WorldWideScience

Sample records for afco1 induces immune

  1. Inmunización intranasal con AFCo1 induce respuesta inmune de memoria, sistemica y mucosal en ratones neonatal

    Directory of Open Access Journals (Sweden)

    Julio A. Balboa

    2009-08-01

    Full Text Available Neonates have a poorly developed immune system. Respiratory pathogens cause disease during early periods of live. Consequently, it is important to develop protective vaccines that induce immunity and immunological memory against respiratory pathogens early in life. Intranasal (i.n. route could be an effective via for immunization. Therefore, we explored the effectiveness of AF (Adjuvant Finlay PL1 (Proteoliposome from Neisseria meningitidis serogroup B and its derivate Cochleate (AFCo1 by nasal route in neonatal mice. They were immunized i.n. 3 times 7 days apart and anti PL systemic and mucosal antibody response were measured by ELISA. In addition, a prime-boost strategy was used to evaluate the humoral immune response in neonate mice. The 3 doses of AFPL1 or AFCo1 induced significant levels of anti PL IgG antibodies in comparison whit control, but AFCo1 (2017 U/mL was significantly higher than AFPL1 (1107 U/mL. AFCo1 and AFPL1 induced a predominant Th1 pattern with IgG2a/IgG1 >1 by i.n. immunization and AFCo1 induced a high anti PL IgA saliva response in saliva. Interestingly, one nasally prime at 7 days of born and a memory one boost i.n. dose 9 weeks later with AFCo1 or AFPL1 showed similar specific IgG levels and IgG2a/IgG1 relation than 3 i.n. doses in adult mice. In conclusion, these results represent the first report of neonatal intranasal vaccination using AFCo1 capable to induce systemic and mucosal immunity and priming for memory.

  2. AFCo1, a meningococcal B-derived cochleate adjuvant, strongly enhances antibody and T-cell immunity against Plasmodium falciparum merozoite surface protein 4 and 5

    Science.gov (United States)

    Bracho, Gustavo; Zayas, Caridad; Wang, Lina; Coppel, Ross; Pérez, Oliver; Petrovsky, Nikolai

    2009-01-01

    Background Whilst a large number of malaria antigens are being tested as candidate malaria vaccines, a major barrier to the development of an effective vaccine is the lack of a suitable human adjuvant capable of inducing a strong and long lasting immune response. In this study, the ability of AFCo1, a potent T and B cell adjuvant based on cochleate structures derived from meningococcal B outer membrane proteoliposomes (MBOMP), to boost the immune response against two Plasmodium falciparum antigens, merozoite surface protein 4 (MSP4) and 5 (MSP5), was evaluated. Methods Complete Freund's adjuvant (CFA), which is able to confer protection against malaria in animal MSP4/5 vaccine challenge models, was used as positive control adjuvant. MSP4 and 5-specific IgG, delayed-type hypersensitivity (DTH), T-cell proliferation, and cytokine production were evaluated in parallel in mice immunized three times intramuscularly with MSP4 or MSP5 incorporated into AFCo1, synthetic cochleate structures, CFA or phosphate buffered saline. Results AFCo1 significantly enhanced the IgG and T-cell response against MSP4 and MSP5, with a potency equivalent to CFA, with the response being characterized by both IgG1 and IgG2a isotypes, increased interferon gamma production and a strong DTH response, consistent with the ability of AFCo1 to induce Th1-like immune responses. Conclusion Given the proven safety of MBOMP, which is already in use in a licensed human vaccine, AFCo1 could assist the development of human malaria vaccines that require a potent and safe adjuvant. PMID:19250541

  3. Pilot scale production of the vaccine adjuvant Proteoliposome derived Cochleates (AFCo1) from Neisseria meningitidis serogroup B.

    Science.gov (United States)

    Zayas, Caridad; González, Domingo; Acevedo, Reinaldo; del Campo, Judith; Lastre, Miriam; González, Elizabeth; Romeu, Belkis; Cuello, Maribel; Balboa, Julio; Cabrera, Osmir; Guilherme, Luisa; Pérez, Oliver

    2013-01-01

    The use of new adjuvants in vaccine formulations is a subject of current research. Only few parenteral adjuvants have been licensed. We have developed a mucosal and parenteral adjuvant known as AFCo1 (Adjuvant Finlay Cochleate 1, derived from proteoliposomes of N. meningitidis B) using a dialysis procedure to produce them on lab scale. The immunogenicity of the AFCo1 produced by dialysis has been already evaluated, but it was necessary to demonstrate the feasibility of a larger-scale manufacturing process. Therefore, we used a crossflow diafiltration system (CFS) that allows easy scale up to obtain large batches in an aseptic environment. The aim of this work was to produce AFCo1 on pilot scale, while conserving the adjuvant properties. The proteoliposomes (raw material) were resuspended in a buffer containing sodium deoxycholate and were transformed into AFCo1 under the action of a calcium forming buffer. The detergent was removed from the protein solution by diafiltration to a constant volume. In this CFS, we used a hollow fiber cartridge from Amicon (polysulfona cartridge of 10 kDa porosity, 1mm channel diameter of fiber and 0.45 m² area of filtration), allowing production of a batch of up to 20 L. AFCo1 were successfully produced by tangential filtration to pilot scale. The batch passed preliminary stability tests. Nasal immunization of BALB/c mice, induced specific saliva IgA and serum IgG. The induction of Th1 responses were demonstrated by the induction of IgG2a, IFNγ and not IL-5. The adjuvant action over Neisseria (self) antigens and with co-administered (heterologous) antigens such as ovalbumin and a synthetic peptide from haemolytic Streptococcus B was also demonstrated.

  4. La gD2 coadministrada con el AFCo1 por vía intranasal induce inmunidad protectora contra virus de herpes simple tipo 2 en ratones

    Directory of Open Access Journals (Sweden)

    Osmir Cabrera

    2012-12-01

    Full Text Available La infección por virus herpes simple tipo 2 (VHS-2 continúa siendo un problema de salud mundial. Esta infección es transmitida sexualmente y es la principal causa de úlceras genitales. La prevención de esta enfermedad requiere de la utilización de vacunas mucosales, pues las vacunas parenterales no han sido exitosas. Por otra parte, no existen adyuvantes mucosales, por lo que el desarrollo de estos es esencial para la estrategia de estas vacunas. La administración intranasal (IN de la glicoproteína D del VHS-2 (gD2, coadministrada con el cocleato (AFCo1+gD2 sería igualmente efectiva con la gD2 incluida (AFCo1-gD2. Se inocularon ratones hembras C57BL/6 por la vía IN con gD2, contenida dentro del cocleato, coadministrada con el cocleato o gD2 sola. Se determinaron los niveles de IgG anti gD2 en suero y lavado vaginal, así como las subclases de IgG anti gD2 por ELISA. Se determinó la respuesta linfoproliferativa en células de bazo, el perfil de citoquinas Th1/Th2, los signos de la enfermedad y la protección frente al reto viral. Se observaron altos títulos de IgG e IgG2c anti gD2 en el suero de los animales inoculados con la gD2 y el AFCo1 como adyuvante. No se observaron diferencias significativas (p>0,05 entre los grupos que recibieron AFCo1+gD2 y los que recibieron AFCo1-gD2. Se observó un perfil de citoquinas tipo Th1 y un 100% de sobrevida en los grupos que recibieron el AFCo1 como adyuvante de la gD2, mientras que en el grupo que recibió la gD2 sola no se observó protección. Estos resultados indican que la gD2 puede ser utilizada coadministrada con AFCo1 por vía IN como un potencial candidato vacunal contra VHS-2.

  5. Pilot scale production of the vaccine adjuvant Proteoliposome derived Cochleates (AFCo1) from Neisseria meningitidis serogroup B

    OpenAIRE

    Zayas, Caridad; González, Domingo; Acevedo, Reinaldo; del Campo, Judith; Lastre, Miriam; González, Elizabeth; Romeu, Belkis; Cuello, Maribel; Balboa, Julio; Cabrera, Osmir; Guilherme, Luisa; Pérez, Oliver

    2013-01-01

    The use of new adjuvants in vaccine formulations is a subject of current research. Only few parenteral adjuvants have been licensed. We have developed a mucosal and parenteral adjuvant known as AFCo1 (Adjuvant Finlay Cochleate 1, derived from proteoliposomes of N. meningitidis B) using a dialysis procedure to produce them on lab scale. The immunogenicity of the AFCo1 produced by dialysis has been already evaluated, but it was necessary to demonstrate the feasibility of a larger-scale manufact...

  6. Evaluación de la irritabilidad en mucosa del adyuvante AFCO1 por el método de HET-CAM

    Directory of Open Access Journals (Sweden)

    Alexander Batista

    2011-04-01

    Full Text Available Los adyuvantes pueden producir irritación local en la mucosa y esto pudiera ser una limitación para su uso clínico. Para evaluar si el adyuvante vacunal AFCo1, un cocleato obtenido a partir del proteoliposoma de Neisseria meningitidis, produce irritación directa en la mucosa nasal, se estudió el efecto de su aplicación en la membrana corioalantoidea del embrión de pollo (MCA, por la técnica de HET-CAM (hen's egg test on chorioallantoic membrane, según el Protocolo 47 de INVITTOX, método alternativo que sustituye la clásica prueba de Draize en conejos. En este ensayo se utilizaron por cada producto a evaluar (AFCo1 o amortiguador fosfato salino como diluente tres huevos de gallinas White Leghorn de 10 días de embrionados; para los controles positivos de irritación (NaOH a 0,1 N y SDS al 1% se utilizaron dos huevos para cada uno. Los productos fueron aplicados en la MCA para evaluar las lesiones de lisis, hemorragia y coagulación, a los 5 min. Las sustancias se clasificaron según una escala establecida para productos no transparentes. Adicionalmente se realizó una evaluación microscópica de las MCA tratadas para confirmar las observaciones realizadas. Al determinar el grado de severidad de las tres reacciones, después de la aplicación de AFCo1 y del diluente, ambos clasifican como no irritantes, lo que evidencia que este cocleato no produce lesión epitelial directa. Este resultado, además, confirma la utilidad del HET-CAM para la determinación de irritabilidad nasal de adyuvantes vacunales.

  7. Evaluación citotóxica y genotóxica del adyuvante AFCo1 por el ensayo de morfología de la cabeza del espermatozoide en ratón NMRI

    Directory of Open Access Journals (Sweden)

    Aníbal Domínguez

    2016-01-01

    Full Text Available Se realizó un estudio para evaluar el potencial citogenotóxico en células espermáticas de ratón, del adyuvante AFCo1 (Adyuvante Finlay Cocleato 1, obtenido a partir del proteoliposoma de Neisseria meningitidis serogrupo B. El AFCo1 y su diluente se administraron por vía intranasal en una dosis de 40 µL (1 mg/mL, mientras que los controles positivo (ciclofosfamida y negativo (agua destilada estéril, se administraron por vía oral a razón de 40 mg y 1 mL/kg, respectivamente. Se utilizaron ratones (NMRI de 8-12 semanas de edad, con peso corporal entre 27-30 g, a los cuales se les aplicaron cinco dosis con un intervalo de 24 h, durante los primeros cinco días del experimento. Se evaluó la toxicidad general (peso corporal e indicadores testiculares de citotoxicidad testicular (concentración espermática y genotoxicidad (morfología espermática. El AFCo1 y su diluente no provocaron toxicidad general, citotoxicidad, ni genotoxicidad. La ciclofosfamida sí produjo citotoxicidad (47,77% y genotoxicidad (534,61%. Se concluye que el AFCo1 y su diluente pueden ser considerados como no tóxicos para las células espermáticas en el nivel de dosis y para el biomodelo animal utilizado.

  8. Immune Vasculitis Induced Atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The relationship between immune vasculitis and atherosclerosis was studied. The experimental model of weanling rabbits for immune vasculitis was reproduced by intravenous injection of 10 % bovine serum albumin. There were 6 groups: group A, 25 weanling rabbits with immune vasculitis subject to coronary arteriography; group B, 10 normal mature rabbits subject to coronary arteriography; group C, 10 weanling rabbits subject to coronary arteriography; group D, 8 weanling rabbits with vasculitis and cholesterol diet; group E, 8 weanling rabbits receiving single cholesterol diet; group F: 8 weanling rabbits receiving basic diet. Four weeks later, coronary arteriography was performed in groups A, B and C. The rabbits in groups D, E and F were sacrificed for the study of pathological changes in the coronary artery after 12 weeks. The results showed that the dilatation of coronary artery occurred in 6 rabbits of group A, but in groups B and C, no dilatation of coronary artery appeared. In comparison with group E, more severe atherosclerosis occurred in group D, showing the thickened plaque, fibrous sclerosis and atherosclerotic lesion. Percentage of plaques covering aortic intima, incidence of atherosclerosis of small coronary arteries and degree of stenosis of coronary arteries were significantly higher in group D than in group E (P<0.01). No atherosclerosis changes were found in group F. It was concluded that in the acute phase, the serum immune vasculitis can induce the dilatation of coronary artery of some weanling rabbits, and aggravate the formation of atherosclerosis in rabbits fed with cholesterol diet. Immune vasculitis is a new risk factor of atherosclerosis and ischemic heart disease.

  9. Influencia de las vías de inmunización mucosales sobre la protección contra herpes simple tipo 2 con el AFCo1 como adyuvante

    Directory of Open Access Journals (Sweden)

    Osmir Cabrera1

    2011-12-01

    Full Text Available Las vacunas mucosales se han planteado como una estrategia prometedora para inducir protección mucosal. El virus herpes simple tipo 2 es uno de los patógenos más frecuentes en el humano transmitidos por vía sexual. Varios candidatos vacunales contra este patógeno se han evaluado, pero no han sido efectivos, por lo que aún no se cuenta con una vacuna profiláctica ni terapéutica. La gD2 es una glicoproteína recombinante y está reportada como uno de los antígenos de importancia vacunal contra este germen. Contamos con el cocleato derivado del proteoliposoma de Neisseria meningitidis serogrupo B (AFCo1 que ha mostrado capacidades adyuvantes por varias vías de inmunización. El objetivo de este trabajo fue evaluar la protección inducida en ratones por el AFCo1-gD2, administrada por diferentes vías mucosales. Se utilizaron ratones hembras C57BL6, los cuales fueron inmunizados por vía intranasal (IN, intravaginal (IVag o intrarrectal (IR con AFCo1-gD2 o gD2 sola. Se determinó la IgG anti gD2, la proliferación celular específica, la replicación viral en lavado vaginal, los signos de la enfermedad y la protección frente al reto viral. Se obtuvo respuestas significativas de IgG anti gD2 por todas las vías, aunque la IN mostró los valores más elevados. Se observó proliferación celular en células de animales inmunizados IN e IVag, pero no por vía IR. Se observó la mayor protección (100% en los animales inmunizados por vía IN. Se concluye que la vía nasal es la más prometedora en la inducción de protección contra este reto viral.

  10. Characterization of Immune Suppression Induced by Polyribonucleotides.

    Science.gov (United States)

    1985-12-01

    RD-0162 482 CHARACTERIZATION OF IMMUNE SUPPRESSION INDUCED Y v i POLYRIDONUCLEOTIDES(U) MINNESOTA UNIV DULUTH DEPT OF MEDICAL MICROBIOLOGY AND...Polyribonucleotides by Marilyn J. Odean and Arthur G. Johnson Dept. of Medical Microbiology /Immunology University of Minnesota-Duluth 55812 DTICS ELECTE DEC 18

  11. Antitumor Immunity Induced after α Irradiation

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Gorin

    2014-04-01

    Full Text Available Radioimmunotherapy (RIT is a therapeutic modality that allows delivering of ionizing radiation directly to targeted cancer cells. Conventional RIT uses β-emitting radioisotopes, but recently, a growing interest has emerged for the clinical development of α particles. α emitters are ideal for killing isolated or small clusters of tumor cells, thanks to their specific characteristics (high linear energy transfer and short path in the tissue, and their effect is less dependent on dose rate, tissue oxygenation, or cell cycle status than γ and X rays. Several studies have been performed to describe α emitter radiobiology and cell death mechanisms induced after α irradiation. But so far, no investigation has been undertaken to analyze the impact of α particles on the immune system, when several studies have shown that external irradiation, using γ and X rays, can foster an antitumor immune response. Therefore, we decided to evaluate the immunogenicity of murine adenocarcinoma MC-38 after bismuth-213 (213Bi irradiation using a vaccination approach. In vivo studies performed in immunocompetent C57Bl/6 mice induced a protective antitumor response that is mediated by tumor-specific T cells. The molecular mechanisms potentially involved in the activation of adaptative immunity were also investigated by in vitro studies. We observed that 213Bi-treated MC-38 cells release “danger signals” and activate dendritic cells. Our results demonstrate that α irradiation can stimulate adaptive immunity, elicits an efficient antitumor protection, and therefore is an immunogenic cell death inducer, which provides an attractive complement to its direct cytolytic effect on tumor cells.

  12. Drug-induced immune hemolytic anemia

    Science.gov (United States)

    Immune hemolytic anemia secondary to drugs; Anemia - immune hemolytic - secondary to drugs ... Drugs that can cause this type of hemolytic anemia include: Cephalosporins (a class of antibiotics), most common ...

  13. Immune-Signaling Molecules and Obesity-Induced Inflammation.

    Science.gov (United States)

    Yu, Rina

    2015-01-01

    Obesity-induced inflammation is closely associated with the development of metabolic complications such as insulin resistance and type 2 diabetes. Several immune-signaling receptors and their counterpart ligands are known to be crucial for crosstalk between the adaptive and innate immune system, and they are implicated in various inflammatory pathologies. In this mini-review, I will discuss the involvement of the immune costimulatory molecule 4-1BB and its ligand in obesity-induced inflammation and metabolic complications.

  14. Mechanisms of Hexachlorobenzene-induced Adverse Immune Effects

    NARCIS (Netherlands)

    Ezendam, Janine

    2004-01-01

    Hexachlorobenzene (HCB) is an environmental pollutant that can induce adverse immune effects in humans and rats. Brown Norway rats (BN) appeared to be very susceptible to HCB-induced immune effects. Oral exposure causes inflammatory skin and lung lesions, enlarged spleen and lymph nodes (LN) and ele

  15. Reinfection immunity in schistosomiasis. With special reference to immunity induced by radiation attenuated Cercariae

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Haruo

    1987-07-01

    Schistosomiasis is one of the most important parasitic diseases in the world, especially in endemic areas of developing countries. This situation has prompted parasitologist to attempt intensive researches on immune mechanisms, especially those of reinfection immunity associated with eliminating challenge infection. The current knowledge of reinfection immunity against Schistosoma spp. infection was therefore reviewed briefly and discussed with special reference to our data on protective immune responses induced by radiation-attenuated cercarial infection. A recently developed technique of compressed organ autoradiography (COA) has contributed to assessing parasite attrition in immune animals following challenge infection. Our study using COA has demonstrated that major attrition of schistosomula from challenge infection occurs in the skin of CBA/Ca mice vaccinated with 20 Krad gamma radiation-attenuated cercariae of S. mansoni, while in both lungs and liver of similarly vaccinated guinea pig model. Furthermore, gamma-irradiation to cercariae affected their migration potential and surface-antigen profiles. The immunizing stimuli of gamma radiation-attenuated cercariae profoundly affected the expression of responsiveness in vaccinated animals. The change in antigenic profiles and migration potential of those vaccinating population was discussed in relation to the kinetics of reinfection immunity induced in vaccinated amimal models. These works might provide a base line data to develop a practical vaccine for schistosomiasis using defined antigens. It must be emphasized that these vaccines could serve as a practical prophylactic measure for schistosomiasis in the endemic areas, even if the vaccines fail to induce sterilizing immunity. (author). 141 refs.

  16. Reversibility of alcohol-induced immune depression

    DEFF Research Database (Denmark)

    Tønnesen, H; Kaiser, A H; Nielsen, B B;

    1992-01-01

    Alcohol abusers have suppressed cellular immune function. The aim of the study was to investigate the time of sobriety required to normalize immune function. Delayed hypersensitivity was investigated during disulfiram controlled abstinence in ten heavy alcoholics and in seven moderate drinkers...... without liver diseases. For comparison a control group of eight previous drinkers was tested. The skin test responses were modest initially with a median area of response of 12 mm2 (range 0-31) in the heavy alcoholics and 3 mm2 (0-15) in the moderate drinkers. It improved significantly in both groups...... after two weeks of sobriety. The responses stabilized after 8 weeks at 74 mm2 (54-102) in the heavy alcoholics and after 9 weeks at 63 mm2 (42-76) in the moderate drinking group. The control group had skin test responses of 70 mm2 (46-87), not different from the responses of the alcohol groups after two...

  17. Novel vaccine development strategies for inducing mucosal immunity.

    Science.gov (United States)

    Fujkuyama, Yoshiko; Tokuhara, Daisuke; Kataoka, Kosuke; Gilbert, Rebekah S; McGhee, Jerry R; Yuki, Yoshikazu; Kiyono, Hiroshi; Fujihashi, Kohtaro

    2012-03-01

    To develop protective immune responses against mucosal pathogens, the delivery route and adjuvants for vaccination are important. The host, however, strives to maintain mucosal homeostasis by responding to mucosal antigens with tolerance, instead of immune activation. Thus, induction of mucosal immunity through vaccination is a rather difficult task, and potent mucosal adjuvants, vectors or other special delivery systems are often used, especially in the elderly. By taking advantage of the common mucosal immune system, the targeting of mucosal dendritic cells and microfold epithelial cells may facilitate the induction of effective mucosal immunity. Thus, novel routes of immunization and antigen delivery systems also show great potential for the development of effective and safe mucosal vaccines against various pathogens. The purpose of this review is to introduce several recent approaches to induce mucosal immunity to vaccines, with an emphasis on mucosal tissue targeting, new immunization routes and delivery systems. Defining the mechanisms of mucosal vaccines is as important as their efficacy and safety, and in this article, examples of recent approaches, which will likely accelerate progress in mucosal vaccine development, are discussed.

  18. Induced immunity against hepatitis B virus

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Prevention of hepatitis B virus (HBV) infection with itsconsequent development of HBV chronic liver diseaseand hepatocellular carcinoma is a global mandatorygoal. Fortunately, safe and effective HBV vaccines arecurrently available. Universal hepatitis B surface antigenHBV vaccination coverage is almost done. Growingknowledge based upon monitoring and surveillance of HBV vaccination programs has accumulated and thepolicy of booster vaccination has been evaluated. Thisreview article provides an overview of the natural historyof HBV infection, immune responses and the future ofHBV infection. It also summarizes the updated sources,types and uses of HBV vaccines, whether in the preclinicalphase or in the post-field vaccination.

  19. Sublingual immunization with M2-based vaccine induces broad protective immunity against influenza.

    Directory of Open Access Journals (Sweden)

    Byoung-Shik Shim

    Full Text Available BACKGROUND: The ectodomain of matrix protein 2 (M2e of influenza A virus is a rationale target antigen candidate for the development of a universal vaccine against influenza as M2e undergoes little sequence variation amongst human influenza A strains. Vaccine-induced M2e-specific antibodies (Abs have been shown to display significant cross-protective activity in animal models. M2e-based vaccine constructs have been shown to be more protective when administered by the intranasal (i.n. route than after parenteral injection. However, i.n. administration of vaccines poses rare but serious safety issues associated with retrograde passage of inhaled antigens and adjuvants through the olfactory epithelium. In this study, we examined whether the sublingual (s.l. route could serve as a safe and effective alternative mucosal delivery route for administering a prototype M2e-based vaccine. The mechanism whereby s.l. immunization with M2e vaccine candidate induces broad protection against infection with different influenza virus subtypes was explored. METHODS AND RESULTS: A recombinant M2 protein with three tandem copies of the M2e (3M2eC was expressed in Escherichia coli. Parenteral immunizations of mice with 3M2eC induced high levels of M2e-specific serum Abs but failed to provide complete protection against lethal challenge with influenza virus. In contrast, s.l. immunization with 3M2eC was superior for inducing protection in mice. In the latter animals, protection was associated with specific Ab responses in the lungs. CONCLUSIONS: The results demonstrate that s.l. immunization with 3M2eC vaccine induced airway mucosal immune responses along with broad cross-protective immunity to influenza. These findings may contribute to the understanding of the M2-based vaccine approach to control epidemic and pandemic influenza infections.

  20. Nanomaterial Induced Immune Responses and Cytotoxicity.

    Science.gov (United States)

    Ali, Ashraf; Suhail, Mohd; Mathew, Shilu; Shah, Muhammad Ali; Harakeh, Steve M; Ahmad, Sultan; Kazmi, Zulqarnain; Alhamdan, Mohammed Abdul Rahman; Chaudhary, Adeel; Damanhouri, Ghazi Abdullah; Qadri, Ishtiaq

    2016-01-01

    Nanomaterials are utilized in a wide array of end user products such as pharmaceuticals, electronics, clothes and cosmetic products. Due to its size (< 100 nm), nanoparticles have the propensity to enter through the airway and skin, making its path perilous with the potential to cause damages of varying severity. Once within the body, these particles have unconstrained access to different tissues and organs including the brain, liver, and kidney. As a result, nanomaterials may cause the perturbation of the immune system eliciting an inflammatory response and cytotoxicity. This potential role is dependent on many factors such as the characteristics of the nanomaterials, presence or absence of diseases, and genetic predisposition. Cobalt and nickel nanoparticles, for example, were shown to have inflammogenic properties, while silver nanoparticles were shown to reduce allergic inflammation. Just as asbestos fibers, carbon nanotubes were shown to cause lungs damage. Some nanomaterials were shown, based on animal studies, to result in cell damage, leading to the formation of pre-cancerous lesions. This review highlights the impact of nanomaterials on immune system and its effect on human health with toxicity consideration. It recommends the development of suitable animal models to study the toxicity and bio-clearance of nanomaterials and propose safety guidelines.

  1. Immune response induced in mice oral immunization with cowpea severe mosaic virus

    Directory of Open Access Journals (Sweden)

    M.I. Florindo

    2002-07-01

    Full Text Available There is increasing interest in the immune response induced by plant viruses since these could be used as antigen-expressing systems in vaccination procedures. Cowpea severe mosaic virus (CPSMV, as a purified preparation (300 g of leaves, 2 weeks post-inoculation, or crude extract from cowpea (Vigna unguiculata leaves infected with CPSMV both administered by gavage to Swiss mice induced a humoral immune response. Groups of 10 Swiss mice (2-month-old females were immunized orally with 10 daily doses of either 50 µg viral capsid protein (boosters of 50 µg at days 21 and 35 after immunization or 0.6 mg protein of the crude extract (boosters of 0.6 mg at days 21 and 35 after immunization. Anti-CPSMV antibodies were quantified by ELISA in pooled sera diluted at least 1:400 at days 7, 14, 21, 28, 35 and 42 after the 10th dose. IgG and IgA against CPSMV were produced systemically, but IgE was not detected. No synthesis of specific antibodies against the proteins of leaf extracts from V. unguiculata, infected or not with CPSMV, was detected. The use of CPSMV, a plant-infecting virus that apparently does not induce a pathogenic response in animals, induced a humoral and persistent (at least 6 months immune response through the administration of low antigen doses by gavage. These results raise the possibility of using CPSMV either as a vector for the production of vaccines against animal pathogens or in quick and easy methods to produce specific antisera for viral diagnosis.

  2. Cross-serotype immunity induced by immunization with a conserved rhinovirus capsid protein.

    Directory of Open Access Journals (Sweden)

    Nicholas Glanville

    Full Text Available Human rhinovirus (RV infections are the principle cause of common colds and precipitate asthma and COPD exacerbations. There is currently no RV vaccine, largely due to the existence of ∼150 strains. We aimed to define highly conserved areas of the RV proteome and test their usefulness as candidate antigens for a broadly cross-reactive vaccine, using a mouse infection model. Regions of the VP0 (VP4+VP2 capsid protein were identified as having high homology across RVs. Immunization with a recombinant VP0 combined with a Th1 promoting adjuvant induced systemic, antigen specific, cross-serotype, cellular and humoral immune responses. Similar cross-reactive responses were observed in the lungs of immunized mice after infection with heterologous RV strains. Immunization enhanced the generation of heterosubtypic neutralizing antibodies and lung memory T cells, and caused more rapid virus clearance. Conserved domains of the RV capsid therefore induce cross-reactive immune responses and represent candidates for a subunit RV vaccine.

  3. Intranasal immunization with nontypeable Haemophilus influenzae outer membrane vesicles induces cross-protective immunity in mice.

    Directory of Open Access Journals (Sweden)

    Sandro Roier

    Full Text Available Haemophilus influenzae is a Gram-negative human-restricted bacterium that can act as a commensal and a pathogen of the respiratory tract. Especially nontypeable H. influenzae (NTHi is a major threat to public health and is responsible for several infectious diseases in humans, such as pneumonia, sinusitis, and otitis media. Additionally, NTHi strains are highly associated with exacerbations in patients suffering from chronic obstructive pulmonary disease. Currently, there is no licensed vaccine against NTHi commercially available. Thus, this study investigated the utilization of outer membrane vesicles (OMVs as a potential vaccine candidate against NTHi infections. We analyzed the immunogenic and protective properties of OMVs derived from various NTHi strains by means of nasopharyngeal immunization and colonization studies with BALB/c mice. The results presented herein demonstrate that an intranasal immunization with NTHi OMVs results in a robust and complex humoral and mucosal immune response. Immunoprecipitation revealed the most important immunogenic proteins, such as the heme utilization protein, protective surface antigen D15, heme binding protein A, and the outer membrane proteins P1, P2, P5 and P6. The induced immune response conferred not only protection against colonization with a homologous NTHi strain, which served as an OMV donor for the immunization mixtures, but also against a heterologous NTHi strain, whose OMVs were not part of the immunization mixtures. These findings indicate that OMVs derived from NTHi strains have a high potential to act as a vaccine against NTHi infections.

  4. Inducible immune proteins in the dampwood termite Zootermopsis angusticollis

    Science.gov (United States)

    Rosengaus, Rebeca B.; Cornelisse, Tara; Guschanski, Katerina; Traniello, James F. A.

    2007-01-01

    Dampwood termites, Zootermopsis angusticollis (Isoptera: Termopsidae), mount an immune response to resist microbial infection. Here we report on results of a novel analysis that allowed us to electrophoretically assess changes in hemolymph proteins in the same individual before and after exposure to a pathogen. We demonstrate that contact with a sublethal concentration of the entomopathogenic fungus Metarhizium anisopliae (Deuteromycotina:Hypomycetes) induces the production of protective proteins in nymphs, pseudergates (false workers), and soldiers. Termites exposed to an immunizing dosage of fungal conidia consistently showed an enhancement of constitutive proteins (62-85 kDa) in the hemolymph as well as an induction of novel proteins (28-48 kDa) relative to preimmunization levels. No significant differences in protein banding patterns relative to baseline levels in control and naïve termites were observed. Incubating excised and eluted induced proteins produced by immunized pseudergates or immunized soldiers with conidia significantly reduced the germination of the fungus. The fungistatic effect of eluted proteins differed significantly among five colonies examined. Our results show that the upregulation of protective proteins in the hemolymph underscores the in vivo immune response we previously recorded in Z. angusticollis.

  5. A Drosophila immune response against Ras-induced overgrowth

    Directory of Open Access Journals (Sweden)

    Thomas Hauling

    2014-03-01

    Full Text Available Our goal is to characterize the innate immune response against the early stage of tumor development. For this, animal models where genetic changes in specific cells and tissues can be performed in a controlled way have become increasingly important, including the fruitfly Drosophila melanogaster. Many tumor mutants in Drosophila affect the germline and, as a consequence, also the immune system itself, making it difficult to ascribe their phenotype to a specific tissue. Only during the past decade, mutations have been induced systematically in somatic cells to study the control of tumorous growth by neighboring cells and by immune cells. Here we show that upon ectopic expression of a dominant-active form of the Ras oncogene (RasV12, both imaginal discs and salivary glands are affected. Particularly, the glands increase in size, express metalloproteinases and display apoptotic markers. This leads to a strong cellular response, which has many hallmarks of the granuloma-like encapsulation reaction, usually mounted by the insect against larger foreign objects. RNA sequencing of the fat body reveals a characteristic humoral immune response. In addition we also identify genes that are specifically induced upon expression of RasV12. As a proof-of-principle, we show that one of the induced genes (santa-maria, which encodes a scavenger receptor, modulates damage to the salivary glands. The list of genes we have identified provides a rich source for further functional characterization. Our hope is that this will lead to a better understanding of the earliest stage of innate immune responses against tumors with implications for mammalian immunity.

  6. Distinct immune response induced by peptidoglycan derived from Lactobacillus sp

    Institute of Scientific and Technical Information of China (English)

    Jin Sun; Yong-Hui Shi; Guo-Wei Le; Xi-Yi Ma

    2005-01-01

    AIM: To analyze the distinct immune responses induced by Lactobacillus peptidoglycan (PG).METHODS: BALB/c mice were intraperitoneally injected with PG once a day for three consecutive days. Peritoneal macrophage and splenocyte mRNA was extracted and the gene expression profile was studied using high-density oligonucleotide microarrays. Inhibitory effects of Lactobacillus PG on colon tumor tissue were studied in vitro and in vivo.RESULTS: The gene expression profiles revealed that the TLR-NF-κB and Jak-STAT signaling pathways were highly activated. An inflammatory phenotype was induced when peritoneal macrophages were initially exposed to Lactobacillus PG and switched to a more complex phenotype when BALB/c mice were treated with three doses of Lactobacillus PG. A protective physiological inflammatory response was induced after three consecutive days of PG treatment. It was tending toward Th1 dominant immune response. Lactobacillus PG also appeared to induce a significantin vivo anti-colon tumor effect.CONCLUSION: Lactobacillus PG is responsible for certain immune responses induced by Lactobacilli. Anti-tumor effects of Lactobacilli are likely to attribute to the activation of macrophages by PG expressed on the bacterial cell surface.

  7. Adenosine signaling and the energetic costs of induced immunity.

    Directory of Open Access Journals (Sweden)

    Brian P Lazzaro

    2015-04-01

    Full Text Available Life history theory predicts that trait evolution should be constrained by competing physiological demands on an organism. Immune defense provides a classic example in which immune responses are presumed to be costly and therefore come at the expense of other traits related to fitness. One strategy for mitigating the costs of expensive traits is to render them inducible, such that the cost is paid only when the trait is utilized. In the current issue of PLOS Biology, Bajgar and colleagues elegantly demonstrate the energetic and life history cost of the immune response that Drosophila melanogaster larvae induce after infection by the parasitoid wasp Leptopilina boulardi. These authors show that infection-induced proliferation of defensive blood cells commands a diversion of dietary carbon away from somatic growth and development, with simple sugars instead being shunted to the hematopoetic organ for rapid conversion into the raw energy required for cell proliferation. This metabolic shift results in a 15% delay in the development of the infected larva and is mediated by adenosine signaling between the hematopoietic organ and the central metabolic control organ of the host fly. The adenosine signal thus allows D. melanogaster to rapidly marshal the energy needed for effective defense and to pay the cost of immunity only when infected.

  8. Interferon-inducible GTPases in cell autonomous and innate immunity.

    Science.gov (United States)

    Meunier, Etienne; Broz, Petr

    2016-02-01

    Detection and clearance of invading pathogens requires a coordinated response of the adaptive and innate immune system. Host cell, however, also features different mechanisms that restrict pathogen replication in a cell-intrinsic manner, collectively referred to as cell-autonomous immunity. In immune cells, the ability to unleash those mechanisms strongly depends on the activation state of the cell, which is controlled by cytokines or the detection of pathogen-associated molecular patterns by pattern-recognition receptors. The interferon (IFN) class of cytokines is one of the strongest inducers of antimicrobial effector mechanisms and acts against viral, bacterial and parasitic intracellular pathogens. This has been linked to the upregulation of several hundreds of IFN-stimulated genes, among them the so-called IFN-inducible GTPases. Two subfamilies of IFN-inducible GTPases, the immunity-related GTPases (IRGs) and the guanylate-binding proteins (GBPs), have gained attention due to their exceptional ability to specifically target intracellular vacuolar pathogens and restrict their replication by destroying their vacuolar compartment. Their repertoire has recently been expanded to the regulation of inflammasome complexes, which are cytosolic multi-protein complexes that control an inflammatory cell death called pyroptosis and the release of cytokines like interleukin-1β and interleukin-18. Here we discuss recent advances in understanding the function, the targeting and regulation of IRG and GBP proteins during microbial infections.

  9. Polysaccharides isolated from Acai fruit induce innate immune responses.

    Directory of Open Access Journals (Sweden)

    Jeff Holderness

    Full Text Available The Açaí (Acai fruit is a popular nutritional supplement that purportedly enhances immune system function. These anecdotal claims are supported by limited studies describing immune responses to the Acai polyphenol fraction. Previously, we characterized γδ T cell responses to both polyphenol and polysaccharide fractions from several plant-derived nutritional supplements. Similar polyphenol and polysaccharide fractions are found in Acai fruit. Thus, we hypothesized that one or both of these fractions could activate γδ T cells. Contrary to previous reports, we did not identify agonist activity in the polyphenol fraction; however, the Acai polysaccharide fraction induced robust γδ T cell stimulatory activity in human, mouse, and bovine PBMC cultures. To characterize the immune response to Acai polysaccharides, we fractionated the crude polysaccharide preparation and tested these fractions for activity in human PBMC cultures. The largest Acai polysaccharides were the most active in vitro as indicated by activation of myeloid and γδ T cells. When delivered in vivo, Acai polysaccharide induced myeloid cell recruitment and IL-12 production. These results define innate immune responses induced by the polysaccharide component of Acai and have implications for the treatment of asthma and infectious disease.

  10. Temperature effects on vaccine induced immunity to viruses in fish

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Rasmussen, Jesper Skou

    a problem in terms of inducing a protective immune response by vaccination in aquaculture, since it is often desirable to vaccinate fish during autumn, winter, or spring. In experimental vaccination trials with rainbow trout (Oncorhynchus mykiss) using a DNA-vaccine encoding the viral glycoprotein of viral...... haemorrhagic septicaemia virus (VHSV), non-specific as well as specific immune mechanisms seemed to be delayed at low temperature. At five weeks post vaccination fish kept at 5C had no detectable response of neutralising antibodies while two thirds of the fish kept at 15C had sero-converted. While protective...... immunity was still established at both temperatures, specificity analysis suggested that protection at the lower temperature was mainly due to non-specific innate antiviral mechanisms, which appeared to last longer at low temperature. This was presumably related to a prolonged persistence of the vaccine...

  11. Programmed Death Ligand 2 in Cancer-Induced Immune Suppression

    Directory of Open Access Journals (Sweden)

    Esdy N. Rozali

    2012-01-01

    Full Text Available Inhibitory molecules of the B7/CD28 family play a key role in the induction of immune tolerance in the tumor microenvironment. The programmed death-1 receptor (PD-1, with its ligands PD-L1 and PD-L2, constitutes an important member of these inhibitory pathways. The relevance of the PD-1/PD-L1 pathway in cancer has been extensively studied and therapeutic approaches targeting PD-1 and PD-L1 have been developed and are undergoing human clinical testing. However, PD-L2 has not received as much attention and its role in modulating tumor immunity is less clear. Here, we review the literature on the immunobiology of PD-L2, particularly on its possible roles in cancer-induced immune suppression and we discuss the results of recent studies targeting PD-L2 in cancer.

  12. Immune markers and correlates of protection for vaccine induced immune responses

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Pedersen, Lasse Eggers; Jungersen, Gregers

    2012-01-01

    Vaccines have been a major innovation in the history of mankind and still have the potential to address the challenges posed by chronic intracellular infections including tuberculosis, HIV and malaria which are leading causes of high morbidity and mortality across the world. Markers...... of an appropriate humoral response currently remain the best validated correlates of protective immunity after vaccination. Despite advancements in the field of immunology over the past few decades currently there are, however, no sufficiently validated immune correlates of vaccine induced protection against...... chronic infections in neither human nor veterinary medicine. Technological and conceptual advancements within cell-mediated immunology have led to a number of new immunological read-outs with the potential to emerge as correlates of vaccine induced protection. For TH1 type responses, antigen...

  13. Candida albicans infection of Caenorhabditis elegans induces antifungal immune defenses.

    Directory of Open Access Journals (Sweden)

    Read Pukkila-Worley

    2011-06-01

    Full Text Available Candida albicans yeast cells are found in the intestine of most humans, yet this opportunist can invade host tissues and cause life-threatening infections in susceptible individuals. To better understand the host factors that underlie susceptibility to candidiasis, we developed a new model to study antifungal innate immunity. We demonstrate that the yeast form of C. albicans establishes an intestinal infection in Caenorhabditis elegans, whereas heat-killed yeast are avirulent. Genome-wide, transcription-profiling analysis of C. elegans infected with C. albicans yeast showed that exposure to C. albicans stimulated a rapid host response involving 313 genes (124 upregulated and 189 downregulated, ~1.6% of the genome many of which encode antimicrobial, secreted or detoxification proteins. Interestingly, the host genes affected by C. albicans exposure overlapped only to a small extent with the distinct transcriptional responses to the pathogenic bacteria Pseudomonas aeruginosa or Staphylococcus aureus, indicating that there is a high degree of immune specificity toward different bacterial species and C. albicans. Furthermore, genes induced by P. aeruginosa and S. aureus were strongly over-represented among the genes downregulated during C. albicans infection, suggesting that in response to fungal pathogens, nematodes selectively repress the transcription of antibacterial immune effectors. A similar phenomenon is well known in the plant immune response, but has not been described previously in metazoans. Finally, 56% of the genes induced by live C. albicans were also upregulated by heat-killed yeast. These data suggest that a large part of the transcriptional response to C. albicans is mediated through "pattern recognition," an ancient immune surveillance mechanism able to detect conserved microbial molecules (so-called pathogen-associated molecular patterns or PAMPs. This study provides new information on the evolution and regulation of the innate

  14. The role of probiotics and prebiotics in inducing gut immunity.

    Science.gov (United States)

    Vieira, Angélica T; Teixeira, Mauro M; Martins, Flaviano S

    2013-12-12

    The gut immune system is influenced by many factors, including dietary components and commensal bacteria. Nutrients that affect gut immunity and strategies that restore a healthy gut microbial community by affecting the microbial composition are being developed as new therapeutic approaches to treat several inflammatory diseases. Although probiotics (live microorganisms) and prebiotics (food components) have shown promise as treatments for several diseases in both clinical and animal studies, an understanding of the molecular mechanisms behind the direct and indirect effects on the gut immune response will facilitate better and possibly more efficient therapy for diseases. In this review, we will first describe the concept of prebiotics, probiotics, and symbiotics and cover the most recently well-established scientific findings regarding the direct and indirect mechanisms by which these dietary approaches can influence gut immunity. Emphasis will be placed on the relationship of diet, the microbiota, and the gut immune system. Second, we will highlight recent results from our group, which suggest a new dietary manipulation that includes the use of nutrient products (organic selenium and Lithothamnium muelleri) and probiotics (Saccharomyces boulardii UFMG 905 and Bifidobacterium sp.) that can stimulate and manipulate the gut immune response, inducing intestinal homeostasis. Furthermore, the purpose of this review is to discuss and translate all of this knowledge into therapeutic strategies and into treatment for extra-intestinal compartment pathologies. We will conclude by discussing perspectives and molecular advances regarding the use of prebiotics or probiotics as new therapeutic strategies that manipulate the microbial composition and the gut immune responses of the host.

  15. Salmonella enterica induces and subverts the plant immune system

    KAUST Repository

    García, Ana V.

    2014-04-04

    Infections with Salmonella enterica belong to the most prominent causes of food poisoning and infected fruits and vegetables represent important vectors for salmonellosis. Although it was shown that plants raise defense responses against Salmonella, these bacteria persist and proliferate in various plant tissues. Recent reports shed light into the molecular interaction between plants and Salmonella, highlighting the defense pathways induced and the means used by the bacteria to escape the plant immune system and accomplish colonization. It was recently shown that plants detect Salmonella pathogen-associated molecular patterns (PAMPs), such as the flagellin peptide flg22, and activate hallmarks of the defense program known as PAMP-triggered immunity (PTI). Interestingly, certain Salmonella strains carry mutations in the flg22 domain triggering PTI, suggesting that a strategy of Salmonella is to escape plant detection by mutating PAMP motifs. Another strategy may rely on the type III secretion system (T3SS) as T3SS mutants were found to induce stronger plant defense responses than wild type bacteria. Although Salmonella effector delivery into plant cells has not been shown, expression of Salmonella effectors in plant tissues shows that these bacteria also possess powerful means to manipulate the plant immune system. Altogether, these data suggest that Salmonella triggers PTI in plants and evolved strategies to avoid or subvert plant immunity. 2014 Garca and Hirt.

  16. IMMUNE TOLERANCE INDUCED BY GAMMA-RAY IRRADIATION

    Institute of Scientific and Technical Information of China (English)

    练燕; 王延江; 粟永萍; 冉新泽; 艾国平; 刘晓宏; 郭朝华; 程天民

    2003-01-01

    Objective: To detect the existence of immune tolerance induced by gamma-ray irradiation. Methods: Peritoneal cells were harvested from mice subjected to 5 Gy 60Co gamma-ray total body irradiation at 3d, 7d, 15d and 30d, then their counts, morphological changes and IL-12 gene expression were investigated. Results: After irradiation, the peritoneal cells were sharply reduced, the cell morphology shifted from round-like to polymorphic and fusiform with some processes, expression of IL-12 p35 was seriously suppressed, while that of IL-12 p40 greatly enhanced. Conclusion: Our data highly suggest that the gamma-ray irradiation could potentially induce dendritic cell (DC) commitment and immune tolerance.

  17. Apoptosis in immune cells induced by fission fragment 147Pm

    Institute of Scientific and Technical Information of China (English)

    ZhuShou-Peng; ZhangLan-Sheng; 等

    1997-01-01

    Apoptosis in human acute lymphoblastic leukemia cell line Molt-4 cell and macrophage cell line Ana-1 cell could be induced by fission fragment 147Pm,The cumulative absorption dose of 147Pm in cultural cells through different periods were estimated.By using fluorescence microscopy and microautoradiographic tracing it can be found that Molt-4 and Anal-1 cells internally irradiated by 147Pm,displayed an obvious nuclear fragmentation and a marked phknosis in immune cell nucei,as well as DNA chain fragmentation and apoptotic bodies formation.The microautoradiographic study showed that 147Pm could infiltrate thourgh cell membrane and displayed membrane-seeking condensation in cells.At the same time.the membrane-bounded apoptotic bodies were observed.Experimental results in recent study provide evidence that Molt-4 and Ano-1 immune cells undergo apoptosis while internally irradiated with 147Pm.

  18. The role of cytokines in immune changes induced by spaceflight

    Science.gov (United States)

    Sonnenfeld, G.; Miller, E. S.

    1993-01-01

    It has become apparent that spaceflight alters many immune responses. Among the regulatory components of the immune response that have been shown to be affected by spaceflight is the cytokine network. Spaceflight, as well as model systems of spaceflight, have been shown to affect the production and action of various cytokines including interferons, interleukins, colony stimulating factors, and tumor necrosis factors. These changes have been shown not to involve a general shutdown of the cytokine network but, rather, to involve selective alterations of specific cytokine functions by spaceflight. The full breadth of changes in cytokines induced by spaceflight, as well as mechanisms, duration, adaptation, reversibility, and significance to resistance to infection and neoplastic diseases, remains to be established.

  19. Environmental toxicants-induced immune responses in the olfactory mucosa

    Directory of Open Access Journals (Sweden)

    Fumiaki Imamura

    2016-11-01

    Full Text Available Olfactory sensory neurons (OSNs are the receptor cells for the sense of smell. Although cell bodies are located in the olfactory mucosa of the nasal cavity, OSN axons directly project to the olfactory bulb that is a component of the central nervous system (CNS. Because of this direct and short connection from this peripheral tissue to the CNS, the olfactory system has attracted attention as a port-of-entry for environmental toxicants that may cause neurological dysfunction. Selected viruses can enter the olfactory bulb via the olfactory mucosa, and directly affect the CNS. On the other hand, environmental toxicants may induce inflammatory responses in the olfactory mucosa, including infiltration of immune cells and production of inflammatory cytokines. In addition, these inflammatory responses cause the loss of OSNs that are then replaced with newly generated OSNs that re-connect to the olfactory bulb after inflammation has subsided. It is now known that immune cells and cytokines in the olfactory mucosa play important roles in both degeneration and regeneration of OSNs. Thus, the olfactory system is a unique neuroimmune interface where interaction between nervous and immune systems in the periphery significantly affects the structure, neuronal circuitry, and immunological status of the CNS. The mechanisms by which immune cells regulate OSN loss and the generation of new OSNs are, however, largely unknown. To help develop a better understanding of the mechanisms involved, we have provided a review of key research that has investigated how the immune response in the olfactory mucosa affects the pathophysiology of OSNs.

  20. Trypanosomiasis-induced Th17-like immune responses in carp.

    Directory of Open Access Journals (Sweden)

    Carla M S Ribeiro

    Full Text Available BACKGROUND: In mammalian vertebrates, the cytokine interleukin (IL-12 consists of a heterodimer between p35 and p40 subunits whereas interleukin-23 is formed by a heterodimer between p19 and p40 subunits. During an immune response, the balance between IL-12 and IL-23 can depend on the nature of the pathogen associated molecular pattern (PAMP recognized by, for example TLR2, leading to a preferential production of IL-23. IL-23 production promotes a Th17-mediated immune response characterized by the production of IL-17A/F and several chemokines, important for neutrophil recruitment and activation. For the cold blooded vertebrate common carp, only the IL-12 subunits have been described so far. METHODOLOGY/PRINCIPAL FINDINGS: Common carp is the natural host of two protozoan parasites: Trypanoplasma borreli and Trypanosoma carassii. We found that these parasites negatively affect p35 and p40a gene expression in carp. Transfection studies of HEK293 and carp macrophages show that T. carassii-derived PAMPs are agonists of carp TLR2, promoting p19 and p40c gene expression. The two protozoan parasites induce different immune responses as assessed by gene expression and histological studies. During T. carassii infections, in particular, we observed a propensity to induce p19 and p40c gene expression, suggestive of the formation of IL-23. Infections with T. borreli and T. carassii lead to an increase of IFN-γ2 gene expression whereas IL-17A/F2 gene expression was only observed during T. carasssii infections. The moderate increase in the number of splenic macrophages during T. borreli infection contrasts the marked increase in the number of splenic neutrophilic granulocytes during T. carassii infection, along with an increased gene expression of metalloproteinase-9 and chemokines. CONCLUSION/SIGNIFICANCE: This is the first study that provides evidence for a Th17-like immune response in fish in response to infection with a protozoan parasite.

  1. An Engineered Herpesvirus Activates Dendritic Cells and Induces Protective Immunity

    Science.gov (United States)

    Ma, Yijie; Chen, Min; Jin, Huali; Prabhakar, Bellur S.; Valyi-Nagy, Tibor; He, Bin

    2017-01-01

    Herpes simplex viruses (HSV) are human pathogens that switch between lytic and latent infection. While attenuated HSV is explored for vaccine, the underlying event remains poorly defined. Here we report that recombinant HSV-1 with a mutation in the γ134.5 protein, a virulence factor, stimulates dendritic cell (DC) maturation which is dependent on TANK-binding kinase 1 (TBK1). When exposed to CD11+ DCs, the mutant virus that lacks the amino terminus of γ134.5 undergoes temporal replication without production of infectious virus. Mechanistically, this leads to sequential phosphorylation of interferon regulatory factor 3 (IRF3) and p65/RelA. In correlation, DCs up-regulate the expression of co-stimulatory molecules and cytokines. However, selective inhibition of TBK1 precludes phosphorylation of IRF3 and subsequent DC activation by the γ134.5 mutant. Herein, the γ134.5 mutant is immune-stimulatory and non-destructive to DCs. Remarkably, upon immunization the γ134.5 mutant induces protection against lethal challenge by the wild type virus, indicative of its vaccine potential. Furthermore, CD11+ DCs primed by the γ134.5 mutant in vivo mediate protection upon adoptive transfer. These results suggest that activation of TBK1 by engineered HSV is crucial for DC maturation, which may contribute to protective immunity. PMID:28150813

  2. Wolbachia surface protein induces innate immune responses in mosquito cells

    Directory of Open Access Journals (Sweden)

    Pinto Sofia B

    2012-01-01

    Full Text Available Abstract Background Wolbachia endosymbiotic bacteria are capable of inducing chronic upregulation of insect immune genes in some situations and this phenotype may influence the transmission of important insect-borne pathogens. However the molecules involved in these interactions have not been characterized. Results Here we show that recombinant Wolbachia Surface Protein (WSP stimulates increased transcription of immune genes in mosquito cells derived from the mosquito Anopheles gambiae, which is naturally uninfected with Wolbachia; at least two of the upregulated genes, TEP1 and APL1, are known to be important in Plasmodium killing in this species. When cells from Aedes albopictus, which is naturally Wolbachia-infected, were challenged with WSP lower levels of upregulation were observed than for the An. gambiae cells. Conclusions We have found that WSP is a strong immune elicitor in a naturally Wolbachia-uninfected mosquito species (Anopheles gambiae while a milder elicitor in a naturally-infected species (Aedes albopictus. Since the WSP of a mosquito non-native (nematode Wolbachia strain was used, these data suggest that there is a generalized tolerance to WSP in Ae. albopictus.

  3. Different protein of Echinococcus granulosus stimulates dendritic induced immune response.

    Science.gov (United States)

    Wang, Yana; Wang, Qiang; Lv, Shiyu; Zhang, Shengxiang

    2015-06-01

    Cystic echinococcosis is a chronic infectious disease that results from a host/parasite interaction. Vaccination with ferritin derived from Echinococcus granulosus is a potential preventative treatment. To understand whether ferritin is capable of inducing a host immune response, we investigated the response of dendritic cells (DCs) to both recombinant ferritin protein and the hydatid fluid (HF) of E. granulosus. We evaluated the immunomodulatory potential of these antigens by performing, immunocytochemistry, electron microscopy and in vivo imaging of monocyte-derived murine DCs. During antigen stimulation of DCs, ferritin cause DCs maturation and induced higher levels of surface marker expression and activated T-cell proliferation and migration. On contrary, HF failed to induce surface marker expression and to stimulate T-cell proliferation. In response to HF, DCs produced interleukin-6 (IL-6), but no IL-12 and IL-10. DCs stimulated with ferritin produced high levels of cytokines. Overall, HF appears to induce host immunosuppression in order to ensure parasite survival via inhibits DC maturation and promotes Th2-dependent secretion of cytokines. Although ferritin also promoted DC maturation and cytokine release, it also activates CD4+T-cell proliferation, but regard of the mechanism of the Eg.ferritin induce host to eradicate E. granulosus were not clear.

  4. Immunological aspects of the immune response induced by mosquito allergens.

    Science.gov (United States)

    Cantillo, José Fernando; Fernández-Caldas, Enrique; Puerta, Leonardo

    2014-01-01

    Allergies caused by mosquito bites may produce local or systemic reactions. The inhalation of mosquito allergens may also cause asthma and/or allergic rhinoconjunctivitis in sensitized individuals. The mechanisms implicated in the development of these immune responses involve IgE antibodies, different subtypes of IgG and proinflammatory cytokines as well as basophils, eosinophils and mast cells. Several allergenic components have been identified in the saliva and bodies of mosquitoes and some of these are present in different mosquito species. The most common species implicated in allergic reactions belong to the genera Aedes, Culex and Anopheles. Several Aedes aegypti allergens have been cloned and sequenced. The recombinant molecules show IgE reactivity similar to that of the native allergens, making them good candidates for the diagnosis of mosquito allergies. Allergen-specific immunotherapy with mosquito extracts induces a protective response characterized by a decreased production of IgE antibodies, increased IgG levels, a reduction in the severity of cutaneous and respiratory symptoms and the need for medication. The aims of this review are to summarize the progress made in the characterization of mosquito allergens and discuss the types of immune responses induced by mosquito bites and the inhalation of mosquito allergens in atopic individuals.

  5. The Immune Response Induced by Hepatitis B Virus Principal Antigens

    Institute of Scientific and Technical Information of China (English)

    Chien-Fu Huang; Shih-Shen Lin; Yung-Chyuan Ho; Fong-Ling Chen; Chi-Chiang Yang

    2006-01-01

    Hepatitis B virus (HBV) infection occurs primarily in hepatocytes in the liver with release of infectious virions and non-infectious empty surface antigen particles into the bloodstream. HBV replication is non-cytopathic. Transient infections run a course of several months, and chronic infections are often life-long. Chronic infections can lead to liver failure with cirrhosis and hepatocellular carcinoma. It is generally accepted that neutralizing anti-HBs antibodies plays a key role in recovery from HBV infection by containing the spread of infection in the infected host and facilitating the removal and destruction of viral particles. However, the immune response initiated by the T-cell response to viral antigens is also important for viral clearance and disease pathogenesis in HBV infection.The three structural forms of the viral proteins, the HBsAg, the particulate HBcAg, and the nonparticulate HBeAg,may preferentially elicit different Th cell subsets. The different IgG subclass profiles of anti-HBs, anti-HBc, and anti-HBe in different HBV infection status were revealed. Moreover, the different IgG subclass profiles in chronic carriers did not change with different ALT and AST levels and may reflect the difference between stimulating antigens, immune response, and the stages of viral disease and provide the basis for the use of vaccines and prophylactic treatments for individuals at high risk of human HBV infection. This review elucidates the detailed understanding of the immune responses induced during transient and persistent infection, and the development of immunotherapy and immunodiagnosis in patients with HBV infection, and possible means of reducing the liver damage.

  6. Selective Induced Altered Coccidians to Immunize and Prevent Enteritis

    Science.gov (United States)

    2016-01-01

    Microbiomic flora in digestive tract is pivotal to the state of our health and disease. Antibiotics affect GI, control composition of microbiome, and shift equilibrium from health into disease status. Coccidiosis causes gastrointestinal inflammation. Antibiotic additives contaminate animal products and enter food chain, consumed by humans with possible allergic, antibiotic resistance and enigmatic side effects. Purposed study induced nonpathogenic, immunogenic organisms to protect against disease and abolish antibiotics' use in food animals and side effects in man. Diverse species of Coccidia were used as model. Immature organisms were treated with serial purification procedure prior to developmental stages to obtain altered strains. Chicks received oral gavage immunized with serial low doses of normal or altered organisms or sham treatment and were challenged with high infective normal organisms to compare pathogenicity and immunogenicity. Mature induced altered forms of E. tenella and E. necatrix lacked developmental stage of “sporocysts” and contained free sporozoites. In contrast, E. maxima progressed to normal forms or did not mature at all. Animals that received altered forms were considerably protected with higher weight gain and antibody titers against challenge infection compared to those that received normal organisms (p < 0.05). This is the first report to induce selected protective altered organisms for possible preventive measures to minimize antibiotic use in food animals. PMID:27721824

  7. Steric-electronic effects in malarial peptides inducing sterile immunity

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Vranich, Armando [Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota (Colombia); Patarroyo, Manuel E., E-mail: mepatarr@mail.com [Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota (Colombia); Universidad Nacional de Colombia, Bogota (Colombia)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer Is it evident that the residues position are relevant regarding of {phi} angular value. Black-Right-Pointing-Pointer The geometry considered for detailing the alterations undergone by HABPs. Black-Right-Pointing-Pointer The inter planar interactions ruled by clashes between the atoms making them up. -- Abstract: Conserved Plasmodium falciparum high activity binding peptides' (HABPs) most relevant proteins involved in malaria parasite invasion are immunologically silent; critical binding residues must therefore be specifically replaced to render them highly immunogenic and protection-inducing. Such changes have a tremendous impact on these peptides' steric-electronic effects, such as modifications to peptide length peptide bonds and electronic orbitals' disposition, to allow a better fit into immune system MHCII molecules and better interaction with the TCR which might account for the final immunological outcome.

  8. Spatiotemporally restricted arenavirus replication induces immune surveillance and type I interferon-dependent tumour regression

    Science.gov (United States)

    Kalkavan, Halime; Sharma, Piyush; Kasper, Stefan; Helfrich, Iris; Pandyra, Aleksandra A.; Gassa, Asmae; Virchow, Isabel; Flatz, Lukas; Brandenburg, Tim; Namineni, Sukumar; Heikenwalder, Mathias; Höchst, Bastian; Knolle, Percy A.; Wollmann, Guido; von Laer, Dorothee; Drexler, Ingo; Rathbun, Jessica; Cannon, Paula M.; Scheu, Stefanie; Bauer, Jens; Chauhan, Jagat; Häussinger, Dieter; Willimsky, Gerald; Löhning, Max; Schadendorf, Dirk; Brandau, Sven; Schuler, Martin; Lang, Philipp A.; Lang, Karl S.

    2017-01-01

    Immune-mediated effector molecules can limit cancer growth, but lack of sustained immune activation in the tumour microenvironment restricts antitumour immunity. New therapeutic approaches that induce a strong and prolonged immune activation would represent a major immunotherapeutic advance. Here we show that the arenaviruses lymphocytic choriomeningitis virus (LCMV) and the clinically used Junin virus vaccine (Candid#1) preferentially replicate in tumour cells in a variety of murine and human cancer models. Viral replication leads to prolonged local immune activation, rapid regression of localized and metastatic cancers, and long-term disease control. Mechanistically, LCMV induces antitumour immunity, which depends on the recruitment of interferon-producing Ly6C+ monocytes and additionally enhances tumour-specific CD8+ T cells. In comparison with other clinically evaluated oncolytic viruses and to PD-1 blockade, LCMV treatment shows promising antitumoural benefits. In conclusion, therapeutically administered arenavirus replicates in cancer cells and induces tumour regression by enhancing local immune responses. PMID:28248314

  9. Inducing immune tolerance: a focus on Type 1 diabetes mellitus.

    Science.gov (United States)

    Xu, Dan; Prasad, Suchitra; Miller, Stephen D

    2013-09-01

    Tolerogenic strategies that specifically target diabetogenic immune cells in the absence of complications of immunosuppression are the desired treatment for the prevention or even reversal of Type 1 diabetes (T1D). Antigen (Ag)-based therapies must not only suppress disease-initiating diabetogenic T cells that are already activated, but, more importantly, prevent activation of naive auto-Ag-specific T cells that may become autoreactive through epitope spreading as a result of Ag liberation from damaged islet cells. Therefore, identification of auto-Ags relevant to T1D initiation and progression is critical to the design of effective Ag-specific therapies. Animal models of T1D have been successfully employed to identify potential diabetogenic Ags, and have further facilitated translation of Ag-specific tolerance strategies into human clinical trials. In this review, we highlight important advances using animal models in Ag-specific T1D immunotherapies, and the application of the preclinical findings to human subjects. We provide an up-to-date overview of the strengths and weaknesses of various tolerance-inducing strategies, including infusion of soluble Ags/peptides by various routes of delivery, genetic vaccinations, cell- and inert particle-based tolerogenic approaches, and various other strategies that target distinct tolerance-inducing pathways.

  10. Immunization with chlamydial plasmid protein pORF5 DNA vaccine induces protective immunity against genital chlamydial infection in mice

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To validate the immune protective efficacy of pORF5 DNA vaccine and to analyze potential mechanisms related to this protection. In this study, pORF5 DNA vaccine was constructed and evaluated for its protective immunity in a mouse model of genital chlamydial infection. Groups of BALB/c mice were immunized intranasally with pORF5 DNA vaccine. Humoral and cell mediated immune responses were evaluated. The clearance ability of chlamydial challenge from the genital tract and the chlamy- dia-induced upper genital tract gross pathology and histopathological characterization were also de- tected. The results showed that the total and the IgG2a anti-pORF5 antibody levels in serum were sig- nificantly elevated after pcDNA3.1-pORF5 vaccination, as were the total antibody and IgA levels in vaginal fluids. pcDNA3.1-pORF5 induced a significantly high level of Th1 response as measured by robust gamma interferon (IFN-γ). Minimal IL-4 was produced by immune T cells in response to the re-stimulation with pORF5 protein or the inactive elementary body in vitro. pcDNA3.1-pORF5-vacci- nated mice displayed significantly reduced bacterial shedding upon a chlamydial challenge and an accelerated resolution of infection. 100% of pcDNA3.1-pORF5 vaccinated mice successfully resolved the infection by day 24. pcDNA3.1-pORF5-immunized mice also exhibited protection against patho- logical consequences of chlamydial infection. The stimulated index was significantly higher than that of mice immunized with pcDNA3.1 and PBS (P<0.05). Together, these results demonstrated that immu- nization with pORF5 DNA vaccine is a promising approach for eliciting a protective immunity against a genital chlamydial challenge.

  11. UVB-induced immune suppression and infection with Schistosoma mansoni

    Energy Technology Data Exchange (ETDEWEB)

    Noonan, F.P.; Lewis, F.A. [George Washington Univ., Washington, DC (United States). School of Medicine]|[Biomedical Research Inst., Rockville, MD (United States)

    1995-01-01

    Irradiation with ultraviolet B (UVB, 290-320 nm) causes a systematic immunosuppression of cell-mediated immunity. The question of whether UV immunosuppression modulates the course of infectious diseases is important because UVB levels in sunlight are sufficient to predict significant UV-induced immunosuppression at most latitudes. We have investigated the effect of immunosuppressive doses of UVB on the disease caused by the helminth parasite Schistosoma mansoni. C57BL/6 mice were irradiated once or three times weekly over 60-80 days with UV from a bank of FS40 sunlamps. Each UV treatment consisted of an immunosuppressive UV dose, as determined by suppression of contact hypersensitivity to trinitrochlorobenzene, corresponding to about 15-30 min of noonday tropical sunlight exposure under ideal clear sky conditions. Cumulative UV doses were between 80 and 170 kJ/m{sup 2}. Worm and egg burdens, liver granuloma diameters and liver fibrosis showed minimal changes (< 20%) compared with parameters in unirradiated animals. Ultraviolet irradiation (a total of 55 kJ/m{sup 2} administered in six treatments) did not impair the resistance to rechallenge conferred by vaccination with {sup 60}Co-irradiated cercariae. We have observed a dichotomy between UV immnosuppression and both disease and vaccination in this helminth infection, in contrast to the effects of UVB shown in other infectious diseases. (author).

  12. Picornavirus-Induced Airway Mucosa Immune Profile in Asymptomatic Neonates

    DEFF Research Database (Denmark)

    Wolsk, Helene M.; Følsgaard, Nilofar V.; Birch, Sune;

    2016-01-01

    Bacterial airway colonization is known to alter the airway mucosa immune response in neonates whereas the impact of viruses is unknown. The objective was therefore to examine the effect of respiratory viruses on the immune signature in the airways of asymptomatic neonates. Nasal aspirates from 571...

  13. Protective immunity against tuberculosis induced by vaccination with major extracellular proteins of Mycobacterium tuberculosis.

    OpenAIRE

    1995-01-01

    Tuberculosis, caused by the intracellular pathogen Mycobacterium tuberculosis, is the world's leading cause of death in humans from a single infectious agent. A safe and effective vaccine against this scourge is urgently needed. This study demonstrates that immunization with the 30-kDa major secretory protein, alone or in combination with other abundant extracellular proteins of M. tuberculosis, induces strong cell-mediated immune responses and substantial protective immunity against aerosol ...

  14. Human immune system mice immunized with Plasmodium falciparum circumsporozoite protein induce protective human humoral immunity against malaria.

    Science.gov (United States)

    Huang, Jing; Li, Xiangming; Coelho-dos-Reis, Jordana G A; Zhang, Min; Mitchell, Robert; Nogueira, Raquel Tayar; Tsao, Tiffany; Noe, Amy R; Ayala, Ramses; Sahi, Vincent; Gutierrez, Gabriel M; Nussenzweig, Victor; Wilson, James M; Nardin, Elizabeth H; Nussenzweig, Ruth S; Tsuji, Moriya

    2015-12-01

    In this study, we developed human immune system (HIS) mice that possess functional human CD4+ T cells and B cells, named HIS-CD4/B mice. HIS-CD4/B mice were generated by first introducing HLA class II genes, including DR1 and DR4, along with genes encoding various human cytokines and human B cell activation factor (BAFF) to NSG mice by adeno-associated virus serotype 9 (AAV9) vectors, followed by engrafting human hematopoietic stem cells (HSCs). HIS-CD4/B mice, in which the reconstitution of human CD4+ T and B cells resembles to that of humans, produced a significant level of human IgG against Plasmodium falciparum circumsporozoite (PfCS) protein upon immunization. CD4+ T cells in HIS-CD4/B mice, which possess central and effector memory phenotypes like those in humans, are functional, since PfCS protein-specific human CD4+ T cells secreting IFN-γ and IL-2 were detected in immunized HIS-CD4/B mice. Lastly, PfCS protein-immunized HIS-CD4/B mice were protected from in vivo challenge with transgenic P. berghei sporozoites expressing the PfCS protein. The immune sera collected from protected HIS-CD4/B mice reacted against transgenic P. berghei sporozoites expressing the PfCS protein and also inhibited the parasite invasion into hepatocytes in vitro. Taken together, these studies show that our HIS-CD4/B mice could mount protective human anti-malaria immunity, consisting of human IgG and human CD4+ T cell responses both specific for a human malaria antigen.

  15. Impaired toll like receptor-7 and 9 induced immune activation in chronic spinal cord injured patients contributes to immune dysfunction

    Science.gov (United States)

    Gungor, Bilgi; Kahraman, Tamer; Gursel, Mayda; Yilmaz, Bilge

    2017-01-01

    Reduced immune activation or immunosuppression is seen in patients withneurological diseases. Urinary and respiratory infections mainly manifested as septicemia and pneumonia are the most frequent complications following spinal cord injuries and they account for the majority of deaths. The underlying reason of these losses is believed to arise due to impaired immune responses to pathogens. Here, we hypothesized that susceptibility to infections of chronic spinal cord injured (SCI) patients might be due to impairment in recognition of pathogen associated molecular patterns and subsequently declining innate and adaptive immune responses that lead to immune dysfunction. We tested our hypothesis on healthy and chronic SCI patients with a level of injury above T-6. Donor PBMCs were isolated and stimulated with different toll like receptor ligands and T-cell inducers aiming to investigate whether chronic SCI patients display differential immune activation to multiple innate and adaptive immune cell stimulants. We demonstrate that SCI patients' B-cell and plasmacytoid dendritic cells retain their functionality in response to TLR7 and TLR9 ligand stimulation as they secreted similar levels of IL6 and IFNα. The immune dysfunction is not probably due to impaired T-cell function, since neither CD4+ T-cell dependent IFNγ producing cell number nor IL10 producing regulatory T-cells resulted different outcomes in response to PMA-Ionomycin and PHA-LPS stimulation, respectively. We showed that TLR7 dependent IFNγ and IP10 levels and TLR9 mediated APC function reduced substantially in SCI patients compared to healthy subjects. More importantly, IP10 producing monocytes were significantly fewer compared to healthy subjects in response to TLR7 and TLR9 stimulation of SCI PBMCs. When taken together this work implicated that these defects could contribute to persistent complications due to increased susceptibility to infections of chronic SCI patients. PMID:28170444

  16. Immune response in hormonally-induced prostatic hyperplasia in the dog.

    NARCIS (Netherlands)

    Mahapokai, W.; Ingh, T.S. van den; Mil, F. van; Garderen, E. van; Schalken, J.A.; Mol, J.A.; Sluijs, F.J. van

    2001-01-01

    We induced prostatic enlargement in castrated dogs using either androgen alone or androgen combined with estrogen. In addition to previously reported hyperplastic changes, marked infiltration with immune effector cells was observed. This mononuclear cell infiltrate was phenotypically characterized u

  17. Immunity and Tolerance Induced by Intestinal Mucosal Dendritic Cells

    OpenAIRE

    Julio Aliberti

    2016-01-01

    Dendritic cells present in the digestive tract are constantly exposed to environmental antigens, commensal flora, and invading pathogens. Under steady-state conditions, these cells have high tolerogenic potential, triggering differentiation of regulatory T cells to protect the host from unwanted proinflammatory immune responses to innocuous antigens or commensals. On the other hand, these cells must discriminate between commensal flora and invading pathogens and mount powerful immune response...

  18. Hydroxytyrosol and oleuropein of olive oil inhibit mast cell degranulation induced by immune and non-immune pathways.

    Science.gov (United States)

    Persia, Fabio Andrés; Mariani, María Laura; Fogal, Teresa Hilda; Penissi, Alicia Beatriz

    2014-09-25

    The aim of this study was to determine whether hydroxytyrosol and oleuropein, the major phenols found in olives and olive oil, inhibit mast cell activation induced by immune and non-immune pathways. Purified peritoneal mast cells were preincubated in the presence of test compounds (hydroxytyrosol or oleuropein), before incubation with concanavalin A, compound 48/80 or calcium ionophore A23187. Dose-response and time-dependence studies were carried out. Comparative studies with sodium cromoglycate, a classical mast cell stabilizer, were also made. After incubation the supernatants and pellets were used to determine the β-hexosaminidase content by colorimetric reaction. The percentage of β-hexosaminidase release in each tube was calculated and taken as a measure of mast cell activation. Other samples of cell pellets were used for cell viability studies by the trypan blue dye exclusion test, or fixed for light and electron microscopy. Biochemical and morphological findings of the present study showed for the first time that hydroxytyrosol and oleuropein inhibit mast cell degranulation induced by both immune and non-immune pathways. These results suggest that olive phenols, particularly hydroxytyrosol and oleuropein, may provide insights into the development of useful tools for the prevention and treatment of mast cell-mediated disorders.

  19. A role for immune responses against non-CS components in the cross-species protection induced by immunization with irradiated malaria sporozoites.

    Directory of Open Access Journals (Sweden)

    Marjorie Mauduit

    Full Text Available Immunization with irradiated Plasmodium sporozoites induces sterile immunity in rodents, monkeys and humans. The major surface component of the sporozoite the circumsporozoite protein (CS long considered as the antigen predominantly responsible for this immunity, thus remains the leading candidate antigen for vaccines targeting the parasite's pre-erythrocytic (PE stages. However, this role for CS was questioned when we recently showed that immunization with irradiated sporozoites (IrrSpz of a P. berghei line whose endogenous CS was replaced by that of P. falciparum still conferred sterile protection against challenge with wild type P. berghei sporozoites. In order to investigate the involvement of CS in the cross-species protection recently observed between the two rodent parasites P. berghei and P. yoelii, we adopted our gene replacement approach for the P. yoelii CS and exploited the ability to conduct reciprocal challenges. Overall, we found that immunization led to sterile immunity irrespective of the origin of the CS in the immunizing or challenge sporozoites. However, for some combinations, immune responses to CS contributed to the acquisition of protective immunity and were dependent on the immunizing IrrSpz dose. Nonetheless, when data from all the cross-species immunization/challenges were considered, the immune responses directed against non-CS parasite antigens shared by the two parasite species played a major role in the sterile protection induced by immunization with IrrSpz. This opens the perspective to develop a single vaccine formulation that could protect against multiple parasite species.

  20. Muscovy duck reovirus infection rapidly activates host innate immune signaling and induces an effective antiviral immune response involving critical interferons.

    Science.gov (United States)

    Chen, Zhilong; Luo, Guifeng; Wang, Quanxi; Wang, Song; Chi, Xiaojuan; Huang, Yifan; Wei, Haitao; Wu, Baocheng; Huang, Shile; Chen, Ji-Long

    2015-02-25

    Muscovy duck reovirus (MDRV) is a highly pathogenic virus in waterfowl and causes significant economic loss in the poultry industry worldwide. Because the host innate immunity plays a key role in defending against virus invasion, more and more attentions have been paid to the immune response triggered by viral infection. Here we found that the genomic RNA of MDRV was able to rapidly induce the production of interferons (IFNs) in host. Mechanistically, MDRV infection induced robust expression of IFNs in host mainly through RIG-I, MDA5 and TLR3-dependent signaling pathways. In addition, we observed that silencing VISA expression in 293T cells could significantly inhibit the secretion of IFNs. Remarkably, the production of IFNs was reduced by inhibiting the activation of NF-κB or knocking down the expression of IRF-7. Furthermore, our study showed that treatment of 293T cells and Muscovy duck embryo fibroblasts with IFNs markedly impaired MDRV replication, suggesting that these IFNs play an important role in antiviral response during the MDRV infection. Importantly, we also detected the induced expression of RIG-I, MDA5, TLR3 and type I IFN in Muscovy ducks infected with MDRV at different time points post infection. The results from in vivo studies were consistent with those in 293T cells infected with MDRV. Taken together, our findings reveal that the host can resist MDRV invasion by activating innate immune response involving RIG-I, MDA5 and TLR3-dependent signaling pathways that govern IFN production.

  1. The role of the immune response in MULV-induced lymphomagenesis.

    Science.gov (United States)

    Marshall, D J; Gaulton, G N

    1996-12-01

    Although the exact mechanisms of murine leukemia virus (MuLV)-induced lymphomagenesis have yet to be elucidated, it is clear that the immune reponse to viral proteins plays a critical role in this disease process. The parameters for lymphomagenesis are governed by an inverse relationship between viral persistence and immune responsiveness. MuLV have evolved ways to avoid immune detection either by altering their own genome or by altering the host environment. In addition, the intrathymic replication of MuLV during thymocyte maturation and immune selection plays an important role in T cell repertoire development and immune inhibition. These viruses have served as a highly effective experimental model in understanding the many pathways by which MuLV have overcome immune detection and thereby led to lymphomagenesis.

  2. Subversion of innate and adaptive immune activation induced by structurally modified lipopolysaccharide from Salmonella typhimurium.

    Science.gov (United States)

    Pastelin-Palacios, Rodolfo; Gil-Cruz, Cristina; Pérez-Shibayama, Christian I; Moreno-Eutimio, Mario A; Cervantes-Barragán, Luisa; Arriaga-Pizano, Lourdes; Ludewig, Burkhard; Cunningham, Adam F; García-Zepeda, Eduardo A; Becker, Ingeborg; Alpuche-Aranda, Celia; Bonifaz, Laura; Gunn, John S; Isibasi, Armando; López-Macías, Constantino

    2011-08-01

    Salmonella are successful pathogens that infect millions of people every year. During infection, Salmonella typhimurium changes the structure of its lipopolysaccharide (LPS) in response to the host environment, rendering bacteria resistant to cationic peptide lysis in vitro. However, the role of these structural changes in LPS as in vivo virulence factors and their effects on immune responses and the generation of immunity are largely unknown. We report that modified LPS are less efficient than wild-type LPS at inducing pro-inflammatory responses. The impact of this LPS-mediated subversion of innate immune responses was demonstrated by increased mortality in mice infected with a non-lethal dose of an attenuated S. typhimurium strain mixed with the modified LPS moieties. Up-regulation of co-stimulatory molecules on antigen-presenting cells and CD4(+) T-cell activation were affected by these modified LPS. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing specific antibody responses. Immunization with modified LPS moiety preparations combined with experimental antigens, induced an impaired Toll-like receptor 4-mediated adjuvant effect. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing immunity against challenge with virulent S. typhimurium. Hence, changes in S. typhimurium LPS structure impact not only on innate immune responses but also on both humoral and cellular adaptive immune responses.

