WorldWideScience

Sample records for affect arsenite oxidase

  1. Multiple controls affect arsenite oxidase gene expression in Herminiimonas arsenicoxydans

    Directory of Open Access Journals (Sweden)

    Coppée Jean-Yves

    2010-02-01

    Full Text Available Abstract Background Both the speciation and toxicity of arsenic are affected by bacterial transformations, i.e. oxidation, reduction or methylation. These transformations have a major impact on environmental contamination and more particularly on arsenic contamination of drinking water. Herminiimonas arsenicoxydans has been isolated from an arsenic- contaminated environment and has developed various mechanisms for coping with arsenic, including the oxidation of As(III to As(V as a detoxification mechanism. Results In the present study, a differential transcriptome analysis was used to identify genes, including arsenite oxidase encoding genes, involved in the response of H. arsenicoxydans to As(III. To get insight into the molecular mechanisms of this enzyme activity, a Tn5 transposon mutagenesis was performed. Transposon insertions resulting in a lack of arsenite oxidase activity disrupted aoxR and aoxS genes, showing that the aox operon transcription is regulated by the AoxRS two-component system. Remarkably, transposon insertions were also identified in rpoN coding for the alternative N sigma factor (σ54 of RNA polymerase and in dnaJ coding for the Hsp70 co-chaperone. Western blotting with anti-AoxB antibodies and quantitative RT-PCR experiments allowed us to demonstrate that the rpoN and dnaJ gene products are involved in the control of arsenite oxidase gene expression. Finally, the transcriptional start site of the aoxAB operon was determined using rapid amplification of cDNA ends (RACE and a putative -12/-24 σ54-dependent promoter motif was identified upstream of aoxAB coding sequences. Conclusion These results reveal the existence of novel molecular regulatory processes governing arsenite oxidase expression in H. arsenicoxydans. These data are summarized in a model that functionally integrates arsenite oxidation in the adaptive response to As(III in this microorganism.

  2. Constitutive arsenite oxidase expression detected in arsenic-hypertolerant Pseudomonas xanthomarina S11.

    Science.gov (United States)

    Koechler, Sandrine; Arsène-Ploetze, Florence; Brochier-Armanet, Céline; Goulhen-Chollet, Florence; Heinrich-Salmeron, Audrey; Jost, Bernard; Lièvremont, Didier; Philipps, Muriel; Plewniak, Frédéric; Bertin, Philippe N; Lett, Marie-Claire

    2015-04-01

    Pseudomonas xanthomarina S11 is an arsenite-oxidizing bacterium isolated from an arsenic-contaminated former gold mine in Salsigne, France. This bacterium showed high resistance to arsenite and was able to oxidize arsenite to arsenate at concentrations up to 42.72 mM As[III]. The genome of this strain was sequenced and revealed the presence of three ars clusters. One of them is located on a plasmid and is organized as an "arsenic island" harbouring an aio operon and genes involved in phosphorous metabolism, in addition to the ars genes. Neither the aioXRS genes nor a specific sigma-54-dependent promoter located upstream of aioBA genes, both involved in regulation of arsenite oxidase expression in other arsenite-oxidizing bacteria, could be identified in the genome. This observation is in accordance with the fact that no difference was observed in expression of arsenite oxidase in P. xanthomarina S11, whether or not the strain was grown in the presence of As[III].

  3. ArxA, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductases

    Science.gov (United States)

    Zargar, Kamrun; Conrad, Alison; Bernick, David L.; Lowe, Todd M.; Stolc, Viktor; Hoeft, Shelley; Oremland, Ronald S.; Stolz, John; Saltikov, Chad W.

    2012-01-01

    Arsenotrophy, growth coupled to autotrophic arsenite oxidation or arsenate respiratory reduction, occurs only in the prokaryotic domain of life. The enzymes responsible for arsenotrophy belong to distinct clades within the DMSO reductase family of molybdenum-containing oxidoreductases: specifically arsenate respiratory reductase, ArrA, and arsenite oxidase, AioA (formerly referred to as AroA and AoxB). A new arsenite oxidase clade, ArxA, represented by the haloalkaliphilic bacterium Alkalilimnicola ehrlichii strain MLHE-1 was also identified in the photosynthetic purple sulfur bacterium Ectothiorhodospira sp. strain PHS-1. A draft genome sequence of PHS-1 was completed and an arx operon similar to MLHE-1 was identified. Gene expression studies showed that arxA was strongly induced with arsenite. Microbial ecology investigation led to the identification of additional arxA-like sequences in Mono Lake and Hot Creek sediments, both arsenic-rich environments in California. Phylogenetic analyses placed these sequences as distinct members of the ArxA clade of arsenite oxidases. ArxA-like sequences were also identified in metagenome sequences of several alkaline microbial mat environments of Yellowstone National Park hot springs. These results suggest that ArxA-type arsenite oxidases appear to be widely distributed in the environment presenting an opportunity for further investigations of the contribution of Arx-dependent arsenotrophy to the arsenic biogeochemical cycle.

  4. The respiratory arsenite oxidase: structure and the role of residues surrounding the rieske cluster.

    Directory of Open Access Journals (Sweden)

    Thomas P Warelow

    Full Text Available The arsenite oxidase (Aio from the facultative autotrophic Alphaproteobacterium Rhizobium sp. NT-26 is a bioenergetic enzyme involved in the oxidation of arsenite to arsenate. The enzyme from the distantly related heterotroph, Alcaligenes faecalis, which is thought to oxidise arsenite for detoxification, consists of a large α subunit (AioA with bis-molybdopterin guanine dinucleotide at its active site and a 3Fe-4S cluster, and a small β subunit (AioB which contains a Rieske 2Fe-2S cluster. The successful heterologous expression of the NT-26 Aio in Escherichia coli has resulted in the solution of its crystal structure. The NT-26 Aio, a heterotetramer, shares high overall similarity to the heterodimeric arsenite oxidase from A. faecalis but there are striking differences in the structure surrounding the Rieske 2Fe-2S cluster which we demonstrate explains the difference in the observed redox potentials (+225 mV vs. +130/160 mV, respectively. A combination of site-directed mutagenesis and electron paramagnetic resonance was used to explore the differences observed in the structure and redox properties of the Rieske cluster. In the NT-26 AioB the substitution of a serine (S126 in NT-26 for a threonine as in the A. faecalis AioB explains a -20 mV decrease in redox potential. The disulphide bridge in the A. faecalis AioB which is conserved in other betaproteobacterial AioB subunits and the Rieske subunit of the cytochrome bc 1 complex is absent in the NT-26 AioB subunit. The introduction of a disulphide bridge had no effect on Aio activity or protein stability but resulted in a decrease in the redox potential of the cluster. These results are in conflict with previous data on the betaproteobacterial AioB subunit and the Rieske of the bc 1 complex where removal of the disulphide bridge had no effect on the redox potential of the former but a decrease in cluster stability was observed in the latter.

  5. Linking microbial oxidation of arsenic with detection and phylogenetic analysis of arsenite oxidase genes in diverse geothermal environments.

    Science.gov (United States)

    Hamamura, N; Macur, R E; Korf, S; Ackerman, G; Taylor, W P; Kozubal, M; Reysenbach, A-L; Inskeep, W P

    2009-02-01

    The identification and characterization of genes involved in the microbial oxidation of arsenite will contribute to our understanding of factors controlling As cycling in natural systems. Towards this goal, we recently characterized the widespread occurrence of aerobic arsenite oxidase genes (aroA-like) from pure-culture bacterial isolates, soils, sediments and geothermal mats, but were unable to detect these genes in all geothermal systems where we have observed microbial arsenite oxidation. Consequently, the objectives of the current study were to measure arsenite-oxidation rates in geochemically diverse thermal habitats in Yellowstone National Park (YNP) ranging in pH from 2.6 to 8, and to identify corresponding 16S rRNA and aroA genotypes associated with these arsenite-oxidizing environments. Geochemical analyses, including measurement of arsenite-oxidation rates within geothermal outflow channels, were combined with 16S rRNA gene and aroA functional gene analysis using newly designed primers to capture previously undescribed aroA-like arsenite oxidase gene diversity. The majority of bacterial 16S rRNA gene sequences found in acidic (pH 2.6-3.6) Fe-oxyhydroxide microbial mats were closely related to Hydrogenobaculum spp. (members of the bacterial order Aquificales), while the predominant sequences from near-neutral (pH 6.2-8) springs were affiliated with other Aquificales including Sulfurihydrogenibium spp., Thermocrinis spp. and Hydrogenobacter spp., as well as members of the Deinococci, Thermodesulfobacteria and beta-Proteobacteria. Modified primers designed around previously characterized and newly identified aroA-like genes successfully amplified new lineages of aroA-like genes associated with members of the Aquificales across all geothermal systems examined. The expression of Aquificales aroA-like genes was also confirmed in situ, and the resultant cDNA sequences were consistent with aroA genotypes identified in the same environments. The aroA sequences

  6. Spatio-temporal detection of the Thiomonas population and the Thiomonas arsenite oxidase involved in natural arsenite attenuation processes in the Carnoulès Acid Mine Drainage

    Directory of Open Access Journals (Sweden)

    Agnès eHovasse

    2016-02-01

    Full Text Available The acid mine drainage (AMD impacted creek of the Carnoulès mine (Southern France is characterized by acid waters with a high heavy metal content. The microbial community inhabiting this AMD was extensively studied using isolation, metagenomic and metaproteomic methods, and the results showed that a natural arsenic (and iron attenuation process involving the arsenite oxidase activity of several Thiomonas strains occurs at this site. A sensitive quantitative Selected Reaction Monitoring (SRM-based proteomic approach was developed for detecting and quantifying the two subunits of the arsenite oxidase and RpoA of two different Thiomonas groups. Using this approach combined with 16S rRNA gene sequence analysis based on pyrosequencing and FISH, it was established here for the first time that these Thiomonas strains are ubiquitously present in minor proportions in this AMD and that they express the key enzymes involved in natural remediation processes at various locations and time points. In addition to these findings, this study also confirms that targeted proteomics applied at the community level can be used to detect weakly abundant proteins in situ.

  7. Effects of co-administration of dietary sodium arsenite and an NADPH oxidase inhibitor on the rat bladder epithelium

    International Nuclear Information System (INIS)

    Arsenite (AsIII), an inorganic arsenical, is a known human carcinogen, inducing tumors of the skin, urinary bladder and lung. It is metabolized to organic methylated arsenicals. Oxidative stress has been suggested as a mechanism for arsenic-induced carcinogenesis. Reactive oxygen species (ROS) can be important factors for carcinogenesis and tumor progression. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is known to produce intracellular ROS, therefore, we investigated the ability of apocynin (acetovanillone), an NADPH oxidase inhibitor, to inhibit the cytotoxicity and regenerative cell proliferation of arsenic in vitro and in vivo. Apocynin had similar effects in reducing the cytotoxicity of AsIII and dimethylarsinous acid (DMAIII) in rat urothelial cells in vitro. When tested at the same concentrations as apocynin, other antioxidants, such as L-ascorbate and N-acetylcysteine, did not inhibit AsIII-induced cytotoxicity but they were more effective at inhibiting DMAIII-induced cytotoxicity compared with apocynin. In vivo, female rats were treated for 3 weeks with 100 ppm AsIII. Immunohistochemical staining for 8-hydroxy-2'-deoxyguanosine (8-OHdG) showed that apocynin reduced oxidative stress partially induced by AsIII treatment on rat urothelium, and significantly reduced the cytotoxicity of superficial cells detected by scanning electron microscopy (SEM). However, based on the incidence of simple hyperplasia and the bromodeoxyuridine (BrdU) labeling index, apocynin did not inhibit AsIII-induced urothelial cell proliferation. These data suggest that the NADPH oxidase inhibitor, apocynin, may have the ability to partially inhibit arsenic-induced oxidative stress and cytotoxicity of the rat bladder epithelium in vitro and in vivo. However, apocynin did not inhibit the regenerative cell proliferation induced by arsenite in a short-term study.

  8. X-ray Crystal Structure of Arsenite-Inhibited Xanthine Oxidase:[mu]-Sulfido,[mu]-Oxo Double Bridge between Molybdenum and Arsenic in the Active Site

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Hongnan; Hall, James; Hille, Russ (UCR)

    2012-10-23

    Xanthine oxidoreductase is a molybdenum-containing enzyme that catalyzes the hydroxylation reaction of sp{sup 2}-hybridized carbon centers of a variety of substrates, including purines, aldehydes, and other heterocyclic compounds. The complex of arsenite-inhibited xanthine oxidase has been characterized previously by UV-vis, electron paramagnetic resonance, and X-ray absorption spectroscopy (XAS), and the catalytically essential sulfido ligand of the square-pyrimidal molybdenum center has been suggested to be involved in arsenite binding through either a {mu}-sulfido,{mu}-oxo double bridge or a single {mu}-sulfido bridge. However, this is contrary to the crystallographically observed single {mu}-oxo bridge between molybdenum and arsenic in the desulfo form of aldehyde oxidoreductase from Desulfovibrio gigas (an enzyme closely related to xanthine oxidase), whose molybdenum center has an oxo ligand replacing the catalytically essential sulfur, as seen in the functional form of xanthine oxidase. Here we use X-ray crystallography to characterize the molybdenum center of arsenite-inhibited xanthine oxidase and solve the structures of the oxidized and reduced inhibition complexes at 1.82 and 2.11 {angstrom} resolution, respectively. We observe {mu}-sulfido,{mu}-oxo double bridges between molybdenum and arsenic in the active sites of both complexes. Arsenic is four-coordinate with a distorted trigonal-pyramidal geometry in the oxidized complex and three-coordinate with a distorted trigonal-planar geometry in the reduced complex. The doubly bridged binding mode is in agreement with previous XAS data indicating that the catalytically essential sulfur is also essential for the high affinity of reduced xanthine oxidoreductase for arsenite.

  9. Diversity and abundance of the arsenite oxidase gene aioA in geothermal areas of Tengchong, Yunnan, China.

    Science.gov (United States)

    Jiang, Zhou; Li, Ping; Jiang, Dawei; Wu, Geng; Dong, Hailiang; Wang, Yanhong; Li, Bing; Wang, Yanxin; Guo, Qinghai

    2014-01-01

    A total of 12 samples were collected from the Tengchong geothermal areas of Yunnan, China, with the goal to assess the arsenite (AsIII) oxidation potential of the extant microbial communities as inferred by the abundance and diversity of the AsIII oxidase large subunit gene aioA relative to geochemical context. Arsenic concentrations were higher (on average 251.68 μg/L) in neutral or alkaline springs than in acidic springs (on average 30.88 μg/L). aioA abundance ranged from 1.63 × 10(1) to 7.08 × 10(3) per ng of DNA and positively correlated with sulfide and the ratios of arsenate (AsV):total dissolved arsenic (AsTot). Based on qPCR estimates of bacterial and archaeal 16S rRNA gene abundance, aioA-harboring organisms comprised as much as ~15% of the total community. Phylogenetically, the major aioA sequences (270 total) in the acidic hot springs (pH 3.3-4.4) were affiliated with Aquificales and Rhizobiales, while those in neutral or alkaline springs (pH 6.6-9.1) were inferred to be primarily bacteria related to Thermales and Burkholderiales. Interestingly, aioA abundance at one site greatly exceeded bacterial 16S rRNA gene abundance, suggesting these aioA genes were archaeal even though phylogenetically these aioA sequences were most similar to the Aquificales. In summary, this study described novel aioA sequences in geothermal features geographically far removed from those in the heavily studied Yellowstone geothermal complex.

  10. Effects of arsenite and UVA-1 radiation on calcineurin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Musson, Ruben E.A., E-mail: rm@ream.nl [Department of Clinical Chemistry, Leiden University Medical Center (Netherlands); Department of Toxicogenetics, Leiden University Medical Center (Netherlands); Mullenders, Leon H.F. [Department of Toxicogenetics, Leiden University Medical Center (Netherlands); Smit, Nico P.M. [Department of Clinical Chemistry, Leiden University Medical Center (Netherlands)

    2012-07-01

    Calcineurin is a Ca{sup 2+}-dependent serine/threonine phosphatase and the target of the immunosuppressive drugs cyclosporin and tacrolimus, which are used in transplant recipients to prevent rejection. Unfortunately, the therapeutic use of this drugs is complicated by a high incidence of skin malignancy, which has set off a number of studies into the role of calcineurin signaling in skin, particularly with respect to cell cycle control and DNA repair. Both UVA1 radiation and arsenic species are known to promote skin cancer development via production of reactive oxygen species. In light of the well-documented sensitivity of calcineurin to oxidative stress, we examined and compared the effects of UVA1 and arsenite on calcineurin signaling. In this paper, we show that physiologically relevant doses of UVA1 radiation and low micromolar concentrations of arsenite strongly inhibit calcineurin phosphatase activity in Jurkat and skin cells and decrease NFAT nuclear translocation in Jurkat cells. The effects on calcineurin signaling could be partly prevented by inhibition of NADPH oxidase in Jurkat cells or increased dismutation of superoxide in Jurkat and skin cells. In addition, both UVA1 and arsenite decreased NF-{kappa}B activity, although at lower concentrations, arsenite enhanced NF-{kappa}B activity. These data indicate that UVA1 and arsenite affect a signal transduction route of growingly acknowledged importance in skin and that calcineurin may serve as a potential link between ROS exposure and impaired tumor suppression.

  11. 三价砷氧化细菌Acidovorax sp.GW2中As(Ⅲ)氧化酶基因和调控序列的克隆鉴定%Isolation and identification of arsenite oxidase gene and regulatory sequences in an arsenite-oxidizing bacterium Acidovorax sp. GW2

    Institute of Scientific and Technical Information of China (English)

    赵凯; 黄银燕; 王倩; 王革娇

    2011-01-01

    Using reverse transcriptase PCR method and a bacterial fosmid library screening, an arsenite oxidase gene cluster were isolated from an arsenite-oxidizing bacterium Acidovorax sp. GW2. There are seven genes including aoxRSXABCD putatively encoding the transcriptional regulator AoxR of a two-component signal transduction system (68% identity), a periplasmic sensor histidine kinase AoxS (55 % identity), a periplasmic binding protein AoxX (55 % identity), arsenite oxidase AoxAB(74 % and 71% identity, respectively), nitroreductase AoxC (46 % identity) and cytochrome c AoxD (63 % identity) respectively. According to the reverse transcriptase PCR experiments,aoxR and aoxS encoding for a two-component system proteins are co-transcribed and located in opposite to structural genes aoxABCD.aoxX and aoxRS are not in the same operon. Functional analyses through gene knock-out of aoxS, aoxX and aoxD showed that aoxS and aoxX are the essential genes in arsenite oxidation of GW2, and the loss of aoxD did not show significant effects on arsenite oxidation.%通过反向PCR和细菌Fosmid文库筛选,克隆得到1株二三价砷[As(Ⅲ)]氧化细菌Acidovorax sp.GW2的As(Ⅲ)氧化酶Aox基因簇,包括aoxRSXABCD 7个基因,分别预测编码双组分信号传导系统转录调控子AoxR(同源性68%),周质感应组氨酸激酶AoxS(同源性55%),周质结合蛋白AoxX(同源性55%),砷氧化酶AoxAB(同源性分别为74%和71%),硝基还原酶AoxC(同源性46%),细胞色素C AoxD(同源性63%).反转录PCR结果显示,编码双组分系统的aoxRS基因共转录,而与之转录方向相反的结构基因aoxABCD处于同一操纵子中,aoxX基因和aoxRS基因不在同一操纵子中.通过对aoxS、aoxX、aoxD的基因敲除功能研究发现aoxS和aoxX基因为GW2三价砷氧化的必需基因,aoxD的功能丧失减慢了三价砷的氧化速率,但非关键基因.

  12. Ozone affects pollen viability and NAD(P)H oxidase release from Ambrosia artemisiifolia pollen

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, Stefania, E-mail: spas@unipg.it [Department of Applied Biology, University of Perugia, Perugia (Italy); Tedeschini, Emma; Frenguelli, Giuseppe [Department of Applied Biology, University of Perugia, Perugia (Italy); Wopfner, Nicole; Ferreira, Fatima [Department of Molecular Biology, CD Laboratory for Allergy Diagnosis and Therapy, University of Salzburg, Salzburg (Austria); D' Amato, Gennaro [Division of Respiratory and Allergic Diseases, ' A. Cardarelli' High Speciality Hospital, Naples (Italy); Ederli, Luisa [Department of Applied Biology, University of Perugia, Perugia (Italy)

    2011-10-15

    Air pollution is frequently proposed as a cause of the increased incidence of allergy in industrialised countries. We investigated the impact of ozone (O{sub 3}) on reactive oxygen species (ROS) and allergen content of ragweed pollen (Ambrosia artemisiifolia). Pollen was exposed to acute O{sub 3} fumigation, with analysis of pollen viability, ROS and nitric oxide (NO) content, activity of nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase, and expression of major allergens. There was decreased pollen viability after O{sub 3} fumigation, which indicates damage to the pollen membrane system, although the ROS and NO contents were not changed or were only slightly induced, respectively. Ozone exposure induced a significant enhancement of the ROS-generating enzyme NAD(P)H oxidase. The expression of the allergen Amb a 1 was not affected by O{sub 3}, determined from the mRNA levels of the major allergens. We conclude that O{sub 3} can increase ragweed pollen allergenicity through stimulation of ROS-generating NAD(P)H oxidase. - Highlights: > O{sub 3} reduces the viability of ragweed pollen. > ROS and allergens of ragweed pollen were not affected by O{sub 3} exposure. > O{sub 3} enhances the activity of the ROS-generating enzyme NAD(P)H oxidase. > O{sub 3} increases ragweed pollen allergenicity through NAD(P)H-oxidase stimulation. - This study focuses on the effects of the atmospheric pollutant ozone on ROS content and NAD(P)H oxidase activity of ragweed pollen grains.

  13. Sorption of Arsenite onto Mackinawite Coated Sand

    Science.gov (United States)

    Gallegos, T. J.; Hayes, K. F.; Abriola, L. M.

    2004-05-01

    Arsenic contamination of groundwater is a widespread problem affecting aquifers in the United States as well as abroad. Recent strengthening of the US EPA MCL for arsenic has prompted the need for technology capable of removing both arsenite and arsenate from solution. Arsenite, the more toxic form of arsenic, is more difficult to remove from anoxic zones in the subsurface. Studies by others have demonstrated the affinity of some types of iron sulfides for arsenite, such as troilite, pyrite, amorphous iron sulfide and mackinawite. However, these studies have not provided a comprehensive investigation of the macroscopic behavior of arsenite in the presence of crystalline mackinawite in a form that can be readily applied to real-world treatment technologies. This study examines the behavior of arsenite in the presence of mackinawite coated sand. PH edge results demonstrate that arsenite sorption onto mackinawite coated sand increases with increasing pH, reaching maximum removal at pH 10. Arsenite removal, albeit slight, occurring below pH 5 is independent of pH indicative of a different removal mechanism. Isotherm studies show that at low concentrations, removal is Langmuirian in nature. Arsenite sorption abruptly converts to linear behavior at high concentrations, possibly attributed to the saturation of the monolayer. Ionic strength effects were assessed by comparing pH edge data developed for three different concentrations of NaCl background electrolyte solution. Increases in ionic strength enhance the removal of arsenite from solution, suggesting possible inner-sphere surface complexation removal mechanisms. Information gathered in this study can be used to further develop surface complexation models to describe and predict reactivity of arsenite in the presence of mackinawite coated sands in anoxic regions. Mackinawite coated sands investigated here may provide a feasible reactive medium for implementation in above-ground sorption reactors or subsurface

  14. Peroxisomal Polyamine Oxidase and NADPH-Oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Efthimios A. Andronis

    2014-04-01

    Full Text Available Homeostasis of reactive oxygen species (ROS in the intracellular compartments is of critical importance as ROS have been linked with nearly all cellular processes and more importantly with diseases and aging. PAs are nitrogenous molecules with an evolutionary conserved role in the regulation of metabolic and energetic status of cells. Recent evidence also suggests that polyamines (PA are major regulators of ROS homeostasis. In Arabidopsis the backconversion of the PAs spermidine (Spd and spermine (Spm to putrescine (Put and Spd, respectively is catalyzed by two peroxisomal PA oxidases (AtPAO. However, the physiological role of this pathway remains largely elusive. Here we explore the role of peroxisomal PA backconversion and in particular that catalyzed by the highly expressed AtPAO3 in the regulation of ROS homeostasis and mitochondrial respiratory burst. Exogenous PAs exert an NADPH-oxidase dependent stimulation of oxygen consumption, with Spd exerting the strongest effect. This increase is attenuated by treatment with the NADPH-oxidase blocker diphenyleneiodonium iodide (DPI. Loss-of-function of AtPAO3 gene results to increased NADPH-oxidase-dependent production of superoxide anions (O2.-, but not H2O2, which activate the mitochondrial alternative oxidase pathway (AOX. On the contrary, overexpression of AtPAO3 results to an increased but balanced production of both H2O2 and O2.-. These results suggest that the ratio of O2.-/H2O2 regulates respiratory chain in mitochondria, with PA-dependent production of O2.- by NADPH-oxidase tilting the balance of electron transfer chain in favor of the AOX pathway. In addition, AtPAO3 seems to be an important component in the regulating module of ROS homeostasis, while a conserved role for PA backconversion and ROS across kingdoms is discussed.

  15. Xanthine dehydrogenase and aldehyde oxidase impact plant hormone homeostasis and affect fruit size in 'Hass' avocado.

    Science.gov (United States)

    Taylor, Nicky J; Cowan, A Keith

    2004-04-01

    The contribution of xanthine dehydrogenase (XDH, EC 1.1.1.204) to fruit size was investigated using the normal and small-fruit variants of Persea americana Mill. cv. 'Hass'. Inhibition of XDH by treatment of normal fruit, in the linear phase of growth (phase II), with allopurinol (Allo) arrested fruit growth. Adenine (Ade), a less effective inhibitor of this enzyme, also arrested fruit growth when applied in phase II and slowed fruit growth when applied in phase III. A time-course study on the activity of XDH in mesocarp tissue from normal and small fruit showed that maximum activity occurred late in phase II and that the peak in activity was absent in mesocarp of the small fruit. Feeding Ade to growing fruit in phase III caused a transient decline in fruit growth (measured as change in fruit length). Thereafter, growth resumed although fruit size was irreversibly affected. Treatment of fruit with Ade and Ade-containing cytokinins altered activity of another molybdenum enzyme, aldehyde oxidase (EC 1.2.3.1). Cytokinin oxidase was induced by cytokinin and auxin. Purine catabolism via hypoxanthine/xanthine was operative in normal fruit and in mesocarp from the small-fruit variant and as expected, Allo treatment caused accumulation of xanthine and adenine. In the absence of an increase in XDH during growth of the small-fruit phenotype, low levels of Ade were interpreted as resulting from respiration-enhanced adenylate depletion. Stress and/or pathogen induction of the alternative oxidase pathway is proposed as a possible cause.

  16. The Arx Anaerobic Arsenite-Oxidization Pathway Is Conserved In Halomonas And Ectothiorhodospira Strains Isolated From Big Soda Lake, Nevada

    OpenAIRE

    Conrad, Alison Tory

    2014-01-01

    Microorganisms play a significant role in environmental arsenic cycling. The most recent discovery to the ever growing collection of known arsenic metabolisms is photosynthesis-linked arsenite oxidation (photoarsenotrophy). However, it is poorly understood and has only been identified in thermal springs on Paoha Island of Mono Lake, CA. The arsenite oxidase ArxA is thought to be responsible for the oxidation of arsenite in photoarsenotrophy. However, the first and only isolated photoarsenotro...

  17. Arsenite transport in plants.

    Science.gov (United States)

    Ali, Waqar; Isayenkov, Stanislav V; Zhao, Fang-Jie; Maathuis, Frans J M

    2009-07-01

    Arsenic is a metalloid which is toxic to living organisms. Natural occurrence of arsenic and human activities have led to widespread contamination in many areas of the world, exposing a large section of the human population to potential arsenic poisoning. Arsenic intake can occur through consumption of contaminated crops and it is therefore important to understand the mechanisms of transport, metabolism and tolerance that plants display in response to arsenic. Plants are mainly exposed to the inorganic forms of arsenic, arsenate and arsenite. Recently, significant progress has been made in the identification and characterisation of proteins responsible for movement of arsenite into and within plants. Aquaporins of the NIP (nodulin26-like intrinsic protein) subfamily were shown to transport arsenite in planta and in heterologous systems. In this review, we will evaluate the implications of these new findings and assess how this may help in developing safer and more tolerant crops.

  18. Arsenite interferes with protein folding and triggers formation of protein aggregates in yeast.

    Science.gov (United States)

    Jacobson, Therese; Navarrete, Clara; Sharma, Sandeep K; Sideri, Theodora C; Ibstedt, Sebastian; Priya, Smriti; Grant, Chris M; Christen, Philipp; Goloubinoff, Pierre; Tamás, Markus J

    2012-11-01

    Several metals and metalloids profoundly affect biological systems, but their impact on the proteome and mechanisms of toxicity are not fully understood. Here, we demonstrate that arsenite causes protein aggregation in Saccharomyces cerevisiae. Various molecular chaperones were found to be associated with arsenite-induced aggregates indicating that this metalloid promotes protein misfolding. Using in vivo and in vitro assays, we show that proteins in the process of synthesis/folding are particularly sensitive to arsenite-induced aggregation, that arsenite interferes with protein folding by acting on unfolded polypeptides, and that arsenite directly inhibits chaperone activity. Thus, folding inhibition contributes to arsenite toxicity in two ways: by aggregate formation and by chaperone inhibition. Importantly, arsenite-induced protein aggregates can act as seeds committing other, labile proteins to misfold and aggregate. Our findings describe a novel mechanism of toxicity that may explain the suggested role of this metalloid in the etiology and pathogenesis of protein folding disorders associated with arsenic poisoning.

  19. Evidence for a genetic association between alleles of monoamine oxidase A gene and bipolar affective disorder

    Energy Technology Data Exchange (ETDEWEB)

    Lim, L.C.C.; Sham, P.; Castle, D. [Institute of Psychiatry, London (United Kingdom)] [and others

    1995-08-14

    We present evidence of a genetic association between bipolar disorder and alleles at 3 monoamine oxidase A (MAOA) markers, but not with alleles of a monoamine oxidase B (MAOB) polymorphism. The 3 MAOA markers, including one associated with low MAOA activity, show strong allelic association with each other but surprisingly not with MAOB. Our results are significantly only for females, though the number of males in our sample is too small to draw any definite conclusions. Our data is consistent with recent reports of reduced MAOA activity in patients with abnormal behavioral phenotypes. The strength of the association is weak, but significant, which suggests that alleles at the MAOA locus contribute to susceptibility to bipolar disorder rather than being a major determinant. 58 refs., 1 fig., 3 tabs.

  20. Induction of apoptotic death and retardation of neuronal differentiation of human neural stem cells by sodium arsenite treatment

    International Nuclear Information System (INIS)

    Chronic arsenic toxicity is a global health problem that affects more than 100 million people worldwide. Long-term health effects of inorganic sodium arsenite in drinking water may result in skin, lung and liver cancers and in severe neurological abnormalities. We investigated in the present study whether sodium arsenite affects signaling pathways that control cell survival, proliferation and neuronal differentiation of human neural stem cells (NSC). We demonstrated that the critical signaling pathway, which was suppressed by sodium arsenite in NSC, was the protective PI3K–AKT pathway. Sodium arsenite (2–4 μM) also caused down-regulation of Nanog, one of the key transcription factors that control pluripotency and self-renewal of stem cells. Mitochondrial damage and cytochrome-c release induced by sodium arsenite exposure was followed by initiation of the mitochondrial apoptotic pathway in NSC. Beside caspase-9 and caspase-3 inhibitors, suppression of JNK activity decreased levels of arsenite-induced apoptosis in NSC. Neuronal differentiation of NSC was substantially inhibited by sodium arsenite exposure. Overactivation of JNK1 and ERK1/2 and down-regulation of PI3K–AKT activity induced by sodium arsenite were critical factors that strongly affected neuronal differentiation. In conclusion, sodium arsenite exposure of human NSC induces the mitochondrial apoptotic pathway, which is substantially accelerated due to the simultaneous suppression of PI3K–AKT. Sodium arsenite also negatively affects neuronal differentiation of NSC through overactivation of MEK–ERK and suppression of PI3K–AKT. - Highlights: ► Arsenite induces the mitochondrial apoptotic pathway in human neural stem cells. ► Arsenite-induced apoptosis is strongly upregulated by suppression of PI3K–AKT. ► Arsenite-induced apoptosis is strongly down-regulated by inhibition of JNK–cJun. ► Arsenite negatively affects neuronal differentiation by inhibition of PI3K–AKT

  1. Induction of apoptotic death and retardation of neuronal differentiation of human neural stem cells by sodium arsenite treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Vladimir N., E-mail: vni3@columbia.edu [Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, NY 10032 (United States); Hei, Tom K. [Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, NY 10032 (United States)

    2013-04-01

    Chronic arsenic toxicity is a global health problem that affects more than 100 million people worldwide. Long-term health effects of inorganic sodium arsenite in drinking water may result in skin, lung and liver cancers and in severe neurological abnormalities. We investigated in the present study whether sodium arsenite affects signaling pathways that control cell survival, proliferation and neuronal differentiation of human neural stem cells (NSC). We demonstrated that the critical signaling pathway, which was suppressed by sodium arsenite in NSC, was the protective PI3K–AKT pathway. Sodium arsenite (2–4 μM) also caused down-regulation of Nanog, one of the key transcription factors that control pluripotency and self-renewal of stem cells. Mitochondrial damage and cytochrome-c release induced by sodium arsenite exposure was followed by initiation of the mitochondrial apoptotic pathway in NSC. Beside caspase-9 and caspase-3 inhibitors, suppression of JNK activity decreased levels of arsenite-induced apoptosis in NSC. Neuronal differentiation of NSC was substantially inhibited by sodium arsenite exposure. Overactivation of JNK1 and ERK1/2 and down-regulation of PI3K–AKT activity induced by sodium arsenite were critical factors that strongly affected neuronal differentiation. In conclusion, sodium arsenite exposure of human NSC induces the mitochondrial apoptotic pathway, which is substantially accelerated due to the simultaneous suppression of PI3K–AKT. Sodium arsenite also negatively affects neuronal differentiation of NSC through overactivation of MEK–ERK and suppression of PI3K–AKT. - Highlights: ► Arsenite induces the mitochondrial apoptotic pathway in human neural stem cells. ► Arsenite-induced apoptosis is strongly upregulated by suppression of PI3K–AKT. ► Arsenite-induced apoptosis is strongly down-regulated by inhibition of JNK–cJun. ► Arsenite negatively affects neuronal differentiation by inhibition of PI3K–AKT.

  2. The genetic basis of anoxygenic photosynthetic arsenite oxidation

    Science.gov (United States)

    Hernandez-Maldonado, Jamie; Sanchez-Sedillo, Benjamin; Stoneburner, Brendon; Boren, Alison; Miller, Laurence G.; McCann, Shelley; Rosen, Michael R.; Oremland, Ronald S.; Saltikov, Chad W.

    2016-01-01

    “Photoarsenotrophy”, the use of arsenite as an electron donor for anoxygenic photosynthesis, is thought to be an ancient form of phototrophy along with the photosynthetic oxidation of Fe(II), H2S, H2, and NO2-. Photoarsenotrophy was recently identified from Paoha Island's (Mono Lake, CA) arsenic-rich hot springs. The genomes of several photoarsenotrophs revealed a gene cluster, arxB2AB1CD, where arxA is predicted to encode for the sole arsenite oxidase. The role of arxA in photosynthetic arsenite oxidation was confirmed by disrupting the gene in a representative photoarsenotrophic bacterium, resulting in the loss of light-dependent arsenite oxidation. In situ evidence of active photoarsenotrophic microbes was supported by arxA mRNA detection for the first time, in red-pigmented microbial mats within the hot springs of Paoha Island. This work expands on the genetics for photosynthesis coupled to new electron donors and elaborates on known mechanisms for arsenic metabolism, thereby highlighting the complexities of arsenic biogeochemical cycling.

  3. Inhibition of polyamine oxidase activity affects tumor development during the maize-Ustilago maydis interaction.

    Science.gov (United States)

    Jasso-Robles, Francisco Ignacio; Jiménez-Bremont, Juan Francisco; Becerra-Flora, Alicia; Juárez-Montiel, Margarita; Gonzalez, María Elisa; Pieckenstain, Fernando Luis; García de la Cruz, Ramón Fernando; Rodríguez-Kessler, Margarita

    2016-05-01

    Ustilago maydis is a biotrophic plant pathogenic fungus that leads to tumor development in the aerial tissues of its host, Zea mays. These tumors are the result of cell hypertrophy and hyperplasia, and are accompanied by the reprograming of primary and secondary metabolism of infected plants. Up to now, little is known regarding key plant actors and their role in tumor development during the interaction with U. maydis. Polyamines are small aliphatic amines that regulate plant growth, development and stress responses. In a previous study, we found substantial increases of polyamine levels in tumors. In the present work, we describe the maize polyamine oxidase (PAO) gene family, its contribution to hydrogen peroxide (H2O2) production and its possible role in tumor development induced by U. maydis. Histochemical analysis revealed that chlorotic lesions and maize tumors induced by U. maydis accumulate H2O2 to significant levels. Maize plants inoculated with U. maydis and treated with the PAO inhibitor 1,8-diaminooctane exhibit a notable reduction of H2O2 accumulation in infected tissues and a significant drop in PAO activity. This treatment also reduced disease symptoms in infected plants. Finally, among six maize PAO genes only the ZmPAO1, which encodes an extracellular enzyme, is up-regulated in tumors. Our data suggest that H2O2 produced through PA catabolism by ZmPAO1 plays an important role in tumor development during the maize-U. maydis interaction.

  4. Sterol Methyl Oxidases Affect Embryo Development via Auxin-Associated Mechanisms.

    Science.gov (United States)

    Zhang, Xia; Sun, Shuangli; Nie, Xiang; Boutté, Yohann; Grison, Magali; Li, Panpan; Kuang, Susu; Men, Shuzhen

    2016-05-01

    Sterols are essential molecules for multiple biological processes, including embryogenesis, cell elongation, and endocytosis. The plant sterol biosynthetic pathway is unique in the involvement of two distinct sterol 4α-methyl oxidase (SMO) families, SMO1 and SMO2, which contain three and two isoforms, respectively, and are involved in sequential removal of the two methyl groups at C-4. In this study, we characterized the biological functions of members of the SMO2 gene family. SMO2-1 was strongly expressed in most tissues during Arabidopsis (Arabidopsis thaliana) development, whereas SMO2-2 showed a more specific expression pattern. Although single smo2 mutants displayed no obvious phenotype, the smo2-1 smo2-2 double mutant was embryonic lethal, and the smo2-1 smo2-2/+ mutant was dwarf, whereas the smo2-1/+ smo2-2 mutant exhibited a moderate phenotype. The phenotypes of the smo2 mutants resembled those of auxin-defective mutants. Indeed, the expression of DR5rev:GFP, an auxin-responsive reporter, was reduced and abnormal in smo2-1 smo2-2 embryos. Furthermore, the expression and subcellular localization of the PIN1 auxin efflux facilitator also were altered. Consistent with these observations, either the exogenous application of auxin or endogenous auxin overproduction (YUCCA9 overexpression) partially rescued the smo2-1 smo2-2 embryonic lethality. Surprisingly, the dwarf phenotype of smo2-1 smo2-2/+ was completely rescued by YUCCA9 overexpression. Gas chromatography-mass spectrometry analysis revealed a substantial accumulation of 4α-methylsterols, substrates of SMO2, in smo2 heterozygous double mutants. Together, our data suggest that SMO2s are important for correct sterol composition and function partially through effects on auxin accumulation, auxin response, and PIN1 expression to regulate Arabidopsis embryogenesis and postembryonic development. PMID:27006488

  5. Monoamine Oxidase A (MAOA) Genotype Predicts Greater Aggression Through Impulsive Reactivity to Negative Affect

    Science.gov (United States)

    Chester, David S.; DeWall, C. Nathan; Derefinko, Karen J.; Estus, Steven; Peters, Jessica R.; Lynam, Donald R.; Jiang, Yang

    2015-01-01

    Low functioning MAOA genotypes have been reliably linked to increased reactive aggression, yet the psychological mechanisms of this effect remain largely unknown. The low functioning MAOA genotype’s established link to diminished inhibition and greater reactivity to conditions of negative affect suggest that negative urgency, the tendency to act impulsively in the context of negative affect, may fill this mediating role. Such MAOA carriers may have higher negative urgency, which may in turn predict greater aggressive responses to provocation. To test these hypotheses, 277 female and male participants were genotyped for an MAOA SNP yet to be linked to aggression (rs1465108), and then reported their negative urgency and past aggressive behavior. We replicated the effect of the low functioning MAOA genotype on heightened aggression, which was mediated by greater negative urgency. These results suggest that disrupted serotonergic systems predispose individuals towards aggressive behavior by increasing impulsive reactivity to negative affect. PMID:25637908

  6. Transient congenital hypothyroidism caused by compound heterozygous mutations affecting the NADPH-oxidase domain of DUOX2.

    Science.gov (United States)

    Yoshizawa-Ogasawara, Atsuko; Abe, Kiyomi; Ogikubo, Sayaka; Narumi, Satoshi; Hasegawa, Tomonobu; Satoh, Mari

    2016-03-01

    Here, we describe three cases of loss-of-function mutations in the nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase (NOX) domain of dual oxidase 2 (DUOX2) occurring along with concurrent missense mutations in thyroid peroxidase (TPO), leading to transient congenital hypothyroidism (CH). Three Japanese boys with nonconsanguineous parents were diagnosed with CH during their neonatal screenings. All patients presented with moderate-to-severe neonatal hypothyroidism and were diagnosed with transient CH after re-evaluation of thyroid function. Two siblings were compound heterozygous for p.[R1110Q]+[Y1180X] in DUOX2; one of them was also heterozygous for p.[R361L] in TPO. The third patient was compound heterozygous for p.[L1160del]+[R1334W] in DUOX2 and heterozygous for p.[P883S] in TPO. This is the first report of a de novo L1160del mutation affecting the DUOX2 gene and of the novel mutations Y1180X in DUOX2 and R361L in TPO. R1110Q and L1160del were found to reduce H2O2 production (5%-9%, p<0.01), while Y1180X, which introduces a premature stop codon, did not confer detectable H2O2 production (-0.7%±0.6%, p<0.01). Moreover, R1334W, a missense mutation possibly affecting electron transfer, led to reduced H2O2 production (24%±0.9%, p<0.01) in vitro, and R1110Q and R1334W resulted in reduced protein expression. Y1180X was detected in a 120 kDa truncated form, whereas L1160del expression was maintained. Further, R361L, a novel missense mutation in TPO, caused partial reduction in peroxidase activity (20.6%±0.8%, p=0.01), whereas P883S, a missense variant, increased it (133.7%±2.8%, p=0.02). The protein expression levels in the case of R361L and P883S were maintained. In conclusion, we provide clinical and in vitro demonstrations of different functional defects and phenotypic heterogeneity in the same thyroid hormonogenesis pathway. PMID:26565538

  7. Embryotoxicity of arsenite and arsenate

    International Nuclear Information System (INIS)

    The distribution of 74As-labelled and arsenite in pregnant mice and a monkey has been studied by autoradiography and gamma counting of isolated tissues, and their in vitro toxicity to a chondrogenic system has been investigated. With both arsenic forms, given as single intravenous injections to the mother, the 74As-arsenic appeared to pass the mouse placenta relatively freely and approximately to the same extent. The retention time in material tissues including the placenta was, however, around three times longer with arsenite than with arsenate. In early gestation, high activity was registered in the embryonic neuroepithelium, which correlates well with reported CNS malformations in rodents. In late gestation, the distribution pattern was more like that in the adults. Accumulation in skin and squamous epithelia of the upper gastrointestinal tract (oral cavity, oesophagus and oesophageal region of stomach) dominated the distribution pucture, especially at a long survival interval. Arsenate, but not arsenite, showed affinity for the calcified areas of the skeleton. A marmoset monkey in late gestation receiving arsenite showed a somewhat lower rate of placental transfer than the mice. Skin and liver had the highest concentrations (at 8 hrs), both in mother and foetuses. This species is known not to methylate arsenic, resulting in stronger binding and longer retention times of arsenic as compared with other species. The stronger binding in maternal tissues may possibly explain the lower rate of placental transfer. Arsenite was shown to inhibit cartilage formation in a chick limb bud mesenchymal spot culture system (ED50 approximately 5-10μM) while arsenate seemed to be without effect at concentrations up to 200 μM (highest tested). Arsenate, however, showed a potential of the arsenite toxicity. (author)

  8. Characterization of arsenite tolerant Halomonas sp. Alang-4, originated from heavy metal polluted shore of Gulf of Cambay.

    Science.gov (United States)

    Jain, Raina; Jha, Sanjay; Mahatma, Mahesh K; Jha, Anamika; Kumar, G Naresh

    2016-01-01

    Arsenite [As(III)]-oxidizing bacteria were isolated from heavy metal contaminated shore of Gulf of Cambay at Alang, India. The most efficient bacterial strain Alang-4 could tolerate up to 15 mM arsenite [As(III)] and 200 mM of arsenate [As(V)]. Its 16S rRNA gene sequence was 99% identical to the 16S rRNA genes of genus Halomonas (Accession no. HQ659187). Arsenite oxidase enzyme localized on membrane helped in conversion of As(III) to As(V). Arsenite transporter genes (arsB, acr3(1) and acr3(2)) assisted in extrusion of arsenite from Halomonas sp. Alang-4. Generation of ROS in response to arsenite stress was alleviated by higher activities of catalase, ascorbate peroxidase, superoxide dismutase and glutathione S-transferase enzymes. Down-regulation in the specific activities of nearly all dehydrogenases of carbon assimilatory pathway viz., glucose-6-phosphate, pyruvate, α-ketoglutarate, isocitrate and malate dehydrogenases, was observed in presence of As(III), whereas, the specific activities of phosphoenol pyruvate carboxylase, pyruvate carboxylase and isocitrate lyase enzymes were found to increase two times in As(III) treated cells. The results suggest that in addition to efficient ars operon, alternative pathways of carbon utilization exist in the marine bacterium Halomonas sp. Alang-4 to overcome the toxic effects of arsenite on its dehydrogenase enzymes. PMID:26865328

  9. Inhibition of mitotic-specific histone phophorylation by sodium arsenite

    Energy Technology Data Exchange (ETDEWEB)

    Cobo, J.M. [Universidad de Alcala de Henares, Madrid (Spain); Valdez, J.G.; Gurley, L.R. [Los Alamos National Lab., NM (United States)

    1994-10-01

    Synchronized cultures of Chinese hamster cells (line CHO) were used to measure the effects of 10{mu}M sodium arsenite on histone phosphorylation. This treatment caused cell proliferation to be temporarily arrested, after which the cells spontaneously resumed cell proliferation in a radiomimetric manner. Immediately following treatment, it was found that sodium arsenite affected only mitotic-specific HI and H3 phosphorylations. Neither interphase, nor mitotic, H2A and H4 phosphorylations were affected, nor was interphase HI Phosphorylation affected. The phosphorylation of HI was inhibited only in mitosis, reducing HI phosphorylation to 38.1% of control levels, which was the level of interphase HI phosphorylation. The phosphorylation of both H3 variants was inhibited in mitosis, the less hydrophobic H3 to 19% and the more hydrophobic H3 to 24% of control levels. These results suggest that sodium arsenite may inhibite cell proliferation by interfering with the cyclin B/p34{sup cdc2} histone kinase activity which is thought to play a key role in regulating the cell cycle. It has been proposed by our laboratory that HI and H3 phosphorylations play a role in restructuring interphase chromatin into metaphase chromosomes. Interference of this process by sodium arsenite may lead to structurally damaged chromosomes resulting in the increased cancer risks known to be produced by arsenic exposure from the environment.

  10. In Absence of the Cellular Prion Protein, Alterations in Copper Metabolism and Copper-Dependent Oxidase Activity Affect Iron Distribution

    Science.gov (United States)

    Gasperini, Lisa; Meneghetti, Elisa; Legname, Giuseppe; Benetti, Federico

    2016-01-01

    Essential elements as copper and iron modulate a wide range of physiological functions. Their metabolism is strictly regulated by cellular pathways, since dysregulation of metal homeostasis is responsible for many detrimental effects. Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and prion diseases are characterized by alterations of metal ions. These neurodegenerative maladies involve proteins that bind metals and mediate their metabolism through not well-defined mechanisms. Prion protein, for instance, interacts with divalent cations via multiple metal-binding sites and it modulates several metal-dependent physiological functions, such as S-nitrosylation of NMDA receptors. In this work we focused on the effect of prion protein absence on copper and iron metabolism during development and adulthood. In particular, we investigated copper and iron functional values in serum and several organs such as liver, spleen, total brain and isolated hippocampus. Our results show that iron content is diminished in prion protein-null mouse serum, while it accumulates in liver and spleen. Our data suggest that these alterations can be due to impairments in copper-dependent cerulopalsmin activity which is known to affect iron mobilization. In prion protein-null mouse total brain and hippocampus, metal ion content shows a fluctuating trend, suggesting the presence of homeostatic compensatory mechanisms. However, copper and iron functional values are likely altered also in these two organs, as indicated by the modulation of metal-binding protein expression levels. Altogether, these results reveal that the absence of the cellular prion protein impairs copper metabolism and copper-dependent oxidase activity, with ensuing alteration of iron mobilization from cellular storage compartments. PMID:27729845

  11. Modified expression of alternative oxidase in transgenic tomato and petunia affects the level of tomato spotted wilt virus resistance

    Directory of Open Access Journals (Sweden)

    Ma Hao

    2011-10-01

    Full Text Available Abstract Background Tomato spotted wilt virus (TSWV has a very wide host range, and is transmitted in a persistent manner by several species of thrips. These characteristics make this virus difficult to control. We show here that the over-expression of the mitochondrial alternative oxidase (AOX in tomato and petunia is related to TSWV resistance. Results The open reading frame and full-length sequence of the tomato AOX gene LeAox1au were cloned and introduced into tomato 'Healani' and petunia 'Sheer Madness' using Agrobacterium-mediated transformation. Highly expressed AOX transgenic tomato and petunia plants were selfed and transgenic R1 seedlings from 10 tomato lines and 12 petunia lines were used for bioassay. For each assayed line, 22 to 32 tomato R1 progeny in three replications and 39 to 128 petunia progeny in 13 replications were challenged with TSWV. Enzyme-Linked Immunosorbent Assays showed that the TSWV levels in transgenic tomato line FKT4-1 was significantly lower than that of wild-type controls after challenge with TSWV. In addition, transgenic petunia line FKP10 showed significantly less lesion number and smaller lesion size than non-transgenic controls after inoculation by TSWV. Conclusion In all assayed transgenic tomato lines, a higher percentage of transgenic progeny had lower TSWV levels than non-transgenic plants after challenge with TSWV, and the significantly increased resistant levels of tomato and petunia lines identified in this study indicate that altered expression levels of AOX in tomato and petunia can affect the levels of TSWV resistance.

  12. D-amino acid oxidase activator gene (DAOA) variation affects cerebrospinal fluid homovanillic acid concentrations in healthy Caucasians

    DEFF Research Database (Denmark)

    Andreou, Dimitrios; Saetre, Peter; Werge, Thomas;

    2012-01-01

    The D-amino acid oxidase activator (DAOA) protein regulates the function of D-amino oxidase (DAO), an enzyme that catalyzes the oxidative deamination of D-3,4-dihydroxyphenylalanine (D-DOPA) and D-serine. D-DOPA is converted to L-3,4-DOPA, a precursor of dopamine, whereas D-serine participates in...... dopamine turnover in healthy individuals, suggesting that disturbed dopamine turnover is a possible mechanism behind the observed associations between genetic variation in DAOA and behavioral phenotypes in humans....

  13. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain.

    Science.gov (United States)

    Ma, Jian Feng; Yamaji, Naoki; Mitani, Namiki; Xu, Xiao-Yan; Su, Yu-Hong; McGrath, Steve P; Zhao, Fang-Jie

    2008-07-22

    Arsenic poisoning affects millions of people worldwide. Human arsenic intake from rice consumption can be substantial because rice is particularly efficient in assimilating arsenic from paddy soils, although the mechanism has not been elucidated. Here we report that two different types of transporters mediate transport of arsenite, the predominant form of arsenic in paddy soil, from the external medium to the xylem. Transporters belonging to the NIP subfamily of aquaporins in rice are permeable to arsenite but not to arsenate. Mutation in OsNIP2;1 (Lsi1, a silicon influx transporter) significantly decreases arsenite uptake. Furthermore, in the rice mutants defective in the silicon efflux transporter Lsi2, arsenite transport to the xylem and accumulation in shoots and grain decreased greatly. Mutation in Lsi2 had a much greater impact on arsenic accumulation in shoots and grain in field-grown rice than Lsi1. Arsenite transport in rice roots therefore shares the same highly efficient pathway as silicon, which explains why rice is efficient in arsenic accumulation. Our results provide insight into the uptake mechanism of arsenite in rice and strategies for reducing arsenic accumulation in grain for enhanced food safety.

  14. Electrochemical and XAFS Studies of Effects of Carbonate on the Oxidation of Arsenite

    Energy Technology Data Exchange (ETDEWEB)

    Kim,J.; Korshin, G.; Frenkel, A.; Velichenko, A.

    2006-01-01

    Measurements of electrochemical (EC) arsenite oxidation demonstrated that the arsenite oxidation current increased in the presence of carbonate while the potential of the onset of EC arsenite oxidation exhibited a strong shift toward less positive values. Examination of pH and total carbonate concentration effects on the EC arsenite oxidation parameters showed that they were affected solely by the concentration of carbonate ion CO{sub 3}{sup 2-}, which appeared to form relatively weak mono- and dicarbonate complexes with arsenite. The EC activity of these complexes was determined to be almost an order of magnitude higher than that of free arsenite. However, X-ray absorption fine-structure (XAFS) measurements did not show any changes in the properties of the As(III) inner complexation shell associated with the presence of the bound carbonate ions. It was accordingly concluded that the strength of bonds between the bound carbonate and As(III) is close to that for As(III)-OH- interactions. The acceleration of the oxidation of carbonate-As(III) complexes was hypothesized to be associated with an additional pathway of the formation of As(IV) intermediates, in which the carbonate group present in the As(III) inner shell provides an electron to form a bound carbonate radical and also a good leaving group for facile cleavage from the transient As(IV) species.

  15. Extraction of rice bran extract and some factors affecting its inhibition of polyphenol oxidase activity and browning in potato.

    Science.gov (United States)

    Boonsiripiphat, Kunnikar; Theerakulkait, Chockchai

    2009-01-01

    The extraction conditions of rice bran extract (RBE), including extraction ratio, extraction time, and extraction temperature, were studied in relation to enzymatic browning inhibition in potato. The inhibitory effect of RBE on potato polyphenol oxidase (PPO) activity and its total phenolic compound content were highest at an extraction ratio of 1:3 (rice bran:water, w/v), extraction time of 30 min, and extraction temperature of 40 degrees C. RBE showed the most inhibitory effect on PPO activity at pH 6.5. However, the inhibitory effect of RBE on potato PPO activity and its total phenolic compound content were decreased at the higher temperature and longer time.

  16. Induction of apoptotic death and retardation of neuronal differentiation of human neural stem cells by sodium arsenite treatment

    OpenAIRE

    Ivanov, Vladimir N.; Hei, Tom K.

    2012-01-01

    Chronic arsenic toxicity is a global health problem that affects more than 100 million people worldwide. Long-term health effects of inorganic sodium arsenite in drinking water may result in skin, lung and liver cancer and severe neurological abnormalities. We investigated in the present study whether sodium arsenite affects signaling pathways that control cell survival, proliferation and neuronal differentiation of human neural stem cells (NSC). We demonstrated that the critical signaling pa...

  17. Developmental mechanisms of arsenite toxicity in zebrafish (Danio rerio) embryos

    Energy Technology Data Exchange (ETDEWEB)

    Li Dan [Department of Genetics, National Research Institute for Family Planning, Beijing (China); Graduate School of Peking Union Medical College, Beijing (China); Lu Cailing [Department of Genetics, National Research Institute for Family Planning, Beijing (China); Wang Ju; Hu Wei; Cao Zongfu; Sun Daguang [Department of Genetics, National Research Institute for Family Planning, Beijing (China); Graduate School of Peking Union Medical College, Beijing (China); Xia Hongfei [Department of Genetics, National Research Institute for Family Planning, Beijing (China); Ma Xu [Department of Genetics, National Research Institute for Family Planning, Beijing (China) and Graduate School of Peking Union Medical College, Beijing (China) and Department of Reproductive Genetics, WHO Collaborative Center for Research in Human Reproduction, Beijing (China)], E-mail: genetic@263.net.cn

    2009-02-19

    Arsenic usually accumulates in soil, water and airborne particles, from which it is taken up by various organisms. Exposure to arsenic through food and drinking water is a major public health problem affecting some countries. At present there are limited laboratory data on the effects of arsenic exposure on early embryonic development and the mechanisms behind its toxicity. In this study, we used zebrafish as a model system to investigate the effects of arsenite on early development. Zebrafish embryos were exposed to a range of sodium arsenite concentrations (0-10.0 mM) between 4 and 120 h post-fertilization (hpf). Survival and early development of the embryos were not obviously influenced by arsenite concentrations below 0.5 mM. However, embryos exposed to higher concentrations (0.5-10.0 mM) displayed reduced survival and abnormal development including delayed hatching, retarded growth and changed morphology. Alterations in neural development included weak tactile responses to light (2.0-5.0 mM, 30 hpf), malformation of the spinal cord and disordered motor axon projections (2.0 mM, 48 hpf). Abnormal cardiac function was observed as bradycardia (0.5-2.0 mM, 60 hpf) and altered ventricular shape (2.0 mM, 48 hpf). Furthermore, altered cell proliferation (2.0 mM, 24 hpf) and apoptosis status (2.0 mM, 24 and 48 hpf), as well as abnormal genomic DNA methylation patterning (2.0 mM, 24 and 48 hpf) were detected in the arsenite-treated embryos. All of these indicate a possible relationship between arsenic exposure and developmental failure in early embryogenesis. Our studies suggest that the negative effects of arsenic on vertebrate embryogenesis are substantial.

  18. ARSENITE INDUCTION OF HEME OXYGENASE AS A BIOMARKER

    Science.gov (United States)

    ARSENITE INDUCTION OF HEME OXYGENASE AS A BIOMARKER Useful biomarkers of arsenic effects in both experimental animals and humans are needed. Arsenate and arsenite are good inducers of rat hepatic and renal heme oxygenase (HO); monomethylarsonic acid (MMA) and dimethylarsi...

  19. Arsenite toxicity and uptake rate of rice (Oryza sativa L.) in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Holger, E-mail: hoffmann@bgt.uni-hannover.de [Institute of Plant Nutrition, Leibniz University of Hannover, Herrenhaeuser Strasse 2, D-30419 Hannover (Germany); Schenk, Manfred K., E-mail: schenk@pflern.uni-hannover.de [Institute of Plant Nutrition, Leibniz University of Hannover, Herrenhaeuser Strasse 2, D-30419 Hannover (Germany)

    2011-10-15

    Toxicity threshold of arsenite on intact rice seedlings was determined and arsenite uptake characteristics were investigated using non-toxic concentrations of arsenite. The arsenite toxicity threshold was 2.4 {mu}M arsenite which reduced growth by 10% (EC{sub 10}). The two highest arsenite levels induced wilting of seedlings and reduced both, transpiration rate and net photosynthetic rate. Arsenic content in plant tissue increased up to 10.7 {mu}M arsenite and then declined with increasing arsenite concentration in the treatment solution. The contents of Si, P, K, and of micronutrients Cu, Fe, Mn and Zn in shoot d.m. were reduced by arsenite levels {>=} 5.3 {mu}M. In the non-toxic range, arsenite uptake rate was linearly related to arsenite concentration. High arsenite levels reduced growth without being taken up which might be due to increasing binding of arsenite to proteins at the outer side of the plasmalemma. - Highlights: > Arsenite toxicity and uptake rate were investigated with intact rice plants. > Arsenite toxicity threshold was 2.4 {mu}M arsenite. > Uptake rate was linearly related to arsenite concentration in the non-toxic range. > Arsenite concentrations above 10.6 {mu}M decreased arsenic content in plant matter. > Arsenite impaired uptake of arsenite, water and Si, P, K, Cu, Fe, Mn and Zn. - Uptake of arsenite, water, and nutrients by rice seedlings was impaired by arsenite concentrations higher than the toxicity threshold of 2.4 {mu}M.

  20. Effects of cultivation conditions on the uptake of arsenite and arsenic chemical species accumulated by Pteris vittata in hydroponics.

    Science.gov (United States)

    Hatayama, Masayoshi; Sato, Takahiko; Shinoda, Kozo; Inoue, Chihiro

    2011-03-01

    The physiological responses of the arsenic-hyperaccumulator, Pteris vittata, such as arsenic uptake and chemical transformation in the fern, have been investigated. However, a few questions remain regarding arsenic treatment in hydroponics. Incubation conditions such as aeration, arsenic concentration, and incubation period might affect those responses of P. vittata in hydroponics. Arsenite uptake was low under anaerobic conditions, as previously reported. However, in an arsenite uptake experiment, phosphorous (P) starvation-dependent uptake of arsenate was observed under aerobic conditions. Time course-dependent analysis of arsenite oxidation showed that arsenite was gradually oxidized to arsenate during incubation. Arsenite oxidation was not observed in any of the control conditions, such as exposure to a nutrient solution or to culture medium only, or with the use of dried root; arsenite oxidation was only observed when live root was used. This result suggests that sufficient aeration allows the rhizosphere system to oxidize arsenite and enables the fern to efficiently take up arsenite as arsenate. X-ray absorption near edge structure (XANES) analyses showed that long-duration exposure to arsenic using a hydroponic system led to the accumulation of arsenate as the dominant species in the root tips, but not in the whole roots, partly because up-regulation of arsenate uptake by P starvation of the fern was caused and retained by long-time incubation. Analysis of concentration-dependent arsenate uptake by P. vittata showed that the uptake switched from a high-affinity transport system to a low-affinity system at high arsenate concentrations, which partially explains the increased arsenate abundance in the whole root.

  1. Lysyl oxidase in colorectal cancer

    DEFF Research Database (Denmark)

    Cox, Thomas R; Erler, Janine T

    2013-01-01

    Colorectal cancer is the third most prevalent form of cancer worldwide and fourth-leading cause of cancer-related mortality, leading to ~600,000 deaths annually, predominantly affecting the developed world. Lysyl oxidase is a secreted, extracellular matrix-modifying enzyme previously suggested...... to act as a tumor suppressor in colorectal cancer. However, emerging evidence has rapidly implicated lysyl oxidase in promoting metastasis of solid tumors and in particular colorectal cancer at multiple stages, affecting tumor cell proliferation, invasion, and angiogenesis. This emerging research has...... stimulated significant interest in lysyl oxidase as a strong candidate for developing and deploying inhibitors as functional efficacious cancer therapeutics. In this review, we discuss the rapidly expanding body of knowledge concerning lysyl oxidase in solid tumor progression, highlighting recent...

  2. Second-order modeling of arsenite transport in soils

    Science.gov (United States)

    Zhang, Hua; Magdi Selim, H.

    2011-11-01

    Rate limited processes including kinetic adsorption-desorption can greatly impact the fate and behavior of toxic arsenic compounds in heterogeneous soils. In this study, miscible displacement column experiments were carried out to investigate the extent of reactivity during transport of arsenite in soils. Arsenite breakthrough curves (BTCs) of Olivier and Windsor soils exhibited strong retardation with diffusive effluent fronts followed by slow release or tailing during leaching. Such behavior is indicative of the dominance of kinetic retention reactions for arsenite transport in the soil columns. Sharp decrease or increase in arsenite concentration in response to flow interruptions (stop-flow) further verified that non-equilibrium conditions are dominant. After some 40-60 pore volumes of continued leaching, 30-70% of the applied arsenite was retained by the soil in the columns. Furthermore, continued arsenite slow release for months was evident by the high levels of residual arsenite concentrations observed during leaching. In contrast, arsenite transport in a reference sand material exhibited no retention where complete mass recovery in the effluent solution was attained. A second-order model (SOM) which accounts for equilibrium, reversible, and irreversible retention mechanisms was utilized to describe arsenite transport results from the soil columns. Based on inverse and predictive modeling results, the SOM model successfully depicted arsenite BTCs from several soil columns. Based on inverse and predictive modeling results, a second-order model which accounts for kinetic reversible and irreversible reactions is recommended for describing arsenite transport in soils.

  3. NADPH Oxidases in Vascular Pathology

    OpenAIRE

    Konior, Anna; Schramm, Agata; Czesnikiewicz-Guzik, Marta; Tomasz J. Guzik

    2014-01-01

    Significance: Reactive oxygen species (ROS) play a critical role in vascular disease. While there are many possible sources of ROS, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases play a central role. They are a source of “kindling radicals,” which affect other enzymes, such as nitric oxide synthase endothelial nitric oxide synthase or xanthine oxidase. This is important, as risk factors for atherosclerosis (hypertension, diabetes, hypercholesterolemia, and smoking) regulate the ...

  4. Biotransformation of arsenite and bacterial aox activity in drinking water produced from surface water of floating houses: Arsenic contamination in Cambodia.

    Science.gov (United States)

    Chang, Jin-Soo

    2015-11-01

    The potential arsenite bioteansformation activity of arsenic was investigated by examining bacterial arsenic arsenite-oxidizing gene such as aoxS, aoxR, aoxA, aoxB, aoxC, and aoxD in high arsenic-contaminated drinking water produced from the surface water of floating houses. There is a biogeochemical cycle of activity involving arsenite oxidase aox system and the ars (arsenic resistance system) gene operon and aoxR leader gene activity in Alcaligenes faecalis SRR-11 and aoxS leader gene activity in Achromobacter xylosoxidans TSL-66. Batch experiments showed that SRR-11 and TSL-66 completely oxidized 1 mM of As (III) to As (V) within 35-40 h. The leaders of aoxS and aoxR are important for gene activity, and their effects in arsenic bioremediation and mobility in natural water has a significant ecological role because it allows arsenite oxidase in bacteria to control the biogeochemical cycle of arsenic-contaminated drinking water produced from surface water of floating houses.

  5. The Pho4 transcription factor mediates the response to arsenate and arsenite in Candida albicans.

    Science.gov (United States)

    Urrialde, Verónica; Prieto, Daniel; Pla, Jesús; Alonso-Monge, Rebeca

    2015-01-01

    Arsenate (As (V)) is the dominant form of the toxic metalloid arsenic (As). Microorganisms have consequently developed mechanisms to detoxify and tolerate this kind of compounds. In the present work, we have explored the arsenate sensing and signaling mechanisms in the pathogenic fungus Candida albicans. Although mutants impaired in the Hog1 or Mkc1-mediated pathways did not show significant sensitivity to this compound, both Hog1 and Mkc1 became phosphorylated upon addition of sodium arsenate to growing cells. Hog1 phosphorylation upon arsenate challenge was shown to be Ssk1-dependent. A screening designed for the identification of transcription factors involved in the arsenate response identified Pho4, a transcription factor of the myc-family, as pho4 mutants were susceptible to As (V). The expression of PHO4 was shortly induced in the presence of sodium arsenate in a Hog1-independent manner. Pho4 level affects Hog1 phosphorylation upon As (V) challenge, suggesting an indirect relationship between Pho4 activity and signaling in C. albicans. Pho4 also mediates the response to arsenite as revealed by the fact that pho4 defective mutants are sensitive to arsenite and Pho4 becomes phosphorylated upon sodium arsenite addition. Arsenite also triggers Hog1 phosphorylation by a process that is, in this case, independent of the Ssk1 kinase. These results indicate that the HOG pathway mediates the response to arsenate and arsenite in C. albicans and that the Pho4 transcription factor can differentiate among As (III), As (V) and Pi, triggering presumably specific responses. PMID:25717325

  6. Regulation of Arsenite Oxidation by the Phosphate Two-Component System PhoBR in Halomonas sp. HAL1

    OpenAIRE

    Fang eChen; Yajing eCao; Sha eWei; Yanzhi eLi; Xiangyang eLi; Qian eWang; Gejiao eWang

    2015-01-01

    Previously, the expression of arsenite [As(III)] oxidase genes aioBA was reported to be regulated by a three-component regulatory system, AioXSR, in a number of As(III)-oxidizing bacterial strains. However, the regulation mechanism is still unknown when aioXSR genes are absent in some As(III)-oxidizing bacterial genomes, such as in Halomonas sp. HAL1. In this study, transposon mutagenesis and gene knock-out mutation were performed, and two mutants, HAL1-phoR931 and HAL1-△phoB, were obtained i...

  7. Regulation of arsenite oxidation by the phosphate two-component system PhoBR in Halomonas sp. HAL1

    OpenAIRE

    Chen, Fang; Cao, Yajing; Wei, Sha; Li, Yanzhi; Li, Xiangyang; Wang, Qian; Wang, Gejiao

    2015-01-01

    Previously, the expression of arsenite [As(III)] oxidase genes aioBA was reported to be regulated by a three-component regulatory system, AioXSR, in a number of As(III)-oxidizing bacterial strains. However, the regulation mechanism is still unknown when aioXSR genes are absent in some As(III)-oxidizing bacterial genomes, such as in Halomonas sp. HAL1. In this study, transposon mutagenesis and gene knock-out mutation were performed, and two mutants, HAL1-phoR 931 and HAL1-▵phoB, were obtained ...

  8. Le schisme Arsenite (1265-1310: Entre akribeia et oikonomia

    Directory of Open Access Journals (Sweden)

    Tudorie Ionuс-Alexandru

    2011-01-01

    Full Text Available By analyzing the Byzantine sources, the author presents a thorough picture of the Arsenite faction and the internal schism occurred in the Byzantine society as a result of their actions. Beside their uncompromising position towards emperor Michael VIII Palaiologos, always supported with spiritual arguments, the Arsenites also had concrete political-religious interests, making them an authentic political party.

  9. Whole-cell arsenite biosensor using photosynthetic bacterium Rhodovulum sulfidophilum. Rhodovulum sulfidophilum as an arsenite biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Hiroyuki; Wakabayashi, Masato; Yamashiro, Hidenori; Isoda, Katsuhiro; Kondoh, Masuo; Kawase, Masaya; Yagi, Kiyohito [Osaka Univ., Suita, Osaka (Japan). Graduate School of Pharmaceutical Sciences; Maeda, Isamu [Utsunomiya Univ. (Japan). Faculty of Agriculture; Miyasaka, Hitoshi [Kansai Electric Power Co., Sourakugun, Kyoto (Japan). Environmental Research Center

    2006-11-15

    An arsenite biosensor plasmid was constructed in Escherichia coli by inserting the operator/promoter region of the ars operon and the arsR gene from E. coli and the crtA gene, which is responsible for carotenoid synthesis in the photosynthetic bacterium, Rhodovulum sulfidophilum, into the broad-host-range plasmid vector, pRK415. The biosensor plasmid, pSENSE-As, was introduced into a crtA-deleted mutant strain of R. sulfidophilum (CDM2), which is yellow in culture due to its content of spheroiden (SE) and demethylspheroidene (DMSE). CDM2 containing pSENSE-As changed from yellow to red by the addition of arsenite, which caused enzymatic transformation of SE and DMSE to spheroidenone (SO) and demethylspheroidenone (DMSO). Reverse transcriptase PCR analysis showed that the color change depended on transcription of the crtA gene in pSENSE-As. The color change could be clearly recognized with the naked eye at 5 {mu}g/l arsenite. The biosensor strain did not respond to other metals except for bismuth and antimony, which caused significant accumulation of SO and DMSO in the cells at 60 and 600 {mu}g/l, respectively. This biosensor indicates the presence of arsenite with a bacterial color change without the need to add a special reagent or substrate for color development, enabling this pollutant to be monitored in samples by the naked eye in sunlight, even where electricity is not available. (orig.)

  10. Arsenite Regulates Prolongation of Glycan Residues of Membrane Glycoprotein: A Pivotal Study via Wax Physisorption Kinetics and FTIR Imaging.

    Science.gov (United States)

    Lee, Chih-Hung; Hsu, Chia-Yen; Huang, Pei-Yu; Chen, Ching-Iue; Lee, Yao-Chang; Yu, Hsin-Su

    2016-03-22

    Arsenic exposure results in several human cancers, including those of the skin, lung, and bladder. As skin cancers are the most common form, epidermal keratinocytes (KC) are the main target of arsenic exposure. The mechanisms by which arsenic induces carcinogenesis remains unclear, but aberrant cell proliferation and dysregulated energy homeostasis play a significant role. Protein glycosylation is involved in many key physiological processes, including cell proliferation and differentiation. To evaluate whether arsenite exposure affected protein glycosylation, the alteration of chain length of glycan residues in arsenite treated skin cells was estimated. Herein we demonstrated that the protein glycosylation was adenosine triphosphate (ATP)-dependent and regulated by arsenite exposure by using Fourier transform infrared (FTIR) reflectance spectroscopy, synchrotron-radiation-based FTIR (SR-FTIR) microspectroscopy, and wax physisorption kinetics coupled with focal-plane-array-based FTIR (WPK-FPA-FTIR) imaging. We were able to estimate the relative length of surface protein-linked glycan residues on arsenite-treated skin cells, including primary KC and two skin cancer cell lines, HSC-1 and HaCaT cells. Differential physisorption of wax adsorbents adhered to long-chain (elongated type) and short-chain (regular type) glycan residues of glycoprotein of skin cell samples treated with various concentration of arsenite was measured. The physisorption ratio of beeswax remain/n-pentacosane remain for KC cells was increased during arsenite exposure. Interestingly, this increase was reversed after oligomycin (an ATP synthase inhibitor) pretreatment, suggesting the chain length of protein-linked glycan residues is likely ATP-dependent. This is the first study to demonstrate the elongation and termination of surface protein-linked glycan residues using WPK-FPA-FTIR imaging in eukaryotes. Herein the result may provide a scientific basis to target surface protein-linked glycan

  11. Facultative anoxygenic photosynthesis in cyanobacteria driven by arsenite and sulfide with evidence for the support of nitrogen fixation

    Science.gov (United States)

    Wolfe-Simon, F.; Hoeft, S. E.; Baesman, S. M.; Oremland, R. S.

    2010-12-01

    The rise in atmospheric oxygen (O2) over geologic time is attributed to the evolution and widespread proliferation of oxygenic photosynthesis in cyanobacteria. However, cyanobacteria maintain a metabolic flexibility that may not always result in O2 release. In the environment, cyanobacteria may use a variety of alternative electron donors rather than water that are known to be used by other anoxygenic phototrophs (eg. purple sulfur bacteria) including reduced forms of sulfur, iron, nitrogen, and arsenic. Recent evidence suggests cyanobacteria actively take advantage of at least a few of these alternatives. We used a classical Winogradsky approach to enrich for cyanobacteria from the high salinity, elevated pH and arsenic-enriched waters of Mono Lake (CA). Experiments, optimized for cyanobacteria, revealed light-dependent, anaerobic arsenite-oxidation in sub-cultured sediment-free enrichments dominated by a filamentous cyanobacteria. We isolated and identified the dominant member of this enrichment to be a member of the Oscillatoriales by 16S rDNA. Addition of 1 mM arsenite induced facultative anoxygenic photosynthesis under continuous and circadian light. This isolate also oxidized sulfide under the same light-based conditions. Aerobic conditions elicited no arsenite oxidation in the light or dark and the isolate grew as a typical cyanobacterium using oxygenic photosynthesis. Under near-infrared light (700 nm) there was a direct correlation of enhanced growth with an increase in the rate arsenite or sulfide oxidation suggesting the use of photosystem I. Additionally, to test the wide-spread nature of this metabolism in the Oscillatoriales, we followed similar arsenite- and sulfide-driven facultative anoxygenic photosynthesis as well as nitrogen fixation (C2H2 reduction) in the axenic isolate Oscillatoria sp. CCMP 1731. Future characterization includes axenic isolation of the Mono Lake Oscillatoria sp. as well as the arsenite oxidase responsible for electron

  12. Arsenite suppression of BMP signaling in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Marjorie A.; Qin, Qin [Department of Environmental Toxicology, University of California, Davis, CA 95616-8588 (United States); Hu, Qin; Zhao, Bin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Rice, Robert H., E-mail: rhrice@ucdavis.edu [Department of Environmental Toxicology, University of California, Davis, CA 95616-8588 (United States)

    2013-06-15

    Arsenic, a human skin carcinogen, suppresses differentiation of cultured keratinocytes. Exploring the mechanism of this suppression revealed that BMP-6 greatly increased levels of mRNA for keratins 1 and 10, two of the earliest differentiation markers expressed, a process prevented by co-treatment with arsenite. BMP also stimulated, and arsenite suppressed, mRNA for FOXN1, an important transcription factor driving early keratinocyte differentiation. Keratin mRNAs increased slowly after BMP-6 addition, suggesting they are indirect transcriptional targets. Inhibition of Notch1 activation blocked BMP induction of keratins 1 and 10, while FOXN1 induction was largely unaffected. Supporting a requirement for Notch1 signaling in keratin induction, BMP increased levels of activated Notch1, which was blocked by arsenite. BMP also greatly decreased active ERK, while co-treatment with arsenite maintained active ERK. Inhibition of ERK signaling mimicked BMP by inducing keratin and FOXN1 mRNAs and by increasing active Notch1, effects blocked by arsenite. Of 6 dual-specificity phosphatases (DUSPs) targeting ERK, two were induced by BMP unless prevented by simultaneous exposure to arsenite and EGF. Knockdown of DUSP2 or DUSP14 using shRNAs greatly reduced FOXN1 and keratins 1 and 10 mRNA levels and their induction by BMP. Knockdown also decreased activated Notch1, keratin 1 and keratin 10 protein levels, both in the presence and absence of BMP. Thus, one of the earliest effects of BMP is induction of DUSPs, which increases FOXN1 transcription factor and activates Notch1, both required for keratin gene expression. Arsenite prevents this cascade by maintaining ERK signaling, at least in part by suppressing DUSP expression. - Highlights: • BMP induces FOXN1 transcription. • BMP induces DUSP2 and DUSP14, suppressing ERK activation. • Arsenite suppresses levels of phosphorylated Smad1/5 and FOXN1 and DUSP mRNA. • These actions rationalize arsenite suppression of keratinocyte

  13. Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in Arabidopsis.

    Science.gov (United States)

    Liu, Wen-Ju; Wood, B Alan; Raab, Andrea; McGrath, Steve P; Zhao, Fang-Jie; Feldmann, Jörg

    2010-04-01

    Complexation of arsenite [As(III)] with phytochelatins (PCs) is an important mechanism employed by plants to detoxify As; how this complexation affects As mobility was little known. We used high-resolution inductively coupled plasma-mass spectrometry and accurate mass electrospray ionization-mass spectrometry coupled to HPLC to identify and quantify As(III)-thiol complexes and free thiol compounds in Arabidopsis (Arabidopsis thaliana) exposed to arsenate [As(V)]. As(V) was efficiently reduced to As(III) in roots. In wild-type roots, 69% of As was complexed as As(III)-PC4, As(III)-PC3, and As(III)-(PC2)2. Both the glutathione (GSH)-deficient mutant cad2-1 and the PC-deficient mutant cad1-3 were approximately 20 times more sensitive to As(V) than the wild type. In cad1-3 roots, only 8% of As was complexed with GSH as As(III)-(GS)3 and no As(III)-PCs were detected, while in cad2-1 roots, As(III)-PCs accounted for only 25% of the total As. The two mutants had a greater As mobility, with a significantly higher accumulation of As(III) in shoots and 4.5 to 12 times higher shoot-to-root As concentration ratio than the wild type. Roots also effluxed a substantial proportion of the As(V) taken up as As(III) to the external medium, and this efflux was larger in the two mutants. Furthermore, when wild-type plants were exposed to l-buthionine sulfoximine or deprived of sulfur, both As(III) efflux and root-to-shoot translocation were enhanced. The results indicate that complexation of As(III) with PCs in Arabidopsis roots decreases its mobility for both efflux to the external medium and for root-to-shoot translocation. Enhancing PC synthesis in roots may be an effective strategy to reduce As translocation to the edible organs of food crops.

