WorldWideScience

Sample records for aeruginosa extracellular products

  1. Pseudomonas aeruginosa extracellular products inhibit staphylococcal growth, and disrupt established biofilms produced by Staphylococcus epidermidis

    DEFF Research Database (Denmark)

    Qin, Zhiqiang; Yang, Liang; Qu, Di;

    2009-01-01

    in overnight cultures had no effect on established P. aeruginosa biofilms and planktonic growth. These findings reveal that P. aeruginosa extracellular products are important microbial competition factors that overcome competition with S. epidermidis, and the results may provide clues for the development...

  2. Abiotic factors in colony formation: effects of nutrition and light on extracellular polysaccharide production and cell aggregates of Microcystis aeruginosa

    Science.gov (United States)

    Yang, Zhen; Kong, Fanxiang

    2013-07-01

    Colony morphology is important for Microcystis to sustain a competitive advantage in eutrophic lakes. The mechanism of colony formation in Microcystis is currently unclear. Extracellular polysaccharide (EPS) has been reported to play an important role in cell aggregate formation of some phytoplankton. Microcystis aeruginosa was cultivated under varied abiotic conditions, including different nutrient, light, and temperature conditions, to investigate their effects on EPS production and morphological change. The results show that nutrient concentration and light intensity have great effects on EPS productionin M. aeruginosa. There was a considerable increase in EPS production after M. aeruginosa was cultivated in adjusted culture conditions similar to those present in the field (28.9 mg C/L, 1.98 mg N/L, 0.65 mg P/L, light intensity: 100 μmol/(m2 · s)). These results indicate that abiotic factors might be one of the triggers for colony formation in Microcystis.

  3. Abiotic factors in colony formation: effects of nutrition and light on extracellular polysaccharide production and cell aggregates of Microcystis aeruginosa

    Institute of Scientific and Technical Information of China (English)

    YANG Zhen; KONG Fanxiang

    2013-01-01

    Colony morphology is important for Microcystis to sustain a competitive advantage in eutrophic lakes.The mechanism of colony formation in Microcystis is currently unclear.Extracellular polysaccharide (EPS) has been reported to play an important role in cell aggregate formation of some phytoplankton.Microcystis aeruginosa was cultivated under varied abiotic conditions,including different nutrient,light,and temperature conditions,to investigate their effects on EPS production and morphological change.The results show that nutrient concentration and light intensity have great effects on EPS production in M.aeruginosa.There was a considerable increase in EPS production after M.aeruginosa was cultivated in adjusted culture conditions similar to those present in the field (28.9 mg C/L,1.98 mg N/L,0.65 mg P/L,light intensity:100 μmol/(m2·s)).These results indicate that abiotic factors might be one of the triggers for colony formation in Microcystis.

  4. Enhanced Production of Extracellular Alkaline Lipase by an Improved Strain of Pseudomonas aeruginosa MTCC 10,055

    Directory of Open Access Journals (Sweden)

    Deepali Bisht

    2012-01-01

    Full Text Available Problem statement: Lipases are industrially important enzymes having applications in numerous industries. For easy commercialization it is necessary to produce lipases at industrial level which could be achieved by strain improvement and medium formulation. Approach: In the present study strain improvement of Pseudomonas aeruginosa MTCC 10,055 was done by chemical mutagenesis using mutagen 4-nitroquinoline1-oxide for alkaline lipase production. Different fermentation parameters affecting lipase production were optimized using one-variable-at-a-time approach. Results: The selected mutant (M-05 exhibited 3.6-fold higher productivity over wild type. Maximum alkaline lipase was produced when culture was incubated at 35°C with initial medium pH 9.0 in 28 h with inoculum density 0.5% (v/v (Abs610-1.0. Supplementation of production medium with combination of castor oil and starch as carbon source and Triton-X-100 as surfactant significantly influenced the alkaline lipase production. The composition of fully optimized medium was determined to be (g L-1: (NH42SO4, 1.0; KH2PO4, 0.6; MgSO4, 0.4; yeast extract, 0.2; castor oil, 2.0; starch 20.0; gum arabic, 5.0; Triton-X-100, 1.0. An overall 14-fold enhanced production was achieved after complete medium optimization. Conclusion/Recommendations: The improved strain was capable to produce high titer of alkaline lipase at flask level, which can be examined at fermentor level to obtain sufficient enzyme yield to meet the world wide industrial demand.

  5. The Pseudomonas aeruginosa extracellular secondary metabolite, Paerucumarin, chelates iron and is not localized to extracellular membrane vesicles.

    Science.gov (United States)

    Qaisar, Uzma; Kruczek, Cassandra J; Azeem, Muhammed; Javaid, Nasir; Colmer-Hamood, Jane A; Hamood, Abdul N

    2016-08-01

    Proteins encoded by the Pseudomonas aeruginosa pvcA-D operon synthesize a novel isonitrile functionalized cumarin termed paerucumarin. The pvcA-D operon enhances the expression of the P. aeruginosa fimbrial chaperone/usher pathway (cup) genes and this effect is mediated through paerucumarin. Whether pvcA-D and/or paerucumarin affect the expression of other P. aeruginosa genes is not known. In this study, we examined the effect of a mutation in pvcA-D operon the global transcriptome of the P. aeruginosa strain PAO1-UW. The mutation reduced the expression of several ironcontrolled genes including pvdS, which is essential for the expression of the pyoverdine genes. Additional transcriptional studies showed that the pvcA-D operon is not regulated by iron. Exogenously added paerucumarin enhanced pyoverdine production and pvdS expression in PAO1-UW. Iron-chelation experiments revealed that purified paerucumarin chelates iron. However, exogenously added paerucumarin significantly reduced the growth of a P. aeruginosa mutant defective in pyoverdine and pyochelin production. In contrast to other secondary metabolite, Pseudomonas quinolone signal (PQS), paerucumarin is not localized to the P. aeruginosa membrane vesicles. These results suggest that paerucumarin enhances the expression of iron-controlled genes by chelating iron within the P. aeruginosa extracellular environment. Although paerucumarin chelates iron, it does not function as a siderophore. Unlike PQS, paerucumarin is not associated with the P. aeruginosa cell envelope. PMID:27480638

  6. Extracellular DNA Shields against Aminoglycosides in Pseudomonas aeruginosa Biofilms

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Nilsson, Martin; Jensen, Peter Østrup;

    2013-01-01

    Within recent years, it has been established that extracellular DNA is a key constituent of the matrix of microbial biofilms. In addition, it has recently been demonstrated that DNA binds positively charged antimicrobials such as aminoglycosides and antimicrobial peptides. In the present study, we...... provide evidence that extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. We show that exogenously supplemented DNA integrates into P. aeruginosa biofilms and increases their tolerance toward aminoglycosides. We provide evidence that biofilms formed by a DNA release......-deficient P. aeruginosa quorum-sensing mutant are more susceptible to aminoglycoside treatment than wild-type biofilms but become rescued from the detrimental action of aminoglycosides upon supplementation with exogenous DNA. Furthermore, we demonstrate that exposure to lysed polymorphonuclear leukocytes...

  7. Tyrosine Phosphatase TpbA of Pseudomonas aeruginosa Controls Extracellular DNA via Cyclic Diguanylic Acid Concentrations

    OpenAIRE

    Ueda, Akihiro; Wood, Thomas K.

    2010-01-01

    Inactivating the tyrosine phosphatase TpbA of Pseudomonas aeruginosa PA14 induces biofilm formation by 150-fold via increased production of the second messenger cyclic diguanylic acid (c-di-GMP). Here, we show the tpbA mutation reduces extracellular DNA (eDNA) and that increased expression of tpbA increases eDNA; hence, eDNA is inversely proportional to c-di-GMP concentrations. Mutations in diguanylate cyclases PA0169, PA4959, and PA5487 and phosphodiesterase PA4781 corroborate this trend. Th...

  8. Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development

    DEFF Research Database (Denmark)

    Yang, Liang; Hu, Yifan; Liu, Yang;

    2011-01-01

    polysaccharides are also essential for subpopulation interactions and macrocolony formation in the later stages of P. aeruginosa PAO1 biofilm formation. Pel and Psl polysaccharides have different impacts on Pseudomonas quinolone signal‐mediated extracellular DNA release in P. aeruginosa PAO1 biofilms. Psl...

  9. Extracellular DNA-induced antimicrobial peptide resistance mechanisms in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    ShawnLewenza

    2013-02-01

    Full Text Available Extracellular DNA (eDNA is in the environment, bodily fluids, in the matrix of biofilms, and accumulates at infection sites. Extracellular DNA can function as a nutrient source, a universal biofilm matrix component and an innate immune effector in extracellular DNA traps. In biofilms, eDNA is required for attachment, aggregation and stabilization of microcolonies. We have recently shown that eDNA can sequester divalent metal cations, which has interesting implications on antibiotic resistance. Extracellular DNA binds metal cations and thus activates the Mg2+-responsive PhoPQ and PmrAB two-component systems. In Pseudomonas aeruginosa and many other Gram-negative bacteria, the PhoPQ/PmrAB systems control various genes required for virulence and resisting killing by antimicrobial peptides, including the pmr genes (PA3552-PA3559 that are responsible for the addition of aminoarabinose to lipid A. The PA4773-PA4775 genes are a second DNA-induced cluster and are required for the production of spermidine on the outer surface, which protects the outer membrane from antimicrobial peptide treatment. Both modifications mask the negative surface charges and limit membrane damage by antimicrobial peptides. DNA-enriched biofilms or planktonic cultures have increased antibiotic resistance phenotypes to antimicrobial peptides and aminoglycosides. These dual antibiotic resistance and immune evasion strategies may be expressed in DNA-rich environments and contribute to long-term survival.

  10. Reexamining intra and extracellular metabolites produced by Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Maria Shuja

    2016-02-01

    Full Text Available Objective: To isolate, screen and analyze bacteria from different areas of Pakistan for the production of antimicrobial compounds, zinc solubilization and bioplastic production. Methods: Isolation and purification was proceeding with streak plate method. Antagonistic assay was completed with well diffusion and thin-layer chromatography. In vivo analysis of bioplastic was analyzed with Nile blue fluorescence under UV and Sudan staining. Results: A total of 18 bacterial strains purified from soil samples while 148 strains form stock cultures were used. Out of 166 only 94 showed antimicrobial activity against each of Grampositive and Gram-negative; cocci and rods. In case of heavy metal (ZnO and Zn3(PO42.4H2O solubilization, 54 strains solubilized ZnO and 23 strains solubilized Zn3(PO42.4H2O, while 127 strains grown on polyhydroxyalkanoate detection meedia supplemented with Nile blue medium showed bioplastic production by producing fluorescence under UV light. Four bacterial strains (coded as 100, 101, 104 and 111 were selected for further characterization. Induction time assay showed that strains 101, 104, and 111 showed inhibitory activity after 4 h of incubation while strain 100 showed after 8 h. All four strains were tolerable to the maximum concentration of ZnO. Amplified products of both 16S rRNA and PhaC gene fragments of strain 111 were sequenced and submitted to GenBank as accession numbers EU781525 and EU781526. Conclusions: Bacterial strain Pseudomonas aeruginosa-111 has potential to utilize as biofertilize and bioplastic producer.