  3. Subversion of innate and adaptive immune activation induced by structurally modified lipopolysaccharide from Salmonella typhimurium

    Science.gov (United States)

    Pastelin-Palacios, Rodolfo; Gil-Cruz, Cristina; Pérez-Shibayama, Christian I; Moreno-Eutimio, Mario A; Cervantes-Barragán, Luisa; Arriaga-Pizano, Lourdes; Ludewig, Burkhard; Cunningham, Adam F; García-Zepeda, Eduardo A; Becker, Ingeborg; Alpuche-Aranda, Celia; Bonifaz, Laura; Gunn, John S; Isibasi, Armando; López-Macías, Constantino

    2011-01-01

    Salmonella are successful pathogens that infect millions of people every year. During infection, Salmonella typhimurium changes the structure of its lipopolysaccharide (LPS) in response to the host environment, rendering bacteria resistant to cationic peptide lysis in vitro. However, the role of these structural changes in LPS as in vivo virulence factors and their effects on immune responses and the generation of immunity are largely unknown. We report that modified LPS are less efficient than wild-type LPS at inducing pro-inflammatory responses. The impact of this LPS-mediated subversion of innate immune responses was demonstrated by increased mortality in mice infected with a non-lethal dose of an attenuated S. typhimurium strain mixed with the modified LPS moieties. Up-regulation of co-stimulatory molecules on antigen-presenting cells and CD4+ T-cell activation were affected by these modified LPS. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing specific antibody responses. Immunization with modified LPS moiety preparations combined with experimental antigens, induced an impaired Toll-like receptor 4-mediated adjuvant effect. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing immunity against challenge with virulent S. typhimurium. Hence, changes in S. typhimurium LPS structure impact not only on innate immune responses but also on both humoral and cellular adaptive immune responses. PMID:21631497

  4. RNA Interference-Induced Innate Immunity, Off-Target Effect, or Immune Adjuvant?

    Science.gov (United States)

    Meng, Zhongji; Lu, Mengji

    2017-01-01

    RNA interference (RNAi) is a natural cellular mechanism that inhibits gene expression in a sequence-specific manner. In the last decade, RNAi has become a cornerstone in basic biological systems research and drug development efforts. The RNAi-based manipulation of mammalian cells facilitates target identification and validation; assists in identifying human disease etiologies; and expedites the development of treatments for infectious diseases, cancer, and other conditions. Several RNAi-based approaches are currently undergoing assessment in phase I and II clinical trials. However, RNAi-associated immune stimulation might act as a hurdle to safe and effective RNAi, particularly in clinical applications. The induction of innate immunity may originate from small interfering RNA (siRNA) sequence-dependent delivery vehicles and even the RNAi process itself. However, in the case of antagonistic cancers and viral infection, immune activation is beneficial; thus, immunostimulatory small interfering RNAs were designed to create bifunctional small molecules with RNAi and immunostimulatory activities. This review summarizes the research studies of RNAi-associated immune stimulation and the approaches for manipulating immunostimulatory activities.

  5. Experimental Study on AT1-receptor-peptide-induced Myocardial Immune Damage in Rat

    Institute of Scientific and Technical Information of China (English)

    LUO; Yusheng; LIAO; Yuhua; WANG; Min; WEI; Yumiao; DONG; Jihua; WANG; Jinping; LU; Yingping

    2001-01-01

    In order to investigate the immunological damage in rat immunized with AT1-receptor peptide, 18 male Wistar rats were divided into two groups: immunized-group (n= 12), each rat was immunized with 150 μg AT1-receptor petide coupled to bovine serum albumin, together with Freund's adjuvant. Control group (n= 6), sham-immunized, "immunized liquid" was same as immunized-group except AT1-receptor peptide. Systolic blood pressure (SBP) was measured by using the tail-cuff technique, antibody against AT1-receptor peptide detected by using ELISA method, and left ventricular myocardium and renal cortex sections were observed under light and electron microscopy.There was no significant difference in SBP and light microscopic observation of the tissue sections between the immunized-group and control group. The O.D. value of anti-AT1-receptor peptide antiserum was significantly higher in the immunized-group than in the rats before immunization and control group (P<0.01). Positive rate in the immunized-group was 100 %, while 0 % in the control group. Ultramicroscopic morphology showed potential myocardial injury, including: increase in number of mitochondria, swelling of many mitochondria with reduction in number or absence of their cristae and cristolysis, disorder of the cardiac myofibrils, and myofibrillar disruption and myocytolysis. And lysosomes were increased in renal tubular epithelia. The AT1-receptor peptide could induce to generate the antibody against AT1-receptor peptide and lead to myocardial and renal damage in rats.

  6. Immunity

    Institute of Scientific and Technical Information of China (English)

    1992-01-01

    920630 Effects of the spleen on immunestate of patients with gastric cancer.QIUDengbo (仇登波), et al. Dept General Surg,Union Hosp, Tongji Med Univ, Wuhan, 430022.Natl Med J China 1992; 72(6): 334-337. For analysing the effects of the spleen on im-mune state of gastric cancer patients.T-lym-

  7. Metabolic mechanisms of cancer-induced inhibition of immune responses.

    Science.gov (United States)

    Viola, Antonella; Bronte, Vincenzo

    2007-08-01

    During progression, tumors become refractory to the offensive weapons of the immune system. It has been known for a long time that the tumor microenvironment presents a profound modification in the metabolism of arachidonic acid and amino acids such as l-triptophan and l-arginine. However, only in the last decade we have started to appreciate how these changes might cause dysfunctions in cells of both adaptive and innate immune system. The knowledge of these complex and partially interconnected metabolic pathways is offering new targets for an integrated pharmacological approach aiming at freeing tumor-specific T lymphocytes from the latches of cancer influence.

  8. Trypanosomiasis-induced Th17-like immune responses in carp

    NARCIS (Netherlands)

    Ribeiro, C.M.S.; Pontes, M.J.S.L.; Bird, S.; Chadzinska, M.K.; Scheer, M.H.; Verburg-van Kemenade, B.M.L.; Savelkoul, H.F.J.; Wiegertjes, G.F.

    2010-01-01

    Background - In mammalian vertebrates, the cytokine interleukin (IL)-12 consists of a heterodimer between p35 and p40 subunits whereas interleukin-23 is formed by a heterodimer between p19 and p40 subunits. During an immune response, the balance between IL-12 and IL-23 can depend on the nature of th

  9. Programmed death ligand 2 in cancer-induced immune suppression.

    NARCIS (Netherlands)

    Rozali, E.N.; Hato, S.V.; Robinson, B.W.; Lake, R.A.; Lesterhuis, W.J.

    2012-01-01

    Inhibitory molecules of the B7/CD28 family play a key role in the induction of immune tolerance in the tumor microenvironment. The programmed death-1 receptor (PD-1), with its ligands PD-L1 and PD-L2, constitutes an important member of these inhibitory pathways. The relevance of the PD-1/PD-L1 pathw

  10. Duration of immunity induced by companion animal vaccines.

    Science.gov (United States)

    Roth, James A; Spickler, Anna Rovid

    2010-12-01

    Concerns about possible adverse effects from annual vaccination have prompted the reanalysis of vaccine protocols for cats and dogs. In the last decade, several veterinary advisory groups have published protocols that recommend extended revaccination intervals for certain 'core' vaccines. In addition, practicing veterinarians have been asked to consider vaccination as an individualized medical procedure, based on an analysis of risks and benefits for each vaccine in an individual animal. The calls for extended revaccination intervals prompted considerable debate in USA and internationally. Areas of concern include the amount of evidence to support prolonged immunity from various vaccines, the risk of poor responses in individual animals and the possible effects on population immunity. This review examines how the duration of immunity (DOI) to a vaccine is established in animals and humans. It reviews factors that can affect the DOI in an individual animal, including the types of immune defenses stimulated by the pathogen, and the vaccine, host factors such as age and the level of exposure to the pathogen. In addition, it examines DOI studies that were published for canine and feline core vaccines.

  11. Sublingual immunization with recombinant adenovirus encoding SARS-CoV spike protein induces systemic and mucosal immunity without redirection of the virus to the brain

    Directory of Open Access Journals (Sweden)

    Shim Byoung-Shik

    2012-09-01

    Full Text Available Abstract Background Sublingual (s.l. administration of soluble protein antigens, inactivated viruses, or virus-like particles has been shown to induce broad immune responses in mucosal and extra-mucosal tissues. Recombinant replication-defective adenovirus vectors (rADVs infect mucosa surface and therefore can serve as a mucosal antigen delivery vehicle. In this study we examined whether s.l. immunization with rADV encoding spike protein (S (rADV-S of severe acute respiratory syndrome-associated coronavirus (SARS-CoV induces protective immunity against SARS-CoV and could serve as a safe mucosal route for delivery of rADV. Results Here, we show that s.l. administration of rADV-S induced serum SARS-CoV neutralizing and airway IgA antibodies in mice. These antibody responses are comparable to those induced by intranasal (i.n. administration. In addition, s.l. immunization induced antigen-specific CD8+ T cell responses in the lungs that are superior to those induced by intramuscular immunization. Importantly, unlike i.n. administration, s.l. immunization with rADV did not redirect the rADV vector to the olfactory bulb. Conclusion Our study indicates that s.l. immunization with rADV-S is safe and effective in induction of a broad spectrum of immune responses and presumably protection against infection with SARS-CoV.

  12. Pavlovian conditioning of morphine-induced alterations of immune status: evidence for opioid receptor involvement.

    Science.gov (United States)

    Coussons-Read, M E; Dykstra, L A; Lysle, D T

    1994-12-01

    Prior work in our laboratory has shown that morphine's immunomodulatory effects can become conditioned to environmental stimuli that predict drug administration. These immune alterations include conditioned changes in natural killer cell activity, interleukin-2 production, and mitogen-induced lymphocyte proliferation. The present study examined the involvement of opioid receptor activity in the establishment and expression of conditioned morphine-induced alterations of immune status. During the training phase of the experiment, Lewis rats received two conditioning sessions during which a subcutaneous injection of 15 mg/kg morphine sulfate was paired with exposure to a distinctive environment. On the test day, animals were re-exposed to the distinctive environment alone prior to sacrifice. Saline or naltrexone (0.3, 1.0, 3.0 or 10.0 mg/kg) was administered during either the training or the test session. Administration of naltrexone prior to training antagonized the development of all of the conditioned alterations of immune status including changes in the mitogenic responsiveness of splenocytes, suppression of natural killer cell activity, and interleukin-2 production by splenocytes. Naltrexone administration prior to testing also was effective in antagonizing the expression of a subset of morphine-induced conditioned alterations in immune status. Taken together, these studies indicate that opioid receptor activity is involved in the establishment of conditioned morphine-induced immune alterations, as well as in the expression of a subset of these conditioned alterations of immune status.

  13. HIV-induced immune activation - pathogenesis and clinical relevance

    Directory of Open Access Journals (Sweden)

    Stellbrink HJ

    2010-01-01

    Full Text Available Abstract This manuscript is communicated by the German AIDS Society (DAIG http://www.daignet.de. It summarizes a series of presentations and discussions during a workshop on immune activation due to HIV infection. The workshop was held on November 22nd 2008 in Hamburg, Germany. It was organized by the ICH Hamburg under the auspices of the German AIDS Society (DAIG e.V..

  14. PD-1 blockade induces responses by inhibiting adaptive immune resistance

    Science.gov (United States)

    Tumeh, Paul C.; Harview, Christina L.; Yearley, Jennifer H.; Shintaku, I. Peter; Taylor, Emma J. M.; Robert, Lidia; Chmielowski, Bartosz; Spasic, Marko; Henry, Gina; Ciobanu, Voicu; West, Alisha N.; Carmona, Manuel; Kivork, Christine; Seja, Elizabeth; Cherry, Grace; Gutierrez, Antonio; Grogan, Tristan R.; Mateus, Christine; Tomasic, Gorana; Glaspy, John A.; Emerson, Ryan O.; Robins, Harlan; Pierce, Robert H.; Elashoff, David A.; Robert, Caroline; Ribas, Antoni

    2014-01-01

    Therapies that target the programmed death-1 (PD-1) receptor have shown unprecedented rates of durable clinical responses in patients with various cancer types.1–5 One mechanism by which cancer tissues limit the host immune response is via upregulation of PD-1 ligand (PD-L1) and its ligation to PD-1 on antigen-specific CD8 T-cells (termed adaptive immune resistance).6,7 Here we show that pre-existing CD8 T-cells distinctly located at the invasive tumour margin are associated with expression of the PD-1/PD-L1 immune inhibitory axis and may predict response to therapy. We analyzed samples from 46 patients with metastatic melanoma obtained before and during anti-PD1 therapy (pembrolizumab) using quantitative immunohistochemistry, quantitative multiplex immunofluorescence, and next generation sequencing for T-cell receptors (TCR). In serially sampled tumours, responding patients showed proliferation of intratumoural CD8+ T-cells that directly correlated with radiographic reduction in tumour size. Pre-treatment samples obtained from responding patients showed higher numbers of CD8, PD1, and PD-L1 expressing cells at the invasive tumour margin and inside tumours, with close proximity between PD-1 and PD-L1, and a more clonal TCR repertoire. Using multivariate analysis, we established a predictive model based on CD8 expression at the invasive margin and validated the model in an independent cohort of 15 patients. Our findings indicate that tumour regression following therapeutic PD-1 blockade requires pre-existing CD8+ T cells that are negatively regulated by PD-1/PD-L1 mediated adaptive immune resistance. PMID:25428505

  15. Effects of exercise on vaccine-induced immune responses

    OpenAIRE

    Edwards, Kate M.; Booy, Robert

    2013-01-01

    The role of exercise in health is well known; here we discuss the specific role of exercise in vaccination responses. Chronic exercise or high levels of physical activity have been shown to be related to improved vaccination responses in older adults, illustrating improved immune function, and conferring potentially significant public health benefit. Acute exercise has recently been examined as a potential adjuvant to vaccination; its promise for clinical use warrants further investigation, g...

  16. Immunization with Dendritic Cells Pulsed ex vivo with Recombinant Chlamydial Protease-Like Activity Factor Induces Protective Immunity Against Genital Chlamydia muridarum Challenge

    Directory of Open Access Journals (Sweden)

    Bernard eArulanandam

    2011-12-01

    Full Text Available We have shown that immunization with soluble recombinant (r chlamydial protease-like activity factor (rCPAF and a T helper (Th 1 type adjuvant can induce significantly enhanced bacterial clearance and protection against Chlamydia–induced pathological sequelae in the genital tract. In this study, we investigated the use of bone marrow derived dendritic cells (BMDCs pulsed ex vivo with rCPAF+CpG in an adoptive subcutaneous immunization for the ability to induce protective immunity against genital chlamydial infection. We found that BMDCs pulsed with rCPAF+CpG efficiently up-regulated the expression of activation markers CD86, CD80, CD40 and major histocompatibility complex class II (MHC II, and secreted interleukin-12, but not IL-10 and IL-4. Mice adoptively immunized with rCPAF+CpG-pulsed BMDCs or UV-EB+CpG-pulsed BMDCs produced elevated levels of antigen-specific IFN- and enhanced IgG1 and IgG2a antibodies. Moreover, mice immunized with rCPAF+CpG-pulsed BMDCs or UV-EB+CpG-pulsed BMDCs exhibited significantly reduced genital Chlamydia shedding, accelerated resolution of infection, and reduced oviduct pathology when compared to infected mock-immunized animals. These results suggest that adoptive subcutaneous immunization with ex vivo rCPAF-pulsed BMDCs is an effective approach, comparable to that induced by UV-EB-BMDCs, for inducing robust anti-Chlamydia immunity.

  17. [Immune response induced by phosphofructokinase from E. histolytica in hamsters].

    Science.gov (United States)

    Jiménez Cardoso, J M; Jiménez, E; Kumate, J

    1991-01-01

    The enzymatic activity of inorganic pyrophosphate (PPi) dependent phosphofructokinase became manifest in the supernatant obtained by centrifugation in a homogenate of E. histolytica strain HMI-IMSS at 700,000 g. Partial purification of the enzyme was achieved by column chromatography with Ultrogel AcA-34. Ten protein elution spikes were obtained: five showed enzymatic activity. Elution spikes I and II attained the highest values of specific enzymatic activity 6.45 and 6.98 U/mg of protein, respectively. Next were spikes X and III with similar values 2.55 and 2.63 U/mg of protein, and spike IV presented the lowest value of 0.86 U/mg of protein. The five spikes were used to immunize hamsters which were challenged intrahepatically, four weeks later, with 3 x 10(5) trophozoites of E. histolytica. A control group of animals not immunized underwent intrahepatic challenge with the same number of amebae. The proteins with enzymatic activity contained in elution spikes I and II conferred immunologic protection in 100% of the animals, while elution spikes X and III were protective in 50 to 63%, and spike IV gave the lowest value of 37%. It can be assumed that there is an antienzyme antibody responsible for the absence of hepatic abscesses in the immunized hamsters.

  18. Vector transmission of leishmania abrogates vaccine-induced protective immunity.

    Directory of Open Access Journals (Sweden)

    Nathan C Peters

    2009-06-01

    Full Text Available Numerous experimental vaccines have been developed to protect against the cutaneous and visceral forms of leishmaniasis caused by infection with the obligate intracellular protozoan Leishmania, but a human vaccine still does not exist. Remarkably, the efficacy of anti-Leishmania vaccines has never been fully evaluated under experimental conditions following natural vector transmission by infected sand fly bite. The only immunization strategy known to protect humans against natural exposure is "leishmanization," in which viable L. major parasites are intentionally inoculated into a selected site in the skin. We employed mice with healed L. major infections to mimic leishmanization, and found tissue-seeking, cytokine-producing CD4+ T cells specific for Leishmania at the site of challenge by infected sand fly bite within 24 hours, and these mice were highly resistant to sand fly transmitted infection. In contrast, mice vaccinated with a killed vaccine comprised of autoclaved L. major antigen (ALM+CpG oligodeoxynucleotides that protected against needle inoculation of parasites, showed delayed expression of protective immunity and failed to protect against infected sand fly challenge. Two-photon intra-vital microscopy and flow cytometric analysis revealed that sand fly, but not needle challenge, resulted in the maintenance of a localized neutrophilic response at the inoculation site, and removal of neutrophils following vector transmission led to increased parasite-specific immune responses and promoted the efficacy of the killed vaccine. These observations identify the critical immunological factors influencing vaccine efficacy following natural transmission of Leishmania.

  19. Levamisole/Cocaine Induced Systemic Vasculitis and Immune Complex Glomerulonephritis

    Directory of Open Access Journals (Sweden)

    Lohit Garg

    2015-01-01

    Full Text Available Levamisole is an antihelminthic and immunomodulator medication that was banned by the USFDA in 1998. It has been increasingly used to adulterate cocaine due to its psychotropic effects and morphological properties. Adverse reactions including cutaneous vasculitis, thrombocytopenia, and agranulocytosis have been well described. Despite systemic vasculitis in this setting, renal involvement is uncommon. We report here a case of ANCA positive systemic vasculitis with biopsy proven immune complex mediated glomerulonephritis likely secondary to levamisole/cocaine. A 40-year-old Caucasian male with no past medical history presented with 3-week history of fatigue, skin rash, joint pains, painful oral lesions, oliguria, hematuria, worsening dyspnea on exertion, and progressive lower extremity edema. He had a history of regular tobacco and cocaine use. Lab testing revealed severe anemia, marked azotemia, deranged electrolytes, and 4.7 gm proteinuria. Rheumatologic testing revealed hypocomplementemia, borderline ANA, myeloperoxidase antibody, and positive atypical p-ANCA. Infectious and other autoimmune workup was negative. Kidney biopsy was consistent with immune mediated glomerulonephritis and showed mesangial proliferation and immune complex deposition consisting of IgG, IgM, and complement. High dose corticosteroids and discontinuing cocaine use resulted in marked improvement in rash, mucocutaneous lesions, and arthritis. There was no renal recovery and he remained hemodialysis dependent.

  20. Levamisole/Cocaine Induced Systemic Vasculitis and Immune Complex Glomerulonephritis.

    Science.gov (United States)

    Garg, Lohit; Gupta, Sagar; Swami, Abhishek; Zhang, Ping

    2015-01-01

    Levamisole is an antihelminthic and immunomodulator medication that was banned by the USFDA in 1998. It has been increasingly used to adulterate cocaine due to its psychotropic effects and morphological properties. Adverse reactions including cutaneous vasculitis, thrombocytopenia, and agranulocytosis have been well described. Despite systemic vasculitis in this setting, renal involvement is uncommon. We report here a case of ANCA positive systemic vasculitis with biopsy proven immune complex mediated glomerulonephritis likely secondary to levamisole/cocaine. A 40-year-old Caucasian male with no past medical history presented with 3-week history of fatigue, skin rash, joint pains, painful oral lesions, oliguria, hematuria, worsening dyspnea on exertion, and progressive lower extremity edema. He had a history of regular tobacco and cocaine use. Lab testing revealed severe anemia, marked azotemia, deranged electrolytes, and 4.7 gm proteinuria. Rheumatologic testing revealed hypocomplementemia, borderline ANA, myeloperoxidase antibody, and positive atypical p-ANCA. Infectious and other autoimmune workup was negative. Kidney biopsy was consistent with immune mediated glomerulonephritis and showed mesangial proliferation and immune complex deposition consisting of IgG, IgM, and complement. High dose corticosteroids and discontinuing cocaine use resulted in marked improvement in rash, mucocutaneous lesions, and arthritis. There was no renal recovery and he remained hemodialysis dependent.

  1. An alphavirus vector-based tetravalent dengue vaccine induces a rapid and protective immune response in macaques that differs qualitatively from immunity induced by live virus infection.

    Science.gov (United States)

    White, Laura J; Sariol, Carlos A; Mattocks, Melissa D; Wahala M P B, Wahala; Yingsiwaphat, Vorraphun; Collier, Martha L; Whitley, Jill; Mikkelsen, Rochelle; Rodriguez, Idia V; Martinez, Melween I; de Silva, Aravinda; Johnston, Robert E

    2013-03-01

    Despite many years of research, a dengue vaccine is not available, and the more advanced live attenuated vaccine candidate in clinical trials requires multiple immunizations with long interdose periods and provides low protective efficacy. Here, we report important contributions to the development of a second-generation dengue vaccine. First, we demonstrate that a nonpropagating vaccine vector based on Venezuelan equine encephalitis virus replicon particles (VRP) expressing two configurations of dengue virus E antigen (subviral particles [prME] and soluble E dimers [E85]) successfully immunized and protected macaques against dengue virus, while antivector antibodies did not interfere with a booster immunization. Second, compared to prME-VRP, E85-VRP induced neutralizing antibodies faster, to higher titers, and with improved protective efficacy. Third, this study is the first to map antigenic domains and specificities targeted by vaccination versus natural infection, revealing that, unlike prME-VRP and live virus, E85-VRP induced only serotype-specific antibodies, which predominantly targeted EDIII, suggesting a protective mechanism different from that induced by live virus and possibly live attenuated vaccines. Fourth, a tetravalent E85-VRP dengue vaccine induced a simultaneous and protective response to all 4 serotypes after 2 doses given 6 weeks apart. Balanced responses and protection in macaques provided further support for exploring the immunogenicity and safety of this vaccine candidate in humans.

  2. Different immunization routes induce protection against Aeromonas salmonicida through different immune mechanisms in rainbow trout

    DEFF Research Database (Denmark)

    Villumsen, Kasper Rømer; Raida, Martin Kristian

    in fish immunology and vaccinology, resulting in the development of both oral, immersion and injectable vaccine strategies over time. Applying mineral oil adjuvants, injectable vaccines inducing high levels of protection in salmon (Salmo salar) rose to prominence in the 1990’s. In general injectable......, adjuvanted vaccines have been shown to induce long-lasting increases in specific antibody levels. In general the majority of the published work concerning vaccination against A. salmonicida has been conducted on salmon. Using injectable oil-adjuvanted vaccines, we have previously shown that the induced level...

  3. ANTI-TUMOR ACTIVITY AND IMMUNE RESPONSES INDUCED BY HUMAN CANCER-ASSOCIATED MUCIN CORE PEPTIDE

    Institute of Scientific and Technical Information of China (English)

    Ma Yunguo; Yuan Mei; Fei Lihua; Li Li

    1998-01-01

    Objective: To investigate the immune responses induced by apomucin which is a mixture of mucin core peptide, in mice for elucidating the role of mucin core peptide in the modulation of cancers. Methods:Apomucin was isolated from human pancreatic cancer cell line SW1990. The mice were immunized with this apomucin (10μg/time×6) plus DETOX. Results: When immunized, all mice developed delayed-type hypersensitivity (DTH) after challenged with apomucin or synthetic peptide MUC-2 or MUC-3, while the mice immunized with apomucin alone did not develop DTH.No antibodies were detected by ELISA after immunization. When the spleen cells of vaccinated mice were cocultured with this apomucin (10-50μg/ml) and rhIL-2(50U/ml) in vitro, the proliferated lymphocytes showed cytotoxicity against human cancer cells, including colon cancer, gastric cancer, pancreatic cancer and leukemia as measured by Cr-51 release assay. Antibodies against MUC-2 and MUC-3 could block the cytotoxicity. Conclusion: It was identified that a vaccine combined of apomucin and immune adjuvant DETOX can induce cellular immune response and anti-tumor cytotoxicity in mice.

  4. [Research advances of anti-tumor immune response induced by pulse electric field ablation].

    Science.gov (United States)

    Cui, Guang-ying; Diao, Hong-yan

    2015-11-01

    As a novel tumor therapy, pulse electric field has shown a clinical perspective. This paper reviews the characteristics of tumor ablation by microsecond pulse and nanosecond pulse electric field, and the research advances of anti-tumor immune response induced by pulse electric field ablation. Recent researches indicate that the pulse electric field not only leads to a complete ablation of local tumor, but also stimulates a protective immune response, thereby inhibiting tumor recurrence and metastasis. These unique advantages will show an extensive clinical application in the future. However, the mechanism of anti-tumor immune response and the development of related tumor vaccine need further studies.

  5. The skin microbiome: Is it affected by UV-induced immune suppression?

    Directory of Open Access Journals (Sweden)

    Vijaykumar Patra

    2016-08-01

    Full Text Available Human skin apart from functioning as a physical barricade to stop the entry of pathogens, also hosts innumerable commensal organisms. The skin cells and the immune system constantly interact with microbes, to maintain cutaneous homeostasis, despite the challenges offered by various environmental factors. A major environmental factor affecting the skin is ultraviolet radiation UV-R from sunlight. UV-R is well known to modulate the immune system, which can be both beneficial and deleterious. By targeting the cells and molecules within skin, UV-R can trigger the production and release of antimicrobial peptides (AMPs, affect the innate immune system and ultimately suppress the adaptive cellular immune response. This can contribute to skin carcinogenesis and the promotion of infectious agents such as herpes simplex virus and possibly others. On the other hand, a UV-established immunosuppressive environment may protect against the induction of immunologically mediated skin diseases including some of photodermatoses such as polymorphic light eruption. In this article, we share our perspective about the possibility that UV-induced immune suppression may alter the landscape of the skin's microbiome and its components. Alternatively, or in concert with this, direct UV-induced DNA and membrane damage to the microbiome may result in pathogen associated molecular patterns (PAMPs that interfere with UV-induced immune suppression.

  6. Sperm storage induces an immunity cost in ants

    DEFF Research Database (Denmark)

    Baer, Boris; Armitage, Sophie A O; Boomsma, Jacobus J

    2006-01-01

    Ant queens are among the most long-lived insects known. They mate early in adult life and maintain millions of viable sperm in their sperm storage organ until they die many years later. Because they never re-mate, the reproductive success of queens is ultimately sperm-limited, but it is not known......-term reproductive success. The immune response was lower when more males contributed to the stored sperm, indicating that there might be an additional cost of mating or storing genetically different ejaculates....

  7. Chitosan-induced antiviral activity and innate immunity in plants.

    Science.gov (United States)

    Iriti, Marcello; Varoni, Elena Maria

    2015-02-01

    Immunity represents a trait common to all living organisms, and animals and plants share some similarities. Therefore, in susceptible host plants, complex defence machinery may be stimulated by elicitors. Among these, chitosan deserves particular attention because of its proved efficacy. This survey deals with the antiviral activity of chitosan, focusing on its perception by the plant cell and mechanism of action. Emphasis has been paid to benefits and limitations of this strategy in crop protection, as well as to the potential of chitosan as a promising agent in virus disease control.

  8. Does Infection-Induced Immune Activation Contribute to Dementia?

    Science.gov (United States)

    Barichello, Tatiana; Generoso, Jaqueline S; Goularte, Jessica A; Collodel, Allan; Pitcher, Meagan R; Simões, Lutiana R; Quevedo, João; Dal-Pizzol, Felipe

    2015-09-01

    The central nervous system (CNS) is protected by a complex blood-brain barrier system; however, a broad diversity of virus, bacteria, fungi, and protozoa can gain access and cause illness. As pathogens replicate, they release molecules that can be recognized by innate immune cells. These molecules are pathogen-associated molecular patterns (PAMP) and they are identified by pattern-recognition receptors (PRR) expressed on antigen-presenting cells. Examples of PRR include toll-like receptors (TLR), receptors for advanced glycation endproducts (RAGE), nucleotide binding oligomerisation domain (NOD)-like receptors (NLR), c-type lectin receptors (CLR), RIG-I-like receptors (RLR), and intra-cytosolic DNA sensors. The reciprocal action between PAMP and PRR triggers the release of inflammatory mediators that regulate the elimination of invasive pathogens. Damage-associated molecular patterns (DAMP) are endogenous constituents released from damaged cells that also have the ability to activate the innate immune response. An increase of RAGE expression levels on neurons, astrocytes, microglia, and endothelial cells could be responsible for the accumulation of αβ-amyloid in dementia and related to the chronic inflammatory state that is found in neurodegenerative disorders.

  9. Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity

    Science.gov (United States)

    den Brok, M H M G M; Sutmuller, R P M; Nierkens, S; Bennink, E J; Frielink, C; Toonen, L W J; Boerman, O C; Figdor, C G; Ruers, T J M; Adema, G J

    2006-01-01

    Dendritic cells (DC) are professional antigen-presenting cells that play a pivotal role in the induction of immunity. Ex vivo-generated, tumour antigen-loaded mature DC are currently exploited as cancer vaccines in clinical studies. However, antigen loading and maturation of DC directly in vivo would greatly facilitate the application of DC-based vaccines. We formerly showed in murine models that radiofrequency-mediated tumour destruction can provide an antigen source for the in vivo induction of anti-tumour immunity, and we explored the role of DC herein. In this paper we evaluate radiofrequency and cryo ablation for their ability to provide an antigen source for DC and compare this with an ex vivo-loaded DC vaccine. The data obtained with model antigens demonstrate that upon tumour destruction by radiofrequency ablation, up to 7% of the total draining lymph node (LN) DC contained antigen, whereas only few DC from the conventional vaccine reached the LN. Interestingly, following cryo ablation the amount of antigen-loaded DC is almost doubled. Analysis of surface markers revealed that both destruction methods were able to induce DC maturation. Finally, we show that in situ tumour ablation can be efficiently combined with immune modulation by anti-CTLA-4 antibodies or regulatory T-cell depletion. These combination treatments protected mice from the outgrowth of tumour challenges, and led to in vivo enhancement of tumour-specific T-cell numbers, which produced more IFN-γ upon activation. Therefore, in situ tumour destruction in combination with immune modulation creates a unique, ‘in situ DC-vaccine' that is readily applicable in the clinic without prior knowledge of tumour antigens. PMID:16953240

  10. Acellular pertussis booster in adolescents induces Th1 and memory CD8+ T cell immune response.

    Directory of Open Access Journals (Sweden)

    Nikolaus Rieber

    Full Text Available In a number of countries, whole cell pertussis vaccines (wcP were replaced by acellular vaccines (aP due to an improved reactogenicity profile. Pertussis immunization leads to specific antibody production with the help of CD4(+ T cells. In earlier studies in infants and young children, wcP vaccines selectively induced a Th1 dominated immune response, whereas aP vaccines led to a Th2 biased response. To obtain data on Th1 or Th2 dominance of the immune response in adolescents receiving an aP booster immunization after a wcP or aP primary immunization, we analyzed the concentration of Th1 (IL-2, TNF-α, INF-γ and Th2 (IL-4, IL-5, IL-10 cytokines in supernatants of lymphocyte cultures specifically stimulated with pertussis antigens. We also investigated the presence of cytotoxic T cell responses against the facultative intracellular bacterium Bordetella pertussis by quantifying pertussis-specific CD8(+ T cell activation following the aP booster immunization. Here we show that the adolescent aP booster vaccination predominantly leads to a Th1 immune response based on IFNgamma secretion upon stimulation with pertussis antigen, irrespective of a prior whole cell or acellular primary vaccination. The vaccination also induces an increase in peripheral CD8(+CD69(+ activated pertussis-specific memory T cells four weeks after vaccination. The Th1 bias of this immune response could play a role for the decreased local reactogenicity of this adolescent aP booster immunization when compared to the preceding childhood acellular pertussis booster. Pertussis-specific CD8(+ memory T cells may contribute to protection against clinical pertussis.

  11. Polycation-decorated PLA microspheres induce robust immune responses via commonly used parenteral administration routes.

    Science.gov (United States)

    Chen, Xiaoming; Wang, Lianyan; Liu, Qi; Jia, Jilei; Liu, Yuan; Zhang, Weifeng; Ma, Guanghui; Su, Zhiguo

    2014-12-01

    Recombinant viral subunit-based vaccines have gained increasing attention due to their enhanced safety over the classic live-attenuated or inactivated vaccines. The low immunogenicity of the subunit antigen alone, however, requires the addition of an adjuvant to induce immunity. Particulate-based delivery systems have great potential for developing new vaccine adjuvants, compared to traditional aluminum-based saline adjuvants. The physicochemical properties of particulate vaccines have been extensively investigated; however, few studies have focused on how the administration route of various adjuvant-antigen combinations impacts the efficacy of the immune response. Here, for the first time, the viral Hepatitis B surface antigen (HBsAg) was combined with aluminum-based or cationic-microsphere (MP) based adjuvants to investigate the characteristics of immune responses elicited after immunization via the subcutaneous, intramuscular, or intraperitoneal routes respectively. In vitro, the MP-based vaccine significantly increased dendritic cell (DC) activation with up-regulated CD40 and CD80 expression and IL-12 production compared to alum-based vaccine. After immunization, both MP and alum-based vaccines produced increased IgG titers in mice. The administration route of these vaccines did influenced immune responses. The MP-based vaccine delivered via the intramuscular route yielded the highest levels of the IgG2a isotype. The alum-based vaccine, delivered via the same route, produced an IgG1-dominated humoral immune response. Moreover, subcutaneous and intramuscular immunizations with MP-based vaccine augmented Granzyme B, Th1-type cytokines (IL-2, IL-12, and IFN-γ), and Th2 cytokine IL-4 secretions. These results demonstrate that MP-based vaccines have the capacity to induce higher cellular and humoral immune response especially via an intramuscular administration route than an alum-based vaccine.

  12. Inducible defenses stay up late: temporal patterns of immune gene expression in Tenebrio molitor.

    Science.gov (United States)

    Johnston, Paul R; Makarova, Olga; Rolff, Jens

    2013-12-06

    The course of microbial infection in insects is shaped by a two-stage process of immune defense. Constitutive defenses, such as engulfment and melanization, act immediately and are followed by inducible defenses, archetypically the production of antimicrobial peptides, which eliminate or suppress the remaining microbes. By applying RNAseq across a 7-day time course, we sought to characterize the long-lasting immune response to bacterial challenge in the mealworm beetle Tenebrio molitor, a model for the biochemistry of insect immunity and persistent bacterial infection. By annotating a hybrid de novo assembly of RNAseq data, we were able to identify putative orthologs for the majority of components of the conserved insect immune system. Compared with Tribolium castaneum, the most closely related species with a reference genome sequence and a manually curated immune system annotation, the T. molitor immune gene count was lower, with lineage-specific expansions of genes encoding serine proteases and their countervailing inhibitors accounting for the majority of the deficit. Quantitative mapping of RNAseq reads to the reference assembly showed that expression of genes with predicted functions in cellular immunity, wound healing, melanization, and the production of reactive oxygen species was transiently induced immediately after immune challenge. In contrast, expression of genes encoding antimicrobial peptides or components of the Toll signaling pathway and iron sequestration response remained elevated for at least 7 days. Numerous genes involved in metabolism and nutrient storage were repressed, indicating a possible cost of immune induction. Strikingly, the expression of almost all antibacterial peptides followed the same pattern of long-lasting induction, regardless of their spectra of activity, signaling possible interactive roles in vivo.

  13. Protective immune response induced by co-immunization with the Trichinella spiralis recombinant Ts87 protein and a Ts87 DNA vaccine.

    Science.gov (United States)

    Yang, Yaping; Yang, Xiaodi; Gu, Yuan; Wang, Yunyun; Zhao, Xi; Zhu, Xinping

    2013-05-20

    Ts87 is an immunodominant antigen that induces protective immunity against Trichinella spiralis larval challenge in mice. To determine if a combination of recombinant Ts87 protein and its coding DNA induces a stronger immune response in female C57BL/6 mice were immunized with 100 μg of recombinant Ts87 protein plus its coding DNA cloned in vector pVAX1, or the same amount of recombinant protein or DNA only. Mouse subclass IgG responses showed that both co-immunized and single-immunized mice produced a balanced IgG2a/IgG1 (Th1/Th2) response. T-cell proliferation in co-immunized animals was significantly higher than in single-immunized mice. Cytokine profiling in the co-immunization group showed a significant increase in the levels of IL-2, IL-4, IL-6 and IFN-γ in the splenocytes of mice upon stimulation with the recombinant Ts87 protein; however, the expression of IL-17 was down-regulated. Challenge results showed that mice immunized with the recombinant Ts87 protein and its coding DNA produced reduced the muscle larval burden to a greater extent (43.8%) than the groups immunized with only the protein (39.7%) or the DNA (9.7%). A better Th1/Th2 immune response and consequent protection induced by co-immunization with the recombinant Ts87 protein and its coding DNA may result from an adjuvant effect of DNA and a specific persistent expression of Ts87.

  14. Molecular mechanism of immune response induced by foreign plasmid DNA after oral administration in mice

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To study immune response induced by foreign plasmid DNA after oral administration in mice.METHODS: Mice were orally administered with 200 μg of plasmid pcDNA3 once and spleen was isolated 4 h and 18 h after administration. Total RNA was extracted from spleen and gene expression profile of BALB/c mice spleen was analyzed by using Affymetrix oligonucleotide GeneChip. Functional cluster analysis was conducted by GenMAPP software.RESULTS: At 4 h and 18 h after oral plasmid pcDNA3 administration, a number of immune-related genes,including cytokine and cytokine receptors, chemokines and chemokine receptor, complement molecule,proteasome, histocompatibility molecule, lymphocyte antigen complex and apoptotic genes, were up-regulated. Moreover, MAPPFinder results also showed that numerous immune response processes were up-regulated. In contrast, the immunoglobulin genes were down-regulated.CONCLUSION: Foreign plasmid DNA can modulate the genes expression related to immune system via the gastrointestinal tract, and further analysis of the related immune process may help understand the molecular mechanisms of immune response induced by foreign plasmid via the gastrointestinal tract.

  15. Waning of vaccine-induced immunity to measles in kidney transplanted children.

    Science.gov (United States)

    Rocca, Salvatore; Santilli, Veronica; Cotugno, Nicola; Concato, Carlo; Manno, Emma Concetta; Nocentini, Giulia; Macchiarulo, Giulia; Cancrini, Caterina; Finocchi, Andrea; Guzzo, Isabella; Dello Strologo, Luca; Palma, Paolo

    2016-09-01

    Vaccine-preventable diseases are a significant cause of morbidity and mortality in solid organ transplant recipients who undergo immunosuppression after transplantation. Data on immune responses and long-term maintenance after vaccinations in such population are still limited.We cross-sectionally evaluated the maintenance of immune response to measles vaccine in kidney transplanted children on immunosuppressive therapy. Measles-specific enzyme-linked immunosorbent assay and B-cell enzyme-linked immunosorbent spot were performed in 74 kidney transplant patients (Tps) and in 23 healthy controls (HCs) previously vaccinated and tested for humoral protection against measles. The quality of measles antibody response was measured by avidity test. B-cell phenotype, investigated via flow cytometry, was further correlated to the ability of Tps to maintain protective humoral responses to measles over time.We observed the loss of vaccine-induced immunity against measles in 19% of Tps. Nonseroprotected children showed signs of impaired B-cell distribution as well as immune senescence and lower antibody avidity. We further reported as time elapsed between vaccination and transplantation, as well as the vaccine administration during dialysis are clinical factors affecting the maintenance of the immune memory response against measles.Tps present both quantitative and qualitative alterations in the maintenance of protective immunity to measles vaccine. Prospective studies are needed to optimize the vaccination schedules in kidney transplant recipients in order to increase the immunization coverage over time in this population.

  16. Virus-associated activation of innate immunity induces rapid disruption of Peyer's patches in mice.

    Science.gov (United States)

    Heidegger, Simon; Anz, David; Stephan, Nicolas; Bohn, Bernadette; Herbst, Tina; Fendler, Wolfgang Peter; Suhartha, Nina; Sandholzer, Nadja; Kobold, Sebastian; Hotz, Christian; Eisenächer, Katharina; Radtke-Schuller, Susanne; Endres, Stefan; Bourquin, Carole

    2013-10-10

    Early in the course of infection, detection of pathogen-associated molecular patterns by innate immune receptors can shape the subsequent adaptive immune response. Here we investigate the influence of virus-associated innate immune activation on lymphocyte distribution in secondary lymphoid organs. We show for the first time that virus infection of mice induces rapid disruption of the Peyer's patches but not of other secondary lymphoid organs. The observed effect was not dependent on an active infectious process, but due to innate immune activation and could be mimicked by virus-associated molecular patterns such as the synthetic double-stranded RNA poly(I:C). Profound histomorphologic changes in Peyer's patches were associated with depletion of organ cellularity, most prominent among the B-cell subset. We demonstrate that the disruption is entirely dependent on type I interferon (IFN). At the cellular level, we show that virus-associated immune activation by IFN-α blocks B-cell trafficking to the Peyer's patches by downregulating expression of the homing molecule α4β7-integrin. In summary, our data identify a mechanism that results in type I IFN-dependent rapid but reversible disruption of intestinal lymphoid organs during systemic viral immune activation. We propose that such rerouted lymphocyte trafficking may impact the development of B-cell immunity to systemic viral pathogens.

  17. Mouse and pig models for studies of natural and vaccine-induced immunity to Bordetella pertussis.

    Science.gov (United States)

    Mills, Kingston H G; Gerdts, Volker

    2014-04-01

    The increasing incidence of whooping cough in many developed countries has been linked with waning immunity induced after immunization with acellular pertussis (aP) vaccines. The rational design of an improved aP vaccine requires a full understanding of the mechanism of protective immunity and preclinical studies in animal models. Infection of mice and pigs with Bordetella pertussis has many features of the infection seen in humans and has already provided valuable information on the roles of innate and adaptive immune responses in protection. Recent findings in these models have already indicated that it may be possible to develop an improved aP vaccine based on a formulation that includes a Toll-like receptor agonist as an adjuvant.

  18. Prevention effects of Schisandra polysaccharide on radiation-induced immune system dysfunction.

    Science.gov (United States)

    Zhao, Lian-Mei; Jia, Yun-Long; Ma, Ming; Duan, Yu-Qing; Liu, Li-Hua

    2015-05-01

    In this study, we investigate the efficacy of SP (Schisandra polysaccharide) in prevention of radiation-induced immune dysfunction and discussed the underlying mechanisms with a Bal/bc mouse model. The data demonstrated that SP could reverse the decreases in the number of white blood cells and lymphocytes in peripheral blood. In addition, the immunoglobulin G (IgG) and complement C3 in blood serum were all decreased after radiation and SP could restore this radiation disorder. Furthermore, SP could reverse the deregulation of CD3(+)CD4(+) and CD3(+)CD8(+) T cell subsets in peripheral blood and thymus of mice after radiotherapy. We also performed terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) and Immunohistochemistry (IHC) to investigate the apoptosis and underlying mechanisms of SP in thymus. Data showed that radiation-induced apoptosis of thymocytes could be reversed by SP through inducing upregulation of Bcl-2 expression and downregulation of Fas and Bax levels. Furthermore, SP has no any side-effects on immunity of normal mice. In conclusion, our results indicated that SP could effectively prevent immune injury during radiotherapy by protecting the immune system. This valuable information should be of assistance in choosing a rational design for therapeutic interventions of prevention immune system damage in the radiation treatment.

  19. Intradermal delivery of recombinant vaccinia virus vector DIs induces gut-mucosal immunity.

    Science.gov (United States)

    Yoshino, N; Kanekiyo, M; Hagiwara, Y; Okamura, T; Someya, K; Matsuo, K; Ami, Y; Sato, S; Yamamoto, N; Honda, M

    2010-08-01

    Antigen-specific mucosal immunity is generally induced by the stimulation of inductive mucosal sites. In this study, we found that the replication-deficient vaccinia virus vector, DIs, generates antigen-specific mucosal immunity and systemic responses. Following intradermal injection of recombinant DIs expressing simian immunodeficiency virus gag (rDIsSIVgag), we observed increased levels of SIV p27-specific IgA and IgG antibodies in faecal extracts and plasma samples, and antibody-forming cells in the intestinal mucosa and spleen of C57BL/6 mice. Antibodies against p27 were not detected in nasal washes, saliva, and vaginal washes. The enhanced mucosal and systemic immunity persisted for 1 year of observation. Induction of Gag-specific IFN-gamma spot-forming CD8(+) T cells in the spleen, small intestinal intraepithelial lymphocytes, and submandibular lymph nodes was observed in the intradermally injected mice. Heat-inactivated rDIsSIVgag rarely induced antigen-specific humoral and T-helper immunity. Moreover, rDIsSIVgag was detected in MHC class II IA antigen-positive (IA(+)) cells at the injection site. Consequently, intradermal delivery of rDIs effectively induces antigen-specific humoral and cellular immunity in gut-mucosal tissues of mice. Our data suggest that intradermal injection of an rDIs vaccine may be useful against mucosally transmitted pathogens.

  20. Perillyl alcohol suppresses antigen-induced immune responses in the lung

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, Mitsuru; Sasaki, Oh; Okunishi, Katsuhide; Nakagome, Kazuyuki; Harada, Hiroaki; Kawahata, Kimito; Tanaka, Ryoichi; Yamamoto, Kazuhiko [Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo (Japan); Dohi, Makoto, E-mail: mdohi-tky@umin.ac.jp [Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo (Japan); Institute of Respiratory Immunology, Shibuya Clinic for Respiratory Diseases and Allergology, Tokyo (Japan)

    2014-01-03

    Highlights: •Perillyl alcohol (POH) is an isoprenoid which inhibits the mevalonate pathway. •We examined whether POH suppresses immune responses with a mouse model of asthma. •POH treatment during sensitization suppressed Ag-induced priming of CD4{sup +} T cells. •POH suppressed airway eosinophila and cytokine production in thoracic lymph nodes. -- Abstract: Perillyl alcohol (POH) is an isoprenoid which inhibits farnesyl transferase and geranylgeranyl transferase, key enzymes that induce conformational and functional changes in small G proteins to conduct signal production for cell proliferation. Thus, it has been tried for the treatment of cancers. However, although it affects the proliferation of immunocytes, its influence on immune responses has been examined in only a few studies. Notably, its effect on antigen-induced immune responses has not been studied. In this study, we examined whether POH suppresses Ag-induced immune responses with a mouse model of allergic airway inflammation. POH treatment of sensitized mice suppressed proliferation and cytokine production in Ag-stimulated spleen cells or CD4{sup +} T cells. Further, sensitized mice received aerosolized OVA to induce allergic airway inflammation, and some mice received POH treatment. POH significantly suppressed indicators of allergic airway inflammation such as airway eosinophilia. Cytokine production in thoracic lymph nodes was also significantly suppressed. These results demonstrate that POH suppresses antigen-induced immune responses in the lung. Considering that it exists naturally, POH could be a novel preventive or therapeutic option for immunologic lung disorders such as asthma with minimal side effects.

  1. Stress-induced changes in immune response of dairy ewes

    Directory of Open Access Journals (Sweden)

    Agostino Sevi

    2010-01-01

    Full Text Available two groups of 16 Comisana ewes were selected from a group of 30, and divided, according to their cortisol secretion after isolation in a novel environment, into HC ewes, having a cortisol secretion >90 ng/mL, and LC ewes having a cortisol secretion <80 ng/mL. Blood samples were collected immediately before and immediately after isolation, and 60, 120, 300min and then 24h and 48h after isolation, to evaluate the percentage of lymphocyte T-helper (CD4+ and lymphocyte T-cytotoxic (CD8+ by flow cytometry analysis, and IL-1β and IL-6 concentrations by ELISA. The day before the isolation test, the ewes were milked in the afternoon at 1500h (-19h from isolation, and then milked for the three days starting from the day of the isolation test (at 0, 5, 24, 29, 48 and 53h from isolation to evaluate milk cortisol secretion, and IL-1β and IL-6 concentrations. Results suggest that the levels of cortisol secretions can influence the immune competence of dairy ewes and cytokines concentrations. Milk cytokine concentrations, and not milk cortisol concentrations, can be considered indicators of the magnitude of the hypothalamic-pituitary-adrenal axis activation.

  2. GMCSF-armed vaccinia virus induces an antitumor immune response.

    Science.gov (United States)

    Parviainen, Suvi; Ahonen, Marko; Diaconu, Iulia; Kipar, Anja; Siurala, Mikko; Vähä-Koskela, Markus; Kanerva, Anna; Cerullo, Vincenzo; Hemminki, Akseli

    2015-03-01

    Oncolytic Western Reserve strain vaccinia virus selective for epidermal growth factor receptor pathway mutations and tumor-associated hypermetabolism was armed with human granulocyte-macrophage colony-stimulating factor (GMCSF) and a tdTomato fluorophore. As the assessment of immunological responses to human transgenes is challenging in the most commonly used animal models, we used immunocompetent Syrian golden hamsters, known to be sensitive to human GMCSF and semipermissive to vaccinia virus. Efficacy was initially tested in vitro on various human and hamster cell lines and oncolytic potency of transgene-carrying viruses was similar to unarmed virus. The hGMCSF-encoding virus was able to completely eradicate subcutaneous pancreatic tumors in hamsters, and to fully protect the animals from subsequent rechallenge with the same tumor. Induction of specific antitumor immunity was also shown by ex vivo co-culture experiments with hamster splenocytes. In addition, histological examination revealed increased infiltration of neutrophils and macrophages in GMCSF-virus-treated tumors. These findings help clarify the mechanism of action of GMCSF-armed vaccinia viruses undergoing clinical trials.

  3. Nitrofurantoin-induced immune-mediated lung and liver disease

    Directory of Open Access Journals (Sweden)

    Milić Rade

    2012-01-01

    Full Text Available Introduction. Nitrofurantoin, a furan derivative, introduced in the fifties has widely been used as an effective agent for the treatment and prevention of urinary tract infections (UTI. Spectrum of adverse reactions to nitrofurantoin is wide, ranging from eosinophilic interstitial lung disease, acute hepatitis and granulomatous reaction, to the chronic active hepatitis, a very rare adverse effect, that can lead to cirrhosis and death. Case report. We presented a 55-year-old female patient with eosinophilic interstitial lung disease, severe chronic active hepatitis and several other immune- mediated multisystemic manifestations of prolonged exposure to nitrofurantoin because of the recurrent UTI caused by Escherichia coli. We estimated typical radiographic and laboratory disturbances, also restrictive ventilatory changes, severe reduction of carbon monoxide diffusion capacity and abnormal liver function tests. Lymphocytic-eosinophylic alveolitis was consistent with druginduced reaction. Hepatitis was confirmed by liver biopsy. After withdrawal of nitrofurantoin and application of high dose of glicocorticosteroids, prompt clinical and laboratory recovery was achieved. Conclusion. Adverse drug reactions should be considered in patients with concomitant lung and liver disease. The mainstay of treatment is drug withdrawal and the use of immunosuppressive drugs in severe cases. Consideration should be given to monitor lung and liver function tests during long term nitrofurantoin therapy.

  4. Neisseria gonorrhoeae Induces a Tolerogenic Phenotype in Macrophages to Modulate Host Immunity

    Directory of Open Access Journals (Sweden)

    Alejandro Escobar

    2013-01-01

    Full Text Available Neisseria gonorrhoeae is the etiological agent of gonorrhoea, which is a sexually transmitted disease widespread throughout the world. N. gonorrhoeae does not improve immune response in patients with reinfection, suggesting that gonococcus displays several mechanisms to evade immune response and survive in the host. N. gonorrhoeae is able to suppress the protective immune response at different levels, such as B and T lymphocytes and dendritic cells. In this study, we determined whether N. gonorrhoeae directly conditions the phenotype of RAW 264.7 murine macrophage cell line and its response. We established that gonococcus was effectively phagocytosed by the RAW 264.7 cells and upregulates production of immunoregulatory cytokines (IL-10 and TGF-β1 but not the production of proinflammatory cytokine TNF-α, indicating that gonococcus induces a shift towards anti-inflammatory cytokine production. Moreover, N. gonorrhoeae did not induce significant upregulation of costimulatory CD86 and MHC class II molecules. We also showed that N. gonorrhoeae infected macrophage cell line fails to elicit proliferative CD4+ response. This implies that macrophage that can phagocytose gonococcus do not display proper antigen-presenting functions. These results indicate that N. gonorrhoeae induces a tolerogenic phenotype in antigen-presenting cells, which seems to be one of the mechanisms to induce evasion of immune response.

  5. Mucosal and systemic immune responses induced by a single time vaccination strategy in mice.

    Science.gov (United States)

    González Aznar, Elizabeth; Romeu, Belkis; Lastre, Miriam; Zayas, Caridad; Cuello, Maribel; Cabrera, Osmir; Valdez, Yolanda; Fariñas, Mildrey; Pérez, Oliver

    2015-08-01

    Vaccination is considered by the World Health Organization as the most cost-effective strategy for controlling infectious diseases. In spite of great successes with vaccines, many infectious diseases are still leading killers, because of the inadequate coverage of many vaccines. Several factors have been responsible: number of doses, high vaccine reactogenicity, vaccine costs, vaccination policy, among others. Contradictorily, few vaccines are of single dose and even less of mucosal administration. However, more common infections occur via mucosa, where secretory immunoglobulin A plays an essential role. As an alternative, we proposed a novel protocol of vaccination called Single Time Vaccination Strategy (SinTimVaS) by immunizing 2 priming doses at the same time: one by mucosal route and the other by parenteral route. Here, the mucosal and systemic responses induced by Finlay adjuvants (AF Proteoliposome 1 and AF Cochleate 1) implementing SinTimVaS in BALB/c mice were evaluated. One intranasal dose of AF Cochleate 1 and an intramuscular dose of AF Proteoliposome 1 adsorbed onto aluminum hydroxide, with bovine serum albumin or tetanus toxoid as model antigens, administrated at the same time, induced potent specific mucosal and systemic immune responses. Also, we demonstrated that SinTimVaS using other mucosal routes like oral and sublingual, in combination with the subcutaneous route elicits immune responses. SinTimVaS, as a new immunization strategy, could increase vaccination coverage and reduce time-cost vaccines campaigns, adding the benefits of immune response in mucosa.

  6. Lipopolysaccharide induces immune activation and SIV replication in rhesus macaques of Chinese origin.

    Directory of Open Access Journals (Sweden)

    Rong Bao

    Full Text Available BACKGROUND: Chronic immune activation is a hallmark of progressive HIV infection and a key determinant of immunodeficiency in HIV-infected individuals. Bacterial lipopolysaccharide (LPS in the circulation has been implicated as a key factor in HIV infection-related systemic immune activation. We thus investigate the impact of LPS on systemic immune activation in simian immunodeficiency virus (SIV-infected rhesus macaques of Chinese origin. METHODS: The animals were inoculated intravenously with SIVmac239. The levels of plasma viral load and host inflammatory cytokines in PBMC were measured by real-time RT-PCR. CD4/CD8 ratio and systemic immune activation markers were examined by flow cytometric analysis of PBMCs. White blood cell and neutrophil counts and C Reactive Protein levels were determined using biochemistry analyzer. The plasma levels of LPS were determined by Tachypleus Amebocyte Lysate (TAL test. RESULTS: The animals inoculated with SIVmac239 became infected as evidenced by the increased plasma levels of SIV RNA and decreased CD4/CD8 ratio. LPS administration of SIV-infected animals induced a transient increase of plasma SIV RNA and immune activation, which was indicated by the elevated expression of the inflammatory cytokines and CD4+HLA-DR+ T cells in PBMCs. CONCLUSIONS: These data support the concept that LPS is a driving factor in systemic immune activation of HIV disease.

  7. Repeated stress-induced stimulation of catecholamine response is not followed by altered immune cell redistribution.

    Science.gov (United States)

    Imrich, Richard; Tibenska, Elena; Koska, Juraj; Ksinantova, Lucia; Kvetnansky, Richard; Bergendiova-Sedlackova, Katarina; Blazicek, Pavol; Vigas, Milan

    2004-06-01

    Stress response is considered an important factor in the modulation of immune function. Neuroendocrine hormones, including catecholamines, affect the process of immune cell redistribution, important for cell-mediated immunity. This longitudinal investigation was aimed at evaluating the effect of repeated stress-induced elevation of catecholamines on immune cell redistribution and expression of adhesive molecules. We assessed the responses of epinephrine (EPI), norepinephrine (NE), cortisol, changes in lymphocytes subpopulations, and percentages of CD11a+, CD11b+, and CD62L+ lymphocytes to a 20-min treadmill exercise of an intensity equal to 80% of the individual's Vo(2)max. The exercise was performed before and after 6 weeks of endurance training consisting of a 1-h run 4 times a week (ET) and after 5 days of bed rest (HDBR) in 10 healthy males. We did not observe any significant changes in the basal levels of EPI, NE, and cortisol in the plasma, nor in the immune parameters after ET and HDBR. The exercise test led to a significant (P <.001) elevation of EPI and NE levels after both ET and HDBR, a significant elevation (P <.01) of cortisol after HDBR, an increase in the absolute numbers of leukocytes, granulocytes, monocytes, CD3+, CD4+, CD8+, CD16+, CD19+ lymphocytes, percentage of CD11a+ and CD11b+ lymphocytes, and to a decrease of CD62L1 before, after ET, and after HDBR. We found comparable changes in all measured immune parameters after ET and HDBR. In conclusion, repeated stress-induced elevation of EPI and NE was not associated with an alteration in immune cell redistribution found in response to the single bout of exercise.

  8. Sedimentation rapidly induces an immune response and depletes energy stores in a hard coral

    Science.gov (United States)

    Sheridan, C.; Grosjean, Ph.; Leblud, J.; Palmer, C. V.; Kushmaro, A.; Eeckhaut, I.

    2014-12-01

    High sedimentation rates have been linked to reduced coral health within multiple systems; however, whether this is a direct result of compromised coral immunity has not been previously investigated. The potential effects of sedimentation on immunity of the hard coral Montipora patula were examined by comparing physiological responses of coral fragments inoculated with sterilized marine sediments and those under control conditions. Sediments were collected from terrestrial runoff-affected reefs in SW Madagascar and applied cyclically for a total of 24 h at a rate observed during precipitation-induced sedimentation events. Coral health was determined 24 h after the onset of the sedimentation stress through measuring metabolic proxies of O2 budget and lipid ratios. Immune response of the melanin synthesis pathway was measured by quantifying phenoloxidase activity and melanin deposits. Sedimentation induced both immune and metabolic responses in M. patula. Both phenoloxidase activity and melanin deposition were significantly higher in the sediment treatment compared to controls, indicating an induced immune response. Sediment-treated corals also showed a tendency towards increased respiration (during the night) and decreased photosynthesis (during the day) and a significant depletion of energy reserves as compared to controls. These data highlight that short-term (24 h) sedimentation, free of live microorganisms, compromises the health of M. patula. The energetically costly immune response, potentially elicited by residual endotoxins and other inflammatory particles associated with the sterile sediments, likely contributes to the energy depletion. Overall, exposure to sedimentation adversely affects coral health and continued exposure may lead to resource depletion and an increased susceptibility to disease.

  9. Trivalent combination vaccine induces broad heterologous immune responses to norovirus and rotavirus in mice.

    Directory of Open Access Journals (Sweden)

    Kirsi Tamminen

    Full Text Available Rotavirus (RV and norovirus (NoV are the two major causes of viral gastroenteritis (GE in children worldwide. We have developed an injectable vaccine design to prevent infection or GE induced with these enteric viruses. The trivalent combination vaccine consists of NoV capsid (VP1 derived virus-like particles (VLPs of GI-3 and GII-4 representing the two major NoV genogroups and tubular RV recombinant VP6 (rVP6, the most conserved and abundant RV protein. Each component was produced in insect cells by a recombinant baculovirus expression system and combined in vitro. The vaccine components were administered intramuscularly to BALB/c mice either separately or in the trivalent combination. High levels of NoV and RV type specific serum IgGs with high avidity (>50% as well as intestinal IgGs were detected in the immunized mice. Cross-reactive IgG antibodies were also elicited against heterologous NoV VLPs not used for immunization (GII-4 NO, GII-12 and GI-1 VLPs and to different RVs from cell cultures. NoV-specific serum antibodies blocked binding of homologous and heterologous VLPs to the putative receptors, histo-blood group antigens, suggesting broad NoV neutralizing activity of the sera. Mucosal antibodies of mice immunized with the trivalent combination vaccine inhibited RV infection in vitro. In addition, cross-reactive T cell immune responses to NoV and RV-specific antigens were detected. All the responses were sustained for up to six months. No mutual inhibition of the components in the trivalent vaccine combination was observed. In conclusion, the NoV GI and GII VLPs combination induced broader cross-reactive and potentially neutralizing immune responses than either of the VLPs alone. Therefore, trivalent vaccine might induce protective immune responses to the vast majority of circulating NoV and RV genotypes.

  10. A preliminary study to evaluate the immune responses induced by immunization of dogs with inactivated Ehrlichia canis organisms

    Directory of Open Access Journals (Sweden)

    Sunita Mahan

    2005-09-01

    Full Text Available Ehrlichia canis is an intracellular pathogen that causes canine monocytic ehrlichiosis. Although the role of antibody responses cannot be discounted, control of this intracellular pathogen is expected to be by cell mediated immune responses. The immune responses in dogs immunized with inactivated E. canis organisms in combination with Quil A were evaluated. Immunization provoked strong humoral and cellular immune responses, which were demonstrable by Western blotting and lymphocyte proliferation assays. By Western blotting antibodies to several immunodominant E. canis proteins were detected in serum from immunized dogs and antibody titres increased after each immunization. The complement of immunogenic proteins recognized by the antisera were similar to those recognized in serum from infected dogs. Upon challenge with live E. canis, rapid anamnestic humoral responses were detected in the serum of immunized dogs and primary antibody responses were detected in the serum from control dogs. Following immunization, a lymphocyte proliferative response (cellular immunity was detected in peripheral blood mononuclear cells (PBMNs of immunized dogs upon stimulation with E. canis antigens. These responses were absent from non-immunized control dogs until after infection with live E. canis, when antigen specific-lymphocyte proliferation responses were also detected in the PBMNs of the control dogs. It can be thus concluded that immunization against canine monocytic ehrlichiosis may be feasible. However, the immunization regimen needs to be optimized and a detailed investigation needs to be done to determine if this regimen can prevent development of acute and chronic disease.

  11. Listeria monocytogenes protein fraction induces dendritic cells maturation and T helper 1 immune responses.

    Directory of Open Access Journals (Sweden)

    Azad Saei

    2014-02-01

    Full Text Available Fully mature dendritic cells (DCs play pivotal role in inducing immune responses and converting naïve T lymphocytes into functional Th1 cells. We aimed to evaluate Listeria Monocytogenes-derived protein fractions to induce DC maturation and stimulating T helper (Th1 immune responses.In the present study, we fractionated Listeria Monocytogenes-derived proteins by adding of ammonium sulfate in a stepwise manner. DCs were also generated from C57BL/6 mice bone marrow precursor cells. Then, the effects of protein fractions on bone marrow derived DC (BMDC maturation were evaluated. In addition, we assessed the capacity of activated DCs to induce cytokine production and proliferation of lymphocytes.Listeria-derived protein fractions induced fully mature DCs expressing high costimulatory molecules such as CD80, CD86 and CD40. DCs that were activated by selected F3 fraction had low capacity to uptake exogenous antigens while secreted high levels of Interleukine (IL-12. Moreover, lymphocytes cultured with activated BMDCs produced high amounts of IFN-γ and showed higher proliferation than control. Listeria derived protein fractions differently influenced DC maturation.In conclusion, Listeria protein activated-BMDCs can be used as a cell based vaccine to induce anti-tumor immune responses.

  12. Tyrosine kinase inhibitors induced immune thrombocytopenia in chronic myeloid leukemia?

    Directory of Open Access Journals (Sweden)

    Avital F. Barak

    2011-12-01

    Full Text Available The outcome and quality of life of chronic myeloid leukemia (CML patients has remarkably changed with the treatment of tyrosine kinase inhibitors (TKIs. Currently, hematopoietic stem cell transplantation (HSCT is considered mainly as a third line salvage therapy in cases of TKIs resistance or intolerance. Here we describe a patient with chronic phase CML who developed both resistance and late occurrence of s severe thrombocytopenia on first and second generation TKIs and eventually underwent HSCT. Although the mechanism of the myelosuppression is not fully understood, we showed for the first time the development of dose dependent platelet antibodies in the presence of TKIs, suggesting the possibility of TKIs induced thrombocytopenia. Our case emphasizes that late development of severe myelosuppression during imatinib treatment is probably an important indication for consideration of early HSCT.

  13. The first report of cabergoline-induced immune hemolytic anemia in an adolescent with prolactinoma.

    Science.gov (United States)

    Gürbüz, Fatih; Yağcı-Küpeli, Begül; Kör, Yılmaz; Yüksel, Bilgin; Zorludemir, Suzan; Gürbüz, Berrak Bilginer; Küpeli, Serhan

    2014-01-01

    Prolactinomas are common pituitary tumors that can cause gonadal dysfunction and infertility related to hyperprolactinemia. Dopamine agonists are the first-line treatment in these patients. Cabergoline leads to significant reduction in serum prolactin levels and tumor size in patients with prolactinoma. Dopamine agonists have been associated with adverse effects such as nausea, vomiting and psychosis. We report here a case with cabergoline-induced immune hemolytic anemia. The patient had cabergoline treatment history for prolactinoma and presented with weakness, fatigue, nausea, and paleness. Laboratory findings revealed severe anemia-related immune hemolysis. There were no causes identified to explain hemolytic anemia except cabergoline. Therefore, cabergoline therapy was stopped and subsequently hemolytic anemia resolved and did not occur again. This is the first reported pediatric case with prolactinoma and cabergoline-induced hemolytic anemia. Clinicians should be watchful for this rare side effect induced by cabergoline.

  14. PPS nanoparticles as versatile delivery system to induce systemic and broad mucosal immunity after intranasal administration.

    Science.gov (United States)

    Stano, Armando; van der Vlies, André J; Martino, Mikael M; Swartz, Melody A; Hubbell, Jeffrey A; Simeoni, Eleonora

    2011-01-17

    Degradable polymer nanoparticles (NPs, 50 nm) based on polypropylene sulfide (PPS) were conjugated to thiolated antigen and adjuvant proteins by reversible disulfide bonds and evaluated in mucosal vaccination. Ovalbumin was used as a model antigen, and antigen-conjugated NPs were administered intranasally in the mouse. We show penetration of nasal mucosae, transit via M cells, and uptake by antigen-presenting cells in the nasal-associated lymphoid tissue. Ovalbumin-conjugated NPs induced cytotoxic T lymphocytic responses in lung and spleen tissues, as well as humoral response in mucosal airways. Co-conjugation of the TLR5 ligand flagellin further enhanced humoral responses in the airways as well as in the distant vaginal and rectal mucosal compartments and induced cellular immune responses with a Th1 bias, in contrast with free flagellin. The PPS NP platform thus appears interesting as a platform for intranasally-administered mucosal vaccination for inducing broad mucosal immunity.

  15. Inhibition of the interleukin-6 signaling pathway: a strategy to induce immune tolerance.

    Science.gov (United States)

    Zhang, Cheng; Zhang, Xi; Chen, Xing-Hua

    2014-10-01

    Interleukin-6 (IL-6) is a proinflammatory cytokine that is multifunctional, with multifaceted effects. IL-6 signaling plays a vital role in the control of the differentiation and activation of T lymphocytes by inducing different pathways. In particular, IL-6 controls the balance between Th17 cells and regulatory T (Treg) cells. An imbalance between Treg and Th17 cells is thought to play a pathological role in various immune-mediated diseases. Deregulated IL-6 production and signaling are associated with immune tolerance. Therefore, methods of inhibiting IL-6 production, receptors, and signaling pathways are strategies that are currently being widely pursued to develop novel therapies that induce immune tolerance. This survey aims to provide an updated account of why IL-6 inhibitors are becoming a vital class of drugs that are potentially useful for inducing immune tolerance as a treatment for autoimmune diseases and transplant rejection. In addition, we discuss the effect of targeting IL-6 in recent experimental and clinical studies on autoimmune diseases and transplant rejection.

  16. Protective immunity against Leishmania major induced by Leishmania tropica infection of BALB/c mice.

    Science.gov (United States)

    Mahmoudzadeh-Niknam, Hamid; Kiaei, Simin Sadat; Iravani, Davood

    2011-02-01

    Leishmania (L.) tropica is a causative agent of human cutaneous and viscerotropic leishmaniasis. Immune response to L. tropica in humans and experimental animals are not well understood. We previously established that L. tropica infection induces partial protective immunity against subsequent challenge infection with Leishmania major in BALB/c mice. Aim of the present study was to study immunologic mechanisms of protective immunity induced by L. tropica infection, as a live parasite vaccine, in BALB/c mouse model. Mice were infected by L. tropica, and after establishment of the infection, they were challenged by L. major. Our findings shows that L. tropica infection resulted in protection against L. major challenge in BALB/c mice and this protective immunity is associated with: (1) a DTH response, (2) higher IFN-γ and lower IL-10 response at one week post-challenge, (3) lower percentage of CD4(+) lymphocyte at one month post-challenge, and (4) the source of IFN-γ and IL-10 were mainly CD4(-) lymphocyte up to one month post-challenge suggesting that CD4(-) lymphocytes may be responsible for protection induced by L. tropica infection in the studied intervals.

  17. Drug-induced immune hemolytic anemia associated with albumin-bound paclitaxel.

    Science.gov (United States)

    Thomas, Roby; Shillingburg, Alexandra

    2015-08-01

    Drug-induced immune hemolytic anemia (DIIHA) is rare, with only 1 patient in 1 million affected by the condition.1 Garratty identified 125 drugs indicated in DIIHA of which 11% were antineoplastic agents, and neither paclitaxel nor albumin-bound paclitaxel were included.2 In addition, we did not find any reports in our own search of the literature. Taxanes are known to cause anemia as a result of their myelosuppressive effects, but an immune hemolysis is rare. To our knowledge, we present here the first case of DIIHA with nab-paclitaxel.

  18. CsBAFF, a Teleost B Cell Activating Factor, Promotes Pathogen-Induced Innate Immunity and Vaccine-Induced Adaptive Immunity.

    Directory of Open Access Journals (Sweden)

    Yun Sun

    Full Text Available B cell activating factor (BAFF is a member of the tumor necrosis factor family that is known to play an important role in B cell activation, proliferation, and differentiation in mammals. However, studies of BAFF in teleosts are very limited and its function, in particular that under in vivo conditions, is essentially unknown. In this study, we conducted in vivo as well as in vitro functional analyses of a BAFF homologue (CsBAFF from the teleost fish tongue sole (Cynoglossus semilaevis. CsBAFF is composed of 261 residues and shares moderate sequence identities with known BAFFs of other teleosts. CsBAFF expression was most abundant in immune organs and was upregulated during bacterial infection. Purified recombinant CsBAFF (rCsBAFF bound to tongue sole lymphocytes and promoted cellular proliferation and survival. The results of an in vivo study showed that CsBAFF overexpression in tongue sole significantly enhanced macrophage activation and reduced bacterial infection in fish tissues, whereas knockdown of CsBAFF expression resulted in increased bacterial dissemination and colonization in fish tissues. Furthermore, vaccination studies showed that CsBAFF enhanced the immunoprotection of a DNA vaccine and augmented the production of specific serum antibodies. Taken together, these results provide the first in vivo evidence to indicate that teleost BAFF is an immunostimulator that significantly contributes to the innate antibacterial immune response and vaccine-induced adaptive immune response.

  19. The contribution of type I interferon signaling to immunity induced by alphavirus replicon vaccines.

    Science.gov (United States)

    Thompson, Joseph M; Whitmore, Alan C; Staats, Herman F; Johnston, Robert

    2008-09-15

    The type I interferon (IFN) system is critical for protecting the mammalian host from numerous virus infections and plays a key role in shaping the antiviral adaptive immune response. In this report, the importance of type I IFN signaling was assessed in a mouse model of alphavirus-induced humoral immune induction. Venezuelan equine encephalitis virus replicon particles (VRP) expressing the hemagglutinin (HA) gene from influenza virus (HA-VRP) were used to vaccinate both wildtype (wt) and IFN alpha/beta receptor knockout (RKO) mice. HA-VRP vaccination induced equivalent levels of flu-specific systemic IgG, mucosal IgG, and systemic IgA antibodies in both wt and IFN RKO mice. In contrast, HA-VRP vaccination of IFN RKO mice failed to induce significant levels of flu-specific mucosal IgA antibodies at multiple mucosal surfaces. In the VRP adjuvant system, co-delivery of null VRP with ovalbumin (OVA) protein significantly increased the levels of OVA-specific serum IgG, fecal IgG, and fecal IgA antibodies in both wt and RKO mice, suggesting that type I IFN signaling plays a less significant role in the VRP adjuvant effect. Taken together, these results suggest that (1) at least in regard to IFN signaling, the mechanisms which regulate alphavirus-induced immunity differ when VRP are utilized as expression vectors as opposed to adjuvants, and (2) type I IFN signaling is required for the induction of mucosal IgA antibodies directed against VRP-expressed antigen. These results shed new light on the regulatory networks which promote immune induction, and specifically mucosal immune induction, with alphavirus vaccine vectors.

  20. Antigenic role of stress-induced catalase of Salmonella typhimurium in cell-mediated immunity.

    OpenAIRE

    Kagaya, K; Miyakawa, Y; Watanabe, K; Fukazawa, Y.

    1992-01-01

    The ability of the H2O2-induced catalase of Salmonella typhimurium to induce cell-mediated immunity against S. typhimurium infection in mice was examined. When exponentially growing cells of S. typhimurium were treated with 20 microM H2O2, the cells resisted killing by 1 mM H2O2 and showed the induction of a new species of catalase in addition to the constitutively produced one. Two molecules of catalases in S. typhimurium were isolated from mutant strains: H2O2-induced catalase (catalase II,...

  1. Hepatoprotective role of ganoderma lucidum polysaccharide against BCG-induced immune liver injury in mice

    Institute of Scientific and Technical Information of China (English)

    Guo-Liang Zhang; Ye-Hong Wang; Wei Ni; Hui-Ling Teng; Zhi-Bin Lin

    2002-01-01

    AIM: To examine the effect of ganoderma lucidumpolysaccharide (GLP) on the immune liver injuryinduced by BCG infection, and investigate therelationship between degrees of hepatic damage andNO production in mice.METHODS: Immune hepatic injury was markedlyinduced by BCG-pretreatment (125 mg.kg-1, 2-week, iv)or by BCG-pretreatment plus lipopolysaccharide (LPS,125 μg.kg-1, 12-hour, iv) in mice in vivo.Hepatocellulardamage induced by BCG-pretreated plus inflammatorycytokines mixture (CM), which was included TNF-α, IL1β, IFN-γ and LPS in culture medium in vitro.Administration of GLP was performed by oral orincubating with culture medium at immune stimulisimultaneity. Liver damage was determined by activityof alanine aminotransferase (ALT) in serum and inhepatocytes cultured supernatant, by liver weightchanges and histopathological examination. NOproduction in the cultured supematant was determinedby the Griess reaction. Moreover, inducible nitric oxidesynthase (iNOS) protein expression was alsoexaminated by immunohistochemi1cal method.RESULTS: Immune hepatic injury was markedly inducedby BCG or BCG plus inflammatory cytokines in BALB/cmice in vivoand in vitro. Under BCG-stimulated condition,augment of the liver weight and increase of the serum/supernatant ALT level were observed, as well asgranuloma forming and inflammatory cells soakage wereobserved by microscopic analysis within liver tissues.Moreover, NO production was also increased by BCG or/and CH stimuli in the culture supernatant, and a lot ofiNOS positive staining was observed in BCG-prestimulated hepatic sections. Application of GLPsignificantly mitigated hepatic tumefaction, decreasedALT enzyme release and NO production in serum/supernatant, improved the pathological changes ofchronic and acute inflammation induced by BCG-stimuliin mice. Moreover, the immunohistochemical resultshowed that GLP inhibited iNOS protein expression inBCG-immune hepatic damage model.CONCLUSION: The present study indicates that

  2. Transcutaneous immunization with toxin-coregulated pilin A induces protective immunity against Vibrio cholerae O1 El Tor challenge in mice.

    Science.gov (United States)

    Rollenhagen, Julianne E; Kalsy, Anuj; Cerda, Francisca; John, Manohar; Harris, Jason B; Larocque, Regina C; Qadri, Firdausi; Calderwood, Stephen B; Taylor, Ronald K; Ryan, Edward T

    2006-10-01

    Toxin-coregulated pilin A (TcpA) is the main structural subunit of a type IV bundle-forming pilus of Vibrio cholerae, the cause of cholera. Toxin-coregulated pilus is involved in formation of microcolonies of V. cholerae at the intestinal surface, and strains of V. cholerae deficient in TcpA are attenuated and unable to colonize intestinal surfaces. Anti-TcpA immunity is common in humans recovering from cholera in Bangladesh, and immunization against TcpA is protective in murine V. cholerae models. To evaluate whether transcutaneously applied TcpA is immunogenic, we transcutaneously immunized mice with 100 mug of TcpA or TcpA with an immunoadjuvant (cholera toxin [CT], 50 mug) on days 0, 19, and 40. Mice immunized with TcpA alone did not develop anti-TcpA responses. Mice that received transcutaneously applied TcpA and CT developed prominent anti-TcpA immunoglobulin G (IgG) serum responses but minimal anti-TcpA IgA. Transcutaneous immunization with CT induced prominent IgG and IgA anti-CT serum responses. In an infant mouse model, offspring born to dams transcutaneously immunized either with TcpA and CT or with CT alone were challenged with 10(6) CFU (one 50% lethal dose) wild-type V. cholerae O1 El Tor strain N16961. At 48 h, mice born to females transcutaneously immunized with CT alone had 36% +/- 10% (mean +/- standard error of the mean) survival, while mice born to females transcutaneously immunized with TcpA and CT had 69% +/- 6% survival (P < 0.001). Our results suggest that transcutaneous immunization with TcpA and an immunoadjuvant induces protective anti-TcpA immune responses. Anti-TcpA responses may contribute to an optimal cholera vaccine.

  3. Beryllium-induced immune response in C3H mice

    Energy Technology Data Exchange (ETDEWEB)

    Benson, J.M.; Bice, D.E.; Nikula, K.J. [and others

    1995-12-01

    Studies conducted at ITRI over the past several years have investigated whether Beagle dogs, monkeys, and mice are suitable models for human chronic beryllium-induced lung disease (CBD). Recent studies have focused on the histopathological and immunopathological changes occurring in A/J and C3H/HeJ mice acutely exposed by inhalation to Be metal. Lung lesions in both strains of mice included focal lymphocyte aggregates comprised primarily of B lymphocytes and lesser amounts of T-helper lymphocytes and microgranulomas consisting chiefly of macrophages and T-helper lymphocytes. The distribution of proliferating cells within the microgranulomas was similar to the distribution of T-helper cells. These results strongly suggested that A/J and C3H/HeJ mice responded to inhaled Be metal in a fashion similar to humans in terms of pulmonary lesions and the apparent in situ proliferation of T-helper cells. Results of these studies confirm lymphocyte involvement in the pulmonary response to inhaled Be metal.

