generated by low temperature pyrolysis of different types of waste. The physicochemical characteristics of the different types of biochar affected the copper retention capacity, by determining the main mechanism involved. The capacity of the biochar to retain copper present in solution depended on the size of the inorganic fraction and varied in the following order: rice biochar>chicken manure biochar>olive mill waste biochar>acacia biochar>eucalyptus biochar>corn cob biochar. The distribution of copper between the forms bound to solid biochar, dissolved organic matter and free organic matter in solution also depended on the starting material. However, the effect of pH on the adsorption capacity was independent of the nature of the starting material, and the copper retention of all types of biochar increased with pH. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Differential response of olfactory sensory neuron populations to copper ion exposure in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Lazzari, Maurizio, E-mail: maurizio.lazzari@unibo.it; Bettini, Simone; Milani, Liliana; Maurizii, Maria Gabriella; Franceschini, Valeria

    2017-02-15

    Highlights: • Copper exposure affects ciliated olfactory receptors more than microvillar cells. • Crypt olfactory sensory neurons are not affected by copper exposure. • Copper exposure induces an increase in the amount of sensory epithelium. - Abstract: The peripheral olfactory system of fish is in direct contact with the external aqueous environment, so dissolved contaminants can easily impair sensory functions and cause neurobehavioral injuries. The olfactory epithelium of fish is arranged in lamellae forming a rosette in the olfactory cavity and contains three main types of olfactory sensory neurons (OSNs): ciliated (cOSNs) and microvillous olfactory sensory neurons (mOSNs), common to all vertebrates, and a third minor group of olfactory neurons, crypt cells, absent in tetrapods. Since copper is a ubiquitously diffusing olfactory toxicant and a spreading contaminant in urban runoff, we investigated the effect of low copper concentration on the three different OSNs in the olfactory epithelium of zebrafish, a model system widely used in biological research. Image analysis was applied for morphometry and quantification of immunohistochemically detected OSNs. Copper exposure resulted in an evident decrease in olfactory epithelium thickness. Moreover, after exposure, the lamellae of the dorsal and ventral halves of the olfactory rosettes showed a different increase in their sensory areas, suggesting a lateral migration of new cells into non-sensory regions. The results of the present study provide clear evidence of a differential response of the three neural cell populations of zebrafish olfactory mucosa after 96 h of exposure to copper ions at the sublethal concentration of 30 μg L{sup −1}. Densitometric values of cONS, immunostained with anti-G {sub αolf}, decreased of about 60% compared to the control. When the fish were transferred to water without copper addition and examined after 3, 10 and 30 days, we observed a partial restoration of anti-G {sub

  20. Differential response of olfactory sensory neuron populations to copper ion exposure in zebrafish

    International Nuclear Information System (INIS)

    Lazzari, Maurizio; Bettini, Simone; Milani, Liliana; Maurizii, Maria Gabriella; Franceschini, Valeria

    2017-01-01

    Highlights: • Copper exposure affects ciliated olfactory receptors more than microvillar cells. • Crypt olfactory sensory neurons are not affected by copper exposure. • Copper exposure induces an increase in the amount of sensory epithelium. - Abstract: The peripheral olfactory system of fish is in direct contact with the external aqueous environment, so dissolved contaminants can easily impair sensory functions and cause neurobehavioral injuries. The olfactory epithelium of fish is arranged in lamellae forming a rosette in the olfactory cavity and contains three main types of olfactory sensory neurons (OSNs): ciliated (cOSNs) and microvillous olfactory sensory neurons (mOSNs), common to all vertebrates, and a third minor group of olfactory neurons, crypt cells, absent in tetrapods. Since copper is a ubiquitously diffusing olfactory toxicant and a spreading contaminant in urban runoff, we investigated the effect of low copper concentration on the three different OSNs in the olfactory epithelium of zebrafish, a model system widely used in biological research. Image analysis was applied for morphometry and quantification of immunohistochemically detected OSNs. Copper exposure resulted in an evident decrease in olfactory epithelium thickness. Moreover, after exposure, the lamellae of the dorsal and ventral halves of the olfactory rosettes showed a different increase in their sensory areas, suggesting a lateral migration of new cells into non-sensory regions. The results of the present study provide clear evidence of a differential response of the three neural cell populations of zebrafish olfactory mucosa after 96 h of exposure to copper ions at the sublethal concentration of 30 μg L"−"1. Densitometric values of cONS, immunostained with anti-G _α_o_l_f, decreased of about 60% compared to the control. When the fish were transferred to water without copper addition and examined after 3, 10 and 30 days, we observed a partial restoration of anti-G _

  1. Pilot Study on Folate Bioavailability from a Camembert Cheese Reveals Contradictory Findings to Recent Results from a Human Short-term Study.

    Science.gov (United States)

    Mönch, Sabine; Netzel, Michael; Netzel, Gabriele; Ott, Undine; Frank, Thomas; Rychlik, Michael

    2016-01-01

    Different dietary sources of folate have differing bioavailabilities, which may affect their nutritional "value." In order to examine if these differences also occur within the same food products, a short-term human pilot study was undertaken as a follow-up study to a previously published human trial to evaluate the relative native folate bioavailabilities from low-fat Camembert cheese compared to pteroylmonoglutamic acid as the reference dose. Two healthy human subjects received the test foods in a randomized cross-over design separated by a 14-day equilibrium phase. Folate body pools were saturated with a pteroylmonoglutamic acid supplement before the first testing and between the testings. Folates in test foods and blood plasma were analyzed by stable isotope dilution assays. The biokinetic parameters C max, t max, and area under the curve (AUC) were determined in plasma within the interval of 0-12 h. When comparing the ratio estimates of AUC and C max for the different Camembert cheeses, a higher bioavailability was found for the low-fat Camembert assessed in the present study (≥64%) compared to a different brand in our previous investigation (8.8%). It is suggested that these differences may arise from the different folate distribution in the soft dough and firm rind as well as differing individual folate vitamer proportions. The results clearly underline the importance of the food matrix, even within the same type of food product, in terms of folate bioavailability. Moreover, our findings add to the increasing number of studies questioning the general assumption of 50% bioavailability as the rationale behind the definition of folate equivalents. However, more research is needed to better understand the interactions between individual folate vitamers and other food components and the potential impact on folate bioavailability and metabolism.

  2. Pilot Study on Folate Bioavailability from A Camembert Cheese reveals contradictory findings to recent results from a Human Short-term study

    Directory of Open Access Journals (Sweden)

    Sabine eMönch

    2016-04-01

    Full Text Available Different dietary sources of folate have differing bioavailabilities which may affect their nutritional value. In order to examine if these differences also occur within the same food products, a short term human pilot study was undertaken as a follow-up study to a previously published human trial to evaluate the relative native folate bioavailabilities from low-fat Camembert cheese compared to pteroylmonoglutamic acid as the reference dose. Two healthy human subjects received the test foods in a randomized cross-over design separated by a 14-day equilibrium phase. Folate body pools were saturated with a pteroylmonoglutamic acid supplement before the first testing and between the testings. Folates in test foods and blood plasma were analysed by stable isotope dilution assays. The biokinetic parameters Cmax, tmax and AUC were determined in plasma within the interval of 0 to 12 hours. When comparing the ratio estimates of AUC and Cmax for the different Camembert cheeses, a higher bioavailability was found for the low-fat Camembert assessed in the present study (≥64% compared to a different brand in our previous investigation (8.8%. It is suggested that these differences may arise from the different folate distribution in the soft dough and firm rind as well as differing individual folate vitamer proportions. The results clearly underline the importance of the food matrix, even within the same type of food product, in terms of folate bioavailability. Moreover, our findings add to the increasing number of studies questioning the general assumption of 50 % bioavailability as the rationale behind the definition of folate equivalents. However, more research is needed to better understand the interactions between individual folate vitamers and other food components and the potential impact on folate bioavailability and metabolism.

  3. Superhydrophobic Copper Surfaces with Anticorrosion Properties Fabricated by Solventless CVD Methods.

    Science.gov (United States)

    Vilaró, Ignasi; Yagüe, Jose L; Borrós, Salvador

    2017-01-11

    Due to continuous miniaturization and increasing number of electrical components in electronics, copper interconnections have become critical for the design of 3D integrated circuits. However, corrosion attack on the copper metal can affect the electronic performance of the material. Superhydrophobic coatings are a commonly used strategy to prevent this undesired effect. In this work, a solventless two-steps process was developed to fabricate superhydrophobic copper surfaces using chemical vapor deposition (CVD) methods. The superhydrophobic state was achieved through the design of a hierarchical structure, combining micro-/nanoscale domains. In the first step, O 2 - and Ar-plasma etchings were performed on the copper substrate to generate microroughness. Afterward, a conformal copolymer, 1H,1H,2H,2H-perfluorodecyl acrylate-ethylene glycol diacrylate [p(PFDA-co-EGDA)], was deposited on top of the metal via initiated CVD (iCVD) to lower the surface energy of the surface. The copolymer topography exhibited a very characteristic and unique nanoworm-like structure. The combination of the nanofeatures of the polymer with the microroughness of the copper led to achievement of the superhydrophobic state. AFM, SEM, and XPS were used to characterize the evolution in topography and chemical composition during the CVD processes. The modified copper showed water contact angles as high as 163° and hysteresis as low as 1°. The coating withstood exposure to aggressive media for extended periods of time. Tafel analysis was used to compare the corrosion rates between bare and modified copper. Results indicated that iCVD-coated copper corrodes 3 orders of magnitude slower than untreated copper. The surface modification process yielded repeatable and robust superhydrophobic coatings with remarkable anticorrosion properties.

  4. Copper hypersensitivity

    DEFF Research Database (Denmark)

    Fage, Simon W; Faurschou, Annesofie; Thyssen, Jacob P

    2014-01-01

    hypersensitivity, a database search of PubMed was performed with the following terms: copper, dermatitis, allergic contact dermatitis, contact hypersensitivity, contact sensitization, contact allergy, patch test, dental, IUD, epidemiology, clinical, and experimental. Human exposure to copper is relatively common...