  11. Reexamining intra and extracellular metabolites produced by Pseudomonas aeruginosa

    Institute of Scientific and Technical Information of China (English)

    Maria Shuja; Nazia Jamil

    2016-01-01

    Objective: To isolate, screen and analyze bacteria from different areas of Pakistan for the production of antimicrobial compounds, zinc solubilization and bioplastic production. Methods: Isolation and purification was proceeding with streak plate method. Antagonistic assay was completed with well diffusion and thin-layer chromatography. In vivo analysis of bioplastic was analyzed with Nile blue fluorescence under UV and Sudan staining. Results: A total of 18 bacterial strains purified from soil samples while 148 strains form stock cultures were used. Out of 166 only 94 showed antimicrobial activity against each of Gram-positive and Gram-negative; cocci and rods. In case of heavy metal (ZnO and Zn3(PO4)2.4H2O) solubilization, 54 strains solubilized ZnO and 23 strains solubilized Zn3(PO4)2.4H2O, while 127 strains grown on polyhydroxyalkanoate detection meedia supplemented with Nile blue medium showed bioplastic production by producing fluorescence under UV light. Four bacterial strains (coded as 100, 101, 104 and 111) were selected for further characterization. Induction time assay showed that strains 101, 104, and 111 showed inhibitory activity after 4 h of incubation while strain 100 showed after 8 h. All four strains were tolerable to the maximum concentration of ZnO. Amplified products of both 16S rRNA and PhaC gene fragments of strain 111 were sequenced and submitted to GenBank as accession numbers EU781525 and EU781526. Conclusions: Bacterial strain Pseudomonas aeruginosa-111 has potential to utilize as biofertilize and bioplastic producer.

  12. Extracellular Ser/Thr/Tyr phosphorylated proteins of Pseudomonas aeruginosa PA14 strain.

    Science.gov (United States)

    Ouidir, Tassadit; Jarnier, Frédérique; Cosette, Pascal; Jouenne, Thierry; Hardouin, Julie

    2014-09-01

    Protein phosphorylation on serine, threonine, and tyrosine is known to be involved in a wide variety of cellular processes, signal transduction, and bacterial virulence. We characterized, for the first time, the extracellular phosphoproteins of the Pseudomonas aeruginosa PA14 strain. We identified 28 phosphoproteins (59 phosphosites) including enzymes, with various phosphorylation sites, known as potent secreted virulence factors in P. aeruginosa. The high phosphorylation level of these virulence factors might reflect a relationship between Ser/Thr/Tyr phosphorylation and virulence. PMID:24965220

  13. Aspergillus triggers phenazine production in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Jensen, Britt Guillaume; Jelsbak, Lars; Søndergaard, Ib;

    Objectives: Pseudomonas aeruginosa is an opportunistic human pathogen, commonly infecting cystic fibrosis (CF) patients. Aspergilli, especially Aspergillus fumigatus, are also frequently isolated from CF patients. Our aim was to examine the possible interaction between P. aeruginosa and different...... the contact area of A. niger, A. flavus, A. oryzae, but not A. fumigatus. In addition, other metabolites with UV chromophores similar to the phenazines were only found in the contact zone between Aspergillus and Pseudomonas. No change in secondary metabolite profiles were seen for the Aspergilli, when...... comparing with or without the presence of Pseudomonas. Conclusion: All Aspergilli tested, with the exception of A. fumigatus, triggered the upregulation of phenazine-1-carboxamide and phenazine-1-carboxylic acid production by P. aeruginosa. Surprisingly no changes in secondary metabolite profiles were...

  14. DsbA and DsbC Affect Extracellular Enzyme Formation in Pseudomonas aeruginosa

    OpenAIRE

    Urban, Andreas; Leipelt, Martina; Eggert, Thorsten; Jaeger, Karl-Erich

    2001-01-01

    DsbA and DsbC proteins involved in the periplasmic formation of disulfide bonds in Pseudomonas aeruginosa were identified and shown to play an important role for the formation of extracellular enzymes. Mutants deficient in either dsbA or dsbC or both genes were constructed, and extracellular elastase, alkaline phosphatase, and lipase activities were determined. The dsbA mutant no longer produced these enzymes, whereas the lipase activity was doubled in the dsbC mutant. Also, extracellar lipas...

  15. Effects of sulfate on microcystin production, photosynthesis, and oxidative stress in Microcystis aeruginosa.

    Science.gov (United States)

    Chen, Lei; Gin, Karina Y H; He, Yiliang

    2016-02-01

    Increasing sulfate in freshwater systems, caused by human activities and climate change, may have negative effects on aquatic organisms. Microcystis aeruginosa (M. aeruginosa) is both a major primary producer and a common toxic cyanobacterium, playing an important role in the aquatic environment. This study first investigated the effects of sulfate on M. aeruginosa. The experiment presented here aims at analyzing the effects of sulfate on physiological indices, molecular levels, and its influencing mechanism. The results of our experiment showed that sulfate (at 40, 80, and 300 mg L(-1)) inhibited M. aeruginosa growth, increased both intracellular and extracellular toxin contents, and enhanced the mcyD transcript level. Sulfate inhibited the photosynthesis of M. aeruginosa, based on the decrease in pigment content and the down-regulation of photosynthesis-related genes after sulfate exposure. Furthermore, sulfate decreased the maximum electron transport rate, causing the cell to accumulate surplus electrons and form reactive oxygen species (ROS). Sulfate also increased the malondialdehyde (MDA) content, which showed that sulfate damaged the cytomembrane. This damage contributed to the release of intracellular toxin to the culture medium. Although sulfate increased superoxide dismutase (SOD) activities, expression of sod, and total antioxidant capacity in M. aeruginosa, it still overwhelmed the antioxidant system since the ROS level simultaneously increased, and finally caused oxidative stress. Our results indicate that sulfate has direct effects on M. aeruginosa, inhibits photosynthesis, causes oxidative stress, increases toxin production, and affects the related genes expression in M. aeruginosa. PMID:26490939

  16. Variation in assimilable organic carbon formation during chlorination of Microcystis aeruginosa extracellular organic matter solutions.

    Science.gov (United States)

    Sun, Xingbin; Yuan, Ting; Ni, Huishan; Li, Yanpeng; Hu, Yang

    2016-07-01

    This study investigated the chlorination of Microcystis aeruginosa extracellular organic matter (EOM) solutions under different conditions, to determine how the metabolites produced by these organisms affect water safety and the formation of assimilable organic carbon (AOC). The effects of chlorine dosages, coagulant dosage, reaction time and temperature on the formation of AOC were investigated during the disinfection of M.aeruginosa metabolite solutions. The concentration of AOC followed a decreasing and then increasing pattern with increasing temperature and reaction time. The concentration of AOC decreased and then increased with increasing chlorination dosage, followed by a slight decrease at the highest level of chlorination. However, the concentration of AOC decreased continuously with increasing coagulant dosage. The formation of AOC can be suppressed under appropriate conditions. In this study, chlorination at 4mg/L, combined with a coagulant dose of 40mg/L at 20°C over a reaction time of 12hr, produced the minimum AOC. PMID:27372113

  17. Imaging Pseudomonas aeruginosa Biofilm Extracellular Polymer Scaffolds with Amphiphilic Carbon Dots.

    Science.gov (United States)

    Ritenberg, Margarita; Nandi, Sukhendu; Kolusheva, Sofiya; Dandela, Rambabu; Meijler, Michael M; Jelinek, Raz

    2016-05-20

    Biofilm formation is a critical facet of pathogenesis and resilience of human, animal, and plant bacteria. Extracellular polymeric substances (EPS) constitute the physical scaffolding for bacterial biofilms and thus play central roles in their development and virulence. We show that newly synthesized amphiphilic fluorescent carbon dots (C-dots) readily bind to the EPS scaffold of Pseudomonas aeruginosa, a major biofilm-forming pathogen, resulting in unprecedented microscopic visualization of the EPS structural features. Fluorescence microscopy analysis utilizing the C-dots reveals that the P. aeruginosa EPS matrix exhibits a remarkable dendritic morphology. The experiments further illuminate the growth kinetics of the EPS and the effect of external factors such as temperature. We also show that the amphiphilic C-dot platform enabled screening of substances disrupting biofilm development, specifically quorum sensing inhibitors. PMID:26882175

  18. Production of biopolymers by Pseudomonas aeruginosa isolated from marine source

    Directory of Open Access Journals (Sweden)

    Nazia Jamil

    2008-06-01

    Full Text Available Two bacterial strains, Pseudomonas aeruginosa CMG607w and CMG1421 produce commercially important biopolymers. CMG607w isolated from the sediments of Lyari outfall to Arabian Sea synthesize the mcl-polyhydroxyalkanoates from various carbon sources. The production of PHAs was directly proportional to the incubation periods. Other strain CMG1421, a dry soil isolate, produced high viscous water absorbing extracellular acidic polysaccharide when it was grown aerobically in the minimal medium containing glucose or fructose or sucrose as sole source of carbon. The biopolymer had the ability to absorb water 400 times more than its dry weight. This property was superior to that of currently used non-degradable synthetic water absorbents. It acted as salt filter and had rheological and stabilizing activity as well.

  19. Effects of FP2 and a mercury resistance plasmid from Pseudomonas aeruginosa PA103 on exoenzyme production.

    OpenAIRE

    Johnson, J; Warren, R.L.; Branstrom, A A

    1991-01-01

    Plasmids encoding mercury resistance carried by Pseudomonas aeruginosa PAO1161 and PA103 were found to be involved in regulating the secretion of protease, phospholipase C, and alkaline phosphatase. Previously, mutations in Pseudomonas strains that caused pleiotropic effects on the production of extracellular enzymes were mapped to the bacterial chromosome. We show that pleiotropic changes in extracellular enzyme production can also be regulated by plasmids. In this study, the effects on secr...

  20. Comparative Study for Lipase Production by Using Pseudomonas Aeruginosa and Pseudomonas Fluorescens

    OpenAIRE

    Priyam Vandana; Jyotsna Kiran Peter

    2014-01-01

    Lipases occur widely in nature, but only microbial lipases are commercially significant. The present work focuses on screening and production of extracellular laccases by Pseudomonas aeruginosa and Pseudomonas fluorescens. The lipase was assayed by tirbutyrin agar plate method and the activity of the enzyme was further confirmed by titrimetric method. The uses of lipases are enormous and increasing and so there is need to screen and isolate potential species capable of producing l...

  1. Chelation of Membrane-Bound Cations by Extracellular DNA Activates the Type VI Secretion System in Pseudomonas aeruginosa.

    Science.gov (United States)

    Wilton, Mike; Wong, Megan J Q; Tang, Le; Liang, Xiaoye; Moore, Richard; Parkins, Michael D; Lewenza, Shawn; Dong, Tao G

    2016-08-01

    Pseudomonas aeruginosa employs its type VI secretion system (T6SS) as a highly effective and tightly regulated weapon to deliver toxic molecules to target cells. T6SS-secreted proteins of P. aeruginosa can be detected in the sputum of cystic fibrosis (CF) patients, who typically present a chronic and polymicrobial lung infection. However, the mechanism of T6SS activation in the CF lung is not fully understood. Here we demonstrate that extracellular DNA (eDNA), abundant within the CF airways, stimulates the dynamics of the H1-T6SS cluster apparatus in Pseudomonas aeruginosa PAO1. Addition of Mg(2+) or DNase with eDNA abolished such activation, while treatment with EDTA mimicked the eDNA effect, suggesting that the eDNA-mediated effect is due to chelation of outer membrane-bound cations. DNA-activated H1-T6SS enables P. aeruginosa to nonselectively attack neighboring species regardless of whether or not it was provoked. Because of the importance of the T6SS in interspecies interactions and the prevalence of eDNA in the environments that P. aeruginosa inhabits, our report reveals an important adaptation strategy that likely contributes to the competitive fitness of P. aeruginosa in polymicrobial communities. PMID:27271742

  2. Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants.

    OpenAIRE

    Koch, A K; Käppeli, O; Fiechter, A; Reiser, J.

    1991-01-01

    We isolated transposon Tn5-GM-induced mutants of Pseudomonas aeruginosa PG201 that were unable to grow in minimal media containing hexadecane as a carbon source. Some of these mutants lacked extracellular rhamnolipids, as shown by measuring the surface and interfacial tensions of the cell culture supernatants. Furthermore, the concentrated culture media of the mutant strains were tested for the presence of rhamnolipids by thin-layer chromatography and for rhamnolipid activities, including hem...