  4. Characterization of the immune response induced by pertussis OMVs-based vaccine.

    Science.gov (United States)

    Bottero, D; Gaillard, M E; Zurita, E; Moreno, G; Martinez, D Sabater; Bartel, E; Bravo, S; Carriquiriborde, F; Errea, A; Castuma, C; Rumbo, M; Hozbor, D

    2016-06-14

    For the development of a third generation of pertussis vaccine that could improve the control of the disease, it was proposed that the immune responses induced by the classic whole cell vaccine (wP) or after infection should be used as a reference point. We have recently identified a vaccine candidate based on outer membrane vesicles (OMVs) derived from the disease etiologic agent that have been shown to be safe and protective in mice model of infection. Here we characterized OMVs-mediated immunity and the safety of our new candidate. We also deepen the knowledge of the induced humoral response contribution in pertussis protection. Regarding the safety of the OMVs based vaccine (TdapOMVsBp,) the in vitro whole blood human assay here performed, showed that the low toxicity of OMVs-based vaccine previously detected in mice could be extended to human samples. Stimulation of splenocytes from immunized mice evidenced the presence of IFN-γ and IL-17-producing cells, indicated that OMVs induces both Th1 and Th17 response. Interestingly TdapOMVsBp-raised antibodies such as those induced by wP and commercial acellular vaccines (aP) which contribute to induce protection against Bordetella pertussis infection. As occurs with wP-induced antibodies, the TdapOMVsBp-induced serum antibodies efficiently opsonized B. pertussis. All the data here obtained shows that OMVs based vaccine is able to induce Th1/Th17 and Th2 mixed profile with robust humoral response involved in protection, positioning this candidate among the different possibilities to constitute the third generation of anti-pertussis vaccines.

  5. Enhanced immunity against classical swine fever in pigs induced by prime-boost immunization using an alphavirus replicon-vectored DNA vaccine and a recombinant adenovirus.

    Science.gov (United States)

    Sun, Yuan; Li, Na; Li, Hong-Yu; Li, Miao; Qiu, Hua-Ji

    2010-09-15

    Classical swine fever (CSF) - caused by the classical swine fever virus (CSFV) - is a fatal disease of pigs that is responsible for extensive losses to the swine industry worldwide. We had demonstrated previously that a prime-boost vaccination strategy using an alphavirus (Semliki Forest virus, SFV) replicon-vectored DNA vaccine (pSFV1CS-E2) and a recombinant adenovirus (rAdV-E2) expressing the E2 glycoprotein of CSFV induced enhanced immune responses in a mouse model. In this study, we evaluated further the efficacy of the heterologous prime-boost immunization approach in pigs, the natural host of CSFV. The results showed that the pigs (n=5) receiving pSFV1CS-E2/rAdV-E2 heterologous prime-boost immunization developed significantly higher titers of CSFV-specific neutralizing antibodies and comparable CD4(+) and CD8(+) T-cell proliferation, compared to the pigs receiving double immunizations with rAdV-E2 alone. When challenged with virulent CSFV Shimen strain, the pigs of the heterologous prime-boost group did not show clinical symptoms or viremia, which were observed in one of the 5 pigs immunized with rAdV-E2 alone and all the 5 control pigs immunized with an empty adenovirus. The results demonstrate that the heterologous DNA prime and recombinant adenovirus boost strategy can induce solid protective immunity.

  6. Molecular Components of the Sporothrix schenckii Complex that Induce Immune Response.

    Science.gov (United States)

    Alba-Fierro, Carlos A; Pérez-Torres, Armando; Toriello, Conchita; Romo-Lozano, Yolanda; López-Romero, Everardo; Ruiz-Baca, Estela

    2016-08-01

    Sporotrichosis is a fungal disease caused by the Sporothrix schenckii complex that includes species such as S. brasiliensis, S. schenckii sensu stricto, S. globosa, S. luriei, S. mexicana, and S. pallida, which exhibit different potentially antigenic molecular components. The immune response of susceptible hosts to control infection and disease caused by these fungi has been little studied. Besides, the fungus-host interaction induces the activation of different types of immune response. This mini-review analyzes and discusses existing reports on the identification and functional characterization of molecules from species of the S. schenckii complex with clinical relevance, and the mechanisms that mediate the type and magnitude of the immune response in experimental models in vivo and in vitro. This knowledge is expected to contribute to the development of protective and therapeutic strategies against sporotrichosis and other mycoses.

  7. Hantavirus-induced pathogenesis in mice with a humanized immune system.

    Science.gov (United States)

    Kobak, Lidija; Raftery, Martin J; Voigt, Sebastian; Kühl, Anja A; Kilic, Ergin; Kurth, Andreas; Witkowski, Peter; Hofmann, Jörg; Nitsche, Andreas; Schaade, Lars; Krüger, Detlev H; Schönrich, Günther

    2015-06-01

    Hantaviruses are emerging zoonotic pathogens that can cause severe disease in humans. Clinical observations suggest that human immune components contribute to hantavirus-induced pathology. To address this issue we generated mice with a humanized immune system. Hantavirus infection of these animals resulted in systemic infection associated with weight loss, decreased activity, ruffled fur and inflammatory infiltrates of lung tissue. Intriguingly, after infection, humanized mice harbouring human leukocyte antigen (HLA) class I-restricted human CD8+ T cells started to lose weight earlier (day 10) than HLA class I-negative humanized mice (day 15). Moreover, in these mice the number of human platelets dropped by 77 % whereas the number of murine platelets did not change, illustrating how differences between rodent and human haemato-lymphoid systems may contribute to disease development. To our knowledge this is the first description of a humanized mouse model of hantavirus infection, and our results indicate a role for human immune cells in hantaviral pathogenesis.

  8. Wolbachia Do Not Induce Reactive Oxygen Species-Dependent Immune Pathway Activation in Aedes albopictus

    Directory of Open Access Journals (Sweden)

    Jennifer C. Molloy

    2015-08-01

    Full Text Available Aedes albopictus is a major vector of dengue (DENV and chikungunya (CHIKV viruses, causing millions of infections annually. It naturally carries, at high frequency, the intracellular inherited bacterial endosymbiont Wolbachia strains wAlbA and wAlbB; transinfection with the higher-density Wolbachia strain wMel from Drosophila melanogaster led to transmission blocking of both arboviruses. The hypothesis that reactive oxygen species (ROS-induced immune activation plays a role in arbovirus inhibition in this species was examined. In contrast to previous observations in Ae. aegypti, elevation of ROS levels was not observed in either cell lines or mosquito lines carrying the wild-type Wolbachia or higher-density Drosophila Wolbachia strains. There was also no upregulation of genes controlling innate immune pathways or with antioxidant/ROS-producing functions. These data suggest that ROS-mediated immune activation is not an important component of the viral transmission-blocking phenotype in this species.

  9. Standardized Whole-Blood Transcriptional Profiling Enables the Deconvolution of Complex Induced Immune Responses

    Directory of Open Access Journals (Sweden)

    Alejandra Urrutia

    2016-09-01

    Full Text Available Systems approaches for the study of immune signaling pathways have been traditionally based on purified cells or cultured lines. However, in vivo responses involve the coordinated action of multiple cell types, which interact to establish an inflammatory microenvironment. We employed standardized whole-blood stimulation systems to test the hypothesis that responses to Toll-like receptor ligands or whole microbes can be defined by the transcriptional signatures of key cytokines. We found 44 genes, identified using Support Vector Machine learning, that captured the diversity of complex innate immune responses with improved segregation between distinct stimuli. Furthermore, we used donor variability to identify shared inter-cellular pathways and trace cytokine loops involved in gene expression. This provides strategies for dimension reduction of large datasets and deconvolution of innate immune responses applicable for characterizing immunomodulatory molecules. Moreover, we provide an interactive R-Shiny application with healthy donor reference values for induced inflammatory genes.

  10. Outer membrane vesicles of Gallibacterium anatis induce protective immunity in egg-laying hens

    DEFF Research Database (Denmark)

    Pors, Susanne Elisabeth; Pedersen, Ida Just; Skjerning, Ragnhild Bager

    2016-01-01

    Gallibacterium anatis causes infections in the reproductive tract of egg-laying hens and induce increased mortality and decreased egg production. New prophylactic measures are needed in order to improve animal welfare and production efficiency. Bacterial outer membrane vesicles (OMVs) have...... previously shown promising results in protection against infections and we hypothesized that OMVs could serve as an immunogen to protect egg-laying hens against G. anatis. To investigate the immunogenic potential of G. anatis OMVs, two in vivo studies in egg-laying hens were made. The trials assessedthe...... degree of protection provided by immunization with G. anatis OMV against challenge and the IgY responses in serum after immunization and challenge, respectively. A total of 64 egg-laying hens were included in the trials. OMVs for immunization were produced and purified from a high-producing G. anatis...

  11. Vitamin D improves immune function in immunosuppressant mice induced by glucocorticoid

    Science.gov (United States)

    Wang, Zongye; Wang, Ying; Xu, Bingxin; Liu, Junli; Ren, Ye; Dai, Zhuojie; Cui, Di; Su, Xiaoming; Si, Shaoyan; Song, Shu Jun

    2017-01-01

    Vitamin D is an essential fat-soluble vitamin with multiple functions. Vitamin D receptor has been shown to be expressed in several types of immune cells suggesting vitamin D may have immune regulatory roles. Vitamin D insufficiency has been suggested to increase the risk of autoimmune diseases. However, little is known regarding its immunomodulatory effects in the condition of immune suppression. The aim of the present study was to investigate the regulatory effects of vitamin D on immune function in immunosuppressant mice. An immunosuppressant mouse model was induced by intraperitoneal injection with glucocorticiod for 3 days. Immunosuppressant mice were intragastrically administered with 1,25-dihydroxy-vitamin D3 [1,25(OH)2D3; 0,4, 6 or 10 IU/g body weight] for 7 days. On day 8, the mice were decapitated. The body weight and the weights of thymus and spleen were measured. Thymus and spleen indexes were calculated. The ratio of CD4+/CD8+ T lymphocytes in the peripheral blood, proliferation and interleukin-2 (IL-2) production of spleen T lymphocytes was detected. Compared with the mice in the control group, the body weight, thymus and spleen indexes, the ratios of CD4+/CD8+ in peripheral blood and IL-2 production and proliferation of spleen T lymphocytes were decreased in immunosuppressant mice induced by glucocorticiod. However, in vitamin D-treated mice, the thymus indexes, the ratios of CD4+/CD8+, secretion of IL-2 and the proliferation index of spleen T lymphocytes were significantly increased (P2D3, 6 IU/g was most effective in improving the immune function. These results indicate that vitamin D supplementation can improve immune recovery in immunosuppressant mice by stimulating T-cell proliferation and elevating IL-2 production. PMID:28123720

  12. Red blood cells as innovative antigen carrier to induce specific immune tolerance.

    Science.gov (United States)

    Cremel, Magali; Guérin, Nathalie; Horand, Françoise; Banz, Alice; Godfrin, Yann

    2013-02-25

    The route of administration, the dose of antigen as well as the type of antigen-presenting cells (APCs) targeted are important factors to induce immune tolerance. Despite encouraging results obtained in animal models, intravenous injection of soluble antigen is unsuccessful in human clinical trials on autoimmune disease due to inefficient antigen delivery. To improve antigen delivery, we used mouse red blood cells (RBCs) as antigen vehicles to specifically target APCs which are responsible for removal of senescent RBCs after phagocytosis. In this study, we demonstrated that antigen-delivery by RBCs induced a strong decrease in the humoral response compared with the ovalbumin (OVA) free form in mice. In addition, OVA-loaded RBC treated with [bis(sulphosuccinimidyl)] suberate (BS3), a chemical compound known to enhance RBC phagocytosis, induced an inhibition of antigen-specific T cell responses and an increase in the percentage of regulatory T cells. The state of tolerance induced is long lasting, antigen-specific and sufficiently robust to withstand immunization with antigen mixed with cholera toxin adjuvant. This RBC strategy, which does not abolish the immune system, constitutes an attractive approach for induction of tolerance compared to systemic immunosuppressant therapies already in use.

  13. Dietary selenium protect against redox-mediated immune suppression induced by methylmercury exposure.

    Science.gov (United States)

    Li, Xuan; Yin, Daqiang; Yin, Jiaoyang; Chen, Qiqing; Wang, Rui

    2014-10-01

    The antagonism between selenium (Se) and mercury (Hg) has been widely recognized, however, the protective role of Se against methylmercury (MeHg) induced immunotoxicity and the underlying mechanism is still unclear. In the current study, MeHg exposure (0.01 mM via drinking water) significantly inhibited the lymphoproliferation and NK cells functions of the female Balb/c mice, while dietary Se supplementation (as Se-rich yeast) partly or fully recovered the observed immunotoxicity, indicating the protective role of Se against MeHg-induced immune suppression in mice. Besides, MeHg exposure promoted the generation of the reactive oxygen species (ROS), reduced the levels of nonenzymic and enzymic antioxidants in target organs, while dietary Se administration significantly diminished the MeHg-induced oxidative stress and subsequent cellular dysfunctions (lipid peroxidation and protein oxidation). Two possible mechanisms of Se's protective effects were further revealed. Firstly, the reduction of mercury concentrations (less than 25%, modulated by Se supplementation) in the target organs might contribute, but not fully explain the alleviated immune suppression. Secondly and more importantly, Se could help to maintain/or elevate the activities of several key antioxidants, therefore protect the immune cells against MeHg-induced oxidative damage.

  14. Isolation and Purification of an Antibacterial Protein from Immune Induced Haemolymph of American Cockroach, Periplaneta americana

    Directory of Open Access Journals (Sweden)

    Hamid Reza Basseri

    2016-10-01

    Full Text Available Background: Antimicrobial peptides play a role as effectors substances in the immunity of vertebrate and inverte­brate hosts. In the current study, antimicrobial peptide was isolated from the haemolymph of the American cock­roach, Periplaneta americana.Methods: Micrococcus luteus as Gram-positive bacteria and Escherichia coli as Gram-negative bacteria were candi­date for injection. Induction was done by injecting both bacteria into the abdominal cavity of two groups of cock­roaches separately. The haemolymphs were collected 24 hours after post injection and initially tested against both bacteria. Subsequently, the immune induced haemolymph was purified by high performance liquid chromatography (HPLC to separate the proteins responsible for the antibacterial activity.Results: The non-induced haemolymph did not show any activity against both bacteria whereas induced haemo­lymph exhibited high activity against M. luteus but did less against E. coli. Two fractions showed antibacterial activ­ity against M. luteus. Finally the molecular weight of the isolated antibacterial proteins were determined as 72 kDa and 62 kDa using SDS-PAGE.Conclusion: Induced haemolymph of American cockroaches has the ability to produce peptides to combat against Gram-positive bacteria when an immune challenge is mounted. Further work has to be done to sequence of the pro­tein, which it would be advantageous.

  15. Delayed adaptive immunity is related to higher MMR vaccine-induced antibody titers in children.

    Science.gov (United States)

    Strömbeck, Anna; Lundell, Anna-Carin; Nordström, Inger; Andersson, Kerstin; Adlerberth, Ingegerd; Wold, Agnes E; Rudin, Anna

    2016-04-01

    There are notable inter-individual variations in vaccine-specific antibody responses in vaccinated children. The aim of our study was to investigate whether early-life environmental factors and adaptive immune maturation prior and close to measles-mumps-rubella (MMR) immunization relate to magnitudes of vaccine-specific antibody titers. In the FARMFLORA birth cohort, including both farming and non-farming families, children were immunized with the MMR vaccine at 18 months of age. MMR vaccine-induced antibody titers were measured in plasma samples obtained at 36 months of age. Infants' blood samples obtained at birth, 3-5 days and at 4 and 18 months of age were analyzed for T- and B-cell numbers, proportions of naive and memory T and B cells, and fractions of putative regulatory T cells. Multivariate factor analyses show that higher anti-MMR antibody titers were associated with a lower degree of adaptive immune maturation, that is, lower proportions of memory T cells and a lower capacity of mononuclear cells to produce cytokines, but with higher proportions of putative regulatory T cells. Further, children born by cesarean section (CS) had significantly higher anti-measles titers than vaginally-born children; and CS was found to be associated with delayed adaptive immunity. Also, girls presented with significantly higher anti-mumps and anti-rubella antibody levels than boys at 36 months of age. These results indicate that delayed adaptive immune maturation before and in close proximity to immunization seems to be advantageous for the ability of children to respond with higher anti-MMR antibody levels after vaccination.

  16. Tumor necrosis factor-α-induced protein 1 and immunity to hepatitis B virus

    Institute of Scientific and Technical Information of China (English)

    Marie C Lin; Nikki P Lee; Ning Zheng; Pai-Hao Yang; Oscar G Wong; Hsiang-Fu Kung; Chee-Kin Hui; John M Luk; George Ka-Kit Lau

    2005-01-01

    AIM: To compare the gene expression profile in a pair of HBV-infected twins.METHODS: The gene expression profile was compared in a pair of HBV-infected twins.RESULTS: The twins displayed different disease outcomes. One acquired natural immunity against HBV,whereas the other became a chronic HBV carrier. Eightyeight and forty-six genes were found to be up- or downregulated in their PBMCs, respectively. Tumor necrosis factor-alpha-induced protein 1 (TNF-αIP1) that expressed at a higher level in the HBV-immune twins was identified and four pairs of siblings with HBV immunity by RTPCR. However, upon HBV core antigen stimulation,TNF-αIP1 was downregulated in PBMCs from subjects with immunity, whereas it was slightly upregulated in HBV carriers. Bioinformatics analysis revealed a K+channel tetramerization domain in TNF-αIP1 that shares a significant homology with some human, mouse, and C elegan proteins.CONCLUSION: TNF-αIP1 may play a role in the innate immunity against HBV.

  17. Exploratory study on Th1 epitope-induced protective immunity against Coxiella burnetii infection.

    Directory of Open Access Journals (Sweden)

    Xiaolu Xiong

    Full Text Available Coxiella burnetii is a Gram-negative bacterium that causes Q fever in humans. In the present study, 131 candidate peptides were selected from the major immunodominant proteins (MIPs of C. burnetii due to their high-affinity binding capacity for the MHC class II molecule H2 I-A(b based on bioinformatic analyses. Twenty-two of the candidate peptides with distinct MIP epitopes were well recognized by the IFN-γ recall responses of CD4(+ T cells from mice immunized with parental proteins in an ELISPOT assay. In addition, 7 of the 22 peptides could efficiently induce CD4(+ T cells from mice immunized with C. burnetii to rapidly proliferate and significantly increase IFN-γ production. Significantly higher levels of IL-2, IL-12p70, IFN-γ, and TNF-α were also detected in serum from mice immunized with a pool of the 7 peptides. Immunization with the pool of 7 peptides, but not the individual peptides, conferred a significant protection against C. burnetii infection in mice, suggesting that these Th1 peptides could work together to efficiently activate CD4(+ T cells to produce the Th1-type immune response against C. burnetii infection. These observations could contribute to the rational design of molecular vaccines for Q fever.

  18. Influence of TLR-2 in the immune response in the infection induced by fungus Sporothrix schenckii.

    Science.gov (United States)

    de C Negrini, Thais; Ferreira, Lucas S; Arthur, Rodrigo A; Alegranci, Pâmela; Placeres, Marisa C P; Spolidorio, Luis C; Carlos, Iracilda Z

    2014-01-01

    Toll-like receptors (TLRs) play an important role in immunity, since they bind to pathogen surface antigens and initiate the immune response. However, little is known about the role of TLR-2 in the recognition of S. schenckii and in the subsequent immune response. Therefore, the aim of this study was to evaluate the involvement of TLR-2 in the immune response induced by S. schenckii. C57BL/6 mice (WT) and C57BL/6 TLR-2 knockout (TLR-2-/-) were used to evaluate, over a period of 10 weeks of sporotrichotic infection, the influence of TLR-2 over macrophages production of IL-1β, IL-12 and TNF-α, their stimulation level by NO release and the production of IFN -γ, IL-6, IL-17 and TGF-β by spleen cells. The results showed that the production of pro-inflammatory mediators and NO, TLR-2 interference is striking, since its absence completely inhibited it. IL-17 production was independent of TLR-2. The absence of Th1 response in TLR2-/- animals was concomitant with IL-17 production. Therefore, it can be suggested that TLR-2 absence interferes with the course of the infection induced by the fungus S. schenckii.

  19. Club cells surviving influenza A virus infection induce temporary nonspecific antiviral immunity.

    Science.gov (United States)

    Hamilton, Jennifer R; Sachs, David; Lim, Jean K; Langlois, Ryan A; Palese, Peter; Heaton, Nicholas S

    2016-04-01

    A brief window of antigen-nonspecific protection has been observed after influenza A virus (IAV) infection. Although this temporary immunity has been assumed to be the result of residual nonspecific inflammation, this period of induced immunity has not been fully studied. Because IAV has long been characterized as a cytopathic virus (based on its ability to rapidly lyse most cell types in culture), it has been a forgone conclusion that directly infected cells could not be contributing to this effect. Using a Cre recombinase-expressing IAV, we have previously shown that club cells can survive direct viral infection. We show here not only that these cells can eliminate all traces of the virus and survive but also that they acquire a heightened antiviral response phenotype after surviving. Moreover, we experimentally demonstrate temporary nonspecific viral immunity after IAV infection and show that surviving cells are required for this phenotype. This work characterizes a virally induced modulation of the innate immune response that may represent a new mechanism to prevent viral diseases.

  20. Immune System Modifications Induced in a Mouse Model of Chronic Exposure to (90)Sr.

    Science.gov (United States)

    Synhaeve, Nicholas; Musilli, Stefania; Stefani, Johanna; Nicolas, Nour; Delissen, Olivia; Dublineau, Isabelle; Bertho, Jean-Marc

    2016-03-01

    Strontium 90 ((90)Sr) remains in the environment long after a major nuclear disaster occurs. As a result, populations living on contaminated land are potentially exposed to daily ingesting of low quantities of (90)Sr. The potential long-term health effects of such chronic contamination are unknown. In this study, we used a mouse model to evaluate the effects of (90)Sr ingestion on the immune system, the animals were chronically exposed to (90)Sr in drinking water at a concentration of 20 kBq/l, for a daily ingestion of 80-100 Bq/day. This resulted in a reduced number of CD19(+) B lymphocytes in the bone marrow and spleen in steady-state conditions. In contrast, the results from a vaccine experiment performed as a functional test of the immune system showed that in response to T-dependent antigens, there was a reduction in IgG specific to tetanus toxin (TT), a balanced Th1/Th2 response inducer antigen, but not to keyhole limpet hemocyanin (KLH), a strong Th2 response inducer antigen. This was accompanied by a reduction in Th1 cells in the spleen, consistent with the observed reduction in specific IgG concentration. The precise mechanisms by which (90)Sr acts on the immune system remain to be elucidated. However, our results suggest that (90)Sr ingestion may be responsible for some of the reported effects of internal contamination on the immune system in civilian populations exposed to the Chernobyl fallout.

  1. Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine.

    Science.gov (United States)

    Kim, Kwang Soon; Hong, Sung-Wook; Han, Daehee; Yi, Jaeu; Jung, Jisun; Yang, Bo-Gie; Lee, Jun Young; Lee, Minji; Surh, Charles D

    2016-02-19

    Dietary antigens are normally rendered nonimmunogenic through a poorly understood "oral tolerance" mechanism that involves immunosuppressive regulatory T (Treg) cells, especially Treg cells induced from conventional T cells in the periphery (pTreg cells). Although orally introducing nominal protein antigens is known to induce such pTreg cells, whether a typical diet induces a population of pTreg cells under normal conditions thus far has been unknown. By using germ-free mice raised and bred on an elemental diet devoid of dietary antigens, we demonstrated that under normal conditions, the vast majority of the small intestinal pTreg cells are induced by dietary antigens from solid foods. Moreover, these pTreg cells have a limited life span, are distinguishable from microbiota-induced pTreg cells, and repress underlying strong immunity to ingested protein antigens.

  2. EFFECTS OF HBV preS AS A HUMORAL ENHANCER ON THE ABILITIES OF HCV E2 PROTEIN TO INDUCE IMMUNE RESPONSES IN THE DNA-IMMUNIZED MICE

    Institute of Scientific and Technical Information of China (English)

    谢尧; 陶其敏; 高建恩

    2003-01-01

    Objective.To study whether the abilities of hepatitis C virus(HCV)E2 gene immunization to induce humoral and cellular immune responses to E2 protein were affected by hepatitis B virus(HBV)preS gene when they were fused in DNA-immunized mice.Methods.Mice were immunized with E2,preS-E2(preS gene was upstream of E2 gene),and E2-preS(preS gene was downstream of E2 gene)gene by their eukaryotic expression vectors,respectively.The anti-E2 or anti-preS antibodies were detected using the E2 and preS antigens.The cellular immune response to E2 pro-tein in immunized mice was presented by its survival time after injecting SP2/O myeloma cells expressing HCV E2 protein into the abdominal cavity.Results. Chimeric E2 and preS gene immunization can induce mice to develop anti-preS and anti-E2 antibodies.The number of the mice developing anti-E2 antibody and the antibody titers in preS-E2 gene-injected group were higher than those in E2-preS gene-immunized group.However,the mice injected with E2 gene did not develop the detectable anti-E2 antibodies until 12 weeks after DNA immunization.After the mice was injected with target cells,the average survival time of the mice in the group immunized with E2 gene alone was longer than that of the group injected with E2 gene fused with HBV preS and was significantly longer than that of the control(P< 0.05).Conclusion.HBV preS might be a humoral enhancer that can affect the abilities of HCV E2 protein to in-duce immune responses in DNA-immunized mice.

  3. Antigen-loaded ER microsomes from APC induce potent immune responses against viral infection.

    Science.gov (United States)

    Sofra, Vassiliki; Mansour, Salah; Liu, Mengya; Gao, Bin; Primpidou, Elisavet; Wang, Ping; Li, Suling

    2009-01-01

    Although matured DC are capable of inducing effective primary and secondary immune responses in vivo, it is difficult to control the maturation and antigen loading in vitro. In this study, we show that ER-enriched microsomal membranes (microsomes) isolated from DC contain more peptide-receptive MHC I and II molecules than, and a similar level of costimulatory molecules to, their parental DC. After loading with defined antigenic peptides, the microsomes deliver antigenic peptide-MHC complexes (pMHC) to both CD4 and CD8 T cells effectively in vivo. The peptide-loaded microsomes accumulate in peripheral lymphoid organs and induce stronger immune responses than peptide-pulsed DC. The microsomal vaccines protect against acute viral infection. Our data demonstrate that peptide-MHC complexes armed microsomes from DC can be an important alternative to DC-based vaccines for protection from viral infection.

  4. White spot syndrome virus strains of different virulence induce distinct immune response in Cherax quadricarinatus.

    Science.gov (United States)

    Gao, Meiling; Li, Fang; Xu, Limei; Zhu, Xiaoming

    2014-07-01

    In this study, we identified three white spot syndrome virus (WSSV) strains (WSSV-CN01, WSSV-CN02 and WSSV-CN03) with significant differences in virulence. Among them, WSSV-CN01 caused significant higher and earlier mortality in redclaw crayfish Cherax quadricarinatus, thus was determined as high-virulent, while WSSV-CN02 and WSSV-CN03 were moderate-virulent and low-virulent. By investigating the total number of the circulating haemocytes and the activity of immune relative enzymes, we demonstrated that the different virulent WSSV strains induced distinct immune response in the host. Notably, a dramatic reduction of circulating haemocytes was observed in the crayfish infected with WSSV-CN01 and WSSV-CN02 but not WSSV-CN03. Further analysis revealed that cell death induced by WSSV-CN01 and WSSV-CN02 might be responsible for the decrease of circulating haemocytes.

  5. Trypanosoma cruzi extracts elicit protective immune response against chemically induced colon and mammary cancers.

    Science.gov (United States)

    Ubillos, Luis; Freire, Teresa; Berriel, Edgardo; Chiribao, María Laura; Chiale, Carolina; Festari, María Florencia; Medeiros, Andrea; Mazal, Daniel; Rondán, Mariella; Bollati-Fogolín, Mariela; Rabinovich, Gabriel A; Robello, Carlos; Osinaga, Eduardo

    2016-04-01

    Trypanosoma cruzi, the protozoan parasite that causes Chagas' disease, has anticancer effects mediated, at least in part, by parasite-derived products which inhibit growth of tumor cells. We investigated whether immunity to T. cruzi antigens could induce antitumor activity, using two rat models which reproduce human carcinogenesis: colon cancer induced by 1,2-dimethylhydrazine (DMH), and mammary cancer induced by N-nitroso-N-methylurea (NMU). We found that vaccination with T. cruzi epimastigote lysates strongly inhibits tumor development in both animal models. Rats immunized with T. cruzi antigens induce activation of both CD4(+) and CD8(+) T cells and splenocytes from these animals showed higher cytotoxic responses against tumors as compared to rats receiving adjuvant alone. Tumor-associated immune responses included increasing number of CD11b/c(+) His48(-) MHC II(+) cells corresponding to macrophages and/or dendritic cells, which exhibited augmented NADPH-oxidase activity. We also found that T. cruzi lysate vaccination developed antibodies specific for colon and mammary rat cancer cells, which were capable of mediating antibody-dependent cellular cytotoxicity (ADCC) in vitro. Anti-T. cruzi antibodies cross-reacted with human colon and breast cancer cell lines and recognized 41/60 (68%) colon cancer and 38/63 (60%) breast cancer samples in a series of 123 human tumors. Our results suggest that T. cruzi antigens can evoke an integrated antitumor response involving both the cellular and humoral components of the immune response and provide novel insights into the understanding of the intricate relationship between parasite infection and tumor growth.

  6. Probiotic Cheese Attenuates Exercise-induced Immune Suppression In Wistar Rats

    OpenAIRE

    Lollo P.C.B.; Cruz A.G.; Morato P.N.; Moura C.S.; Carvalho-Silva L.B.; Oliveira C.A.F.; Faria J.A.F.; Amaya-Farfan J.

    2012-01-01

    Intense physical activity results in a substantial volume of stress and hence a significant probability of immunosuppression in athletes, with milk proteins being, perhaps, the most recommended protein supplements. Consumption of a probiotic cheese can attenuate immune suppression induced by exhausting exercise in rats. A popular Brazilian fresh cheese (Minas Frescal cheese) containing Lactobacillus acidophilus LA14 and Bifidobacterium longum BL05 was fed for 2 wk to adult Wistar rats, which ...

  7. Diet-induced obesity attenuates cytokine production following an immune challenge

    OpenAIRE

    2014-01-01

    Obesity increases susceptibility for numerous diseases and neurological disorders including cardiovascular disease, metabolic syndrome, and dementia. One factor that may contribute to the increased risk for these conditions is the development of chronic inflammation. The current study evaluated whether diet-induced obesity (DIO) affects cognitive performance by increasing neuroinflammation and prolonging the behavioral and inflammatory response to an immune challenge. Adult male C57BL/6J mice...

  8. Maize Prolamins Could Induce a Gluten-Like Cellular Immune Response in Some Celiac Disease Patients

    Science.gov (United States)

    Ortiz-Sánchez, Juan P.; Cabrera-Chávez, Francisco; Calderón de la Barca, Ana M.

    2013-01-01

    Celiac disease (CD) is an autoimmune-mediated enteropathy triggered by dietary gluten in genetically prone individuals. The current treatment for CD is a strict lifelong gluten-free diet. However, in some CD patients following a strict gluten-free diet, the symptoms do not remit. These cases may be refractory CD or due to gluten contamination; however, the lack of response could be related to other dietary ingredients, such as maize, which is one of the most common alternatives to wheat used in the gluten-free diet. In some CD patients, as a rare event, peptides from maize prolamins could induce a celiac-like immune response by similar or alternative pathogenic mechanisms to those used by wheat gluten peptides. This is supported by several shared features between wheat and maize prolamins and by some experimental results. Given that gluten peptides induce an immune response of the intestinal mucosa both in vivo and in vitro, peptides from maize prolamins could also be tested to determine whether they also induce a cellular immune response. Hypothetically, maize prolamins could be harmful for a very limited subgroup of CD patients, especially those that are non-responsive, and if it is confirmed, they should follow, in addition to a gluten-free, a maize-free diet. PMID:24152750

  9. Relish2 mediates bursicon homodimer-induced prophylactic immunity in the mosquito Aedes aegypti.

    Science.gov (United States)

    Zhang, Hongwei; Dong, Shengzhang; Chen, Xi; Stanley, David; Beerntsen, Brenda; Feng, Qili; Song, Qisheng

    2017-02-22

    Bursicon is a neuropeptide hormone consisting of two cystine-knot proteins (burs α and burs β), responsible for cuticle tanning and other developmental processes in insects. Recent studies show that each bursicon subunit forms homodimers that induce prophylactic immunity in Drosophila melanogaster. Here, we investigated the hypothesis that bursicon homodimers act in prophylactic immunity in insects, and possibly arthropods, generally, using the mosquito, Aedes aegypti. We found that burs α and burs β are expressed in larvae, pupae and newly emerged adults. Treating newly emerged Ae. aegypti and D. melanogaster adults with recombinant bursicon (r-bursicon) heterodimer led to cuticle tanning in both species. Treating larvae and adults with r-bursicon homodimers led to up-regulation of five anti-microbial peptide (AMP) genes, noting the possibility that bursicon heterodimers also lead to up-regulation of these genes can not been excluded. The induced AMPs effectively suppressed the growth of bacteria in vitro. RNAi knock-down of the transcriptional factor Relish2 abolished the influence of r-bursicon homodimers on AMP production. We infer the bursicon homodimers induce expression of AMP genes via Relish2 in Ae. aegypti, as prophylactic immunity to protect mosquitoes during the vulnerable stages of each molt.

  10. Relish2 mediates bursicon homodimer-induced prophylactic immunity in the mosquito Aedes aegypti

    Science.gov (United States)

    Zhang, Hongwei; Dong, Shengzhang; Chen, Xi; Stanley, David; Beerntsen, Brenda; Feng, Qili; Song, Qisheng

    2017-01-01

    Bursicon is a neuropeptide hormone consisting of two cystine-knot proteins (burs α and burs β), responsible for cuticle tanning and other developmental processes in insects. Recent studies show that each bursicon subunit forms homodimers that induce prophylactic immunity in Drosophila melanogaster. Here, we investigated the hypothesis that bursicon homodimers act in prophylactic immunity in insects, and possibly arthropods, generally, using the mosquito, Aedes aegypti. We found that burs α and burs β are expressed in larvae, pupae and newly emerged adults. Treating newly emerged Ae. aegypti and D. melanogaster adults with recombinant bursicon (r-bursicon) heterodimer led to cuticle tanning in both species. Treating larvae and adults with r-bursicon homodimers led to up-regulation of five anti-microbial peptide (AMP) genes, noting the possibility that bursicon heterodimers also lead to up-regulation of these genes can not been excluded. The induced AMPs effectively suppressed the growth of bacteria in vitro. RNAi knock-down of the transcriptional factor Relish2 abolished the influence of r-bursicon homodimers on AMP production. We infer the bursicon homodimers induce expression of AMP genes via Relish2 in Ae. aegypti, as prophylactic immunity to protect mosquitoes during the vulnerable stages of each molt. PMID:28225068

  11. Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8+ T cell responses

    Science.gov (United States)

    Precopio, Melissa L.; Betts, Michael R.; Parrino, Janie; Price, David A.; Gostick, Emma; Ambrozak, David R.; Asher, Tedi E.; Douek, Daniel C.; Harari, Alexandre; Pantaleo, Giuseppe; Bailer, Robert; Graham, Barney S.; Roederer, Mario; Koup, Richard A.

    2007-01-01

    Vaccinia virus immunization provides lifelong protection against smallpox, but the mechanisms of this exquisite protection are unknown. We used polychromatic flow cytometry to characterize the functional and phenotypic profile of CD8+ T cells induced by vaccinia virus immunization in a comparative vaccine trial of modified vaccinia virus Ankara (MVA) versus Dryvax immunization in which protection was assessed against subsequent Dryvax challenge. Vaccinia virus–specific CD8+ T cells induced by both MVA and Dryvax were highly polyfunctional; they degranulated and produced interferon γ, interleukin 2, macrophage inflammatory protein 1β, and tumor necrosis factor α after antigenic stimulation. Responding CD8+ T cells exhibited an unusual phenotype (CD45RO−CD27intermediate). The unique phenotype and high degree of polyfunctionality induced by vaccinia virus also extended to inserted HIV gene products of recombinant NYVAC. This quality of the CD8+ T cell response may be at least partially responsible for the profound efficacy of these vaccines in protection against smallpox and serves as a benchmark against which other vaccines can be evaluated. PMID:17535971

  12. Native cellulose nanofibrills induce immune tolerance in vitro by acting on dendritic cells

    Science.gov (United States)

    Tomić, Sergej; Kokol, Vanja; Mihajlović, Dušan; Mirčić, Aleksandar; Čolić, Miodrag

    2016-08-01

    Cellulose nanofibrills (CNFs) are attractive biocompatible, natural nanomaterials for wide biomedical applications. However, the immunological mechanisms of CNFs have been poorly investigated. Considering that dendritic cells (DCs) are the key immune regulatory cells in response to nanomaterials, our aim was to investigate the immunological mechanisms of CNFs in a model of DC-mediated immune response. We found that non-toxic concentrations of CNFs impaired the differentiation, and subsequent maturation of human monocyte-derived (mo)-DCs. In a co-culture with CD4+T cells, CNF-treated mo-DCs possessed a weaker allostimulatory and T helper (Th)1 and Th17 polarizing capacity, but a stronger capacity to induce Th2 cells and CD4+CD25hiFoxP3hi regulatory T cells. This correlated with an increased immunoglobulin-like transcript-4 and indolamine dioxygenase-1 expression by CNF-treated mo-DCs, following the partial internalization of CNFs and the accumulation of CD209 and actin bundles at the place of contacts with CNFs. Cumulatively, we showed that CNFs are able to induce an active immune tolerance by inducing tolerogenic DCs, which could be beneficial for the application of CNFs in wound healing and chronic inflammation therapies.

  13. Immunization of Mice with a Live Transconjugant Shigella Hybrid Strain Induced Th1 and Th17 Cell-Mediated Immune Responses and Confirmed Passive Protection Against Heterologous Shigellae.

    Science.gov (United States)

    Nag, D; Koley, H; Sinha, R; Mukherjee, P; Sarkar, C; Withey, J H; Gachhui, R

    2016-02-01

    An avirulent, live transconjugant Shigella hybrid (LTSHΔstx) strain was constructed in our earlier study by introducing a plasmid vector, pPR1347, into a Shiga toxin gene deleted Shigella dysenteriae 1. Three successive oral administrations of LTSHΔstx to female adult mice produced comprehensive passive heterologous protection in their offspring against challenge with wild-type shigellae. Production of NO and different cytokines such asIL-12p70, IL-1β and IL-23 in peritoneal mice macrophages indicated that LTSHΔstx induced innate and adaptive immunity in mice. Furthermore, production of IFN-γ, IL-10 and IL-17 in LTSH-primed splenic CD4+ T cell suggested that LTSHΔstx may induce Th1 and Th17 cell-mediated immune responses. Exponential increase of the serum IgG and IgA titre against whole shigellae was observed in immunized adult mice during and after the immunization with the highest peak on day 35. Antigen-specific sIgA was also determined from intestinal lavage of immunized mice. The stomach extracts of neonates from immunized mice, mainly containing mother's milk, contained significant levels of anti-LTSHΔstx immunoglobulin. These studies suggest that the LTSHΔstx could be a new live oral vaccine candidate against shigellosis in the near future.

  14. Inflammation Mediated Metastasis: Immune Induced Epithelial-To-Mesenchymal Transition in Inflammatory Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Evan N Cohen

    Full Text Available Inflammatory breast cancer (IBC is the most insidious form of locally advanced breast cancer; about a third of patients have distant metastasis at initial staging. Emerging evidence suggests that host factors in the tumor microenvironment may interact with underlying IBC cells to make them aggressive. It is unknown whether immune cells associated to the IBC microenvironment play a role in this scenario to transiently promote epithelial to mesenchymal transition (EMT in these cells. We hypothesized that soluble factors secreted by activated immune cells can induce an EMT in IBC and thus promote metastasis. In a pilot study of 16 breast cancer patients, TNF-α production by peripheral blood T cells was correlated with the detection of circulating tumor cells expressing EMT markers. In a variety of IBC model cell lines, soluble factors from activated T cells induced expression of EMT-related genes, including FN1, VIM, TGM2, ZEB1. Interestingly, although IBC cells exhibited increased invasion and migration following exposure to immune factors, the expression of E-cadherin (CDH1, a cell adhesion molecule, increased uniquely in IBC cell lines but not in non-IBC cell lines. A combination of TNF-α, IL-6, and TGF-β was able to recapitulate EMT induction in IBC, and conditioned media preloaded with neutralizing antibodies against these factors exhibited decreased EMT. These data suggest that release of cytokines by activated immune cells may contribute to the aggressiveness of IBC and highlight these factors as potential target mediators of immune-IBC interaction.

  15. Partially Protective Immunity Induced by a 20 kDa Protein Secreted by Trichinella spiralis Stichocytes.

    Directory of Open Access Journals (Sweden)

    Kuo Bi

    Full Text Available Trichinella spiralis infection induces protective immunity against re-infection in animal models. Identification of the antigens eliciting acquired immunity during infection is important for vaccine development against Trichinella infection and immunodiagnosis.The T. spiralis adult cDNA library was immunoscreened with sera from pigs experimentally infected with 20,000 infective T. spiralis larvae. Total 43 positive clones encoding for 28 proteins were identified; one of the immunodominant proteins was 20 kDa Ts-ES-1 secreted by Trichinella stichocytes and existing in the excretory/secretory (ES products of T. spiralis adult and muscle larval worms. Ts-ES-1 contains 172 amino acids with a typical signal peptide in the first 20 amino acids. The expression of Ts-ES-1 was detected in both the adult and muscle larval stages at the mRNA and protein expression levels. Mice immunized with recombinant Ts-ES-1 (rTs-ES-1 formulated with ISA50v2 adjuvant exhibited a significant worm reduction in both the adult worm (27% and muscle larvae burden (42.1% after a challenge with T. spiralis compared to the adjuvant control group (p<0.01. The rTs-ES-1-induced protection was associated with a high level of specific anti-Ts-ES-1 IgG antibodies and a Th1/Th2 mixed immune response.The newly identified rTs-ES-1 is an immunodominant protein secreted by Trichinella stichocytes during natural infection and enables to the induction of partial protective immunity in vaccinated mice against Trichinella infection. Therefore, rTs-ES-1 is a potential candidate for vaccine development against trichinellosis.

  16. Killer B Lymphocytes and their Fas Ligand Positive Exosomes as Inducers of Immune Tolerance

    Directory of Open Access Journals (Sweden)

    Steven Karl Lundy

    2015-03-01

    Full Text Available Induction of immune tolerance is a key process by which the immune system is educated to modulate reactions against benign stimuli such as self-antigens and commensal microbes. Understanding and harnessing the natural mechanisms of immune tolerance may become an increasingly useful strategy for treating many types of allergic and autoimmune diseases, as well as for improving the acceptance of solid organ transplants. Our laboratory and others have been interested in the natural ability of some B lymphocytes to express the death-inducing molecule Fas ligand (FasL, and their ability to kill T helper (TH lymphocytes. We have recently shown that experimental transformation of human B cells by a non-replicative variant of Epstein-Barr virus (EBV consistently resulted in high expression of functional FasL protein. The production and release of FasL+ exosomes that co-expressed MHC Class II molecules and had the capacity to kill antigen-specific TH cells was also observed. Several lines of evidence indicate that FasL+ B cells and FasL+MHCII+ exosomes have important roles in natural immune tolerance and have a great deal of therapeutic potential. Taken together, these findings suggest that EBV-immortalized human B lymphoblastoid cell lines could be used as cellular factories for FasL+ exosomes, which would be employed to therapeutically establish and/or regain immune tolerance toward specific antigens. The goals of this review are to summarize current knowledge of the roles of FasL+ B cells and exosomes in immune regulation, and to suggest methods of manipulating killer B cells and FasL+ exosomes for clinical purposes.

  17. Genetically attenuated, P36p-deficient malarial sporozoites induce protective immunity and apoptosis of infected liver cells.

    NARCIS (Netherlands)

    Dijk, M.R. van; Douradinha, B.; Franke-Fayard, B.; Heussler, V.; Dooren, M.W. van; Schaijk, B.C.L. van; Gemert, G.J.A. van; Sauerwein, R.W.; Mota, M.M.; Waters, A.P.; Janse, C.J.

    2005-01-01

    Immunization with Plasmodium sporozoites that have been attenuated by gamma-irradiation or specific genetic modification can induce protective immunity against subsequent malaria infection. The mechanism of protection is only known for radiation-attenuated sporozoites, involving cell-mediated and hu

  18. Biotechnological approaches for field applications of chitooligosaccharides (COS) to induce innate immunity in plants.

    Science.gov (United States)

    Das, Subha Narayan; Madhuprakash, Jogi; Sarma, P V S R N; Purushotham, Pallinti; Suma, Katta; Manjeet, Kaur; Rambabu, Samudrala; Gueddari, Nour Eddine El; Moerschbacher, Bruno M; Podile, Appa Rao

    2015-03-01

    Plants have evolved mechanisms to recognize a wide range of pathogen-derived molecules and to express induced resistance against pathogen attack. Exploitation of induced resistance, by application of novel bioactive elicitors, is an attractive alternative for crop protection. Chitooligosaccharide (COS) elicitors, released during plant fungal interactions, induce plant defenses upon recognition. Detailed analyses of structure/function relationships of bioactive chitosans as well as recent progress towards understanding the mechanism of COS sensing in plants through the identification and characterization of their cognate receptors have generated fresh impetus for approaches that would induce innate immunity in plants. These progresses combined with the application of chitin/chitosan/COS in disease management are reviewed here. In considering the field application of COS, however, efficient and large-scale production of desired COS is a challenging task. The available methods, including chemical or enzymatic hydrolysis and chemical or biotechnological synthesis to produce COS, are also reviewed.

  19. Oral Immunization with a Recombinant Lactococcus lactis-Expressing HIV-1 Antigen on Group A Streptococcus Pilus Induces Strong Mucosal Immunity in the Gut.

    Science.gov (United States)

    Chamcha, Venkateswarlu; Jones, Andrew; Quigley, Bernard R; Scott, June R; Amara, Rama Rao

    2015-11-15

    The induction of a potent humoral and cellular immune response in mucosal tissue is important for the development of an effective HIV vaccine. Most of the current HIV vaccines under development use the i.m. route for immunization, which is relatively poor in generating potent and long-lived mucosal immune responses. In this article, we explore the ability of an oral vaccination with a probiotic organism, Lactococcus lactis, to elicit HIV-specific immune responses in the mucosal and systemic compartments of BALB/c mice. We expressed the HIV-1 Gag-p24 on the tip of the T3 pilus of Streptococcus pyogenes as a fusion to the Cpa protein (LL-Gag). After four monthly LL-Gag oral immunizations, we observed strong Gag-specific IgG and IgA responses in serum, feces, and vaginal secretions. However, the Gag-specific CD8 T cell responses in the blood were at or below our detection limit. After an i.m. modified vaccinia Ankara/Gag boost, we observed robust Gag-specific CD8 T cell responses both in systemic and in mucosal tissues, including intraepithelial and lamina propria lymphocytes of the small intestine, Peyer's patches, and mesenteric lymph nodes. Consistent with strong immunogenicity, the LL-Gag induced activation of CD11c(+) CD11b(+) dendritic cells in the Peyer's patches after oral immunization. Our results demonstrate that oral immunization with L. lactis expressing an Ag on the tip of the group A Streptococcus pilus serves as an excellent vaccine platform to induce strong mucosal humoral and cellular immunity against HIV.

  20. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression.

    Science.gov (United States)

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Giao Ly, Nancy Ngoc; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Barilla, Rocky; Daley, Donnele; Greco, Stephanie H; Torres-Hernandez, Alejandro; Pergamo, Matthew; Ochi, Atsuo; Zambirinis, Constantinos P; Pansari, Mridul; Rendon, Mauricio; Tippens, Daniel; Hundeyin, Mautin; Mani, Vishnu R; Hajdu, Cristina; Engle, Dannielle; Miller, George

    2016-04-14

    Neoplastic pancreatic epithelial cells are believed to die through caspase 8-dependent apoptotic cell death, and chemotherapy is thought to promote tumour apoptosis. Conversely, cancer cells often disrupt apoptosis to survive. Another type of programmed cell death is necroptosis (programmed necrosis), but its role in pancreatic ductal adenocarcinoma (PDA) is unclear. There are many potential inducers of necroptosis in PDA, including ligation of tumour necrosis factor receptor 1 (TNFR1), CD95, TNF-related apoptosis-inducing ligand (TRAIL) receptors, Toll-like receptors, reactive oxygen species, and chemotherapeutic drugs. Here we report that the principal components of the necrosome, receptor-interacting protein (RIP)1 and RIP3, are highly expressed in PDA and are further upregulated by the chemotherapy drug gemcitabine. Blockade of the necrosome in vitro promoted cancer cell proliferation and induced an aggressive oncogenic phenotype. By contrast, in vivo deletion of RIP3 or inhibition of RIP1 protected against oncogenic progression in mice and was associated with the development of a highly immunogenic myeloid and T cell infiltrate. The immune-suppressive tumour microenvironment associated with intact RIP1/RIP3 signalling depended in part on necroptosis-induced expression of the chemokine attractant CXCL1, and CXCL1 blockade protected against PDA. Moreover, cytoplasmic SAP130 (a subunit of the histone deacetylase complex) was expressed in PDA in a RIP1/RIP3-dependent manner, and Mincle--its cognate receptor--was upregulated in tumour-infiltrating myeloid cells. Ligation of Mincle by SAP130 promoted oncogenesis, whereas deletion of Mincle protected against oncogenesis and phenocopied the immunogenic reprogramming of the tumour microenvironment that was induced by RIP3 deletion. Cellular depletion suggested that whereas inhibitory macrophages promote tumorigenesis in PDA, they lose their immune-suppressive effects when RIP3 or Mincle is deleted. Accordingly, T cells

  1. Interleukin-17-induced protein lipocalin 2 is dispensable for immunity to oral candidiasis.

    Science.gov (United States)

    Ferreira, Maria Carolina; Whibley, Natasha; Mamo, Anna J; Siebenlist, Ulrich; Chan, Yvonne R; Gaffen, Sarah L

    2014-03-01

    Oropharyngeal candidiasis (OPC; thrush) is an opportunistic fungal infection caused by the commensal microbe Candida albicans. Immunity to OPC is strongly dependent on CD4+ T cells, particularly those of the Th17 subset. Interleukin-17 (IL-17) deficiency in mice or humans leads to chronic mucocutaneous candidiasis, but the specific downstream mechanisms of IL-17-mediated host defense remain unclear. Lipocalin 2 (Lcn2; 24p3; neutrophil gelatinase-associated lipocalin [NGAL]) is an antimicrobial host defense factor produced in response to inflammatory cytokines, particularly IL-17. Lcn2 plays a key role in preventing iron acquisition by bacteria that use catecholate-type siderophores, and lipocalin 2(-/-) mice are highly susceptible to infection by Escherichia coli and Klebsiella pneumoniae. The role of Lcn2 in mediating immunity to fungi is poorly defined. Accordingly, in this study, we evaluated the role of Lcn2 in immunity to oral infection with C. albicans. Lcn2 is strongly upregulated following oral infection with C. albicans, and its expression is almost entirely abrogated in mice with defective IL-17 signaling (IL-17RA(-/-) or Act1(-/-) mice). However, Lcn2(-/-) mice were completely resistant to OPC, comparably to wild-type (WT) mice. Moreover, Lcn2 deficiency mediated protection from OPC induced by steroid immunosuppression. Therefore, despite its potent regulation during C. albicans infection, Lcn2 is not required for immunity to mucosal candidiasis.

  2. IFN-λ: A New Inducer of Local Immunity against Cancer and Infections

    Science.gov (United States)

    Lasfar, Ahmed; Zloza, Andrew; de la Torre, Andrew; Cohen-Solal, Karine A.

    2016-01-01

    IFN-λ is the newly established type III IFN with unique immunomodulatory functions. In contrast to the IFN-α/β family and to some extent IFN-γ, IFN-λ is apparently acting in specific areas of the body to activate resident immune cells and induces a local immunity, instrumental in preventing particular infections and also keeping transformed cells under control. Mucosal areas of lung and gastrointestinal tracts are now under scrutiny to elucidate the immune mechanisms triggered by IFN-λ and leading to viral protection. New evidence also indicates the crucial role of IFN-λ in promoting innate immunity in solid cancer models. Based on its unique biological activities among the IFN system, new immunotherapeutic approaches are now emerging for the treatment of cancer, infection, and autoimmune diseases. In the present review, we highlight the recent advances of IFN-λ immunomodulatory functions. We also discuss the perspectives of IFN-λ as a therapeutic agent. PMID:28018361

  3. Neural progenitor cells from human induced pluripotent stem cells generated less autogenous immune response.

    Science.gov (United States)

    Huang, Ke; Liu, PengFei; Li, Xiang; Chen, ShuBin; Wang, LiHui; Qin, Li; Su, ZhengHui; Huang, WenHao; Liu, Juli; Jia, Bei; Liu, Jie; Cai, JingLei; Pei, DuanQing; Pan, GuangJin

    2014-02-01

    The breakthrough development of induced pluripotent stem cells (iPSCs) raises the prospect of patient-specific treatment for many diseases through the replacement of affected cells. However, whether iPSC-derived functional cell lineages generate a deleterious immune response upon auto-transplantation remains unclear. In this study, we differentiated five human iPSC lines from skin fibroblasts and urine cells into neural progenitor cells (NPCs) and analyzed their immunogenicity. Through co-culture with autogenous peripheral blood mononuclear cells (PBMCs), we showed that both somatic cells and iPSC-derived NPCs do not stimulate significant autogenous PBMC proliferation. However, a significant immune reaction was detected when these cells were co-cultured with allogenous PBMCs. Furthermore, no significant expression of perforin or granzyme B was detected following stimulation of autogenous immune effector cells (CD3(+)CD8(-) T cells, CD3(+)CD8(+) T cells or CD3(-)CD56(+) NK cells) by NPCs in both PBMC and T cell co-culture systems. These results suggest that human iPSC-derived NPCs may not initiate an immune response in autogenous transplants, and thus set a base for further preclinical evaluation of human iPSCs.

  4. Immunity induced by a broad class of inorganic crystalline materials is directly controlled by their chemistry.

    Science.gov (United States)

    Williams, Gareth R; Fierens, Kaat; Preston, Stephen G; Lunn, Daniel; Rysnik, Oliwia; De Prijck, Sofie; Kool, Mirjam; Buckley, Hannah C; Lambrecht, Bart N; O'Hare, Dermot; Austyn, Jonathan M

    2014-06-02

    There is currently no paradigm in immunology that enables an accurate prediction of how the immune system will respond to any given agent. Here we show that the immunological responses induced by members of a broad class of inorganic crystalline materials are controlled purely by their physicochemical properties in a highly predictable manner. We show that structurally and chemically homogeneous layered double hydroxides (LDHs) can elicit diverse human dendritic cell responses in vitro. Using a systems vaccinology approach, we find that every measured response can be modeled using a subset of just three physical and chemical properties for all compounds tested. This correlation can be reduced to a simple linear equation that enables the immunological responses stimulated by newly synthesized LDHs to be predicted in advance from these three parameters alone. We also show that mouse antigen-specific antibody responses in vivo and human macrophage responses in vitro are controlled by the same properties, suggesting they may control diverse responses at both individual component and global levels of immunity. This study demonstrates that immunity can be determined purely by chemistry and opens the possibility of rational manipulation of immunity for therapeutic purposes.

  5. MALT1 induced immune response is governed by miR-2909 RNomics.

    Science.gov (United States)

    Kaul, Deepak; Arora, M; Garg, A; Sharma, S

    2015-03-01

    The paracaspase mucosa-associated lymphoid tissue 1 (MALT1) has been widely recognized to play crucial role in lymphocyte activation, development and the generation of lymphomas through the modulation of innate and adaptive immune responses. Our results reported here provide evidence for the first time to support the view that MALT1 exerts its effect upon immune response involving genes coding for retinoic acid-inducible gene 1 (RIG1); interferon-β (IFN-β); apo-lipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3G (APOBEC3G); IFN-γ; chemokine (C-C motif) ligand 5 (CCL5) and interleukin-17 (IL-17) through the initiation of cellular miR-2909 RNomics. This ensures sustained expression of specificity protein 1 (SP1)-dependent regulation of genes that in-turn governs MALT1 induced immune response. Based upon these results, a mechanistic-pathway is proposed that links the epigenomic-interplay between MALT1 and miR-2909.

  6. Transit through the flea vector induces a pretransmission innate immunity resistance phenotype in Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Viveka Vadyvaloo

    2010-02-01

    Full Text Available Yersinia pestis, the agent of plague, is transmitted to mammals by infected fleas. Y. pestis exhibits a distinct life stage in the flea, where it grows in the form of a cohesive biofilm that promotes transmission. After transmission, the temperature shift to 37 degrees C induces many known virulence factors of Y. pestis that confer resistance to innate immunity. These factors are not produced in the low-temperature environment of the flea, however, suggesting that Y. pestis is vulnerable to the initial encounter with innate immune cells at the flea bite site. In this study, we used whole-genome microarrays to compare the Y. pestis in vivo transcriptome in infective fleas to in vitro transcriptomes in temperature-matched biofilm and planktonic cultures, and to the previously characterized in vivo gene expression profile in the rat bubo. In addition to genes involved in metabolic adaptation to the flea gut and biofilm formation, several genes with known or predicted roles in resistance to innate immunity and pathogenicity in the mammal were upregulated in the flea. Y. pestis from infected fleas were more resistant to phagocytosis by macrophages than in vitro-grown bacteria, in part attributable to a cluster of insecticidal-like toxin genes that were highly expressed only in the flea. Our results suggest that transit through the flea vector induces a phenotype that enhances survival and dissemination of Y. pestis after transmission to the mammalian host.

  7. Th immune response induced by H pylori vaccine with chitosan as adjuvant and its relation to immune protection

    Institute of Scientific and Technical Information of China (English)

    Yong Xie; Nan-Jin Zhou; Yan-Feng Gong; Xiao-Jiang Zhou; Jiang Chen; Si-Juan Hu; Nong-Hua Lu; Xiao-Hua Hou

    2007-01-01

    was significantly higher in the groups with chitosan as an adjuvant than in other groups without adjuvant (P < 0.05). After challenge, the level of IL-4 was significantly higher in the groups with chitosan particles as an adjuvant than in the group with CT as an adjuvant (P < 0.05), and in the group with chitosan solution as an adjuvant, the level of IL-4 was significantly higher than that in control group, non-adjuvant group and the groups with CT (P < 0.05 or 0.001). The ratio of anti- H pylori IgG2a/IgGl in serum was significantly lower in the groups with chitosan as an adjuvant than in the groups with CT as an adjuvant or without adjuvant (P < 0.01).CONCLUSION: H pylori vaccine with chitosan as an adjuvant can protect against H pylori infection and induce both Thl and Th2 type immune response.

  8. Rotavirus nonstructural protein 1 antagonizes innate immune response by interacting with retinoic acid inducible gene I

    Directory of Open Access Journals (Sweden)

    Qin Lan

    2011-12-01

    Full Text Available Abstract Background The nonstructural protein 1 (NSP1 of rotavirus has been reported to block interferon (IFN signaling by mediating proteasome-dependent degradation of IFN-regulatory factors (IRFs and (or the β-transducin repeat containing protein (β-TrCP. However, in addition to these targets, NSP1 may subvert innate immune responses via other mechanisms. Results The NSP1 of rotavirus OSU strain as well as the IRF3 binding domain truncated NSP1 of rotavirus SA11 strain are unable to degrade IRFs, but can still inhibit host IFN response, indicating that NSP1 may target alternative host factor(s other than IRFs. Overexpression of NSP1 can block IFN-β promoter activation induced by the retinoic acid inducible gene I (RIG-I, but does not inhibit IFN-β activation induced by the mitochondrial antiviral-signaling protein (MAVS, indicating that NSP1 may target RIG-I. Immunoprecipitation experiments show that NSP1 interacts with RIG-I independent of IRF3 binding domain. In addition, NSP1 induces down-regulation of RIG-I in a proteasome-independent way. Conclusions Our findings demonstrate that inhibition of RIG-I mediated type I IFN responses by NSP1 may contribute to the immune evasion of rotavirus.

  9. Immune modulatory effects of IL-22 on allergen-induced pulmonary inflammation.

    Directory of Open Access Journals (Sweden)

    Ping Fang

    Full Text Available IL-22 is a Th17/Th22 cytokine that is increased in asthma. However, recent animal studies showed controversial findings in the effects of IL-22 in allergic asthma. To determine the role of IL-22 in ovalbumin-induced allergic inflammation we generated inducible lung-specific IL-22 transgenic mice. Transgenic IL-22 expression and signaling activity in the lung were determined. Ovalbumin (OVA-induced pulmonary inflammation, immune responses, and airway hyperresponsiveness (AHR were examined and compared between IL-22 transgenic mice and wild type controls. Following doxycycline (Dox induction, IL-22 protein was readily detected in the large (CC10 promoter and small (SPC promoter airway epithelial cells. IL-22 signaling was evidenced by phosphorylated STAT3. After OVA sensitization and challenge, compared to wild type littermates, IL-22 transgenic mice showed decreased eosinophils in the bronchoalveolar lavage (BAL, and in lung tissue, decreased mucus metaplasia in the airways, and reduced AHR. Among the cytokines and chemokines examined, IL-13 levels were reduced in the BAL fluid as well as in lymphocytes from local draining lymph nodes of IL-22 transgenic mice. No effect was seen on the levels of serum total or OVA-specific IgE or IgG. These findings indicate that IL-22 has immune modulatory effects on pulmonary inflammatory responses in allergen-induced asthma.

  10. Human CD8+ T cells mediate protective immunity induced by a human malaria vaccine in human immune system mice.

    Science.gov (United States)

    Li, Xiangming; Huang, Jing; Zhang, Min; Funakoshi, Ryota; Sheetij, Dutta; Spaccapelo, Roberta; Crisanti, Andrea; Nussenzweig, Victor; Nussenzweig, Ruth S; Tsuji, Moriya

    2016-08-31

    A number of studies have shown that CD8+ T cells mediate protective anti-malaria immunity in a mouse model. However, whether human CD8+ T cells play a role in protection against malaria remains unknown. We recently established human immune system (HIS) mice harboring functional human CD8+ T cells (HIS-CD8 mice) by transduction with HLA-A∗0201 and certain human cytokines using recombinant adeno-associated virus-based gene transfer technologies. These HIS-CD8 mice mount a potent, antigen-specific HLA-A∗0201-restricted human CD8+ T-cell response upon immunization with a recombinant adenovirus expressing a human malaria antigen, the Plasmodium falciparum circumsporozoite protein (PfCSP), termed AdPfCSP. In the present study, we challenged AdPfCSP-immunized HIS-CD8 mice with transgenic Plasmodium berghei sporozoites expressing full-length PfCSP and found that AdPfCSP-immunized (but not naïve) mice were protected against subsequent malaria challenge. The level of the HLA-A∗0201-restricted, PfCSP-specific human CD8+ T-cell response was closely correlated with the level of malaria protection. Furthermore, depletion of human CD8+ T cells from AdPfCSP-immunized HIS-CD8 mice almost completely abolished the anti-malaria immune response. Taken together, our data show that human CD8+ T cells mediate protective anti-malaria immunity in vivo.

  11. STING agonists induce an innate antiviral immune response against hepatitis B virus.

    Science.gov (United States)

    Guo, Fang; Han, Yanxing; Zhao, Xuesen; Wang, Jianghua; Liu, Fei; Xu, Chunxiao; Wei, Lai; Jiang, Jian-Dong; Block, Timothy M; Guo, Ju-Tao; Chang, Jinhong

    2015-02-01

    Chronicity of hepatitis B virus (HBV) infection is due to the failure of a host to mount a sufficient immune response to clear the virus. The aim of this study was to identify small-molecular agonists of the pattern recognition receptor (PRR)-mediated innate immune response to control HBV infection. To achieve this goal, a coupled mouse macrophage and hepatocyte culture system mimicking the intrahepatic environment was established and used to screen small-molecular compounds that activate macrophages to produce cytokines, which in turn suppress HBV replication in a hepatocyte-derived stable cell line supporting HBV replication in a tetracycline-inducible manner. An agonist of the mouse stimulator of interferon (IFN) genes (STING), 5,6-dimethylxanthenone-4-acetic acid (DMXAA), was found to induce a robust cytokine response in macrophages that efficiently suppressed HBV replication in mouse hepatocytes by reducing the amount of cytoplasmic viral nucleocapsids. Profiling of cytokines induced by DMXAA and agonists of representative Toll-like receptors (TLRs) in mouse macrophages revealed that, unlike TLR agonists that induced a predominant inflammatory cytokine/chemokine response, the STING agonist induced a cytokine response dominated by type I IFNs. Moreover, as demonstrated in an HBV hydrodynamic mouse model, intraperitoneal administration of DMXAA significantly induced the expression of IFN-stimulated genes and reduced HBV DNA replication intermediates in the livers of mice. This study thus proves the concept that activation of the STING pathway induces an antiviral cytokine response against HBV and that the development of small-molecular human STING agonists as immunotherapeutic agents for treatment of chronic hepatitis B is warranted.

  12. Prevention of house dust mite induced allergic airways disease in mice through immune tolerance.

    Science.gov (United States)

    Agua-Doce, Ana; Graca, Luis

    2011-01-01

    Allergic airways disease is a consequence of a Th2 response to an allergen leading to a series of manifestations such as production of allergen-specific IgE, inflammatory infiltrates in the airways, and airway hyper-reactivity (AHR). Several strategies have been reported for tolerance induction to allergens leading to protection from allergic airways disease. We now show that CD4 blockade at the time of house dust mite sensitization induces antigen-specific tolerance in mice. Tolerance induction is robust enough to be effective in pre-sensitized animals, even in those where AHR was pre-established. Tolerant mice are protected from airways eosinophilia, Th2 lung infiltration, and AHR. Furthermore, anti-CD4 treated mice remain immune competent to mount immune responses, including Th2, to unrelated antigens. Our findings, therefore, describe a strategy for tolerance induction potentially applicable to other immunogenic proteins besides allergens.

  13. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria.

    Science.gov (United States)

    Miao, Edward A; Leaf, Irina A; Treuting, Piper M; Mao, Dat P; Dors, Monica; Sarkar, Anasuya; Warren, Sarah E; Wewers, Mark D; Aderem, Alan

    2010-12-01

    Macrophages mediate crucial innate immune responses via caspase-1-dependent processing and secretion of interleukin 1β (IL-1β) and IL-18. Although infection with wild-type Salmonella typhimurium is lethal to mice, we show here that a strain that persistently expresses flagellin was cleared by the cytosolic flagellin-detection pathway through the activation of caspase-1 by the NLRC4 inflammasome; however, this clearance was independent of IL-1β and IL-18. Instead, caspase-1-induced pyroptotic cell death released bacteria from macrophages and exposed the bacteria to uptake and killing by reactive oxygen species in neutrophils. Similarly, activation of caspase-1 cleared unmanipulated Legionella pneumophila and Burkholderia thailandensis by cytokine-independent mechanisms. This demonstrates that activation of caspase-1 clears intracellular bacteria in vivo independently of IL-1β and IL-18 and establishes pyroptosis as an efficient mechanism of bacterial clearance by the innate immune system.

  14. Zinc influences innate immune responses in children with enterotoxigenic Escherichia coli-induced diarrhea.

    Science.gov (United States)

    Sheikh, Alaullah; Shamsuzzaman, Sohel; Ahmad, Shaikh Meshbahuddin; Nasrin, Dilruba; Nahar, Setarun; Alam, Mohammad Murshid; Al Tarique, Abdullah; Begum, Yasmin Ara; Qadri, Syed Saleheen; Chowdhury, Mohiul Islam; Saha, Amit; Larson, Charles P; Qadri, Firdausi

    2010-05-01

    Information is limited on the effect of zinc on immune responses in children with diarrhea due to enterotoxigenic Escherichia coli (ETEC), the most common bacterial pathogen in children. We studied the immunological effect of zinc treatment (20 mg/d) and supplementation (10 mg/d) in children with diarrhea due to ETEC. A total of 148 children aged 6-24 mo were followed up for 9 mo after a 10-d zinc treatment (ZT; n = 74) or a 10-d zinc treatment plus 3-mo supplementation (ZT+S; n = 74), as well as 50 children with ETEC-induced diarrhea that were not treated with zinc (UT). Fifty control children (HC) of the same age group from the same location were also studied. Serum zinc concentrations were higher in both the ZT (P immunity against ETEC infection in children.

  15. Fungal innate immunity induced by bacterial microbe-associated molecular patterns (MAMPs)

    DEFF Research Database (Denmark)

    Ip Cho, Simon; Sundelin, Thomas; Erbs, Gitte

    2016-01-01

    Plants and animals detect bacterial presence through Microbe-Associated Molecular Patterns (MAMPs) which induce an innate immune response. The field of fungal-bacterial interaction at the molecular level is still in its infancy and little is known about MAMPs and their detection by fungi. Exposing...... Fusarium graminearum to bacterial MAMPs led to increased fungal membrane hyperpolarization, a putative defense response, and a range of transcriptional responses. The fungus reacted with a different transcript profile to each of the three tested MAMPs, although a core set of genes related to energy...... for further interactions with beneficial or pathogenic bacteria, and constitute a fungal innate immune response with similarities to those of plants and animals....

  16. Immunization with Escherichia coli outer membrane vesicles protects bacteria-induced lethality via Th1 and Th17 cell responses.

    Science.gov (United States)

    Kim, Oh Youn; Hong, Bok Sil; Park, Kyong-Su; Yoon, Yae Jin; Choi, Seng Jin; Lee, Won Hee; Roh, Tae-Young; Lötvall, Jan; Kim, Yoon-Keun; Gho, Yong Song

    2013-04-15

    Outer membrane vesicles (OMVs), secreted from Gram-negative bacteria, are spherical nanometer-sized proteolipids enriched with outer membrane proteins. OMVs, also known as extracellular vesicles, have gained interests for use as nonliving complex vaccines and have been examined for immune-stimulating effects. However, the detailed mechanism on how OMVs elicit the vaccination effect has not been studied extensively. In this study, we investigated the immunological mechanism governing the protective immune response of OMV vaccines. Immunization with Escherichia coli-derived OMVs prevented bacteria-induced lethality and OMV-induced systemic inflammatory response syndrome. As verified by adoptive transfer and gene-knockout studies, the protective effect of OMV immunization was found to be primarily by the stimulation of T cell immunity rather than B cell immunity, especially by the OMV-Ag-specific production of IFN-γ and IL-17 from T cells. By testing the bacteria-killing ability of macrophages, we also demonstrated that IFN-γ and IL-17 production is the main factor promoting bacterial clearances. Our findings reveal that E. coli-derived OMV immunization effectively protects bacteria-induced lethality and OMV-induced systemic inflammatory response syndrome primarily via Th1 and Th17 cell responses. This study therefore provides a new perspective on the immunological detail regarding OMV vaccination.

  17. Immunomodulatory role of piperine in deltamethrin induced thymic apoptosis and altered immune functions.

    Science.gov (United States)

    Kumar, Anoop; Sasmal, D; Sharma, Neelima

    2015-03-01

    Deltamethrin (DLM), a well-known pyrethroid insecticide, is a potent immunotoxicant. In rodents, it is primarily characterized by marked thymic apoptosis. Mechanism of DLM induced thymic apoptosis in primary murine thymocytes has been recently explored. Oxidative stress and activation of caspase dependent pathways appear to be involved in the DLM induced thymic injury. Thus, for the amelioration of its effect, this study has been designed to first observe the binding affinity of piperine to immune cell receptors and its protective effects on the DLM induced immunotoxicity under in vitro condition. The docking results demonstrated that piperine has good binding affinity towards CD4 and CD8 receptors. In vitro study results have shown that piperine (1, 10 and 50 μg/ml) increased cell viability in a concentration dependent manner. The early activated markers of apoptosis such as enhanced reactive oxygen species (ROS) and caspase-3 activation by DLM was significantly reduced by piperine treatment. GSH depletion induced by DLM has been also restored by piperine treatment. At 18 h, all concentration of piperine (1, 10 and 50 μg/ml) significantly ameliorated the DLM induced apoptosis. Further, DLM induced phenotypic changes were mitigated by the piperine. In addition, piperine also restored the cytokine levels, which were suppressed by DLM treatment. These findings strongly indicate the anti-oxidative, anti-apoptotic and chemo-protective ability of piperine in the DLM induced thymic apoptosis.

  18. Parenteral is more efficient than mucosal immunization to induce regression of human papillomavirus-associated genital tumors.

    Science.gov (United States)

    Decrausaz, Loane; Domingos-Pereira, Sonia; Duc, Mélanie; Bobst, Martine; Romero, Pedro; Schiller, John T; Jichlinski, Patrice; Nardelli-Haefliger, Denise

    2011-08-01

    Cervical cancer is a public health concern as it represents the second cause of cancer death in women worldwide. High-risk human papillomaviruses (HPV) are the etiologic agents, and HPV E6 and/or E7 oncogene-specific therapeutic vaccines are under development to treat HPV-related lesions in women. Whether the use of mucosal routes of immunization may be preferable for inducing cell-mediated immune responses able to eradicate genital tumors is still debated because of the uniqueness of the female genital mucosa (GM) and the limited experimentation. Here, we compared the protective activity resulting from immunization of mice via intranasal (i.n.), intravaginal (IVAG) or subcutaneous (s.c.) routes with an adjuvanted HPV type 16 E7 polypeptide vaccine. Our data show that s.c. and i.n. immunizations elicited similar frequencies and avidity of TetE71CD81 and E7-specific Interferon-gamma-secreting cells in the GM, whereas slightly lower immune responses were induced by IVAG immunization. In a novel orthotopic murine model, both s.c. and i.n. immunizations allowed for complete long-term protection against genital E7-expressing tumor challenge. However, only s.c. immunization induced complete regression of already established genital tumors. This suggests that the higher E7-specific systemic response observed after s.c. immunization may contribute to the regression of growing genital tumors, whereas local immune responses may be sufficient to impede genital challenges. Thus, our data show that for an efficiently adjuvanted protein-based vaccine, parenteral vaccination route is superior to mucosal vaccination route for inducing regression of established genital tumors in a murine model of HPV-associated genital cancer.

  19. The Necrosome Promotes Pancreas Oncogenesis via CXCL1 and Mincle Induced Immune Suppression

    Science.gov (United States)

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Giao Ly, Nancy Ngoc; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Barilla, Rocky; Daley, Donnele; Greco, Stephanie H.; Torres-Hernandez, Alejandro; Pergamo, Matthew; Ochi, Atsuo; Zambirinis, Constantinos P.; Pansari, Mridul; Rendon, Mauricio; Tippens, Daniel; Hundeyin, Mautin; Mani, Vishnu R.; Hajdu, Cristina; Engle, Dannielle; Miller, George

    2016-01-01

    Neoplastic pancreatic epithelial cells are widely believed to die via Caspase 8-dependant apoptotic cell death and chemotherapy is thought to further promote tumor apoptosis1. Conversely, disruption of apoptosis is a basic modality cancer cells exploit for survival2,3. However, the role of necroptosis, or programmed necrosis, in pancreatic ductal adenocarcinoma (PDA) is uncertain. There are a multitude of potential inducers of necroptosis in PDA including ligation of TNFR1, CD95, TRAIL receptors, Toll-like receptors, ROS, and Chemotherapeutics4,5. Here we report that the principal components of the necrosome, RIP1 and RIP3, are highly expressed in PDA and are further upregulated by chemotherapy. Blockade of the necrosome in vitro promoted cancer cell proliferation and induced an aggressive oncogenic phenotype. By contrast, in vivo RIP3 deletion or RIP1 inhibition was protective against oncogenic progression and was associated with the development of a highly immunogenic myeloid and T cell infiltrate. The immune-suppressive tumor microenvironment (TME) associated with intact RIP1/RIP3 signaling was in-part contingent on necroptosis-induced CXCL1 expression whereas CXCL1 blockade was protective against PDA. Moreover, we found that cytoplasmic SAP130 was expressed in PDA in a RIP1/RIP3-dependent manner, and Mincle – its cognate receptor – was upregulated in tumor-infiltrating myeloid cells. Mincle ligation by SAP130 promoted oncogenesis whereas Mincle deletion was protective and phenocopied the immunogenic reprogramming of the TME characteristic of RIP3 deletion. Cellular depletion experiments suggested that whereas inhibitory macrophages promote tumorigenesis in PDA, they lose their immune-suppressive effects in the context of RIP3 or Mincle deletion. As such, T cells which are dispensable to PDA progression in hosts with intact RIP3 or Mincle signaling become reprogrammed into indispensable mediators of anti-tumor immunity in absence of RIP3 or Mincle. Our work

  20. Prior population immunity reduces the expected impact of CTL-inducing vaccines for pandemic influenza control.

    Directory of Open Access Journals (Sweden)

    Kirsty J Bolton

    Full Text Available Vaccines that trigger an influenza-specific cytotoxic T cell (CTL response may aid pandemic control by limiting the transmission of novel influenza A viruses (IAV. We consider interventions with hypothetical CTL-inducing vaccines in a range of epidemiologically plausible pandemic scenarios. We estimate the achievable reduction in the attack rate, and, by adopting a model linking epidemic progression to the emergence of IAV variants, the opportunity for antigenic drift. We demonstrate that CTL-inducing vaccines have limited utility for modifying population-level outcomes if influenza-specific T cells found widely in adults already suppress transmission and prove difficult to enhance. Administration of CTL-inducing vaccines that are efficacious in "influenza-experienced" and "influenza-naive" hosts can likely slow transmission sufficiently to mitigate a moderate IAV pandemic. However if neutralising cross-reactive antibody to an emerging IAV are common in influenza-experienced hosts, as for the swine-variant H3N2v, boosting CTL immunity may be ineffective at reducing population spread, indicating that CTL-inducing vaccines are best used against novel subtypes such as H7N9. Unless vaccines cannot readily suppress transmission from infected hosts with naive T cell pools, targeting influenza-naive hosts is preferable. Such strategies are of enhanced benefit if naive hosts are typically intensively mixing children and when a subset of experienced hosts have pre-existing neutralising cross-reactive antibody. We show that CTL-inducing vaccination campaigns may have greater power to suppress antigenic drift than previously suggested, and targeting adults may be the optimal strategy to achieve this when the vaccination campaign does not have the power to curtail the attack rate. Our results highlight the need to design interventions based on pre-existing cellular immunity and knowledge of the host determinants of vaccine efficacy, and provide a framework

  1. Pathogenic Fungi Regulate Immunity by Inducing Neutrophilic Myeloid-Derived Suppressor Cells

    Science.gov (United States)

    Rieber, Nikolaus; Singh, Anurag; Öz, Hasan; Carevic, Melanie; Bouzani, Maria; Amich, Jorge; Ost, Michael; Ye, Zhiyong; Ballbach, Marlene; Schäfer, Iris; Mezger, Markus; Klimosch, Sascha N.; Weber, Alexander N.R.; Handgretinger, Rupert; Krappmann, Sven; Liese, Johannes; Engeholm, Maik; Schüle, Rebecca; Salih, Helmut Rainer; Marodi, Laszlo; Speckmann, Carsten; Grimbacher, Bodo; Ruland, Jürgen; Brown, Gordon D.; Beilhack, Andreas; Loeffler, Juergen; Hartl, Dominik

    2015-01-01

    Summary Despite continuous contact with fungi, immunocompetent individuals rarely develop pro-inflammatory antifungal immune responses. The underlying tolerogenic mechanisms are incompletely understood. Using both mouse models and human patients, we show that infection with the human pathogenic fungi Aspergillus fumigatus and Candida albicans induces a distinct subset of neutrophilic myeloid-derived suppressor cells (MDSCs), which functionally suppress T and NK cell responses. Mechanistically, pathogenic fungi induce neutrophilic MDSCs through the pattern recognition receptor Dectin-1 and its downstream adaptor protein CARD9. Fungal MDSC induction is further dependent on pathways downstream of Dectin-1 signaling, notably reactive oxygen species (ROS) generation as well as caspase-8 activity and interleukin-1 (IL-1) production. Additionally, exogenous IL-1β induces MDSCs to comparable levels observed during C. albicans infection. Adoptive transfer and survival experiments show that MDSCs are protective during invasive C. albicans infection, but not A. fumigatus infection. These studies define an innate immune mechanism by which pathogenic fungi regulate host defense. PMID:25771792

  2. CD8+ T cells induce platelet clearance in the liver via platelet desialylation in immune thrombocytopenia

    Science.gov (United States)

    Qiu, Jihua; Liu, Xuena; Li, Xiaoqing; Zhang, Xu; Han, Panpan; Zhou, Hai; Shao, Linlin; Hou, Yu; Min, Yanan; Kong, Zhangyuan; Wang, Yawen; Wei, Yu; Liu, Xinguang; Ni, Heyu; Peng, Jun; Hou, Ming

    2016-01-01

    In addition to antiplatelet autoantibodies, CD8+ cytotoxic T lymphocytes (CTLs) play an important role in the increased platelet destruction in immune thrombocytopenia (ITP). Recent studies have highlighted that platelet desialylation leads to platelet clearance via hepatocyte asialoglycoprotein receptors (ASGPRs). Whether CD8+ T cells induce platelet desialylation in ITP remains unclear. Here, we investigated the cytotoxicity of CD8+ T cells towards platelets and platelet desialylation in ITP. We found that the desialylation of fresh platelets was significantly higher in ITP patients with positive cytotoxicity of CD8+ T cells than those without cytotoxicity and controls. In vitro, CD8+ T cells from ITP patients with positive cytotoxicity induced significant platelet desialylation, neuraminidase-1 expression on the platelet surface, and platelet phagocytosis by hepatocytes. To study platelet survival and clearance in vivo, CD61 knockout mice were immunized and their CD8+ splenocytes were used. Platelets co-cultured with these CD8+ splenocytes demonstrated decreased survival in the circulation and increased phagocytosis in the liver. Both neuraminidase inhibitor and ASGPRs competitor significantly improved platelet survival and abrogated platelet clearance caused by CD8+ splenocytes. These findings suggest that CD8+ T cells induce platelet desialylation and platelet clearance in the liver in ITP, which may be a novel mechanism of ITP. PMID:27321376

  3. Klebsiella pneumoniae secretes outer membrane vesicles that induce the innate immune response.

    Science.gov (United States)

    Lee, Je Chul; Lee, Eun Jeoung; Lee, Jung Hwa; Jun, So Hyun; Choi, Chi Won; Kim, Seung Il; Kang, Sang Sun; Hyun, Sunghee

    2012-06-01

    Outer membrane vesicles (OMVs) derived from pathogenic Gram-negative bacteria are an important vehicle for delivery of effector molecules to host cells, but the production of OMVs from Klebsiella pneumoniae, an opportunistic pathogen of both nosocomial and community-acquired infections, and their role in bacterial pathogenesis have not yet been determined. In the present study, we examined the production of OMVs from K. pneumoniae and determined the induction of the innate immune response against K. pneumoniae OMVs. Klebsiella pneumoniae ATCC 13883 produced and secreted OMVs during in vitro culture. Proteomic analysis revealed that 159 different proteins were associated with K. pneumoniae OMVs. Klebsiella pneumoniae OMVs did not inhibit cell growth or induce cell death. However, these vesicles induced expression of proinflammatory cytokine genes such as interleukin (IL)-1β and IL-8 in epithelial cells. An intratracheal challenge of K. pneumoniae OMVs in neutropenic mice resulted in severe lung pathology similar to K. pneumoniae infection. In conclusion, K. pneumoniae produces OMVs like other pathogenic Gram-negative bacteria and K. pneumoniae OMVs are a molecular complex that induces the innate immune response.