  14. Gamma radiation affects the anti-Leishmania activity of Bothrops moojeni venom and correlates with L-amino acid oxidase activity

    International Nuclear Information System (INIS)

    Leishmania causes human disfiguring skin disease in endemic areas of Amazon and North Eastern Brazil. Those parasites present a remarkable resistance to most treatments, except those using toxic antimonial salts. We detected a specific anti-Leishmania activity in snake venoms, using an in vitro promastigote assay. In this report, we analyzed the activity of Bothrops moojeni venom against L. Amazonensis, using whole venom or fractions of L-amino acid oxidase (L-AO). Crude venom of B.moojeni, was fractionated by molecular exclusion chromatography. Activity against promastigotes was detected by respiratory oxidative conversion of MTT in a colorimetric assay and L-AO activity was detected by a colorimetric assay with peroxidase and OPD as revealing reagents. Crude venom was irradiated with 500, 1000, and 2000 Gy in a 60 Co gamma radiation source. The venom had an anti-Leishmania activity of 33 pg/promastigote and the active fraction migrates as 100-150 kDa, close to the size described for L-AOs, and also presented L-AO activity. The radiation reduces both the L-AO and anti-Leishmania activity in a dose dependent effect. Those data suggests the anti-Leishmania activity in this venom is closely related to the L-amino acid oxidase activity and also that radiation could be used as a tool to detect specific activities reduction in water solutions, similarly to observed in dry preparations. (author)

  15. Arsenite adsorption on goethite at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kersten, Michael [Environmental Geochemistry Group, Institute of Geosciences, Johannes Gutenberg-University, Mainz 55099 (Germany)], E-mail: kersten@uni-mainz.de; Vlasova, Nataliya [Environmental Geochemistry Group, Institute of Geosciences, Johannes Gutenberg-University, Mainz 55099 (Germany)

    2009-01-15

    Experimental closed-system {delta}T acid-base titrations between 10 deg. C and 75 deg. C were used to constrain a temperature-dependent 1-pK basic Stern model of the goethite surface complexation reactions. Experimental data for the temperature dependence of pH{sub PZC} determined by the one-term Van't Hoff extrapolation yield a value for goethite surface protonation enthalpy of -49.6 kJ mol{sup -1} in good agreement with literature data. Batch titration data between 10 deg. C and 75 deg. C with arsenite concentrations between 10 {mu}M and 100 {mu}M yield adsorption curves, which increases with pH, peak at a pH of 9, and decrease at higher pH values. The slope of this bend becomes steeper with increasing temperature. A 1-pK charge distribution model in combination with a basic Stern layer option could be established for the pH-dependent arsenite adsorption. Formation of two inner-sphere bidentate surface complexes best matched the experimental data in agreement with published EXAFS spectroscopic information. The temperature behaviour of the thus derived intrinsic equilibrium constants can be well represented by the linear Van't Hoff logK{sub T}{sup int} vs. 1/T plot. Adsorption of arsenite on the goethite surface is exothermic (negative {delta}{sub r}H{sub 298} values) and therefore becomes weaker with increasing temperature. Application of the new constants with the aqueous speciation code VMINTEQ predicts that the As(III) concentration in presence of goethite sorbent decreases by 10 times once the hydrothermal solution is cooled from 99 deg. C to 1 deg. C. The model curve matches data from a natural thermal water spring system. The increase of adsorption efficiency for As along the temperature gradient may well serve as an additional process to prevent ecosystem contamination by As-rich water seepage from geothermal energy generation facilities.

  16. Sodium arsenite-induced inhibition of cell proliferation is related to inhibition of IL-2 mRNA expression in mouse activated T cells

    Energy Technology Data Exchange (ETDEWEB)

    Conde, Patricia; Acosta-Saavedra, Leonor C.; Calderon-Aranda, Emma S. [Centro de Investigacion y de Estudios Avanzados, CINVESTAV, Seccion Toxicologia, P.O. Box 14-740, Mexico, D.F. (Mexico); Goytia-Acevedo, Raquel C. [Universidad Juarez del Estado de Durango, Facultad de Medicina, Gomez Palacio, Durango (Mexico)

    2007-04-15

    A proposed mechanism for the As-induced inhibition of cell proliferation is the inhibition of IL-2 secretion. However, the effects of arsenite on IL-2 mRNA expression or on the ERK pathway in activated-T cells have not yet been described. We examined the effect of arsenite on IL-2 mRNA expression, cell activation and proliferation in PHA-stimulated murine lymphocytes. Arsenite (1 and 10 {mu}M) decreased IL-2 mRNA expression, IL-2 secretion and cell proliferation. Arsenite (10 {mu}M) strongly inhibited ERK-phosphorylation. However, the partial inhibition (50%) of IL-2 mRNA produced by 1 {mu}M, consistent with the effects on IL-2 secretion and cell proliferation, could not be explained by the inhibition of ERK-phosphorylation, which was not affected at this concentration. The inhibition of IL-2 mRNA expression caused by 1 {mu}M could be associated to effects on pathways located downstream or parallel to ERK. Arsenite also decreased early activation (surface CD69{sup +} expression) in both CD4{sup +} and CD8{sup +}, and decreased total CD8{sup +} count without significantly affecting CD4{sup +}, supporting that the cellular immune response mediated by cytotoxic T cells is an arsenic target. Thus, our results suggest that arsenite decreases IL-2 mRNA levels and T-cell activation and proliferation. However, further studies on the effects of arsenite on IL-2 gene transcription and IL-2 mRNA stability are needed. (orig.)

  17. Assessing sediment toxicity and arsenite concentration with bacterial and traditional methods

    Energy Technology Data Exchange (ETDEWEB)

    Petaenen, T.; Lyytikaeinen, M.; Lappalainen, J.; Romantschuk, M.; Kukkonen, J.V.K

    2003-04-01

    Different methods can be used to complement each other. - Three sediment samples LP (pool where logs are stored), LF (brook through landfill area), KN (Kaskesniemi) which is in Lake Pyhaeselkae downstream from the mill, were taken from an old sawmill area and one from the unpolluted Lake Hoeytiaeinen. The arsenite concentration was measured by GFAAS and two arsenite biosensing bacterial strains Pseudomonas fluorescens OS8 (pTPT31) and Escherichia coli MC1061 (pTOO31). The toxicity of sediment and pore water samples was determined by using luminescent bacteria (Flash test) and, further, whole sediment toxicity was measured using 10 days growth test and 50 days emergency test with midges (Chironomus riparius). With the flash test a lowered EC50 value was found only in sediment LF (EC50=0.17 v/v%). The Flash test indicated that all sediment samples taken from the sawmill area were highly toxic to bacteria, whereas growth and the emergence of chironomids showed no effects in other samples than LF. The midges tolerate well the contaminated environment. In contrast, bioavailability of arsenite of sediment samples KN and LF was quite high determined using the biosensor-strains in a direct contact assay. The bioavailable fraction of sediment LP was 6-10% out of the total arsenite concentration obtained with GFAAS (0.46-0.77 {mu}g g{sup -1} dw). The results show that the choice of analysis method grossly affects the outcome without any of the method giving an incorrect result. Different methods measure different parameters of a toxic sample and can thus be used to complement each other.

  18. Industrial experiment of copper electrolyte purification by copper arsenite

    Institute of Scientific and Technical Information of China (English)

    ZHENG Ya-jie; XIAO Fa-xin; WANG Yong; LI Chun-hua; XU Wei; JIAN Hong-sheng; MA Yut-ian

    2008-01-01

    Copper electrolyte was purified by copper arsenite that was prepared with As2O3. And electrolysis experiments of purified electrolyte were carried out at 235 and 305 A/m2, respectively. The results show that the yield of copper arsenite is up to 98.64% when the molar ratio of Cu to As is 1.5 in the preparation of copper arsenite. The removal rates of Sb and Bi reach 74.11% and 65.60% respectively after copper arsenite is added in electrolyte. The concentrations of As, Sb and Bi in electrolyte nearly remain constant during electrolysis of 13 d. The appearances of cathode copper obtained at 235 and 305 A/m2 are slippery and even, and the qualification rate is 100% according to the Chinese standard of high-pure cathode copper(GB/T467-97).

  19. Photoinduced Oxidation of Arsenite to Arsenate on Ferrihydrite

    Energy Technology Data Exchange (ETDEWEB)

    N Bhandari; R Reeder; D Strongin

    2011-12-31

    The photochemistry of an aqueous suspension of the iron oxyhydroxide, ferrihydrite, in the presence of arsenite has been investigated using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray absorption near edge structure (XANES), and solution phase analysis. Both ATR-FTIR and XANES show that the exposure of ferrihydrite to arsenite in the dark leads to no change in the As oxidation state, but the exposure of this arsenite-bearing surface, which is in contact with pH 5 water, to light leads to the conversion of the majority of the adsorbed arsenite to the As(V) bearing species, arsenate. Analysis of the solution phase shows that ferrous iron is released into solution during the oxidation of arsenite. The photochemical reaction, however, shows the characteristics of a self-terminating reaction in that there is a significant suppression of this redox chemistry before 10% of the total iron making up the ferrihydrite partitions into solution as ferrous iron. The self-terminating behavior exhibited by this photochemical arsenite/ferrihydrite system is likely due to the passivation of the ferrihydrite surface by the strongly bound arsenate product.

  20. Inorganic arsenite alters macrophage generation from human peripheral blood monocytes.

    Science.gov (United States)

    Sakurai, Teruaki; Ohta, Takami; Fujiwara, Kitao

    2005-03-01

    Inorganic arsenite has caused severe inflammatory chronic poisoning in humans through the consumption of contaminated well water. In this study, we examined the effects of arsenite at nanomolar concentrations on the in vitro differentiation of human macrophages from peripheral blood monocytes. While arsenite was found to induce cell death in a culture system containing macrophage colony stimulating factor (M-CSF), macrophages induced by granulocyte-macrophage CSF (GM-CSF) survived the treatment, but were morphologically, phenotypically, and functionally altered. In particular, arsenite-induced cells expressed higher levels of a major histocompatibility complex (MHC) class II antigen, HLA-DR, and CD14. They were more effective at inducing allogeneic or autologous T cell responses and responded more strongly to bacterial lipopolysaccharide (LPS) by inflammatory cytokine release as compared to cells induced by GM-CSF alone. On the other hand, arsenite-induced cells expressed lower levels of CD11b and CD54 and phagocytosed latex beads or zymosan particles less efficiently. We also demonstrated that the optimum amount of cellular reactive oxygen species (ROS) induced by nM arsenite might play an important role in this abnormal monocyte differentiation. This work may have implications in chronic arsenic poisoning because the total peripheral blood arsenic concentrations of these patients are at nM levels.

  1. Modifications on the hydrogen bond network by mutations of Escherichia coli copper efflux oxidase affect the process of proton transfer to dioxygen leading to alterations of enzymatic activities

    Energy Technology Data Exchange (ETDEWEB)

    Kajikawa, Takao; Kataoka, Kunishige [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan); Sakurai, Takeshi, E-mail: tsakurai@se.kanazawa-u.ac.jp [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan)

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer Proton transfer pathway to dioxygen in CueO was identified. Black-Right-Pointing-Pointer Glu506 is the key amino acid to transport proton. Black-Right-Pointing-Pointer The Ala mutation at Glu506 formed a compensatory proton transfer pathway. Black-Right-Pointing-Pointer The Ile mutation at Glu506 shut down the hydrogen bond network. -- Abstract: CueO has a branched hydrogen bond network leading from the exterior of the protein molecule to the trinuclear copper center. This network transports protons in the four-electron reduction of dioxygen. We replaced the acidic Glu506 and Asp507 residues with the charged and uncharged amino acid residues. Peculiar changes in the enzyme activity of the mutants relative to the native enzyme indicate that an acidic amino acid residue at position 506 is essential for effective proton transport. The Ala mutation resulted in the formation of a compensatory hydrogen bond network with one or two extra water molecules. On the other hand, the Ile mutation resulted in the complete shutdown of the hydrogen bond network leading to loss of enzymatic activities of CueO. In contrast, the hydrogen bond network without the proton transport function was constructed by the Gln mutation. These results exerted on the hydrogen bond network in CueO are discussed in comparison with proton transfers in cytochrome oxidase.

  2. 余甘子果实多酚氧化酶活性影响因素研究%Factors Affecting Activities of Polyphenol Oxidase in Phyllanthus emblica

    Institute of Scientific and Technical Information of China (English)

    郑丽平; 丘春秀; 陈晓虹; 王惠敏; 张福平

    2014-01-01

    多酚氧化酶(PPO)是酶促褐变的关键酶,以余甘子(Phyllanthus emblica)果实PPO为研究对象,采用分光光度法研究余甘子果实PPO作用的最适底物,同时探究反应体系pH、反应温度、底物浓度、抑制剂对余甘子果实中PPO活性的影响。结果表明,余甘子果实PPO作用的最佳底物为焦性没食子酸,最适pH为6.0,最适反应温度为10℃,底物最佳浓度为0.14 mol/L,抗坏血酸(VC)、柠檬酸、亚硫酸钠、L-半胱氨酸4种抑制剂对余甘子果实PPO活性均表现出不同程度的抑制作用,其中抗坏血酸对余甘子果实PPO活性抑制效果最好。%Polyphenol oxidase (PPO﹚ was the key enzyme of enzymatic browning. The optimal substrate to PPO of Phyllanthus emblica and effects of pH,temperature,concentration of substrate and inhibitor on PPO activity were studied with spectrophotometry. The results showed that the optimal substrate was pyrogallic acid. The optimal pH, temperature and concentration of substrate were 6.0, 10℃ and 0.14 mol/L, respectively. Vitamin C, citric acid, Na2SO3 and L-Cysteine had inhibition effects on PPO activity in different degree. Vitamin C had the best inhibition effect on PPO activity in the fruit of phyllanthus emblica.

  3. Affecting Factors of Polyphenol Oxidase Activity in Agaricus bisporus%双孢菇中多酚氧化酶活性的影响因素

    Institute of Scientific and Technical Information of China (English)

    李瑜; 杨国浩; 詹丽娟; 庞凌云; 范会平

    2011-01-01

    以双孢菇为供试原料提取多酚氧化酶(polyphenol oxidase,PPO),以邻苯二酚为底物,采用分光光度法在420nm研究温度、pH值、底物浓度和加热时间对该酶活性的影响;同时探讨抗坏血酸、柠檬酸、氯化钠、EDTA-Na四种抑制剂对双孢菇酶促褐变的抑制效果。结果表明:该酶的最适温度30℃、最适pH5.5、最适底物浓度0.05mol/L,90℃加热处理80s时,该酶几乎全部失活。4种抑制剂对该酶均表现出一定的抑制效果,其中抗坏血酸的抑制效果最好,抑制效果强弱次序为抗坏血酸〉柠檬酸〉氯化钠〉EDTA-Na。%The catalytic activity of polyphenol oxidase(PPO) from Agaricus bisporus towards the substrate catechol was spectrometrically investigated at 420 nm under the influences of temperature,pH,substrate concentration and heating time.The results showed that the optimal temperature,pH and substrate concentration for the reaction of the enzyme were 30 ℃,5.5 and 0.05 mol/L,respectively.The complete enzyme activity was almost lost after 80 s of thermal treatment at 90 ℃.All four enzyme inhibitors investigated indicated inhibitory effects on the enzyme,especially ascorbic acid as the strongest factor,followed by citric acid,sodium chloride and EDTA-Na.

  4. Inhibitory Effects of Sodium Arsenite and Acacia Honey on Acetylcholinesterase in Rats

    OpenAIRE

    Aliyu Muhammad; Oyeronke A Odunola; Michael A. Gbadegesin; Sallau, Abdullahi B.; Ndidi, Uche S.; Ibrahim, Mohammed A.

    2015-01-01

    This study was conducted to investigate the effect of sodium arsenite and Acacia honey on acetylcholinesterase (AChE) activity and electrolytes in the brain and serum of Wistar rats. Male Wistar albino rats in four groups of five rats each were treated with distilled water, sodium arsenite (5 mg/kg body weight), Acacia honey (20% v/v), and sodium arsenite and Acacia honey, daily for one week. The sodium arsenite and Acacia honey significantly P

  5. Arsenite Oxidation and Arsenite Resistance by Bacillus sp. PNKP-S2

    Directory of Open Access Journals (Sweden)

    Pranee Pattanapipitpaisal

    2015-01-01

    Full Text Available Arsenic causes human health problems after accumulate in the body for 10-15 years and arsenite [As(III] is generally regarded as being more mobile and toxic than other oxidation states. In this study, two-hundred and three bacterial strains were isolated from groundwater and soil samples collecting in Ubon Ratchathani Province, Thailand. All strains were screened for arsenic tolerant efficiency at 1-10 mM of sodium arsenite. Eighteen selected strains which had the highest resistance to 10 mM of As(III were further studied for their As(III-oxidizing activity and growth in enrichment and growth medium (EG medium supplemented with 0.58 mM of As(III. It was found that strain PNKP-S2 was able to grow in the medium with As(III as a sole energy source and had 89.11% As(III removal within 48 h. The PCR-based 16S rDNA sequencing analysis revealed that the strain PNKP-S2 was closed relative to Bacillus sp. This is the first report on Bacillus sp. chemolithoautotrophic As(III-oxidizer and this strain could be a potential candidate for application in arsenic remediation of contaminated water.

  6. Sorption and desorption of arsenate and arsenite on calcite

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt; Postma, Diederik Jan; Jakobsen, Rasmus;

    2008-01-01

    The adsorption and desorption of arsenate (As(V)) and arsenite (As(111)) oil calcite was investigated in a series of batch experiments in calcite-equilibrated solutions. The solutions covered a broad range of pH, alkalinity, calcium concentration and ionic strength. The initial arsenic concentrat......The adsorption and desorption of arsenate (As(V)) and arsenite (As(111)) oil calcite was investigated in a series of batch experiments in calcite-equilibrated solutions. The solutions covered a broad range of pH, alkalinity, calcium concentration and ionic strength. The initial arsenic...

  7. The role of the rice aquaporin Lsi1 in arsenite efflux from roots.

    Science.gov (United States)

    Zhao, Fang-Jie; Ago, Yukiko; Mitani, Namiki; Li, Ren-Ying; Su, Yu-Hong; Yamaji, Naoki; McGrath, Steve P; Ma, Jian Feng

    2010-04-01

    *When supplied with arsenate (As(V)), plant roots extrude a substantial amount of arsenite (As(III)) to the external medium through as yet unidentified pathways. The rice (Oryza sativa) silicon transporter Lsi1 (OsNIP2;1, an aquaporin channel) is the major entry route of arsenite into rice roots. Whether Lsi1 also mediates arsenite efflux was investigated. *Expression of Lsi1 in Xenopus laevis oocytes enhanced arsenite efflux, indicating that Lsi1 facilitates arsenite transport bidirectionally. *Arsenite was the predominant arsenic species in arsenate-exposed rice plants. During 24-h exposure to 5 mum arsenate, rice roots extruded arsenite to the external medium rapidly, accounting for 60-90% of the arsenate uptake. A rice mutant defective in Lsi1 (lsi1) extruded significantly less arsenite than the wild-type rice and, as a result, accumulated more arsenite in the roots. By contrast, Lsi2 mutation had little effect on arsenite efflux to the external medium. *We conclude that Lsi1 plays a role in arsenite efflux in rice roots exposed to arsenate. However, this pathway accounts for only 15-20% of the total efflux, suggesting the existence of other efflux transporters.

  8. Prophylactic neuroprotective efficiency of co-administration of Ginkgo biloba and Trifolium pretense against sodium arsenite-induced neurotoxicity and dementia in different regions of brain and spinal cord of rats.

    Science.gov (United States)

    Abdou, Heba M; Yousef, Mokhtar I; El Mekkawy, Desouki A; Al-Shami, Ahmed S

    2016-08-01

    The present study was carried out to evaluate the potential protective role of co-administration of Ginkgo biloba, Trifolium pretenseagainst sodium arsenite-induced neurotoxicity in different parts of brain (Cerebral cortex, Hippocampus, striatum and Hind brain) and in the spinal cord of rats. Sodium arsenite caused impairment in the acquisition and learning in all the behavioral tasks and caused significant increase in tumor necrosis factor-α,thiobarbituric acid-reactive substances andlipid profile, while caused significant decrease in glutathione, total thiol content, total antioxidant capacity, acetylcholinesterase, monoamine oxidase and ATPases activities. These results were confirmed by histopathological, fluorescence and scanning electron microscopy examination of different regions of brain. From these results sodium arsenite-induced neurodegenerative disorder in different regions of brain and spinal cord and this could be mediated through modifying the intracellular brain ions homeostasis, cholinergic dysfunction and oxidative damage. The presence of Ginkgo biloba and/orTrifolium pretense with sodium arsenite minimized its neurological damages. It was pronounced that using Ginkgo biloba and Trifolium pretense in combination was more effective as protective agents compared to use eachone of them alone. PMID:27234133

  9. Detoxification of arsenite through adsorption and oxidative transformation on pyrolusite

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chengshuai; Wang, Xiangqing; Li, Xiujuan; Yang, Jinyan [Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou (China); Cao, Weidong [Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing (China); Qinghai University, Xining (China)

    2012-11-15

    Adsorption and oxidative transformation processes critically affect the mobility and toxicity of arsenic (As) in the environment. In this study, the detoxification of arsenite through adsorption and oxidation by pyrolusite was systematically investigated. Disappearance of aqueous As(III) in the solution can be efficiently achieved using pyrolusite. The As(III) oxidative transformation product arsenate or As(V) was obtained both in the solution and on the pyrolusite surface. The arsenic species adsorbed on pyrolusite exist in two forms: As(III) and As(V). Furthermore, over 64.8% of the adsorbed As cannot be desorbed. They were fixed more stably in the structure of the mineral to achieve a safer removal. Lower As(III) initial concentration increased As(III) detoxification rates. Elevating the reaction pH from 4.5 to 7.9 elicited a slight effect on the disappearance rate of As(III). Efficient As(III) detoxification can be achieved by pyrolusite within the studied pH range. The addition of low-molecular-weight carboxylic acids decreased the detoxification rate of As(III) through competition for active sites on pyrolusite. Co-existing divalent metal ions, such as Ca{sup 2+}, Ni{sup 2+}, and Mn{sup 2+}, also decreased the detoxification rate of As(III). However, the trivalent ion Cr{sup 3+} largely increased the detoxification rate through co-precipitation and adsorption processes. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. In vitro effect of sodium arsenite on Echinococcus granulosus protoscoleces.

    Science.gov (United States)

    Xing, Guoqiang; Wang, Bo; Lei, Ying; Liu, Chunli; Wang, Zhuo; Shi, Hongjuan; Yang, Rentan; Qin, Wenjuan; Jiang, Yufeng; Lv, Hailong

    2016-06-01

    Cystic echinococcosis (CE) caused by the metacestodes of Echinococcus granulosus is an important cosmopolitan zoonosis. Surgery is the main treatment option for CE. Meanwhile, chemotherapy is used as an significant adjunct to surgery. However, the benzimidazole carbamate group and the existing scolicidal agents may not be as effective as hoped. In this study, we aimed to explore the in vitro effect of sodium arsenite (NaAsO2) on Echinococcus granulosus protoscoleces, the causative agents of CE. Protoscoleces of E. granulosus were incubated in vitro with 4, 8, 12, 16, and 20μM NaAsO2. Viability and changes in morphology were investigated by 0.1% eosin staining. The ultrastructural alterations were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Additionally, caspase-3 activity was measured by colorimetric assay. Obvious protoscolicidal effect was seen with NaAsO2 at concentrations of 16μM and 20μM. Protoscolex mortality was 83.24% (16μM) and 100% (20μM) after 6 days post-incubation. SEM showed that the primary site of drug damage was the tegument of the protoscoleces. TEM analysis demonstrated that the internal tissues were severely affected and revealed an increase in the number of lipid droplets and vacuoles after treatment with 16μM NaAsO2. Meanwhile, the caspase-3 activity significantly increased in protoscoleces after 24h of NaAsO2 incubation compared to the untreated controls. Our study demonstrated the clear in vitro scolicidal effect of NaAsO2 against E. granulosus protoscoleces. However, the in vivo efficacy, specific mechanism, and any possible side effects of NaAsO2 remain to be investigated.

  11. Affectivity

    OpenAIRE

    Stenner, Paul; Greco, Monica

    2013-01-01

    The concept of affectivity has assumed central importance in much recent scholarship, and many in the social sciences and humanities now talk of an ‘affective turn’. The concept of affectivity at play in this ‘turn’ remains, however, somewhat vague and slippery. Starting with Silvan Tomkins’ influential theory of affect, this paper will explore the relevance of the general assumptions (or ‘utmost abstractions’) that inform thinking about affectivity. The technological and instrumentalist char...

  12. Arsenite-activated JNK signaling enhances CPEB4-Vinexin interaction to facilitate stress granule assembly and cell survival.

    Directory of Open Access Journals (Sweden)

    Yu-Wei Chang

    Full Text Available Stress granules (SGs are compartmentalized messenger ribonucleoprotein particles (mRNPs where translationally repressed mRNAs are stored when cells encounter environmental stress. Cytoplasmic polyadenylation element-binding protein (CPEB4 is a sequence-specific RNA-binding protein and translational regulator. In keeping with the results obtained from the study of other RNA-binding proteins, we found CPEB4 localized in SGs in various arsenite-treated cells. In this study, we identified that Vinexin, a CPEB4-interacting protein, is a novel component of SGs. Vinexin is a SH3-domain-containing adaptor protein and affects cell migration through its association with Vinculin to localize at focal adhesions (FAs. Unexpectedly, Vinexin is translocated from FAs to SGs under arsenite-induced stress. The recruitment of Vinexin to SGs depends on its interaction with CPEB4 and influences SG formation and cell survival. Arsenite-activated c-Jun N-terminal kinase (JNK signaling enhances the association between CPEB4 and Vinexin, which consequently facilitates SG localization of Vinexin. Taken together, this study uncovers a novel interaction between a translational regulator and an adaptor protein to influence SG assembly and cell survival.

  13. The Genotoxicity of Sodium Arsenite in Human Lymphocyte Culture

    International Nuclear Information System (INIS)

    Sodium arsenite was tested for its clastogenic effect alone and on isolated lymphocyte culture. The results showed a significant difference in the yield of chromosome aberrations induced with respect to the culture time 48 h. Whole blood culture showed significant increase in gaps and breaks whereas isolated lymphocyte culture showed significant inhibition of cell cycle and 75% of the lymphocytes were in their first cell cycle at 72 hr. Arsenite showed co-mutagenicity with different doses of x-ray delivered immediately or few hours after treatment of the culture with S A. The results suggest that S A is also mutagenic at the dose level used and provide support for the indispensability of whole blood culture for evaluation of the in vivo effect of any suspected mustagen using isolated lymphocytes appear to have problems leading to extensive cell cycle delay

  14. Complex Regulation of Arsenite Oxidation in Agrobacterium tumefaciens

    OpenAIRE

    Kashyap, Des R.; Botero, Lina M.; Franck, William L.; Daniel J Hassett; McDermott, Timothy R.

    2006-01-01

    Seminal regulatory controls of microbial arsenite [As(III)] oxidation are described in this study. Transposon mutagenesis of Agrobacterium tumefaciens identified genes essential for As(III) oxidation, including those coding for a two-component signal transduction pair. The transposon interrupted a response regulator gene (referred to as aoxR), which encodes an ntrC-like protein and is immediately downstream of a gene (aoxS) encoding a protein with primary structural features found in sensor h...

  15. Involvement of HIF-2α-mediated inflammation in arsenite-induced transformation of human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuan; Zhao, Yue; Xu, Wenchao; Luo, Fei; Wang, Bairu; Li, Yuan; Pang, Ying; Liu, Qizhan, E-mail: drqzliu@hotmail.com

    2013-10-15

    Arsenic is a well established human carcinogen that causes diseases of the lung. Some studies have suggested a link between inflammation and lung cancer; however, it is unknown if arsenite-induced inflammation causally contributes to arsenite-caused malignant transformation of cells. In this study, we investigated the molecular mechanisms underlying inflammation during neoplastic transformation induced in human bronchial epithelial (HBE) cells by chronic exposure to arsenite. The results showed that, on acute or chronic exposure to arsenite, HBE cells over-expressed the pro-inflammatory cytokines, interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1β (IL-1β). The data also indicated that HIF-2α was involved in arsenite-induced inflammation. Moreover, IL-6 and IL-8 were essential for the malignant progression of arsenite-transformed HBE cells. Thus, these experiments show that HIF-2α mediates arsenite-induced inflammation and that such inflammation is involved in arsenite-induced malignant transformation of HBE cells. The results provide a link between the inflammatory response and the acquisition of a malignant transformed phenotype by cells chronically exposed to arsenite and thus establish a previously unknown mechanism for arsenite-induced carcinogenesis. - Highlights: • Arsenite induces inflammation. • Arsenite-induced the increases of IL-6 and IL-8 via HIF-2α. • Inflammation is involved in arsenite-induced carcinogenesis.

  16. Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Karen L.; King, Brenee S.; Sandoval, Monica M.; Liu, Ke Jian; Hudson, Laurie G., E-mail: lhudson@salud.unm.edu

    2013-06-01

    Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the Hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations. - Highlights: • Low levels of arsenite enhance UV-induced DNA damage in human keratinocytes. • UV-initiated HPRT mutation frequency is enhanced by arsenite. • Zinc supplementation offsets DNA damage and mutation frequency enhanced by arsenite. • Zinc-dependent reduction of arsenite enhanced DNA damage is confirmed in vivo.

  17. Arsenite as the probable active species in the human carcinogenicity of arsenic: mouse micronucleus assays on Na and K arsenite, orpiment, and Fowler's solution.

    OpenAIRE

    Tinwell, H; Stephens, S C; Ashby, J.

    1991-01-01

    Sodium arsenite, potassium arsenite, and Fowler's solution (arsenic trioxide dissolved in potassium bicarbonate) are equally active in the mouse bone marrow micronucleus assay (approximately 10 mg/kg by IP injection). The natural ore orpiment (principally As2S3) was inactive despite blood levels of arsenic of 300 to 900 ng/mL in treated mice at 24 hr. Sodium arsenite was active in three strains of mice. It is suggested that the human lung cancer observed among arsenic ore smelters and the ski...

  18. Arsenite-oxidizing bacteria exhibiting plant growth promoting traits isolated from the rhizosphere of Oryza sativa L.: Implications for mitigation of arsenic contamination in paddies.

    Science.gov (United States)

    Das, Suvendu; Jean, Jiin-Shuh; Chou, Mon-Lin; Rathod, Jagat; Liu, Chia-Chuan

    2016-01-25

    Arsenite-oxidizing bacteria exhibiting plant growth promoting (PGP) traits can have the advantages of reducing As-uptake by rice and promoting plant growth in As-stressed soil. A gram-positive bacterium Bacillus flexus ASO-6 resistant to high levels of As (32 and 280 mM for arsenite and arsenate, respectively) and exhibiting elevated rates of As(III) oxidation (Vmax=1.34 μM min(-1) 10(-7) cell) was isolated from rhizosphere of rice. The presence of aoxB gene and exhibition of As(III)-oxidase enzyme activity of this strain was observed. The ability of the strain to produce siderophore, IAA, ACC-deaminase and to solubilize phosphate was verified. The rice seed treated with the strain exhibited significantly improved seed germination and seedling vigor compared with the un-inoculated seeds. The bacterial inoculation significantly increased root biomass, straw yield, grain yield, chlorophyll and carotenoid in the rice plant. Moreover, As uptake from root to shoot and As accumulation in straw and grain decreased significantly as a result of the bacterial inoculation. Noteworthy, the inoculation effect is more prominent in non-flooded soil than it is in flooded soil. Owing to its wide action spectrum, this As(III)-oxidizing PGPB could serve as a potential bio-inoculant for mitigation of As in paddies and sustainable rice production in As-contaminated areas. PMID:26448489

  19. Competitive Adsorption of Arsenite and Silicic Acid on Goethite

    OpenAIRE

    Luxton, Todd Peter

    2002-01-01

    The adsorption behavior of silicic acid and arsenite alone and competitively on goethite over a broad pH range (3-11) at environmentally relevant concentrations was investigated utilizing pH adsorption data and zeta potential measurements. Both addition scenarios (Si before As(III) and As(III) before Si) were examined. The results of the adsorption experiments and zeta potential measurements were then used to model the single ion and competitive ion adsorption on goethite with the CD-MUSIC ...

  20. Direct regulation of cytochrome c oxidase by calcium ions.

    Directory of Open Access Journals (Sweden)

    Tatiana Vygodina

    Full Text Available Cytochrome c oxidase from bovine heart binds Ca(2+ reversibly at a specific Cation Binding Site located near the outer face of the mitochondrial membrane. Ca(2+ shifts the absorption spectrum of heme a, which allowed previously to determine the kinetics and equilibrium characteristics of the binding. However, no effect of Ca(2+ on the functional characteristics of cytochrome oxidase was revealed earlier. Here we report that Ca(2+ inhibits cytochrome oxidase activity of isolated bovine heart enzyme by 50-60% with Ki of ∼1 µM, close to Kd of calcium binding with the oxidase determined spectrophotometrically. The inhibition is observed only at low, but physiologically relevant, turnover rates of the enzyme (∼10 s(-1 or less. No inhibitory effect of Ca(2+ is observed under conventional conditions of cytochrome c oxidase activity assays (turnover number >100 s(-1 at pH 8, which may explain why the effect was not noticed earlier. The inhibition is specific for Ca(2+ and is reversed by EGTA. Na(+ ions that compete with Ca(2+ for binding with the Cation Binding Site, do not affect significantly activity of the enzyme but counteract the inhibitory effect of Ca(2+. The Ca(2+-induced inhibition of cytochrome c oxidase is observed also with the uncoupled mitochondria from several rat tissues. At the same time, calcium ions do not inhibit activity of the homologous bacterial cytochrome oxidases. Possible mechanisms of the inhibition are discussed as well as potential physiological role of Ca(2+ binding with cytochrome oxidase. Ca(2+- binding at the Cation Binding Site is proposed to inhibit proton-transfer through the exit part of the proton conducting pathway H in the mammalian oxidases.

  1. Arsenite induces apoptosis in human mesenchymal stem cells by altering Bcl-2 family proteins and by activating intrinsic pathway

    International Nuclear Information System (INIS)

    Purpose: Environmental exposure to arsenic is an important public health issue. The effects of arsenic on different tissues and organs have been intensively studied. However, the effects of arsenic on bone marrow mesenchymal stem cells (MSCs) have not been reported. This study is designed to investigate the cell death process caused by arsenite and its related underlying mechanisms on MSCs. The rationale is that absorbed arsenic in the blood circulation can reach to the bone marrow and may affect the cell survival of MSCs. Methods: MSCs of passage 1 were purchased from Tulane University, grown till 70% confluency level and plated according to the experimental requirements followed by treatment with arsenite at various concentrations and time points. Arsenite (iAsIII) induced cytotoxic effects were confirmed by cell viability and cell cycle analysis. For the presence of canonic apoptosis markers; DNA damage, exposure of intramembrane phosphotidylserine, protein and m-RNA expression levels were analyzed. Results: iAsIII induced growth inhibition, G2-M arrest and apoptotic cell death in MSCs, the apoptosis induced by iAsIII in the cultured MSCs was, via altering Bcl-2 family proteins and by involving intrinsic pathway. Conclusion: iAsIII can induce apoptosis in bone marrow-derived MSCs via Bcl-2 family proteins, regulating intrinsic apoptotic pathway. Due to the multipotency of MSC, acting as progenitor cells for a variety of connective tissues including bone, adipose, cartilage and muscle, these effects of arsenic may be important in assessing the health risk of the arsenic compounds and understanding the mechanisms of arsenic-induced harmful effects.

  2. Short-term exposure of arsenite disrupted thyroid endocrine system and altered gene transcription in the HPT axis in zebrafish

    International Nuclear Information System (INIS)

    Arsenic (As) pollution in aquatic environment may adversely impact fish health by disrupting their thyroid hormone homeostasis. In this study, we explored the effect of short-term exposure of arsenite (AsIII) on thyroid endocrine system in zebrafish. We measured As concentrations, As speciation, and thyroid hormone thyroxine levels in whole zebrafish, oxidative stress (H2O2) and damage (MDA) in the liver, and gene transcription in hypothalamic–pituitary–thyroid (HPT) axis in the brain and liver tissues of zebrafish after exposing to different AsIII concentrations for 48 h. Result indicated that exposure to AsIII increased inorganic As in zebrafish to 0.46–0.72 mg kg−1, induced oxidative stress with H2O2 being increased by 1.4–2.5 times and caused oxidative damage with MDA being augmented by 1.6 times. AsIII exposure increased thyroxine levels by 1.3–1.4 times and modulated gene transcription in HPT axis. Our study showed AsIII caused oxidative damage, affected thyroid endocrine system and altered gene transcription in HPT axis in zebrafish. - Highlights: • 48 h-LC50 value of arsenite (AsIII) was 42 mg L−1 for zebrafish. • AsIII exposure elevated oxidative stress and caused oxidative damage in zebrafish. • AsIII exposure increased the content of thyroid hormone thyroxine. • AsIII exposure altered gene transcription in the HPT axis in zebrafish. - Short-term exposure of arsenite caused oxidative stress, disrupted thyroid endocrine system and altered gene transcription in the HPT axis in Zebrafish

  3. Subinhibitory arsenite concentrations lead to population dispersal in Thiomonas sp.

    Directory of Open Access Journals (Sweden)

    Marie Marchal

    Full Text Available Biofilms represent the most common microbial lifestyle, allowing the survival of microbial populations exposed to harsh environmental conditions. Here, we show that the biofilm development of a bacterial species belonging to the Thiomonas genus, frequently found in arsenic polluted sites and playing a key role in arsenic natural remediation, is markedly modified when exposed to subinhibitory doses of this toxic element. Indeed, arsenite [As(III] exposure led to a considerable impact on biofilm maturation by strongly increasing the extracellular matrix synthesis and by promoting significant cell death and lysis within microcolonies. These events were followed by the development of complex 3D-biofilm structures and subsequently by the dispersal of remobilized cells observed inside the previously formed hollow voids. Our results demonstrate that this biofilm community responds to arsenite stress in a multimodal way, enhancing both survival and dispersal. Addressing this complex bacterial response to As(III stress, which might be used by other microorganisms under various adverse conditions, may be essential to understand how Thiomonas strains persist in extreme environments.

  4. Multicopper oxidase-1 orthologs from diverse insect species have ascorbate oxidase activity.

    Science.gov (United States)

    Peng, Zeyu; Dittmer, Neal T; Lang, Minglin; Brummett, Lisa M; Braun, Caroline L; Davis, Lawrence C; Kanost, Michael R; Gorman, Maureen J

    2015-04-01

    Members of the multicopper oxidase (MCO) family of enzymes can be classified by their substrate specificity; for example, ferroxidases oxidize ferrous iron, ascorbate oxidases oxidize ascorbate, and laccases oxidize aromatic substrates such as diphenols. Our previous work on an insect multicopper oxidase, MCO1, suggested that it may function as a ferroxidase. This hypothesis was based on three lines of evidence: RNAi-mediated knock down of Drosophila melanogaster MCO1 (DmMCO1) affects iron homeostasis, DmMCO1 has ferroxidase activity, and DmMCO1 has predicted iron binding residues. In our current study, we expanded our focus to include MCO1 from Anopheles gambiae, Tribolium castaneum, and Manduca sexta. We verified that MCO1 orthologs have similar expression profiles, and that the MCO1 protein is located on the basal surface of cells where it is positioned to oxidize substrates in the hemolymph. In addition, we determined that RNAi-mediated knock down of MCO1 in A. gambiae affects iron homeostasis. To further characterize the enzymatic activity of MCO1 orthologs, we purified recombinant MCO1 from all four insect species and performed kinetic analyses using ferrous iron, ascorbate and two diphenols as substrates. We found that all of the MCO1 orthologs are much better at oxidizing ascorbate than they are at oxidizing ferrous iron or diphenols. This result is surprising because ascorbate oxidases are thought to be specific to plants and fungi. An analysis of three predicted iron binding residues in DmMCO1 revealed that they are not required for ferroxidase or laccase activity, but two of the residues (His374 and Asp380) influence oxidation of ascorbate. These two residues are conserved in MCO1 orthologs from insects and crustaceans; therefore, they are likely to be important for MCO1 function. The results of this study suggest that MCO1 orthologs function as ascorbate oxidases and influence iron homeostasis through an unknown mechanism. PMID:25701385

  5. Effect of arsenite-oxidizing bacterium B. laterosporus on arsenite toxicity and arsenic translocation in rice seedlings.

    Science.gov (United States)

    Yang, Gui-Di; Xie, Wan-Ying; Zhu, Xi; Huang, Yi; Yang, Xiao-Jun; Qiu, Zong-Qing; Lv, Zhen-Mao; Wang, Wen-Na; Lin, Wen-Xiong

    2015-10-01

    Arsenite [As (III)] oxidation can be accelerated by bacterial catalysis, but the effects of the accelerated oxidation on arsenic toxicity and translocation in rice plants are poorly understood. Herein we investigated how an arsenite-oxidizing bacterium, namely Brevibacillus laterosporus, influences As (III) toxicity and translocation in rice plants. Rice seedlings of four cultivars, namely Guangyou Ming 118 (GM), Teyou Hang II (TH), Shanyou 63 (SY) and Minghui 63 (MH), inoculated with or without the bacterium were grown hydroponically with As (III) to investigate its effects on arsenic toxicity and translocation in the plants. Percentages of As (III) oxidation in the solutions with the bacterium (100%) were all significantly higher than those without (30-72%). The addition of the bacterium significantly decreased As (III) concentrations in SY root, GM root and shoot, while increased the As (III) concentrations in the shoot of SY, MH and TH and in the root of MH. Furthermore, the As (III) concentrations in the root and shoot of SY were both the lowest among the treatments with the bacterium. On the other hand, its addition significantly alleviated the As (III) toxicity on four rice cultivars. Among the treatments amended with B. laterosporus, the bacterium showed the best remediation on SY seedlings, with respect to the subdued As (III) toxicity and decreased As (III) concentration in its roots. These results indicated that As (III) oxidation accelerated by B. laterosporus could be an effective method to alleviate As (III) toxicity on rice seedlings.

  6. Arsenite Sorption by Drinking-Water Treatment Residuals: Redox Effects

    Science.gov (United States)

    Makris, K. C.; Sarkar, D.; Datta, R.

    2005-05-01

    Arsenic (As) is a major human carcinogen and could pose a serious human health risk at concentrations as low as 50 ppb in drinking water. Elevated As concentrations in soils currently used for residential purposes (located on former agricultural lands amended with arsenical pesticides) have increased the possibility of human contact with soil-As. Studies have shown that As bioavailability in the environment is primarily a function of its chemical speciation, which depends upon the redox potential. Arsenic toxicity and carcinogenicity to living organisms is primarily due to exposure to the reduced species of As - arsenite, i.e., As(III), rather than the oxidized species - arsenate, i.e., As(V); the mobility of As(III) is much higher than As(V). One of the most promising methods to decrease the mobility of arsenite in the soil-water system is promoting its retention onto amorphous Fe/Al hydroxides. Drinking-Water Treatment Residuals (WTRs) are an inexpensive source of such Fe/Al hydroxides, which can be land-applied following the USEPA-regulated biosolids application rules. The WTRs are byproducts of drinking-water purification processes and generally contain sediment, organic carbon, and Al/Fe hydroxides. The hydroxides are typically amorphous and have tremendous affinity for oxyanions (e.g., arsenate). Preliminary work showed that WTRs are characterized by large internal surface area and porosity that partly explains their high affinity for As(V). The current study examines the potential of two WTRs (Fe-based and Al-based) to adsorb arsenite from solution. We hypothesize that As(III) adsorption onto the Fe-based WTR (whose stability is highly redox-sensitive) would be vastly different from the adsorption of As(III) onto the redox-insensitive Al-based WTR. Our main objective is to characterize As(III) sorption by both Fe- and Al-based WTRs by changing critical factors, such as the solid:solution ratio, contact time, and initial As(III) load. Results from this study

  7. Long-term performance of rapid oxidation of arsenite in simulated groundwater using a population of arsenite-oxidizing microorganisms in a bioreactor.

    Science.gov (United States)

    Li, Hao; Zeng, Xian-Chun; He, Zhong; Chen, Xiaoming; E, Guoji; Han, Yiyang; Wang, Yanxin

    2016-09-15

    A population of arsenite-oxidizing microorganisms enriched from the tailing of the Shimen realgar mine was used to generate biofilms on the surfaces of perlites. This bioreactor is able to completely oxidize 1100 μg/L As(III) dissolved in simulated groundwater into As(V) within 10 min; after 140 days of operation, approximately 20 min were required to completely oxidize the same concentration of As(III). Analysis for the 16S rRNA genes of the microbial community showed that Bacteroidetes and Proteobacteria are dominant in the reactor. Six different bacterial strains were randomly isolated from the reactor. Function and gene analysis indicated that all the isolates possess arsenite-oxidizing activity, and five of them are chemoautotrophic. Further analysis showed that a large diversity of AioAs and two types of RuBisCOs are present in the microbial community. This suggests that many chemoautotrophic arsenite-oxidizing microorganisms were responsible for quick oxidation of arsenite in the reactor. We also found that the reactor is easily regenerated and its number is readily expanded. To the best of our knowledge, the arsenite-oxidizing efficiency, which was expressed as the minimum time for complete oxidization of a certain concentration of As(III) under a single operation, of this bioreactor is the highest among the described bioreactors; it is also the most stable, economic and environment-friendly. PMID:27288673

  8. INFLUENCE OF SODIUM ARSENITE ON GAP JUNCTION COMMUNICATION IN RAT LIVER EPITHELIAL CELLS

    Science.gov (United States)

    Influence of sodium arsenite on gap junction communication in rat-Iiver epitheiial cells. Arsenic is known to cause certain types of cancers, hepatitis, cirrhosis and neurological disorders as well as cardiovascular and reproductive effects and skin lesions. The mechanism...

  9. APOPTOSIS GENE EXPRESSION IN HUMAN EPDERMAL KERATINOCYTES TREATED WITH SODIUM ARSENITE USING REAL TIME PCR ARRAY

    Science.gov (United States)

    Arsenic exposure via contaminated drinking water is a great public health concern worldwide. Chronic arsenic exposure has been associated with human skin, lung and bladder cancer and other chronic effects. We have previous reported that sodium arsenite stimulated cell proliferati...

  10. Synergistic effect of radon and sodium arsenite on DNA damage in HBE cells.

    Science.gov (United States)

    Liu, Xing; Sun, Bin; Wang, Xiaojuan; Nie, Jihua; Chen, Zhihai; An, Yan; Tong, Jian

    2016-01-01

    Human epidemiological studies showed that radon and arsenic exposures are major risk factors for lung cancer in Yunnan tin miners. However, biological evidence for this phenomenon is absent. In this study, HBE cells were exposed to different concentrations of sodium arsenite, different radon exposure times, or a combination of these two factors. The results showed a synergistic effect of radon and sodium arsenite in cell cytotoxicity as determined by cell viability. Elevated intracellular ROS levels and increased DNA damage indexed by comet assay and γ-H2AX were detected. Moreover, DNA HR repair in terms of Rad51 declined when the cells were exposed to both radon and sodium arsenite. The synergistic effect of radon and sodium arsenite in HBE cells may be attributed to the enhanced DSBs and inhibited HR pathway upon co-exposure.

  11. Arsenite-induced autophagy is associated with proteotoxicity in human lymphoblastoid cells

    Energy Technology Data Exchange (ETDEWEB)

    Bolt, Alicia M.; Zhao, Fei; Pacheco, Samantha; Klimecki, Walter T., E-mail: klimecki@pharmacy.arizona.edu

    2012-10-15

    Epidemiological studies of arsenic-exposed populations have provided evidence that arsenic exposure in humans is associated with immunosuppression. Previously, we have reported that arsenite-induced toxicity is associated with the induction of autophagy in human lymphoblastoid cell lines (LCL). Autophagy is a cellular process that functions in the degradation of damaged cellular components, including protein aggregates formed by misfolded or damaged proteins. Accumulation of misfolded or damaged proteins in the endoplasmic reticulum (ER) lumen causes ER stress and activates the unfolded protein response (UPR). In an effort to investigate the mechanism of autophagy induction by arsenite in the LCL model, we examined the potential contribution of ER stress and activation of the UPR. LCL exposed to sodium arsenite for 8-days induced expression of UPR-activated genes, including CHOP and GRP78, at the RNA and the protein level. Evidence for activation of the three arms of the UPR was observed. The arsenite-induced activation of the UPR was associated with an accumulation of protein aggregates containing p62 and LC3, proteins with established roles in the sequestration and autophagic clearance of protein aggregates. Taken together, these data provide evidence that arsenite-induced autophagy is associated with the generation of ER stress, activation of the UPR, and formation of protein aggregates that may be targeted to the lysosome for degradation. -- Highlights: ► Arsenite induces endoplasmic reticulum stress and the unfolded protein response. ► Arsenite induces the formation of protein aggregates that contain p62 and LC3-II. ► Time-course data suggests that arsenite-induced autophagy precedes ER stress.

  12. Silymarin protects plasma membrane and acrosome integrity in sperm treated with sodium arsenite

    Directory of Open Access Journals (Sweden)

    Farzaneh Eskandari

    2016-01-01

    Full Text Available Background: Exposure to arsenic is associated with impairment of male reproductive function by inducing oxidative stress. Silymarin with an antioxidant property scavenges free radicals. Objective: The aim of this study was to investigate if silymarin can prevent the adverse effects of sodium arsenite on ram sperm plasma membrane and acrosome integrity. Materials and Methods: Ram epidydimal spermatozoa were divided into five groups: spermatozoa at 0 hr, spermatozoa at 180 min (control, spermatozoa treated with silymarin (20 μM + sodium arsenite (10 μM for 180 min, spermatozoa treated with sodium arsenite (10 μM for 180 min and spermatozoa treated with silymarin (20 μM for 180 min. Double staining of Hoechst and propidium iodide was performed to evaluate sperm plasma membrane integrity, whereas comassie brilliant blue staining was used to assess acrosome integrity. Results: Plasma membrane (p< 0.001 and acrosome integrity (p< 0.05 of the spermatozoa were significantly reduced in sodium arsenite group compared to the control. In silymarin + sodium arsenite group, silymarin was able to significantly (p< 0.001 ameliorate the adverse effects of sodium arsenite on these sperm parameters compared to sodium arsenite group. The incubation of sperm for 180 min (control group showed a significant (p< 0.001 decrease in acrosome integrity compared to the spermatozoa at 0 hour. The application of silymarin alone for 180 min could also significantly (p< 0.05 increase sperm acrosome integrity compared to the control. Conclusion: Silymarin as a potent antioxidant could compensate the adverse effects of sodium arsenite on the ram sperm plasma membrane and acrosome integrity.

  13. Removal of arsenite by simultaneous electro-oxidation and electro-coagulation process

    International Nuclear Information System (INIS)

    An electrochemical reactor was built and used to remove arsenite from water. In this reactor, arsenite can be oxidized into arsenate, which was removed by electro-coagulation process simultaneously. The reactor mainly included dimension stable anode (DSA) and iron plate electrode. Oxidation of arsenite will occur at the DSA electrode in the electrochemical process. Meantime, the iron ions can be generated by the electro-induced process and iron oxides will form. Thus, the arsenic was removed by coagulation process. Influencing factors on the removal of arsenite were investigated. It is found that Ca2+ and Mg2+ ions promoted the removal of arsenite. However, Cl-, CO32-, SiO32-, and PO43- ions inhibited the arsenic removal. And, it is observed that the inhibition effect was the largest in the presence of PO43-. Furthermore, it is observed that the removal efficiency of arsenate is the largest in the pH value of 8. Increase or decrease of pH value did not benefit to the arsenite removal. Fourier transform infrared spectra were used to analyze the floc particles, it is suggested that the removal mechanism of As(III) in this system seems to be oxidative of As(III) to As(V) and to be removed by adsorption/complexation with metal hydroxides generated in the process.

  14. Inhibitory Effects of Sodium Arsenite and Acacia Honey on Acetylcholinesterase in Rats

    Directory of Open Access Journals (Sweden)

    Aliyu Muhammad

    2015-01-01

    Full Text Available This study was conducted to investigate the effect of sodium arsenite and Acacia honey on acetylcholinesterase (AChE activity and electrolytes in the brain and serum of Wistar rats. Male Wistar albino rats in four groups of five rats each were treated with distilled water, sodium arsenite (5 mg/kg body weight, Acacia honey (20% v/v, and sodium arsenite and Acacia honey, daily for one week. The sodium arsenite and Acacia honey significantly P<0.05 decreased AChE activity in the brain with the combined treatment being more potent. Furthermore, sodium arsenite and Acacia honey significantly P<0.05 decreased AChE activity in the serum. Strong correlation was observed between the sodium and calcium ion levels with acetylcholinesterase activity in the brain and serum. The gas chromatography mass spectrometry analysis of Acacia honey revealed the presence of a number of bioactive compounds such as phenolics, sugar derivatives, and fatty acids. These findings suggest that sodium arsenite and/or Acacia honey modulates acetylcholinesterase activities which may be explored in the management of Alzheimer’s diseases but this might be counteracted by the hepatotoxicity induced by arsenics.

  15. Preparation of copper arsenite and its application in purification of copper electrolyte

    Institute of Scientific and Technical Information of China (English)

    XIAO Fa-xin; ZHENG Ya-jie; WANG Yong; JIAN Hong-sheng; LI Chun-hua; XU Wei; MA Yu-tian

    2008-01-01

    The preparation of copper arsenite with arsenic trioxide was presented and its application in the purification of copper electrolyte was proposed. The variables of n(OH-)/n(As), n(Cu)/n(As), NaOH concentration, reaction temperature and pH value have some effects on the yield of copper arsenite. The optimum conditions of preparing copper arsenite are that the molar ratio of alkali to arsenic is 2:1, NaOH concentration is 1 mol/L, the molar ratio of copper to arsenic is 2:1, pH value is 6.0 and reaction temperature is 20 ℃. The yield of copper arsenite is as high as 98.65% under optimum conditions and the molar ratio of Cu to As in the product is about 5:4. The results of the purification experiments show that the removal rate of antimony and bismuth is 53.85% and 53.33% respectively after 20 g/L copper arsenite is added. The purification of copper electrolyte with copper arsenite has the advantages of simple technique, good purification performance and low cost.

  16. Arsenite-Oxidizing Hydrogenobaculum Strain Isolated from an Acid-Sulfate-Chloride Geothermal Spring in Yellowstone National Park

    OpenAIRE

    Donahoe-Christiansen, Jessica; D'Imperio, Seth; Jackson, Colin R.; Inskeep, William P.; McDermott, Timothy R.

    2004-01-01

    An arsenite-oxidizing Hydrogenobaculum strain was isolated from a geothermal spring in Yellowstone National Park, Wyo., that was previously shown to contain microbial populations engaged in arsenite oxidation. The isolate was sensitive to both arsenite and arsenate and behaved as an obligate chemolithoautotroph that used H2 as its sole energy source and had an optimum temperature of 55 to 60°C and an optimum pH of 3.0. The arsenite oxidation in this organism displayed saturation kinetics and ...

  17. The defensive effect of benfotiamine in sodium arsenite-induced experimental vascular endothelial dysfunction.

    Science.gov (United States)

    Verma, Sanjali; Reddy, Krishna; Balakumar, Pitchai

    2010-10-01

    The present study has been designed to investigate the effect of benfotiamine, a thiamine derivative, in sodium arsenite-induced vascular endothelial dysfunction (VED) in rats. Sodium arsenite (1.5 mg(-1) kg(-1) day(-1) i.p., 2 weeks) was administered in rats to produce VED. The development of VED was assessed by employing isolated aortic ring preparation and estimating the serum and aortic concentrations of nitrite/nitrate. Further, the integrity of vascular endothelium in thoracic aorta was assessed by scanning electron microscopy. Moreover, the oxidative stress was assessed by estimating serum thiobarbituric acid reactive substances (TBARS) and aortic superoxide anion generation. The administration of sodium arsenite markedly produced VED by attenuating acetylcholine-induced endothelium-dependent relaxation, decreasing serum and aortic concentrations of nitrite/nitrate, and impairing the integrity of vascular endothelium. Further, sodium arsenite produced oxidative stress by increasing serum TBARS and aortic superoxide generation. The treatment with benfotiamine (25, 50, and 100 mg(-1) kg(-1) day(-1) p.o.) or atorvastatin (30 mg(-1) kg(-1) day(-1) p.o., a standard agent) prevented sodium arsenite-induced VED and oxidative stress. However, the beneficial effects of benfotiamine in preventing the sodium arsenite-induced VED were attenuated by co-administration with N-omega-nitro-L: -arginine methyl ester (L: -NAME) (25 mg(-1) kg(-1) day(-1), i.p.), an inhibitor of NOS. Thus, it may be concluded that benfotiamine reduces oxidative stress and activates endothelial nitric oxide synthase to enhance the generation and bioavailability of NO and subsequently improves the integrity of vascular endothelium to prevent sodium arsenite-induced experimental VED.

  18. Curcumin Inhibits The Adverse Effects of Sodium Arsenite in Mouse Epididymal Sperm

    Directory of Open Access Journals (Sweden)

    Momeni Hamid Reza

    2016-07-01

    Full Text Available Background The aim of this study was to investigate the effects of curcumin on epididy- mal sperm parameters in adult male Navel Medical Research Institute (NMRI mice ex- posed to sodium arsenite. Materials and Methods In this experimental study, we divided the animals into four groups: control, sodium arsenite (5 mg/kg, curcumin (100 mg/kg and curcumin+sodium arsenite. Exposures were performed by intraperitoneal injections for a 5-week period. After the exposure period, we recorded the animals’ body and left testes weights. The left caudal epididymis was used to count the sperm number and analyze motility, viability, morphological abnormalities, acrosome reaction, DNA integrity, and histone-protamine replacement in the spermatozoa. One-way analysis of variance (ANOVA followed by the Tukey’s test was used to assess the statistical significance of the data with SPSS 16.0. P<0.05 was considered significant. Results Mice exposed to sodium arsenite showed a significant decrease in the num- ber, motility, viability, normal sperm morphology and acrosome integrity of spermato- zoa compared to the control group. In the curcumin+sodium arsenite group, curcumin significantly reversed these adverse effects to the point where they approximated the control. In addition, the application of curcumin alone had no significant difference in these parameters compared to the control and curcumin+sodium arsenite groups. However, we observed no significant differences in the body and the testis weight as well as the DNA integrity and histone-protamine replacement in the spermatozoa of the four groups. Conclusion Curcumin compensated for the toxic effects of sodium arsenite on a number of sperm parameters in adult mice.

  19. Physico chemical studies on the composition of complex arsenites of metals Part IV: conductometric and potentiometric studies on the composition of cadmium arsenite

    Directory of Open Access Journals (Sweden)

    M. S. Bhadraver

    1962-07-01

    Full Text Available The formation and precipitation of cadmium arsenite has been studied by conductometric and potentiometric titrations between cadmium nitrate and sodium arsenite (meta at different concentrations with either of the substances used as the reagent in titration. In the case of direct titrations (cadmium nitrate added to sodium arsenite in the conductivity cell, one distinct break in the curves is observed corresponding to the formation of the Cd (AsO/sub 2//sub 2/ where the molecular ratio is 2:1. The direct and reverse potentiometric titrations curves give one maxima in dE/dV at point corresponding to the formation of the complex Cd (AsO/sub/2/sub/2 where the molecular ratio of reactants Cd:AsO/sub/2 is 1:2. The composition has been arrived at by comparing the calculated values with observed values by conductometric and potentiometric titrations. The composition of cadmium arsenite arrived at both by conductometry and potentiometry is best representative as Cd(AsO/sub/2/sub/2

  20. Expression of alternative oxidase in tomato

    Energy Technology Data Exchange (ETDEWEB)

    Kakefuda, M.; McIntosh, L. (Michigan State Univ., East Lansing (USA))

    1990-05-01

    Tomato fruit ripening is characterized by an increase in ethylene biosynthesis, a burst in respiration (i.e. the climacteric), fruit softening and pigmentation. As whole tomatoes ripened from mature green to red, there was an increase in the alternative oxidase capacity. Aging pink tomato slices for 24 and 48 hrs also showed an increase of alternative oxidase and cytochrome oxidase capacities. Monoclonal antibodies prepared to the Sauromatum guttatum alternative oxidase were used to follow the appearance of alternative oxidase in tomato fruits. There is a corresponding increase in a 36kDa protein with an increase in alternative oxidase capacity. Effects of ethylene and norbornadiene on alternative oxidase capacity were also studied. We are using an alternative oxidase cDNA clone from potato to study the expression of mRNA in ripening and wounded tomatoes to determine if the gene is transcriptionally regulated.

  1. A Comparative Study on Rat Intestinal Epithelial Cells and Resident Gut Bacteria (ii) Effect of Arsenite

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to use facultative gut bacteria as an alternate to animals for the initial gastrointestinal toxicity screening of heavy metals, a comparative study on rat intestinal epithelial cells and resident gut bacteria was undertaken.Methods in vitro growth rate of four gut bacteria, dehydrogenase (DHA) and esterase (EA) activity test, intestinal epithelial and bacterial cell membrane enzymes and in situ effect of arsenite were analysed. Results Growth profile of mixed resident population of gut bacteria and pure isolates of Escherichia coli, Pseudomonas sp., Lactobacillus sp., and Staphylococcus sp.revealed an arsenite (2-20 ppm) concentration-dependent inhibition. The viability pattern of epithelial cells also showed similar changes. DHA and EA tests revealed significant inhibition (40%-72%) with arsenite exposure of 5 and 10 ppm in isolated gut bacteria and epithelial cells. Decrease in membrane alkaline phosphatase and Ca2+-Mg2+-ATPase activities was in the range of 33%-55% in four bacteria at the arsenite exposure of 10 ppm, whereas it was 60%-65% in intestinal epithelial villus cells. in situ incubation of arsenite using intestinal loops also showed more or less similar changes in membrane enzymes of resident gut bacterial population and epithelial cells. Conclusion The results indicate that facultative gut bacteria can be used as suitable in vitro model for the preliminary screening of arsenical gastrointestinal cytotoxic effects.

  2. Label-free signal-on aptasensor for sensitive electrochemical detection of arsenite.

    Science.gov (United States)

    Cui, Lin; Wu, Jie; Ju, Huangxian

    2016-05-15

    A signal-on aptasensor was fabricated for highly sensitive and selective electrochemical detection of arsenite with a label-free Ars-3 aptamer self-assembled on a screen-printed carbon electrode (SPCE) via Au-S bond. The Ars-3 aptamer could adsorb cationic polydiallyldimethylammonium (PDDA) via electrostatic interaction to repel other cationic species. In the presence of arsenite, the change of Ars-3 conformation due to the formation of Ars-3/arsenite complex led to less adsorption of PDDA, and the complex could adsorb more positively charged [Ru(NH3)6](3+) as an electrochemically active indicator on the aptasensor surface, which produced a sensitive "turn-on" response. The target-induced structure switching could be used for sensitive detection of arsenite with a linear range from 0.2 nM to 100 nM and a detection limit down to 0.15 nM. Benefiting from Ars-3 aptamer, the proposed system exhibited excellent specificity against other heavy metal ions. The SPCE-based aptasensor exhibited the advantages of low cost and simple fabrication, providing potential application of arsenite detection in environment.

  3. Label-free signal-on aptasensor for sensitive electrochemical detection of arsenite.

    Science.gov (United States)

    Cui, Lin; Wu, Jie; Ju, Huangxian

    2016-05-15

    A signal-on aptasensor was fabricated for highly sensitive and selective electrochemical detection of arsenite with a label-free Ars-3 aptamer self-assembled on a screen-printed carbon electrode (SPCE) via Au-S bond. The Ars-3 aptamer could adsorb cationic polydiallyldimethylammonium (PDDA) via electrostatic interaction to repel other cationic species. In the presence of arsenite, the change of Ars-3 conformation due to the formation of Ars-3/arsenite complex led to less adsorption of PDDA, and the complex could adsorb more positively charged [Ru(NH3)6](3+) as an electrochemically active indicator on the aptasensor surface, which produced a sensitive "turn-on" response. The target-induced structure switching could be used for sensitive detection of arsenite with a linear range from 0.2 nM to 100 nM and a detection limit down to 0.15 nM. Benefiting from Ars-3 aptamer, the proposed system exhibited excellent specificity against other heavy metal ions. The SPCE-based aptasensor exhibited the advantages of low cost and simple fabrication, providing potential application of arsenite detection in environment. PMID:26785310

  4. Construction of the recombinant broad-host-range plasmids providing their bacterial hosts arsenic resistance and arsenite oxidation ability.

    Science.gov (United States)

    Drewniak, Lukasz; Ciezkowska, Martyna; Radlinska, Monika; Sklodowska, Aleksandra

    2015-02-20

    The plasmid pSinA of Sinorhizobium sp. M14 was used as a source of functional phenotypic modules, encoding proteins involved in arsenite oxidation and arsenic resistance, to obtain recombinant broad-host-range plasmids providing their bacterial hosts arsenic resistance and arsenite oxidative ability. An arsenite oxidation module was cloned into pBBR1MCS-2 vector yielding plasmid vector pAIO1, while an arsenic resistance module was cloned into pCM62 vector yielding plasmid pARS1. Both plasmid constructs were introduced (separately and together) into the cells of phylogenetically distant (representing Alpha-, Beta-, and Gammaproteobacteria) and physiologically diversified (unable to oxidize arsenite and susceptible/resistant to arsenite and arsenate) bacteria. Functional analysis of the modified strains showed that: (i) the plasmid pARS1 can be used for the construction of strains with an increased resistance to arsenite [up to 20mM of As(III), (ii) the presence of the plasmid pAIO1 in bacteria previously unable to oxidize As(III) to As(V), contributes to the acquisition of arsenite oxidation abilities by these cells, (iii) the highest arsenite utilization rate are observed in the culture of strains harbouring both the plasmids pAIO1 and pARS1, (iv) the strains harbouring the plasmid pAIO1 were able to grow on arsenic-contaminated mine waters (∼ 3.0 mg As L(-1)) without any supplementation. PMID:25617684

  5. Lysyl oxidase in cancer research

    DEFF Research Database (Denmark)

    Perryman, Lara; Erler, Janine Terra

    2014-01-01

    Metastasis is the main reason for cancer-associated deaths and therapies are desperately needed to target the progression of cancer. Lysyl oxidase (LOX) plays a pivotal role in cancer progression, including metastasis, and is therefore is an attractive therapeutic target. In this review we will...

  6. Flavoprotein oxidases : classification and applications

    NARCIS (Netherlands)

    Dijkman, Willem P.; de Gonzalo, Gonzalo; Mattevi, Andrea; Fraaije, Marco W.

    2013-01-01

    This review provides an overview of oxidases that utilise a flavin cofactor for catalysis. This class of oxidative flavoenzymes has shown to harbour a large number of biotechnologically interesting enzymes. Applications range from their use as biocatalysts for the synthesis of pharmaceutical compoun

  7. Cox26 is a novel stoichiometric subunit of the yeast cytochrome c oxidase.

    Science.gov (United States)

    Levchenko, Maria; Wuttke, Jan-Moritz; Römpler, Katharina; Schmidt, Bernhard; Neifer, Klaus; Juris, Lisa; Wissel, Mirjam; Rehling, Peter; Deckers, Markus

    2016-07-01

    The cytochrome c oxidase (COX) is the terminal enzyme of the respiratory chain. The complex accepts electrons from cytochrome c and passes them onto molecular oxygen. This process contributes to energy capture in the form of a membrane potential across the inner membrane. The enzyme complex assembles in a stepwise process from the three mitochondria-encoded core subunits Cox1, Cox2 and Cox3, which associate with nuclear-encoded subunits and cofactors. In the yeast Saccharomyces cerevisiae, the cytochrome c oxidase associates with the bc1-complex into supercomplexes, allowing efficient energy transduction. Here we report on Cox26 as a protein found in respiratory chain supercomplexes containing cytochrome c oxidase. Our analyses reveal Cox26 as a novel stoichiometric structural subunit of the cytochrome c oxidase. A loss of Cox26 affects cytochrome c oxidase activity and respirasome organization.

  8. Regulation of Arsenite Oxidation by the Phosphate Two-Component System PhoBR in Halomonas sp. HAL1

    Directory of Open Access Journals (Sweden)

    Fang eChen

    2015-09-01

    Full Text Available Previously, the expression of arsenite [As(III] oxidase genes aioBA was reported to be regulated by a three-component regulatory system, AioXSR, in a number of As(III-oxidizing bacterial strains. However, the regulation mechanism is still unknown when aioXSR genes are absent in some As(III-oxidizing bacterial genomes, such as in Halomonas sp. HAL1. In this study, transposon mutagenesis and gene knock-out mutation were performed, and two mutants, HAL1-phoR931 and HAL1-△phoB, were obtained in strain HAL1. The phoR and phoB constitute a two-component system which is responsible for phosphate (Pi acquisition and assimilation. Both of the mutants showed negative As(III-oxidation phenotypes in low Pi condition (0.1 mM but not under normal Pi condition (1 mM. The phoBR complementation strain HAL1-△phoB-C reversed the mutants’ null phenotypes back to wild type status. Meanwhile, lacZ reporter fusions using pCM-lacZ showed that the expression of phoBR and aioBA were both induced by As(III but were not induced in HAL1-phoR931 and HAL1-△phoB. Using 15 consensus Pho box sequences, a putative Pho box was found in the aioBA regulation region. PhoB was able to bind to the putative Pho box in vivo (bacterial one-hybrid detection and in vitro (electrophoretic mobility gel shift assay, and an 18-bp binding sequence containing nine conserved bases were determined. This study provided the evidence that PhoBR regulates the expression of aioBA in Halomonas sp. HAL1 under low Pi condition. The new regulation model further implies the close metabolic connection between As and Pi.

  9. Regulation of arsenite oxidation by the phosphate two-component system PhoBR in Halomonas sp. HAL1.

    Science.gov (United States)

    Chen, Fang; Cao, Yajing; Wei, Sha; Li, Yanzhi; Li, Xiangyang; Wang, Qian; Wang, Gejiao

    2015-01-01

    Previously, the expression of arsenite [As(III)] oxidase genes aioBA was reported to be regulated by a three-component regulatory system, AioXSR, in a number of As(III)-oxidizing bacterial strains. However, the regulation mechanism is still unknown when aioXSR genes are absent in some As(III)-oxidizing bacterial genomes, such as in Halomonas sp. HAL1. In this study, transposon mutagenesis and gene knock-out mutation were performed, and two mutants, HAL1-phoR 931 and HAL1-▵phoB, were obtained in strain HAL1. The phoR and phoB constitute a two-component system which is responsible for phosphate (Pi) acquisition and assimilation. Both of the mutants showed negative As(III)-oxidation phenotypes in low Pi condition (0.1 mM) but not under normal Pi condition (1 mM). The phoBR complementation strain HAL1-▵phoB-C reversed the mutants' null phenotypes back to wild type status. Meanwhile, lacZ reporter fusions using pCM-lacZ showed that the expression of phoBR and aioBA were both induced by As(III) but were not induced in HAL1-phoR 931 and HAL1-▵phoB. Using 15 consensus Pho box sequences, a putative Pho box was found in the aioBA regulation region. PhoB was able to bind to the putative Pho box in vivo (bacterial one-hybrid detection) and in vitro (electrophoretic mobility gel shift assay), and an 18-bp binding sequence containing nine conserved bases were determined. This study provided the evidence that PhoBR regulates the expression of aioBA in Halomonas sp. HAL1 under low Pi condition. The new regulation model further implies the close metabolic connection between As and Pi. PMID:26441863

  10. [Effectiveness of arsenite adsorption by ferric and alum water treatment residuals with different grain sizes].

    Science.gov (United States)

    Lin, Lu; Xu, Jia-Rui; Wu, Hao; Wang, Chang-Hui; Pei, Yuan-Sheng

    2013-07-01

    Effectiveness of arsenite adsorption by ferric and alum water treatment residuals (FARs) with different grain sizes was studied. The results indicated that the content of active Fe and Al, the specific surface area and pore volume in FARs with different grain sizes were in the range of 523.72-1 861.72 mmol x kg(-1), 28.15-265.59 m2 x g(-1) and 0.03-0.09 cm3 x g(-1), respectively. The contents of organic matter, fulvic acid, humic acid and humin were in the range of 46.97-91.58 mg x kg(-1), 0.02-32.27 mg x kg(-1), 22.27-34.09 mg x kg(-1) and 10.76-34.22 mg x kg(-1), respectively. Results of SEM and XRD analysis further demonstrated that FARs with different grain sizes were amorphousness. Batch experiments suggested that both the pseudo-first-order and pseudo-second-order equations could well describe the kinetics adsorption processes of arsenite by FARs. Moreover, the contents of arsenite absorbed by FARs increased with the increase of arsenite concentrations. The theoretical saturated adsorption capacities calculated from Langmuir isotherm model were in the range of 6.72-21.79 mg x g(-1). Interestingly, pH showed little effect on the arsenite adsorption capability of FARs. The capability of FARs had a close relationship with their physicochemical properties. Correlation analysis showed that the active Fe and Al contents and pore volume had major effects on the arsenite adsorption capability of FARs.

  11. Effect of rosiglitazone in sodium arsenite-induced experimental vascular endothelial dysfunction.

    Science.gov (United States)

    Kaur, Tajpreet; Goel, Rajesh Kumar; Balakumar, Pitchai

    2010-04-01

    The present study has been designed to investigate the effect of rosiglitazone, a peroxisome proliferator activated receptor gamma agonist in sodium arsenite-induced vascular endothelial dysfunction (VED) in rats. The rats were administered sodium arsenite (1.5 mg/kg/day, i.p., 2 weeks) to induce VED. The development of VED was assessed by employing isolated aortic ring preparation and estimating serum nitrite/nitrate concentration. Further, the integrity of the aortic endothelium was assessed histologically using haematoxylin-eosin staining. Moreover, the oxidative stress was assessed by estimating serum thiobarbituric acid reactive substances, aortic reactive oxygen species and reduced form of glutathione. The administration of sodium arsenite produced VED by impairing acetylcholine-induced endothelium dependent relaxation, diminishing the integrity of vascular endothelium and decreasing the serum nitrite/nitrate concentration. In addition, sodium arsenite was noted to produce oxidative stress as it increased serum thiobarbituric acid reactive substances and aortic reactive oxygen species and consequently decreased glutathione. Treatment with rosiglitazone (3 mg/kg/day, p.o., 2 weeks and 5 mg/kg/day, p.o., 2 weeks) significantly prevented sodium arsenite-induced VED by enhancing acetylcholine-induced endothelium dependent relaxation, improving the integrity of vascular endothelium, increasing the nitrite/nitrate concentration and decreasing the oxidative stress. However, the vascular protective effect of rosiglitazone was markedly abolished by co-administration of nitric oxide synthase inhibitor, N-Omega-Nitro-L-Arginine Methyl Ester (L-NAME) (25 mg/kg/day, i.p., 2 weeks). Thus, it may be concluded that rosiglitazone reduces oxidative stress, activates eNOS and enhances the generation of nitric oxide to prevent sodium arsenite-induced VED in rats.

  12. Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings.

    Science.gov (United States)

    Mishra, Shruti; Jha, A B; Dubey, R S

    2011-07-01

    The effects of arsenite treatment on generation of reactive oxygen species, induction of oxidative stress, response of antioxidative system, and synthesis of phytochelatins were investigated in two indica rice (Oryza sativa L.) cvs. Malviya-36 and Pant-12 grown in sand cultures for a period of 5-20 days. Arsenite (As(2)O(3); 25 and 50 μM) treatment resulted in increased formation of superoxide anion (O (2) (.-) ), elevated levels of H(2)O(2) and thiobarbituric acid reactive substances, showing enhanced lipid peroxidation. An enhanced level of ascorbate (AA) and glutathione (GSH) was observed irrespective of the variation in the level of dehydroascorbate (DHA) and oxidized glutathione (GSSG) which in turn influenced redox ratios AA/DHA and GSH/GSSG. With progressive arsenite treatment, synthesis of total acid soluble thiols and phytochelatins (PC) increased in the seedlings. Among antioxidative enzymes, the activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), total ascorbate peroxidase (APX, EC 1.11.1.11), chloroplastic ascorbate peroxidase, guaiacol peroxidase (EC 1.11.1.7), monodehydroascorbate reductase (EC 1.6.5.4), and glutathione reductase (EC 1.6.4.2) increased in arsenite treated seedlings, while dehyroascorbate reductase (EC 1.8.5.1) activity declined initially during 5-10 days and increased thereafter. Results suggest that arsenite treatment causes oxidative stress in rice seedlings, increases the levels of many enzymatic and non-enzymatic antioxidants, and induces synthesis of thiols and PCs, which may serve as important components in mitigating arsenite-induced oxidative damage.

  13. Hyper Accumulation of Arsenic in Mutants of Ochrobactrum tritici Silenced for Arsenite Efflux Pumps.

    Directory of Open Access Journals (Sweden)

    Tânia Sousa

    Full Text Available Ochrobactrum tritici SCII24T is a highly As-resistant bacterium, with two previously described arsenic resistance operons, ars1 and ars2. Among a large number of genes, these operons contain the arsB and Acr3 genes that encode the arsenite efflux pumps responsible for arsenic resistance. Exploring the genome of O. tritici SCII24T, an additional putative operon (ars3 was identified and revealed the presence of the Acr3_2 gene that encodes for an arsenite efflux protein but which came to prove to not be required for full As resistance. The genes encoding for arsenite efflux pumps, identified in this strain, were inactivated to develop microbial accumulators of arsenic as new tools for bioremediation. Six different mutants were produced, studied and three were more useful as biotools. O. tritici wild type and the Acr3-mutants showed the highest resistance to As(III, being able to grow up to 50 mM of arsenite. On the other hand, arsB-mutants were not able to grow at concentrations higher than 1 mM As(III, and were the most As(III sensitive mutants. In the presence of 1 mM As(III, the strain with arsB and Acr3_1 mutated showed the highest intracellular arsenic concentration (up to 17 ng(As/mg protein, while in assays with 5 mM As(III, the single arsB-mutant was able to accumulate the highest concentration of arsenic (up to 10 ng(As/mg protein. Therefore, arsB is the main gene responsible for arsenite resistance in O. tritici. However, both genes arsB and Acr3_1 play a crucial role in the resistance mechanism, depending on the arsenite concentration in the medium. In conclusion, at moderate arsenite concentrations, the double arsB- and Acr3_1-mutant exhibited a great ability to accumulate arsenite and can be seen as a promising bioremediation tool for environmental arsenic detoxification.

  14. ROS signalling, NADPH oxidases and cancer.

    Science.gov (United States)

    Landry, William D; Cotter, Thomas G

    2014-08-01

    ROS (reactive oxygen species) have long been regarded as a series of destructive molecules that have a detrimental effect on cell homoeostasis. In support of this are the myriad antioxidant defence systems nearly all eukaryotic cells have that are designed to keep the levels of ROS in check. However, research data emerging over the last decade have demonstrated that ROS can influence a range of cellular events in a manner similar to that seen for traditional second messenger molecules such as cAMP. Hydrogen peroxide (H2O2) appears to be the main ROS with such signalling properties, and this molecule has been shown to affect a wide range of cellular functions. Its localized synthesis by the Nox (NADPH oxidase) family of enzymes and how these enzymes are regulated is of particular interest to those who work in the field of tumour biology.

  15. From the Cover: Arsenite Uncouples Mitochondrial Respiration and Induces a Warburg-like Effect in Caenorhabditis elegans.

    Science.gov (United States)

    Luz, Anthony L; Godebo, Tewodros R; Bhatt, Dhaval P; Ilkayeva, Olga R; Maurer, Laura L; Hirschey, Matthew D; Meyer, Joel N

    2016-08-01

    Millions of people worldwide are chronically exposed to arsenic through contaminated drinking water. Despite decades of research studying the carcinogenic potential of arsenic, the mechanisms by which arsenic causes cancer and other diseases remain poorly understood. Mitochondria appear to be an important target of arsenic toxicity. The trivalent arsenical, arsenite, can induce mitochondrial reactive oxygen species production, inhibit enzymes involved in energy metabolism, and induce aerobic glycolysis in vitro, suggesting that metabolic dysfunction may be important in arsenic-induced disease. Here, using the model organism Caenorhabditis elegans and a novel metabolic inhibition assay, we report an in vivo induction of aerobic glycolysis following arsenite exposure. Furthermore, arsenite exposure induced severe mitochondrial dysfunction, including altered pyruvate metabolism; reduced steady-state ATP levels, ATP-linked respiration and spare respiratory capacity; and increased proton leak. We also found evidence that induction of autophagy is an important protective response to arsenite exposure. Because these results demonstrate that mitochondria are an important in vivo target of arsenite toxicity, we hypothesized that deficiencies in mitochondrial electron transport chain genes, which cause mitochondrial disease in humans, would sensitize nematodes to arsenite. In agreement with this, nematodes deficient in electron transport chain complexes I, II, and III, but not ATP synthase, were sensitive to arsenite exposure, thus identifying a novel class of gene-environment interactions that warrant further investigation in the human populace.