  5. In vivo efficacy and bioavailability of lumefantrine: Evaluating the application of Pheroid technology.

    Science.gov (United States)

    du Plessis, Lissinda H; Govender, Katya; Denti, Paolo; Wiesner, Lubbe

    2015-11-01

    The oral absorption of compounds with low aqueous solubility, such as lumefantrine, is typically limited by the dissolution rate in the gastro-intestinal tract, resulting in erratic absorption and highly variable bioavailability. In previous studies we reported on the ability of Pheroid vesicles to improve the bioavailability of poorly soluble drugs. In the present study a Pro-Pheroid formulation, a modification of the previous formulation, was applied to improve the solubility of lumefantrine after oral administration and compared to lumefantrine in DMSO:water (1:9 v/v) solution (reference solution). A bioavailability study of lumefantrine was conducted in a mouse model in fed and fasted states. When using the reference solution, the bioavailability of the lumefantrine heavily depended on food intake, resulting in a 2.7 times higher bioavailability in the fed state when compared to the fasted state. It also showed large between-subject variability. When formulated using Pro-Pheroid, the bioavailability of lumefantrine was 3.5 times higher as compared to lumefantrine in the reference solution and fasting state. Pro-Pheroid also dramatically reduced the effects of food intake and the between-subject variability for bioavailability observed with the reference. In vivo antimalarial efficacy was also evaluated with lumefantrine formulated using Pro-Pheroid technology compared to the reference solution. The results indicated that lumefantrine in Pro-Pheroid formulation exhibited improved antimalarial activity in vitro by 46.8%, when compared to the reference. The results of the Peters' 4-day suppressive test indicated no significant difference in the efficacy or mean survival time of the mice in the Pro-Pheroid formulation and reference test groups when compared to the positive control, chloroquine. These findings suggest that using the Pro-Pheroid formulation improves the bioavailability of lumefantrine, eliminates the food effect associated with lumefantrine as well

  6. Growth of copper-treated corn roots as affected by EDTA, IAA, succinic acid-2,2-dimethyl hydrazide, vitamins and potassium

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, R; Welkie, G W

    1977-04-01

    Corn roots were treated for 1 hr in a modified Hoagland's solution containing 8 mg/l Cu/sup 2 +/ and either simultaneously or subsequently with various substances, in order to test theories of copper toxicity to roots. Post treatment with IAA, niacin amide, thiamin, or sucrose had no effect on subsequent growth. Addition of excess KCl and succinic acid-2,2-dimethyl hydrazide (an inhibitor of ethylene production) to the copper solution doubled average growth and increased recovery from 27 to 87%. A rinse with EDTA resulted in resumption of normal growth rates and 100% recovery if performed 1 hr after Cu treatment, but this effect was gradually lost in the following 6 to 12 hr. Copper toxicity was increasingly severe as pH of the Cu treating medium increased. Results are not consistent with any theory tested, but they do suggest there is an initial phase of copper-stress which lasts 3 to 6 hr, followed by plant reaction that results in irreversible cessation of growth.

  7. Fabricating Copper Nanotubes by Electrodeposition

    Science.gov (United States)

    Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel

    2009-01-01

    Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.

  8. Determination of cadmium relative bioavailability in contaminated soils and its prediction using in vitro methodologies.

    Science.gov (United States)

    Juhasz, Albert L; Weber, John; Naidu, Ravi; Gancarz, Dorota; Rofe, Allan; Todor, Damian; Smith, Euan

    2010-07-01

    In this study, cadmium (Cd) relative bioavailability in contaminated (n = 5) and spiked (n = 2) soils was assessed using an in vivo mouse model following administration of feed containing soil or Cd acetate (reference material) over a 15 day exposure period. Cadmium relative bioavailability varied depending on whether the accumulation of Cd in the kidneys, liver, or kidney plus liver was used for relative bioavailability calculations. When kidney plus liver Cd concentrations were used, Cd relative bioavailability ranged from 10.1 to 92.1%. Cadmium relative bioavailability was higher (14.4-115.2%) when kidney Cd concentrations were used, whereas lower values (7.2-76.5%) were derived when liver Cd concentrations were employed in calculations. Following in vivo studies, four in vitro methodologies (SBRC, IVG, PBET, and DIN), encompassing both gastric and intestinal phases, were assessed for their ability to predict Cd relative bioavailability. Pearson correlations demonstrated a strong linear relationship between Cd relative bioavailability and Cd bioaccessibility (0.62-0.91), however, stronger in vivo-in vitro relationships were observed when Cd relative bioavailability was calculated using kidney plus liver Cd concentrations. Whereas all in vitro assays could predict Cd relative bioavailability with varying degrees of confidence (r(2) = 0.348-0.835), large y intercepts were calculated for a number of in vitro assays which is undesirable for in vivo-in vitro predictive models. However, determination of Cd bioaccessibility using the intestinal phase of the PBET assay resulted in a small y intercept (5.14; slope =1.091) and the best estimate of in vivo Cd relative bioavailability (r(2) = 0.835).

  9. Lecithin-Based Nano-emulsification Improves the Bioavailability of Conjugated Linoleic Acid.

    Science.gov (United States)

    Heo, Wan; Kim, Jun Ho; Pan, Jeong Hoon; Kim, Young Jun

    2016-02-17

    In this study, we investigated the effects of lecithin-based nano-emulsification on the heat stability and bioavailability of conjugated linoleic acid (CLA) in different free fatty acid (FFA) and triglyceride (TG) forms. CLA nano-emulsion in TG form exhibited a small droplet size (70-120 nm) compared to CLA nano-emulsion in FFA form (230-260 nm). Nano-emulsification protected CLA isomers in TG form, but not in free form, against thermal decomposition during the heat treatment. The in vitro bioavailability test using monolayers of Caco-2 human intestinal cells showed that nano-emulsification increased the cellular uptake of CLA in both FFA and TG forms. More importantly, a rat feeding study showed that CLA content in small intestinal tissues or plasma was higher when CLA was emulsified, indicating an enhanced oral bioavailability of CLA by nano-emulsification. These results provide important information for development of nano-emulsion-based delivery systems that improve thermal stability and bioavailability of CLA.

  10. Mobility and Bioavailability of Radionuclides in Soils

    International Nuclear Information System (INIS)

    Iurian, A.; Olufemi Phaneuf, M.; Mabit, L.

    2016-01-01

    It is crucial to understand the behavior of radionuclides in the environment, their potential mobility and bioavailability related to long-term persistence, radiological hazards, and impact on human health. Such key information is used to develop strategies that support policy decisions. The environmental behavior of radionuclides depends on ecosystem characteristics. A given soil’s capacity to immobilize radionuclides has been proved to be the main factor responsible for their resulting activity concentrations in plants. The mobility and bioavailability of radionuclides in soils is complex, depending on clay-sized soil fraction, clay mineralogy, organic matter, cation exchange capacity, pH and quantities of competing cations. Moreover, plant species have different behaviors regarding radionuclide absorption depending on soil and plan characteristics

  11. A natural analogue for copper waste canisters: The copper-uranium mineralised concretions in the Permian mudrocks of south Devon, United Kingdom

    International Nuclear Information System (INIS)

    Milodowski, A.E.; Styles, M.T.; Hards, V.L.

    2000-08-01

    mineralisation and alteration that can be related to the burial and diagenetic history of the Permian strata. The native copper mineralisation exhibits close temporal association with the formation of uraniferous and vanadiferous concretions (known as 'fish-eyes') in the same rocks. Petrographical relationships indicate that both the copper and the 'fish-eye' concretions formed during burial diagenesis but before the maximum compaction of the host mudstone and siltstone. The regional burial history Wessex Basin, indicates that the maximum compaction of the Permian strata would have been achieved by at least the end of the Lower Jurassic (possibly even in the Triassic). Therefore, the native copper mineralisation is older than 176 Ma. The native copper sheets display a complex sequence of alteration and subsequent mineral growth of minerals on their surfaces. The earliest alteration was to copper oxides - principally cuprite with minor tenorite, indicating a change to more oxidising groundwater conditions. The dissolution of native silver and the growth of fringes of copper arsenides followed this. Nickel arsenides and chalcocite, associated with the precipitation of uranium silicates occurred in the later stages of alteration. This suggests a return to a more reducing pore water environment. Again, petrographical relationships indicate that this alteration and subsequent mineralisation is geologically old (i.e. Lower Jurassic or older). Secondary malachite, intimately intergrown copper sulphate and copper oxides, copper chloride, copper-uranium arsenate and uranium vanadates have formed as late-stage alteration products of the native copper and earlier diagenetic cuprite, chalcocite, copper-nickel arsenide and uranium silicate alteration and mineralisation. This latest stage alteration is most probably attributable to near-surface weathering processes. Although the native copper is affected by corrosion, the study has shown that a significant proportion (30-80% of the original

  12. A natural analogue for copper waste canisters: The copper-uranium mineralised concretions in the Permian mudrocks of south Devon, United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Milodowski, A.E.; Styles, M.T.; Hards, V.L. [Natural Environment Research Council (United Kingdom). British Geological Survey

    2000-08-01

    mineralisation and alteration that can be related to the burial and diagenetic history of the Permian strata. The native copper mineralisation exhibits close temporal association with the formation of uraniferous and vanadiferous concretions (known as 'fish-eyes') in the same rocks. Petrographical relationships indicate that both the copper and the 'fish-eye' concretions formed during burial diagenesis but before the maximum compaction of the host mudstone and siltstone. The regional burial history Wessex Basin, indicates that the maximum compaction of the Permian strata would have been achieved by at least the end of the Lower Jurassic (possibly even in the Triassic). Therefore, the native copper mineralisation is older than 176 Ma. The native copper sheets display a complex sequence of alteration and subsequent mineral growth of minerals on their surfaces. The earliest alteration was to copper oxides - principally cuprite with minor tenorite, indicating a change to more oxidising groundwater conditions. The dissolution of native silver and the growth of fringes of copper arsenides followed this. Nickel arsenides and chalcocite, associated with the precipitation of uranium silicates occurred in the later stages of alteration. This suggests a return to a more reducing pore water environment. Again, petrographical relationships indicate that this alteration and subsequent mineralisation is geologically old (i.e. Lower Jurassic or older). Secondary malachite, intimately intergrown copper sulphate and copper oxides, copper chloride, copper-uranium arsenate and uranium vanadates have formed as late-stage alteration products of the native copper and earlier diagenetic cuprite, chalcocite, copper-nickel arsenide and uranium silicate alteration and mineralisation. This latest stage alteration is most probably attributable to near-surface weathering processes. Although the native copper is affected by corrosion, the study has shown that a significant proportion (30

  13. Impact of chlorinated disinfection on copper corrosion in hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Montes, J. Castillo [Centre Scientifique et Technique du Bâtiment Nantes, 11 rue Henri Picherit, BP 82341, 44323 Nantes Cedex 03 (France); Laboratoire des Sciences de l’Ingénieur pour l’Environnement, UMR-CNRS 7356, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1 (France); Hamdani, F. [Laboratoire des Sciences de l’Ingénieur pour l’Environnement, UMR-CNRS 7356, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1 (France); Creus, J., E-mail: jcreus@univ-lr.fr [Laboratoire des Sciences de l’Ingénieur pour l’Environnement, UMR-CNRS 7356, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1 (France); Touzain, S. [Laboratoire des Sciences de l’Ingénieur pour l’Environnement, UMR-CNRS 7356, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1 (France); Correc, O. [Centre Scientifique et Technique du Bâtiment Nantes, 11 rue Henri Picherit, BP 82341, 44323 Nantes Cedex 03 (France)