  3. Production of extracellular nucleic acids by genetically altered bacteria in aquatic-environment microcosms

    International Nuclear Information System (INIS)

    The factors which affect the production of extracellular DNA by genetically altered strains of Escherichia coli, Pseudomonas aeruginosa, Pseudomonas cepacia, and Bradyrhizobium japonicum in aquatic environments were investigated. Cellular nucleic acids were labeled in vivo by incubation with [3H]thymidine or [3H]adenine, and production of extracellular DNA in marine waters, artificial seawater, or minimal salts media was determined by detecting radiolabeled macromolecules in incubation filtrates. The presence or absence of the ambient microbial community had little effect on the production of extracellular DNA. Three of four organisms produced the greatest amounts of extracellular nucleic acids when incubated in low-salinity media (2% artificial seawater) rather than high-salinity media (10 to 50% artificial seawater). The greatest production of extracellular nucleic acids by P. cepacia occurred at pH 7 and 37 degree C, suggesting that extracellular-DNA production may be a normal physiologic function of the cell. Incubation of labeled P. cepacia cells in water from Bimini Harbor, Bahamas, resulted in labeling of macromolecules of the ambient microbial population. Collectively these results indicate that (i) extracellular-DNA production by genetically altered bacteria released into aquatic environments is more strongly influenced by physicochemical factors than biotic factors, (ii) extracellular-DNA production rates are usually greater for organisms released in freshwater than marine environments, and (iii) ambient microbial populations can readily utilize materials released by these organisms

  4. Tracking the Dynamic Relationship between Cellular Systems and Extracellular Subproteomes in Pseudomonas aeruginosa Biofilms.

    Science.gov (United States)

    Park, Amber J; Murphy, Kathleen; Surette, Matthew D; Bandoro, Christopher; Krieger, Jonathan R; Taylor, Paul; Khursigara, Cezar M

    2015-11-01

    The transition of the opportunistic pathogen Pseudomonas aeruginosa from free-living bacteria into surface-associated biofilm communities represents a viable target for the prevention and treatment of chronic infectious disease. We have established a proteomics platform that identified 2443 and 1142 high-confidence proteins in P. aeruginosa whole cells and outer-membrane vesicles (OMVs), respectively, at three time points during biofilm development (ProteomeXchange identifier PXD002605). The analysis of cellular systems, specifically the phenazine biosynthetic pathway, demonstrates that whole-cell protein abundance correlates to end product (i.e., pyocyanin) concentrations in biofilm but not in planktonic cultures. Furthermore, increased cellular protein abundance in this pathway results in quantifiable pyocyanin in early biofilm OMVs and OMVs from both growth modes isolated at later time points. Overall, our data indicate that the OMVs being released from the surface of the biofilm whole cells have unique proteomes in comparison to their planktonic counterparts. The relative abundance of OMV proteins from various subcellular sources showed considerable differences between the two growth modes over time, supporting the existence and preferential activation of multiple OMV biogenesis mechanisms under different conditions. The consistent detection of cytoplasmic proteins in all of the OMV subproteomes challenges the notion that OMVs are composed of outer membrane and periplasmic proteins alone. Direct comparisons of outer-membrane protein abundance levels between OMVs and whole cells shows ratios that vary greatly from 1:1 and supports previous studies that advocate the specific inclusion, or "packaging", of proteins into OMVs. The quantitative analysis of packaged protein groups suggests biogenesis mechanisms that involve untethered, rather than absent, peptidoglycan-binding proteins. Collectively, individual protein and biological system analyses of biofilm OMVs

  5. Induction of beta-lactamase production in Pseudomonas aeruginosa biofilm

    DEFF Research Database (Denmark)

    Giwercman, B; Jensen, E T; Høiby, N;

    1991-01-01

    Imipenem induced high levels of beta-lactamase production in Pseudomonas aeruginosa biofilms. Piperacillin also induced beta-lactamase production in these biofilms but to a lesser degree. The combination of beta-lactamase production with other protective properties of the biofilm mode of growth...

  6. Further characterization of Renibacterium salmoninarum extracellular products.

    Science.gov (United States)

    Barton, T A; Bannister, L A; Griffiths, S G; Lynch, W H

    1997-10-01

    Renibacterium salmoninarum, the agent of bacterial kidney disease in salmonids, releases high concentrations of extracellular protein in tissues of infected fish. The extracellular protein consists almost entirely of a 57-kDa protein and derivatives of degradation and aggregation of the same molecule. The 57-kDa protein and its derivatives were fractionated into defined ranges of molecular mass. Separated fractions continued to produce degradation and aggregation products. One-dimensional electrophoretic separation of extracellular protein revealed a number of proteolytically active bands from > 100 to approximately 18 kDa associated with various 57-kDa protein derivatives in the different molecular mass fractions. Two-dimensional separation of extracellular protein showed that continued degradation and aggregation, similar both in location and behavior to some of the 57-kDa protein derivatives, was also displayed by the proteolytically active bands after their separation. Effects of reducing agents and sulfhydryl group proteinase inhibitors indicated a common mechanism for the proteolytically active polypeptides characteristic of a thiol proteinase. The results suggested that the 57-kDa protein and some of its derivatives undergo autolytic cleavage, releasing a proteolytically active polypeptide(s) of at least 18 kDa. Soluble polysaccharide-like material also was detected in extracellular products and tissue from infected fish. Antiserum to the polysaccharide-like material cross-reacted with O-polysaccharide of the fish pathogen Aeromonas salmonicida, suggesting some structural similarity between these polysaccharides. The polysaccharide and the proteolytic activity associated with the 57-kDa protein derivatives should be investigated with respect to the pathogenesis of R. salmoninarum infections. PMID:9480644

  7. Antimicrobial targets localize to the extracellular vesicle-associated proteome of Pseudomonas aeruginosa grown in a biofilm

    Directory of Open Access Journals (Sweden)

    CezarMKhursigara

    2014-09-01

    Full Text Available Microbial biofilms are particularly resistant to antimicrobial therapies. These surface-attached communities are protected against host defenses’ and pharmacotherapy by a self-produced matrix that surrounds and fortifies them. Recent proteomic evidence also suggests that some bacteria, including the opportunistic pathogen Pseudomonas aeruginosa, undergo modifications within a biofilm that make them uniquely resistant compared to their planktonic (free-living counterparts. This study examines 50 proteins in the resistance subproteome of both surface-associated and free-living P. aeruginosa PAO1 over three time points. Proteins were grouped into categories based on their roles in antimicrobial: i binding, ii efflux, iii resistance, and iv susceptibility. In addition, the extracellular outer membrane vesicle-associated proteome is examined and compared between the two growth modes. We show that in whole cells between 12-24% of the proteins are present at significantly different abundance levels over time, with some proteins being unique to a specific growth mode; however, the total abundance levels in the four categories remain consistent. In contrast, marked differences are seen in the protein content of the outer membrane vesicles, which contain a greater number of drug-binding proteins in vesicles purified from late-stage biofilms. These results show how the method of analysis can impact the interpretation of proteomic data (i.e. individual proteins vs. systems, and highlight the advantage of using protein-based methods to identify potential antimicrobial resistance mechanisms in extracellular sample components. Furthermore, this information has the potential to inform the development of specific antipseudomonal therapies that quench possible drug-sequestering vesicle proteins. This strategy could serve as a novel approach for combating the high-level of antimicrobial resistance in P. aeruginosa biofilms.

  8. Cloning and heterologous expression of a gene encoding an alkane-induced extracellular protein involved in alkane assimilation from Pseudomonas aeruginosa.

    OpenAIRE

    Hardegger, M; Koch, A K; Ochsner, U A; Fiechter, A; Reiser, J.

    1994-01-01

    Pseudomonas aeruginosa PG201 produces a 16-kDa extracellular protein in media containing n-hexadecane as a carbon source but not in media containing glycerol or glucose. This protein was purified, and the N-terminal amino acid sequence was determined. The amino acid composition of the protein was found to be very similar to that of the so-called protein-like activator for n-alkane oxidation (PA) from P. aeruginosa S7B1. This extracellular protein was previously characterized (K. Hisatsuka, T....

  9. Phenolic compounds affect production of pyocyanin, swarming motility and biofilm formation of Pseudomonas aeruginosa

    OpenAIRE

    Aylin Ugurlu; Aysegul Karahasan Yagci; Seyhan Ulusoy; Burak Aksu; Gulgun Bosgelmez-Tinaz

    2016-01-01

    Objective: To investigate the effects of plant-derived phenolic compounds (i.e. caffeic acid, cinnamic acid, ferulic acid and vanillic acid) on the production of quorum sensing regulated virulence factors such as pyocyanin, biofilm formation and swarming motility of Pseudomonas aeruginosa (P. aeruginosa) isolates. Methods: Fourteen clinical P. aeruginosa isolates obtained from urine samples and P. aeruginosa PA01 strain were included in the study. The antibacterial effects of phenolic comp...

  10. Development of potent inhibitors of pyocyanin production in Pseudomonas aeruginosa

    OpenAIRE

    Miller, Laura C.; O’Loughlin, Colleen T.; Zhang, Zinan; Siryaporn, Albert; Silpe, Justin E.; Bassler, Bonnie L.; Semmelhack, Martin F.

    2015-01-01

    The development of new approaches for the treatment of antimicrobial-resistant infections is an urgent public health priority. The Pseudomonas aeruginosa pathogen, in particular, is a leading source of infection in hospital settings, with few available treatment options. In the context of an effort to develop antivirulence strategies to combat bacterial infection, we identified a series of highly effective small molecules that inhibit the production of pyocyanin, a redox-active virulence fact...

  11. Characterization of Temporal Protein Production in Pseudomonas aeruginosa Biofilms†

    OpenAIRE

    Southey-Pillig, Christopher J.; Davies, David G; Sauer, Karin

    2005-01-01

    Phenotypic and genetic evidence supporting the notion of biofilm formation as a developmental process is growing. In the present work, we provide additional support for this hypothesis by identifying the onset of accumulation of biofilm-stage specific proteins during Pseudomonas aeruginosa biofilm maturation and by tracking the abundance of these proteins in planktonic and three biofilm developmental stages. The onset of protein production was found to correlate with the progression of biofil...

  12. Biosurfactant Production by Pseudomonas aeruginosa from Renewable Resources

    OpenAIRE

    Thavasi, R.; Subramanyam Nambaru, V. R. M.; Jayalakshmi, S.; Balasubramanian, T.; Banat, Ibrahim M.

    2011-01-01

    This study deals with production and characterization of biosurfactant from renewable resources by Pseudomonas aeruginosa. Biosurfactant production was carried out in 3L fermentor using waste motor lubricant oil and peanut oil cake. Maximum biomass (11.6 mg/ml) and biosurfactant production (8.6 mg/ml) occurred with peanut oil cake at 120 and 132 h respectively. Characterization of the biosurfactant revealed that, it is a lipopeptide with chemical composition of protein (50.2%) and lipid (49.8...

  13. Purification and characterization of extracellular lipase from a new strain: Pseudomonas aeruginosa SRT 9

    OpenAIRE

    Borkar, Prita S.; Bodade, Ragini G.; Rao, Srinivasa R.; Khobragade, C.N.

    2009-01-01

    An extra cellular lipase was isolated and purified from the culture broth of Pseudomonas aeruginosa SRT 9 to apparent homogeneity using ammonium sulfate precipitation followed by chromatographic techniques on phenyl Sepharose CL- 4B and Mono Q HR 5/5 column, resulting in a purification factor of 98 fold with specific activity of 12307.8 U/mg. The molecular weight of the purified lipase was estimated by SDS-PAGE to be 29 kDa with isoelectric point of 4.5. Maximum lipase activity was observed i...