  16. Arsenite medicinal use, metabolism, pharmacokinetics and monitoring in human hair.

    Science.gov (United States)

    Nicolis, I; Curis, E; Deschamps, P; Bénazeth, S

    2009-10-01

    Acute promyelocytic leukaemia (APL) is a distinctive subtype of acute myeloid leukaemias. Even through this human disease can be treated by the intravenous administration of all-trans retinoic acid (ATRA), 25% of patients typically relapse after the first treatment. In this context, the intravenous administration of APL patients with an aqueous solution of arsenic trioxide has also been demonstrated to be successful despite the established mammalian toxicity of this arsenic compound. Accordingly, the administration of a therapeutic dose of arsenic trioxide has resulted in an improved patient survival in both relapsing as well newly diagnosed APL patients. We present here a mini-review of the medicinal use of arsenite, its mammalian metabolism (with an emphasis on biomethylation pathways), its elimination and pharmacokinetics and the novel application of hair analysis as a biomonitoring material. This mini-review also introduces our own results on the analysis of hair of patients receiving arsenic trioxide therapy. In this work, instead of quantifying arsenic content in bulk hair, we performed longitudinal analysis in order to use hair as a marker of arsenic exposure correlated to a time scale. Taking into account the hair growth rate, the longitudinal analysis of hair is demonstrated to provide a chronological record of the treatment of patients with arsenic trioxide. The small quantity of material to be analysed required the use of Synchrotron radiation based X-ray fluorescence (SXRF) spectroscopy. The hair arsenic content was well correlated with the clinical background of patients and reflected the intake of arsenic trioxide. In particular, the onset of arsenic trioxide therapy and interruptions during therapy were reflected by total arsenic content, which suggested rapid elimination. Another type of experiment, micro-XRF cartography on thin hair slices, allowed us to obtain distribution maps of arsenic, which demonstrated that arsenic is located at the

  17. Global analysis of protein aggregation in yeast during physiological conditions and arsenite stress

    Directory of Open Access Journals (Sweden)

    Sebastian Ibstedt

    2014-09-01

    Full Text Available Protein aggregation is a widespread phenomenon in cells and associated with pathological conditions. Yet, little is known about the rules that govern protein aggregation in living cells. In this study, we biochemically isolated aggregation-prone proteins and used computational analyses to identify characteristics that are linked to physiological and arsenite-induced aggregation in living yeast cells. High protein abundance, extensive physical interactions, and certain structural properties are positively correlated with an increased aggregation propensity. The aggregated proteins have high translation rates and are substrates of ribosome-associated Hsp70 chaperones, indicating that they are susceptible for aggregation primarily during translation/folding. The aggregation-prone proteins are enriched for multiple chaperone interactions, thus high protein abundance is probably counterbalanced by molecular chaperones to allow soluble expression in vivo. Our data support the notion that arsenite interferes with chaperone activity and indicate that arsenite-aggregated proteins might engage in extensive aberrant protein–protein interactions. Expression of aggregation-prone proteins is down-regulated during arsenite stress, possibly to prevent their toxic accumulation. Several aggregation-prone yeast proteins have human homologues that are implicated in misfolding diseases, suggesting that similar mechanisms may apply in disease- and non-disease settings.

  18. AN INTEGRATED PHARMACOKINETIC AND PHARMACODYNAMIC STUDY OF ARSENITE ACTION 2. HEME OXYGENASE INDUCTION IN MICE

    Science.gov (United States)

    Heme oxygenase (HO) is the rate-limiting enzyme in heme degradation and its activity has a significant impact on intracellular heme pools. Rat studies indicate that HO induction is a sensitive, dose-dependent response to arsenite (AsIII) exposure in both liver and kidney. The o...

  19. SORPTION OF ARSENATE AND ARSENITE ON A RUTHENIUM COMPOUND: A MACROSCOPIC AND MICROSCOPIC STUDY

    Science.gov (United States)

    Sorption of arsenate and arsenite was examined on a ruthenium compound using macroscopic and microscopic techniques. Batch sorption experiments at pH 4,5,6, 7 and 8 were employed to construct constant solid solution ratio isotherms (CSI). After equilibration at the appropriate pH...

  20. The metalloid arsenite induces nuclear export of Id3 possibly via binding to the N-terminal cysteine residues

    Energy Technology Data Exchange (ETDEWEB)

    Kurooka, Hisanori, E-mail: hkurooka@u-fukui.ac.jp [Division of Molecular Genetics, Department of Biochemistry and Bioinformative Sciences, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Research and Education Program for Life Science, University of Fukui, Fukui (Japan); Sugai, Manabu [Department of Experimental Therapeutics, Translational Research Center, Kyoto University Hospital, Kyoto (Japan); Mori, Kentaro [Division of Molecular Genetics, Department of Biochemistry and Bioinformative Sciences, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Yokota, Yoshifumi, E-mail: yokota@u-fukui.ac.jp [Division of Molecular Genetics, Department of Biochemistry and Bioinformative Sciences, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Research and Education Program for Life Science, University of Fukui, Fukui (Japan)

    2013-04-19

    Highlights: •Sodium arsenite induces cytoplasmic accumulation of Id3. •Arsenite binds to closely spaced N-terminal cysteine residues of Id3. •N-terminal cysteines are essential for arsenite-induced nuclear export of Id3. •Nuclear export of Id3 counteracts its transcriptional repression activity. -- Abstract: Ids are versatile transcriptional repressors that regulate cell proliferation and differentiation, and appropriate subcellular localization of the Id proteins is important for their functions. We previously identified distinct functional nuclear export signals (NESs) in Id1 and Id2, but no active NES has been reported in Id3. In this study, we found that treatment with the stress-inducing metalloid arsenite led to the accumulation of GFP-tagged Id3 in the cytoplasm. Cytoplasmic accumulation was impaired by a mutation in the Id3 NES-like sequence resembling the Id1 NES, located at the end of the HLH domain. It was also blocked by co-treatment with the CRM1-specific nuclear export inhibitor leptomycin B (LMB), but not with the inhibitors for mitogen-activated protein kinases (MAPKs). Importantly, we showed that the closely spaced N-terminal cysteine residues of Id3 interacted with the arsenic derivative phenylarsine oxide (PAO) and were essential for the arsenite-induced cytoplasmic accumulation, suggesting that arsenite induces the CRM1-dependent nuclear export of Id3 via binding to the N-terminal cysteines. Finally, we demonstrated that Id3 significantly repressed arsenite-stimulated transcription of the immediate-early gene Egr-1 and that this repression activity was inversely correlated with the arsenite-induced nuclear export. Our results imply that Id3 may be involved in the biological action of arsenite.

  1. The metalloid arsenite induces nuclear export of Id3 possibly via binding to the N-terminal cysteine residues

    International Nuclear Information System (INIS)

    Highlights: •Sodium arsenite induces cytoplasmic accumulation of Id3. •Arsenite binds to closely spaced N-terminal cysteine residues of Id3. •N-terminal cysteines are essential for arsenite-induced nuclear export of Id3. •Nuclear export of Id3 counteracts its transcriptional repression activity. -- Abstract: Ids are versatile transcriptional repressors that regulate cell proliferation and differentiation, and appropriate subcellular localization of the Id proteins is important for their functions. We previously identified distinct functional nuclear export signals (NESs) in Id1 and Id2, but no active NES has been reported in Id3. In this study, we found that treatment with the stress-inducing metalloid arsenite led to the accumulation of GFP-tagged Id3 in the cytoplasm. Cytoplasmic accumulation was impaired by a mutation in the Id3 NES-like sequence resembling the Id1 NES, located at the end of the HLH domain. It was also blocked by co-treatment with the CRM1-specific nuclear export inhibitor leptomycin B (LMB), but not with the inhibitors for mitogen-activated protein kinases (MAPKs). Importantly, we showed that the closely spaced N-terminal cysteine residues of Id3 interacted with the arsenic derivative phenylarsine oxide (PAO) and were essential for the arsenite-induced cytoplasmic accumulation, suggesting that arsenite induces the CRM1-dependent nuclear export of Id3 via binding to the N-terminal cysteines. Finally, we demonstrated that Id3 significantly repressed arsenite-stimulated transcription of the immediate-early gene Egr-1 and that this repression activity was inversely correlated with the arsenite-induced nuclear export. Our results imply that Id3 may be involved in the biological action of arsenite

  2. Fibromodulin Interacts with Collagen Cross-linking Sites and Activates Lysyl Oxidase*

    OpenAIRE

    Kalamajski, Sebastian; Bihan, Dominique; Bonna, Arkadiusz; Rubin, Kristofer; Farndale, Richard W.

    2016-01-01

    The hallmark of fibrotic disorders is a highly cross-linked and dense collagen matrix, a property driven by the oxidative action of lysyl oxidase. Other fibrosis-associated proteins also contribute to the final collagen matrix properties, one of which is fibromodulin. Its interactions with collagen affect collagen cross-linking, packing, and fibril diameter. We investigated the possibility that a specific relationship exists between fibromodulin and lysyl oxidase, potentially imparting a spec...

  3. Effect of Sodium Arsenite on Rat Bone Marrow Mesenchymal Stem Cells: Cells Viability and Morphological Study

    Directory of Open Access Journals (Sweden)

    M.H. Abnosi

    2010-07-01

    Full Text Available Introduction & Objective: Sodium arsenite as an environmental pollutant being found in the air, water, and earth crust threats the human beings' health. The aim of this study was to investigate the effect of sodium arsenite on viability and morphology of mesenchymal stem cells in rat bone marrow.Materials & Methods: In this exprimental study the cells were extracted in DMEM containing 15% FBS and Pen/Strep until the 3rd passage then treated with 0, 0.1, 0.5, 2.5, 12.5 and 20 µM of sodium arsenite for 12, 24, 36 and 48 hrs. Viability of the cells was carried out with trypan blue and MTT staining, then 0.1 µM and 36 hrs treatment was selected for further investigations. Morphology of the cells was studied using fluorescent dye (Hochest, propidium iodide and acridine orange as well as protein profile of the cells were studied using SDS-PAGE. Data was analyzed using one and two way ANOVA.Results: Based on the two way ANOVA, cumulative effect of treatment time and used dosage caused highly significant reduction (p<0.001 in viability of rat bone marrow mesenchymal stem cells. One way ANOVA indicated that the viability of the cells reduced significantly (p<0.05 from 0.1 µM of sodium arsenite on wards in all the treatment time. Morphological changes including condensation and deformation of the nuclei, membrane disruption, and shrinkage of cytoplasm were also observed. Conclusion: Sodium arsenite toxicity caused morphological and protein profile changes as well as dose and time dependent reduction in viability of rat bone marrow mesenchymal stem cells.

  4. meso-2,3-Dimercaptosuccinic acid and prevention of arsenite embryotoxicity and teratogenicity in the mouse.

    Science.gov (United States)

    Domingo, J L; Bosque, M A; Piera, V

    1991-08-01

    meso-2,3-Dimercaptosuccinic acid (DMSA), an antidote for the treatment of experimental and human poisoning by a number of heavy metals, has been reported to reduce the lethality of animals poisoned with arsenic more effectively than 2,3-dimercaptopropanol. In the present study, the effect of DMSA on arsenite-induced embryotoxic and teratogenic effects was evaluated in mice. In a first experiment, a series of four DMSA injections was administered sc to pregnant Swiss mice immediately after a single ip injection of 12 mg/kg of sodium arsenite (NaAsO2) given on Day 10 of gestation, and at 24, 48, and 72 hr thereafter. DMSA effectiveness was assessed at dosage levels of 0, 80, 160, and 320 mg/kg/day. Treatment with DMSA significantly reduced the embryolethality and the incidence of gross external and skeletal malformations and variations provoked by NaAsO2. Based on these findings, the effect of increasing the time interval between acute arsenite exposure and initiation of DMSA therapy was investigated in a second experiment. On Day 10 of gestation, DMSA (320 mg/kg) was administered sc to pregnant mice at 0, 0.25, 0.50, 1, 4, or 12 hr after a 12-mg/kg ip dose of NaAsO2. Embryotoxicity and teratogenicity derived from NaAsO2 exposure were significantly reduced when DMSA was given during the first hour after NaAsO2 injection. According to these results, a delay between acute arsenite intoxication and DMSA treatment should be avoided to have a practical beneficial effect on the arsenite exposed conceptus.

  5. Absorption of Arsenite on Several Iron (Hydro-)Oxides and Impact from Pre-processing Methods

    Institute of Scientific and Technical Information of China (English)

    YE Ying; JI Shanshan; WU Daidai; LI Jun; ZHANG Weirui

    2006-01-01

    The absorption reactions of arsenite on Fe (hydro-)oxides are studied. The three absorbent types are Fe(OH)3 gel and two Fe (hydro-)oxides, in which the Fe(OH)3 gel was dried in a microwave oven under vacuum at 80℃. It is found that pH changes from 9.71 to 10.36 in 6 minutes after the Fe (OH)3 gel was mixed with NaAsO2 solution, as the arsenite replaces the OH- in goethite and Fe(OH)3.At the 40th minute after the start of the reaction, pH decreases, which is most probably because that the monodentate surface complex of absorbed arsenite has changed into mononuclear-bidentate complex and released proton. The decline in pH values indicates not the end of the absorption but a change in the reaction type. Temperature and dissolved gas has little effect on these two types of reactions. The total absorption of arsenite increases after the absorbent is irradiated with ultrasound, which also lead to difficulty in separating the solids from solution. The absorption capacity for arsenite of Fe(OH)3 gel dried in a microwave oven under vacuum is 53.18% and 17.22% respectively better than that of Fe (OH)3 gel and gel dried at 80℃. The possible reasons are that the water molecules in the gel vibrates with high frequency under the effect of microwave irradiation, thereby producing higher porosity and improved surface activity.

  6. Characterization of Recombinant Lysyl Oxidase Propeptide

    OpenAIRE

    Vora, Siddharth R.; Guo, Ying; Danielle N Stephens; Salih, Erdjan; Vu, Emile D.; Kirsch, Kathrin H.; Sonenshein, Gail E.; Trackman, Philip C.

    2010-01-01

    Lysyl oxidase enzyme activity is critical for the biosynthesis of mature and functional collagens and elastin. In addition, lysyl oxidase has tumor suppressor activity that has been shown to depend on the propeptide region (LOX-PP) derived from pro-lysyl oxidase (Pro-LOX), and not on lysyl oxidase enzyme activity. Pro-LOX is secreted as a 50 kDa proenzyme, and then undergoes biosynthetic proteolytic processing to active ~30 kDa LOX enzyme and LOX-PP. The present study reports the efficient re...

  7. Glucose oxidase activity of actinomycetes.

    Science.gov (United States)

    St Vlahov, S

    1978-01-01

    The ability of 311 actiomycete, belonging to 12 species to produce glucose oxidase was studied. It was found that 174 of them formed exoenzymes on solid medium and 133 in liquid medium. The composition of the nutrient medium has an essential effect on the amount of enzyme formed. Strains with considerably higher activity form a greater amount of exoenzymes on soya meal medium and on synthetic medium with KNO2. The highest activity of the culture liquid of some strains was observed between the 6th and 7th day of cultivation. During this phase of growth the highest productivity of the biomas was established. PMID:76424

  8. Cultivable diversity of thermophilic arsenite/ferrous-oxidizing microorganisms in hot springs of Taiwan

    Science.gov (United States)

    Lu, G.; Lin, Y.; Chang, Y.; Wang, P.; Lin, L.

    2009-12-01

    Elevated levels of arsenic in groundwater and surface water bodies have posed a stringent threat to the deterioration of the water quality for drinking and agriculture purposes around the world. In particular, arsenic liberated from volcanic and sedimentary rocks at high temperatures would be immobilized through adsorption on iron oxide and/or crystallization of iron-bearing minerals downstream at low temperatures. Understanding how microbially-catalytic reactions are involved in the changes of the redox state of arsenic and iron along a flow path would provide important constraints on the arsenic mobility in natural occurrences. The aims of this study were to isolate and characterize thermophilic arsenite- and iron-oxidizing microbes that would facilitate to establish the linkages between microbial distribution and in situ Fe/As cycling processes. Four source waters (LH05, LH08, SYK and MT) from acid-sulfate springs (pH 2-3, 60-97oC) located in the Tatun volcanic area of northern Taiwan were collected and inoculated into media targeting on autotrophic ferrous iron (FC3), arsenite (AC3 ,ACC3, AC7, ACC7), arsenite-resistant hydrogen (AH23), arsenite-resistant hydrogen-sulfur (AH2S3), and arsenite-resistant sulfur oxidations(AS3), and heterotrophic arsenite oxidation(AH3, AH7) at pH 3, and 7 at temperatures of 50, 70 and 80oC. Samples from the Kuantzuling mud springs (KTL) in southwestern Taiwan known with elevated arsenic levels (0.4 ppm) were also collected, inoculated into the heterotrophic medium and incubated at 50, 60, 70 and 80oC. Isolates obtained from KTL were subject to test on the AH7 and ACC7. Two positive enrichments for iron oxidation at 50oC and 70oC were confirmed by the steadily decrease of ferrous iron and increase of precipitates over 4 transfers for samples from the SYK spring. Diverse morphological types of microbes were enriched in all types of arsenite-bearing media at 50oC except for AH23. At 70oC, positive enrichments were found in media

  9. Draft genome sequence of the arsenite-oxidizing strain Aliihoeflea sp. 2WW, isolated from arsenic-contaminated groundwater

    NARCIS (Netherlands)

    L. Cavalca; A. Corsini; V. Andreoni; G. Muyzer

    2013-01-01

    Here, we report the draft genome sequence of the arsenite-oxidizing bacterium Aliihoeflea sp. strain 2WW, which consists of a 4.15-Mb chromosome and contains different genes that are involved in arsenic transformations.

  10. 亚砷酸钠对人胚肺成纤维细胞增殖活性及细胞周期的影响%Effects of sodium arsenite on human embryonic lung fibroblast proliferation and cell cycle

    Institute of Scientific and Technical Information of China (English)

    陈保林; 孙高峰; 谢惠芳

    2013-01-01

    目的 探讨亚砷酸钠对人胚肺成纤维细胞(HELF)增殖活性及细胞周期的影响.方法 将体外培养的HELF细胞分别暴露于浓度为0(对照)、20、40、60 μmol/L的亚砷酸钠培养基24、48和72 h.采用噻唑蓝(MTr)法检测细胞活力,采用流式细胞仪检测细胞周期分布.结果 与对照组相比,各浓度亚砷酸钠染毒24、48、72 h后细胞抑制率均升高,差异有统计学意义(P<0.05);HELF细胞抑制率与亚砷酸钠浓度及作用时长均呈正相关(P<0.05).HELF细胞G2+M期的比例仅在染毒24、48 h时均与亚砷酸钠染毒浓度呈正相关(P<0.05).HELF细胞S期比例在染毒48 h时与亚砷酸钠染毒浓度呈负相关(P<0.05).结论 亚砷酸钠染毒可降低HELF细胞的增殖活性,并能够选择性地将细胞阻滞在合成末期及分裂期(G2+M期).%Objective To investigate the effects of sodium arsenite on human embryo lung fibroblast (HELF) proliferation and cell cycle.Methods HELF cells were treated with sodium arsenite at the doses of 0 (control),20,40 and 60 μmol/L for for 24,48 and 72 hours respectively,MTT assay was used for cell proliferation detection and the cell cycle was determined by flow cytometry.Results Compared with the control group,after 24,48,72 hours of treatment with sodium arsenite at the three exposure doses,cell inhibition rates increased significantly(P<0.05);Cell inhibition rates were positively correlated with sodium arsenite doses (P<0.05).The ratios of HELF in G2+M phase was positively correlated with sodium arsenite doses after 24 and 48 hours of treatment.The proportions of cells in S phase was negatively correlated with sodium arsenite doses after 48 hours of treatment.Conclusion Sodium arsenite can affect human embryonic lung fibroblast proliferation activity,cell cycle data showes that sodium arsenite may restrict selectively cells at G2+M phase.

  11. The novel role of fenofibrate in preventing nicotine- and sodium arsenite-induced vascular endothelial dysfunction in the rat.

    Science.gov (United States)

    Kaur, Jagdeep; Reddy, Krishna; Balakumar, Pitchai

    2010-09-01

    The present study investigated the effect of fenofibrate, an agonist of PPAR-alpha, in nicotine- and sodium arsenite-induced vascular endothelial dysfunction (VED) in rats. Nicotine (2 mg/kg/day, i.p., 4 weeks) and sodium arsenite (1.5 mg/kg/day, i.p., 2 weeks) were administered to produce VED in rats. The scanning electron microscopy study in thoracic aorta revealed that administration of nicotine or sodium arsenite impaired the integrity of vascular endothelium. Further, administration of nicotine or sodium arsenite significantly decreased serum and aortic concentrations of nitrite/nitrate and subsequently reduced acetylcholine-induced endothelium-dependent relaxation. Moreover, nicotine or sodium arsenite produced oxidative stress by increasing serum thiobarbituric acid reactive substances (TBARS) and aortic superoxide generation. However, treatment with fenofibrate (30 mg/kg/day, p.o.) or atorvastatin (30 mg/kg/day p.o., a standard agent) significantly prevented nicotine- and sodium arsenite-induced VED and oxidative stress by improving the integrity of vascular endothelium, increasing the concentrations of serum and aortic nitrite/nitrate, enhancing the acetylcholine-induced endothelium-dependent relaxation and decreasing serum TBARS and aortic superoxide anion generation. Conversely, co-administration of L-NAME (25 mg/kg/day, i.p.), an inhibitor of nitric oxide synthase, markedly attenuated these vascular protective effects of fenofibrate. The administration of nicotine or sodium arsenite altered the lipid profile by increasing serum cholesterol and triglycerides and consequently decreasing high-density lipoprotein levels, which were significantly prevented by treatment with fenofibrate or atorvastatin. It may be concluded that fenofibrate improves the integrity and function of vascular endothelium, and the vascular protecting potential of fenofibrate in preventing the development of nicotine- and sodium arsenite-induced VED may be attributed to its

  12. Syntheses, crystal structures and characterizations of two new bismuth(III) arsenites

    Energy Technology Data Exchange (ETDEWEB)

    Liu Junhui [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Kong Fang [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); Gai Yanli [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Mao Jianggao, E-mail: mjg@fjirsm.ac.cn [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China)

    2013-01-15

    Two new bismuth arsenites with two different structural types, namely, Bi{sub 2}O(AsO{sub 3})Cl (1), Bi{sub 8}O{sub 6}(AsO{sub 3}){sub 2}(AsO{sub 4}){sub 2} (2), have been synthesized by the solid-state reactions. Compound 1 exhibits novel 2D bismuth arsenite layers with Bi{sub 4}O{sub 4} rings capped by oxide anions, which are further interconnected by Bi-Cl-Bi bridges into a 3D network. Compound 2 contains both arsenite and arsenate anions, its 3D structures are based on 1D bismuth arsenite and 1D bismuth arsenate chains both along b-axis, which are interconnected by oxide anions via Bi-O-Bi bridges, forming 1D tunnels of Bi{sub 4}As{sub 4} 8-membered rings (MRs) along b-axis, the lone pairs of the arsenite groups are orientated toward the centers of the above tunnels. Thermogravimetric analysis indicated that both compounds display high thermal stability. Optical property measurements revealed that they are wide band-gap semiconductors. Both compounds display broad green-light emission bands centered at 506 nm under excitation at 380 and 388 nm. - Graphical abstract: Solid state reactions of Bi{sub 2}O{sub 3} (BiCl{sub 3}) and As{sub 2}O{sub 3} yielded two new compounds with two different structural types, namely, Bi{sub 2}O(AsO{sub 3})Cl (1), Bi{sub 8}O{sub 6}(AsO{sub 3}){sub 2}(AsO{sub 4}){sub 2} (2). They represent the first examples of bismuth arsenates. Highlights: Black-Right-Pointing-Pointer Solid state reactions of Bi{sub 2}O{sub 3} (BiCl{sub 3}) and As{sub 2}O{sub 3} yielded two new phases. Black-Right-Pointing-Pointer They represent the first examples of bismuth arsenites. Black-Right-Pointing-Pointer The two compounds exhibit two different structural types.

  13. The protective role of vitamin E on the testicular tissue in rats exposed to sodium arsenite during the prenatal stage till sex maturity: A stereological analysis

    OpenAIRE

    Malek Soleimani Mehranjani; Rezvan Taefi

    2012-01-01

    Background: Vitamin E is an effective antioxidant, protecting cells against oxidative stress. Objective: In this investigation the protective effect of vitamin E on the testis during development and spermatogenesis in rats exposed to sodium arsenite was evaluated. Materials and Methods: Pregnant Wistar rats were divided into 4 groups (n=8) control, sodium arsenite (8 mg/kg/day), sodium arsenite+vitamin E (100 mg/kg/day) and vitamin E. Treatment was carried out from day seven of pregnancy till...

  14. Effects of chronic exposure to sodium arsenite on hypothalamo-pituitary-testicular activities in adult rats: possible an estrogenic mode of action

    Directory of Open Access Journals (Sweden)

    Jana Subarna

    2006-02-01

    -HSD, 17 beta-HSD, and sorbitol dehydrogenase (SDH were significantly decreased, but those of acid phosphatase (ACP, alkaline phosphatase (ALP, and lactate dehydrogenase (LDH were significantly increased. A decrease in dopamine or an increase in noradrenaline and 5-HT in hypothalamus and pituitary were also noted after arsenic exposure. Histological evaluation revealed extensive degeneration of different varieties of germ cells at stage VII of spermatogenic cycle in arsenic exposed rats. Administration of human chorionic gonadotrophin (hCG along with sodium arsenite partially prevented the degeneration of germ cells and enhanced paired testicular weights, epididymal sperm count, plasma and intratesticular testosterone concentrations, activities of delta 5, 3beta-HSD, 17 beta-HSD and sorbitol dehydrogenase along with diminution in the activities of ACP, ALP and LDH. Since many of the observed arsenic effects could be enhanced by oestradiol, it is suggested that arsenic might somehow acts through an estrogenic mode of action. Conclusion The results indicate that arsenic causes testicular toxicity by germ cell degeneration and inhibits androgen production in adult male rats probably by affecting pituitary gonadotrophins. Estradiol treatment has been associated with similar effects on pituitary testicular axis supporting the hypothesis that arsenite might somehow act through an estrogenic mode of action.

  15. Global Analysis of Posttranscriptional Gene Expression in Response to Sodium Arsenite

    OpenAIRE

    Qiu, Lian-Qun; Abey, Sarah; Harris, Shawn; Shah, Ruchir; Gerrish, Kevin E.; Blackshear, Perry J.

    2014-01-01

    Background: Inorganic arsenic species are potent environmental toxins and causes of numerous health problems. Most studies have assumed that arsenic-induced changes in mRNA levels result from effects on gene transcription. Objectives: We evaluated the prevalence of changes in mRNA stability in response to sodium arsenite in human fibroblasts. Methods: We used microarray analyses to determine changes in steady-state mRNA levels and mRNA decay rates following 24-hr exposure to noncytotoxic conc...

  16. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan

    Science.gov (United States)

    Liao, Vivian Hsiu-Chuan; Chu, Yu-Ju; Su, Yu-Chen; Hsiao, Sung-Yun; Wei, Chia-Cheng; Liu, Chen-Wuing; Liao, Chung-Min; Shen, Wei-Chiang; Chang, Fi-John

    2011-04-01

    Drinking highly arsenic-contaminated groundwater is a likely cause of blackfoot disease in Taiwan, but microorganisms that potentially control arsenic mobility in the subsurface remain unstudied. The objective of this study was to investigate the relevant arsenite-oxidizing and arsenate-reducing microbial community that exists in highly arsenic-contaminated groundwater in Taiwan. We cultured and identified arsenic-transforming bacteria, analyzed arsenic resistance and transformation, and determined the presence of genetic markers for arsenic transformation. In total, 11 arsenic-transforming bacterial strains with different colony morphologies and varying arsenic transformation abilities were isolated, including 10 facultative anaerobic arsenate-reducing bacteria and one strictly aerobic arsenite-oxidizing bacterium. All of the isolates exhibited high levels of arsenic resistance with minimum inhibitory concentrations of arsenic ranging from 2 to 200 mM. Strain AR-11 was able to rapidly oxidize arsenite to arsenate at concentrations relevant to environmental groundwater samples without the addition of any electron donors or acceptors. We provide evidence that arsenic-reduction activity may be conferred by the ars operon(s) that were not amplified by the designed primers currently in use. The 16S rRNA sequence analysis grouped the isolates into the following genera: Pseudomonas, Bacillus, Psychrobacter, Vibrio, Citrobacter, Enterobacter, and Bosea. Among these genera, we present the first report of the genus Psychrobacter being involved in arsenic reduction. Our results further support the hypothesis that bacteria capable of either oxidizing arsenite or reducing arsenate coexist and are ubiquitous in arsenic-contaminated groundwater.

  17. Effects of arsenic on modification of promyelocytic leukemia (PML): PML responds to low levels of arsenite

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Seishiro, E-mail: seishiro@nies.go.jp [Research Center for Environmental Risk, National Institute for Environmental Studies (Japan); Graduate School of Pharmaceutical Sciences, Chiba University (Japan); Watanabe, Takayuki [Graduate School of Pharmaceutical Sciences, Chiba University (Japan); Kobayashi, Yayoi [Graduate School of Pharmaceutical Sciences, Chiba University (Japan); Center for Environmental Health Sciences, National Institute for Environmental Studies (Japan)

    2013-12-15

    Inorganic arsenite (iAs{sup 3+}) is a two-edged sword. iAs{sup 3+} is a well-known human carcinogen; nevertheless, it has been used as a therapeutic drug for acute promyelocytic leukemia (APL), which is caused by a fusion protein comprising retinoic acid receptor-α and promyelocytic leukemia (PML). PML, a nuclear transcription factor, has a RING finger domain with densely positioned cysteine residues. To examine PML-modulated cellular responses to iAs{sup 3+}, CHO-K1 and HEK293 cells were each used to establish cell lines that expressed ectopic human PML. Overexpression of PML increased susceptibility to iAs{sup 3+} in CHO-K1 cells, but not in HEK293 cells. Exposure of PML-transfected cells to iAs{sup 3+} caused PML to change from a soluble form to less soluble forms, and this modification of PML was observable even with just 0.1 μM iAs{sup 3+} (7.5 ppb). Western blot and immunofluorescent microscopic analyses revealed that the biochemical changes of PML were caused at least in part by conjugation with small ubiquitin-like modifier proteins (SUMOylation). A luciferase reporter gene was used to investigate whether modification of PML was caused by oxidative stress or activation of antioxidant response element (ARE) in CHO-K1 cells. Modification of PML protein occurred faster than activation of the ARE in response to iAs{sup 3+}, suggesting that PML was not modified as a consequence of oxidative stress-induced ARE activation. - Highlights: • PML was found in nuclear microspecles in response to arsenite. • Arsenite triggers SUMOylation of PML. • Arsenite modifies PML at as low as 0.1 μM. • Modification of PML is not caused by ARE activation.

  18. Arabidopsis NIP3;1 Plays an Important Role in Arsenic Uptake and Root-to-Shoot Translocation under Arsenite Stress Conditions.

    Science.gov (United States)

    Xu, Wenzhong; Dai, Wentao; Yan, Huili; Li, Sheng; Shen, Hongling; Chen, Yanshan; Xu, Hua; Sun, Yangyang; He, Zhenyan; Ma, Mi

    2015-05-01

    In Arabidopsis, the nodulin 26-like intrinsic protein (NIP) subfamily of aquaporin proteins consists of nine members, five of which (NIP1;1, NIP1;2, NIP5;1, NIP6;1, and NIP7;1) were previously identified to be permeable to arsenite. However, the roles of NIPs in the root-to-shoot translocation of arsenite in plants remain poorly understood. In this study, using reverse genetic strategies, Arabidopsis NIP3;1 was identified to play an important role in both the arsenic uptake and root-to-shoot distribution under arsenite stress conditions. The nip3;1 loss-of-function mutants displayed obvious improvements in arsenite tolerance for aboveground growth and accumulated less arsenic in shoots than those of the wild-type plants, whereas the nip3;1 nip1;1 double mutant showed strong arsenite tolerance and improved growth of both roots and shoots under arsenite stress conditions. A promoter-β-glucuronidase analysis revealed that NIP3;1 was expressed almost exclusively in roots (with the exception of the root tips), and heterologous expression in the yeast Saccharomyces cerevisiae demonstrated that NIP3;1 was able to mediate arsenite transport. Taken together, our results suggest that NIP3;1 is involved in arsenite uptake and root-to-shoot translocation in Arabidopsis, probably as a passive and bidirectional arsenite transporter.

  19. Aquaglyceroporins are involved in uptake of arsenite into murine gastrointestinal tissues.

    Science.gov (United States)

    Wang, Chun; Chen, Gang; Jiang, Junkang; Qiu, Lianglin; Hosoi, Kazuo; Yao, Chenjuan

    2009-01-01

    Aquaglyceroporins (AQGPs) are members of aquaporin (AQP) family and belong to a subgroup of this water channel family; they are transmembrane proteins that transport water as well as glycerol and other solutes of small molecules. Recent studies have also identified that AQGPs are important transporters of trivalent metalloid in some mammalian cells. However, the uptake routes of arsenite in mammals are still less defined. In this study, to understand the routes of arsenite intake in mammals, mice were treated with Hg(II), glycerol, and As(III) and uptake of As(III) into the gastrointestinal tissues was measured. The level of inorganic arsenic (iAs) in gastrointestinal tissues after As(III) stimulation was much higher than Hg(II) +As(III) or glycerol+As(III) group. RT-PCR results showed that AQGPs were extensively expressed in gastrointestinal tissues of mice. We also treated Caco-2 cells with Hg(II) and As(III); the level of iAs in a group treated with Hg(II)+As(III) decreased compared with As(III)-treated group. Our results suggested that AQGPs could be important transporters in arsenite uptake into gastrointestinal tissues of mice, but more data are need to prove if AQGPs is the only pathway involved in As transport in mammals or just one of them.

  20. Bioaccumulation and oxidative stress in Daphnia magna exposed to arsenite and arsenate.

    Science.gov (United States)

    Fan, Wenhong; Ren, Jinqian; Li, Xiaomin; Wei, Chaoyang; Xue, Feng; Zhang, Nan

    2015-11-01

    Arsenic pollution and its toxicity to aquatic organisms have attracted worldwide attention. The bioavailability and toxicity of arsenic are highly related to its speciation. The present study investigated the differences in bioaccumulation and oxidative stress responses in an aquatic organism, Daphnia magna, induced by 2 inorganic arsenic species (As(III) and As(V)). The bioaccumulation of arsenic, Na(+) /K(+) -adenosine triphosphatase (ATPase) activity, reactive oxygen species (ROS) content, total superoxide dismutase (SOD) activity, total antioxidative capability, and malondialdehyde content in D. magna were determined after exposure to 500 µg/L of arsenite and arsenate for 48 h. The results showed that the oxidative stress and antioxidative process in D. magna exposed to arsenite and arsenate could be divided into 3 phases, which were antioxidative response, oxidation inhibition, and antioxidative recovery. In addition, differences in bioaccumulation, Na(+) /K(+) -ATPase activity, and total SOD activity were also found in D. magna exposed to As(III) and As(V). These differences might have been the result of the high affinity of As(III) with sulfhydryl groups in enzymes and the structural similarity of As(V) to phosphate. Therefore, arsenate could be taken up by organisms through phosphate transporters, could substitute for phosphate in biochemical reactions, and could lead to a change in the bioaccumulation of arsenic and activity of enzymes. These characteristics were the possible reasons for the different toxicity mechanisms in the oxidative stress process of arsenite and arsenate. PMID:26084717

  1. Methylated Trivalent Arsenic-Glutathione Complexes are More Stable than their Arsenite Analog

    Directory of Open Access Journals (Sweden)

    Jürgen Gailer

    2008-05-01

    Full Text Available The trivalent arsenic glutathione complexes arsenic triglutathione, methylarsonous diglutathione, and dimethylarsinous glutathione are key intermediates in the mammalian metabolism of arsenite and possibly represent the arsenic species that are transported from the liver to the kidney for urinary excretion. Despite this, the comparative stability of the arsenic-sulfur bonds in these complexes has not been investigated under physiological conditions resembling hepatocyte cytosol. Using size-exclusion chromatography and a glutathione-containing phosphate buffered saline mobile phase (5 or 10 mM glutathione, pH 7.4 in conjunction with an arsenic-specific detector, we chromatographed arsenite, monomethylarsonous acid, and dimethylarsinous acid. The on-column formation of the corresponding arsenic-glutathione complexes between 4 and 37∘C revealed that methylated arsenic-glutathione complexes are more stable than arsenic triglutathione. The relevance of these results with regard to the metabolic fate of arsenite in mammals is discussed.

  2. Sodium arsenite induced biochemical perturbations in rats: ameliorating effect of curcumin.

    Science.gov (United States)

    Yousef, Mokhtar I; El-Demerdash, Fatma M; Radwan, Fatma M E

    2008-11-01

    The present study was undertaken to evaluate the therapeutic efficacy of curcumin in terms of normalization of altered biochemical parameters following sodium arsenite treatment in rats. Animals were divided into four groups. The first group was used as control. While, groups 2, 3 and 4 were orally treated with curcumin (Cur, 15 mg/kg BW), sodium arsenite (Sa, 5 mg/kg BW) and sodium arsenite plus curcumin, respectively. Results showed that the activities of transaminases and phosphatases were significantly decreased in liver due to Sa administration, whereas increased in plasma. The activity of brain and plasma acetylcholinesterase (AChE) was decreased in rats treated with Sa. Also, Sa significantly decreased plasma total protein (TP), albumin (Alb) and high density lipoprotein-cholesterol (HDL-c), while increased glucose, urea, creatinine, bilirubin, total lipid (TL), cholesterol, triglyceride (TG) and low density lipoprotein-cholesterol (LDL-c). Curcumin alone decreased the levels of glucose, urea, creatinine, TL, cholesterol, TG and LDL-c. Curcumin reduced Sa-induced transaminases, phosphatases, glucose, urea, creatinine, bilirubin, TL, cholesterol and TG. Moreover, curcumin induced Sa-reduced liver transaminases and phosphatases, plasma and brain AChE, and the levels of TP and Alb. Experimental results, therefore suggested that curcumin protects arsenic induced biochemical alterations in rats.

  3. Stress protein synthesis in human keratinocytes treated with sodium arsenite, phenyldichloroarsine, and nitrogen mustard

    International Nuclear Information System (INIS)

    Cells from bacteria to man respond to sublethal thermal and certain chemical stresses by synthesis of heat shock, or stress, proteins. The human epidermal keratinocyte is a target for a variety of cytotoxic substances. One response of cells exposed to such agents may be the synthesis of stress proteins. Human epidermal keratinocytes were treated thermally (43 degrees C) or chemically with sodium arsenite and the skin irritants phenyldichloroarsine and mechlorethamine. Proteins synthesized by keratinocytes were radiolabeled with [35S]methionine, separated on polyacrylamide gels under denaturing conditions, and visualized by fluorography. Quantitation by computer-assisted densitometry of fluorograms revealed different patterns of synthesis of two heat shock proteins (hsp's) with apparent molecular weights of 70 and 90 kDa after treatment with heat, sodium arsenite, phenyl-dichloroarsine, or mechlorethamine. Sodium arsenite induced the highest levels of synthesis of these two proteins, approximately 10-fold and 3-fold increases in hsp-70 and hsp-90, respectively. Phenyldichloroarsine at 0.5 microM produced a 2-fold increase in hsp-70 but no significant increase in hsp-90. Mechlorethamine, in contrast, had an apparent inhibitory effect on hsp-70 synthesis. These results suggest that some but not all skin irritants induce the synthesis of heat shock proteins in human keratinocytes

  4. Short-term exposure of arsenite disrupted thyroid endocrine system and altered gene transcription in the HPT axis in zebrafish.

    Science.gov (United States)

    Sun, Hong-Jie; Li, Hong-Bo; Xiang, Ping; Zhang, Xiaowei; Ma, Lena Q

    2015-10-01

    Arsenic (As) pollution in aquatic environment may adversely impact fish health by disrupting their thyroid hormone homeostasis. In this study, we explored the effect of short-term exposure of arsenite (AsIII) on thyroid endocrine system in zebrafish. We measured As concentrations, As speciation, and thyroid hormone thyroxine levels in whole zebrafish, oxidative stress (H2O2) and damage (MDA) in the liver, and gene transcription in hypothalamic-pituitary-thyroid (HPT) axis in the brain and liver tissues of zebrafish after exposing to different AsIII concentrations for 48 h. Result indicated that exposure to AsIII increased inorganic As in zebrafish to 0.46-0.72 mg kg(-1), induced oxidative stress with H2O2 being increased by 1.4-2.5 times and caused oxidative damage with MDA being augmented by 1.6 times. AsIII exposure increased thyroxine levels by 1.3-1.4 times and modulated gene transcription in HPT axis. Our study showed AsIII caused oxidative damage, affected thyroid endocrine system and altered gene transcription in HPT axis in zebrafish.

  5. NADPH Oxidase as a Therapeutic Target for Neuroprotection against Ischaemic Stroke: Future Perspectives

    Directory of Open Access Journals (Sweden)

    Carli L. Roulston

    2013-04-01

    Full Text Available Oxidative stress caused by an excess of reactive oxygen species (ROS is known to contribute to stroke injury, particularly during reperfusion, and antioxidants targeting this process have resulted in improved outcomes experimentally. Unfortunately these improvements have not been successfully translated to the clinical setting. Targeting the source of oxidative stress may provide a superior therapeutic approach. The NADPH oxidases are a family of enzymes dedicated solely to ROS production and pre-clinical animal studies targeting NADPH oxidases have shown promising results. However there are multiple factors that need to be considered for future drug development: There are several homologues of the catalytic subunit of NADPH oxidase. All have differing physiological roles and may contribute differentially to oxidative damage after stroke. Additionally, the role of ROS in brain repair is largely unexplored, which should be taken into consideration when developing drugs that inhibit specific NADPH oxidases after injury. This article focuses on the current knowledge regarding NADPH oxidase after stroke including in vivo genetic and inhibitor studies. The caution required when interpreting reports of positive outcomes after NADPH oxidase inhibition is also discussed, as effects on long term recovery are yet to be investigated and are likely to affect successful clinical translation.

  6. NADPH Oxidase as a Therapeutic Target for Neuroprotection against Ischaemic Stroke: Future Perspectives.

    Science.gov (United States)

    McCann, Sarah K; Roulston, Carli L

    2013-01-01

    Oxidative stress caused by an excess of reactive oxygen species (ROS) is known to contribute to stroke injury, particularly during reperfusion, and antioxidants targeting this process have resulted in improved outcomes experimentally. Unfortunately these improvements have not been successfully translated to the clinical setting. Targeting the source of oxidative stress may provide a superior therapeutic approach. The NADPH oxidases are a family of enzymes dedicated solely to ROS production and pre-clinical animal studies targeting NADPH oxidases have shown promising results. However there are multiple factors that need to be considered for future drug development: There are several homologues of the catalytic subunit of NADPH oxidase. All have differing physiological roles and may contribute differentially to oxidative damage after stroke. Additionally, the role of ROS in brain repair is largely unexplored, which should be taken into consideration when developing drugs that inhibit specific NADPH oxidases after injury. This article focuses on the current knowledge regarding NADPH oxidase after stroke including in vivo genetic and inhibitor studies. The caution required when interpreting reports of positive outcomes after NADPH oxidase inhibition is also discussed, as effects on long term recovery are yet to be investigated and are likely to affect successful clinical translation. PMID:24961415

  7. Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants.

    Science.gov (United States)

    Mosa, Kareem A; Kumar, Kundan; Chhikara, Sudesh; Mcdermott, Joseph; Liu, Zijuan; Musante, Craig; White, Jason C; Dhankher, Om Parkash

    2012-12-01

    Rice accumulates high level of arsenic (As) in its edible parts and thus plays an important role in the transfer of As into the food chain. However, the mechanisms of As uptake and its detoxification in rice are not well understood. Recently, members of the Nodulin 26-like intrinsic protein (NIP) subfamily of plant aquaporins were shown to transport arsenite in rice and Arabidopsis. Here we report that members of the rice plasma membrane intrinsic protein (PIP) subfamily are also involved in As tolerance and transport. Based on the homology search with the mammalian AQP9 and yeast Fps1 arsenite transporters, we identified and cloned five rice PIP gene subfamily members. qRT-PCR analysis of PIPs in rice root and shoot tissues revealed a significant down regulation of transcripts encoding OsPIP1;2, OsPIP1;3, OsPIP2;4, OsPIP2;6, and OsPIP2;7 in response to arsenite treatment. Heterologous expression of OsPIP2;4, OsPIP2;6, and OsPIP2;7 in Xenopus laevis oocytes significantly increased the uptake of arsenite. Overexpression of OsPIP2;4, OsPIP2;6, and OsPIP2;7 in Arabidopsis yielded enhanced arsenite tolerance and higher biomass accumulation. Further, these transgenic plants showed no significant accumulation of As in shoot and root tissues in long term uptake assays. Whereas, short duration exposure to arsenite caused both active influx and efflux of As in the roots. The data suggests a bidirectional arsenite permeability of rice PIPs in plants. These rice PIPs genes will be highly useful for engineering important food and biofuel crops for enhanced crop productivity on contaminated soils without increasing the accumulation of toxic As in the biomass or edible tissues.

  8. Deflavination of flavo-oxidases by nucleophilic reagents

    NARCIS (Netherlands)

    Zlateva, Theodora; Boteva, Raina; Filippi, Bruno; Veenhuis, Marten; Klei, Ida J. van der

    2001-01-01

    Using spectroscopic techniques we studied the effect of the nucleophilic reagents cyanide, cyanate and thiocyanate on three flavo-oxidases namely alcohol oxidase (AO), glucose oxidase (GOX) and D-amino acid oxidase (DAOX). All three ions, added at concentrations in the mM range, caused release of th

  9. Plastid terminal oxidase 2 (PTOX2) is the major oxidase involved in chlororespiration in Chlamydomonas

    OpenAIRE

    Houille-Vernes, Laura; Rappaport, Fabrice; Wollman, Francis-André; Alric, Jean; Johnson, Xenie

    2011-01-01

    By homology with the unique plastid terminal oxidase (PTOX) found in plants, two genes encoding oxidases have been found in the Chlamydomonas genome, PTOX1 and PTOX2. Here we report the identification of a knockout mutant of PTOX2. Its molecular and functional characterization demonstrates that it encodes the oxidase most predominantly involved in chlororespiration in this algal species. In this mutant, the plastoquinone pool is constitutively reduced under dark-aerobic conditions, resulting ...

  10. Sodium arsenite down-regulates the expression of X-linked inhibitor of apoptosis protein via translational and post-translational mechanisms in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hong; Hao, Yuqing; Wang, Lijing; Jia, Dongwei [Gene Research Center, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Ruan, Yuanyuan, E-mail: yuanyuanruan@fudan.edu.cn [Gene Research Center, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Gu, Jianxin [Gene Research Center, Shanghai Medical College, Fudan University, Shanghai 200032 (China)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Sodium arsenite down-regulates the protein expression level of XIAP in HCC. Black-Right-Pointing-Pointer Sodium arsenite inhibits the de novo XIAP synthesis and its IRES activity. Black-Right-Pointing-Pointer Sodium arsenite decreases XIAP stability and promotes its proteasomal degradation. Black-Right-Pointing-Pointer Overexpression of XIAP attenuates the pro-apoptotic effect of sodium arsenite. -- Abstract: X-linked inhibitor of apoptosis protein (XIAP) is a member of the inhibitors of apoptosis protein (IAP) family, and has been reported to exhibit elevated expression levels in hepatocellular carcinoma (HCC) and promote cell survival, metastasis and tumor recurrence. Targeting XIAP has proven effective for the inhibition of cancer cell proliferation and restoration of cancer cell chemosensitivity. Arsenic (or sodium arsenite) is a potent anti-tumor agent used to treat patients with acute promyelocytic leukemia (APL). Additionally, arsenic induces cell growth inhibition, cell cycle arrest and apoptosis in human HCC cells. In this study, we identified XIAP as a target for sodium arsenite-induced cytotoxicity in HCC. The exposure of HCC cell lines to sodium arsenite resulted in inhibition of XIAP expression in both a dose- and time-dependent manner. Sodium arsenite blocked the de novo XIAP synthesis and the activity of its internal ribosome entry site (IRES) element. Moreover, treatment with sodium arsenite decreased the protein stability of XIAP and induced its ubiquitin-proteasomal degradation. Overexpression of XIAP attenuated the pro-apoptotic effect of sodium arsenite in HCC. Taken together, our data demonstrate that sodium arsenite suppresses XIAP expression via translational and post-translational mechanisms in HCC.

  11. Vanillyl-alcohol oxidase, a tasteful biocatalyst

    NARCIS (Netherlands)

    Heuvel, van den R.H.H.; Fraaije, M.W.; Mattevi, A.; Laane, C.; Berkel, van W.J.H.

    2001-01-01

    The covalent flavoenzyme vanillyl-alcohol oxidase (VAO) is a versatile biocatalyst. It converts a wide range of phenolic compounds by catalysing oxidation, deamination, demethylation, dehydrogenation and hydroxylation reactions. The production of natural vanillin, 4-hydroxybenzaldehyde, coniferyl al

  12. The accumulations of HIF-1α and HIF-2α by JNK and ERK are involved in biphasic effects induced by different levels of arsenite in human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuan; Li, Yuan [Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu (China); Li, Huiqiao [Qujing Center for Disease Control and Prevention, Qujing 655000, Yunnan (China); Pang, Ying; Zhao, Yue; Jiang, Rongrong; Shen, Lu [Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu (China); Zhou, Jianwei; Wang, Xinru [The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu (China); Liu, Qizhan, E-mail: drqzliu@hotmail.com [Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu (China)

    2013-01-15

    The biphasic effects of arsenite, in which low levels of arsenite induce cell proliferation and high levels of arsenite induce DNA damage and apoptosis, apparently contribute to arsenite-induced carcinogenesis. However, the mechanisms underlying this phenomenon are not well understood. In this study, we investigated the effects of different levels of arsenite on cell proliferation, DNA damage and apoptosis as well as on signal transduction pathways in human bronchial epithelial (HBE) cells. Our results show that a low level of arsenite activates extracellular signal-regulated kinases (ERK), which probably mediate arsenite-inhibited degradation of ubiquitinated hypoxia-inducible factor-2α (HIF-2α) in HBE cells. ERK inhibition blocks cell proliferation induced by a low level of arsenite, in part via HIF-2α. In contrast, a high level of arsenite activates c-Jun N-terminal kinases (JNK), which provoke a response to suppress ubiquitinated HIF-1α degradation. Down-regulation of HIF-1α by inhibiting JNK, however, increases the DNA damage but decreases the apoptosis induced by a high level of arsenite. Thus, data in the present study suggest that the accumulations of HIF-1α and HIF-2α by JNK and ERK are involved in different levels of arsenite-induced biphasic effects, with low levels of arsenite inducing cell proliferation and high levels of arsenite inducing DNA damage and apoptosis in HBE cells. -- Highlights: ► Biphasic effects induced by different concentrations of arsenite. ► Different regulation of ERK or JNK signal pathway by arsenite. ► Different regulation of HIF1α or HIF 2α by arsenite.

  13. Crosstalk between mitochondria and NADPH oxidases

    OpenAIRE

    Dikalov, Sergey

    2011-01-01

    Reactive oxygen species (ROS) play an important role in physiological and pathological processes. In recent years, a feed-forward regulation of the ROS sources has been reported. The interaction between main cellular sources of ROS, such as mitochondria and NADPH oxidases, however, remain obscure. This work summarizes the latest findings on the role of crosstalk between mitochondria and NADPH oxidases in pathophysiological processes. Mitochondria have the highest levels of antioxidants in the...

  14. Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases

    OpenAIRE

    Molitor, Christian; Mauracher, Stephan Gerhard; Rompel, Annette

    2016-01-01

    Catechol oxidases and tyrosinases belong to the family of polyphenol oxidases (PPOs). In contrast to tyrosinases, catechol oxidases were so far defined to lack hydroxylase activity toward monophenols. Aurone synthase (AUS1) is a plant catechol oxidase that specializes in the conversion of chalcones to aurones (flower pigments). We evidence for the first time, to our knowledge, hydroxylase activity for a catechol oxidase (AUS1) toward its natural monophenolic substrate (chalcone). The presente...

  15. Listeriolysin O suppresses Phospholipase C-mediated activation of the microbicidal NADPH oxidase to promote Listeria monocytogenes infection

    OpenAIRE

    Lam, Grace Y; Fattouh, Ramzi; Aleixo M Muise; Grinstein, Sergio; Higgins, Darren E.; Brumell, John H.

    2011-01-01

    The intracellular bacterial pathogen Listeria monocytogenes produces phospholipases C (PI-PLC and PC-PLC) and the pore-forming cytolysin listeriolysin O (LLO) to escape the phagosome and replicate within the host cytosol. We found that PLCs can also activate the phagocyte NADPH oxidase during L. monocytogenes infection, a response that would adversely affect pathogen survival. However, secretion of LLO inhibits the NADPH oxidase by preventing its localization to phagosomes. LLO-deficient bact...

  16. Low Dose and Long Term Toxicity of Sodium Arsenite Caused Caspase Dependent Apoptosis Based on Morphology and Biochemical Character

    Directory of Open Access Journals (Sweden)

    Mohammad Hussein Abnosi

    2012-01-01

    Full Text Available Objective: Although arsenite is toxic it is currently recommended for the treatment of malignancies. In this study the effects of sub-micromolar concentrations of sodium arsenite on the viability, morphology and mechanism of cell death of rat bone marrow mesenchymal stem cells (BMCs over 21 days was investigated.Materials and Methods: In this experimental study, BMCs were extracted in Dulbecco’s Modified Eagles Medium (DMEM containing 15% of fetal bovine serum (FBS and expanded till the 3rd passage. The cells were treated with 1, 10, 25, 50, 75 and 100 nM of sodium arsenite for 21 days and the viability of the cells estimated using 3-(4, 5-dimethylthiazol-2-yl-2, 5 diphenyl tetrazolium (MTT and trypan blue staining. Cells were then treated with the selected dose (25 nM of sodium arsenite to determine their colony forming ability (CFA and population doubling number (PDN. Morphology of the cells was studied using florescent dyes, and the integrity of the DNA was investigated using the comet assay and agarose gel electrophoresis. The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL and the caspase 3 assay were then applied to understand the mechanism of cell death. Data was analyzed using one way ANOVA, Tukey test.Results: A significant reduction of viability, PDN and CFA was found following treatment of BMCs with 25 nM sodium arsenite (p<0.05. Cytoplasm shrinkage and a significant decrease in the diameter of the nuclei were also seen. Comet assay and agarose gel electrophoresis revealed DNA breakage, while positive TUNEL and activated caspase 3 confirmed the apoptosis.Conclusion: A low concentration of sodium arsenite (25 nM caused reduction of viability due to induction of apoptosis. Therefore, long term exposure to low dose of this chemical may have unwanted effects on BMCs.

  17. Possible vasculoprotective role of linagliptin against sodium arsenite-induced vascular endothelial dysfunction.

    Science.gov (United States)

    Jyoti, Uma; Kansal, Sunil Kumar; Kumar, Puneet; Goyal, Sandeep

    2016-02-01

    Vascular endothelial dysfunction (VED) interrupts the integrity and function of endothelial lining through enhanced markers of oxidative stress and decrease endothelial nitric oxide synthase (eNOS) expression. The main aim of the present study has been designed to investigate the possible vasculoprotective role of linagliptin against sodium arsenite-induced VED. Sodium arsenite (1.5 mg/kg, i.p., 2 weeks) abrogated the acetylcholine-induced, endothelium-dependent vasorelaxation by depicting the decrease in serum nitrite/nitrate concentration, reduced glutathione level, and simultaneously enhance the thiobarbituric acid reactive substances (TBARS) level, superoxide level, and tumor necrosis factor-alpha. These elevated markers interrupt the integrity of endothelial lining of thoracic aorta which was assessed histologically. The study elicits dose dependent effect of linagliptin (1.5 mg/kg, i.p. and 3 mg/kg, i.p.) or atorvastatin (30 mg/kg, p.o.) treatment, improved the endothelium-dependent independent relaxation, improve the integrity of endothelium lining which was assessed histologically by enhancing the serum nitrite/nitrate level, reduced glutathione level and simultaneously decreasing the TBARS level, superoxide anion level and tumor necrosis factor-alpha (TNF-α) level. L-NAME (25 mg/kg, i.p.), eNOS inhibitor, abrogated the ameliorative potential of linagliptin. However, the ameliorative potential of linagliptin has been enhanced by l-arginine (200 mg/kg, i.p.) which elicits that ameliorative potential of linagliptin was through eNOS signaling cascade and it may be concluded that linagliptin 3 mg/kg, i.p. has more significantly activated the eNOS and decreased the oxidative markers than linagliptin 1.5 mg/kg, i.p. and prevented sodium arsenite-induced VED.

  18. Arsenite induced oxidative damage in mouse liver is associated with increased cytokeratin 18 expression

    Energy Technology Data Exchange (ETDEWEB)

    Gonsebatt, M.E. [UNAM, Ciudad Universitaria, Dept. Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Mexico (Mexico); Razo, L.M. del; Sanchez-Pena, L.C. [Seccion de Toxicologia, CINVESTAV, Mexico (Mexico); Cerbon, M.A. [Facultad de Quimica, UNAM, Departamento de Biologia, Mexico (Mexico); Zuniga, O.; Ramirez, P. [Facultad de Estudios Superiores Cuautitlan, UNAM, Laboratorio de Toxicologia Celular, Coordinacion General de Estudios de Posgrado e Investigacion, Cuautitlan Izcalli, Estado de Mexico (Mexico)

    2007-09-15

    Cytokeratins (CK) constitute a family of cytoskeletal intermediate filament proteins that are typically expressed in epithelial cells. An abnormal structure and function are effects that are clearly related to liver diseases as non-alcoholic steatohepatitis, cirrhosis and hepatocellular carcinoma. We have previously observed that sodium arsenite (SA) induced the synthesis of CK18 protein and promotes a dose-related disruption of cytoplasmic CK18 filaments in a human hepatic cell line. Both abnormal gene expression and disturbance of structural organization are toxic effects that are likely to cause liver disease by interfering with normal hepatocyte function. To investigate if a disruption in the CK18 expression pattern is associated with arsenite liver damage, we investigated CK18 mRNA and protein levels in liver slices treated with low levels of SA. Organotypic cultures were incubated with 0.01, 1 and 10 {mu}M of SA in the absence and presence of N-acetyl cysteine (NAC). Cell viability and inorganic arsenic metabolism were determined. Increased expression of CK18 was observed after exposure to SA. The addition of NAC impeded the oxidative effects of SA exposure, decreasing the production of thiobarbituric acid-reactive substances and significantly diminishing the up regulation of CK18 mRNA and protein. Liver arsenic levels correlated with increased levels of mRNA. Mice treated with intragastric single doses of 2.5 and 5 mg/kg of SA showed an increased expression of CK18. Results suggest that CK18 expression may be a sensible early biomarker of oxidative stress and damage induced by arsenite in vitro and in vivo. Then, during SA exposure, altered CK expression may compromise liver function. (orig.)

  19. Roles of oxidative stress and the ERK1/2, PTEN and p70S6K signaling pathways in arsenite-induced autophagy.

    Science.gov (United States)

    Huang, Ya-Chun; Yu, Hsin-Su; Chai, Chee-Yin

    2015-12-15

    Studies show that arsenite induces oxidative stress and modifies cellular function via phosphorylation of proteins and inhibition of DNA repair enzymes. Autophagy, which has multiple physiological and pathological roles in cellular function, is initiated by oxidative stress and is regulated by the signaling pathways of phosphatidylinositol 3-phosphate kinase (PI3K)/mammalian target of rapamycin (mTOR)/p70S6 kinase (p70S6K) and extracellular signaling-regulated protein kinase 1/2 (ERK1/2) that play important roles in oncogenesis. However, the effects of arsenite-induced oxidative stress on autophagy and on expression of related proteins are not fully understood. This study found that cells treated with sodium arsenite had reduced 8-oxoguanine DNA glycosylase 1 (OGG1) and increased 8-hydroxy-2'-deoxyguanosine (8-OHdG) and activating transcription factor (ATF) 3 in SV-40 immortalized human uroepithelial (SV-HUC-1) cells. Arsenite also increased the number of autophagosomes and increased levels of the autophagy markers Beclin-1 and microtubule-associated protein 1 light chain 3B. Reactive oxygen species scavenger decreased arsenite-induced autophagy in SV-HUC-1 cells. Our previous work showed that arsenite induced phosphorylation of the ERK1/2 signaling pathway. The current study further showed that arsenite decreased phosphatase and tensin homologue (PTEN) levels and increased phospho-p70S6 kinase (p-p70S6K) in SV-HUC-1 cells. However, both kinase inhibitor U0126 and the DNA (cytosine-5-)-methyltransferase 1 (DNMT1) inhibitor 5-aza-deoxycytidine abolished the effect of arsenite on expressions of PTEN and p-p70S6K. These results show that autophagy induced by arsenite exposure is mediated by oxidative stress, which regulates activation of the PTEN, p70S6K and ERK1/2 signaling pathways. Thus, this study clarifies the role of autophagy in arsenite-induced urothelial carcinogenesis. PMID:26432159

  20. Crystallization of recombinant 1-amino cyclo propane-1-carboxylate (Acc) oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, L.; Arni, R.K. [UNESP, Sao Jose do Rio Preto, SP (Brazil). Dept. de Fisica; Dilley, D. [Michigan State Univ., East Lansing, MI (United States). Dept. of Biophysics

    1996-12-31

    Full text. Ethylene is an important harmone in plant biology because it activates gene expression with consequences at all phases of plant growth and development spanning seed germination to fruit ripening and senesense of plant organs. In climacteric fruits, the sharp increase in ethylene production at the onset of ripening is throught to trigger the changes in colour, aroma, texture and flavour. The final step in ethylene biosynthesis is catalyzed by ACC oxidase. Biothechnological methods have been used to inhibit ethylene biosynthesis and ripening in tomato by down-regulating ACC synthase and ACC oxidase gene expression using the antisense RNA strategy. A similar goal has been achieved by overexpressing a bacterial ACC deaminase or a viral-S-adenosylmethionine hydrolase gene, which reduces the availability of the ethylene precursors., ACC and S-adenosylmethionine, respectively. C0{sub 2} at concentrations commonly found in the intracellular space of plant tissues is required to active ACC oxidase to produce ethylene and can elevate enzyme activity 20-fold in a concentration dependent manner. Consequently, the intracellular ethylene level is modulated from low inactive levels when C0{sub 2} is not limiting and this may alter gene expression. ACC oxidase undergoes catalytic inactivation as the reaction to make ethylene procedes and this too may involve CO{sub 2}. It has been suggested that CO{sub 2}acts as a modulator of ACC oxidase activity and therby helps regulate ethylene levels in the cell and thus may explain many ethylene related phenomena in plant biology. CO{sub 2} is know to affect O{sub 2} binding in hemoglobin and ribulose bisphosphate carboxylase-oxygenase (Rubisco). Catalytic inactivation is a common phenomena in enzyme turnover, ACC oxidase is a Fe{sup +2}/ascorbate requiring enzyme and this makes it a prime candidate for metal ion oxidation-based inactivation. Charentais melon with an antisense ACC oxidase cDNA. A trangenic line exhibits reduction

  1. Crystallization of recombinant 1-amino cyclo propane-1-carboxylate (Acc) oxidase

    International Nuclear Information System (INIS)

    Full text. Ethylene is an important harmone in plant biology because it activates gene expression with consequences at all phases of plant growth and development spanning seed germination to fruit ripening and senesense of plant organs. In climacteric fruits, the sharp increase in ethylene production at the onset of ripening is throught to trigger the changes in colour, aroma, texture and flavour. The final step in ethylene biosynthesis is catalyzed by ACC oxidase. Biothechnological methods have been used to inhibit ethylene biosynthesis and ripening in tomato by down-regulating ACC synthase and ACC oxidase gene expression using the antisense RNA strategy. A similar goal has been achieved by overexpressing a bacterial ACC deaminase or a viral-S-adenosylmethionine hydrolase gene, which reduces the availability of the ethylene precursors., ACC and S-adenosylmethionine, respectively. C02 at concentrations commonly found in the intracellular space of plant tissues is required to active ACC oxidase to produce ethylene and can elevate enzyme activity 20-fold in a concentration dependent manner. Consequently, the intracellular ethylene level is modulated from low inactive levels when C02 is not limiting and this may alter gene expression. ACC oxidase undergoes catalytic inactivation as the reaction to make ethylene procedes and this too may involve CO2. It has been suggested that CO2acts as a modulator of ACC oxidase activity and therby helps regulate ethylene levels in the cell and thus may explain many ethylene related phenomena in plant biology. CO2 is know to affect O2 binding in hemoglobin and ribulose bisphosphate carboxylase-oxygenase (Rubisco). Catalytic inactivation is a common phenomena in enzyme turnover, ACC oxidase is a Fe+2/ascorbate requiring enzyme and this makes it a prime candidate for metal ion oxidation-based inactivation. Charentais melon with an antisense ACC oxidase cDNA. A trangenic line exhibits reduction of ethylene production and inhibition of

  2. Intracellular lysyl oxidase: Effect of a specific inhibitor on nuclear mass in proliferating cells

    Energy Technology Data Exchange (ETDEWEB)

    Saad, Fawzy A. [Laboratory for the Study of Skeletal Disorders and Rehabilitation, Department of Orthopedics, Children' s Hospital Boston, 300 Longwood Avenue EN926, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Torres, Marie [Laboratory for the Study of Skeletal Disorders and Rehabilitation, Department of Orthopedics, Children' s Hospital Boston, 300 Longwood Avenue EN926, Boston, MA 02115 (United States); Wang, Hao [Laboratory for the Study of Skeletal Disorders and Rehabilitation, Department of Orthopedics, Children' s Hospital Boston, 300 Longwood Avenue EN926, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Graham, Lila, E-mail: lilagraham@cs.com [Laboratory for the Study of Skeletal Disorders and Rehabilitation, Department of Orthopedics, Children' s Hospital Boston, 300 Longwood Avenue EN926, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States)

    2010-06-11

    LOX, the principal enzyme involved in crosslinking of collagen, was the first of several lysyl oxidase isotypes to be characterized. Its active form was believed to be exclusively extracellular. Active LOX was later reported to be present in cell nuclei; its function there is unknown. LOX expression opposes the effect of mutationally activated Ras, which is present in about 30% of human cancers. The mechanism of LOX in countering the action of Ras is also unknown. In the present work, assessment of nuclear protein for possible effects of lysyl oxidase activity led to the discovery that proliferating cells dramatically increase their nuclear protein content when exposed to BAPN ({beta}-aminopropionitrile), a highly specific lysyl oxidase inhibitor that reportedly blocks LOX inhibition of Ras-induced oocyte maturation. In three cell types (PC12 cells, A7r5 smooth muscle cells, and NIH 3T3 fibroblasts), BAPN caused a 1.8-, 1.7-, and 2.1-fold increase in total nuclear protein per cell, respectively, affecting all major components in both nuclear matrix and chromatin fractions. Since nuclear size is correlated with proliferative status, enzyme activity restricting nuclear growth may be involved in the lysyl oxidase tumor suppressive effect. Evidence is also presented for the presence of apparent lysyl oxidase isotype(s) containing a highly conserved LOX active site sequence in the nuclei of PC12 cells, which do not manufacture extracellular lysyl oxidase substrates. Results reported here support the hypothesis that nuclear lysyl oxidase regulates nuclear growth, and thereby modulates cell proliferation.

  3. NADPH oxidases: new actors in thyroid cancer?

    Science.gov (United States)

    Ameziane-El-Hassani, Rabii; Schlumberger, Martin; Dupuy, Corinne

    2016-08-01

    Hydrogen peroxide (H2O2) is a crucial substrate for thyroid peroxidase, a key enzyme involved in thyroid hormone synthesis. However, as a potent oxidant, H2O2 might also be responsible for the high level of oxidative DNA damage observed in thyroid tissues, such as DNA base lesions and strand breakages, which promote chromosomal instability and contribute to the development of tumours. Although the role of H2O2 in thyroid hormone synthesis is well established, its precise mechanisms of action in pathological processes are still under investigation. The NADPH oxidase/dual oxidase family are the only oxidoreductases whose primary function is to produce reactive oxygen species. As such, the function and expression of these enzymes are tightly regulated. Thyrocytes express dual oxidase 2, which produces most of the H2O2 for thyroid hormone synthesis. Thyrocytes also express dual oxidase 1 and NADPH oxidase 4, but the roles of these enzymes are still unknown. Here, we review the structure, expression, localization and function of these enzymes. We focus on their potential role in thyroid cancer, which is characterized by increased expression of these enzymes. PMID:27174022

  4. The C-terminal region controls correct folding of genus Trametes pyranose 2-oxidases.

    Science.gov (United States)

    Maresová, Helena; Palyzová, Andrea; Kyslík, Pavel

    2007-06-30

    The pyranose 2-oxidases from Trametes ochracea and Trametes pubescens share markedly similar amino acid sequences with identity of 93.4%. When expressed from the recombinant plasmids based on the same vector in the Escherichia coli host strain BL21(DE3) at higher growth temperatures, they differ strikingly in the formation of the inclusion bodies. Upon overexpression in the cultures performed at 28 degrees C, the specific activity of pyranose 2-oxidase from T. pubescens was eight times higher than that from T. ochracea: 93% of pyranose 2-oxidase from T. ochracea and only 15% of that from T. pubescens was present in the form of inclusion bodies. To ascertain the cause of this difference, both cloned genes were shuffled. Site-directed recombination of p2o cDNAs revealed that DNA constructs ending with 3' end of p2o cDNA from T. pubescens code for proteins that are folded into an active form to the greater extent, regardless of the gene expression level. "In silicio" analysis of physico-chemical properties of the protein sequences of pyranose 2-oxidases revealed that the sequence of amino acid residues 368-430, constituting the small, head domain of pyranose 2-oxidase from T. pubescens, affects positively the enzyme folding at higher cultivation temperatures. The domain differs in six amino acid residues from that of T. ochracea.

  5. Residual NADPH Oxidase Activity and Isolated Lung Involvement in X-Linked Chronic Granulomatous Disease

    Directory of Open Access Journals (Sweden)

    Maria J. Gutierrez

    2012-01-01

    Full Text Available Chronic granulomatous disease (CGD is characterized by inherited immune defects resulting from mutations in the NADPH oxidase complex genes. The X-linked type of CGD is caused by defects in the CYBB gene that encodes gp91-phox, a fundamental component of the NADPH oxidase complex. This mutation originates the most common and severe form of CGD, which typically has absence of NADPH oxidase function and aggressive multisystemic infections. We present the case of a 9-year-old child with a rare CYBB mutation that preserves some NADPH oxidase activity, resulting in an atypical mild form of X-linked CGD with isolated lung involvement. Although the clinical picture and partially preserved oxidase function suggested an autosomal recessive form of CGD, genetic testing demonstrated a mutation in the exon 3 of CYBB gene (c.252 G>A, p.Ala84Ala, an uncommon X-linked CGD variant that affects splicing. Atypical presentation and diagnostic difficulties are discussed. This case highlights that the diagnosis of mild forms of X-linked CGD caused by rare CYBB mutations and partially preserved NADPH function should be considered early in the evaluation of atypical and recurrent lung infections.

  6. Arsenite tolerance in rice (Oryza sativa L.) involves coordinated role of metabolic pathways of thiols and amino acids.

    Science.gov (United States)

    Tripathi, Preeti; Tripathi, Rudra Deo; Singh, Rana Pratap; Dwivedi, Sanjay; Chakrabarty, Debasis; Trivedi, Prabodh K; Adhikari, Bijan

    2013-02-01

    Thiolic ligands and several amino acids (AAs) are known to build up in plants against heavy metal stress. In the present study, alteration of various AAs in rice and its synchronized role with thiolic ligand was explored for arsenic (As) tolerance and detoxification. To understand the mechanism of As tolerance and stress response, rice seedlings of one tolerant (Triguna) and one sensitive (IET-4786) cultivar were exposed to arsenite (0-25 μM) for 7 days for various biochemical analyses using spectrophotometer, HPLC and ICPMS. Tolerant and sensitive cultivars respond differentially in terms of thiol metabolism, essential amino acids (EEAs) and nonessential amino acids (NEEAs) vis-á-vis As accumulation. Thiol biosynthesis-related enzymes were positively correlated to As accumulation in Triguna. Conversely, these enzymes, cysteine content and GSH/GSSG ratio declined significantly in IET-4786 upon As exposure. The level of identified phytochelatin (PC) species (PC(2), PC(3) and PC(4)) and phytochelatin synthase activity were also more pronounced in Triguna than IET-4786. Nearly all EAAs were negatively affected by As-induced oxidative stress (except phenylalanine in Triguna), but more significantly in IET-4786 than Triguna. However, most of the stress-responsive NEAAs like glutamic acid, histidine, alanine, glycine, tyrosine, cysteine and proline were enhanced more prominently in Triguna than IET-4786 upon As exposure. The study suggests that IET-4786 appears sensitive to As due to reduction of AAs and thiol metabolic pathway. However, a coordinated response of thiolic ligands and stress-responsive AAs seems to play role for As tolerance in Triguna to achieve the effective complexation of As by PCs.

  7. Synergistic augmentation of ATP-induced interleukin-6 production by arsenite in HaCaT cells.

    Science.gov (United States)

    Sumi, Daigo; Asao, Masashi; Okada, Hideta; Yogi, Kuniko; Miyataka, Hideki; Himeno, Seiichiro

    2016-06-01

    Chronic arsenic exposure causes cutaneous diseases such as hyperkeratosis and skin cancer. However, little information has been available regarding the molecular mechanisms underlying these symptoms. Because extracellular ATP and interleukin-6 (IL-6) are involved in pathological aspects of cutaneous diseases, we examined whether sodium arsenite (As(III)) affects ATP-induced IL-6 production in human epidermal keratinocyte HaCaT cells. The results showed that the addition of As(III) into the medium of HaCaT cells dose dependently increased the production of IL-6 induced by extracellular ATP, although As(III) alone had no effect on IL-6 production. To elucidate the mechanism of the synergistic effect of As(III) on IL-6 production by extracellular ATP, we next examined the phosphorylation of p38, ERK and epidermal growth factor receptor (EGFR), since we found that these signaling molecules were stimulated by exposure to extracellular ATP. The results indicated that ATP-induced phosphorylation of p38, ERK and EGFR was synergistically enhanced by co-exposure to As(III). To clarify the mechanisms underlying the enhanced phosphorylation of p38, ERK and EGFR by As(III), we explored two possible mechanisms: the inhibition of extracellular ATP degradation and the inhibition of protein tyrosine phosphatases (PTPs) activity by As(III). The degradation of extracellular ATP was not changed by As(III), whereas the activity of PTPs was significantly inhibited by As(III). Our results suggest that As(III) augments ATP-induced IL-6 production in HaCaT cells through enhanced phosphorylation of the EGFR and p38/ERK pathways, which is associated with the inhibition of PTPs activity. PMID:26104857

  8. Effect of sodium arsenite on spermatogenesis,plasma gonadotrophins and testosterone in rats

    Institute of Scientific and Technical Information of China (English)

    MahitoshSarkar; GargiRayChaudhuri; AlokeChattopadhyay; NarendraMohanBiswas

    2003-01-01

    Aim:To investigate the effect of arsenic on spermatogenesis.Methods:Mature(4 months old)Wistar rats were intraperitoneally administered sodium arsenite at doses of 4,5 or 6mg·kg-1·day-1 for 26 days.Different varieties of germ cells at stage Ⅶ seminiferous epithelium cycle,namely,type A spermatogonia(ASg),preleptotene spermatocytes(pLSc),midpachytene spermatocytes(mPSc) and step 7 spermatids(7Sd) were quantitatively evaluated, along with radioimmunoassay of plasma follicle-stimulating hormone(FSH),lutuneizing hormone(LH),testosterone and assessment of the epididymal sperm count.Results:In the 5 and 6 mg/kg groups,there were significant dosedependent decreases in the accessory sex organ weights,epididymal sperm count and plasma concentrations of LH,FSH and testosterone with massive degeneration of all the germ cells at stage Ⅶ,The changes were insignificant in the 4 mg/kg group.Conclusion:Arsenite has a suppressive influence on spermatogenesis and gonadotrophin and testosterone release in rats.

  9. In Vitro Protective Potentials of Annona muricata Leaf Extracts Against Sodium Arsenite-induced Toxicity.

    Science.gov (United States)

    George, Vazhappilly Cijo; Kumar, Devanga Ragupathi Naveen; Suresh, Palamadai Krishnan; Kumar, Rangasamy Ashok

    2015-01-01

    Sodium arsenite (NaAsO2) is a metalloid which is present widely in the environment and its chronic exposure can contribute to the induction of oxidative stress, resulting in disturbances in various metabolic functions including liver cell death. Hence, there is a need to develop drugs from natural sources, which can reduce arsenic toxicity. While there have been reports regarding the antioxidant and protective potentials of Annona muricataleaf extracts, our study is the first ofits kind to extend these findings by specifically evaluating its ability to render protection against sodium arsenite (NaAsO2) induced toxicity (10 μM) in WRL-68 (human hepatic cells) and human erythrocytes by employing XTT and haemolysis inhibition assays respectively. The methanolic extract exhibited higher activity than the aqueous extract in both assays. The results showed a dose-dependent decrease in arsenic toxicity in both WRL-68 cells and erythrocytes, suggesting the protective nature of Annona muricatato mitigate arsenic toxicity. Hence the bioactive extracts can further be scrutinized for the identification and characterization of their principal contributors.

  10. The Effect of Vitamin E on the In Vitro Differentiation of Adult Rat Bone Marrow Mesenchymal Stem Cells to Osteoblast During Sodium Arsenite Exposure

    Directory of Open Access Journals (Sweden)

    M. Soleimani Mehranjani

    2016-01-01

    Full Text Available Introduction & Objective: Sodium arsenite disturbs the differentiation of adult rat bone marrow mesenchymal stem cells (rMSCs to Osteoblast through oxidative stress. We aimed to investigate the preventive effect of vitamin E, a strong antioxidant, in sodium arsenite toxicity on rMSCs differentiation to osteoblast. Materials & Methods: rMSCs were cultured in Dulbecco’s Modified Eagles Medium containing 15% Fetal Bovine Serum and divided into: control, sodium arsenite (20 nM, vitamin E (50 µM and sodium arsenite + vitamin E for 21 days in the osteogenic media containing 10% of fetal bovine serum. Cell viability, bone matrix mineralization, intercellular and extracellular calcium, alkaline phosphatase activity, DNA damage and cell morphological changes were evaluated. Data were analyzed using one-way ANOVA and Tukey's test and means were considered significantly different at P<0.05. Results: Cell viability, bone matrix mineralization, calcium deposition, alkaline phosphatase activity and nuclei diameter decreased significantly in the sodium arsenite group. The mentioned parameters increased significantly in cells treated with sodium arsenite + vitamin E to the control level (P<0.05. Cytoplasmic extensions were also observed in the vitamin E group. Conclusions: Vitamin E reduces sodium arsenite toxicity, increasing osteogenic differentiation in rMSCs. Sci J Hamadan Univ Med Sci . 2016; 22 (4 :276-285

  11. POSSIBLE ROLE OF LOCALIZED PROTEIN DENATURATION IN THE MECHANISM OF INDUCTION OF THERMOTOLERANCE BY HEAT, SODIUM-ARSENITE AND ETHANOL

    NARCIS (Netherlands)

    BURGMAN, PWJJ; KAMPINGA, HH; KONINGS, AWT

    1993-01-01

    Heat, sodium-arsenite, and ethanol-induced thermotolerance are compared, especially with regard to the induced resistance of proteins of the particulate fraction (PF) against heat-induced denaturation. While all three agents induce thermotolerance as expressed as an enhanced survival after hyperther

  12. The inhibition of tissue respiration and alcoholic fermentation at different catabolic levels by ethyl carbamate (urethan) and arsenite

    NARCIS (Netherlands)

    Florijn, E.; Gruber, M.; Leijnse, B.; Huisman, T.H.J.