  4. Stress-induced enhancement of leukocyte trafficking into sites of surgery or immune activation

    Science.gov (United States)

    Viswanathan, Kavitha; Dhabhar, Firdaus S.

    2005-04-01

    Effective immunoprotection requires rapid recruitment of leukocytes into sites of surgery, wounding, infection, or vaccination. In contrast to immunosuppressive chronic stressors, short-term acute stressors have immunoenhancing effects. Here, we quantify leukocyte infiltration within a surgical sponge to elucidate the kinetics, magnitude, subpopulation, and chemoattractant specificity of an acute stress-induced increase in leukocyte trafficking to a site of immune activation. Mice acutely stressed before sponge implantation showed 200-300% higher neutrophil, macrophage, natural killer cell, and T cell infiltration than did nonstressed animals. We also quantified the effects of acute stress on lymphotactin- (LTN; a predominantly lymphocyte-specific chemokine), and TNF-- (a proinflammatory cytokine) stimulated leukocyte infiltration. An additional stress-induced increase in infiltration was observed for neutrophils, in response to TNF-, macrophages, in response to TNF- and LTN, and natural killer cells and T cells in response to LTN. These results show that acute stress initially increases trafficking of all major leukocyte subpopulations to a site of immune activation. Tissue damage-, antigen-, or pathogen-driven chemoattractants subsequently determine which subpopulations are recruited more vigorously. Such stress-induced increases in leukocyte trafficking may enhance immunoprotection during surgery, vaccination, or infection, but may also exacerbate immunopathology during inflammatory (cardiovascular disease or gingivitis) or autoimmune (psoriasis, arthritis, or multiple sclerosis) diseases. chemokine | psychophysiological stress | surgical sponge | wound healing | lymphotactin

  5. Effects of vitamin C on the hypobaric hypoxia-induced immune changes in male rats

    Science.gov (United States)

    Goswami, Ananda Raj; Dutta, Goutam; Ghosh, Tusharkanti

    2014-02-01

    Hypobaric hypoxia (HH) induces oxidative stress (OS) and is associated with the generation of reactive oxygen species (ROS). Vitamin C is an efficient antioxidant, and it is used in a high-altitude environment to reduce the OS. The present study explores the role of vitamin C on some HH-induced changes of immune parameters in rats which were exposed to HHc condition at 18,000 ft in a simulated chamber for 8 h/day for 6 days with and without vitamin C administration at three different doses (200, 400, and 600 mg/kg body wt). The phagocytic activity of circulating blood WBC was increased, and the cytotoxic activity of splenic mononuclear cell (MNC) and the delayed type of hypersensitivity (DTH) responses to bovine serum albumin (BSA) were decreased in rats exposed to HHc condition, but these immune changes were blocked after administration of vitamin C at 400 mg/kg body wt. The leukocyte adhesive inhibition index (LAI) was not altered either in HHc condition or after administration of vitamin C in HHc condition. The serum corticosterone (CORT) concentration was increased in rats exposed to HHc condition which was blocked after administration of vitamin C (400 mg/kg body wt). The immune parameters and serum CORT concentration, however, did not show any recovery after administration of vitamin C at the dose of 200 and 600 mg/kg body wt. The present study indicates that administration of vitamin C at a dose of 400 mg/kg body wt may prevent the HH-induced immunological changes but not at the lower dose (200 mg/kg body wt) or higher dose (600 mg/kg body wt) in rats.

  6. In vitro study of protein release from AFCo1 and implications in mucosal immunisation

    OpenAIRE

    José Raúl Dopico; Mario Álvarez; Ana Isabel Juvier; Janette Trujillo; Giselle Reyes; María Cristina Pico; Isis Casadelvalle; Isabel Giraldino

    2012-01-01

    Los anticuerpos aviares (IgY) presentan algunas ventajas con relación a los anticuerpos IgG de mamíferos, debido a su fácil obtención y purificación y su bajo costo de producción. El objetivo de este trabajo fue estudiar la factibilidad de acoplar anticuerpos IgY a partículas de poliestireno y evaluar su desempeño en ensayos de látex-aglutinación en lámina. Para este propósito se utilizó como modelo la detección del antígeno de superficie de la hepatitis B (HBsAg). Gallinas Leghorn se inmuniz...

  7. In vitro study of protein release from AFCo1 and implications in mucosal immunisation

    Directory of Open Access Journals (Sweden)

    José Raúl Dopico

    2012-04-01

    Full Text Available Los anticuerpos aviares (IgY presentan algunas ventajas con relación a los anticuerpos IgG de mamíferos, debido a su fácil obtención y purificación y su bajo costo de producción. El objetivo de este trabajo fue estudiar la factibilidad de acoplar anticuerpos IgY a partículas de poliestireno y evaluar su desempeño en ensayos de látex-aglutinación en lámina. Para este propósito se utilizó como modelo la detección del antígeno de superficie de la hepatitis B (HBsAg. Gallinas Leghorn se inmunizaron con el ingrediente farmacéutico activo que se utiliza en la elaboración de la vacuna recombinante cubana Heberbiovac-HB. Los anticuerpos obtenidos se purificaron y emplearon en la preparación de reactivos de látex-aglutinación (0,8 µm para la detección del HBsAg, los cuales se evaluaron con 50 muestras de suero frente a un reactivo comercial similar. Los resultados se evaluaron de satisfactorios. Se demostró la factibilidad de acoplar anticuerpos aviares a partículas de látex y se abre una perspectiva al empleo de este tipo de ensayo para el diagnóstico rápido de diversas enfermedades.

  8. Immune Reconstitution Kinetics following Intentionally Induced Mixed Chimerism by Nonmyeloablative Transplantation.

    Directory of Open Access Journals (Sweden)

    Nayoun Kim

    Full Text Available Establishing mixed chimerism is a promising approach for inducing donor-specific transplant tolerance. The establishment and maintenance of mixed chimerism may enable long-term engraftment of organ transplants while minimizing the use of immunosuppressants. Several protocols for inducing mixed chimerism have been reported; however, the exact mechanism underlying the development of immune tolerance remains to be elucidated. Therefore, understanding the kinetics of engraftment during early post-transplant period may provide insight into establishing long-term mixed chimerism and permanent transplant tolerance. In this study, we intentionally induced allogeneic mixed chimerism using a nonmyeloablative regimen by host natural killer (NK cell depletion and T cell-depleted bone marrow (BM grafts in a major histocompatibility complex (MHC-mismatched murine model and analyzed the kinetics of donor (C57BL/6 and recipient (BALB/c engraftment in the weeks following transplantation. Donor BM cells were well engrafted and stabilized without graft-versus-host disease (GVHD as early as one week post-bone marrow transplantation (BMT. Donor-derived thymic T cells were reconstituted four weeks after BMT; however, the emergence of newly developed T cells was more obvious at the periphery as early as two weeks after BMT. Also, the emergence and changes in ratio of recipient- and donor-derived NKT cells and antigen presenting cells (APCs including dendritic cells (DCs and B cells were noted after BMT. Here, we report a longitudinal analysis of the development of donor- and recipient-originated hematopoietic cells in various lymphatic tissues of intentionally induced mixed chimerism mouse model during early post-transplant period. Through the understanding of immune reconstitution at early time points after nonmyeloablative BMT, we suggest guidelines on intentionally inducing durable mixed chimerism.

  9. Immunization with Paracoccidioides brasiliensis radioattenuated yeast cells induces Th1 immune response in Balb/C mice

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Estefania M.N.; Andrade, Antero S.R. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN/MG), Belo Horizonte, MG (Brazil)], e-mail: estefaniabio@yahoo.com.br, e-mail: antero@cdtn.br; Resende, Maria Aparecida de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Microbiologia], e-mail: maresend@mono.icb.ufmg.br; Reis, Bernardo S.; Goes, Alfredo M. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Bioquimica e Imunologia], e-mail: goes@mono.icb.ufmg.br, e-mail: brsgarbi@mono.icb.ufmg.br

    2009-07-01

    Paracoccidioides brasiliensis is the agent of paracoccidioidomycosis, the most prevalent mycosis in Latin America. To date, there is no effective vaccine. In our laboratory yeast cells of P. brasiliensis were attenuated by gamma irradiation. We defined an absorbed dose in which the pathogen loses the reproductive ability, while retaining the morphology, the synthesis and secretion of proteins and the oxidative metabolism. The immunization with these cells was able to confer protection in BALB/c mice. The aim of the present work was evaluate the immune response pathway activated in mice immunized with P. brasiliensis radioattenuated yeast cells. The protector effect was evaluated in BALB/c mice groups immunized once or twice, respectively. Each group was divided in three sub groups that were challenge 30, 45 or 60 days after the immunization. These groups were called G1A, G1B and G1C in the group immunized once and G2A, G2B and G2C in the group immunized twice. Recovery of CFUs and cytokines determination (IFN - {gamma}, IL - 10 and IL IV 4) were performed three months post challenge. Quantitative RT-PCR was the method of choice used to quantify the expression of cytokines. The sera were collected weekly to evaluate the IgG antibody titers and the IgG1 and IgG2a pattern in the course of infection. A significant reduction in CFUs recovery was verified 90 days post challenge in mice submitted to one immunization: 73.0%, 96.0% and 76.3% for sub-groups G1A, G1B and G1C, respectively. In the group submitted to two immunizations, a remarkable increase in the protection was obtained. No CFUs was recovered from sub-groups G2B and G2C and very few CFUs (reduction of 98.6%) were recovered from the lungs of sub group G2A. In mice submitted to one immunization, Th1 and Th2 cytokines were simultaneously produced. In the group submitted to two immunizations, levels of IL-10 and IL-4 were very low, while IFN-{gamma} production was maintained indicating that a Th1 pattern was

  10. Passive adoptive transfer of antitumor immunity induced by laser-dye-immunoadjuvant treatment in a rat metastatic breast cancer model

    Science.gov (United States)

    Chen, Wei R.; Liu, Hong; Singhal, Anil K.; Nordquist, Robert E.

    2000-06-01

    The ideal cancer treatment modalities should not only cause tumor regression and eradication but also induce a systemic anti-tumor immunity. This is essential for control of metastatic tumors and for long-term tumor resistance. Laser immunotherapy using a laser, a laser-absorbing dye and an immunoadjuvant has induced such a long-term immunity in treatment of a mammary metastatic tumor. The successfully treated rats established total resistance to multiple subsequent tumor challenges. For further mechanistic studies of the antitumor immunity induced by this novel treatment modality, passive adoptive transfer was performed using splenocytes as immune cells. The spleen cells harvested from successfully treated tumor-bearing rats provided 100% immunity in the naive recipients. The passively protected first cohort rats were immune to tumor challenge with an increased tumor dose; their splenocytes also prevented the establishment of tumor in the second cohort of naive recipient rats. This immunity transfer was accomplished without the usually required T-cell suppression in recipients.

  11. Species-specific immunity induced by infection with Entamoeba histolytica and Entamoeba moshkovskii in mice.

    Science.gov (United States)

    Shimokawa, Chikako; Culleton, Richard; Imai, Takashi; Suzue, Kazutomo; Hirai, Makoto; Taniguchi, Tomoyo; Kobayashi, Seiki; Hisaeda, Hajime; Hamano, Shinjiro

    2013-01-01

    Entamoeba histolytica, the parasitic amoeba responsible for amoebiasis, causes approximately 100,000 deaths every year. There is currently no vaccine against this parasite. We have previously shown that intracecal inoculation of E. histolytica trophozoites leads to chronic and non-healing cecitis in mice. Entamoeba moshkovskii, a closely related amoeba, also causes diarrhea and other intestinal disorders in this model. Here, we investigated the effect of infection followed by drug-cure of these species on the induction of immunity against homologous or heterologous species challenge. Mice were infected with E. histolytica or E. moshkovskii and treated with metronidazole 14 days later. Re-challenge with E. histolytica or E. moshkovskii was conducted seven or 28 days following confirmation of the clearance of amoebae, and the degree of protection compared to non-exposed control mice was evaluated. We show that primary infection with these amoebae induces a species-specific immune response which protects against challenge with the homologous, but not a heterologous species. These findings pave the way, therefore, for the identification of novel amoebae antigens that may become the targets of vaccines and provide a useful platform to investigate host protective immunity to Entamoeba infections.

  12. Disruption of Rpp1-mediated soybean rust immunity by virus-induced gene silencing.

    Science.gov (United States)

    Cooper, Bret; Campbell, Kimberly B; McMahon, Michael B; Luster, Douglas G

    2013-01-01

    Phakopsora pachyrhizi, a fungus that causes rust disease on soybean, has potential to impart significant yield loss and disrupt food security and animal feed production. Rpp1 is a soybean gene that confers immunity to soybean rust, and it is important to understand how it regulates the soybean defense system and to use this knowledge to protect commercial crops. It was previously discovered that some soybean proteins resembling transcription factors accumulate in the nucleus of Rpp1 soybeans. To determine if they contribute to immunity, Bean pod mottle virus was used to attenuate or silence the expression of their genes. Rpp1 plants subjected to virus-induced gene silencing exhibited reduced amounts of RNA for 5 of the tested genes, and the plants developed rust-like symptoms after subsequent inoculation with fungal spores. Symptoms were associated with the accumulation of rust fungal RNA and protein. Silenced plants also had reduced amounts of RNA for the soybean Myb84 transcription factor and soybean isoflavone O-methyltransferase, both of which are important to phenylpropanoid biosynthesis and lignin formation, crucial components of rust resistance. These results help resolve some of the genes that contribute to Rpp1-mediated immunity and improve upon the knowledge of the soybean defense system. It is possible that these genes could be manipulated to enhance rust resistance in otherwise susceptible soybean cultivars.

  13. Immune-mediated processes implicated in chemotherapy-induced peripheral neuropathy.

    Science.gov (United States)

    Lees, Justin G; Makker, Preet G S; Tonkin, Ryan S; Abdulla, Munawwar; Park, Susanna B; Goldstein, David; Moalem-Taylor, Gila

    2017-03-01

    Chemotherapy-induced peripheral neuropathy (CIPN) and associated neuropathic pain are challenging complications of cancer treatment. Many of the major classes of chemotherapeutics can cause neurotoxicity and significantly modulate the immune system. There is ongoing investigation regarding whether reciprocal crosstalk between the nervous and immune systems occurs and, indeed, contributes to neuropathic pain during treatment with chemotherapeutics. An emerging concept is that neuroinflammation is one of the major mechanisms underlying CIPN. Here, we discuss recent findings, which provide insight into this complex process of neuroimmune interactions. Findings show limited infiltration of leukocytes into the nervous system of CIPN animals and varying degrees of peripheral and central glial activation depending on the chemotherapeutic drug, dose, schedule, and timing. Most evidence suggests an increase in pro-inflammatory cytokine expression and changes in immune signalling pathways. There is, however, limited evidence available from human studies and it remains unclear whether neuroinflammatory responses are the cause of neuropathy or a bystander effect of the chemotherapy treatment.

  14. Species-specific immunity induced by infection with Entamoeba histolytica and Entamoeba moshkovskii in mice.

    Directory of Open Access Journals (Sweden)

    Chikako Shimokawa

    Full Text Available Entamoeba histolytica, the parasitic amoeba responsible for amoebiasis, causes approximately 100,000 deaths every year. There is currently no vaccine against this parasite. We have previously shown that intracecal inoculation of E. histolytica trophozoites leads to chronic and non-healing cecitis in mice. Entamoeba moshkovskii, a closely related amoeba, also causes diarrhea and other intestinal disorders in this model. Here, we investigated the effect of infection followed by drug-cure of these species on the induction of immunity against homologous or heterologous species challenge. Mice were infected with E. histolytica or E. moshkovskii and treated with metronidazole 14 days later. Re-challenge with E. histolytica or E. moshkovskii was conducted seven or 28 days following confirmation of the clearance of amoebae, and the degree of protection compared to non-exposed control mice was evaluated. We show that primary infection with these amoebae induces a species-specific immune response which protects against challenge with the homologous, but not a heterologous species. These findings pave the way, therefore, for the identification of novel amoebae antigens that may become the targets of vaccines and provide a useful platform to investigate host protective immunity to Entamoeba infections.

  15. Poly I:C adjuvanted inactivated swine influenza vaccine induces heterologous protective immunity in pigs.

    Science.gov (United States)

    Thomas, Milton; Wang, Zhao; Sreenivasan, Chithra C; Hause, Ben M; Gourapura J Renukaradhya; Li, Feng; Francis, David H; Kaushik, Radhey S; Khatri, Mahesh

    2015-01-15

    Swine influenza is widely prevalent in swine herds in North America and Europe causing enormous economic losses and a public health threat. Pigs can be infected by both avian and mammalian influenza viruses and are sources of generation of reassortant influenza viruses capable of causing pandemics in humans. Current commercial vaccines provide satisfactory immunity against homologous viruses; however, protection against heterologous viruses is not adequate. In this study, we evaluated the protective efficacy of an intranasal Poly I:C adjuvanted UV inactivated bivalent swine influenza vaccine consisting of Swine/OH/24366/07 H1N1 and Swine/CO/99 H3N2, referred as PAV, in maternal antibody positive pigs against an antigenic variant and a heterologous swine influenza virus challenge. Groups of three-week-old commercial-grade pigs were immunized intranasally with PAV or a commercial vaccine (CV) twice at 2 weeks intervals. Three weeks after the second immunization, pigs were challenged with the antigenic variant Swine/MN/08 H1N1 (MN08) and the heterologous Swine/NC/10 H1N2 (NC10) influenza virus. Antibodies in serum and respiratory tract, lung lesions, virus shedding in nasal secretions and virus load in lungs were assessed. Intranasal administration of PAV induced challenge viruses specific-hemagglutination inhibition- and IgG antibodies in the serum and IgA and IgG antibodies in the respiratory tract. Importantly, intranasal administration of PAV provided protection against the antigenic variant MN08 and the heterologous NC10 swine influenza viruses as evidenced by significant reductions in lung virus load, gross lung lesions and significantly reduced shedding of challenge viruses in nasal secretions. These results indicate that Poly I:C or its homologues may be effective as vaccine adjuvants capable of generating cross-protective immunity against antigenic variants/heterologous swine influenza viruses in pigs.

  16. Immune-Complexed Adenovirus Induce AIM2-Mediated Pyroptosis in Human Dendritic Cells

    Science.gov (United States)

    Eichholz, Karsten; Bru, Thierry; Tran, Thi Thu Phuong; Fernandes, Paulo; Mennechet, Franck J. D.; Manel, Nicolas; Alves, Paula; Perreau, Matthieu

    2016-01-01

    Human adenoviruses (HAdVs) are nonenveloped proteinaceous particles containing a linear double-stranded DNA genome. HAdVs cause a spectrum of pathologies in all populations regardless of health standards. Following repeat exposure to multiple HAdV types, we develop robust and long-lived humoral and cellular immune responses that provide life-long protection from de novo infections and persistent HAdV. How HAdVs, anti-HAdV antibodies and antigen presenting cells (APCs) interact to influence infection is still incompletely understood. In our study, we used physical, pharmacological, biochemical, fluorescence and electron microscopy, molecular and cell biology approaches to dissect the impact of immune-complexed HAdV (IC-HAdV) on human monocyte-derived dendritic cells (MoDCs). We show that IC-HAdV generate stabilized complexes of ~200 nm that are efficiently internalized by, and aggregate in, MoDCs. By comparing IC-HAdV, IC-empty capsid, IC-Ad2ts1 (a HAdV-C2 impaired in endosomal escape due to a mutation that impacts protease encapsidation) and IC-AdL40Q (a HAdV-C5 impaired in endosomal escape due to a mutation in protein VI), we demonstrate that protein VI-dependent endosomal escape is required for the HAdV genome to engage the DNA pattern recognition receptor AIM2 (absent in melanoma 2). AIM2 engagement induces pyroptotic MoDC death via ASC (apoptosis-associated speck protein containing a caspase activation/recruitment domain) aggregation, inflammasome formation, caspase 1 activation, and IL-1β and gasdermin D (GSDMD) cleavage. Our study provides mechanistic insight into how humoral immunity initiates an innate immune response to HAdV-C5 in human professional APCs. PMID:27636895

  17. Immunohistochemical characterisation of the local immune response in azoxymethane-induced colon tumours in the BDIX inbred rat strain

    DEFF Research Database (Denmark)

    Kobaek-Larsen, Morten; Diederichsen, Axel Cosmus Pyndt; Agger, Ralf

    2004-01-01

    The aim of the present study was to characterise the local immune response in a chemically induced colon tumour model in the rat. Elucidating the character of the immune reaction may contribute to optimizing immunotherapeutic regimens for colon carcinoma in this model. Colon cancer was induced...... by four weekly subcutaneous azoxymethane injections in inbred rats of the BDIX/OrlIco strain in two separate studies. Azoxymethane-induced tumours show many similarities to spontaneously occurring human colon carcinomas with respect to histopathological appearance. In our studies, the overall inflammatory...

  18. Serratia marcescens induces apoptotic cell death in host immune cells via a lipopolysaccharide- and flagella-dependent mechanism.

    Science.gov (United States)

    Ishii, Kenichi; Adachi, Tatsuo; Imamura, Katsutoshi; Takano, Shinya; Usui, Kimihito; Suzuki, Kazushi; Hamamoto, Hiroshi; Watanabe, Takeshi; Sekimizu, Kazuhisa

    2012-10-19

    Injection of Serratia marcescens into the blood (hemolymph) of the silkworm, Bombyx mori, induced the activation of c-Jun NH(2)-terminal kinase (JNK), followed by caspase activation and apoptosis of blood cells (hemocytes). This process impaired the innate immune response in which pathogen cell wall components, such as glucan, stimulate hemocytes, leading to the activation of insect cytokine paralytic peptide. S. marcescens induced apoptotic cell death of silkworm hemocytes and mouse peritoneal macrophages in vitro. We searched for S. marcescens transposon mutants with attenuated ability to induce apoptosis of silkworm hemocytes. Among the genes identified, disruption mutants of wecA (a gene involved in lipopolysaccharide O-antigen synthesis), and flhD and fliR (essential genes in flagella synthesis) showed reduced motility and impaired induction of mouse macrophage cell death. These findings suggest that S. marcescens induces apoptosis of host immune cells via lipopolysaccharide- and flagella-dependent motility, leading to the suppression of host innate immunity.

  19. Glycogen synthase kinase-3 facilitates con a-induced IFN-γ-- mediated immune hepatic injury.

    Science.gov (United States)

    Tsai, Cheng-Chieh; Huang, Wei-Ching; Chen, Chia-Ling; Hsieh, Chia-Yuan; Lin, Yee-Shin; Chen, Shun-Hua; Yang, Kao-Chi; Lin, Chiou-Feng

    2011-10-01

    Immune hepatic injury induced by Con A results primarily from IFN-γ-mediated inflammation, followed by hepatic cell death. Glycogen synthase kinase (GSK)-3, which acts proapoptotically and is proinflammatory, is also important for facilitating IFN-γ signaling. We hypothesized a pathogenic role for GSK-3 in Con A hepatic injury. Con A stimulation caused GSK-3 activation in the livers of C57BL/6 mice. Inhibiting GSK-3 reduced Con A hepatic injury, including hepatic necrosis and apoptosis, inflammation, infiltration of T cells and granulocytes, and deregulated expression of adhesion molecule CD54. Con A induced hepatic injury in an IFN-γ receptor 1-dependent manner. Con A/IFN-γ induced activation and expression of STAT1 in a GSK-3-dependent manner. GSK-3 facilitated IFN-γ-induced inducible NO synthase, but had limited effects on CD95 upregulation and CD95-mediated hepatocyte apoptosis in vitro. Notably, inhibiting GSK-3 decreased Con A-induced IFN-γ production in both wild-type and IFN-γ receptor 1-deficient C57BL/6 mice. In Con A-activated NKT cells, GSK-3 was also activated and was required for nuclear translocation of T-box transcription factor Tbx21, a transcription factor of IFN-γ, but it was not required for CD95 ligand expression or activation-induced cell death. These results demonstrate the dual and indispensable role of GSK-3 in Con A hepatic injury by facilitating IFN-γ-induced hepatopathy.

  20. Vitamin A induces inhibitory histone methylation modifications and down-regulates trained immunity in human monocytes

    DEFF Research Database (Denmark)

    Arts, Rob J W; Blok, Bastiaan A; van Crevel, Reinout;

    2015-01-01

    inhibited cytokine responses upon restimulation of monocytes, and this effect was exerted through increased expression of SUV39H2, a histone methyltransferase that induces the inhibitory mark H3K9me3. H3K9me3 at promoter sites of several cytokines was up-regulated by ATRA, and inhibition of SUV39H2 restored...... cytokine production. In addition to H3K9me3, the stimulatory histone mark H3K4me3 was down-regulated by ATRA at several promoter locations of cytokine genes. Therefore, we can conclude that ATRA inhibits cytokine production in models of direct stimulation or BCG-induced trained immunity...

  1. Comparative efficacy of piperine and curcumin in deltamethrin induced splenic apoptosis and altered immune functions.

    Science.gov (United States)

    Kumar, Anoop; Sharma, Neelima

    2015-03-01

    Deltamethrin (DLM) being a potent immunotoxicant affects both humoral and cell mediated immunity. Thus, for the amelioration of its effects, two different bioactive herbal extracts piperine and curcumin are evaluated and their efficacy has been compared. The docking results demonstrated that curcumin has good binding affinity towards CD28 and CD45 receptors as compared to piperine but in vitro studies revealed that piperine is more effective. DLM induced apoptotic markers such as oxidative stress and caspase 3 have been attenuated more significantly by piperine as compared to curcumin. Phenotypic and cytokine changes have also been mitigated best with piperine. Thus, these findings strongly demonstrate that piperine displays the more anti-oxidative, anti-apoptotic and chemo-protective properties in the DLM induced splenic apoptosis as compared to curcumin. So, piperine can be considered the drug of choice under immunocompromised conditions.

  2. Evaluation of immune responses in sheep induced by DNA immunization with genes encoding GRA1, GRA4, GRA6 and GRA7 antigens of Toxoplasma gondii.

    Science.gov (United States)

    Hiszczyńska-Sawicka, Elżbieta; Olędzka, Gabriela; Holec-Gąsior, Lucyna; Li, Hong; Xu, Janet Boyu; Sedcole, Richard; Kur, Józef; Bickerstaffe, Roy; Stankiewicz, Mirosław

    2011-05-11

    The dense granule proteins of Toxoplasma gondii are investigated as possible vaccine candidates against the parasite. The aim of this research was to evaluate the immune responses of sheep injected twice, intramuscularly, with DNA plasmids encoding T. gondii dense granule antigens GRA1, GRA4, GRA6 and GRA7 formulated into liposomes. Control sheep were injected with an empty vector or received no injections. The injection of sheep with DNA plasmids encoding for GRA1, GRA4, GRA6 or GRA7 elicited an immune response after the first and the second injections as indicated by the moderate to high antibody responses. The injection of pGRA7 induced a significant level of anti-GRA7 IgG2 antibody and IFN-γ responses indicating a Th1-like immune response whereas injection with pGRA1, pGRA4 and pGRA6 stimulated a IgG1 type antibody response with a limited, if any, IFN-γ response. The results demonstrate that the intramuscular injection of sheep with a DNA liposome formulated plasmid coding for GRA proteins is an effective system that induces a significant immune response against T. gondii.

  3. Effect of Gui Zhi decoction on enteric mucosal immune in mice with collagen-induced arthritis

    Institute of Scientific and Technical Information of China (English)

    Gui-Qin Zhou; Ning Zhao; Hao Zhang; Hong-Wei Jia; Wan-Dong Zhang; Lin-Hua Zhao; Cheng Lu; Ying-Hui He; Ai-Ping Lu

    2005-01-01

    AIM: To explore the effect of Gui Zhi decoction on enteric mucosal immune in type Ⅱ collagen-induced arthritis (CIA)in DBA mice.METHODS: Eighty DBA/1, weighing 18-22 g, were randomly divided into four groups with 20 in each group:control group, CIA group, treatment groups at high dosage and low dosage (GZH and GZL). CIA was induced by immunization with type Ⅱ collagen (CⅡ) emulsified with equal complete adjuvant at 0.1 mg CⅡ each mouse. Blood lymphocyte suspension was screened for CD4 and CD8 expression using a flow cytometry, the CD4 and CD8 and secretory IgA (sIgA)-positive cells in enteric lamina propria tested with immunohistochemical staining. Tumor necrosis factor-alpha (TNF-α), interleukin-L (IL-1)-β, and IL-6 concentrations in serum were assayed with RIA.RESULTS: Gui Zhi decoction can lower the arthritic scores and decrease the occurrence of arthritis. The CD4, CD8,and sIgA-positive cells in CIA mice are less than in control mice, and in Gui Zhi decoction at high dosage could restore the lowered CD4- and CD8-positive cells in lamina propria,and at both high and low dosages could increase the lowered sIgA-positive cells in lamina propria, even still lower than in normal mice. In periphery, the CD4 cells in periphery are higher in CIA mice than in control mice,and Gui Zhi decoction at high and low dosages could decrease the CD4 and CD8 cells. Also, Gui Zhi decoction at high dosage could decrease the IL-6 and TNF-αconcentration in serum.CONCLUSION: Gui Zhi decoction can lower the arthritic scores and decrease the incidence of CIA in mice, and the mechanism is in part regulating enteric mucosal immune.

  4. Lipopolysaccharide induces apoptosis of cytotrophoblasts by activating an innate immune reaction in vitro

    Institute of Scientific and Technical Information of China (English)

    LI Si-yang; SHANG Tao; LI Shu-juan; RUI Guang-hai; LI Qiu-ling

    2007-01-01

    Background Enhanced apoptosis of cytotrophoblasts in early pregnancy is associated with high risk of intrauterine growth retardation and preeclampsia, which are two common pregnant complications. Its etiological factors remain unclear. Cytotrophoblasts share some traits with innate immune cells and may show response to lipopolysaccharide. This study was conducted to demonstrate whether lipopolysaccharide has apoptosis-inducing effects on cytotrophoblast and the role of innate immune reaction in this process.Methods Cytotrophoblasts were isolated from early pregnant villous tissues and cultured with serum-free medium.Subsequently, cytotrophoblasts were treated with lipopolysaccharide at the concentrations of 0 (control), 25, 50, 100 and 200 ng/ml for 24 hours. Apoptosis of cytotrophoblasts was determined by light microscopy, Hoechst 33258 DNA staining with a fluorescent microscope, transmission electron microscope and annexin V-fluorescein isothiocyanate-conjugated /propidium iodide (PI) staining with flow cytometry. Then expression of caspase-3 was detected by Western blot. Confocal immunofluorescence technique was used to detect tumor necrosis factor α expression in cytotrophoblasts. The levels of tumor necrosis factor α in the culture medium were detected by enzyme-linked immunosorbent assay.Results Under light, fluorescence microscope and transmission electron microscope, characteristic alternations of apoptosis in cytotrophoblasts were observed after lipopolysaccharide treatment. Flow cytometry results showed that lipopolysaccharide significantly increased apoptosis indexes of cytotrophoblasts. Significant statistical differences were found in the above groups (P≤0.01). The mean relative densities of bands corresponding to caspase-3 were significantly increased in groups treated with lipopolysaccharide, as compared with the normal control (P<0.001). Tumor necrosis factor α expression was found to increase in cytotrophoblasts by confocal

  5. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Ryohei; Eeden, Stephan F. van, E-mail: Stephan.vanEeden@hli.ubc.ca

    2011-12-15

    Emerging epidemiological evidence suggests that exposure to particulate matter (PM) air pollution increases the risk of cardiovascular events but the exact mechanism by which PM has adverse effects is still unclear. Alveolar macrophages (AM) play a major role in clearing and processing inhaled PM. This comprehensive review of research findings on immunological interactions between AM and PM provides potential pathophysiological pathways that interconnect PM exposure with adverse cardiovascular effects. Coarse particles (10 {mu}m or less, PM{sub 10}) induce innate immune responses via endotoxin-toll-like receptor (TLR) 4 pathway while fine (2.5 {mu}m or less, PM{sub 2.5}) and ultrafine particles (0.1 {mu}m or less, UFP) induce via reactive oxygen species generation by transition metals and/or polyaromatic hydrocarbons. The innate immune responses are characterized by activation of transcription factors [nuclear factor (NF)-{kappa}B and activator protein-1] and the downstream proinflammatory cytokine [interleukin (IL)-1{beta}, IL-6, and tumor necrosis factor-{alpha}] production. In addition to the conventional opsonin-dependent phagocytosis by AM, PM can also be endocytosed by an opsonin-independent pathway via scavenger receptors. Activation of scavenger receptors negatively regulates the TLR4-NF-{kappa}B pathway. Internalized particles are subsequently subjected to adaptive immunity involving major histocompatibility complex class II (MHC II) expression, recruitment of costimulatory molecules, and the modulation of the T helper (Th) responses. AM show atypical antigen presenting cell maturation in which phagocytic activity decreases while both MHC II and costimulatory molecules remain unaltered. PM drives AM towards a Th1 profile but secondary responses in a Th1- or Th-2 up-regulated milieu drive the response in favor of a Th2 profile.

  6. [Pneumococcal vaccination: conjugated vaccine induces herd immunity and reduces antibiotic resistance].

    Science.gov (United States)

    Pletz, M W; Maus, U; Hohlfeld, J M; Lode, H; Welte, T

    2008-02-01

    Pneumococcal infections (pneumonia, otitis media, sinusitis, meningitis) are common and usually involve toddlers and the elderly. Currently, two pneumococcal vaccines are in clinical use. The older vaccine consists of pure capsular polysaccharides from 23 pneumococcal serotypes and induces only a limited B-cell response because polysaccharides are poor antigens that stimulate mainly B-cells. In 2000, a vaccination program with a novel 7-valent pneumococcal conjugate vaccine was launched in the U.S. The conjugation of capsular polysaccharides with a highly immunogenic diphtheria toxoid protein induces both a T cell and B cell response that results in specific humoral and mucosal immunity. Since children are the main reservoir of pneumococci, the 7-valent conjugate vaccine seems to eradicate the respective pneumococcal serotypes within the population, as demonstrated by recent US data. Pronounced herd immunity resulted in a decrease in invasive pneumococcal diseases in vaccinees and non-vaccinees as well as in a reduction of antibiotic resistance rates. However, recent data suggest a replacement of vaccine-serotypes by non-vaccine serotypes, which conquer the ecological niche created by the vaccine. In order to encounter this problem a 13-valent conjugated vaccine is currently under development.

  7. Vaccination with dengue virus-like particles induces humoral and cellular immune responses in mice

    Directory of Open Access Journals (Sweden)

    Zhang Quanfu

    2011-06-01

    Full Text Available Abstract Background The incidence of dengue, an infectious disease caused by dengue virus (DENV, has dramatically increased around the world in recent decades and is becoming a severe public health threat. However, there is currently no specific treatment for dengue fever, and licensed vaccine against dengue is not available. Vaccination with virus-like particles (VLPs has shown considerable promise for many viral diseases, but the effect of DENV VLPs to induce specific immune responses has not been adequately investigated. Results By optimizing the expression plasmids, recombinant VLPs of four antigenically different DENV serotypes DENV1-4 were successfully produced in 293T cells. The vaccination effect of dengue VLPs in mice showed that monovalent VLPs of each serotype stimulated specific IgG responses and potent neutralizing antibodies against homotypic virus. Tetravalent VLPs efficiently enhanced specific IgG and neutralizing antibodies against all four serotypes of DENV. Moreover, vaccination with monovalent or tetravalent VLPs resulted in the induction of specific cytotoxic T cell responses. Conclusions Mammalian cell expressed dengue VLPs are capable to induce VLP-specific humoral and cellular immune responses in mice, and being a promising subunit vaccine candidate for prevention of dengue virus infection.

  8. Effect of domperidone-induced hyperprolactinemia on selected immune parameters in healthy women

    Energy Technology Data Exchange (ETDEWEB)

    Rovensky, J.; Blazickova, S.; Rauova, L.; Lackovic, V. [Research Institute of Rheumatic Deseases, Piestany (Sierra Leone); Buc, M. [Komenskeho Univ., Bratislava (Slovakia). Lekarska Fakulta; Lojda, Z.; Ruzickova, M. [Karlova Univ., Prague (Czech Republic); Mistina, T. [Research Institute of Plant Production, Piestany (Sierra Leone); Vigas, M. [Slovenska Akademia Vied, Bratislava (Slovakia). Ustav Experimentalnej Endokrinologie

    1995-12-31

    Domperidone, anti-emetic drug, given to healthy female volunteers, induced and elevation of plasma prolactin (PRI) concentration with the peak in 1-4 h. The release of prolactin had a transient stimulating effect on theophylline sensitive T lymphocytes and on concanavalin A induced mitogenic activity, suggesting an enhanced activity of T suppressor lymphocytes. The relative number of CD4{sup +} lymphocytes decreased markedly one hour after domperidone administration and returned to normal values within 2 h (that means 3 h after taking the drug). The number of lymphocytes positive for dipeptidyl peptidase IV exhibited similar transient increase and normalization of activity. No change was observed in the number of CD8{sup +} lymphocytes. The production of interferon by leukocytes treated with Newcastle disease virus was found to be significantly increased 2 h after domperidone administration. The results suggest that prolactin can selectively stimulate some functions of cellular immunity as well as the release of cytokines (IFN). The present study may contribute to the understanding of the role of the immune system in endogenous hyperprolactinemia. (author). 20 refs, 4 figs, 3 tabs.

  9. Adjuvants and immunization strategies to induce influenza virus hemagglutinin stalk antibodies.

    Directory of Open Access Journals (Sweden)

    Peter H Goff

    Full Text Available The global population remains vulnerable in the face of the next pandemic influenza virus outbreak, and reformulated vaccinations are administered annually to manage seasonal epidemics. Therefore, development of a new generation of vaccines is needed to generate broad and persistent immunity to influenza viruses. Here, we describe three adjuvants that enhance the induction of stalk-directed antibodies against heterologous and heterosubtypic influenza viruses when administered with chimeric HA proteins. Addavax, an MF59-like nanoemulsion, poly(I:C, and an RNA hairpin derived from Sendai virus (SeV Cantell were efficacious intramuscularly. The SeV RNA and poly(I:C also proved to be effective respiratory mucosal adjuvants. Although the quantity and quality of antibodies induced by the adjuvants varied, immunized mice demonstrated comparable levels of protection against challenge with influenza A viruses on the basis of HA stalk reactivity. Finally, we present that intranasally, but not intramuscularly, administered chimeric HA proteins induce mucosal IgA antibodies directed at the HA stalk.

  10. Immunity induced shortly after DNA vaccination of rainbow trout against rhabdoviruses protects against heterologous virus but not against bacterial pathogens

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Einer-Jensen, Katja;

    2002-01-01

    It was recently reported that DNA vaccination of rainbow trout fingerlings against viral hemorrhagic septicaemia virus (VHSV) induced protection within 8 days after intramuscular injection of plasmid DNA. In order to analyse the specificity of this early immunity, fish were vaccinated with plasmid...... DNA encoding the VHSV or the infectious haematopoietic necrosis virus (IHNV) glycoprotein genes and later challenged with homologous or heterologous pathogens. Challenge experiments revealed that immunity established shortly after vaccination was cross-protective between the two viral pathogens...... whereas no increased survival was found upon challenge with bacterial pathogens. Within two months after vaccination, the cross-protection disappeared while the specific immunity to homologous virus remained high. The early immunity induced by the DNA vaccines thus appeared to involve short-lived non...

  11. Melatonin improves humoral and cell-mediated immune responses of male golden hamster following stress induced by dexamethasone.

    Science.gov (United States)

    Vishwas, Dipanshu Kumar; Mukherjee, Arun; Haldar, Chandana

    2013-06-15

    Melatonin is known as an antistress and immunostimulator compound while glucocorticoids have immunosuppressive function. The mechanism of action of both the hormones on immune cells is still a question. We found that melatonin improved the effect of dexamethasone (synthetic glucocorticoid) induced immunosuppression of splenocytes and bone marrow GM-CFU along with increased production of serum IL-2, IgG and the receptor expression for melatonin and glucocorticoid in spleen that might be responsible for the proliferation of immune cells. Thus, seasonal variation in peripheral melatonin might be responsible for the improvement of immune status under different stress conditions experienced by the rodents for better survival.

  12. Intramuscular Priming and Intranasal Boosting Induce Strong Genital Immunity Through Secretory IgA in Minipigs Infected with Chlamydia trachomatis

    DEFF Research Database (Denmark)

    Lorenzen, Emma; Follmann, Frank; Bøje, Sarah;

    2015-01-01

    International efforts in developing a vaccine against Chlamydia trachomatis have highlighted the need for novel immunization strategies for the induction of genital immunity. In this study, we evaluated an intramuscular (IM) prime/intranasal boost vaccination strategy in a Göttingen Minipig model...... with a reproductive system very similar to humans. The vaccine was composed of C. trachomatis subunit antigens formulated in the Th1/Th17 promoting CAF01 adjuvant. IM priming immunizations with CAF01 induced a significant cell-mediated interferon gamma and interleukin 17A response and a significant systemic high...

  13. Intervention of Grape Seed Proanthocyanidin Extract on the Subchronic Immune Injury in Mice Induced by Aflatoxin B1

    Directory of Open Access Journals (Sweden)

    Miao Long

    2016-04-01

    Full Text Available The aim was to investigate the prevention of grape seed proanthocyanidin extract (GSPE on the subchronic immune injury induced by aflatoxin B1 (AFB1 and the possible ameliorating effect of GSPE in mice. The subchronic AFB1-induced immune injury mice model was set up with the continuous administration of 100 μg/kg body weight (BW AFB1 for six weeks by intragastric administration. Then, intervention with different doses (50 and 100 mg/kg BW of GSPE was conducted on mice to analyze the changes of body weight, immune organ index, antioxidant capability of spleen, serum immunoglobulin content, and the expression levels of inflammatory cytokines. The prevention of GSPE on the immune injury induced by AFB1 was studied. The GSPE could relieve the AFB1-induced reduction of body weight gain and the atrophy of the immune organ. The malondialdehyde (MDA level of the spleen in the AFB1 model group significantly increased, but levels of catalase (CAT, glutathione (GSH, glutathione peroxidase (GSH-PX, and superoxide dismutase (SOD significantly decreased. The GSPE could significantly inhibit the oxidative stress injury of the spleen induced by AFB1. AFB1 exposure could not significantly change the contents of IgA, IgG, or IgM. AFB1 significantly improved the expression of interleukin 1β (IL-1β, IL-6, tumor necrosis factor α (TNF-α, and interferon γ (IFN-γ. Additionally, GSPE could decrease the expression of these four proinflammatory factors to different degrees and inhibit the inflammatory reaction of mice. The results suggest that GSPE alleviates AFB1-induced oxidative stress and significantly improves the immune injury of mice induced by AFB1.

  14. Transcutaneous vaccination using a hydrogel patch induces effective immune responses to tetanus and diphtheria toxoid in hairless rat.

    Science.gov (United States)

    Matsuo, Kazuhiko; Ishii, Yumiko; Quan, Ying-Shu; Kamiyama, Fumio; Mukai, Yohei; Yoshioka, Yasuo; Okada, Naoki; Nakagawa, Shinsaku

    2011-01-01

    Transcutaneous immunization (TCI) targeting the Langerhans cells (LCs) of the epidermal layer is a promising needle-free, easy-to-use, and non-invasive vaccination method. We developed a hydrogel patch formulation to promote the penetration of antigenic proteins into the stratum corneum. Here, we investigated the characteristics of the immune responses induced by this vaccination method and the vaccine efficacy of TCI using a hydrogel patch containing tetanus and diphtheria toxoids. Our TCI system induced toxoid-specific IgG production in an antigen dose-, patch area-, and application period-dependent manner. Moreover, IgG subclass analysis indicated that our TCI predominantly elicited a Th2-type immune response rather than a Th1-type immune response. Importantly, our TCI system induced antigen-specific immune memory based on the booster effect and showed potent efficacy, comparable to that of subcutaneous immunization in toxin-challenge experiments. On the basis of these results, we are now performing translational research to apply TCI for tetanus and diphtheria.

  15. Identification of anti-CD98 antibody mimotopes for inducing antibodies with antitumor activity by mimotope immunization.

    Science.gov (United States)

    Saito, Misa; Kondo, Masahiro; Ohshima, Motohiro; Deguchi, Kazuki; Hayashi, Hideki; Inoue, Kazuyuki; Tsuji, Daiki; Masuko, Takashi; Itoh, Kunihiko

    2014-04-01

    A mimotope is an antibody-epitope-mimicking peptide retrieved from a phage display random peptide library. Immunization with antitumor antibody-derived mimotopes is promising for inducing antitumor immunity in hosts. In this study, we isolated linear and constrained mimotopes from HBJ127, a tumor-suppressing anti-CD98 heavy chain mAb, and determined their abilities for induction of antitumor activity equal to that of the parent antibody. We detected elevated levels of antipeptide responses, but failed to detect reactivity against native CD98-expressing HeLa cells in sera of immunized mice. Phage display panning and selection of mimotope-immunized mouse spleen-derived antibody Fab library showed that HeLa cell-reactive Fabs were successfully retrieved from the library. This finding indicates that native antigen-reactive Fab clones represented an undetectable minor population in mimotope-induced antibody repertoire. Functional and structural analysis of retrieved Fab clones revealed that they were almost identical to the parent antibody. From these results, we confirmed that mimotope immunization was promising for retrieving antitumor antibodies equivalent to the parent antibody, although the co-administration of adjuvant compounds such as T-cell epitope peptides and Toll-like receptor 4 agonist peptides is likely to be necessary for inducing stronger antitumor immunity than mimotope injection alone.

  16. Protective antitumor immunity induced by tumor cell lysates conjugated with diphtheria toxin and adjuvant epitope in mouse breast tumor models

    Institute of Scientific and Technical Information of China (English)

    Ze-Yu Wang; Rong-Yue Cao; Jie Wu; Tai-Ming LI; Jing-Jing Liu; Yun Xing; Bin Liu; Lei Lu; Xiao Huang; Chi-Yu Ge; Wen-Jun Yao; Mao-Lei Xu; Zhen-Qiu Gao

    2012-01-01

    Cancer cell vaccine-based immunotherapy has received increasing interest in many clinical trials involving patients with breast cancer.Combining with appropriate adjuvants can enhance the weak immunogenic properties of tumor cell lysates (TCL).In this study,diphtheria toxin (DT) and two tandem repeats of mycobacterial heat shock protein 70 (mHSP70) fragment 407-426 (M2) were conjugated to TCL with glutaraldehyde,and the constructed cancer cell vaccine was named DT-TCL-M2.Subcutaneous injection of DT-TCL-M2 in mice effectively elicited tumor-specific polyclonal immune responses,including humoral and cellular immune responses.High levels of antibodies against TCL were detected in the serum of immunized mice with ELISA and verified with Western blot analyses.The splenocytes from immunized mice showed potent cytotoxicity on Ehrlich ascites carcinoma cells.Moreover,the protective antitumor immunity induced by DT-TCL-M2 inhibited tumor growth in a mouse breast tumor model.DTTCL-M2 also attenuated tumor-induced angiogenesis and slowed tumor growth in a mouse intradermal tumor model.These findings demonstrate that TCL conjugated with appropriate adjuvants induced effective antitumor immunity in vivo.Improvements in potency could further make cancer cell vaccines a useful and safe method for preventing cancer recurrence after resection.

  17. Systemic and mucosal immune response induced by transcutaneous immunization using Hepatitis B surface antigen-loaded modified liposomes.

    Science.gov (United States)

    Mishra, Dinesh; Mishra, Pradyumna Kumar; Dubey, Vaibhav; Nahar, Manoj; Dabadghao, Sunil; Jain, N K

    2008-04-23

    We have evaluated the efficiency of novel modified liposomes (ethosomes) for transcutaneous immunization (TCI) against Hepatitis B. Antigen-loaded ethosomes were prepared and characterized for shape, lamellarity, fluidity, size distribution, and entrapment efficiency. Spectral bio-imaging and flow cytometric studies showed efficient uptake of Hepatitis B surface antigen (HBsAg)-loaded ethosomes by murine dendritic cells (DCs) in vitro, reaching a peak by 180 min. Transcutaneous delivery potential of the antigen-loaded system using human cadaver skin demonstrated a much higher skin permeation of the antigen in comparison to conventional liposomes and soluble antigen preparation. Topically applied HBsAg-loaded ethosomes in experimental mice showed a robust systemic and mucosal humoral immune response compared to intramuscularly administered alum-adsorbed HBsAg suspension, topically applied plain HBsAg solution and hydroethanolic (25%) HBsAg solution. The ability of the antigen-pulsed DCs to stimulate autologous peripheral blood lymphocytes was demonstrated by BrdU assay and a predominantly TH1 type of immune response was observed by multiplex cytometric bead array analysis. HBsAg-loaded ethosomes are able to generate a protective immune response and their ability to traverse and target the immunological milieu of the skin may find a potential application in the development of a transcutaneous vaccine against Hepatitis B virus (HBV).

  18. Antitumor immunity induced by DNA vaccine encoding alpha-fetoprotein/heat shock protein 70

    Institute of Scientific and Technical Information of China (English)

    Xiao-Ping Wang; Guo-Zhen Liu; Ai-Li Song; Hai-Yan Li; Yu Liu

    2004-01-01

    AIM: To construct a DNA vaccine encoding human alphafetoprotein (hAFP)/heat shock protein 70 (HSP70), and to study its ability to induce specific CTL response and its protective effect against AFP-expressing tumor.METHODS: A DNA vaccine was constructed by combining hAFP gene with HSP70 gene. SP2/0 cells were stably transfected with pBBS212-hAFP and pBBS212-hAFP/HSP70eukaryotic expression vectors. Mice were primed and boosted with DNA vaccine hAFP/HSP70 by intramuscular injection, whereas plasmid with hAFP or HSP70 was used as controls. ELISPOT and ELISA were used to detect IFN-γ-producing splenocytes and the level of serum anti-AFP antibody from immunized mice respectively. In vivo tumor challenge was measured to assess the immune effect of the DNA vaccine.RESULTS: By DNA vaccine immunization, the results of ELISPOT and ELISA showed that the number of IFN-γ-producing splenocytes and the level of serum anti-AFP antibody were significantly higher in rhAFP/HSP70 group than in hAFP and empty plasmid groups (95.50±10.90IFN-γ spots/106 cells vs 23.60±11.80 IFN-γ spots/106 cells,7.17±4.24 IFN-γ spots/106 cells, P<0.01; 126.50±8.22 μg/mL vs 51.72±3.40 μg/mL, 5.83±3.79 μg/mL, P<0.01). The tumor volume in rhAFP/HSP70 group was significantly smaller than that in pBBS212-hAFP and empty plasmid groups (37.41±7.34 mm3 vs381.13±15.48 mm3, 817.51±16.25 mm3,P<0.01).CONCLUSION: Sequential immunization with a recombinant DNA vaccine encoding AFP and heat shock protein70 could generate effective AFP-specific T cell responses and induce definite antitumor effects on AFP-producing tumors, which may be suitable for some clinical testing as a vaccine for HCC.

  19. Complementary Effects of Interleukin-15 and Alpha Interferon Induce Immunity in Hepatitis B Virus Transgenic Mice

    Science.gov (United States)

    Di Scala, Marianna; Otano, Itziar; Gil-Fariña, Irene; Vanrell, Lucia; Hommel, Mirja; Olagüe, Cristina; Vales, Africa; Galarraga, Miguel; Guembe, Laura; Ortiz de Solorzano, Carlos; Ghosh, Indrajit; Maini, Mala K.; Prieto, Jesús

    2016-01-01

    ABSTRACT In chronic hepatitis B (CHB), failure to control hepatitis B virus (HBV) is associated with T cell dysfunction. HBV transgenic mice mirror many features of the human disease, including T cell unresponsiveness, and thus represent an appropriate model in which to test novel therapeutic strategies. To date, the tolerant state of CD8+ T cells in these animals could be altered only by strong immunogens or by immunization with HBV antigen-pulsed dendritic cells; however, the effectors induced were unable to suppress viral gene expression or replication. Because of the known stimulatory properties of alpha interferon (IFN-α) and interleukin-15 (IL-15), this study explored the therapeutic potential of liver-directed gene transfer of these cytokines in a murine model of CHB using adeno-associated virus (AAV) delivery. This combination not only resulted in a reduction in the viral load in the liver and the induction of an antibody response but also gave rise to functional and specific CD8+ immunity. Furthermore, when splenic and intrahepatic lymphocytes from IFN-α- and IL-15-treated animals were transferred to new HBV carriers, partial antiviral immunity was achieved. In contrast to previous observations made using either cytokine alone, markedly attenuated PD-L1 induction in hepatic tissue was observed upon coadministration. An initial study with CHB patient samples also gave promising results. Hence, we demonstrated synergy between two stimulating cytokines, IL-15 and IFN-α, which, given together, constitute a potent approach to significantly enhance the CD8+ T cell response in a state of immune hyporesponsiveness. Such an approach may be useful for treating chronic viral infections and neoplastic conditions. IMPORTANCE With 350 million people affected worldwide and 600,000 annual deaths due to HBV-induced liver cirrhosis and/or hepatocellular carcinoma, chronic hepatitis B (CHB) is a major health problem. However, current treatment options are costly and not

  20. Binase induces apoptosis of transformed myeloid cells and does not induce T-cell immune response.

    Science.gov (United States)

    Ilinskaya, Olga N; Zelenikhin, Pavel V; Petrushanko, Irina Yu; Mitkevich, Vladimir A; Prassolov, Vladimir S; Makarov, Alexander A

    2007-10-01

    Microbial RNases along with such animal RNases as onconase and BS-RNase are a promising basis for developing new antitumor drugs. We have shown that the Bacillus intermedius RNase (binase) induces selective apoptosis of transformed myeloid cells. It attacks artificially expressing activated c-Kit myeloid progenitor FDC cells and chronic myelogenous leukemia cells K562. Binase did not induce apoptosis in leukocytes of healthy donors and in normal myeloid progenitor cells. The inability of binase to initiate expression of activation markers CD69 and IFN-gamma in CD4+ and CD8+ T-lymphocytes testifies that enzyme is devoid of superantigenic properties. Altogether, these results demonstrate that binase possesses therapeutic opportunities for treatment of genotyped human neoplasms expressing activated kit.

  1. Dispositional optimism and stress-induced changes in immunity and negative mood.

    Science.gov (United States)

    Brydon, Lena; Walker, Cicely; Wawrzyniak, Andrew J; Chart, Henrik; Steptoe, Andrew

    2009-08-01

    Evidence suggests that optimism may be protective for health during times of heightened stress, yet the mechanisms involved remain unclear. In a double-blind placebo-controlled study, we recently showed that acute psychological stress and an immune stimulus (Typhim-Vi typhoid vaccine) synergistically increased serum levels of interleukin-6 (IL-6) and negative mood in 59 healthy men. Here we carried out further analysis of this sample to investigate the relationship between dispositional optimism and stress-induced changes in immunity and mood. Volunteers were randomly assigned to one of four experimental conditions in which they received either typhoid vaccine or saline placebo, and then rested or completed two mental tasks. In the stress condition, optimism was inversely related to IL-6 responses, independent of age, BMI, trait CES-D depression and baseline IL-6. This relationship was present across both stress groups (combining vaccine and placebo) and was not present in the vaccine/stress group alone, suggesting that optimism protects against the inflammatory effects of stress rather than vaccine per se. Typhoid vaccine induced a significant increase in participants' circulating anti-Vi antibody levels. Stress had no effect on antibody responses overall. However, in the vaccine/stress group, there was a strong positive association between optimism and antibody responses, indicating that stress accentuated the antibody response to vaccine in optimists. Across the complete sample, more optimistic individuals had smaller increases in negative mood and less reduction in mental vigour. Together these findings suggest that optimism may promote health, by counteracting stress-induced increases in inflammation and boosting the adjuvant effects of acute stress.

  2. Homolog of allograft inflammatory factor-1 induces macrophage migration during innate immune response in leech.

    Science.gov (United States)

    Schorn, Tilo; Drago, Francesco; Tettamanti, Gianluca; Valvassori, Roberto; de Eguileor, Magda; Vizioli, Jacopo; Grimaldi, Annalisa

    2015-03-01

    Allograft inflammatory factor-1 (AIF-1) is a 17-kDa cytokine-inducible calcium-binding protein that, in vertebrates, plays an important role in the allograft immune response. Its expression is mostly limited to the monocyte/macrophage lineage. Until recently, AIF-1 was assumed to be a novel molecule involved in inflammatory responses. To clarify this aspect, we have investigated the expression of AIF-1 after bacterial challenge and its potential role in regulating the innate immune response in an invertebrate model, the medicinal leech (Hirudo medicinalis). Analysis of an expressed sequence tag library from the central nervous system of Hirudo revealed the presence of the gene Hmaif-1/alias Hmiba1, showing high homology with vertebrate aif-1. Immunohistochemistry with an anti-HmAIF-1 polyclonal antibody revealed the constitutive presence of this protein in spread CD68(+) macrophage-like cells. A few hours after pathogen (bacterial) injection into the body wall, the amount of these immunopositive cells co-expressing HmAIF-1 and the common leucocyte marker CD45 increased at the injected site. Moreover, the recombinant protein HmAIF-1 induced massive angiogenesis and was a potent chemoattractant for macrophages. Following rHmAIF-1 stimulation, macrophage-like cells co-expressed the macrophage marker CD68 and the surface glycoprotein CD45, which, in vertebrates, seems to have a role in the integrin-mediated adhesion of macrophages and in the regulation of the functional responsiveness of cells to chemoattractants. CD45 is therefore probably involved in leech macrophage-like cell activation and migration towards an inflammation site. We have also examined its potential effect on HmAIF-1-induced signalling.

  3. Ozone-Induced Nasal Type 2 Immunity in Mice Is Dependent on Innate Lymphoid Cells.

    Science.gov (United States)

    Kumagai, Kazuyoshi; Lewandowski, Ryan; Jackson-Humbles, Daven N; Li, Ning; Van Dyken, Steven J; Wagner, James G; Harkema, Jack R

    2016-06-01

    Epidemiological studies suggest that elevated ambient concentrations of ozone are associated with activation of eosinophils in the nasal airways of atopic and nonatopic children. Mice repeatedly exposed to ozone develop eosinophilic rhinitis and type 2 immune responses. In this study, we determined the role of innate lymphoid cells (ILCs) in the pathogenesis of ozone-induced eosinophilic rhinitis by using lymphoid-sufficient C57BL/6 mice, Rag2(-/-) mice that are devoid of T cells and B cells, and Rag2(-/-)Il2rg(-/-) mice that are depleted of all lymphoid cells including ILCs. The animals were exposed to 0 or 0.8 ppm ozone for 9 consecutive weekdays (4 h/d). Mice were killed 24 hours after exposure, and nasal tissues were selected for histopathology and gene expression analysis. ILC-sufficient C57BL/6 and Rag2(-/-) mice exposed to ozone developed marked eosinophilic rhinitis and epithelial remodeling (e.g., epithelial hyperplasia and mucous cell metaplasia). Chitinase-like proteins and alarmins (IL-33, IL-25, and thymic stromal lymphopoietin) were also increased morphometrically in the nasal epithelium of ozone-exposed C57BL/6 and Rag2(-/-) mice. Ozone exposure elicited increased expression of Il4, Il5, Il13, St2, eotaxin, MCP-2, Gob5, Arg1, Fizz1, and Ym2 mRNA in C57BL/6 and Rag2(-/-) mice. In contrast, ozone-exposed ILC-deficient Rag2(-/-)Il2rg(-/-) mice had no nasal lesions or overexpression of Th2- or ILC2-related transcripts. These results indicate that ozone-induced eosinophilic rhinitis, nasal epithelial remodeling, and type 2 immune activation are dependent on ILCs. To the best of our knowledge, this is the first study to demonstrate that ILCs play an important role in the nasal pathology induced by repeated ozone exposure.

  4. Function of eltrombopag-induced platelets compared to platelets from control patients with immune thrombocytopenia.

    Science.gov (United States)

    Haselboeck, Johanna; Kaider, Alexandra; Pabinger, Ingrid; Panzer, Simon

    2013-04-01

    Data on the in vivo function of platelets induced by the thrombopoietin receptor agonist eltrombopag are scarce. To assess a possible influence of eltrombopag we compared platelet function of eltrombopag-treated immune thrombocytopenia (ITP) patients (group 1; n=10) after treatment response to that from control ITP patients (group 2; n=12). We further analysed platelet function at baseline and after one, three, and four weeks of eltrombopag treatment and estimated daily changes of platelet function during the eltrombopag-induced platelet rise. The formation of platelet-monocyte aggregates (PMA), P-selectin expression [MFI], and platelet adhesion under high shear conditions (surface coverage, SC) in vivo and after in vitro addition of agonists (ADP, TRAP-6, Collagen) were similar between both groups after response to eltrombopag treatment. Only TRAP-6 induced a lower SC in the eltrombopag group (p=0.03). All platelet function parameters except for Collagen-induced P-selectin expression changed significantly during treatment with eltrombopag. PMA, naïve and after addition of ADP or TRAP-6 increased with increasing platelet counts. P-selectin expression decreased, when measured without and upon addition of ADP, increased in the presence of TRAP-6, and remained unchanged after addition of Collagen. SC increased during the eltrombopag-induced platelet rise. All significant changes of platelet function correlated to changes in platelet counts. Two patients developed venous thromboses during eltrombopag treatment, but no association with any distinct single platelet function parameter or combinations thereof was identifiable. Thus, eltrombopag-induced platelets function similar to those from control ITP patients without discernible increased hyper-reactivity.

  5. Inducing Herd Immunity against Seasonal Influenza in Long-Term Care Facilities through Employee Vaccination Coverage: A Transmission Dynamics Model

    Directory of Open Access Journals (Sweden)

    Aaron M. Wendelboe

    2015-01-01

    Full Text Available Introduction. Vaccinating healthcare workers (HCWs in long-term care facilities (LTCFs may effectively induce herd immunity and protect residents against influenza-related morbidity and mortality. We used influenza surveillance data from all LTCFs in New Mexico to validate a transmission dynamics model developed to investigate herd immunity induction. Material and Methods. We adjusted a previously published transmission dynamics model and used surveillance data from an active system among 76 LTCFs in New Mexico during 2006-2007 for model validation. We used a deterministic compartmental model with a stochastic component for transmission between residents and HCWs in each facility in order to simulate the random variation expected in such populations. Results. When outbreaks were defined as a dichotomous variable, our model predicted that herd immunity could be induced. When defined as an attack rate, the model demonstrated a curvilinear trend, but insufficiently strong to induce herd immunity. The model was sensitive to changes in the contact parameter β but was robust to changes in the visitor contact probability. Conclusions. These results further elucidate previous studies’ findings that herd immunity may not be induced by vaccinating HCWs in LTCFs; however, increased influenza vaccination coverage among HCWs reduces the probability of influenza infection among residents.

  6. Nitric oxide synthase inhibitor, aminoguanidine reduces intracerebroventricular colchicine induced neurodegeneration, memory impairments and changes of systemic immune responses in rats.

    Science.gov (United States)

    Sil, Susmita; Ghosh, Tusharkanti; Ghosh, Rupsa; Gupta, Pritha

    2017-02-15

    Intracerebroventricular (i.c.v.) injection of colchicine induces neurodegeneration, memory impairments and changes of some systemic immune responses in rats. Though the role of cox 2 in these colchicine induced changes have been evaluated, the influence of nitric oxide synthase (NOS) remains to be studied. The present study was designed to assess the role of NOS on the i.c.v. colchicine induced neurodegeneration, memory impairments and changes of some systemic immune responses by inhibiting its activity with aminoguanidine. In the present study the impairments of working and reference memories, neurodegeneration (chromatolysis and plaque formation) and changes of neuroinflammatory markers in the hippocampus (increased TNF α, IL 1β, ROS and nitrite) along with changes of serum inflammatory markers (TNF α, IL 1β, ROS and nitrite) and alteration of systemic immune responses (higher phagocytic activity of blood WBC and splenic PMN, higher cytotoxicity and lower leukocyte adhesion inhibition index of splenic MNC) were measured in the intracerebroventricular colchicine injected rats (ICIR). Administration of aminoguanidine (p.o. 30/50mg/kg body weight) to ICIR resulted in recovery of neuroinflammation and partial prevention of neurodegeneration which could be corroborated with the partial recovery of memory impairments in this model. The recovery of serum inflammatory markers and the systemic immune responses in ICIR was also observed after administration of aminoguanidine. Therefore, the present study shows that aminoguanidine can protect the colchicine induced neurodegeneration, memory impairments, and changes of systemic immune systemic responses in ICIR by inhibiting the iNOS.

  7. Pavlovian conditioning of morphine-induced alterations of immune status: evidence for peripheral beta-adrenergic receptor involvement.

    Science.gov (United States)

    Coussons-Read, M E; Dykstra, L A; Lysle, D T

    1994-09-01

    The present studies examined the involvement of peripheral beta-adrenergic receptor activity in the establishment and expression of conditioned morphine-induced alterations of immune status. Previous work in our laboratory has shown that morphine's immunomodulatory effects can become conditioned to environmental stimuli which predict drug administration. These immune alterations include conditioned changes in natural killer cell activity, interleukin-2 production, and mitogen-induced lymphocyte proliferation. During the training phase of these experiments, Lewis rats received two conditioning sessions during which a subcutaneous injection of 15 mg/kg morphine sulfate was paired with exposure to a distinctive environment. On the test day, rats were reexposed to the conditioned stimulus prior to sacrifice. Saline or nadolol (0.002, 0.02, 0.2, or 2.0 mg/kg) was administered either prior to the training sessions or prior to the test session. Administration of nadolol prior to training did not affect the development of conditioned alterations of immune status. Conversely, nadolol administration prior to testing completely attenuated the expression of a subset of the conditioned morphine-induced changes in immune status. Taken together, these studies suggest that whereas peripheral beta-adrenergic receptor activity is not required for the establishment of conditioned morphine-induced alterations of immune status, it is involved in the expression of a subset of these conditioned immunomodulatory effects.

  8. Sublingual immunization with a subunit influenza vaccine elicits comparable systemic immune response as intramuscular immunization, but also induces local IgA and TH17 responses.

    Science.gov (United States)

    Gallorini, Simona; Taccone, Marianna; Bonci, Alessandra; Nardelli, Filomena; Casini, Daniele; Bonificio, Amanda; Kommareddy, Sushma; Bertholet, Sylvie; O'Hagan, Derek T; Baudner, Barbara C

    2014-04-25

    Influenza is a vaccine-preventable disease that remains a major health problem world-wide. Needle and syringe are still the primary delivery devices, and injection of liquid vaccine into the muscle is still the primary route of immunization. Vaccines could be more convenient and effective if they were delivered by the mucosal route. Elicitation of systemic and mucosal innate and adaptive immune responses, such as pathogen neutralizing antibodies (including mucosal IgA at the site of pathogen entry) and CD4(+) T-helper cells (especially the Th17 subset), have a critical role in vaccine-mediated protection. In the current study, a sublingual subunit influenza vaccine formulated with or without mucosal adjuvant was evaluated for systemic and mucosal immunogenicity and compared to intranasal and intramuscular vaccination. Sublingual administration of adjuvanted influenza vaccine elicited comparable antibody titers to those elicited by intramuscular immunization with conventional influenza vaccine. Furthermore, influenza-specific Th17 cells or neutralizing mucosal IgA were detected exclusively after mucosal immunization.

  9. Photodynamic therapy can induce non-specific protective immunity against a bacterial infection

    Science.gov (United States)

    Tanaka, Masamitsu; Mroz, Pawel; Dai, Tianhong; Kinoshita, Manabu; Morimoto, Yuji; Hamblin, Michael R.

    2012-03-01

    Photodynamic therapy (PDT) for cancer is known to induce an immune response against the tumor, in addition to its well-known direct cell-killing and vascular destructive effects. PDT is becoming increasingly used as a therapy for localized infections. However there has not to date been a convincing report of an immune response being generated against a microbial pathogen after PDT in an animal model. We have studied PDT as a therapy for bacterial arthritis caused by Staphylococcus aureus infection in the mouse knee. We had previously found that PDT of an infection caused by injection of MRSA (5X107 CFU) into the mouse knee followed 3 days later by 1 μg of Photofrin and 635- nm diode laser illumination with a range of fluences within 5 minutes, gave a biphasic dose response. The greatest reduction of MRSA CFU was seen with a fluence of 20 J/cm2, whereas lower antibacterial efficacy was observed with fluences that were either lower or higher. We then tested the hypothesis that the host immune response mediated by neutrophils was responsible for most of the beneficial antibacterial effect. We used bioluminescence imaging of luciferase expressing bacteria to follow the progress of the infection in real time. We found similar results using intra-articular methylene blue and red light, and more importantly, that carrying out PDT of the noninfected joint and subsequently injecting bacteria after PDT led to a significant protection from infection. Taken together with substantial data from studies using blocking antibodies we believe that the pre-conditioning PDT regimen recruits and stimulates neutrophils into the infected joint which can then destroy bacteria that are subsequently injected and prevent infection.

  10. The immune response induced by DNA vaccine expressing nfa1 gene against Naegleria fowleri.

    Science.gov (United States)

    Kim, Jong-Hyun; Lee, Sang-Hee; Sohn, Hae-Jin; Lee, Jinyoung; Chwae, Yong-Joon; Park, Sun; Kim, Kyongmin; Shin, Ho-Joon

    2012-12-01

    The pathogenic free-living amoeba, Naegleria fowleri, causes fatal primary amoebic meningoencephalitis in experimental animals and in humans. The nfa1 gene that was cloned from N. fowleri is located on pseudopodia, especially amoebic food cups and plays an important role in the pathogenesis of N. fowleri. In this study, we constructed and characterized retroviral vector and lentiviral vector systems for nfa1 DNA vaccination in mice. We constructed the retroviral vector (pQCXIN) and the lentiviral vector (pCDH) cloned with the egfp-nfa1 gene. The expression of nfa1 gene in Chinese hamster ovary cell and human primary nasal epithelial cell transfected with the pQCXIN/egfp-nfa1 vector or pCDH/egfp-nfa1 vector was observed by fluorescent microscopy and Western blotting analysis. Our viral vector systems effectively delivered the nfa1 gene to the target cells and expressed the Nfa1 protein within the target cells. To evaluate immune responses of nfa1-vaccinated mice, BALB/c mice were intranasally vaccinated with viral particles of each retro- or lentiviral vector expressing nfa1 gene. DNA vaccination using viral vectors expressing nfa1 significantly stimulated the production of Nfa1-specific IgG subclass, as well as IgG levels. In particular, both levels of IgG2a (Th1) and IgG1 (Th2) were significantly increased in mice vaccinated with viral vectors. These results show the nfa1-vaccination induce efficiently Th1 type, as well as Th2 type immune responses. This is the first report to construct viral vector systems and to evaluate immune responses as DNA vaccination in N. fowleri infection. Furthermore, these results suggest that nfal vaccination may be an effective method for treatment of N. fowleri infection.

  11. Hemocyanins Stimulate Innate Immunity by Inducing Different Temporal Patterns of Proinflammatory Cytokine Expression in Macrophages.

    Science.gov (United States)

    Zhong, Ta-Ying; Arancibia, Sergio; Born, Raimundo; Tampe, Ricardo; Villar, Javiera; Del Campo, Miguel; Manubens, Augusto; Becker, María Inés

    2016-06-01

    Hemocyanins induce a potent Th1-dominant immune response with beneficial clinical outcomes when used as a carrier/adjuvant in vaccines and nonspecific immunostimulant in cancer. However, the mechanisms by which hemocyanins trigger innate immune responses, leading to beneficial adaptive immune responses, are unknown. This response is triggered by a proinflammatory signal from various components, of which macrophages are an essential part. To understand how these proteins influence macrophage response, we investigated the effects of mollusks hemocyanins with varying structural and immunological properties, including hemocyanins from Concholepas concholepas, Fissurella latimarginata, and Megathura crenulata (keyhole limpet hemocyanin), on cultures of peritoneal macrophages. Hemocyanins were phagocytosed and slowly processed. Analysis of this process showed differential gene expression along with protein levels of proinflammatory markers, including IL-1β, IL-6, IL-12p40, and TNF-α. An extended expression analysis of 84 cytokines during a 24-h period showed a robust proinflammatory response for F. latimarginata hemocyanin in comparison with keyhole limpet hemocyanin and C. concholepas hemocyanin, which was characterized by an increase in the transcript levels of M1 cytokines involved in leukocyte recruitment. These cytokine genes included chemokines (Cxcl1, Cxcl3, Cxcl5, Ccl2, and Ccl3), ILs (Il1b and Ifng), growth factors (Csf2 and Csf3), and TNF family members (Cd40lg). The protein levels of certain cytokines were increased. However, every hemocyanin maintains downregulated key M2 cytokine genes, including Il4 and Il5 Collectively, our data demonstrate that hemocyanins are able to trigger the release of proinflammatory factors with different patterns of cytokine expression, suggesting differential signaling pathways and transcriptional network mechanisms that lead to the activation of M1-polarized macrophages.

  12. Chitin-Induced Airway Epithelial Cell Innate Immune Responses Are Inhibited by Carvacrol/Thymol.

    Science.gov (United States)

    Khosravi, Ali Reza; Erle, David J

    2016-01-01

    Chitin is produced in large amounts by fungi, insects, and other organisms and has been implicated in the pathogenesis of asthma. Airway epithelial cells are in direct contact with environmental particles and serve as the first line of defense against inhaled allergens and pathogens. The potential contributions of airway epithelial cells to chitin-induced asthma remain poorly understood. We hypothesized that chitin directly stimulates airway epithelial cells to release cytokines that promote type 2 immune responses and to induce expression of molecules which are important in innate immune responses. We found that chitin exposure rapidly induced the expression of three key type 2-promoting cytokines, IL-25, IL-33 and TSLP, in BEAS-2B transformed human bronchial epithelial cells and in A549 and H292 lung carcinoma cells. Chitin also induced the expression of the key pattern recognition receptors TLR2 and TLR4. Chitin induced the expression of miR-155, miR-146a and miR-21, each of which is known to up-regulate the expression of pro-inflammatory cytokines. Also the expression of SOCS1 and SHIP1 which are known targets of miR-155 was repressed by chitin treatment. The monoterpene phenol carvacrol (Car) and its isomer thymol (Thy) are found in herbal essential oils and have been shown to inhibit allergic inflammation in asthma models. We found that Car/Thy inhibited the effects of chitin on type 2-promoting cytokine release and on the expression of TLRs, SOCS1, SHIP1, and miRNAs. Car/Thy could also efficiently reduce the protein levels of TLR4, inhibit the increase in TLR2 protein levels in chitin plus Car/Thy-treated cells and increase the protein levels of SHIP1 and SOCS1, which are negative regulators of TLR-mediated inflammatory responses. We conclude that direct effects of chitin on airway epithelial cells are likely to contribute to allergic airway diseases like asthma, and that Car/Thy directly inhibits epithelial cell pro-inflammatory responses to chitin.