    2014-09-30

    Highlights: • Impact of disinfectant treatment on the durability of copper pipes. • Synergy between disinfectant concentration and temperature. • Pitting corrosion of copper associated to the corrosion products formation on copper. - Abstract: In France, hot water quality control inside buildings is occasionally ensured by disinfection treatments using temperature increases or addition of sodium hypochlorite (between 0.5 ppm and 1 ppm residual free chlorine). This disinfectant is a strong oxidiser and it could interact with metallic pipes usually used in hot water systems. This work deals with the study of the impact of these treatments on the durability of copper pipes. The objective of this work was to investigate the influence of sodium hypochlorite concentration and temperature on the copper corrosion mechanism. Copper samples were tested under dynamic and static conditions of ageing with sodium hypochlorite solutions ranging from 0 to 100 ppm with temperature at 50 °C and 70 °C. The efficiency of a corrosion inhibitor was investigated in dynamic conditions. Visual observations and analytical analyses of the internal surface of samples was studied at different ageing duration. Corrosion products were characterised by X-ray diffraction and Raman spectroscopy. Temperature and disinfectant were found to considerably affect the copper corrosion mechanism. Surprisingly, the corrosiveness of the solution was higher at lower temperatures. The temperature influences the nature of corrosion products. The protection efficiency is then strongly depend on the nature of the corrosion products formed at the surface of copper samples exposed to the aggressive solutions containing different concentration of disinfectant.

  14. Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study.

    OpenAIRE

    Midander, Klara; Cronholm, Pontus; Karlsson, Hanna L.; Elihn, Karine; Moller, Lennart; Leygraf, Christofer; Wallinder, Inger Odnevall

    2009-01-01

    An interdisciplinary and multianalytical research effort is undertaken to assess the toxic aspects of thoroughly characterized nano- and micrometer-sized particles of oxidized metallic copper and copper(II) oxide in contact with cultivated lung cells, as well as copper release in relevant media. All particles, except micrometer-sized Cu, release more copper in serum-containing cell medium (supplemented Dulbecco's minimal essential medium) compared to identical exposures in phosphate-buffered ...

  15. Copper mobilization affected by weather conditions in a stormwater detention system receiving runoff waters from vineyard soils (Champagne, France)

    Energy Technology Data Exchange (ETDEWEB)

    Banas, D., E-mail: damien.banas@u-psud.f [Univ. Reims Champagne-Ardenne, Lab. Eco-Toxicologie, BP 1039, F-51687 Reims Cedex 2 (France); Univ. Nancy, UR-AFPA, INRA, 2 Av. Foret Haye, F-54505 Vandoeuvre-les-Nancy (France); Marin, B., E-mail: beatrice.marin@univ-reims.f [Univ. Reims Champagne-Ardenne, EA3795 GEGENA, 2 Esplanade Roland Garros, F-51100 Reims (France); Skraber, S., E-mail: skraber@lippmann.l [Centre de Recherche Public, Gabriel Lippmann, Department of Environment and Agro-biotechnologies (EVA), 41 rue du Brill, L-4422 Belvaux (Luxembourg); Chopin, E.I.B., E-mail: chopin@oakland.ed [Oakland University, Department of Chemistry, Rochester, MI 48309 (United States); Zanella, A., E-mail: augusto.zanella@unipd.i [Univ. Padova, Facolta di Agraria, Viale dell' Universita 16, I-35020 Legnaro (Italy)

    2010-02-15

    Copper, a priority substance on the EU-Water Framework Directive list, is widely used to protect grapevines against fungus diseases. Many vineyards being located on steep slopes, large amounts of Cu could be discharged in downstream systems by runoff water. The efficiency of stormwater detention basins to retain copper in a vineyard catchment was estimated. Suspended solids, dissolved (Cu{sub diss}) and total Cu (Cu{sub tot}) concentrations were monitored in runoff water, upstream, into and downstream from a detention pond. Mean Cu{sub tot} concentrations in entering water was 53.6 mug/L whereas it never exceeded 2.4 mug/L in seepage. Cu{sub tot} concentrations in basin water (>100 mug/L in 24% of the samples) exceeded LC{sub 50} values for several aquatic animals. Copper was principally sequestered by reduced compounds in the basin sediments (2/3 of Cu{sub tot}). Metal sequestration was reversible since sediment resuspension resulted in Cu remobilization. Wind velocity controlled resuspension, explained 70% of Cu{sub diss} variability and could help predicting Cu mobilization. - Copper in stormwater basin is efficiently retained but can be released during windy events or after dredging.

  16. Copper mobilization affected by weather conditions in a stormwater detention system receiving runoff waters from vineyard soils (Champagne, France)

    International Nuclear Information System (INIS)

    Banas, D.; Marin, B.; Skraber, S.; Chopin, E.I.B.; Zanella, A.

    2010-01-01

    Copper, a priority substance on the EU-Water Framework Directive list, is widely used to protect grapevines against fungus diseases. Many vineyards being located on steep slopes, large amounts of Cu could be discharged in downstream systems by runoff water. The efficiency of stormwater detention basins to retain copper in a vineyard catchment was estimated. Suspended solids, dissolved (Cu diss ) and total Cu (Cu tot ) concentrations were monitored in runoff water, upstream, into and downstream from a detention pond. Mean Cu tot concentrations in entering water was 53.6 μg/L whereas it never exceeded 2.4 μg/L in seepage. Cu tot concentrations in basin water (>100 μg/L in 24% of the samples) exceeded LC 50 values for several aquatic animals. Copper was principally sequestered by reduced compounds in the basin sediments (2/3 of Cu tot ). Metal sequestration was reversible since sediment resuspension resulted in Cu remobilization. Wind velocity controlled resuspension, explained 70% of Cu diss variability and could help predicting Cu mobilization. - Copper in stormwater basin is efficiently retained but can be released during windy events or after dredging.

  17. Development of lycopene micelle and lycopene chylomicron and a comparison of bioavailability

    International Nuclear Information System (INIS)

    Chen, Yi Jyun; Inbaraj, Baskaran Stephen; Chen, Bing Huei; Pu, Yeong Shiau

    2014-01-01

    The objectives of this study were to develop lycopene micelles and lycopene chylomicrons from tomato extracts for the enhancement and comparison of bioavailability. Lycopene micelles and chylomicrons were prepared by a microemulsion technique involving tomato extract, soybean oil, water, vitamin E and surfactant Tween 80 or lecithin in different proportions. The encapsulation efficiency of lycopene was 78% in micelles and 80% in chylomicrons, with shape being roughly spherical and mean particle size being 7.5 and 131.5 nm. A bioavailability study was conducted in rats by both gavage and i.v. administration, with oral bioavailability of lycopene, phytoene and phytofluene being 6.8, 4.3 and 3.1% in micelles and 9.5, 9.4 and 7.1% in chylomicrons, respectively. This outcome reveals higher lycopene bioavailability through incorporation into micelle or chylomicron systems. Both size and shape should be considered for oral bioavailability determination. For i.v. injection, lycopene micelles should be more important than lycopene chylomicrons for future clinical applications. (paper)

  18. Rapid screening assay for calcium bioavailability studies

    International Nuclear Information System (INIS)

    Luhrsen, K.R.; Hudepohl, G.R.; Smith, K.T.

    1986-01-01

    Calcium bioavailability has been studied by numerous techniques. The authors report here the use of the gamma emitting isotope of calcium ( 47 Ca) in a whole body retention assay system. In this system, calcium sources are administered by oral gavage and subsequent counts are determined and corrected for isotopic decay. Unlike iron and zinc retention curves, which exhibit a 2-3 day equilibration period, calcium reaches equilibration after 24 hours. Autoradiographic analysis of the femurs indicate that the newly absorbed calcium is rapidly distributed to the skeletal system. Moreover, the isotope is distributed along the entire bone. Comparisons of calcium bioavailability were made using intrinsic/extrinsic labeled milk from two species i.e. rat and goat as well as CaCO 3 . In addition, extrinsic labeled cow milk was examined. In the rat, the extrinsic labeled calcium from milk was better absorbed than the intrinsic calcium. This was not the case in goat milk or the calcium carbonate which exhibited no significant differences. Chromatographic analysis of the labeled milk indicates a difference in distribution of the 47 Ca. From these data, the authors recommend the use of this assay system in calcium bioavailability studies. The labeling studies and comparisons indicate caution should be used, however, in labeling techniques and species milk comparison

  19. Bioavailability assessment of contaminants in soils via respiration and nitrification tests

    International Nuclear Information System (INIS)

    Hund-Rinke, Kerstin; Simon, Markus

    2008-01-01

    For the assessment of contaminated soils ecotoxicological tests are used to estimate the bioavailability of contaminants in soil samples. Terrestrial tests reveal the habitat function of soils, and parameters applied in tests involving microorganisms include respiration activity and potential ammonium oxidation. For such tests, the threshold values needed to assess the results have already been established in guidelines ISO 17155 and ISO 15685. In this paper, we discuss about the respiration activity and potential ammonium oxidation results obtained from a wide variety of soils with different physico-chemical properties and levels of contamination. These results show that microbial respiration and potential ammonium oxidation have different sensitivities to various classes of contaminants. We demonstrated that both organic and inorganic contaminants influence potential ammonium oxidation, whereas microbial respiration is predominantly affected by biodegradable organic contaminants. These differences might be useful for more detailed assessments of soil contamination, leading to different recommended actions depending on which parameter is affected. - The paper provides a further criterion for a more detailed assessment of soil contamination, leading to different recommended actions depending on which parameter is affected

  20. Bioavailability assessment of contaminants in soils via respiration and nitrification tests

    Energy Technology Data Exchange (ETDEWEB)

    Hund-Rinke, Kerstin [Fraunhofer Institute for Molecular Biology and Applied Ecology, Auf dem Aberg 1, 57392 Schmallenberg (Germany)], E-mail: kerstin.hund-rinke@ime.fraunhofer.de; Simon, Markus [Fraunhofer Institute for Molecular Biology and Applied Ecology, Auf dem Aberg 1, 57392 Schmallenberg (Germany)], E-mail: markus.simon@ime.fraunhofer.de

    2008-05-15

    For the assessment of contaminated soils ecotoxicological tests are used to estimate the bioavailability of contaminants in soil samples. Terrestrial tests reveal the habitat function of soils, and parameters applied in tests involving microorganisms include respiration activity and potential ammonium oxidation. For such tests, the threshold values needed to assess the results have already been established in guidelines ISO 17155 and ISO 15685. In this paper, we discuss about the respiration activity and potential ammonium oxidation results obtained from a wide variety of soils with different physico-chemical properties and levels of contamination. These results show that microbial respiration and potential ammonium oxidation have different sensitivities to various classes of contaminants. We demonstrated that both organic and inorganic contaminants influence potential ammonium oxidation, whereas microbial respiration is predominantly affected by biodegradable organic contaminants. These differences might be useful for more detailed assessments of soil contamination, leading to different recommended actions depending on which parameter is affected. - The paper provides a further criterion for a more detailed assessment of soil contamination, leading to different recommended actions depending on which parameter is affected.