  14. Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation

    DEFF Research Database (Denmark)

    Stapper, A.P.; Narasimhan, G.; Oman, D.E.;

    2004-01-01

    Extracellular polymers can facilitate the non-specific attachment of bacteria to surfaces and hold together developing biofilms. This study was undertaken to qualitatively and quantitatively compare the architecture of biofilms produced by Pseudomonas aeruginosa strain PAO1 and its alginate...... biofilm formation using confocal laser scanning microscopy. Biofilm Image Processing (BIP) and Community Statistics (COMSTAT) software programs were used to provide quantitative measurements of the two-dimensional biofilm images. All three strains formed distinguishable biofilm architectures, indicating...... that the production of alginate is not critical for biofilm formation. Observation over a period of 5 days indicated a three-stage development pattern consisting of initiation, establishment and maturation. Furthermore, this study showed that phenotypically distinguishable biofilms can be...

  15. High-level expression of pseudolysin, the extracellular elastase of Pseudomonas aeruginosa, in Escherichia coli and its purification.

    Science.gov (United States)

    Odunuga, Odutayo O; Adekoya, Olayiwola A; Sylte, Ingebrigt

    2015-09-01

    Pseudolysin is the extracellular elastase of Pseudomonas aeruginosa and belongs to the thermolysin-like family of metallopeptidases. Pseudolysin has been identified as a robust drug target and a biotechnologically important enzyme in the tanning industry. Previous attempts to purify active pseudolysin from P. aeruginosa or by expression in Escherichia coli yielded low quantities. Considerable expression and purification of secreted pseudolysin from Pichia pastoris has been reported but it is time-consuming and not cost-effective. We report the successful large-scale expression of pseudolysin in E. coli and purification of the correctly folded and active protein. The lasB gene that codes for the enzymatically active mature 33-kilodalton pseudolysin was expressed with a histidine tag under the control of the T7 promoter. Pseudolysin expressed highly in E. coli and was solubilized and purified in 8M urea by metal affinity chromatography. The protein was simultaneously further purified, refolded and buffer-exchanged on a preparative Superdex 200 column by a modified urea reverse-gradient size exclusion chromatography. Using this technique, precipitation of pseudolysin was completely eliminated. Refolded pseudolysin was found to be active as assessed by its ability to hydrolyze N-succinyl-ala-ala-ala-p-nitroanilide. The purification scheme yielded approximately 40 mg of pseudolysin per liter of expression culture and specific activity of 3.2U/mg of protein using N-succinyl-ala-ala-ala-p-nitroanilide as substrate. This approach provides a reproducible strategy for high-level expression and purification of active metallopeptidases and perhaps other inclusion body-forming and precipitation-prone proteins. PMID:25979480

  16. Rhizobium leguminosarum mutants incapable of normal extracellular polysaccharide production.

    OpenAIRE

    Napoli, C; Albersheim, P

    1980-01-01

    Mutants of Rhizobium leguminosarum which are deficient in normal polysaccharide production have been isolated and characterized. A correlation between diminished production of extracellular polysaccharide and reduced infection and nodulation efficiency has been observed.

  17. A complex extracellular sphingomyelinase of Pseudomonas aeruginosa inhibits angiogenesis by selective cytotoxicity to endothelial cells.

    Directory of Open Access Journals (Sweden)

    Michael L Vasil

    2009-05-01

    Full Text Available The hemolytic phospholipase C (PlcHR expressed by Pseudomonas aeruginosa is the original member of a Phosphoesterase Superfamily, which includes phosphorylcholine-specific phospholipases C (PC-PLC produced by frank and opportunistic pathogens. PlcHR, but not all its family members, is also a potent sphingomyelinase (SMase. Data presented herein indicate that picomolar (pM concentrations of PlcHR are selectively lethal to endothelial cells (EC. An RGD motif of PlcHR contributes to this selectivity. Peptides containing an RGD motif (i.e., GRGDS, but not control peptides (i.e., GDGRS, block the effects of PlcHR on calcium signaling and cytotoxicity to EC. Moreover, RGD variants of PlcHR (e.g., RGE, KGD are significantly reduced in their binding and toxicity, but retain the enzymatic activity of the wild type PlcHR. PlcHR also inhibits several EC-dependent in vitro assays (i.e., EC migration, EC invasion, and EC tubule formation, which represent key processes involved in angiogenesis (i.e., formation of new blood vessels from existing vasculature. Finally, the impact of PlcHR in an in vivo model of angiogenesis in transgenic zebrafish, and ones treated with an antisense morpholino to knock down a key blood cell regulator, were evaluated because in vitro assays cannot fully represent the complex processes of angiogenesis. As little as 2 ng/embryo of PlcHR was lethal to approximately 50% of EGFP-labeled EC at 6 h after injection of embryos at 48 hpf (hours post-fertilization. An active site mutant of PlcHR (Thr178Ala exhibited 120-fold reduced inhibitory activity in the EC invasion assay, and 20 ng/embryo elicited no detectable inhibitory activity in the zebrafish model. Taken together, these observations are pertinent to the distinctive vasculitis and poor wound healing associated with P. aeruginosa sepsis and suggest that the potent antiangiogenic properties of PlcHR are worthy of further investigation for the treatment of diseases where

  18. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms

    OpenAIRE

    Wozniak, Daniel J.; Wyckoff, Timna J. O.; Starkey, Melissa; Keyser, Rebecca; Azadi, Parastoo; O'Toole, George A.; Parsek, Matthew R.

    2003-01-01

    The bacterium Pseudomonas aeruginosa causes chronic respiratory infections in cystic fibrosis (CF) patients. Such infections are extremely difficult to control because the bacteria exhibit a biofilm-mode of growth, rendering P. aeruginosa resistant to antibiotics and phagocytic cells. During the course of infection, P. aeruginosa usually undergoes a phenotypic switch to a mucoid colony, which is characterized by the overproduction of the exopolysaccharide alginate. Alginate overproducti...

  19. Production Of Extracellular Enzymes By Some Soil Yeasts

    OpenAIRE

    Falih, A. M. [عبد الله مساعد خلف الفالح

    1997-01-01

    This study investigated the ability of soil yeasts, Geotrichum candidum, Geotrichum capitatum and Williopsis californica to produce extracellular enzymes (amylase, cellulase and protease) in vitro compared with that of a laboratory strain of Saccharomyces cerevisiae. It appears that the soil yeasts studied here were less amylolytic yeasts except the yeast G. candidum, which was highly effective at extracellular amylase production. The soil yeast W. californica was an average producer of cellu...

  20. Enzymatic Production of Extracellular Reactive Oxygen Species by Marine Microorganisms

    Science.gov (United States)

    Diaz, J. M.; Andeer, P. F.; Hansel, C. M.

    2014-12-01

    Reactive oxygen species (ROS) serve as intermediates in a myriad of biogeochemically important processes, including cell signaling pathways, cellular oxidative stress responses, and the transformation of both nutrient and toxic metals such as iron and mercury. Abiotic reactions involving the photo-oxidation of organic matter were once considered the only important sources of ROS in the environment. However, the recent discovery of substantial biological ROS production in marine systems has fundamentally shifted this paradigm. Within the last few decades, marine phytoplankton, including diatoms of the genus Thalassiosira, were discovered to produce ample extracellular quantities of the ROS superoxide. Even more recently, we discovered widespread production of extracellular superoxide by phylogenetically and ecologically diverse heterotrophic bacteria at environmentally significant levels (up to 20 amol cell-1 hr-1), which has introduced the revolutionary potential for substantial "dark" cycling of ROS. Despite the profound biogeochemical importance of extracellular biogenic ROS, the cellular mechanisms underlying the production of this ROS have remained elusive. Through the development of a gel-based assay to identify extracellular ROS-producing proteins, we have recently found that enzymes typically involved in antioxidant activity also produce superoxide when molecular oxygen is the only available electron acceptor. For example, large (~3600 amino acids) heme peroxidases are involved in extracellular superoxide production by a bacterium within the widespread Roseobacter clade. In Thalassiosira spp., extracellular superoxide is produced by flavoproteins such as glutathione reductase and ferredoxin NADP+ reductase. Thus, extracellular ROS production may occur via secreted and/or cell surface enzymes that modulate between producing and degrading ROS depending on prevailing geochemical and/or ecological conditions.

  1. Production of extracellular fatty acid using engineered Escherichia coli

    Directory of Open Access Journals (Sweden)

    Liu Hui

    2012-04-01

    Full Text Available Abstract Background As an alternative for economic biodiesel production, the microbial production of extracellular fatty acid from renewable resources is receiving more concerns recently, since the separation of fatty acid from microorganism cells is normally involved in a series of energy-intensive steps. Many attempts have been made to construct fatty acid producing strains by targeting genes in the fatty acid biosynthetic pathway, while few studies focused on the cultivation process and the mass transfer kinetics. Results In this study, both strain improvements and cultivation process strategies were applied to increase extracellular fatty acid production by engineered Escherichia coli. Our results showed overexpressing ‘TesA and the deletion of fadL in E. coli BL21 (DE3 improved extracellular fatty acid production, while deletion of fadD didn’t strengthen the extracellular fatty acid production for an undetermined mechanism. Moreover, the cultivation process controls contributed greatly to extracellular fatty acid production with respect to titer, cell growth and productivity by adjusting the temperature, adding ampicillin and employing on-line extraction. Under optimal conditions, the E. coli strain (pACY-‘tesA-ΔfadL produced 4.8 g L−1 extracellular fatty acid, with the specific productivity of 0.02 g h−1 g−1dry cell mass, and the yield of 4.4% on glucose, while the ratios of cell-associated fatty acid versus extracellular fatty acid were kept below 0.5 after 15 h of cultivation. The fatty acids included C12:1, C12:0, C14:1, C14:0, C16:1, C16:0, C18:1, C18:0. The composition was dominated by C14 and C16 saturated and unsaturated fatty acids. Using the strain pACY-‘tesA, similar results appeared under the same culture conditions and the titer was also much higher than that ever reported previously, which suggested that the supposedly superior strain did not necessarily perform best for the efficient production of desired

  2. Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis.

    OpenAIRE

    Lam, J; Chan, R.; Lam, K.; Costerton, J W

    1980-01-01

    Direct electron microscopic examination of postmortem lung material from cystic fibrosis patients infected with Pseudomonas aeruginosa has shown that these bacterial cells form distinct fiber-enclosed microcolonies in the infected alveoli. Similar examination of bronchoscopy material from infected cystic fibrosis patients showed that the fibres of the enveloping matrix are definitely associated with the bacterial cells. The fibers of the extracellular matrix stain with ruthenium red and are t...

  3. Purification and characterization of two bifunctional chitinases/lysozymes extracellularly produced by Pseudomonas aeruginosa K-187 in a shrimp and crab shell powder medium.

    OpenAIRE

    Wang, S.L.; Chang, W T

    1997-01-01

    Two extracellular chitinases (FI and FII) were purified from the culture supernatant of Pseudomonas aeruginosa K-187. The molecular weights of FI and FII were 30,000 and 32,000, respectively, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 60,000 and 30,000, respectively, by gel filtration. The pIs for FI and FII were 5.2 and 4.8, respectively. The optimum pH, optimum temperature, pH stability, and thermal stability of FI were pH 8, 50 degrees C, pH 6 to 9, and 50 degrees C; ...

  4. An examination of potential differences in biofilm production among different genotypes of Pseudomonas aeruginosa

    OpenAIRE

    Vasiljević Zorica; Jovčić B.; Ćirković Ivana; Đukić Slobodanka

    2014-01-01

    In the present study, we have examined if there is any difference in biofilm production among different genotypes of Pseudomonas aeruginosa. The study investigated 526 non-duplicate P. aeruginosa isolated from clinical specimens and from a hospital environment. Isolates were grouped into thirty-five genotypes based on an identical ERIC2-band pattern. Biofilm formation was quantified by the microtiter plate test and all strains were classified into the follo...