  13. Chitin-Induced Airway Epithelial Cell Innate Immune Responses Are Inhibited by Carvacrol/Thymol.

    Directory of Open Access Journals (Sweden)

    Ali Reza Khosravi

    Full Text Available Chitin is produced in large amounts by fungi, insects, and other organisms and has been implicated in the pathogenesis of asthma. Airway epithelial cells are in direct contact with environmental particles and serve as the first line of defense against inhaled allergens and pathogens. The potential contributions of airway epithelial cells to chitin-induced asthma remain poorly understood. We hypothesized that chitin directly stimulates airway epithelial cells to release cytokines that promote type 2 immune responses and to induce expression of molecules which are important in innate immune responses. We found that chitin exposure rapidly induced the expression of three key type 2-promoting cytokines, IL-25, IL-33 and TSLP, in BEAS-2B transformed human bronchial epithelial cells and in A549 and H292 lung carcinoma cells. Chitin also induced the expression of the key pattern recognition receptors TLR2 and TLR4. Chitin induced the expression of miR-155, miR-146a and miR-21, each of which is known to up-regulate the expression of pro-inflammatory cytokines. Also the expression of SOCS1 and SHIP1 which are known targets of miR-155 was repressed by chitin treatment. The monoterpene phenol carvacrol (Car and its isomer thymol (Thy are found in herbal essential oils and have been shown to inhibit allergic inflammation in asthma models. We found that Car/Thy inhibited the effects of chitin on type 2-promoting cytokine release and on the expression of TLRs, SOCS1, SHIP1, and miRNAs. Car/Thy could also efficiently reduce the protein levels of TLR4, inhibit the increase in TLR2 protein levels in chitin plus Car/Thy-treated cells and increase the protein levels of SHIP1 and SOCS1, which are negative regulators of TLR-mediated inflammatory responses. We conclude that direct effects of chitin on airway epithelial cells are likely to contribute to allergic airway diseases like asthma, and that Car/Thy directly inhibits epithelial cell pro-inflammatory responses

  14. Adult Drosophila melanogaster evolved for antibacterial defense invest in infection-induced expression of both humoral and cellular immunity genes

    Directory of Open Access Journals (Sweden)

    McGraw Elizabeth A

    2011-08-01

    Full Text Available Abstract Background While the transcription of innate immunity genes in response to bacterial infection has been well-characterised in the Drosophila model, we recently demonstrated the capacity for such transcription to evolve in flies selected for improved antibacterial defense. Here we use this experimental system to examine how insects invest in constitutive versus infection-induced transcription of immunity genes. These two strategies carry with them different consequences with respect to energetic and pleiotropic costs and may be more or less effective in improving defense depending on whether the genes contribute to humoral or cellular aspects of immunity. Findings Contrary to expectation we show that selection preferentially increased the infection-induced expression of both cellular and humoral immunity genes. Given their functional roles, infection induced increases in expression were expected for the humoral genes, while increases in constitutive expression were expected for the cellular genes. We also report a restricted ability to improve transcription of immunity genes that is on the order of 2-3 fold regardless of total transcription level of the gene. Conclusions The evolved increases in infection-induced expression of the cellular genes may result from specific cross talk with humoral pathways or from generalised strategies for enhancing immunity gene transcription. A failure to see improvements in constitutive expression of the cellular genes suggests either that increases might come at too great a cost or that patterns of expression in adults are decoupled from the larval phase where increases would be most effective. The similarity in fold change increase across all immunity genes may suggest a shared mechanism for the evolution of increased transcription in small, discrete units such as duplication of cis-regulatory elements.

  15. Innate immune response in experimentally induced bovine intramammary infection with Staphylococcus simulans and S. epidermidis

    Directory of Open Access Journals (Sweden)

    Simojoki Heli

    2011-03-01

    Full Text Available Abstract Coagulase-negative staphylococci (CNS are in several countries the most common bacteria isolated in subclinical mastitis. To investigate the innate immune response of cows to infections with two common mastitis-causing CNS species, Staphylococcus epidermidis and Staphylococcus simulans, experimental intramammary infection was induced in eight cows using a crossover design. The milk somatic cell count (SCC, N-acetyl-β-D-glucosaminidase (NAGase activity, milk amyloid A (MAA, serum amyloid A (SAA and proinflammatory cytokines interleukin (IL-1β, IL-8, and tumor necrosis factor α (TNF-α were determined at several time points before and after challenge. All cows became infected and showed mild to moderate clinical signs of mastitis. The spontaneous elimination rate of the 16 infections was 31.3%, with no difference between species. Infections triggered a local cytokine response in the experimental udder quarters, but cytokines were not detected in the uninfected control quarters or in systemic circulation. The innate local immune response for S. simulans was slightly stronger, with significantly higher concentrations of IL-1β and IL-8. The IL-8 response could be divided into early, delayed, or combined types of response. The CNS species or persistency of infection was not associated with the type of IL-8 response. No significant differences were seen between spontaneously eliminated or persistent infections.

  16. A recombinant varicella vaccine harboring a respiratory syncytial virus gene induces humoral immunity.

    Science.gov (United States)

    Murakami, Kouki; Matsuura, Masaaki; Ota, Megumi; Gomi, Yasuyuki; Yamanishi, Koichi; Mori, Yasuko

    2015-11-09

    The varicella-zoster virus (VZV) Oka vaccine strain (vOka) is highly efficient and causes few adverse events; therefore, it is used worldwide. We previously constructed recombinant vOka (rvOka) harboring the mumps virus gene. Immunizing guinea pigs with rvOka induced the production of neutralizing antibodies against the mumps virus and VZV. Here, we constructed recombinant vOka viruses containing either the respiratory syncytial virus (RSV) subgroup A fusion glycoprotein (RSV A-F) gene or RSV subgroup B fusion glycoprotein (RSV B-F) gene (rvOka-RSV A-F or rvOka-RSV B-F). Indirect immunofluorescence and Western blot analyses confirmed the expression of each recombinant RSV protein in virus-infected cells. Immunizing guinea pigs with rvOka-RSV A-F or rvOka-RSV B-F led to the induction of antibodies against RSV proteins. These results suggest that the current varicella vaccine genome can be used to generate custom-made vaccine vectors to develop the next generation of live vaccines.

  17. In vivo optical imaging to visualize photodynamic therapy-induced immune responses

    Science.gov (United States)

    Mitra, Soumya; Foster, Thomas H.

    2009-02-01

    Motivated by recent successes in growing intradermal tumors in the ears of mice and establishing the feasibility of in vivo confocal imaging of anatomic vessels in these tumors using fluorophore-conjugated antibodies to CD31, we are exploring a number of applications of optical fluorescence imaging in superficial murine tumor models in vivo. Immune responses induced by photodynamic therapy (PDT) are dynamic processes that occur in a spatially and temporally specific manner. To visualize these processes noninvasively, we have made progress in developing optical molecular imaging strategies that take advantage of intradermal injection of fluorophore-conjugated-antibodies against surface antigens on immune cells. This enables confocal imaging of the fluorescently labeled host cells to depths of at least 100 microns, and using this technique we have achieved in vivo imaging of granulocyte (GR-1)- and major histocompatibility complex class II (MHC-II)-positive cell trafficking in tumors in response to PDT. The latter include macrophages and dendritic cells. Data from tumors that were subjected to PDT with the photosensitizer, HPPH, reveals a significantly enhanced level of GR-1+ cell infiltration compared to untreated control tumor. The temporal kinetics of GR-1+ and MHC-II+ cells at different time intervals post-PDT are being examined. The ability to image host responses in vivo without excising or perturbing the tissue has opened up opportunities to explore means of optimizing them to therapeutic advantage.

  18. Phellinus linteus Extract Augments the Immune Response in Mitomycin C-Induced Immunodeficient Mice

    Directory of Open Access Journals (Sweden)

    Shintaro Matsuba

    2008-01-01

    Full Text Available Phellinus linteus is a fungus distributed throughout Japan, Korea and China. Boiled water-soluble extracts from P. linteus (PLW have shown anti-tumor and immunomodulatory properties in experiments done by intraperitoneal treatment, or in in vitro cell cultures. This is the first investigation on how oral administration of PLW influences immune responses. Here, we established immunodeficient mice by mitomycin C (MMC and then researched how PLW influenced plaque-forming cell (PFC production and populations of cytokine [interferon- (IFNγ- and interleukin-4 (IL-4]-producing T lymphocytes. PLW samples were administered orally for 19 days (1, 2 or 4 g/kg/day. PFC assay was followed using Jerne's method. IFN- and IL-4-producing T lymphocyte populations were measured by flow-activated cell sorter (FACS. These assays were conducted the day after the last oral administration. MMC groups were given MMC (1 mg/kg/day intraperitoneally for 6 days with PLW administration. The number of PFC per 106 spleen cells increased significantly in the PLW (2 g/kg/day group when compared with the MMC-control (P < 0.05 while populations of IFNγ- and IL-4-producing T lymphocytes decreased by MMC treatment. However, the PLW group tended to increase more than the MMC-control. Our results indicated that PLW augments the immune response of the spleen in MMC-induced immunodeficient mice.

  19. Phellinus linteus Extract Augments the Immune Response in Mitomycin C-Induced Immunodeficient Mice.

    Science.gov (United States)

    Matsuba, Shintaro; Matsuno, Hideo; Sakuma, Masahiro; Komatsu, Yasuhiro

    2008-03-01

    Phellinus linteus is a fungus distributed throughout Japan, Korea and China. Boiled water-soluble extracts from P. linteus (PLW) have shown anti-tumor and immunomodulatory properties in experiments done by intraperitoneal treatment, or in in vitro cell cultures. This is the first investigation on how oral administration of PLW influences immune responses. Here, we established immunodeficient mice by mitomycin C (MMC) and then researched how PLW influenced plaque-forming cell (PFC) production and populations of cytokine [interferon- (IFNgamma-) and interleukin-4 (IL-4)]-producing T lymphocytes. PLW samples were administered orally for 19 days (1, 2 or 4 g/kg/day). PFC assay was followed using Jerne's method. IFN- and IL-4-producing T lymphocyte populations were measured by flow-activated cell sorter (FACS). These assays were conducted the day after the last oral administration. MMC groups were given MMC (1 mg/kg/day) intraperitoneally for 6 days with PLW administration. The number of PFC per 10(6) spleen cells increased significantly in the PLW (2 g/kg/day) group when compared with the MMC-control (P < 0.05) while populations of IFNgamma- and IL-4-producing T lymphocytes decreased by MMC treatment. However, the PLW group tended to increase more than the MMC-control. Our results indicated that PLW augments the immune response of the spleen in MMC-induced immunodeficient mice.

  20. Steric shielding of surface epitopes and impaired immune recognition induced by the ebola virus glycoprotein.

    Directory of Open Access Journals (Sweden)

    Joseph R Francica

    Full Text Available Many viruses alter expression of proteins on the surface of infected cells including molecules important for immune recognition, such as the major histocompatibility complex (MHC class I and II molecules. Virus-induced downregulation of surface proteins has been observed to occur by a variety of mechanisms including impaired transcription, blocks to synthesis, and increased turnover. Viral infection or transient expression of the Ebola virus (EBOV glycoprotein (GP was previously shown to result in loss of staining of various host cell surface proteins including MHC1 and β1 integrin; however, the mechanism responsible for this effect has not been delineated. In the present study we demonstrate that EBOV GP does not decrease surface levels of β1 integrin or MHC1, but rather impedes recognition by steric occlusion of these proteins on the cell surface. Furthermore, steric occlusion also occurs for epitopes on the EBOV glycoprotein itself. The occluded epitopes in host proteins and EBOV GP can be revealed by removal of the surface subunit of GP or by removal of surface N- and O- linked glycans, resulting in increased surface staining by flow cytometry. Importantly, expression of EBOV GP impairs CD8 T-cell recognition of MHC1 on antigen presenting cells. Glycan-mediated steric shielding of host cell surface proteins by EBOV GP represents a novel mechanism for a virus to affect host cell function, thereby escaping immune detection.

  1. Photodynamic therapy can induce a protective innate immune response against murine bacterial arthritis via neutrophil accumulation.

    Directory of Open Access Journals (Sweden)

    Masamitsu Tanaka

    Full Text Available BACKGROUND: Local microbial infections induced by multiple-drug-resistant bacteria in the orthopedic field can be intractable, therefore development of new therapeutic modalities is needed. Photodynamic therapy (PDT is a promising alternative modality to antibiotics for intractable microbial infections, and we recently reported that PDT has the potential to accumulate neutrophils into the infected site which leads to resolution of the infection. PDT for cancer has long been known to be able to stimulate the innate and adaptive arms of the immune system. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, a murine methicillin-resistant Staphylococcus aureus (MRSA arthritis model using bioluminescent MRSA and polystyrene microparticles was established, and both the therapeutic (Th-PDT and preventive (Pre-PDT effects of PDT using methylene blue as photosensitizer were examined. Although Th-PDT could not demonstrate direct bacterial killing, neutrophils were accumulated into the infectious joint space after PDT and MRSA arthritis was reduced. With the preconditioning Pre-PDT regimen, neutrophils were quickly accumulated into the joint immediately after bacterial inoculation and bacterial growth was suppressed and the establishment of infection was inhibited. CONCLUSIONS/SIGNIFICANCE: This is the first demonstration of a protective innate immune response against a bacterial pathogen produced by PDT.

  2. Photodynamic vaccination of hamsters with inducible suicidal mutants of Leishmania amazonensis elicits immunity against visceral leishmaniasis

    Science.gov (United States)

    Kumari, Shraddha; Samant, Mukesh; Khare, Prashant; Misra, Pragya; Dutta, Sujoy; Kolli, Bala Krishna; Sharma, Sharad; Chang, Kwang Poo; Dube, Anuradha

    2016-01-01

    Leishmania, naturally residing in the phagolysosomes of macrophages, is a suitable carrier for vaccine delivery. Genetic complementation of these trypanosomatid protozoa to partially rectify their defective heme-biosynthesis renders them inducible with δ-aminolevulinate to develop porphyria for selective photolysis, leaving infected host-cells unscathed. Delivery of released “vaccines” to antigen-presenting cells is thus expected to enhance immune response, while their self-destruction presents added advantages of safety. Such suicidal-L. amazonensis was found to confer immunoprophylaxis and immunotherapy on hamsters against L. donovani. Neither heat-killed nor live parasites without suicidal induction were effective. Photodynamic vaccination of hamsters with the suicidal-mutants reduced the parasite loads by 99% and suppressed the development of disease. These suppressions were accompanied by an increase in Leishmania-specific delayed-type hypersensitivity and lymphoproliferation as well as in the levels of splenic iNOS, IFN-γ and IL-12 expressions and of Leishmania-specific IgG2 in the serum. Moreover, a single intravenous administration of T-cells from vaccinated hamsters was shown to confer on naïve animals an effective cellular immunity against L. donovani challenges. The absence of lesion development at vaccination sites and parasites in the draining lymphnodes, spleen and liver further indicates that the suicidal mutants provide a safe platform for vaccine delivery against experimental visceral leishmaniasis. PMID:19053149

  3. Low doses of imatinib induce myelopoiesis and enhance host anti-microbial immunity.

    Directory of Open Access Journals (Sweden)

    Ruth J Napier

    2015-03-01

    Full Text Available Imatinib mesylate (Gleevec inhibits Abl1, c-Kit, and related protein tyrosine kinases (PTKs and serves as a therapeutic for chronic myelogenous leukemia and gastrointestinal stromal tumors. Imatinib also has efficacy against various pathogens, including pathogenic mycobacteria, where it decreases bacterial load in mice, albeit at doses below those used for treating cancer. We report that imatinib at such low doses unexpectedly induces differentiation of hematopoietic stem cells and progenitors in the bone marrow, augments myelopoiesis but not lymphopoiesis, and increases numbers of myeloid cells in blood and spleen. Whereas progenitor differentiation relies on partial inhibition of c-Kit by imatinib, lineage commitment depends upon inhibition of other PTKs. Thus, imatinib mimics "emergency hematopoiesis," a physiological innate immune response to infection. Increasing neutrophil numbers by adoptive transfer sufficed to reduce mycobacterial load, and imatinib reduced bacterial load of Franciscella spp., which do not utilize imatinib-sensitive PTKs for pathogenesis. Thus, potentiation of the immune response by imatinib at low doses may facilitate clearance of diverse microbial pathogens.

  4. Vaccination with dendritic cells pulsed with hepatitis C pseudo particles induces specific immune responses in mice

    Institute of Scientific and Technical Information of China (English)

    Kilian Weigand; Franziska Voigt; Jens Encke; Birgit Hoyler; Wolfgang Stremmel; Christoph Eisenbach

    2012-01-01

    AIM:To explore dendritic cells (DCs) multiple functions in immune modulation.METHODS:We used bone-marrow derived dendritic cells from BALB/c mice pulsed with pseudo particles from the hepatitis C virus to vaccinate naive BALB/c mice.Hepatitis C virus (HCV) pseudo particles consist of the genotype 1b derived envelope proteins E1 and E2,covering a non-HCV core structure.Thus,not a single epitope,but the whole "viral surface" induces immunogenicity.For vaccination,mature and activated DC were injected subcutaneously twice.RESULTS:Humoral and cellular immune responses measured by enzyme-linked immunosorbent assay and interferon-gamma enzyme-linked immunosorbent spot test showed antibody production as well as T-cells directed against HCV.Furthermore,T-cell responses confirmed two highly immunogenic regions in E1 and E2 outside the hypervariable region 1.CONCLUSION:Our results indicate dendritic cells as a promising vaccination model for HCV infection that should be evaluated further.

  5. SSB peptide and DNA co-immunization induces inhibition of anti-dsDNA antibody production in rabbits

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Background Patients with systemic lupus erythematosus often have various autoantibodies.The relationship between these antibodies is still poorly understood.The aim of the present study was to observe the anti-SSB antibody and anti-dsDNA antibody production profiles following immunization with synthetic SSB peptide alone,DNA alone or co-immunization with these two antigens.Methods SSB 214-225 aa peptide was synthesized by organic chemistry solid-phase peptide synthesis.Rabbits were immunized with the foliowing antigens:synthetic SSB peptide linked with keyhole limpet hemocyanin (KLH),DNA,SSB plus dsDNA,KLH and PBS.Antibodies were measured by ELISA.Histopathology and direct immufluorescence assays were also applied.Results Ainit-SSB and anti-dsDNA antibodies were produced following immunization with SSB peptide and DNA respectively.The level of SSB antibody in the co-immunization group was higher than that of the SSB peptide immunization group.The level of anti-dsDNA antibody in the co-immunization group was,however,lower than that in the DNA immunization group.Meanwhile,the level of anti-SSB antibody was higher than that of anti-DNA antibody in the co-immunization group.No morphological or immunological abnormalities were found in the heart,liver,kidney,spleen or skin tissues.Conclusion Inhibition of anti-dsDNA-antibody was induced by co-immunization with synthesized SSB peptide and DNA,which might explain,at least partly,the mild disease in some LE subsets associated with SSB antibody.

  6. Immunity to Lutzomyia intermedia saliva modulates the inflammatory environment induced by Leishmania braziliensis.

    Directory of Open Access Journals (Sweden)

    Tatiana R de Moura

    Full Text Available BACKGROUND: During blood feeding, sand flies inject Leishmania parasites in the presence of saliva. The types and functions of cells present at the first host-parasite contact are critical to the outcome on infection and sand fly saliva has been shown to play an important role in this setting. Herein, we investigated the in vivo chemotactic effects of Lutzomyia intermedia saliva, the vector of Leishmania braziliensis, combined or not with the parasite. METHODS AND FINDINGS: We tested the initial response induced by Lutzomyia intermedia salivary gland sonicate (SGS in BALB/c mice employing the air pouch model of inflammation. L. intermedia SGS induced a rapid influx of macrophages and neutrophils. In mice that were pre-sensitized with L. intermedia saliva, injection of SGS was associated with increased neutrophil recruitment and a significant up-regulation of CXCL1, CCL2, CCL4 and TNF-alpha expression. Surprisingly, in mice that were pre-exposed to SGS, a combination of SGS and L. braziliensis induced a significant migration of neutrophils and an important modulation in cytokine and chemokine expression as shown by decreased CXCL10 expression and increased IL-10 expression. CONCLUSION: These results confirm that sand fly saliva modulates the initial host response. More importantly, pre-exposure to L. intermedia saliva significantly modifies the host's response to L. braziliensis, in terms of cellular recruitment and expression of cytokines and chemokines. This particular immune modulation may, in turn, favor parasite multiplication.

  7. Hapten-Induced Contact Hypersensitivity, Autoimmune Reactions, and Tumor Regression: Plausibility of Mediating Antitumor Immunity

    Directory of Open Access Journals (Sweden)

    Dan A. Erkes

    2014-01-01

    Full Text Available Haptens are small molecule irritants that bind to proteins and elicit an immune response. Haptens have been commonly used to study allergic contact dermatitis (ACD using animal contact hypersensitivity (CHS models. However, extensive research into contact hypersensitivity has offered a confusing and intriguing mechanism of allergic reactions occurring in the skin. The abilities of haptens to induce such reactions have been frequently utilized to study the mechanisms of inflammatory bowel disease (IBD to induce autoimmune-like responses such as autoimmune hemolytic anemia and to elicit viral wart and tumor regression. Hapten-induced tumor regression has been studied since the mid-1900s and relies on four major concepts: (1 ex vivo haptenation, (2 in situ haptenation, (3 epifocal hapten application, and (4 antigen-hapten conjugate injection. Each of these approaches elicits unique responses in mice and humans. The present review attempts to provide a critical appraisal of the hapten-mediated tumor treatments and offers insights for future development of the field.

  8. Lymphoid tissue inducer cells: architects of CD4 immune responses in mice and men.

    Science.gov (United States)

    Kim, M-Y; Kim, K-S; McConnell, F; Lane, P

    2009-07-01

    In this review, we summarize the current understanding of the multiple functions of the mouse lymphoid tissue inducer (LTi) cells in: (i) the development of organized lymphoid tissue, (ii) the generation and maintenance of CD4-dependent immunity in adult lymphoid tissues; and (iii) the regulation of central tolerance in thymus. By contrast with mouse LTi cells, which have been well described, the human equivalent is only just beginning to be characterized. Human LTi-like cells expressing interleukin (IL)-22 have been identified recently and found to differentiate into natural killer (NK) cells. The relationship of LTi cells to NK cells is discussed in the light of several studies reporting a close relationship in the mouse between LTi cells and transcription factor retinoid-related orphan receptor gammat-dependent IL-22 producing NK cells in the gut. We also outline our data suggesting that these cells are present in adult human lymphoid tissues.

  9. What Is Known about the Immune Response Induced by Plasmodium vivax Malaria Vaccine Candidates?

    Science.gov (United States)

    López, Carolina; Yepes-Pérez, Yoelis; Hincapié-Escobar, Natalia; Díaz-Arévalo, Diana; Patarroyo, Manuel A.

    2017-01-01

    Malaria caused by Plasmodium vivax continues being one of the most important infectious diseases around the world; P. vivax is the second most prevalent species and has the greatest geographic distribution. Developing an effective antimalarial vaccine is considered a relevant control strategy in the search for means of preventing the disease. Studying parasite-expressed proteins, which are essential in host cell invasion, has led to identifying the regions recognized by individuals who are naturally exposed to infection. Furthermore, immunogenicity studies have revealed that such regions can trigger a robust immune response that can inhibit sporozoite (hepatic stage) or merozoite (erythrocyte stage) invasion of a host cell and induce protection. This review provides a synthesis of the most important studies to date concerning the antigenicity and immunogenicity of both synthetic peptide and recombinant protein candidates for a vaccine against malaria produced by P. vivax. PMID:28243235

  10. Effect of plasmapheresis on the immune system in endotoxin-induced sepsis

    DEFF Research Database (Denmark)

    Toft, P; Schmidt, R; Broechner, A C

    2008-01-01

    BACKGROUND: It has been proposed that plasmapheresis is most effective when applied early in Gram-negative sepsis. We therefore studied the effect of early plasmapheresis on immunity in experimental Escherichia coli endotoxin-induced sepsis. METHODS: 20 pigs received 30 microg/kg of E. coli...... endotoxin. 40 min later, half of the pigs were treated with plasmapheresis which lasted 4 h. The adhesion molecules, the oxidative burst, the number of neutrophils in blood and lungs, and cytokines were measured. RESULTS: Infusion of endotoxin was associated with activation of adhesion molecules increased...... oxidative burst, increased concentration of cytokine, and accumulation of granulocytes in lung tissue. Plasmapheresis reduced the oxidative burst, and there was a tendency towards a reduced accumulation of granulocytes in the lung. CONCLUSION: Though plasmapheresis was initiated early after the endotoxin...

  11. Transgenic Carrot Expressing Fusion Protein Comprising M. tuberculosis Antigens Induces Immune Response in Mice

    Directory of Open Access Journals (Sweden)

    Natalia V. Permyakova

    2015-01-01

    Full Text Available Tuberculosis remains one of the major infectious diseases, which continues to pose a major global health problem. Transgenic plants may serve as bioreactors to produce heterologous proteins including antibodies, antigens, and hormones. In the present study, a genetic construct has been designed that comprises the Mycobacterium tuberculosis genes cfp10, esat6 and dIFN gene, which encode deltaferon, a recombinant analog of the human γ-interferon designed for expression in plant tissues. This construct was transferred to the carrot (Daucus carota L. genome by Agrobacterium-mediated transformation. This study demonstrates that the fusion protein CFP10-ESAT6-dIFN is synthesized in the transgenic carrot storage roots. The protein is able to induce both humoral and cell-mediated immune responses in laboratory animals (mice when administered either orally or by injection. It should be emphasized that M. tuberculosis antigens contained in the fusion protein have no cytotoxic effect on peripheral blood mononuclear cells.

  12. Bifidobacterium longum CECT 7347 modulates immune responses in a gliadin-induced enteropathy animal model.

    Directory of Open Access Journals (Sweden)

    José Moisés Laparra

    Full Text Available Coeliac disease (CD is an autoimmune disorder triggered by gluten proteins (gliadin that involves innate and adaptive immunity. In this study, we hypothesise that the administration of Bifidobacterium longum CECT 7347, previously selected for reducing gliadin immunotoxic effects in vitro, could exert protective effects in an animal model of gliadin-induced enteropathy. The effects of this bacterium were evaluated in newborn rats fed gliadin alone or sensitised with interferon (IFN-γ and fed gliadin. Jejunal tissue sections were collected for histological, NFκB mRNA expression and cytokine production analyses. Leukocyte populations and T-cell subsets were analysed in peripheral blood samples. The possible translocation of the bacterium to different organs was determined by plate counting and the composition of the colonic microbiota was quantified by real-time PCR. Feeding gliadin alone reduced enterocyte height and peripheral CD4+ cells, but increased CD4+/Foxp3+ T and CD8+ cells, while the simultaneous administration of B. longum CECT 7347 exerted opposite effects. Animals sensitised with IFN-γ and fed gliadin showed high cellular infiltration, reduced villi width and enterocyte height. Sensitised animals also exhibited increased NFκB mRNA expression and TNF-α production in tissue sections. B. longum CECT 7347 administration increased NFκB expression and IL-10, but reduced TNF-α, production in the enteropathy model. In sensitised gliadin-fed animals, CD4+, CD4+/Foxp3+ and CD8+ T cells increased, whereas the administration of B. longum CECT 7347 reduced CD4+ and CD4+/Foxp3+ cell populations and increased CD8+ T cell populations. The bifidobacterial strain administered represented between 75-95% of the total bifidobacteria isolated from all treated groups, and translocation to organs was not detected. These findings indicate that B. longum attenuates the production of inflammatory cytokines and the CD4+ T-cell mediated immune response in

  13. Metabolic and adaptive immune responses induced in mice infected with tissue-dwelling nematode Trichinella zimbabwensis

    Science.gov (United States)

    Onkoba, N.; Chimbari, M.J.; Kamau, J.M.; Mukaratirwa, S.

    2016-01-01

    Tissue-dwelling helminths are known to induce intestinal and systemic inflammation accompanied with host compensatory mechanisms to counter balance nutritional and metabolic deficiencies. The metabolic and immune responses of the host depend on parasite species and tissues affected by the parasite. This study investigated metabolic and immuno-inflammatory responses of mice infected with tissue-dwelling larvae of Trichinella zimbabwensis and explored the relationship between infection, metabolic parameters and Th1/Th17 immune responses. Sixty (60) female BALB/c mice aged between 6 to 8 weeks old were randomly assigned into T. zimbabwensis-infected and control groups. Levels of Th1 (interferon-γ) and Th17 (interleukin-17) cytokines, insulin and blood glucose were determined as well as measurements of body weight, food and water intake. Results showed that during the enteric phase of infection, insulin and IFN-γ levels were significantly higher in the Trichinella infected group accompanied with a reduction in the trends of food intake and weight loss compared with the control group. During systemic larval migration, trends in food and water intake were significantly altered and this was attributed to compensatory feeding resulting in weight gain, reduced insulin levels and increased IL-17 levels. Larval migration also induced a Th1/Th17 derived inflammatory response. It was concluded that T. zimbabwensis alters metabolic parameters by instigating host compensatory feeding. Furthermore, we showed for the first time that non-encapsulated T. zimbabwensis parasite plays a role in immunomodulating host Th1/Th17 type responses during chronic infection. PMID:27882304

  14. The effects of colloidal bismuth tartrate on colitis induced by immune-complex in rabbits

    Institute of Scientific and Technical Information of China (English)

    Li Zheng; Shu Xian Wang; Zhen Qiang Gao

    2000-01-01

    AIM To observe the therapeutic effect of colloidal bismuth tartrate in an animal colitis model.METHODS Immune-complex colitis was induced in groups of rabbits by formalin, and two hours later0.85 mL heat-aggregated rabbit IgG was given intravenously through the ear cannula. Animals wereintracolonically treated with colloidal bismuth tartrate (BITNAL), and its effect was compared withsulfasalazine (SASP), indomethacin (IND) and bifidobiogen (BIFG). Animals were killed, the mucosalappearance was scored (0-4), and tissue saved for histological studies, the number of neutrophils present ininflamed colonic tissue was quantitated by the myeloperoxidase (MPO) activity assay, the production oflipoxygenase and cyclo-oxygenase products was monitored and eicosanoid production were assayed byincubation colonic specimens and the media for prostaglandin E2(PGE2), leukotriene (LTB4), thromboxaneB2(TXPe) were examined by radiommunoassay.RESULTS Immune-complex colitis was induced by formalin and IgG, colonic damage persisted for at least1 wk by macrography. Histologically, the inflammatory response included mucosal and submucosalinfiltration by polymorphonuclear leukocytes, macrophages, lymphocytes and fibroblasts, the macroscopic,persent 2 wk after IgG, was correlated with greatly increased PGE2, LTB4 and TXB2 compared with levels incontrols. Treatment with BITNAL (500 mg/kg) resulted in a lowered inflammation index, lowered MPOactivity and inhibited the increased formation of PGF-2, LTB4 and TXB2 by the inflamed colon, and IND(500 mg/kg) markedly inhibited prostanoid formation in both inflamed and control colon but did not reducetissue damage, SASP (500 mg/kg) also inhibited the formation of PGE2, LTB4 and TXB2 but the effectswere less marked. BIFG (400 mg/kg) did not significantly reduce the colonic injury and the media sythesizedby the rabbit colon.CONCLUSION BITAL provides better therapeutic effects in experimental colitis than anti-inflammatorydrug IND or SASP.

  15. Hsp70 vaccination-induced primary immune responses in efferent lymph of the draining lymph node.

    Science.gov (United States)

    Vrieling, Manouk; Santema, Wiebren; Vordermeier, Martin; Rutten, Victor; Koets, Ad

    2013-10-01

    Bovine paratuberculosis is a highly prevalent chronic infection of the small intestine in cattle, caused by Mycobacterium avium subspecies paratuberculosis (MAP). In earlier studies we showed the protective effect of Hsp70/DDA subunit vaccination against paratuberculosis. In the current study we set out to measure primary immune responses generated at the site of Hsp70 vaccination. Lymph vessel cannulation was performed to obtain efferent lymph from the prescapular lymph node draining the neck area where the vaccine was applied. Hsp70 vaccination induced a significant increase of CD21(+) B cells in efferent lymph, accounting for up to 40% of efferent cells post-vaccination. Proliferation (Ki67(+)) within the CD21(+) B cell and CD4(+) T cell populations peaked between day 3 and day 5 post-vaccination. From day 7, Hsp70-specific antibody secreting cells (ASCs) could be detected in efferent lymph. Hsp70-specific antibodies, mainly of the IgG1 isotype, were also detected from this time point onwards. However, post-vaccination IFN-γ production in efferent lymph was non-sustained. In conclusion, Hsp70-vaccination induces only limited Th1 type immune responsiveness as reflected in efferent lymph draining the vaccination site. This is in line with our previous observations in peripheral blood. The main primary immunological outcome of the Hsp70/DDA subunit vaccination is B cell activation and abundant Hsp70-specific IgG1 production. This warrants the question whether Hsp70-specific antibodies contribute to the observed protective effect of Hsp70 vaccination in calves.

  16. Heat killed multi-serotype Shigella immunogens induced humoral immunity and protection against heterologous challenge in rabbit model.

    Science.gov (United States)

    Nag, Dhrubajyoti; Sinha, Ritam; Mitra, Soma; Barman, Soumik; Takeda, Yoshifumi; Shinoda, Sumio; Chakrabarti, M K; Koley, Hemanta

    2015-11-01

    Recently we have shown the homologous protective efficacy of heat killed multi-serotype Shigella (HKMS) immunogens in a guinea pig colitis model. In our present study, we have advanced our research by immunizing rabbits with a reduced number of oral doses and evaluating the host's adaptive immune responses. The duration of immunogenicity and subsequently protective efficacy was determined against wild type heterologous Shigella strains in a rabbit luminal model. After three successive oral immunizations with HKMS immunogens, serum and lymphocyte supernatant antibody titer against the heterologous shigellae were reciprocally increased and remained at an elevated level up to 180 days. Serogroup and serotype specific O-antigen of lipopolysaccharide and immunogenic proteins of heterologous challenge strains were detected by immunoblot assay. Up-regulation of IL-12p35, IFN-γ and IL-10 mRNA expression was detected in immunized rabbit peripheral blood mononuclear cells (PBMC) after stimulation with HKMS in vitro. HKMS-specific plasma cell response was confirmed by production of a relatively higher level of HKMS-specific IgG in immunized PBMC supernatant compared to control group. Furthermore, the immunized groups of rabbits exhibited complete protection against wild type heterologous shigellae challenge. Thus HKMS immunogens induced humoral and Th1-mediated adaptive immunity and provided complete protection in a rabbit model. These immunogens could be a broad spectrum non-living vaccine candidate for human use in the near future.

  17. Neuronal Fc gamma receptor I as a novel mediator for IgG immune complex-induced peripheral sensitization

    Institute of Scientific and Technical Information of China (English)

    Lintao Qu

    2012-01-01

    Chronic pain often accompanies immune-related diseases with an elevated level of IgG immune complex (IgG-IC) in the serum and/or the affected tissues though the underlying mechanisms are largely unknown. Fc gamma receptors (FcγRs), known as the receptors for the Fc domain of immunoglobulin G (IgG), are typically expressed on immune cells. A general consensus is that the activation of FcγRs by IgG-IC in such immune cells induces the release of proinflammatory cytokines from the immune cells, which may contribute to the IgG-IC-mediated peripheral sensitization. In addition to the immune cells, recent studies have revealed that FcγRI, but not FcγRII and FcγRIII, is also expressed in a subpopulation of primary sensory neurons. Moreover, IgG-IC directly excites the primary sensory neurons through neuronal FcγRI. These findings indicate that neuronal FcγRI provides a novel direct linkage between immunoglobulin and primary sensory neurons, which may be a novel target for the treatment of pain in the immune-related disorders. In this review, we summarize the expression pattern, functions, and the associated cellular signaling of FcγRs in the primary sensory neurons.

  18. Adenovirus-based vaccine with epitopes incorporated in novel fiber sites to induce protective immunity against Pseudomonas aeruginosa.

    Science.gov (United States)

    Sharma, Anurag; Krause, Anja; Xu, Yaqin; Sung, Biin; Wu, Wendy; Worgall, Stefan

    2013-01-01

    Adenovirus (Ad) vector-based vaccines displaying pathogen-derived epitopes on Ad capsid proteins can elicit anti-pathogen immunity. This approach seems to be particularly efficient with epitopes incorporated into the Ad fiber protein. Here, we explore epitope insertion into various sites of the Ad fiber to elicit epitope-specific immunity. Ad vectors expressing the 14-mer Pseudomonas aeruginosa immune-dominant outer membrane protein F (OprF) epitope 8 (Epi8) in five distinct sites of the Ad5 fiber, loops CD (AdZ.F(CD)Epi8), DE (AdZ.F(DE)Epi8), FG (AdZ.F(FG)Epi8), HI (AdZ.F(HI)Epi8) and C terminus (AdZ.F(CT)Epi8), or the hexon HVR5 loop (AdZ.HxEpi8) were compared in their capacity to elicit anti-P. aeruginosa immunity to AdOprF, an Ad expressing the entire OprF protein. Intramuscular immunization of BALB/c mice with AdZ.F(FG)Epi8 or AdZ.F(HI)Epi8 elicited higher anti-OprF humoral and cellular CD4 and CD8 responses as well as enhanced protection against respiratory infection with P. aeruginosa compared to immunization with AdZ.F(CD)Epi8, AdZ.F(DE)Epi8, AdZ.F(CT)Epi8 or AdZ.HxEpi8. Importantly, repeat administration of the fiber- and hexon-modified Ad vectors boosted the OprF-specific humoral immune response in contrast to immunization with AdOprF. Strikingly, following three doses of AdZ.F(FG)Epi8 or AdZ.F(HI)Epi8 anti-OprF immunity surpassed that induced by AdOprF. Furthermore, in the presence of anti-Ad5 immunity, immunization with AdZ.F(FG)Epi8 or AdZ.F(HI)Epi8, but not with AdOprF, induced protective immunity against P. aeruginosa. This suggests that incorporation of epitopes into distinct sites of the Ad fiber is a promising vaccine strategy.

  19. Perturbations in immune responses induced by concurrent subchronic exposure to arsenic and endosulfan.

    Science.gov (United States)

    Aggarwal, Manoj; Naraharisetti, Suresh Babu; Dandapat, S; Degen, G H; Malik, J K

    2008-09-29

    The metalloid arsenic and the chlorinated insecticide endosulfan are common environmental contaminants. Humans, animals, and birds are exposed to these chemicals through water and food. Although health effects due to either arsenic or endosulfan exposure are documented, the toxicological impact of co-exposure to these environmental pollutants is unpredictable and unknown. The present study was undertaken to assess whether concurrent exposure to arsenic and endosulfan induces significant alterations in immunological functions. Day-old chicks were exposed to 3.7 ppm of arsenic via drinking water and to 30 ppm of endosulfan-mixed feed either individually or concurrently for up to 60 days. All the chicks were vaccinated with Ranikhet disease virus (F-strain; RD-F) on days 1 and 30. During the course of study and at term, parameters of cellular and humoral immunity were determined. None of the treatments altered the absolute body weight or body weight gain, except arsenic significantly reduced weight gain on day 60. Absolute, but not the relative, weights of spleen, thymus and bursa of Fabricius were significantly reduced in all the treatment groups. The metalloid and insecticide combination significantly depressed the ability of peripheral blood and splenic lymphocytes to proliferate in response to antigen RD-F and mitogen Con A. The delayed type hypersensitivity response to 2,4-dinitro-1-chlorobenzene or to PHA-P was also significantly decreased. Nitric oxide production by RD-F or lipopolysaccharide-stimulated peripheral blood and splenic mononuclear cells was significantly suppressed following concurrent exposure to arsenic and endosulfan. Furthermore, the combined exposure also decreased the antibody response to RD-F. The suppression of cellular and humoral immune responses was also evident following administration of individual compounds, and it was not exacerbated following concurrent exposure. To our knowledge, this is the first report describing the suppression

  20. Interleukin-13 receptor α2 DNA prime boost vaccine induces tumor immunity in murine tumor models

    Directory of Open Access Journals (Sweden)

    Puri Raj K

    2010-11-01

    Full Text Available Abstract Background DNA vaccines represent an attractive approach for cancer treatment by inducing active T cell and B cell immune responses to tumor antigens. Previous studies have shown that interleukin-13 receptor α2 chain (IL-13Rα2, a tumor-associated antigen is a promising target for cancer immunotherapy as high levels of IL-13Rα2 are expressed on a variety of human tumors. To enhance the effectiveness of DNA vaccine, we used extracellular domain of IL-13Rα2 (ECDα2 as a protein-boost against murine tumor models. Methods We have developed murine models of tumors naturally expressing IL-13Rα2 (MCA304 sarcoma, 4T1 breast carcinoma and D5 melanoma tumors transfected with human IL-13Rα2 in syngeneic mice and examined the antitumor activity of DNA vaccine expressing IL-13Rα2 gene with or without ECDα2 protein mixed with CpG and IFA adjuvants as a boost vaccine. Results Mice receiving IL-13Rα2 DNA vaccine boosted with ECDα2 protein were superior in exhibiting inhibition of tumor growth, compared to mice receiving DNA vaccine alone, in both prophylactic and therapeutic vaccine settings. In addition, prime-boost vaccination significantly prolonged the survival of mice compared to DNA vaccine alone. Furthermore, ECDα2 booster vaccination increased IFN-γ production and CTL activity against tumor expressing IL-13Rα2. The immunohistochemical analysis showed the infiltration of CD4 and CD8 positive T cells and IFN-γ-induced chemokines (CXCL9 and CXCL10 in regressing tumors of immunized mice. Finally, the prime boost strategy was able to reduce immunosuppressive CD4+CD25+Foxp3+ regulatory T cells (Tregs in the spleen and tumor of vaccinated mice. Conclusion These results suggest that immunization with IL-13Rα2 DNA vaccine followed by ECDα2 boost mixed with CpG and IFA adjuvants inhibits tumor growth in T cell dependent manner. Thus our results show an enhancement of efficacy of IL-13Rα2 DNA vaccine with ECDα2 protein boost and offers an

  1. Recombinant Lactobacillus plantarum induces immune responses to cancer testis antigen NY-ESO-1 and maturation of dendritic cells.

    Science.gov (United States)

    Mobergslien, Anne; Vasovic, Vlada; Mathiesen, Geir; Fredriksen, Lasse; Westby, Phuong; Eijsink, Vincent G H; Peng, Qian; Sioud, Mouldy

    2015-01-01

    Given their safe use in humans and inherent adjuvanticity, Lactic Acid Bacteria may offer several advantages over other mucosal delivery strategies for cancer vaccines. The objective of this study is to evaluate the immune responses in mice after oral immunization with Lactobacillus (L) plantarum WCFS1 expressing a cell-wall anchored tumor antigen NY-ESO-1. And to investigate the immunostimulatory potency of this new candidate vaccine on human dendritic cells (DCs). L. plantarum displaying NY-ESO-1 induced NY-ESO-1 specific antibodies and T-cell responses in mice. By contrast, L. plantarum displaying conserved proteins such as heat shock protein-27 and galectin-1, did not induce immunity, suggesting that immune tolerance to self-proteins cannot be broken by oral administration of L. plantarum. With respect to immunomodulation, immature DCs incubated with wild type or L. plantarum-NY-ESO-1 upregulated the expression of co-stimulatory molecules and secreted a large amount of interleukin (IL)-12, TNF-α, but not IL-4. Moreover, they upregulated the expression of immunosuppressive factors such as IL-10 and indoleamine 2,3-dioxygenase. Although L. plantarum-matured DCs expressed inhibitory molecules, they stimulated allogeneic T cells in-vitro. Collectively, the data indicate that L. plantarum-NY-ESO-1 can evoke antigen-specific immunity upon oral administration and induce DC maturation, raising the potential of its use in cancer immunotherapies.

  2. 255Gy irradiated tachyzoites of Toxoplasma gondii induce intestinal immune response in C57BL/6J immunized by oral route

    Energy Technology Data Exchange (ETDEWEB)

    Galisteo Junior, Andres Jimenez; Alves, Janaina Baptista [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Lab. de Biologia Molecular]. E-mail: galisteo@usp.br; Hiramoto, Roberto Mitsuyoshi [Instituto Adolfo Lutz, Sao Paulo, SP (Brazil). Secao de Parasitoses Sistemicas]. E-mail: hiramoto@usp.br; Carmo, Claudia Villano do; Andrade Junior, Heitor Franco de [Instituto de Medicina Tropical de Sao Paulo, Sao Paulo, SP (Brazil). Lab. de Protozoologia]. E-mail: hfandrad@usp.br

    2005-07-01

    Toxoplasmosis, a prevalent widespread infection in man and animals, occurs mainly through ingestion of water and food contaminated with oocyst from cat feces, causing usually benign disease in humans, except in intrauterine fetal infection or in immunodeficient patients. We study the oral route for the development of a vaccine for toxoplasmosis, using parasites irradiated with 60 Cobalt, as an alternative for vaccine development to this worldwide parasitic infection. We evaluated the development of immunity at serum or mucosal levels, and their efficiency in protect the mice against challenge with oral cysts of the ME-49 strain. C57Bl/6j isogenic mice were immunized by oral route with 10{sup 7} 255 Gy irradiated tachyzoites from RH strain, at several protocols using milk as anti-peptic adjuvant and alum hydroxide as antacid. The preparations of irradiated tachyzoites induced production of serum IgG and IgA in immunized mice, as determined by ELISA, with IgG2a as the dominant subclass, similar to chronic infection. Their use with adjuvant allowed the excretion of significant amounts of IgA in stools also IgG, despite a lesser extent. All oral preparations induced some quantitative protection against challenge, which was similar to the parenteral route only isolated alum hydroxide was used as adjuvant. All these data support the possibility of the development of an oral vaccine against toxoplasmosis, using irradiated tachyzoites, which would be possible tool in near future for use in field baits, for immunizing either domestic or wild felids. (author)

  3. Transcriptome analysis of immune response genes induced by pathogen agonists in the Antarctic bullhead notothen Notothenia coriiceps.

    Science.gov (United States)

    Ahn, Do-Hwan; Kang, Seunghyun; Park, Hyun

    2016-08-01

    Fish are a representative population of lower vertebrates that serve as an essential link to early vertebrate evolution, and this has fueled academic interest in studying ancient vertebrate immune defense mechanisms in teleosts. Notothenia coriiceps, a typical Antarctic notothenioid teleost, has evolved to adapt to the cold and thermally stable Antarctic sea. In this study, we examined adaptive signaling pathways and immune responses to bacterial and viral pathogenic exposure in N. coriiceps. Using RNA sequencing, we investigated transcriptional differences in the liver tissues of N. coriiceps challenged with two pathogen-mimicking agonists, a bacterial ligand (heat-killed Escherichia coli, HKEB) and a viral ligand (polyinosinic:polycytidylic acid, Poly I:C). We found that 567 unique genes were up-regulated two-fold in the HKEB-exposed group, whereas 392 unique genes, including 124 immune-relevant genes, were up-regulated two-fold in the Poly I:C-exposed group. A KEGG pathway analysis of the 124 immune-relevant genes revealed that they exhibited major features of antigen processing and presentation bacterial ligand exposure, but they were down-regulated after viral ligand exposure. A quantitative real time RT-PCR analysis revealed that TNFα and TNF2, major inducers of apoptosis, were highly up-regulated after exposure to the viral ligand but not the bacterial ligand. The results suggest that the bacterial and viral ligands up-regulate inducers of different immune mechanisms in N. coriiceps liver tissue. N. coriiceps has an immune response defense strategy that uses antigen presentation against bacterial infection, but it may use a different defense, such as TNF-mediated apoptosis, against viral infection. The specific immune responses of N. coriiceps may be adaptations to the Antarctic environment and pathogens. These results will help define the characteristics of Antarctic fish and increase our understanding of their immune response mechanisms.

  4. Human rhinovirus induced cytokine/chemokine responses in human airway epithelial and immune cells.

    Directory of Open Access Journals (Sweden)

    Devi Rajan

    Full Text Available Infections with human rhinovirus (HRV are commonly associated with acute upper and lower respiratory tract disease and asthma exacerbations. The role that HRVs play in these diseases suggests it is important to understand host-specific or virus-specific factors that contribute to pathogenesis. Since species A HRVs are often associated with more serious HRV disease than species B HRVs, differences in immune responses they induce should inform disease pathogenesis. To identify species differences in induced responses, we evaluated 3 species A viruses, HRV 25, 31 and 36 and 3 species B viruses, HRV 4, 35 and 48 by exposing human PBMCs to HRV infected Calu-3 cells. To evaluate the potential effect of memory induced by previous HRV infection on study responses, we tested cord blood mononuclear cells that should be HRV naïve. There were HRV-associated increases (significant increase compared to mock-infected cells for one or more HRVs for IP-10 and IL-15 that was unaffected by addition of PBMCs, for MIP-1α, MIP-1β, IFN-α, and HGF only with addition of PBMCs, and for ENA-78 only without addition of PBMCs. All three species B HRVs induced higher levels, compared to A HRVs, of MIP-1α and MIP-1β with PBMCs and ENA-78 without PBMCs. In contrast, addition of CBMCs had less effect and did not induce MIP-1α, MIP-1β, or IFN-α nor block ENA-78 production. Addition of CBMCs did, however, increase IP-10 levels for HRV 35 and HRV 36 infection. The presence of an effect with PBMCs and no effect with CBMCs for some responses suggest differences between the two types of cells possibly because of the presence of HRV memory responses in PBMCs and not CBMCs or limited response capacity for the immature CBMCs relative to PBMCs. Thus, our results indicate that different HRV strains can induce different patterns of cytokines and chemokines; some of these differences may be due to differences in memory responses induced by past HRV infections, and other differences

  5. Phage displaying peptides mimic schistosoma antigenic epitopes selected by rat natural antibodies and protective immunity induced by their immunization in mice

    Institute of Scientific and Technical Information of China (English)

    Min Wang; Xin-Yuan Yi; Xian-Ping Li; Dong-Ming Zhou; McReynolds Larry; Xian-Fang Zeng

    2005-01-01

    AIM: To obtain the short peptides mimic antigenic epitopes selected by rat natural antibodies to schistosomes, and to explore their immunoprotection against schistosomiasis in mice.METHODS: Adults worm antigens (AWA) were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and enzyme-linked transferred immunoblotting methods with normal SD rat sera (NRS). The killing effects on schistosomula with fresh and heat-inactivated sera from SD rats were observed. Then the purified IgG from sera of SD rats was used to biopan a phage random peptide library and 20 randomly selected positive clones were detected by ELISA and 2 of them were sequenced.Sixty female mice were immunized thrice with positive phage clones (0, 2nd, 4th wk). Each mouse was challenged with 40 cercariae, and all mice were killed 42 d after challenge. The worms and the liver eggs were counted. RESULTS: NRS could specifically react to the molecules of 75 000, 47 000, 34 500 and 23 000 of AWA. Sera from SD rats showed that the mortality rate of schistosomula was 76.2%, and when the sera were heat-inactivated in vitro, the mortality rate was decreased to 41.0% after being cultured for 48 h. The specific phages bound to IgG were enriched about 300-folds after three rounds of biopanning. Twenty clones were detected by ELISA, 19 of them bound to the specific IgG of rat sera. Immunization with these epitopes was carried out in mice. Compared with the control groups, the mixture of two mimic peptides could induce 34.9% (P = 0.000) worm reduction and 67.6% (P = 0.000) total liver egg reduction in mice. Two different mimic peptides could respectively induce 31.0% (P = 0.001), 14.5% (P = 0.074) worm reduction and 61.2% (P = 0.000), 35.7% (P = 0.000) total liver egg reduction. The specific antibody could be induced by immunization of the mimic peptides, and the antibody titer in immunized mice reached more than 1:6 400 as detected by ELISA.CONCLUSION: Specific peptides mimic antigenic

  6. Current Diagnosis and Management of Immune Related Adverse Events (irAEs) Induced by Immune Checkpoint Inhibitor Therapy.

    Science.gov (United States)

    Kumar, Vivek; Chaudhary, Neha; Garg, Mohit; Floudas, Charalampos S; Soni, Parita; Chandra, Abhinav B

    2017-01-01

    The indications of immune checkpoint inhibitors (ICIs) are set to rise further with the approval of newer agents like tremelimumab and atezolimumab for use in patients with advanced stage mesothelioma and urothelial carcinoma respectively. More frequent use of ICIs has improved our understanding of their unique side effects, which are known as immune-related adverse events (irAEs). The spectrum of irAEs has expanded beyond more common manifestations such as dermatological, gastrointestinal and endocrine effects to rarer presentations involving nervous, hematopoietic and urinary systems. There are new safety data accumulating on ICIs in patients with previously diagnosed autoimmune conditions. It is challenging for clinicians to continuously update their working knowledge to diagnose and manage these events successfully. If diagnosed timely, the majority of events are completely reversible, and temporary immunosuppression with glucocorticoids, infliximab or other agents is warranted only in the most severe grade illnesses. The same principles of management will possibly apply as newer anti- cytotoxic T lymphocytes-associated antigen 4 (CTLA-4) and programmed cell death protein 1 (PD-1/PD-L1) antibodies are introduced. The current focus of research is for prophylaxis and for biomarkers to predict the onset of these toxicities. In this review we summarize the irAEs of ICIs and emphasize their growing spectrum and their management algorithms, to update oncology practitioners.

  7. Current Diagnosis and Management of Immune Related Adverse Events (irAEs) Induced by Immune Checkpoint Inhibitor Therapy

    Science.gov (United States)

    Kumar, Vivek; Chaudhary, Neha; Garg, Mohit; Floudas, Charalampos S.; Soni, Parita; Chandra, Abhinav B.

    2017-01-01

    The indications of immune checkpoint inhibitors (ICIs) are set to rise further with the approval of newer agents like tremelimumab and atezolimumab for use in patients with advanced stage mesothelioma and urothelial carcinoma respectively. More frequent use of ICIs has improved our understanding of their unique side effects, which are known as immune-related adverse events (irAEs). The spectrum of irAEs has expanded beyond more common manifestations such as dermatological, gastrointestinal and endocrine effects to rarer presentations involving nervous, hematopoietic and urinary systems. There are new safety data accumulating on ICIs in patients with previously diagnosed autoimmune conditions. It is challenging for clinicians to continuously update their working knowledge to diagnose and manage these events successfully. If diagnosed timely, the majority of events are completely reversible, and temporary immunosuppression with glucocorticoids, infliximab or other agents is warranted only in the most severe grade illnesses. The same principles of management will possibly apply as newer anti- cytotoxic T lymphocytes-associated antigen 4 (CTLA-4) and programmed cell death protein 1 (PD-1/PD-L1) antibodies are introduced. The current focus of research is for prophylaxis and for biomarkers to predict the onset of these toxicities. In this review we summarize the irAEs of ICIs and emphasize their growing spectrum and their management algorithms, to update oncology practitioners. PMID:28228726

  8. HIV-1 DNA vaccine with adjuvant cytokines induces specific immune responses against HIV-1 infection in mice

    Institute of Scientific and Technical Information of China (English)

    WANG Fu-xiang; SUN Yong-tao; WANG Lin-xu; LIU Juan

    2006-01-01

    @@ There is mounting evidence that the induction of strong mucosal and cell-mediated immune responses is key element to consider in constructing efficacious HIV-1 vaccine. Therapeutic vaccines that induce high levels of CTL specific to HIV are currently being developed worldwide.

  9. Myogenic-induced mesenchymal stem cells are capable of modulating the immune response by regulatory T cells

    Directory of Open Access Journals (Sweden)

    Sunyoung Joo

    2014-02-01

    Full Text Available Cell therapy for patients who have intractable muscle disorders may require highly regenerative cells from young, healthy allogeneic donors. Mesenchymal stem cells are currently under clinical investigation because they are known to induce muscle regeneration and believed to be immune privileged, thus making them suitable for allogeneic applications. However, it is unclear whether allogeneic and myogenic-induced mesenchymal stem cells retain their immunomodulatory characteristics. Therefore, our aim was to evaluate the effects of mesenchymal stem cell differentiation on the immune characteristics of cells in vitro. We investigated the immunologic properties of mesenchymal stem cells after myogenic induction. Mesenchymal stem cells were obtained from C57BL/6 mice and the C3H/10T1/2 murine mesenchymal stem cell line. Two different 5-aza-2′-deoxycytidine doses (0.5 and 3 µM were evaluated for their effects on mesenchymal stem cell skeletal myogenic differentiation potential, immune antigen expression, and mixed lymphocytic reactions. Using a mixed lymphocytic reaction, we determined the optimal splenocyte proliferation inhibition dose. The induction of regulatory T cells was markedly increased by the addition of 3 µM 5-aza-2′-deoxycytidine–treated mesenchymal stem cells. Myogenic-induced mesenchymal stem cells do not elicit alloreactive lymphocyte proliferative responses and are able to modulate immune responses. These findings support the hypothesis that myogenic-induced mesenchymal stem cells may be transplantable across allogeneic barriers.

  10. Intramuscular Priming and Intranasal Boosting Induce Strong Genital Immunity Through Secretory IgA in Minipigs Infected with Chlamydia trachomatis

    DEFF Research Database (Denmark)

    Lorenzen, Emma; Follmann, Frank; Bøje, Sarah

    2015-01-01

    with a reproductive system very similar to humans. The vaccine was composed of C. trachomatis subunit antigens formulated in the Th1/Th17 promoting CAF01 adjuvant. IM priming immunizations with CAF01 induced a significant cell-mediated interferon gamma and interleukin 17A response and a significant systemic high...

  11. Experimentally-induced immune activation in natural hosts of SIV induces significant increases in viral replication and CD4+ T cell depletion

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Ruy M [Los Alamos National Laboratory

    2008-01-01

    Chronically SIVagm-infected African green monkeys (AGMs) have a remarkably stable non-pathogenic disease course, with levels of immune activation in chronic SIVagm infection similar to those observed in uninfected monkeys and stable viral loads (VLs) for long periods of time. In vivo administration of lipopolysaccharide (LPS) or an IL-2/diphtheria toxin fusion protein (Ontak) to chronically SIVagm-infected AGMs triggered increases in immune activation and subsequently of viral replication and depletion of intestinal CD4{sup +} T cells. Our study indicates that circulating microbial products can increase viral replication by inducing immune activation and increasing the number of viral target cells, thus demonstrating that immune activation and T cell prolifeation are key factors in AIDS pathogenesis.

  12. Folic acid induces salicylic acid-dependent immunity in Arabidopsis and enhances susceptibility to Alternaria brassicicola.

    Science.gov (United States)

    Wittek, Finni; Kanawati, Basem; Wenig, Marion; Hoffmann, Thomas; Franz-Oberdorf, Katrin; Schwab, Wilfried; Schmitt-Kopplin, Philippe; Vlot, A Corina

    2015-08-01

    Folates are essential for one-carbon transfer reactions in all organisms and contribute, for example, to de novo DNA synthesis. Here, we detected the folate precursors 7,8-dihydropteroate (DHP) and 4-amino-4-deoxychorismate (ADC) in extracts from Arabidopsis thaliana plants by Fourier transform ion cyclotron resonance-mass spectrometry. The accumulation of DHP, but not ADC, was induced after infection of plants with Pseudomonas syringae delivering the effector protein AvrRpm1. Application of folic acid or the DHP precursor 7,8-dihydroneopterin (DHN) enhanced resistance in Arabidopsis to P. syringae and elevated the transcript accumulation of the salicylic acid (SA) marker gene pathogenesis-related1 in both the treated and systemic untreated leaves. DHN- and folic acid-induced systemic resistance was dependent on SA biosynthesis and signalling. Similar to SA, folic acid application locally enhanced Arabidopsis susceptibility to the necrotrophic fungus Alternaria brassicicola. Together, the data associate the folic acid pathway with innate immunity in Arabidopsis, simultaneously activating local and systemic SA-dependent resistance to P. syringae and suppressing local resistance to A. brassicicola.

  13. Capsaicin triggers immunogenic PEL cell death, stimulates DCs and reverts PEL-induced immune suppression.

    Science.gov (United States)

    Granato, Marisa; Gilardini Montani, Maria Saveria; Filardi, Mariarosari; Faggioni, Alberto; Cirone, Mara

    2015-10-06

    Capsaicin, the pungent alkaloid of red pepper has been extensively studied for its many properties, especially the anti-inflammatory and anti-oxidant ones. It binds to vanilloid receptor 1, although it has been reported to be able to mediate some effects independently of its receptor. Another important property of Capsaicin is the anticancer activity against highly malignant tumors, alone or in combination with other chemotherapeutic agents. In this study, we found that Capsaicin induced an apoptotic cell death in PEL cells correlated with the inhibition of STAT3. STAT3 pathway, constitutively activated in PEL cells, is essential for their survival. By STAT3 de-phosphorylation, Capsaicin reduced the Mcl-1 expression level and this could represent one of the underlying mechanisms leading to the Capsaicin-mediated cell death and autophagy induction. Next, by pharmacological or genetic inhibition, we found that autophagy played a pro-survival role, suggesting that its inhibition could be exploited to increase the Capsaicin cytotoxic effect against PEL cells. Finally, we show that Capsaicin induced DAMP exposure, as for an immunogenic cell death, directly promoted DC activation and, more importantly, that it counteracted the immune-suppression, in terms of DC differentiation, mediated by the PEL released factors.

  14. A cell wall protein-based vaccine candidate induce protective immune response against Sporothrix schenckii infection.

    Science.gov (United States)

    Portuondo, Deivys Leandro; Batista-Duharte, Alexander; Ferreira, Lucas Souza; Martínez, Damiana Téllez; Polesi, Marisa Campos; Duarte, Roberta Aparecida; de Paula E Silva, Ana Carolina Alves; Marcos, Caroline Maria; Almeida, Ana Marisa Fusco de; Carlos, Iracilda Zeppone

    2016-02-01

    Sporotrichosis is a subcutaneous mycosis caused by several closely related thermo-dimorphic fungi of the Sporothrix schenckii species complex, affecting humans and other mammals. In the last few years, new strategies have been proposed for controlling sporotrichosis owning to concerns about its growing incidence in humans, cats, and dogs in Brazil, as well as the toxicity and limited efficacy of conventional antifungal drugs. In this study, we assessed the immunogenicity and protective properties of two aluminum hydroxide (AH)-adsorbed S. schenckii cell wall protein (ssCWP)-based vaccine formulations in a mouse model of systemic S. schenckii infection. Fractioning by SDS-PAGE revealed nine protein bands, two of which were functionally characterized: a 44kDa peptide hydrolase and a 47kDa enolase, which was predicted to be an adhesin. Sera from immunized mice recognized the 47kDa enolase and another unidentified 71kDa protein, whereas serum from S. schenckii-infected mice recognized both these proteins plus another unidentified 9.4kDa protein. Furthermore, opsonization with the anti-ssCWP sera led to markedly increased phagocytosis and was able to strongly inhibit the fungus' adhesion to fibroblasts. Immunization with the higher-dose AH-adjuvanted formulation led to increased ex vivo release of IL-12, IFN-γ, IL-4, and IL-17, whereas only IL-12 and IFN-γ were induced by the higher-dose non-adjuvanted formulation. Lastly, passive transference of the higher-dose AH-adjuvanted formulation's anti-ssCWP serum was able to afford in vivo protection in a subsequent challenge with S. schenckii, becoming a viable vaccine candidate for further testing.

  15. TGFβ is a master regulator of radiation therapy-induced anti-tumor immunity

    Science.gov (United States)

    Vanpouille-Box, Claire; Diamond, Julie M.; Pilones, Karsten A.; Zavadil, Jiri; Babb, James S.; Formenti, Silvia C.; Barcellos-Hoff, Mary Helen; Demaria, Sandra

    2015-01-01

    T cells directed to endogenous tumor antigens are powerful mediators of tumor regression. Recent immunotherapy advances have identified effective interventions to unleash tumor-specific T cell activity in patients who naturally develop them. Eliciting T cell responses to a patient's individual tumor remains a major challenge. Radiation therapy can induce immune responses to model antigens expressed by tumors, but it remains unclear if it can effectively prime T cells specific for endogenous antigens expressed by poorly immunogenic tumors. We hypothesized that TGFβ activity is a major obstacle hindering the ability of radiation to generate an in situ tumor vaccine. Here we show that antibody-mediated TGFβ neutralization during radiation therapy effectively generates CD8+ T cell responses to multiple endogenous tumor antigens in poorly immunogenic mouse carcinomas. Generated T cells were effective at causing regression of irradiated tumors and non-irradiated lung metastases or synchronous tumors (abscopal effect). Gene signatures associated with IFNγ and immune-mediated rejection were detected in tumors treated with radiation therapy and TGFβ blockade in combination but not as single agents. Upregulation of programmed death (PD) ligand-1 and -2 in neoplastic and myeloid cells and PD-1 on intratumoral T cells limited tumor rejection resulting in rapid recurrence. Addition of anti-PD-1 antibodies extended survival achieved with radiation and TGFβ blockade. Thus, TGFβ is a fundamental regulator of radiation therapy ability to generate an in situ tumor vaccine. The combination of local radiation therapy with TGFβ neutralization offers a novel individualized strategy for vaccinating patients against their tumors. PMID:25858148

  16. Human milk oligosaccharides shorten rotavirus-induced diarrhea and modulate piglet mucosal immunity and colonic microbiota.

    Science.gov (United States)

    Li, Min; Monaco, Marcia H; Wang, Mei; Comstock, Sarah S; Kuhlenschmidt, Theresa B; Fahey, George C; Miller, Michael J; Kuhlenschmidt, Mark S; Donovan, Sharon M

    2014-08-01

    The impact of human milk oligosaccharides (HMO) on mucosal immunity, gut microbiota and response to rotavirus (RV) infection was investigated in the piglet model. Newborn piglets were fed with formula alone (FF) or formula supplemented with 4 g l(-1) HMO (HMO) or a prebiotic mixture of 9:1 short-chain galactooligosaccharides (3.6 g l(-1)) and long-chain fructooligosaccharides (0.4 g l(-1)) (PRE) (n=19-21 per group) for 15 days. Piglets (n=7-8) in each dietary group were orally infected with porcine rotavirus (RV) OSU strain on d10, and stool consistency was assessed daily. Blood, small intestine and colonic contents were collected at day 15. Serum RV-specific antibody concentrations, intestinal histomorphology, RV non-structural protein-4 (NSP4) and cytokine mRNA expression were assessed. Colonic content pH, dry matter (DM) and short-chain fatty acid concentrations were measured. Ascending colonic microbiota was analyzed by 16S rRNA gene v1-3 region pyrosequencing. HMO- and PRE-fed groups had shorter duration of diarrhea than FF piglets. Infection changed intestinal histomorphology, increased serum RV-specific antibody response and intestinal RV NSP4 expression, and modulated ileal cytokine expression. HMO enhanced T helper type 1 (interferon-gamma) and anti-inflammatory (interleukin-10) cytokines in the ileum, while prebiotics promoted RV-specific immunoglobulin M response to the infection. RV infection and HMO supplementation altered intraluminal environment and gut microbiota. HMO increased pH and lowered DM of colonic contents and enhanced the abundance of unclassified Lachnospiraceae, which contains numerous butyrate-producing bacteria. In conclusion, HMO and prebiotics did not prevent the onset of RV infection but reduced the duration of RV-induced diarrhea in piglets, in part, by modulating colonic microbiota and immune response to RV infection.

  17. Two doses of bovine viral diarrhea virus DNA vaccine delivered by electroporation induce long-term protective immune responses.

    Science.gov (United States)

    van Drunen Littel-van den Hurk, Sylvia; Lawman, Zoe; Snider, Marlene; Wilson, Don; van den Hurk, Jan V; Ellefsen, Barry; Hannaman, Drew

    2013-02-01

    Bovine viral diarrhea virus (BVDV) is a pathogen of major importance in cattle, so there is a need for new effective vaccines. DNA vaccines induce balanced immune responses and are relatively inexpensive and thus promising for both human and veterinary applications. In this study, newborn calves with maternal antibodies were vaccinated intramuscularly (i.m.) with a BVDV E2 DNA vaccine with the TriGrid Delivery System for i.m. delivery (TDS-IM). Two doses of this vaccine spaced 6 or 12 weeks apart were sufficient to induce significant virus-neutralizing antibody titers, numbers of activated T cells, and reduction in viral shedding and clinical presentations after BVDV-2 challenge. In contrast to the placebo-treated animals, the vaccinated calves did not lose any weight, which is an excellent indicator of the well-being of an animal and has a significant economic impact. Furthermore, the interval between the two vaccinations did not influence the magnitude of the immune responses or degree of clinical protection, and a third immunization was not necessary or beneficial. Since electroporation may enhance not only the magnitude but also the duration of immunity after DNA immunization, the interval between vaccination and challenge was extended in a second trial, which showed that two doses of this E2 DNA vaccine again significantly reduced clinical disease against BVDV for several months. These results are promising and support this technology for use against infectious diseases in cattle and large species, including humans, in general.

  18. Cryo-thermal therapy elicits potent anti-tumor immunity by inducing extracellular Hsp70-dependent MDSC differentiation

    Science.gov (United States)

    Zhu, Jun; Zhang, Yan; Zhang, Aili; He, Kun; Liu, Ping; Xu, Lisa X.

    2016-06-01

    Achieving control of metastatic disease is a long-sought goal in cancer therapy. Treatments that encourage a patient’s own immune system are bringing new hopes in reaching such a goal. In clinic, local hyperthermia and cryoablation have been explored to induce anti-tumor immune responses against tumors. We have also developed a novel therapeutic modality of cryo-thermal treatment by alternating liquid nitrogen (LN2) cooling and radio frequency (RF) heating, and better therapeutic effect was achieved in treating metastatic cancer in animal model. In this study, we investigated the mechanism of systemic immune response elicited by cryo-thermal therapy. In the 4T1 murine mammary carcinoma model, we found that local cryo-thermal therapy resulted in a considerable reduction of distant lung metastases, and improved long-term survival. Moreover, results of tumor re-challenge experiments indicated generation of a strong tumor-specific immune memory after the local treatment of primary tumors. Our further study indicated that cryo-thermal therapy caused an elevated extracellular release of Hsp70. Subsequently, Hsp70 induced differentiation of MDSCs into mature DCs, contributing to the relief of MDSCs-mediated immunosuppression and ultimately the activation of strong anti-tumor immune response. Our findings reveal new insight into the mechanism of robust therapeutic effects of cryo-thermal therapy against metastatic cancers.

  19. Uropathogenic E. coli induce different immune response in testicular and peritoneal macrophages: implications for testicular immune privilege.

    Directory of Open Access Journals (Sweden)

    Sudhanshu Bhushan

    Full Text Available Infertility affects one in seven couples and ascending bacterial infections of the male genitourinary tract by Escherichia coli are an important cause of male factor infertility. Thus understanding mechanisms by which immunocompetent cells such as testicular macrophages (TM respond to infection and how bacterial pathogens manipulate defense pathways is of importance. Whole genome expression profiling of TM and peritoneal macrophages (PM infected with uropathogenic E. coli (UPEC revealed major differences in regulated genes. However, a multitude of genes implicated in calcium signaling pathways was a common feature which indicated a role of calcium-dependent nuclear factor of activated T cells (NFAT signaling. UPEC-dependent NFAT activation was confirmed in both cultured TM and in TM in an in vivo UPEC infectious rat orchitis model. Elevated expression of NFATC2-regulated anti-inflammatory cytokines was found in TM (IL-4, IL-13 and PM (IL-3, IL-4, IL-13. NFATC2 is activated by rapid influx of calcium, an activity delineated to the pore forming toxin alpha-hemolysin by bacterial mutant analysis. Alpha-hemolysin suppressed IL-6 and TNF-α cytokine release from PM and caused differential activation of MAP kinase and AP-1 signaling pathways in TM and PM leading to reciprocal expression of key pro-inflammatory cytokines in PM (IL-1α, IL-1β, IL-6 downregulated and TM (IL-1β, IL-6 upregulated. In addition, unlike PM, LPS-treated TM were refractory to NFκB activation shown by the absence of degradation of IκBα and lack of pro-inflammatory cytokine secretion (IL-6, TNF-α. Taken together, these results suggest a mechanism to the conundrum by which TM initiate immune responses to bacteria, while maintaining testicular immune privilege with its ability to tolerate neo-autoantigens expressed on developing spermatogenic cells.

  20. Costs and benefits of experimentally induced changes in the allocation of growth versus immune function under differential exposure to ectoparasites.

    Directory of Open Access Journals (Sweden)

    Natalia Pitala

    Full Text Available BACKGROUND: Ecological immunology has focused on the costs of investment in immunocompetence. However, understanding optimal resource allocation to immune defence requires also identification of its benefits, which are likely to occur only when parasites are abundant. METHODOLOGY: We manipulated the abundance of parasitic hen fleas in blue tit (Cyanistes caeruleus nests, and supplemented their hosts, the nestlings, with methionine (a sulphur amino acid enhancing cell-mediated immunity during day 3-6. We found a significant interaction between these two experimental factors on the development of immune defences and growth rates. Only in parasitized nests did methionine supplementation boost immune (PHA response, and did nestling with experimentally increased immunocompetence show a relatively faster growth rate than control nestlings between days 6-9. Hence, the allocation of resources into immune defence and its growth-benefits are apparent only in presence of parasites. The main cost of methionine-induced increased allocation to the immune system was an increase in mortality, independently of ectoparasites. Nestlings in all treatments compensated initial growth reduction and all reached equal body size at day 16 (just prior to fledging, indicating a lack of long-term benefits. In addition, methionine treatment tended (P = 0.09 to lower circulating plasma immunoglobulin levels, possibly indicating a trade-off between the cell-mediated and humoral components of the immune system. CONCLUSIONS: We found no strong benefits of an increased investment in immunocompetence in a parasite-rich environment. Any deviation from the growth trajectory (due to changes in allocation induced by methionine is largely detrimental for survival. Hence, while costs are apparent identifying the benefits of investment in immunocompetence during ontogeny is challenging.

  1. Immunization with Brugia malayi Myosin as Heterologous DNA Prime Protein Boost Induces Protective Immunity against B. malayi Infection in Mastomys coucha

    Science.gov (United States)

    Gupta, Jyoti; Misra, Sweta; Misra-Bhattacharya, Shailja

    2016-01-01

    The current control strategies employing chemotherapy with diethylcarbamazine, ivermectin and albendazole have reduced transmission in some filaria-endemic areas, there is growing interest for complementary approaches, such as vaccines especially in light of threat of parasite developing resistance to mainstay drugs. We earlier demonstrated recombinant heavy chain myosin of B. malayi (Bm-Myo) as a potent vaccine candidate whose efficacy was enhanced by heterologous DNA prime/protein boost (Myo-pcD+Bm-Myo) vaccination in BALB/c mice. BALB/c mouse though does not support the full developmental cycle of B. malayi, however, the degree of protection may be studied in terms of transformation of challenged infective larvae (L3) to next stage (L4) with an ease of delineating the generated immunological response of host. In the current investigation, DNA vaccination with Bm-Myo was therefore undertaken in susceptible rodent host, Mastomys coucha (M. coucha) which sustains the challenged L3 and facilitates their further development to sexually mature adult parasites with patent microfilaraemia. Immunization schedule consisted of Myo-pcD and Myo-pcD+Bm-Myo followed by B. malayi L3 challenge and the degree of protection was evaluated by observing microfilaraemia as well as adult worm establishment. Myo-pcD+Bm-Myo immunized animals not only developed 78.5% reduced blood microfilarial density but also decreased adult worm establishment by 75.3%. In addition, 75.4% of the recovered live females revealed sterilization over those of respective control animals. Myo-pcD+Bm-Myo triggered higher production of specific IgG and its isotypes which induced marked cellular adhesion and cytotoxicity (ADCC) to microfilariae (mf) and L3 in vitro. Both Th1 and Th2 cytokines were significantly up-regulated displaying a mixed immune response conferring considerable protection against B. malayi establishment by engendering a long-lasting effective immune response and therefore emerges as a

  2. Tumor-Derived Exosomes and Their Role in Tumor-Induced Immune Suppression

    Directory of Open Access Journals (Sweden)

    Theresa L. Whiteside

    2016-10-01

    Full Text Available Tumor-derived exosomes (TEX are emerging as critical components of an intercellular information network between the tumor and the host. The tumor escapes from the host immune system by using a variety of mechanisms designed to impair or eliminate anti-tumor immunity. TEX carrying a cargo of immunoinhibitory molecules and factors represent one such mechanism. TEX, which are present in all body fluids of cancer patients, deliver negative molecular or genetic signals to immune cells re-programming their functions. Although TEX can also stimulate immune activity, in the microenvironments dominated by the tumor, TEX tend to mediate immune suppression thus promoting tumor progression. The TEX content, in part resembling that of the parent cell, may serve as a source of cancer biomarkers. TEX also interfere with immune therapies. A better understanding of TEX and their contribution to cancer progression and cancer patients’ response to immune therapies represents a challenging new field of investigation.

  3. Characterisation of Immune and Neuroinflammatory Changes Associated with Chemotherapy-Induced Peripheral Neuropathy

    Science.gov (United States)

    Makker, Preet G. S.; Duffy, Samuel S.; Lees, Justin G.; Perera, Chamini J.; Tonkin, Ryan S.; Butovsky, Oleg; Park, Susanna B.; Goldstein, David

    2017-01-01

    Chemotherapy-induced peripheral neuropathy (CIPN) and associated neuropathic pain is a debilitating adverse effect of cancer treatment. Current understanding of the mechanisms underpinning CIPN is limited and there are no effective treatment strategies. In this study, we treated male C57BL/6J mice with 4 cycles of either Paclitaxel (PTX) or Oxaliplatin (OXA) over a week and tested pain hypersensitivity and changes in peripheral immune responses and neuroinflammation on days 7 and 13 post 1st injection. We found that both PTX and OXA caused significant mechanical allodynia. In the periphery, PTX and OXA significantly increased circulating CD4+ and CD8+ T-cell populations. OXA caused a significant increase in the percentage of interleukin-4+ lymphocytes in the spleen and significant down-regulation of regulatory T (T-reg) cells in the inguinal lymph nodes. However, conditional depletion of T-reg cells in OXA-treated transgenic DEREG mice had no additional effect on pain sensitivity. Furthermore, there was no leukocyte infiltration into the nervous system of OXA- or PTX-treated mice. In the peripheral nervous system, PTX induced expression of the neuronal injury marker activating transcription factor-3 in IB4+ and NF200+ sensory neurons as well as an increase in the chemokines CCL2 and CCL3 in the lumbar dorsal root ganglion. In the central nervous system, PTX induced significant astrocyte activation in the spinal cord dorsal horn, and both PTX and OXA caused reduction of P2ry12+ homeostatic microglia, with no measurable changes in IBA-1+ microglia/macrophages in the dorsal and ventral horns. We also found that PTX induced up-regulation of several inflammatory cytokines and chemokines (TNF-α, IFN-γ, CCL11, CCL4, CCL3, IL-12p70 and GM-CSF) in the spinal cord. Overall, these findings suggest that PTX and OXA cause distinct pathological changes in the periphery and nervous system, which may contribute to chemotherapy-induced neuropathic pain. PMID:28125674

  4. Characterisation of Immune and Neuroinflammatory Changes Associated with Chemotherapy-Induced Peripheral Neuropathy.

    Science.gov (United States)

    Makker, Preet G S; Duffy, Samuel S; Lees, Justin G; Perera, Chamini J; Tonkin, Ryan S; Butovsky, Oleg; Park, Susanna B; Goldstein, David; Moalem-Taylor, Gila

    2017-01-01

    Chemotherapy-induced peripheral neuropathy (CIPN) and associated neuropathic pain is a debilitating adverse effect of cancer treatment. Current understanding of the mechanisms underpinning CIPN is limited and there are no effective treatment strategies. In this study, we treated male C57BL/6J mice with 4 cycles of either Paclitaxel (PTX) or Oxaliplatin (OXA) over a week and tested pain hypersensitivity and changes in peripheral immune responses and neuroinflammation on days 7 and 13 post 1st injection. We found that both PTX and OXA caused significant mechanical allodynia. In the periphery, PTX and OXA significantly increased circulating CD4+ and CD8+ T-cell populations. OXA caused a significant increase in the percentage of interleukin-4+ lymphocytes in the spleen and significant down-regulation of regulatory T (T-reg) cells in the inguinal lymph nodes. However, conditional depletion of T-reg cells in OXA-treated transgenic DEREG mice had no additional effect on pain sensitivity. Furthermore, there was no leukocyte infiltration into the nervous system of OXA- or PTX-treated mice. In the peripheral nervous system, PTX induced expression of the neuronal injury marker activating transcription factor-3 in IB4+ and NF200+ sensory neurons as well as an increase in the chemokines CCL2 and CCL3 in the lumbar dorsal root ganglion. In the central nervous system, PTX induced significant astrocyte activation in the spinal cord dorsal horn, and both PTX and OXA caused reduction of P2ry12+ homeostatic microglia, with no measurable changes in IBA-1+ microglia/macrophages in the dorsal and ventral horns. We also found that PTX induced up-regulation of several inflammatory cytokines and chemokines (TNF-α, IFN-γ, CCL11, CCL4, CCL3, IL-12p70 and GM-CSF) in the spinal cord. Overall, these findings suggest that PTX and OXA cause distinct pathological changes in the periphery and nervous system, which may contribute to chemotherapy-induced neuropathic pain.