  1. Electrochemical in-situ impregnation of wood using a copper nail as source for copper

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Block, Thomas; Nymark, Morten

    2011-01-01

    A new method for copper impregnation of wood in structures was suggested and tested in laboratory scale with specimen of new pine sapwood. A copper nail and a steel screw were placed in the wood, and an electric direct current field was applied, so the copper nail was anode and the screw...... was cathode. At the anode, copper ions were generated. The copper ions were transported into the wood by electromigration (movement of ions in an applied electric field) towards the cathode, and a volume between the two electrodes was thereby impregnated. Copper also moved to a lesser degree in the opposite...

  2. Bioavailability of metals-trace in sediments: a review

    International Nuclear Information System (INIS)

    Rodrigues, Rafaela E. de A.V.; Souza, Vivianne Lucia Bormann; Lima, Vanessa Lemos de; Hazin, Clovis Abrahao

    2014-01-01

    The chemical association of metals in sediments provides an indication of its release by physical, chemical and biological processes, with toxic effects under certain environmental conditions. Knowing about their chemical bonds in sediments, can recognize specific sources of pollution, and speciation of trace metals is important for bioavailability and toxicity to animals and plants. The accumulation of these particles in the sediment occur by the following mechanisms: a) adsorption to the finest particles; b) precipitating of the element in the form of compounds; c) co-precipitating of the element with iron and manganese oxides; d) complexation with organic matter; e) incorporation into the crystal lattice of minerals. Currently, five phases are considered when studying the bioavailability of trace elements in sediments: a) the exchangeable phase, MgCl 2 (causes saltiness change); b) leachable phase, (acetic acid causes pH change); c) reducible phase (hydroxylamine hydrochloride causes release of the bound metals linked to Fe and Mn oxides); d) oxidized phase, the peroxide hydrogen (cause the degradation of organic matter); e) the residual pseudo-phase, the aqua regia (cause release of metals associated to minerals). The first three phases are considered the most bioavailable. In the last two fractions, the metals are linked to sediment constituents and not bioavailable. The organic phase is relatively stable and the metal present therein are removed under oxidative conditions. Metals present in the pseudo-phase residual measure the degree of environmental pollution, since great amount of metals at this stage indicates a lower degree of pollution

  3. Solubility and bioavailability of stabilized amorphous calcium carbonate.

    Science.gov (United States)

    Meiron, Oren E; Bar-David, Elad; Aflalo, Eliahu D; Shechter, Assaf; Stepensky, David; Berman, Amir; Sagi, Amir

    2011-02-01

    Since its role in the prevention of osteoporosis in humans was proven some 30 years ago, calcium bioavailability has been the subject of numerous scientific studies. Recent technology allowing the production of a stable amorphous calcium carbonate (ACC) now enables a bioavailability analysis of this unique form of calcium. This study thus compares the solubility and fractional absorption of ACC, ACC with chitosan (ACC-C), and crystalline calcium carbonate (CCC). Solubility was evaluated by dissolving these preparations in dilute phosphoric acid. The results demonstrated that both ACC and ACC-C are more soluble than CCC. Fractional absorption was evaluated by intrinsically labeling calcium carbonate preparations with (45)Ca, orally administrated to rats using gelatin capsules. Fractional absorption was determined by evaluating the percentage of the administrated radioactive dose per milliliter that was measured in the serum, calcium absorption in the femur, and whole-body retention over a 34-hour period. Calcium serum analysis revealed that calcium absorption from ACC and ACC-C preparations was up to 40% higher than from CCC, whereas retention of ACC and ACC-C was up to 26.5% higher than CCC. Absorbed calcium in the femurs of ACC-administrated rats was 30% higher than in CCC-treated animals, whereas 15% more calcium was absorbed following ACC-C treatment than following CCC treatment. This study demonstrates the enhanced solubility and bioavailability of ACC over CCC. The use of stable ACC as a highly bioavailable dietary source for calcium is proposed based on the findings of this study. Copyright © 2011 American Society for Bone and Mineral Research.

  4. Effect of acrylonitrile on the electrode processes ivolving copper cations

    Directory of Open Access Journals (Sweden)

    Viktor F. Vargalyuk

    2016-03-01

    Full Text Available Based on the results of cyclic voltammetry and study of deposits morphology, it has been shown that acrylonitrile does not have significant effect on the mechanism of Cu2+ + 2ē → Cu0 reaction. This distinguishes acrylonitrile from the unsaturated polyfunctional organic substances (acrylic acid, acrylamide which forms stable complexes with Cu2+ ions. Acrylonitrile just inhibits cathodic process by adsorbing on the surface of electrode thus blocking its active sites. But the presence of acrylonitrile significantly changes the mechanism of the anodic process. It has been found that acrylonitrile interacts with surface copper atoms thus forming thermodynamically stable [Cu π-AN]0 π‑complexes. Ionization potential of these π‑complexes is more negative if compare to copper atoms. As the result acceleration of anodic process takes place in the low polarization area. However, since the chemisorption is a slow process the presence of acrylonitrile mainly affects dissolution of the first surface layers of copper atoms. Further ionization of copper atoms runs out directly and requires higher polarization.

  5. Mobility, bioavailability, and toxic effects of cadmium in soil samples

    International Nuclear Information System (INIS)

    Prokop, Z.; Cupr, P.; Zlevorova-Zlamalikova V.; Komarek, J.; Dusek, L.; Holoubek, I.

    2003-01-01

    Total concentration is not a reliable indicator of metal mobility or bioavailability in soils. The physicochemical form determines the behavior of metals in soils and hence the toxicity toward terrestrial biota. The main objectives of this study were the application and comparison of three approaches for the evaluation of cadmium behavior in soil samples. The mobility and bioavailability of cadmium in five selected soil samples were evaluated using equilibrium speciation (Windermere humic aqueous mode (WHAM)), extraction procedures (Milli-Q water, DMSO, and DTPA), and a number of bioassays (Microtox, growth inhibition test, contact toxicity test, and respiration). The mobility, represented by the water-extractable fraction corresponded well with the amount of cadmium in the soil solution, calculate using the WHAM (r 2 =0.96, P<0.001). The results of the ecotoxicologica evaluation, which represent the bioavailable fraction of cadmium, correlated well with DTPA extractability and also with the concentration of free cadmium ion, which is recognized as the most bioavailable metal form. The results of the WHAM as well as the results of extraction experiments showed a strong binding of cadmium to organic matter and a weak sorption of cadmium to clay minerals

  6. BIOAVAILABILITY AND PHARMACOKINETICS OF NORFLOXACIN AFTER INTRAMUSCULAR ADMINISTRATION IN GOATS

    Directory of Open Access Journals (Sweden)

    WAJEEHA, F. H. KHAN AND I. JAVED

    2006-01-01

    Full Text Available Bioavailability and pharmacokinetics of two commercially available preparations of norfloxacin i.e. A (imported and B (locally prepared were determined in six healthy female goats after single intramuscular administration @ 5 mg/kg b.wt following crossover study design. The blood samples collected at 0.25, 0.5, 0.75, 1, 2, 3, 4, 6, 8 and 12 hours postmedication were also analysed for drug concentration by microbiological assay. Results revealed that preparation A showed higher (p<0.05 plasma drug levels than the preparation B at 1, 3, 6 and 8 hours after medication. Among bioavailability parameters AUC (g.h/ml and relative bioavailability (F% were higher for preparation A than the preparation B, while other parameters did not differ between the two preparations. Similarly, various pharmacokinetic parameters did not show any statistical difference between preparation A and B. The study revealed comparable elimination kinetics but different bioavailability of two commercial preparations of norfloxacin. It is concluded from the study that for optimal dosage regimen of drugs, the bioequivalence studies and kinetic behavior of the drugs are of paramount importance.

  7. 4-(Phenylsulfonyl)piperidines: novel, selective, and bioavailable 5-HT(2A) receptor antagonists.

    Science.gov (United States)

    Fletcher, Stephen R; Burkamp, Frank; Blurton, Peter; Cheng, Susan K F; Clarkson, Robert; O'Connor, Desmond; Spinks, Daniel; Tudge, Matthew; van Niel, Monique B; Patel, Smita; Chapman, Kerry; Marwood, Rose; Shepheard, Sara; Bentley, Graham; Cook, Gina P; Bristow, Linda J; Castro, Jose L; Hutson, Peter H; MacLeod, Angus M

    2002-01-17

    On the basis of a spirocyclic ether screening lead, a series of acyclic sulfones have been identified as high-affinity, selective 5-HT(2A) receptor antagonists. Bioavailability lacking in the parent, 1-(2-(2,4-difluorophenyl)ethyl)-4-(phenylsulfonyl)piperidine (12), was introduced by using stability toward rat liver microsomes as a predictor of bioavailability. By this means, the 4-cyano- and 4-carboxamidophenylsulfonyl derivatives 26 and 31 were identified as orally bioavailable, brain-penetrant analogues suitable for evaluation in animal models. Bioavailability was also attainable by N substitution leading to the N-phenacyl derivative 35. IKr activity detected through counterscreening was reduced to insignificant levels in vivo with the latter compound.

  8. Bio-availability of tungsten in the vicinity of an abandoned mine in the English Lake District and some potential health implications

    International Nuclear Information System (INIS)

    Wilson, Bob; Pyatt, F. Brian

    2006-01-01

    This research addresses the occurrence, detection and possible fate of tungsten in the vicinity of an abandoned mine in the English Lake District. Aqua regia extraction and subsequent analysis of spoil and vegetation confirmed the presence of tungsten and other heavy metals. Spoil samples examined were last worked almost 100 years ago and the concentrations of copper, zinc, tungsten and arsenic detected demonstrate the environmental persistence of these metals in an area of relatively high rainfall. The bioaccumulation of tungsten by two species of plants is indicated and partitioning within different tissues of Calluna vulgaris is demonstrated. Mechanisms relating to mobility and speciation of the metals present were explored using sequential and single stage extraction systems. Tungsten appears to be relatively immobile when subjected to sequential extraction but increased bioavailability is indicated when single stage extraction using EDTA is employed

  9. Bacterial community changes in copper and PEX drinking water pipeline biofilms under extra disinfection and magnetic water treatment.