  5. Production of Pseudomonas aeruginosa Intercellular Small Signaling Molecules in Human Burn Wounds

    OpenAIRE

    Yok-Ai Que; Ronen Hazan; Ryan, Colleen M.; Sylvain Milot; François Lépine; Martha Lydon; Rahme, Laurence G

    2011-01-01

    Pseudomonas aeruginosa has developed a complex cell-to-cell communication system that relies on low-molecular weight excreted molecules to control the production of its virulence factors. We previously characterized the transcriptional regulator MvfR, that controls a major network of acute virulence functions in P. aeruginosa through the control of its ligands, the 4-hydroxy-2-alkylquinolines (HAQs)—4-hydroxy-2-heptylquinoline (HHQ) and 3,4-dihydroxy-2-heptylquinoline (PQS). Though HHQ and PQ...

  6. Rapid Necrotic Killing of Polymorphonuclear Leukocytes Is Caused by Quorum-Sensing-Controlled Production of Rhamnolipid by Pseudomonas Aeruginosa

    DEFF Research Database (Denmark)

    Jensen, P. Ø.; Bjarnsholt, Thomas; Phipps, Richard Kerry;

    2007-01-01

    . aeruginosa induced rapid necrosis of the PMNs. This mechanism was also observed in mouse lungs infected with P. aeruginosa, and in sputum obtained from P.-aeruginosa-infected patients with cystic fibrosis. Evidence is presented that the necrotic effect was caused by rhamnolipids, production of which is QS...... controlled. The results demonstrate the potential of the QS system to facilitate infections with P. aeruginosa by disabling the PMNs, which are a major first line of defence of the host. Furthermore, the study emphasizes the inhibition of QS as a target for the treatment of infections with P. aeruginosa....

  7. Production of bio surfactants (Rhamnolipids) by pseudomonas aeruginosa isolated from colombian sludges

    International Nuclear Information System (INIS)

    The bio surfactant production by strains of Pseudomonas aeruginosa isolated from Colombian hydrocarbon contaminated sludge has been determined. The methodology included the isolation of microorganisms, standardization of batch culture conditions for good surfactant production and characterization of the produced rhamnolipid. Several carbon sources were evaluated with regard to the growth and production curves. The stability of the rhamnolipid was also determined under variable conditions of pH, temperature and salt concentration. The strain Pseudomonas aeruginosa BS 3 showed bio surfactant production capabilities of rhamnolipid resulting in concentrations up to 2 g-dm with surface tensions of 30 - 32 mN-m in batch cultures with commercial nutrients

  8. Extracellular Palladium Nanoparticle Production using Geobacter sulfurreducens

    KAUST Repository

    Yates, Matthew D.

    2013-09-03

    Sustainable methods are needed to recycle precious metals and synthesize catalytic nanoparticles. Palladium nanoparticles can be produced via microbial reduction of soluble Pd(II) to Pd(0), but in previous tests using dissimilatory metal reducing bacteria (DMRB), the nanoparticles were closely associated with the cells, occupying potential reductive sites and eliminating the potential for cell reuse. The DMRB Geobacter sulfurreducens was shown here to reduce soluble Pd(II) to Pd(0) nanoparticles primarily outside the cell, reducing the toxicity of metal ions, and allowing nanoparticle recovery without cell destruction that has previously been observed using other microorganisms. Cultures reduced 50 ± 3 mg/L Pd(II) with 1% hydrogen gas (v/v headspace) in 6 h incubation tests [100 mg/L Pd(II) initially], compared to 8 ± 3 mg/L (10 mM acetate) without H2. Acetate was ineffective as an electron donor for palladium removal in the presence or absence of fumarate as an electron acceptor. TEM imaging verified that Pd(0) nanoparticles were predominantly in the EPS surrounding cells in H2-fed cultures, with only a small number of particles visible inside the cell. Separation of the cells and EPS by centrifugation allowed reuse of the cell suspensions and effective nanoparticle recovery. These results demonstrate effective palladium recovery and nanoparticle production using G. sulfurreducens cell suspensions and renewable substrates such as H2 gas. © 2013 American Chemical Society.

  9. Production of extracellular proteolytic enzymes by Beauveria bassiana

    OpenAIRE

    Józefa Chrzanowska; Maria Kołaczkowska

    2014-01-01

    The production of proteolytic enzymes by two strains of Beauveria bassiana 278, B. bassiana 446 and one strain of Ascosphera apis 496 was analysed. It was demonstrated that the strain of B. bassiana 278 proved to be the best producer of basic and acid proteases. The influence of different environmental factors such as nitrogen and carbon sources on the production of extracellular hydrolytic enzymes was assessed. In addition the acid protease from B. bassiana was partially characterized.

  10. Production of extracellular proteolytic enzymes by Beauveria bassiana

    Directory of Open Access Journals (Sweden)

    Józefa Chrzanowska

    2014-08-01

    Full Text Available The production of proteolytic enzymes by two strains of Beauveria bassiana 278, B. bassiana 446 and one strain of Ascosphera apis 496 was analysed. It was demonstrated that the strain of B. bassiana 278 proved to be the best producer of basic and acid proteases. The influence of different environmental factors such as nitrogen and carbon sources on the production of extracellular hydrolytic enzymes was assessed. In addition the acid protease from B. bassiana was partially characterized.

  11. Pseudomonas aeruginosa contamination of mouth swabs during production causing a major outbreak

    Directory of Open Access Journals (Sweden)

    Lassen Jørgen

    2007-03-01

    Full Text Available Abstract Background In 2002 we investigated an outbreak comprising 231 patients in Norway, caused by Pseudomonas aeruginosa and linked to the use of contaminated mouth swabs called Dent-O-Sept. Here we describe the extent of contamination of the swabs, and identify critical points in the production process that made the contamination possible, in order to prevent future outbreaks. Methods Environmental investigation with microbiological examination of production, ingredients and product, molecular typing of bacteria and a system audit of production. Results Of the 1565 swabs examined from 149 different production batches the outbreak strain of P. aeruginosa was detected in 76 swabs from 12 batches produced in 2001 and 2002. In total more than 250 swabs were contaminated with one or more microbial species. P. aeruginosa was detected from different spots along the production line. The audit revealed serious breeches of production regulations. Health care institutions reported non-proper use of the swabs and weaknesses in their purchasing systems. Conclusion Biofilm formation in the wet part of the production is the most plausible explanation for the continuous contamination of the swabs with P. aeruginosa over a period of at least 30 weeks. When not abiding to production regulations fatal consequences for the users may ensue. For the most vulnerable patient groups only documented quality-controlled, high-level disinfected products and items should be used in the oropharynx.

  12. Improved production of rhamno lipids by a pseudomonas aeruginosa mutant

    International Nuclear Information System (INIS)

    A pseudomonas aeruginosa mutant derived by random mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine, producing high level of the rhamno lipid bio surfactants was selected on Sigmund Wagner plates. The mutant designated P. aeruginosa Persian Type Culture Collection 1637 produces rhamno lipids at concentration 10 times more than present strain. Nuclear Magnetic Resonance analysis and surface tension measurement showed that the bio surfactants produced by the mutant were identical to those produced by the wild type strain. The bio surfactants exhibited a low surface tension of 28.0 mn m-1 and a low critical micelle concentration of 9 mg l-1. Similar to the wild type strain, the mutant produced bio surfactants at the stationary phase

  13. Production of Biosurfactant by Pseudomonas aeruginosa Grown on Cashew Apple Juice

    Science.gov (United States)

    Rocha, Maria V. P.; Souza, Maria C. M.; Benedicto, Sofia C. L.; Bezerra, Márcio S.; Macedo, Gorete R.; Saavedra Pinto, Gustavo A.; Gonçalves, Luciana R. B.

    In this work, the ability of biosurfactant production by Pseudomonas aeruginosa in batch cultivation using cashew apple juice (CAJ) and mineral media was evaluated. P. aeruginosa was cultivated in CAJ, which was supplemented with peptone (5.0 g/L) and nutritive broth. All fermentation assays were performed in Erlenmeyer flasks containing 300 mL, incubated at 30°C and 150 rpm. Cell growth (biomass and cell density), pH, and superficial tension were monitored vs time. Surface tension was reduced by 10.58 and 41% when P. aeruginosa was cultivated in nutrient broth and CAJ supplemented with peptone, respectively. These results indicated that CAJ is an adequate medium for growth and biosurfactant production. Best results of biosurfactant production were obtained when CAJ was supplemented with peptone.

  14. Nitrous oxide production in sputum from cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection.

    Directory of Open Access Journals (Sweden)

    Mette Kolpen

    Full Text Available Chronic lung infection by Pseudomonas aeruginosa is the major severe complication in cystic fibrosis (CF patients, where P. aeruginosa persists and grows in biofilms in the endobronchial mucus under hypoxic conditions. Numerous polymorphonuclear leukocytes (PMNs surround the biofilms and create local anoxia by consuming the majority of O2 for production of reactive oxygen species (ROS. We hypothesized that P. aeruginosa acquires energy for growth in anaerobic endobronchial mucus by denitrification, which can be demonstrated by production of nitrous oxide (N2O, an intermediate in the denitrification pathway. We measured N2O and O2 with electrochemical microsensors in 8 freshly expectorated sputum samples from 7 CF patients with chronic P. aeruginosa infection. The concentrations of NO3(- and NO2(- in sputum were estimated by the Griess reagent. We found a maximum median concentration of 41.8 µM N2O (range 1.4-157.9 µM N2O. The concentration of N2O in the sputum was higher below the oxygenated layers. In 4 samples the N2O concentration increased during the initial 6 h of measurements before decreasing for approximately 6 h. Concomitantly, the concentration of NO3(- decreased in sputum during 24 hours of incubation. We demonstrate for the first time production of N2O in clinical material from infected human airways indicating pathogenic metabolism based on denitrification. Therefore, P. aeruginosa may acquire energy for growth by denitrification in anoxic endobronchial mucus in CF patients. Such ability for anaerobic growth may be a hitherto ignored key aspect of chronic P. aeruginosa infections that can inform new strategies for treatment and prevention.

  15. Pseudomonas aeruginosa PAO1 Pyocin Production Affects Population Dynamics within Mixed-Culture Biofilms▿ †

    OpenAIRE

    Waite, Richard D.; Curtis, Michael A.

    2008-01-01

    Transcriptomic and phenotypic studies showed that pyocins are produced in Pseudomonas aeruginosa PAO1 aerobic and anaerobic biofilms. Pyocin activity was found to be high in slow-growing anaerobic biofilms but transient in aerobic biofilms. Biofilm coculture of strain PAO1 and a pyocin-sensitive isolate showed that pyocin production had a significant impact on bacterial population dynamics, particularly under anaerobic conditions.

  16. Exploration on production of rhamnolipid biosurfactants using native Pseudomonas aeruginosa strains

    Directory of Open Access Journals (Sweden)

    RAVISH BHAT

    2015-08-01

    Full Text Available Biosurfactants are structurally diverse surface-active molecules, produced on living surfaces, mostly microbial cell surfaces or excreted extracellularly. Rhamnolipid biosurfactants have wide spectrum use and are predominantly produced by the bacteria Pseudomonas aeruginosa. In this study, 75 Pseudomonas strains isolated from distinct native habitats were screened following oil spreading technique, methylene blue agar method, hemolytic blood agar method and surface tension measurement of the cell free culture. Ten selected isolates were tested for their ability to produce rhamnolipid biosurfactants in glycerol mediated broth. The best among them, Pa24, was confirmed as Pseudomonas aeruginosa through 16S rRNA sequence analysis. Experiments carried out on the ability of P. aeruginosa strain Pa24 revealed its potential to utilize range of vegetable oils such as coconut oil, palm oil, jatropha oil, neem oil and mineral glycerol as sole source of carbon and produce rhamnolipid biosurfactant. The extracted biosurfactant was characterized by thin layer chromatography and high performance thin layer chromatography as mixture of di-rhamnolipid and mono-rhamnolipid biosurfactants. The crude extract of rhamnolipid was tested in-vitro for antifungal activity against Phytophthora capsici and Phytophthora infestans and the MIC50 were found to be 815.8 ppm and 373.9 ppm, respectively. Further exploration on different renewable carbon sources including agriculture industrial wastes to produce rhamnolipid biosurfactants can improve the efficiency and reduce the environmental pollution through waste discharge from these industries.