    1950-01-01

    1. A hypothesis is given concerning the action of urethan and arsenite on malignant growth. Two assumptionsares made:- (a) the enzyme system responsible for energy production in malignant tumours is working at maximal rate, contrary to the corresponding enzyme system in normal tissues. (b) a give

  13. ACQUISITION OF THERMOTOLERANCE INDUCED BY HEAT AND ARSENITE IN HELA S3-CELLS - MULTIPLE PATHWAYS TO INDUCE TOLERANCE

    NARCIS (Netherlands)

    KAMPINGA, HH; BRUNSTING, JF; KONINGS, AWT

    1992-01-01

    Recent data indicate that cells may acquire thermotolerance via more than one route. In this study, we observed differences in thermotolerance development in HeLa S3 cells induced by prior heating (15 minutes at 44-degrees-C) or pretreatment with sodium-arsenite (1 hour at 37-degrees-C, 100-mu-M). I

  14. Fe/Ti co-pillared clay for enhanced arsenite removal and photo oxidation under UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Guang Dong Electric Power Design Institute, China Energy Engineering Group Co. Ltd., Guangzhou 510663 (China); Cai, Xiaojiao [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Guo, Jingwei [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); The 718th Research Institute of CSIC, Handan 056027 (China); Zhou, Shimin [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Na, Ping, E-mail: naping@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2015-01-01

    Graphical abstract: - Highlights: • An iron and titanium co-pillared montmorillonite (Fe-Ti/MMT) was synthesized for arsenite removal. • Variety of characterization results indicated that Fe and Ti species were pillared in MMT. • A possible mechanism of arsenite adsorption/oxidation with UV light was established. • The participation of Fe component can promote the process of photocatalytic oxidation in Fe-Ti/MMT + As(III) system. • Fe-Ti/MMT can function as both photocatalyst and adsorbent for arsenite removal. - Abstract: A series of iron and titanium co-pillared montmorillonites (Fe-Ti/MMT) were prepared using hydrolysis of inserted titanium and different iron content in montmorillonite (MMT). The Fe-Ti/MMT were characterized by X-ray fluorescence, N{sub 2} adsorption and desorption, X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), confirming the effective insertion of Fe species and TiO{sub 2} in the MMT. The Fe-Ti/MMT was used to remove arsenite (As(III)) from aqueous solutions under different conditions. The result of As(III) adsorption under UV irradiation showed that the photo activity can be enhanced by incorporating Fe and Ti in MMT. Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis indicated that the hydroxyl groups bonded to metal oxide (M–OH) played an important role in the adsorption of As(III)

  15. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xi; Zhou, Xixi [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Du, Libo [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Wenlan [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Yang [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Hudson, Laurie G. [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Ke Jian, E-mail: kliu@salud.unm.edu [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States)

    2014-01-15

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects of arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of zinc finger

  16. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    International Nuclear Information System (INIS)

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects of arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of zinc finger

  17. 21 CFR 866.2420 - Oxidase screening test for gonorrhea.

    Science.gov (United States)

    2010-04-01

    ... Section 866.2420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2420 Oxidase... ingredient that will react with cytochrome oxidase. When cytochrome oxidase is present, the swab turns a...

  18. Lysyl oxidase mediates hypoxic control of metastasis

    DEFF Research Database (Denmark)

    Erler, Janine Terra; Giaccia, Amato J

    2006-01-01

    Hypoxic cancer cells pose a great challenge to the oncologist because they are especially aggressive, metastatic, and resistant to therapy. Recently, we showed that elevation of the extracellular matrix protein lysyl oxidase (LOX) correlates with metastatic disease and is essential for hypoxia...

  19. Differential binding of monomethylarsonous acid compared to arsenite and arsenic trioxide with zinc finger peptides and proteins.

    Science.gov (United States)

    Zhou, Xixi; Sun, Xi; Mobarak, Charlotte; Gandolfi, A Jay; Burchiel, Scott W; Hudson, Laurie G; Liu, Ke Jian

    2014-04-21

    Arsenic is an environmental toxin that enhances the carcinogenic effect of DNA-damaging agents, such as ultraviolet radiation and benzo[a]pyrene. Interaction with zinc finger proteins has been shown to be an important molecular mechanism for arsenic toxicity and cocarcinogenesis. Arsenicals such as arsenite, arsenic trioxide (ATO), and monomethylarsonous acid (MMA(III)) have been reported to interact with cysteine residues of zinc finger domains, but little is known about potential differences in their selectivity of interaction. Herein we analyzed the interaction of arsenite, MMA(III), and ATO with C2H2, C3H1, and C4 configurations of zinc fingers using UV-vis, cobalt, fluorescence, and mass spectrometry. We observed that arsenite and ATO both selectively bound to C3H1 and C4 zinc fingers, while MMA(III) interacted with all three configurations of zinc finger peptides. Structurally and functionally, arsenite and ATO caused conformational changes and zinc loss on C3H1 and C4 zinc finger peptide and protein, respectively, whereas MMA(III) changed conformation and displaced zinc on all three types of zinc fingers. The differential selectivity was also demonstrated in zinc finger proteins isolated from cells treated with these arsenicals. Our results show that trivalent inorganic arsenic compounds, arsenite and ATO, have the same selectivity and behavior when interacting with zinc finger proteins, while methylation removes the selectivity. These findings provide insights on the molecular mechanisms underlying the differential effects of inorganic versus methylated arsenicals, as well as the role of in vivo arsenic methylation in arsenic toxicity and carcinogenesis.

  20. A role for NADPH oxidase in antigen presentation

    Directory of Open Access Journals (Sweden)

    Gail J Gardiner

    2013-09-01

    Full Text Available The nicotinamide adenine dinucleotide phosphate (NADPH oxidase expressed in phagocytes is a multi-subunit enzyme complex that generates superoxide (O2.-. This radical is an important precursor of hydrogen peroxide (H2O2 and other reactive oxygen species (ROS needed for microbicidal activity during innate immune responses. Inherited defects in NADPH oxidase give rise to chronic granulomatous disease (CGD, a primary immunodeficiency characterized by recurrent infections and granulomatous inflammation. Interestingly, CGD, CGD carrier status, and oxidase gene polymorphisms have all been associated with autoinflammatory and autoimmune disorders, suggesting a potential role for NADPH oxidase in regulating adaptive immune responses. Here, NADPH oxidase function in antigen processing and presentation is reviewed. NADPH oxidase influences dendritic cell (DC crosspresentation by major histocompatibility complex class I molecules (MHC-I through regulation of the phagosomal microenvironment, while in B lymphocytes, NADPH oxidase alters epitope selection by major histocompatibility complex class II molecules (MHC-II.

  1. The oxidative and adsorptive effectiveness of hydrous manganese dioxide for arsenite removal

    Institute of Scientific and Technical Information of China (English)

    Liu Ruiping; Yuan Baoling; Li Xing; Xia Shengji; Yang Yanling; Li Guibai

    2006-01-01

    This study focuses on the effectiveness of hydrous manganese dioxides (δMnO2) removing arsenite (As(Ⅲ)) from aqueous solution. Effects of such factors as permanganate oxidation, pH, humic acid and Ca2+ on As removal and possible mechanisms involved in have been investigated. Permanganate oxidation increases As removal to a certain extent; the higher pH results in the formation of more easily adsorbed As species, contributing to higher As removal; humic acid occupies adsorbing sites and decreases ζ potential of δMnO2, therefore inhibiting As removal; Ca2+ facilitates As adsorption on δMnO2, mainly through increasing ζ potential and decreasing repulsive forces between As and surface sites. δMnO2 exhibits oxidative and adsorptive potential for As(Ⅲ), and may be employed as adsorbents or filter coating for As removal in water treatment process.

  2. Comparative Molecular Docking Studies with ABCC1 and Aquaporin 9 in the Arsenite Complex Efflux

    Science.gov (United States)

    Poojan, Shiv; Dhasmana, Anupam; Jamal, Qazi Mohammad Sajid; Haneef, Mohd; Lohani, Mohtashim

    2014-01-01

    Arsenic is the most toxic metalloid present in the natural environment in both organic and inorganic arsenic forms. Inorganic arsenic is often more hazardous than the organic form. Arsenite and arsenate compounds are the major inorganic forms which are toxic causing severe human health dysfunction including cancer. Excretion of arsenic from the system is found elusive. Therefore, it is of interest to screen channel proteins with the arsenic complex in the different combination of arsenic, GSH (glutathione) and arsenic, selenium using docking methods. The mode of arsenic removal. The complex structure revealed the mode of arsenic binding efficiency with the receptor aquaporine 9 and ABCC1 channel protein. This provides insights to understand the mechanism of arsenic efflux. These inferences find application in the design, identification and development of novel nutracetucal or any other formulation useful in the balance of arsenic efflux. PMID:25258480

  3. Comparative Molecular Docking Studies with ABCC1 and Aquaporin 9 in the Arsenite Complex Efflux.

    Science.gov (United States)

    Poojan, Shiv; Dhasmana, Anupam; Jamal, Qazi Mohammad Sajid; Haneef, Mohd; Lohani, Mohtashim

    2014-01-01

    Arsenic is the most toxic metalloid present in the natural environment in both organic and inorganic arsenic forms. Inorganic arsenic is often more hazardous than the organic form. Arsenite and arsenate compounds are the major inorganic forms which are toxic causing severe human health dysfunction including cancer. Excretion of arsenic from the system is found elusive. Therefore, it is of interest to screen channel proteins with the arsenic complex in the different combination of arsenic, GSH (glutathione) and arsenic, selenium using docking methods. The mode of arsenic removal. The complex structure revealed the mode of arsenic binding efficiency with the receptor aquaporine 9 and ABCC1 channel protein. This provides insights to understand the mechanism of arsenic efflux. These inferences find application in the design, identification and development of novel nutracetucal or any other formulation useful in the balance of arsenic efflux.

  4. Cytoprotective Activity of Glycyrrhizae radix Extract against Arsenite-Induced Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Sang Chan Kim

    2008-01-01

    Full Text Available Licorice, Glycyrrhizae radix, is one of the herbal medicines in East Asia that has been commonly used for treating various diseases, including stomach disorders. This study investigated the effect of licorice on arsenite (As-induced cytotoxicity in H4IIE cells, a rat hepatocyte-derived cell line. Cell viability was significantly diminished in As-treated H4IIE cells in a time and concentration-dependent manner. Furthermore, results from flow cytometric assay and DNA laddering in H4IIE cells showed that As treatment induced apoptotic cell death by activating caspase-3. Licorice (0.1 and 1.0 mg ml−1 treatment significantly inhibited cell death and the activity of caspase-3 in response to As exposure. These results demonstrate that licorice induced a cytoprotective effect against As-induced cell death by inhibition of caspase-3.

  5. Arsenite and arsenate removal from wastewater using cationic polymer-modified waste tyre rubber.

    Science.gov (United States)

    Imyim, Apichat; Sirithaweesit, Thitayati; Ruangpornvisuti, Vithaya

    2016-01-15

    Waste tyre rubber (WTR) granulate was modified with a cationic polymer, poly(3-acrylamidopropyl)trimethylammonium chloride (p(APTMACl)). The resulting WTR/p(APTMACl) was utilized for the adsorption of arsenite, As(III) and arsenate, As(V) from aqueous medium in both batch and column methods. The level of adsorption increased gradually with increasing monomer concentration and contact time. The adsorption behavior obeyed the Freundlich model, and the rate of adsorption could be predicted by employing the pseudo-second order model. In the column method, As(V) could be adsorbed onto the sorbent more effectively than As(III). Remarkable desorption of As(III) and As(V) (99 and 92%, respectively) from the adsorbent was achieved using 0.10 M HCl as eluent. An approach of evaluation of adsorption capacity uncertainty is proposed. PMID:26607568

  6. Investigation of the Interaction Between Sodium(meta) Arsenite and Catechin via ESI Tandem Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    CUI Sheng-yun; WEN Jin-feng; KIM Seung-jin; LEE Yong-ill

    2007-01-01

    Catechin, one of the main components of green tea, is considered to have the remedy effect of arsenic poison,although the chemical mechanism is not well known. In this study, sodium(meta) selenite, which is used as herbisolution to investigate the interaction between toxic inorganic arsenic compound and catechin via ESI tandem mass spectrometry. The interaction products of mono-methylated arsenic with catechin in the presence of methanol were identified in the negative mode. Collission induced dissociation(CID) mass spectrometric measurements indicate that monomethylated arsenic was "alkylated" strongly by conjugation at the sites of C2' and C5' in the phenyl ring B of the catechin. The interaction mechanism between sodium(meta) arsenite and catechin was proposed. The results provide useful information to understand the chemical pathway of the detoxification of the arsenic toxicity by catechin.

  7. Sodium arsenite reduces severity of dextran sulfate sodium-induced ulcerative colitis in rats

    Institute of Scientific and Technical Information of China (English)

    Joshua J. MALAGO; Hortensia NONDOLI

    2008-01-01

    The histopathological features and the associated clinical findings of ulcerative colitis (UC) are due to persistent inflammatory response in the colon mucosa. Interventions that suppress this response benefit UC patients. We tested whether sodium arsenite (SA) benefits rats with dextran sulfate sodium (DSS)-colitis. The DSS-colitis was induced by 5% DSS in drinking water. SA (10 mg/kg; intraperitoneally) was given 8 h before DSS treatment and then every 48 h for 3 cycles of 7,14 or 21 d. At the end of each cycle rats were sacrificed and colon sections processed for histological examination. DSS induced diarrhea, loose stools, hemoccult positive stools, gross bleeding, loss of body weight, loss of epithelium, crypt damage, depletion of goblet cells and infiltration of inflammatory cells. The severity of these changes increased ir the order of Cycles 1,2 and 3. Treatment of rats with SA significantly reduced this severity and improved the weight gain.

  8. A New Transgenic Mouse Model for Studying the Neurotoxicity of Spermine Oxidase Dosage in the Response to Excitotoxic Injury.

    Directory of Open Access Journals (Sweden)

    Manuela Cervelli

    Full Text Available Spermine oxidase is a FAD-containing enzyme involved in polyamines catabolism, selectively oxidizing spermine to produce H2O2, spermidine, and 3-aminopropanal. Spermine oxidase is highly expressed in the mouse brain and plays a key role in regulating the levels of spermine, which is involved in protein synthesis, cell division and cell growth. Spermine is normally released by neurons at synaptic sites where it exerts a neuromodulatory function, by specifically interacting with different types of ion channels, and with ionotropic glutamate receptors. In order to get an insight into the neurobiological roles of spermine oxidase and spermine, we have deregulated spermine oxidase gene expression producing and characterizing the transgenic mouse model JoSMOrec, conditionally overexpressing the enzyme in the neocortex. We have investigated the effects of spermine oxidase overexpression in the mouse neocortex by transcript accumulation, immunohistochemical analysis, enzymatic assays and polyamine content in young and aged animals. Transgenic JoSMOrec mice showed in the neocortex a higher H2O2 production in respect to Wild-Type controls, indicating an increase of oxidative stress due to SMO overexpression. Moreover, the response of transgenic mice to excitotoxic brain injury, induced by kainic acid injection, was evaluated by analysing the behavioural phenotype, the immunodistribution of neural cell populations, and the ultrastructural features of neocortical neurons. Spermine oxidase overexpression and the consequently altered polyamine levels in the neocortex affects the cytoarchitecture in the adult and aging brain, as well as after neurotoxic insult. It resulted that the transgenic JoSMOrec mouse line is more sensitive to KA than Wild-Type mice, indicating an important role of spermine oxidase during excitotoxicity. These results provide novel evidences of the complex and critical functions carried out by spermine oxidase and spermine in the

  9. EFFECTS OF ARSENITE IN TELOMERE AND TELOMERASE IN RELATION TO CELL PROLIFERATION AND APOPTOSIS IN HUMAN KERATINOCYTES AND LEUKEMIA CELLS IN VITRO

    Science.gov (United States)

    Telomeres are critical in maintaining chromosome and genomic stability. Arsenic, a human carcinogen as well as an anticancer agent, is known for its clastogenicity. To better understand molecular mechanisms of arsenic actions, we investigated arsenite effects on telomere and telo...

  10. Molecular basis of arsenite (As+3-induced acute cytotoxicity in human cervical epithelial carcinoma cells

    Directory of Open Access Journals (Sweden)

    Muhammad Nauman Arshad

    2015-04-01

    Full Text Available Background: Rapid industrialization is discharging toxic heavy metals into the environment, disturbing human health in many ways and causing various neurologic, cardiovascular, and dermatologic abnormalities and certain types of cancer. The presence of arsenic in drinking water from different urban and rural areas of the major cities of Pakistan, for example, Lahore, Faisalabad, and Kasur, was found to be beyond the permissible limit of 10 parts per billion set by the World Health Organization. Therefore the present study was initiated to examine the effects of arsenite (As+3 on DNA biosynthesis and cell death. Methods: After performing cytotoxic assays on a human epithelial carcinoma cell line, expression analysis was done by quantitative polymerase chain reaction, western blotting, and flow cytometry. Results: We show that As+3 ions have a dose- and time-dependent cytotoxic effect through the activation of the caspase-dependent apoptotic pathway. In contrast to previous research, the present study was designed to explore the early cytotoxic effects produced in human cells during exposure to heavy dosage of As+3 (7.5 µg/ml. Even treatment for 1 h significantly increased the mRNA levels of p21 and p27 and caspases 3, 7, and 9. It was interesting that there was no change in the expression levels of p53, which plays an important role in G2/M phase cell cycle arrest. Conclusion: Our results indicate that sudden exposure of cells to arsenite (As+3 resulted in cytotoxicity and mitochondrial-mediated apoptosis resulting from up-regulation of caspases.

  11. Towards intrinsic MoS2 devices for high performance arsenite sensing

    Science.gov (United States)

    Li, Peng; Zhang, Dongzhi; Sun, Yan'e.; Chang, Hongyan; Liu, Jingjing; Yin, Nailiang

    2016-08-01

    Molybdenum disulphide (MoS2) is one of the most attractive two dimensional materials other than graphene, and the exceptional properties make it a promising candidate for bio/chemical sensing. Nevertheless, intrinsic properties and sensing performances of MoS2 are easily masked by the presence of the Schottky barrier (SB) at source/drain electrodes, and its impact on MoS2 sensors remains unclear. Here, we systematically investigated the influence of the SB on MoS2 sensors, revealing the sensing mechanism of intrinsic MoS2. By utilizing a small work function metal, Ti, to reduce the SB, excellent electrical properties of this 2D material were yielded with 2-3 times enhanced sensitivity. We experimentally demonstrated that the sensitivity of MoS2 is superior to that of graphene. Intrinsic MoS2 was able to realize rapid detection of arsenite down to 0.1 ppb without the influence of large SB, which is two-fold lower than the World Health Organization (WHO) tolerance level and better than the detection limit of recently reported arsenite sensors. Additionally, accurately discriminating target molecules is a great challenge for sensors based on 2D materials. This work demonstrates MoS2 sensors encapsulated with ionophore film which only allows certain types of molecules to selectively permeate through it. As a result, multiplex ion detection with superb selectivity was realized. Our results show prominent advantages of intrinsic MoS2 as a sensing material.

  12. Opposed arsenite-mediated regulation of p53-survivin is involved in neoplastic transformation, DNA damage, or apoptosis in human keratinocytes

    International Nuclear Information System (INIS)

    Highlights: ► Different concentrations of arsenite cause biphasic effects in HaCaT cells. ► p53-survivin signal pathway plays a role in arsenite-induced biphasic effects. ► ERKs inactivate p53, but improve survivin expression by NF-κB/mot-2. ► JNKs block survivin expression by preventing p53 from mdm2-mediated degradation. ► ERKs and JNKs play roles in arsenite-induced biphasic effects. -- Abstract: Biphasic dose–response relationship induced by environmental agents is often characterized with the effect of low-dose stimulation and high dose inhibition. Some studies showed that arsenite may induce cell proliferation and apoptosis via biphasic dose–response relationship in human cells; however, mechanisms underlying this phenomenon are not well understood. Our present study shows that, for human keratinocytes (HaCaT) cells, a low concentration of arsenite activates extracellular signal-regulated kinases (ERKs), which leads to up-regulation of nuclear factor κB (NF-κB) binding to DNA and to elevated, NF-κB-dependent expression of mot-2 (a p53 inhibitor) and survivin (an inhibitor of apoptosis). Activation of p53 is blocked, and neoplastic transformation is enhanced. Inhibition of ERKs reduces cell proliferation and neoplastic transformation. In contrast, a high concentration of arsenite activates c-Jun N-terminal kinases (JNKs), positive regulators of p53, by binding to p53 and preventing its murine double minute 2 (mdm2)-mediated degradation. The elevated levels of p53 lead to repair of DNA damage and apoptosis. Inhibition of JNKs increases DNA damage but decreases apoptosis. By identifying a mechanism whereby ERKs and JNKs-mediated regulation of the p53-survivin signal pathway is involved in the biphasic effects of arsenite on human keratinocytes, our data expand understanding of arsenite-induced cell proliferation, neoplastic transformation, DNA damage, and apoptosis.

  13. Modulatory of effect of fresh Amaranthus caudatus and Amaranthus hybridus aqueous leaf extracts on detoxify enzymes and micronuclei formation after exposure to sodium arsenite

    OpenAIRE

    Adetutu Adewale; Awe Emmanuel Olorunju

    2013-01-01

    Vegetables are the cheapest and most available sources of important proteins, minerals, vitamins, and essential amino protein. These vegetables are commonly used in Africa for the treatment of illness. This study evaluated the protective effects of Amaranthus caudatus and A. hybridus against sodium arsenite-induced toxicity in rats. The effects of sodium arsenite and/or the plant extracts were assessed using bone marrow micronucleus assay and by measuring the activities of tumour maker enzyme...

  14. Suicide attempts, platelet monoamine oxidase and the average evoked response

    International Nuclear Information System (INIS)

    The relationship between suicides and suicide attempts and two biological measures, platelet monoamine oxidase levels (MAO) and average evoked response (AER) augmenting was examined in 79 off-medication psychiatric patients and in 68 college student volunteers chosen from the upper and lower deciles of MAO activity levels. In the patient sample, male individuals with low MAO and AER augmenting, a pattern previously associated with bipolar affective disorders, showed a significantly increased incidence of suicide attempts in comparison with either non-augmenting low MAO or high MAO patients. Within the normal volunteer group, all male low MAO probands with a family history of suicide or suicide attempts were AER augmenters themselves. Four completed suicides were found among relatives of low MAO probands whereas no high MAO proband had a relative who committed suicide. These findings suggest that the combination of low platelet MAO activity and AER augmenting may be associated with a possible genetic vulnerability to psychiatric disorders. (author)

  15. Characterization of polyphenol oxidase from plants

    Institute of Scientific and Technical Information of China (English)

    LEI Dongfeng; FENG Yi; JIANG Dazong

    2004-01-01

    Polyphenol oxidase (PPO) which can mediate browning reaction is a bifunctional copper-containing enzyme encoded by plant nucleolus gene. It usually leads to excessive browning reaction which reduces the coercial profits of fruits and vegetables. In this paper, PPO genes and enzymes in plants are characterized systematically, and the latest progress is reviewed. Some clonings of PPOs genes are reported; the specific temporal and spatial expression pattern of PPOs genes is described; the model of the structure of the precursor form of catechol oxidase is introduced; the possible functions of PPOs in defending against pathogen, wounding, surrounding stress and other inducing factors are demonstrated; the induction and activation of latent PPOs in some plants is elucidated; the scheme of browning inhibition by L-cysteine is clarified; the mechanism of suicide inhibition of latent PPO and kinetic synergism are established. Furthermore, the area for future study is also discussed.

  16. Exploring regulation genes involved in the expression of L-amino acid oxidase in Pseudoalteromonas sp. Rf-1.

    Directory of Open Access Journals (Sweden)

    Zhiliang Yu

    Full Text Available Bacterial L-amino acid oxidase (LAAO is believed to play important biological and ecological roles in marine niches, thus attracting increasing attention to understand the regulation mechanisms underlying its production. In this study, we investigated genes involved in LAAO production in marine bacterium Pseudoalteromonas sp. Rf-1 using transposon mutagenesis. Of more than 4,000 mutants screened, 15 mutants showed significant changes in LAAO activity. Desired transposon insertion was confirmed in 12 mutants, in which disrupted genes and corresponding functionswere identified. Analysis of LAAO activity and lao gene expression revealed that GntR family transcriptional regulator, methylase, non-ribosomal peptide synthetase, TonB-dependent heme-receptor family, Na+/H+ antiporter and related arsenite permease, N-acetyltransferase GCN5, Ketol-acid reductoisomerase and SAM-dependent methytransferase, and their coding genes may be involved in either upregulation or downregulation pathway at transcriptional, posttranscriptional, translational and/or posttranslational level. The nhaD and sdmT genes were separately complemented into the corresponding mutants with abolished LAAO-activity. The complementation of either gene can restore LAAO activity and lao gene expression, demonstrating their regulatory role in LAAO biosynthesis. This study provides, for the first time, insights into the molecular mechanisms regulating LAAO production in Pseudoalteromonas sp. Rf-1, which is important to better understand biological and ecological roles of LAAO.

  17. Alcohol oxidase: A complex peroxisomal, oligomeric flavoprotein

    OpenAIRE

    Ozimek, Paulina; Veenhuis, Marten; van der Klei, Ida J.

    2005-01-01

    Alcohol oxidase (AO) is the key enzyme of methanol metabolism in methylotrophic yeast species. It catalyses the first step of methanol catabolism, namely its oxidation to formaldehyde with concomitant production of hydrogen peroxide. In its mature active form, AO is a molecule of high molecular mass (600 kDa) that consists of eight identical subunits, each of which carry one non-covalently bound flavin adenine nucleotide (FAD) molecule as the prosthetic group. In vivo, the protein is compartm...

  18. Role of NADPH Oxidases in Liver Fibrosis

    OpenAIRE

    Paik, Yong-Han; Kim, Jonghwa; Aoyama, Tomonori; De Minicis, Samuele; Bataller, Ramon; Brenner, David A

    2014-01-01

    Significance: Hepatic fibrosis is the common pathophysiologic process resulting from chronic liver injury, characterized by the accumulation of an excessive extracellular matrix. Multiple lines of evidence indicate that oxidative stress plays a pivotal role in the pathogenesis of liver fibrosis. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) is a multicomponent enzyme complex that generates reactive oxygen species (ROS) in response to a wide range of stimuli. In addition to...

  19. NADPH OXIDASE IN STROKE AND CEREBROVASCULAR DISEASE

    OpenAIRE

    Tang, Xian Nan; Cairns, Belinda; Kim, Jong Youl; Midori A Yenari

    2012-01-01

    NADPH oxidase (NOX) was originally identified in immune cells as playing an important microbicidal role. In stroke and cerebrovascular disease, inflammation is increasingly being recognized as contributing negatively to neurological outcome, with NOX as an important source of superoxide. Several labs have now shown that blocking or deleting NOX in the experimental stroke models protects from brain ischemic. Recent work has implicated glucose as an important NOX substrate leading to reperfusio...

  20. Imaging Monoamine Oxidase in the Human Brain

    International Nuclear Information System (INIS)

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets

  1. Imaging Monoamine Oxidase in the Human Brain

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

    1999-11-10

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets.

  2. Combined effects of fluoride and arsenite on the expression of Runx-related transcription 2 mRNA in bone of rats%氟砷联合对大鼠骨组织Runx相关基因2 mRNA表达的影响

    Institute of Scientific and Technical Information of China (English)

    郑冲; 洪峰; 徐德淦; 钱亚利

    2014-01-01

    ,respectively:the control group(0 mg/kg NaF + 0.0 mg/kg NaAsO2),the low fluoride group(5 mg/kg NaF),the high fluoride group(20 mg/kg NaF),the low arsenite group(2.5 mg/kg NaAsO2),the high arsenite group(10.0 mg/kg NaAsO2),the low fluoride low arsenite group(5 mg/kg NaF + 2.5 mg/kg NaAsO2),the high fluoride low arsenite group(20 mg/kg NaF + 25 mg/kg NaAsO2),the low fluoride high arsenite group(5 mg/kg NaF + 10.0 mg/kg NaAsO2) and the high fluoride high arsenite group(20 mg/kg NaF + 10.0 mg/kg NaAsO2).The expression of Runx2 mRNA was determined by quantitative real-time RT-PCR.Results The expressions of Runx2 mRNA in the control,low fluoride,high fluoride,low arsenite,high arsenite,low fluoride low arsenite,low fluoride high arsenite,high fluoride low arsenite and high fluoride high arsenite groups were 1.024 ± 0.015,1.377 + 0.014,1.587 ± 0.012,1.182 ± 0.015,1.343 ± 0.010,1.444 ± 0.019,1.504 ± 0.013,1.608 ± 0.013 and 1.714 + 0.009,respectively.The expressions of Runx2 mRNA in experimental groups were higher than those in control group (all P < 0.05),fluoride and arsenite were positively correlated with the expression of Runx2 mRNA(all P < 0.01),and there was a dose-response relationship between Runx2 mRNA and fluoride-arsenite levels.Factorial analysis showed that fluorine or arsenic alone could affect the expression level of Runx2(F =46.967,8.317,all P < 0.05),and there was a interaction between fluorine and arsenic to the expression of Runx2 mRNA (F =105.271,P < 0.01).Conclusion Fluoride or arsenic could promote the expression of Runx2 mRNA in bone of rats; there is an interaction between fluorine and arsenic to the expression of Runx2 mRNA.

  3. Conjugative plasmid in Corynebacterium flaccumfaciens subsp. oortii that confers resistance to arsenite, arsenate, and antimony(III)

    Energy Technology Data Exchange (ETDEWEB)

    Hendrick, C.A.; Haskins, W.P.; Vidaver, A.K.

    1984-07-01

    Gene transfer systems for phytopathogenic corynebacteria have not been reported previously. In this paper a conjugative 46-megadalton plasmid (pDG101) found in Corynebacterium flaccumfaciens subsp. oorii CO101 is described that mediates resistance to arsenite, arsenate, and antimony(III). Transfer of the plasmid from CO101 to four other strains from the C. flaccumfaciens group occurred between cells immobilized on nitrocellulose filters or on agar surfaces. Transconjugant strains expressed the same levels of metal resistance as the donor strain and were able to act as donor strains in subsequent matings. The physical presence of the plasmid was detected by agarose gel electrophoresis. Arsenite-sensitive derivatives of the donor and transconjugant strains were obtained after heat treatment; these were cured of pDG101.

  4. Comparison of kinetic properties of amine oxidases from sainfoin and lentil and immunochemical characterization of copper/quinoprotein amine oxidases.

    Science.gov (United States)

    Zajoncová, L; Frébort, I; Luhová, L; Sebela, M; Galuszka, P; Pec, P

    1999-01-01

    Kinetic properties of novel amine oxidase isolated from sainfoin (Onobrychis viciifolia) were compared to those of typical plant amine oxidase (EC 1.4.3.6) from lentil (Lens culinaris). The amine oxidase from sainfoin was active toward substrates, such as 1,5-diaminopentane (cadaverine) with K(m) of 0.09 mM and 1,4-diaminobutane (putrescine) with K(m) of 0.24 mM. The maximum rate of oxidation for cadaverine at saturating concentration was 2.7 fold higher than that of putrescine. The amine oxidase from lentil had the maximum rate for putrescine comparable to the rate of sainfoin amine oxidase with the same substrate. Both amine oxidases, like other plant Cu-amine oxidases, were inhibited by substrate analogs (1,5-diamino-3-pentanone, 1,4-diamino-2-butanone and aminoguanidine), Cu2+ chelating agents (diethyltriamine, 1,10-phenanthroline, 8-hydroxyquinoline, 2,2'-bipyridyl, imidazole, sodium cyanide and sodium azide), some alkaloids (L-lobeline and cinchonine), some lathyrogens (beta-aminopropionitrile and aminoacetonitrile) and other inhibitors (benzamide oxime, acetone oxime, hydroxylamine and pargyline). Tested by Ouchterlony's double diffusion in agarose gel, polyclonal antibodies against the amine oxidase from sainfoin, pea and grass pea cross-reacted with amine oxidases from several other Fabaceae and from barley (Hordeum vulgare) of Poaceae, while amine oxidase from the filamentous fungus Aspergillus niger did not cross-react at all. However, using Western blotting after SDS-PAGE with rabbit polyclonal antibodies against the amine oxidase from Aspergillus niger, some degree of similarity of plant amine oxidases from sainfoin, pea, field pea, grass pea, fenugreek, common melilot, white sweetclover and Vicia panonica with the A. niger amine oxidase was confirmed. PMID:10092944

  5. Arsenite evokes IL-6 secretion, autocrine regulation of STAT3 signaling, and miR-21 expression, processes involved in the EMT and malignant transformation of human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fei; Xu, Yuan [Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); Ling, Min [Jiangsu Center for Disease Control and Prevention, Nanjing 211166, Jiangsu (China); Zhao, Yue; Xu, Wenchao [Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); Liang, Xiao [Mental Health Center of Xuhui-CDC, Shanghai 200232 (China); Jiang, Rongrong; Wang, Bairu [Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); Bian, Qian [Jiangsu Center for Disease Control and Prevention, Nanjing 211166, Jiangsu (China); Liu, Qizhan, E-mail: drqzliu@hotmail.com [Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China)

    2013-11-15

    Arsenite is an established human carcinogen, and arsenite-induced inflammation contributes to malignant transformation of cells, but the molecular mechanisms by which cancers are produced remain to be established. The present results showed that, evoked by arsenite, secretion of interleukin-6 (IL-6), a pro-inflammatory cytokine, led to the activation of STAT3, a transcription activator, and to increased levels of a microRNA, miR-21. Blocking IL-6 with anti-IL-6 antibody and inhibiting STAT3 activation reduced miR-21 expression. For human bronchial epithelial cells, cultured in the presence of anti-IL-6 antibody for 3 days, the arsenite-induced EMT and malignant transformation were reversed. Thus, IL-6, acting on STAT3 signaling, which up-regulates miR-21in an autocrine manner, contributes to the EMT induced by arsenite. These data define a link from inflammation to EMT in the arsenite-induced malignant transformation of HBE cells. This link, mediated through miRNAs, establishes a mechanism for arsenite-induced lung carcinogenesis. - Highlights: • Arsenite evokes IL-6 secretion. • IL-6 autocrine mediates STAT3 signaling and up-regulates miR-21expression. • Inflammation is involved in arsenite-induced EMT.

  6. Arsenite evokes IL-6 secretion, autocrine regulation of STAT3 signaling, and miR-21 expression, processes involved in the EMT and malignant transformation of human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Arsenite is an established human carcinogen, and arsenite-induced inflammation contributes to malignant transformation of cells, but the molecular mechanisms by which cancers are produced remain to be established. The present results showed that, evoked by arsenite, secretion of interleukin-6 (IL-6), a pro-inflammatory cytokine, led to the activation of STAT3, a transcription activator, and to increased levels of a microRNA, miR-21. Blocking IL-6 with anti-IL-6 antibody and inhibiting STAT3 activation reduced miR-21 expression. For human bronchial epithelial cells, cultured in the presence of anti-IL-6 antibody for 3 days, the arsenite-induced EMT and malignant transformation were reversed. Thus, IL-6, acting on STAT3 signaling, which up-regulates miR-21in an autocrine manner, contributes to the EMT induced by arsenite. These data define a link from inflammation to EMT in the arsenite-induced malignant transformation of HBE cells. This link, mediated through miRNAs, establishes a mechanism for arsenite-induced lung carcinogenesis. - Highlights: • Arsenite evokes IL-6 secretion. • IL-6 autocrine mediates STAT3 signaling and up-regulates miR-21expression. • Inflammation is involved in arsenite-induced EMT

  7. Pathological changes in platelet histamine oxidases in atopic eczema

    Directory of Open Access Journals (Sweden)

    Reinhold Kiehl

    1993-01-01

    Full Text Available Increased plasma histamine levels were associated with significantly lowered diamine and type B monoamine oxidase activities in platelet-rich plasma of atopic eczema (AE patients. The diamine oxidase has almost normal cofactor levels (pyridoxal phosphate and Cu2+ but the cofactor levels for type B monoamine oxidase (flavin adenine dinucleotide and Fe2+ are lowered. The biogenic amines putrescine, cadaverine, spermidine, spermine, tyramine and serotonin in the sera, as well as dopamine and epinephrine in EDTA-plasma were found to be normal. It is unlikely, therefore, that these amines are responsible for the decreased activities of monoamine and diamine oxidase in these patients. The most likely causative factors for the inhibition of the diamine oxidase are nicotine, alcohol, food additives and other environmental chemicals, or perhaps a genetic defect of the diamine oxidase.

  8. Evaluation of the toxic effects of arsenite, chromate, cadmium, and copper using a battery of four bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kyung-Seok; Lee, Pyeong-Koo [Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon (Korea, Republic of). Geologic Environment Div.; Kong, In Chul [Yeungnam Univ., Kyungbuk (Korea, Republic of). Dept. of Environmental Engineering

    2012-09-15

    The sensitivities of four different kinds of bioassays to the toxicities of arsenite, chromate, cadmium, and copper were compared. The different bioassays exhibited different sensitivities, i.e., they responded to different levels of toxicity of each of the different metals. However, with the exception of the {alpha}-glucosidase enzyme activity, arsenite was the most toxic compound towards all the tested organisms, exhibiting the highest toxic effect on the seeds of Lactuca, with an EC{sub 50} value of 0.63 mg/L. The sensitivities of Lactuca and Raphanus were greater than the sensitivities of two other kinds of seeds tested. Therefore, these were the seeds appropriate for use in a seed germination assay. A high revertant mutagenic ratio (5:1) of Salmonella typhimurium was observed with an arsenite concentration of 0.1 {mu}g/plate, indicative of a high possibility of mutagenicity. These different results suggested that a battery of bioassays, rather than one bioassay alone, is needed as a more accurate and better tool for the bioassessment of environmental pollutants. (orig.)

  9. Arsenite-induced stress signaling: Modulation of the phosphoinositide 3′-kinase/Akt/FoxO signaling cascade

    Directory of Open Access Journals (Sweden)

    Ingrit Hamann

    2013-01-01

    Full Text Available FoxO transcription factors and their regulators in the phosphoinositide 3′-kinase (PI3K/Akt signaling pathway play an important role in the control of cellular processes involved in carcinogenesis, such as proliferation and apoptosis. We have previously demonstrated that physiologically relevant heavy metal ions, such as copper or zinc ions, can stimulate this pathway, triggering phosphorylation and nuclear export of FoxO transcription factors. The present study aims at investigating the effect of arsenite on FoxO transcription factors and the role of PI3K/Akt signaling therein. Exposure of HaCaT human keratinocytes to arsenite resulted in a distinct decrease of glutathione levels only at cytotoxic concentrations. In contrast, a strong phosphorylation of FoxO1a/FoxO3a and Akt was observed at subcytotoxic concentrations of arsenite in HaCaT human keratinocytes. A time- and concentration-dependent increase in phosphorylation of FoxO1a and FoxO3a at sites known to be phosphorylated by Akt as well as phosphorylation of Akt at Ser-473 was detected. These phosphorylations were blunted in the presence of wortmannin, pointing to the involvement of PI3K.

  10. Synthesis of Nano- alumina Powder from Impure Kaolin and its Application for Arsenite Removal from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Ahmad Khodadadi Darban

    2013-07-01

    Full Text Available Adsorption is considered a cost-effective procedure, safer to handle with high removal efficiency. Activated alumina is the most commonly used adsorbent for the removal of arsenic from aqueous solutions. However, activated alumina has a low adsorption capacity and acts kinetically in a slow manner. An ideal adsorbent should have a high surface area, physical and/or chemical stability and be inexpensive. To meet this requirement, nanomeso porous γ-alumina with a high surface area (201.53 m2/g and small particle size (22–36 nm was prepared from inexpensive kaolin as the raw material, by precipitation method. The research results showed that adsorbent has the high adsorption capacity (for initial arsenite concentration up to 10 mg/L, in which 97.65% recovery was achieved. Optimal experimental conditions including pH, initial arsenite concentration and contact time were determined. Langmuir, Freundlich and Dubinin– Radushkevich isotherm models were applied to analyze the experimental data. The best interpretation for the experimental data was given by Langmuir adsorption isotherm equation and the maximum arsenite adsorbed by synthesized nano γ–alumina (qe was found to be 40 (mg/g.

  11. In vitro development of resistance to arsenite and chromium-VI in Lactobacilli strains as perspective attenuation of gastrointestinal disorder.

    Science.gov (United States)

    Upreti, Raj K; Sinha, Vartika; Mishra, Ritesh; Kannan, Ambrose

    2011-05-01

    Inadvertent intake of inorganic arsenic and chromium through drinking water and food causing their toxic insults is a major health problem. Intestinal bacteria including Lactobacilli play important regulatory roles on intestinal homeostasis, and their loss is known to cause gastrointestinal (GI) disorders. Probiotic Lactobacilli resistance to arsenite and chromium-VI could be an importantfactorfor the perspective attenuation of Gl-disorders caused by these toxic metals/metalloid. In the present study resistance of arsenite (up to 32 ppm), Cr-VI (up to 64 ppm), and arsenite plus Cr-VI (32 ppm each) were developed under in vitro condition following chronological chronic exposures in Lactobacilli strains. Comparative study of biochemical parameters such as membrane transport enzymes and structural constituents; dehydrogenase and esterase activity tests, which are respective indicators for respiratory and energy producing processes, and the general heterotrophic activity of cells, of resistant strains showed similarities with their respective normal parent strains. The resistant strains were also found to be sensitive to antibiotics. Findings indicate that these resistant probiotic Lactobacilli would be useful in the prophylactic interventions of arsenic and chromium GI-toxicity.

  12. The alternative oxidase in roots of Poa annua after transfer from high-light to low-light conditions

    NARCIS (Netherlands)

    Millenaar, F.F.; Roelofs, Roeland; Gonzàlez-Meler, Miquel A.; Siedow, James N.; Wagner, Anneke M.; Lambers, Hans

    2001-01-01

    The activity of the alternative pathway can be affected by a number of factors, including the amount and reduction state of the alternative oxidase protein, and the reduction state of the ubiquinone pool. To investigate the importance of these factors in vivo, we manipulated the rate of root respira

  13. Evidence for toxicity differences between inorganic arsenite and thioarsenicals in human bladder cancer cells.

    Science.gov (United States)

    Naranmandura, Hua; Ogra, Yasumitsu; Iwata, Katsuya; Lee, Jane; Suzuki, Kazuo T; Weinfeld, Michael; Le, X Chris

    2009-07-15

    Arsenic toxicity is dependent on its chemical species. In humans, the bladder is one of the primary target organs for arsenic-induced carcinogenicity. However, little is known about the mechanisms underlying arsenic-induced carcinogenicity, and what arsenic species are responsible for this carcinogenicity. The present study aimed at comparing the toxic effect of DMMTA(V) with that of inorganic arsenite (iAs(III)) on cell viability, uptake efficiency and production of reactive oxygen species (ROS) toward human bladder cancer EJ-1 cells. The results were compared with those of a previous study using human epidermoid carcinoma A431 cells. Although iAs(III) was known to be toxic to most cells, here we show that iAs(III) (LC(50)=112 microM) was much less cytotoxic than DMMTA(V) (LC(50)=16.7 microM) in human bladder EJ-1 cells. Interestingly, pentavalent sulfur-containing DMMTA(V) generated a high level of intracellular ROS in EJ-1 cells. However, this was not observed in the cells exposed to trivalent inorganic iAs(III) at their respective LC(50) dose. Furthermore, the presence of N-acetyl-cysteine completely inhibited the cytotoxicity of DMMTA(V) but not iAs(III), suggesting that production of ROS was the main cause of cell death from exposure to DMMTA(V), but not iAs(III). Because the cellular uptake of iAs(III) is mediated by aquaporin proteins, and because the resistance of cells to arsenite can be influenced by lower arsenic uptake due to lower expression of aquaporin proteins (AQP 3, 7 and 9), the expression of several members of the aquaporin family was also examined. In human bladder EJ-1 cells, mRNA/proteins of AQP3, 7 and 9 were not detected by reverse transcription polymerase chain reaction (RT-PCR)/western blotting. In A431 cells, only mRNA and protein of AQP3 were detected. The large difference in toxicity between the two cell lines could be related to their differences in uptake of arsenic species.

  14. Evidence for toxicity differences between inorganic arsenite and thioarsenicals in human bladder cancer cells

    International Nuclear Information System (INIS)

    Arsenic toxicity is dependent on its chemical species. In humans, the bladder is one of the primary target organs for arsenic-induced carcinogenicity. However, little is known about the mechanisms underlying arsenic-induced carcinogenicity, and what arsenic species are responsible for this carcinogenicity. The present study aimed at comparing the toxic effect of DMMTAV with that of inorganic arsenite (iAsIII) on cell viability, uptake efficiency and production of reactive oxygen species (ROS) toward human bladder cancer EJ-1 cells. The results were compared with those of a previous study using human epidermoid carcinoma A431 cells. Although iAsIII was known to be toxic to most cells, here we show that iAsIII (LC50 = 112 μM) was much less cytotoxic than DMMTAV (LC50 = 16.7 μM) in human bladder EJ-1 cells. Interestingly, pentavalent sulfur-containing DMMTAV generated a high level of intracellular ROS in EJ-1 cells. However, this was not observed in the cells exposed to trivalent inorganic iAsIII at their respective LC50 dose. Furthermore, the presence of N-acetyl-cysteine completely inhibited the cytotoxicity of DMMTAV but not iAsIII, suggesting that production of ROS was the main cause of cell death from exposure to DMMTAV, but not iAsIII. Because the cellular uptake of iAsIII is mediated by aquaporin proteins, and because the resistance of cells to arsenite can be influenced by lower arsenic uptake due to lower expression of aquaporin proteins (AQP 3, 7 and 9), the expression of several members of the aquaporin family was also examined. In human bladder EJ-1 cells, mRNA/proteins of AQP3, 7 and 9 were not detected by reverse transcription polymerase chain reaction (RT-PCR)/western blotting. In A431 cells, only mRNA and protein of AQP3 were detected. The large difference in toxicity between the two cell lines could be related to their differences in uptake of arsenic species.

  15. Arsenite activates NFκB through induction of C-reactive protein

    Energy Technology Data Exchange (ETDEWEB)

    Druwe, Ingrid L.; Sollome, James J.; Sanchez-Soria, Pablo; Hardwick, Rhiannon N.; Camenisch, Todd D.; Vaillancourt, Richard R., E-mail: vaillancourt@pharmacy.arizona.edu

    2012-06-15

    C-reactive protein (CRP) is an acute phase protein in humans. Elevated levels of CRP are produced in response to inflammatory cytokines and are associated with atherosclerosis, hypertension, cardiovascular disease and insulin resistance. Exposure to inorganic arsenic, a common environmental toxicant, also produces cardiovascular disorders, namely atherosclerosis and is associated with insulin-resistance. Inorganic arsenic has been shown to contribute to cardiac toxicities through production of reactive oxygen species (ROS) that result in the activation of NFκB. In this study we show that exposure of the hepatic cell line, HepG2, to environmentally relevant levels of arsenite (0.13 to 2 μM) results in elevated CRP expression and secretion. ROS analysis of the samples showed that a minimal amount of ROS are produced by HepG2 cells in response to these concentrations of arsenic. In addition, treatment of FvB mice with 100 ppb sodium arsenite in the drinking water for 6 months starting at weaning age resulted in dramatically higher levels of CRP in both the liver and inner medullary region of the kidney. Further, mouse Inner Medullary Collecting Duct cells (mIMCD-4), a mouse kidney cell line, were stimulated with 10 ng/ml CRP which resulted in activation of NFκB. Pretreatment with 10 nM Y27632, a known Rho-kinase inhibitor, prior to CRP exposure attenuated NFκB activation. These data suggest that arsenic causes the expression and secretion of CRP and that CRP activates NFκB through activation of the Rho-kinase pathway, thereby providing a novel pathway by which arsenic can contribute to metabolic syndrome and cardiovascular disease. -- Highlights: ► Exposure to arsenic can induce the expression and secretion of CRP. ► Mice treated with NaAsO{sub 2} showed higher levels of CRP in both the liver and kidney. ► mIMCD-3 were stimulated with CRP which resulted in activation of NFκB. ► CRP activates NFκB through activation of the Rho-kinase pathway. ► Data

  16. Arsenite activates NFκB through induction of C-reactive protein

    International Nuclear Information System (INIS)

    C-reactive protein (CRP) is an acute phase protein in humans. Elevated levels of CRP are produced in response to inflammatory cytokines and are associated with atherosclerosis, hypertension, cardiovascular disease and insulin resistance. Exposure to inorganic arsenic, a common environmental toxicant, also produces cardiovascular disorders, namely atherosclerosis and is associated with insulin-resistance. Inorganic arsenic has been shown to contribute to cardiac toxicities through production of reactive oxygen species (ROS) that result in the activation of NFκB. In this study we show that exposure of the hepatic cell line, HepG2, to environmentally relevant levels of arsenite (0.13 to 2 μM) results in elevated CRP expression and secretion. ROS analysis of the samples showed that a minimal amount of ROS are produced by HepG2 cells in response to these concentrations of arsenic. In addition, treatment of FvB mice with 100 ppb sodium arsenite in the drinking water for 6 months starting at weaning age resulted in dramatically higher levels of CRP in both the liver and inner medullary region of the kidney. Further, mouse Inner Medullary Collecting Duct cells (mIMCD-4), a mouse kidney cell line, were stimulated with 10 ng/ml CRP which resulted in activation of NFκB. Pretreatment with 10 nM Y27632, a known Rho-kinase inhibitor, prior to CRP exposure attenuated NFκB activation. These data suggest that arsenic causes the expression and secretion of CRP and that CRP activates NFκB through activation of the Rho-kinase pathway, thereby providing a novel pathway by which arsenic can contribute to metabolic syndrome and cardiovascular disease. -- Highlights: ► Exposure to arsenic can induce the expression and secretion of CRP. ► Mice treated with NaAsO2 showed higher levels of CRP in both the liver and kidney. ► mIMCD-3 were stimulated with CRP which resulted in activation of NFκB. ► CRP activates NFκB through activation of the Rho-kinase pathway. ► Data provide

  17. 砷暴露对大鼠原代星形胶质细胞分泌胶质细胞源性递质的影响%Effects of arsenite on gliotransmitter release from primary cultured astrocytes

    Institute of Scientific and Technical Information of China (English)

    王艳; 戴莉莉; 赵凤红; 金亚平

    2015-01-01

    Objective To investigate the impairment mechanism of learning and memory function induced by arsenite exposure through studying the effects of sodium arsenite on gliotransmitter release from astrocytes.Methods Primary cultured astrocytes were isolated from neonatal (0-3 days) Wistar rats and determined by glial fibrillary acidic protein (GFAP) immunofluorescence staining.The primary cultured astrocytes were randomly divided into four groups,in which astrocytes were exposed to 0.0,2.5,5.0,or 10.0 μmol/L sodium arsenite,respectively,for 24 h.Intracellular free Ca2+ concentration ([Ca2+]i) in astrocytes was measured by fluorescence dual wavelength spectrophotometer;,concentrations of glutamate,D-serine,glycine and γ-aminobutyric acid were measured by high performance liquid chromatography (HPLC).Results More than 95% cells were positive for GFAP immunofluorescence staining.The difference of [Ca2+]i among groups treated with sodium arsenite was statistically significant (F =20.030,P < 0.05).[Ca2+]i increased significantly in group treated with 10.0 μmol/L sodium arsenite [(263.27 ± 14.80)nmol/L] compared with those in groups treated with 0.0,2.5,5.0 μmol/L sodium arsenite [(204.24 ± 27.21),(214.49 ± 21.85),(232.74 ± 23.14)nmol/L,all P < 0.05].The differences of the levels of D-serine,glycine and γ-aminobutyric acidamong groups treated with sodium arsenite were significant (F =26.599,33.539,5.599,all P < 0.05).The levels of D-serine [(21.580 ± 1.313),(21.936 ± 1.539),(23.401 ± 1.648)μmol/L],glycine [(26.353 ± 2.449),(29.711 ± 1.530),(29.234 ± 2.057)μmol/L] and γ-aminobutyric acid [(27.277 ± 3.421),(30.213 ± 2.098),(29.364 ± 2.588)μmol/L] released by astrocytes increased significantly in groups treated with 2.5,5.0,10.0 μmol/L sodium arsenite compared with those in groups treated with 0.0 μmol/L sodium arsenite [(16.017 ± 1.046),(16.763 ± 3.007),(22.736 ± 4.139)μmol/L,all P < 0.05].Conclusion Arsenite could affect gliotransmitter

  18. Listeriolysin O suppresses phospholipase C-mediated activation of the microbicidal NADPH oxidase to promote Listeria monocytogenes infection.

    Science.gov (United States)

    Lam, Grace Y; Fattouh, Ramzi; Muise, Aleixo M; Grinstein, Sergio; Higgins, Darren E; Brumell, John H

    2011-12-15

    The intracellular bacterial pathogen Listeria monocytogenes produces phospholipases C (PI-PLC and PC-PLC) and the pore-forming cytolysin listeriolysin O (LLO) to escape the phagosome and replicate within the host cytosol. We found that PLCs can also activate the phagocyte NADPH oxidase during L. monocytogenes infection, a response that would adversely affect pathogen survival. However, secretion of LLO inhibits the NADPH oxidase by preventing its localization to phagosomes. LLO-deficient bacteria can be complemented by perfringolysin O, a related cytolysin, suggesting that other pathogens may also use pore-forming cytolysins to inhibit the NADPH oxidase. Our studies demonstrate that while the PLCs induce antimicrobial NADPH oxidase activity, this effect is alleviated by the pore-forming activity of LLO. Therefore, the combined activities of PLCs and LLO on membrane lysis and the inhibitory effects of LLO on NADPH oxidase activity allow L. monocytogenes to efficiently escape the phagosome while avoiding the microbicidal respiratory burst. PMID:22177565

  19. Arsenite-loaded nanoparticles inhibit PARP-1 to overcome multidrug resistance in hepatocellular carcinoma cells.

    Science.gov (United States)

    Liu, Hanyu; Zhang, Zongjun; Chi, Xiaoqin; Zhao, Zhenghuan; Huang, Dengtong; Jin, Jianbin; Gao, Jinhao

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the highest incidences in cancers; however, traditional chemotherapy often suffers from low efficiency caused by drug resistance. Herein, we report an arsenite-loaded dual-drug (doxorubicin and arsenic trioxide, i.e., DOX and ATO) nanomedicine system (FeAsOx@SiO2-DOX, Combo NP) with significant drug synergy and pH-triggered drug release for effective treatment of DOX resistant HCC cells (HuH-7/ADM). This nano-formulation Combo NP exhibits the synergistic effect of DNA damage by DOX along with DNA repair interference by ATO, which results in unprecedented killing efficiency on DOX resistant cancer cells. More importantly, we explored the possible mechanism is that the activity of PARP-1 is inhibited by ATO during the treatment of Combo NP, which finally induces apoptosis of HuH-7/ADM cells by poly (ADP-ribosyl) ation suppression and DNA lesions accumulation. This study provides a smart drug delivery strategy to develop a novel synergistic combination therapy for effectively overcome drug- resistant cancer cells. PMID:27484730

  20. Co-administration of sodium arsenite and ethanol: Protection by aqueous extract of Aframomum longiscapum seeds

    Directory of Open Access Journals (Sweden)

    Solomon E Owumi

    2012-01-01

    Full Text Available Background : Human exposure to arsenicals, its toxicity, subsequent adverse effects on health has been widely reported and implicated in the etiology of several cancers. Objectives : We investigated the effect of Aframomum longiscapum (AL extracts on sodium arsenite (SA and ethanol (EtOH-induced toxicities in rats. Materials and Methods : Male rats were fed SA, EtOH, and SA + EtOH, with or without AL for 5 weeks. Hepatic transaminases were assessed in serum, micronucleated polychromatic erythrocytes (mPCEs from bone marrow, liver histopathology, and semen quality from caudal epididymis were assessed, respectively, and data were represented as mean ± SD, analyzed by ANOVA. Results : SA, SA + EtOH, and AL alone induced mPCEs formation in rat bone marrow (P 0.05 across the treated groups. Hepatic histopathology indicated mild mononuclear cellular infiltration in the control group. Necrotic hepatocyte were observed in SA, SA + EtOH treated groups, with no visible lesions seen in the AL treated group. Mild hepatocyte congestion of the portal vessels was observed in AL + SA + EtOH-treated groups. Conclusion : The AL extract exhibited anticlastogenic and hepatoprotective potentials, reduced sperm count, motility, with no effect on viability and morphology. Our findings suggest that AL may mitigate the effect of arsenicals-induced clastogenicity implicated in chemical carcinogenesis.

  1. Development of a biosorbent for arsenite: structural modeling based on X-ray spectroscopy.

    Science.gov (United States)

    Teixeira, Monica Cristina; Ciminelli, Virginia S T

    2005-02-01

    This work describes a biological route for direct sorption of aqueous As(III) species, which are the most toxic and mobile arsenic species found in soils. Based upon the biochemical mechanisms that explain arsenic toxicity, we propose that a waste biomass with a high fibrous protein content obtained from chicken feathers can be used for selective As(III) adsorption. Prior to adsorption, the disulfide bridges present in the biomass are reduced by thioglycolate. Our investigations demonstrated that As(III) is specifically adsorbed on the biomass and, contrary to the behavior observed with inorganic sorbents, the lower is the pH the more effective is the removal. Arsenic uptake reaches values of up to 270 micromol As(III)/g of biomass. Analyses by synchrotron light techniques, such as XANES, demonstrated that arsenic is adsorbed in its trivalent state, an advantage over conventional techniques for As uptake, which usually require a previous oxidation stage. EXAFS analyses showed that each As atom is directly bound to three S atoms with an estimated distance of 2.26 A. The uptake mechanism is explained in terms of the structural similarities between the As(III)-biomass complex structure and that of arsenite ions and Ars-Operon system encoded proteins and phytochelatins. The biological route presented here offers the perspective of a direct removal of arsenic in its reduced form.

  2. Bacterial community succession during the enrichment of chemolithoautotrophic arsenite oxidizing bacteria at high arsenic concentrations

    Institute of Scientific and Technical Information of China (English)

    Nguyen Ai Le; Akiko Sato; Daisuke Inoue; Kazunari Sei; Satoshi Soda; Michihiko Ike

    2012-01-01

    To generate cost-effective technologies for the removal of arsenic from water,we developed an enrichment culture of chemolithoautotrophic arsenite oxidizing bacteria (CAOs) that could effectively oxidize widely ranging concentrations of As(Ⅲ) to As(Ⅴ).In addition,we attempted to elucidate the enrichment process and characterize the microbial composition of the enrichment culture.A CAOs enrichment culture capable of stably oxidizing As(Ⅲ) to As(Ⅴ) was successfully constructed through repeated batch cultivation for more than 700 days,during which time the initial As(Ⅲ) concentrations were increased in a stepwise manner from l to 10-12 mmol/L.As(Ⅲ) oxidation activity of the enrichment culture gradually improved,and 10-12 mmol/L As(Ⅲ) was almost completely oxidized within four days.Terminal restriction fragment length polymorphism analysis showed that the dominant bacteria in the enrichment culture varied drastically during the enrichment process depending on the As(Ⅲ) concentration.Isolation and characterization of bacteria in the enrichment culture revealed that the presence of multiple CAOs with various As(Ⅲ) oxidation abilities enabled the culture to adapt to a wide range of As(Ⅲ) concentrations.The CAOs enrichment culture constructed here may he useful for pretreatment of water from which arsenic is being removed.

  3. Polyphenols of Mangifera indica modulate arsenite-induced cytotoxicity in a human proximal tubule cell line

    Directory of Open Access Journals (Sweden)

    Gabino Garrido

    2012-04-01

    Full Text Available Inorganic arsenic is an ubiquitous environmental contaminant able to cause severe pathologies in humans, including kidney disorders. The possible protective effects of Mangifera indica L., Anacardiaceae, stem bark extract (MSBE and some mango phenols on the cytotoxicity of arsenite (AsIII in the proximal tubule cell line HK-2 was investigated. In cells cultured for 24 h in presence of AsIII, a dose-dependent loss of cell viability occurred that was significantly alleviated by MSBE, followed by gallic acid, catechin and mangiferin. Mangiferin complexed with Fe+++ proved more efficacious than mangiferin alone. MSBE and pure phenols increased significantly the cell surviving fraction in clonogenic assays. In cells pretreated with MSBE or phenols for 72 h the protection afforded by MSBE resulted decreased in comparison with the shorter experiments. Cells pretreated with a subcytotoxic amount of AsIII or cultured in continuous presence of low concentration of mangiferin proved to be more resistant to AsIII, while cells cultured in presence of albumin resulted more sensitive. Because all the above conditions share changes in expression/activity of P-glycoprotein (P-gp, a transporter potentially involved in arsenic resistance, the capability of M. indica phenols in modulating AsIII-induced cytotoxicity would be at least in part dependent on their interactions with P-gp.

  4. Arsenic Methylation in Arabidopsis thaliana Expressing an Algal Arsenite Methyltransferase Gene Increases Arsenic Phytotoxicity.

    Science.gov (United States)

    Tang, Zhong; Lv, Yanling; Chen, Fei; Zhang, Wenwen; Rosen, Barry P; Zhao, Fang-Jie

    2016-04-01

    Arsenic (As) contamination in soil can lead to elevated transfer of As to the food chain. One potential mitigation strategy is to genetically engineer plants to enable them to transform inorganic As to methylated and volatile As species. In this study, we genetically engineered two ecotypes of Arabidopsis thaliana with the arsenite (As(III)) S-adenosylmethyltransferase (arsM) gene from the eukaryotic alga Chlamydomonas reinhardtii. The transgenic A. thaliana plants gained a strong ability to methylate As, converting most of the inorganic As into dimethylarsenate [DMA(V)] in the shoots. Small amounts of volatile As were detected from the transgenic plants. However, the transgenic plants became more sensitive to As(III) in the medium, suggesting that DMA(V) is more phytotoxic than inorganic As. The study demonstrates a negative consequence of engineered As methylation in plants and points to a need for arsM genes with a strong ability to methylate As to volatile species. PMID:26998776

  5. Simultaneous arsenite oxidation and nitrate reduction at the electrodes of bioelectrochemical systems.

    Science.gov (United States)

    Nguyen, Van Khanh; Park, Younghyun; Yu, Jaecheul; Lee, Taeho

    2016-10-01

    Arsenic and nitrate contaminations in the soil and groundwater have urged the scientific community to explore suitable technologies for treatment of both contaminants. This study reports, for the first time, a novel application of bioelectrochemical systems for coupling As detoxification at the anode and denitrification at the cathode. A similar As(III) oxidation efficiency was achieved when anode potential was controlled by a potentiostat or a direct current (DC) power supply. However, a slightly lower nitrate reduction rate was obtained in reactors using DC power supply during simultaneous operation of nitrate reduction and As(III) oxidation. Microbial community analysis by denaturing gradient gel electrophoresis indicated the presence of some autotrophic As(III)-oxidizing bacteria, including Achromobacter spp., Ensifer spp., and Sinorhizobium spp., that can flexibly switch their original metabolism of using oxygen as sole electron acceptor to a new metabolism mode of using solid-state anode as sole electron acceptor driving for As(III) oxidation under anaerobic conditions. Although further research is required for validating their applicability, bioelectrochemical systems represent a brilliant technology for remediation of groundwater contaminated with nitrate and/or arsenite. PMID:27438874

  6. Metalloid tolerance based on phytochelatins is not functionally equivalent to the arsenite transporter Acr3p.

    Science.gov (United States)

    Wysocki, Robert; Clemens, Stephan; Augustyniak, Daria; Golik, Pawel; Maciaszczyk, Ewa; Tamás, Markus J; Dziadkowiec, Dorota

    2003-05-01

    Active transport of metalloids by Acr3p and Ycf1p in Saccharomyces cerevisiae and chelation by phytochelatins in Schizosaccharomyces pombe, nematodes, and plants represent distinct strategies of metalloid detoxification. In this report, we present results of functional comparison of both resistance mechanisms. The S. pombe and wheat phytochelatin synthase (PCS) genes, when expressed in S. cerevisiae, mediate only modest resistance to arsenite and thus cannot functionally compensate for Acr3p. On the other hand, we show for the first time that phytochelatins also contribute to antimony tolerance as PCS fully complement antimonite sensitivity of ycf1Delta mutant. Remarkably, heterologous expression of PCS sensitizes S. cerevisiae to arsenate, while ACR3 confers much higher arsenic resistance in pcsDelta than in wild-type S. pombe. The analysis of PCS and ACR3 homologues distribution in various organisms and our experimental data suggest that separation of ACR3 and PCS genes may lead to the optimal tolerance status of the cell.

  7. Adsorption of Arsenite by Six Submerged Plants from Nansi Lake, China

    Directory of Open Access Journals (Sweden)

    Zhibin Zhang

    2014-01-01

    Full Text Available Nansi Lake is the largest and the most important freshwater lake in north China for the South-North Water Transfer Project. Due to long-time and large-scale fish farming of history, the excess fish food and excretion usually release pentavalent arsenic, which is converted into trivalent arsenic (As (III in the lake sediment and released into lake water. Adsorption of arsenite using six submerged plants (Mimulicalyx rosulatus, Potamogeton maackianus, Hydrilla, Watermifoil, Pteris vittata, and Potamogeton crispus as adsorbing materials was investigated. The experimental data obtained have been analyzed using Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models and the pseudo-first-order, pseudo-second-order, and intraparticle diffusion kinetics models. According to the results, the As (III equilibrium data agreed well with the Freundlich isotherm model. The adsorption capacity of the plants was in the following order: Potamogeton crispus > Pteris vittata > Potamogeton maackianus > Mimulicalyx rosulatus > Hydrilla > Watermifoil. The sorption system with the six submerged plants was better described by pseudo-second-order than by first-order kinetics. Moreover, the adsorption with Potamogeton crispus could follow intraparticle diffusion (IPD model. The initial adsorption and rate of IPD using Potamogeton crispus and Pteris vittata were higher than those using other plants studied.

  8. Arsenite-loaded nanoparticles inhibit PARP-1 to overcome multidrug resistance in hepatocellular carcinoma cells

    Science.gov (United States)

    Liu, Hanyu; Zhang, Zongjun; Chi, Xiaoqin; Zhao, Zhenghuan; Huang, Dengtong; Jin, Jianbin; Gao, Jinhao

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the highest incidences in cancers; however, traditional chemotherapy often suffers from low efficiency caused by drug resistance. Herein, we report an arsenite-loaded dual-drug (doxorubicin and arsenic trioxide, i.e., DOX and ATO) nanomedicine system (FeAsOx@SiO2-DOX, Combo NP) with significant drug synergy and pH-triggered drug release for effective treatment of DOX resistant HCC cells (HuH-7/ADM). This nano-formulation Combo NP exhibits the synergistic effect of DNA damage by DOX along with DNA repair interference by ATO, which results in unprecedented killing efficiency on DOX resistant cancer cells. More importantly, we explored the possible mechanism is that the activity of PARP-1 is inhibited by ATO during the treatment of Combo NP, which finally induces apoptosis of HuH-7/ADM cells by poly (ADP-ribosyl) ation suppression and DNA lesions accumulation. This study provides a smart drug delivery strategy to develop a novel synergistic combination therapy for effectively overcome drug- resistant cancer cells. PMID:27484730

  9. Effects of Arsenite Resistance on the Growth and Functional Gene Expression of Leptospirillum ferriphilum and Acidithiobacillus thiooxidans in Pure Culture and Coculture.

    Science.gov (United States)

    Jiang, Huidan; Liang, Yili; Yin, Huaqun; Xiao, Yunhua; Guo, Xue; Xu, Ying; Hu, Qi; Liu, Hongwei; Liu, Xueduan

    2015-01-01

    The response of iron-oxidizing Leptospirillum ferriphilum YSK and sulfur-oxidizing Acidithiobacillus thiooxidans A01 to arsenite under pure culture and coculture was investigated based on biochemical characterization (concentration of iron ion and pH value) and related gene expression. L. ferriphilum YSK and At. thiooxidans A01 in pure culture could adapt up to 400 mM and 800 mM As(III) after domestication, respectively, although arsenite showed a negative effect on both strains. The coculture showed a stronger sulfur and ferrous ion oxidation activity when exposed to arsenite. In coculture, the pH value showed no significant difference when under 500 mM arsenite stress, and the cell number of At. thiooxidans was higher than that in pure culture benefiting from the interaction with L. ferriphilum. The expression profile showed that the arsenic efflux system in the coculture was more active than that in pure culture, indicating that there is a synergetic interaction between At. thiooxidans A01 and L. ferriphilum YSK. In addition, a model was proposed to illustrate the interaction between arsenite and the ars operon in L. ferriphilum YSK and At. thiooxidans A01. This study will facilitate the effective application of coculture in the bioleaching process by taking advantage of strain-strain communication and coordination.

  10. Effects of Arsenite Resistance on the Growth and Functional Gene Expression of Leptospirillum ferriphilum and Acidithiobacillus thiooxidans in Pure Culture and Coculture

    Directory of Open Access Journals (Sweden)

    Huidan Jiang

    2015-01-01

    Full Text Available The response of iron-oxidizing Leptospirillum ferriphilum YSK and sulfur-oxidizing Acidithiobacillus thiooxidans A01 to arsenite under pure culture and coculture was investigated based on biochemical characterization (concentration of iron ion and pH value and related gene expression. L. ferriphilum YSK and At. thiooxidans A01 in pure culture could adapt up to 400 mM and 800 mM As(III after domestication, respectively, although arsenite showed a negative effect on both strains. The coculture showed a stronger sulfur and ferrous ion oxidation activity when exposed to arsenite. In coculture, the pH value showed no significant difference when under 500 mM arsenite stress, and the cell number of At. thiooxidans was higher than that in pure culture benefiting from the interaction with L. ferriphilum. The expression profile showed that the arsenic efflux system in the coculture was more active than that in pure culture, indicating that there is a synergetic interaction between At. thiooxidans A01 and L. ferriphilum YSK. In addition, a model was proposed to illustrate the interaction between arsenite and the ars operon in L. ferriphilum YSK and At. thiooxidans A01. This study will facilitate the effective application of coculture in the bioleaching process by taking advantage of strain-strain communication and coordination.

  11. Accumulation of heme oxygenase-1 (HSP32) in Xenopus laevis A6 kidney epithelial cells treated with sodium arsenite, cadmium chloride or proteasomal inhibitors.

    Science.gov (United States)

    Music, Ena; Khan, Saad; Khamis, Imran; Heikkila, John J

    2014-11-01

    The present study examined the effect of sodium arsenite, cadmium chloride, heat shock and the proteasomal inhibitors MG132, withaferin A and celastrol on heme oxygenase-1 (HO-1; also known as HSP32) accumulation in Xenopus laevis A6 kidney epithelial cells. Immunoblot analysis revealed that HO-1 accumulation was not induced by heat shock but was enhanced by sodium arsenite and cadmium chloride in a dose- and time-dependent fashion. Immunocytochemistry revealed that these metals induced HO-1 accumulation in a granular pattern primarily in the cytoplasm. Additionally, in 20% of the cells arsenite induced the formation of large HO-1-containing perinuclear structures. In cells recovering from sodium arsenite or cadmium chloride treatment, HO-1 accumulation initially increased to a maximum at 12h followed by a 50% reduction at 48 h. This initial increase in HO-1 levels was likely the result of new synthesis as it was inhibited by cycloheximide. Interestingly, treatment of cells with a mild heat shock enhanced HO-1 accumulation induced by low concentrations of sodium arsenite and cadmium chloride. Finally, we determined that HO-1 accumulation was induced in A6 cells by the proteasomal inhibitors, MG132, withaferin A and celastrol. An examination of heavy metal and proteasomal inhibitor-induced HO-1 accumulation in amphibians is of importance given the presence of toxic heavy metals in aquatic habitats. PMID:25064141

  12. Laboratory-evolved vanillyl-alcohol oxidase produces natural vanillin

    NARCIS (Netherlands)

    Heuvel, van den R.H.H.; Berg, van den W.A.M.; Rovida, S.; Berkel, van W.J.H.

    2004-01-01

    The flavoenzyme vanillyl-alcohol oxidase was subjected to random mutagenesis to generate mutants with enhanced reactivity to creosol (2-methoxy-4-methylphenol). The vanillyl-alcohol oxidase-mediated conversion of creosol proceeds via a two-step process in which the initially formed vanillyl alcohol

  13. Endothelins and NADPH oxidases in the cardiovascular system.

    Science.gov (United States)

    Dammanahalli, Karigowda J; Sun, Zhongjie

    2008-01-01

    1. The endothelin (ET) system and NADPH oxidase play important roles in the regulation of cardiovascular function, as well as in the pathogenesis of hypertension and other cardiovascular diseases. 2. Endothelins activate NADPH oxidases and thereby increase superoxide production, resulting in oxidative stress and cardiovascular dysfunction. Thus, NADPH oxidases may mediate the role of endothelins in some cardiovascular diseases. However, the role of reactive oxygen species (ROS) in mediating ET-induced vasoconstriction and cardiovascular disease remains under debate, as evidenced by conflicting reports from different research teams. Conversely, activation of NADPH oxidase can stimulate ET secretion via ROS generation, which further enhances the cardiovascular effects of NADPH oxidase. However, little is known about how ROS activate the endothelin system. It seems that the relationship between ET-1 and ROS may vary with cardiovascular disorders. 3. Endothelins activate NADPH oxidase via the ET receptor-proline-rich tyrosine kinase-2 (Pyk2)-Rac1 pathway. Rac1 is an important regulator of NADPH oxidase. There is ample evidence supporting direct stimulation by Rac1 of NADPH oxidase activity. In addition, Rac1-induced cardiomyocyte hypertrophy is mediated by the generation of ROS.

  14. Ascorbic acid and L-gulonolactone oxidase in lagomorphs.

    Science.gov (United States)

    Jenness, R; Birney, E C; Ayaz, K L

    1978-01-01

    1. The activity of L-gulonolactone oxidase (EC 1.1.3.8) in the liver of eastern cottontail rabbits (Sylvilagus floridanus) is about 10-fold greater in winter than in summer. 2. L-gulonolactone oxidase activity is low and tissue ascorbate high during all seasons in snowshoe hares (Lepus americanus). 3. Liver contents of ascorbate fall to low levels in L. americanus fed on rabbit chow in the laboratory. 4. The activity of L-gulonolactone oxidase in liver of Sylvilagus and Oryctolagus is depressed by feeding high levels of L-ascorbic acid. 5. The New Zealand White breed of domestic rabbit (Oryctolagus cuniculus) has considerably higher levels of L-gulonolactone oxidase and liver ascorbate than does the Dutch breed. 6. In a wild population of Oryctolagus sampled in Australia L-gulonolactone oxidase levels were intermediate between those of the two domestic breeds and more variable than either. PMID:318384

  15. Modulatory of effect of fresh Amaranthus caudatus and Amaranthus hybridus aqueous leaf extracts on detoxify enzymes and micronuclei formation after exposure to sodium arsenite.

    Science.gov (United States)

    Adewale, Adetutu; Olorunju, Awe Emmanuel

    2013-10-01

    Vegetables are the cheapest and most available sources of important proteins, minerals, vitamins, and essential amino protein. These vegetables are commonly used in Africa for the treatment of illness. This study evaluated the protective effects of Amaranthus caudatus and A. hybridus against sodium arsenite-induced toxicity in rats. The effects of sodium arsenite and/or the plant extracts were assessed using bone marrow micronucleus assay and by measuring the activities of tumour maker enzymes such as gamma glutamyl transferase (GGT) and alkaline phosphatase (ALP) in white albino Wister rats. The study showed that sodium arsenite significantly (P rats and were reverted back to near normal levels in rats pretreated with the plant extracts. A. caudatus and A. hybridus showed significant role in protecting the detoxifying enzymes; also, A. caudatus has a more protective effect on reducing the micronuclei formation when compared with A. hybridus. This study suggests that A. caudatus and A. hybridus possess anticarcinogenic effect. PMID:24174825

  16. Arsenite and its metabolites, MMAIII and DMAIII, modify CYP3A4, PXR and RXR alpha expression in the small intestine of CYP3A4 transgenic mice

    International Nuclear Information System (INIS)

    Arsenic is an environmental pollutant that has been associated with an increased risk for the development of cancer and several other diseases through alterations of cellular homeostasis and hepatic function. Cytochrome P450 (P450) modification may be one of the factors contributing to these disorders. Several reports have established that exposure to arsenite modifies P450 expression by decreasing or increasing mRNA and protein levels. Cytochrome P450 3A4 (CYP3A4), the predominant P450 expressed in the human liver and intestines, which is regulated mainly by the Pregnane X Receptor-Retinoid X Receptor alpha (PXR-RXR alpha) heterodimer, contributes to the metabolism of approximately half the drugs in clinical use today. The present study investigates the effect of sodium arsenite and its metabolites monomethylarsonous acid (MMAIII) and dimethylarsinous acid (DMAIII) on CYP3A4, PXR, and RXR alpha expression in the small intestine of CYP3A4 transgenic mice. Sodium arsenite treatment increases mRNA, protein and CYP3A4 activity in a dose-dependent manner. However, the increase in protein expression was not as marked as compared to the increase in mRNA levels. Arsenite treatment induces the accumulation of Ub-protein conjugates, indicating that the activation of this mechanism may explain the differences observed between the mRNA and protein expression of CYP3A4 induction. Treatment with 0.05 mg/kg of DMAIII induces CYP3A4 in a similar way, while treatment with 0.05 mg/kg of MMAIII increases mostly mRNA, and to a lesser degree, CYP3A4 activity. Sodium arsenite and both its metabolites increase PXR mRNA, while only DMAIII induces RXR alpha expression. Overall, these results suggest that sodium arsenite and its metabolites induce CYP3A4 expression by increasing PXR expression in the small intestine of CYP3A4 transgenic mice.

  17. Effects of exogenous glutathione on arsenic burden and NO metabolism in brain of mice exposed to arsenite through drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan [China Medical University, Department of Environmental and Occupational Health, School of Public Health, Heping District, Shenyang, Liaoning (China); Liaoning University of Traditional Chinese Medicine, Department of Public Health Management, School of Professional Technology, Shenyang, Liaoning (China); Zhao, Fenghong; Jin, Yaping; Zhong, Yuan; Yu, Xiaoyun; Li, Gexin; Lv, Xiuqiang; Sun, Guifan [China Medical University, Department of Environmental and Occupational Health, School of Public Health, Heping District, Shenyang, Liaoning (China)

    2011-03-15

    Chronic exposure to inorganic arsenic (iAs) is associated with neurotoxicity. Studies to date have disclosed that methylation of ingested iAs is the main metabolic pathway, and it is a process relying on reduced glutathione (GSH). The aim of this study was to explore the effects of exogenous GSH on arsenic burden and metabolism of nitric oxide (NO) in the brain of mice exposed to arsenite via drinking water. Mice were exposed to sodium arsenite through drinking water contaminated with 50 mg/L arsenic for 4 weeks and treated intraperitoneally with saline solution, 200 mg/kg body weight (b.w), 400 mg/kg b.w, or 800 mg/kg b.w GSH, respectively, at the 4th week. Levels of iAs, monomethylarsenic acid, and dimethylarsenic acid (DMAs) in the liver, blood, and brain were determined by method of hydride generation coupled with atomic absorption spectrophotometry. Activities of nitric oxide synthase (NOS) and contents of NO in the brain were determined by colorimetric method. Compared with mice exposed to arsenite alone, administration of GSH increased dose-dependently the primary and secondary methylation ratio in the liver, which caused the decrease in percent iAs and increase in percent DMAs in the liver, as a consequence, resulted in significant decrease in iAs levels in the blood and total arsenic levels in both blood and brain. NOS activities and NO levels in the brain of mice in iAs group were significantly lower than those in control; however, administration of GSH could increase significantly activities of NOS and contents of NO. Findings from this study suggested that exogenous GSH could promote both primary and secondary arsenic methylation capacity in the liver, which might facilitate excretion of arsenicals, and consequently reduce arsenic burden in both blood and brain and furthermore ameliorate the effects of arsenicals on NO metabolism in the brain. (orig.)

  18. Visualization of monoamine oxidase in human brain

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J.S.; Volkow, N.D.; Wang, G.J.; Pappas, N.; Shea, C.; MacGregor, R.R.; Logan, J.

    1996-12-31

    Monoamine oxidase is a flavin enzyme which exists in two subtypes, MAO A and MAO B. In human brain MAO B predominates and is largely compartmentalized in cell bodies of serotonergic neurons and glia. Regional distribution of MAO B was determined by positron computed tomography with volunteers after the administration of deuterium substituted [11C]L-deprenyl. The basal ganglia and thalamus exhibited the greatest concentrations of MAO B with intermediate levels in the frontal cortex and cingulate gyrus while lowest levels were observed in the parietal and temporal cortices and cerebellum. We observed that brain MAO B increases with are in health normal subjects, however the increases were generally smaller than those revealed with post-mortem studies.

  19. Glucose oxidase immobilization onto carbon nanotube networking

    CERN Document Server

    Karachevtsev, V A; Zarudnev, E S; Karachevtsev, M V; Leontiev, V S; Linnik, A S; Lytvyn, O S; Plokhotnichenko, A M; Stepanian, S G

    2012-01-01

    When elaborating the biosensor based on single-walled carbon nanotubes (SWNTs), it is necessary to solve such an important problem as the immobilization of a target biomolecule on the nanotube surface. In this work, the enzyme (glucose oxidase (GOX)) was immobilized on the surface of a nanotube network, which was created by the deposition of nanotubes from their solution in 1,2-dichlorobenzene by the spray method. 1-Pyrenebutanoic acid succinimide ester (PSE) was used to form the molecular interface, the bifunctional molecule of which provides the covalent binding with the enzyme shell, and its other part (pyrene) is adsorbed onto the nanotube surface. First, the usage of such a molecular interface leaves out the direct adsorption of the enzyme (in this case, its activity decreases) onto the nanotube surface, and, second, it ensures the enzyme localization near the nanotube. The comparison of the resonance Raman (RR) spectrum of pristine nanotubes with their spectrum in the PSE environment evidences the creat...