    Science.gov (United States)

    Inkinen, J; Jayaprakash, B; Ahonen, M; Pitkänen, T; Mäkinen, R; Pursiainen, A; Santo Domingo, J W; Salonen, H; Elk, M; Keinänen-Toivola, M M

    2018-02-01

    To study the stability of biofilms and water quality in pilot scale drinking water copper and PEX pipes in changing conditions (extra disinfection, magnetic water treatment, MWT). Next-generation sequencing (NGS) of 16S ribosomal RNA genes (rDNA) to describe total bacterial community and ribosomal RNA (rRNA) to describe active bacterial members in addition to traditional microbiological methods were applied. Biofilms from control copper and PEX pipes shared same most abundant bacteria (Methylobacterium spp., Sphingomonas spp., Zymomonas spp.) and average species diversities (Shannon 3·8-4·2) in rDNA and rRNA libraries, whereas few of the taxa differed by their abundance such as lower total Mycobacterium spp. occurrence in copper (disinfection (total chlorine increase from c. 0·5 to 1 mg l -1 ) affected total and active population in biofilms seen as decrease in many bacterial species and diversity (Shannon 2·7, P disinfected copper and PEX samples formed separate clusters in unweighted non-metric multidimensional scaling plot (rRNA) similarly to MWT-treated biofilms of copper (but not PEX) pipes that instead showed higher species diversity (Shannon 4·8, P < 0·05 interaction). Minor chlorine dose addition increased selection pressure and many species were sensitive to chlorination. Pipe material seemed to affect mycobacteria occurrence, and bacterial communities with MWT in copper but not in PEX pipes. This study using rRNA showed that chlorination affects especially active fraction of bacterial communities. Copper and PEX differed by the occurrence of some bacterial members despite similar community profiles. © 2017 The Society for Applied Microbiology.

  10. Copper Leaching from Copper-ethanolamine Treated Wood: Comparison of Field Test Studies and Laboratory Standard Procedures

    OpenAIRE

    Nejc Thaler; Miha Humar

    2014-01-01

    Copper-based compounds are some of the most important biocides for the protection of wood in heavy duty applications. In the past, copper was combined with chromium compounds to reduce copper leaching, but a recent generation of copper-based preservatives uses ethanolamine as a fixative. To elucidate the leaching of copper biocides from wood, Norway spruce (Picea abies) wood was treated with a commercial copper-ethanolamine solution with two different copper concentrations (cCu = 0.125% and 0...

  11. Copper metabolism: a multicompartmental model of copper kinetics in the rat

    International Nuclear Information System (INIS)

    Dunn, M.A.

    1985-01-01

    A qualitative multicompartmental model was developed that describes the whole-body kinetics of copper metabolism in the adult rat. The model was developed from radiocopper percent dose vs. time data measured over a three day period in plasma, liver, skin, skeletal muscle, bile and feces after the intravenous injection of 10 μg copper labeled with 64 Cu. Plasma radiocopper was separated into ceruloplasmin (Cp) and nonceruloplasmin (NCp) fractions. Liver cytosolic radiocopper was fractionated into void volume superoxide dismutase (SOD) containing and metallothionein fractions by gel filtration. Liver particulate fractions were isolated by differential centrifugation. The SAAM and CONSAM modeling programs were used to develop the model. The sizes of compartments, fractional rate constants and mass transfer rates between compartments were evaluated. The intracellular metabolism of copper was similar in hepatic and extrahepatic tissues being comprised of a faster turning over compartment (FTC) exchanging copper with NCp and a slower turning over compartment (STC) with input from Cp. Output from the STC was into the FTC. In the liver the STC was postulated to represent SOD copper which unlike the extrahepatic tissues received much of its input from the FTC. A small amount of biliary copper (9%) was postulated to return to plasma NCp by enterohepatic recycling. The model developed was contrasted and compared with two previous models of copper metabolism

  12. Total sulfane sulfur bioavailability reflects ethnic and gender disparities in cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Saurabh Rajpal

    2018-05-01

    Full Text Available Hydrogen sulfide (H2S has emerged as an important physiological and pathophysiological signaling molecule in the cardiovascular system influencing vascular tone, cytoprotective responses, redox reactions, vascular adaptation, and mitochondrial respiration. However, bioavailable levels of H2S in its various biochemical metabolite forms during clinical cardiovascular disease remain poorly understood. We performed a case-controlled study to quantify and compare the bioavailability of various biochemical forms of H2S in patients with and without cardiovascular disease (CVD. In our study, we used the reverse-phase high performance liquid chromatography monobromobimane assay to analytically measure bioavailable pools of H2S. Single nucleotide polymorphisms (SNPs were also identified using DNA Pyrosequencing. We found that plasma acid labile sulfide levels were significantly reduced in Caucasian females with CVD compared with those without the disease. Conversely, plasma bound sulfane sulfur levels were significantly reduced in Caucasian males with CVD compared with those without the disease. Surprisingly, gender differences of H2S bioavailability were not observed in African Americans, although H2S bioavailability was significantly lower overall in this ethnic group compared to Caucasians. We also performed SNP analysis of H2S synthesizing enzymes and found a significant increase in cystathionine gamma-lyase (CTH 1364 G-T allele frequency in patients with CVD compared to controls. Lastly, plasma H2S bioavailability was found to be predictive for cardiovascular disease in Caucasian subjects as determined by receiver operator characteristic analysis. These findings reveal that plasma H2S bioavailability could be considered a biomarker for CVD in an ethnic and gender manner. Cystathionine gamma-lyase 1346 G-T SNP might also contribute to the risk of cardiovascular disease development.

  13. Total sulfane sulfur bioavailability reflects ethnic and gender disparities in cardiovascular disease.

    Science.gov (United States)

    Rajpal, Saurabh; Katikaneni, Pavan; Deshotels, Matthew; Pardue, Sibile; Glawe, John; Shen, Xinggui; Akkus, Nuri; Modi, Kalgi; Bhandari, Ruchi; Dominic, Paari; Reddy, Pratap; Kolluru, Gopi K; Kevil, Christopher G

    2018-05-01

    Hydrogen sulfide (H 2 S) has emerged as an important physiological and pathophysiological signaling molecule in the cardiovascular system influencing vascular tone, cytoprotective responses, redox reactions, vascular adaptation, and mitochondrial respiration. However, bioavailable levels of H 2 S in its various biochemical metabolite forms during clinical cardiovascular disease remain poorly understood. We performed a case-controlled study to quantify and compare the bioavailability of various biochemical forms of H 2 S in patients with and without cardiovascular disease (CVD). In our study, we used the reverse-phase high performance liquid chromatography monobromobimane assay to analytically measure bioavailable pools of H 2 S. Single nucleotide polymorphisms (SNPs) were also identified using DNA Pyrosequencing. We found that plasma acid labile sulfide levels were significantly reduced in Caucasian females with CVD compared with those without the disease. Conversely, plasma bound sulfane sulfur levels were significantly reduced in Caucasian males with CVD compared with those without the disease. Surprisingly, gender differences of H 2 S bioavailability were not observed in African Americans, although H 2 S bioavailability was significantly lower overall in this ethnic group compared to Caucasians. We also performed SNP analysis of H 2 S synthesizing enzymes and found a significant increase in cystathionine gamma-lyase (CTH) 1364 G-T allele frequency in patients with CVD compared to controls. Lastly, plasma H 2 S bioavailability was found to be predictive for cardiovascular disease in Caucasian subjects as determined by receiver operator characteristic analysis. These findings reveal that plasma H 2 S bioavailability could be considered a biomarker for CVD in an ethnic and gender manner. Cystathionine gamma-lyase 1346 G-T SNP might also contribute to the risk of cardiovascular disease development. Copyright © 2018 The Authors. Published by Elsevier B.V. All

  14. Lead and zinc bioavailability to Eisenia fetida after phosphorus amendment to repository soils

    International Nuclear Information System (INIS)

    Ownby, David R.; Galvan, Kari A.; Lydy, Michael J.

    2005-01-01

    Four phosphorus forms were investigated as potential soil amendments to decrease the bioavailability of Pb and Zn in two repository soils to the earthworm, Eisenia fetida. Treatments were evaluated by examining differences in bioaccumulation factors between amended and non-amended soils. Triple super phosphate at 5000 mg P/kg decreased both Pb and Zn bioavailability in both soils. Rock phosphate at 5000 mg P/kg decreased Zn bioavailability, but not Pb bioavailability in both repository soils. Monocalcium phosphate and tricalcium phosphate at 5000 mg P/kg did not significantly decrease Pb or Zn bioavailability to earthworms in either repository soil. In order to optimize phosphorus amendments, additional phosphorus (up to 15,000 mg P/kg) and lowered pH were used in a series of tests. The combination of lowering the pH below 6.0 and increasing phosphorus concentrations caused complete mortality in all triple super phosphate amended soils and partial mortality in the highest rock phosphate amended soils. Results indicate that triple super phosphate and rock phosphate are viable soil amendments, but care should be taken when optimizing amendment quantity and pH so that adverse environmental effects are not a by-product. - Phosphorus form and pH were controlling factors in the effectiveness of phosphorus amendment in decreasing Pb and Zn bioavailability

  15. Lead and zinc bioavailability to Eisenia fetida after phosphorus amendment to repository soils

    Energy Technology Data Exchange (ETDEWEB)

    Ownby, David R. [Fisheries and Illinois Aquaculture Center and Department of Zoology, Southern Illinois University, Carbondale, IL 62901 (United States); Galvan, Kari A. [Fisheries and Illinois Aquaculture Center and Department of Zoology, Southern Illinois University, Carbondale, IL 62901 (United States); Lydy, Michael J. [Fisheries and Illinois Aquaculture Center and Department of Zoology, Southern Illinois University, Carbondale, IL 62901 (United States)]. E-mail: mlydy@siu.edu

    2005-07-15

    Four phosphorus forms were investigated as potential soil amendments to decrease the bioavailability of Pb and Zn in two repository soils to the earthworm, Eisenia fetida. Treatments were evaluated by examining differences in bioaccumulation factors between amended and non-amended soils. Triple super phosphate at 5000 mg P/kg decreased both Pb and Zn bioavailability in both soils. Rock phosphate at 5000 mg P/kg decreased Zn bioavailability, but not Pb bioavailability in both repository soils. Monocalcium phosphate and tricalcium phosphate at 5000 mg P/kg did not significantly decrease Pb or Zn bioavailability to earthworms in either repository soil. In order to optimize phosphorus amendments, additional phosphorus (up to 15,000 mg P/kg) and lowered pH were used in a series of tests. The combination of lowering the pH below 6.0 and increasing phosphorus concentrations caused complete mortality in all triple super phosphate amended soils and partial mortality in the highest rock phosphate amended soils. Results indicate that triple super phosphate and rock phosphate are viable soil amendments, but care should be taken when optimizing amendment quantity and pH so that adverse environmental effects are not a by-product. - Phosphorus form and pH were controlling factors in the effectiveness of phosphorus amendment in decreasing Pb and Zn bioavailability.