  17. Pseudomonas aeruginosa contamination of mouth swabs during production causing a major outbreak

    OpenAIRE

    Lassen Jørgen; Engeset Eva; Jacobsen Trond; Hagestad Kristian; Bø Gjermund; Eriksen Hanne-Merete; Iversen Bjørn G; Aavitsland Preben

    2007-01-01

    Abstract Background In 2002 we investigated an outbreak comprising 231 patients in Norway, caused by Pseudomonas aeruginosa and linked to the use of contaminated mouth swabs called Dent-O-Sept. Here we describe the extent of contamination of the swabs, and identify critical points in the production process that made the contamination possible, in order to prevent future outbreaks. Methods Environmental investigation with microbiological examination of production, ingredients and product, mole...

  18. PRODUCTION OF AN EXTRACELLULAR CELLOBIASE IN SOLID STATE FERMENTATION

    Directory of Open Access Journals (Sweden)

    Ruchi Agrawal

    2013-02-01

    Full Text Available The bioethanol production from lignocellulosic biomass has attracted wide interest globally in last decade. One of the main reasons for the high cost of bioethanol production from lignocellulosic biomass is the expensive enzymes involved in enzymatic hydrolysis of cellulose (cellulase. The utilization of agro-industrial waste as a potential substrate for producing enzymes may serve a dual purpose of reducing the environmental pollution along with producing a high value commercial product. Twelve different agro-industrial wastes were evaluated for extracellular cellobiose or β-glucosidase production by a mutant of Bacillus subtilis on solid state fermentations (SSF. The Citrus sinensis peel waste was found to be the most suitable substrate with highest BGL titre (35 U/gds. Optimum incubation time, inoculum size, moisture content and volume of buffer for enzyme extraction were 72 h, 40 % v/w, 10 mL and 20 mL respectively.

  19. Enhanced production of extracellular ice nucleators from Erwinia herbicola.

    Science.gov (United States)

    Li, Jingkun; Lee, Tung-Ching

    1998-12-01

    The effects of growth conditions and chemical or physical treatments on the production of extracellular ice nucleators (ECINs) by Erwinia herbicola cells were investigated. The spontaneous release of ECINs, active at temperatures higher than -4 degrees C, into the environment depended on culture conditions, with optimal production when cells were grown in yeast extract to an early stationary phase at temperatures below 22 degrees C. ECINs were vesicular, released from cell surfaces with sizes ranging from 0.1 to 0.3 &mgr;m as determined by ultrafiltration and transmission electron microscopy. Protein profiles of ECIN fractions during bacterial growth were examined by SDS-polyacrylamide gel electrophoresis (SDS-PAGE), and Ina proteins were detected by Western blotting. ECIN production was enhanced 5-fold when cells were treated with EDTA and 20- to 30-fold when subjected to sonication. These conditions provide a means for large-scale preparationage> ECINs by E. herbicola. PMID:12501408

  20. Effects of UV-B radiation on microcystin production of a toxic strain of Microcystis aeruginosa and its competitiveness against a non-toxic strain

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhen, E-mail: zhyang@niglas.ac.cn; Kong, Fanxiang, E-mail: fxkong@niglas.ac.cn; Shi, Xiaoli; Yu, Yang; Zhang, Min

    2015-02-11

    Highlights: • UV-B radiation showed higher inhibition to non-toxin producing than toxin-producing strains on growth and photosynthetic activity. • Both intracellular and extracellular MC contents decreased markedly under UV-B radiation. • Higher resistance to UV-B radiation helped toxin-producing M. aeruginosa to predominate in the competition. - Abstract: Microcystins (MCs) produced by toxic cyanobacteria pose a health hazard to humans and animals. Some environmental factors can alter the MC concentrations by affecting the abundance of toxin-producing strains in a cyanobacteria population and/or their toxin production. In this study, we designed a monoculture and competition experiment to investigate the impacts of UV-B radiation on MC production and the competition between toxin and non-toxin producing strains of Microcystis aeruginosa. UV-B radiation resulted in higher inhibition of the growth and photosynthetic activity of the non-toxin producing strain relative to that observed for the toxin-producing strain. Both intracellular and extracellular MC contents decreased markedly when the toxin-producing strain was exposed to UV-B radiation. In addition, a quantitative real-time PCR assay revealed that the ratio of toxin-producing M. aeruginosa under UV-B exposure was higher than that under PAR alone at an early stage of the experiment. However, its abundance under UV-B exposure was lower compared with the PAR alone treatment after day 12. Our study demonstrated that UV-B radiation has a great impact on the abundance of the toxin-producing strain in the Microcystis population and their toxin production, which suggests that the fluctuation of UV-B radiation affects the MC level of cyanobacteria blooms.

  1. Effects of UV-B radiation on microcystin production of a toxic strain of Microcystis aeruginosa and its competitiveness against a non-toxic strain

    International Nuclear Information System (INIS)

    Highlights: • UV-B radiation showed higher inhibition to non-toxin producing than toxin-producing strains on growth and photosynthetic activity. • Both intracellular and extracellular MC contents decreased markedly under UV-B radiation. • Higher resistance to UV-B radiation helped toxin-producing M. aeruginosa to predominate in the competition. - Abstract: Microcystins (MCs) produced by toxic cyanobacteria pose a health hazard to humans and animals. Some environmental factors can alter the MC concentrations by affecting the abundance of toxin-producing strains in a cyanobacteria population and/or their toxin production. In this study, we designed a monoculture and competition experiment to investigate the impacts of UV-B radiation on MC production and the competition between toxin and non-toxin producing strains of Microcystis aeruginosa. UV-B radiation resulted in higher inhibition of the growth and photosynthetic activity of the non-toxin producing strain relative to that observed for the toxin-producing strain. Both intracellular and extracellular MC contents decreased markedly when the toxin-producing strain was exposed to UV-B radiation. In addition, a quantitative real-time PCR assay revealed that the ratio of toxin-producing M. aeruginosa under UV-B exposure was higher than that under PAR alone at an early stage of the experiment. However, its abundance under UV-B exposure was lower compared with the PAR alone treatment after day 12. Our study demonstrated that UV-B radiation has a great impact on the abundance of the toxin-producing strain in the Microcystis population and their toxin production, which suggests that the fluctuation of UV-B radiation affects the MC level of cyanobacteria blooms

  2. Algal production of extra and intra-cellular polysaccharides as an adaptive response to the toxin crude extract of Microcystis aeruginosa

    Directory of Open Access Journals (Sweden)

    El-Sheekh Mostafa

    2012-11-01

    Full Text Available Abstract This is an investigation concerned with studying the possible adaptive response of four different unicellular algae, Anabaena PCC 7120, Oscillatoria angustissima, Scendesmus obliquus and Chlorella vulgaris, to the toxin of Microcystis aeruginosa (Kützing. The effects of four different concentrations, 25, 50, 100 and 200 μg mL-1 of microcystins crude extract of M. aeruginosa, on both intra and extra-cellular polysaccharide levels, in log phase, of the four tested algae were studied. The obtained results showed differential increase in the production levels for both intra and extra-cellular polysaccharides by the tested algae, compared with the control. S. obliquus and C. vulgaris showed a resistance to crude toxin higher than Anabaena PCC 7120 and O. angustissima. The highly production of polysaccharides by green algal species under this toxic stress indicated the involvement of these polysaccharides in protecting the algal cells against toxic species and, reflect the biological behavior of particular algal species to the environmental stresses.

  3. Algal Production of Extra- and Intra-Cellular Polysaccharides as an Adaptive Response to the Toxin Crude Extract of Microcystis Aeruginosa

    Directory of Open Access Journals (Sweden)

    Mostafa Mohamed El-Sheekh

    2012-11-01

    Full Text Available This is an investigation concerned with studying the possible adaptive response of four different unicellular algae, Anabaena PCC 7120, Oscillatoria angustissima, Scendesmus obliquus and Chlorella vulgaris, to the toxin of Microcystis aeruginosa (Kützing. Theeffects of four different concentrations, 25, 50, 100 and 200 μg mL-1 of microcystins crude extract of M. aeruginosa, on both intra and extra-cellular polysaccharide levels, in log phase,of the four tested algae were studied. The obtained results showed differential increase in the production levels for both intra and extra-cellular polysaccharides by the tested algae,compared with the control. S. obliquus and C. vulgaris showed a resistance to crude toxinhigher than Anabaena PCC 7120 and O. angustissima. The highly production of polysaccharides by green algal species under this toxic stress indicated the involvement of these polysaccharides in protecting the algal cells against toxic species and, reflect thebiological behavior of particular algal species to the environmental stresses.

  4. An examination of potential differences in biofilm production among different genotypes of Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Vasiljević Zorica

    2014-01-01

    Full Text Available In the present study, we have examined if there is any difference in biofilm production among different genotypes of Pseudomonas aeruginosa. The study investigated 526 non-duplicate P. aeruginosa isolated from clinical specimens and from a hospital environment. Isolates were grouped into thirty-five genotypes based on an identical ERIC2-band pattern. Biofilm formation was quantified by the microtiter plate test and all strains were classified into the following categories: no biofilm producers (0, weak (+, moderate (+, or strong (+++ biofilm producers. Only 2.45% of examined strains were not biofilm producers. Among biofilm producers, 39.26% were strong biofilm producers, 34.36% were moderate biofilm producers, while 23.93% were weak biofilm producers. Although the majority of strong biofilm producers were in genotype groups 2 and 3, the degree of in vitro biofilm formation in our study was not significantly affected by the genotype of Pseudomonas aeruginosa. In this study, we demonstrated that the degree of in vitro biofilm formation is not significantly affected by the genotype of Pseudomonas aeruginosa. [Projekat Ministarstva nauke Republike Srbije, br. 175039 i br. 143036

  5. Widespread Production of Extracellular Superoxide by Heterotrophic Bacteria

    Science.gov (United States)

    Diaz, Julia M.; Hansel, Colleen M.; Voelker, Bettina M.; Mendes, Chantal M.; Andeer, Peter F.; Zhang, Tong

    2013-06-01

    Superoxide and other reactive oxygen species (ROS) originate from several natural sources and profoundly influence numerous elemental cycles, including carbon and trace metals. In the deep ocean, the permanent absence of light precludes currently known ROS sources, yet ROS production mysteriously occurs. Here, we show that taxonomically and ecologically diverse heterotrophic bacteria from aquatic and terrestrial environments are a vast, unrecognized, and light-independent source of superoxide, and perhaps other ROS derived from superoxide. Superoxide production by a model bacterium within the ubiquitous Roseobacter clade involves an extracellular oxidoreductase that is stimulated by the reduced form of nicotinamide adenine dinucleotide (NADH), suggesting a surprising homology with eukaryotic organisms. The consequences of ROS cycling in immense aphotic zones representing key sites of nutrient regeneration and carbon export must now be considered, including potential control of carbon remineralization and metal bioavailability.

  6. Effects of allelochemical extracted from water lettuce (Pistia stratiotes Linn.) on the growth, microcystin production and release of Microcystis aeruginosa.