  20. Stability of spermine oxidase to thermal and chemical denaturation: comparison with bovine serum amine oxidase.

    Science.gov (United States)

    Cervelli, Manuela; Leonetti, Alessia; Cervoni, Laura; Ohkubo, Shinji; Xhani, Marla; Stano, Pasquale; Federico, Rodolfo; Polticelli, Fabio; Mariottini, Paolo; Agostinelli, Enzo

    2016-10-01

    Spermine oxidase (SMOX) is a flavin-containing enzyme that specifically oxidizes spermine to produce spermidine, 3-aminopropanaldehyde and hydrogen peroxide. While no crystal structure is available for any mammalian SMOX, X-ray crystallography showed that the yeast Fms1 polyamine oxidase has a dimeric structure. Based on this scenario, we have investigated the quaternary structure of the SMOX protein by native gel electrophoresis, which revealed a composite gel band pattern, suggesting the formation of protein complexes. All high-order protein complexes are sensitive to reducing conditions, showing that disulfide bonds were responsible for protein complexes formation. The major gel band other than the SMOX monomer is the covalent SMOX homodimer, which was disassembled by increasing the reducing conditions, while being resistant to other denaturing conditions. Homodimeric and monomeric SMOXs are catalytically active, as revealed after gel staining for enzymatic activity. An engineered SMOX mutant deprived of all but two cysteine residues was prepared and characterized experimentally, resulting in a monomeric species. High-sensitivity differential scanning calorimetry of SMOX was compared with that of bovine serum amine oxidase, to analyse their thermal stability. Furthermore, enzymatic activity assays and fluorescence spectroscopy were used to gain insight into the unfolding process. PMID:27295021

  1. An aquaporin PvTIP4;1 from Pteris vittata may mediate arsenite uptake.

    Science.gov (United States)

    He, Zhenyan; Yan, Huili; Chen, Yanshan; Shen, Hongling; Xu, Wenxiu; Zhang, Haiyan; Shi, Lei; Zhu, Yong-Guan; Ma, Mi

    2016-01-01

    The fern Pteris vittata is an arsenic hyperaccumulator. The genes involved in arsenite (As(III)) transport are not yet clear. Here, we describe the isolation and characterization of a new P. vittata aquaporin gene, PvTIP4;1, which may mediate As(III) uptake. PvTIP4;1 was identified from yeast functional complement cDNA library of P. vittata. Arsenic toxicity and accumulating activities of PvTIP4;1 were analyzed in Saccharomyces cerevisiae and Arabidopsis. Subcellular localization of PvTIP4;1-GFP fusion protein in P. vittata protoplast and callus was conducted. The tissue expression of PvTIP4;1 was investigated by quantitative real-time PCR. Site-directed mutagenesis of the PvTIP4;1 aromatic/arginine (Ar/R) domain was studied. Heterologous expression in yeast demonstrates that PvTIP4;1 was able to facilitate As(III) diffusion. Transgenic Arabidopsis showed that PvTIP4;1 increases arsenic accumulation and induces arsenic sensitivity. Images and FM4-64 staining suggest that PvTIP4;1 localizes to the plasma membrane in P. vittata cells. A tissue location study shows that PvTIP4;1 transcripts are mainly expressed in roots. Site-directed mutation in yeast further proved that the cysteine at the LE1 position of PvTIP4;1 Ar/R domain is a functional site. PvTIP4;1 is a new represented tonoplast intrinsic protein (TIP) aquaporin from P. vittata and the function and location results imply that PvTIP4;1 may be involved in As(III) uptake.

  2. Comparison of four extraction procedures to assess arsenate and arsenite species in contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Giral, Melanie [Department of Civil, Geological and Mining Engineering, Ecole Polytechnique de Montreal, P.O. Box 6079, Station Centre-Ville, Montreal, Quebec H3C 3A7 (Canada); Zagury, Gerald J., E-mail: gerald.zagury@polymtl.c [Department of Civil, Geological and Mining Engineering, Ecole Polytechnique de Montreal, P.O. Box 6079, Station Centre-Ville, Montreal, Quebec H3C 3A7 (Canada); Deschenes, Louise [The Interuniversity Research Centre for the Life Cycle of Products, Processes and Services (CIRAIG), Department of Chemical Engineering, Ecole Polytechnique de Montreal, P.O. Box 6079, Station Centre-Ville, Montreal, Quebec H3C 3A7 (Canada); Blouin, Jean-Pierre [Centre d' expertise en analyse environnementale du Quebec, Ministere de l' Environnement, du Developpement Durable et des Parcs, 850, boulevard Vanier, Laval, Quebec H7C 2M7 (Canada)

    2010-05-15

    Inorganic arsenic in soils poses an important environmental concern. Several studies reported an oxidation of arsenite to arsenate during its extraction from soils. The objectives of this study were to (1) identify, among published procedures, an extraction method which preserves the oxidation state of arsenic and (2) to assess the influence of soil physicochemical properties on the performance of these methods. Four extraction strategies were compared: 1) 10 M HCl, 2) 15% (v/v) H{sub 3}PO{sub 4}, 3) 10 mM phosphate + 0.5% (w/v) NaDDC, and, 4) 1 M H{sub 3}PO{sub 4} + 0.5 M ascorbic acid (C{sub 6}H{sub 8}O{sub 6}). Separation and analysis of As species was performed by HPLC-ICP/MS. Oxidation of As(III) into As(V) during extraction was more important in soils with high content of Mn oxides. Extraction of arsenic from soils with 1 M H{sub 3}PO{sub 4} + 0.5 M C{sub 6}H{sub 8}O{sub 6} under microwaves was the best strategy to extract the majority of As while minimizing conversion of As(III) into As(V). - Extraction of arsenic from soils with 1 M H{sub 3}PO{sub 4} + 0.5 M C{sub 6}H{sub 8}O{sub 6} under microwaves is a suitable method to extract the majority of As while minimizing conversion of As(III) into As(V).

  3. An aquaporin PvTIP4;1 from Pteris vittata may mediate arsenite uptake.

    Science.gov (United States)

    He, Zhenyan; Yan, Huili; Chen, Yanshan; Shen, Hongling; Xu, Wenxiu; Zhang, Haiyan; Shi, Lei; Zhu, Yong-Guan; Ma, Mi

    2016-01-01

    The fern Pteris vittata is an arsenic hyperaccumulator. The genes involved in arsenite (As(III)) transport are not yet clear. Here, we describe the isolation and characterization of a new P. vittata aquaporin gene, PvTIP4;1, which may mediate As(III) uptake. PvTIP4;1 was identified from yeast functional complement cDNA library of P. vittata. Arsenic toxicity and accumulating activities of PvTIP4;1 were analyzed in Saccharomyces cerevisiae and Arabidopsis. Subcellular localization of PvTIP4;1-GFP fusion protein in P. vittata protoplast and callus was conducted. The tissue expression of PvTIP4;1 was investigated by quantitative real-time PCR. Site-directed mutagenesis of the PvTIP4;1 aromatic/arginine (Ar/R) domain was studied. Heterologous expression in yeast demonstrates that PvTIP4;1 was able to facilitate As(III) diffusion. Transgenic Arabidopsis showed that PvTIP4;1 increases arsenic accumulation and induces arsenic sensitivity. Images and FM4-64 staining suggest that PvTIP4;1 localizes to the plasma membrane in P. vittata cells. A tissue location study shows that PvTIP4;1 transcripts are mainly expressed in roots. Site-directed mutation in yeast further proved that the cysteine at the LE1 position of PvTIP4;1 Ar/R domain is a functional site. PvTIP4;1 is a new represented tonoplast intrinsic protein (TIP) aquaporin from P. vittata and the function and location results imply that PvTIP4;1 may be involved in As(III) uptake. PMID:26372374

  4. Arsenite Removal from Simulated Groundwater by Biogenic Schwertmannite: A Column Trial

    Institute of Scientific and Technical Information of China (English)

    XIE Yue; ZHOU Li-Xiang

    2013-01-01

    To assess the feasibility of biogenic schwertmannite to act as a sorbent for removing arsenite from groundwater,a series of biogenic schwertmannite-packed column adsorption experiments were conducted on simulated As(Ⅲ)-containing groundwater.Empty bed contact time (EBCT),As(Ⅲ) concentration in effluent,and the removal efficiency of As(Ⅲ) through the column were investigated at pH 8.0 and temperature 25 ± 0.5 ℃.The results showed that the breakthrough curves were mainly dependent on EBCT values when the influent As(Ⅲ) concentration was 500 μg L-1 and the optimum EBCT was 4.0 min.When the effluent As(Ⅲ) concentration reached 10 and 50 μg L-1,the breakthrough volumes for the schwertmannite adsorption column were 4200 and 5600 bed volume (BV),with As(Ⅲ) adsorption capacity of 2.1 and 2.8 mg g-1,respectively.Biogenic schwertmannite could be regenerated by 1.0 mol L-1 NaOH solution,and more than 80% of As(Ⅲ) adsorbed on the surface of schwertmannite could be released after 3 successive regenerations.The breakthrough volume for the regenerated schwertmannite-packed column still maintained 4 000-4 200 BV when the As(Ⅲ) concentration in effluent was below 10 μg L-1.Compared with other sorbents for As(Ⅲ) removal,the biogenic schwertmannitepacked column had a higher breakthrough volume and a much higher adsorption capacity,implying that biogenic schwertmannite was a highly efficient and potential sorbent to purify As(Ⅲ)-contaminated groundwater.

  5. Sodium Arsenite Caused Mineralization Impairment in Rat Bone Marrow Mesenchymal Stem Cells Differentiating to Osteoblasts

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Abnosi

    2012-05-01

    Full Text Available Background: Sodium arsenite (SA recently has been recommended to be used in malignancy therapy. Our studies showed, SA in short and long period of treatment caused reduction of rats Bone Marrow Mesenchymal Stem Cells (MSCs viability and induced caspase dependent apoptosis. The aim of this study was to investigate the effect of SA on osteogenic differentiation of MSCs. Methods: MSCs were extracted and expanded to third passage, then cultured in DMEM supplemented with osteogenic media in presence of 1 and 25nM of SA for 21 days. The viability and the level of mineralization were determined using MTT assay and alizarin red respectively. In addition morphology and nuclear diameter of the cells were studied with the help of fluorescent dye. Furthermore, calcium content and alkalinphosphatase activity also were estimated using commercial kit. Data was statistically analyzed and the P<0.05 was taken as the level of significant. Results: The viability and mineralization of the cells treated with SA reduced significantly (P<0.05 after tenth day in compare with control. Also, chromatin condensation, reduction of nuclei diameter and cytoplasm shrinkage were observed in the cell treated with 1 and 25 nM concentrations. The calcium and alkalinphosphatase activity of the cells decreased significantly with 1 and 25 nM concentrations of SA when compared with control. Conclusion: Adverse effect of SA was observed on osteogenic differentiation of MSCs at 1 and 25 nM due to disruption of mineralization. We strongly suggest more investigation to be run on this chemical with respect to the therapy of the malignant patients.

  6. Quantitative detection of nitric oxide (NO) in apoptosis of esophagealcarcinoma cell induced by arsenite

    Institute of Scientific and Technical Information of China (English)

    Zhong Ying Shen; Wen Ying Shen; Ming Hua Chen; Chao Qun Hong; Jian Shen

    2000-01-01

    AIM To determine NO, NO synthase (NOS) and NOSmRNA of the esophageal carcinoma cells (SHEEC1)in apoptotic process induced by As2O3 and to explore the relationship between NO and apoptosis.METHODS The apoptosis of the cell line (SHEEC1) was induced by arsenite (As2O3, 5 μmol/L and10 μmol/L). In the process, at 2 h, 4 h, 8 h, 16 h and 24 h after administration of As2O3, NO production incultural medium was detected quantitatively by spectrophotometry; NOS Ⅱ was detected byimmunohistochemistry and NOS mRNA by in situ hybridization (ISH). The cells at endpoint of theexperiment were examined under transmitted electron microscope (TEM) for apoptosis.RESULTS The amount of NO released from SHEEC1 were increased from the basal condition (0.68×10-2μmol/L) up to the high level (2.38×10-2μmol/L) at h 16. The increment of NOS Ⅱ was found afteradministration of As2O3; the intracytoplasmic ISH signals of NOSmRNA in small size was found firstly at4 h, and then became highly predominant. Apoptotic changes of SHEEC1 occurred at 24 h under TEM.CONCLUSION After administration of As2O3, NO released from cultured SHEEC1 cells was detected withincreasing amount up to 16 h. The expression of NOS H and transcription of NOSmRNA are upregulated.The present findings suggest a concept that the NO may be a mediated and effective factor in apoptosisinduced by As2O3,

  7. Arsenite tolerance is related to proportional thiolic metabolite synthesis in rice (Oryza sativa L.).

    Science.gov (United States)

    Dave, Richa; Singh, Pradyumna Kumar; Tripathi, Preeti; Shri, Manju; Dixit, Garima; Dwivedi, Sanjay; Chakrabarty, Debasis; Trivedi, Prabodh Kumar; Sharma, Yogesh Kumar; Dhankher, Om Prakash; Corpas, Francisco Javier; Barroso, Juan B; Tripathi, Rudra Deo

    2013-02-01

    Thiol metabolism is the primary detoxification strategy by which rice plants tolerate arsenic (As) stress. In light of this, it is important to understand the importance of harmonised thiol metabolism with As accumulation and tolerance in rice plant. For this aim, tolerant (T) and sensitive (S) genotypes were screened from 303 rice (Oryza sativa) genotypes on exposure to 10 and 25 μM arsenite (As(III)) in hydroponic culture. On further As accumulation estimation, contrasting (13-fold difference) T (IC-340072) and S (IC-115730) genotypes were selected. This difference was further evaluated using biochemical and molecular approaches to understand involvement of thiolic metabolism vis-a-vis As accumulation in these two genotypes. Various phytochelatin (PC) species (PC(2), PC(3) and PC(4)) were detected in both the genotypes with a dominance of PC(3). However, PC concentrations were greater in the S genotype, and it was noticed that the total PC (PC(2) + PC(3 )+ PC(4))-to-As(III) molar ratio (PC-SH:As(III)) was greater in T (2.35 and 1.36 in shoots and roots, respectively) than in the S genotype (0.90 and 0.15 in shoots and roots, respectively). Expression analysis of several metal(loid) stress-related genes showed significant upregulation of glutaredoxin, sulphate transporter, and ascorbate peroxidase in the S genotype. Furthermore, enzyme activity of phytochelatin synthase and cysteine synthase was greater on As accumulation in the S compared with the T genotype. It was concluded that the T genotype synthesizes adequate thiols to detoxify metalloid load, whereas the S genotype synthesizes greater but inadequate levels of thiols to tolerate an exceedingly greater load of metalloids, as evidenced by thiol-to-metalloid molar ratios, and therefore shows a phytotoxicity response.

  8. Synergism between arsenite and proteasome inhibitor MG132 over cell death in myeloid leukaemic cells U937 and the induction of low levels of intracellular superoxide anion

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, Tomás [Laboratorio de Immunotoxicologia (LaITO), IDEHU-CONICET, Hospital de Clínicas, José de San Martín, Universidad de Buenos Aires (UBA), Buenos Aires (Argentina); Cavaliere, Victoria; Costantino, Susana N. [Laboratorio de Inmunología Tumoral (LIT), IDEHU-CONICET, Facultad de Farmacia y Bioquímica, UBA, Buenos Aires (Argentina); Kornblihtt, Laura [Servicio de Hematología, Hospital de Clínicas, José de San Martín (UBA), Buenos Aires (Argentina); Alvarez, Elida M. [Laboratorio de Inmunología Tumoral (LIT), IDEHU-CONICET, Facultad de Farmacia y Bioquímica, UBA, Buenos Aires (Argentina); Blanco, Guillermo A., E-mail: gblanco@ffyb.uba.ar [Laboratorio de Immunotoxicologia (LaITO), IDEHU-CONICET, Hospital de Clínicas, José de San Martín, Universidad de Buenos Aires (UBA), Buenos Aires (Argentina)

    2012-02-01

    Increased oxygen species production has often been cited as a mechanism determining synergism on cell death and growth inhibition effects of arsenic-combined drugs. However the net effect of drug combination may not be easily anticipated solely from available knowledge of drug-induced death mechanisms. We evaluated the combined effect of sodium arsenite with the proteasome inhibitor MG132, and the anti-leukaemic agent CAPE, on growth-inhibition and cell death effect in acute myeloid leukaemic cells U937 and Burkitt's lymphoma-derived Raji cells, by the Chou–Talalay method. In addition we explored the association of cytotoxic effect of drugs with changes in intracellular superoxide anion (O{sub 2}{sup −}) levels. Our results showed that combined arsenite + MG132 produced low levels of O{sub 2}{sup −} at 6 h and 24 h after exposure and were synergic on cell death induction in U937 cells over the whole dose range, although the combination was antagonistic on growth inhibition effect. Exposure to a constant non-cytotoxic dose of 80 μM hydrogen peroxide together with arsenite + MG132 changed synergism on cell death to antagonism at all effect levels while increasing O{sub 2}{sup −} levels. Arsenite + hydrogen peroxide also resulted in antagonism with increased O{sub 2}{sup −} levels in U937 cells. In Raji cells, arsenite + MG132 also produced low levels of O{sub 2}{sup −} at 6 h and 24 h but resulted in antagonism on cell death and growth inhibition. By contrast, the combination arsenite + CAPE showed high levels of O{sub 2}{sup −} production at 6 h and 24 h post exposure but resulted in antagonism over cell death and growth inhibition effects in U937 and Raji cells. We conclude that synergism between arsenite and MG132 in U937 cells is negatively associated to O{sub 2}{sup −} levels at early time points after exposure. -- Highlights: ► Arsenic combined cytotoxic and anti-proliferative effects by Chou–Talalay method. ► Cytotoxic effect

  9. Combined effects of fluoride and arsenite on the expression of Runx-related transcription 2 mRNA in bone of rats

    Institute of Scientific and Technical Information of China (English)

    郑冲

    2014-01-01

    Objective To explore the combined effects of fluoride and arsenite on the expression of Runx-related transcription 2(Runx2)mRNA in bone of Sprague Dawley(SD)rats.Methods Fifty four SD rats were selected[body mass(109.71±10.52)g,half male and half female].3×3 Factorial experimental design was used to evaluate the combined effects of fluoride and arsenite on the expression of Runx2 mRNA by random number table.

  10. The molecular pathway of low concentration of sodium arsenite in inducing differentiation of liver cancer stem cells by down-regulating promyelocytic leukemia protein expression

    Directory of Open Access Journals (Sweden)

    Shi-long JIN

    2016-01-01

    Full Text Available Objective  To study the molecular pathway of low concentration of sodium arsenite in inducing differentiation of liver cancer stem cells. Methods  Western blotting analysis, immunofluorescence assay and quantitative PCR were used to examine the gene and protein expression of promyelocytic leukemia (PML, Oct4 and Sox2 in HCC tissue and cell lines, and the molecule pathway of low concentration of sodium arsenite inducing differentiation of liver cancer stem cells was confirmed by comparing the changes in the gene and protein expression of PML,Oct4 and Sox2 in HCC cells and biological function of LCSCs after the treatment with low concentration of sodium arsenite. Results  0.5μg/ml of sodium arsenite was shown to alter the biological characteristics of LCSCs in HuH7 and primary HCC cells, including the ability to form tumor spheres, resistance to pirarubicin (P<0.01, and the capability of forming tumors after allogeneic transplantation (P<0.05. Both HCC cells and tissues expressed the gene and protein of PML,Oct4 and Sox2, and 0.5μg/ml of sodium arsenite not only downregulated the gene and protein expression of Oct4 (P<0.05 and Sox2 in HCC cells (P<0.05, but also downregulated the protein expression of PML (P<0.05. In contrast, sodium arsenite did not inhibit the gene expression of PML in Hep3B, HepG2, SMCC-7721, HuH7 and primary HCC cells. Furthermore, through down-regulated PML protein expression with arsenite, the biological characteristics of HuH7 and primary HCC cells containing LCSCs was simultaneously altered, and the expression of stem gene Oct4 and Sox2 was downregulated (P<0.05, while HCC cells proliferation was inhibited as well. Conclusions  Both HCC tissues and cells can express the PML gene and PML protein. Low concentrations of sodium arsenite would directly bind to PML protein in HCC cells, resulting in degradation of the PML protein, followed by collapse of PML-NBs, inhibition of transcription of the proliferation

  11. Feedback regulations of miR-21 and MAPKs via Pdcd4 and Spry1 are involved in arsenite-induced cell malignant transformation.

    Directory of Open Access Journals (Sweden)

    Lu Shen

    Full Text Available OBJECTIVE: To establish the functions of miR-21 and the roles of two feedback regulation loops, miR-21-Spry1-ERK/NF-κB and miR-21-Pdcd4-JNK/c-Jun, in arsenite-transformed human embryo lung fibroblast (HELF cells. METHODS: For arsenite-transformed HELF cells, apoptosis, clonogenicity, and capacity for migration were determined by Hoechst staining, assessment of their capacity for anchorage-independent growth, and wound-healing, respectively, after blockage, with inhibitors or with siRNAs, of signal pathways for JNK/c-Jun or ERK/NF-κB. Decreases of miR-21 levels were determined with anti-miR-21, and the up-regulation of Pdcd4 and Spry1 was assessed in transfected cells; these cells were molecularly characterized by RT-PCR, qRT-PCR, Western blots, and immunofluorescence assays. RESULTS: MiR-21 was highly expressed in arsenite-transformed HELF cells and normal HELF cells acutely treated with arsenite, an effect that was concomitant with activation of JNK/c-Jun and ERK/NF-κB and down-regulation of Pdcd4 and Spry1 protein levels. However, there were no significant changes in mRNA levels for Pdcd4 and Spry1, which suggested that miR-21 regulates the expressions of Pdcd4 and Spry1 through translational repression. In arsenite-transformed HELF cells, blockages of JNK/c-Jun or ERK/NF-κB with inhibitors or with siRNAs prevented the increases of miR-21and the decreases of the protein levels but not the mRNA levels of Pdcd4 and Spry1. Down-regulation of miR-21 and up-regulations of Pdcd44 or Spry1 blocked the arsenite-induced activations of JNK/c-Jun or ERK/NF-κB, indicating that knockdown of miR-21 inhibits feedback of ERK activation and JNK activation via increases of Pdcd4 and Spry1 protein levels, respectively. Moreover, in arsenite-transformed HELF cells, inhibition of miR-21 promoted cell apoptosis, inhibited clonogenicity, and reduced migration. CONCLUSION: The results indicate that miR-21 is both a target and a regulator of ERK/NF-κB and JNK

  12. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite.

    OpenAIRE

    Keyse, S M; Tyrrell, R M

    1989-01-01

    We have shown that UVA (320-380 nm) radiation, hydrogen peroxide, and sodium arsenite induce a stress protein of approximately 32 kDa in human skin fibroblasts. The synthesis and cloning of cDNA from arsenite-induced mRNA populations have now allowed us to unequivocally identify the 32-kDa protein as heme oxygenase. By mRNA analysis we have shown that the heme oxygenase gene is also induced in cultured human skin fibroblasts by UVA radiation, hydrogen peroxide, cadmium chloride, iodoacetamide...

  13. Synergism between arsenite and proteasome inhibitor MG132 over cell death in myeloid leukaemic cells U937 and the induction of low levels of intracellular superoxide anion

    International Nuclear Information System (INIS)

    Increased oxygen species production has often been cited as a mechanism determining synergism on cell death and growth inhibition effects of arsenic-combined drugs. However the net effect of drug combination may not be easily anticipated solely from available knowledge of drug-induced death mechanisms. We evaluated the combined effect of sodium arsenite with the proteasome inhibitor MG132, and the anti-leukaemic agent CAPE, on growth-inhibition and cell death effect in acute myeloid leukaemic cells U937 and Burkitt's lymphoma-derived Raji cells, by the Chou–Talalay method. In addition we explored the association of cytotoxic effect of drugs with changes in intracellular superoxide anion (O2−) levels. Our results showed that combined arsenite + MG132 produced low levels of O2− at 6 h and 24 h after exposure and were synergic on cell death induction in U937 cells over the whole dose range, although the combination was antagonistic on growth inhibition effect. Exposure to a constant non-cytotoxic dose of 80 μM hydrogen peroxide together with arsenite + MG132 changed synergism on cell death to antagonism at all effect levels while increasing O2− levels. Arsenite + hydrogen peroxide also resulted in antagonism with increased O2− levels in U937 cells. In Raji cells, arsenite + MG132 also produced low levels of O2− at 6 h and 24 h but resulted in antagonism on cell death and growth inhibition. By contrast, the combination arsenite + CAPE showed high levels of O2− production at 6 h and 24 h post exposure but resulted in antagonism over cell death and growth inhibition effects in U937 and Raji cells. We conclude that synergism between arsenite and MG132 in U937 cells is negatively associated to O2− levels at early time points after exposure. -- Highlights: ► Arsenic combined cytotoxic and anti-proliferative effects by Chou–Talalay method. ► Cytotoxic effect associated with superoxide levels as assessed by flow cytometry. ► Synergism between arsenite

  14. Sodium arsenite accelerates TRAIL-mediated apoptosis in melanoma cells through upregulation of TRAIL-R1/R2 surface levels and downregulation of cFLIP expression

    OpenAIRE

    Ivanov, Vladimir N.; Hei, Tom K.

    2006-01-01

    AP-1/cJun, NF-κB and STAT3 transcription factors control expression of numerous genes, which regulate critical cell functions including proliferation, survival and apoptosis. Sodium arsenite is known to suppress both the IKK-NF-κB and JAK2-STAT3 signaling pathways and to activate the MAPK/JNK-cJun pathways, thereby committing some cancers to undergo apoptosis. Indeed, sodium arsenite is an effective drug for the treatment of acute promyelocytic leukemia with little nonspecific toxicity. Malig...

  15. Some properties of active and latent catechol oxidase of mushroom

    OpenAIRE

    Janusz Czapski

    2013-01-01

    Latent form of mushroom catechol oxidase was activated by O,1% sodium dodecyl sulfate (SDS). Catalytic power of the latent form, calculated from the kinetic parameters was 1,8 times higher than that of active one. Salicyl hydroxamic acid (SHAM) appeared as a powerful inhibitor for both active and latent forms of catechol oxidase. However, in the range of 150-250 μM SHAM the inhibitory effect for active catechol oxidase was significantly higher than that for the latent one. Non-competitive an...

  16. Multilayered polyelectrolyte microcapsules: interaction with the enzyme cytochrome C oxidase.

    Directory of Open Access Journals (Sweden)

    Laura Pastorino

    Full Text Available Cell-sized polyelectrolyte capsules functionalized with a redox-driven proton pump protein were assembled for the first time. The interaction of polyelectrolyte microcapsules, fabricated by electrostatic layer-by-layer assembly, with cytochrome c oxidase molecules was investigated. We found that the cytochrome c oxidase retained its functionality, that the functionalized microcapsules interacting with cytochrome c oxidase were permeable and that the permeability characteristics of the microcapsule shell depend on the shell components. This work provides a significant input towards the fabrication of an integrated device made of biological components and based on specific biomolecular functions and properties.

  17. No effect of plant growth retarding compounds and growth stimulators on indolo-3-acetic acid oxidase activity in greening cucumber cotyledons

    Directory of Open Access Journals (Sweden)

    J. S. Knypl

    2015-05-01

    Full Text Available Cotyledons dissected from 5-day-old etiolated cucumber seedlings were incubated in solutions on AMO-1618, B-Nine, CCC and Phosfon D for 48 h in light. In some tests the retardants were applied in mixed solutions with GA3 or BAP. IAA oxidase was extracted and purified by means of molecular sieving through a bed of Sephadex G-25. The retardants inhibited chlorophyll synthesis by 50 % or more, and had essentially no effect on IAA oxidase activity per cotyledon basis. GA3 and BAP also had no effect on enzyme activity in spite of a fact that the compounds stimulated growth of the cotyledons. The crude enzyme extract from B-Nine treated cotyledons showed lower IAA oxidase activity in comparison with the water treated control, the effect being due to a longer lag-phase preceding the initiation of IAA oxidation. KNO3 strikingly stimulated expansional growth of the cotyledons, the effect being correlated with the accelerated chlorophyll accumulation. KNO3 had no effect on IAA oxidase activity per cotyledon and decreased it per gram fr wt. It is concluded that [1] the growth rate of cucumber cotyledons is not correlated with IAA oxidase activity, and ;[2] the growth retarding compounds do not affect IAA oxidase system is this tissue.

  18. Electrical communication between glucose oxidase and different ferrocenylalkanethiol chain lengths

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, S.; Bar, G.; Cutts, R.W.; Zawodzinski, T.A. Jr. [Los Alamos National Lab., NM (United States); Chow, J.T.; Ferraris, J.P. [Univ. of Texas, Richardson, TX (United States). Dept. of Chemistry

    1995-12-31

    We describe the factors affecting the electron transfer process between the different components of a self-assembled mixed monolayer. The system is comprised of mixed monolayers containing aminoalkanethiols (AMATs) and ferrocenylakanethiols (FATs) of variable chain lengths. We study the effects of different ratio of the two mixed monolayer components on the permeability of the monolayer toward a Ru(NH{sub 3}{sub 6}Cl{sub 3} redox probe. In order to study the electrical communication between the enzyme and the mediator molecules, the enzyme glucose oxidase (GOx) was attached to the AMAT sites to create a biosensor device. The relative efficiency of a biosensor of each chain-length combination of FAT and AMAT was examined. In light of this comparison, we consider the critical factors for efficient electron transfer between the ferrocene mediator and the GOx redox active site immobilized as part of the surface-confined system. We find that the biosensor response is greatest when the enzyme and the FATs are attached to the surface with different alkane chain lengths. We also find strong evidence for the existence of domains of FAT and AMAT in the mixed monolayer system.

  19. Stress-induced Start Codon Fidelity Regulates Arsenite-inducible Regulatory Particle-associated Protein (AIRAP) Translation*

    Science.gov (United States)

    Zach, Lolita; Braunstein, Ilana; Stanhill, Ariel

    2014-01-01

    Initial steps in protein synthesis are highly regulated processes as they define the reading frame of the translation machinery. Eukaryotic translation initiation is a process facilitated by numerous factors (eIFs), aimed to form a “scanning” mechanism toward the initiation codon. Translation initiation of the main open reading frame (ORF) in an mRNA transcript has been reported to be regulated by upstream open reading frames (uORFs) in a manner of re-initiation. This mode of regulation is governed by the phosphorylation status of eIF2α and controlled by cellular stresses. Another mode of translational initiation regulation is leaky scanning, and this regulatory process has not been extensively studied. We have identified arsenite-inducible regulatory particle-associated protein (AIRAP) transcript to be translationally induced during arsenite stress conditions. AIRAP transcript contains a single uORF in a poor-kozak context. AIRAP translation induction is governed by means of leaky scanning and not re-initiation. This induction of AIRAP is solely dependent on eIF1 and the uORF kozak context. We show that eIF1 is phosphorylated under specific conditions that induce protein misfolding and have biochemically characterized this site of phosphorylation. Our data indicate that leaky scanning like re-initiation is responsive to stress conditions and that leaky scanning can induce ORF translation by bypassing poor kozak context of a single uORF transcript. PMID:24898249

  20. Beyond brown: Polyphenol oxidases as enzymes of plant specialized metabolism

    Directory of Open Access Journals (Sweden)

    Michael L Sullivan

    2015-01-01

    Full Text Available Most cloned and/or characterized plant polyphenol oxidases (PPOs have catechol oxidase activity (i.e. they oxidize o-diphenols to o-quinones and are localized or predicted to be localized to plastids. As a class, they have broad substrate specificity and are associated with browning of produce and other plant materials. Because PPOs are often induced by wounding or pathogen attack, they are most generally believed to play important roles in plant defense responses. However, a few well-characterized PPOs appear to have very specific roles in the biosynthesis of specialized metabolites via both tyrosinase (monophenol oxidase and catechol oxidase activities. Here we detail a few examples of these and explore the possibility that there may be many more biosynthetic PPOs.

  1. Sodium meta-arsenite prevents the development of autoimmune diabetes in NOD mice

    International Nuclear Information System (INIS)

    Sodium meta-arsenite (SA) is an orally available arsenic compound. We investigated the effects of SA on the development of autoimmune type 1 diabetes. Female non-obese diabetic (NOD) mice were orally intubated with SA (5 mg/kg/day) from 8 weeks of age for 8 weeks. The cumulative incidence of diabetes was monitored until 30 weeks of age, islet histology was examined, and lymphocytes including T cells, B cells, CD4+ IFN-γ+ cells, CD8+ IFN-γ+ cells, CD4+ IL-4+ cells, and regulatory T cells were analyzed. We also investigated the diabetogenic ability of splenocytes using an adoptive transfer model and the effect of SA on the proliferation, activation, and expression of glucose transporter 1 (Glut1) in splenocytes treated with SA in vitro and splenocytes isolated from SA-treated mice. SA treatment decreased the incidence of diabetes and delayed disease onset. SA treatment reduced the infiltration of immunocytes in islets, and splenocytes from SA-treated mice showed a reduced ability to transfer diabetes. The number of total splenocytes and T cells and both the number and the proportion of CD4+ IFN-γ+ and CD8+ IFN-γ+ T cells in the spleen were significantly reduced in SA-treated NOD mice compared with controls. The number, but not the proportion, of regulatory T cells was decreased in SA-treated NOD mice. Treatment with SA either in vitro or in vivo inhibited proliferation of splenocytes. In addition, the expression of Glut1 and phosphorylated ERK1/2 was decreased by SA treatment. These results suggest that SA reduces proliferation and activation of T cells, thus preventing autoimmune diabetes in NOD mice. - Highlights: • SA prevents the development of diabetes and delays the age of onset in NOD mice. • SA decreases the number but not the proportion of T lymphocytes in NOD mice. • SA reduces IFN-γ-producing T lymphocytes in NOD mice. • SA reduces proliferation and activation of T lymphocytes in vitro and in vivo. • SA reduces the expression of glucose

  2. Sodium meta-arsenite prevents the development of autoimmune diabetes in NOD mice

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.S.; Kim, D.; Lee, E.K. [Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840 (Korea, Republic of); Kim, S. [Komipharm International Co. Ltd., 3188, Seongnam-dong, Jungwon-gu, Seongnam-si, Gyeonggi-do 462-827 (Korea, Republic of); Choi, C.S. [Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840 (Korea, Republic of); Endocrinology, Internal Medicine, Gachon University Gil Medical Center, 1198 Guwol-Dong, Namdong-Gu, Incheon 405-760 (Korea, Republic of); Gachon Medical Research Institute, Gil Hospital, 1198 Guwol-Dong, Namdong-Gu, Incheon 405-760 (Korea, Republic of); Jun, H.S., E-mail: hsjun@gachon.ac.kr [Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840 (Korea, Republic of); College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840 (Korea, Republic of); Gachon Medical Research Institute, Gil Hospital, 1198 Guwol-Dong, Namdong-Gu, Incheon 405-760 (Korea, Republic of)

    2015-04-15

    Sodium meta-arsenite (SA) is an orally available arsenic compound. We investigated the effects of SA on the development of autoimmune type 1 diabetes. Female non-obese diabetic (NOD) mice were orally intubated with SA (5 mg/kg/day) from 8 weeks of age for 8 weeks. The cumulative incidence of diabetes was monitored until 30 weeks of age, islet histology was examined, and lymphocytes including T cells, B cells, CD4+ IFN-γ+ cells, CD8+ IFN-γ+ cells, CD4+ IL-4+ cells, and regulatory T cells were analyzed. We also investigated the diabetogenic ability of splenocytes using an adoptive transfer model and the effect of SA on the proliferation, activation, and expression of glucose transporter 1 (Glut1) in splenocytes treated with SA in vitro and splenocytes isolated from SA-treated mice. SA treatment decreased the incidence of diabetes and delayed disease onset. SA treatment reduced the infiltration of immunocytes in islets, and splenocytes from SA-treated mice showed a reduced ability to transfer diabetes. The number of total splenocytes and T cells and both the number and the proportion of CD4+ IFN-γ+ and CD8+ IFN-γ+ T cells in the spleen were significantly reduced in SA-treated NOD mice compared with controls. The number, but not the proportion, of regulatory T cells was decreased in SA-treated NOD mice. Treatment with SA either in vitro or in vivo inhibited proliferation of splenocytes. In addition, the expression of Glut1 and phosphorylated ERK1/2 was decreased by SA treatment. These results suggest that SA reduces proliferation and activation of T cells, thus preventing autoimmune diabetes in NOD mice. - Highlights: • SA prevents the development of diabetes and delays the age of onset in NOD mice. • SA decreases the number but not the proportion of T lymphocytes in NOD mice. • SA reduces IFN-γ-producing T lymphocytes in NOD mice. • SA reduces proliferation and activation of T lymphocytes in vitro and in vivo. • SA reduces the expression of glucose

  3. Modulatory of effect of fresh Amaranthus caudatus and Amaranthus hybridus aqueous leaf extracts on detoxify enzymes and micronuclei formation after exposure to sodium arsenite

    Directory of Open Access Journals (Sweden)

    Adetutu Adewale

    2013-01-01

    Full Text Available Vegetables are the cheapest and most available sources of important proteins, minerals, vitamins, and essential amino protein. These vegetables are commonly used in Africa for the treatment of illness. This study evaluated the protective effects of Amaranthus caudatus and A. hybridus against sodium arsenite-induced toxicity in rats. The effects of sodium arsenite and/or the plant extracts were assessed using bone marrow micronucleus assay and by measuring the activities of tumour maker enzymes such as gamma glutamyl transferase (GGT and alkaline phosphatase (ALP in white albino Wister rats. The study showed that sodium arsenite significantly (P < 0.05 induced the formation of micronucleated polychromatic erythrocytes and the activities of ALP and GGT when compared with control. The levels of white blood cell, hemoglobin, and lymphocyte count were altered in sodium arsenite fed rats and were reverted back to near normal levels in rats pretreated with the plant extracts. A. caudatus and A. hybridus showed significant role in protecting the detoxifying enzymes; also, A. caudatus has a more protective effect on reducing the micronuclei formation when compared with A. hybridus. This study suggests that A. caudatus and A. hybridus possess anticarcinogenic effect.

  4. Ribosomal protein S7 regulates arsenite-induced GADD45α expression by attenuating MDM2-mediated GADD45α ubiquitination and degradation.

    Science.gov (United States)

    Gao, Ming; Li, Xiaoguang; Dong, Wen; Jin, Rui; Ma, Hanghang; Yang, Pingxun; Hu, Meiru; Li, Yi; Hao, Yi; Yuan, Shengtao; Huang, Junjian; Song, Lun

    2013-05-01

    The stress-responding protein, GADD45α, plays important roles in cell cycle checkpoint, DNA repair and apoptosis. In our recent study, we demonstrate that GADD45α undergoes a dynamic ubiquitination and degradation in vivo, which process can be blocked by the cytotoxic reagent, arsenite, resulting in GADD45α accumulation to activate JNKs cell death pathway, thereby revealing a novel mechanism for the cellular GADD45α functional regulation. But the factors involved in GADD45α stability modulations are unidentified. Here, we demonstrated that MDM2 was an E3 ubiquitin ligase for GADD45α. One of MDM2-binding partner, ribosomal protein S7, interacted with and stabilized GADD45α through preventing the ubiquitination and degradation of GADD45α mediated by MDM2. This novel function of S7 is unrelated to p53 but seems to depend on S7/MDM2 interaction, for the S7 mutant lacking MDM2-binding ability lost its function to stabilize GADD45α. Further investigations indicated that arsenite treatment enhanced S7-MDM2 interaction, resulting in attenuation of MDM2-dependent GADD45α ubiquitination and degradation, thereby leading to GADD45α-dependent cell death pathway activation. Silencing S7 expression suppressed GADD45α-dependent cytotoxicity induced by arsenite. Our findings thus identify a novel function of S7 in control of GADD45α stabilization under both basal and stress conditions and its significance in mediating arsenite-induced cellular stress.

  5. The advances in molecular mechanisms of arsenite-induced autophagy%砷诱导细胞自噬的分子机制研究进展

    Institute of Scientific and Technical Information of China (English)

    李小娜; 时小燕

    2015-01-01

    Arsenite , as a type of metal element , has a dual role to humans . Long‐term and chronic exposure to arsenite is associated with a series of diseases . In addition , Arsenite has obviously curative effects on treating not only acute myelocytic leukemia , but also many other solid tumors . Recently , many researches have showed that autophagy occurs in tumor formation and therapies by arsenite . Therefore , it is necessary to review the advance in the molecular mechanism of arsenite‐induced autophagy .%砷是一种类金属元素,对人体具有双重作用。人群长期慢性砷暴露可导致一系列疾病。此外,砷化合物不仅对急性早幼粒细胞白血病具有明显疗效,其抗癌效应也在许多实体肿瘤治疗中体现。近期研究表明,砷暴露和砷治疗肿瘤过程中均有自噬发生。因此,回顾砷诱导细胞自噬分子机制的研究进展,为砷暴露致癌及其疾病治疗的研究提供线索。

  6. Evidence for a Role of p38 Kinase in Hypoxia-inducible Factor 1-independent Induction of Vascular Endothelial Growth Factor Expression by Sodium Arsenite

    NARCIS (Netherlands)

    Duyndam, M.C.A.; Hulscher, S.T.M.; Wall, E. van der; Pinedo, H.M.; Boven, E.

    2002-01-01

    Recently we have demonstrated that sodium arsenite induces the expression of hypoxia-inducible factor 1α (HIF-1α) protein and vascular endothelial growth factor (VEGF) in OVCAR-3 human ovarian cancer cells. We now show that arsenic trioxide, an experimental anticancer drug, exerts the same effects.

  7. Characterization of the arsenite oxidizer Aliihoeflea sp. strain 2WW and its potential application in the removal of arsenic from groundwater in combination with Pf-ferritin

    NARCIS (Netherlands)

    A. Corsini; M. Colombo; G. Muyzer; L. Cavalca

    2015-01-01

    A heterotrophic arsenite-oxidizing bacterium, strain 2WW, was isolated from a biofilter treating arsenic-rich groundwater. Comparative analysis of 16S rRNA gene sequences showed that it was closely related (98.7 %) to the alphaproteobacterium Aliihoeflea aesturari strain N8T. However, it was physiol

  8. Evidence for a role of p38 kinase in hypoxia-inducible factor 1-independent induction of vascular endothelial growth factor expression by sodium arsenite.

    NARCIS (Netherlands)

    Duyndam, M.C.A.; Hulscher, ST; Wall, van der E.; Pinedo, H.M.; Boven, E.

    2003-01-01

    Recently we have demonstrated that sodium arsenite induces the expression of hypoxia-inducible factor 1alpha (HIF-1alpha) protein and vascular endothelial growth factor (VEGF) in OVCAR-3 human ovarian cancer cells. We now show that arsenic trioxide, an experimental anticancer drug, exerts the same e

  9. SORPTION OF ARSENATE AND ARSENITE ON RUO2 X H2O: ANALYSIS OF SORBED PHASE OXIDATION STATE BY XANES IN ADVANCED PHOTON SOURCE ACTIVITY REPORT 2002

    Science.gov (United States)

    The sorption reactions of arsenate (As(V)) and arsenite (As(III)) on RuO2 x H2O were examined by X-ray Absorption Near Edge Spectroscopy (XANES) to elucidate the solid state speciation of sorbed As. At all pH values studied (pH 4-8), RuO2 x H

  10. Draft Genome Sequence of Halomonas sp. Strain HAL1, a Moderately Halophilic Arsenite-Oxidizing Bacterium Isolated from Gold-Mine Soil

    OpenAIRE

    Lin, Yanbing; Fan, Haoxin; Hao, Xiuli; Johnstone, Laurel; Hu, Yao; Wei, Gehong; Alwathnani, Hend A.; Wang, Gejiao; Rensing, Christopher

    2012-01-01

    We report the draft genome sequence of arsenite-oxidizing Halomonas sp. strain HAL1, isolated from the soil of a gold mine. Genes encoding proteins involved in arsenic resistance and transformation, phosphate utilization and uptake, and betaine biosynthesis were identified. Their identification might help in understanding how arsenic and phosphate metabolism are intertwined.

  11. Confirmation of a blocked amino terminus of sulfhydryl oxidase

    International Nuclear Information System (INIS)

    The isolation of sulfhydryl oxidase from bovine milk in a suitably pure form for sequencing was carried out by transient covalent affinity chromatography of diafiltered whey using cysteinylsuccinamidopropyl-glass as matrix. The glutathione-eluted proteins were separated by SDS-PAGE. By radiolabeling the affinity chromatography-purified enzyme with [14C]iodoacetate before subjecting to SDS-PAGE, the sulfhydryl oxidase band was identified, because sulfhydryl oxidase is known to be inactivated by alkylation of one sulfhydryl group per mole. The results confirmed that sulfhydryl oxidase corresponds to the 85 (± 5)-kDa band observed on SDS-PAGE. The protein band corresponding to radiolabeled sulfhydryl oxidase was recovered from SDS-PAGE gels by electrophoretic elution and by electroblotting on polyvinylidene difluoride membrane and subjected to gas phase sequencing. Precautions were taken during electrophoretic elution to prevent reactions that result in N-terminal blocking. Both methods of protein recovery yielded negative results when subjected to sequence analysis indicating that the N-terminus of sulfhydryl oxidase is blocked

  12. Polyphenol oxidase from yacon roots (Smallanthus sonchifolius).

    Science.gov (United States)

    Neves, Valdir Augusto; da Silva, Maraiza Aparecida

    2007-03-21

    Polyphenol oxidase (E.C. 1.14.18.1) (PPO) extracted from yacon roots (Smallanthus sonchifolius) was partially purified by ammonium sulfate fractionation and separation on Sephadex G-100. The enzyme had a molecular weight of 45 490+/-3500 Da and Km values of 0.23, 1.14, 1.34, and 5.0 mM for the substrates caffeic acid, chlorogenic acid, 4-methylcatechol, and catechol, respectively. When assayed with resorcinol, DL-DOPA, pyrogallol, protocatechuic, p-coumaric, ferulic, and cinnamic acids, catechin, and quercetin, the PPO showed no activity. The optimum pH varied from 5.0 to 6.6, depending on substrate. PPO activity was inhibited by various phenolic and nonphenolic compounds. p-Coumaric and cinnamic acids showed competitive inhibition, with Ki values of 0.017 and 0.011 mM, respectively, using chlorogenic acid as substrate. Heat inactivation from 60 to 90 degrees C showed the enzyme to be relatively stable at 60-70 degrees C, with progressive inactivation when incubated at 80 and 90 degrees C. The Ea (apparent activation energy) for inactivation was 93.69 kJ mol-1. Sucrose, maltose, glucose, fructose, and trehalose at high concentrations appeared to protect yacon PPO against thermal inactivation at 75 and 80 degrees C. PMID:17316020

  13. MONOAMINE OXIDASE: RADIOTRACER DEVELOPMENT AND HUMAN STUDIES.

    Energy Technology Data Exchange (ETDEWEB)

    FOWLER,J.S.; LOGAN,J.; VOLKOW,N.D.; WANG,G.J.; MACGREGOR,R.R.; DING,Y.S.

    2000-09-28

    PET is uniquely capable of providing information on biochemical transformations in the living human body. Although most of the studies of monoamine oxidase (MAO) have focused on measurements in the brain, the role of peripheral MAO as a phase 1 enzyme for the metabolism of drugs and xenobiotics is gaining attention (Strolin Benedetti and Tipton, 1998; Castagnoli et al., 1997.). MAO is well suited for this role because its concentration in organs such as kidneys, liver and digestive organs is high sometimes exceeding that in the brain. Knowledge of the distribution of the MAO subtypes within different organs and different cells is important in determining which substrates (and which drugs and xenobiotics) have access to which MAO subtypes. The highly variable subtype distribution with different species makes human studies even more important. In addition, the deleterious side effects of combining MAO inhibitors with other drugs and with foodstuffs makes it important to know the MAO inhibitory potency of different drugs both in the brain and in peripheral organs (Ulus et al., 2000). Clearly PET can play a role in answering these questions, in drug research and development and in discovering some of the factors which contribute to the highly variable MAO levels in different individuals.

  14. Thermal properties of milk fat, xanthine oxidase, caseins and whey proteins in pulsed electric field-treated bovine whole milk.

    Science.gov (United States)

    Sharma, Pankaj; Oey, Indrawati; Everett, David W

    2016-09-15

    Thermodynamics of milk components (milk fat, xanthine oxidase, caseins and whey proteins) in pulsed electric field (PEF)-treated milk were compared with thermally treated milk (63 °C for 30 min and 73 °C for 15s). PEF treatments were applied at 20 or 26 kV cm(-1) for 34 μs with or without pre-heating of milk (55 °C for 24s), using bipolar square wave pulses in a continuous mode of operation. PEF treatments did not affect the final temperatures of fat melting (Tmelting) or xanthine oxidase denaturation (Tdenaturation), whereas thermal treatments increased both the Tmelting of milk fat and the Tdenaturation for xanthine oxidase by 2-3 °C. Xanthine oxidase denaturation was ∼13% less after PEF treatments compared with the thermal treatments. The enthalpy change (ΔH of denaturation) of whey proteins decreased in the treated-milk, and denaturation increased with the treatment intensity. New endothermic peaks in the calorimetric thermograms of treated milk revealed the formation of complexes due to interactions between MFGM (milk fat globule membrane) proteins and skim milk proteins. Evidence for the adsorption of complexes onto the MFGM surface was obtained from the increase in surface hydrophobicity of proteins, revealing the presence of unfolded hydrophobic regions. PMID:27080877

  15. Covalently bound phosphate residues in bovine milk xanthine oxidase and in glucose oxidase from Aspergillus niger: A reevaluation

    International Nuclear Information System (INIS)

    The reported presence of covalently bound phosphate residues in flavoproteins has significant implications with regard to the catalytic mechanisms and structural stability of the specific enzymes themselves and in terms of general cellular metabolic regulation. These considerations have led to a reevaluation of the presence of covalently bound phosphorus in the flavoproteins xanthine oxidase and glucose oxidase. Milk xanthine oxidase purified by a procedure that includes anion-exchange chromatography is shown to contain three phosphate residues. All three are noncovalently associated with the protein, two with the FAD cofactor, and one with the molybdenum cofactor. Results of chemical analysis and 31P NMR spectroscopy indicate that enzyme purified by this method contains no phosphoserine residues. Xanthine oxidase preparations purified by chromatography on calcium phosphate gel in place of DEAE-Sephadex yielded higher phosphate-to-protein ratios, which could be reduced to the expected values by additional purification on a folate affinity column. Highly active, highly purified preparations of glucose oxidase are shown to contain only the two phosphate residues of the FAD cofactor. The covalently bound bridging phosphate reported by others may arise in aged or degraded preparations of the enzyme but appears not to be a constituent of functional glucose oxidase. These results suggest that the presence of covalent phosphate residues in other flavoproteins should be rigorously reevaluated as well

  16. Existence of aa3-type ubiquinol oxidase as a terminal oxidase in sulfite oxidation of Acidithiobacillus thiooxidans.

    Science.gov (United States)

    Sugio, Tsuyoshi; Hisazumi, Tomohiro; Kanao, Tadayoshi; Kamimura, Kazuo; Takeuchi, Fumiaki; Negishi, Atsunori

    2006-07-01

    It was found that Acidithiobacillus thiooxidans has sulfite:ubiquinone oxidoreductase and ubiquinol oxidase activities in the cells. Ubiquinol oxidase was purified from plasma membranes of strain NB1-3 in a nearly homogeneous state. A purified enzyme showed absorption peaks at 419 and 595 nm in the oxidized form and at 442 and 605 nm in the reduced form. Pyridine ferrohaemochrome prepared from the enzyme showed an alpha-peak characteristic of haem a at 587 nm, indicating that the enzyme contains haem a as a component. The CO difference spectrum of ubiquinol oxidase showed two peaks at 428 nm and 595 nm, and a trough at 446 nm, suggesting the existence of an aa(3)-type cytochrome in the enzyme. Ubiquinol oxidase was composed of three subunits with apparent molecular masses of 57 kDa, 34 kDa, and 23 kDa. The optimum pH and temperature for ubiquinol oxidation were pH 6.0 and 30 degrees C. The activity was completely inhibited by sodium cyanide at 1.0 mM. In contrast, the activity was inhibited weakly by antimycin A(1) and myxothiazol, which are inhibitors of mitochondrial bc(1) complex. Quinone analog 2-heptyl-4-hydoroxyquinoline N-oxide (HOQNO) strongly inhibited ubiquinol oxidase activity. Nickel and tungstate (0.1 mM), which are used as a bacteriostatic agent for A. thiooxidans-dependent concrete corrosion, inhibited ubiquinol oxidase activity 100 and 70% respectively.

  17. Cytochemical localization of catalase and several hydrogen peroxide-producing oxidases in the nucleoids and matrix of rat liver peroxisomes

    NARCIS (Netherlands)

    Veenhuis, M.; Wendelaar Bonga, S.E.

    1979-01-01

    The distribution of catalase, amino acid oxidase, α-hydroxy acid oxidase, urate oxidase and alcohol oxidase was studied cytochemically in rat hepatocytes. The presence of catalase was demonstrated with the conventional diaminobenzidine technique. Oxidase activities were visualized with methods based

  18. Aldehyde oxidase activity in fresh human skin.

    Science.gov (United States)

    Manevski, Nenad; Balavenkatraman, Kamal Kumar; Bertschi, Barbara; Swart, Piet; Walles, Markus; Camenisch, Gian; Schiller, Hilmar; Kretz, Olivier; Ling, Barbara; Wettstein, Reto; Schaefer, Dirk J; Pognan, Francois; Wolf, Armin; Litherland, Karine

    2014-12-01

    Human aldehyde oxidase (AO) is a molybdoflavoenzyme that commonly oxidizes azaheterocycles in therapeutic drugs. Although high metabolic clearance by AO resulted in several drug failures, existing in vitro-in vivo correlations are often poor and the extrahepatic role of AO practically unknown. This study investigated enzymatic activity of AO in fresh human skin, the largest organ of the body, frequently exposed to therapeutic drugs and xenobiotics. Fresh, full-thickness human skin was obtained from 13 individual donors and assayed with two specific AO substrates: carbazeran and zoniporide. Human skin explants from all donors metabolized carbazeran to 4-hydroxycarbazeran and zoniporide to 2-oxo-zoniporide. Average rates of carbazeran and zoniporide hydroxylations were 1.301 and 0.164 pmol⋅mg skin(-1)⋅h(-1), resulting in 13 and 2% substrate turnover, respectively, after 24 hours of incubation with 10 μM substrate. Hydroxylation activities for the two substrates were significantly correlated (r(2) = 0.769), with interindividual variability ranging from 3-fold (zoniporide) to 6-fold (carbazeran). Inclusion of hydralazine, an irreversible inhibitor of AO, resulted in concentration-dependent decrease of hydroxylation activities, exceeding 90% inhibition of carbazeran 4-hydroxylation at 100 μM inhibitor. Reaction rates were linear up to 4 hours and well described by Michaelis-Menten enzyme kinetics. Comparison of carbazeran and zoniporide hydroxylation with rates of triclosan glucuronidation and sulfation and p-toluidine N-acetylation showed that cutaneous AO activity is comparable to tested phase II metabolic reactions, indicating a significant role of AO in cutaneous drug metabolism. To our best knowledge, this is the first report of AO enzymatic activity in human skin. PMID:25249692

  19. Monoamine oxidase and agitation in psychiatric patients.

    Science.gov (United States)

    Nikolac Perkovic, Matea; Svob Strac, Dubravka; Nedic Erjavec, Gordana; Uzun, Suzana; Podobnik, Josip; Kozumplik, Oliver; Vlatkovic, Suzana; Pivac, Nela

    2016-08-01

    Subjects with schizophrenia or conduct disorder display a lifelong pattern of antisocial, aggressive and violent behavior and agitation. Monoamine oxidase (MAO) is an enzyme involved in the degradation of various monoamine neurotransmitters and neuromodulators and therefore has a role in various psychiatric and neurodegenerative disorders and pathological behaviors. Platelet MAO-B activity has been associated with psychopathy- and aggression-related personality traits, while variants of the MAOA and MAOB genes have been associated with diverse clinical phenotypes, including aggressiveness, antisocial problems and violent delinquency. The aim of the study was to evaluate the association of platelet MAO-B activity, MAOB rs1799836 polymorphism and MAOA uVNTR polymorphism with severe agitation in 363 subjects with schizophrenia and conduct disorder. The results demonstrated significant association of severe agitation and smoking, but not diagnosis or age, with platelet MAO-B activity. Higher platelet MAO-B activity was found in subjects with severe agitation compared to non-agitated subjects. Platelet MAO-B activity was not associated with MAOB rs1799836 polymorphism. These results suggested the association between increased platelet MAO-B activity and severe agitation. No significant association was found between severe agitation and MAOA uVNTR or MAOB rs1799836 polymorphism, revealing that these individual polymorphisms in MAO genes are not related to severe agitation in subjects with schizophrenia and conduct disorder. As our study included 363 homogenous Caucasian male subjects, our data showing this negative genetic association will be a useful addition to future meta-analyses. PMID:26851573

  20. Forage Polyphenol Oxidase and Ruminant Livestock Nutrition

    Directory of Open Access Journals (Sweden)

    Michael Richard F. Lee

    2014-12-01

    Full Text Available Polyphenol oxidase (PPO is associated with the detrimental effect of browning fruit and vegetables, however interest within PPO containing forage crops has grown since the brownng reaction was associated with reduced nitrogen (N losses in silo and the rumen. The reduction in protein breakdown in silo of red clover (high PPO forage increased the quality of protein, improving N-use efficiency (NUE when fed to ruminants. A further benefit of red clover silage feeding is a significant reduction in lipolysis in silo and an increase in the deposition of beneficial C18 polyunsaturated fatty acid (PUFA in animal products, which has also been linked to PPO activity. PPOs protection of plant protein and glycerol based-PUFA in silo is related to the deactivation of plant proteases and lipases. This deactivation occurs through PPO catalysing the conversion of diphenols to quinones which bind with cellular nucleophiles such as protein reforming a protein-bound phenol (PBP. If the protein is an enzyme the complexing denatures the enzyme. However, PPO is inactive in the anaerobic rumen and therefore any subsequent protection of plant protein and glycerol based-PUFA in the rumen must be as a result of events that occurred to the forage pre-ingestion. Reduced activity of plant proteases and lipases would have little effect on NUE and glycerol based-PUFA in the rumen due to the greater concentration of rumen microbial proteases and lipases. The mechanism for PPOs protection of plant protein in the rumen is a consequence of complexing plant protein, rather than protease deactivation per se. These complexed proteins reduce protein digestibility in the rumen and subsequently increase un-degraded dietary protein flow to the small intestine. The mechanism for protecting glycerol-based PUFA has yet to be fully elucidated but may be associated with entrapment within PBP reducing access to microbial lipases or differences in rumen digestion kinetics of red clover.

  1. Inhibition of polyphenol oxidases activity by various dipeptides.

    Science.gov (United States)

    Girelli, Anna M; Mattei, Enrico; Messina, Antonella; Tarola, Anna M

    2004-05-19

    In an effort to develop natural and nontoxic inhibitors on the activity of mushroom polyphenol oxidase (PPO) the effect of various glycyl-dipeptides (GlyAsp, GlyGly, GlyHis, GlyLeu, GlyLys, GlyPhe, GlyPro, GlyTyr) was investigated. The inhibition study with dihydroxyphenylalanine (DOPA) as substrate is based on separation of the enzymatic reaction components by reversed phase HPLC and the UV detection of the dopachrome formed. The results have evidenced that several of tested dipeptides inhibited PPO activity in the range of 20-40% while GlyPro and GlyLeu had no effect. The study has also permitted the characterization of the following kinetic pattern: a linear-mixed-type mechanism for GlyAsp, GlyGly, GlyLys, and GlyPhe and a hyperbolic-mixed-type for GlyTyr. It was not possible to identify the inhibition mechanism for GlyHis, although it affects PPO activity. In addition the effects of GlyAsp, GlyLys and GlyHis were evaluated for lessening the browning of fresh Golden Delicious apple and Irish White Skinned potato. The effectiveness of such inhibitors was determined by the difference between the colors observed in the dipeptide-treated sample and the controls using the color space CIE-Lab system. The % browning inhibition on potato (20-50%) was greater than of apple (20-30%) by the all tested dipeptides. Only GlyLys presented the significant value of 50%.

  2. Calcium transport in vesicles energized by cytochrome oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Rosier, Randy N.

    1979-01-01

    Experiments on the reconstitution of cytochrome oxidase into phospholipid vesicles were carried out using techniques of selectivity energizing the suspensions with ascorbate and cytochrome c or ascorbate, PMS, and internally trapped cytochrome c. It was found that the K/sup +/ selective ionophore valinomycin stimulated the rate of respiration of cytochrome oxidase vesicles regardless of the direction of the K/sup +/ flux across the vesicle membranes. The stimulation occurred in the presence of protonophoric uncouplers and in the complete absence of potassium or in detergent-lysed suspensions. Gramicidin had similar effects and it was determined that the ionophores acted by specific interaction with cytochrome oxidase rather than by the previously assumed collapse of membrane potentials. When hydrophobic proteins and appropriate coupling factors were incorporated into the cytochrome oxidase, vesicles phosphorylation of ADP could be coupled to the oxidation reaction of cytochrome oxidase. Relatively low P:O, representing poor coupling of the system, were problematical and precluded measurements of protonmotive force. However the system was used to study ion translocation.

  3. Some properties of active and latent catechol oxidase of mushroom

    Directory of Open Access Journals (Sweden)

    Janusz Czapski

    2013-12-01

    Full Text Available Latent form of mushroom catechol oxidase was activated by O,1% sodium dodecyl sulfate (SDS. Catalytic power of the latent form, calculated from the kinetic parameters was 1,8 times higher than that of active one. Salicyl hydroxamic acid (SHAM appeared as a powerful inhibitor for both active and latent forms of catechol oxidase. However, in the range of 150-250 μM SHAM the inhibitory effect for active catechol oxidase was significantly higher than that for the latent one. Non-competitive and irreversible characteristics of inhibition of latent and active catechol oxidase was calculated from kinetic data. Electrophoretic analysis followed by scanning of the gels was used. The spots' absorbance was determined from a computer image of the isoenzyme band patterns. It allowed us to estimate gels quantitatively. Presence of one additional clearly defined slow moving isoform of SDS-activated catechol oxidase, differed in the respect of 3 bands for the active and 4 bands for the total.

  4. Crystal Structure of Alcohol Oxidase from Pichia pastoris.

    Directory of Open Access Journals (Sweden)

    Christian Koch

    Full Text Available FAD-dependent alcohol oxidases (AOX are key enzymes of methylotrophic organisms that can utilize lower primary alcohols as sole source of carbon and energy. Here we report the crystal structure analysis of the methanol oxidase AOX1 from Pichia pastoris. The crystallographic phase problem was solved by means of Molecular Replacement in combination with initial structure rebuilding using Rosetta model completion and relaxation against an averaged electron density map. The subunit arrangement of the homo-octameric AOX1 differs from that of octameric vanillyl alcohol oxidase and other dimeric or tetrameric alcohol oxidases, due to the insertion of two large protruding loop regions and an additional C-terminal extension in AOX1. In comparison to other alcohol oxidases, the active site cavity of AOX1 is significantly reduced in size, which could explain the observed preference for methanol as substrate. All AOX1 subunits of the structure reported here harbor a modified flavin adenine dinucleotide, which contains an arabityl chain instead of a ribityl chain attached to the isoalloxazine ring.

  5. A Raman spectroscopic study of arsenite and thioarsenite species in aqueous solution at 25°C

    Directory of Open Access Journals (Sweden)

    Janecky David R

    2002-02-01

    Full Text Available The Raman spectra of thioarsenite and arsenite species in aqueous solution were obtained at room temperature. Solutions at constant ΣAs + ΣS of 0.1 and 0.5 mol kg-1 were prepared with various ΣS/ΣAs ratios (0.1–9.0 and pH values (~7–13.2. Our data suggest that the speciation of As under the conditions investigated is more complicated than previously thought. The Raman measurements offer evidence for at least six separate S-bearing As species whose principal bands are centered near 365, 385, 390, 400, 415 and 420 cm-1. The data suggest that at least two different species may give rise to bands at 385 cm-1, bringing the probable minimum number of species to seven. Several additional species are possible but could not be resolved definitively. In general, the relative proportions of these species are dependent on total As concentration, ΣS/ΣAs ratio and pH. At very low ΣS/ΣAs ratios we also observe Raman bands attributable to the dissociation products of H3AsO3(aq. Although we were unable to assign precise stoichiometries for the various thioarsenite species, we were able to map out general pH and ΣS/ΣAs conditions under which the various thioarsenite and arsenite species are predominant. This study provides a basis for more detailed Raman spectroscopic and other types of investigations of the nature of thioarsenite species.

  6. Identification of a Conserved Sequence in Flavoproteins Essential for the Correct Conformation and Activity of the NADH Oxidase NoxE of Lactococcus lactis ▿ †

    OpenAIRE

    Tachon, Sybille; Chambellon, Emilie; Yvon, Mireille

    2011-01-01

    Water-forming NADH oxidases (encoded by noxE, nox2, or nox) are flavoproteins generally implicated in the aerobic survival of microaerophilic bacteria, such as lactic acid bacteria. However, some natural Lactococcus lactis strains produce an inactive NoxE. We examined the role of NoxE in the oxygen tolerance of L. lactis in the rich synthetic medium GM17. Inactivation of noxE suppressed 95% of NADH oxidase activity but only slightly affected aerobic growth, oxidative stress resistance, and NA...

  7. Characterization of wheat germin (oxalate oxidase) expressed by Pichia pastoris

    International Nuclear Information System (INIS)

    High-level secretory expression of wheat (Triticum aestivum) germin/oxalate oxidase was achieved in Pichia pastoris fermentation cultures as an α-mating factor signal peptide fusion, based on the native wheat cDNA coding sequence. The oxalate oxidase activity of the recombinant enzyme is substantially increased (7-fold) by treatment with sodium periodate, followed by ascorbate reduction. Using these methods, approximately 1 g (4 x 104 U) of purified, activated enzyme was obtained following eight days of induction of a high density Pichia fermentation culture, demonstrating suitability for large-scale production of oxalate oxidase for biotechnological applications. Characterization of the recombinant protein shows that it is glycosylated, with N-linked glycan attached at Asn47. For potential biomedical applications, a nonglycosylated (S49A) variant was also prepared which retains essentially full enzyme activity, but exhibits altered protein-protein interactions

  8. Fluorescent Probes for Analysis and Imaging of Monoamine Oxidase Activity

    International Nuclear Information System (INIS)

    Monoamine oxidases catalyze the oxidative deamination of dietary amines and amine neurotransmitters, and assist in maintaining the homeostasis of the amine neurotransmitters in the brain. Dysfunctions of these enzymes can cause neurological and behavioral disorders including Parkinson's and Alzheimer's diseases. To understand their physiological roles, efficient assay methods for monoamine oxidases are essential. Reviewed in this Perspective are the recent progress in the development of fluorescent probes for monoamine oxidases and their applications to enzyme assays in cells and tissues. It is evident that still there is strong need for a fluorescent probe with desirable substrate selectivity and photophysical properties to challenge the much unsolved issues associated with the enzymes and the diseases

  9. Composition of partially purified NADPH oxidase from pig neutrophils.

    Science.gov (United States)

    Bellavite, P; Jones, O T; Cross, A R; Papini, E; Rossi, F

    1984-01-01

    The superoxide (O2.-)-forming enzyme NADPH oxidase from pig neutrophils was solubilized and partially purified by gel-filtration chromatography. The purification procedure allowed the separation of NADPH oxidase activity from NADH-dependent cytochrome c reductase and 2,6-dichlorophenol-indophenol reductase activities. O2.-forming activity was co-purified with cytochrome b-245 and was associated with phospholipids. However, active fractions endowed with cytochrome b were devoid of ubiquinone and contained only little FAD. The cytochrome b/FAD ratio was 1.13:1 in the crude solubilized extract and increased to 18.95:1 in the partially purified preparations. Most of FAD was associated with fractions containing NADH-dependent oxidoreductases. These results are consistent with the postulated role of cytochrome b in O2.-formation by neutrophil NADPH oxidase, but raise doubts about the participation of flavoproteins in this enzyme activity. PMID:6439185

  10. Fluorescent Probes for Analysis and Imaging of Monoamine Oxidase Activity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dokyoung; Jun, Yong Woong; Ahn, Kyo Han [POSTECH, Pohang (Korea, Republic of)

    2014-05-15

    Monoamine oxidases catalyze the oxidative deamination of dietary amines and amine neurotransmitters, and assist in maintaining the homeostasis of the amine neurotransmitters in the brain. Dysfunctions of these enzymes can cause neurological and behavioral disorders including Parkinson's and Alzheimer's diseases. To understand their physiological roles, efficient assay methods for monoamine oxidases are essential. Reviewed in this Perspective are the recent progress in the development of fluorescent probes for monoamine oxidases and their applications to enzyme assays in cells and tissues. It is evident that still there is strong need for a fluorescent probe with desirable substrate selectivity and photophysical properties to challenge the much unsolved issues associated with the enzymes and the diseases.

  11. Cytokinin oxidase or dehydrogenase? Mechanism of cytokinin degradation in cereals

    DEFF Research Database (Denmark)

    Galuszka, P.; Frebort, I.; Sebela, M.;

    2001-01-01

    An enzyme degrading cytokinins with isoprenoid side chain, previously named cytokinin oxidase, was purified to near homogeneity from wheat and barley grains. New techniques were developed for the enzyme activity assay and staining on native electrophoretic gels to identify the protein. The purified...... wheat enzyme is a monomer 60 kDa, its N-terminal amino-acid sequence shows similarity to hypothetical cytokinin oxidase genes from Arabidopsis thaliana, but not to the enzyme from maize. N-6-isopentenyl-2-(2-hydroxyethylamino)-9-methyladenine is the best substrate from all the cytokinins tested....... Interestingly, oxygen was not required and hydrogen peroxide not produced during the catalytic reaction, so the enzyme behaves as a dehydrogenase rather than an oxidase. This was confirmed by the ability of the enzyme to transfer electrons to artificial electron acceptors, such as phenazine methosulfate and 2...

  12. Partially Purification and Characterization of Polyphenol Oxidase of Quince

    OpenAIRE

    YAĞAR, Hülya; SAĞIROĞLU, Ayten

    2002-01-01

    Polyphenol oxidase (PPO, EC 1.14.18.1) was extracted from quince (Cydonia oblonga) by using 0.1 M phosphate buffer, pH 6.8. The polyphenol oxidase of quince was partially purified by (NH4)2SO4 and dialysis. Substrate specificity experiments were carried out with catechol, pyrogallol, L-DOPA, p-cresole and tyrosine. Catechol was the most suitable substrate compound for quince PPO. The Michaelis constants were 4.54 mM, 7.35mM and 17.8 mM for catechol, pyrogallol and L-DOPA, respective...

  13. Copper complexes as biomimetic models of catechol oxidase: mechanistic studies

    OpenAIRE

    Koval, Iryna A.

    2006-01-01

    The research described in this thesis deals with the synthesis of copper(II) complexes with phenol-based or macrocyclic ligands, which can be regarded as model compounds of the active site of catechol oxidase, and with the mechanism of the catalytic oxidation of catechol mediated by these compounds. Catechol oxidase is a type-3 copper enzyme usually encountered in plants and in some crustaceans, which catalyzes a conversion of a wide range of o-diphenols (catechols) to the respective o-benzoq...

  14. Beyond brown: Polyphenol oxidases as enzymes of plant specialized metabolism

    OpenAIRE

    Sullivan, Michael L.

    2015-01-01

    Most cloned and/or characterized plant polyphenol oxidases (PPOs) have catechol oxidase activity (i.e. they oxidize o-diphenols to o-quinones) and are localized or predicted to be localized to plastids. As a class, they have broad substrate specificity and are associated with browning of produce and other plant materials. Because PPOs are often induced by wounding or pathogen attack, they are most generally believed to play important roles in plant defense responses. However, a few well-chara...

  15. Research on Oxalate Oxidase and Its Genes in Plants

    Institute of Scientific and Technical Information of China (English)

    WANG Li; WANG Xiao-li; LIU jia; YI Zhi-gang; DONG Zhi-min

    2011-01-01

    This paper introduces the discovery, composition and structure of oxalate oxidase, as well as illustrates the biological functions of this enzyme. With a comprehensive introduction upon previous researches upon gene cloning and heredity transformation of this enzyme, it indicates that heredity transformation can increase the content of oxalate oxidase within the plants and also enhance their resistance. The paper also points out the problems such as lack of gene resources and difficulty in the transformation of heterologous genes, and the focus in later researches should be laid upon the exploration of plant resources relative to this enzyme and selection of resistant species.

  16. Colloidal properties of biomacromolecular solutions: Towards urate oxidase crystal design

    Science.gov (United States)

    Bonneté, Françoise

    2013-02-01

    Crystallization of biological macromolecules is governed by weak interaction forces, attractive and repulsive. Knowledge of solution properties, via second virial coefficient measurements, makes it possible to select physico-chemical parameters that govern and control phase diagrams and thus to grow crystals for specific applications (bio-crystallography or pharmaceutical processes). We highlight here with urate oxidase a salting-in effect that increases its solubility and the depletion effect of amphiphilic polymer, at a polymer concentration above its cmc, in order to grow diffracting crystals of urate oxidase. These two effects were used to grow crystals for high pressure crystallography and in a purification process.

  17. fMLP-Induced IL-8 Release Is Dependent on NADPH Oxidase in Human Neutrophils

    Directory of Open Access Journals (Sweden)

    María A. Hidalgo

    2015-01-01

    Full Text Available N-Formyl-methionyl-leucyl-phenylalanine (fMLP and platelet-activating factor (PAF induce similar intracellular signalling profiles; but only fMLP induces interleukin-8 (IL-8 release and nicotinamide adenine dinucleotide phosphate reduced (NADPH oxidase activity in neutrophils. Because the role of ROS on IL-8 release in neutrophils is until now controversial, we assessed if NADPH oxidase is involved in the IL-8 secretions and PI3K/Akt, MAPK, and NF-κB pathways activity induced by fMLP. Neutrophils were obtained from healthy volunteers. IL-8 was measured by ELISA, IL-8 mRNA by qPCR, and ROS production by luminol-amplified chemiluminescence, reduction of ferricytochrome c, and FACS. Intracellular pH changes were detected by spectrofluorescence. ERK1/2, p38 MAPK, and Akt phosphorylation were analysed by immunoblotting and NF-κB was analysed by immunocytochemistry. Hydroxy-3-methoxyaceto-phenone (HMAP, diphenyleneiodonium (DPI, and siRNA Nox2 reduced the ROS and IL-8 release in neutrophils treated with fMLP. HMAP, DPI, and amiloride (a Na+/H+ exchanger inhibitor inhibited the Akt phosphorylation and did not affect the p38 MAPK and ERK1/2 activity. DPI and HMAP reduced NF-κB translocation induced by fMLP. We showed that IL-8 release induced by fMLP is dependent on NADPH oxidase, and ROS could play a redundant role in cell signalling, ultimately activating the PI3K/Akt and NF-κB pathways in neutrophils.

  18. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite

    International Nuclear Information System (INIS)

    We have shown that UVA (320-380 nm) radiation, hydrogen peroxide, and sodium arsenite induce a stress protein of approximately 32 kDa in human skin fibroblasts. The synthesis and cloning of cDNA from arsenite-induced mRNA populations have now allowed us to unequivocally identify the 32-kDa protein as heme oxygenase. By mRNA analysis we have shown that the heme oxygenase gene is also induced in cultured human skin fibroblasts by UVA radiation, hydrogen peroxide, cadmium chloride, iodoacetamide, and menadione. The known antioxidant properties of heme catabolites taken together with the observation of a high level of induction of the enzyme in cells from an organ not involved in hemoglobin breakdown strongly supports the proposal that the induction of heme oxygenase may be a general response to oxidant stress and constitutes an important cellular defense mechanism against oxidative damage

  19. In silico docking studies and in vitro xanthine oxidase inhibitory activity of commercially available terpenoids

    OpenAIRE

    MUTHUSWAMY UMAMAHESWARI; Preetha prabhu; KUPPUSAMY ASOKKUMAR; THIRUMALAISAMY SIVASHANMUGAM; Varadharajan Subhadradevi; Puliyath Jagannath; Arumugam Madeswaran

    2012-01-01

    Objective Xanthine oxidase is a highly versatile enzyme that is widely distributed among different species. The hydroxylation of purines is catalysed by xanthine oxidase and especially the conversion of xanthine to uric acid. Xanthine oxidase inhibitors are much useful, since they possess lesser side effects compared to uricosuric and anti-inflammatory agents. The present study deals with in silico and in vitro xanthine oxidase inhibitory analysis of commercially available terpenoids (bisabol...

  20. Determination of Arsenite in Water by Anodic Stripping Voltammetry Using Au- Pd Bimetallic Nanoparticles Modified Glassy Carbon Electrode%金-钯双金属纳米颗粒修饰玻碳电极阳极溶出伏安法测定三价砷的方法研究

    Institute of Scientific and Technical Information of China (English)

    蓝月存; 罗汉金; 王灿

    2012-01-01

    An anodic stripping voltammetric method for the determination of arsenite using Au - Pd bimetallic nanoparticles( Au-Pd NPs) modified glassy carbon electrode (Au -Pd/GCE) was developed. The structural information and electrochemical activities of the synthesized Au - Pd nanoparti-cles were investigated with UV - Vis spectroscopy, high resolution transmission electron microscopy ( HRTEM) and cyclic voltammetric ( CV) method. The determination of arsenic was conducted by square wave voltammetric(SWV) method. Effects of deposition potential and SWV parameters (such as frequency, increment and amplitude) on the current intensity of arsenite were investigated. The results showed that Au - Pd bimetallic nanoparticles presented a core - shell structure in shape and the modified electrode exhibited the characteristic peaks of both Au and Pd. A sensitive anodic stripping peak of arsenite appeared at about 0. 30 V, and the peak current was linear with concentration of arsenite in the range of 0. 5-20 μg/L with a limit of detection ( LOD) of 0. 15 μg/L, which is far below the maximum guideline value(10μ/L) set by World Health Organization(WHO). The modified electrode exhibited a good repeatability toward the consecutive determination of arsenite. The interference experiments also showed that except for Cu( II ), the existance of Pb( II ) , Cd( H ) and Zn( II) would not affect the detection of As( 1).%研究了金-钯双金属纳米颗粒修饰电极测定痕量砷的阳极溶出伏安法.采用紫外可见分光光度法、高分辨透射电镜及循环伏安法对颗粒的结构和电化学特性进行表征.采用方波伏安法测定三价砷,探讨了富集电位和方波伏安参数如频率、增幅、波幅以及干扰离子等对测定结果的影响.实验结果表明:金-钯双金属纳米颗粒呈壳-核结构;砷在0.30 V出现灵敏的阳极溶出伏安峰,峰电流与砷质量浓度在0.5~20 μg/L范围内呈良好的线性关系,检出限为0.15 μg/L;

  1. Study of sodium arsenite induced biochemical changes on certain biomolecules of the freshwater catfish Clarias batrachus

    Directory of Open Access Journals (Sweden)

    Randhir Kumar

    2012-01-01

    Full Text Available Toxic impact of sublethal concentration (1 mg/L; 5% of 96h LC50 value of sodium arsenite (NaAsO2 on certain biomolecules (proteins, nucleic acids, lipids, and glycogen of five tissue components (muscles, liver, brain, skin, and gills of the freshwater catfish Clarias batrachus was analysed. The important toxic manifestations include marked decrease in the concentration of proteins (21.72-45.42% in muscles; 3.42-53.94% in liver; 15.39-45.42% in brain; 15.40-4.00% in skin and 11.35-64.13% in gills, DNA (0.55-22.95% in muscles; 8.33-14.06% in liver; 5.30-18.40% in brain; 13.57-52.80% in skin; and 12.38-31.01% in gills, RNA (42.68-76.16% in muscles; 10.68-39.75% in liver; 5.66-29.05% in brain; 7.72-27.93% in skin and 21.47-44.38% in gills and glycogen (24.00-51.72% in muscles; 49.11-72.45% in liver; 11.49-26.03% in brain; 26.13-38.05% in skin and 17.80-37.97% in gills. Excepting liver where the lipid content increases (15.82-24.13%, the fat content also showed depletion in their concentration (10.40-29.83% in muscles; 8.30-34.45% in brain; 8.94-31.47% in skin and 12.75-28.86% in gills, in the rest of the organ systems.Foi analisado o impacto tóxico da concentração subletal (1 mg/L; 5% do valor de LC50 de 96h do arsenito de sódio (NaAsO2 sobre certas biomoléculas (proteinas, ácidos nucleicos, lipídios e glicogênio de cinco tecidos (músculos, fígado, cérebro, pele e brânquias do bagre Clarias batrachus. As manifestações tóxicas importantes incluiram o decréscimo acentuado na concentração de proteinas (21,72-45,42% nos músculos; 3,42-53,94% no fígado; 15,39-45,42% no cérebro; 15,40-4,00% na pele e 11,35-64,13% nas brânquias, DNA (0,55-22,95% nos músculos; 8,33-14,06% no fígado; 5,30-18,40% no cérebro; 13,57-52,80% na pele e 12,38-31,01% nas brânquias, RNA (42,68-76,16% nos músculos; 10,68-39,75% no fígado; 5,66-29,05% no cérebro; 7,72-27,93% na pele e 21,47-44,38% nas brânquias e glicogênio (24,00-51,72% nos músculos; 49

  2. Effects of chronic exposure to sodium arsenite on hypothalamo-pituitary-testicular activities in adult rats: possible an estrogenic mode of action

    OpenAIRE

    Jana Subarna; Jana Kuladip; Samanta Prabhat

    2006-01-01

    Abstract Background Inorganic arsenic is a major water pollutant and a known human carcinogen that has a suppressive influence on spermatogenesis and androgenesis in male reproductive system. However, the actual molecular events resulting in male reproductive dysfunctions from exposure to arsenic remain unclear. In this context, we evaluated the mode of action of chronic oral exposure of sodium arsenite on hypothalamo-pituitary- testicular activities in mature male albino rats. Methods The ef...