  16. Bioavailability and ecotoxicity of arsenic species in solution culture and soil system: implications to remediation.

    Science.gov (United States)

    Bolan, Nanthi; Mahimairaja, Santiago; Kunhikrishnan, Anitha; Seshadri, Balaji; Thangarajan, Ramya

    2015-06-01

    In this work, bioavailability and ecotoxicity of arsenite (As(III)) and arsenate (As(V)) species were compared between solution culture and soil system. Firstly, the adsorption of As(III) and As(V) was compared using a number of non-allophanic and allophanic soils. Secondly, the bioavailability and ecotoxicity were examined using germination, phytoavailability, earthworm, and soil microbial activity tests. Both As-spiked soils and As-contaminated sheep dip soils were used to test bioavailability and ecotoxicity. The sheep dip soil which contained predominantly As(V) species was subject to flooding to reduce As(V) to As(III) and then used along with the control treatment soil to compare the bioavailability between As species. Adsorption of As(V) was much higher than that of As(III), and the difference in adsorption between these two species was more pronounced in the allophanic than non-allophanic soils. In the solution culture, there was no significant difference in bioavailability and ecotoxicity, as measured by germination and phytoavailability tests, between these two As species. Whereas in the As-spiked soils, the bioavailability and ecotoxicity were higher for As(III) than As(V), and the difference was more pronounced in the allophanic than non-allophanic soils. Bioavailability of As increased with the flooding of the sheep dip soils which may be attributed to the reduction of As(V) to As(III) species. The results in this study have demonstrated that while in solution, the bioavailability and ecotoxicity do not vary between As(III) and As(V), in soils, the latter species is less bioavailable than the former species because As(V) is more strongly retained than As(III). Since the bioavailability and ecotoxicity of As depend on the nature of As species present in the environment, risk-based remediation approach should aim at controlling the dynamics of As transformation.

  17. Copper influence on bank vole's (Myodes glareolus) sexual behavior.

    Science.gov (United States)

    Miska-Schramm, Agata; Kapusta, Joanna; Kruczek, Małgorzata

    2018-04-01

    The impact of human activity on the environment has led to a steady increase of the amounts of copper in the ecosystems. This element accumulates in plants and water, potentially exposing rodents to its harmful effects. In industrial districts, a decrease in the density of small rodent populations has been observed. This decline may be caused by many factors, including mortality, decreased fertility, or impaired sexual behavior. The decline in the reproductive abilities of small rodents after copper exposure was demonstrated in our previous work (Miska-Schramm A, Kruczek M, Kapusta J, Ecotoxicology 23:1546-1554, 2014). The aim of the presented research was to determine how copper administered at concentrations similar to those recorded in industrial districts (Cu I-150 mg/kg, Cu II-600 mg/kg, C-control) affects the sexual behavior of small rodents. The model species was the bank vole (Myodes glareolus). The behavior and vocalizations of male-female pairs were recorded during open-field tests: ♂C vs. ♀C; ♂Cu I vs. ♀C; ♂Cu II vs. ♀C while in preference tests, female behavior was assessed in the following combinations: ♀C vs. ♂C & ♂Cu I; ♀C vs. ♂C & ♂Cu II. In the presented work, we show that copper decreased the males' sexual attractiveness. Females showed suppressed preference towards males treated with 600 mg/kg copper. The number of sniffs and a number of approaches towards Cu II males was significantly lower than towards control individuals. Also, in preference test with 150 mg/kg treated animals, total activity was lower towards copper treated animals. At the same time, copper did not influence intra-sexual interactions.

  18. Bioavailability of Antibiotics at Soil-Water Interfaces: A Comparison of Measured Activities and Equilibrium Partitioning Estimates.

    Science.gov (United States)

    Menz, Jakob; Müller, Julia; Olsson, Oliver; Kümmerer, Klaus

    2018-06-05

    There are growing concerns that antibiotic pollution impacts environmental microbiota and facilitates the propagation of antibiotic resistance. However, the prediction or analytical determination of bioavailable concentrations of antibiotics in soil is still subject to great uncertainty. Biological assays are increasingly recognized as valuable complementary tools that allow a more direct determination of the residual antibiotic activity. This study assessed the bioavailability of structurally diverse antibiotics at a soil-water interface applying activity-based analyses in conjunction with equilibrium partitioning (EqP) modeling. The activity against Gram-positive and Gram-negative bacteria of nine antibiotics from different classes was determined in the presence and absence of standard soil (LUFA St. 2.2). The addition of soil affected the activity of different antibiotics to highly varying degrees. Moreover, a highly significant correlation ( p < 0.0001) between the experimentally observed and the EqP-derived log EC 50 (half-maximal effective concentration) values was observed. The innovative experimental design of this study provided new insights on the bioavailability of antibiotics at soil-water interfaces. EqP appears to be applicable to a broad range of antibiotics for the purpose of screening-level risk assessment. However, EqP estimates cannot replace soil-specific ecotoxicity testing in higher-tier assessments, since their accuracy is still compromised by a number of factors.

  19. Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Adamo, Paola, E-mail: paola.adamo@unina.it [Dipartimento di Agraria, Università di Napoli Federico II, via Università 100, 80055 Portici (Italy); Iavazzo, Pietro [Dipartimento di Agraria, Università di Napoli Federico II, via Università 100, 80055 Portici (Italy); Albanese, Stefano [Dipartimento di Scienze della Terra, dell' Ambiente e delle Risorse, Università di Napoli Federico II, Via Mezzocannone 8, 80134 Napoli (Italy); Agrelli, Diana [Dipartimento di Agraria, Università di Napoli Federico II, via Università 100, 80055 Portici (Italy); De Vivo, Benedetto; Lima, Annamaria [Dipartimento di Scienze della Terra, dell' Ambiente e delle Risorse, Università di Napoli Federico II, Via Mezzocannone 8, 80134 Napoli (Italy)

    2014-12-01

    Soil pollution in agricultural lands poses a serious threat to food safety, and suggests the need for consolidated methods providing advisory indications for soil management and crop production. In this work, the three-step extraction procedure developed by the EU Measurement and Testing Programme and two soil-to-plant transfer factors (relative to total and bioavailable concentration of elements in soil) were applied on polluted agricultural soils from southern Italy to obtain information on the retention mechanisms of metals in soils and on their level of translocation to edible vegetables. The study was carried out in the Sarno river plain of Campania, an area affected by severe environmental degradation potentially impacting the health of those consuming locally produced vegetables. Soil samples were collected in 36 locations along the two main rivers flowing into the plain. In 11 sites, lettuce plants were collected at the normal stage of consumption. According to Italian environmental law governing residential soils, and on the basis of soil background reference values for the study area, we found diffuse pollution by Be, Sn and Tl, of geogenic origin, Cr and Cu from anthropogenic sources such as tanneries and intensive agriculture, and more limited pollution by Pb, Zn and V. It was found that metals polluting soils as a result of human activities were mainly associated to residual, oxidizable and reducible phases, relatively immobile and only potentially bioavailable to plants. By contrast, the essential elements Zn and Cu showed a tendency to become more readily mobile and bioavailable as their total content in soil increased and were more easily transported to the edible parts of lettuce than other pollutants. According to our results, current soil pollution in the studied area does not affect the proportion of metals taken up by lettuce plants and there is a limited health risk incurred. - Highlights: • Soil pollution in an intensively farmed area of

  20. Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils

    International Nuclear Information System (INIS)

    Adamo, Paola; Iavazzo, Pietro; Albanese, Stefano; Agrelli, Diana; De Vivo, Benedetto; Lima, Annamaria

    2014-01-01

    Soil pollution in agricultural lands poses a serious threat to food safety, and suggests the need for consolidated methods providing advisory indications for soil management and crop production. In this work, the three-step extraction procedure developed by the EU Measurement and Testing Programme and two soil-to-plant transfer factors (relative to total and bioavailable concentration of elements in soil) were applied on polluted agricultural soils from southern Italy to obtain information on the retention mechanisms of metals in soils and on their level of translocation to edible vegetables. The study was carried out in the Sarno river plain of Campania, an area affected by severe environmental degradation potentially impacting the health of those consuming locally produced vegetables. Soil samples were collected in 36 locations along the two main rivers flowing into the plain. In 11 sites, lettuce plants were collected at the normal stage of consumption. According to Italian environmental law governing residential soils, and on the basis of soil background reference values for the study area, we found diffuse pollution by Be, Sn and Tl, of geogenic origin, Cr and Cu from anthropogenic sources such as tanneries and intensive agriculture, and more limited pollution by Pb, Zn and V. It was found that metals polluting soils as a result of human activities were mainly associated to residual, oxidizable and reducible phases, relatively immobile and only potentially bioavailable to plants. By contrast, the essential elements Zn and Cu showed a tendency to become more readily mobile and bioavailable as their total content in soil increased and were more easily transported to the edible parts of lettuce than other pollutants. According to our results, current soil pollution in the studied area does not affect the proportion of metals taken up by lettuce plants and there is a limited health risk incurred. - Highlights: • Soil pollution in an intensively farmed area of

  1. Bioavailability of heavy metals in soils: definitions and practical implementation--a critical review.

    Science.gov (United States)

    Kim, Rog-Young; Yoon, Jeong-Ki; Kim, Tae-Seung; Yang, Jae E; Owens, Gary; Kim, Kwon-Rae

    2015-12-01

    Worldwide regulatory frameworks for the assessment and remediation of contaminated soils have moved towards a risk-based approach, taking contaminant bioavailability into consideration. However, there is much debate on the precise definition of bioavailability and on the standardization of methods for the measurement of bioavailability so that it can be reliably applied as a tool for risk assessment. Therefore, in this paper, we reviewed the existing definitions of heavy metal bioavailability in relation to plant uptake (phytoavailability), in order to better understand both the conceptual and operational aspects of bioavailability. The related concepts of specific and non-specific adsorption, as well as complex formation and organic ligand affinity were also intensively discussed to explain the variations of heavy metal solubility and mobility in soils. Further, the most frequently used methods to measure bioavailable metal soil fractions based on both chemical extractions and mechanistic geochemical models were reviewed. For relatively highly mobile metals (Cd, Ni, and Zn), a neutral salt solution such as 0.01 M CaCl2 or 1 M NH4NO3 was recommended, whereas a strong acid or chelating solution such as 0.43 M HNO3 or 0.05 M DTPA was recommended for strongly soil-adsorbed and less mobile metals (Cu, Cr, and Pb). While methods which assessed the free metal ion activity in the pore water such as DGT and DMT or WHAM/Model VI, NICA-Donnan model, and TBLM are advantageous for providing a more direct measure of bioavailability, few of these models have to date been properly validated.