  5. MHC class II-associated invariant chain linkage of antigen dramatically improves cell-mediated immunity induced by adenovirus vaccines

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Mandrup Jensen, Camilla Maria; Orskov, Cathrine

    2008-01-01

    The ideal vaccine induces a potent protective immune response, which should be rapidly induced, long-standing, and of broad specificity. Recombinant adenoviral vectors induce potent Ab and CD8+ T cell responses against transgenic Ags within weeks of administration, and they are among the most...... potent and versatile Ag delivery vehicles available. However, the impact of chronic infections like HIV and hepatitis C virus underscore the need for further improvements. In this study, we show that the protective immune response to an adenovirus-encoded vaccine Ag can be accelerated, enhanced......, broadened, and prolonged by tethering of the rAg to the MHC class II-associated invariant chain (Ii). Thus, adenovirus-vectored vaccines expressing lymphocytic choriomeningitis virus (LCMV)-derived glycoprotein linked to Ii increased the CD4+ and CD8+ T cell stimulatory capacity in vitro and in vivo...

  6. The site of administration influences both the type and the magnitude of the immune response induced by DNA vaccine electroporation.

    Science.gov (United States)

    Vandermeulen, Gaëlle; Vanvarenberg, Kevin; De Beuckelaer, Ans; De Koker, Stefaan; Lambricht, Laure; Uyttenhove, Catherine; Reschner, Anca; Vanderplasschen, Alain; Grooten, Johan; Préat, Véronique

    2015-06-22

    We investigated the influence of the site of administration of DNA vaccine on the induced immune response. DNA vaccines were administered by electroporation at three different sites: tibial cranial muscle, abdominal skin and ear pinna. Aiming to draw general conclusions about DNA vaccine delivery, we successively used several plasmids encoding either luciferase and ovalbumin as models or gp160 and P1A as vaccines against HIV and P815 mastocytoma, respectively. Low levels and duration of luciferase transgene expression were observed after electroporation of the abdominal skin, partly explaining its lower immunogenic performance as compared to the other sites of administration. Analyses of OT-I CD8+ and OT-II CD4+ T cell responses highlighted the differential impact of the delivery site on the elicited immune response. Muscle electroporation induced the strongest humoral immune response and both muscle and ear pinna sites induced cellular immunity against gp160. Ear pinna delivery generated the highest level of CTL responses against P1A but electroporation of muscle and ear pinna were equally efficient in delaying P815 growth and improving mice survival. The present study demonstrated that the site of administration is a key factor to be tested in the development of DNA vaccine.

  7. Lactose in human breast milk an inducer of innate immunity with implications for a role in intestinal homeostasis.

    Science.gov (United States)

    Cederlund, Andreas; Kai-Larsen, Ylva; Printz, Gordana; Yoshio, Hiroyuki; Alvelius, Gunvor; Lagercrantz, Hugo; Strömberg, Roger; Jörnvall, Hans; Gudmundsson, Gudmundur H; Agerberth, Birgitta

    2013-01-01

    Postpartum, infants have not yet established a fully functional adaptive immune system and are at risk of acquiring infections. Hence, newborns are dependent on the innate immune system with its antimicrobial peptides (AMPs) and proteins expressed at epithelial surfaces. Several factors in breast milk are known to confer immune protection, but which the decisive factors are and through which manner they work is unknown. Here, we isolated an AMP-inducing factor from human milk and identified it by electrospray mass spectrometry and NMR to be lactose. It induces the gene (CAMP) that encodes the only human cathelicidin LL-37 in colonic epithelial cells in a dose- and time-dependent manner. The induction was suppressed by two different p38 antagonists, indicating an effect via the p38-dependent pathway. Lactose also induced CAMP in the colonic epithelial cell line T84 and in THP-1 monocytes and macrophages. It further exhibited a synergistic effect with butyrate and phenylbutyrate on CAMP induction. Together, these results suggest an additional function of lactose in innate immunity by upregulating gastrointestinal AMPs that may lead to protection of the neonatal gut against pathogens and regulation of the microbiota of the infant.

  8. Lactose in human breast milk an inducer of innate immunity with implications for a role in intestinal homeostasis.

    Directory of Open Access Journals (Sweden)

    Andreas Cederlund

    Full Text Available Postpartum, infants have not yet established a fully functional adaptive immune system and are at risk of acquiring infections. Hence, newborns are dependent on the innate immune system with its antimicrobial peptides (AMPs and proteins expressed at epithelial surfaces. Several factors in breast milk are known to confer immune protection, but which the decisive factors are and through which manner they work is unknown. Here, we isolated an AMP-inducing factor from human milk and identified it by electrospray mass spectrometry and NMR to be lactose. It induces the gene (CAMP that encodes the only human cathelicidin LL-37 in colonic epithelial cells in a dose- and time-dependent manner. The induction was suppressed by two different p38 antagonists, indicating an effect via the p38-dependent pathway. Lactose also induced CAMP in the colonic epithelial cell line T84 and in THP-1 monocytes and macrophages. It further exhibited a synergistic effect with butyrate and phenylbutyrate on CAMP induction. Together, these results suggest an additional function of lactose in innate immunity by upregulating gastrointestinal AMPs that may lead to protection of the neonatal gut against pathogens and regulation of the microbiota of the infant.

  9. Immune protection against Trypanosoma cruzi induced by TcVac4 in a canine model.

    Directory of Open Access Journals (Sweden)

    José E Aparicio-Burgos

    2015-04-01

    Full Text Available Chagas disease, caused by Trypanosoma cruzi, is endemic in southern parts of the American continent. Herein, we have tested the protective efficacy of a DNA-prime/T. rangeli-boost (TcVac4 vaccine in a dog (Canis familiaris model. Dogs were immunized with two-doses of DNA vaccine (pcDNA3.1 encoding TcG1, TcG2, and TcG4 antigens plus IL-12- and GM-CSF-encoding plasmids followed by two doses of glutaraldehyde-inactivated T. rangeli epimastigotes (TrIE; and challenged with highly pathogenic T. cruzi (SylvioX10/4 isolate. Dogs given TrIE or empty pcDNA3.1 were used as controls. We monitored post-vaccination and post-challenge infection antibody response by an ELISA, parasitemia by blood analysis and xenodiagnosis, and heart function by electrocardiography. Post-mortem anatomic and pathologic evaluation of the heart was conducted. TcVac4 induced a strong IgG response (IgG2>IgG1 that was significantly expanded post-infection, and moved to a nearly balanced IgG2/IgG1 response in chronic phase. In comparison, dogs given TrIE or empty plasmid DNA only developed high IgG titers with IgG2 predominance in response to T. cruzi infection. Blood parasitemia, tissue parasite foci, parasite transmission to triatomines, electrocardiographic abnormalities were significantly lower in TcVac4-vaccinated dogs than was observed in dogs given TrIE or empty plasmid DNA only. Macroscopic and microscopic alterations, the hallmarks of chronic Chagas disease, were significantly decreased in the myocardium of TcVac4-vaccinated dogs. We conclude that TcVac4 induced immunity was beneficial in providing resistance to T. cruzi infection, evidenced by control of chronic pathology of the heart and preservation of cardiac function in dogs. Additionally, TcVac4 vaccination decreased the transmission of parasites from vaccinated/infected animals to triatomines.

  10. Immune Protection against Trypanosoma cruzi Induced by TcVac4 in a Canine Model

    Science.gov (United States)

    Aparicio-Burgos, José E.; Zepeda-Escobar, José A.; de Oca-Jimenez, Roberto Montes; Estrada-Franco, José G.; Barbabosa-Pliego, Alberto; Ochoa-García, Laucel; Alejandre-Aguilar, Ricardo; Rivas, Nancy; Peñuelas-Rivas, Giovanna; Val-Arreola, Margarita; Gupta, Shivali; Salazar-García, Felix; Garg, Nisha J.; Vázquez-Chagoyán, Juan C.

    2015-01-01

    Chagas disease, caused by Trypanosoma cruzi, is endemic in southern parts of the American continent. Herein, we have tested the protective efficacy of a DNA-prime/T. rangeli-boost (TcVac4) vaccine in a dog (Canis familiaris) model. Dogs were immunized with two-doses of DNA vaccine (pcDNA3.1 encoding TcG1, TcG2, and TcG4 antigens plus IL-12- and GM-CSF-encoding plasmids) followed by two doses of glutaraldehyde-inactivated T. rangeli epimastigotes (TrIE); and challenged with highly pathogenic T. cruzi (SylvioX10/4) isolate. Dogs given TrIE or empty pcDNA3.1 were used as controls. We monitored post-vaccination and post-challenge infection antibody response by an ELISA, parasitemia by blood analysis and xenodiagnosis, and heart function by electrocardiography. Post-mortem anatomic and pathologic evaluation of the heart was conducted. TcVac4 induced a strong IgG response (IgG2>IgG1) that was significantly expanded post-infection, and moved to a nearly balanced IgG2/IgG1 response in chronic phase. In comparison, dogs given TrIE or empty plasmid DNA only developed high IgG titers with IgG2 predominance in response to T. cruzi infection. Blood parasitemia, tissue parasite foci, parasite transmission to triatomines, electrocardiographic abnormalities were significantly lower in TcVac4-vaccinated dogs than was observed in dogs given TrIE or empty plasmid DNA only. Macroscopic and microscopic alterations, the hallmarks of chronic Chagas disease, were significantly decreased in the myocardium of TcVac4-vaccinated dogs. We conclude that TcVac4 induced immunity was beneficial in providing resistance to T. cruzi infection, evidenced by control of chronic pathology of the heart and preservation of cardiac function in dogs. Additionally, TcVac4 vaccination decreased the transmission of parasites from vaccinated/infected animals to triatomines. PMID:25853654

  11. Chronic orthostatic and antiorthostatic restraint induce neuroendocrine, immune and neurophysiological disorders in rats

    Science.gov (United States)

    Assenmacher, I.; Mekaouche, M.; Maurel, D.; Barbanel, G.; Givalois, L.; Boissin, J.; Malaval, F.; Ixart, G.

    The tail-cast suspension rat model has been developed in ground laboratories interested in space physiology for extensive study of mechanisms causing the pathophysiological syndrome associated with space flights. We used individually-caged male rats to explore the effects of acute and chronic (7d) orthostatic restraint (OR) and head-down anti-orthostatic restraint (AOR) on a series of physiological variables. The acute restraint study showed that (1) the installation of the OR device induced an acute reaction for 2 days, with a substantial rise in ACTH (x2) and CORT (x6), and that (2) the head-down tilt from OR to AOR induced (i) within 10 min and lasting 60 min a 2-fold rise in the intra-cerebro-ventricular pressure (Picv) monitored with an icv telemetric recording system, which receded to normal between 60 and 120 min; and (ii) within 30 min a short-lived 4-fold rise in plasma ACTH and CORT levels. Chronic OR induced (1) the suppression of the diurnal ACTH/CORT rhythm, with increased mean levels, especially for ACTH, (2) a degraded circadian locomotor activity rhythm manifested by a significant reduction in the spectral power of the 24h periodicity and a concomitant emergence of shorter (ultradian) periodicities, (3) an associated, but less pronounced alteration of the diurnal rhythm in body temperature; and (4) a marked increase in baseline plasma levels of IL-1β and an increased reactivity in cytokine release following an E. coli endotoxin (LPS) challenge. AOR induced (1) a similar obliteration of the circadian ACTH/CORT rhythm, (2) the loss of close correlation between ACTH and CORT, (3) a generalized increase in baseline plasma IL-1β levels and (4) more extensive degradation of the arcadian periodicity for both locomotor activity and, to a lesser extent, body temperature, replaced by dominant spectral powers for ultradian periodicities (3 to 10h). In conclusion, both experimental paradigms — but AOR more than OR — caused a blockade of the arcadian

  12. Yersinia pestis with regulated delayed attenuation as a vaccine candidate to induce protective immunity against plague.

    Science.gov (United States)

    Sun, Wei; Roland, Kenneth L; Kuang, Xiaoying; Branger, Christine G; Curtiss, Roy

    2010-03-01

    Two mutant strains of Yersinia pestis KIM5+, a Deltacrp mutant and a mutant with arabinose-dependent regulated delayed-shutoff crp expression (araC P(BAD) crp), were constructed, characterized in vitro, and evaluated for virulence, immunogenicity, and protective efficacy in mice. Both strains were highly attenuated by the subcutaneous (s.c.) route. The 50% lethal doses (LD(50)s) of the Deltacrp and araC P(BAD) crp mutants were approximately 1,000,000-fold and 10,000-fold higher than those of Y. pestis KIM5+, respectively, indicating that both strains were highly attenuated. Mice vaccinated s.c. with 3.8 x 10(7) CFU of the Deltacrp mutant developed high anti-Y. pestis and anti-LcrV serum IgG titers, both with a strong Th2 bias, and induced protective immunity against subcutaneous challenge with virulent Y. pestis (80% survival) but no protection against pulmonary challenge. Mice vaccinated with 3.0 x 10(4) CFU of the araC P(BAD) crp mutant also developed high anti-Y. pestis and anti-LcrV serum IgG titers but with a more balanced Th1/Th2 response. This strain induced complete protection against s.c. challenge and partial protection (70% survival) against pulmonary challenge. Our results demonstrate that arabinose-dependent regulated crp expression is an effective strategy to attenuate Y. pestis while retaining strong immunogenicity, leading to protection against the pneumonic and bubonic forms of plague.

  13. Dynamic expression of leukocyte innate immune genes in whole blood from horses with lipopolysaccharide-induced acute systemic inflammation

    DEFF Research Database (Denmark)

    Vinther, Anne Mette L.; Skovgaard, Kerstin; Heegaard, Peter M. H.;

    2015-01-01

    Background: In horses, insights into the innate immune processes in acute systemic inflammation are limited even though these processes may be highly important for future diagnostic and therapeutic advances in high-mortality disease conditions as the systemic inflammatory response syndrome (SIRS......) and sepsis. Therefore, the aim of this study was to investigate the expression of 31 selected blood leukocyte immune genes in an equine model of acute systemic inflammation to identify significantly regulated genes and to describe their expression dynamics during a 24-h experimental period. Systemic...... expressions in blood leukocytes during equine acute LPS-induced systemic inflammation thoroughly characterized a highly regulated and dynamic innate immune response. These results provide new insights into the molecular mechanisms of equine systemic inflammation....

  14. A recombinant DNA vaccine encoding C. andersoni oocyst wall protein induces immunity against experimental C. parvum infection.

    Science.gov (United States)

    Zheng, Jun; Ren, Wenzhi; Pan, Qingshan; Wang, Qiuyue; Elhag, I A Elfaki; Li, Jianhua; Li, Mingying; Gong, Pengtao; Liu, Yingli; Zhang, Xichen

    2011-06-30

    Cryptosporidium andersoni parasited in the abomasum has been demonstrated as a cause of reduction of milk production in dairy cow. In this study, a novel chimeric DNA vaccine pVAX1-AB was constructed and the efficacy against Cryptosporidium parvum was determined. BALB/c mice were divided into 3 groups and immunized with DNA vaccine expressing the oocyst wall protein, AB protein of C. andersoni, the recombinant plasmid containing the AB gene, respectively. After inoculation of 1 × 10(6) oocysts of C. parvum, the humoral and cellular immune responses were detected. Experimental results showed that the recombinant plasmid can induce corresponding specific antibody response, simultaneously influenced cellular immune responses, and provided greater protection rate (48.6%) than the other groups. These results indicated that chimeric DNA vaccine has a potential in Cryptosporidium vaccine development.

  15. Postinflammation stage of autoimmune orchitis induced by immunization with syngeneic testicular germ cells alone in mice.

    Science.gov (United States)

    Naito, Munekazu; Hirai, Shuichi; Terayama, Hayato; Qu, Ning; Kuerban, Maimaiti; Musha, Muhetaerjiang; Kitaoka, Miyuki; Ogawa, Yuki; Itoh, Masahiro

    2012-12-01

    We previously established an immunological infertility model, experimental autoimmune orchitis (EAO), which can be induced by two subcutaneous injections of viable syngeneic testicular germ cells on days 0 and 14 in mice without using any adjuvant. In this EAO model, CD4+ T-cell-dependent lymphocytic infiltration and immune deposits were found with spermatogenic disturbance on day 120. However, the late stage of EAO (= postactive inflammation stage on day 365) has not yet been investigated. Therefore, we investigated the histopathological characteristics of the late stage. The results revealed that the lymphocytic infiltration finally resolved; however, the seminiferous epithelium persistently showed maturation arrest and the Sertoli cell-only feature. In the seminiferous tubules showing maturation arrest, both proliferation and apoptosis of germ cells had occurred simultaneously. It was also noted that there were deposits of immunoglobulin G and the third component of complement on the thickened basement membrane of seminiferous tubules in the late stage of EAO. These results indicate that histopathology after active inflammation in EAO comprises persistent damage to the seminiferous epithelium and may resemble the histopathology of "idiopathic disturbance of spermatogenesis" in man.

  16. Diet-Induced Dysbiosis of the Intestinal Microbiota and the Effects on Immunity and Disease

    Directory of Open Access Journals (Sweden)

    Deanna L. Gibson

    2012-08-01

    Full Text Available The gastrointestinal (GI microbiota is the collection of microbes which reside in the GI tract and represents the largest source of non-self antigens in the human body. The GI tract functions as a major immunological organ as it must maintain tolerance to commensal and dietary antigens while remaining responsive to pathogenic stimuli. If this balance is disrupted, inappropriate inflammatory processes can result, leading to host cell damage and/or autoimmunity. Evidence suggests that the composition of the intestinal microbiota can influence susceptibility to chronic disease of the intestinal tract including ulcerative colitis, Crohn’s disease, celiac disease and irritable bowel syndrome, as well as more systemic diseases such as obesity, type 1 diabetes and type 2 diabetes. Interestingly, a considerable shift in diet has coincided with increased incidence of many of these inflammatory diseases. It was originally believed that the composition of the intestinal microbiota was relatively stable from early childhood; however, recent evidence suggests that diet can cause dysbiosis, an alteration in the composition of the microbiota, which could lead to aberrant immune responses. The role of the microbiota and the potential for diet-induced dysbiosis in inflammatory conditions of the GI tract and systemic diseases will be discussed.

  17. Melatonin treatment prevents modulation of cell-mediated immune response induced by propoxur in rats.

    Science.gov (United States)

    Suke, Sanvidhan G; Pathak, Rahul; Ahmed, Rafat S; Tripathi, A K; Banerjee, B D

    2008-08-01

    The effect of melatonin, a major secretory product of the pineal gland, in attenuation of propoxur (2-isopropoxy phenyl N-methyl carbamate)-induced modulation of cell-mediated immune (CMI) response was studied in rats. Male Wistar albino rats were exposed to propoxur (a widely used pesticide) orally (10 mg/kg) and/or melatonin (10 mg/kg) orally for 4 weeks. CMI was measured by delayed-type hypersensitivity (DTH), leucocyte and macrophage migration inhibition (LMI and MMI) responses and estimation of cytokines TNF-alpha and IFN-gamma levels. Rats exposed to propoxur for 4 weeks showed significant decrease in DTH, LMI and MMI responses. Propoxur also suppressed TNF-alpha and IFN-gamma production significantly. Administration of melatonin alone caused a significant increase in DTH response. Although there were no changes in the LMI and MMI response, the cytokine levels were significantly increased, as compared to control. Co-administration of melatonin along with propoxur significantly nullified the effect of the pesticide on the CMI response, except DTH and reversed levels of cytokines to near control/normal values. Thus, melatonin treatment considerably attenuated immunomodulation caused by sub-chronic treatment of propoxur in experimental animals.

  18. Effects of Experimental Sarcocystis neurona-Induced Infection on Immunity in an Equine Model

    Directory of Open Access Journals (Sweden)

    S. Rochelle Lewis

    2014-01-01

    Full Text Available Sarcocystis neurona is the most common cause of Equine Protozoal Myeloencephalitis (EPM, affecting 0.5–1% horses in the United States during their lifetimes. The objective of this study was to evaluate the equine immune responses in an experimentally induced Sarcocystis neurona infection model. Neurologic parameters were recorded prior to and throughout the 70-day study by blinded investigators. Recombinant SnSAG1 ELISA for serum and CSF were used to confirm and track disease progression. All experimentally infected horses displayed neurologic signs after infection. Neutrophils, monocytes, and lymphocytes from infected horses displayed significantly delayed apoptosis at some time points. Cell proliferation was significantly increased in S. neurona-infected horses when stimulated nonspecifically with PMA/I but significantly decreased when stimulated with S. neurona compared to controls. Collectively, our results suggest that horses experimentally infected with S. neurona manifest impaired antigen specific response to S. neurona, which could be a function of altered antigen presentation, lack of antigen recognition, or both.

  19. Inducible nitric-oxide synthase plays a minimal role in lymphocytic choriomeningitis virus-induced, T cell-mediated protective immunity and immunopathology

    DEFF Research Database (Denmark)

    Bartholdy, C; Nansen, A; Christensen, Jeanette Erbo;

    1999-01-01

    -mediated immune response was found to be unaltered in iNOS-deficient mice compared with wild-type C57BL/6 mice, and LCMV- induced general immunosuppression was equally pronounced in both strains. In vivo analysis revealed identical kinetics of virus clearance, as well as unaltered clinical severity of systemic......By using mice with a targetted disruption in the gene encoding inducible nitric-oxide synthase (iNOS), we have studied the role of nitric oxide (NO) in lymphocytic choriomeningitis virus (LCMV)-induced, T cell-mediated protective immunity and immunopathology. The afferent phase of the T cell....... This might suggest a role of NO in regulating vascular reactivity in the context of T cell-mediated inflammation. In conclusion, these findings indicate a minimal role for iNOS/NO in the host response to LCMV. Except for a reduced local oedema in the knockout mice, iNOS/NO seems to be redundant...

  20. A conserved peptide pattern from a widespread microbial virulence factor triggers pattern-induced immunity in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Hannah Böhm

    2014-11-01

    Full Text Available Microbe- or host damage-derived patterns mediate activation of pattern-triggered immunity (PTI in plants. Microbial virulence factor (effector-triggered immunity (ETI constitutes a second layer of plant protection against microbial attack. Various necrosis and ethylene-inducing peptide 1 (Nep1-like proteins (NLPs produced by bacterial, oomycete and fungal microbes are phytotoxic virulence factors that exert immunogenic activities through phytotoxin-induced host cell damage. We here show that multiple cytotoxic NLPs also carry a pattern of 20 amino acid residues (nlp20 that triggers immunity-associated plant defenses and immunity to microbial infection in Arabidopsis thaliana and related plant species with similar characteristics as the prototype pattern, bacterial flagellin. Characteristic differences in flagellin and nlp20 plant responses exist however, as nlp20s fail to trigger extracellular alkalinization in Arabidopsis cell suspensions and seedling growth inhibition. Immunogenic nlp20 peptide motifs are frequently found in bacterial, oomycete and fungal NLPs. Such an unusually broad taxonomic distribution within three phylogenetic kingdoms is unprecedented among microbe-derived triggers of immune responses in either metazoans or plants. Our findings suggest that cytotoxic NLPs carrying immunogenic nlp20 motifs trigger PTI in two ways as typical patterns and by inflicting host cell damage. We further propose that conserved structures within a microbial virulence factor might have driven the emergence of a plant pattern recognition system mediating PTI. As this is reminiscent of the evolution of immune receptors mediating ETI, our findings support the idea that there is a continuum between PTI and ETI.

  1. Glycans from Fasciola hepatica Modulate the Host Immune Response and TLR-Induced Maturation of Dendritic Cells.

    Science.gov (United States)

    Rodríguez, Ernesto; Noya, Verónica; Cervi, Laura; Chiribao, María Laura; Brossard, Natalie; Chiale, Carolina; Carmona, Carlos; Giacomini, Cecilia; Freire, Teresa

    2015-12-01

    Helminths express various carbohydrate-containing glycoconjugates on their surface, and they release glycan-rich excretion/secretion products that can be very important in their life cycles, infection and pathology. Recent evidence suggests that parasite glycoconjugates could play a role in the evasion of the immune response, leading to a modified Th2-polarized immune response that favors parasite survival in the host. Nevertheless, there is limited information about the nature or function of glycans produced by the trematode Fasciola hepatica, the causative agent of fasciolosis. In this paper, we investigate whether glycosylated molecules from F. hepatica participate in the modulation of host immunity. We also focus on dendritic cells, since they are an important target of immune-modulation by helminths, affecting their activity or function. Our results indicate that glycans from F. hepatica promote the production of IL-4 and IL-10, suppressing IFNγ production. During infection, this parasite is able to induce a semi-mature phenotype of DCs expressing low levels of MHCII and secrete IL-10. Furthermore, we show that parasite glycoconjugates mediate the modulation of LPS-induced maturation of DCs since their oxidation restores the capacity of LPS-treated DCs to secrete high levels of the pro-inflammatory cytokines IL-6 and IL-12/23p40 and low levels of the anti-inflammatory cytokine IL-10. Inhibition assays using carbohydrates suggest that the immune-modulation is mediated, at least in part, by the recognition of a mannose specific-CLR that signals by recruiting the phosphatase Php2. The results presented here contribute to the understanding of the role of parasite glycosylated molecules in the modulation of the host immunity and might be useful in the design of vaccines against fasciolosis.

  2. Immunization with the immunodominant Helicobacter suis urease subunit B induces partial protection against H. suis infection in a mouse model

    Directory of Open Access Journals (Sweden)

    Vermoote Miet

    2012-10-01

    Full Text Available Abstract Helicobacter (H. suis is a porcine and human gastric pathogen. Previous studies in mice showed that an H. suis infection does not result in protective immunity, whereas immunization with H. suis whole-cell lysate (lysate protects against a subsequent experimental infection. Therefore, two-dimensional gel electrophoresis of H. suis proteins was performed followed by immunoblotting with pooled sera from H. suis- infected mice or mice immunized with lysate. Weak reactivity against H. suis proteins was observed in post-infection sera. Sera from lysate-immunized mice, however, showed immunoreactivity against a total of 19 protein spots which were identified using LC-MS/MS. The H. suis urease subunit B (UreB showed most pronounced reactivity against sera from lysate-immunized mice and was not detected with sera from infected mice. None of the pooled sera detected H. suis neutrophil-activating protein A (NapA. The protective efficacy of intranasal vaccination of BALB/c mice with H. suis UreB and NapA, both recombinantly expressed in Escherichia coli (rUreB and rNapA, respectively, was compared with that of H. suis lysate. All vaccines contained choleratoxin as adjuvant. Immunization of mice with rUreB and lysate induced a significant reduction of H. suis colonization compared to non-vaccinated H. suis-infected controls, whereas rNapA had no significant protective effect. Probably, a combination of local Th1 and Th17 responses, complemented by antibody responses play a role in the protective immunity against H. suis infections.

  3. Could an experimental dengue virus infection fail to induce solid immunity against homologous viral challenge in non-human primates?

    Science.gov (United States)

    Valdés, Iris; Gil, Lázaro; Lazo, Laura; Marcos, Ernesto; Martín, Jorge; Suzarte, Edith; Castro, Jorge; Romero, Yaremis; Guillén, Gerardo; Hermida, Lisset

    2016-02-01

    There are several dengue vaccine candidates at advanced stages of development, but none of them are licensed. Despite the reactogenicity and immunogenicity profile in humans of the tetravalent ChimeriVax™ dengue vaccine candidate, in efficacy trials, it has failed to confer complete protection against dengue virus (DENV)-1 and DENV-2. However, full protection against the four serotypes had been observed previously in monkeys immunized with this vaccine candidate. Some authors have tried to explain this contradiction by hypothesizing that protection rates in non-human primates (NHPs) are associated with a lack of post-challenge anamnestic immune responses. Here, we studied the protection and anamnestic response patterns after homologous challenge in NHPs previously infected with DENV-2. Two immunization schemes were used, varying the viral doses and the intervals between them. Animals developed immunity against DENV-2 that provided full protection against reinfection with a homologous virus. However, all monkeys showed a significant increase in antiviral and neutralizing antibody titers after challenge. Our results suggest that sterilizing immunity could not be induced by infection with the virus despite the lack of detectable viremia in some animals in which an increase in antibody titer was observed. For this reason, we propose that the lack of an anamnestic neutralizing antibody response after challenge, as suggested by some authors, should be carefully reviewed as a criterion for evaluating the functionality of vaccine candidates.

  4. Systemic BCG immunization induces persistent lung mucosal multifunctional CD4 T(EM cells which expand following virulent mycobacterial challenge.

    Directory of Open Access Journals (Sweden)

    Daryan A Kaveh

    Full Text Available To more closely understand the mechanisms of how BCG vaccination confers immunity would help to rationally design improved tuberculosis vaccines that are urgently required. Given the established central role of CD4 T cells in BCG induced immunity, we sought to characterise the generation of memory CD4 T cell responses to BCG vaccination and M. bovis infection in a murine challenge model. We demonstrate that a single systemic BCG vaccination induces distinct systemic and mucosal populations of T effector memory (T(EM cells in vaccinated mice. These CD4+CD44(hiCD62L(loCD27⁻ T cells concomitantly produce IFN-γ and TNF-α, or IFN-γ, IL-2 and TNF-α and have a higher cytokine median fluorescence intensity MFI or 'quality of response' than single cytokine producing cells. These cells are maintained for long periods (>16 months in BCG protected mice, maintaining a vaccine-specific functionality. Following virulent mycobacterial challenge, these cells underwent significant expansion in the lungs and are, therefore, strongly associated with protection against M. bovis challenge. Our data demonstrate that a persistent mucosal population of T(EM cells can be induced by parenteral immunization, a feature only previously associated with mucosal immunization routes; and that these multifunctional T(EM cells are strongly associated with protection. We propose that these cells mediate protective immunity, and that vaccines designed to increase the number of relevant antigen-specific T(EM in the lung may represent a new generation of TB vaccines.

  5. Cell-mediated immunity induced by chimeric tetravalent dengue vaccine in naive or flavivirus-primed subjects.

    Science.gov (United States)

    Guy, Bruno; Nougarede, Nolwenn; Begue, Sarah; Sanchez, Violette; Souag, Nadia; Carre, Murielle; Chambonneau, Laurent; Morrisson, Dennis N; Shaw, David; Qiao, Ming; Dumas, Rafaele; Lang, Jean; Forrat, Remi

    2008-10-23

    Three independent, phase 1 clinical trials were conducted in Australia and in USA to assess the safety and immunogenicity of sanofi pasteur dengue vaccine candidates. In this context, Dengue 1-4 and Yellow Fever 17D-204 (YF 17D)-specific CD4 and CD8 cellular responses induced by tetravalent chimeric dengue vaccines (CYD) were analyzed in flavivirus-naive or flavivirus-immune patients. Tetravalent CYD vaccine did not trigger detectable changes in serum pro-inflammatory cytokines, whatever the vaccinees immune status, while inducing significant YF 17D NS3-specific CD8 responses and dengue serotype-specific T helper responses. These responses were dominated by serotype 4 in naive individuals, but a booster vaccination (dose #2) performed 4 months following dose #1 broadened serotype-specific responses. A similar, broader response was seen after primary tetravalent immunization in subjects with pre-existing dengue 1 or 2 immunity caused by prior monovalent live-attenuated dengue vaccination. In all three trials, the profile of induced response was similar, whatever the subjects' immune status, i.e. an absence of Th2 response, and an IFN-gamma/TNF-alpha ratio dominated by IFN-gamma, for both CD4 and CD8 responses. Our results also showed an absence of cross-reactivity between YF 17D or Dengue NS3-specific CD8 responses, and allowed the identification of 3 new CD8 epitopes in the YF 17D NS3 antigen. These data are consistent with the previously demonstrated excellent safety of these dengue vaccines in flavivirus-naive and primed individuals.

  6. Aryl Hydrocarbon Receptor (AhR Modulates Cockroach Allergen-Induced Immune Responses through Active TGFβ1 Release

    Directory of Open Access Journals (Sweden)

    Yufeng Zhou

    2014-01-01

    Full Text Available Background. Aryl hydrocarbon receptor (AhR, a multifunctional regulator that senses and responds to environmental stimuli, plays a role in normal cell development and immune regulation. Recent evidence supports a significant link between environmental exposure and AhR in the development of allergic diseases. We sought to investigate whether AhR plays a role in mediating cockroach allergen-induced allergic immune responses. Methods. AhR expression in human lung fibroblasts from asthmatic and healthy individuals and in cockroach extract (CRE treated human lung fibroblasts (WI-38 was examined. The role of AhR in modulating CRE induced TGFβ1 production was investigated by using AhR agonist, TCDD, antagonist CH122319, and knockdown of AhR. The role of latent TGFβ1 binding protein-1 (LTBP1 in mediating TCDD induced active TGFβ1 release was also examined. Results. AhR expression was higher in airway fibroblasts from asthmatic subjects as compared to healthy controls. AhR in fibroblasts was activated by TCDD with an increased expression of cyp1a1 and cyp1b1. Increased AhR expression was observed in CRE-treated fibroblasts. Importantly, CRE induced TGFβ1 production in fibroblasts was significantly enhanced by TCDD but inhibited by CH122319. Reduced TGFβ1 production was further confirmed in fibroblasts with AhR knockdown. Moreover, AhR knockdown inhibited CRE induced fibroblast differentiation. Furthermore, TCDD induced active TGFβ1 release was significantly inhibited by LTBP1 knockdown. Conclusion. These results provide evidence for the role of AhR in modulating cockroach allergen-induced immune responses through controlling the active TGFβ1 release, suggesting a possible synergistic effect between exposure to allergens and environmental chemicals on the development of allergic diseases.

  7. Structural characteristics correlate with immune responses induced by HIV envelope glycoprotein vaccines.

    Science.gov (United States)

    Sharma, Victoria A; Kan, Elaine; Sun, Yide; Lian, Ying; Cisto, Jimna; Frasca, Verna; Hilt, Susan; Stamatatos, Leonidas; Donnelly, John J; Ulmer, Jeffrey B; Barnett, Susan W; Srivastava, Indresh K

    2006-08-15

    quality of the immune responses induced in rabbits. These data suggest that biophysical characteristics of HIV Env, such as affinity for CD4, and exposure of important neutralizing epitopes, such as those recognized by b12 mAb, may be important predictors of its in vivo efficacy and may serve as important surrogate markers for screening Env structures as potential vaccine candidates.

  8. Dynamic expression of leukocyte innate immune genes in whole blood from horses with lipopolysaccharide-induced acute systemic inflammation

    DEFF Research Database (Denmark)

    Vinther, Anne Mette L.; Skovgaard, Kerstin; Heegaard, Peter M. H.;

    2015-01-01

    inflammation was induced in 6 adult horses by the intravenous injection of 1 mu g lipopolysaccharide (LPS) per kg btw. Sixteen blood samples were collected for each horse at predetermined intervals and analyzed by reverse transcription quantitative real-time PCR. Post-induction expression levels for each gene......) and sepsis. Therefore, the aim of this study was to investigate the expression of 31 selected blood leukocyte immune genes in an equine model of acute systemic inflammation to identify significantly regulated genes and to describe their expression dynamics during a 24-h experimental period. Systemic...... expressions in blood leukocytes during equine acute LPS-induced systemic inflammation thoroughly characterized a highly regulated and dynamic innate immune response. These results provide new insights into the molecular mechanisms of equine systemic inflammation....

  9. Protective effect of melatonin against propoxur-induced oxidative stress and suppression of humoral immune response in rats.

    Science.gov (United States)

    Suke, Sanvidhan G; Kumar, Achint; Ahmed, Rafat S; Chakraborti, Ayanabha; Tripathi, A K; Mediratta, P K; Banerjee, B D

    2006-04-01

    Effect of melatonin in attenuation of propoxur induced oxidative stress and suppression of humoral immune response was studied in rats. Oral administration of propoxur (10 mg/kg) increased lipid peroxidation in serum after 28 days treatment. Superoxide dismutase, catalase and glutathione were also altered following propoxur exposure. In addition propoxur exposure markedly suppressed humoral immune response as assessed by antibody titre and plaque forming cell assay. Simultaneous treatment with melatonin (5 mg/kg, ip) markedly attenuated the effect of propoxur on (a) lipid peroxidation, (b) oxidative stress parameters and (c) immunotoxicity. Results have been discussed in the light of possible immunopotentiating and antioxidant effects of melatonin to understand the influence of oxidative stress on propoxur induced immunomodulation.

  10. The Study on The ImmuneResponse Induced by Expressing Recombinant Plasmid of Dengue Virus Type 2 NS3 Protein

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The PSV · NS3, an expressing recombinant plasmid of dengue virus type 2 NS3 protein, was in Jected directly into the quadriceps of Balb/C mice to explore whether it could inducing immune response. The splenic T cell subsets of two groups was analysed by flow cytometry. It was found that the percentage of CD4+ and CD8+ T cells of experimental group were significantly higher than those of the control group. The titer of IgG antibody was as high as 1:S 120 in experimental group, but it couldn't be detected in control group by ELISA. The western blot further proved that the IgG antibody was specific for NS3 protein. Those results Suggested that inoculation Balb/C mice with PSV · NS3 could inducing immune response, and the NS3 protein might be used as the candidate protein of DNA vaccine of dengue virus.

  11. Chimeric plant virus particles administered nasally or orally induce systemic and mucosal immune responses in mice

    DEFF Research Database (Denmark)

    Brennan, F.R.; Bellaby, T.; Helliwell, S.M.;

    1999-01-01

    The humoral immune responses to the D2 peptide of fibronectin-binding protein B (FnBP) of Staphylococcus aureus, expressed on the plant virus cowpea mosaic virus (CPMV), were evaluated after mucosal delivery to mice. Intranasal immunization of these chimeric virus particles (CVPs), either alone o...

  12. Intracellular replication-deficient Leishmania donovani induces long lasting protective immunity against visceral leishmaniasis.

    Science.gov (United States)

    Selvapandiyan, Angamuthu; Dey, Ranadhir; Nylen, Susanne; Duncan, Robert; Sacks, David; Nakhasi, Hira L

    2009-08-01

    No vaccine is currently available for visceral leishmaniasis (VL) caused by Leishmania donovani. This study addresses whether a live attenuated centrin gene-deleted L. donovani (LdCen1(-/-)) parasite can persist and be both safe and protective in animals. LdCen1(-/-) has a defect in amastigote replication both in vitro and ex vivo in human macrophages. Safety was shown by the lack of parasites in spleen and liver in susceptible BALB/c mice, immune compromised SCID mice, and human VL model hamsters 10 wk after infection. Mice immunized with LdCen1(-/-) showed early clearance of virulent parasite challenge not seen in mice immunized with heat killed parasites. Upon virulent challenge, the immunized mice displayed in the CD4(+) T cell population a significant increase of single and multiple cytokine (IFN-gamma, IL-2, and TNF) producing cells and IFN-gamma/IL10 ratio. Immunized mice also showed increased IgG2a immunoglobulins and NO production in macrophages. These features indicated a protective Th1-type immune response. The Th1 response correlated with a significantly reduced parasite burden in the spleen and no parasites in the liver compared with naive mice 10 wk post challenge. Protection was observed, when challenged even after 16 wk post immunization, signifying a sustained immunity. Protection by immunization with attenuated parasites was also seen in hamsters. Immunization with LdCen1(-/-) also cross-protected mice against infection with L. braziliensis that causes mucocutaneous leishmaniasis. Results indicate that LdCen1(-/-) can be a safe and effective vaccine candidate against VL as well as mucocutaneous leishmaniasis causing parasites.

  13. Letting Our Cells Do the Fighting: Flight-Induced Changes in the Immune Response

    Science.gov (United States)

    Pierson, Duane; Bloomberg, Jacob; Lee, Angie (Technical Monitor)

    2002-01-01

    The organisms that make us ill, such as bacteria, viruses, and fungi, are like attacking armies. We now know a great deal more about this unseen world of microscopic invaders. Fortunately for us, the human immune system is ever vigilant against them. Microorganisms such as bacteria, viruses, and fungi occupy almost every corner of the Earth, and even parts of the human body. Some organisms are beneficial to us, helping to produce milk, cheese or yogurt. Others are potentially harmful, yet we don#t always develop illnesses from them; they are kept in check by the sentinels of our immune system. Our immune system is routinely challenged by these organisms every day. When the immune response is diminished, our ability to fight off these "bugs" is lowered. And that's when we become ill. Space flight presents a challenge to the immune system. Scientists believe that the stressful conditions of space flight - launch into orbit, adapting to microgravity, heavy workloads, and isolation from family and friends, to name but a few - reduce the astronauts' immunity. This immune suppression makes them more susceptible to common illnesses from bacteria and to re-infections from latent viruses in the body. In addition, risk of spreading illness in the confined environment of the Space Shuttle is high. Understanding changes in immune function will help scientists develop ways to keep astronauts healthy in space. This knowledge can also benefit earthbound populations. This experiment will give scientists insight into the immune system by comparing how certain cells of astronauts' innate immune system - the first line of defense against invaders - function after flight compared to before flight.

  14. Autophagy controls BCG-induced trained immunity and the response to intravesical BCG therapy for bladder cancer.

    Directory of Open Access Journals (Sweden)

    Kathrin Buffen

    2014-10-01

    Full Text Available The anti-tuberculosis-vaccine Bacillus Calmette-Guérin (BCG is the most widely used vaccine in the world. In addition to its effects against tuberculosis, BCG vaccination also induces non-specific beneficial effects against certain forms of malignancy and against infections with unrelated pathogens. It has been recently proposed that the non-specific effects of BCG are mediated through epigenetic reprogramming of monocytes, a process called trained immunity. In the present study we demonstrate that autophagy contributes to trained immunity induced by BCG. Pharmacologic inhibition of autophagy blocked trained immunity induced in vitro by stimuli such as β-glucans or BCG. Single nucleotide polymorphisms (SNPs in the autophagy genes ATG2B (rs3759601 and ATG5 (rs2245214 influenced both the in vitro and in vivo training effect of BCG upon restimulation with unrelated bacterial or fungal stimuli. Furthermore, pharmacologic or genetic inhibition of autophagy blocked epigenetic reprogramming of monocytes at the level of H3K4 trimethylation. Finally, we demonstrate that rs3759601 in ATG2B correlates with progression and recurrence of bladder cancer after BCG intravesical instillation therapy. These findings identify a key role of autophagy for the nonspecific protective effects of BCG.

  15. Mycoplasma hyopneumoniae and Mycoplasma flocculare differential domains from orthologous surface proteins induce distinct cellular immune responses in mice.

    Science.gov (United States)

    Leal, Fernanda Munhoz Dos Anjos; Virginio, Veridiana Gomes; Martello, Carolina Lumertz; Paes, Jéssica Andrade; Borges, Thiago J; Jaeger, Natália; Bonorino, Cristina; Ferreira, Henrique Bunselmeyer

    2016-07-15

    Mycoplasma hyopneumoniae and Mycoplasma flocculare are two genetically close species found in the swine respiratory tract. Despite their similarities, while M. hyopneumoniae is the causative agent of porcine enzootic pneumonia, M. flocculare is a commensal bacterium. Genomic and transcriptional comparative analyses so far failed to explain the difference in pathogenicity between these two species. We then hypothesized that such difference might be, at least in part, explained by amino acid sequence and immunological or functional differences between ortholog surface proteins. In line with that, it was verified that approximately 85% of the ortholog surface proteins from M. hyopneumoniae 7448 and M. flocculare present one or more differential domains. To experimentally assess possible immunological implications of this kind of difference, the extracellular differential domains from one pair of orthologous surface proteins (MHP7448_0612, from M. hyopneumoniae, and MF_00357, from M. flocculare) were expressed in E. coli and used to immunize mice. The recombinant polypeptides (rMHP61267-169 and rMF35767-196, respectively) induced distinct cellular immune responses. While, rMHP61267-169 induced both Th1 and Th2 responses, rMF35767-196 induced just an early pro-inflammatory response. These results indicate that immunological properties determined by differential domains in orthologous surface protein might play a role in pathogenicity, contributing to elicit specific and differential immune responses against each species.

  16. YB-1 immunization combined with regulatory T-cell depletion induces specific T-cell responses that protect against neuroblastoma in the early stage

    Institute of Scientific and Technical Information of China (English)

    Jin Zheng; Ping Liu; Xiaofeng Yang

    2012-01-01

    Neuroblastoma is the most common extracranial solid cancer in childhood and the most common cancer in infancy.Currently,no effective clinical treatments are available for advanced neuroblastoma.In a previous study,we screened Y Box protein 1 (YB-1) as a potential neuroblastoma-associated antigen from sera of AGN2a-immunized mice by serological analysis of recombinant cDNA expression libraries technique.The aim of this study is to explore if YB-1 immunization in the context of Treg depletion could induce protective immune response against the neuroblastoma in mice.YB-1 was expressed and purified by pET-15b prokaryotic expression system.It was demonstrated that anti-YB-1 CD8+ T-cell responses could be induced by AGN2a immunization,and the strongest CD8+ T-cell responses against AGN2a were induced by YB-1-immunized mice in the context of Treg depletion compared with YB-1 only immunization group and control group.Importantly,the survival rate of mice treated with YB-1 immunization combined with Treg depletion was 80% when challenged by 1 × 104 AGN2a cells,significantly higher than that of mice immunized with YB-1 alone (P< 0.01).Furthermore,T-cell adoptive therapy showed that the neuroblastoma growth was inhibited when T cells or splenic cells from YB-1-immunized mice with Treg depletion were transferred to AGN2a bearing mice.Both CD4+ and CD8+ T cells were involved in the anti-neuroblastoma responses induced by YB-1immunization combined with Treg depletion.These results indicated that YB-1 immunization combined with Treg depletion could induce specific T-cell responses against neuroblastoma and could be a potential strategy for the prevention and treatment of neuroblastoma in the early stage.

  17. An induced mutation in tomato eIF4E leads to immunity to two potyviruses.

    Directory of Open Access Journals (Sweden)

    Florence Piron

    Full Text Available BACKGROUND: The characterization of natural recessive resistance genes and Arabidopsis virus-resistant mutants have implicated translation initiation factors of the eIF4E and eIF4G families as susceptibility factors required for virus infection and resistance function. METHODOLOGY/PRINCIPAL FINDINGS: To investigate further the role of translation initiation factors in virus resistance we set up a TILLING platform in tomato, cloned genes encoding for translation initiation factors eIF4E and eIF4G and screened for induced mutations that lead to virus resistance. A splicing mutant of the eukaryotic translation initiation factor, S.l_eIF4E1 G1485A, was identified and characterized with respect to cap binding activity and resistance spectrum. Molecular analysis of the transcript of the mutant form showed that both the second and the third exons were miss-spliced, leading to a truncated mRNA. The resulting truncated eIF4E1 protein is also impaired in cap-binding activity. The mutant line had no growth defect, likely because of functional redundancy with others eIF4E isoforms. When infected with different potyviruses, the mutant line was immune to two strains of Potato virus Y and Pepper mottle virus and susceptible to Tobacco each virus. CONCLUSIONS/SIGNIFICANCE: Mutation analysis of translation initiation factors shows that translation initiation factors of the eIF4E family are determinants of plant susceptibility to RNA viruses and viruses have adopted strategies to use different isoforms. This work also demonstrates the effectiveness of TILLING as a reverse genetics tool to improve crop species. We have also developed a complete tool that can be used for both forward and reverse genetics in tomato, for both basic science and crop improvement. By opening it to the community, we hope to fulfill the expectations of both crop breeders and scientists who are using tomato as their model of study.

  18. Cocaine/levamisole-induced systemic vasculitis with retiform purpura and pauci-immune glomerulonephritis.

    Science.gov (United States)

    Veronese, F V; Dode, R S O; Friderichs, M; Thomé, G G; da Silva, D R; Schaefer, P G; Sebben, V C; Nicolella, A R; Barros, E J G

    2016-01-01

    Levamisole has been increasingly used as an adulterant of cocaine in recent years, emerging as a public health challenge worldwide. Levamisole-associated toxicity manifests clinically as a systemic vasculitis, consisting of cutaneous, hematological, and renal lesions, among others. Purpura retiform, cutaneous necrosis, intravascular thrombosis, neutropenia, and less commonly crescentic nephritis have been described in association with anti-neutrophil cytoplasmic antibodies (ANCAs) and other autoantibodies. Here we report the case of a 49-year-old male who was a chronic cocaine user, and who presented spontaneous weight loss, arthralgia, and 3 weeks before admission purpuric skin lesions in the earlobes and in the anterior thighs. His laboratory tests on admission showed serum creatinine of 4.56 mg/dL, white blood count 3,800/μL, hemoglobin 7.3 g/dL, urinalysis with 51 white blood cells/μL and 960 red blood cells/μL, and urine protein-to-creatinine ratio 1.20. Serum ANCA testing was positive (>1:320), as well as serum anti-myeloperoxidase and anti-proteinase 3 antibodies. Urine toxicology screen was positive for cocaine and levamisole, with 62.8% of cocaine, 32.2% of levamisole, and 5% of an unidentified substance. Skin and renal biopsies were diagnostic for leukocytoclastic vasculitis and pauci-immune crescentic glomerulonephritis, respectively. The patient showed a good clinical response to cocaine abstinence, and use of corticosteroids and intravenous cyclophosphamide. Last serum creatinine was 1.97 mg/dL, white blood cell count 7,420/μL, and hemoglobin level 10.8 g/dL. In levamisole-induced systemic vasculitis, the early institution of cocaine abstinence, concomitant with the use of immunosuppressive drugs in severe cases, may prevent permanent end organ damage and associate with better clinical outcomes.

  19. Cocaine/levamisole-induced systemic vasculitis with retiform purpura and pauci-immune glomerulonephritis

    Directory of Open Access Journals (Sweden)

    F.V. Veronese

    2016-01-01

    Full Text Available Levamisole has been increasingly used as an adulterant of cocaine in recent years, emerging as a public health challenge worldwide. Levamisole-associated toxicity manifests clinically as a systemic vasculitis, consisting of cutaneous, hematological, and renal lesions, among others. Purpura retiform, cutaneous necrosis, intravascular thrombosis, neutropenia, and less commonly crescentic nephritis have been described in association with anti-neutrophil cytoplasmic antibodies (ANCAs and other autoantibodies. Here we report the case of a 49-year-old male who was a chronic cocaine user, and who presented spontaneous weight loss, arthralgia, and 3 weeks before admission purpuric skin lesions in the earlobes and in the anterior thighs. His laboratory tests on admission showed serum creatinine of 4.56 mg/dL, white blood count 3,800/μL, hemoglobin 7.3 g/dL, urinalysis with 51 white blood cells/μL and 960 red blood cells/μL, and urine protein-to-creatinine ratio 1.20. Serum ANCA testing was positive (>1:320, as well as serum anti-myeloperoxidase and anti-proteinase 3 antibodies. Urine toxicology screen was positive for cocaine and levamisole, with 62.8% of cocaine, 32.2% of levamisole, and 5% of an unidentified substance. Skin and renal biopsies were diagnostic for leukocytoclastic vasculitis and pauci-immune crescentic glomerulonephritis, respectively. The patient showed a good clinical response to cocaine abstinence, and use of corticosteroids and intravenous cyclophosphamide. Last serum creatinine was 1.97 mg/dL, white blood cell count 7,420/μL, and hemoglobin level 10.8 g/dL. In levamisole-induced systemic vasculitis, the early institution of cocaine abstinence, concomitant with the use of immunosuppressive drugs in severe cases, may prevent permanent end organ damage and associate with better clinical outcomes.

  20. Drug-induced immune thrombocytopenia: incidence, clinical features, laboratory testing, and pathogenic mechanisms.

    Science.gov (United States)

    Curtis, Brian R

    2014-01-01

    Drug-induced immune thrombocytopenia (DIIT) is a relatively uncommon adverse reaction caused by drug-dependent antibodies (DDAbs) that react with platelet membrane glycoproteins only when the implicated drug is present. Although more than 100 drugs have been associated with causing DIIT, recent reviews of available data show that carbamazepine, eptifibatide, ibuprofen, quinidine, quinine, oxaliplatin, rifampin, sulfamethoxazole, trimethoprim, and vancomycin are probably the most frequently implicated. Patients with DIIT typically present with petechiae, bruising, and epistaxis caused by an acute, severe drop in platelet count (often to transfusion refractoriness, and must be differentiated by temporal association of exposure to a candidate drug with an acute, severe drop in platelet count. Treatment consists of immediate withdrawal of the implicated drug. Criteria for strong evidence of DIIT include (1) exposure to candidate drug-preceded thrombocytopenia; (2) sustained normal platelet levels after discontinuing candidate drug; (3) candidate drug was only drug used before onset of thrombocytopenia or other drugs were continued or reintroduced after resolution of thrombocytopenia, and other causes for thrombocytopenia were excluded; and (4) reexposure to the candidate drug resulted in recurrent thrombocytopenia. Flow cytometry testing for DDAbs can be useful in confirmation of a clinical diagnosis, and monoclonal antibody enzyme-linked immunosorbent assay testing can be used to determine the platelet glycoprotein target(s), usually GPIIb/IIIa or GPIb/IX/V, but testing is not widely available. Several pathogenic mechanisms for DIIT have been proposed, including hapten, autoantibody, neoepitope, drug-specific, and quinine-type drug mechanisms. A recent proposal suggests weakly reactive platelet autoantibodies that develop greatly increased affinity for platelet glycoprotein epitopes through bridging interactions facilitated by the drug is a possible mechanism for the

  1. Lycopene Enhances Antioxidant Enzyme Activities and Immunity Function in N-Methyl-N′-nitro-N-nitrosoguanidine–Induced Gastric Cancer Rats

    OpenAIRE

    Xian-Guo Wu; Cong Luo

    2011-01-01

    To investigate anticancer effect of lycopene, we examined the effects of lycopene on the oxidative injury and immunity activities of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG)-induced gastric cancer rats. The animals were divided into five groups. Group I served as the normal control and was given corn oil orally for 20 weeks. Group II were induced with MNNG 200 mg/kg body weight by oral gavage at days 0 and 14, and saturated NaCl (1 mL per rats) was given once every three days for four week...

  2. Enhancement of DNA vaccine-induced immune responses by a 72-bp element from SV40 enhancer

    Institute of Scientific and Technical Information of China (English)

    LI Hai-shan; XU Jian-qing; HONG Kun-xue; SHAO Yi-ming; LIU Yong; LI Ding-feng; ZHANG Ran-ran; TANG Hai-li; ZHANG Yu-wei; HUANG Wei; LIU Ying; PENG Hong

    2007-01-01

    Background Although DNA vaccine is considered as the next generation of vaccine, most DNA vaccine candidates are still suffering from the relatively weak immunogenicity despite the increased dosage of plasmid DNA administered. In order to enhance the immune responses elicited by a codon-optimized HIV gag DNA vaccine, a modified plasmid vector pDRVI1.0 and a booster immunization with replicating Tiantan vaccinia (RTV) strain expressing the same gene were employed.Methods Vector pDRVI1.0 was constructed through inserting the 72-bp element from the SV40 enhancer, which was reported promoting nuclear transport of plasmid DNA, to the upstream of cytomegalovirus enhancer/promoter region of the plasmid vector pVR1012. Gene expression levels from expression plasmids based on pDRVI1.0 and pVR1012 were tested. Humoral and cellular immune responses induced by DNA vaccine alone or DNA prime-RTV boost regimen were determined in mice.Results It was shown that the 72-bp element significantly enhanced the gene expression level in non-dividing cells.gag-specific humoral and cellular immune responses induced by DNA vaccination were both significantly improved, while the Th1/Th2 balance was not obviously affected by the 72-bp element. RTV boosting further significantly enhanced DNA vaccine-primed antibody and T cell responses in a Th1-biased manner.Conclusions The 72-bp SV40 enhancer element should be included in the DNA vaccine vector and RTV strain is a very efficient live vector for boosting immunization.

  3. Systemic immune modulation induced by alcoholic beverage intake in obese-diabetes (db/db) mice.

    Science.gov (United States)

    Lee, Hyunah; Jang, Ik-Soon; Park, Junsoo; Kim, Seol-Hee; Baek, So-Young; Go, Sung-Ho; Lee, Seung-Hoon

    2013-03-01

    Alcohol over-consumption is generally immunosuppressive. In this study, the effects of single or repetitive alcohol administration on the systemic immunity of db/db mice were observed to clarify the possible mechanisms for the increased susceptibility of obese individuals to alcohol-related immunological health problems. Alcohol (as a form of commercially available 20% distilled-alcoholic beverage) was orally administered one-time or seven times over 2 weeks to db/db mice and normal C57BL/6J mice. Immunologic alterations were analyzed by observation of body weight and animal activity, along with proportional changes of splenocytes for natural killer cells, macrophages, and T and B lymphocytes. Modulation of plasma cytokine level and immune-related genes were also ascertained by micro-bead assay and a microarray method, respectively. The immune micro-environment of db/db mice was an inflammatory state and adaptive cellular immunity was significantly suppressed. Low-dose alcohol administration reversed the immune response, decreasing inflammatory responses and the increment of adaptive immunity mainly related to CD4(+) T cells, but not CD8(+) T cells, to normal background levels. Systemic immune modulation due to alcohol administration in the obese-diabetic mouse model may be useful in the understanding of the induction mechanism, which will aid the development of therapeutics for related secondary diseases.

  4. Sublingual vaccination induces mucosal and systemic adaptive immunity for protection against lung tumor challenge.

    Science.gov (United States)

    Singh, Shailbala; Yang, Guojun; Schluns, Kimberly S; Anthony, Scott M; Sastry, K Jagannadha

    2014-01-01

    Sublingual route offers a safer and more practical approach for delivering vaccines relative to other systemic and mucosal immunization strategies. Here we present evidence demonstrating protection against ovalbumin expressing B16 (B16-OVA) metastatic melanoma lung tumor formation by sublingual vaccination with the model tumor antigen OVA plus synthetic glycolipid alpha-galactosylceramide (aGalCer) for harnessing the adjuvant potential of natural killer T (NKT) cells, which effectively bridge innate and adaptive arms of the immune system. The protective efficacy of immunization with OVA plus aGalCer was antigen-specific as immunized mice challenged with parental B16 tumors lacking OVA expression were not protected. Multiple sublingual immunizations in the presence, but not in the absence of aGalCer, resulted in repeated activation of NKT cells in the draining lymph nodes, spleens, and lungs of immunized animals concurrent with progressively increasing OVA-specific CD8+ T cell responses as well as serum IgG and vaginal IgA levels. Furthermore, sublingual administration of the antigen only in the presence of the aGalCer adjuvant effectively boosted the OVA-specific immune responses. These results support potential clinical utility of sublingual route of vaccination with aGalCer-for prevention of pulmonary metastases.

  5. Sublingual vaccination induces mucosal and systemic adaptive immunity for protection against lung tumor challenge.

    Directory of Open Access Journals (Sweden)

    Shailbala Singh

    Full Text Available Sublingual route offers a safer and more practical approach for delivering vaccines relative to other systemic and mucosal immunization strategies. Here we present evidence demonstrating protection against ovalbumin expressing B16 (B16-OVA metastatic melanoma lung tumor formation by sublingual vaccination with the model tumor antigen OVA plus synthetic glycolipid alpha-galactosylceramide (aGalCer for harnessing the adjuvant potential of natural killer T (NKT cells, which effectively bridge innate and adaptive arms of the immune system. The protective efficacy of immunization with OVA plus aGalCer was antigen-specific as immunized mice challenged with parental B16 tumors lacking OVA expression were not protected. Multiple sublingual immunizations in the presence, but not in the absence of aGalCer, resulted in repeated activation of NKT cells in the draining lymph nodes, spleens, and lungs of immunized animals concurrent with progressively increasing OVA-specific CD8+ T cell responses as well as serum IgG and vaginal IgA levels. Furthermore, sublingual administration of the antigen only in the presence of the aGalCer adjuvant effectively boosted the OVA-specific immune responses. These results support potential clinical utility of sublingual route of vaccination with aGalCer-for prevention of pulmonary metastases.

  6. Study of the integrated immune response induced by an inactivated EV71 vaccine.

    Directory of Open Access Journals (Sweden)

    Longding Liu

    Full Text Available UNLABELLED: Enterovirus 71 (EV71, a major causative agent of hand-foot-and-mouth disease (HFMD, causes outbreaks among children in the Asia-Pacific region. A vaccine is urgently needed. Based on successful pre-clinical work, phase I and II clinical trials of an inactivated EV71 vaccine, which included the participants of 288 and 660 respectively, have been conducted. In the present study, the immune response and the correlated modulation of gene expression in the peripheral blood mononuclear cells (PBMCs of 30 infants (6 to 11 months immunized with this vaccine or placebo and consented to join this study in the phase II clinical trial were analyzed. The results showed significantly greater neutralizing antibody and specific T cell responses in vaccine group after two inoculations on days 0 and 28. Additionally, more than 600 functional genes that were up- or down-regulated in PBMCs were identified by the microarray assay, and these genes included 68 genes associated with the immune response in vaccine group. These results emphasize the gene expression profile of the immune system in response to an inactivated EV71 vaccine in humans and confirmed that such an immune response was generated as the result of the positive mobilization of the immune system. Furthermore, the immune response was not accompanied by the development of a remarkable inflammatory response. CLINICAL TRIAL REGISTRATION: NCT01391494 and NCT01512706.

  7. Oral vaccination with lipid-formulated BCG induces a long-lived, multifunctional CD4(+ T cell memory immune response.

    Directory of Open Access Journals (Sweden)

    Lindsay R Ancelet

    Full Text Available Oral delivery of BCG in a lipid formulation (Liporale™-BCG targets delivery of viable bacilli to the mesenteric lymph nodes and confers protection against an aerosol Mycobacterium tuberculosis challenge. The magnitude, quality and duration of the effector and memory immune response induced by Liporale™-BCG vaccination is unknown. Therefore, we compared the effector and memory CD4(+ T cell response in the spleen and lungs of mice vaccinated with Liporale™-BCG to the response induced by subcutaneous BCG vaccination. Liporale™-BCG vaccination induced a long-lived CD4(+ T cell response, evident by the detection of effector CD4(+ T cells in the lungs and a significant increase in the number of Ag85B tetramer-specific CD4(+ T cells in the spleen up to 30 weeks post vaccination. Moreover, following polyclonal stimulation, Liporale™-BCG vaccination, but not s.c. BCG vaccination, induced a significant increase in both the percentage of CD4(+ T cells in the lungs capable of producing IFNγ and the number of multifunctional CD4(+ T cells in the lungs at 30 weeks post vaccination. These results demonstrate that orally delivered Liporale™-BCG vaccine induces a long-lived multifunctional immune response, and could therefore represent a practical and effective means of delivering novel BCG-based TB vaccines.

  8. Requirement for C-X-C chemokines (macrophage inflammatory protein-2 and cytokine-induced neutrophil chemoattractant) in IgG immune complex-induced lung injury

    DEFF Research Database (Denmark)

    Shanley, T P; Schmal, H; Warner, R L

    1997-01-01

    The C-X-C chemokines of the IL-8 family possess potent chemotactic activity for neutrophils, but their in vivo role in inflammatory responses is not well understood. In the IgG immune complex-induced model of acute lung inflammatory injury in the rat we have evaluated the roles of two rat...... chemokines, macrophage inflammatory protein-2 (MIP-2) and cytokine-induced neutrophil chemoattractant (CINC). Both mRNA and protein for MIP-2 and CINC appeared in a time-dependent manner after initiation of IgG immune complex deposition in lung. There exists a 69% homology between the amino acid sequences...... by 125I-labeled albumin leakage from the pulmonary vasculature) and reduced neutrophil accumulation in the lung (as determined by myeloperoxidase (MPO content) and neutrophil counts in bronchoalveolar lavage (BAL) fluids); however, no change in TNF-alpha levels in BAL fluids was found. Chemotactic...

  9. ALV-J strain SCAU-HN06 induces innate immune responses in chicken primary monocyte-derived macrophages.

    Science.gov (United States)

    Feng, Min; Dai, Manman; Cao, Weisheng; Tan, Yan; Li, Zhenhui; Shi, Meiqing; Zhang, Xiquan

    2017-01-01

    Avian leucosis virus subgroup J (ALV-J) can cause lifelong infection and can escape from the host immune defenses in chickens. Since macrophages act as the important defense line against invading pathogens in host innate immunity, we investigated the function and innate immune responses of chicken primary monocyte-derived macrophages (MDM) after ALV-J infection in this study. Our results indicated that ALV-J was stably maintained in MDM cells but that the viral growth rate was significantly lower than that in DF-1 cells. We also found that ALV-J infection significantly increased nitric oxide (NO) production, but had no effect on MDM phagocytic capacity. Interestingly, infection with ALV-J rapidly promoted the expression levels of Myxovirus resistance 1 (Mx) (3 h, 6 h), ISG12 (6 h), and interleukin-1β (IL-1β) (3 h, 12 h) at an early infection stage, whereas it sharply decreased the expression of Mx (24 h, 36 h), ISG12 (36 h), and made little change on IL-1β (24 h, 36 h) production at a late infection stage in MDM cells. Moreover, the protein levels of interferon-β (IFN-β) and interleukin-6 (IL-6) had sharply increased in infected MDM cells from 3 to 36 h post infection (hpi) of ALV-J. And, the protein level of interleukin-10 (IL-10) was dramatically decreased at 36 hpi in MDM cells infected with ALV-J. These results demonstrate that ALV-J can induce host innate immune responses and we hypothesize that macrophages play an important role in host innate immune attack and ALV-J immune escape.

  10. DNA vaccination with a gene encoding Toxoplasma gondii Rhoptry Protein 17 induces partial protective immunity against lethal challenge in mice

    Directory of Open Access Journals (Sweden)

    Wang Hai-Long

    2016-01-01

    Full Text Available Toxoplasma gondii is an obligate intracellular apicomplexan parasite that affects humans and various vertebrate livestock and causes serious economic losses. To develop an effective vaccine against T. gondii infection, we constructed a DNA vaccine encoding the T. gondii rhoptry protein 17 (TgROP17 and evaluated its immune protective efficacy against acute T. gondii infection in mice. The DNA vaccine (p3×Flag-CMV-14-ROP17 was intramuscularly injected to BALB/c mice and the immune responses of the vaccinated mice were determined. Compared to control mice treated with empty vector or PBS, mice immunized with the ROP17 vaccine showed a relatively high level of specific anti-T. gondii antibodies, and a mixed IgG1/IgG2a response with predominance of IgG2a production. The immunized mice also displayed a specific lymphocyte proliferative response, a Th1-type cellular immune response with production of IFN-γ and interleukin-2, and increased number of CD8+ T cells. Immunization with the ROP17 DNA significantly prolonged the survival time (15.6 ± 5.4 days, P < 0.05 of mice after challenge infection with the virulent T. gondii RH strain (Type I, compared with the control groups which died within 8 days. Therefore, our data suggest that DNA vaccination with TgROP17 triggers significant humoral and cellular responses and induces effective protection in mice against acute T. gondii infection, indicating that TgROP17 is a promising vaccine candidate against acute toxoplasmosis.

  11. Intrarectal vaccination with recombinant vaccinia virus expressing carcinoembronic antigen induces mucosal and systemic immunity and prevents progression of colorectal cancer.

    Science.gov (United States)

    Kim-Schulze, Seunghee; Kim, Hong Sung; Wainstein, Alberto; Kim, Dae Won; Yang, Wein Cui; Moroziewicz, Dorota; Mong, Phyllus Y; Bereta, Michal; Taback, Bret; Wang, Qin; Kaufman, Howard L

    2008-12-01

    The gastrointestinal mucosa contains an intact immune system that protects the host from pathogens and communicates with the systemic immune system. Absorptive epithelial cells in the mucosa give rise to malignant tumors although the interaction between tumor cells and the mucosal immune system is not well defined. The pathophysiology of colorectal cancer has been elucidated through studies of hereditary syndromes, such as familial adenomatous polyposis, a cancer predisposition syndrome caused by germline mutations in the adenomatous polyposis coli tumor suppressor gene. Patients with FAP develop adenomas and inevitably progress to invasive carcinomas by the age of 40. To better delineate the role of mucosal immunity in colorectal cancer, we evaluated the efficacy of intrarectal recombinant vaccinia virus expressing the human carcinoembryonic Ag (CEA) in a murine FAP model in which mice are predisposed to colorectal cancer and also express human CEA in the gut. Mucosal vaccination reduced the incidence of spontaneous adenomas and completely prevented progression to invasive carcinoma. The therapeutic effects were associated with induction of mucosal CEA-specific IgA Ab titers and CD8(+) CTLs. Mucosal vaccination was also associated with an increase in systemic CEA-specific IgG Ab titers, CD4(+) and CD8(+) T cell responses and resulted in growth inhibition of s.c. implanted CEA-expressing tumors suggesting communication between mucosal and systemic immune compartments. Thus, intrarectal vaccination induces mucosal and systemic antitumor immunity and prevents progression of spontaneous colorectal cancer. These results have implications for the prevention of colorectal cancer in high-risk individuals.

  12. Lactobacillus plantarum NCU116 Attenuates Cyclophosphamide-Induced Immunosuppression and Regulates Th17/Treg Cell Immune Responses in Mice.

    Science.gov (United States)

    Xie, Junhua; Nie, Shaoping; Yu, Qiang; Yin, Junyi; Xiong, Tao; Gong, Deming; Xie, Mingyong

    2016-02-17

    The balance of T helper cells 17 (Th17)/regulatory T cells (Treg) plays a key role in maintaining a normal immune response. It is well-known that cyclophosphamide (CTX) applied at high dose often damages the immune system by inhibiting immune cell proliferation. In this study, the immunomodulating effects of Lactobacillus plantarum NCU116 in CTX-induced immunosuppression mice were investigated. Results showed that the levels of cytokines interleukin (IL)-17 and IL-21 were significantly increased after 10 days of treatment with a high dose of NCU116 (46.92 ± 4.28 and 119.92 ± 10.89, respectively) compared with the model group (36.20 ± 2.63, 61.00 ± 6.92, respectively), and the levels of cytokines IL-23 and TGF-β3 of the three NCU116 treatment groups were significantly higher than that of the model group (90.48 ± 6.33 and 140.45 ± 14.30, respectively) (p < 0.05) and close to 62 and 69% of the normal group's level (140.98 ± 14.74 and 266.95 ± 23.11, respectively) at 10 days. The bacterium was also found to increase the expression levels of Th17 immune response and Treg immune response specific transcription factors RORγt and Foxp3. In addition, the bacterium significantly increased the number of CD4(+)T cells and dendrtic cells (DCs) and up-regulated mRNA expression of Toll-like receptors (TLRs). These findings demonstrated that NCU116 has the potential ability to enhance intestinal mucosa immunity and regulate the Th17/Treg balance, which may be attributed to the TLR pathway in DCs.

  13. Contribution of C3d-P28 repeats to enhancement of immune responses against HBV-preS2/S induced by gene immunization

    Institute of Scientific and Technical Information of China (English)

    Li-Xin Wang; Wei Xu; Qing-Dong Guan; Yi-Wei Chu; Ying Wang; Si-Dong Xiong

    2004-01-01

    AIM: To investigate whether P28 derived from C3d can enhance the immune response to HBV-preS2/S induced by directly injection of naked plasmids containing variable repeats of P28 and HBV-preS2/S in fusion form.METHODS: One to four copies of C3d-P28 coding gene,amplified by PCR and modified by restriction endonucleases digestion, were subcloned into a eukaryotic expression vector pVAON33 to construct pVAON33-P28, pVAON33-P28.2, pVAON33-P28.3 and pVAON33-P28.4 (pVAON33-P28.[1-4]). HBV-preS2/S coding sequence was then introduced into the pVAON33-P28.[1-4] and identified by both PCR and DNA sequencing. BALB/c mice were primed by intramuscular gene immunization with 100 μg different recombinant plasmids on day 0 and were boosted by subcutaneous inoculation with HBsAg protein (1 μg) 12wk post-priming. The levels and avidity of specific IgG in sera collected at the indicated times from each group were determined by ELISA and NaSCN-displacement ELISA,respectively.RESULTS: HBsAg specific antibody response was elicited in groups primed with plasmids pVAON33-S2/S-P28.[1-4]and pVAON33-S2/S. However, the response against HBsAg in the groups primed with pVAON33-S2/S-P28.[1-4] was significantly higher than that in pVAON33-S2/S group, the highest level of the specific antibody response was observed in the groups primed with pVAON33-S2/S-P28.4 (P<0.01).After secondary immunization with specific antigen, the acceleration of antibody levels was significantly higher and faster in the mice primed with DNA expressing preS2/S-P28 fusions than that with DNA expressing preS2/S only (P<0.05).Interestingly, mice primed with DNA expressing preS2/SP28.4 fusions maintained the highest levels of anti-HBs antibodies in all animals. The avidity assay showed that the avidity index (AI) collected at 18 wk from mice primed with pVAON33-S2/S-P28.3 and pVAON33-S2/S-P28.4 were significantly higher than that from preS2/S-DNA vaccinated mice (P<0.01).CONCLUSION: Different repeats of C3d-P28 can

  14. Recombinant nucleocapsid-like particles from dengue-2 induce functional serotype-specific cell-mediated immunity in mice.

    Science.gov (United States)

    Gil, Lázaro; Bernardo, Lídice; Pavón, Alequis; Izquierdo, Alienys; Valdés, Iris; Lazo, Laura; Marcos, Ernesto; Romero, Yaremis; Guzmán, María G; Guillén, Gerardo; Hermida, Lisset

    2012-06-01

    The interplay of different inflammatory cytokines induced during dengue virus infection plays a role in either protection or increased disease severity. In this sense, vaccine strategies incorporating whole virus are able to elicit both functional and pathological responses. Therefore, an ideal tetravalent vaccine candidate against dengue should be focused on serotype-specific sequences. In the present work, a new formulation of nucleocapsid-like particles (NLPs) obtained from the recombinant dengue-2 capsid protein was evaluated in mice to determine the level of protection against homologous and heterologous viral challenge and to measure the cytotoxicity and cytokine-secretion profiles induced upon heterologous viral stimulation. As a result, a significant protection rate was achieved after challenge with lethal dengue-2 virus, which was dependent on CD4(+) and CD8(+) cells. In turn, no protection was observed after heterologous challenge. In accordance, in vitro-stimulated spleen cells from mice immunized with NLPs from the four dengue serotypes showed a serotype-specific response of gamma interferon- and tumour necrosis factor alpha-secreting cells. A similar pattern was detected when spleen cells from dengue-immunized animals were stimulated with the capsid protein. Taking these data together, we can assert that NLPs constitute an attractive vaccine candidate against dengue. They induce a functional immune response mediated by CD4(+) and CD8(+) cells in mice, which is protective against viral challenge. In turn, they are potentially safe due to two important facts: induction of serotype specific cell-mediated immunity and lack of induction of antiviral antibodies. Further studies in non-human primates or humanized mice should be carried out to elucidate the usefulness of the NLPs as a potential vaccine candidate against dengue disease.

  15. Functional analysis of Arabidopsis immune-related MAPKs uncovers a role for MPK3 as negative regulator of inducible defences

    KAUST Repository

    Frei dit Frey, Nicolas

    2014-06-30

    Background Mitogen-activated protein kinases (MAPKs) are key regulators of immune responses in animals and plants. In Arabidopsis, perception of microbe-associated molecular patterns (MAMPs) activates the MAPKs MPK3, MPK4 and MPK6. Increasing information depicts the molecular events activated by MAMPs in plants, but the specific and cooperative contributions of the MAPKs in these signalling events are largely unclear. Results In this work, we analyse the behaviour of MPK3, MPK4 and MPK6 mutants in early and late immune responses triggered by the MAMP flg22 from bacterial flagellin. A genome-wide transcriptome analysis reveals that 36% of the flg22-upregulated genes and 68% of the flg22-downregulated genes are affected in at least one MAPK mutant. So far MPK4 was considered as a negative regulator of immunity, whereas MPK3 and MPK6 were believed to play partially redundant positive functions in defence. Our work reveals that MPK4 is required for the regulation of approximately 50% of flg22-induced genes and we identify a negative role for MPK3 in regulating defence gene expression, flg22-induced salicylic acid accumulation and disease resistance to Pseudomonas syringae. Among the MAPK-dependent genes, 27% of flg22-upregulated genes and 76% of flg22-downregulated genes require two or three MAPKs for their regulation. The flg22-induced MAPK activities are differentially regulated in MPK3 and MPK6 mutants, both in amplitude and duration, revealing a highly interdependent network. Conclusions These data reveal a new set of distinct functions for MPK3, MPK4 and MPK6 and indicate that the plant immune signalling network is choreographed through the interplay of these three interwoven MAPK pathways.

  16. THE HUMORAL AND CELLULAR IMMUNE RESPONSES INDUCED BY HPV18L1-E6/E7 DNA VACCINES IN MICE

    Institute of Scientific and Technical Information of China (English)

    Yang Jin; Li Xu; Li Ang; Wang Yili; Si Lüsheng

    2006-01-01

    Objective To construct eukaryotic expression vector of HPV18 L1- E6, E7 chimeric gene and examine the humoral and cellular immune responses induced by this DNA vaccines in mice. Methods The C-terminal of major capsid protein L1 gene and mutant zinc finger domains of early E6/7 oncogenes in HPV18 were integrated and inserted into eukaryotic expression vector pVAX1 to generate vaccines pVAX1-L1E6Mxx, E7Mxx. CHO cells were transiently transfected with the individual construct. Target protein expressions in the lysate of the transfected cells were measured by ELISA and immunocytochemistry. After BALB/c mice were vaccinated with various recombinant plasmids(pVAX1-L1-E6M3 or pVAX1-L1-E7M3) and immunie adjuvants (pLXHDmB7-2 or LTB) through different administration routes (intramuscular or intranasal) , the great cellular immune responses were produced as revealed by delayed-type hypersensitivity (DTH) and lymphocyte proliferation, and the expression of IL-4 and IFN- γ cells in CD4+ and CD8+subpopulations. Results The highly efficient expression of pVAX1-L1E6Mxx, E7Mxx vector in host eukaryotic cells were demonstrated both by ELISA and immunocytochemistry. The level of specific serum IgG against HPV in experiment groups mice was much higher than that of control group, and intranuscular immunization group had the highest antibody level. Intramuscular immunization groups were superior to intranasal immunization groups in DTH response, splenocyte proliferation and CD8+ IFN-γ + cells number, but CD4+ IL4+ cell number was higher in intranasal immunization groups. The immunization groups using pLXHDmB7-2 as adjuvant were superior to other groups in immunoresponse. Conclusion These DNA vaccines produce remarkable cellular and humoral immuneresponses in the mouse and may provide as prophylatic and therapeutic candidates for HPV induced cancer treatment.

  17. Citrobacter rodentium-induced colitis: A robust model to study mucosal immune responses in the gut.

    Science.gov (United States)

    Koroleva, Ekaterina P; Halperin, Sydney; Gubernatorova, Ekaterina O; Macho-Fernandez, Elise; Spencer, Cody M; Tumanov, Alexei V

    2015-06-01

    Citrobacter rodentium is a natural mouse pathogen which reproducibly infects mice and causes intestinal disease. The C. rodentium model of infection is very useful for investigating host-pathogen immune interactions in the gut, and can also be used to understand the pathogenesis of several important human intestinal disorders, including Crohn's disease, ulcerative colitis, dysbiosis and colon tumorigenesis. Both innate and adaptive immune responses play a critical role in protection against C. rodentium. Here, we summarize the role of immune components in protection against C. rodentium and describe techniques for the analysis of innate and adaptive mucosal immune responses, including setting up the infection, analysis of colonic hyperplasia and bacterial dissemination, evaluation of antibody responses, and purification and analysis of intestinal epithelial and lymphoid cells.