  3. A Novel Role of the NRF2 Transcription Factor in the Regulation of Arsenite-Mediated Keratin 16 Gene Expression in Human Keratinocytes

    OpenAIRE

    Endo, Hitoshi; Sugioka, Yoshihiko; Nakagi, Yoshihiko; Saijo, Yasuaki; Yoshida, Takahiko

    2008-01-01

    Background Inorganic sodium arsenite (iAs) is a ubiquitous environmental contaminant and is associated with an increased risk of skin hyperkeratosis and cancer. Objectives We investigated the molecular mechanisms underlying the regulation of the keratin 16 (K16) gene by iAs in the human keratinocyte cell line HaCaT. Methods We performed reverse transcriptase polymerase chain reaction, luciferase assays, Western blots, and electrophoretic mobility shift assays to determine the transcriptional ...

  4. Application of Adenosine Triphosphate Affinity Probe and Scheduled Multiple-Reaction Monitoring Analysis for Profiling Global Kinome in Human Cells in Response to Arsenite Treatment

    OpenAIRE

    Guo, Lei; Xiao, Yongsheng; Wang, Yinsheng

    2014-01-01

    Phosphorylation of cellular components catalyzed by kinases plays important roles in cell signaling and proliferation. Quantitative assessment of perturbation in global kinome may provide crucial knowledge for elucidating the mechanisms underlying the cytotoxic effects of environmental toxicants. Here, we utilized an adenosine triphosphate (ATP) affinity probe coupled with stable isotope labeling by amino acids in cell culture (SILAC) to assess quantitatively the arsenite-induced alteration o...

  5. Inhibitory activity of xanthine oxidase by fractions Crateva adansonii

    Directory of Open Access Journals (Sweden)

    A Abdullahi

    2012-01-01

    Conclusions: Enzyme inhibition mechanism indicated that the mode of inhibition was of a mixed type. Our findings suggest that the therapeutic use of these plants may be due to the observed Xanthine oxidase inhibition, thereby supporting their use in traditional folk medicine against inflammatory-related diseases, in particular, gout.

  6. Subcellular localization of vanillyl-alcohol oxidase in Penicillium simplicissimum

    NARCIS (Netherlands)

    Fraaije, MW; Sjollema, KA; Veenhuis, M; van Berkel, WJH; Berkel, Willem J.H. van

    1998-01-01

    Growth of Penicillium simplicissimum on anisyl alcohol, veratryl alcohol or 3-(methoxymethyl)phenol, is associated with the synthesis of relatively large amounts of the hydrogen peroxide producing flavoprotein vanillyl-alcohol oxidase (VAO), Immunocytochemistry revealed that the enzyme has a dual lo

  7. Electron transfer rates and equilibrium within cytochrome c oxidase

    DEFF Research Database (Denmark)

    Farver, O; Einarsdóttir, O; Pecht, I

    2000-01-01

    Intramolecular electron transfer (ET) between the CuA center and heme a in bovine cytochrome c oxidase was investigated by pulse radiolysis. CuA, the initial electron acceptor, was reduced by 1-methyl nicotinamide radicals in a diffusion-controlled reaction, as monitored by absorption changes at...

  8. The HIV-1 Nef protein and phagocyte NADPH oxidase activation

    DEFF Research Database (Denmark)

    Vilhardt, Frederik; Plastre, Olivier; Sawada, Makoto;

    2002-01-01

    -regulation of phagocyte NADPH oxidase subunits. Nef mutants lacking motifs involved in the interaction with Vav and PAK failed to reproduce the effects of wild type Nef, suggesting a role for the Vav/Rac/PAK signaling pathway. The following results suggest a key role for Rac in the priming effect of Nef. (i) Inactivation...

  9. Inhibition of chickpea seedling copper amine oxidases by tetraethylenepentamine

    Directory of Open Access Journals (Sweden)

    Sona Talaei

    2012-01-01

    Full Text Available Copper amine oxidases are important enzymes, which contribute to the regulation of mono- and polyamine levels. Each monomer contains one Cu(II ion and 2,4,5-trihydroxyphenylalanine (TPQ as cofactors. They catalyze the oxidative deamination of primary amines to aldehydes with a ping-pong mechanism consisting of a transamination. The mechanism is followed by the transfer of two electrons to molecular oxygen which is reduced to hydrogen peroxide. Inhibitors are important tools in the study of catalytic properties of copper amine oxidases and they also have a wide application in physiological research. In this study, purification of the chickpea seedling amine oxidase, was done via salting out by ammonium sulfate and dialysis, followed by DEAE-cellulose column chromatography. By using the Lineweaver - Burk plot, the Km and Vm of the enzyme were found to be 3.3 mM and 0.95 mmol/min/mg, respectively. In this study, the interaction of chickpea diamino oxidase with tetraethylene- pentamine was studied. Analysis of kinetic data indicated that tetraethylenepentamine (with Ki=0.1 mM inhibits the enzyme by linear mixed inhibitory effect.

  10. Chemoenzymatic combination of glucose oxidase with titanium silicalite -1

    DEFF Research Database (Denmark)

    Vennestrøm, Peter Nicolai Ravnborg; Taarning, Esben; Christensen, Claus H.;

    2010-01-01

    Zeozymes: A proof-of-concept is presented for the chemoenzymatic combination of titanium silicalite-1 zeolite with glucose oxidase. In this combination, glucose is oxidized to gluconic acid and the H2O2 byproduct formed in situ is used for the simultaneous oxidation of chemical substrates. Both...

  11. Platinum Nanoparticles: Efficient and Stable Catechol Oxidase Mimetics.

    Science.gov (United States)

    Liu, Yi; Wu, Haohao; Chong, Yu; Wamer, Wayne G; Xia, Qingsu; Cai, Lining; Nie, Zhihong; Fu, Peter P; Yin, Jun-Jie

    2015-09-01

    Although enzyme-like nanomaterials have been extensively investigated over the past decade, most research has focused on the peroxidase-like, catalase-like, or SOD-like activity of these nanomaterials. Identifying nanomaterials having oxidase-like activities has received less attention. In this study, we demonstrate that platinum nanoparticles (Pt NPs) exhibit catechol oxidase-like activity, oxidizing polyphenols into the corresponding o-quinones. Four unique approaches are employed to demonstrate the catechol oxidase-like activity exerted by Pt NPs. First, UV-vis spectroscopy is used to monitor the oxidation of polyphenols catalyzed by Pt NPs. Second, the oxidized products of polyphenols are identified by ultrahigh-performance liquid chromatography (UHPLC) separation followed by high-resolution mass spectrometry (HRMS) identification. Third, electron spin resonance (ESR) oximetry techniques are used to confirm the O2 consumption during the oxidation reaction. Fourth, the intermediate products of semiquinone radicals formed during the oxidation of polyphenols are determined by ESR using spin stabilization. These results indicate Pt NPs possess catechol oxidase-like activity. Because polyphenols and related bioactive substances have been explored as potent antioxidants that could be useful for the prevention of cancer and cardiovascular diseases, and Pt NPs have been widely used in the chemical industry and medical science, it is essential to understand the potential effects of Pt NPs for altering or influencing the antioxidant activity of polyphenols. PMID:26305170

  12. Nanoporous gold assembly of glucose oxidase for electrochemical biosensing

    DEFF Research Database (Denmark)

    Xiao, Xinxin; Ulstrup, Jens; Li, Hui;

    2014-01-01

    Nanoporous gold (NPG) is composed of three-dimensional (3D) bicontinuous nanostructures with large surface area. Nano-channels inside NPG provide an ideal local environment for immobilization of enzyme molecules with expected stabilization of the protein molecules. In this work, glucose oxidase (...

  13. Copper complexes as biomimetic models of catechol oxidase : mechanistic studies

    NARCIS (Netherlands)

    Koval, Iryna A.

    2006-01-01

    The research described in this thesis deals with the synthesis of copper(II) complexes with phenol-based or macrocyclic ligands, which can be regarded as model compounds of the active site of catechol oxidase, and with the mechanism of the catalytic oxidation of catechol mediated by these compounds.

  14. Molecular dynamics in cytochrome c oxidase Moessbauer spectra deconvolution

    Energy Technology Data Exchange (ETDEWEB)

    Bossis, Fabrizio [Department of Medical Biochemistry, Medical Biology and Medical Physics (DIBIFIM), University of Bari ' Aldo Moro' , Bari (Italy); Palese, Luigi L., E-mail: palese@biochem.uniba.it [Department of Medical Biochemistry, Medical Biology and Medical Physics (DIBIFIM), University of Bari ' Aldo Moro' , Bari (Italy)

    2011-01-07

    Research highlights: {yields} Cytochrome c oxidase molecular dynamics serve to predict Moessbauer lineshape widths. {yields} Half height widths are used in modeling of Lorentzian doublets. {yields} Such spectral deconvolutions are useful in detecting the enzyme intermediates. -- Abstract: In this work low temperature molecular dynamics simulations of cytochrome c oxidase are used to predict an experimentally observable, namely Moessbauer spectra width. Predicted lineshapes are used to model Lorentzian doublets, with which published cytochrome c oxidase Moessbauer spectra were simulated. Molecular dynamics imposed constraints to spectral lineshapes permit to obtain useful information, like the presence of multiple chemical species in the binuclear center of cytochrome c oxidase. Moreover, a benchmark of quality for molecular dynamic simulations can be obtained. Despite the overwhelming importance of dynamics in electron-proton transfer systems, limited work has been devoted to unravel how much realistic are molecular dynamics simulations results. In this work, molecular dynamics based predictions are found to be in good agreement with published experimental spectra, showing that we can confidently rely on actual simulations. Molecular dynamics based deconvolution of Moessbauer spectra will lead to a renewed interest for application of this approach in bioenergetics.

  15. Enantioselective Hydroxylation of 4-Alkylphenols by Vanillyl Alcohol Oxidase

    NARCIS (Netherlands)

    Drijfhout, Falko P.; Fraaije, Marco W.; Jongejan, Hugo; Berkel, Willem J.H. van; Franssen, Maurice C.R.

    1998-01-01

    Vanillyl alcohol oxidase (VAO) from Penicillium simplicissimum catalyzes the enantioselective hydroxylation of 4-ethylphenol, 4-propylphenol, and 2-methoxy-4-propylphenol into 1-(4'-hydroxyphenyl)ethanol, 1-(4'-hydroxyphenyl)propanol, and 1-(4'-hydroxy-3'-methoxyphenyl)propanol, respectively, with a

  16. [Synthesis and localization of L-lactate oxidase in yeasts].

    Science.gov (United States)

    Arinbasarova, A Iu; Biriukova, E N; Suzina, N E; Medentsev, A G

    2014-01-01

    Conditions for L-lactate oxidase synthesis by the yeast Yarrowia lpolytica were investigated. The enzyme was found to be synthesized during growth on L-lactate in the exponential growth phase. L-lactate oxidase synthesis was observed, also on glucose after adaptation to stress conditions (oxidative or thermal stress) r during the stationary growth phase after glucose consumption. The cells grown on L-lactate exhibited high levels of antioxidant enzymes (catalase, superoxide dismutase, glucose-6-phosphate dehydrogenase, and glutathione reductase), which exceeded those of glucose-grown cells. The ultrastructure of L-lactate-grown cellsand of those grown on glucose and adapted to various stress.conditions was also found to besimilar, with increased mitochondria, elevated number and size ofperoxisomes, and formation of lipid and polyphosphate inclusions. In order to determine the intracellular localization of L-lactate oxidase, the cells were disintegrated by the lytic enzyme complex from Helix pomatia. Centrifugation of the homogenate in Percoll gradient resulted in the isolation of purified fractions of the native mitochondria and peroxisomes. L-Lactate oxidase was shown to be localized in peroxisomes. PMID:25844463

  17. Beyond brown: polyphenol oxidases as enzymes of plant specialized metabolism

    Science.gov (United States)

    Most cloned and/or characterized plant polyphenol oxidases (PPOs) have catecholase activity (i.e., they oxidize o-diphenols to o-quinones) and are localized or predicted to be localized to plastids. As a class, they have broad substrate specificity and are associated with browning of produce and oth...

  18. Low activation barriers characterize intramolecular electron transfer in ascorbate oxidase

    DEFF Research Database (Denmark)

    Farver, O; Pecht, I

    1992-01-01

    Anaerobic reduction kinetics of the zucchini squash ascorbate oxidase (AO; L-ascorbate:oxygen oxidoreductase, EC 1.10.3.3) by pulse radiolytically produced CO2- radical ions were investigated. Changes in the absorption bands of type 1 [Cu(II)] (610 nm) and type 3 [Cu(II)] (330 nm) were monitored...

  19. The role of urate and xanthine oxidase in vascular oxidative stress: future directions

    Directory of Open Access Journals (Sweden)

    Jacob George

    2009-10-01

    Full Text Available Jacob George, Allan StruthersDivision of Medicine and Therapeutics, Ninewells Hospital and Medical School, Dundee, UKAbstract: Vascular oxidative stress has been shown to be a potent factor in the pathophysiology of endothelial dysfunction. Despite current optimal evidence-based therapy, mortality from various cardiovascular disorders remains high. The search for newer, novel ways of attenuating endothelial dysfunction has yielded several new and exciting possibilities, one of which is the manipulation of urate levels using xanthine oxidase inhibitors. Agents such as allopurinol have shown marked improvements in vascular endothelial function in various cohorts at risk of cardiovascular events. Most of the evidence so far comes from smaller mechanistic studies. The few large randomized controlled trials have failed to show any significant mortality benefit using these agents. This article highlights the potential avenues of further research such as dose-response, and the potential for these agents to regress left ventricular hypertrophy. The role of newer agents such as febuxostat and oxypurinol are discussed as well as potential reasons why some of the current newer agents have failed to live up to the promising early-phase data. It is crucial that these remaining questions surrounding urate, xanthine oxidase and the role of various agents that affect this important oxidative stress-generating system are answered, and therefore these promising agents should not be discarded prematurely.Keywords: urate, allopurinol, vascular oxidative stress, febuxostat

  20. Expression Studies of Gibberellin Oxidases in Developing Pumpkin Seeds1

    Science.gov (United States)

    Frisse, Andrea; Pimenta, Maria João; Lange, Theo

    2003-01-01

    Two cDNA clones, 3-ox and 2-ox, have been isolated from developing pumpkin (Cucurbita maxima) embryos that show significant amino acid homology to gibberellin (GA) 3-oxidases and 2-oxidases, respectively. Recombinant fusion protein of clone 3-ox converted GA12-aldehyde, GA12, GA15, GA24, GA25, and GA9 to GA14-aldehyde, GA14, GA37, GA36, GA13, and GA4, respectively. Recombinant 2-ox protein oxidized GA9, GA4, and GA1 to GA51, GA34, and GA8, respectively. Previously cloned GA 7-oxidase revealed additional 3β-hydroxylation activity of GA12. Transcripts of this gene were identified in endosperm and embryo of the developing seed by quantitative reverse transcriptase-polymerase chain reaction and localized in protoderm, root apical meristem, and quiescent center by in situ hybridization. mRNA of the previously cloned GA 20-oxidase from pumpkin seeds was localized in endosperm and in tissues of protoderm, ground meristem, and cotyledons of the embryo. However, transcripts of the recently cloned GA 20-oxidase from pumpkin seedlings were found all over the embryo, and in tissues of the inner seed coat at the micropylar end. Previously cloned GA 2β,3β-hydroxylase mRNA molecules were specifically identified in endosperm tissue. Finally, mRNA molecules of the 3-ox and 2-ox genes were found in the embryo only. 3-ox transcripts were localized in tissues of cotyledons, protoderm, and inner cell layers of the root apical meristem, and 2-ox transcripts were found in all tissues of the embryo except the root tips. These results indicate tissue-specific GA-biosynthetic pathways operating within the developing seed. PMID:12644672

  1. Preliminary morphological and morphometric study of rat cerebellum following sodium arsenite exposure during rapid brain growth (RBG) period

    International Nuclear Information System (INIS)

    The effects of arsenic exposure during rapid brain growth (RBG) period were studied in rat brains with emphasis on the Purkinje cells of the cerebellum. The RBG period in rats extends from postnatal day 4 (PND 4) to postnatal day 10 (PND 10) and is reported to be highly vulnerable to environmental insults. Mother reared Wistar rat pups were administered intraperitoneal injections (i.p.) of sodium arsenite (aqueous solution) in doses of 1.0, 1.5 and 2.0 mg/kg body weight (bw) to groups II, III and IV (n = 6 animals/group) from PND 4 to 10 (sub acute). Control animals (group I) received distilled water by the same route. On PND 11, the animals were perfusion fixed with 4% paraformaldehyde in 0.1 M phosphate buffer (PB) with pH 7.4. The cerebellum obtained from these animals was post-fixed and processed for paraffin embedding. Besides studying the morphological characteristics of Purkinje cells in cresyl violet (CV) stained paraffin sections (10 μm), morphometric analysis of Purkinje cells was carried out using Image Analysis System (Image Proplus software version 4.5) attached to Nikon Microphot-FX microscope. The results showed that on PND 11, the Purkinje cells were arranged in multiple layers extending from Purkinje cell layer (PL) to outer part of granule cell layer (GL) in experimental animals (contrary to monolayer arrangement within PL in control animals). Also, delayed maturation (well defined apical cytoplasmic cones and intense basal basophilia) was evident in Purkinje cells of experimental animals on PND 11. The mean Purkinje cell nuclear area was significantly increased in the arsenic treated animals compared to the control animals. The observations of the present study (faulty migration, delayed maturation and alteration in nuclear area measurements of Purkinje cells subsequent to arsenic exposure) thus provided the morphological evidence of structural alterations subsequent to arsenite induced developmental neurotoxicity which could be presumed to be

  2. Cytochemical Studies on the Localization of Methanol Oxidase and Other Oxidases in Peroxisomes of Methanol-Grown Hansenula polyrnorpha

    NARCIS (Netherlands)

    Veenhuis, M.; Dijken, J.P. van; Harder, W.

    1976-01-01

    The localization of methanol oxidase activity in cells of methanol-limited chemostat cultures of the yeast Hansenula polymorpha has been studied with different cytochemical staining techniques. The methods were based on enzymatic or chemical trapping of the hydrogen peroxide produced by the enzyme d

  3. Supramolecular organization of cytochrome c oxidase- and alternative oxidase-dependent respiratory chains in the filamentous fungus Podospora anserina.

    Science.gov (United States)

    Krause, Frank; Scheckhuber, Christian Q; Werner, Alexandra; Rexroth, Sascha; Reifschneider, Nicole H; Dencher, Norbert A; Osiewacz, Heinz D

    2004-06-18

    To elucidate the molecular basis of the link between respiration and longevity, we have studied the organization of the respiratory chain of a wild-type strain and of two long-lived mutants of the filamentous fungus Podospora anserina. This established aging model is able to respire by either the standard or the alternative pathway. In the latter pathway, electrons are directly transferred from ubiquinol to the alternative oxidase and thus bypass complexes III and IV. We show that the cytochrome c oxidase pathway is organized according to the mammalian "respirasome" model (Schägger, H., and Pfeiffer, K. (2000) EMBO J. 19, 1777-1783). In contrast, the alternative pathway is composed of distinct supercomplexes of complexes I and III (i.e. I(2) and I(2)III(2)), which have not been described so far. Enzymatic analysis reveals distinct functional properties of complexes I and III belonging to either cytochrome c oxidase- or alternative oxidase-dependent pathways. By a gentle colorless-native PAGE, almost all of the ATP synthases from mitochondria respiring by either pathway were preserved in the dimeric state. Our data are of significance for the understanding of both respiratory pathways as well as lifespan control and aging.

  4. Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases.

    Science.gov (United States)

    Molitor, Christian; Mauracher, Stephan Gerhard; Rompel, Annette

    2016-03-29

    Tyrosinases and catechol oxidases belong to the family of polyphenol oxidases (PPOs). Tyrosinases catalyze theo-hydroxylation and oxidation of phenolic compounds, whereas catechol oxidases were so far defined to lack the hydroxylation activity and catalyze solely the oxidation of o-diphenolic compounds. Aurone synthase from Coreopsis grandiflora (AUS1) is a specialized plant PPO involved in the anabolic pathway of aurones. We present, to our knowledge, the first crystal structures of a latent plant PPO, its mature active and inactive form, caused by a sulfation of a copper binding histidine. Analysis of the latent proenzyme's interface between the shielding C-terminal domain and the main core provides insights into its activation mechanisms. As AUS1 did not accept common tyrosinase substrates (tyrosine and tyramine), the enzyme is classified as a catechol oxidase. However, AUS1 showed hydroxylase activity toward its natural substrate (isoliquiritigenin), revealing that the hydroxylase activity is not correlated with the acceptance of common tyrosinase substrates. Therefore, we propose that the hydroxylase reaction is a general functionality of PPOs. Molecular dynamics simulations of docked substrate-enzyme complexes were performed, and a key residue was identified that influences the plant PPO's acceptance or rejection of tyramine. Based on the evidenced hydroxylase activity and the interactions of specific residues with the substrates during the molecular dynamics simulations, a novel catalytic reaction mechanism for plant PPOs is proposed. The presented results strongly suggest that the physiological role of plant catechol oxidases were previously underestimated, as they might hydroxylate their--so far unknown--natural substrates in vivo. PMID:26976571

  5. MITRAC7 Acts as a COX1-Specific Chaperone and Reveals a Checkpoint during Cytochrome c Oxidase Assembly

    Directory of Open Access Journals (Sweden)

    Sven Dennerlein

    2015-09-01

    Full Text Available Cytochrome c oxidase, the terminal enzyme of the respiratory chain, is assembled from mitochondria- and nuclear-encoded subunits. The MITRAC complex represents the central assembly intermediate during this process as it receives imported subunits and regulates mitochondrial translation of COX1 mRNA. The molecular processes that promote and regulate the progression of assembly downstream of MITRAC are still unknown. Here, we identify MITRAC7 as a constituent of a late form of MITRAC and as a COX1-specific chaperone. MITRAC7 is required for cytochrome c oxidase biogenesis. Surprisingly, loss of MITRAC7 or an increase in its amount causes selective cytochrome c oxidase deficiency in human cells. We demonstrate that increased MITRAC7 levels stabilize and trap COX1 in MITRAC, blocking progression in the assembly process. In contrast, MITRAC7 deficiency leads to turnover of newly synthesized COX1. Accordingly, MITRAC7 affects the biogenesis pathway by stabilizing newly synthesized COX1 in assembly intermediates, concomitantly preventing turnover.

  6. Phenol oxidase activity in secondary transformed peat-moorsh soils

    Science.gov (United States)

    Styła, K.; Szajdak, L.

    2009-04-01

    The chemical composition of peat depends on the geobotanical conditions of its formation and on the depth of sampling. The evolution of hydrogenic peat soils is closely related to the genesis of peat and to the changes in water conditions. Due to a number of factors including oscillation of ground water level, different redox potential, changes of aerobic conditions, different plant communities, and root exudes, and products of the degradation of plant remains, peat-moorsh soils may undergo a process of secondary transformation conditions (Sokolowska et al. 2005; Szajdak et al. 2007). Phenol oxidase is one of the few enzymes able to degrade recalcitrant phenolic materials as lignin (Freeman et al. 2004). Phenol oxidase enzymes catalyze polyphenol oxidation in the presence of oxygen (O2) by removing phenolic hydrogen or hydrogenes to from radicals or quinines. These products undergo nucleophilic addition reactions in the presence or absence of free - NH2 group with the eventual production of humic acid-like polymers. The presence of phenol oxidase in soil environments is important in the formation of humic substances a desirable process because the carbon is stored in a stable form (Matocha et al. 2004). The investigations were carried out on the transect of peatland 4.5 km long, located in the Agroecological Landscape Park host D. Chlapowski in Turew (40 km South-West of Poznań, West Polish Lowland). The sites of investigation were located along Wyskoć ditch. The following material was taken from four chosen sites marked as Zbechy, Bridge, Shelterbelt and Hirudo in two layers: cartel (0-50cm) and cattle (50-100cm). The object of this study was to characterize the biochemical properties by the determination of the phenol oxidize activity in two layers of the four different peat-moors soils used as meadow. The phenol oxidase activity was determined spectrophotometrically by measuring quinone formation at λmax=525 nm with catechol as substrate by method of Perucci

  7. Arsenite Interacts with Dibenzo[def,p]chrysene (DBC) at Low Levels to Suppress Bone Marrow Lymphoid Progenitors in Mice.

    Science.gov (United States)

    Ezeh, Peace C; Lauer, Fredine T; Liu, Ke Jian; Hudson, Laurie G; Burchiel, Scott W

    2015-07-01

    Arsenite (As(+3)) and dibenzo[def,p]chrysene (DBC), a polycyclic aromatic hyrdrocarbon (PAH), are found in nature as environmental contaminants. Both are known to individually suppress the immune system of humans and mice. In order to determine their potential interactive and combined immunosuppressive effects, we examined murine bone marrow (BM) immune progenitor cells' responses following combined oral exposures at very low levels of exposure to As(+3) and DBC. Oral 5-day exposure to DBC at 1 mg/kg (cumulative dose) was found to suppress mouse BM lymphoid progenitor cells, but not the myeloid progenitors. Previously established no-effect doses of As(+3) in drinking water (19 and 75 ppb for 30 days) produced more lymphoid suppression in the bone marrow when mice were concomitantly fed a low dose of DBC during the last 5 days. The lower dose (19 ppb) As(+3) had a stronger suppressive effect with DBC than the higher dose (75 ppb). Thus, the interactive toxicity of As(+3) and DBC in vivo could be As(+3) dose dependent. In vitro, the suppressive interaction of As(+3) and DBC was also evident at low concentrations (0.5 nM), but not at higher concentrations (5 nM) of As(+3). These studies show potentially important interactions between As(+3) and DBC on mouse BM at extremely low levels of exposure in vivo and in vitro. PMID:25739538

  8. Protective effects of the dietary supplementation of turmeric (Curcuma longa L.) on sodium arsenite-induced biochemical perturbation in mice.

    Science.gov (United States)

    Karim, Md Rezaul; Haque, Abedul; Islam, Khairul; Ali, Nurshad; Salam, Kazi Abdus; Saud, Zahangir Alam; Hossain, Ekhtear; Fajol, Abul; Akhand, Anwarul Azim; Himeno, Seiichiro; Hossain, Khaled

    2010-12-01

    The present study was undertaken to evaluate the protective effect of turmeric powder on arsenic toxicity through mice model. Swiss albino male mice were divided into four groups. The first group was used as control, while groups 2, 3, and 4 were treated with turmeric powder (T, 50 mg/kg body weight/day), sodium arsenite (Sa, 10 mg/kg body weight/day) and turmeric plus Sa (T+Sa), respectively. Results showed that oral administration of Sa reduced the weight gain of the mice compared to the control group and food supplementation of turmeric prevented the reduction of weight gain. Turmeric abrogated the Sa-induced elevation of serum urea, glucose, triglyceride (TG) level and alanine aminotransferase (ALT) activity except the activity of alkaline phosphatase (ALP). Turmeric also prevented the Sa-induced perturbation of serum butyryl cholinesterase activity (BChE). Therefore, ameliorating effect of turmeric on Sa-treated mice suggested the future application of turmeric to reduce or to prevent arsenic toxicity in human.

  9. Purification and characterisation of polyphenol oxidase (PPO) from eggplant (Solanum melongena).

    Science.gov (United States)

    Mishra, Bibhuti B; Gautam, Satyendra; Sharma, Arun

    2012-10-15

    Eggplant (Solanum melongena) is a very rich source of polyphenol oxidase (PPO), which negatively affects its quality upon cutting and postharvest processing due to enzymatic browning. PPO inhibitors, from natural or synthetic sources, are used to tackle this problem. One isoform of PPO was 259-fold purified using standard chromatographic procedures. The PPO was found to be a 112 kDa homodimer. The enzyme showed very low K(m) (0.34 mM) and high catalytic efficiency (3.3×10(6)) with 4-methyl catechol. The substrate specificity was in the order: 4-methyl catechol>tert-butylcatechol>dihydrocaffeic acid>pyrocatechol. Cysteine hydrochloride, potassium metabilsulphite, ascorbic acid, erythorbic acid, resorcylic acid and kojic acid showed competitive inhibition, whereas, citric acid and sodium azide showed mixed inhibition of PPO activity. Cysteine hydrochloride was found to be an excellent inhibitor with the low inhibitor constant of 1.8 μM.

  10. Involvement of NADH Oxidase in Biofilm Formation in Streptococcus sanguinis.

    Directory of Open Access Journals (Sweden)

    Xiuchun Ge

    Full Text Available Biofilms play important roles in microbial communities and are related to infectious diseases. Here, we report direct evidence that a bacterial nox gene encoding NADH oxidase is involved in biofilm formation. A dramatic reduction in biofilm formation was observed in a Streptococcus sanguinis nox mutant under anaerobic conditions without any decrease in growth. The membrane fluidity of the mutant bacterial cells was found to be decreased and the fatty acid composition altered, with increased palmitic acid and decreased stearic acid and vaccenic acid. Extracellular DNA of the mutant was reduced in abundance and bacterial competence was suppressed. Gene expression analysis in the mutant identified two genes with altered expression, gtfP and Idh, which were found to be related to biofilm formation through examination of their deletion mutants. NADH oxidase-related metabolic pathways were analyzed, further clarifying the function of this enzyme in biofilm formation.

  11. Alternative oxidase expression in aged potato tuber slices

    Energy Technology Data Exchange (ETDEWEB)

    Hiser, C.; Herdies, L.; McIntosh, L. (Michigan State Univ., East Lansing (USA))

    1989-04-01

    Higher plant mitochondria posses a cyanide-resistant, hydroxamate-sensitive alternative pathway of electron transport that does not conserve energy. Aging of potato tuber slices for 24 hours leads to the development of an alternative pathway capacity. We have shown that a monoclonal antibody raised against the alternative pathway terminal oxidase of Sauromatum guttatum crossreacts with a protein of similar size in aged potato slice mitochondria. This protein was partially purified and characterized by two-dimensional gel electrophoresis, and its relative levels parallel the rise in cyanide-resistant respiration. We are using a putative clone of the S. guttatum alternative oxidase gene to isolate the equivalent gene from potato and to examine its expression.

  12. Cloning and expression of the potato alternative oxidase gene

    Energy Technology Data Exchange (ETDEWEB)

    Hiser, C.; McIntosh, L. (MSU-DOE Plant Research Laboratory, East Lansing, MI (USA) Michigan State Univ., East Lansing (USA))

    1990-05-01

    Mitochondria from 24-hour-aged potato slices possess an alternative path capacity and a 36kD protein not present in fresh potato mitochondria. This 36kD protein was identified by a monoclonal antibody against the Sauromatum guttatum alternative oxidase. These results suggest de novo synthesis of the 36kD protein during the aging process. To investigate this phenomenon, a clone containing a potato alternative oxidase gene was isolated from a cDNA library using the S. guttatum gene as a probe. This clone shows areas of high homology to the S. guttatum gene. Norther blots of RNA from fresh and 24-hour-aged potato slices are being probed with the potato gene to examine its expression in relation to the appearance of the 36kD protein.

  13. Tyrosinase versus Catechol Oxidase: One Asparagine Makes the Difference.

    Science.gov (United States)

    Solem, Even; Tuczek, Felix; Decker, Heinz

    2016-02-18

    Tyrosinases mediate the ortho-hydroxylation and two-electron oxidation of monophenols to ortho-quinones. Catechol oxidases only catalyze the oxidation of diphenols. Although it is of significant interest, the origin of the functional discrimination between tyrosinases and catechol oxidases has been unclear. Recently, it has been postulated that a glutamate and an asparagine bind and activate a conserved water molecule towards deprotonation of monophenols. Here we demonstrate for the first time that a polyphenoloxidase, which exhibits only diphenolase activity, can be transformed to a tyrosinase by mutation to introduce an asparagine. The asparagine and a conserved glutamate are necessary to properly orient the conserved water in order to abstract a proton from the monophenol. These results provide direct evidence for the crucial importance of a proton shuttle for tyrosinase activity of type 3 copper proteins, allowing a consistent understanding of their different chemical reactivities. PMID:26773413

  14. Physiological roles of plastid terminal oxidase in plant stress responses

    Indian Academy of Sciences (India)

    Xin Sun; Tao Wen

    2011-12-01

    The plastid terminal oxidase (PTOX) is a plastoquinol oxidase localized in the plastids of plants. It is able to transfer electrons from plastoquinone (PQ) to molecular oxygen with the formation of water. Recent studies have suggested that PTOX is beneficial for plants under environmental stresses, since it is involved in the synthesis of photoprotective carotenoids and chlororespiration, which could potentially protect the chloroplast electron transport chain (ETC) from over-reduction. The absence of PTOX in plants usually results in photo-bleached variegated leaves and impaired adaptation to environment alteration. Although PTOX level and activity has been found to increase under a wide range of stress conditions, the functions of plant PTOX in stress responses are still disputed now. In this paper, the possible physiological roles of PTOX in plant stress responses are discussed based on the recent progress.

  15. Methionine sulfoxide reductase A is a stereospecific methionine oxidase

    OpenAIRE

    Lim, Jung Chae; You, Zheng; Kim, Geumsoo; Levine, Rodney L.

    2011-01-01

    Methionine sulfoxide reductase A (MsrA) catalyzes the reduction of methionine sulfoxide to methionine and is specific for the S epimer of methionine sulfoxide. The enzyme participates in defense against oxidative stresses by reducing methionine sulfoxide residues in proteins back to methionine. Because oxidation of methionine residues is reversible, this covalent modification could also function as a mechanism for cellular regulation, provided there exists a stereospecific methionine oxidase....

  16. Regulation of myocardial growth and death by NADPH oxidase

    OpenAIRE

    Maejima, Yasuhiro; Kuroda, Junya; Matsushima, Shouji; Ago, Tetsuro; Sadoshima, Junichi

    2011-01-01

    The NADPH oxidases (Nox) are transmembrane proteins dedicated to producing reactive oxygen species (ROS), including superoxide and hydrogen peroxide, by transferring electrons from NAD(P)H to molecular oxygen. Nox2 and Nox4 are expressed in the heart and play an important role in mediating oxidative stress at baseline and under stress. Nox2 is primarily localized on the plasma membrane, whereas Nox4 is found primarily on intracellular membranes, on mitochondria, the endoplasmic reticulum or t...

  17. NADPH oxidase 4 is an oncoprotein localized to mitochondria

    OpenAIRE

    Graham, Kelly A; KULAWIEC, MARIOLA; Owens, Kjerstin M; Li, Xiurong; Desouki, Mohamed Mokhtar; Chandra, Dhyan; Singh, Keshav K.

    2010-01-01

    Reactive oxygen species (ROS) are known to be involved in many physiological and pathological processes. Initially ROS-producing NADPH oxidase (NOX) proteins were thought to be present in phagocytes. However, recent studies have demonstrated that NOX proteins are expressed in many other cell types and tissues. NOX family members' expression and function seems to vary from tissue to tissue. We determined the expression of the NOX family of proteins (NOX1-5) in normal breast tissue and breast t...

  18. Role of Lysyl Oxidase Propeptide in Secretion and Enzyme Activity

    OpenAIRE

    Grimsby, Jessica L.; Lucero, Hector A.; Trackman, Philip C.; Ravid, Katya; Kagan, Herbert M.

    2010-01-01

    Lysyl oxidase (LOX) is secreted as a proenzyme (proLOX) that is proteolytically processed in the extracellular milieu to release the propeptide and mature, active LOX. LOX oxidizes lysyl residues of a number of protein substrates in the extracellular matrix and on the cell surface, which impacts several physiological and disease states. Although the LOX propeptide (LOX-PP) is glycosylated, little is known about the role of this modification in LOX secretion and activity. To gain insight into ...

  19. Nitrogen heterocycles as potential monoamine oxidase inhibitors: Synthetic aspects

    Directory of Open Access Journals (Sweden)

    Pravin O. Patil

    2014-12-01

    Full Text Available The present review highlights the synthetic methods of monoamine oxidase inhibitors (MAO belonging to a group of nitrogen heterocycles such as pyrazoline, indole, xanthine, oxadiazole, benzimidazole, pyrrole, quinoxaline, thiazole and other related compounds (1990–2012. Moreover, it emphasizes salient findings related to chemical structures and the bioactivities of these heterocycles as MAO inhibitors. The aim of this review is to find out different methods for the synthesis of nitrogen containing heterocycles and their bioactivity related aspects as MAO inhibitors.

  20. NADPH Oxidases in Heart Failure: Poachers or Gamekeepers?

    OpenAIRE

    Zhang, Min; Perino, Alessia; Ghigo, Alessandra; Hirsch, Emilio; Shah, Ajay M.

    2013-01-01

    Significance: Oxidative stress is involved in the pathogenesis of heart failure but clinical antioxidant trials have been unsuccessful. This may be because effects of reactive oxygen species (ROS) depend upon their source, location, and concentration. Nicotinamide adenine dinucleotide phosphate oxidase (Nox) proteins generate ROS in a highly regulated fashion and modulate several components of the heart failure phenotype. Recent Advances: Two Nox isoforms, Nox2 and Nox4, are expressed in the ...

  1. Use of a xanthine oxidase inhibitor in autoimmune hepatitis.

    Science.gov (United States)

    Al-Shamma, Safa; Eross, Balint; Mclaughlin, Simon

    2013-03-01

    A 62-year-old woman with type 1 autoimmune hepatitis (AIH) failed to sustain remission when steroids were withdrawn from a regimen of steroids and azathioprine (AZA). Thiopurine metabolites revealed elevated 6-MMP (6-methyl mercaptopurine) and low 6-TGN (6-thioguanine nucleotide) consistent with AZA-induced hepatotoxicity. Introducing the xanthine oxidase inhibitor allopurinol led to rapid normalization of alanine aminotransferase (ALT) and discontinuation of steroids. PMID:23238820

  2. PHARMACOLOGICAL EFFECTS OF SNAKE VENOM L- AMINO ACID OXIDASES

    OpenAIRE

    Joseph Baby; Rajan Sheeja S; M.V Jeevitha; S.U Ajisha

    2011-01-01

    L-Amino acid oxidases are flavoenzymes which catalyze the stereospecific oxidative deamination of an L-amino acid substrate to a corresponding a-ketoacid with hydrogen peroxide and ammonia production. These enzymes, which are widely distributed in many different organisms, exhibit a marked affinity for hydrophobic amino acids, including phenylalanine, tryptophan, tyrosine, and leucine. Snake venom LAAO induces platelet aggregation and cytotoxicity in various cancer cell lines. The enzyme has ...

  3. Inhibitory activity of xanthine oxidase by fractions Crateva adansonii

    Institute of Scientific and Technical Information of China (English)

    Abdullahi A; Kolo MZ; Hamzah RU; Jigam AA; Yahya A; Kabiru AY; Muhammad H; Sakpe S; Adefolalu FS; Isah MC

    2012-01-01

    Objective: To study the inhibitory effect of various extracts from Crateva adansonii (C. adansonii) used traditionally against several inflammatory diseases such as rheumatism, arthritis, and gout, was investigated on purified bovine milk xanthine oxidase (XO) activity. Methods:Xanthine oxidase inhibitory activity was assayed spectrophotometrically and the degree of enzyme inhibition was determined by measuring the increase in absorbance at 295 nm associated with uric acid formation. Enzyme kinetics was carried out using Lineweaver-Burk plots using xanthine as the substrate. Results: Among the fractions tested, the chloroform fraction exhibited highest potency (IC50 20.2±1.6 μg/mL) followed by the petroleum ether (IC50 30.1±2.2 μg/mL), ethyl acetate (IC50 43.9±1.4 μg/mL) and residual (IC50 98.0±3.3 μg/mL) fractions. The IC50 value of allopurinol used, as the standard was 5.7±0.3 μg/mL. Conclusions: Enzyme inhibition mechanism indicated that the mode of inhibition was of a mixed type. Our findings suggest that the therapeutic use of these plants may be due to the observed Xanthine oxidase inhibition, thereby supporting their use in traditional folk medicine against inflammatory-related diseases, in particular, gout.

  4. Mechanisms for suppressing NADPH oxidase in the vascular wall

    Directory of Open Access Journals (Sweden)

    Gregory J Dusting

    2005-03-01

    Full Text Available Oxidative stress underlies many forms of vascular disease as well as tissue injury following ischemia and reperfusion. The major source of oxidative stress in the artery wall is an NADPH oxidase. This enzyme complex as expressed in vascular cells differs from that in phagocytic leucocytes both in biochemical structure and functions. The crucial flavin-containing catalytic subunits, Nox1 and Nox4, are not found in leucocytes, but are highly expressed in vascular cells and upregulated with vascular remodeling, such as that found in hypertension and atherosclerosis. The difference in catalytic subunits offers the opportunity to develop "vascular specific" NADPH oxidase inhibitors that do not compromise the essential physiological signaling and phagocytic functions carried out by reactive oxygen and nitrogen species. Nitric oxide and targeted inhibitors of NADPH oxidase that block the source of oxidative stress in the vasculature are more likely to prevent the deterioration of vascular function that leads to stroke and heart attack, than are conventional antioxidants. The roles of Nox isoforms in other inflammatory conditions are yet to be explored.

  5. Potential xanthine oxidase inhibitory activity of endophytic Lasiodiplodia pseudotheobromae.

    Science.gov (United States)

    Kapoor, Neha; Saxena, Sanjai

    2014-07-01

    Xanthine oxidase is considered as a potential target for treatment of hyperuricemia. Hyperuricemia is predisposing factor for gout, chronic heart failure, atherosclerosis, tissue injury, and ischemia. To date, only two inhibitors of xanthine oxidase viz. allopurinol and febuxostat have been clinically approved for used as drugs. In the process of searching for new xanthine oxidase inhibitors, we screened culture filtrates of 42 endophytic fungi using in vitro qualitative and quantitative XO inhibitory assays. The qualitative assay exhibited potential XO inhibition by culture filtrates of four isolates viz. #1048 AMSTITYEL, #2CCSTITD, #6AMLWLS, and #96 CMSTITNEY. The XO inhibitory activity was present only in the chloroform extract of the culture filtrates. Chloroform extract of culture filtrate #1048 AMSTITYEL exhibited the highest inhibition of XO with an IC50 value of 0.61 μg ml(-1) which was better than allopurinol exhibiting an IC50 of 0.937 μg ml(-1) while febuxostat exhibited a much lower IC50 of 0.076 μg ml(-1). Further, molecular phylogenetic tools and morphological studies were used to identify #1048 AMSTITYEL as Lasiodiplodia pseudotheobromae. This is the first report of an endophytic Lasiodiplodia pseudotheobromae from Aegle marmelos exhibiting potential XO Inhibitory activity. PMID:24801403

  6. Alkylamino derivatives of 4-aminomethylpyridine as inhibitors of copper-containing amine oxidases.

    Science.gov (United States)

    Bertini, Vincenzo; Buffoni, Franca; Ignesti, Giovanni; Picci, Nevio; Trombino, Sonia; Iemma, Francesca; Alfei, Silvana; Pocci, Marco; Lucchesini, Francesco; De Munno, Angela

    2005-02-10

    The first substratelike, reversible inhibitors of different copper amine oxidases (CAOs) with IC50 (M) as low as 2.0 x 10(-8) corresponding to derivatives of 4-aminomethylpyridine with alkoxy (1a-d), alkylthio (2a,b), and alkylamino (3a-e, 4a-j) groups in the positions 3 and 5 have been prepared and studied. The inhibitors 1a-d are active on benzylamine oxidase and semicarbazide-sensitive amine oxidase and are very selective with respect to diamine oxidase, lysyl oxidase, and monoamine oxidases. The inhibitors 2a,b are selective for benzylamine oxidase whereas 2a is also a new type of good substrate of diamine oxidase. The inhibitors 3a-e and 4a-j are substratelike, reversible, nonselective inhibitors of various CAOs including pea seedling amine oxidase and Hansenula polymorpha amine oxidase, whose enzymatic sites are known from X-ray structure determinations. The inhibitors 3b,c and 4b,c are excellent substratelike tools for studies correlating CAOs that afford crystals suitable for X-ray structure determinations with CAOs from mammals.

  7. Induction of cyclin D1 by arsenite and UVB-irradiation in human keratinocytes

    OpenAIRE

    Liu, Suqing; Gonzalez, Julian; Hwang, Bor-Jang; Steinberg, Mark L

    2011-01-01

    Arsenic is an environmental pollutant with carcinogenic properties that is found in many regions of the world but which poses a health risk primarily in economically disadvantaged areas. In these areas, arsenic ingestion affects various tissues but particularly skin in which it acts as a comutagen with the ultraviolet component of solar radiation. Both epidemiological and experimental evidence indicates that both arsenic and ultraviolet radiation act on signaling pathways that effect the expr...

  8. The lysyl oxidase LOX is absent in basal and squamous cell carcinomas and its knockdown induces an invading phenotype in a skin equivalent model.

    Science.gov (United States)

    Bouez, Charbel; Reynaud, Caroline; Noblesse, Emmanuelle; Thépot, Amélie; Gleyzal, Claudine; Kanitakis, Jean; Perrier, Eric; Damour, Odile; Sommer, Pascal

    2006-03-01

    Lysyl oxidase initiates the enzymatic stage of collagen and elastin cross-linking. Among five isoforms comprising the lysyl oxidase family, LOX is the better studied. LOX is associated to an antitumor activity in ras-transformed fibroblasts, and its expression is down-regulated in many carcinomas. The aim of this work was to shed light on LOX functions within the epidermis by studying its expression in human basal and squamous cell carcinomas and analyzing the effect of its enzymatic activity inhibition and protein absence on human keratinocytes behavior in a skin equivalent. In both carcinomas, LOX expression by epidermal tumor cells was lacking, while it was up-regulated around invading tumor cells in association with the stromal reaction. Lysyl oxidase activity inhibition using beta-aminoproprionitrile in a skin equivalent model prepared with both primary human keratinocytes and HaCaT cell line affected keratin 10 and filaggrin expression and disorganized the collagen network and the basement membrane. In spite of all these changes, no invasion phenotype was observed. Modelization of the invasive phenotype was only noticed in the skin equivalent developed with LOX antisense HaCaT cell line, where the protein LOX is specifically absent. Our results clearly indicate that lysyl oxidase enzymatic activity is essential not only for the integrity maintenance of the dermis but also for the homeostasis of the epidermis. Moreover, LOX protein plays a role in the skin carcinomas and invasion but not through its enzymatic activity.

  9. Co-delivery of doxorubicin and arsenite with reduction and pH dual-sensitive vesicle for synergistic cancer therapy

    Science.gov (United States)

    Zhang, Lu; Xiao, Hong; Li, Jingguo; Cheng, Du; Shuai, Xintao

    2016-06-01

    Drug resistance is the underlying cause for therapeutic failure in clinical cancer chemotherapy. A prodrug copolymer mPEG-PAsp(DIP-co-BZA-co-DOX) (PDBD) was synthesized and assembled into a nanoscale vesicle comprising a PEG corona, a reduction and pH dual-sensitive hydrophobic membrane and an aqueous lumen encapsulating doxorubicin hydrochloride (DOX.HCl) and arsenite (As). The dual stimulation-sensitive design of the vesicle gave rise to rapid release of the physically entrapped DOX.HCl and arsenite inside acidic lysosomes, and chemically conjugated DOX inside the cytosol with high glutathione (GSH) concentration. In the optimized concentration range, arsenite previously recognized as a promising anticancer agent from traditional Chinese medicine can down-regulate the expressions of anti-apoptotic and multidrug resistance proteins to sensitize cancer cells to chemotherapy. Consequently, the DOX-As-co-loaded vesicle demonstrated potent anticancer activity. Compared to the only DOX-loaded vesicle, the DOX-As-co-loaded one induced more than twice the apoptotic ratio of MCF-7/ADR breast cancer cells at a low As concentration (0.5 μM), due to the synergistic effects of DOX and As. The drug loading strategy integrating chemical conjugation and physical encapsulation in stimulation-sensitive carriers enabled efficient drug loading in the formulation.Drug resistance is the underlying cause for therapeutic failure in clinical cancer chemotherapy. A prodrug copolymer mPEG-PAsp(DIP-co-BZA-co-DOX) (PDBD) was synthesized and assembled into a nanoscale vesicle comprising a PEG corona, a reduction and pH dual-sensitive hydrophobic membrane and an aqueous lumen encapsulating doxorubicin hydrochloride (DOX.HCl) and arsenite (As). The dual stimulation-sensitive design of the vesicle gave rise to rapid release of the physically entrapped DOX.HCl and arsenite inside acidic lysosomes, and chemically conjugated DOX inside the cytosol with high glutathione (GSH) concentration. In the

  10. 亚砷酸氧化菌Sinorhizobium sp.GW3的鉴定与亚砷酸氧化酶基因的分离%Identification of A Novel Arsenite-Oxidizing Bacterium Sinorhizobium sp.GW3 and Isolation of Arsenite Oxidase Gene

    Institute of Scientific and Technical Information of China (English)

    汪耀; 涂书新; 王革娇

    2010-01-01

    亚砷酸氧化细菌能够将毒性大的As(Ⅲ)氧化成毒性小的As(V),在生物修复砷污染方面具有应用价值.对一株新型亚砷酸氧化菌Sinorhizobium sp.GW3进行了较全面的鉴定,并分离及分析了亚砷酸氧化酶基因aoxAB.形态学、生理生化鉴定和16S rRNA基因等分析结果表明该菌为Sinorhizobium属.该菌对As(Ⅲ)抗性的MIC(Minimum inhibitory concentration)为9 mmol/L.首次在Sinorhizobium属中分离了包括编码小亚基aoxA和大亚基aoxB在内的亚砷酸氧化酶基因,其编码的大小亚基与已发现的Agrobacterium tumefaciens(ABB51929)的大小亚基在氨基酸水平上分别有86%、80%的同源性.

  11. 耐高浓度As(Ⅲ)菌株的16S rDNA鉴定及对其As(Ⅲ)氧化酶性质的研究%The Identification and Arsenite Oxidase Property of a Strain With High Tolerance to Arsenite

    Institute of Scientific and Technical Information of China (English)

    杨春艳; 颜立敏; 许琳; 徐炎华

    2010-01-01

    对从某研究所含砷废水中分离筛选得到的一株耐高浓度As(Ⅲ)且能氧化As(Ⅲ)的菌株(AS-01)进行16 S-rDNA基因序列相似性分析,将该菌株鉴定为恶臭假单胞菌(Pseudomonas pufida).该菌28 h内对As(Ⅲ)的氧化率达29.8%.对该菌亚砷酸盐氧化酶的酶学性质初步研究表明,该氧化酶的最适宜作用温度为30℃,最适宜pH为6.0,且为亚砷酸盐诱导型酶.

  12. Sodium Meta-Arsenite Ameliorates Hyperglycemia in Obese Diabetic db/db Mice by Inhibition of Hepatic Gluconeogenesis

    Directory of Open Access Journals (Sweden)

    Young-Sun Lee

    2014-01-01

    Full Text Available Sodium meta-arsenite (SA is implicated in the regulation of hepatic gluconeogenesis-related genes in vitro; however, the effects in vivo have not been studied. We investigated whether SA has antidiabetic effects in a type 2 diabetic mouse model. Diabetic db/db mice were orally intubated with SA (10 mg kg−1 body weight/day for 8 weeks. We examined hemoglobin A1c (HbA1c, blood glucose levels, food intake, and body weight. We performed glucose, insulin, and pyruvate tolerance tests and analyzed glucose production and the expression of gluconeogenesis-related genes in hepatocytes. We analyzed energy metabolism using a comprehensive animal metabolic monitoring system. SA-treated diabetic db/db mice had reduced concentrations of HbA1c and blood glucose levels. Exogenous glucose was quickly cleared in glucose tolerance tests. The mRNA expressions of genes for gluconeogenesis-related enzymes, glucose 6-phosphatase (G6Pase, and phosphoenolpyruvate carboxykinase (PEPCK were significantly reduced in the liver of SA-treated diabetic db/db mice. In primary hepatocytes, SA treatment decreased glucose production and the expression of G6Pase, PEPCK, and hepatocyte nuclear factor 4 alpha (HNF-4α mRNA. Small heterodimer partner (SHP mRNA expression was increased in hepatocytes dependent upon the SA concentration. The expression of Sirt1 mRNA and protein was reduced, and acetylated forkhead box protein O1 (FoxO1 was induced by SA treatment in hepatocytes. In addition, SA-treated diabetic db/db mice showed reduced energy expenditure. Oral intubation of SA ameliorates hyperglycemia in db/db mice by reducing hepatic gluconeogenesis through the decrease of Sirt1 expression and increase in acetylated FoxO1.

  13. The functions of crucial cysteine residues in the arsenite methylation catalyzed by recombinant human arsenic (III methyltransferase.

    Directory of Open Access Journals (Sweden)

    Shuping Wang

    Full Text Available Arsenic (III methyltransferase (AS3MT is a cysteine (Cys-rich enzyme that catalyzes the biomethylation of arsenic. To investigate how these crucial Cys residues promote catalysis, we used matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS to analyze Cys residues in recombinant human arsenic (III methyltransferase (hAS3MT. We detected two disulfide bonds, Cys250-Cys32 and Cys368-Cys369, in hAS3MT. The Cys250-Cys32 disulfide bond was reduced by glutathione (GSH or other disulfide bond reductants before the enzymatic methylation of arsenite (iAs3+. In addition to exposing residues around the active sites, cleavage of the Cys250-Cys32 pair modulated the conformation of hAS3MT. This adjustment may stabilize the binding of S-Adenosyl-L-methionine (AdoMet and favor iAs3+ binding to hAS3MT. Additionally, we observed the intermediate of Cys250-S-adenosylhomocysteine (AdoHcy, suggesting that Cys250 is involved in the transmethylation. In recovery experiments, we confirmed that trivalent arsenicals were substrates for hAS3MT, methylation of arsenic occurred on the enzyme, and an intramolecular disulfide bond might be formed after iAs3+ was methylated to dimethylarsinous acid (DMA3+. In this work, we clarified both the functional roles of GSH and the crucial Cys residues in iAs3+ methylation catalyzed by hAS3MT.

  14. Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.) Royle.

    Science.gov (United States)

    Srivastava, S; Mishra, S; Tripathi, R D; Dwivedi, S; Trivedi, P K; Tandon, P K

    2007-04-15

    Serious contamination of aquatic systems by arsenic (As) in different parts of the world calls for the development of an in situ cost-effective phytoremediation technology. In the present investigation, plants of Hydrilla verticillata (L.f.) Royle were exposed to various concentrations of arsenate (As(V)) (0-250 microM) and arsenite (AsIII) (0-25 microM) and analyzed for accumulation responses vis-à-vis biochemical changes. Total As accumulation was found to be higher in plants exposed to AsIII (315 microg g(-1) dw at 25 microM) compared to As(V) (205 microg g(-1) dw at 250 microM) after 7 d of treatment. Plants tolerated low concentrations of As(III) and As(V) by detoxifying the metalloid through augmented synthesis of thiols such as phytochelatins and through increased activity of antioxidant enzymes. While As(V) predominantly stimulated antioxidant enzyme activity, As(III) primarily caused enhanced levels of thiols. The maximum amount of As chelated by PCs was found to be about 39% in plants exposed to As(III) (at 10 microM) and 35% in As(V) exposed plants (at 50 microM) after 4 d. Only the respective highest concentrations of As(III) (25 microM) and As(V) (250 microM) proved toxic for normal plant growth after prolonged treatment. Thus, H. verticillata forms a promising candidate for the phytoremediation of As contaminated water.

  15. MS title: Catalytic oxidation and removal of arsenite in the presence of Fe ions and zero-valent Al metals.

    Science.gov (United States)

    Hsu, Liang-Ching; Chen, Kai-Yue; Chan, Ya-Ting; Deng, Youjun; Hwang, Che-En; Liu, Yu-Ting; Wang, Shan-Li; Kuan, Wen-Hui; Tzou, Yu-Min

    2016-11-01

    Arsenic immobilization in acid mine drainage (AMD) is required prior to its discharge to safeguard aquatic organisms. Zero-valent aluminum (ZVAl) such as aluminum beverage cans (AlBC) was used to induce the oxidation of As(III) to As(V) and enhance the subsequent As removal from an artificially prepared AMD. While indiscernible As(III) oxidation was found in aerated ZVAl systems, the addition of 0.10-0.55mM Fe(II) or Fe(III) into the AMD significantly promoted the As(V) production. Reactions between Fe(II) and H2O2, which was produced through an oxidative reaction of ZVAl with dissolved oxygen, generated OH radicals. Such OH radicals subsequently induced the As(III) oxidation. Over the course of the Fenton like reaction, ZVAl not only directly generated the H2O2, but indirectly enhanced the OH radical production by replenishing Fe(II). Arsenite oxidation in the aerated ZVAl/Fe and AlBC/Fe systems followed zero- and first-order kinetics. Differences in the kinetic reactions of ZVAl and AlBC with respect to As(III) oxidation were attributed to higher productive efficiency of the oxidant in the AlBC systems. After the completion of As(III) oxidation, As(V) could be removed simultaneously with Al(III) and Fe(III) by increasing solution's pH to 6 to produce Al/Fe hydroxides as As(V) scavengers or to form Al/Fe/As co-precipitates. PMID:27285595

  16. Kinetics of proton and electron transfer in heme-copper oxidases

    OpenAIRE

    Lachmann, Peter

    2015-01-01

    Heme-copper oxidases are transmembrane proteins that are found in aerobic and anaerobic respiratory chains. During aerobic respiration, these enzymes reduce dioxygen to water. The energy released in the reaction is used to transport protons across a biological membrane. Stored as proton electrochemical gradient, the energy can be used to regenerate ATP. It is known that aa3 oxidases, which are the most common oxidases, transport pumped protons and protons used for the catalytic reaction using...

  17. A Mycobacterium tuberculosis Cytochrome bd Oxidase Mutant Is Hypersensitive to Bedaquiline

    OpenAIRE

    Berney, Michael; Hartman, Travis E.; William R Jacobs

    2014-01-01

    ABSTRACT The new medicinal compound bedaquiline (BDQ) kills Mycobacterium tuberculosis by inhibiting F1Fo-ATP synthase. BDQ is bacteriostatic for 4 to 7 days and kills relatively slowly compared to other frontline tuberculosis (TB) drugs. Here we show that killing with BDQ can be improved significantly by inhibiting cytochrome bd oxidase, a non-proton-pumping terminal oxidase. BDQ was instantly bactericidal against a cytochrome bd oxidase null mutant of M. tuberculosis, and the rate of killin...

  18. The Terminal Oxidase Cytochrome bd Promotes Sulfide-resistant Bacterial Respiration and Growth.

    Science.gov (United States)

    Forte, Elena; Borisov, Vitaliy B; Falabella, Micol; Colaço, Henrique G; Tinajero-Trejo, Mariana; Poole, Robert K; Vicente, João B; Sarti, Paolo; Giuffrè, Alessandro

    2016-01-01

    Hydrogen sulfide (H2S) impairs mitochondrial respiration by potently inhibiting the heme-copper cytochrome c oxidase. Since many prokaryotes, including Escherichia (E.) coli, generate H2S and encounter high H2S levels particularly in the human gut, herein we tested whether bacteria can sustain sulfide-resistant O2-dependent respiration. E. coli has three respiratory oxidases, the cyanide-sensitive heme-copper bo3 enzyme and two bd oxidases much less sensitive to cyanide. Working on the isolated enzymes, we found that, whereas the bo3 oxidase is inhibited by sulfide with half-maximal inhibitory concentration IC50 = 1.1 ± 0.1 μM, under identical experimental conditions both bd oxidases are insensitive to sulfide up to 58 μM. In E. coli respiratory mutants, both O2-consumption and aerobic growth proved to be severely impaired by sulfide when respiration was sustained by the bo3 oxidase alone, but unaffected by ≤200 μM sulfide when either bd enzyme acted as the only terminal oxidase. Accordingly, wild-type E. coli showed sulfide-insensitive respiration and growth under conditions favouring the expression of bd oxidases. In all tested conditions, cyanide mimicked the functional effect of sulfide on bacterial respiration. We conclude that bd oxidases promote sulfide-resistant O2-consumption and growth in E. coli and possibly other bacteria. The impact of this discovery is discussed. PMID:27030302

  19. Unsubstituted phenothiazine as a superior water-insoluble mediator for oxidases

    OpenAIRE

    Sekretaryova, Alina; Vagin, Mikhail; Beni, Valerio; Turner, Anthony P.F.; Karyakin, Arkady A

    2014-01-01

    The mediation of oxidases glucose oxidase (GOx), lactate oxidase (LOx) and cholesterol oxidase (ChOx) by a new electron shuttling mediator, unsubstituted phenothiazine (PTZ), was studied. Cyclic voltammetry and rotating-disk electrode measurements in nonaqueous media were used to determine the diffusion characteristics of the mediator and the kinetics of its reaction with GOx, giving a second-order rate constant of 7.6×103–2.1×104 M−1 s−1 for water–acetonitrile solutions containing 5–15% wate...

  20. Affective Urbanism

    DEFF Research Database (Denmark)

    Samson, Kristine

    . Under these circumstances affective aesthetics operate strategically within the urban field of interests, capital flows and desires of the social. This ‘affective urbanism’ (Anderson & Holden 2008) is linked to a society influenced by new kinds of information flows, where culture is mediated and enacted...... and cultural festivals, both practices indicate that design is implemented as means of creating affective spaces in the city. Both cases show how immaterial production of affects and emotions in the city can be seen in relation to economic potential and urban development. Finally, I will discuss whether urban......Urban design and architecture are increasingly used as material and affective strategies for setting the scene, for manipulation and the production of urban life: The orchestration of atmospheres, the framing and staging of urban actions, the programming for contemplation, involvement, play...

  1. A cytochrome cbb3 (cytochrome c) terminal oxidase in Azospirillum brasilense Sp7 supports microaerobic growth.

    Science.gov (United States)

    Marchal, K; Sun, J; Keijers, V; Haaker, H; Vanderleyden, J

    1998-11-01

    Spectral analysis indicated the presence of a cytochrome cbb3 oxidase under microaerobic conditions in Azospirillum brasilense Sp7 cells. The corresponding genes (cytNOQP) were isolated by using PCR. These genes are organized in an operon, preceded by a putative anaerobox. The phenotype of an A. brasilense cytN mutant was analyzed. Under aerobic conditions, the specific growth rate during exponential phase (mu(e)) of the A. brasilense cytN mutant was comparable to the wild-type specific growth rate (m(e) of approximately 0.2 h-1). In microaerobic NH4+-supplemented conditions, the low respiration of the A. brasilense cytN mutant affected its specific growth rate (mu(e) of approximately 0.02 h-1) compared to the wild-type specific growth rate (mu(e) of approximately 0.2 h-1). Under nitrogen-fixing conditions, both the growth rates and respiration of the wild type were significantly diminished in comparison to those under NH4+-supplemented conditions. Differences in growth rates and respiration between the wild type and the A. brasilense cytN mutant were less pronounced under these nitrogen-fixing conditions (mu(e) of approximately 0.03 h-1 for the wild type and 0.02 h-1 for the A. brasilense cytN mutant). The nitrogen-fixing capacity of the A. brasilense cytN mutant was still approximately 80% of that determined for the wild-type strain. This leads to the conclusion that the A. brasilense cytochrome cbb3 oxidase is required under microaerobic conditions, when a high respiration rate is needed, but that under nitrogen-fixing conditions the respiration rate does not seem to be a growth-limiting factor.

  2. Human monoamine oxidase A gene determines levels of enzyme activity.

    OpenAIRE

    Hotamisligil, G S; Breakefield, X O

    1991-01-01

    Monoamine oxidase (MAO) is a critical enzyme in the degradative deamination of biogenic amines throughout the body. Two biochemically distinct forms of the enzyme, A and B, are encoded in separate genes on the human X chromosome. In these studies we investigated the role of the structural gene for MAO-A in determining levels of activity in humans, as measured in cultured skin fibroblasts. The coding sequence of the mRNA for MAO-A was determined by first-strand cDNA synthesis, PCR amplificatio...

  3. Characterization of Polyphenol Oxidase from Jerusalem Artichoke (Helianthus tuberosus)

    OpenAIRE

    ZİYAN, Emine; PEKYARDIMCI, Şule

    2003-01-01

    Polyphenol oxidases (PPO) in Jerusalem arthichoke (Helianthus tuberosus) skin and flesh were extracted and purified through (NH4)2SO4 precipitation, dialysis and gel filtration chromatography. The samples obtained from ammonium sulfate precipitation and dialysis were used for the characterization of crude skin and flesh PPO. Optimum pH values were 7.5 for skin PPO and 8.0 for flesh PPO with 50 mM catechol. The optimum temperatures for skin and flesh PPO were 25 °C and 30 °C respectiv...

  4. Hydrogen Peroxide is the Major Oxidant Product of Xanthine Oxidase

    OpenAIRE

    Kelley, Eric E.; Nicholas K.H. Khoo; Hundley, Nicholas J.; Malik, Umair Z.; Freeman, Bruce A.; Tarpey, Margaret M.

    2009-01-01

    Xanthine oxidase (XO) is a critical source of reactive oxygen species (ROS) in inflammatory disease. Focus, however, has centered almost exclusively on XO-derived superoxide (O2•−) while direct H2O2 production from XO has been less well-investigated. Therefore, we examined the relative quantities of O2•− and H2O2 produced by XO under a range (1–21%) of O2 tensions. At O2 concentrations between 10 and 21 %, H2O2 accounted for ~ 75% of ROS production. As O2 concentrations were lowered, there wa...

  5. Affective Maps

    DEFF Research Database (Denmark)

    Salovaara-Moring, Inka

    . In particular, mapping environmental damage, endangered species, and human made disasters has become one of the focal point of affective knowledge production. These ‘more-than-humangeographies’ practices include notions of species, space and territory, and movement towards a new political ecology. This type...... of environmental knowledge production. It uses InfoAmazonia, the databased platform on Amazon rainforests, as an example of affective geo-visualization within information mapping that enhances embodiment in the experience of the information. Amazonia is defined as a digitally created affective (map)space within...

  6. Uptake and translocation of arsenite by Pteris vittata L.: Effects of glycerol, antimonite and silver

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, Shiny [Soil and Water Science Department, University of Florida, Gainesville, FL 32611 (United States); Rathinasabapathi, Bala [Horticultural Sciences Department, University of Florida, Gainesville, FL 32611 (United States); Ma, Lena Q., E-mail: lqma@ifas.ufl.edu [Soil and Water Science Department, University of Florida, Gainesville, FL 32611 (United States)

    2011-12-15

    AsIII uptake in living cells is through aquaglyceroporin transporters, but it is unknown in arsenic-hyperaccumulator Pteris vittata. We investigated the effects of AsIII analogs glycerol and antimonite (SbIII) at 0-100 mM and aquaporin inhibitor AgNO{sub 3} at 0-0.1 mM on the uptake of 0.1 mM AsIII or AsV by P. vittata over 1-2 h. Glycerol or SbIII didn't impact AsIII or AsV uptake by P. vittata (p < 0.05), with As concentrations in the fronds and roots being 4.4-6.3 and 3.9-6.2 mg/kg. However, 0.01 mM AgNO{sub 3} reduced As concentrations in the fronds and roots by 64% and 58%. Hence, AsIII uptake in P. vittata might be via an aquaporin transporter different from glycerol and SbIII transporters. Further as AsIII analogs and aquaporin inhibitor had no impact on AsV uptake, AsIII and AsV were likely taken up by different transporters in P. vittata. Our results imply a different AsIII transporter in P. vittata from other plants. - Highlights: > AsIII analogs glycerol and SbIII didn't impact AsIII or AsV uptake by P. vittata. > P. vittata took up substantial amount of SbIII but unable to translocate it to fronds. > Aquaglyceroporin inhibitor Ag reduced AsIII uptake by P. vittata. > AsIII transporter in P. vittata was Ag-sensitive, different from glycerol and SbIII. - AsIII uptake in P. vittata was via unusual aquaglyceroporins or other novel transporter proteins, which was not affected by glycerol or SbIII but was sensitive to 0.01 mM AgNO{sub 3}.

  7. A broad distribution of the alternative oxidase in microsporidian parasites.

    Directory of Open Access Journals (Sweden)

    Bryony A P Williams

    2010-02-01

    Full Text Available Microsporidia are a group of obligate intracellular parasitic eukaryotes that were considered to be amitochondriate until the recent discovery of highly reduced mitochondrial organelles called mitosomes. Analysis of the complete genome of Encephalitozoon cuniculi revealed a highly reduced set of proteins in the organelle, mostly related to the assembly of iron-sulphur clusters. Oxidative phosphorylation and the Krebs cycle proteins were absent, in keeping with the notion that the microsporidia and their mitosomes are anaerobic, as is the case for other mitosome bearing eukaryotes, such as Giardia. Here we provide evidence opening the possibility that mitosomes in a number of microsporidian lineages are not completely anaerobic. Specifically, we have identified and characterized a gene encoding the alternative oxidase (AOX, a typically mitochondrial terminal oxidase in eukaryotes, in the genomes of several distantly related microsporidian species, even though this gene is absent from the complete genome of E. cuniculi. In order to confirm that these genes encode functional proteins, AOX genes from both A. locustae and T. hominis were over-expressed in E. coli and AOX activity measured spectrophotometrically using ubiquinol-1 (UQ-1 as substrate. Both A. locustae and T. hominis AOX proteins reduced UQ-1 in a cyanide and antimycin-resistant manner that was sensitive to ascofuranone, a potent inhibitor of the trypanosomal AOX. The physiological role of AOX microsporidia may be to reoxidise reducing equivalents produced by glycolysis, in a manner comparable to that observed in trypanosomes.

  8. 2-acetylphenol analogs as potent reversible monoamine oxidase inhibitors

    Directory of Open Access Journals (Sweden)

    Legoabe LJ

    2015-07-01

    Full Text Available Lesetja J Legoabe,1 Anél Petzer,1 Jacobus P Petzer1,21Centre of Excellence for Pharmaceutical Sciences, 2Department of Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom, South AfricaAbstract: Based on a previous report that substituted 2-acetylphenols may be promising leads for the design of novel monoamine oxidase (MAO inhibitors, a series of C5-substituted 2-acetylphenol analogs (15 and related compounds (two were synthesized and evaluated as inhibitors of human MAO-A and MAO-B. Generally, the study compounds exhibited inhibitory activities against both MAO-A and MAO-B, with selectivity for the B isoform. Among the compounds evaluated, seven compounds exhibited IC50 values <0.01 µM for MAO-B inhibition, with the most selective compound being 17,000-fold selective for MAO-B over the MAO-A isoform. Analyses of the structure–activity relationships for MAO inhibition show that substitution on the C5 position of the 2-acetylphenol moiety is a requirement for MAO-B inhibition, and the benzyloxy substituent is particularly favorable in this regard. This study concludes that C5-substituted 2-acetylphenol analogs are potent and selective MAO-B inhibitors, appropriate for the design of therapies for neurodegenerative disorders such as Parkinson’s disease.Keywords: monoamine oxidase, MAO, inhibition, 2-acetylphenol, structure–activity relationship

  9. Functionalized Polyacrylonitrile Nanofibrous Membranes for Covalent Immobilization of Glucose Oxidase.

    Science.gov (United States)

    Manuel, James; Kim, Miso; Dharela, Rohini; Chauhan, Ghanshyam S; Fapyane, Deby; Lee, Soo-Jin; Chang, In Seop; Kang, Seo-Hee; Kim, Seon-Won; Ahn, Jou-Hyeon

    2015-01-01

    Nanofibrous membrane (NFM) with uniform morphology and large surface area was prepared from 10% solution of polyacrylonitrile (PAN) in N,N-dimethylformamide by electrospinning technique. NFM was chemically modified for use as a support for the immobilization of glucose oxidase. Chemical modification of NFM was carried out by two different methods. In the first method, the cyano groups of PAN were modified to amino groups by a two-step process, while in the second method the carboxylic groups were generated first and then further reacted with hexamethylene diamine to create a reactive spacer arm for the immobilization of enzyme. Scanning electron microscopy studies showed that the surface morphology of NFM was not changed by chemical modification and its mechanical strength was improved. The immobilized glucose oxidase (GOx) retained 54 and 60% of its original activity up to 25 cycles with the PAN NFMs modified by the first and the second method, respectively. The GOx-immobilized NFM from the second method showed promising performance with higher enzyme immobilization, activity retention, and favorable kinetic parameters. PMID:26301308

  10. Identification and characterization of Sclerotinia sclerotiorum NADPH oxidases.

    Science.gov (United States)

    Kim, Hyo-jin; Chen, Changbin; Kabbage, Mehdi; Dickman, Martin B

    2011-11-01

    Numerous studies have shown both the detrimental and beneficial effects of reactive oxygen species (ROS) in animals, plants, and fungi. These organisms utilize controlled generation of ROS for signaling, pathogenicity, and development. Here, we show that ROS are essential for the pathogenic development of Sclerotinia sclerotiorum, an economically important fungal pathogen with a broad host range. Based on the organism's completed genome sequence, we identified two S. sclerotiorum NADPH oxidases (SsNox1 and SsNox2), which presumably are involved in ROS generation. RNA interference (RNAi) was used to examine the function of SsNox1 and SsNox2. Silencing of SsNox1 expression indicated a central role for this enzyme in both virulence and pathogenic (sclerotial) development, while inactivation of the SsNox2 gene resulted in limited sclerotial development, but the organism remained fully pathogenic. ΔSsnox1 strains had reduced ROS levels, were unable to develop sclerotia, and unexpectedly correlated with significantly reduced oxalate production. These results are in accordance with previous observations indicating that fungal NADPH oxidases are required for pathogenic development and are consistent with the importance of ROS regulation in the successful pathogenesis of S. sclerotiorum. PMID:21890677

  11. Overexpression of rice glutaredoxins (OsGrxs) significantly reduces arsenite accumulation by maintaining glutathione pool and modulating aquaporins in yeast.

    Science.gov (United States)

    Verma, Pankaj Kumar; Verma, Shikha; Meher, Alok Kumar; Pande, Veena; Mallick, Shekhar; Bansiwal, Amit Kumar; Tripathi, Rudra Deo; Dhankher, Om Parkash; Chakrabarty, Debasis

    2016-09-01

    Arsenic (As) is an acute poison and class I carcinogen, can cause a serious health risk. Staple crops like rice are the primary source of As contamination in human food. Rice grown on As contaminated areas accumulates higher As in their edible parts. Based on our previous transcriptome data, two rice glutaredoxins (OsGrx_C7 and OsGrx_C2.1) were identified that showed up-regulated expression during As stress. Here, we report OsGrx_C7 and OsGrx_C2.1 from rice involved in the regulation of intracellular arsenite (AsIII). To elucidate the mechanism of OsGrx mediated As tolerance, both OsGrxs were cloned and expressed in Escherichia coli (Δars) and Saccharomyces cerevisiae mutant strains (Δycf1, Δacr3). The expression of OsGrxs increased As tolerance in E. coli (Δars) mutant strain (up to 4 mM AsV and up to 0.6 mM AsIII). During AsIII exposure, S. cerevisiae (Δacr3) harboring OsGrx_C7 and OsGrx_C2.1 have lower intracellular AsIII accumulation (up to 30.43% and 24.90%, respectively), compared to vector control. Arsenic accumulation in As-sensitive S. cerevisiae mutant (Δycf1) also reduced significantly on exposure to inorganic As. The expression of OsGrxs in yeast maintained intracellular GSH pool and increased extracellular GSH concentration. Purified OsGrxs displays in vitro GSH-disulfide oxidoreductase, glutathione reductase and arsenate reductase activities. Also, both OsGrxs are involved in AsIII extrusion by altering the Fps1 transcripts in yeast and protect the cell by maintaining cellular GSH pool. Thus, our results strongly suggest that OsGrxs play a crucial role in the maintenance of the intracellular GSH pool and redox status of the cell during both AsV and AsIII stress and might be involved in regulating intracellular AsIII levels by modulation of aquaporin expression and functions.

  12. D-MEKK1, the Drosophila orthologue of mammalian MEKK4/MTK1, and Hemipterous/D-MKK7 mediate the activation of D-JNK by cadmium and arsenite in Schneider cells

    Directory of Open Access Journals (Sweden)

    Iordanov Mihail S

    2006-02-01

    Full Text Available Abstract Background The family of c-Jun NH2-terminal kinases (JNK plays important roles in embryonic development and in cellular responses to stress. Toxic metals and their compounds are potent activators of JNK in mammalian cells. The mechanism of mammalian JNK activation by cadmium and sodium arsenite involves toxicant-induced oxidative stress. The study of mammalian signaling pathways to JNK is complicated by the significant degree of redundancy among upstream JNK regulators, especially at the level of JNK kinase kinases (JNKKK. Results Using Drosophila melanogaster S2 cells, we demonstrate here that cadmium and arsenite activate Drosophila JNK (D-JNK via oxidative stress as well, thus providing a simpler model system to study JNK signaling. To elucidate the signaling pathways that lead to activation of D-JNK in response to cadmium or arsenite, we employed RNA interference (RNAi to knock down thirteen upstream regulators of D-JNK, either singly or in combinations of up to seven at a time. Conclusion D-MEKK1, the fly orthologue of mammalian MEKK4/MTK1, and Hemipterous/D-MKK7 mediates the activation of D-JNK by cadmium and arsenite.

  13. Effects of the NADPH oxidase inhibitor apocynin on the left ventricular dysfunction induced by cocaine administration

    Institute of Scientific and Technical Information of China (English)

    MarcISABELLE; ChristelleMONTEIL; ChristianTHUILLEZ

    2004-01-01

    AIM: In a previous study, we have shown the role of alphaladrenoceptor in the left ventricular (LV) dysfunction after chronic cocaine administration via the induction of NADPH oxidase. In this study we used the NADPH oxidase inhibitor apocynin, to further investigate the real involvement of this prooxidant system in this LV dysfunction. METHODS: Wistar rats were treated

  14. Biocatalytic potential of laccase-like multicopper oxidases from Aspergillus niger

    NARCIS (Netherlands)

    Tamayo Ramos, J.A.; Berkel, van W.J.H.; Graaff, de L.H.

    2012-01-01

    BACKGROUND: Laccase-like multicopper oxidases have been reported in several Aspergillus species but they remain uncharacterized. The biocatalytic potential of the Aspergillus niger fungal pigment multicopper oxidases McoA and McoB and ascomycete laccase McoG was investigated. RESULTS: The laccase-li

  15. Spectral and catalytic properties of aryl-alcohol oxidase, a fungal flavoenzyme acting on polyunsaturated alcohols

    NARCIS (Netherlands)

    Ferreira, P.; Medina, M.; Guillén, F.; Martínez, M.J.; Berkel, van W.J.H.; Martínez, A.T.

    2005-01-01

    Spectral and catalytic properties of the flavoenzyme AAO (aryl-alcohol oxidase) from Pleurotus eryngii were investigated using recombinant enzyme. Unlike most flavoprotein oxidases, AAO does not thermodynamically stabilize a flavin semiquinone radical and forms no sulphite adduct. AAO catalyses the

  16. MUTATIONS IN THE FAD-BINDING FOLD OF ALCOHOL OXIDASE FROM HANSENULA-POLYMORPHA

    NARCIS (Netherlands)

    DEHOOP, M; ASGEIRSDOTTIR, S; BLAAUW, M; VEENHUIS, M; CREGG, J; GLEESON, M; AB, G

    1991-01-01

    Alcohol oxidase of methylotrophic yeast is an FAD-containing enzyme. When in its active form, the enzyme is an octamer and located in the peroxisomes. To study the importance of FAD-binding on the activity, octamerization and intracellular localization of the enzyme, alcohol oxidase of Hansenula pol

  17. Cytochrome oxidase as an indicator of ice storage and frozen storage

    DEFF Research Database (Denmark)

    Godiksen, Helene; Jessen, Flemming

    2001-01-01

    of 30 degreesC. Maximal activation by Triton X-100 was obtained in a range of 0.62-1.25 mM Triton X-100. The specificity of the assay was high, as cytochrome oxidase was inhibited 98% by 33 muM of the specific inhibitor sodium azide. The coefficient of variation of cytochrome oxidase activity...