  2. Manganese Coated Sand for Copper (II Removal from Water in Batch Mode

    Directory of Open Access Journals (Sweden)

    Nidal Hilal

    2013-09-01

    Full Text Available Removal of heavy metals, such as copper ions, from water is important to protect human health and the environment. In this study, manganese coated sand (MCS was used as an adsorbent to remove copper ions in a batch system. Equilibrium data were determined at a temperature of 25.6 °C and the Langmuir model was used to describe the experimental data. Mn-coating improved the removal of copper ions by 70% as compared to uncoated sand. Based on a kinetics study, the adsorption of copper ions on MCS was found to occur through a chemisorption process and the pseudo-second-order model was found to fit the kinetics experimental data well. Due to particle interactions, the equilibrium uptake was reduced as the ratio of sand to volume of solution increased. pH affected the removal of copper ions with lowest uptakes found at pH 3 and pHs >7, whilst at pHs in the range of 4 to 7, the uptake was highest and almost constant at the value of 0.0179 mg/g ± 4%. This study has also revealed that copper ions removal was dissolved oxygen (DO dependent with the highest removal occurring at ambient DO concentration, which suggests that DO should be carefully studied when dealing with copper ions adsorption.

  3. INTRACELLULAR COPPER ACCUMULATION ENHANCES THE GROWTH OF KINEOCOCCUS RADIOTOLERANS DURING CHRONIC IRRADIATION

    International Nuclear Information System (INIS)

    Bagwell, C; Charles Milliken, C

    2007-01-01

    The actinobacteria Kineococcus radiotolerans is highly resistant to ionizing radiation, desiccation, and oxidative stress; though the underlying biochemical mechanisms are unknown. The purpose of this study was to explore a possible linkage between the uptake of transition metals and extreme resistance to ionizing radiation and oxidative stress. The effects of 6 different divalent cationic metals on growth were examined in the absence of ionizing radiation. None of the metals tested were stimulatory, though cobalt was inhibitory to growth. In contrast, copper supplementation dramatically increased cell growth during chronic irradiation. K. radiotolerans exhibited specific uptake and intracellular accumulation of copper compared to only a weak response to both iron and manganese supplementation. Copper accumulation sensitized cells to hydrogen peroxide. Acute irradiation induced DNA damage was similar between the copper-loaded culture as the age-synchronized no copper control culture, though low molecular weight DNA was more persistent during post-irradiation recovery in the Cu-loaded culture. Still, the estimated times for genome restoration differed by only 1 hr between treatments. While we cannot discount the possibility that copper fulfills an unexpectedly important biochemical role in a radioactive environment; K. radiotolerans has a high capacity for intracellular copper sequestration, and presumably efficiently coordinated oxidative stress defenses and detoxification systems, which confers cross-protection from the damaging affects ionizing radiation

  4. Renal cortex copper concentration in acute copper poisoning in calves

    Directory of Open Access Journals (Sweden)

    Luis E. Fazzio

    2012-01-01

    Full Text Available The aim of this study was to estimate the diagnostic value of renal cortex copper (Cu concentration in clinical cases of acute copper poisoning (ACP. A total of 97 calves that died due to subcutaneous copper administration were compiled in eleven farms. At least, one necropsy was conducted on each farm and samples for complementary analysis were taken. The degree of autolysis in each necropsy was evaluated. The cases appeared on extensive grazing calf breeding and intensive feedlot farms, in calves of 60 to 200 kg body weight. Mortality varied from 0.86 to 6.96 %, on the farms studied. The first succumbed calf was found on the farms between 6 and 72 hours after the susbcutaneous Cu administration. As discrepancies regarding the reference value arose, the local value (19.9 parts per million was used, confirming the diagnosis of acute copper poisoning in 93% of the analyzed kidney samples. These results confirm the value of analysis of the cortical kidney Cu concentration for the diagnosis of acute copper poisoning.

  5. Primary Copper Smelter and Refinery as a Recycling Plant—A System Integrated Approach to Estimate Secondary Raw Material Tolerance

    Directory of Open Access Journals (Sweden)

    Olof Forsén

    2017-10-01

    Full Text Available The primary production of sulfide concentrates includes smelting to copper matte or blister copper, conversion of matte to blister copper, and refining to copper. Smelting, converting, and fire-refining can use a limited amount of secondary materials. Molten copper can effectively dissolve many metals, from valuable noble metals to harmful impurities such as bismuth. However, some of the impurity metals in copper are valuable in other applications. In this paper, we outline the main material flows in copper smelting and electrorefining and describe how minor metals can be recovered from secondary raw materials using copper as a carrier material. We will use a system integrated approach to define the factors that affect the recovery of different metals and copper quality. Metals typical in copper production are used as examples, like noble metals, As, Bi, Se, and Te, including metals in the EU critical raw materials list like PGM and Sb.

  6. Arsenic bioavailability in soils before and after soil washing: the use of Escherichia coli whole-cell bioreporters.

    Science.gov (United States)

    Yoon, Youngdae; Kang, Yerin; Chae, Yooeun; Kim, Sunghoon; Lee, Youngshim; Jeong, Seung-Woo; An, Youn-Joo

    2016-02-01

    We investigated the quantification of bioavailable arsenic in contaminated soils and evaluation of soil-washing processes in the aspect of bioavailability using a novel bacterial bioreporter developed in present study. The whole-cell bioreporter (WCB) was genetically engineered by fusing the promoter of nik operon from Escherichia coli and green fluorescent protein as a sensing domain and reporter domain. Among eight well-known hazardous heavy metals and metalloid, this system responded specifically to arsenic, thereby inferring association of As(III) with NikR inhibits the repression. Moreover, the response was proportional to the concentration of As(III), thereby it was capable to determine the amount of bioavailable arsenic quantitatively in contaminated soils. The bioavailable portion of arsenic was 5.9 (3.46-10.96) and 0.9 (0.27-1.74) % of total from amended and site soils, respectively, suggesting the bioavailability of arsenic in soils was related to the soil properties and duration of aging. On the other hand, only 1.37 (0.21-2.97) % of total arsenic was extracted into soil solutions and 19.88 (11.86-28.27) % of arsenic in soil solution was bioavailable. This result showed that the soluble arsenic is not all bioavailable and most of bioavailable arsenic in soils is water non-extractable. In addition, the bioavailable arsenic was increased after soil-washing while total amount was decreased, thereby suggesting the soil-washing processes release arsenic associated with soil materials to be bioavailable. Therefore, it would be valuable to have a tool to assess bioavailability and the bioavailability should be taken into consideration for soil remediation plans.

  7. Reconnaissance and economic geology of Copper Mountain metamorphic complex, Owl Creek Mountains, Wyoming

    International Nuclear Information System (INIS)

    Hausel, W.D.

    1983-01-01

    The Copper Mountain metamorphic complex lies within a westerly trending belt of Precambrian exposures known as the Owl Creek Mountains uplift. The metamorphic complex at Copper Mountain is part of a larger complex known as the Owl Creek Mountains greenstone belt. Until more detailed mapping and petrographic studies can be completed, the Copper Mountain area is best referred to as a complex, even though it has some characteristics of a greestone belt. At least three episodes of Precambrian deformation have affected the supracrustals, and two have disturbed the granites. The final Precambrian deformation event was preceded by a weak thermal event expressed by retrogressive metamorphism and restricted metasomatic alteration. During this event, a second phase of pegmatization was accompanied by hydrothermal solutions. During the Laramide orogeny, Copper Mountain was again modified by deformation. Laramide deformation produced complex gravity faults and keystone grabens. Uranium deposits were formed following major Laramide deformation. The genesis of these deposits is attributable to either the leaching of granites or the leaching of overlying tuffaceous sediments during the Tertiary. Production of metals and industrial minerals has been limited, although some gold, copper, silver, tungsten, beryl, feldspar, and lithium ore have been shipped from Copper Mountain. A large amount of uranium was produced from the Copper Mountain district in the 1950s

  8. Dextran-Catechin: An anticancer chemically-modified natural compound targeting copper that attenuates neuroblastoma growth

    Science.gov (United States)

    Vittorio, Orazio; Brandl, Miriam; Cirillo, Giuseppe; Kimpton, Kathleen; Hinde, Elizabeth; Gaus, Katharina; Yee, Eugene; Kumar, Naresh; Duong, Hien; Fleming, Claudia; Haber, Michelle; Norris, Murray; Boyer, Cyrille; Kavallaris, Maria

    2016-01-01

    Neuroblastoma is frequently diagnosed at advanced stage disease and treatment includes high dose chemotherapy and surgery. Despite the use of aggressive therapy survival rates are poor and children that survive their disease experience long term side effects from their treatment, highlighting the need for effective and less toxic therapies. Catechin is a natural polyphenol with anti-cancer properties and limited side effects, however its mechanism of action is unknown. Here we report that Dextran-Catechin, a conjugated form of catechin that increases serum stability, is preferentially and markedly active against neuroblastoma cells having high levels of intracellular copper, without affecting non-malignant cells. Copper transporter 1 (CTR1) is the main transporter of copper in mammalian cells and it is upregulated in neuroblastoma. Functional studies showed that depletion of CTR1 expression reduced intracellular copper levels and led to a decrease in neuroblastoma cell sensitivity to Dextran-Catechin, implicating copper in the activity of this compound. Mechanistically, Dextran-Catechin was found to react with copper, inducing oxidative stress and decreasing glutathione levels, an intracellular antioxidant and regulator of copper homeostasis. In vivo, Dextran-Catechin significantly attenuated tumour growth in human xenograft and syngeneic models of neuroblastoma. Thus, Dextran-Catechin targets copper, inhibits tumour growth, and may be valuable in the treatment of aggressive neuroblastoma and other cancers dependent on copper for their growth. PMID:27374085

  9. Change of heavy metal speciation, mobility, bioavailability, and ecological risk during potassium ferrate treatment of waste-activated sludge.