  18. A novel single-dose dengue subunit vaccine induces memory immune responses.

    Directory of Open Access Journals (Sweden)

    Chen-Yi Chiang

    Full Text Available To protect against dengue viral infection, a novel lipidated dengue subunit vaccine was rationally designed to contain the consensus amino acid sequences derived from four serotypes of dengue viruses. We found that the lipidated consensus dengue virus envelope protein domain III (LcED III is capable of activating antigen-presenting cells and enhancing cellular and humoral immune responses. A single-dose of LcED III immunization in mice without extra adjuvant formulation is sufficient to elicit neutralizing antibodies against all four serotypes of dengue viruses. In addition, strong memory responses were elicited in mice immunized with a single-dose of LcED III. Quick, anamnestic neutralizing antibody responses to a live dengue virus challenge were elicited at week 28 post-immunization. These results demonstrate the promising possibility of a future successful tetravalent vaccine against dengue viral infections that utilizes one-dose vaccination with LcED III.

  19. EFFECTS OF SULPIRIDE-INDUCED D2 DOPAMINE RECEPTOR BLOCKADE ON IMMUNE RESPONSIVENESS OF RATS

    Directory of Open Access Journals (Sweden)

    Lucian Hritcu

    2006-08-01

    Full Text Available The involvement of catecholamine receptors (D2 dopamine was investigated in restraint stress, influence immune system, with concomitant changes in immune response. Adults rats pretreated once with LPS (a bacterial product (25μg/250μl, i.p., produce an immune response, were subjected to i.p. injection with sulpiride (4 mg/kg b.w., i.p., a selective antagonist for D2 dopamine receptors, after 3 days postimmunization. After 18 days later, we assessed the total protein number, antibody titer, lymphocyte number and albumin/globulin ratio. In summary, we provide that D2 dopamine receptor blockade impaired immune responsiveness in restraint stress.

  20. Genetically Engineered Ascorbic acid-deficient Live Mutants of Leishmania donovani induce long lasting Protective Immunity against Visceral Leishmaniasis.

    Science.gov (United States)

    Anand, Sneha; Madhubala, Rentala

    2015-06-02

    Visceral leishmaniasis caused by Leishmania donovani is the most severe systemic form of the disease. There are still no vaccines available for humans and there are limitations associated with the current therapeutic regimens for leishmaniasis. Recently, we reported functional importance of Arabino-1, 4-lactone oxidase (ALO) enzyme from L. donovani involved in ascorbate biosynthesis pathway. In this study, we have shown that ΔALO parasites do not affect the ability of null mutants to invade visceral organs but severely impair parasite persistence beyond 16 week in BALB/c mice and hence are safe as an immunogen. Both short term (5 week) and long term (20 week) immunization with ΔALO parasites conferred sustained protection against virulent challenge in BALB/c mice, activated splenocytes and resulted in induction of pro-inflammatory cytokine response. Protection in immunized mice after challenge correlated with the stimulation of IFN-γ producing CD4(+) and CD8(+) T cells. Antigen-mediated cell immunity correlated with robust nitrite and superoxide generation, macrophage-derived oxidants critical in controlling Leishmania infection. Our data shows that live attenuated ΔALO parasites are safe, induce protective immunity and can provide sustained protection against Leishmania donovani. We further conclude that the parasites attenuated in their anti-oxidative defence mechanism can be exploited as vaccine candidates.

  1. Porous Silicon Microparticle Potentiates Anti-Tumor Immunity by Enhancing Cross-Presentation and Inducing Type I Interferon Response

    Directory of Open Access Journals (Sweden)

    Xiaojun Xia

    2015-05-01

    Full Text Available Micro- and nanometer-size particles have become popular candidates for cancer vaccine adjuvants. However, the mechanism by which such particles enhance immune responses remains unclear. Here, we report a porous silicon microparticle (PSM-based cancer vaccine that greatly enhances cross-presentation and activates type I interferon (IFN-I response in dendritic cells (DCs. PSM-loaded antigen exhibited prolonged early endosome localization and enhanced cross-presentation through both proteasome- and lysosome-dependent pathways. Phagocytosis of PSM by DCs induced IFN-I responses through a TRIF- and MAVS-dependent pathway. DCs primed with PSM-loaded HER2 antigen produced robust CD8 T cell-dependent anti-tumor immunity in mice bearing HER2+ mammary gland tumors. Importantly, this vaccination activated the tumor immune microenvironment with elevated levels of intra-tumor IFN-I and MHCII expression, abundant CD11c+ DC infiltration, and tumor-specific cytotoxic T cell responses. These findings highlight the potential of PSM as an immune adjuvant to potentiate DC-based cancer immunotherapy.

  2. Novel DNA vaccine based on hepatitis B virus core gene induces specific immune responses in Balb/c mice

    Institute of Scientific and Technical Information of China (English)

    Yi-Ping Xing; Zu-Hu Huang; Shi-Xia Wang; Jie Cai; Jun Li; Te-Hui W Chou; Shan Lu

    2005-01-01

    AIM: To investigate the immunogenicity of a novel DNA vaccine,pSW3891/HBc, based on HBV core gene in Balb/c mice.METHODS: A novel DNA vaccine, pSW3891/HBc, encoding HBV core gene was constructed using a vector plasmid pSW3891. Balb/c mice were immunized with either pSW3891/HBc or empty vector DNA via gene gun. IgG anti-HBc responses in mouse sera were demonstrated by ELISA. Specific cytotoxicity of cytotoxic T lymphocytes (CTLs) of mice was quantitatively measured by lactate dehydrogenase release assay.RESULTS: HBcAg was expressed effectively in 293T cell line transiently transfected with pSW3891/HBc. Strong IgG anti-HBc responses were elicited in mice immunized with pSW3891/HBc. The end-point titers of anti-HBc reached the highest 1:97 200, 4 wk after the third immunization. The specific CTL killing with the highest specific lysis reached 73.25% at effector:target ratio of 20:1 in mice that received pSW3891/HBc DNA vaccine.CONCLUSION: pSW3891/HBc vaccination elicits specific anti-HBc response and induces HBc-specific CTL response in immunized Balb/c mice.

  3. Intramuscular Priming and Intranasal Boosting Induce Strong Genital Immunity Through Secretory IgA in Minipigs Infected with Chlamydia trachomatis

    Science.gov (United States)

    Lorenzen, Emma; Follmann, Frank; Bøje, Sarah; Erneholm, Karin; Olsen, Anja Weinreich; Agerholm, Jørgen Steen; Jungersen, Gregers; Andersen, Peter

    2015-01-01

    International efforts in developing a vaccine against Chlamydia trachomatis have highlighted the need for novel immunization strategies for the induction of genital immunity. In this study, we evaluated an intramuscular (IM) prime/intranasal boost vaccination strategy in a Göttingen Minipig model with a reproductive system very similar to humans. The vaccine was composed of C. trachomatis subunit antigens formulated in the Th1/Th17 promoting CAF01 adjuvant. IM priming immunizations with CAF01 induced a significant cell-mediated interferon gamma and interleukin 17A response and a significant systemic high-titered neutralizing IgG response. Following genital challenge, intranasally boosted groups mounted an accelerated, highly significant genital IgA response that correlated with enhanced bacterial clearance on day 3 post infection. By detecting antigen-specific secretory component (SC), we showed that the genital IgA was locally produced in the genital mucosa. The highly significant inverse correlation between the vaginal IgA SC response and the chlamydial load suggests that IgA in the minipig model is involved in protection against C. trachomatis. This is important both for our understanding of protective immunity and future vaccination strategies against C. trachomatis and genital pathogens in general. PMID:26734002

  4. Intramuscular priming and intranasal boosting induce strong genital immunity through secretory IgA in minipigs infected with Chlamydia trachomatis

    Directory of Open Access Journals (Sweden)

    Emma eLorenzen

    2015-12-01

    Full Text Available International efforts in developing a vaccine against Chlamydia trachomatis have highlighted the need for novel immunization strategies for the induction of genital immunity. In this study, we evaluated an intramuscular prime/intranasal boost vaccination strategy in a Göttingen Minipig model with a reproductive system very similar to humans. The vaccine was composed of C. trachomatis subunit antigens formulated in the Th1/Th17 promoting CAF01 adjuvant. Intramuscular priming immunizations with CAF01 induced a significant cell-mediated IFN-ɣ and IL-17A response and a significant systemic high-titered neutralizing IgG response. Following genital challenge, intranasally boosted groups mounted an accelerated, highly significant genital IgA response that correlated with enhanced bacterial clearance on day 3 post infection. By detecting antigen-specific secretory component (SC, we showed that the genital IgA was locally produced in the genital mucosa. The highly significant inverse correlation between the vaginal IgA SC response and the chlamydial load suggest that IgA in the minipig model is involved in protection against C. trachomatis. This is important both for our understanding of protective immunity and future vaccination strategies against C. trachomatis and genital pathogens in general.

  5. T Cell Adaptive Immunity Proceeds through Environment-Induced Adaptation from the Exposure of Cryptic Genetic Variation

    Science.gov (United States)

    Whitacre, James M.; Lin, Joseph; Harding, Angus

    2011-01-01

    Evolution is often characterized as a process involving incremental genetic changes that are slowly discovered and fixed in a population through genetic drift and selection. However, a growing body of evidence is finding that changes in the environment frequently induce adaptations that are much too rapid to occur by an incremental genetic search process. Rapid evolution is hypothesized to be facilitated by mutations present within the population that are silent or “cryptic” within the first environment but are co-opted or “exapted” to the new environment, providing a selective advantage once revealed. Although cryptic mutations have recently been shown to facilitate evolution in RNA enzymes, their role in the evolution of complex phenotypes has not been proven. In support of this wider role, this paper describes an unambiguous relationship between cryptic genetic variation and complex phenotypic responses within the immune system. By reviewing the biology of the adaptive immune system through the lens of evolution, we show that T cell adaptive immunity constitutes an exemplary model system where cryptic alleles drive rapid adaptation of complex traits. In naive T cells, normally cryptic differences in T cell receptor reveal diversity in activation responses when the cellular population is presented with a novel environment during infection. We summarize how the adaptive immune response presents a well studied and appropriate experimental system that can be used to confirm and expand upon theoretical evolutionary models describing how seemingly small and innocuous mutations can drive rapid cellular evolution. PMID:22363338

  6. Protective immunity against Trichinella spiralis infection induced by a multi-epitope vaccine in a murine model.

    Directory of Open Access Journals (Sweden)

    Yuan Gu

    Full Text Available Trichinellosis is one of the most important food-borne parasitic zoonoses throughout the world. Because infected pigs are the major source of human infections, and China is becoming the largest international producer of pork, the development of a transmission-blocking vaccine to prevent swine from being infected is urgently needed for trichinellosis control in China. Our previous studies have demonstrated that specific Trichinella spiralis paramyosin (Ts-Pmy and Ts-87 antigen could provide protective immunity against T. spiralis infection in immunized mice. Certain protective epitopes of Ts-Pmy and Ts-87 antigen have been identified. To identify more Ts-Pmy protective epitopes, a new monoclonal antibody, termed 8F12, was produced against the N-terminus of Ts-Pmy. This antibody elicited significant protective immunity in mice against T. spiralis infection by passive transfer and was subsequently used to screen a random phage display peptide library to identify recognized epitopes. Seven distinct positive phage clones were identified and their displayed peptides were sequenced. Synthesized epitope peptides conjugated to keyhole limpet hemocyanin were used to immunize mice, four of which exhibited larval reduction (from 18.7% to 26.3%, respectively in vaccinated mice in comparison to the KLH control. To increase more effective protection, the epitope 8F7 that was found to induce the highest protection in this study was combined with two other previously identified epitopes (YX1 from Ts-Pmy and M7 from Ts-87 to formulate a multi-epitope vaccine. Mice immunized with this multi-epitope vaccine experienced a 35.0% reduction in muscle larvae burden after being challenged with T. spiralis larvae. This protection is significantly higher than that induced by individual-epitope peptides and is associated with high levels of subclasses IgG and IgG1. These results showed that a multi-epitope vaccine induced better protective immunity than an individual

  7. Rapid assessment of tetanus vaccine-induced immunity in Bangladesh and the Gambia.

    Science.gov (United States)

    Ramakrishnan, Girija; Wright, Marcia; Alam, Masud; Naylor, Caitlin; Kabir, Mamun; Zerin, Ayesha; Ferdous, Tahsin; Pedersen, Karl; Hennig, Branwen J; Donowitz, Jeffrey R; Wegmuller, Rita; Haque, Rashidul; Petri, William A; Herbein, Joel; Gilchrist, Carol A

    2017-03-01

    We have developed recombinant fragment C based rapid point of care dipstick devices to assess tetanus immunization status using plasma or whole blood. The devices demonstrated specificity of 0.90 and sensitivity of 0.90 (whole blood)/0.94 (plasma) at field sites in Bangladesh and The Gambia when compared to a commercial ELISA with the immune cut-off titer set as ≥0.1IU/mL.

  8. The C-Type Lectin Receptor MCL Mediates Vaccine-Induced Immunity against Infection with Blastomyces dermatitidis.

    Science.gov (United States)

    Wang, Huafeng; Li, Mengyi; Lerksuthirat, Tassanee; Klein, Bruce; Wüthrich, Marcel

    2015-12-14

    C-type lectin receptors (CLRs) are essential in shaping the immune response to fungal pathogens. Vaccine-induced resistance requires Dectin-2 to promote differentiation of antifungal Th1 and Th17 cells. Since Dectin-2 and MCL heterodimerize and both CLRs use FcRγ as the signaling adaptor, we investigated the role of MCL in vaccine immunity to the fungal pathogen Blastomyces dermatitidis. MCL(-/-) mice showed impaired vaccine resistance against B. dermatitidis infection compared to that of wild-type animals. The lack of resistance correlated with the reduced recruitment of Th17 cells to the lung upon recall following experimental challenge and impaired interleukin-17 (IL-17) production by vaccine antigen-stimulated splenocytes in vitro. Soluble MCL fusion protein recognized and bound a water-soluble ligand from the cell wall of vaccine yeast, but the addition of soluble Dectin-2 fusion protein did not augment ligand recognition by MCL. Taken together, our data indicate that MCL regulates the development of vaccine-induced Th17 cells and protective immunity against lethal experimental infection with B. dermatitidis.

  9. Metabolic and immune impairments induced by the endocrine disruptors benzo[a]pyrene and triclosan in Xenopus tropicalis.

    Science.gov (United States)

    Regnault, Christophe; Willison, John; Veyrenc, Sylvie; Airieau, Antinéa; Méresse, Patrick; Fortier, Marlène; Fournier, Michel; Brousseau, Pauline; Raveton, Muriel; Reynaud, Stéphane

    2016-07-01

    Despite numerous studies suggesting that amphibians are highly sensitive to cumulative anthropogenic stresses, the role played by endocrine disruptors (EDs) in the decline of amphibian populations remains unclear. EDs have been extensively studied in adult amphibians for their capacity to disturb reproduction by interfering with the sexual hormone axis. Here, we studied the in vivo responses of Xenopus tropicalis males exposed to environmentally relevant concentrations of each ED, benzo[a]pyrene (BaP) and triclosan (TCS) alone (10 μg L(-1)) or a mixture of the two (10 μg L(-1) each) over a 24 h exposure period by following the modulation of the transcription of key genes involved in metabolic, sexual and immunity processes and the cellular changes in liver, spleen and testis. BaP, TCS and the mixture of the two all induced a marked metabolic disorder in the liver highlighted by insulin resistance-like and non-alcoholic fatty liver disease (NAFLD)-like phenotypes together with hepatotoxicity due to the impairment of lipid metabolism. For TCS and the mixture, these metabolic disorders were concomitant with modulation of innate immunity. These results confirmed that in addition to the reproductive effects induced by EDs in amphibians, metabolic disorders and immune system disruption should also be considered.

  10. Possible Immune Regulation of Natural Killer T Cells in a Murine Model of Metal Ion-Induced Allergic Contact Dermatitis.

    Science.gov (United States)

    Kumagai, Kenichi; Horikawa, Tatsuya; Shigematsu, Hiroaki; Matsubara, Ryota; Kitaura, Kazutaka; Eguchi, Takanori; Kobayashi, Hiroshi; Nakasone, Yasunari; Sato, Koichiro; Yamada, Hiroyuki; Suzuki, Satsuki; Hamada, Yoshiki; Suzuki, Ryuji

    2016-01-12

    Metal often causes delayed-type hypersensitivity reactions, which are possibly mediated by accumulating T cells in the inflamed skin, called irritant or allergic contact dermatitis. However, accumulating T cells during development of a metal allergy are poorly characterized because a suitable animal model is unavailable. We have previously established novel murine models of metal allergy and found accumulation of both metal-specific T cells and natural killer (NK) T cells in the inflamed skin. In our novel models of metal allergy, skin hypersensitivity responses were induced through repeated sensitizations by administration of metal chloride and lipopolysaccharide into the mouse groin followed by metal chloride challenge in the footpad. These models enabled us to investigate the precise mechanisms of the immune responses of metal allergy in the inflamed skin. In this review, we summarize the immune responses in several murine models of metal allergy and describe which antigen-specific responses occur in the inflamed skin during allergic contact dermatitis in terms of the T cell receptor. In addition, we consider the immune regulation of accumulated NK T cells in metal ion-induced allergic contact dermatitis.

  11. Possible Immune Regulation of Natural Killer T Cells in a Murine Model of Metal Ion-Induced Allergic Contact Dermatitis

    Directory of Open Access Journals (Sweden)

    Kenichi Kumagai

    2016-01-01

    Full Text Available Metal often causes delayed-type hypersensitivity reactions, which are possibly mediated by accumulating T cells in the inflamed skin, called irritant or allergic contact dermatitis. However, accumulating T cells during development of a metal allergy are poorly characterized because a suitable animal model is unavailable. We have previously established novel murine models of metal allergy and found accumulation of both metal-specific T cells and natural killer (NK T cells in the inflamed skin. In our novel models of metal allergy, skin hypersensitivity responses were induced through repeated sensitizations by administration of metal chloride and lipopolysaccharide into the mouse groin followed by metal chloride challenge in the footpad. These models enabled us to investigate the precise mechanisms of the immune responses of metal allergy in the inflamed skin. In this review, we summarize the immune responses in several murine models of metal allergy and describe which antigen-specific responses occur in the inflamed skin during allergic contact dermatitis in terms of the T cell receptor. In addition, we consider the immune regulation of accumulated NK T cells in metal ion–induced allergic contact dermatitis.

  12. The Innate Immune Signaling System as a Regulator of Disease Resistance and Induced Systemic Resistance Activity Against Verticillium dahliae.

    Science.gov (United States)

    Gkizi, Danai; Lehmann, Silke; L'Haridon, Floriane; Serrano, Mario; Paplomatas, Epaminondas J; Métraux, Jean-Pierre; Tjamos, Sotirios E

    2016-04-01

    In the last decades, the plant innate immune responses against pathogens have been extensively studied, while biocontrol interactions between soilborne fungal pathogens and their hosts have received much less attention. Treatment of Arabidopsis thaliana with the nonpathogenic bacterium Paenibacillus alvei K165 was shown previously to protect against Verticillium dahliae by triggering induced systemic resistance (ISR). In the present study, we evaluated the involvement of the innate immune response in the K165-mediated protection of Arabidopsis against V. dahliae. Tests with Arabidopsis mutants impaired in several regulators of the early steps of the innate immune responses, including fls2, efr-1, bak1-4, mpk3, mpk6, wrky22, and wrky29 showed that FLS2 and WRKY22 have a central role in the K165-triggered ISR, while EFR1, MPK3, and MPK6 are possible susceptibility factors for V. dahliae and bak1 shows a tolerance phenomenon. The resistance induced by strain K165 is dependent on both salicylate and jasmonate-dependent defense pathways, as evidenced by an increased transient accumulation of PR1 and PDF1.2 transcripts in the aerial parts of infected plants treated with strain K165.

  13. Avian CD154 enhances humoral and cellular immune responses induced by an adenovirus vector-based vaccine in chickens.

    Science.gov (United States)

    Sánchez Ramos, Oliberto; González Pose, Alain; Gómez-Puerta, Silvia; Noda Gomez, Julia; Vega Redondo, Armando; Águila Benites, Julio César; Suárez Amarán, Lester; Parra, Natalie C; Toledo Alonso, Jorge R

    2011-05-01

    Recombinant adenoviral vectors have emerged as an attractive system for veterinary vaccines development. However, for poultry vaccination a very important criterion for an ideal vaccine is its low cost. The objective of this study was to test the ability of chicken CD154 to enhance the immunogenicity of an adenoviral vector-based vaccine against avian influenza virus in order to reduce the amount of antigen required to induce an effective immune response in avian. Chickens were vaccinated with three different doses of adenoviral vectors encoding either HA (AdHA), or HA fused to extracellular domain chicken's CD154 (AdHACD). Hemagglutination inhibition (HI) assay and relative quantification of IFN-γ showed that the adenoviral vector encoding for the chimeric antigen is able to elicit an improved humoral and cellular immune response, which demonstrated that CD154 can be used as a molecular adjuvant allowing to reduce in about 50-fold the amount of adenoviral vector vaccine required to induce an effective immune response.

  14. A subunit vaccine based on rH-NS induces protection against Mycobacterium tuberculosis infection by inducing the Th1 immune response and activating macrophages.

    Science.gov (United States)

    Liu, Yuan; Chen, Suting; Pan, Bowen; Guan, Zhu; Yang, Zhenjun; Duan, Linfei; Cai, Hong

    2016-10-01

    Mycobacterium tuberculosis (Mtb) is a Gram-positive pathogen which causes tuberculosis in both animals and humans. All tested rH-NS formulations induced a specific Th1 response, as indicated by increased production of interferon γ (IFN-γ) and interleukin 2 (IL-2) by lymphocytes in the spleen of mice which were immunized with rH-NS alone or with rH-NS and the adjuvant cyclic GMP-AMP (cGAMP). Serum from mice immunized with rH-NS with or without adjuvant also had higher levels of IL-12p40 and TNF-α, compared with those from control mice immunized with phosphate-buffered saline. Both vaccines increased protective efficacy in mice which were challenged with Mtb H37Rv, as measured by reduced relative CFU counts in the lungs. We found that rH-NS induced the production of TNF-α, IL-6, and IL-12p40, which relied on the activation of mitogen-activated protein kinases by stimulating the rapid phosphorylation of ERK1/2, p38, and JNK, and on the activation of transcription factor NF-κB in macrophages. Additionally, we also found that rH-NS could interact with TLR2 but not TLR4 in pull-down assays. The rH-NS-induced cytokine production from TLR2-silenced RAW264.7 cells was lower than that from BALB/c macrophages. Prolonged exposure (>24 h) of RAW264.7 cells to rH-NS resulted in a significant enhancement in IFN-γ-induced MHC II expression, which was not found in shTLR2-treated RAW264.7 cells. These results suggest that rH-NS is a TLR2 agonist which induces the production of cytokines by macrophages and up-regulates macrophage function.

  15. Trypanosoma cruzi adjuvants potentiate T cell-mediated immunity induced by a NY-ESO-1 based antitumor vaccine.

    Directory of Open Access Journals (Sweden)

    Caroline Junqueira

    Full Text Available Immunological adjuvants that induce T cell-mediate immunity (TCMI with the least side effects are needed for the development of human vaccines. Glycoinositolphospholipids (GIPL and CpGs oligodeoxynucleotides (CpG ODNs derived from the protozoa parasite Trypanosoma cruzi induce potent pro-inflammatory reaction through activation of Toll-Like Receptor (TLR4 and TLR9, respectively. Here, using mouse models, we tested the T. cruzi derived TLR agonists as immunological adjuvants in an antitumor vaccine. For comparison, we used well-established TLR agonists, such as the bacterial derived monophosphoryl lipid A (MPL, lipopeptide (Pam3Cys, and CpG ODN. All tested TLR agonists were comparable to induce antibody responses, whereas significant differences were noticed in their ability to elicit CD4(+ T and CD8(+ T cell responses. In particular, both GIPLs (GTH, and GY and CpG ODNs (B344, B297 and B128 derived from T. cruzi elicited interferon-gamma (IFN-γ production by CD4(+ T cells. On the other hand, the parasite derived CpG ODNs, but not GIPLs, elicited a potent IFN-γ response by CD8(+ T lymphocytes. The side effects were also evaluated by local pain (hypernociception. The intensity of hypernociception induced by vaccination was alleviated by administration of an analgesic drug without affecting protective immunity. Finally, the level of protective immunity against the NY-ESO-1 expressing melanoma was associated with the magnitude of both CD4(+ T and CD8(+ T cell responses elicited by a specific immunological adjuvant.

  16. PIKA Provides an Adjuvant Effect to Induce Strong Mucosal and Systemic Humoral Immunity Against SARS-CoV

    Institute of Scientific and Technical Information of China (English)

    Wei-wei Gai; Yan Zhang; Di-han Zhou; Yao-qing Chen; Jing-yi Yang; Hui-min Yan

    2011-01-01

    Severe Acute Respiratory Syndrome(SARS)is a deadly infectious disease caused by SARS Coronavirus(SARS-CoV).Inactivated SARS-CoV has been explored as a vaccine against SARS-CoV.However,safe and potent adjuvants,especially with more efficient and economical needle-free vaccination are always needed more urgently in a pandemic.The development of a safe and effective mucosal adjuvant and vaccine for prevention of emergent infectious diseases such as SARS will be an important advancement.PIKA,a stabilized derivative of Poly(I:C),was previously reported to be safe and potent as adjuvant in mouse models.In the present study,we demonstrated that the intraperitoneal and intranasal co-administration of inactivated SARS-CoV vaccine together with this improved Poly(I:C)derivative induced strong anti-SARS-CoV mucosal and systemic humoral immune responses with neutralizing activity against pseudotyped virus.Although intraperitoneal immunization of inactivated SARS-CoV vaccine alone could induce a certain level of neutralizing activity in serum as well as in mucosal sites,co-administration of inactivated SARS-CoV vaccine with PIKA as adjuvant could induce a much higher neutralizing activity.When intranasal immunization was used,PIKA was obligatorily for inducing neutralizing activity in serum as well as in mucosal sites and was correlated with both mucosal IgA and mucosal IgG response.Overall,PIKA could be a good mucosal adjuvant candidate for inactivated SARS-CoV vaccine for use in possible future pandemic.

  17. Trypanosoma cruzi adjuvants potentiate T cell-mediated immunity induced by a NY-ESO-1 based antitumor vaccine.

    Science.gov (United States)

    Junqueira, Caroline; Guerrero, Ana Tereza; Galvão-Filho, Bruno; Andrade, Warrison A; Salgado, Ana Paula C; Cunha, Thiago M; Ropert, Catherine; Campos, Marco Antônio; Penido, Marcus L O; Mendonça-Previato, Lúcia; Previato, José Oswaldo; Ritter, Gerd; Cunha, Fernando Q; Gazzinelli, Ricardo T

    2012-01-01

    Immunological adjuvants that induce T cell-mediate immunity (TCMI) with the least side effects are needed for the development of human vaccines. Glycoinositolphospholipids (GIPL) and CpGs oligodeoxynucleotides (CpG ODNs) derived from the protozoa parasite Trypanosoma cruzi induce potent pro-inflammatory reaction through activation of Toll-Like Receptor (TLR)4 and TLR9, respectively. Here, using mouse models, we tested the T. cruzi derived TLR agonists as immunological adjuvants in an antitumor vaccine. For comparison, we used well-established TLR agonists, such as the bacterial derived monophosphoryl lipid A (MPL), lipopeptide (Pam3Cys), and CpG ODN. All tested TLR agonists were comparable to induce antibody responses, whereas significant differences were noticed in their ability to elicit CD4(+) T and CD8(+) T cell responses. In particular, both GIPLs (GTH, and GY) and CpG ODNs (B344, B297 and B128) derived from T. cruzi elicited interferon-gamma (IFN-γ) production by CD4(+) T cells. On the other hand, the parasite derived CpG ODNs, but not GIPLs, elicited a potent IFN-γ response by CD8(+) T lymphocytes. The side effects were also evaluated by local pain (hypernociception). The intensity of hypernociception induced by vaccination was alleviated by administration of an analgesic drug without affecting protective immunity. Finally, the level of protective immunity against the NY-ESO-1 expressing melanoma was associated with the magnitude of both CD4(+) T and CD8(+) T cell responses elicited by a specific immunological adjuvant.

  18. Comparative analysis of SIV-specific cellular immune responses induced by different vaccine platforms in rhesus macaques.

    Science.gov (United States)

    Valentin, Antonio; McKinnon, Katherine; Li, Jinyao; Rosati, Margherita; Kulkarni, Viraj; Pilkington, Guy R; Bear, Jenifer; Alicea, Candido; Vargas-Inchaustegui, Diego A; Jean Patterson, L; Pegu, Poonam; Liyanage, Namal P M; Gordon, Shari N; Vaccari, Monica; Wang, Yichuan; Hogg, Alison E; Frey, Blake; Sui, Yongjun; Reed, Steven G; Sardesai, Niranjan Y; Berzofsky, Jay A; Franchini, Genoveffa; Robert-Guroff, Marjorie; Felber, Barbara K; Pavlakis, George N

    2014-11-01

    To identify the most promising vaccine candidates for combinatorial strategies, we compared five SIV vaccine platforms including recombinant canary pox virus ALVAC, replication-competent adenovirus type 5 host range mutant RepAd, DNA, modified vaccinia Ankara (MVA), peptides and protein in distinct combinations. Three regimens used viral vectors (prime or boost) and two regimens used plasmid DNA. Analysis at necropsy showed that the DNA-based vaccine regimens elicited significantly higher cellular responses against Gag and Env than any of the other vaccine platforms. The T cell responses induced by most vaccine regimens disseminated systemically into secondary lymphoid tissues (lymph nodes, spleen) and effector anatomical sites (including liver, vaginal tissue), indicative of their role in viral containment at the portal of entry. The cellular and reported humoral immune response data suggest that combination of DNA and viral vectors elicits a balanced immunity with strong and durable responses able to disseminate into relevant mucosal sites.

  19. Adaptive immunity alters distinct host feeding pathways during nematode induced inflammation, a novel mechanism in parasite expulsion.

    Directory of Open Access Journals (Sweden)

    John J Worthington

    2013-01-01

    Full Text Available Gastrointestinal infection is often associated with hypophagia and weight loss; however, the precise mechanisms governing these responses remain poorly defined. Furthermore, the possibility that alterations in feeding during infection may be beneficial to the host requires further study. We used the nematode Trichinella spiralis, which transiently inhabits the small intestine before migrating to skeletal muscle, as a biphasic model of infection to determine the cellular and molecular pathways controlling feeding during enteric and peripheral inflammation. Through the infection of genetically modified mice lacking cholecystokinin, Tumor necrosis factor α receptors and T and B-cells, we observed a biphasic hypophagic response to infection resulting from two separate immune-driven mechanisms. The enteroendocrine I-cell derived hormone cholecystokinin is an essential mediator of initial hypophagia and is induced by CD4+ T-cells during enteritis. In contrast, the second hypophagic response is extra-intestinal and due to the anorectic effects of TNFα during peripheral infection of the muscle. Moreover, via maintaining naive levels of the adipose secreted hormone leptin throughout infection we demonstrate a novel feedback loop in the immunoendocrine axis. Immune driven I-cell hyperplasia and resultant weight loss leads to a reduction in the inflammatory adipokine leptin, which in turn heightens protective immunity during infection. These results characterize specific immune mediated mechanisms which reduce feeding during intestinal or peripheral inflammation. Importantly, the molecular mediators of each phase are entirely separate. The data also introduce the first evidence that I-cell hyperplasia is an adaptively driven immune response that directly impinges on the outcome to infection.

  20. Immunization with Neospora caninum profilin induces limited protection and a regulatory T-cell response in mice.

    Science.gov (United States)

    Mansilla, Florencia Celeste; Quintana, María Eugenia; Langellotti, Cecilia; Wilda, Maximiliano; Martinez, Andrea; Fonzo, Adriana; Moore, Dadín Prando; Cardoso, Nancy; Capozzo, Alejandra Victoria

    2016-01-01

    Profilins are actin-binding proteins that regulate the polymerization of actin filaments. In apicomplexan parasites, they are essential for invasion. Profilins also trigger the immune response of the host by activating TLRs on dendritic cells (DCs), inducing the production of pro-inflammatory cytokines. In this study we characterized for the first time the immune response and protection elicited by a vaccine based on Neospora caninum profilin in mice. Groups of eight BALB/c mice received either two doses of a recombinant N. caninum profilin expressed in Escherichia coli. (rNcPRO) or PBS, both formulated with an aqueous soy-based adjuvant enriched in TLR-agonists. Specific anti-profilin antibodies were detected in rNcPRO-vaccinated animals, mainly IgM and IgG3, which were consumed after infection. Splenocytes from rNcPRO-immunized animals proliferated after an in vitro stimulation with rNcPRO before and after challenge. An impairment of the cellular response was observed in NcPRO vaccinated and infected mice following an in vitro stimulation with native antigens of N. caninum, related to an increase in the percentage of CD4+CD25+FoxP3+. Two out of five rNcPRO-vaccinated challenged mice were protected; they were negative for parasite DNA in the brain and showed no histopathological lesions, which were found in all PBS-vaccinated animals. As a whole, our results provide evidence of a regulatory response elicited by immunization with rNcPRO, and suggest a role of profilin in the modulation and/or evasion of immune responses against N. caninum.

  1. Intramuscular delivery of adenovirus serotype 5 vector expressing humanized protective antigen induces rapid protection against anthrax that may bypass intranasally originated preexisting adenovirus immunity.

    Science.gov (United States)

    Wu, Shipo; Zhang, Zhe; Yu, Rui; Zhang, Jun; Liu, Ying; Song, Xiaohong; Yi, Shaoqiong; Liu, Ju; Chen, Jianqin; Yin, Ying; Xu, Junjie; Hou, Lihua; Chen, Wei

    2014-02-01

    Developing an effective anthrax vaccine that can induce a rapid and sustained immune response is a priority for the prevention of bioterrorism-associated anthrax infection. Here, we developed a recombinant replication-deficient adenovirus serotype 5-based vaccine expressing the humanized protective antigen (Ad5-PAopt). A single intramuscular injection of Ad5-PAopt resulted in rapid and robust humoral and cellular immune responses in Fisher 344 rats. Animals intramuscularly inoculated with a single dose of 10⁸ infectious units of Ad5-PAopt achieved 100% protection from challenge with 10 times the 50% lethal dose (LD₅₀) of anthrax lethal toxin 7 days after vaccination. Although preexisting intranasally induced immunity to Ad5 slightly weakened the humoral and cellular immune responses to Ad5-PAopt via intramuscular inoculation, 100% protection was achieved 15 days after vaccination in Fisher 344 rats. The protective efficacy conferred by intramuscular vaccination in the presence of preexisting intranasally induced immunity was significantly better than that of intranasal delivery of Ad5-PAopt and intramuscular injection with recombinant PA and aluminum adjuvant without preexisting immunity. As natural Ad5 infection often occurs via the mucosal route, the work here largely illuminates that intramuscular inoculation with Ad5-PAopt can overcome the negative effects of immunity induced by prior adenovirus infection and represents an efficient approach for protecting against emerging anthrax.

  2. The pH-sensitive fusogenic 3-methyl-glutarylated hyperbranched poly(glycidol)-conjugated liposome induces antigen-specific cellular and humoral immunity.

    Science.gov (United States)

    Hebishima, Takehisa; Yuba, Eiji; Kono, Kenji; Takeshima, Shin-Nosuke; Ito, Yoshihiro; Aida, Yoko

    2012-09-01

    We examined the ability of a novel liposome, surface modified by 3-methyl-glutarylated hyperbranched poly(glycidol) (MGlu-HPG), to enhance antigen-specific immunity in vitro and in vivo and to function as a vaccine carrier. Murine bone marrow-derived dendritic cells took up ovalbumin (OVA) encapsulated in MGlu-HPG-modified liposomes more effectively than free OVA or OVA encapsulated in unmodified liposomes. Immunization of mice with OVA-containing MGlu-HPG-modified liposomes induced antigen-specific splenocyte proliferation and production of gamma interferon (IFN-γ) more strongly than did immunization with free OVA or OVA encapsulated in unmodified liposomes. The immune responses induced by OVA encapsulated in MGlu-HPG-modified liposomes were significantly suppressed by addition of anti-major histocompatibility complex (MHC) class I and class II monoclonal antibodies, indicating the involvement of antigen presentation via MHC class I and II. Furthermore, delayed-type hypersensitivity responses and OVA-specific antibodies were induced more effectively in mice immunized with OVA encapsulated by MGlu-HPG-modified liposomes than with unencapsulated OVA or OVA encapsulated in unmodified liposomes. These results suggested that MGlu-HPG-modified liposomes effectively induced both cell-mediated and humoral immune responses. Collectively, this study is the first to demonstrate the induction of both cell-mediated and humoral immune responses in vivo by MGlu-HPG-modified liposomes.

  3. Inactivated Parapoxvirus ovis as inducer of immunity in silver catfish (Rhamdia quelen

    Directory of Open Access Journals (Sweden)

    TATIANA R. PAVAN

    2016-01-01

    Full Text Available ABSTRACT Molecules with immune modulating activity are ubiquitously distributed in nature and their impact on aquaculture has been exploited in order to increase fish resistance to pathogens. Here, we investigated the effect of inactivated Parapoxvirus ovis (iPPVO on blood cells and innate and acquired immune response of silver catfish (Rhamdia quelen. iPPVO inoculation had no effect on respiratory burst activity; however, following iPPVO inoculation, we observed a significant decrease on circulating monocytes concomitantly with an increased number of heterophilic granulocytes and thrombocytes, which are the main cells involved in innate immunity and provide connection with acquired immunity. Fish inoculated with a combination of bovine serum albumin (BSA + iPPVO had significantly higher levels of antibodies to BSA compared to fish inoculated with BSA alone, but lower than fish inoculated with BSA + Freund's incomplete adjuvant (FIA. These findings points to the potential usefulness of iPPVO as immunomodulator in fish and instigate further research to identify its component that interact with immune cells and that could be exploited as adjuvants in fish.

  4. Vitreous Cavity-Associated Immune Deviation Induced by Retinal S Antigen

    Institute of Scientific and Technical Information of China (English)

    Zhijie Li; Guanghua Peng; Chen Li

    2001-01-01

    Purpose: To determine whether the vitreous cavity(VC) supports the induction of deviant immune responses to retinal soluble(S) antigen and to observe the influence of interleukin-1 (IL-1) on the immunologic properties of the VC. Methods: Retinal S antigen was inoculated into the anterior chamber(AC) and the VC in Wistar rats. Seven days after antigen inoculation, the recipient animals were immunized with S antigen and complete Freund's adjuvant. Delayed-type hypersen- sitivity(DTH) was assessed by footpad challenge. To alter systemic immune conditions,IL-1 was administrated by intraperitoneal injection.Results: Antigen-specific DTH did not develop in rats in which S antigen was injected into the AC and the VC. By contrast, when IL-1 administrated systemically, S antigen was injected into the AC and VC elicited strong DTH.Conclusion: The VC supports immune deviation for soluble antigen by acitivity suppressing antigen-Specific DTH. Systemic administration of exogenous IL-1 eliminates the capacity of the VC to support immune deviation to soluble antigen locally injected.

  5. Recombinant Forms of Leishmania amazonensis Excreted/Secreted Promastigote Surface Antigen (PSA Induce Protective Immune Responses in Dogs.

    Directory of Open Access Journals (Sweden)

    Elodie Petitdidier

    2016-05-01

    Full Text Available Preventive vaccination is a highly promising strategy for interrupting leishmaniasis transmission that can, additionally, contribute to elimination. A vaccine formulation based on naturally excreted secreted (ES antigens was prepared from L. infantum promastigote culture supernatant. This vaccine achieved successful results in Phase III trials and was licensed and marketed as CaniLeish. We recently showed that newly identified ES promastigote surface antigen (PSA, from both viable promastigotes and axenically-grown amastigotes, represented the major constituent and the highly immunogenic antigen of L. infantum and L. amazonensis ES products. We report here that three immunizations with either the recombinant ES LaPSA-38S (rPSA or its carboxy terminal part LaPSA-12S (Cter-rPSA, combined with QA-21 as adjuvant, confer high levels of protection in naive L. infantum-infected Beagle dogs, as checked by bone marrow parasite absence in respectively 78.8% and 80% of vaccinated dogs at 6 months post-challenge. The parasite burden in infected vaccinated dogs was significantly reduced compared to placebo group, as measured by q-PCR. Moreover, our results reveal humoral and cellular immune response clear-cut differences between vaccinated and control dogs. An early increase in specific IgG2 antibodies was observed in rPSA/QA-21- and Cter-rPSA/QA-21-immunized dogs only. They were found functionally active in vitro and were highly correlated with vaccine protection. In vaccinated protected dogs, IFN-γ and NO productions, as well as anti-leishmanial macrophage activity, were increased. These data strongly suggest that ES PSA or its carboxy-terminal part, in recombinant forms, induce protection in a canine model of zoonotic visceral leishmaniasis by inducing a Th1-dominant immune response and an appropriate specific antibody response. These data suggest that they could be considered as important active components in vaccine candidates.

  6. Finding immune gene expression differences induced by marine bacterial pathogens in the Deep-sea hydrothermal vent mussel Bathymodiolus azoricus

    Science.gov (United States)

    Martins, E.; Queiroz, A.; Serrão Santos, R.; Bettencourt, R.

    2013-11-01

    The deep-sea hydrothermal vent mussel Bathymodiolus azoricus lives in a natural environment characterised by extreme conditions of hydrostatic pressure, temperature, pH, high concentrations of heavy metals, methane and hydrogen sulphide. The deep-sea vent biological systems represent thus the opportunity to study and provide new insights into the basic physiological principles that govern the defense mechanisms in vent animals and to understand how they cope with microbial infections. Hence, the importance of understanding this animal's innate defense mechanisms, by examining its differential immune gene expressions toward different pathogenic agents. In the present study, B. azoricus mussels were infected with single suspensions of marine bacterial pathogens, consisting of Vibrio splendidus, Vibrio alginolyticus, or Vibrio anguillarum, and a pool of these Vibrio bacteria. Flavobacterium suspensions were also used as a non-pathogenic bacterium. Gene expression analyses were carried out using gill samples from infected animals by means of quantitative-Polymerase Chain Reaction aimed at targeting several immune genes. We also performed SDS-PAGE protein analyses from the same gill tissues. We concluded that there are different levels of immune gene expression between the 12 h to 24 h exposure times to various bacterial suspensions. Our results from qPCR demonstrated a general pattern of gene expression, decreasing from 12 h over 24 h post-infection. Among the bacteria tested, Flavobacterium is the bacterium inducing the highest gene expression level in 12 h post-infections animals. The 24 h infected animals revealed, however, greater gene expression levels, using V. splendidus as the infectious agent. The SDS-PAGE analysis also pointed at protein profile differences between 12 h and 24 h, particularly evident for proteins of 18-20 KDa molecular mass, where most dissimilarity was found. Multivariate analyses demonstrated that immune genes, as well as experimental

  7. Oral immunization of olive flounder (Paralichthys olivaceus) with recombinant live viral hemorrhagic septicemia virus (VHSV) induces protection against VHSV infection.

    Science.gov (United States)

    Kim, Min Sun; Kim, Dong Soo; Kim, Ki Hong

    2011-08-01

    A recombinant viral hemorrhagic septicemia virus (rVHSV-ΔNV-EGFP) that has enhanced green fluorescent protein (EGFP) gene instead of NV gene was previously generated using reverse genetics technology. In this study, potential of the rVHSV-ΔNV-EGFP to be used as a live oral vaccine candidate was assessed. The presence of the recombinant virus in internal organs of orally administered olive flounder (Paralichthys olivaceus) was analyzed by semi-quantitative RT-PCR. Although the recombinant VHSV-specific band was detected only when the number of PCR cycle was increased to 35, the band was detected from internal organs, such as kidney, spleen, and liver of fish that were reared at either 15 °C or 20 °C till even 20 days, suggesting that a few orally administered rVHSV-ΔNV-EGFP might be transported to internal organs, and might keep weak replication ability in the organs. VHSV-neutralizing activity was induced by oral immunization of olive flounder with the NV gene knock-out recombinant VHSV not only in skin and intestinal mucus but also in serum, suggesting that mucosal and systemic adaptive immune responses were elicited by oral immunization. In challenge experiment, groups of fish immunized with 10⁴, 10⁵, and 2 × 10⁵ PFU of rVHSV-ΔNV-EGFP/fish showed 25%, 50%, and 70% of relative percent survival (RPS), respectively. The RPSs were elevated to 60%, 75%, and 90% by a boost immunization in fish boost immunized with 10⁴, 10⁵, and 2 × 10⁵ PFU of rVHSV-ΔNV-EGFP, respectively. The cumulative mortality of fish in the control groups was 100%. Conclusionly, the present results demonstrate that the NV gene knock-out recombinant VHSV administered orally to olive flounder can induce dose- and boosting-dependent VHSV-neutralizing antibody in mucus and serum, and can provide a high protection in olive flounder against a virulent VHSV challenge.

  8. Midgut immune responses induced by bacterial infection in the silkworm, Bombyx mori

    Institute of Scientific and Technical Information of China (English)

    Lei ZHANG; Yan-wen WANG; Zhi-qiang LU‡

    2015-01-01

    reaction (qPCR) analysis shows that the transcription levels of dual oxidase (Duox) and catalase (CAT) are highly up-regulated by P. aeruginosa infection at 8 hpi. P. aeruginosa infection induced nitric oxide synthase 2 (NOS2) expression at 16 hpi, which contributes to the generation of NO. mRNA levels of AMP genes, specifical y Glovorin 2 and Glovorin 3, which obviously increase during the early infection stage. These results indicate that in-vading bacteria elevate intestinal ROS and NO levels and induce AMP gene transcription, which contributes to intes-tinal immune defense.

  9. Host-induced bacterial cell wall decomposition mediates pattern-triggered immunity in Arabidopsis.

    Science.gov (United States)

    Liu, Xiaokun; Grabherr, Heini M; Willmann, Roland; Kolb, Dagmar; Brunner, Frédéric; Bertsche, Ute; Kühner, Daniel; Franz-Wachtel, Mirita; Amin, Bushra; Felix, Georg; Ongena, Marc; Nürnberger, Thorsten; Gust, Andrea A

    2014-06-23

    Peptidoglycans (PGNs) are immunogenic bacterial surface patterns that trigger immune activation in metazoans and plants. It is generally unknown how complex bacterial structures such as PGNs are perceived by plant pattern recognition receptors (PRRs) and whether host hydrolytic activities facilitate decomposition of bacterial matrices and generation of soluble PRR ligands. Here we show that Arabidopsis thaliana, upon bacterial infection or exposure to microbial patterns, produces a metazoan lysozyme-like hydrolase (lysozyme 1, LYS1). LYS1 activity releases soluble PGN fragments from insoluble bacterial cell walls and cleavage products are able to trigger responses typically associated with plant immunity. Importantly, LYS1 mutant genotypes exhibit super-susceptibility to bacterial infections similar to that observed on PGN receptor mutants. We propose that plants employ hydrolytic activities for the decomposition of complex bacterial structures, and that soluble pattern generation might aid PRR-mediated immune activation in cell layers adjacent to infection sites.

  10. Targeting Multiple-Myeloma-Induced Immune Dysfunction to Improve Immunotherapy Outcomes

    Directory of Open Access Journals (Sweden)

    Sergio Rutella

    2012-01-01

    Full Text Available Multiple myeloma (MM is a plasma cell malignancy associated with high levels of monoclonal (M protein in the blood and/or serum. MM can occur de novo or evolve from benign monoclonal gammopathy of undetermined significance (MGUS. Current translational research into MM focuses on the development of combination therapies directed against molecularly defined targets and that are aimed at achieving durable clinical responses. MM cells have a unique ability to evade immunosurveillance through several mechanisms including, among others, expansion of regulatory T cells (Treg, reduced T-cell cytotoxic activity and responsiveness to IL-2, defects in B-cell immunity, and induction of dendritic cell (DC dysfunction. Immune defects could be a major cause of failure of the recent immunotherapy trials in MM. This article summarizes our current knowledge on the molecular determinants of immune evasion in patients with MM and highlights how these pathways can be targeted to improve patients’ clinical outcome.

  11. Attenuation of phosphamidon-induced oxidative stress and immune dysfunction in rats treated with N-acetylcysteine

    Directory of Open Access Journals (Sweden)

    S.G. Suke

    2008-09-01

    Full Text Available The effect of N-acetylcysteine, a thiolic antioxidant, on attenuation of phosphamidon-induced oxidative stress and immune dysfunction was evaluated in adult male Wistar rats weighing 200-250 g. Rats were divided into four groups, 8 animals/group, and treated with phosphamidon, N-acetylcysteine or the combination of both for 28 days. Oral administration of phosphamidon (1.74 mg/kg, an organophosphate insecticide, increased serum malondialdehyde (3.83 ± 0.18 vs 2.91 ± 0.24 nmol/mL; P < 0.05 and decreased erythrocyte superoxide dismutase (567.8 ± 24.36 vs 749.16 ± 102.61 U/gHb; P < 0.05, catalase activity (1.86 ± 0.18 vs 2.43 ± 0.08 U/gHb; P < 0.05 and whole blood glutathione levels (1.25 ± 0.21 vs 2.28 ± 0.08 mg/gHb; P < 0.05 showing phosphamidon-induced oxidative stress. Phosphamidon exposure markedly suppressed humoral immune response as assessed by antibody titer to ovalbumin (4.71 ± 0.51 vs 8.00 ± 0.12 -log2; P < 0.05, and cell-mediated immune response as assessed by leukocyte migration inhibition (25.24 ± 1.04 vs 70.8 ± 1.09%; P < 0.05 and macrophage migration inhibition (20.38 ± 0.99 vs 67.16 ± 5.30%; P < 0.05 response. Phosphamidon exposure decreased IFN-у levels (40.7 ± 3.21 vs 55.84 ± 3.02 pg/mL; P < 0.05 suggesting a profound effect of phosphamidon on cell-mediated immune response. A phosphamidon-induced increase in TNF-α level (64.19 ± 6.0 vs 23.16 ± 4.0 pg/mL; P < 0.05 suggests a contributory role of immunocytes in oxidative stress. Co-administration of N-acetylcysteine (3.5 mmol/kg, orally with phosphamidon attenuated the adverse effects of phosphamidon. These findings suggest that oral N-acetylcysteine treatment exerts protective effect and attenuates free radical injury and immune dysfunction caused by subchronic phosphamidon exposure.

  12. Leishmania major infection in humanized mice induces systemic infection and provokes a nonprotective human immune response.

    Directory of Open Access Journals (Sweden)

    Anja Kathrin Wege

    Full Text Available BACKGROUND: Leishmania (L. species are the causative agent of leishmaniasis. Due to the lack of efficient vaccine candidates, drug therapies are the only option to deal with cutaneous leishmaniasis. Unfortunately, chemotherapeutic interventions show high toxicity in addition to an increased risk of dissemination of drug-resistant parasites. An appropriate laboratory animal based model is still missing which allows testing of new drug strategies in the context of human immune cells in vivo. METHODOLOGY/PRINCIPAL FINDINGS: Humanized mice were infected subcutaneously with stationary phase promastigote L. major into the footpad. The human immune response against the pathogen and the parasite host interactions were analyzed. In addition we proved the versatility of this new model to conduct drug research studies by the inclusion of orally given Miltefosine. We show that inflammatory human macrophages get infected with Leishmania parasites at the site of infection. Furthermore, a Leishmania-specific human-derived T cell response is initiated. However, the human immune system is not able to prevent systemic infection. Thus, we treated the mice with Miltefosine to reduce the parasitic load. Notably, this chemotherapy resulted in a reduction of the parasite load in distinct organs. Comparable to some Miltefosine treated patients, humanized mice developed severe side effects, which are not detectable in the classical murine model of experimental leishmaniasis. CONCLUSIONS/SIGNIFICANCE: This study describes for the first time L. major infection in humanized mice, characterizes the disease development, the induction of human adaptive and innate immune response including cytokine production and the efficiency of Miltefosine treatment in these animals. In summary, humanized mice might be beneficial for future preclinical chemotherapeutic studies in systemic (visceral leishmaniasis allowing the investigation of human immune response, side effects of the drug

  13. Intranasal administration of proteoliposome-derived cochleates from Vibrio cholerae O1 induce mucosal and systemic immune responses in mice.

    Science.gov (United States)

    Acevedo, Reinaldo; Callicó, Adriana; del Campo, Judith; González, Elizabeth; Cedré, Bárbara; González, Lissette; Romeu, Belkis; Zayas, Caridad; Lastre, Miriam; Fernández, Sonsire; Oliva, Reynaldo; García, Luis; Pérez, José Luis; Pérez, Oliver

    2009-12-01

    Conservative estimates place the death toll from cholera at more than 100,000 persons each year. A particulate mucosal vaccine strategy combining antigens and immune stimulator molecules from Vibrio cholerae to overcome this problem is described. Proteoliposomes extracted from V. cholerae O1 were transformed into cochleates (AFCo2, Adjuvant Finlay cochleate 2) through a calcium inducible rotary dialysis method. Light microscopy was carried out and tubules of 16.25+/-4.57 microm in length were observed. Western blots were performed to verify the immunochemical properties of the main AFCo2 incorporated antigens, revealing full recognition of the outer membrane protein U (OmpU), lipopolysaccharide (LPS), and mannose-sensitive hemagglutinin (MSHA) antigens. AFCo2 were administered by the intranasal route using a two or three dose schedule and the immune response against V. cholerae antigens was assessed. Three AFCo2 doses were required to induce significant (p<0.05), antigen specific IgA in saliva (1.34+/-0.135) and feces (0.60+/-0.089). While, two or three doses of AFCo2 or proteoliposomes induce similar specific IgG and vibriocidal activity responses in sera. These results show for the first time that AFCo2 can be obtained from V. cholerae O1 proteoliposomes and have the potential to protect against the pathogen when administered intranasally.

  14. Solid bioneedle-delivered influenza vaccines are highly thermostable and induce both humoral and cellular immune responses.

    Directory of Open Access Journals (Sweden)

    Peter C Soema

    Full Text Available The potential of bioneedles to deliver influenza vaccines was investigated. Four influenza vaccine formulations were screened to determine the optimal formulation for use with bioneedles. The stability of the formulations after freeze-drying was checked to predict the stability of the influenza vaccines in the bioneedles. Subunit, split, virosomal and whole inactivated influenza (WIV vaccine were formulated and lyophilized in bioneedles, and subsequently administered to C57BL/6 mice. Humoral and cellular immune responses were assessed after vaccination. The thermostability of lyophilized vaccines was determined after one-month storage at elevated temperatures. Bioneedle influenza vaccines induced HI titers that are comparable to those induced by intramuscular WIV vaccination. Delivery by bioneedles did not alter the type of immune response induced by the influenza vaccines. Stability studies showed that lyophilized influenza vaccines have superior thermostability compared to conventional liquid vaccines, and remained stable after one-month storage at 60°C. Influenza vaccines delivered by bioneedles are a viable alternative to conventional liquid influenza vaccines. WIV was determined to be the most potent vaccine formulation for administration by bioneedles. Lyophilized influenza vaccines in bioneedles are independent of a cold-chain, due to their increased thermostability, which makes distribution and stockpiling easier.

  15. Plasmid DNA Vaccine Co-Immunisation Modulates Cellular and Humoral Immune Responses Induced by Intranasal Inoculation in Mice.

    Directory of Open Access Journals (Sweden)

    Deborah F L King

    Full Text Available An effective HIV vaccine will likely require induction of both mucosal and systemic cellular and humoral immune responses. We investigated whether intramuscular (IM delivery of electroporated plasmid DNA vaccine and simultaneous protein vaccinations by intranasal (IN and IM routes could be combined to induce mucosal and systemic cellular and humoral immune responses to a model HIV-1 CN54 gp140 antigen in mice.Co-immunisation of DNA with intranasal protein successfully elicited both serum and vaginal IgG and IgA responses, whereas DNA and IM protein co-delivery did not induce systemic or mucosal IgA responses. Cellular IFNγ responses were preserved in co-immunisation protocols compared to protein-only vaccination groups. The addition of DNA to IN protein vaccination reduced the strong Th2 bias observed with IN protein vaccination alone. Luminex analysis also revealed that co-immunisation with DNA and IN protein induced expression of cytokines that promote B-cell function, generation of TFH cells and CCR5 ligands that can reduce HIV infectivity.These data suggest that while IN inoculation alone elicits both cellular and humoral responses, co-administration with homologous DNA vaccination can tailor these towards a more balanced Th1/Th2 phenotype modulating the cellular cytokine profile while eliciting high-levels of antigen-specific antibody. This work provides insights on how to generate differential immune responses within the same vaccination visit, and supports co-immunisation with DNA and protein by a mucosal route as a potential delivery strategy for HIV vaccines.

  16. Leptin induces the phagocytosis and protective immune response in Leishmania donovani infected THP-1 cell line and human PBMCs.

    Science.gov (United States)

    Dayakar, Alti; Chandrasekaran, Sambamurthy; Veronica, Jalaja; Maurya, Radheshyam

    2016-01-01

    Visceral leishmaniasis (VL) is an infectious disease responsible for several deaths in malnourished children due to impaired cell-mediated immunity, which is accompanied by low circulating leptin levels. The cytokine function of leptin is implicated for several immune regulation activities such as hematopoiesis, angiogenesis, innate and adaptive immunity. Its deficiency associated with polarization of Th2 response, which coincides with VL pathogenesis. To determine the cytokine role of leptin in case of experimental VL, we tested the leptin associated Th1/Th2 type cytokine profile at mRNA level from Leishmania donovani infected human monocytic leukemia cell line (THP-1) and peripheral blood mononuclear cells (PBMCs). We also tested the effect of leptin on macrophages activation (viz. studying the phosphorylation of signaling moieties), phagocytic activity and intracellular reactive oxygen species (ROS) production during infection. We observed that leptin induced Th1 specific response by upregulation of IL-1α, IL-1β, IL-8 and TNF-α in THP-1 and IFN-γ, IL-12 and IL-2 in PBMCs. We also observed the downregulation of Th2 type cytokine i.e. IL-10 in THP-1 and unaltered expression of cytokines i.e. TGF-β, IL-10 and IL-4 in PBMCs. In addition, leptin stimulates the macrophages by inducing phosphorylation of Erk1/2 and Akt which are usually dephosphorylated in L. donovani infection. In concordance, leptin also induces the macrophage phagocytic activity by enhancing the intracellular ROS generation which helps in phagolysosome formation and oxidative killing of the parasite. In compilation, leptin is able to maintain the defensive environment against L. donovani infection through the classical macrophage activity.

  17. Exploring effects of a natural combination medicine on exercise-induced inflammatory immune response: A double-blind RCT.

    Science.gov (United States)

    Pilat, C; Frech, T; Wagner, A; Krüger, K; Hillebrecht, A; Pons-Kühnemann, J; Scheibelhut, C; Bödeker, R-H; Mooren, F-C

    2015-08-01

    Traumeel (Tr14) is a natural, combination drug, which has been shown to modulate inflammation at the cytokine level. This study aimed to investigate potential effects of Tr14 on the exercise-induced immune response. In a double-blind, randomized, controlled trial, healthy, untrained male subjects received either Tr14 (n = 40) or placebo (n = 40) for 24 h after a strenuous experimental exercise trial on a bicycle (60 min at 80%VO2 max). A range of antigen-stimulated cytokines (in vitro), white blood cell count, lymphocyte activation and apoptosis markers, and indicators of muscle damage were assessed up to 24 h following exercise. The area under the curve with respect to the increase (AUCI ) was compared between both groups. The Tr14 group showed a reduced exercise-induced leukocytosis and neutrocytosis (P < 0.01 for both), a higher AUCI score of antigen-stimulated IL-1β and IL-1α (absolute and per monocyte, all P < 0.05), a lower AUCI score of antigen-stimulated GM-CSF (P < 0.05) and by trend a lower AUCI score of antigen-stimulated IL-2 and IL-4 as well as a higher AUCI score of antigen-stimulated IL-6 (all P < 0.1). Tr14 might promote differentiated effects on the exercise-induced immune response by (a) decreasing the inflammatory response of the innate immune system; and (b) augmenting the pro-inflammatory cytokine response.

  18. Novel plant virus-based vaccine induces protective cytotoxic T-lymphocyte-mediated antiviral immunity through dendritic cell maturation.

    Science.gov (United States)

    Lacasse, Patrick; Denis, Jérôme; Lapointe, Réjean; Leclerc, Denis; Lamarre, Alain

    2008-01-01

    Currently used vaccines protect mainly through the production of neutralizing antibodies. However, antibodies confer little or no protection for a majority of chronic viral infections that require active involvement of cytotoxic T lymphocytes (CTLs). Virus-like particles (VLPs) have been shown to be efficient inducers of cell-mediated immune responses, but administration of an adjuvant is generally required. We recently reported the generation of a novel VLP system exploiting the self-assembly property of the papaya mosaic virus (PapMV) coat protein. We show here that uptake of PapMV-like particles by murine splenic dendritic cells (DCs) in vivo leads to their maturation, suggesting that they possess intrinsic adjuvant-like properties. DCs pulsed with PapMV-like particles displaying the lymphocytic choriomeningitis virus (LCMV) p33 immunodominant CTL epitope (PapMV-p33) efficiently process and cross-present the viral epitope to p33-specific transgenic T cells. Importantly, the CTL epitope is also properly processed and presented in vivo, since immunization of p33-specific T-cell receptor transgenic mice with PapMV-p33 induces the activation of large numbers of specific CTLs. C57BL/6 mice immunized with PapMV-p33 VLPs in the absence of adjuvant develop p33-specific effector CTLs that rapidly expand following LCMV challenge and protect vaccinated mice against LCMV infection in a dose-dependent manner. These results demonstrate the efficiency of this novel plant virus-based vaccination platform in inducing DC maturation leading to protective CTL responses.

  19. Trimethoprim-induced immune hemolytic anemia in a pediatric oncology patient presenting as an acute hemolytic transfusion reaction.

    Science.gov (United States)

    Gupta, Sweta; Piefer, Cindy L; Fueger, Judy T; Johnson, Susan T; Punzalan, Rowena C

    2010-12-01

    A 10-year-old male with acute leukemia presented with post-chemotherapy anemia. During red cell transfusion, he developed hemoglobinuria. Transfusion reaction workup was negative. Drug-induced immune hemolytic anemia was suspected because of positive direct antiglobulin test, negative eluate, and microspherocytes on smear pre- and post-transfusion. Drug studies using the indirect antiglobulin test were strongly positive with trimethoprim and trimethoprim-sulfamethoxazole but negative with sulfamethoxazole. The patient recovered after discontinuing the drug, with no recurrence in 2 years. Other causes of anemia should be considered in patients with worse-than-expected anemia after chemotherapy. Furthermore, hemolysis during transfusion is not always a transfusion reaction.

  20. Structural Basis for the Development of Avian Virus Capsids That Display Influenza Virus Proteins and Induce Protective Immunity

    OpenAIRE

    Pascual, Elena; Mata, Carlos P.; Gómez-Blanco, Josué; Moreno, Noelia; Bárcena, Juan; Blanco, Esther; Rodríguez-Frandsen, Ariel; Nieto, Amelia; Carrascosa, José L.; Castón, José R.

    2014-01-01

    Bioengineering of viruses and virus-like particles (VLPs) is a well-established approach in the development of new and improved vaccines against viral and bacterial pathogens. We report here that the capsid of a major avian pathogen, infectious bursal disease virus (IBDV), can accommodate heterologous proteins to induce protective immunity. The structural units of the ∼70-nm-diameter T=13 IBDV capsid are trimers of VP2, which is made as a precursor (pVP2). The pVP2 C-terminal domain has an am...

  1. Abacavir Induced T Cell Reactivity from Drug Naïve Individuals Shares Features of Allo-Immune Responses

    OpenAIRE

    Jacqueline Adam; Natascha Wuillemin; Stephan Watkins; Heidi Jamin; Eriksson, Klara K.; Peter Villiger; Stefano Fontana; Pichler, Werner J.; Daniel Yerly

    2014-01-01

    Abacavir hypersensitivity is a severe hypersensitivity reaction which occurs exclusively in carriers of the HLA-B*57∶01 allele. In vitro culture of PBMC with abacavir results in the outgrowth of abacavir-reacting CD8+ T cells, which release IFNγ and are cytotoxic. How this immune response is induced and what is recognized by these T cells is still a matter of debate. We analyzed the conditions required to develop an abacavir-dependent T cell response in vitro. The abacavir reactivity was inde...

  2. Immune-relevant thrombocytes of common carp undergo parasite-induced nitric oxide-mediated apoptosis

    NARCIS (Netherlands)

    Fink, I.R.; Ribeiro, C.M.S.; Forlenza, M.; Taverne-Thiele, J.J.; Rombout, J.H.W.M.; Savelkoul, H.F.J.; Wiegertjes, G.

    2015-01-01

    Common carp thrombocytes account for 30–40% of peripheral blood leukocytes and are abundant in the healthy animals' spleen, the thrombopoietic organ. We show that, ex vivo, thrombocytes from healthy carp express a large number of immune-relevant genes, among which several cytokines and Toll-like rec

  3. Inactivated Recombinant Rabies Viruses Displaying the Canine Distemper Virus Glycoproteins Induce Protective Immunity Against Both Pathogens.

    Science.gov (United States)

    Budaszewski, Renata da Fontoura; Hudacek, Andrew; Sawatsky, Bevan; Krämer, Beate; Xiangping, Yin; Schnell, Matthias J; von Messling, Veronika

    2017-02-01

    The development of multivalent vaccines is an attractive methodology for the simultaneous prevention of several infectious diseases in vulnerable populations. Canine distemper (CDV) and rabies (RABV) viruses both cause lethal disease in wild and domestic carnivores. While RABV vaccines are inactivated, the live-attenuated CDV vaccines retain residual virulence for highly susceptible wild life species. In the current study, we have developed recombinant bivalent vaccine candidates based on recombinant vaccine strain rabies virus particles, which concurrently display the protective CDV and RABV glycoprotein antigens. The recombinant viruses replicated to near wild type titers and the heterologous glycoproteins were efficiently expressed and incorporated in the viral particles. Immunization of ferrets with beta-propiolactone inactivated recombinant virus particles elicited protective RABV antibody titers, and animals immunized with a combination of CDV attachment and fusion protein-expressing recombinant viruses were protected from lethal CDV challenge. However, animals that were only immunized with a RABV expressing the attachment protein of the CDV vaccine strain Onderstepoort succumbed to the infection with a more recent wild type strain, indicating that immune responses to the more conserved fusion protein contribute to protection against heterologous CDV strains.

  4. Regulatory effects of intrinsic IL-10 in IgG immune complex-induced lung injury

    DEFF Research Database (Denmark)

    Shanley, T P; Schmal, H; Friedl, H P;

    1995-01-01

    injury. In the current study, we sought to determine whether endogenous IL-10 is playing a regulatory role in the lung inflammatory response. On the basis of lung mRNA and ELISA measurements, IL-10 induction was found during development of inflammation in the IgG immune complex model of lung injury...

  5. The role of glutamate and the immune system in organophosphate-induced CNS damage.

    Science.gov (United States)

    Eisenkraft, Arik; Falk, Avshalom; Finkelstein, Arseny

    2013-08-01

    Organophosphate (OP) poisoning is associated with long-lasting neurological damage, which is attributed mainly to the excessive levels of glutamate caused by the intoxication. Glutamate toxicity, however, is not specific to OP poisoning, and is linked to propagation of damage in both acute and chronic neurodegenerative conditions in the central nervous system (CNS). In addition to acute excitotoxic effects of glutamate, there is now a growing amount of evidence of its intricate immunomodulatory effects in the brain, involving both the innate and the adaptive immune systems. Moreover, it was demonstrated that immunomodulatory treatments, aimed at regulating the interaction between the resident immune cells of the brain (microglia) and the peripheral immune system, can support buffering of excessive levels of glutamate and restoration of the homeostasis. In this review, we will discuss the role of glutamate as an excitotoxic agent in the acute phase of OP poisoning, and the possible functions it may have as both a neuroprotectant and an immunomodulator in the sub-acute and chronic phases of OP poisoning. In addition, we will describe the novel immune-based neuroprotective strategies aimed at counteracting the long-term neurodegenerative effects of glutamate in the CNS.

  6. Cannabinoid-induced apoptosis in immune cells as a pathway to immunosuppression.

    Science.gov (United States)

    Rieder, Sadiye Amcaoglu; Chauhan, Ashok; Singh, Ugra; Nagarkatti, Mitzi; Nagarkatti, Prakash

    2010-08-01

    Cannabinoids are a group of compounds present in Cannabis plant (Cannabis sativa L.). They mediate their physiological and behavioral effects by activating specific cannabinoid receptors. With the recent discovery of the cannabinoid receptors (CB1 and CB2) and the endocannabinoid system, research in this field has expanded exponentially. Cannabinoids have been shown to act as potent immunosuppressive and anti-inflammatory agents and have been shown to mediate beneficial effects in a wide range of immune-mediated diseases such as multiple sclerosis, diabetes, septic shock, rheumatoid arthritis, and allergic asthma. Cannabinoid receptor 1 (CB1) is mainly expressed on the cells of the central nervous system as well as in the periphery. In contrast, cannabinoid receptor 2 (CB2) is predominantly expressed on immune cells. The precise mechanisms through which cannabinoids mediate immunosuppression is only now beginning to be understood and can be broadly categorized into four pathways: apoptosis, inhibition of proliferation, suppression of cytokine and chemokine production and induction of T regulatory cells (T regs). Studies from our laboratory have focused on mechanisms of apoptosis induction by natural and synthetic cannabinoids through activation of CB2 receptors. In this review, we will focus on apoptotic mechanisms of immunosuppression mediated by cannabinoids on different immune cell populations and discuss how activation of CB2 provides a novel therapeutic modality against inflammatory and autoimmune diseases as well as malignancies of the immune system, without exerting the untoward psychotropic effects.

  7. Sleep Deprivation Induces Changes in Immunity in Trichinella spiralis-Infected Rats

    Science.gov (United States)

    Ibarra-Coronado, Elizabeth G.; Velazquéz-Moctezuma, Javier; Diaz, Daniel; Becerril-Villanueva, Luis Enrique; Pavón, Lenin; Morales-Montor, Jorge

    2015-01-01

    Sleep is considered an important predictor of immunity. A lack of sleep may reduce immunity, which increases susceptibility to any type of infection. Moreover, sleep deprivation in humans produces changes in both, the percent of circulating immune cells (T cells and NK cells) and cytokine levels (IL-1, IFNγ, TNΦ-αα, IL-6 and IL-17). The aim of our study was to investigate whether sleep deprivation produces deregulation on immune variables during the immune response generated against the helminth parasite Trichinella spiralis. Because sleep deprivation is stressful per se, we designed another experiments to compared stress alone (consisting in movement restriction and single housing) with sleep deprivation, in both control (uninfected) and experimental (infected) rats. Our results demonstrate that the sleep deprivation and stress have a differential effect in mesenteric lymph nodes (MLN) and spleen. In uninfected rats sleep deprivation alone produces an increase in natural killer cells (NK+) and B cells (CD45+), accompanied by a decrease in cytotoxic T cells (CD3+CD8+) in spleen; while, in MLN, produces only an increase in natural killer cells (NK+). Both, SD and stress, produce an increased percentage of total T cells (CD3+) in spleen. In the MLN both are also associated to an increase in cytotoxic T cells (CD3+CD8+) and B cells (CD45+). In the spleens of parasitized rats, cell populations did not change. In spleens of both, sleep-deprived and stressed infected rats, we observed an increase in B cells (CD45+). In infected rats, sleep deprivation alone produced an increase in NK cells (NK+). In mesenteric node cell populations of parasitized rats, we observed a decrease in NK cells and an increase in T helper (CD4+) cells in both SD and stressed rats. Rats that were only subjected to stress showed a decrease in B cells (CD45+). These findings suggest that the immune response generated against infection caused by T. spiralis is affected when the sleep pattern is

  8. Sleep deprivation induces changes in immunity in Trichinella spiralis-infected rats.

    Science.gov (United States)

    Ibarra-Coronado, Elizabeth G; Velazquéz-Moctezuma, Javier; Diaz, Daniel; Becerril-Villanueva, Luis Enrique; Pavón, Lenin; Morales-Montor, Jorge

    2015-01-01

    Sleep is considered an important predictor of immunity. A lack of sleep may reduce immunity, which increases susceptibility to any type of infection. Moreover, sleep deprivation in humans produces changes in both, the percent of circulating immune cells (T cells and NK cells) and cytokine levels (IL-1, IFNγ, TNΦ-αα, IL-6 and IL-17). The aim of our study was to investigate whether sleep deprivation produces deregulation on immune variables during the immune response generated against the helminth parasite Trichinella spiralis. Because sleep deprivation is stressful per se, we designed another experiments to compared stress alone (consisting in movement restriction and single housing) with sleep deprivation, in both control (uninfected) and experimental (infected) rats. Our results demonstrate that the sleep deprivation and stress have a differential effect in mesenteric lymph nodes (MLN) and spleen. In uninfected rats sleep deprivation alone produces an increase in natural killer cells (NK+) and B cells (CD45+), accompanied by a decrease in cytotoxic T cells (CD3+CD8+) in spleen; while, in MLN, produces only an increase in natural killer cells (NK+). Both, SD and stress, produce an increased percentage of total T cells (CD3+) in spleen. In the MLN both are also associated to an increase in cytotoxic T cells (CD3+CD8+) and B cells (CD45+). In the spleens of parasitized rats, cell populations did not change. In spleens of both, sleep-deprived and stressed infected rats, we observed an increase in B cells (CD45+). In infected rats, sleep deprivation alone produced an increase in NK cells (NK+). In mesenteric node cell populations of parasitized rats, we observed a decrease in NK cells and an increase in T helper (CD4+) cells in both SD and stressed rats. Rats that were only subjected to stress showed a decrease in B cells (CD45+). These findings suggest that the immune response generated against infection caused by T. spiralis is affected when the sleep pattern is

  9. Induced Th2 dominant immune response in APPswe, PSEN1dE9 transgenic mice after nasal immunization with an adenoviral vector encoding 10 tandem repeats of beta-amyloid 3-10

    Institute of Scientific and Technical Information of China (English)

    Rong Guo; Kui Huang; Tongzi Jiang; Jian Li; Yu Li; Xiaona Xing; Yunpeng Cao

    2011-01-01

    Immunotherapy for Alzheimer's disease (AD) is effective in improving cognitive function in transgenic mouse models of AD. Because the AN1792 [beta-amyloid (Aβ) 1-42] vaccine was halted because of T cell mediated meningoencephalitis, many scientists are searching for a novel vaccine to avoid the T cell mediated immune response caused by the Aβ1-42. Importantly, the time when the immunization is begun can influence the immune effect. In this study, an adenovirus vaccine was constructed containing 10 × Aβ3-10 repeats and gene adjuvant CpG DNA. Transgenic AD mice were immunized intranasally for 3 months. After 10 × Aβ3-10 vaccine immunization, high titers of anti-Aβ42 IgG1 predominant antibodies were induced. In spatial learning ability and probe tests, the 10 × Aβ3-10 immunized mice showed significantly improved memories compared to control mice. The 10 × Aβ3-10 vaccine resulted in a robust Th2 dominant humoral immune response and reduced learning deficits in AD mice. In addition, the 10 × Aβ3-10 vaccine might be more efficient if administered before Aβ aggregation at an early stage in the AD mouse brain. Thus, the adenovirus vector encoding 10 × Aβ3-10 is a promising vaccine for AD.

  10. Microgravity-induced alterations in signal transduction in cells of the immune system

    Science.gov (United States)

    Paulsen, Katrin; Thiel, Cora; Timm, Johanna; Schmidt, Peter M.; Huber, Kathrin; Tauber, Svantje; Hemmersbach, Ruth; Seibt, Dieter; Kroll, Hartmut; Grote, Karl-Heinrich; Zipp, Frauke; Schneider-Stock, Regine; Cogoli, Augusto; Hilliger, Andre; Engelmann, Frank; Ullrich, Oliver

    2010-11-01

    Since decades it is known that the activity of cells of the immune system is severely dysregulated in microgravity, however, the underlying molecular aspects have not been elucidated yet. The identification of gravity-sensitive molecular mechanisms in cells of the immune system is an important and indispensable prerequisite for the development of counteractive measures to prevent or treat disturbed immune cell function of astronauts during long-term space missions. Moreover, their sensitivity to altered gravity renders immune cells an ideal model system to understand if and how gravity on Earth is required for normal mammalian cell function and signal transduction. We investigated the effect of simulated weightlessness (2D clinostat) and of real microgravity (parabolic flights) on key signal pathways in a human monocytic and a T lymphocyte cell line. We found that cellular responses to microgravity strongly depend on the cell-type and the conditions in which the cells are subjected to microgravity. In Jurkat T cells, enhanced phosphorylation of the MAP kinases ERK-1/2, MEK and p38 and inhibition of nuclear translocation of NF-kB were the predominant responses to simulated weightlessness, in either stimulated or non-stimulated cells. In contrast, non-stimulated monocytic U937 cells responded to simulated weightlessness with enhanced overall tyrosine-phosphorylation and activation of c-jun, whereas PMA-stimulated U937 cells responded the opposite way with reduced tyrosine-phosphorylation and reduced activation of c-jun, compared with PMA-stimulated 1 g controls. P53 protein was phosphorylated rapidly in microgravity. The identification of gravi-sensitive mechanisms in cells of the immune system will not only enable us to understand and prevent the negative effects of long time exposure to microgravity on Astronauts, but could also lead to novel therapeutic targets in general.

  11. Cationic micelle based vaccine induced potent humoral immune response through enhancing antigen uptake and formation of germinal center.

    Science.gov (United States)

    Luo, Zichao; Shi, Shuai; Jin, Ling; Xu, Lu; Yu, Jing; Chen, Hao; Li, Xingyi

    2015-11-01

    Nanoparticles have been proven to be an effective vaccine delivery system that can boost immune responses to subunit vaccines. Herein, we developed and characterized a cationic polymeric polyethylene glycol2000-poly ϵ-caprolactone2000-polyethylenimine2000 (mPEG2000-PCL2000-g-PEI2000) micelle as a potent vaccine delivery system to boost the immune response in vivo. The micelles that we developed exhibited great antigen-loading capability and minimal cytotoxicity in vitro. Meanwhile, micelles facilitated OVA antigen uptake by dendritic cells both in vitro and in vivo. More importantly, a micelle-formulated OVA vaccine could significantly promote anti-OVA antibody production by 190-fold and potently enhance T cell proliferation and the secretion of IL-5 and IFN-γ. We attributed these effects to its ability to promote antigen uptake, antigen deposition, and germinal center formation. In conclusion, the mPEG2000-PCL2000-PEI2000 micelle that we developed has potential as potent vaccine delivery system to induce Th2 immune response.

  12. Intratumoral modulation of the inducible co-stimulator ICOS by recombinant oncolytic virus promotes systemic anti-tumour immunity

    Science.gov (United States)

    Zamarin, Dmitriy; Holmgaard, Rikke B.; Ricca, Jacob; Plitt, Tamar; Palese, Peter; Sharma, Padmanee; Merghoub, Taha; Wolchok, Jedd D.; Allison, James P.