  18. The Oxidation of Thiols by Flavoprotein Oxidases : a Biocatalytic Route to Reactive Thiocarbonyls

    NARCIS (Netherlands)

    Ewing, Tom A.; Dijkman, Willem P.; Vervoort, Jacques M.; Fraaije, Marco W.; van Berkel, Willem J. H.

    2014-01-01

    Flavoprotein oxidases are a diverse class of biocatalysts, most of which catalyze the oxidation of C-O, C-N, or C-C bonds. Flavoprotein oxidases that are known to catalyze the oxidation of C-S bonds are rare, being limited to enzymes that catalyze the oxidative cleavage of thioethers. Herein, we rep

  19. The Oxidation of Thiols by Flavoprotein Oxidases: a Biocatalytic Route to Reactive Thiocarbonyls.

    NARCIS (Netherlands)

    Ewing, T.A.; Dijkman, W.P.; Vervoort, J.J.M.; Fraaije, M.W.; Berkel, van W.J.H.

    2014-01-01

    Flavoprotein oxidases are a diverse class of biocatalysts, most of which catalyze the oxidation of C[BOND]O, C[BOND]N, or C[BOND]C bonds. Flavoprotein oxidases that are known to catalyze the oxidation of C[BOND]S bonds are rare, being limited to enzymes that catalyze the oxidative cleavage of thioet

  20. [Molecular docking analysis of xanthine oxidase inhibition by constituents of cichory].

    Science.gov (United States)

    Wang, Xue-jie; Lin, Zhi-jian; Zhang, Bing; Zhu, Chun-sheng; Niu, Hong-juan; Zhou, Yue; Nie, An-zheng; Wang, Yu

    2015-10-01

    Human xanthine oxidase is considered to be a target for therapy of hyperuricemia. Cichorium intybus is a Chinese plant medicine which widely used in Xinjiang against various diseases. In order to screen the inhibitors of xanthine oxidase from C. intybus and to explore main pharmacological actions of cichory a compound collection of C. intybus was built via consulting related references about chemical research on cichory. The three-dimensional crystal structure of xanthine oxidase (PDB code: 1N5X) from Protein Data Bank was downloaded.. Autodock 4.2 was employed to screen the inhibitors of xanthine oxidase from cichory 70 compounds were found to possess quite low binding free energy comparing with TEI (febuxostat). C. intybus contains constituents possessing potential inhibitive activity against xanthine oxidase. It can explain the main pharmacological actions of cichory which can significantly lower the level of serum uric acid. PMID:26975108

  1. Rcf1 mediates cytochrome oxidase assembly and respirasome formation, revealing heterogeneity of the enzyme complex.

    Science.gov (United States)

    Vukotic, Milena; Oeljeklaus, Silke; Wiese, Sebastian; Vögtle, F Nora; Meisinger, Chris; Meyer, Helmut E; Zieseniss, Anke; Katschinski, Doerthe M; Jans, Daniel C; Jakobs, Stefan; Warscheid, Bettina; Rehling, Peter; Deckers, Markus

    2012-03-01

    The terminal enzyme of the mitochondrial respiratory chain, cytochrome oxidase, transfers electrons to molecular oxygen, generating water. Within the inner mitochondrial membrane, cytochrome oxidase assembles into supercomplexes, together with other respiratory chain complexes, forming so-called respirasomes. Little is known about how these higher oligomeric structures are attained. Here we report on Rcf1 and Rcf2 as cytochrome oxidase subunits in S. cerevisiae. While Rcf2 is specific to yeast, Rcf1 is a conserved subunit with two human orthologs, RCF1a and RCF1b. Rcf1 is required for growth in hypoxia and complex assembly of subunits Cox13 and Rcf2, as well as for the oligomerization of a subclass of cytochrome oxidase complexes into respirasomes. Our analyses reveal that the cytochrome oxidase of mitochondria displays intrinsic heterogeneity with regard to its subunit composition and that distinct forms of respirasomes can be formed by complex variants.

  2. Affect Regulation

    DEFF Research Database (Denmark)

    Pedersen, Signe Holm; Poulsen, Stig Bernt; Lunn, Susanne

    2014-01-01

    Gergely and colleagues’ state that their Social Biofeedback Theory of Parental Affect Mirroring” can be seen as a kind of operationalization of the classical psychoanalytic concepts of holding, containing and mirroring. This article examines to what extent the social biofeedback theory of parenta...

  3. Transplacental and early life exposure to inorganic arsenic affected development and behavior in offspring rats

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Shuhua; Jin, Yaping; Sun, Guifan [China Medical University, Department of Environmental and Occupational Health, College of Public Health, Shenyang, Liaoning (China); Sun, Wenjuan; Wang, Fengzhi [Shenyang Medical College, Department of Preventive Medicine, Shenyang, Liaoning (China)

    2009-06-15

    To evaluate the developmental neurotoxicity of arsenic in offspring rats by transplacental and early life exposure to sodium arsenite in drinking water, the pregnant rats or lactating dams, and weaned pups were given free access to drinking water, which contained arsenic at concentrations of 0, 10, 50, 100 mg/L from GD 6 until PND 42. A battery of physical and behavioral tests was applied to evaluate the functional outcome of pups. Pups in arsenic exposed groups weighed less than controls throughout lactation and weaning. Body weight of 10, 50 and 100 mg/L arsenic exposed groups decreased significantly on PND 42, 16 and 12, respectively. Physical development (pinna unfolding, fur appearance, incisor eruption, or eye opening) in pups displayed no significant differences between control and arsenic treated groups. The number of incidences within the 100 mg/L arsenic treated group, in tail hung, auditory startle and visual placing showed significant decrease compared to the control group (p<0.05). In square water maze test, the trained numbers to finish the trials successfully in 50 and 100 mg/L arsenic exposed groups increased remarkably compared to control group, and there was a dose-related increase (p<0.01) observed. Taken together, these data show that exposure of inorganic arsenite to pregnant dams and offspring pups at levels up to 100 mg/L in drinking water may affect their learning and memory functions and neuromotor reflex. (orig.)

  4. Potential role of NADPH oxidase in pathogenesis of pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Wei-Li; Cao; Xiao-Hui; Xiang; Kai; Chen; Wei; Xu; Shi-Hai; Xia

    2014-01-01

    Studies have demonstrated that reactive oxygen species(ROS) are closely related to inflammatory disorders. Nicotinamide adenine dinucleotide phosphate oxidase(NOX), originally found in phagocytes, is the main source of ROS in nonphagocytic cells. Besides directly producing the detrimental highly reactive ROS to act on biomolecules(lipids, proteins, and nucleic acids), NOX can also activate multiple signal transduction pathways, which regulate cell growth, proliferation, differentiation and apoptosis by producing ROS. Recently, research on pancreatic NOX is no longer limited to inflammatory cells, but extends to the aspect of pancreatic acinar cells and pancreatic stellate cells, which are considered to be potentially associated with pancreatitis. In this review, we summarize the literature on NOX protein structure, activation, function and its role in the pathogenesis of pancreatitis.

  5. Low platelet monoamine oxidase activity in pathological gambling

    International Nuclear Information System (INIS)

    Decreased platelet monoamine oxidase (MAO) activity has been reported in association with sensation-seeking personality type and in some mental disorders associated with a lack of impulse control. Pathological gambling itself has been related with both sensation-seeking and reduced impulse control. Platelet MAO activity was investigated in 15 DSM-III-R pathological gamblers from our outpatient clinic. Gamblers had a significantly lower platelet MAO activity than a group of 25 healthy controls. The range of MAO levels in gamblers was also significantly shorter than in controls. In controls, platelet MAO levels showed the previously described negative correlations with sensation-seeking scores but not in gamblers. The findings are consistent with previous studies showing an association of low platelet MAO activity with impulse control disorders and raise some interesting therapeutic alternatives for pathological gambling. (au) (40 refs.)

  6. Magnetic field effects on brain monoamine oxidase activity

    Energy Technology Data Exchange (ETDEWEB)

    Borets, V.M.; Ostrovskiy, V.Yu.; Bankovskiy, A.A.; Dudinskaya, T.F.

    1985-03-01

    In view of the increasing use of magnetotherapy, studies were conducted on the effects of 35 mTesla magnetic fields on monoamine oxidase activity in the rat brain. Under in vitro conditions a constant magnetic field in the continuous mode was most effective in inhibiting deamination of dopamine following 1 min exposure, while in vivo studies with 8 min or 10 day exposures showed that inhibition was obtained only with a variable field in the continuous mode. However, inhibition of dopamine deamination was only evident within the first 24 h after exposure was terminated. In addition, in none of the cases was norepinephrine deamination inhibited. The effects of the magnetic fields were, therefore, transient and selective with the CNS as the target system. 9 references.

  7. Lysyl Oxidase, a Targetable Secreted Molecule Involved in Cancer Metastasis

    DEFF Research Database (Denmark)

    Cox, Thomas R; Gartland, Alison; Erler, Janine T

    2016-01-01

    to improve the tools available in our arsenal against this disease, both in terms of treatment, but also prevention. Recently, we showed that hypoxic induction of the extracellular matrix modifying enzyme lysyl oxidase (LOX) correlates with metastatic dissemination to the bone in estrogen receptor negative......Secondary metastatic cancer remains the single biggest cause of mortality and morbidity across most solid tumors. In breast cancer, 100% of deaths are attributed to metastasis. At present, there are no "cures" for secondary metastatic cancer of any form and there is an urgent unmet clinical need...... breast cancer and is essential for the formation of premetastatic osteolytic lesions. We showed that in models of breast cancer metastasis, targeting LOX, or its downstream effects, significantly inhibited premetastatic niche formation and the resulting metastatic burden, offering preclinical validation...

  8. Traumatic Brain Injury and NADPH Oxidase: A Deep Relationship

    Directory of Open Access Journals (Sweden)

    Cristina Angeloni

    2015-01-01

    Full Text Available Traumatic brain injury (TBI represents one of the major causes of mortality and disability in the world. TBI is characterized by primary damage resulting from the mechanical forces applied to the head as a direct result of the trauma and by the subsequent secondary injury due to a complex cascade of biochemical events that eventually lead to neuronal cell death. Oxidative stress plays a pivotal role in the genesis of the delayed harmful effects contributing to permanent damage. NADPH oxidases (Nox, ubiquitary membrane multisubunit enzymes whose unique function is the production of reactive oxygen species (ROS, have been shown to be a major source of ROS in the brain and to be involved in several neurological diseases. Emerging evidence demonstrates that Nox is upregulated after TBI, suggesting Nox critical role in the onset and development of this pathology. In this review, we summarize the current evidence about the role of Nox enzymes in the pathophysiology of TBI.

  9. Low platelet monoamine oxidase activity in pathological gambling

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, J.L. [Department of Psychiatry, Centro de Salud Mental, Parla Madrid (Spain); Saiz-Ruiz, J. [Department of Psychiatry and Haematology, Hospital Ramon y Cajal, Madrid (Spain); Hollander, E. [Department of Psychiatry, Mount Sinai School of Medicine, Queens Hospital Center, New York (United States); Cesar, J. [Department of Haematology, Hospital Ramon y Cajal, Madrid (Spain); Lopez-Ibor, J.J. Jr. [Department of Psychiatry, Hospital San Carlos, Complutense University, Madrid (Spain)

    1994-12-01

    Decreased platelet monoamine oxidase (MAO) activity has been reported in association with sensation-seeking personality type and in some mental disorders associated with a lack of impulse control. Pathological gambling itself has been related with both sensation-seeking and reduced impulse control. Platelet MAO activity was investigated in 15 DSM-III-R pathological gamblers from our outpatient clinic. Gamblers had a significantly lower platelet MAO activity than a group of 25 healthy controls. The range of MAO levels in gamblers was also significantly shorter than in controls. In controls, platelet MAO levels showed the previously described negative correlations with sensation-seeking scores but not in gamblers. The findings are consistent with previous studies showing an association of low platelet MAO activity with impulse control disorders and raise some interesting therapeutic alternatives for pathological gambling. (au) (40 refs.).

  10. Facile direct electron transfer in glucose oxidase modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Dan [Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701 (United States); Chen Liwei [Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701 (United States); Suzhou Institute of Nano Tech and Nano Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215125 (China)], E-mail: lwchen2008@sinano.ac.cn

    2009-07-15

    Glucose oxidase (GOx) is widely used in the glucose biosensor industry. However, mediatorless direct electron transfer (DET) from GOx to electrode surfaces is very slow. Recently, mediatorless DET has been reported via the incorporation of nanomaterials such as carbon nanotubes and nanoparticles in the modification of electrodes. Here we report GOx electrodes showing DET without the need for any nanomaterials. The enzyme after immobilization with poly-L-lysine (PLL) and Nafion retains the biocatalytic activities and oxidizes glucose efficiently. The amperometric response of Nafion-PLL-GOx modified electrode is linearly proportional to the concentration of glucose up to 10 mM with a sensitivity of 0.75 {mu}A/mM at a low detection potential (-0.460 V vs. Ag/AgCl). The methodology developed in this study will have impact on glucose biosensors and biofuel cells and may potentially simplify enzyme immobilization in other biosensing systems.

  11. STUDIES ON IMMOBILIZED GLUCOSE OXIDASE BY DIETHYLAMINOETHYL CELLULOSE COMPLEXES

    Institute of Scientific and Technical Information of China (English)

    WANG Lingzhi; YUAN Hong; FANG Shibi; JIANG Yingyan

    1993-01-01

    The properties of immobilized glucose oxidase (GOD) by the complexes of diethylaminoethyl cellu -lose(DEAEC) with different polymers, such as polymethylacrylic acid (PMAA), polyacrylic acid (PAA), polystyrene sulfonic acid (PSSA), polyvinylalcohol (PVA), polyethylene oxide (PEO)and styrene-maleic acid copolymer (PSMA) were investigated. The activity of immobilized GOD was obviously influenced by the component of the DEAEC complexes. The relative activity of the immobilized GOD reached to maximum and over 90% of the native GOD. when the DEAEC-PMAA DEAEC-PAA complexes were used as a carrier with the molar ratio of DEAEC and polyacid of about one. Michaelis constants (Km) of the immobilized enzymes of DEAEC-GOD-PMAA and DEAEC-GOD-PAA were determined to be 1.25 and 1.00, respectively. Moreover, the immobilized GOD has a good storage stability and cyclic life.

  12. Affective Networks

    Directory of Open Access Journals (Sweden)

    Jodi Dean

    2010-02-01

    Full Text Available This article sets out the idea of affective networks as a constitutive feature of communicative capitalism. It explores the circulation of intensities in contemporary information and communication networks, arguing that this circulation should be theorized in terms of the psychoanalytic notion of the drive. The article includes critical engagements with theorists such as Guy Debord, Jacques Lacan, Tiziana Terranova, and Slavoj Zizek.

  13. Involvement of acyl coenzyme A oxidase isozymes in biotransformation of methyl ricinoleate into gamma-decalactone by Yarrowia lipolytica.

    Science.gov (United States)

    Waché, Y; Laroche, C; Bergmark, K; Møller-Andersen, C; Aguedo, M; Le Dall, M T; Wang, H; Nicaud, J M; Belin, J M

    2000-03-01

    We reported previously on the function of acyl coenzyme A (acyl-CoA) oxidase isozymes in the yeast Yarrowia lipolytica by investigating strains disrupted in one or several acyl-CoA oxidase-encoding genes (POX1 through POX5) (H. Wang et al., J. Bacteriol. 181:5140-5148, 1999). Here, these mutants were studied for lactone production. Monodisrupted strains produced similar levels of lactone as the wild-type strain (50 mg/liter) except for Deltapox3, which produced 220 mg of gamma-decalactone per liter after 24 h. The Deltapox2 Deltapox3 double-disrupted strain, although slightly affected in growth, produced about 150 mg of lactone per liter, indicating that Aox2p was not essential for the biotransformation. The Deltapox2 Deltapox3 Deltapox5 triple-disrupted strain produced and consumed lactone very slowly. On the contrary, the Deltapox2 Deltapox3 Deltapox4 Deltapox5 multidisrupted strain did not grow or biotransform methyl ricinoleate into gamma-decalactone, demonstrating that Aox4p is essential for the biotransformation. PMID:10698800

  14. Alternative Splicing and Differential Expression of Two Transcripts of Nicotine Adenine Dinucleotide Phosphate Oxidase B Gene from Zea mays

    Institute of Scientific and Technical Information of China (English)

    Fan Lin; Yun Zhang; Ming-Yi Jiang

    2009-01-01

    With the exception of rice, little is known about the existence of respiratory burst oxidase homolog (rboh) gene in cereals. The present study reports the cloning and analysis of a novel rboh gene, termed ZmrbohB, from maize (Zea mays L.). The full-length cDNA of ZmrbohB encodes a 942 amino acid protein containing all of the respiratory burst oxidase homolog catalytically critical motifs.Altemative splicing of ZmrbohB has generated two transcript isoforms, ZmrbohB-α and -β. Spliced transcript ZmrbohB-β retains an unspliced intron 11 that carries a premature termination codon and probably leads to nonsense-mediated mRNA decay. Expression analysis showed that two splice isoforms were differentially expressed in various tissues and at different developmental stages, and the major product was ZmrbohB-α. The transcripts of ZmrbohB-α accumulated markedly when the maize seedlings were subjected to various abiotic stimuli, such as wounding, cold (4℃), heat (40℃), UV and salinity stress. In addition, several abiotic stimuli also affected the alternative splicing pattern of ZmrbohB except wounding. These results provide new insight into roles in the expression regulation of plant rboh genes and suggest that ZmrbohB gene may play a role in response to environmental stresses.

  15. Hexose Oxidase-Mediated Hydrogen Peroxide as a Mechanism for the Antibacterial Activity in the Red Seaweed Ptilophora subcostata.

    Science.gov (United States)

    Ogasawara, Kimi; Yamada, Kenji; Hatsugai, Noriyuki; Imada, Chiaki; Nishimura, Mikio

    2016-01-01

    Marine algae have unique defense strategies against microbial infection. However, their mechanisms of immunity remain to be elucidated and little is known about the similarity of the immune systems of marine algae and terrestrial higher plants. Here, we suggest a possible mechanism underlying algal immunity, which involves hexose oxidase (HOX)-dependent production of hydrogen peroxide (H2O2). We examined crude extracts from five different red algal species for their ability to prevent bacterial growth. The extract from one of these algae, Ptilophora subcostata, was particularly active and prevented the growth of gram-positive and -negative bacteria, which was completely inhibited by treatment with catalase. The extract did not affect the growth of either a yeast or a filamentous fungus. We partially purified from P. subcostata an enzyme involved in its antibacterial activity, which shared 50% homology with the HOX of red seaweed Chondrus crispus. In-gel carbohydrate oxidase assays revealed that P. subcostata extract had the ability to produce H2O2 in a hexose-dependent manner and this activity was highest in the presence of galactose. In addition, Bacillus subtilis growth was strongly suppressed near P. subcostata algal fronds on GYP agar plates. These results suggest that HOX plays a role in P. subcostata resistance to bacterial attack by mediating H2O2 production in the marine environment. PMID:26867214

  16. Hexose Oxidase-Mediated Hydrogen Peroxide as a Mechanism for the Antibacterial Activity in the Red Seaweed Ptilophora subcostata.

    Directory of Open Access Journals (Sweden)

    Kimi Ogasawara

    Full Text Available Marine algae have unique defense strategies against microbial infection. However, their mechanisms of immunity remain to be elucidated and little is known about the similarity of the immune systems of marine algae and terrestrial higher plants. Here, we suggest a possible mechanism underlying algal immunity, which involves hexose oxidase (HOX-dependent production of hydrogen peroxide (H2O2. We examined crude extracts from five different red algal species for their ability to prevent bacterial growth. The extract from one of these algae, Ptilophora subcostata, was particularly active and prevented the growth of gram-positive and -negative bacteria, which was completely inhibited by treatment with catalase. The extract did not affect the growth of either a yeast or a filamentous fungus. We partially purified from P. subcostata an enzyme involved in its antibacterial activity, which shared 50% homology with the HOX of red seaweed Chondrus crispus. In-gel carbohydrate oxidase assays revealed that P. subcostata extract had the ability to produce H2O2 in a hexose-dependent manner and this activity was highest in the presence of galactose. In addition, Bacillus subtilis growth was strongly suppressed near P. subcostata algal fronds on GYP agar plates. These results suggest that HOX plays a role in P. subcostata resistance to bacterial attack by mediating H2O2 production in the marine environment.

  17. Reengineered glucose oxidase for amperometric glucose determination in diabetes analytics.

    Science.gov (United States)

    Arango Gutierrez, Erik; Mundhada, Hemanshu; Meier, Thomas; Duefel, Hartmut; Bocola, Marco; Schwaneberg, Ulrich

    2013-12-15

    Glucose oxidase is an oxidoreductase exhibiting a high β-D-glucose specificity and high stability which renders glucose oxidase well-suited for applications in diabetes care. Nevertheless, GOx activity is highly oxygen dependent which can lead to inaccuracies in amperometric β-D-glucose determinations. Therefore a directed evolution campaign with two rounds of random mutagenesis (SeSaM followed by epPCR), site saturation mutagenesis studies on individual positions, and one simultaneous site saturation library (OmniChange; 4 positions) was performed. A diabetes care well suited mediator (quinone diimine) was selected and the GOx variant (T30V I94V) served as starting point. For directed GOx evolution a microtiter plate detection system based on the quinone diimine mediator was developed and the well-known ABTS-assay was applied in microtiter plate format to validate oxygen independency of improved GOx variants. Two iterative rounds of random diversity generation and screening yielded to two subsets of amino acid positions which mainly improved activity (A173, A332) and oxygen independency (F414, V560). Simultaneous site saturation of all four positions with a reduced subset of amino acids using the OmniChange method yielded finally variant V7 with a 37-fold decreased oxygen dependency (mediator activity: 7.4 U/mg WT, 47.5 U/mg V7; oxygen activity: 172.3 U/mg WT, 30.1 U/mg V7). V7 is still highly β-D-glucose specific, highly active with the quinone diimine mediator and thermal resistance is retained (prerequisite for GOx coating of diabetes test stripes). The latter properties and V7's oxygen insensitivity make V7 a very promising candidate to replace standard GOx in diabetes care applications. PMID:23835222

  18. Molecular Dynamic Studies of the Complex Polyethylenimine and Glucose Oxidase

    Directory of Open Access Journals (Sweden)

    Beata Szefler

    2016-10-01

    Full Text Available Glucose oxidase (GOx is an enzyme produced by Aspergillus, Penicillium and other fungi species. It catalyzes the oxidation of β-d-glucose (by the molecular oxygen or other molecules, like quinones, in a higher oxidation state to form d-glucono-1,5-lactone, which hydrolyses spontaneously to produce gluconic acid. A coproduct of this enzymatic reaction is hydrogen peroxide (H2O2. GOx has found several commercial applications in chemical and pharmaceutical industries including novel biosensors that use the immobilized enzyme on different nanomaterials and/or polymers such as polyethylenimine (PEI. The problem of GOx immobilization on PEI is retaining the enzyme native activity despite its immobilization onto the polymer surface. Therefore, the molecular dynamic (MD study of the PEI ligand (C14N8_07_B22 and the GOx enzyme (3QVR was performed to examine the final complex PEI-GOx stabilization and the affinity of the PEI ligand to the docking sites of the GOx enzyme. The docking procedure showed two places/regions of major interaction of the protein with the polymer PEI: (LIG1 of −5.8 kcal/mol and (LIG2 of −4.5 kcal/mol located inside the enzyme and on its surface, respectively. The values of enthalpy for the PEI-enzyme complex, located inside of the protein (LIG1 and on its surface (LIG2 were computed. Docking also discovered domains of the GOx protein that exhibit no interactions with the ligand or have even repulsive characteristics. The structural data clearly indicate some differences in the ligand PEI behavior bound at the two places/regions of glucose oxidase.

  19. Bienzyme biosensors for glucose, ethanol and putrescine built on oxidase and sweet potato peroxidase.

    Science.gov (United States)

    Castillo, Jaime; Gáspár, Szilveszter; Sakharov, Ivan; Csöregi, Elisabeth

    2003-05-01

    Amperometric biosensors for glucose, ethanol, and biogenic amines (putrescine) were constructed using oxidase/peroxidase bienzyme systems. The H(2)O(2) produced by the oxidase in reaction with its substrate is converted into a measurable signal via a novel peroxidase purified from sweet potato peels. All developed biosensors are based on redox hydrogels formed of oxidases (glucose oxidase, alcohol oxidase, or amine oxidase) and the newly purified sweet potato peroxidase (SPP) cross-linked to a redox polymer. The developed electrodes were characterized (sensitivity, stability, and performances in organic medium) and compared with similarly built ones using the 'classical' horseradish peroxidase (HRP). The SPP-based electrodes displayed higher sensitivity and better detection limit for putrescine than those using HRP and were also shown to retain their activity in organic phase much better than the HPR based ones. The importance of attractive or repulsive electrostatic interactions between the peroxidases and oxidases (determined by their isoelectric points) were found to play an important role in the sensitivity of the obtained sensors. PMID:12706582

  20. N-acetylcysteine and meso-2,3-dimercaptosuccinic acid alleviate oxidative stress and hepatic dysfunction induced by sodium arsenite in male rats

    Science.gov (United States)

    Abu El-Saad, Ahmed M; Al-Kahtani, Mohammed A; Abdel-Moneim, Ashraf M

    2016-01-01

    Environmental exposure to arsenic represents a serious challenge to humans and other animals. The aim of the present study was to test the protective effect of antioxidant N-acetylcysteine (NAC) either individually or in combination with a chelating agent, meso-2,3-dimercaptosuccinic acid (DMSA), against sodium arsenite oral toxicity in male rats. Five groups were used: control; arsenic group (orally administrated in a concentration of 2 mg/kg body weight [b.w.]); the other three groups were orally administrated sodium arsenite in a concentration of 2 mg/kg b.w. followed by either NAC (10 mg/kg b.w., intraperitoneally [i.p.]), DMSA (50 mg/kg b.w., i.p.) or NAC plus DMSA. Arsenic toxicity caused significant rise in serum aspartate aminotransferase, alanine aminotransferase and total bilirubin, and a significant decrease in total protein (TP) and albumin levels after 3 weeks of experimental period. In addition, arsenic-treated rats showed significantly higher arsenic content in liver and significant rise in hepatic malondialdehyde level. By contrast, sharp decreases in glutathione content and catalase and glutathione reductase activities were discernible. NAC and/or DMSA counteracted most of these physiologic and biochemical defects. NAC monotherapy was more effective than DMSA in increasing TP, while DMSA was more effective in decreasing alanine aminotransferase. The combined treatment was superior over monotherapies in recovery of TP and glutathione. Biochemical data were well supported by histopathological and ultrastructural findings. In conclusion, the combination therapy of NAC and DMSA may be an ideal choice against oxidative insult induced by arsenic poisoning.

  1. Anabaena sp. mediated bio-oxidation of arsenite to arsenate in synthetic arsenic (III) solution: Process optimization by response surface methodology.

    Science.gov (United States)

    Jana, Animesh; Bhattacharya, Priyankari; Swarnakar, Snehasikta; Majumdar, Swachchha; Ghosh, Sourja

    2015-11-01

    Blue green algae Anabaena sp. was cultivated in synthetic arsenite solution to investigate its bio-oxidation potential for arsenic species. Response surface methodology (RSM) was employed based on a 3-level full factorial design considering four factors, viz. initial arsenic (III) concentration, algal dose, temperature and time. Bio-oxidation (%) of arsenic (III) was considered as response for the design. The study revealed that about 100% conversion of As (III) to As (V) was obtained for initial As (III) concentration of 2.5-7.5 mg/L at 30 °C for 72 h of exposure using 3 g/L of algal dose signifying a unique bio-oxidation potential of Anabaena sp. The dissolved CO2 (DCO2) and oxygen (DO) concentration in solution was monitored during the process and based on the data, a probable mechanism was proposed wherein algal cell acts like a catalytic membrane surface and expedites the bio-oxidation process. Bioaccumulation of arsenic, as well as, surface adsorption on algal cell was found considerably low. Lipid content of algal biomass grown in arsenite solution was found slightly lower than that of algae grown in synthetic media. Toxicity effects on algal cells due to arsenic exposure were evaluated in terms of comet assay and chlorophyll a content which indicated DNA damage to some extent along with very little decrease in chlorophyll a content. In summary, the present study explored the potential application of Anabaena sp. as an ecofriendly and sustainable option for detoxification of arsenic contaminated natural water with value-added product generation.

  2. Heme-copper terminal oxidase using both cytochrome c and ubiquinol as electron donors

    OpenAIRE

    Gao, Ye; De Meyer, Björn; Sokolova, Lucie; Zwicker, Klaus; Karas, Michael; Brutschy, Bernd; Peng, Guohong; Michel, Hartmut

    2012-01-01

    The cytochrome c oxidase Cox2 has been purified from native membranes of the hyperthermophilic eubacterium Aquifex aeolicus. It is a cytochrome ba3 oxidase belonging to the family B of the heme-copper containing terminal oxidases. It consists of three subunits, subunit I (CoxA2, 63.9 kDa), subunit II (CoxB2, 16.8 kDa), and an additional subunit IIa of 5.2 kDa. Surprisingly it is able to oxidize both reduced cytochrome c and ubiquinol in a cyanide sensitive manner. Cox2 is part of a respirator...

  3. On-line radiochemical assay for monoamine oxidase utilizing high-performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Nissinen, E.; Linko-Loeppoenen SMae; Maennistoe P4

    1984-12-01

    A fast and sensitive assay for the determination of monoamine oxidase activity was developed. The method is based on the separation and quantitation of /sup 14/C-labeled assay products by high-performance liquid chromatography, which is interfaced directly into a flow-through radioactivity detector. This allows on-line quantitation of the radioactive compounds with picomole sensitivity. The method makes possible the complete separation and detection of the deaminated products of monoamine oxidase A and B substrates benzylamine and 5-hydroxytryptamine, respectively. This assay has been applied to the measurement of monoamine oxidase A and B activities in rat brain.

  4. The Cytochrome bd Oxidase of Porphyromonas gingivalis Contributes to Oxidative Stress Resistance and Dioxygen Tolerance.

    Directory of Open Access Journals (Sweden)

    Julia Leclerc

    Full Text Available Porphyromonas gingivalis is an etiologic agent of periodontal disease in humans. The disease is associated with the formation of a mixed oral biofilm which is exposed to oxygen and environmental stress, such as oxidative stress. To investigate possible roles for cytochrome bd oxidase in the growth and persistence of this anaerobic bacterium inside the oral biofilm, mutant strains deficient in cytochrome bd oxidase activity were characterized. This study demonstrated that the cytochrome bd oxidase of Porphyromonas gingivalis, encoded by cydAB, was able to catalyse O2 consumption and was involved in peroxide and superoxide resistance, and dioxygen tolerance.

  5. Bioelectrochemical Response and Kinetics of Choline Oxidase Entrapped in Polyaniline—Polyacrylonitrile Composite Film

    Institute of Scientific and Technical Information of China (English)

    薛怀国; 沈芝荃

    2002-01-01

    A novel choline oxidase electrode was constructed by entrapping choline oxidase into polyaniline-polyacrylonitrile composite film,The enzyme film was prepared by in situ electropolyme-ritztion of aniline into porous polyacrylonitrile-coated platinum electrode in the presence of choline oxidase ,the enzyme electrode exhibited sensitive and stable electrochemical response to choline ,The kinetics analysis,showed that the mass transport is partially rate-liniting.The influences of pH,applied potential and temperature on the response of the enzyme electrode were also desribed.

  6. Bioelectrochemical Response and Kinetics of Choline Oxidase Entrapped in Polyaniline-Polyacrylonitrile Composite Film

    Institute of Scientific and Technical Information of China (English)

    XUE,Huai-Guo(薛怀国); SHEN,Zhi-Quan(沈之荃)

    2002-01-01

    A novel choline oxidase electrode was constructed by entrapping choline oxidase into polyaniline-polyacrylonitrile composite film. The enzyme film was prepared by in situ electropolymerization of aniline into porous polyacrylonitrile-coated platinum electrode in the presence of choline oxidase. The enzyme electrode exhibited sensitive and stable electrochemical response to choline. The kinetics analysis showed that the mass transport is partially rate-limiting. The influences of pH, applied potential and temperature on the response of the enzyme electrode were also described.

  7. The inhibitory binding site(s) of Zn2+ in cytochrome c oxidase.

    Science.gov (United States)

    Francia, Francesco; Giachini, Lisa; Boscherini, Federico; Venturoli, Giovanni; Capitanio, Giuseppe; Martino, Pietro Luca; Papa, Sergio

    2007-02-20

    EXAFS analysis of Zn binding site(s) in bovine-heart cytochrome c oxidase and characterization of the inhibitory effect of internal zinc on respiratory activity and proton pumping of the liposome reconstituted oxidase are presented. EXAFS identifies tetrahedral coordination site(s) for Zn(2+) with two N-histidine imidazoles, one N-histidine imidazol or N-lysine and one O-COOH (glutamate or aspartate), possibly located at the entry site of the proton conducting D pathway in the oxidase and involved in inhibition of the oxygen reduction catalysis and proton pumping by internally trapped zinc.

  8. Mild exposure of RIN-5F β-cells to human islet amyloid polypeptide aggregates upregulates antioxidant enzymes via NADPH oxidase-RAGE: An hormetic stimulus

    Directory of Open Access Journals (Sweden)

    Elisabetta Borchi

    2014-01-01

    Full Text Available The presence of amyloid aggregates of human islet amyloid polypeptide (hIAPP, a hallmark of type 2 diabetes, contributes to pancreatic β-cell impairment, where oxidative stress plays a key role. A contribution of NADPH oxidase to reactive oxygen species (ROS generation after cell exposure to micromolar concentrations of hIAPP aggregates has been suggested. However, little is known about β-cells exposure to lower amounts of hIAPP aggregates, similar to those found in human pancreas. Thus, we aimed to investigate the events resulting from RIN-5F cells exposure to nanomolar concentrations of toxic hIAPP aggregates. We found an early and transient rise of NADPH oxidase activity resulting from increased Nox1 expression following the engagement of receptor for advanced glycation end-products (RAGE by hIAPP aggregates. Unexpectedly, NADPH oxidase activation was not accompanied by a significant ROS increase and the lipoperoxidation level was significantly reduced. Indeed, cell exposure to hIAPP aggregates affected the antioxidant defences, inducing a significant increase of the expression and activity of catalase and glutathione peroxidase. We conclude that exposure of pancreatic β-cells to nanomolar concentrations of hIAPP aggregates for a short time induces an hormetic response via the RAGE-Nox1 axis; the latter stimulates the enzymatic antioxidant defences that preserve the cells against oxidative stress damage.

  9. Study on Solar Photocatalytic Oxidation of Arsenite by Loaded Mn/TiO2%负载型 Mn/TiO2太阳光催化氧化三价砷的研究

    Institute of Scientific and Technical Information of China (English)

    魏志钢; 梁凯; 左俊辉; 邹燕娣; 潘湛昌; 胡光辉

    2015-01-01

    通过溶胶凝胶法制备了泡沫镍负载Mn/TiO2催化剂,并将其应用于太阳光氧化三价砷的研究,考察了Mn/TiO2的摩尔比、TiO2负载次数、溶液pH值及菲涅尔透镜的使用对氧化三价砷速度的影响。实验结果表明,Mn/TiO2的最佳摩尔比为1%,4 h后三价砷完全氧化为五价砷;TiO2最佳的负载次数为2次;当溶液pH值为9时,催化剂催化氧化三价砷的速度最快,3h三价砷完全氧化为五价砷;菲涅尔透镜的使用,显著地缩短催化剂氧化三价砷的时间;吸附剂-催化剂联用后,溶液体积20 L、三价砷质量浓度为100μg/L时,3.5 h后能将溶液中的砷全部去除。%Mn/TiO2 catalyst is successfully prepared on foam nickel substrates by sol -gel technique and applied in the study on solar photocatalytic oxidation of arsenite .The effects of molar ratio of Mn/TiO2 ,coating cycles of TiO2 ,solution pH ,and use of the Fresnel lens on the oxidation rate of As(Ⅲ) are investigated .It is shown that the optimum molar ratio of Mn/TiO2 is 1% and then the arsenite is completely oxidized to arsenate after 4 hours;the optimum coating cycles of TiO2 is two ;when the solution pH is 9 ,the oxidation rate of arsenite is fastest and the arsenite is completely oxidized to arsenate after 3 hours;the oxidation time of arsenite is significantly shortened when the Fresnel lens is used;by combined use of pho-tocatalyst and adsorbent ,the arsenic is completely removed after 3 .5 hours when the volume of solution is 20 liters and the arsenite concentration is 100μg/L .

  10. Ectopic expression of ecdysone oxidase impairs tissue degeneration in Bombyx mori

    Science.gov (United States)

    Li, Zhiqian; You, Lang; Zeng, Baosheng; Ling, Lin; Xu, Jun; Chen, Xu; Zhang, Zhongjie; Palli, Subba Reddy; Huang, Yongping; Tan, Anjiang

    2015-01-01

    Metamorphosis in insects includes a series of programmed tissue histolysis and remolding processes that are controlled by two major classes of hormones, juvenile hormones and ecdysteroids. Precise pulses of ecdysteroids (the most active ecdysteroid is 20-hydroxyecdysone, 20E), are regulated by both biosynthesis and metabolism. In this study, we show that ecdysone oxidase (EO), a 20E inactivation enzyme, expresses predominantly in the midgut during the early pupal stage in the lepidopteran model insect, Bombyx mori. Depletion of BmEO using the transgenic CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/RNA-guided Cas9 nucleases) system extended the duration of the final instar larval stage. Ubiquitous transgenic overexpression of BmEO using the Gal4/UAS system induced lethality during the larval–pupal transition. When BmEO was specifically overexpressed in the middle silk gland (MSG), degeneration of MSG at the onset of metamorphosis was blocked. Transmission electron microscope and LysoTracker analyses showed that the autophagy pathway in MSG is inhibited by BmEO ectopic expression. Furthermore, RNA-seq analysis revealed that the genes involved in autophagic cell death and the mTOR signal pathway are affected by overexpression of BmEO. Taken together, BmEO functional studies reported here provide insights into ecdysone regulation of tissue degeneration during metamorphosis. PMID:26041352

  11. Bilirubin oxidase based enzymatic air-breathing cathode: Operation under pristine and contaminated conditions.

    Science.gov (United States)

    Santoro, Carlo; Babanova, Sofia; Erable, Benjamin; Schuler, Andrew; Atanassov, Plamen

    2016-04-01

    The performance of bilirubin oxidase (BOx) based air breathing cathode was constantly monitored over 45 days. The effect of electrolyte composition on the cathode oxygen reduction reaction (ORR) output was investigated. Particularly, deactivation of the electrocatalytic activity of the enzyme in phosphate buffer saline (PBS) solution and in activated sludge (AS) was evaluated. The greatest drop in current density was observed during the first 3 days of constant operation with a decrease of ~60 μA cm(-2) day(-1). The rate of decrease slowed to ~10 μA cm(-2) day(-1) (day 3 to 9) and then to ~1.5 μA cm(-2)day(-1) thereafter (day 9 to 45). Despite the constant decrease in output, the BOx cathode generated residual current after 45 days operations with an open circuit potential (OCP) of 475 mV vs. Ag/AgCl. Enzyme deactivation was also studied in AS to simulate an environment close to the real waste operation with pollutants, solid particles and bacteria. The presence of low-molecular weight soluble contaminants was identified as the main reason for an immediate enzymatic deactivation within few hours of cathode operation. The presence of solid particles and bacteria does not affect the natural degradation of the enzyme.

  12. Semi-rational Directed Evolution of Monoamine Oxidase for Kinetic Resolution of rac-Mexiletine.

    Science.gov (United States)

    Chen, Zhenming; Ma, Yuanhui; He, Mengyan; Ren, Hongyang; Zhou, Shuo; Lai, Dunyue; Wang, Zhiguo; Jiang, Linshu

    2015-08-01

    Semi-rational directed evolution was applied to the D5 variant of monoamine oxidase from Aspergillus niger (MAO-N-D5) with the aim of deriving the more desirable (R)-mexiletine through the kinetic resolution of mexiletine enantiomers. Although MAO-N-D5 shows no activity towards rac-mexiletine, theoretical molecular docking studies revealed the potential binding conformations of both mexiletine enantiomers and MAO-N-D5. The key factors affecting the catalytic activity and specificity were identified. Based on the docking results, six residues in the binding pocket and along the binding pathway were selected as key sites for saturation mutagenesis of MAO-N-D5. Through several rounds of screening and combinatorial experiments, two active MAO variants with high enantioselectivities towards (S)-mexiletine evolved, namely A-1 (F210V/L213C, E = 101) and AC-1 (F210V/I367T, E = 69). Molecular simulation experiments indicated that the introduced activity of these variants may be due to the reduced steric hindrance in the binding pocket of the relatively small-sized amino acid residues, a synergetic effect of the entrance residue mutation, and the formation of a new disulfide bond. PMID:26093614

  13. The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase

    Science.gov (United States)

    Cox, Thomas R.; Rumney, Robin M.H.; Schoof, Erwin M.; Perryman, Lara; Høye, Anette M.; Agrawal, Ankita; Bird, Demelza; Latif, Norain Ab; Forrest, Hamish; Evans, Holly R.; Huggins, Iain D; Lang, Georgina; Linding, Rune

    2016-01-01

    Tumour metastasis is a complex process involving reciprocal interplay between cancer cells and host stroma at both primary and secondary sites, and is strongly influenced by microenvironmental factors such as hypoxia1. Tumour-secreted proteins play a crucial role in these interactions2–5 and present strategic therapeutic potential. Metastasis of breast cancer to the bone affects approximately 85% of patients with advanced disease and renders them largely untreatable6. Specifically, osteolytic bone lesions, where bone is destroyed, lead to debilitating skeletal complications and increased patient morbidity and mortality6,7. The molecular interactions governing the early events of osteolytic lesion formation are currently unclear. Here we show hypoxia to be specifically associated with bone relapse in ER-negative breast cancer patients. Global quantitative analysis of the hypoxic secretome identified Lysyl Oxidase (LOX) as significantly associated with bone-tropism and relapse. High expression of LOX in primary breast tumours or systemic delivery of LOX leads to osteolytic lesion formation whereas silencing or inhibition of LOX activity abrogates tumour-driven osteolytic lesion formation. We identify LOX as a novel regulator of NFATc1-driven osteoclastogenesis, independent of RANK Ligand, which disrupts normal bone homeostasis leading to the formation of focal pre-metastatic lesions. We show that these lesions subsequently provide a platform for circulating tumour cells to colonise and form bone metastases. Our study identifies a novel mechanism of regulation of bone homeostasis and metastasis, opening up opportunities for novel therapeutic intervention with important clinical implications. PMID:26017313

  14. Genome wide association mapping for the tolerance to the polyamine oxidase inhibitor guazatine in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Kostadin Evgeniev eAtanasov

    2016-04-01

    Full Text Available Guazatine is a potent inhibitor of polyamine oxidase (PAO activity. In agriculture, guazatine is used as non-systemic contact fungicide efficient in the protection of cereals and citrus fruits against disease. The composition of guazatine is complex, mainly constituted by a mixture of synthetic guanidated polyamines (polyaminoguanidines. Here we have studied the effects from exposure to guazatine in the weed Arabidopsis thaliana. We report that micromolar concentrations of guazatine are sufficient to inhibit growth of Arabidopsis seedlings and induce chlorosis, whereas germination is barely affected. We observed the occurrence of quantitative variation in the response to guazatine between 107 randomly chosen Arabidopsis accessions. This enabled us to undertake genome-wide association (GWA mapping that identified a locus on chromosome one associated with guazatine tolerance. CHLOROPHYLLASE 1 (CLH1 within this locus was studied as candidate gene, together with its paralog (CLH2. The analysis of independent clh1-2, clh1-3, clh2-3, clh2-2 and double clh1-2 clh2-3 mutant alleles indicated that CLH1 and/or CLH2 loss-of-function or expression down-regulation promote guazatine tolerance in Arabidopsis. We report a natural mechanism by which Arabidopsis populations can overcome toxicity by the fungicide guazatine.

  15. Genome Wide Association Mapping for the Tolerance to the Polyamine Oxidase Inhibitor Guazatine in Arabidopsis thaliana.

    Science.gov (United States)

    Atanasov, Kostadin E; Barboza-Barquero, Luis; Tiburcio, Antonio F; Alcázar, Rubén

    2016-01-01

    Guazatine is a potent inhibitor of polyamine oxidase (PAO) activity. In agriculture, guazatine is used as non-systemic contact fungicide efficient in the protection of cereals and citrus fruits against disease. The composition of guazatine is complex, mainly constituted by a mixture of synthetic guanidated polyamines (polyaminoguanidines). Here, we have studied the effects from exposure to guazatine in the weed Arabidopsis thaliana. We report that micromolar concentrations of guazatine are sufficient to inhibit growth of Arabidopsis seedlings and induce chlorosis, whereas germination is barely affected. We observed the occurrence of quantitative variation in the response to guazatine between 107 randomly chosen Arabidopsis accessions. This enabled us to undertake genome-wide association (GWA) mapping that identified a locus on chromosome one associated with guazatine tolerance. CHLOROPHYLLASE 1 (CLH1) within this locus was studied as candidate gene, together with its paralog (CLH2). The analysis of independent clh1-2, clh1-3, clh2-3, clh2-2, and double clh1-2 clh2-3 mutant alleles indicated that CLH1 and/or CLH2 loss-of-function or expression down-regulation promote guazatine tolerance in Arabidopsis. We report a natural mechanism by which Arabidopsis populations can overcome toxicity by the fungicide guazatine. PMID:27092150

  16. [Affective dependency].

    Science.gov (United States)

    Scantamburlo, G; Pitchot, W; Ansseau, M

    2013-01-01

    Affective dependency is characterized by emotional distress (insecure attachment) and dependency to another person with a low self-esteem and reassurance need. The paper proposes a reflection on the definition of emotional dependency and the confusion caused by various denominations. Overprotective and authoritarian parenting, cultural and socio-environmental factors may contribute to the development of dependent personality. Psychological epigenetic factors, such as early socio-emotional trauma could on neuronal circuits in prefronto-limbic regions that are essential for emotional behaviour.We also focus on the interrelations between dependent personality, domestic violence and addictions. The objective for the clinician is to propose a restoration of self-esteem and therapeutic strategies focused on autonomy. PMID:23888587

  17. [Affective dependency].

    Science.gov (United States)

    Scantamburlo, G; Pitchot, W; Ansseau, M

    2013-01-01

    Affective dependency is characterized by emotional distress (insecure attachment) and dependency to another person with a low self-esteem and reassurance need. The paper proposes a reflection on the definition of emotional dependency and the confusion caused by various denominations. Overprotective and authoritarian parenting, cultural and socio-environmental factors may contribute to the development of dependent personality. Psychological epigenetic factors, such as early socio-emotional trauma could on neuronal circuits in prefronto-limbic regions that are essential for emotional behaviour.We also focus on the interrelations between dependent personality, domestic violence and addictions. The objective for the clinician is to propose a restoration of self-esteem and therapeutic strategies focused on autonomy.

  18. Involvement of NO in sodium arsenite-induced yeast cell death%NO参与亚砷酸钠诱导酵母细胞死亡的调控

    Institute of Scientific and Technical Information of China (English)

    吴丽华; 仪慧兰; 张虎芳

    2012-01-01

    以模式生物酵母细胞为材料,研究亚砷酸钠胁迫对细胞死亡率和胞内NO水平的影响,以探讨NO在砷诱导细胞死亡中的作用.结果显示,浓度为1~7mmol·L^-1的亚砷酸钠可降低酵母细胞活性,诱导细胞死亡,随着处理浓度的升高和作用时间的延长,细胞死亡率增高;死细胞出现核固缩和核降解等凋亡特征;凋亡抑制剂Z-Asp-CH2-DCB(2"mol·L^-1)与3mmol·L^-1亚砷酸钠共同作用后,酵母细胞死亡率下降.在亚砷酸钠胁迫的过程中,酵母细胞内NO水平升高;一定浓度的NO清除剂c-PTIO(0.2mmol·L^-1)或NO生成抑制剂NaN3(1mmol·L^-1)均可降低亚砷酸钠引起的酵母细胞死亡率.结果表明,砷胁迫诱导的胞内NO升高是酵母细胞死亡的一个诱因,亚砷酸钠诱发的酵母细胞死亡中可能存在细胞凋亡过程.%Arsenic is a toxic metalloid widely distributed in the environment. Chronic exposure to arsenic is associated with increased risk of various diseases, such as neurotoxicity, birth defects and metabolic disorders. People exposed to high levels of arsenic are prone to skin, bladder, and lung cancer and occlusive vascular disease. However, the exact mechanisms of arsenic toxicity are not yet well understood. In this study, cytotoxie effects of sodium arsenite on yeast Saccharomyees cerevisiae were investigated with or without some antagonists. For arsenic treatments, yeast cells harvested from the early log phase were incubated in the fresh yeast extract peptone dextrose (YPD) media containing varying amounts of sodium arsenite. For other combination treatments, selected antagonists including broad caspase inhibitor Z-Asp-2,6-dichlorobenzoyloxymethylketone (Z-Asp-CH2-DCB), nitric oxide (NO) scavenger 2-( 4-carboxyphenyl)-4,4,5,5-teramethylimidazoline-l-oxyl-3-oxide ( c-PTIO ) and nitrate reductase inhibitor NaN3 were respectively added into YPD media in the presence of 3 mmol. L^-1 sodium arsenite. The results showed that

  19. Action of DCCD on the H+/O stoichiometry of mitoplast cytochrome c oxidase.

    Science.gov (United States)

    Lehninger, A L; Reynafarje, B; Costa, L

    1985-01-01

    The mechanistic H+/O ejection stoichiometry of the cytochrome c oxidase reaction in rat liver mitoplasts is close to 4 at level flow when the reduced oxidase is pulsed with O2. Dicyclohexylcarbodiimide (DCCD) up to 30 nmol/mg protein fails to influence the rate of electron flow through the mitoplast oxidase, but inhibits H+ ejection. The inhibition of H+ ejection appears to be biphasic; ejection of 2-3 H+ per O is completely inhibited by very low DCCD, whereas inhibition of the remaining H+ ejection requires very much higher concentrations of DCCD. This effect suggests the occurrence of two types of H+ pumps in the native cytochrome oxidase of mitoplasts.

  20. Polystyrene Attached Pt(IV)–Azomethine, Synthesis and Immobilization of Glucose Oxidase Enzyme

    Science.gov (United States)

    Sarı, Nurşen; Antepli, Esin; Nartop, Dilek; Yetim, Nurdan Kurnaz

    2012-01-01

    Modified polystyrene with Pt(IV)–azomethine (APS–Sch–Pt) was synthesized by means of condensation and demonstrated to be a promising enzyme support by studying the enzymatic properties of glucose oxidase enzyme (GOx) immobilized on it. The characteristics of the immobilized glucose oxidase (APS–Sch–Pt–GOx) enzyme showed two optimum pH values that were pH = 4.0 and pH = 7. The insertion of stable Pt(IV)–azomethine spacers between the polystyrene backbone and the immobilized GOx, (APS–Sch–Pt–GOx), increases the enzymes’ activity and improves their affinity towards the substrate even at pH = 4. The influence of temperature, reusability and storage capacity on the free and immobilized glucose oxidase enzyme was investigated. The storage stability of the immobilized glucose oxidase was shown to be eleven months in dry conditions at +4 °C. PMID:23109888

  1. NADPH oxidase and reactive oxygen species as signaling molecules in carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Gang WANG

    2009-01-01

    Reactive oxygen species (ROS) are small molecule metabolites of oxygen that are prone to participate in redox reactions via their high reactivity. Intracellular ROS could be generated in reduced nicotina-mide-adenine dinucleotidephosphate (NADPH) oxidase-dependent and/or NADPH oxidase-independent manners. Physiologically, ROS are involved in many signaling cascades that contribute to normal processes. One classical example is that ROS derived from the NADPH oxidase and released in neurotrophils are able to digest invading bacteria. Excessive ROS, however, contribute to patho-genesis of various human diseases including cancer, aging, dimentia and hypertension. As signaling messengers, ROS are able to oxidize many targets such as DNA, proteins and lipids, which may be linked with tumor growth, invasion or metastasis. The present review summarizes recent advances in our comprehensive understanding of ROS-linked signaling pathways in regulation of tumor growth, invasion and metastasis, and focuses on the role of the NADPH oxidase-derived ROS in cancer pathogenesis.

  2. Action of DCCD on the H+/O stoichiometry of mitoplast cytochrome c oxidase.

    Science.gov (United States)

    Lehninger, A L; Reynafarje, B; Costa, L

    1985-01-01

    The mechanistic H+/O ejection stoichiometry of the cytochrome c oxidase reaction in rat liver mitoplasts is close to 4 at level flow when the reduced oxidase is pulsed with O2. Dicyclohexylcarbodiimide (DCCD) up to 30 nmol/mg protein fails to influence the rate of electron flow through the mitoplast oxidase, but inhibits H+ ejection. The inhibition of H+ ejection appears to be biphasic; ejection of 2-3 H+ per O is completely inhibited by very low DCCD, whereas inhibition of the remaining H+ ejection requires very much higher concentrations of DCCD. This effect suggests the occurrence of two types of H+ pumps in the native cytochrome oxidase of mitoplasts. PMID:2410565

  3. Evaluation of Several Procedures for Immobilizing Cholesterol Oxidase Based on Cellulose Acetate Membrane

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Immobilized cholesterol oxidase (COD) membrane with higher catalytic activity is important for biosensor. In this paper, several procedures for immobilizing COD based on cellulose acetate (CA) membrane are studied. Reasons causing different catalytic activities are also discussed.

  4. In vivo oxalate degradation by liposome encapsulated oxalate oxidase in rat model of hyperoxaluria

    Directory of Open Access Journals (Sweden)

    Tulika Dahiya

    2013-01-01

    Interpretation & conclusions: EMA-oxalate oxidase encapsulated liposome caused oxalate degradation in experimental hyperoxaluria indicating that the enzyme could be used as a therapeutic agent in hyperoxaluria leading to urinary stones.

  5. A rational protocol for the successful crystallization of l-amino-acid oxidase from Bothrops atrox

    OpenAIRE

    Alves, Raquel Melo; Feliciano, Patricia Rosa; Sampaio, Suely Vilela; Nonato, Maria Cristina

    2011-01-01

    l-Amino-acid oxidase from B. atrox has been crystallized by combining seeding with oil modulation of vapour equilibration. A complete data set has been collected to 2.3 Å resolution from a native crystal.

  6. Electrochemical L-Lactic Acid Sensor Based on Immobilized ZnO Nanorods with Lactate Oxidase

    OpenAIRE

    Kimleang Khun; Syed Muhammad Usman Ali Shah; Magnus Willander; Zafar Hussain Ibupoto

    2012-01-01

    In this work, fabrication of gold coated glass substrate, growth of ZnO nanorods and potentiometric response of lactic acid are explained. The biosensor was developed by immobilizing the lactate oxidase on the ZnO nanorods in combination with glutaraldehyde as a cross linker for lactate oxidase enzyme. The potentiometric technique was applied for the measuring the output (EMF) response of L-lactic acid biosensor. We noticed that the present biosensor has wide linear detection range of concent...

  7. Development of Galactose Biosensor Based on Functionalized ZnO Nanorods with Galactose Oxidase

    OpenAIRE

    K. Khun; Z. H. Ibupoto; Nur, O; Willander, M

    2012-01-01

    The fabrication of galactose biosensor based on functionalised ZnO nanorods is described. The galactose biosensor was developed by immobilizing galactose oxidase on ZnO nanorods in conjunction with glutaraldehyde as a cross-linker molecule. The IRAS study provided evidence for the interaction of galactose oxidase with the surface of ZnO nanorods. The electromotive force (EMF) response of the galactose biosensor was measured by potentiometric method. We observed that the proposed biosensor has...

  8. Glucose oxidase inhibition in poly(neutral red) mediated enzyme biosensors for heavy metal determination

    OpenAIRE

    Ghica, Mariana; Brett, Christopher

    2008-01-01

    Abstract A biosensor for the determination of heavy metal cations based on glucose oxidase enzymatic inhibition has been developed. The biosensor was assembled on carbon film electrode supports with glucose oxidase immobilised by cross-linking with glutaraldehyde on top of a film of poly(neutral red) as redox mediator, prepared by electropolymerisation. The biosensor was used to determine the metallic cations, cadmium, copper, lead and zinc in the presence of chosen amounts of glucose. The d...

  9. Electron transfer reactivity of the Arabidopsis thaliana sulfhydryl oxidase AtErv1

    DEFF Research Database (Denmark)

    Farver, Ole; Vitu, Elvira; Wherland, Scot;

    2009-01-01

    The redox reactivity of the three disulfide bridges and the flavin present in each protomer of the wild-type Arabidopsis thaliana mitochondrial sulfhydryl oxidase (AtErv1) homodimer has been investigated. Pulse radiolytically produced CO2- radical ions were found to reduce the disulfide bridges to...... the active site disulfide bridge increased the stability of the flavin semiquinone making it a long-lived product. Relevance of these observations to the design and function of the sulfhydryl oxidases is discussed....

  10. Herbivore-plant interactions: mixed-function oxidases and secondary plant substances.

    Science.gov (United States)

    Brattsten, L B; Wilkinson, C F; Eisner, T

    1977-06-17

    The mixed-function oxidases of a polyphagous insect larva (the southern armyworm, Spodoptera eridania) were found to be induced by a diversity of secondary plant substances. The induction proceeds rapidly and in response to a small quantity of secondary substance. Following induction, the larva is less susceptible to dietary poisoning. It is argued that mixed-function oxidases play a major role in protecting herbivores against chemical stress from secondary plant substances. PMID:17831753

  11. Cholesterol oxidase from Brevibacterium sterolicum : the relationship between covalent flavinylation and redox properties

    OpenAIRE

    Motteran, Laura; Pilone, Mirella S.; Molla, Gianluca; Ghisla, Sandro; Pollegioni, Loredano

    2001-01-01

    Brevibacterium sterolicum possesses two forms of cholesterol oxidase, one containing noncovalently bound FAD, the second containing a FAD covalently linked to His69 of the protein backbone. The functional role of the histidyl-FAD bond in the latter cholesterol oxidase was addressed by studying the properties of the H69A mutant in which the FAD is bound tightly, but not covalently, and by comparison with native enzyme. The mutant retains catalytic activity, but with a turnover rate decreased 3...

  12. Virtual Screening Analysis and In-vitro Xanthine Oxidase Inhibitory Activity of Some Commercially Available Flavonoids

    OpenAIRE

    Umamaheswari, Muthuswamy; Madeswaran, Arumugam; Asokkumar, Kuppusamy

    2013-01-01

    Allopurinol, the xanthine oxidase inhibitor, is the only drug available for the treatment of gout. We examined the xanthine oxidase inhibitory activity of some commercially available flavonoids such asepigallocatechin, acacatechin, myricetin, naringenin, daidzein and glycitein by virtual screening and in-vitro studies. The interacting residues within the complex model and their contact types were identified. The virtual screening analysis were carried out using AutoDock 4.2 and in-vitro xanth...

  13. A Peroxidase/Dual Oxidase System Modulates Midgut Epithelial Immunity in Anopheles gambiae

    OpenAIRE

    Kumar, Sanjeev; Molina-Cruz, Alvaro; Gupta, Lalita; Rodrigues, Janneth; Barillas-Mury, Carolina

    2010-01-01

    Extracellular matrices in diverse biological systems are crosslinked by dityrosine covalent bonds catalyzed by the peroxidase/oxidase system. We show that the Immunomodulatory Peroxidase (IMPer), an enzyme secreted by the mosquito Anopheles gambiae midgut, and dual oxidase (Duox) form a dityrosine network that decreases gut permeability to immune elicitors and protects the microbiota by preventing activation of epithelial immunity. It also provides a suitable environment for malaria parasites...

  14. Endoplasmic Reticulum Thiol Oxidase Deficiency Leads to Ascorbic Acid Depletion and Noncanonical Scurvy in Mice

    OpenAIRE

    Zito, Ester; Hansen, Henning Gram; Yeo, Giles S.H.; Fujii, Junichi; Ron, David

    2012-01-01

    Summary Endoplasmic reticulum (ER) thiol oxidases initiate a disulfide relay to oxidatively fold secreted proteins. We found that combined loss-of-function mutations in genes encoding the ER thiol oxidases ERO1α, ERO1β, and PRDX4 compromised the extracellular matrix in mice and interfered with the intracellular maturation of procollagen. These severe abnormalities were associated with an unexpectedly modest delay in disulfide bond formation in secreted proteins but a profound, 5-fold lower pr...

  15. Production of mycotoxins by galactose oxidase producing Fusarium using different culture

    Directory of Open Access Journals (Sweden)

    Pereira Angela Maria

    2000-01-01

    Full Text Available The original isolate of the galactose oxidase producing fungus Dactylium dendroides, and other five galactose oxidase producing Fusarium isolates were cultivated in different media and conditions, in order to evaluate the production of 11 mycotoxins, which are characteristic of the genus Fusarium: moniliformin, fusaric acid, deoxynivalenol, fusarenone-X, nivalenol, 3-acetyldeoxynivalenol, neosolaniol, zearalenol, zearalenone, acetyl T-2, and iso T-2. The toxicity of the culture extracts to Artemia salina larvae was tested.

  16. Modulation of NMDA receptor function by inhibition of D-amino acid oxidase in rodent brain.

    Science.gov (United States)

    Strick, Christine A; Li, Cheryl; Scott, Liam; Harvey, Brian; Hajós, Mihály; Steyn, Stefanus J; Piotrowski, Mary A; James, Larry C; Downs, James T; Rago, Brian; Becker, Stacey L; El-Kattan, Ayman; Xu, Youfen; Ganong, Alan H; Tingley, F David; Ramirez, Andres D; Seymour, Patricia A; Guanowsky, Victor; Majchrzak, Mark J; Fox, Carol B; Schmidt, Christopher J; Duplantier, Allen J

    2011-01-01

    Observations that N-Methyl-D-Aspartate (NMDA) antagonists produce symptoms in humans that are similar to those seen in schizophrenia have led to the current hypothesis that schizophrenia might result from NMDA receptor hypofunction. Inhibition of D-amino acid oxidase (DAAO), the enzyme responsible for degradation of D-serine, should lead to increased levels of this co-agonist at the NMDA receptor, and thereby provide a therapeutic approach to schizophrenia. We have profiled some of the preclinical biochemical, electrophysiological, and behavioral consequences of administering potent and selective inhibitors of DAAO to rodents to begin to test this hypothesis. Inhibition of DAAO activity resulted in a significant dose and time dependent increase in D-serine only in the cerebellum, although a time delay was observed between peak plasma or brain drug concentration and cerebellum D-serine response. Pharmacokinetic/pharmacodynamic (PK/PD) modeling employing a mechanism-based indirect response model was used to characterize the correlation between free brain drug concentration and D-serine accumulation. DAAO inhibitors had little or no activity in rodent models considered predictive for antipsychotic activity. The inhibitors did, however, affect cortical activity in the Mescaline-Induced Scratching model, produced a modest but significant increase in NMDA receptor-mediated synaptic currents in primary neuronal cultures from rat hippocampus, and resulted in a significant increase in evoked hippocampal theta rhythm, an in vivo electrophysiological model of hippocampal activity. These findings demonstrate that although DAAO inhibition did not cause a measurable increase in D-serine in forebrain, it did affect hippocampal and cortical activity, possibly through augmentation of NMDA receptor-mediated currents.

  17. Ectopic Expression of Pumpkin Gibberellin Oxidases Alters Gibberellin Biosynthesis and Development of Transgenic Arabidopsis Plants1

    Science.gov (United States)

    Radi, Abeer; Lange, Theo; Niki, Tomoya; Koshioka, Masaji; Lange, Maria João Pimenta

    2006-01-01

    Immature pumpkin (Cucurbita maxima) seeds contain gibberellin (GA) oxidases with unique catalytic properties resulting in GAs of unknown function for plant growth and development. Overexpression of pumpkin GA 7-oxidase (CmGA7ox) in Arabidopsis (Arabidopsis thaliana) resulted in seedlings with elongated roots, taller plants that flower earlier with only a little increase in bioactive GA4 levels compared to control plants. In the same way, overexpression of the pumpkin GA 3-oxidase1 (CmGA3ox1) resulted in a GA overdose phenotype with increased levels of endogenous GA4. This indicates that, in Arabidopsis, 7-oxidation and 3-oxidation are rate-limiting steps in GA plant hormone biosynthesis that control plant development. With an opposite effect, overexpression of pumpkin seed-specific GA 20-oxidase1 (CmGA20ox1) in Arabidopsis resulted in dwarfed plants that flower late with reduced levels of GA4 and increased levels of physiological inactive GA17 and GA25 and unexpected GA34 levels. Severe dwarfed plants were obtained by overexpression of the pumpkin GA 2-oxidase1 (CmGA2ox1) in Arabidopsis. This dramatic change in phenotype was accompanied by a considerable decrease in the levels of bioactive GA4 and an increase in the corresponding inactivation product GA34 in comparison to control plants. In this study, we demonstrate the potential of four pumpkin GA oxidase-encoding genes to modulate the GA plant hormone pool and alter plant stature and development. PMID:16384902

  18. A decade of crystallization drops: crystallization of the cbb3 cytochrome c oxidase from Pseudomonas stutzeri.

    Science.gov (United States)

    Buschmann, Sabine; Richers, Sebastian; Ermler, Ulrich; Michel, Hartmut

    2014-04-01

    The cbb3 cytochrome c oxidases are distant members of the superfamily of heme copper oxidases. These terminal oxidases couple O2 reduction with proton transport across the plasma membrane and, as a part of the respiratory chain, contribute to the generation of an electrochemical proton gradient. Compared with other structurally characterized members of the heme copper oxidases, the recently determined cbb3 oxidase structure at 3.2 Å resolution revealed significant differences in the electron supply system, the proton conducting pathways and the coupling of O2 reduction to proton translocation. In this paper, we present a detailed report on the key steps for structure determination. Improvement of the protein quality was achieved by optimization of the number of lipids attached to the protein as well as the separation of two cbb3 oxidase isoenzymes. The exchange of n-dodecyl-β-D-maltoside for a precisely defined mixture of two α-maltosides and decanoylsucrose as well as the choice of the crystallization method had a most profound impact on crystal quality. This report highlights problems frequently encountered in membrane protein crystallization and offers meaningful approaches to improve crystal quality. PMID:24488923

  19. Blockade of TGF-β 1 Signalling Inhibits Cardiac NADPH Oxidase Overactivity in Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    José Luis Miguel-Carrasco

    2012-01-01

    Full Text Available NADPH oxidases constitute a major source of superoxide anion (⋅O2 - in hypertension. Several studies suggest an important role of NADPH oxidases in different effects mediated by TGF-β 1. In this study we show that chronic administration of P144, a peptide synthesized from type III TGF-β 1 receptor, significantly reduced the cardiac NADPH oxidase expression and activity as well as in the nitrotyrosine levels observed in control spontaneously hypertensive rats (V-SHR to levels similar to control normotensive Wistar Kyoto rats. In addition, P144 was also able to reduce the significant increases in the expression of collagen type I protein and mRNA observed in hearts from V-SHR. In addition, positive correlations between collagen expression, NADPH oxidase activity, and nitrotyrosine levels were found in all animals. Finally, TGF-β 1-stimulated Rat-2 exhibited significant increases in NADPH oxidase activity that was inhibited in the presence of P144. It could be concluded that the blockade of TGF-β 1 with P144 inhibited cardiac NADPH oxidase in SHR, thus adding new data to elucidate the involvement of this enzyme in the profibrotic actions of TGF-β 1.

  20. Involvement of phospholipase D and NADPH-oxidase in salicylic acid signaling cascade.

    Science.gov (United States)

    Kalachova, Tetiana; Iakovenko, Oksana; Kretinin, Sergii; Kravets, Volodymyr

    2013-05-01

    Salicylic acid is associated with the primary defense responses to biotic stress and formation of systemic acquired resistance. However, molecular mechanisms of early cell reactions to phytohormone application are currently undisclosed. The present study investigates the participation of phospholipase D and NADPH-oxidase in salicylic acid signal transduction cascade. The activation of lipid signaling enzymes within 15 min of salicylic acid application was shown in Arabidopsis thaliana plants by measuring the phosphatidic acid accumulation. Adding of primary alcohol (1-butanol) to the incubation medium led to phosphatidylbutanol accumulation as a result of phospholipase D (PLD) action in wild-type and NADPH-oxidase RbohD deficient plants. Salicylic acid induced rapid increase in NADPH-oxidase activity in histochemical assay with nitroblue tetrazolium but the reaction was not observed in presence of 1-butanol and NADPH-oxidase inhibitor diphenylene iodide (DPI). The further physiological effect of salicylic acid and inhibitory analysis of the signaling cascade were made in the guard cell model. Stomatal closure induced by salicylic acid was inhibited by 1-butanol and DPI treatment. rbohD transgenic plants showed impaired stomatal reaction upon phytohormone effect, while the reaction to H2O2 did not differ from that of wild-type plants. Thus a key role of NADPH-oxidase D-isoform in the process of stomatal closure in response to salicylic acid has been postulated. It has enabled to predict a cascade implication of PLD and NADPH oxidase to salicylic acid signaling pathway.

  1. NADPH Oxidase-Dependent Superoxide Production in Plant Reproductive Tissues

    Science.gov (United States)

    Jiménez-Quesada, María J.; Traverso, José Á.; Alché, Juan de Dios

    2016-01-01

    In the life cycle of a flowering plant, the male gametophyte (pollen grain) produced in the anther reaches the stigmatic surface and initiates the pollen–pistil interaction, an important step in plant reproduction, which ultimately leads to the delivery of two sperm cells to the female gametophyte (embryo sac) inside the ovule. The pollen tube undergoes a strictly apical expansion characterized by a high growth rate, whose targeting should be tightly regulated. A continuous exchange of signals therefore takes place between the haploid pollen and diploid tissue of the pistil until fertilization. In compatible interactions, theses processes result in double fertilization to form a zygote (2n) and the triploid endosperm. Among the large number of signaling mechanisms involved, the redox network appears to be particularly important. Respiratory burst oxidase homologs (Rbohs) are superoxide-producing enzymes involved in a broad range of processes in plant physiology. In this study, we review the latest findings on understanding Rboh activity in sexual plant reproduction, with a particular focus on the male gametophyte from the anther development stages to the crowning point of fertilization. Rboh isoforms have been identified in both the male and female gametophyte and have proven to be tightly regulated. Their role at crucial points such as proper growth of pollen tube, self-incompatibility response and eventual fertilization is discussed. PMID:27066025

  2. The NADPH oxidase inhibitor apocynin (acetovanillone) induces oxidative stress

    International Nuclear Information System (INIS)

    Apocynin (acetovanillone) is often used as a specific inhibitor of NADPH oxidase. In N11 glial cells, apocynin induced, in a dose-dependent way, a significant increase of both malonyldialdehyde level (index of lipid peroxidation) and lactate dehydrogenase release (index of a cytotoxic effect). Apocynin evoked also, in a significant way, an increase of H2O2 concentration and a decrease of the intracellular glutathione/glutathione disulfide ratio, accompanied by augmented efflux of glutathione and glutathione disulfide. Apocynin induced the activation of both pentose phosphate pathway and tricarboxylic acid cycle, which was blocked when the cells were incubated with glutathione together with apocynin. The cell incubation with glutathione prevented also the apocynin-induced increase of malonyldialdehyde generation and lactate dehydrogenase leakage. Apocynin exerted an oxidant effect also in a cell-free system: indeed, in aqueous solution, it evoked a faster oxidation of the thiols glutathione and dithiothreitol, and elicited the generation of reactive oxygen species, mainly superoxide anions. Our results suggest that apocynin per se can induce an oxidative stress and exert a cytotoxic effect in N11 cells and other cell types, and that some effects of apocynin in in vitro and in vivo experimental models should be interpreted with caution

  3. Polyaniline-graphite composite film glucose oxidase electrode

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hai-hui; CHEN Hong; CHEN Jin-hua; KUANG Ya-fei

    2006-01-01

    A novel polyaniline-graphite composite film glucose oxidase (PGCF GOD) electrode was developed. The PGCF was synthesized by cyclic voltammetry method in 0.5 mol/L H2SO4 solution containing 1 g/L graphite powder and 0.2 mol/L aniline. The PGCF GOD electrode was prepared by doping GOD into the composite film. The morphology of the PGCF and the response property of the PGCF GOD electrode were investigated by scanning electron microscopy and electrochemical measurement,respectively. The results show that the PGCF has a porous and netty structure and the PGCF GOD electrode has excellent response property such as high sensitivity and short response time. Influences of pH value, temperature, glucose concentration and potential on the response current of the electrode were also discussed. The sensor has a maximum steady-state current density of 357.17 tA/cm2and an apparent Michaelis-Menten constant of 16.57 mmol/L. The maximum current response of the enzyme electrode occurs under the condition of pH 5.5, 0.8 V and 65 ℃.

  4. Polyphenol Oxidase as a Biochemical Seed Defense Mechanism

    Directory of Open Access Journals (Sweden)

    E. Patrick Fuerst

    2014-12-01

    Full Text Available Seed dormancy and resistance to decay are fundamental survival strategies, which allow a population of seeds to germinate over long periods of time. Seeds have physical, chemical, and biological defense mechanisms that protect their food reserves from decay-inducing organisms and herbivores. Here, we hypothesize that seeds also possess enzyme-based biochemical defenses, based on induction of the plant defense enzyme, polyphenol oxidase (PPO, when wild oat (Avena fatua L. caryopses and seeds were challenged with seed-decaying Fusarium fungi. These studies suggest that dormant seeds are capable of mounting a defense response to pathogens. The pathogen-induced PPO activity from wild oat was attributed to a soluble isoform of the enzyme that appeared to result, at least in part, from proteolytic activation of a latent PPO isoform. PPO activity was also induced in wild oat hulls (lemma and palea, non-living tissues that cover and protect the caryopsis. These results are consistent with the hypothesis that seeds possess inducible enzyme-based biochemical defenses arrayed on the exterior of seeds and these defenses represent a fundamental mechanism of seed survival and longevity in the soil. Enzyme-based biochemical defenses may have broader implications since they may apply to other defense enzymes as well as to a diversity of plant species and ecosystems.

  5. Xanthine oxidase activity regulates human embryonic brain cells growth

    Directory of Open Access Journals (Sweden)

    Kevorkian G. A.

    2011-10-01

    Full Text Available Aim. Involvement of Xanthine Oxidase (XO; EC1.1.3.22 in cellular proliferation and differentiation has been suggested by the numerous investigations. We have proposed that XO might have undoubtedly important role during the development, maturation as well as the death of human embryos brain cells. Methods. Human abortion material was utilized for the cultivation of brain cells (E90. XO activity was measured by the formation of uric acid in tissue. Cell death was detected by the utility of Trypan Blue dye. Results. Allopurinol suppressed the XO activity in the brain tissue (0.12 ± 0.02; 0.20 ± 0.03 resp., p < 0.05. On day 12th the number of cells in the culture treated with the Allopurinol at the early stage of development was higher in comparison with the Control (2350.1 ± 199.0 vs 2123 ± 96 and higher in comparison with the late period of treatment (1479.6 ± 103.8, p < < 0.05. In all groups, the number of the dead cells was less than in Control, indicating the protective nature of Allopurinol as an inhibitor of XO. Conclusions. Allopurinol initiates cells proliferation in case of the early treatment of the human brain derived cell culture whereas at the late stages it has an opposite effect.

  6. NADPH Oxidase-Dependent Superoxide Production in Plant Reproductive Tissues.

    Science.gov (United States)

    Jiménez-Quesada, María J; Traverso, José Á; Alché, Juan de Dios

    2016-01-01

    In the life cycle of a flowering plant, the male gametophyte (pollen grain) produced in the anther reaches the stigmatic surface and initiates the pollen-pistil interaction, an important step in plant reproduction, which ultimately leads to the delivery of two sperm cells to the female gametophyte (embryo sac) inside the ovule. The pollen tube undergoes a strictly apical expansion characterized by a high growth rate, whose targeting should be tightly regulated. A continuous exchange of signals therefore takes place between the haploid pollen and diploid tissue of the pistil until fertilization. In compatible interactions, theses processes result in double fertilization to form a zygote (2n) and the triploid endosperm. Among the large number of signaling mechanisms involved, the redox network appears to be particularly important. Respiratory burst oxidase homologs (Rbohs) are superoxide-producing enzymes involved in a broad range of processes in plant physiology. In this study, we review the latest findings on understanding Rboh activity in sexual plant reproduction, with a particular focus on the male gametophyte from the anther development stages to the crowning point of fertilization. Rboh isoforms have been identified in both the male and female gametophyte and have proven to be tightly regulated. Their role at crucial points such as proper growth of pollen tube, self-incompatibility response and eventual fertilization is discussed.

  7. Coenzyme-like ligands for affinity isolation of cholesterol oxidase.

    Science.gov (United States)

    Xin, Yu; Lu, Liushen; Wang, Qing; Zhang, Ling; Tong, Yanjun; Wang, Wu

    2016-05-15

    Two coenzyme-like chemical ligands were designed and synthesized for affinity isolation of cholesterol oxidase (COD). To simulate the structure of natural coenzyme of COD (flavin adenine dinucleotide (FAD)), on Sepharose beads, 5-aminouracil, cyanuric chloride and 1, 4-butanediamine were composed and then modified. The COD gene from Brevibacterium sp. (DQ345780) was expressed in Escherichia coli BL21 (DE3), and then the sorbents were applied to adsorption analysis with the pure enzyme. Subsequently, the captured enzyme was applied to SDS-PAGE and activity analysis. As calculated, the theoretical maximum adsorption (Qmax) of the two affinity sorbents (RL-1 and RL-2) were ∼83.5 and 46.3mg/g wet gel; and the desorption constant Kd of the two sorbents were ∼6.02×10(-4) and 1.19×10(-4)μM. The proteins after cell lysis were applied to affinity isolation, and then after one step of affinity binding on the two sorbents, the protein recoveries of RL-1 and RL-2 were 9.2% and 9.7%; the bioactivity recoveries were 92.7% and 91.3%, respectively. SDS-PAGE analysis revealed that the purities of COD isolated with the two affinity sorbents were approximately 95%. PMID:26856529

  8. Brain monoamine oxidase A activity predicts trait aggression.

    Science.gov (United States)

    Alia-Klein, Nelly; Goldstein, Rita Z; Kriplani, Aarti; Logan, Jean; Tomasi, Dardo; Williams, Benjamin; Telang, Frank; Shumay, Elena; Biegon, Anat; Craig, Ian W; Henn, Fritz; Wang, Gene-Jack; Volkow, Nora D; Fowler, Joanna S

    2008-05-01

    The genetic deletion of monoamine oxidase A (MAO A), an enzyme that breaks down the monoamine neurotransmitters norepinephrine, serotonin, and dopamine, produces aggressive phenotypes across species. Therefore, a common polymorphism in the MAO A gene (MAOA, Mendelian Inheritance in Men database number 309850, referred to as high or low based on transcription in non-neuronal cells) has been investigated in a number of externalizing behavioral and clinical phenotypes. These studies provide evidence linking the low MAOA genotype and violent behavior but only through interaction with severe environmental stressors during childhood. Here, we hypothesized that in healthy adult males the gene product of MAO A in the brain, rather than the gene per se, would be associated with regulating the concentration of brain amines involved in trait aggression. Brain MAO A activity was measured in vivo in healthy nonsmoking men with positron emission tomography using a radioligand specific for MAO A (clorgyline labeled with carbon 11). Trait aggression was measured with the multidimensional personality questionnaire (MPQ). Here we report for the first time that brain MAO A correlates inversely with the MPQ trait measure of aggression (but not with other personality traits) such that the lower the MAO A activity in cortical and subcortical brain regions, the higher the self-reported aggression (in both MAOA genotype groups) contributing to more than one-third of the variability. Because trait aggression is a measure used to predict antisocial behavior, these results underscore the relevance of MAO A as a neurochemical substrate of aberrant aggression. PMID:18463263

  9. Evolution of histamine oxidase activity for biotechnological applications.

    Science.gov (United States)

    Rosini, Elena; Tonin, Fabio; Vasylieva, Natalia; Marinesco, Stephane; Pollegioni, Loredano

    2014-01-01

    Histamine is present to various degrees in many foods, and concentrations in fish samples are considered a good indicator of freshness and hygienic food quality. Seeking for innovative methods to quantify histamine in foods, we used a synthetic gene designed on the sequence of histamine oxidase from Arthrobacter crystallopoietes (HOD) as the starting point in this study to develop a biosensor. HOD was expressed in Escherichia coli cells with a yield of ∼7 mg protein/L of fermentation broth. Recombinant wild-type HOD oxidized histamine and tyramine whereas it was inactive toward putrescine and cadaverine (two amines present in fish samples). The putative residues involved in substrate binding were identified by an in silico docking procedure based on a model of the structure of HOD: site-saturation mutagenesis was performed on 8 positions. The most significant changes in kinetic properties were observed for the P143M HOD: this variant showed higher histamine affinity and lower substrate inhibition by tyramine than wild-type enzyme. Biosensor prototypes were produced using both the wild-type and the P143M variant HOD. These biosensors showed a good sensitivity and selectivity with respect to biogenic amines present in food specimens. Accordingly, the HOD-based biosensor was successfully used to assess histamine in fish samples, yielding values in good agreement with those obtained by HPLC analyses but in a few seconds and at a significantly lower cost per analysis. PMID:23995223

  10. PHARMACOLOGICAL EFFECTS OF SNAKE VENOM L- AMINO ACID OXIDASES

    Directory of Open Access Journals (Sweden)

    Joseph Baby

    2011-02-01

    Full Text Available L-Amino acid oxidases are flavoenzymes which catalyze the stereospecific oxidative deamination of an L-amino acid substrate to a corresponding a-ketoacid with hydrogen peroxide and ammonia production. These enzymes, which are widely distributed in many different organisms, exhibit a marked affinity for hydrophobic amino acids, including phenylalanine, tryptophan, tyrosine, and leucine. Snake venom LAAO induces platelet aggregation and cytotoxicity in various cancer cell lines. The enzyme has antibacterial activity inhibiting the growth of Gram-positive (Bacillus subtilis and Gram-negative (Escherichia coli bacteria. Specific substrates for the isolated protein are L-phenylalanine, L-tryptophan, L-methionine and L-leucine. The enzyme is stable at low temperatures (−20 ºC, −70 ºC and loses its activity by heating at 70 ºC. These enzymes are postulated to be toxins that may be involved in the allergic inflammatory response and specifically associated with mammalian endothelial cells damage. However, in the last decade these enzymes have become an interesting subject for pharmacological, structural and molecular characterizations. Structural and functional investigations of these enzymes can contribute to the advancement of toxinology and to the elaboration of novel therapeutic agents.