    Science.gov (United States)

    Wu, Xiang; Wu, Hao; Chen, Junren; Ye, Jinyun

    2013-11-01

    This study explored the optimisation of a method of extracting allelochemicals from Pistia stratiotes Linn., identified the optimal dose range for the allelochemicals' anti-algal effect and investigated their impact on the growth of Microcystis aeruginosa, as well as the production and release of microcystin-LR (MC-LR). Based on measured changes in algal cell density and chlorophyll a (Chl-a) content, the allelochemicals were confirmed to have the strongest anti-algal effect with the lowest half-effect concentration of 65 mg L(-1) when they were extracted using ethyl acetate as the extraction solvent, 1:20 g mL(-1) as the extraction ratio and 1 h as the extraction time. The allelochemicals extracted from P. stratiotes using this optimal method exhibited the strongest inhibitory effect on the growth of algae when used within a dose range of 60-100 mg L(-1); the relative inhibitory ratio reached 50-90%, and Chl-a content reduced 50-75% in algae cell cultures within 3-7 days. In addition, the extracted allelochemical compounds demonstrated no significant impact on the extracellular release of MC-LR during the culturing period. The amount of intracellular MC-LR per 10(6) algal cells increased depending on the increasing dose of allelochemicals from P. stratiotes after 7 days of culturing and maintained stability after 16 days. There was no increase in the total amount of MC-LR in the algal cell culture medium. Therefore, the application of allelochemicals from P. stratiotes to inhibit M. aeruginosa has a high degree of ecological safety and can be adopted in practical applications for treating water subjected to algae blooms because the treatment can effectively inhibit the proliferation of algal cells without increasing the release of cyanotoxin. PMID:23653319

  7. Production and characterization of an extracellular lipase from Candida guilliermondii.

    Science.gov (United States)

    Oliveira, Anne Caroline Defranceschi; Fernandes, Maria Luiza; Mariano, André Bellin

    2014-01-01

    Extracellular lipases from the endophytic yeast Candida guilliermondii isolated from castor leaves (Ricinus communis L.) were produced using low-cost raw materials such as agro-industrial residues and applying them in the esterification of oleic acid for evaluating their potential use in biodiesel production. After partial purification using ammonium sulfate, the enzyme was characterized and presented higher activity (26.8 ± 1.5 U mL(-1)) in the presence of 5 mmol L(-1) NaCl at 30 °C and pH 6.5. The production through submerged fermentation was formerly performed in 150 mL erlenmeyer flasks and, once the enzyme production was verified, assays in a 14 L bioreactor were conducted, obtaining 18 ± 1.4 U mL(-1). The produced enzyme was applied in the oleic acid esterification under different solvents: hexane, cyclohexane or cyclohexanone) and different acid:alcohol molar ratios. Higher ester conversion rate (81%) was obtained using hexane and the molar ratio of 1:9 was the best conditions using methanol. The results suggest the potential for development of endophytic yeast in the production of biocatalyst through submerged fermentation using agroindustrial residues as culture medium. PMID:25763060

  8. Inactivation of the rhlA gene in Pseudomonas aeruginosa prevents rhamnolipid production, disabling the protection against polymorphonuclear leukocytes

    DEFF Research Database (Denmark)

    van Gennip, Maria; Christensen, Louise Dahl; Alhede, Morten;

    2009-01-01

    Many of the virulence factors produced by the opportunistic human pathogen Pseudomonas aeruginosa are quorum-sensing (QS) regulated. Among these are rhamnolipids, which have been shown to cause lysis of several cellular components of the human immune system, e.g. monocyte-derived macrophages and...... biofilms to PMNs. In the present study, we demonstrate the importance of the production of rhamnolipids in the establishment and persistence of P. aeruginosa infections, using an in vitro biofilm system, an intraperitoneal foreign-body model and a pulmonary model of P. aeruginosa infections in mice. Our...

  9. A novel technique using potassium permanganate and reflectance confocal microscopy to image biofilm extracellular polymeric matrix reveals non-eDNA networks in Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Swearingen, Matthew C; Mehta, Ajeet; Mehta, Amar; Nistico, Laura; Hill, Preston J; Falzarano, Anthony R; Wozniak, Daniel J; Hall-Stoodley, Luanne; Stoodley, Paul

    2016-02-01

    Biofilms are etiologically important in the development of chronic medical and dental infections. The biofilm extracellular polymeric substance (EPS) determines biofilm structure and allows bacteria in biofilms to adapt to changes in mechanical loads such as fluid shear. However, EPS components are difficult to visualize microscopically because of their low density and molecular complexity. Here, we tested potassium permanganate, KMnO4, for use as a non-specific EPS contrast-enhancing stain using confocal laser scanning microscopy in reflectance mode. We demonstrate that KMnO4 reacted with EPS components of various strains of Pseudomonas, Staphylococcus and Streptococcus, yielding brown MnO2 precipitate deposition on the EPS, which was quantifiable using data from the laser reflection detector. Furthermore, the MnO2 signal could be quantified in combination with fluorescent nucleic acid staining. COMSTAT image analysis indicated that KMnO4 staining increased the estimated biovolume over that determined by nucleic acid staining alone for all strains tested, and revealed non-eDNA EPS networks in Pseudomonas aeruginosa biofilm. In vitro and in vivo testing indicated that KMnO4 reacted with poly-N-acetylglucosamine and Pseudomonas Pel polysaccharide, but did not react strongly with DNA or alginate. KMnO4 staining may have application as a research tool and for diagnostic potential for biofilms in clinical samples. PMID:26536894

  10. Influence of O Polysaccharides on Biofilm Development and Outer Membrane Vesicle Biogenesis in Pseudomonas aeruginosa PAO1

    OpenAIRE

    Murphy, Kathleen; Park, Amber J.; Hao, Youai; Brewer, Dyanne; Lam, Joseph S.; Khursigara, Cezar M.

    2014-01-01

    Pseudomonas aeruginosa is a common opportunistic human pathogen known for its ability to adapt to changes in its environment during the course of infection. These adaptations include changes in the expression of cell surface lipopolysaccharide (LPS), biofilm development, and the production of a protective extracellular exopolysaccharide matrix. Outer membrane vesicles (OMVs) have been identified as an important component of the extracellular matrix of P. aeruginosa biofilms and are thought to...

  11. Production of biosurfactants from Pseudomonas aeruginosa PA 1 isolated in oil environments

    OpenAIRE

    L.M. Santa Anna; Sebastian, G.V.; E.P. Menezes; ALVES T. L. M.; Santos, A.S.(LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil); N. Pereira Jr.; D.M.G. Freire

    2002-01-01

    The potential production of rhamnolipid-type biosurfactants is assessed based on the development of a fermentative process with a strain of Pseudomonas aeruginosa PA1, which was isolated from oil production wastewater in the Northeast of Brazil. These production of molecules using different carbon (n-hexadecane, paraffinic oil, glycerol and babassu oil) and nitrogen sources (NaNO3, (NH4)2SO4 and CH4N2O) was studied. The best results were obtained when using glycerol as substrate. A C/N ratio ...

  12. Regulation of extracellular slime production by Actinomyces viscosus.

    OpenAIRE

    Ooshima, T; Kuramitsu, H K

    1981-01-01

    Extracellular slime polysaccharides produced two Actinomyces viscosus strains, T14V and T14AV, were compared. In various media containing glucose, T14Av produced abundant extracellular viscous slime polysaccharide, whereas T14V produced lower levels. Furthermore, fractionation of these polysaccharides showed that the two extracellular polysaccharides differed in molecular size and net charge. Since there was a significant difference in the relative abilities of chemically defined medium and c...

  13. Complex marine natural products as potential epigenetic and production regulators of antibiotics from a marine Pseudomonas aeruginosa

    Science.gov (United States)

    Wang, Bin; Waters, Amanda L.; Sims, James W.; Fullmer, Alexis; Ellison, Serena; Hamann, Mark T.

    2013-01-01

    Marine microbes are capable of producing secondary metabolites for defense and competition. Factors exerting an impact on secondary metabolite production of microbial communities included bioactive natural products and co-culturing. These external influences may have practical applications such as increased yields or the generation of new metabolites from otherwise silent genes in addition to reducing or limiting the production of undesirable metabolites. In this paper, we discuss the metabolic profiles of a marine Pseudomonas aeruginosa in the presence of a number of potential chemical epigenetic regulators, adjusting carbon sources and co-culturing with other microbes to induce a competitive response. As a result of these stressors certain groups of antibiotics or antimalarial agents were increased most notably when treating P. aeruginosa with sceptrin and co-culturing with another Pseudomonas sp. An interesting cross-talking event between these two Pseudomonas species when cultured together and exposed to sceptrin was observed. PMID:23563743

  14. Efficient production and enhanced tumor delivery of engineered extracellular vesicles.

    Science.gov (United States)

    Watson, Dionysios C; Bayik, Defne; Srivatsan, Avinash; Bergamaschi, Cristina; Valentin, Antonio; Niu, Gang; Bear, Jenifer; Monninger, Mitchell; Sun, Mei; Morales-Kastresana, Aizea; Jones, Jennifer C; Felber, Barbara K; Chen, Xiaoyuan; Gursel, Ihsan; Pavlakis, George N

    2016-10-01

    Extracellular vesicles (EV), including exosomes and microvesicles, are nano-sized intercellular communication vehicles that participate in a multitude of physiological processes. Due to their biological properties, they are also promising candidates for the systemic delivery of therapeutic compounds, such as cytokines, chemotherapeutic drugs, siRNAs and viral vectors. However, low EV production yield and rapid clearance of administered EV by liver macrophages limit their potential use as therapeutic vehicles. We have used a hollow-fiber bioreactor for the efficient production of bioactive EV bearing the heterodimeric cytokine complex Interleukin-15:Interleukin-15 receptor alpha. Bioreactor culture yielded ∼40-fold more EV per mL conditioned medium, as compared to conventional cell culture. Biophysical analysis and comparative proteomics suggested a more diverse population of EV in the bioreactor preparations, while serum protein contaminants were detectable only in conventional culture EV preparations. We also identified the Scavenger Receptor Class A family (SR-A) as a novel monocyte/macrophage uptake receptor for EV. In vivo blockade of SR-A with dextran sulfate dramatically decreased EV liver clearance in mice, while enhancing tumor accumulation. These findings facilitate development of EV therapeutic methods. PMID:27522254

  15. MODELING AND OPTIMIZATION OF MAIN FACTORS IN RHAMNOLIPID PRODUCTION PROCESS BY PSEUDOMONAS AERUGINOSA HR

    OpenAIRE

    Rashedi H* and M Mazaheri Assadi

    2013-01-01

    Producing bacterium of rhamnolipid in this research is, P. aeruginosa HR was isolated from Iranian oil wells. First, the effect of three factors pH (6.5-7.5), Temperature (30-35˚C), and Carbon/Nitrogen ratio (C/N) (24-32) on biosurfactant production were investigated using Taguchi model. Lindhard medium which is known as the best culture medium in laboratory scale was used and optimum condition (pH = 7.5, T = 33˚C, C/N ratio = 24) was determined. Then, under the obtained optimum condition, in...

  16. Enhancing the Feasibility of Microcystis aeruginosa as a Feedstock for Bioethanol Production under the Influence of Various Factors

    Science.gov (United States)

    Lee, Moon Geon; Seo, Hyo Jin; Shin, Jin Hyuk; Shin, Tai Sun; Kim, Min Yong; Choi, Jong Il

    2016-01-01

    Microcystis aeruginosa, a freshwater microalga, is capable of producing and accumulating different types of sugars in its biomass which make it a good feedstock for bioethanol production. Present study aims to investigate the effect of different factors increasing growth rate and carbohydrates productivity of M. aeruginosa. MF media (modified BG11 media) and additional ingredients such as aminolevulinic acid (2 mM), lysine (2.28 mM), alanine (1 mM), and Naphthalene acetic acid (1 mM) as cytokine promoted M. aeruginosa growth and sugar contents. Salmonella showed growth-assisting effect on M. aeruginosa. Enhanced growth rate and carbohydrates contents were observed in M. aeruginosa culture grown at 25°C under red LED light of 90 μmolm−2s−1 intensity. More greenish and carbohydrates rich M. aeruginosa biomass was prepared (final OD660 nm = 2.21 and sugar contents 10.39 mM/mL) as compared to control (maximum OD660 nm = 1.4 and sugar contents 3 mM/mL). The final algae biomass was converted to algae juice through a specific pretreatment method. The resulted algae Juice was used as a substrate in fermentation process. Highest yield of bioethanol (50 mM/mL) was detected when Brettanomyces custersainus, Saccharomyces cerevisiae, and Pichia stipitis were used in combinations for fermentation process as compared to their individual fermentation. The results indicated the influence of different factors on the growth rate and carbohydrates productivity of M. aeruginosa and its feasibility as a feedstock for fermentative ethanol production. PMID:27556034

  17. Enhancing the Feasibility of Microcystis aeruginosa as a Feedstock for Bioethanol Production under the Influence of Various Factors.