    2017-01-01

    Emerging data suggest that locoregional cancer therapeutic approaches with oncolytic viruses can lead to systemic anti-tumour immunity, although the appropriate targets for intratumoral immunomodulation using this strategy are not known. Here we find that intratumoral therapy with Newcastle disease virus (NDV), in addition to the activation of innate immunity, upregulates the expression of T-cell co-stimulatory receptors, with the inducible co-stimulator (ICOS) being most notable. To explore ICOS as a direct target in the tumour, we engineered a recombinant NDV-expressing ICOS ligand (NDV-ICOSL). In the bilateral flank tumour models, intratumoral administration of NDV-ICOSL results in enhanced infiltration with activated T cells in both virus-injected and distant tumours, and leads to effective rejection of both tumours when used in combination with systemic CTLA-4 blockade. These findings highlight that intratumoral immunomodulation with an oncolytic virus expressing a rationally selected ligand can be an effective strategy to drive systemic efficacy of immune checkpoint blockade. PMID:28194010

  13. Innate immunity modulation in the duodenal mucosa induced by REM sleep deprivation during infection with Trichinella spirallis

    Science.gov (United States)

    Ibarra-Coronado, Elizabeth G.; Pérez-Torres, Armando; Pantaleón-Martínez, Ana M.; Velazquéz-Moctezuma, Javier; Rodriguez-Mata, Veronica; Morales-Montor, Jorge

    2017-01-01

    Sleep is considered to be an important predictor of the immunity, since the absence of sleep can affect the development of the immune response, and consequently increase the susceptibility to contract an infection. The aim of the present study was to investigate if sleep deprivation and stress induce dysregulation of the duodenal mucous membrane during the acute infection with Trichinella spiralis. Our results shows that, in the intestinal mucous membrane, stress and sleep deprivation, produces different effect in the cells, and this effect depends on the studied duodenal compartment, glands or villi. The sleep deprivation affect mast cells mainly, and the stress response is more heterogeneous. Interestingly, in the duodenal mucous membrane, none population of cells in the infected groups responded equally to both conditions. These findings suggest that the response of the intestinal mucous membrane during the infection caused for T. spiralis turns out to be affected in the sleep-deprived rats, therefore, the results of the present study sustain the theory that sleep is a fundamental process that is capable of modulating the immune response of mucous membranes, particularly the one generated against the parasite Trichinella spiralis. PMID:28374797

  14. Heterologous Prime-Boost Oral Immunization with GK-1 Peptide from Taenia crassiceps Cysticerci Induces Protective Immunity▿

    Science.gov (United States)

    Fragoso, Gladis; Esquivel-Guadarrama, Fernando; Santana, M. Angélica; Bobes, Raul J.; Hernández, Beatriz; Cervantes, Jacquelynne; Segura, René; Goldbaum, Fernando A.; Sciutto, Edda; Rosas, Gabriela

    2011-01-01

    Oral immunization is a goal in vaccine development, particularly for pathogens that enter the host through the mucosal system. This study was designed to explore the immunogenic properties of the Taenia crassiceps protective peptide GK-1 administered orally. Mice were orally immunized with the synthetic GK-1 peptide in its linear form with or without the Brucella lumazine synthase (BLS) protein adjuvant or as a chimera recombinantly bound to BLS (BLS-GK-1). Mice were boosted twice with GK-1 only at 15-day intervals. A significant rate of protection of 64.7% was achieved in GK-1-immunized mice, and that rate significantly increased to 91.8 and 96% when mice were primed with GK-1 coadministered with BLS as an adjuvant and BLS as a carrier, respectively. Specific antibodies and T cell activation and proliferation accompanied the protection induced, revealing the potent immunogenicity of GK-1. Through immunohistochemical studies, GK-1 was detected in T and B cell zones of the Peyer's patches (PP) and mesenteric lymph nodes. In the latter, abundant proliferating cells were detected by 5′-bromo-2′-deoxyuridine incorporation. No proliferation was detected in PP. Altogether, these results portray the potent immunogenic properties of GK-1 administered orally and reinforce the usefulness of BLS as an adjuvant and adequate vaccine delivery system for oral vaccines. PMID:21593234

  15. Induction of protective immunity against Streptococcus mutans colonization after mucosal immunization with attenuated Salmonella enterica serovar typhimurium expressing an S. mutans adhesin under the control of in vivo-inducible nirB promoter.

    Science.gov (United States)

    Huang, Y; Hajishengallis, G; Michalek, S M

    2001-04-01

    The purpose of the present study was to evaluate the effectiveness of an attenuated Salmonella enterica serovar Typhimurium vaccine strain expressing the saliva-binding region (SBR) of the Streptococcus mutans antigen I/II adhesin, either alone or linked with the mucosal adjuvant cholera toxin A2 and B subunits (CTA2/B) and under the control of the anaerobically inducible nirB promoter, in inducing a protective immune response against S. mutans infection. BALB/c mice were immunized by either the intranasal or the intragastric route with a single dose of 10(9) or 10(10) Salmonella CFU, respectively. The Salmonella vaccine strain expressing an unrelated antigen (fragment C of tetanus toxin [TetC]) was also used for immunization as a control. Samples of serum and secretion (saliva and vaginal washes) were collected prior to and following immunization and assessed for antibody activity by enzyme-linked immunosorbent assay. Anti-SBR antibodies were detected in the serum and saliva of experimental animals by week 3 after immunization. A booster immunization at week 17 after the initial immunization resulted in enhanced immune responses to the SBR. The serum immunoglobulin G subclass profiles were indicative of T helper type 1 responses against both the vector and the SBR antigen. To determine the effectiveness of these responses on the protection against S. mutans infection, mice were challenged after the second immunization with a virulent strain of S. mutans which was resistant to tetracycline and erythromycin. Prior to the challenge, mice were treated for 5 days with tetracycline, erythromycin, and penicillin. S. mutans was initially recovered from all of the challenged mice. This bacterium persisted at high levels for at least 5 weeks in control TetC-immunized or nonimmunized mice despite the reappearance of indigenous oral organisms. However, mice immunized with Salmonella clones expressing SBR or SBR-CTA2/B demonstrated a significant reduction in the number of S

  16. Sm29, but not Sm22.6 retains its ability to induce a protective immune response in mice previously exposed to a Schistosoma mansoni infection.

    Directory of Open Access Journals (Sweden)

    Clarice Carvalho Alves

    2015-02-01

    Full Text Available BACKGROUND: A vaccine against schistosomiasis would have a great impact in disease elimination. Sm29 and Sm22.6 are two parasite tegument proteins which represent promising antigens to compose a vaccine. These antigens have been associated with resistance to infection and reinfection in individuals living in endemic area for the disease and induced partial protection when evaluated in immunization trials using naïve mice. METHODOLOGY/PRINCIPALS FINDINGS: In this study we evaluated rSm29 and rSm22.6 ability to induce protection in Balb/c mice that had been previously infected with S. mansoni and further treated with Praziquantel. Our results demonstrate that three doses of the vaccine containing rSm29 were necessary to elicit significant protection (26%-48%. Immunization of mice with rSm29 induced a significant production of IL-2, IFN-γ, IL-17, IL-4; significant production of specific antibodies; increased percentage of CD4+ central memory cells in comparison with infected and treated saline group and increased percentage of CD4+ effector memory cells in comparison with naïve Balb/c mice immunized with rSm29. On the other hand, although immunization with Sm22.6 induced a robust immune response, it failed to induce protection. CONCLUSION/SIGNIFICANCE: Our results demonstrate that rSm29 retains its ability to induce protection in previously infected animals, reinforcing its potential as a vaccine candidate.

  17. A Novel Murine Model of Parvovirus Associated Dilated Cardiomyopathy Induced by Immunization with VP1-Unique Region of Parvovirus B19

    Science.gov (United States)

    Šimoliūnas, Egidijus; Rinkūnaitė, Ieva; Smalinskaitė, Luka; Podkopajev, Andrej; Bironaitė, Daiva; Weis, Cleo-Aron; Marx, Alexander; Bukelskienė, Virginija; Gretz, Norbert; Grabauskienė, Virginija; Labeit, Dittmar; Labeit, Siegfried

    2016-01-01

    Background. Parvovirus B19 (B19V) is a common finding in endomyocardial biopsy specimens from myocarditis and dilated cardiomyopathy patients. However, current understanding of how B19V is contributing to cardiac damage is rather limited due to the lack of appropriate mice models. In this work we demonstrate that immunization of BALB/c mice with the major immunogenic determinant of B19V located in the unique sequence of capsid protein VP1 (VP1u) is an adequate model to study B19V associated heart damage. Methods and Results. We immunized mice in the experimental group with recombinant VP1u; immunization with cardiac myosin derived peptide served as a positive reference and phosphate buffered saline served as negative control. Cardiac function and dimensions were followed echocardiographically 69 days after immunization. Progressive dilatation of left ventricle and decline of ejection fraction were observed in VP1u- and myosin-immunized mice. Histologically, severe cardiac fibrosis and accumulation of heart failure cells in lungs were observed 69 days after immunization. Transcriptomic profiling revealed ongoing cardiac remodeling and immune process in VP1u- and myosin-immunized mice. Conclusions. Immunization of BALB/c mice with VP1u induces dilated cardiomyopathy in BALB/c mice and it could be used as a model to study clinically relevant B19V associated cardiac damage. PMID:27812527

  18. Migration of antigen-presenting B cells from peripheral to mucosal lymphoid tissues may induce intestinal antigen-specific IgA following parenteral immunization

    NARCIS (Netherlands)

    Coffin, SE; Clark, SL; Bos, NA; Brubaker, JO; Offit, PA

    1999-01-01

    Parenterally administered immunizations have long been used to induce protection from mucosal pathogens such as Bordetella pertussis and influenza virus. We previously found that i.m. inoculation of mice with the intestinal pathogen, rotavirus, induced virus-specific Ab production by intestinal lymp

  19. Immunization with FSHβ fusion protein antigen prevents bone loss in a rat ovariectomy-induced osteoporosis model

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Wenxin; Yan, Xingrong; Du, Huicong; Cui, Jihong; Li, Liwen, E-mail: liven@nwu.edu.cn; Chen, Fulin, E-mail: chenfl@nwu.edu.cn

    2013-05-03

    Highlights: •A GST-FSH fusion protein was successfully expressed in E. coli. •Immunization with GST-FSH antigen can raise high-titer anti-FSH polyclonal sera. •Anti-FSH polyclonal sera can neutralize osteoclastogenic effect of FSH in vitro. •FSH immunization can prevent bone loss in a rat osteoporosis model. -- Abstract: Osteoporosis, a metabolic bone disease, threatens postmenopausal women globally. Hormone replacement therapy (HTR), especially estrogen replacement therapy (ERT), is used widely in the clinic because it has been generally accepted that postmenopausal osteoporosis is caused by estrogen deficiency. However, hypogonadal α and β estrogen receptor null mice were only mildly osteopenic, and mice with either receptor deleted had normal bone mass, indicating that estrogen may not be the only mediator that induces osteoporosis. Recently, follicle-stimulating hormone (FSH), the serum concentration of which increases from the very beginning of menopause, has been found to play a key role in postmenopausal osteoporosis by promoting osteoclastogenesis. In this article, we confirmed that exogenous FSH can enhance osteoclast differentiation in vitro and that this effect can be neutralized by either an anti-FSH monoclonal antibody or anti-FSH polyclonal sera raised by immunizing animals with a recombinant GST-FSHβ fusion protein antigen. Moreover, immunizing ovariectomized rats with the GST-FSHβ antigen does significantly prevent trabecular bone loss and thereby enhance the bone strength, indicating that a FSH-based vaccine may be a promising therapeutic strategy to slow down bone loss in postmenopausal women.

  20. A booster vaccine expressing a latency-associated antigen augments BCG induced immunity and confers enhanced protection against tuberculosis.

    Directory of Open Access Journals (Sweden)

    Bappaditya Dey

    Full Text Available BACKGROUND: In spite of a consistent protection against tuberculosis (TB in children, Mycobacterium bovis Bacille Calmette-Guerin (BCG fails to provide adequate protection against the disease in adults as well as against reactivation of latent infections or exogenous reinfections. It has been speculated that failure to generate adequate memory T cell response, elicitation of inadequate immune response against latency-associated antigens and inability to impart long-term immunity against M. tuberculosis infections are some of the key factors responsible for the limited efficiency of BCG in controlling TB. METHODS/PRINCIPAL FINDINGS: In this study, we evaluated the ability of a DNA vaccine expressing α-crystallin--a key latency antigen of M. tuberculosis to boost the BCG induced immunity. 'BCG prime-DNA boost' regimen (B/D confers robust protection in guinea pigs along with a reduced pathology in comparison to BCG vaccination (1.37 log(10 and 1.96 log(10 fewer bacilli in lungs and spleen, respectively; p<0.01. In addition, B/D regimen also confers enhanced protection in mice. Further, we show that B/D immunization in mice results in a heightened frequency of PPD and antigen specific multi-functional CD4 T cells (3(+ simultaneously producing interferon (IFNγ, tumor necrosis factor (TNFα and interleukin (IL2. CONCLUSIONS/SIGNIFICANCE: These results clearly indicate the superiority of α-crystallin based B/D regimen over BCG. Our study, also demonstrates that protection against TB is predictable by an increased frequency of 3(+ Th1 cells with superior effector functions. We anticipate that this study would significantly contribute towards the development of superior booster vaccines for BCG vaccinated individuals. In addition, this regimen can also be expected to reduce the risk of developing active TB due to reactivation of latent infection.

  1. The effects of diet and corticosteroid-induced immune suppression during infection by Haemonchus contortus in lambs.

    Science.gov (United States)

    Carvalho, Nadino; das Neves, José Henrique; Nazato, Carina; Louvandini, Helder; Amarante, Alessandro F T

    2015-12-15

    To evaluate the effects of Diet and corticosteroid-induced immune suppression during infection by Haemonchus contortus, 28 lambs were allocated to one of four groups treated as follows: Group Basal Diet - Normal; Group Basal Diet - Immune-Suppressed; Group Supplemented Diet - Normal; and Group Supplemented Diet - Immune-Suppressed. The Basal Diet contained Cynodon dactylon (cv. coast cross) hay with 82 g crude protein (CP)/kg dry matter (DM), which was provided to the lambs in all groups ad libitum. In addition, animals on the Supplemented Diet received daily a commercial concentrate containing 171 g CP/kg DM, which was offered in an amount corresponding to 3% of the animal's live weight. The Immune-Suppressed groups received treatments with the glucocorticoid methylprednisolone sodium succinate (1.33 mg/kg of body weight), administered weekly. All lambs received a single infection with 4000 H. contortus infective larvae (L3) and were euthanised 28 days post-infection. Differences in pH and in the short-chain fatty acid (SCFA) concentrations occurred in rumen as a result of the distinct Diets offered to lambs. Such changes, however, did not have any apparent effect on larvae exsheathment and/or larvae survival inside the rumen, with all groups presenting similar worm burdens. However, animals on the Supplemented Diet presented reductions in worm growth and faecal egg counts. There was a significant effect of the Diet on the IgG levels against total antigens of H. contortus L3 from 7 to 27 days post-infection, with supplemented animals showing higher overall mean values (PDiet; however, only the length of males was significantly affected (P<0.05). In conclusion, the changes caused in the rumen contents by supplementation with concentrate did not impair H. contortus establishment.

  2. PROTECTIVE EFFECTS OF PROPOLIS ON GAMMA- IRRADIATED NIGELLA SATIVA EXTRACT INDUCED BLOOD AND IMMUNE CHANGES IN WISTAR RATS

    Directory of Open Access Journals (Sweden)

    Osama Moseilhy Saleh

    2013-01-01

    Full Text Available The present study conducted to test the effect of Nigella Sativa (NS, 5 mg kg-1 of body weight, or γ-irradiated Nigella Sativa (GRNS on the changes of blood component profiles, liver, kidney functions and immune cytokines secretion in male Wistar rats. Moreover, the possible protection by propolis (200 mg kg-1 B. W. on the changes induced by NS and GRNS was examined. Results revealed that both NS and GRNS administration for two weeks induced changes in blood, GPT, GOT and urea levels and co-administration with propolis significantly ameliorated such changes. Also, liver histology showed numerous vacuolar degeneration and fatty changes in γ-irradiated groups which disappeared in presence of propolis. Kidney histology of NS administered rats showed less lymphocytic infiltration, while GRNS groups showed desquamation in the cytoplasm of the renal tubules, hemorrhage in the renal corpuscle and lymphocytic infiltration which disappeared when propolis given together with GRNS. Finally propolis induced protective effect on the changes induced in TNF-α and IL-10 secretion by either NS or GRNS in Wistar rats. In conclusion, the findings of present study clarified the protective effect of propolis on changes induced by γ-irradiated NS on blood, liver, kidney and cytokines changes in Wistar rats.

  3. Ceftriaxone-induced immune hemolytic anemia as a life-threatening complication of antibiotic treatment of 'chronic Lyme disease'.

    Science.gov (United States)

    De Wilde, Maarten; Speeckaert, Marijn; Callens, Rutger; Van Biesen, Wim

    2017-04-01

    'Chronic Lyme disease' is a controversial condition. As any hard evidence is lacking that unresolved systemic symptoms, following an appropriately diagnosed and treated Lyme disease, are related to a chronic infection with the tick-borne spirochaetes of the Borrelia genus, the term 'chronic Lyme disease' should be avoided and replaced by the term 'post-treatment Lyme disease syndrome.' The improper prescription of prolonged antibiotic treatments for these patients can have an impact on the community antimicrobial resistance and on the consumption of health care resources. Moreover, these treatments can be accompanied by severe complications. In this case report, we describe a life-threatening ceftriaxone-induced immune hemolytic anemia with an acute kidney injury (RIFLE-stadium F) due to a pigment-induced nephropathy in a 76-year-old woman, who was diagnosed with a so-called 'chronic Lyme disease.'

  4. TU-CD-303-03: Localized Radiation Can Induce Systemic Anti-Cancer Immune and Non-Immune Responses and How We Might Utilize It

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M. [National Institutes of Health (United States)

    2015-06-15

    Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation also initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the essence of

  5. An inducible transgenic mouse model for immune mediated hepatitis showing clearance of antigen expressing hepatocytes by CD8+ T cells.

    Directory of Open Access Journals (Sweden)

    Marcin Cebula

    Full Text Available The liver has the ability to prime immune responses against neo antigens provided upon infections. However, T cell immunity in liver is uniquely modulated by the complex tolerogenic property of this organ that has to also cope with foreign agents such as endotoxins or food antigens. In this respect, the nature of intrahepatic T cell responses remains to be fully characterized. To gain deeper insight into the mechanisms that regulate the CD8+ T cell responses in the liver, we established a novel OVA_X_CreER(T2 mouse model. Upon tamoxifen administration OVA antigen expression is observed in a fraction of hepatocytes, resulting in a mosaic expression pattern. To elucidate the cross-talk of CD8+ T cells with antigen-expressing hepatocytes, we adoptively transferred K(b/OVA257-264-specific OT-I T cells to OVA_X_CreER(T2 mice or generated triple transgenic OVA_X CreER(T2_X_OT-I mice. OT-I T cells become activated in OVA_X_CreER(T2 mice and induce an acute and transient hepatitis accompanied by liver damage. In OVA_X_CreER(T2_X_OT-I mice, OVA induction triggers an OT-I T cell mediated, fulminant hepatitis resulting in 50% mortality. Surviving mice manifest a long lasting hepatitis, and recover after 9 weeks. In these experimental settings, recovery from hepatitis correlates with a complete loss of OVA expression indicating efficient clearance of the antigen-expressing hepatocytes. Moreover, a relapse of hepatitis can be induced upon re-induction of cured OVA_X_CreER(T2_X_OT-I mice indicating absence of tolerogenic mechanisms. This pathogen-free, conditional mouse model has the advantage of tamoxifen inducible tissue specific antigen expression that reflects the heterogeneity of viral antigen expression and enables the study of intrahepatic immune responses to both de novo and persistent antigen. It allows following the course of intrahepatic immune responses: initiation, the acute phase and antigen clearance.

  6. Mathematical modeling of the circadian dynamics of the neuroendocrine-immune network in experimentally induced arthritis.

    Science.gov (United States)

    Rao, R; DuBois, D; Almon, R; Jusko, W J; Androulakis, I P

    2016-08-01

    The circadian dynamics of important neuroendocrine-immune mediators have been implicated in progression of rheumatoid arthritis pathophysiology, both clinically as well as in animal models. We present a mathematical model that describes the circadian interactions between mediators of the hypothalamic-pituitary-adrenal (HPA) axis and the proinflammatory cytokines. Model predictions demonstrate that chronically elevated cytokine expression results in the development of adrenal insufficiency and circadian variability in paw edema. Notably, our model also predicts that an increase in mean secretion of corticosterone (CST) after the induction of the disease is accompanied by a decrease in the amplitude of the CST oscillation. Furthermore, alterations in the phase of circadian oscillation of both cytokines and HPA axis mediators are observed. Therefore, by incorporating the circadian interactions between the neuroendocrine-immune mediators, our model is able to simulate important features of rheumatoid arthritis pathophysiology.

  7.   A rationally designed tyrosine hydroxylase DNA vaccine induces specific antineuroblastoma immunity

    DEFF Research Database (Denmark)

    Huebener, Nicole; Fest, Stefan; Strandsby, Anne Bystrup;

    2008-01-01

    Therapeutic vaccination against tumor antigens without induction of autoimmunity remains a major challenge in cancer immunotherapy. Here, we show for the first time effective therapeutic vaccination followed by suppression of established spontaneous neuroblastoma metastases using a tyrosine...... minigene vaccine was generated based on the expression vector pCMV-F3Ub encoding mutated ubiquitin (Gly(76) to Ala(76)) and mTH3. Prophylactic and therapeutic efficacies of this vaccine were established following oral delivery with attenuated Salmonella typhimurium SL7207. Only mice immunized with mTH3...... were free of spontaneous liver metastases. This effect was clearly dependent on ubiquitin and high affinity of the mTH epitopes to MHC class I antigens. Specifically, we showed a crucial role for minigene expression as a stable ubiquitin-Ala(76) fusion peptide for vaccine efficacy. The immune response...

  8. Early exposure of infants to GI nematodes induces Th2 dominant immune responses which are unaffected by periodic anthelminthic treatment.

    Directory of Open Access Journals (Sweden)

    Victoria J Wright

    Full Text Available We have previously shown a reduction in anaemia and wasting malnutrition in infants <3 years old in Pemba Island, Zanzibar, following repeated anthelminthic treatment for the endemic gastrointestinal (GI nematodes Ascaris lumbricoides, hookworm and Trichuris trichiura. In view of the low intensity of worm infections in this age group, this was unexpected, and it was proposed that immune responses to the worms rather than their direct effects may play a significant role in morbidity in infants and that anthelminthic treatment may alleviate such effects. Therefore, the primary aims of this study were to characterise the immune response to initial/early GI nematode infections in infants and the effects of anthelminthic treatment on such immune responses. The frequency and levels of Th1/Th2 cytokines (IL-5, IL-13, IFN-gamma and IL-10 induced by the worms were evaluated in 666 infants aged 6-24 months using the Whole Blood Assay. Ascaris and hookworm antigens induced predominantly Th2 cytokine responses, and levels of IL-5 and IL-13 were significantly correlated. The frequencies and levels of responses were higher for both Ascaris positive and hookworm positive infants compared with worm negative individuals, but very few infants made Trichuris-specific cytokine responses. Infants treated every 3 months with mebendazole showed a significantly lower prevalence of infection compared with placebo-treated controls at one year following baseline. At follow-up, cytokine responses to Ascaris and hookworm antigens, which remained Th2 biased, were increased compared with baseline but were not significantly affected by treatment. However, blood eosinophil levels, which were elevated in worm-infected children, were significantly lower in treated children. Thus the effect of deworming in this age group on anaemia and wasting malnutrition, which were replicated in this study, could not be explained by modification of cytokine responses but may be related to

  9. Transgenic expression of soluble human CD5 enhances experimentally-induced autoimmune and anti-tumoral immune responses.

    Directory of Open Access Journals (Sweden)

    Rafael Fenutría

    Full Text Available CD5 is a lymphoid-specific transmembrane glycoprotein constitutively expressed on thymocytes and mature T and B1a lymphocytes. Current data support the view that CD5 is a negative regulator of antigen-specific receptor-mediated signaling in these cells, and that this would likely be achieved through interaction with CD5 ligand/s (CD5L of still undefined nature expressed on immune or accessory cells. To determine the functional consequence of loss of CD5/CD5L interaction in vivo, a new transgenic mouse line was generated (shCD5EμTg, expressing a circulating soluble form of human CD5 (shCD5 as a decoy to impair membrane-bound CD5 function. These shCD5EμTg mice showed an enhanced response to autologous antigens, as deduced from the presentation of more severe forms of experimentally inducible autoimmune disease (collagen-induced arthritis, CIA; and experimental autoimmune encephalitis, EAE, as well as an increased anti-tumoral response in non-orthotopic cancer models (B16 melanoma. This enhancement of the immune response was in agreement with the finding of significantly reduced proportions of spleen and lymph node Treg cells (CD4+CD25+FoxP3+, and of peritoneal IL-10-producing and CD5+ B cells, as well as an increased proportion of spleen NKT cells in shCD5EμTg mice. Similar changes in lymphocyte subpopulations were observed in wild-type mice following repeated administration of exogenous recombinant shCD5 protein. These data reveal the relevant role played by CD5/CD5L interactions on the homeostasis of some functionally relevant lymphocyte subpopulations and the modulation of immune responses to autologous antigens.

  10. Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores.

    Directory of Open Access Journals (Sweden)

    Liuhua Yan

    Full Text Available In response to insect attack and mechanical wounding, plants activate the expression of genes involved in various defense-related processes. A fascinating feature of these inducible defenses is their occurrence both locally at the wounding site and systemically in undamaged leaves throughout the plant. Wound-inducible proteinase inhibitors (PIs in tomato (Solanum lycopersicum provide an attractive model to understand the signal transduction events leading from localized injury to the systemic expression of defense-related genes. Among the identified intercellular molecules in regulating systemic wound response of tomato are the peptide signal systemin and the oxylipin signal jasmonic acid (JA. The systemin/JA signaling pathway provides a unique opportunity to investigate, in a single experimental system, the mechanism by which peptide and oxylipin signals interact to coordinate plant systemic immunity. Here we describe the characterization of the tomato suppressor of prosystemin-mediated responses8 (spr8 mutant, which was isolated as a suppressor of (prosystemin-mediated signaling. spr8 plants exhibit a series of JA-dependent immune deficiencies, including the inability to express wound-responsive genes, abnormal development of glandular trichomes, and severely compromised resistance to cotton bollworm (Helicoverpa armigera and Botrytis cinerea. Map-based cloning studies demonstrate that the spr8 mutant phenotype results from a point mutation in the catalytic domain of TomLoxD, a chloroplast-localized lipoxygenase involved in JA biosynthesis. We present evidence that overexpression of TomLoxD leads to elevated wound-induced JA biosynthesis, increased expression of wound-responsive genes and, therefore, enhanced resistance to insect herbivory attack and necrotrophic pathogen infection. These results indicate that TomLoxD is involved in wound-induced JA biosynthesis and highlight the application potential of this gene for crop protection against

  11. Immunization of rabbits with nematode Ascaris lumbricoides antigens induces antibodies cross-reactive to house dust mite Dermatophagoides farinae antigens.

    Science.gov (United States)

    Nakazawa, Takuya; Khan, Al Fazal; Yasueda, Hiroshi; Saito, Akemi; Fukutomi, Yuma; Takai, Toshiro; Zaman, Khalequz; Yunus, Md; Takeuchi, Haruko; Iwata, Tsutomu; Akiyama, Kazuo

    2013-01-01

    There are controversial reports on the relationship between helminthic infection and allergic diseases. Although IgE cross-reactivity between nematode Ascaris antigens and house dust-mite allergens in allergic patients have been reported, whether Ascaris or the mite is the primary sensitizer remains unknown. Here we found that immunization of naïve animals with Ascaris lumbricoides (Al) antigens induced production of antibodies cross-reactive to mite antigens from Dermatophagoides farinae (Df). Sera from Bangladeshi children showed IgE reactivity to Ascaris and mite extracts. IgG from rabbits immunized with Al extract exhibited reactivity to Df antigens. Treatment of the anti-Al antibody with Df antigen-coupled beads eliminated the reactivity to Df antigens. In immunoblot analysis, an approximately 100-kDa Df band was the most reactive to anti-Al IgG. The present study is the first step towards the establishment of animal models to study the relationship between Ascaris infection and mite-induced allergic diseases.

  12. A review of UHMWPE wear-induced osteolysis: the role for early detection of the immune response.

    Science.gov (United States)

    Kandahari, Adrese M; Yang, Xinlin; Laroche, Kevin A; Dighe, Abhijit S; Pan, Dongfeng; Cui, Quanjun

    2016-01-01

    In a world where increasing joint arthroplasties are being performed on increasingly younger patients, osteolysis as the leading cause of failure after total joint arthroplasty (TJA) has gained considerable attention. Ultra-high molecular weight polyethylene wear-induced osteolysis is the process by which prosthetic debris mechanically released from the surface of prosthetic joints induces an immune response that favors bone catabolism, resulting in loosening of prostheses with eventual failure or fracture. The immune response initiated is innate in that it is nonspecific and self-propagating, with monocytic cells and osteoclasts being the main effectors. To date, detecting disease early enough to implement effective intervention without unwanted systemic side effects has been a major barrier. These barriers can be overcome using newer in vivo imaging techniques and modules linked with fluorescence and/or chemotherapies. We discuss the pathogenesis of osteolysis, and provide discussion of the challenges with imaging and therapeutics. We describe a positron emission tomography imaging cinnamoyl-Phe-(D)-Leu-Phe-(D)-Leu-Phe-Lys module, specific to macrophages, which holds promise in early detection of disease and localization of treatment. Further research and increased collaboration among therapeutic and three-dimensional imaging researchers are essential in realizing a solution to clinical osteolysis in TJA.

  13. Engagement of specific innate immune signaling pathways during Porphyromonas gingivalis induced chronic inflammation and atherosclerosis.

    Science.gov (United States)

    Gibson, Frank C; Ukai, Takashi; Genco, Caroline A

    2008-01-01

    Toll-like receptors (TLRs) are a group of pathogen-associated molecular pattern receptors, which play an important role in innate immune signaling in response to microbial infection. It has been demonstrated that TLRs are differentially up regulated in response to microbial infection and chronic inflammatory diseases such as atherosclerosis. The expression of TLRs are markedly augmented in human atherosclerotic lesions and this occurs preferentially by endothelial cells and macrophages in areas infiltrated with inflammatory cells. Furthermore polymorphisms in the human gene encoding one TLR receptor (TLR4) which attenuates receptor signaling and diminishes the inflammatory response to gram-negative pathogens, is associated with low levels of certain circulating mediators of inflammation and a decreased risk for atherosclerosis in humans. Recent advances have established a fundamental role for inflammation in mediating all stages of atherosclerosis. However, the triggers that initiate and sustain the inflammatory process have not been definitively identified. Although definitive proof of a role of infection contributing to atherogenesis is lacking, multiple investigations have demonstrated that infectious agents evoke cellular and molecular changes supportive of such a role. Evidence in humans suggesting that periodontal infection predisposes to atherosclerosis is derived from studies demonstrating that the periodontal pathogen Porphyromonas gingivalis resides in the wall of atherosclerotic vessels and seroepidemiological studies demonstrating an association between pathogen-specific IgG antibodies and atherosclerosis. Our recent work with P. gingivalis has demonstrated the effectiveness of specific intervention strategies (immunization) in the prevention of pathogen-accelerated atherosclerosis. We have also established that the inflammatory signaling pathways that P. gingivalis utilizes is dependent on the cell type and this specificity clearly influences innate

  14. Dispositional optimism and stress-induced changes in immunity and negative mood

    OpenAIRE

    Brydon, L; Walker, C; Wawrzyniak, A. J.; Chart, H.; Steptoe, A.

    2009-01-01

    Evidence suggests that optimism may be protective for health during times of heightened stress, yet the mechanisms involved remain unclear. in a double-blind placebo-controlled study, we recently showed that acute psychological stress and an immune stimulus (Typhim-Vi typhoid vaccine) synergistically increased serum levels of interleukin-6 (IL-6) and negative mood in 59 healthy men. Here we carried out further analysis of this sample to investigate the relationship between dispositional optim...

  15. Onset and duration of immunity in guinea pigs and mice induced with different Q fever vaccines.

    Science.gov (United States)

    Kazár, J; Votruba, D; Propper, P; Schramek, S

    1986-11-01

    Protective effects of different types of Q fever vaccines, namely untreated Coxiella burnetii phase I cells (Cb I) or Cb I cells treated with chloroform-methanol (CM) mixture (Cb I-CM) and of a Q fever chemovaccine obtained by trichloroacetic acid extraction (TCAE) from intact Cb I cells, were compared in mice and guinea pigs at different intervals after intraperitoneal (i.p.) or subcutaneous (s.c.) immunizations. The highest degree of protection at all intervals studied was achieved with Cb I cells, irrespective of the route of immunization and i.p. or aerosol challenge. This vaccine exerted a protective effect in guinea pigs and mice as early as after one or two weeks post-immunization, the effect lasting for at least 40 weeks in mice (i.p. challenge) and 12 months in guinea pigs (aerosol challenge). Addition of small amount of Cb I cells to TCAE increased resistance of guinea pigs to aerosol challenge. Degree, onset and duration of protection to either type of virulent challenge afforded by Cb I-CM cells and TCAE was similar, but when compared with that of Cb I cells it was lower, started later (from the 2nd week in guinea pigs and the 3rd week in mice), and in mice it lasted for a shorter period (20 weeks only). The resistance to virulent challenge in guinea pigs did not depend on the levels of microagglutination (MA) antibodies and in mice it was reflected by delayed type hypersensitivity (DTH) reaction and adoptively transferred splenocytes, rather than by MA antibody titres and passive transfer of immune sera to recipient mice.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Expression of immune-related genes in goldfish gills induced by Dactylogyrus intermedius infections.

    Science.gov (United States)

    Lu, Cheng; Ling, Fei; Ji, Jie; Kang, Yu-Jun; Wang, Gao-Xue

    2013-01-01

    Dactylogyrus intermedius, an oviparous monogenean parasite, is regarded as a devastating pathogen in freshwater aquaculture and ornamental fish trade, and accounts for significant economic losses worldwide. The study was undertaken to determine the differential expression of immune-related genes TNFα1, TNFα2, IL-1β2, TGFβ, iNOSa and iNOSb in goldfish gills during D. intermedius infection by real-time quantitative PCR. The results show that the expression of the pro-inflammatory cytokines (IL-1β2, TNFα1 and TNFα2) and the anti-inflammatory cytokine (TGFβ) were up-regulated at day 7 p.i. (post infection). The mRNA levels of these cytokines returned to normal levels or were down-regulated at day 21 p.i. In the cases of iNOSa and iNOSb, a significant up-regulation in iNOSa transcription levels were seen at day 14 p.i. while the expression of iNOSb gene showed a distinct up-regulation at day 7 p.i. Additionally, this study was conducted to investigate the expression of immune-related genes in different degrees of goldfish experimentally infected with the monogenean D. intermedius. The results indicated that D. intermedius infection might regulate the fish immunity by showing differential expression levels of immune-related gene. The study confirms goldfish gill acts as an important source of inflammatory molecules, as well as an active modulator of local inflammation after initially infected with D. intermedius. Moreover, the results obtained in this study could be useful towards understanding the susceptibility of goldfish to D. intermedius and mechanisms involved in protection of goldfish to ectoparasitic infections.

  17. Phellinus linteus Extract Augments the Immune Response in Mitomycin C-Induced Immunodeficient Mice

    OpenAIRE

    2007-01-01

    Phellinus linteus is a fungus distributed throughout Japan, Korea and China. Boiled water-soluble extracts from P. linteus (PLW) have shown anti-tumor and immunomodulatory properties in experiments done by intraperitoneal treatment, or in in vitro cell cultures. This is the first investigation on how oral administration of PLW influences immune responses. Here, we established immunodeficient mice by mitomycin C (MMC) and then researched how PLW influenced plaque-forming cell (PFC) production ...

  18. Restraint stress alters immune parameters and induces oxidative stress in the mouse uterus during embryo implantation.

    Science.gov (United States)

    Liu, Guanhui; Dong, Yulan; Wang, Zixu; Cao, Jing; Chen, Yaoxing

    2014-12-01

    The influence of stress on embryo implantation is not well understood. Prior studies have focused on later gestational stages and the long-term impact of stress on immune function. The objective of this study is to investigate the effects of restraint stress on the immune parameters and the oxidative states of the uterus during implantation. In this study, pregnant CD1 mice were subjected to restraint stress (4 h/d) on embryonic day 1 (E1) and sacrificed on E3, E5, and E7. Maternal plasma corticosterone (CORT) secretion and implantation sites in the uterus were examined. The uterine (excluding embryos) homogenate and uterine lymphocytes were collected to examine oxidative stress states and associated immune parameters. The results demonstrated that restraint stress increased maternal plasma CORT secretion and reduced the number of implantation sites by 15.3% on E5 and by 26.1% on E7. Moreover, restraint stress decreased the density of uterine natural killer (uNK) cells in the endometrium by 22.1-47.9% and increased the density of mast cells in the myometrium by 55.6-76.9%. Restraint stress remarkably decreased the CD3(+)CD4(+) T/CD3(+)CD8(+) T cell ratio (by 26.2-28.9%) and attenuated uterine lymphocyte proliferation and secretion of cytokines. In addition, restraint stress threatened the intracellular equilibrium between oxidants and antioxidants, resulting in decreased glutathione peroxidase (GSH-PX) (32.2% and 45.7%), superoxide dismutase (SOD) (15.5% and 26.1%), and total antioxidant capacity (T-AOC) (18.4% and 18.2%) activities and increased malondialdehyde (MDA) (34.4% and 43.0%) contents on E5 and E7. In conclusion, these findings demonstrate that restraint stress causes abnormal implantation and negatively impacts immune parameters in association with oxidative stress in mice.

  19. Immune tolerance induced using plasma exchange and rituximab in an infantile Pompe disease patient.

    Science.gov (United States)

    Deodato, Federica; Ginocchio, Virginia Maria; Onofri, Alfredo; Grutter, Giorgia; Germani, Alessandro; Dionisi-Vici, Carlo

    2014-06-01

    Infantile Pompe disease, resulting from deficiency of lysosomal acid α-glucosidase, requires enzyme replacement therapy with recombinant human acid α-glucosidase. Most patients develop antirecombinant human acid α-glucosidase antibodies, leading to reduced response to enzyme therapy in a subgroup of them. Aiming to improve treatment response, several immune tolerance induction strategies have been explored. We describe a patient with life-threatening infusion-associated reactions presenting anti-recombinant human acid α-glucosidase antibodies. He was successfully treated with an immune tolerance induction protocol, consisting of plasma exchange combined with a single dose of rituximab. Immediate reduction of antibody titer was obtained and enzyme therapy was resumed without infusion-associated reactions. Twenty-two months later, immunoglobulin G titer remained below 1:100. In conclusion, we applied a short-course immune tolerance induction strategy in a patient with severe infusion-associated reactions and anti-recombinant human acid α-glucosidase antibodies, leading to early and persisting reduction of antibody titer, in the absence of significant adverse events.

  20. The cell surface receptor Slamf6 modulates innate immune responses during Citrobacter rodentium-induced colitis.

    Science.gov (United States)

    van Driel, Boaz; Wang, Guoxing; Liao, Gongxian; Halibozek, Peter J; Keszei, Marton; O'Keeffe, Michael S; Bhan, Atul K; Wang, Ninghai; Terhorst, Cox

    2015-09-01

    The homophilic cell surface receptors CD150 (Slamf1) and CD352 (Slamf6) are known to modulate adaptive immune responses. Although the Th17 response was enhanced in Slamf6(-/-) C57BL/6 mice upon oral infection with Citrobacter rodentium, the pathologic consequences are indistinguishable from an infection of wild-type C57BL/6 mice. Using a reporter-based binding assay, we show that Slamf6 can engage structures on the outer cell membrane of several Gram(-) bacteria. Therefore, we examined whether Slamf6, like Slamf1, is also involved in innate responses to bacteria and regulates peripheral inflammation by assessing the outcome of C. rodentium infections in Rag(-/-) mice. Surprisingly, the pathology and immune responses in the lamina propria of C. rodentium-infected Slamf6(-/-) Rag(-/-) mice were markedly reduced as compared with those of Rag(-/-) mice. Infiltration of inflammatory phagocytes into the lamina propria was consistently lower in Slamf6(-/-) Rag(-/-) mice than in Rag(-/-) animals. Concomitant with the reduced systemic translocation of the bacteria was an enhanced production of IL-22, suggesting that Slamf6 suppresses a mucosal protective program. Furthermore, administering a mAb (330) that inhibits bacterial interactions with Slamf6 to Rag(-/-) mice ameliorated the infection compared with a control antibody. We conclude that Slamf6-mediated interactions of colonic innate immune cells with specific Gram(-) bacteria reduce mucosal protection and enhance inflammation, contributing to lethal colitis that is caused by C. rodentium infections in Rag(-/-) mice.

  1. Influenza A induces dysfunctional immunity and death in MeCP2-overexpressing mice

    Science.gov (United States)

    Cronk, James C.; Herz, Jasmin; Kim, Taeg S.; Louveau, Antoine; Moser, Emily K.; Smirnov, Igor; Tung, Kenneth S.; Braciale, Thomas J.

    2017-01-01

    Loss of function or overexpression of methyl-CpG-binding protein 2 (MeCP2) results in the severe neurodevelopmental disorders Rett syndrome and MeCP2 duplication syndrome, respectively. MeCP2 plays a critical role in neuronal function and the function of cells throughout the body. It has been previously demonstrated that MeCP2 regulates T cell function and macrophage response to multiple stimuli, and that immune-mediated rescue imparts significant benefit in Mecp2-null mice. Unlike Rett syndrome, MeCP2 duplication syndrome results in chronic, severe respiratory infections, which represent a significant cause of patient morbidity and mortality. Here, we demonstrate that MeCP2Tg3 mice, which overexpress MeCP2 at levels 3- to 5-fold higher than normal, are hypersensitive to influenza A/PR/8/34 infection. Prior to death, MeCP2Tg3 mice experienced a host of complications during infection, including neutrophilia, increased cytokine production, excessive corticosterone levels, defective adaptive immunity, and vascular pathology characterized by impaired perfusion and pulmonary hemorrhage. Importantly, we found that radioresistant cells are essential to infection-related death after bone marrow transplantation. In all, these results demonstrate that influenza A infection in MeCP2Tg3 mice results in pathology affecting both immune and nonhematopoietic cells, suggesting that failure to effectively respond and clear viral respiratory infection has a complex, multicompartment etiology in the context of MeCP2 overexpression. PMID:28138553

  2. Staphylococcus aureus infection induces protein A–mediated immune evasion in humans

    Science.gov (United States)

    Pauli, Noel T.; Kim, Hwan Keun; Falugi, Fabiana; Huang, Min; Dulac, John; Henry Dunand, Carole; Zheng, Nai-Ying; Kaur, Kaval; Andrews, Sarah F.; Huang, Yunping; DeDent, Andrea; Frank, Karen M.; Charnot-Katsikas, Angella; Schneewind, Olaf

    2014-01-01

    Staphylococcus aureus bacterial infection commonly results in chronic or recurrent disease, suggesting that humoral memory responses are hampered. Understanding how S. aureus subverts the immune response is critical for the rescue of host natural humoral immunity and vaccine development. S. aureus expresses the virulence factor Protein A (SpA) on all clinical isolates, and SpA has been shown in mice to expand and ablate variable heavy 3 (VH3) idiotype B cells. The effects of SpA during natural infection, however, have not been addressed. Acutely activated B cells, or plasmablasts (PBs), were analyzed to dissect the ongoing immune response to infection through the production of monoclonal antibodies (mAbs). The B cells that were activated by infection had a highly limited response. When screened against multiple S. aureus antigens, only high-affinity binding to SpA was observed. Consistently, PBs underwent affinity maturation, but their B cell receptors demonstrated significant bias toward the VH3 idiotype. These data suggest that the superantigenic activity of SpA leads to immunodominance, limiting host responses to other S. aureus virulence factors that would be necessary for protection and memory formation. PMID:25348152

  3. Pentavalent outer membrane vesicles of Vibrio cholerae induce adaptive immune response and protective efficacy in both adult and passive suckling mice models.

    Science.gov (United States)

    Sinha, Ritam; Koley, Hemanta; Nag, Dhrubajyoti; Mitra, Soma; Mukhopadhyay, Asish K; Chattopadhyay, Brajadulal

    2015-03-01

    Recently, we demonstrated oral immunizations with single serotype outer membrane vesicles of Vibrio cholerae induced serogroup specific protective immunity in the RITARD model. In our present study, we advanced our research by formulating multi-serotype outer membrane vesicles, mixing the OMVs of five virulent V. cholerae strains. Four doses of oral immunization with cholera pentavalent outer membrane vesicles (CPMVs) induced V. cholerae specific B and T cell responses. CPMVs-immunized mice generated long lasting serum IgG, IgA, IgM as well as mucosal sIgA and also elicited a higher percentage of CD4+ T cell distribution in spleen. Our study revealed that in vitro CPMVs-activated dendritic cells were secreting T cell polarizing cytokines, IL-12p40, IL-4, IL-6 and IL-1β. Moreover, purified splenic CD4+ T cells of immunized mice also secreted IL-4, IL-13 and IL-17 cytokines, indicating the initiation of Th2 and Th17 cell mediated immune responses. CPMVs immunized adult female mice and their offspring were significantly protected from heterologous challenge with wild type V. cholerae. CPMVs could be exploited for the development of a novel non-living vaccine against circulating cholera in near future.

  4. Stimulatory effects of Cuminum cyminum and flavonoid glycoside on Cyclosporine-A and restraint stress induced immune-suppression in Swiss albino mice.

    Science.gov (United States)

    Chauhan, Prashant Singh; Satti, Naresh Kumar; Suri, Krishan Avtar; Amina, Musarat; Bani, Sarang

    2010-04-15

    Many herbs and spices are known to modulate the immune system and have been shown to restore the immunity in immuno-compromised individuals. Spices generally used to increase the taste and flavor of food also has the history of usage as an ayurvedic medicine. Therefore to explore the health modulating effects of Cuminum cyminum and to identify the active compound, immunomodulatory properties were evaluated using flowcytometry and ELISA in normal and immune-suppressed animals. C. cyminum and compound 1 stimulated the T cells and Th1 cytokines expression in normal animals. Swiss albino mice subjected to Cyclosporine-A induced immune-suppression were dosed orally with C. cyminum (25, 50, 100 and 200 mg/kg) on consecutive days. The results showed that administration significantly increased T cells (CD4 and CD8) count and Th1 predominant immune response in a dose dependent manner thereby suggesting immunomodulatory activity through modulation of T lymphocytes expression. In restraint stress induced immune-suppressed animals, compound 1 countered the depleted T lymphocytes, decreased the elevated corticosterone levels and size of adrenal glands and increased the weight of thymus and spleen. Based on the data we may conclude that C. cyminum is a potent immunomodulator and may develop as a lead to recover the immunity of immuno-compromised individuals.

  5. Impairment of blood brain barrier is related with the neuroinflammation induced peripheral immune status in intracerebroventricular colchicine injected rats: An experimental study with mannitol.

    Science.gov (United States)

    Sil, Susmita; Ghosh, Arijit; Ghosh, Tusharkanti

    2016-09-01

    The neurodegeneration in AD patients may be associated with changes of peripheral immune responses. Some peripheral immune responses are altered due to neuroinflammation in colchicine induced AD (cAD) rats. The leaky blood brain barrier (BBB) in cAD-rats may be involved in inducing peripheral inflammation, though there is no report in this regard. Therefore, the present study was designed to investigate the role of BBB in cADrats by altering the BBB in a time dependent manner with injection (i.v.) of mannitol (BBB opener). The inflammatory markers in the brain and serum along with the peripheral immune responses were measured after 30 and 60min of mannitol injection in cAD rats. The results showed higher inflammatory markers in the hippocampus and serum along with alterations in peripheral immune parameters in cAD rats. Although the hippocampal inflammatory markers did not further change after mannitol injection in cAD rats, the serum inflammatory markers and peripheral immune responses were altered and these changes were greater after 60min than that of 30min of mannitol injection. The present study shows that the peripheral immune responses in cAD rats after 30 and 60min of mannitol injection are related to magnitude of impairment of BBB in these conditions. It can be concluded from this study that impairment of BBB in cAD rats is related to the changes of peripheral immune responses observed in that condition.

  6. Regulation of Toll-like receptor 4-mediated immune responses through Pasteurella multocida toxin-induced G protein signalling

    Directory of Open Access Journals (Sweden)

    Hildebrand Dagmar

    2012-08-01

    Full Text Available Abstract Background Lipopolysaccharide (LPS-triggered Toll-like receptor (TLR 4-signalling belongs to the key innate defence mechanisms upon infection with Gram-negative bacteria and triggers the subsequent activation of adaptive immunity. There is an active crosstalk between TLR4-mediated and other signalling cascades to secure an effective immune response, but also to prevent excessive inflammation. Many pathogens induce signalling cascades via secreted factors that interfere with TLR signalling to modify and presumably escape the host response. In this context heterotrimeric G proteins and their coupled receptors have been recognized as major cellular targets. Toxigenic strains of Gram-negative Pasteurella multocida produce a toxin (PMT that constitutively activates the heterotrimeric G proteins Gαq, Gα13 and Gαi independently of G protein-coupled receptors through deamidation. PMT is known to induce signalling events involved in cell proliferation, cell survival and cytoskeleton rearrangement. Results Here we show that the activation of heterotrimeric G proteins through PMT suppresses LPS-stimulated IL-12p40 production and eventually impairs the T cell-activating ability of LPS-treated monocytes. This inhibition of TLR4-induced IL-12p40 expression is mediated by Gαi-triggered signalling as well as by Gβγ-dependent activation of PI3kinase and JNK. Taken together we propose the following model: LPS stimulates TLR4-mediated activation of the NFĸB-pathway and thereby the production of TNF-α, IL-6 and IL-12p40. PMT inhibits the production of IL-12p40 by Gαi-mediated inhibition of adenylate cyclase and cAMP accumulation and by Gβγ-mediated activation of PI3kinase and JNK activation. Conclusions On the basis of the experiments with PMT this study gives an example of a pathogen-induced interaction between G protein-mediated and TLR4-triggered signalling and illustrates how a bacterial toxin is able to interfere with the host’s immune

  7. Downmodulation of Vaccine-Induced Immunity and Protection against the Intracellular Bacterium Francisella tularensis by the Inhibitory Receptor FcγRIIB

    Directory of Open Access Journals (Sweden)

    Brian J. Franz

    2015-01-01

    Full Text Available Fc gamma receptor IIB (FcγRIIB is the only Fc gamma receptor (FcγR which negatively regulates the immune response, when engaged by antigen- (Ag- antibody (Ab complexes. Thus, the generation of Ag-specific IgG in response to infection or immunization has the potential to downmodulate immune protection against infection. Therefore, we sought to determine the impact of FcγRIIB on immune protection against Francisella tularensis (Ft, a Category A biothreat agent. We utilized inactivated Ft (iFt as an immunogen. Naïve and iFt-immunized FcγRIIB knockout (KO or wildtype (WT mice were challenged with Ft-live vaccine strain (LVS. While no significant difference in survival between naïve FcγRIIB KO versus WT mice was observed, iFt-immunized FcγRIIB KO mice were significantly better protected than iFt-immunized WT mice. Ft-specific IgA in serum and bronchial alveolar lavage, as well as IFN-γ, IL-10, and TNF-α production by splenocytes harvested from iFt-immunized FcγRIIB KO, were also significantly elevated. In addition, iFt-immunized FcγRIIB KO mice exhibited a reduction in proinflammatory cytokine levels in vivo at 5 days after challenge, which correlates with increased survival following Ft-LVS challenge in published studies. Thus, these studies demonstrate for the first time the ability of FcγRIIB to regulate vaccine-induced IgA production and downmodulate immunity and protection. The immune mechanisms behind the above observations and their potential impact on vaccine development are discussed.

  8. Induction of Wnt-inducible signaling protein-1 correlates with invasive breast cancer oncogenesis and reduced type 1 cell-mediated cytotoxic immunity: a retrospective study.

    Science.gov (United States)

    Klinke, David J

    2014-01-01

    Innate and type 1 cell-mediated cytotoxic immunity function as important extracellular control mechanisms that maintain cellular homeostasis. Interleukin-12 (IL12) is an important cytokine that links innate immunity with type 1 cell-mediated cytotoxic immunity. We recently observed in vitro that tumor-derived Wnt-inducible signaling protein-1 (WISP1) exerts paracrine action to suppress IL12 signaling. The objective of this retrospective study was three fold: 1) to determine whether a gene signature associated with type 1 cell-mediated cytotoxic immunity was correlated with overall survival, 2) to determine whether WISP1 expression is increased in invasive breast cancer, and 3) to determine whether a gene signature consistent with inhibition of IL12 signaling correlates with WISP1 expression. Clinical information and mRNA expression for genes associated with anti-tumor immunity were obtained from the invasive breast cancer arm of the Cancer Genome Atlas study. Patient cohorts were identified using hierarchical clustering. The immune signatures associated with the patient cohorts were interpreted using model-based inference of immune polarization. Reverse phase protein array, tissue microarray, and quantitative flow cytometry in breast cancer cell lines were used to validate observed differences in gene expression. We found that type 1 cell-mediated cytotoxic immunity was correlated with increased survival in patients with invasive breast cancer, especially in patients with invasive triple negative breast cancer. Oncogenic transformation in invasive breast cancer was associated with an increase in WISP1. The gene expression signature in invasive breast cancer was consistent with WISP1 as a paracrine inhibitor of type 1 cell-mediated immunity through inhibiting IL12 signaling and promoting type 2 immunity. Moreover, model-based inference helped identify appropriate immune signatures that can be used as design constraints in genetically engineering better pre

  9. Finding immune gene expression differences induced by marine bacterial pathogens in the deep-sea hydrothermal vent mussel Bathymodiolus azoricus

    Directory of Open Access Journals (Sweden)

    R. Bettencourt

    2013-02-01

    Full Text Available The deep-sea hydrothermal vent mussel Bathymodiolus azoricus lives in a natural environment characterized by extreme conditions of hydrostatic pressure, temperature, pH, high concentrations of heavy metals, methane and hydrogen sulphide. The deep-sea vent biological systems represent thus the opportunity to study and provide new insights into the basic physiological principles that govern the defense mechanisms in vent animals and to understand how they cope with microbial infections. Hence, the importance of understanding this animal's innate defense mechanisms, by examining its differential immune gene expressions toward different pathogenic agents. In the present study, B. azoricus mussels were infected with single suspensions of marine bacterial pathogens, consisting of Vibrio splendidus, Vibrio alginolyticus, or Vibrio anguillarum, and a pool of these Vibrio strains. Flavobacterium suspensions were also used as an irrelevant bacterium. Gene expression analyses were carried out using gill samples from animals dissected at 12 h and 24 h post-infection times by means of quantitative-Polymerase Chain Reaction aimed at targeting several immune genes. We also performed SDS-PAGE protein analyses from the same gill tissues. We concluded that there are different levels of immune gene expression between the 12 h and 24 h exposure times to various bacterial suspensions. Our results from qPCR demonstrated a general pattern of gene expression, decreasing from 12 h over 24 h post-infection. Among the bacteria tested, Flavobacterium is the microorganism species inducing the highest gene expression level in 12 h post-infections animals. The 24 h infected animals revealed, however, greater gene expression levels, using V. splendidus as the infectious agent. The SDS-PAGE analysis also pointed at protein profile differences between 12 h and 24 h, particularly around a protein area, of 18 KDa molecular mass, where most dissimilarities were found. Multivariate

  10. Focused examination of the intestinal lamina propria yields greater molecular insight into mechanisms underlying SIV induced immune dysfunction.

    Directory of Open Access Journals (Sweden)

    Mahesh Mohan

    Full Text Available BACKGROUND: The Gastrointestinal (GI tract is critical to AIDS pathogenesis as it is the primary site for viral transmission and a major site of viral replication and CD4(+ T cell destruction. Consequently GI disease, a major complication of HIV/SIV infection can facilitate translocation of lumenal bacterial products causing localized/systemic immune activation leading to AIDS progression. METHODOLOGY/PRINCIPAL FINDINGS: To better understand the molecular mechanisms underlying GI disease we analyzed global gene expression profiles sequentially in the intestine of the same animals prior to and at 21 and 90d post SIV infection (PI. More importantly we maximized information gathering by examining distinct mucosal components (intraepithelial lymphocytes, lamina propria leukocytes [LPL], epithelium and fibrovascular stroma separately. The use of sequential intestinal resections combined with focused examination of distinct mucosal compartments represents novel approaches not previously attempted. Here we report data pertaining to the LPL. A significant increase (±1.7-fold in immune defense/inflammation, cell adhesion/migration, cell signaling, transcription and cell division/differentiation genes were observed at 21 and 90d PI. Genes associated with the JAK-STAT pathway (IL21, IL12R, STAT5A, IL10, SOCS1 and T-cell activation (NFATc1, CDK6, Gelsolin, Moesin were notably upregulated at 21d PI. Markedly downregulated genes at 21d PI included IL17D/IL27 and IL28B/IFNγ3 (anti-HIV/viral, activation induced cytidine deaminase (B-cell function and approximately 57 genes regulating oxidative phosphorylation, a critical metabolic shift associated with T-cell activation. The 90d transcriptome revealed further augmentation of inflammation (CXCL11, chitinase-1, JNK3, immune activation (CD38, semaphorin7A, CD109, B-cell dysfunction (CD70, intestinal microbial translocation (Lipopolysaccharide binding protein and mitochondrial antiviral signaling (NLRX1 genes

  11. Mesenchymal stem cells derived from human exfoliated deciduous teeth (SHEDs induce immune modulatory profile in monocyte-derived dendritic cells.

    Directory of Open Access Journals (Sweden)

    Fernando de Sá Silva

    Full Text Available BACKGROUND: Mesenchymal stem cells have prominent immune modulatory properties, which may have clinical applications; however their major source, bone marrow, is of limited availability. On the other hand, mesenchymal stem cells derived from human exfoliated deciduous teeth (SHEDs are readily accessible, but their immune regulatory properties have not been completely investigated. This study was designed, therefore, to evaluate the SHEDs influence on DCs differentiation, maturation, ability to activate T cells and to expand CD4(+Foxp3(+ T cells. METHODOLOGY/PRINCIPAL FINDINGS: The experiments were based in cellular co-culture during differentiation and maturation of monocyte derived-DCs (moDCs, with, or not, presence of SHEDs. After co-culture with SHEDs, (moDCs presented lower expression of BDCA-1 and CD11c, in comparison to DC cultivated without SHEDs. CD40, CD80, CD83 and CD86 levels were also decreased in mature DCs (mDCs after co-cultivation with SHEDs. To assess the ability of SHEDs-exposed moDCs to modulate T cell responses, the former were separated from SHEDs, and co-cultured with peripheral blood lymphocytes. After 5 days, the proliferation of CD4(+ and CD8(+ T cells was evaluated and found to be lower than that induced by moDCs cultivated without SHEDs. In addition, an increase in the proportion of CD4(+Foxp3(+IL-10(+ T cells was observed among cells stimulated by mature moDCs that were previously cultivated with SHEDs. Soluble factors released during co-cultures also showed a reduction in the pro-inflammatory cytokines (IL-2, TNF-α and IFN-γ, and an increase in the anti-inflammatory molecule IL-10. CONCLUSION/SIGNIFICANCE: This study shows that SHEDs induce an immune regulatory phenotype in moDCs cells, evidenced by changes in maturation and differentiation rates, inhibition of lymphocyte stimulation and ability to expand CD4(+Foxp3(+ T cells. Further characterization and validation of this phenomenon could support the use of SHEDs

  12. Ozone-Induced Type 2 Immunity in Nasal Airways. Development and Lymphoid Cell Dependence in Mice.

    Science.gov (United States)

    Ong, Chee Bing; Kumagai, Kazuyoshi; Brooks, Phillip T; Brandenberger, Christina; Lewandowski, Ryan P; Jackson-Humbles, Daven N; Nault, Rance; Zacharewski, Timothy R; Wagner, James G; Harkema, Jack R

    2016-03-01

    Inhalation exposures to ozone commonly encountered in photochemical smog cause airway injury and inflammation. Elevated ambient ozone concentrations have been epidemiologically associated with nasal airway activation of neutrophils and eosinophils. In the present study, we elucidated the temporal onset and lymphoid cell dependency of eosinophilic rhinitis and associated epithelial changes in mice repeatedly exposed to ozone. Lymphoid cell-sufficient C57BL/6 mice were exposed to 0 or 0.5 parts per million (ppm) ozone for 1, 2, 4, or 9 consecutive weekdays (4 h/d). Lymphoid cell-deficient, Rag2(-/-)Il2rg(-/-) mice were similarly exposed for 9 weekdays. Nasal tissues were taken at 2 or 24 hours after exposure for morphometric and gene expression analyses. C57BL/6 mice exposed to ozone for 1 day had acute neutrophilic rhinitis, with airway epithelial necrosis and overexpression of mucosal Ccl2 (MCP-1), Ccl11 (eotaxin), Cxcl1 (KC), Cxcl2 (MIP-2), Hmox1, Il1b, Il5, Il6, Il13, and Tnf mRNA. In contrast, 9-day ozone exposure elicited type 2 immune responses in C57BL/6 mice, with mucosal mRNA overexpression of Arg1, Ccl8 (MCP-2), Ccl11, Chil4 (Ym2), Clca1 (Gob5), Il5, Il10, and Il13; increased density of mucosal eosinophils; and nasal epithelial remodeling (e.g., hyperplasia/hypertrophy, mucous cell metaplasia, hyalinosis, and increased YM1/YM2 proteins). Rag2(-/-)Il2rg(-/-) mice exposed to ozone for 9 days, however, had no nasal pathology or overexpression of transcripts related to type 2 immunity. These results provide a plausible paradigm for the activation of eosinophilic inflammation and type 2 immunity found in the nasal airways of nonatopic individuals subjected to episodic exposures to high ambient ozone.

  13. Interferon-γ Added During Bacillus Calmette-Guerin Induced Dendritic Cell Maturation Stimulates Potent Th1 Immune Responses

    Directory of Open Access Journals (Sweden)

    Pestano Linda A

    2003-10-01

    Full Text Available Abstract Dendritic cells (DC are increasingly prepared in vitro for use in immunotherapy trials. Mature DC express high levels of surface molecules needed for T cell activation and are superior at antigen-presentation than immature DC. Bacillus Calmette-Guerin (BCG is one of several products known to induce DC maturation, and interferon (IFN-γ has been shown to enhance the activity of DC stimulated with certain maturation factors. In this study, we investigated the use of IFN-γ in combination with the powerful maturation agent, BCG. The treatment of immature DC with IFN-γ plus BCG led to the upregulation of CD54, CD80, and CD86 in comparison with BCG treatment alone. In MLR or recall immune responses, the addition of IFN-γ at the time of BCG-treatment did not increase the number of antigen-specific T cells but enhanced the development of IFN-γ-producing Th1 cells. In primary immune responses, on the other hand, BCG and IFN-γ co-treated DC stimulated higher proportions of specific T cells as well as IFN-γ secretion by these T cells. Thus the use of IFN-γ during BCG-induced DC maturation differentially affects the nature of recall versus naïve antigen-specific T-cell responses. IFN-γ co-treatment with BCG was found to induce IL-12 and, in some instances, inhibit IL-10 secretion by DC. These findings greatly enhance the potential of BCG-matured dendritic cells for use in cancer immunotherapy.

  14. Immunization of fucose-containing polysaccharides from Reishi mushroom induces antibodies to tumor-associated Globo H-series epitopes.

    Science.gov (United States)

    Liao, Shih-Fen; Liang, Chi-Hui; Ho, Ming-Yi; Hsu, Tsui-Ling; Tsai, Tsung-I; Hsieh, Yves S-Y; Tsai, Chih-Ming; Li, Shiou-Ting; Cheng, Yang-Yu; Tsao, Shu-Ming; Lin, Tung-Yi; Lin, Zong-Yan; Yang, Wen-Bin; Ren, Chien-Tai; Lin, Kuo-I; Khoo, Kay-Hooi; Lin, Chun-Hung; Hsu, Hsien-Yeh; Wu, Chung-Yi; Wong, Chi-Huey

    2013-08-20

    Carbohydrate-based vaccines have shown therapeutic efficacy for infectious disease and cancer. The mushroom Ganoderma lucidum (Reishi) containing complex polysaccharides has been used as antitumor supplement, but the mechanism of immune response has rarely been studied. Here, we show that the mice immunized with a l-fucose (Fuc)-enriched Reishi polysaccharide fraction (designated as FMS) induce antibodies against murine Lewis lung carcinoma cells, with increased antibody-mediated cytotoxicity and reduced production of tumor-associated inflammatory mediators (in particular, monocyte chemoattractant protein-1). The mice showed a significant increase in the peritoneal B1 B-cell population, suggesting FMS-mediated anti-glycan IgM production. Furthermore, the glycan microarray analysis of FMS-induced antisera displayed a high specificity toward tumor-associated glycans, with the antigenic structure located in the nonreducing termini (i.e., Fucα1-2Galβ1-3GalNAc-R, where Gal, GalNAc, and R represent, respectively, D-galactose, D-N-acetyl galactosamine, and reducing end), typically found in Globo H and related tumor antigens. The composition of FMS contains mainly the backbone of 1,4-mannan and 1,6-α-galactan and through the Fucα1-2Gal, Fucα1-3/4Man, Fucα1-4Xyl, and Fucα1-2Fuc linkages (where Man and Xyl represent d-mannose and d-xylose, respectively), underlying the molecular basis of the FMS-induced IgM antibodies against tumor-specific glycans.

  15. Vaccination with TAT-antigen fusion protein induces protective, CD8(+) T cell-mediated immunity against Leishmania major.

    Science.gov (United States)

    Kronenberg, Katharina; Brosch, Sven; Butsch, Florian; Tada, Yayoi; Shibagaki, Naotaka; Udey, Mark C; von Stebut, Esther

    2010-11-01

    In murine leishmaniasis, healing is mediated by IFN-γ-producing CD4(+) and CD8(+) T cells. Thus, an efficacious vaccine should induce Th1 and Tc1 cells. Dendritic cells (DCs) pulsed with exogenous proteins primarily induce strong CD4-dependent immunity; induction of CD8 responses has proven to be difficult. We evaluated the immunogenicity of fusion proteins comprising the protein transduction domain of HIV-1 TAT and the Leishmania antigen LACK (Leishmania homolog of receptors for activated C kinase), as TAT-fusion proteins facilitate major histocompatibility complex class I-dependent antigen presentation. In vitro, TAT-LACK-pulsed DCs induced stronger proliferation of Leishmania-specific CD8(+) T cells compared with DCs incubated with LACK alone. Vaccination with TAT-LACK-pulsed DCs or fusion proteins plus adjuvant in vivo significantly improved disease outcome in Leishmania major-infected mice and was superior to vaccination with DCs treated with LACK alone. Vaccination with DC+TAT-LACK resulted in stronger proliferation of CD8(+) T cells when compared with immunization with DC+LACK. Upon depletion of CD4(+) or CD8(+) T cells, TAT-LACK-mediated protection was lost. TAT-LACK-pulsed IL-12p40-deficient DCs did not promote protection in vivo. In summary, these data show that TAT-fusion proteins are superior in activating Leishmania-specific Tc1 cells when compared with antigen alone and suggest that IL-12-dependent preferential induction of antigen-specific CD8(+) cells promotes significant protection against this important human pathogen.

  16. Intradermal Immunization of Leishmania donovani Centrin Knock-Out Parasites in Combination with Salivary Protein LJM19 from Sand Fly Vector Induces a Durable Protective Immune Response in Hamsters.

    Directory of Open Access Journals (Sweden)

    Jacqueline Araújo Fiuza

    2016-01-01

    Full Text Available Visceral leishmaniasis (VL is a neglected tropical disease and is fatal if untreated. There is no vaccine available against leishmaniasis. The majority of patients with cutaneous leishmaniasis (CL or VL develop a long-term protective immunity after cure from infection, which indicates that development of an effective vaccine against leishmaniasis is possible. Such protection may also be achieved by immunization with live attenuated parasites that do not cause disease. We have previously reported a protective response in mice, hamsters and dogs with Leishmania donovani centrin gene knock-out parasites (LdCen-/-, a live attenuated parasite with a cell division specific centrin1 gene deletion. In this study we have explored the effects of salivary protein LJM19 as an adjuvant and intradermal (ID route of immunization on the efficacy of LdCen-/- parasites as a vaccine against virulent L. donovani.To explore the potential of a combination of LdCen-/- parasites and salivary protein LJM19 as vaccine antigens, LdCen-/- ID immunization followed by ID challenge with virulent L. donovani were performed in hamsters in a 9-month follow up study. We determined parasite burden (serial dilution, antibody production (ELISA and cytokine expression (qPCR in these animals. Compared to controls, animals immunized with LdCen-/- + LJM19 induced a strong antibody response, a reduction in spleen and liver parasite burden and a higher expression of pro-inflammatory cytokines after immunization and one month post-challenge. Additionally, a low parasite load in lymph nodes, spleen and liver, and a non-inflamed spleen was observed in immunized animals 9 months after the challenge infection.Our results demonstrate that an ID vaccination using LdCen-/-parasites in combination with sand fly salivary protein LJM19 has the capability to confer long lasting protection against visceral leishmaniasis that is comparable to intravenous or intracardial immunization.

  17. Intradermal Immunization of Leishmania donovani Centrin Knock-Out Parasites in Combination with Salivary Protein LJM19 from Sand Fly Vector Induces a Durable Protective Immune Response in Hamsters

    Science.gov (United States)

    Fiuza, Jacqueline Araújo; Dey, Ranadhir; Davenport, Dwann; Abdeladhim, Maha; Meneses, Claudio; Oliveira, Fabiano; Kamhawi, Shaden; Valenzuela, Jesus G.; Gannavaram, Sreenivas; Nakhasi, Hira L.

    2016-01-01

    Background Visceral leishmaniasis (VL) is a neglected tropical disease and is fatal if untreated. There is no vaccine available against leishmaniasis. The majority of patients with cutaneous leishmaniasis (CL) or VL develop a long-term protective immunity after cure from infection, which indicates that development of an effective vaccine against leishmaniasis is possible. Such protection may also be achieved by immunization with live attenuated parasites that do not cause disease. We have previously reported a protective response in mice, hamsters and dogs with Leishmania donovani centrin gene knock-out parasites (LdCen-/-), a live attenuated parasite with a cell division specific centrin1 gene deletion. In this study we have explored the effects of salivary protein LJM19 as an adjuvant and intradermal (ID) route of immunization on the efficacy of LdCen-/- parasites as a vaccine against virulent L. donovani. Methodology/Principal Findings To explore the potential of a combination of LdCen-/- parasites and salivary protein LJM19 as vaccine antigens, LdCen-/- ID immunization followed by ID challenge with virulent L. donovani were performed in hamsters in a 9-month follow up study. We determined parasite burden (serial dilution), antibody production (ELISA) and cytokine expression (qPCR) in these animals. Compared to controls, animals immunized with LdCen-/- + LJM19 induced a strong antibody response, a reduction in spleen and liver parasite burden and a higher expression of pro-inflammatory cytokines after immunization and one month post-challenge. Additionally, a low parasite load in lymph nodes, spleen and liver, and a non-inflamed spleen was observed in immunized animals 9 months after the challenge infection. Conclusions Our results demonstrate that an ID vaccination using LdCen-/-parasites in combination with sand fly salivary protein LJM19 has the capability to confer long lasting protection against visceral leishmaniasis that is comparable to intravenous or

  18. A polyvalent influenza DNA vaccine applied by needle-free intradermal delivery induces cross-reactive humoral and cellular immune responses in pigs

    DEFF Research Database (Denmark)

    Borggren, Marie; Nielsen, Jens; Karlsson, Ingrid;

    2016-01-01

    influenza in pigs, the development of more effective swine influenza vaccines inducing broader cross-protective immune responses is needed. Previously, we have shown that a polyvalent influenza DNA vaccine using vectors containing antibiotic resistance genes induced a broadly protective immune response......BACKGROUND: Pigs are natural hosts for influenza A viruses, and the infection is widely prevalent in swine herds throughout the world. Current commercial influenza vaccines for pigs induce a narrow immune response and are not very effective against antigenically diverse viruses. To control...... in pigs and ferrets using intradermal injection followed by electroporation. However, this vaccination approach is not practical in large swine herds, and DNA vaccine vectors containing antibiotic resistance genes are undesirable. OBJECTIVES: To investigate the immunogenicity of an optimized version...

  19. The hypersensitive induced reaction and leucine-rich repeat proteins regulate plant cell death associated with disease and plant immunity.

    Science.gov (United States)

    Choi, Hyong Woo; Kim, Young Jin; Hwang, Byung Kook

    2011-01-01

    Pathogen-induced programmed cell death (PCD) is intimately linked with disease resistance and susceptibility. However, the molecular components regulating PCD, including hypersensitive and susceptible cell death, are largely unknown in plants. In this study, we show that pathogen-induced Capsicum annuum hypersensitive induced reaction 1 (CaHIR1) and leucine-rich repeat 1 (CaLRR1) function as distinct plant PCD regulators in pepper plants during Xanthomonas campestris pv. vesicatoria infection. Confocal microscopy and protein gel blot analyses revealed that CaLRR1 and CaHIR1 localize to the extracellular matrix and plasma membrane (PM), respectively. Bimolecular fluorescent complementation and coimmunoprecipitation assays showed that the extracellular CaLRR1 specifically binds to the PM-located CaHIR1 in pepper leaves. Overexpression of CaHIR1 triggered pathogen-independent cell death in pepper and Nicotiana benthamiana plants but not in yeast cells. Virus-induced gene silencing (VIGS) of CaLRR1 and CaHIR1 distinctly strengthened and compromised hypersensitive and susceptible cell death in pepper plants, respectively. Endogenous salicylic acid levels and pathogenesis-related gene transcripts were elevated in CaHIR1-silenced plants. VIGS of NbLRR1 and NbHIR1, the N. benthamiana orthologs of CaLRR1 and CaHIR1, regulated Bax- and avrPto-/Pto-induced PCD. Taken together, these results suggest that leucine-rich repeat and hypersensitive induced reaction proteins may act as cell-death regulators associated with plant immunity and disease.

  20. Coagulin-L ameliorates TLR4 induced oxidative damage and immune response by regulating mitochondria and NOX-derived ROS.

    Science.gov (United States)

    Reddy, Sukka Santosh; Chauhan, Parul; Maurya, Preeti; Saini, Deepika; Yadav, Prem Prakash; Barthwal, Manoj Kumar

    2016-10-15

    Withanolides possess diverse biological and pharmacological activity but their immunomodulatory function is less realized. Hence, coagulin-L, a withanolide isolated from Withania coagulans Dunal has been studied for such an effect in human and murine cells, and mice model. Coagulin-L (1, 3, 10μM) exhibited immunomodulatory effect by suppressing TLR4 induced immune mediators such as cytokines (GMCSF, IFNα, IFNγ, IL-1α, IL-1Rα, IL-1β, IL-2, IL-2R, IL-4, IL-5, IL-6, IL-7, IL-10, IL-12 (p40/p70), IL-13, IL-15, IL-17), chemokines (IL-8/CXCL8, MIG/CXCL9, IP-10/CXCL10, KC, MCP-1/CCL2, MIP-1α/CCL3, MIP-1β/CCL4, RANTES/CCL5, eotaxin/CCL11), growth factors (FGF-basic, VEGF), nitric oxide and intracellular superoxide. Mechanistically, coagulin-L abrogated LPS induced total and mitochondrial ROS generation, NOX2, NOX4 mRNA expression, IRAK and MAPK (p38, JNK, ERK) activation. Coagulin-L also attenuated IκBα degradation, which prevented NFκB downstream iNOS expression and pro-inflammatory cytokine release. Furthermore, coagulin-L (10, 25, 50mg/kg, p.o.), undermined the LPS (10mg/kg, i.p.) induced endotoxemia response in mice as evinced from diminished cytokine release, nitric oxide, aortic p38 MAPK activation and endothelial tissue impairment besides suppressing NOX2 and NOX4 expression in liver and aorta. Moreover, coagulin-L also alleviated the ROS mediated oxidative damage which was assessed through protein carbonyl, lipid hydroperoxide, 8-isoprostane and 8-hydroxy-2-deoxyguanosine quantification. To extend, coagulin-L also suppressed carrageenan-induced paw edema and thioglycollate-induced peritonitis in mice. Therefore, coagulin-L can be of therapeutic importance in pathological conditions induced by oxidative damage.

  1. Bioinformatics analysis of the factors controlling type I IFN gene expression in autoimmune disease and virus-induced immunity

    Directory of Open Access Journals (Sweden)

    Di eFeng

    2013-09-01

    Full Text Available Patients with systemic lupus erythematosus (SLE and Sjögren's syndrome (SS display increased levels of type I IFN-induced genes. Plasmacytoid dendritic cells (PDCs are natural interferon producing cells and considered to be a primary source of IFN-α in these two diseases. Differential expression patterns of type I IFN inducible transcripts can be found in different immune cell subsets and in patients with both active and inactive autoimmune disease. A type I IFN gene signature generally consists of three groups of IFN-induced genes - those regulated in response to virus-induced type I IFN, those regulated by the IFN-induced mitogen-activated protein kinase/extracellular-regulated kinase (MAPK/ERK pathway, and those by the IFN-induced phosphoinositide-3 kinase (PI-3K pathway. These three groups of type I IFN-regulated genes control important cellular processes such as apoptosis, survival, adhesion, and chemotaxis, that when dysregulated, contribute to autoimmunity. With the recent generation of large datasets in the public domain from next-generation sequencing and DNA microarray experiments, one can perform detailed analyses of cell type-specific gene signatures as well as identify distinct transcription factors that differentially regulate these gene signatures. We have performed bioinformatics analysis of data in the public domain and experimental data from our lab to gain insight into the regulation of type I IFN gene expression. We have found that the genetic landscape of the IFNA and IFNB genes are occupied by transcription factors, such as insulators CTCF and cohesin, that negatively regulate transcription, as well as IRF5 and IRF7, that positively and distinctly regulate IFNA subtypes. A detailed understanding of the factors controlling type I IFN gene transcription will significantly aid in the identification and development of new therapeutic strategies targeting the IFN pathway in autoimmune disease.

  2. Sub-inhibitory tigecycline concentrations induce extracellular matrix binding protein Embp dependent Staphylococcus epidermidis biofilm formation and immune evasion.

    Science.gov (United States)

    Weiser, Julian; Henke, Hanae A; Hector, Nina; Both, Anna; Christner, Martin; Büttner, Henning; Kaplan, Jeffery B; Rohde, Holger

    2016-09-01

    Biofilm-associated Staphylococcus epidermidis implant infections are notoriously reluctant to antibiotic treatment. Here we studied the effect of sub-inhibitory concentrations of penicillin, oxacillin, vancomycin, daptomycin, linezolid and tigecycline on S. epidermidis 1585 biofilm formation, expression of extracellular matrix binding protein (Embp) and potential implications for S. epidermidis - macrophage interactions. Penicillin, vancomycin, daptomycin, and linezolid had no biofilm augmenting effect at any of the concentrations tested. In contrast, at sub-inhibitory concentrations tigecycline and oxacillin exhibited significant biofilm inducing activity. In S. epidermidis 1585, SarA is a negative regulator of giant 1 MDa Embp, and down regulation of sarA induces Embp-dependent assembly of a multi-layered biofilm architecture. Dot blot immune assays, confocal laser scanning microscopy, and qPCR showed that under biofilm inducing conditions, tigecycline augmented embp expression compared to the control grown without antibiotics. Conversely, expression of regulator sarA was suppressed, suggesting that tigecycline exerts its effects on embp expression through SarA. Tigecycline failed to induce biofilm formation in embp transposon mutant 1585-M135, proving that under these conditions Embp up-regulation is necessary for biofilm accumulation. As a functional consequence, tigecycline induced biofilm formation significantly impaired the up-take of S. epidermidis by mouse macrophage-like cell line J774A.1. Our data provide novel evidence for the molecular basis of antibiotic induced biofilm formation, a phenotype associated with inherently increased antimicrobial tolerance. While this could explain failure of antimicrobial therapies, persistence of S. epidermidis infections in the presence of sub-inhibitory antimicrobials is additionally propelled by biofilm-related impairment of macrophage-mediated pathogen eradication.

  3. A Lipopolysaccharide from Pantoea Agglomerans Is a Promising Adjuvant for Sublingual Vaccines to