  11. The pea gene NA encodes ent-kaurenoic acid oxidase.

    Science.gov (United States)

    Davidson, Sandra E; Elliott, Robert C; Helliwell, Chris A; Poole, Andrew T; Reid, James B

    2003-01-01

    The gibberellin (GA)-deficient dwarf na mutant in pea (Pisum sativum) has severely reduced internode elongation, reduced root growth, and decreased leaflet size. However, the seeds develop normally. Two genes, PsKAO1 and PsKAO2, encoding cytochrome P450 monooxygenases of the subfamily CYP88A were isolated. Both PsKAO1 and PsKAO2 had ent-kaurenoic acid oxidase (KAO) activity, catalyzing the three steps of the GA biosynthetic pathway from ent-kaurenoic acid to GA(12) when expressed in yeast (Saccharomyces cerevisiae). In addition to the intermediates ent-7alpha-hydroxykaurenoic acid and GA(12)-aldehyde, some additional products of the pea KAO activity were detected, including ent-6alpha,7alpha-dihydroxykaurenoic acid and 7beta-hydroxykaurenolide. The NA gene encodes PsKAO1, because in two independent mutant alleles, na-1 and na-2, PsKAO1 had altered sequences and the five-base deletion in PsKAO1 associated with the na-1 allele cosegregated with the dwarf na phenotype. PsKAO1 was expressed in the stem, apical bud, leaf, pod, and root, organs in which GA levels have previously been shown to be reduced in na plants. PsKAO2 was expressed only in seeds and this may explain the normal seed development and normal GA biosynthesis in seeds of na plants.

  12. Reducing peanut allergens by high pressure combined with polyphenol oxidase

    Science.gov (United States)

    Chung, Si-Yin; Houska, Milan; Reed, Shawndrika

    2013-12-01

    Polyphenol oxidase (PPO) has been shown to reduce major peanut allergens. Since high pressure (HP) can increase enzyme activity, we postulated that further reduction of peanut allergens can be achieved through HP combined with PPO. Peanut extracts containing caffeic acid were treated with each of the following: (1) HP; (2) HP+PPO; (3) PPO; and (4) none. HP was conducted at 300 and 500 MPa, each for 3 and 10 min, 37 °C. After treatment, SDS-PAGE was performed and allergenic capacity (IgE binding) was determined colorimetrically in inhibition enzyme-linked immunosorbent assay and Western blots, using a pooled plasma from peanut-allergic patients. Data showed that HP alone had no effect on major peanut allergens. However, HP at 500 MPa combined with PPO (HP500/PPO) induced a higher (approximately twofold) reduction of major peanut allergens and IgE binding than PPO alone or HP300/PPO. There was no difference between treatment times. We concluded that HP500/PPO at 3-min enhanced a twofold reduction of the allergenic capacity of peanut extracts, as compared to PPO itself.

  13. Comparative investigations of sodium arsenite, arsenic trioxide and cadmium sulphate in combination with gamma-radiation on apoptosis, micronuclei induction and DNA damage in a human lymphoblastoid cell line

    International Nuclear Information System (INIS)

    In the field of radiation protection the combined exposure to radiation and other toxic agents is recognised as an important research area. To elucidate the basic mechanisms of simultaneous exposure, the interaction of the carcinogens and environmental toxicants cadmium and two arsenic compounds, arsenite and arsenic trioxide, in combination with gamma-radiation in human lymphoblastoid cells (TK6) were investigated. Gamma-radiation induced significant genotoxic effects such as micronuclei formation, DNA damage and apoptosis, whereas arsenic and cadmium had no significant effect on these indicators of cellular damage at non-toxic concentrations. However, in combination with gamma-radiation arsenic trioxide induced a more than additive apoptotic rate compared to the sum of the single effects. Here, the level of apoptotic cells was increased, in a dose-dependent way, up to two-fold compared to the irradiated control cells. Arsenite did not induce a significant additive effect at any of the concentrations or radiation doses tested. On the other hand, arsenic trioxide was less effective than arsenite in the induction of DNA protein cross-links. These data indicate that the two arsenic compounds interact through different pathways in the cell. Cadmium sulphate, like arsenite, had no significant effect on apoptosis in combination with gamma-radiation at low concentrations and, at high concentrations, even reduced the radiation-induced apoptosis. An additive effect on micronuclei induction was observed with 1 μM cadmium sulphate with an increase of up to 80% compared to the irradiated control cells. Toxic concentrations of cadmium and arsenic trioxide seemed to reduce micronuclei induction. The results presented here indicate that relatively low concentrations of arsenic and cadmium, close to those occurring in nature, may interfere with radiation effects. Differences in action of the two arsenic compounds were identified

  14. How does real affect affect affect recognition in speech?

    NARCIS (Netherlands)

    Truong, Khiet Phuong

    2009-01-01

    The aim of the research described in this thesis was to develop speech-based affect recognition systems that can deal with spontaneous (‘real’) affect instead of acted affect. Several affect recognition experiments with spontaneous affective speech data were carried out to investigate what combinati

  15. 亚砷酸钠对人永生化角质形成细胞株恶性转化的影响%Effect of sodium arsenite on malignant transformation of human immortalized keratinocyte cell lines

    Institute of Scientific and Technical Information of China (English)

    李艳玲; 胡玉贤; 张晓光; 王凌

    2016-01-01

    BACKGROUND:Studies have found that sodium arsenite can cause the malignant transformation and tumorigenicity of HaCaT cels, but whether low concentrations of sodium arsenite can cause the malignant transformation is rarely reported. OBJECTIVE:To study the effect of sodium arsenite on the malignant transformation of human immortalized keratinocyte cel lines. METHODS:HaCaT cels were treated with different concentrations of sodium arsenite. MTT assay was used to determine the effect of sodium arsenite on HaCaT cel morphology and proliferation, flow cytometry used to detect the effect of sodium arsenite on HaCaT cel cycle, and soft agar colony formation experiments assay used to determine the effect of sodium arsenite on HaCaT cel colony formation capacity. RESULTS AND CONCLUSION: HaCaT cels grew wel when the concentration of sodium arsenite was 5 mol/L, but the cel growth was inhibited under intervention with 10 and 50 mol/L sodium arsenite. HaCaT cels treated with 0.1 mol/L sodium arsenite were passaged to the 20th generation, and cel morphology had no notable changes; cels at passage 25 exhibited enlarged size and multiple nucleoli, which had a continued proliferation trend. Compared with the primarily cultured cels, 0.1 mol/L sodium arsenite-treated HaCaT cels at passages 15 and 25 had an increased proportion at S phase and G2/M phase, with strengthened proliferation ability and increased colony-forming efficiency, and moreover, the proliferation ability and colony-forming efficiency of passage 25 cels were higher than those of passage 15 cels. These experimental data show that high concentrations of sodium arsenite reduce HaCaT cel viability, and low concentrations of sodium sulfite have a certain influence on the morphology, cel cycle, proliferation ability and colony-forming efficiency of HaCaT cels, and moreover, the proliferation ability and colony-forming efficiency of human immortalized keratinocytes wil be strengthened with the increase of passage.%背景

  16. Biofabrication Using Pyrrole Electropolymerization for the Immobilization of Glucose Oxidase and Lactate Oxidase on Implanted Microfabricated Biotransducers

    Directory of Open Access Journals (Sweden)

    Christian N. Kotanen

    2014-03-01

    Full Text Available The dual responsive Electrochemical Cell-on-a-Chip Microdisc Electrode Array (ECC MDEA 5037 is a recently developed electrochemical transducer for use in a wireless, implantable biosensor system for the continuous measurement of interstitial glucose and lactate. Fabrication of the biorecognition membrane via pyrrole electropolymerization and both in vitro and in vivo characterization of the resulting biotransducer is described. The influence of EDC-NHS covalent conjugation of glucose oxidase with 4-(3-pyrrolyl butyric acid (monomerization and with 4-sulfobenzoic acid (sulfonization on biosensor performance was examined. As the extent of enzyme conjugation was increased sensitivity decreased for monomerized enzymes but increased for sulfonized enzymes. Implanted biotransducers were examined in a Sprague-Dawley rat hemorrhage model. Resection after 4 h and subsequent in vitro re-characterization showed a decreased sensitivity from 0.68 (±0.40 to 0.22 (±0.17 µA·cm−2·mM−1, an increase in the limit of detection from 0.05 (±0.03 to 0.27 (±0.27 mM and a six-fold increase in the response time from 41 (±18 to 244 (±193 s. This evidence reconfirms the importance of biofouling at the bio-abio interface and the need for mitigation strategies to address the foreign body response.

  17. NADPH Oxidase 1 and NADPH Oxidase 4 Have Opposite Prognostic Effects for Patients with Hepatocellular Carcinoma after Hepatectomy

    Science.gov (United States)

    Ha, Sang Yun; Paik, Yong-Han; Yang, Jung Wook; Lee, Min Ju; Bae, Hyunsik; Park, Cheol-Keun

    2016-01-01

    Background/Aims Nicotinamide adenine dinucleotide phosphate oxidase (NOX)-mediated reactive oxygen species contribute to various liver diseases, including hepatocellular carcinoma (HCC). Uncertainties remain regarding the prognostic relevance of NOX1 and NOX4 protein expression in HCC. Methods NOX1 and NOX4 protein expression was examined by using immunohistochemistry in tumor tissue from 227 HCC patients who underwent hepatectomy. Results High immunoreactivity for NOX1 was observed in 197 (86.8%) of the 227 HCC cases and low immunoreactivity for NOX4 in 112 (49.3%). NOX1 and NOX4 proteins had opposite prognostic effects. High NOX1 expression was an independent predictor of both shorter recurrence-free survival (RFS) (p<0.01) and shorter overall survival (OS) (p=0.01). Low NOX4 expression was an independent predictor of both shorter RFS (p<0.01) and shorter OS (p=0.01). Subgroup analysis showed that, among patients with normal α-fetoprotein levels, patients with tumor size ≤5.0 cm and patients in Barcelona Clinic Liver Cancer stage A, high NOX1 expression had unfavorable effects on RFS, whereas low NOX4 expression had unfavorable effects on both RFS and OS. Conclusions These findings demonstrated that NOX1 and NOX4 protein expression had opposite prognostic effects for HCC patients. Moreover, both proteins had prognostic value in HCC patients with normal α-fetoprotein levels or with early-stage HCC. PMID:27282266

  18. Sodium arsenite represses the expression of myogenin in C2C12 mouse myoblast cells through histone modifications and altered expression of Ezh2, Glp, and Igf-1

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gia-Ming [Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Present address: The University of Chicago, Section of Hematology/Oncology, 900 E. 57th Street, Room 7134, Chicago, IL 60637 (United States); Bain, Lisa J., E-mail: lbain@clemson.edu [Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States)

    2012-05-01

    Arsenic is a toxicant commonly found in water systems and chronic exposure can result in adverse developmental effects including increased neonatal death, stillbirths, and miscarriages, low birth weight, and altered locomotor activity. Previous studies indicate that 20 nM sodium arsenite exposure to C2C12 mouse myocyte cells delayed myoblast differentiation due to reduced myogenin expression, the transcription factor that differentiates myoblasts into myotubes. In this study, several mechanisms by which arsenic could alter myogenin expression were examined. Exposing differentiating C2C12 cells to 20 nM arsenic increased H3K9 dimethylation (H3K9me2) and H3K9 trimethylation (H3K9me3) by 3-fold near the transcription start site of myogenin, which is indicative of increased repressive marks, and reduced H3K9 acetylation (H3K9Ac) by 0.5-fold, indicative of reduced permissive marks. Protein expression of Glp or Ehmt1, a H3-K9 methyltransferase, was also increased by 1.6-fold in arsenic-exposed cells. In addition to the altered histone remodeling status on the myogenin promoter, protein and mRNA levels of Igf-1, a myogenic growth factor, were significantly repressed by arsenic exposure. Moreover, a 2-fold induction of Ezh2 expression, and an increased recruitment of Ezh2 (3.3-fold) and Dnmt3a (∼ 2-fold) to the myogenin promoter at the transcription start site (− 40 to + 42), were detected in the arsenic-treated cells. Together, we conclude that the repressed myogenin expression in arsenic-exposed C2C12 cells was likely due to a combination of reduced expression of Igf-1, enhanced nuclear expression and promoter recruitment of Ezh2, and altered histone remodeling status on myogenin promoter (− 40 to + 42). -- Highlights: ► Igf-1 expression is decreased in C2C12 cells after 20 nM arsenite exposure. ► Arsenic exposure alters histone remodeling on the myogenin promoter. ► Glp expression, a H3–K9 methyltransferase, was increased in arsenic-exposed cells. ► Ezh2

  19. Alkalilimnicola ehrlichii sp. nov., a novel, arsenite-oxidizing haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor

    Science.gov (United States)

    Hoeft, S.E.; Blum, J.S.; Stolz, J.F.; Tabita, F.R.; Witte, B.; King, G.M.; Santini, J.M.; Oremland, R.S.

    2007-01-01

    A facultative chemoautotrophic bacterium, strain MLHE-1T, was isolated from Mono Lake, an alkaline hypersaline soda lake in California, USA. Cells of strain MLHE-1T were Gram-negative, short motile rods that grew with inorganic electron donors (arsenite, hydrogen, sulfide or thiosulfate) coupled with the reduction of nitrate to nitrite. No aerobic growth was attained with arsenite or sulfide, but hydrogen sustained both aerobic and anaerobic growth. No growth occurred when nitrite or nitrous oxide was substituted for nitrate. Heterotrophic growth was observed under aerobic and anaerobic (nitrate) conditions. Cells of strain MLHE-1T could oxidize but not grow on CO, while CH4 neither supported growth nor was it oxidized. When grown chemoautotrophically, strain MLHE-1T assimilated inorganic carbon via the Calvin-Benson-Bassham reductive pentose phosphate pathway, with the activity of ribulose 1,5-bisphosphate carboxylase (RuBisCO) functioning optimally at 0.1 M NaCl and at pH 7.3. Strain MLHE-1T grew over broad ranges of pH (7.3-10.0; optimum, 9.3), salinity (115-190 g l-1; optimum 30 g l-1) and temperature (113-40 ??C; optimum, 30 ??C). Phylogenetic analysis of 16S rRNA gene sequences placed strain MLHE-1T in the class Gammaproteobacteria (family Ectothiorhodospiraceae) and most closely related to Alkalispirillum mobile (98.5%) and Alkalilimnicola halodurans (98.6%), although none of these three haloalkaliphilic micro-organisms were capable of photoautotrophic growth and only strain MLHE-1T was able to oxidize As(III). On the basis of physiological characteristics and DNA-DNA hybridization data, it is suggested that strain MLHE-1T represents a novel species within the genus Alkalilimnicola for which the name Alkalilimnicola ehrlichii is proposed. The type strain is MLHE-1T (=DSM 17681T =ATCC BAA-1101T). Aspects of the annotated full genome of Alkalilimnicola ehrlichii are discussed in the light of its physiology. ?? 2007 IUMS.

  20. N-acetylcysteine and meso-2,3 dimercaptosuccinic acid alleviate oxidative stress and hepatic dysfunction induced by sodium arsenite in male rats

    Directory of Open Access Journals (Sweden)

    Abu El-Saad AM

    2016-10-01

    Full Text Available Ahmed M Abu El-Saad,1,4 Mohammed A Al-Kahtani,2 Ashraf M Abdel-Moneim3,4 1Department of Biology, Faculty of Medicine, Dammam University, Dammam, Saudi Arabia; 2Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia; 3Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Ahsa, Saudi Arabia; 4Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt Abstract: Environmental exposure to arsenic represents a serious challenge to humans and other animals. The aim of the present study was to test the protective effect of antioxidant N-acetylcysteine (NAC either individually or in combination with a chelating agent, meso-2,3-dimercaptosuccinic acid (DMSA, against sodium arsenite oral toxicity in male rats. Five groups were used: control; arsenic group (orally administrated in a concentration of 2 mg/kg body weight [b.w.]; the other three groups were orally administrated sodium arsenite in a concentration of 2 mg/kg b.w. followed by either NAC (10 mg/kg b.w., intraperitoneally [i.p.], DMSA (50 mg/kg b.w., i.p. or NAC plus DMSA. Arsenic toxicity caused significant rise in serum aspartate aminotransferase, alanine aminotransferase and total bilirubin, and a significant decrease in total protein (TP and albumin levels after 3 weeks of experimental period. In addition, arsenic-treated rats showed significantly higher arsenic content in liver and significant rise in hepatic malondialdehyde level. By contrast, sharp decreases in glutathione content and catalase and glutathione reductase activities were discernible. NAC and/or DMSA counteracted most of these physiologic and biochemical defects. NAC monotherapy was more effective than DMSA in increasing TP, while DMSA was more effective in decreasing alanine aminotransferase. The combined treatment was superior over monotherapies in recovery of TP and glutathione. Biochemical data were well supported by histopathological and

  1. In silico docking studies and in vitro xanthine oxidase inhibitory activity of commercially available terpenoids

    Directory of Open Access Journals (Sweden)

    MUTHUSWAMY UMAMAHESWARI

    2012-11-01

    Full Text Available Objective Xanthine oxidase is a highly versatile enzyme that is widely distributed among different species. The hydroxylation of purines is catalysed by xanthine oxidase and especially the conversion of xanthine to uric acid. Xanthine oxidase inhibitors are much useful, since they possess lesser side effects compared to uricosuric and anti-inflammatory agents. The present study deals with in silico and in vitro xanthine oxidase inhibitory analysis of commercially available terpenoids (bisabolol, β-caryophyllene, limonene, and α- terpinene. Methods Molecular docking studies were performed using AutoDock 4.2 and in vitro xanthine oxidase inhibitory activity was carried out using xanthine as the substrate. In addition, enzyme kinetics was performed using Lineweaver Burkplot analysis. Allopurinol, a known xanthine oxidase inhibitor was used as the standard. Results The results revealed that bisabolol exhibited a lowest binding energy value of about -7.33 kcal/mol. All other compounds showed binding energy values ranging between -7.33 to -5.87 kcal/mol which was less than the standard (-4.78 kcal/mol. In the xanthine oxidase assay, IC50 value of bisabolol was found to be 34.70 µg/ml, whereas that of allopurinol was 8.48 µg/ml. All the remaining compounds exhibited IC50 values ranging between 34.70 to 68.45 µg/ml.  In the enzyme kinetic studies, bisabolol, β-caryophyllene showed non competitive and Limonene, α- terpinene and allopurinol showed competitive type of enzyme inhibition. Conclusion It can be concluded that terpenoids could be a promising remedy for the treatment of gout and related inflammatory disorders. Further in vivo studies are required to develop potential compounds with lesser side effects.

  2. Production of the carbonate radical anion during xanthine oxidase turnover in the presence of bicarbonate.

    Science.gov (United States)

    Bonini, Marcelo G; Miyamoto, Sayuri; Di Mascio, Paolo; Augusto, Ohara

    2004-12-10

    Xanthine oxidase is generally recognized as a key enzyme in purine catabolism, but its structural complexity, low substrate specificity, and specialized tissue distribution suggest other functions that remain to be fully identified. The potential of xanthine oxidase to generate superoxide radical anion, hydrogen peroxide, and peroxynitrite has been extensively explored in pathophysiological contexts. Here we demonstrate that xanthine oxidase turnover at physiological pH produces a strong one-electron oxidant, the carbonate radical anion. The radical was shown to be produced from acetaldehyde oxidation by xanthine oxidase in the presence of catalase and bicarbonate on the basis of several lines of evidence such as oxidation of both dihydrorhodamine 123 and 5,5-dimethyl-1-pyrroline-N-oxide and chemiluminescence and isotope labeling/mass spectrometry studies. In the case of xanthine oxidase acting upon xanthine and hypoxanthine as substrates, carbonate radical anion production was also evidenced by the oxidation of 5,5-dimethyl-1-pyrroline-N-oxide and of dihydrorhodamine 123 in the presence of uricase. The results indicated that Fenton chemistry occurring in the bulk solution is not necessary for carbonate radical anion production. Under the conditions employed, the radical was likely to be produced at the enzyme active site by reduction of a peroxymonocarbonate intermediate whose formation and reduction is facilitated by the many xanthine oxidase redox centers. In addition to indicating that the carbonate radical anion may be an important mediator of the pathophysiological effects of xanthine oxidase, the results emphasize the potential of the bicarbonate-carbon dioxide pair as a source of biological oxidants. PMID:15448145

  3. Purification and characterization of methylamine oxidase induced in Aspergillus niger AKU 3302.

    Science.gov (United States)

    Frébort, I; Matsushita, K; Toyama, H; Lemr, K; Yamada, M; Adachi, O

    1999-01-01

    Crude extract of Aspergillus niger AKU 3302 mycelia incubated with methylamine showed a single amine oxidase activity band in a developed polyacrylamide gel that weakly cross-reacted with the antibody against a copper/topa quinone-containing amine oxidase (AO-II) from the same strain induced by n-butylamine. Since the organism cannot grow on methylamine and the already known quinoprotein amine oxidases of the organism cannot catalyze oxidation of methylamine, the organism was forced to produce another enzyme that could oxidize methylamine when the mycelia were incubated with methylamine. The enzyme was separated and purified from the already known two quinoprotein amine oxidases formed in the same mycelia. The purified enzyme showed a sharp symmetric sedimentation peak in analytical ultracentrifugation showing S20,w0 of 6.5s. The molecular mass of 133 kDa estimated by gel chromatography and 66.6 kDa found by SDS-PAGE confirmed the dimeric structure of the enzyme. The purified enzyme was pink in color with an absorption maximum at 494 nm. The enzyme readily oxidized methylamine, n-hexylamine, and n-butylamine, but not benzylamine, histamine, or tyramine, favorite substrates for the already known two quinoprotein amine oxidases. Inactivation by carbonyl reagents and copper chelators suggested the presence of a copper/topa quinone cofactor. Spectrophotometric titration by p-nitrophenylhydrazine showed one reactive carbonyl group per subunit and redox-cyclic quinone staining confirmed the presence of a quinone cofactor. pH-dependent shift of the absorption spectrum of the enzyme-p-nitrophenylhydrazone (469 nm at neutral to 577 nm at alkaline pH) supported the identity of the cofactor with topaquinone. Nothern blot analysis indicated that the methylamine oxidase encoding gene is largely different from the already known amine oxidase in the organism.

  4. Alternative oxidase in the branched mitochondrial respiratory network: an overview on structure, function, regulation, and role

    Directory of Open Access Journals (Sweden)

    Sluse F.E.

    1998-01-01

    Full Text Available Plants and some other organisms including protists possess a complex branched respiratory network in their mitochondria. Some pathways of this network are not energy-conserving and allow sites of energy conservation to be bypassed, leading to a decrease of the energy yield in the cells. It is a challenge to understand the regulation of the partitioning of electrons between the various energy-dissipating and -conserving pathways. This review is focused on the oxidase side of the respiratory chain that presents a cyanide-resistant energy-dissipating alternative oxidase (AOX besides the cytochrome pathway. The known structural properties of AOX are described including transmembrane topology, dimerization, and active sites. Regulation of the alternative oxidase activity is presented in detail because of its complexity. The alternative oxidase activity is dependent on substrate availability: total ubiquinone concentration and its redox state in the membrane and O2 concentration in the cell. The alternative oxidase activity can be long-term regulated (gene expression or short-term (post-translational modification, allosteric activation regulated. Electron distribution (partitioning between the alternative and cytochrome pathways during steady-state respiration is a crucial measurement to quantitatively analyze the effects of the various levels of regulation of the alternative oxidase. Three approaches are described with their specific domain of application and limitations: kinetic approach, oxygen isotope differential discrimination, and ADP/O method (thermokinetic approach. Lastly, the role of the alternative oxidase in non-thermogenic tissues is discussed in relation to the energy metabolism balance of the cell (supply in reducing equivalents/demand in energy and carbon and with harmful reactive oxygen species formation.

  5. A point mutation of valine-311 to methionine in Bacillus subtilis protoporphyrinogen oxidase does not greatly increase resistance to the diphenyl ether herbicide oxyfluorfen.

    Science.gov (United States)

    Jeong, Eunjoo; Houn, Thavrak; Kuk, Yongin; Kim, Eun-Seon; Chandru, Hema Kumar; Baik, Myunggi; Back, Kyoungwhan; Guh, Ja-Ock; Han, Oksoo

    2003-10-01

    In an effort to asses the effect of Val311Met point mutation of Bacillus subtilis protoporphyrinogen oxidase on the resistance to diphenyl ether herbicides, a Val311Met point mutant of B. subtilis protoporphyrinogen oxidase was prepared, heterologously expressed in Escherichia coli, and the purified recombinant Val311Met mutant protoporphyrinogen oxidase was kinetically characterized. The mutant protoporphyrinogen oxidase showed very similar kinetic patterns to wild type protoporphyrinogen oxidase, with slightly decreased activity dependent on pH and the concentrations of NaCl, Tween 20, and imidazole. When oxyfluorfen was used as a competitive inhibitor, the Val311Met mutant protoporphyrinogen oxidase showed an increased inhibition constant about 1.5 times that of wild type protoporphyrinogen oxidase. The marginal increase of the inhibition constant indicates that the Val311Met point mutation in B. subtilis protoporphyrinogen oxidase may not be an important determinant in the mechanism that protects protoporphyrinogen oxidase against diphenyl ether herbicides. PMID:12941291

  6. Assessing Gibberellins Oxidase Activity by Anion Exchange/Hydrophobic Polymer Monolithic Capillary Liquid Chromatography-Mass Spectrometry

    OpenAIRE

    Ming-Luan Chen; Xin Su; Wei Xiong; Jiu-Feng Liu; Yan Wu; Yu-Qi Feng; Bi-Feng Yuan

    2013-01-01

    Bioactive gibberellins (GAs) play a key regulatory role in plant growth and development. In the biosynthesis of GAs, GA3-oxidase catalyzes the final step to produce bioactive GAs. Thus, the evaluation of GA3-oxidase activity is critical for elucidating the regulation mechanism of plant growth controlled by GAs. However, assessing catalytic activity of endogenous GA3-oxidase remains challenging. In the current study, we developed a capillary liquid chromatography – mass spectrometry (cLC-MS) m...

  7. A subset of N-substituted phenothiazines inhibits NADPH oxidases.

    Science.gov (United States)

    Seredenina, Tamara; Chiriano, Gianpaolo; Filippova, Aleksandra; Nayernia, Zeynab; Mahiout, Zahia; Fioraso-Cartier, Laetitia; Plastre, Olivier; Scapozza, Leonardo; Krause, Karl-Heinz; Jaquet, Vincent

    2015-09-01

    NADPH oxidases (NOXs) constitute a family of enzymes generating reactive oxygen species (ROS) and are increasingly recognized as interesting drug targets. Here we investigated the effects of 10 phenothiazine compounds on NOX activity using an extensive panel of assays to measure production of ROS (Amplex red, WST-1, MCLA) and oxygen consumption. Striking differences between highly similar phenothiazines were observed. Two phenothiazines without N-substitution, including ML171, did not inhibit NOX enzymes, but showed assay interference. Introduction of an aliphatic amine chain on the N atom of the phenothiazine B ring (promazine) conferred inhibitory activity toward NOX2, NOX4, and NOX5 but not NOX1 and NOX3. Addition of an electron-attracting substituent in position 2 of the C ring extended the inhibitory activity to NOX1 and NOX3, with thioridazine being the most potent inhibitor. In contrast, the presence of a methylsulfoxide group at the same position (mesoridazine) entirely abolished NOX-inhibitory activity. A cell-free NOX2 assay suggested that inhibition by N-substituted phenothiazines was not due to competition with NADPH. A functional implication of NOX-inhibitory activity of thioridazine was demonstrated by its ability to block redox-dependent myofibroblast differentiation. Our results demonstrate that NOX-inhibitory activity is not a common feature of all antipsychotic phenothiazines and that substitution on the B-ring nitrogen is crucial for the activity, whereas that on the second position of the C ring modulates it. Our findings contribute to a better understanding of NOX pharmacology and might pave the path to discovery of more potent and selective NOX inhibitors.

  8. Scanning tunneling microscopy studies of glucose oxidase on gold surface

    International Nuclear Information System (INIS)

    Full text: Three immobilization methods have been used for scanning tunneling microscopy (STM) studies of glucose oxidase (GOD) on gold. They are based on a) physical adsorption from solution, b) microcontact printing and c) covalent bonding onto self-assembled monolayers (SAM) of 3-mercaptopropionic acid (MPA). The STM images are used to provide information about the organization of individual GOD molecules and more densely packed monolayers of GOD on electrode surfaces, thus providing information of the role of interfacial structure on biosensor performance. The use of atomically flat gold substrates enables easy distinction of deposited enzyme features from the flat gold substrate. Microcontact printing is found to be a more reliable method than adsorption from solution for preparing individual GOD molecules on the gold surface STM images of printed samples reveal two different shapes of native GOD molecules. One is a butterfly shape with dimensions of 10 ± 1 nm x 6 ± 1 nm, assigned to the lying position of molecule while the second is an approximately spherical shape with dimensions of 6.5 ± 1 nm x 5 ± 1nm assigned to a standing position. Isolated clusters of 5 to 6 GOD molecules are also observed. With monolayer coverage, GOD molecules exhibit a tendency to organize themselves into a two dimensional array with adequate sample stability to obtain high-resolution STM images. Within these two-dimensional arrays are clearly seen repeating clusters of five to six enzyme molecules in a unit STM imaging of GOD monolayers covalently immobilized onto SAM (MPA) are considerably more difficult than when the enzyme is adsorbed directly onto the metal. Cluster structures are observed both high and low coverage despite the fact that native GOD is a negatively charged molecule. Copyright (2002) Australian Society for Electron Microscopy Inc

  9. Functional and structural alterations induced by copper in xanthine oxidase

    Institute of Scientific and Technical Information of China (English)

    Mahnaz Hadizadeh; Ezzatollah Keyhani; Jacqueline Keyhani; Cyrus Khodadadi

    2009-01-01

    Xanthine oxidase (XO),a key enzyme in purine metab-olism,produces reactive oxygen species causing vascu-lar injuries and chronic heart failure.Here,copper's ability to alter XO activity and structure was investi-gated in vitro after pre-incubation of the enzyme with increasing Cu2+ concentrations for various periods of time.The enzymatic activity was measured by following XO-catalyzed xanthine oxidation to uric acid under steady-state kinetics conditions.Structural alterations were assessed by electronic absorption,fluorescence,and circular dichroism spectroscopy.Results showed that Cu2+ either stimulated or inhibited XO activity,depending on metal concentration and pre-incubation length,the latter also determining the inhibition type.Cu2+-XO complex formation was characterized by modifications in XO electronic absorption bands,intrinsic fluorescence,and α-helical and β-sheet content.Apparent dissociation constant values implied high- and low-affinity Cu2+ binding sites in the vicinity of the enzyme's reactive centers.Data indicated that Cu2+ binding to high-affinity sites caused alterations around XO molybdenum and flavin adenine dinucleo-tide centers,changes in secondary structure,and mod-erate activity inhibition;binding to low affinity sites caused alterations around all XO reactive centers including FeS,changes in tertiary structure as reflected by alterations in spectral properties,and drastic activity inhibition.Stimulation was attributed to transient stabilization of XO optimal conformation.Results also emphasized the potential role of copper in the regu-lation of XO activity stemming from its binding properties.

  10. Alternative oxidase mediates pathogen resistance in Paracoccidioides brasiliensis infection.

    Directory of Open Access Journals (Sweden)

    Orville Hernández Ruiz

    2011-10-01

    Full Text Available BACKGROUND: Paracoccidioides brasiliensis is a human thermal dimorphic pathogenic fungus. Survival of P. brasiliensis inside the host depends on the adaptation of this fungal pathogen to different conditions, namely oxidative stress imposed by immune cells. AIMS AND METHODOLOGY: In this study, we evaluated the role of alternative oxidase (AOX, an enzyme involved in the intracellular redox balancing, during host-P. brasiliensis interaction. We generated a mitotically stable P. brasiliensis AOX (PbAOX antisense RNA (aRNA strain with a 70% reduction in gene expression. We evaluated the relevance of PbAOX during interaction of conidia and yeast cells with IFN-γ activated alveolar macrophages and in a mouse model of infection. Additionally, we determined the fungal cell's viability and PbAOX in the presence of H₂O₂. RESULTS: Interaction with IFN-γ activated alveolar macrophages induced higher levels of PbAOX gene expression in PbWt conidia than PbWt yeast cells. PbAOX-aRNA conidia and yeast cells had decreased viability after interaction with macrophages. Moreover, in a mouse model of infection, we showed that absence of wild-type levels of PbAOX in P. brasiliensis results in a reduced fungal burden in lungs at weeks 8 and 24 post-challenge and an increased survival rate. In the presence of H₂O₂, we observed that PbWt yeast cells increased PbAOX expression and presented a higher viability in comparison with PbAOX-aRNA yeast cells. CONCLUSIONS: These data further support the hypothesis that PbAOX is important in the fungal defense against oxidative stress imposed by immune cells and is relevant in the virulence of P. brasiliensis.

  11. Isolation and Identification of a Microbacterium Strain with Arsenite-Oxidizing and Arsenate-Reducing Abilities%一株兼具砷氧化还原功能微杆菌的筛选和鉴定

    Institute of Scientific and Technical Information of China (English)

    陈来琳; 曾琳; 柯林

    2011-01-01

    [目的]为获取兼具砷氧化还原功能的多功能菌株.[方法]通过多次分离、纯化,先从广西河池砷污染地区的水源洞水样中筛选出砷耐受菌,再从砷耐受菌中筛选出在好氧条件下既能还原As(V)又能氧化As(Ⅲ)的多功能菌株CLL-B7.[结果]经测定16S rDNA的序列,鉴定菌株属于Microbacterium sp,,GenBank中的注册号是JF975617.该菌株能耐受高达115 mmol/L As(V)和40 mmol/L As(Ⅲ),不能利用除营养肉汤外的多种有机碳源,在pH 6条件下生长情况最好.该菌株在3d内几乎能完全还原10 mmol/L As(V),并从第7天开始表现出砷氧化功能.[结论]该菌株能在好氧环境下进行砷还原,可能利用有机碳源作为电子供体.%[Objective] The research aimed to obtain bacteria with both arsenite-oxidizing and arsenate-reducing abilities. [ Method] A number of arsenite-resistant bacteria were isolated from arsenic-contaminated aquifers in Hechi, Guangxi Province. Among them, a rarely reported strain named CLL-B7 with both arsenite-oxidizing and arsenate-reducing abilities was screened and identified. [ Result J The phylogenetic analysis indicated that the strain belonged to the genus Microbacterium. The 16S rRNA gene sequence was deposited in the GenBank database under accession number JF975617. Strain CLL-B7 only grew in LB but couldn't use other organic carbon sources. And the optimal pH for its growth was 6. The strain was tolerant to 40 mmol/L arsenite and 115 mmol/L arsenate, which was able to reduce 10 mmol/l, arsenate in the first three days but the oxidation of arsenite was observed on day 7. [Conclusion] The strain could reduce arsenate in aerobic conditions indicating that it used organic carbon as the electron donor.

  12. A Role for Reactive Oxygen Species Produced by NADPH Oxidases in the Embryo and Aleurone Cells in Barley Seed Germination.

    Directory of Open Access Journals (Sweden)

    Yushi Ishibashi

    Full Text Available Reactive oxygen species (ROS promote the germination of several seeds, and antioxidants suppress it. However, questions remain regarding the role and production mechanism of ROS in seed germination. Here, we focused on NADPH oxidases, which produce ROS. After imbibition, NADPH oxidase mRNAs were expressed in the embryo and in aleurone cells of barley seed; these expression sites were consistent with the sites of ROS production in the seed after imbibition. To clarify the role of NADPH oxidases in barley seed germination, we examined gibberellic acid (GA / abscisic acid (ABA metabolism and signaling in barley seeds treated with diphenylene iodonium chloride (DPI, an NADPH oxidase inhibitor. DPI significantly suppressed germination, and suppressed GA biosynthesis and ABA catabolism in embryos. GA, but not ABA, induced NADPH oxidase activity in aleurone cells. Additionally, DPI suppressed the early induction of α-amylase by GA in aleurone cells. These results suggest that ROS produced by NADPH oxidases promote GA biosynthesis in embryos, that GA induces and activates NADPH oxidases in aleurone cells, and that ROS produced by NADPH oxidases induce α-amylase in aleurone cells. We conclude that the ROS generated by NADPH oxidases regulate barley seed germination through GA / ABA metabolism and signaling in embryo and aleurone cells.

  13. A Role for Reactive Oxygen Species Produced by NADPH Oxidases in the Embryo and Aleurone Cells in Barley Seed Germination.

    Science.gov (United States)

    Ishibashi, Yushi; Kasa, Shinsuke; Sakamoto, Masatsugu; Aoki, Nozomi; Kai, Kyohei; Yuasa, Takashi; Hanada, Atsushi; Yamaguchi, Shinjiro; Iwaya-Inoue, Mari

    2015-01-01

    Reactive oxygen species (ROS) promote the germination of several seeds, and antioxidants suppress it. However, questions remain regarding the role and production mechanism of ROS in seed germination. Here, we focused on NADPH oxidases, which produce ROS. After imbibition, NADPH oxidase mRNAs were expressed in the embryo and in aleurone cells of barley seed; these expression sites were consistent with the sites of ROS production in the seed after imbibition. To clarify the role of NADPH oxidases in barley seed germination, we examined gibberellic acid (GA) / abscisic acid (ABA) metabolism and signaling in barley seeds treated with diphenylene iodonium chloride (DPI), an NADPH oxidase inhibitor. DPI significantly suppressed germination, and suppressed GA biosynthesis and ABA catabolism in embryos. GA, but not ABA, induced NADPH oxidase activity in aleurone cells. Additionally, DPI suppressed the early induction of α-amylase by GA in aleurone cells. These results suggest that ROS produced by NADPH oxidases promote GA biosynthesis in embryos, that GA induces and activates NADPH oxidases in aleurone cells, and that ROS produced by NADPH oxidases induce α-amylase in aleurone cells. We conclude that the ROS generated by NADPH oxidases regulate barley seed germination through GA / ABA metabolism and signaling in embryo and aleurone cells.

  14. Anthrax lethal toxin suppresses murine cardiomyocyte contractile function and intracellular Ca2+ handling via a NADPH oxidase-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Machender R Kandadi

    Full Text Available OBJECTIVES: Anthrax infection is associated with devastating cardiovascular sequelae, suggesting unfavorable cardiovascular effects of toxins originated from Bacillus anthracis namely lethal and edema toxins. This study was designed to examine the direct effect of lethal toxins on cardiomyocyte contractile and intracellular Ca(2+ properties. METHODS: Murine cardiomyocyte contractile function and intracellular Ca(2+ handling were evaluated including peak shortening (PS, maximal velocity of shortening/ relengthening (± dL/dt, time-to-PS (TPS, time-to-90% relengthening (TR(90, intracellular Ca(2+ rise measured as fura-2 fluorescent intensity (ΔFFI, and intracellular Ca(2+ decay rate. Stress signaling and Ca(2+ regulatory proteins were assessed using Western blot analysis. RESULTS: In vitro exposure to a lethal toxin (0.05-50 nM elicited a concentration-dependent depression on cardiomyocyte contractile and intracellular Ca(2+ properties (PS, ± dL/dt, ΔFFI, along with prolonged duration of contraction and intracellular Ca(2+ decay, the effects of which were nullified by the NADPH oxidase inhibitor apocynin. The lethal toxin significantly enhanced superoxide production and cell death, which were reversed by apocynin. In vivo lethal toxin exposure exerted similar time-dependent cardiomyocyte mechanical and intracellular Ca(2+ responses. Stress signaling cascades including MEK1/2, p38, ERK and JNK were unaffected by in vitro lethal toxins whereas they were significantly altered by in vivo lethal toxins. Ca(2+ regulatory proteins SERCA2a and phospholamban were also differentially regulated by in vitro and in vivo lethal toxins. Autophagy was drastically triggered although ER stress was minimally affected following lethal toxin exposure. CONCLUSIONS: Our findings indicate that lethal toxins directly compromised murine cardiomyocyte contractile function and intracellular Ca(2+ through a NADPH oxidase-dependent mechanism.

  15. Renal denervation attenuates NADPH oxidase-mediated oxidative stress and hypertension in rats with hydronephrosis.

    Science.gov (United States)

    Peleli, Maria; Al-Mashhadi, Ammar; Yang, Ting; Larsson, Erik; Wåhlin, Nils; Jensen, Boye L; G Persson, A Erik; Carlström, Mattias

    2016-01-01

    Hydronephrosis is associated with the development of salt-sensitive hypertension. Studies have suggested that increased sympathetic nerve activity and oxidative stress play important roles in hypertension and the modulation of salt sensitivity. The present study primarily aimed to examine the role of renal sympathetic nerve activity in the development of hypertension in rats with hydronephrosis. In addition, we aimed to investigate if NADPH oxidase (NOX) function could be affected by renal denervation. Partial unilateral ureteral obstruction (PUUO) was created in 3-wk-old rats to induce hydronephrosis. Sham surgery or renal denervation was performed at the same time. Blood pressure was measured during normal, high-, and low-salt diets. The renal excretion pattern, NOX activity, and expression as well as components of the renin-angiotensin-aldosterone system were characterized after treatment with the normal salt diet. On the normal salt diet, rats in the PUUO group had elevated blood pressure compared with control rats (115 ± 3 vs. 87 ± 1 mmHg, P Renal denervation in PUUO rats attenuated both hypertension (97 ± 3 mmHg) and salt sensitivity (5 ± 1 mmHg, P renal excretion pattern, whereas the degree of renal fibrosis and inflammation was not changed. NOX activity and expression as well as renin and ANG II type 1A receptor expression were increased in the renal cortex from PUUO rats and normalized by denervation. Plasma Na(+) and K(+) levels were elevated in PUUO rats and normalized after renal denervation. Finally, denervation in PUUO rats was also associated with reduced NOX expression, superoxide production, and fibrosis in the heart. In conclusion, renal denervation attenuates hypertension and restores the renal excretion pattern, which is associated with reduced renal NOX and components of the renin-angiotensin-aldosterone system. This study emphasizes a link between renal nerves, the development of hypertension, and modulation of NOX function.

  16. Renal denervation attenuates NADPH oxidase-mediated oxidative stress and hypertension in rats with hydronephrosis.

    Science.gov (United States)

    Peleli, Maria; Al-Mashhadi, Ammar; Yang, Ting; Larsson, Erik; Wåhlin, Nils; Jensen, Boye L; G Persson, A Erik; Carlström, Mattias

    2016-01-01

    Hydronephrosis is associated with the development of salt-sensitive hypertension. Studies have suggested that increased sympathetic nerve activity and oxidative stress play important roles in hypertension and the modulation of salt sensitivity. The present study primarily aimed to examine the role of renal sympathetic nerve activity in the development of hypertension in rats with hydronephrosis. In addition, we aimed to investigate if NADPH oxidase (NOX) function could be affected by renal denervation. Partial unilateral ureteral obstruction (PUUO) was created in 3-wk-old rats to induce hydronephrosis. Sham surgery or renal denervation was performed at the same time. Blood pressure was measured during normal, high-, and low-salt diets. The renal excretion pattern, NOX activity, and expression as well as components of the renin-angiotensin-aldosterone system were characterized after treatment with the normal salt diet. On the normal salt diet, rats in the PUUO group had elevated blood pressure compared with control rats (115 ± 3 vs. 87 ± 1 mmHg, P NOX activity and expression as well as renin and ANG II type 1A receptor expression were increased in the renal cortex from PUUO rats and normalized by denervation. Plasma Na(+) and K(+) levels were elevated in PUUO rats and normalized after renal denervation. Finally, denervation in PUUO rats was also associated with reduced NOX expression, superoxide production, and fibrosis in the heart. In conclusion, renal denervation attenuates hypertension and restores the renal excretion pattern, which is associated with reduced renal NOX and components of the renin-angiotensin-aldosterone system. This study emphasizes a link between renal nerves, the development of hypertension, and modulation of NOX function. PMID:26538440

  17. Expression level of quiescin sulfhydryl oxidase 1 (QSOX1 in neuroblastomas

    Directory of Open Access Journals (Sweden)

    D.G.B. Araújo

    2014-03-01

    Full Text Available Neuroblastoma is the most common extracranial solid malignant tumor observed during childhood. Although these tumors can sometimes regress spontaneously or respond well to treatment in infants, genetic alterations that influence apoptosis can, in some cases, confer resistance to chemotherapy or result in relapses and adversely affect prognosis for these patients. The aim of this study was to correlate immunohistochemical expression of the protein QSOX1 (quiescin sulfhydryl oxidase 1 in samples obtained from untreated neuroblastomas with the patients’ clinical and pathological prognostic factors and clinical course. Neuroblastoma samples (n=23 obtained from histology blocks were arrayed into tissue microarrays and analysed by immunohistochemistry. The cases were classified according to the following clinical and pathological prognostic factors: age at diagnosis greater or less than/equal to 18 months; location of the lesion at diagnosis (abdominal or extra-abdominal; presence or absence of bone-marrow infiltration; tumor differentiation (well or poorly differentiated; Shimada histopathologic classification (favourable or unfavourable; state of the tumor extracellular matrix (Schwannian-stroma rich or poor; amplification of the MYCN oncogene; and clinical course (dead or alive with or without relapses/residual lesions. Twelve of the cases were female, 9 children were over 18 months old, 9 cases presented with extra-abdominal tumors and 9 cases exhibited tumors with unfavourable histologies. Fifteen patients underwent bone-marrow biopsy, and 4 of these were positive for metastasis. Nine patients died. The higher immunohistochemical expression of QSOX1 was more common in well-differentiated samples (P=0.029, in stroma-rich samples (P=0.029 and in samples from patients with a high prevalence of relapses/residual disease. The functions of QSOX1 include extracellular matrix maturation and the induction of apoptosis. Therefore, QSOX1 may be involved

  18. Impacts on the metabolome of down-regulating polyphenol oxidase in potato tubers.

    Science.gov (United States)

    Shepherd, Louise Vida Traill; Alexander, Colin James; Hackett, Christine Anne; McRae, Diane; Sungurtas, Julia Anne; Verrall, Susan Ramsay; Morris, Jennifer Anne; Hedley, Peter Edward; Rockhold, David; Belknap, William; Davies, Howard Vivian

    2015-06-01

    Tubers of potato (Solanum tuberosum L. cv. Estima) genetically modified to reduce polyphenol oxidase (PPO) activity and enzymatic discolouration were assessed for changes in the metabolome using Liquid Chromatography-Mass Spectrometry (LC-MS) and Gas Chromatography (GC)-MS. Metabolome changes induced over a 48 hour (h) period by tuber wounding (sliced transverse sections) were also assessed using two PPO antisense lines (asPPO) and a wild-type (WT) control. Data were analysed using Principal Components Analysis and Analysis of Variance to assess differences between genotypes and temporal changes post-tuber wounding (by slicing). The levels of 15 metabolites (out of a total of 134 that were detected) differed between the WT and asPPO lines in mature tubers at harvest. A considerably higher number (63) of these metabolites changed significantly over a 48 h period following tuber wounding. For individual metabolites the magnitude of the differences between the WT and asPPO lines at harvest were small compared with the impacts of tuber wounding on metabolite levels. Some of the observed metabolite changes are explicable in terms of pathways known to be affected by wound responses. Whilst some statistically significant interactions (11 metabolites) were observed between line and time after wounding, very few profiles were consistent when comparing the WT with both asPPO lines, and the underlying metabolites appeared to be random in terms of the pathways they occupy. Overall, mechanical damage to tubers has a considerably greater impact on the metabolite profile than any potential unintended effects resulting from the down-regulation of PPO gene expression. PMID:25417184

  19. Cholesterol: A modulator of the phagocyte NADPH oxidase activity - A cell-free study

    Directory of Open Access Journals (Sweden)

    Rawand Masoud

    2014-01-01

    Full Text Available The NADPH oxidase Nox2, a multi-subunit enzyme complex comprising membrane and cytosolic proteins, catalyzes a very intense production of superoxide ions O2•−, which are transformed into other reactive oxygen species (ROS. In vitro, it has to be activated by addition of amphiphiles like arachidonic acid (AA. It has been shown that the membrane part of phagocyte NADPH oxidase is present in lipid rafts rich in cholesterol. Cholesterol plays a significant role in the development of cardio-vascular diseases that are always accompanied by oxidative stress. Our aim was to investigate the influence of cholesterol on the activation process of NADPH oxidase. Our results clearly show that, in a cell-free system, cholesterol is not an efficient activator of NADPH oxidase like arachidonic acid (AA, however it triggers a basal low superoxide production at concentrations similar to what found in neutrophile. A higher concentration, if present during the assembly process of the enzyme, has an inhibitory role on the production of O2•−. Added cholesterol acts on both cytosolic and membrane components, leading to imperfect assembly and decreasing the affinity of cytosolic subunits to the membrane ones. Added to the cytosolic proteins, it retains their conformations but still allows some conformational change induced by AA addition, indispensable to activation of NADPH oxidase.

  20. Amyloid-β peptide binds to cytochrome C oxidase subunit 1.

    Science.gov (United States)

    Hernandez-Zimbron, Luis Fernando; Luna-Muñoz, Jose; Mena, Raul; Vazquez-Ramirez, Ricardo; Kubli-Garfias, Carlos; Cribbs, David H; Manoutcharian, Karen; Gevorkian, Goar

    2012-01-01

    Extracellular and intraneuronal accumulation of amyloid-beta aggregates has been demonstrated to be involved in the pathogenesis of Alzheimer's disease (AD). However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of macromolecules has deleterious effects on cellular functions. Mitochondria were found to be the target for amyloid-beta, and mitochondrial dysfunction is well documented in AD. In the present study we have shown for the first time that Aβ 1-42 bound to a peptide comprising the amino-terminal region of cytochrome c oxidase subunit 1. Phage clone, selected after screening of a human brain cDNA library expressed on M13 phage and bearing a 61 amino acid fragment of cytochrome c oxidase subunit 1, bound to Aβ 1-42 in ELISA as well as to Aβ aggregates present in AD brain. Aβ 1-42 and cytochrome c oxidase subunit 1 co-immunoprecipitated from mitochondrial fraction of differentiated human neuroblastoma cells. Likewise, molecular dynamics simulation of the cytochrome c oxidase subunit 1 and the Aβ 1-42 peptide complex resulted in a reliable helix-helix interaction, supporting the experimental results. The interaction between Aβ 1-42 and cytochrome c oxidase subunit 1 may explain, in part, the diminished enzymatic activity of respiratory chain complex IV and subsequent neuronal metabolic dysfunction observed in AD.

  1. Amyloid-β peptide binds to cytochrome C oxidase subunit 1.

    Directory of Open Access Journals (Sweden)

    Luis Fernando Hernandez-Zimbron

    Full Text Available Extracellular and intraneuronal accumulation of amyloid-beta aggregates has been demonstrated to be involved in the pathogenesis of Alzheimer's disease (AD. However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of macromolecules has deleterious effects on cellular functions. Mitochondria were found to be the target for amyloid-beta, and mitochondrial dysfunction is well documented in AD. In the present study we have shown for the first time that Aβ 1-42 bound to a peptide comprising the amino-terminal region of cytochrome c oxidase subunit 1. Phage clone, selected after screening of a human brain cDNA library expressed on M13 phage and bearing a 61 amino acid fragment of cytochrome c oxidase subunit 1, bound to Aβ 1-42 in ELISA as well as to Aβ aggregates present in AD brain. Aβ 1-42 and cytochrome c oxidase subunit 1 co-immunoprecipitated from mitochondrial fraction of differentiated human neuroblastoma cells. Likewise, molecular dynamics simulation of the cytochrome c oxidase subunit 1 and the Aβ 1-42 peptide complex resulted in a reliable helix-helix interaction, supporting the experimental results. The interaction between Aβ 1-42 and cytochrome c oxidase subunit 1 may explain, in part, the diminished enzymatic activity of respiratory chain complex IV and subsequent neuronal metabolic dysfunction observed in AD.

  2. Fluorescence quenching study of quercetin interaction with bovine milk xanthine oxidase

    Science.gov (United States)

    Rasoulzadeh, Farzaneh; Jabary, Hamideh Nadjarpour; Naseri, Abdolhossein; Rashidi, Mohammad-Reza

    2009-02-01

    Quercetin is a natural flavonoid with many important therapeutic properties. The interaction of this polyphenolic compound bovine milk xanthine oxidase as one of its major target proteins was studied using fluorescence quenching method for the first time. It was found that the fluorescence quenching of xanthine oxidase occurs through a static mechanism. The results revealed the presence of a single binding site on xanthine oxidase with the binding constant value equals to 1.153 × 10 4 l mol -1 at 310 K and pH 7.4. The thermodynamic parameters were also calculated at different temperatures. The enthalpy and entropy changes were found as -10.661 kJ mol -1 and +43.321 J mol -1 K -1 indicating that both hydrogen binding and hydrophobic are involved in the interaction of this polyphenolic natural compound with xanthine oxidase. The results may provide a ground for further studies with different flavonoids to find a safe alternative for allopurinol, the only xanthine oxidase inhibitor with clinical application.

  3. Dimer interface of bovine cytochrome c oxidase is influenced by local posttranslational modifications and lipid binding

    Science.gov (United States)

    Liko, Idlir; Degiacomi, Matteo T.; Mohammed, Shabaz; Yoshikawa, Shinya; Schmidt, Carla; Robinson, Carol V.

    2016-01-01

    Bovine cytochrome c oxidase is an integral membrane protein complex comprising 13 protein subunits and associated lipids. Dimerization of the complex has been proposed; however, definitive evidence for the dimer is lacking. We used advanced mass spectrometry methods to investigate the oligomeric state of cytochrome c oxidase and the potential role of lipids and posttranslational modifications in its subunit interfaces. Mass spectrometry of the intact protein complex revealed that both the monomer and the dimer are stabilized by large lipid entities. We identified these lipid species from the purified protein complex, thus implying that they interact specifically with the enzyme. We further identified phosphorylation and acetylation sites of cytochrome c oxidase, located in the peripheral subunits and in the dimer interface, respectively. Comparing our phosphorylation and acetylation sites with those found in previous studies of bovine, mouse, rat, and human cytochrome c oxidase, we found that whereas some acetylation sites within the dimer interface are conserved, suggesting a role for regulation and stabilization of the dimer, phosphorylation sites were less conserved and more transient. Our results therefore provide insights into the locations and interactions of lipids with acetylated residues within the dimer interface of this enzyme, and thereby contribute to a better understanding of its structure in the natural membrane. Moreover dimeric cytochrome c oxidase, comprising 20 transmembrane, six extramembrane subunits, and associated lipids, represents the largest integral membrane protein complex that has been transferred via electrospray intact into the gas phase of a mass spectrometer, representing a significant technological advance. PMID:27364008

  4. NADPH Oxidase Accounts for Changes in Cerebrovascular Redox Status in Hindlimb Unweighting Rats

    Institute of Scientific and Technical Information of China (English)

    PENG Liang; RAN Hai Hong; ZHANG Ying; ZHAO Yu; FAN Yong Yan; PENG Li; ZHANG Ran; CAO Feng

    2015-01-01

    ObjectiveThe roles of cerebrovascular oxidative stress in vascular functional remodeling have been described in hindlimb-unweighting (HU) rats. However, the underlying mechanism remains to be established. MethodsWe investigated the generation of vascular reactive oxygen species (ROS),Nox2/Nox4 protein and mRNA levels, NADPH oxidase activity, and manganese superoxide dismutase (MnSOD) and glutathione peroxidase-1 (GPx-1) mRNA levels in cerebral and mesenteric smooth muscle cells (VSMCs) of HU rats. ResultsROS production increased in cerebral but not in mesenteric VSMCs of HU rats compared with those in control rats.Nox2 and Nox4 protein and mRNA levels were increased significantly but MnSOD/GPx-1 mRNA levels decreased in HU rat cerebral arteries but not in mesenteric arteries. NADPH oxidases were activated significantly more in cerebral but not in mesenteric arteries of HU rats. NADPH oxidase inhibition with apocynin attenuated cerebrovascular ROS production and partially restored Nox2/Nox4 protein and mRNA levels, NADPH oxidase activity, and MnSOD/GPx-1 mRNA levels in cerebral VSMCs of HU rats. ConclusionThese results suggest that vascular NADPH oxidases regulate cerebrovascular redox status and participate in vascular oxidative stress injury during simulated microgravity.

  5. Metabolism of an alkyl polyamine analog by a polyamine oxidase from the microsporidian Encephalitozoon cuniculi.

    Science.gov (United States)

    Bacchi, Cyrus J; Yarlett, Nigel; Faciane, Evangeline; Bi, Xiangdong; Rattendi, Donna; Weiss, Louis M; Woster, Patrick M

    2009-06-01

    Encephalitozoon cuniculi is a microsporidium responsible for systemic illness in mammals. In the course of developing leads to new therapy for microsporidiosis, we found that a bis(phenylbenzyl)3-7-3 analog of spermine, 1,15-bis{N-[o-(phenyl)benzylamino}-4,12-diazapentadecane (BW-1), was a substrate for an E. cuniculi amine oxidase activity. The primary natural substrate for this oxidase activity was N'-acetylspermine, but BW-1 had activity comparable to that of the substrate. As the sole substrate, BW-1 gave linear reaction rates over 15 min and K(m) of 2 microM. In the presence of N'-acetylspermine, BW-1 acted as a competitive inhibitor of oxidase activity and may be a subversive substrate, resulting in increased peroxide production. By use of (13)C-labeled BW-1 as a substrate and nuclear magnetic resonance analysis, two products were determined to be oxidative metabolites, a hydrated aldehyde or dicarboxylate and 2(phenyl)benzylamine. These products were detected after exposure of (13)C-labeled BW-1 to E. cuniculi preemergent spore preparations and to uninfected host cells. In previous studies, BW-1 was curative in a rodent model of infection with E. cuniculi. The results in this study demonstrate competitive inhibition of oxidase activity by BW-1 and support further studies of this oxidase activity by the parasite and host.

  6. Three-dimensional organization of three-domain copper oxidases: A review

    International Nuclear Information System (INIS)

    'Blue' copper-containing proteins are multidomain proteins that utilize a unique redox property of copper ions. Among other blue multicopper oxidases, three-domain oxidases belong to the group of proteins that exhibit a wide variety of compositions in amino acid sequences, functions, and occurrences in organisms. This paper presents a review of the data obtained from X-ray diffraction investigations of the three-dimensional structures of three-domain multicopper oxidases, such as the ascorbate oxidase catalyzing oxidation of ascorbate to dehydroascorbate and its three derivatives; the multicopper oxidase CueO (the laccase homologue); the laccases isolated from the basidiomycetes Coprinus cinereus, Trametes versicolor, Coriolus zonatus, Cerrena maxima, and Rigidoporus lignosus and the ascomycete Melanocarpus albomyces; and the bacterial laccases CotA from the endospore coats of Bacillus subtilis. A comparison of the molecular structures of the laccases of different origins demonstrates that, structurally, these objects are highly conservative. This obviously indicates that the catalytic activity of the enzymes under consideration is characterized by similar mechanisms

  7. Comparative modeling of the latent form of a plant catechol oxidase using a molluskan hemocyanin structure.

    Science.gov (United States)

    Gerdemann, Carsten; Eicken, Christoph; Galla, Hans Joachim; Krebs, Bernt

    2002-04-10

    The structure of the precursor form of catechol oxidase from sweet potatoes (Ipomoea batatas) has been modeled on the basis of the 3D structural data of mature catechol oxidase [Nat. Struct. Biol. 5 (1998) 1084] and of hemocyanin from giant octopus (Octopus dofleini) [J. Mol. Biol. 278 (1998) 855]. A C-terminal extension peptide is found in the cDNA sequence but not in the purified, mature form of catechol oxidase. Superimposition of the 3D structures of the native hemocyanin and catechol oxidase reveals a close relationship except for an additional C-terminal domain only found in the hemocyanin structure. As sequence alignment shows good homology this domain of the hemocyanin structure was used as a template to model the 3D structure of the C-terminal extension peptide of catechol oxidase. As hemocyanins show no or only weak catecholase activity due to this domain this indicates an inhibitory function of this extension peptide. Beside this possible shielding function for the precursor form, evidence for a function in copper-uptake also increases due to the location of three histidine residues in the model. PMID:11931976

  8. The small heat shock protein, HSP30, is associated with aggresome-like inclusion bodies in proteasomal inhibitor-, arsenite-, and cadmium-treated Xenopus kidney cells.

    Science.gov (United States)

    Khan, Saad; Khamis, Imran; Heikkila, John J

    2015-11-01

    In the present study, treatment of Xenopus laevis A6 kidney epithelial cells with the proteasomal inhibitor, MG132, or the environmental toxicants, sodium arsenite or cadmium chloride, induced the accumulation of the small heat shock protein, HSP30, in total and in both soluble and insoluble protein fractions. Immunocytochemical analysis revealed the presence of relatively large HSP30 structures primarily in the perinuclear region of the cytoplasm. All three of the stressors promoted the formation of aggresome-like inclusion bodies as determined by immunocytochemistry and laser scanning confocal microscopy using a ProteoStat aggresome dye and additional aggresomal markers, namely, anti-γ-tubulin and anti-vimentin antibodies. Further analysis revealed that HSP30 co-localized with these aggresome-like inclusion bodies. In most cells, HSP30 was found to envelope or occur within these structures. Finally, we show that treatment of cells with withaferin A, a steroidal lactone with anti-inflammatory, anti-tumor, and proteasomal inhibitor properties, also induced HSP30 accumulation that co-localized with aggresome-like inclusion bodies. It is possible that proteasomal inhibitor or metal/metalloid-induced formation of aggresome-like inclusion bodies may sequester toxic protein aggregates until they can be degraded. While the role of HSP30 in these aggresome-like structures is not known, it is possible that they may be involved in various aspects of aggresome-like inclusion body formation or transport.

  9. Comparative hepatotoxicity and clastogenicity of sodium arsenite and three petroleum products in experimental Swiss Albino Mice: the modulatory effects of Aloe vera gel.

    Science.gov (United States)

    Gbadegesin, Michael A; Odunola, Oyeronke A; Akinwumi, Kazeem A; Osifeso, Olabode O

    2009-10-01

    Petroleum products (PPs) consist of complex chemical mixtures, mainly hydrocarbons. Their composition varies considerably with source and use. Inappropriate manual handling and use of PPs, in countries like Nigeria, results in excessive skin contact with the possibility of hazard to health. There has been inadequate evidence to classify diesel, kerosene and hydraulic oil as human carcinogens and there is limited evidence for their toxicity and carcinogenicity in experimental animals. We compared the hepatotoxicity and clastogenicity of diesel, petrol or hydraulic oil with that of sodium arsenite (Na(2)AsO(2)) in mice. Our findings showed that these PPs are capable of inducing gamma-glutamyl transferase (gammaGT) activity in the serum and liver to levels comparable with that induced by Na(2)AsO(2). Mice treated with individual PPs have elevated mean liver and serum gammaGT at levels that are significantly different from the values observed for the negative control group. Also, the individual PPs alone have micronuclei formation induction activity similar to Na(2)AsO(2). We found that treatment with Aloe vera gel before the PPs significantly reduced mean liver and serum gammaGT, and the mean number of micronuclei scored when compared with groups administered each of the PPs alone, supporting the presence of hepatoprotective components in Aloe vera. PMID:19583991

  10. Separation/Preconcentration and Speciation Analysis of Trace Amounts of Arsenate and Arsenite in Water Samples Using Modified Magnetite Nanoparticles and Molybdenum Blue Method

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Karimi

    2014-01-01

    Full Text Available A new, simple, and fast method for the separation/preconcentration and speciation analysis of arsenate and arsenite ions using cetyltrimethyl ammonium bromide immobilized on alumina-coated magnetite nanoparticles (CTAB@ACMNPs followed by molybdenum blue method is proposed. The method is based on the adsorption of arsenate on CTAB@ACMNPs. Total arsenic in different samples was determined as As(V after oxidation of As(III to As(V using potassium permanganate. The arsenic concentration has been determined by UV-Visible spectrometric technique based on molybdenum blue method and amount of As(III was calculated by subtracting the concentration of As(V from total arsenic concentration. MNPs and ACMNPs were characterized by VSM, XRD, SEM, and FT-IR spectroscopy. Under the optimal experimental conditions, the preconcentration factor, detection limit, linear range, and relative standard deviation (RSD of arsenate were 175 (for 350 mL of sample solution, 0.028 μg mL−1, 0.090–4.0 μg mL−1, and 2.8% (for 2.0 μg mL−1, n=7, respectively. This method avoided the time-consuming column-passing process of loading large volume samples in traditional SPE through the rapid isolation of CTAB@ACMNPs with an adscititious magnet. The proposed method was successfully applied to the determination and speciation of arsenic in different water samples and suitable recoveries were obtained.

  11. 不同价态砷染毒大鼠肾脏砷代谢产物与相关代谢酶的关联性%A relationship between arsenite sodium, arsenate sodium metabolites and related metabolic enzymes in rat kidney

    Institute of Scientific and Technical Information of China (English)

    于慧敏; 王茜; 夏荣香; 魏洁群; 吴军; 郑玉建

    2014-01-01

    .93),(5.55 ± 0.49),(3.56 ± 0.26)U/g] of sodium arsenite in low,medium and high dose groups were lower than those of the corresponding sodium dihydrogen arsenate group[(11.59 ± 0.93),(8.93 ± 0.88),(6.52 ± 1.04)U/g,all P < 0.0024].The DMA of sodium arsenite in low,medium and high dose groups,the MMA of sodium dihydrogen arsenate in medium and high dose groups were positively correlated with those of TAs in each group(r =0.970,0.984,0.997,0.947,0.961,all P < 0.05).Conclusions Effects of sodium arsenite and sodium dihydrogen arsenate on arsenic metobdites and related metabolic enzymes in kidney of rats are different.The function of sodium dihydrogen arsenate in promoting methyl transferase activity is stronger than that of sodium arsenite,which affects the amount and distribution of arsenic methylation metabolites in kidney.%目的 探讨不同价态砷染毒雄性大鼠肾脏砷代谢产物与相关代谢酶之间的关系.方法 Wistar 雄性大鼠35只,体质量150 ~ 190 g,按体质量采用随机数字表法分为7组,每组5只大鼠.其中亚砷酸钠低、中、高剂量组染砷(亚砷酸钠)剂量分别为2.2、6.7、20.0 mg/kg;砷酸钠低、中、高剂量组染砷(砷酸钠)剂量分别为2.2、6.7、20.0 mg/kg;对照组饮用去离子水.染砷3个月后,处死动物,取大鼠肾脏,-80℃冷冻保存.采用高效液相色谱-氢化物发生原子荧光光谱法(HPLC-HGAFS)检测大鼠肾脏中各形态砷代谢产物,酶联免疫法检测并分析相关代谢酶的含量、活力,并探讨砷代谢产物与相关代谢酶之间的关系.结果 各组大鼠肾脏总砷(TAs)、二甲基砷(DMA)、一甲基砷(MMA)、甲基转移酶活力组间比较差异有统计学意义(F值为1874.672,H值分别为33513、31.002,F值为79.607,P均<0.01).其中亚砷酸钠低、中、高剂量组TAs[(526.52±25.56)、(1 654.00±101.55)、(1 904.24±104.76) μg/kg]和DMA[(323.20±16.13)、(1 444.40±113.81)、(1 765.40±104.39)μg/kg]均高

  12. Mutational analysis of the Trypanosoma vivax alternative oxidase: The E(X)6Y motif is conserved in both mitochondrial alternative oxidase and plastid terminal oxidase and is indispensable for enzyme activity

    International Nuclear Information System (INIS)

    Based on amino acid sequence similarity and the ability to catalyze the four-electron reduction of oxygen to water using a quinol substrate, mitochondrial alternative oxidase (AOX) and plastid terminal oxidase (PTOX) appear to be two closely related members of the membrane-bound diiron carboxylate group of proteins. In the current studies, we took advantage of the high activity of Trypanosoma vivax AOX (TvAOX) to examine the importance of the conserved Glu and the Tyr residues around the predicted third helix region of AOXs and PTOXs. We first compared the amino acid sequences of TvAOX with AOXs and PTOXs from various taxa and then performed alanine-scanning mutagenesis of TvAOX between amino acids Y199 and Y247. We found that the ubiquinol oxidase activity of TvAOX is completely lost in the E214A mutant, whereas mutants E215A and E216A retained more than 30% of the wild-type activity. Among the Tyr mutants, a complete loss of activity was also observed for the Y221A mutant, whereas the activities were equivalent to wild-type for the Y199A, Y212A, and Y247A mutants. Finally, residues Glu214 and Tyr221 were found to be strictly conserved among AOXs and PTOXs. Based on these findings, it appears that AOXs and PTOXs are a novel subclass of diiron carboxylate proteins that require the conserved motif E(X)6Y for enzyme activity

  13. Spatiotemporal Production of Reactive Oxygen Species by NADPH Oxidase Is Critical for Tapetal Programmed Cell Death and Pollen Development in Arabidopsis.

    Science.gov (United States)

    Xie, Hong-Tao; Wan, Zhi-Yuan; Li, Sha; Zhang, Yan

    2014-05-01

    Male sterility in angiosperms has wide applications in agriculture, particularly in hybrid crop breeding and gene flow control. Microspores develop adjacent to the tapetum, a layer of cells that provides nutrients for pollen development and materials for pollen wall formation. Proper pollen development requires programmed cell death (PCD) of the tapetum, which requires transcriptional cascades and proteolytic enzymes. Reactive oxygen species (ROS) also affect tapetal PCD, and failures in ROS scavenging cause male sterility. However, many aspects of tapetal PCD remain unclear, including what sources generate ROS, whether ROS production has a temporal pattern, and how the ROS-producing system interacts with the tapetal transcriptional network. We report here that stage-specific expression of NADPH oxidases in the Arabidopsis thaliana tapetum contributes to a temporal peak of ROS production. Genetic interference with the temporal ROS pattern, by manipulating RESPIRATORY-BURST OXIDASE HOMOLOG (RBOH) genes, affected the timing of tapetal PCD and resulted in aborted male gametophytes. We further show that the tapetal transcriptional network regulates RBOH expression, indicating that the temporal pattern of ROS production intimately connects to other signaling pathways regulated by the tapetal transcriptional network to ensure the proper timing of tapetal PCD.

  14. Functional Analysis of Polyphenol Oxidases by Antisense/Sense Technology

    Directory of Open Access Journals (Sweden)

    Jutharat Attajarusit

    2007-07-01

    Full Text Available Polyphenol oxidases (PPOs catalyze the oxidation of phenolics to quinones, the secondary reactions of which lead to oxidative browning and postharvest losses of many fruits and vegetables. PPOs are ubiquitous in angiosperms, are inducible by both biotic and abiotic stresses, and have been implicated in several physiological processes including plant defense against pathogens and insects, the Mehler reaction, photoreduction of molecular oxygen by PSI, regulation of plastidic oxygen levels, aurone biosynthesis and the phenylpropanoid pathway. Here we review experiments in which the roles of PPO in disease and insect resistance as well as in the Mehler reaction were investigated using transgenic tomato (Lycopersicon esculentum plants with modified PPO expression levels (suppressed PPO and overexpressing PPO. These transgenic plants showed normal growth, development and reproduction under laboratory, growth chamber and greenhouse conditions. Antisense PPO expression dramatically increased susceptibility while PPO overexpression increased resistance of tomato plants to Pseudomonas syringae. Similarly, PPO-overexpressing transgenic plants showed an increase in resistance to various insects, including common cutworm (Spodoptera litura (F., cotton bollworm (Helicoverpa armigera (Hübner and beet army worm (Spodoptera exigua (Hübner, whereas larvae feeding on plants with suppressed PPO activity had higher larval growth rates and consumed more foliage. Similar increases in weight gain, foliage consumption, and survival were also observed with Colorado potato beetles (Leptinotarsa decemlineata (Say feeding on antisense PPO transgenic tomatoes. The putative defensive mechanisms conferred by PPO and its interaction with other defense proteins are discussed. In addition, transgenic plants with suppressed PPO exhibited more favorable water relations and decreased photoinhibition compared to nontransformed controls and transgenic plants

  15. Cholesterol oxidase is indispensable in the pathogenesis of Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Magdalena Klink

    Full Text Available Despite considerable research effort, the molecular mechanisms of Mycobacterium tuberculosis (Mtb virulence remain unclear. Cholesterol oxidase (ChoD, an extracellular enzyme capable of converting cholesterol to its 3-keto-4-ene derivative, cholestenone, has been proposed to play a role in the virulence of Mtb. Here, we verified the hypothesis that ChoD is capable of modifying the bactericidal and pro-inflammatory activity of human macrophages. We also sought to determine the contribution of complement receptor 3 (CR3- and Toll-like receptor 2 (TLR2-mediated signaling pathways in the development of macrophage responses to Mtb. We found that intracellular replication of an Mtb mutant lacking a functional choD gene (ΔchoD was less efficient in macrophages than that of the wild-type strain. Blocking CR3 and TLR2 with monoclonal antibodies enhanced survival of ΔchoD inside macrophages. We also showed that, in contrast to wild-type Mtb, the ΔchoD strain induced nitric oxide production in macrophages, an action that depended on the TLR2, but not the CR3, signaling pathway. Both wild-type and mutant strains inhibited the production of reactive oxygen species (ROS, but the ΔchoD strain did so to a significantly lesser extent. Blocking TLR2-mediated signaling abolished the inhibitory effect of wild-type Mtb on ROS production by macrophages. Wild-type Mtb, but not the ΔchoD strain, decreased phorbol myristate acetate-induced phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2, which are involved in both TLR2- and CR3-mediated signaling pathways. Our finding also revealed that the production of interleukin 10 by macrophages was significantly lower in ΔchoD-infected macrophages than in wild-type Mtb-infected macrophages. However, tumor necrosis factor-α production by macrophages was the same after infection with mutant or wild-type strains. In summary, we demonstrate here that ChoD is required for Mtb interference with the TLR2

  16. Deletion of glucose oxidase changes the pattern of organic acid production in Aspergillus carbonarius.

    Science.gov (United States)

    Yang, Lei; Lübeck, Mette; Lübeck, Peter S

    2014-01-01

    Aspergillus carbonarius has potential as a cell factory for the production of different organic acids. At pH 5.5, A.carbonarius accumulates high amounts of gluconic acid when it grows on glucose based medium whereas at low pH, it produces citric acid. The conversion of glucose to gluconic acid is carried out by secretion of the enzyme, glucose oxidase. In this work, the gene encoding glucose oxidase was identified and deleted from A. carbonarius with the aim of changing the carbon flux towards other organic acids. The effect of genetic engineering was examined by testing glucose oxidase deficient (Δgox) mutants for the production of different organic acids in a defined production medium. The results obtained showed that the gluconic acid accumulation was completely inhibited and increased amounts of citric acid, oxalic acid and malic acid were observed in the Δgox mutants.

  17. Time dependent inhibition of xanthine oxidase in irradiated solutions of folic acid, aminopterin and methotrexate

    International Nuclear Information System (INIS)

    The xanthine oxidase catalyzed oxidation of hypoxanthine was followed by monitoring the formation of uric acid at 290 nm. Inhibition of xanthine oxidase occurs in aqueous solutions of folic acid methotrexate and aminopterin. These compounds are known to dissociate upon exposure to ultraviolet light resulting in the formation of their respective 6-formylpteridine derivatives. The relative rates of dissociation were monitored spectrophotometrically by determining the absorbance of their 2,4-dinitrophenylhydrazine derivatives at 500 nm. When aqueous solutions of folic acid, aminopterin and methotrexate were exposed to uv light, a direct correlation was observed between the concentrations of the 6-formylpteridine derivatives existing in solution and the ability of these solutions to inhibit xanthine oxidase. The relative potency of the respective photolysis products were estimated

  18. Simultaneous production of catalase, glucose oxidase and gluconic acid by Aspergillus niger mutant.

    Science.gov (United States)

    Fiedurek, J; Gromada, A; Pielecki, J

    1998-01-01

    The production of gluconic acid, extracellular glucose oxidase and catalase in submerged culture by a number of biochemical mutants has been evaluated. Optimization of stirrer speed, time cultivation and buffering action of some chemicals on glucose oxidase, catalase and gluconic acid production by the most active mutant, AM-11, grown in a 3-L glass bioreactor was investigated. Three hundred rpm appeared to be optimum to ensure good growth and best glucose oxidase production, but gluconic acid or catalase activity obtained maximal value at 500 or 900 rpm, respectively. Significant increase of dissolved oxygen concentration in culture (16-21%) and extracellular catalase activity were obtained when the traditional aeration was employed together with automatic dosed hydrogen peroxide.

  19. QSAR and SAR studies on the reduction of some aromatic nitro compounds by xanthine oxidase.

    Science.gov (United States)

    Thakur, Mamta; Thakur, Abhilash; Balasubramanian, Krishnan

    2006-01-01

    This work describes QSAR and SAR studies on the reduction of 27 aromatic nitro compounds by xanthine oxidase using both distance-based topological indices and quantum molecular descriptors along with indicator parameters. The application of a multiple linear regression analysis indicated that a combination of distance-based topological indices with the ad hoc molecular descriptors and the indicator parameters yielded a statistically significant model for the activity, log K (the reduction of aromatic nitro compounds by xanthine oxidase). The final selection of a potential aromatic nitro compound for the reduction by xanthine oxidase is made by quantum molecular modeling. We have found that, among the various parameters, the quantum Mulliken charge parameters on the fourth atom or para position relative to the nitro group correlated best with the activity.

  20. Crystal structure and site-directed mutagenesis of a nitroalkane oxidase from Streptomyces ansochromogenes.

    Science.gov (United States)

    Li, Yanhua; Gao, Zengqiang; Hou, Haifeng; Li, Lei; Zhang, Jihui; Yang, Haihua; Dong, Yuhui; Tan, Huarong

    2011-02-18

    Nitroalkane oxidase (NAO) catalyzes neutral nitroalkanes to their corresponding aldehydes or ketones, hydrogen peroxide and nitrite. The crystal structure of NAO from Streptomyces ansochromogenes was determined; it consists of two domains, a TIM barrel domain bound to FMN and C-terminal domain with a novel folding pattern. Site-directed mutagenesis of His179, which is spatially adjacent to FMN, resulted in the loss of enzyme activity, demonstrating that this amino acid residue is important for catalysis. The crystal structure of mutant H179D-nitroethane was also analyzed. Interestingly, Sa-NAO shows the typical function as nitroalkane oxidase but its structure is similar to that of 2-nitropropane dioxygenase. Overall, these results suggest that Sa-NAO is a novel nitroalkane oxidase with TIM barrel structure. PMID:21147069