    Science.gov (United States)

    Yu, Ming; Zhang, Jian; Tian, Yu

    2018-05-01

    The effects of potassium ferrate treatment on the heavy metal concentrations, speciation, mobility, bioavailability, and environmental risk in waste-activated sludge (WAS) at various dosages of potassium ferrate and different treatment times were investigated. Results showed that the total concentrations of all metals (except Cd) were decreased slightly after treatment and the order of metal concentrations in WAS and treated waste-activated sludge (TWAS) was Mg > Zn > Cu > Cr > Pb > Ni > Cd. Most heavy metals in WAS remained in TWAS after potassium ferrate treatment with metal residual rates over 67.8% in TWAS. The distribution of metal speciation in WAS was affected by potassium ferrate treatment. The bioavailability and the mobility of heavy metals (except Mg) in TWAS were mitigated, compared to those in WAS. Meanwhile, the environmental risk of heavy metals (except Pb and Cu) was alleviated after potassium ferrate treatment.

  10. Preparation of copper and silicon/copper powders by a gas ...

    Indian Academy of Sciences (India)

    Administrator

    aCentre for Materials Research, Department of Imaging and Applied Physics, ... Copper powder; Si/Cu composite particle; gas evaporation–condensation method; characteriza- tion. .... from the liquid metal surface, the mixed vapour of copper.

  11. Posttranslational regulation of copper transporters

    NARCIS (Netherlands)

    van den Berghe, P.V.E.

    2009-01-01

    The transition metal copper is an essential cofactor for many redox-active enzymes, but excessive copper can generate toxic reactive oxygen species. Copper homeostasis is maintained by highly conserved proteins, to balance copper uptake, distribution and export on the systemic and cellular level.

  12. Biodynamics of copper oxide nanoparticles and copper ions in an oligochaete - Part II: Subcellular distribution following sediment exposure

    Energy Technology Data Exchange (ETDEWEB)

    Thit, Amalie, E-mail: athitj@ruc.dk [U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025 (United States); Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde DK-4000 (Denmark); Ramskov, Tina, E-mail: tramskov@hotmail.com [U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025 (United States); Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde DK-4000 (Denmark); Croteau, Marie-Noële, E-mail: mcroteau@usgs.gov [Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde DK-4000 (Denmark); Selck, Henriette [U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025 (United States); Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde DK-4000 (Denmark)

    2016-11-15

    Highlights: • L. variegatus was exposed to sediment spiked with either aqueous Cu or nanoparticulate CuO. • Both aqueous and nanoparticulate Cu were marginally accumulated by L. variegatus. • Elimination of Cu accumulated from both forms was limited. • The subcellular distribution of accumulated Cu varied between Cu forms. • The use of a tracer, greater exposure concentration and duration are recommended. - Abstract: The use and likely incidental release of metal nanoparticles (NPs) is steadily increasing. Despite the increasing amount of published literature on metal NP toxicity in the aquatic environment, very little is known about the biological fate of NPs after sediment exposures. Here, we compare the bioavailability and subcellular distribution of copper oxide (CuO) NPs and aqueous Cu (Cu-Aq) in the sediment-dwelling worm Lumbriculus variegatus. Ten days (d) sediment exposure resulted in marginal Cu bioaccumulation in L. variegatus for both forms of Cu. Bioaccumulation was detected because isotopically enriched {sup 65}Cu was used as a tracer. Neither burrowing behavior or survival was affected by the exposure. Once incorporated into tissue, Cu loss was negligible over 10 d of elimination in clean sediment (Cu elimination rate constants were not different from zero). With the exception of day 10, differences in bioaccumulation and subcellular distribution between Cu forms were either not detectable or marginal. After 10 d of exposure to Cu-Aq, the accumulated Cu was primarily partitioned in the subcellular fraction containing metallothionein-like proteins (MTLP, ≈40%) and cellular debris (CD, ≈30%). Cu concentrations in these fractions were significantly higher than in controls. For worms exposed to CuO NPs for 10 d, most of the accumulated Cu was partitioned in the CD fraction (≈40%), which was the only subcellular fraction where the Cu concentration was significantly higher than for the control group. Our results indicate that L. variegatus

  13. RECYCLING OF SCRAP AND WASTE OF COPPER AND COPPER ALLOYS IN BELARUS

    Directory of Open Access Journals (Sweden)

    S. L. Rovin

    2017-01-01

    Full Text Available The construction of a new casting and mechanical shop of unitary enterprise «Tsvetmet» in December 2015 has allowed to solve the complex problem of processing and utilization of scrap and wastes of copper and copper alloys in the Republic of Belarus. The technological processes of fire refinement of copper and manufacturing of copper rod from scrap and production of brass rod by hot pressing (extrusion of the continuously casted round billet have been mastered for the first time in the Republic of Belarus.

  14. Arsenic in industrial waste water from copper production technological process

    Directory of Open Access Journals (Sweden)

    Biljana Jovanović

    2013-12-01

    Full Text Available Investigation of arsenic in industrial waste water is of a great importance for environment. Discharge of untreated waste water from a copper production process results in serious pollution of surface water, which directly affects flora and fauna, as well as humans. There is a need for efficient and environmentally acceptable treament of waste waters containing heavy metals and arsenic. The paper presents an analyisis of the waste water from The Copper Smelter which is discharged into the Bor river. The expected arsenic content in treated waste water after using HDS procedure is also presented.

  15. Bioretention storm water control measures decrease the toxicity of copper roof runoff.

    Science.gov (United States)

    LaBarre, William J; Ownby, David R; Rader, Kevin J; Lev, Steven M; Casey, Ryan E

    2017-06-01

    The present study evaluated the ability of 2 different bioretention storm water control measures (SCMs), planter boxes and swales, to decrease the toxicity of sheet copper (Cu) roofing runoff to Daphnia magna. The present study quantified changes in storm water chemistry as it passed through the bioretention systems and utilized the biotic ligand model (BLM) to assess whether the observed D. magna toxicity could be predicted by variations found in water chemistry. Laboratory toxicity tests were performed using select storm samples with D. magna cultured under low ionic strength conditions that were appropriate for the low ionic strength of the storm water samples being tested. The SCMs decreased toxicity of Cu roof runoff in both the BLM results and the storm water bioassays. Water exiting the SCMs was substantially higher than influent runoff in pH, ions, alkalinity, and dissolved organic carbon and substantially lower in total and dissolved Cu. Daphnids experienced complete mortality in untreated runoff from the Cu roof (the SCM influent); however, for planter and swale effluents, survival averaged 86% and 95%, respectively. The present study demonstrated that conventional bioretention practices, including planter boxes and swales, are capable of decreasing the risk of adverse effects from sheet Cu roof runoff to receiving systems, even before considering dilution of effluents in those receiving systems and associated further reductions in copper bioavailability. Environ Toxicol Chem 2017;36:1680-1688. © 2016 SETAC. © 2016 SETAC.

  16. Investigation of the possibility of copper recovery from the flotation tailings by acid leaching.

    Science.gov (United States)

    Antonijević, M M; Dimitrijević, M D; Stevanović, Z O; Serbula, S M; Bogdanovic, G D

    2008-10-01

    The flotation tailings pond of the Bor Copper Mine poses a great ecological problem not only for the town of Bor but also for the surrounding soils and watercourses. Since the old flotation tailings contain about 0.2% of copper on the average, we investigated their leaching with sulphuric acid in the absence and presence of an oxidant. The aim was to determine the leaching kinetics of copper and iron as affected by various factors such as: the pH value of the leach solution, stirring speed, pulp density, particle size, concentration of ferric ions, temperature and time for leaching. The average copper and iron recovery obtained was from 60% to 70% and from 2% to 3%, respectively. These results indicate that the old flotation tailings pond represents an important source of secondary raw material for the extraction of copper and that it should be valorized rather than land reclamation. At the end of the paper, a mechanism of dissolution of copper and iron minerals from the tailings was described.

  17. Bioavailability of Isothiocyanates From Broccoli Sprouts in Protein, Lipid, and Fiber Gels

    NARCIS (Netherlands)

    Oliviero, Teresa; Lamers, Simone; Capuano, Edoardo; Dekker, Matthijs; Verkerk, Ruud

    2018-01-01

    Scope: Optimization of bioavailability of dietary bioactive health-beneficial compounds is as important as increasing their concentration in foods. The aim of this study is to explore the change in bioavailability of isothiocyanates (ITCs) in broccoli sprouts incorporated in protein, fiber, and

  18. Demystifying Controlling Copper Corrosion

    Science.gov (United States)

    The LCR systematically misses the highest health and corrosion risk sites for copper. Additionally, there are growing concerns for WWTP copper in sludges and discharge levels. There are many corrosion control differences between copper and lead. This talk explains the sometimes c...

  19. Analysis of Saprolegnia parasitica Transcriptome following Treatment with Copper Sulfate.

    Directory of Open Access Journals (Sweden)

    Kun Hu

    Full Text Available Massive infection caused by oomycete fungus Saprolegnia parasitica is detrimental to freshwater fish. Recently, we showed that copper sulfate demonstrated good efficacy for controlling S. parasitica infection in grass carp. In this study, we investigated the mechanism of inhibition of S. parasitica growth by copper sulfate by analyzing the transcriptome of copper sulfate-treated S. parasitica. To examine the mechanism of copper sulfate inhibiting S. parasitica, we utilized RNA-seq technology to compare differential gene expression in S. parasitica treated with or without copper sulfate.The total mapped rates of the reads with the reference genome were 90.50% in the control group and 73.50% in the experimental group. In the control group, annotated splice junctions, partial novel splice junctions and complete novel splice junctions were about 83%, 3% and 14%, respectively. In the treatment group, the corresponding values were about 75%, 6% and 19%. Following copper sulfate treatment, a total 310 genes were markedly upregulated and 556 genes were markedly downregulated in S. parasitica. Material metabolism related GO terms including cofactor binding (33 genes, 1,3-beta-D-glucan synthase complex (4 genes, carboxylic acid metabolic process (40 genes were the most significantly enriched. KEGG pathway analysis also determined that the metabolism-related biological pathways were significantly enriched, including the metabolic pathways (98 genes, biosynthesis of secondary metabolites pathways (42 genes, fatty acid metabolism (13 genes, phenylalanine metabolism (7 genes, starch and sucrose metabolism pathway (12 genes. The qRT-PCR results were largely consistent with the RNA-Seq results.Our results indicate that copper sulfate inhibits S. parasitica growth by affecting multiple biological functions, including protein synthesis, energy biogenesis, and metabolism.

  20. Copper Bioleaching in Chile

    OpenAIRE

    Juan Carlos Gentina; Fernando Acevedo

    2016-01-01

    Chile has a great tradition of producing and exporting copper. Over the last several decades, it has become the first producer on an international level. Its copper reserves are also the most important on the planet. However, after years of mineral exploitation, the ease of extracting copper oxides and ore copper content has diminished. To keep the production level high, the introduction of new technologies has become necessary. One that has been successful is bioleaching. Chile had the first...