    Science.gov (United States)

    Khan, Muhammad Imran; Lee, Moon Geon; Seo, Hyo Jin; Shin, Jin Hyuk; Shin, Tai Sun; Yoon, Yang Ho; Kim, Min Yong; Choi, Jong Il; Kim, Jong Deog

    2016-01-01

    Microcystis aeruginosa, a freshwater microalga, is capable of producing and accumulating different types of sugars in its biomass which make it a good feedstock for bioethanol production. Present study aims to investigate the effect of different factors increasing growth rate and carbohydrates productivity of M. aeruginosa. MF media (modified BG11 media) and additional ingredients such as aminolevulinic acid (2 mM), lysine (2.28 mM), alanine (1 mM), and Naphthalene acetic acid (1 mM) as cytokine promoted M. aeruginosa growth and sugar contents. Salmonella showed growth-assisting effect on M. aeruginosa. Enhanced growth rate and carbohydrates contents were observed in M. aeruginosa culture grown at 25°C under red LED light of 90 μmolm(-2)s(-1) intensity. More greenish and carbohydrates rich M. aeruginosa biomass was prepared (final OD660 nm = 2.21 and sugar contents 10.39 mM/mL) as compared to control (maximum OD660 nm = 1.4 and sugar contents 3 mM/mL). The final algae biomass was converted to algae juice through a specific pretreatment method. The resulted algae Juice was used as a substrate in fermentation process. Highest yield of bioethanol (50 mM/mL) was detected when Brettanomyces custersainus, Saccharomyces cerevisiae, and Pichia stipitis were used in combinations for fermentation process as compared to their individual fermentation. The results indicated the influence of different factors on the growth rate and carbohydrates productivity of M. aeruginosa and its feasibility as a feedstock for fermentative ethanol production. PMID:27556034

  18. Prevalence of Extended-Spectrum and Metallo β-Lactamase Production in AmpC β-Lactamase Producing Pseudomonas aeruginosa Isolates From Burns

    OpenAIRE

    Rafiee, Roya; Eftekhar, Fereshteh; Tabatabaei, Seyyed Ahmad; Minaee Tehrani, Dariush

    2014-01-01

    Background: Pseudomonas aeruginosa is one of the most common causes of nosocomial infections. Resistance of P. aeruginosa to β-lactam antibiotics may be the result of acquired resistance through mutation and over production of various antibiotic inactivating enzymes. This research aimed to determine the prevalence of extended-spectrum β-lactamases (ESBL) and metallo β-lactamase (MBL) production as well as the presence of their related genes among AmpC β-lactamase producing P. aeruginosa isola...

  19. Simultaneous production of alkaline lipase and protease by antibiotic and heavy metal tolerant Pseudomonas aeruginosa.

    Science.gov (United States)

    Bisht, Deepali; Yadav, Santosh Kumar; Gautam, Pallavi; Darmwal, Nandan Singh

    2013-09-01

    An efficient bacterial strain capable of simultaneous production of lipase and protease in a single production medium was isolated. Thirty six bacterial strains, isolated from diverse habitats, were screened for their lipolytic and proteolytic activity. Of these, only one bacterial strain was found to be lipase and protease producer. The 16S rDNA sequencing and phylogenetic analyses revealed that strain (NSD-09) was in close identity to Pseudomonas aeruginosa. The maximum lipase (221.4 U/ml) and protease (187.9 U/ml) activities were obtained after 28 and 24 h of incubation, respectively at pH 9.0 and 37 °C. Castor oil and wheat bran were found to be the best substrate for lipase and protease production, respectively. The strain also exhibited high tolerance to lead (1450 µg/ml) and chromium (1000 µg/ml) in agar plates. It also showed tolerance to other heavy metals, such as Co(+2) , Zn(+2) , Hg(+2) , Ni(+2) and Cd(+2) . Therefore, this strain has scope for tailing bioremediation. Presumably, this is the first attempt on P. aeruginosa to explore its potential for both industrial and environmental applications. PMID:22961768

  20. Characterization of the Pseudomonas aeruginosa recA analog and its protein product: rec-102 is a mutant allele of the P. aeruginosa PAO recA gene

    International Nuclear Information System (INIS)

    We cloned a 2.3-kilobase-pair fragment of the Pseudomonas aeruginosa PAO chromosome which is capable of complementing recA mutations of Escherichia coli. The recA-complementing activity was further localized to a 1.5-kilobase-pair PvuII-HindIII fragment. Southern blot analysis under conditions of high stringency indicated that DNA sequence homology is shared by the E. coli recA gene and the P. aeruginosa recA analog. The cloned recA analog was shown to restore resistance to methyl methanesulfonate, nitrofurantoin, and UV irradiation to E. coli recA mutants. Upon introduction of the cloned P. aeruginosa gene, these mutants regained recombination proficiency in HfrH-mediated conjugation and the ability to induce lambda prophages and SOS functions (din gene transcription) after exposure to DNA-damaging agents. Lambda prophage carrying a cI ind mutation was not inducible, suggesting that the mechanism of induction of these SOS functions by the P. aeruginosa RecA analog is similar to that by the activated E. coli RecA protein. The product of the recA analog was identified in minicells as a protein of approximately 47,000 daltons. Western blot analysis using anti-E. coli RecA antibody demonstrated that this protein is antigenically cross-reactive with the E. coli recA protein. The recA-containing fragment was cloned into the broad-host-range vector pCP13 and introduced into Rec- strains of P. aeruginosa containing the rec-102 allele. The plasmid was shown to restore recombination proficiency in FP5-mediated conjugations and to restore resistance to UV irradiation and methyl methanesulfonate to these Rec- mutants. It was shown that a wild-type allele of rec-102 is necessary for UV-mediated induction of D3 and F116 prophages. The cloned recA analog restored the UV inducibility of these prophages in rec-102 mutants

  1. MICROBIAL LIPASES: PRODUCTION OF EXTRACELLULAR LIPASE ENZYME BY ALCALIGENES VISCOSUS (DOGE-1) STRAIN

    OpenAIRE

    P.Sekhar

    2012-01-01

    Industrially important extracellular lipase enzyme production was explored by utilizingmicrobial strain isolated from dairy effluents. Alcaligenes viscosus DOGE-1 strain isolated from dairywaste waters proved to produce extracellular lipase. Various growth factors were attempted to maximizethe lipase production by this strain. Growth factors like NH4PO4, Peptone, Urea coupled with peptone,KH2PO4, Olive oil and pH were found to be favored the maximum lipase production. This microbialstrain was...

  2. STUDY OF METALLO-Β-LACTAMASE PRODUCTION IN CLINICAL ISOLATES OF PSEUDOMONAS AERUGINOSA IN A TEACHING HOSPITAL OF RURAL GUJARAT - INDIA

    OpenAIRE

    Yagnesh; Agravat

    2013-01-01

    ABSTRACT: BACKGROUND: Pseudomonas aeruginosa exhibits intrinsic resistanc e to a variety of antimicrobials including beta lactams. Imipenem-res istant Pseudomonas aeruginosa resulting from metallo-β-lactamases production represent a signifi cant and rapidly emerging problem and threat in most part of the world. Detection of metallo-β-l actamase (MBL)-producing Pseudomonas aeruginosa is crucial for the optimal antibiotic tr eatment of the seriously ill patients. ...

  3. Association of biofilm production with multidrug resistance among clinical isolates of Acinetobacter baumannii and Pseudomonas aeruginosa from intensive care unit

    Directory of Open Access Journals (Sweden)

    Jeetendra Gurung

    2013-01-01

    Full Text Available Background and Aims: Given choice, bacteria prefer a community-based, surface-bound colony to an individual existence. The inclination for bacteria to become surface bound is so ubiquitous in diverse ecosystems that it suggests a strong survival strategy and selective advantage for surface dwellers over their free-ranging counterparts. Virtually any surface, biotic or abiotic (animal, mineral, or vegetable is suitable for bacterial colonization and biofilm formation. Thus, a biofilm is "a functional consortium of microorganisms organized within an extensive exopolymeric matrix." Materials and Methods: The present study was undertaken to detect biofilm production from the repertoire stocks of Acinetobacter baumannii (A. baumannii and Pseudomonas aeruginosa (P. aeruginosa obtained from clinical specimens. The tube method was performed to qualitatively detect biofilm production. Results: A total of 109 isolates of both organisms were included in the study, out of which 42% (46/109 isolates showed biofilm detection. Among the biofilm producers, 57% of P. aeruginosa and 73% of A. baumannii showed multidrug resistance (MDR pattern which was statistically significant in comparison to nonbiofilm producers (P < 0.001. Conclusion: To the best of our knowledge, this is the only study to have tested the biofilm production in both P. aeruginosa and A. baumannii in a single study. Biofilm production and MDR pattern were found to be significantly higher in A. baumannii than P. aeruginosa. Antibiotic resistance was significantly higher among biofilm producing P. aeruginosa than non producers. Similarly, antibiotic resistance was significantly higher among biofilm producing A. baumannii than non producers.

  4. Heterologous production of death ligands' and death receptors' extracellular domains: structural features and efficient systems.

    Science.gov (United States)

    Muraki, Michiro

    2012-08-01

    The extracellular domains of death ligands and those of death receptors are closely related to many serious human diseases through the initiation of apoptosis. Recombinant production of the extracellular domains has been investigated due to demand for a large amount of purified samples, which are a prerequisite for their biochemical characterization and constitute the fundamentals of medical applications. This review focuses on the recombinant production of extracellular domains of the major members of death ligand and death receptor families using non-mammalian expression systems with an emphasis on Fas ligand and Fas receptor. In contrast to the efficient production of the functional extracellular domains of TRAIL, TNFα and LTα by intracellular expression systems using Escherichia coli or Pichia pastoris, that of Fas ligand requires the secretory expression systems using P. pastoris or Dictyostelium discoideum, and the productivity in P. pastoris was largely dependent on tag sequence, potential N-glycosylation site and expressed protein region. On the other hand, the exploitation of insect cell systems is generally useful for the preparation of functional extracellular domains of death receptors containing many disulfide bridges in the absence of extended secondary structure, and a Bombyx mori larvae secretion system presented a superior productivity for human Fas receptor extracellular domain. Based on the results obtained so far, further efforts should be devoted to the artificial control of death ligand - death receptor interactions in order to make a contribution to medicine, represented by the development of novel biopharmaceuticals. PMID:22762186

  5. Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Barken, Kim B; Pamp, Sünje J; Yang, Liang;

    2008-01-01

    When grown as a biofilm in laboratory flow chambers Pseudomonas aeruginosa can develop mushroom-shaped multicellular structures consisting of distinct subpopulations in the cap and stalk portions. We have previously presented evidence that formation of the cap portion of the mushroom......-shaped structures in P. aeruginosa biofilms occurs via bacterial migration and depends on type IV pili (Mol Microbiol 50: 61-68). In the present study we examine additional factors involved in the formation of this multicellular substructure. While pilA mutants, lacking type IV pili, are deficient in mushroom cap...

  6. Biosurfactant production by Pseudomonas aeruginosa DSVP20 isolated from petroleum hydrocarbon-contaminated soil and its physicochemical characterization.

    Science.gov (United States)

    Sharma, Deepak; Ansari, Mohammad Javed; Al-Ghamdi, Ahmad; Adgaba, Nuru; Khan, Khalid Ali; Pruthi, Vikas; Al-Waili, Noori

    2015-11-01

    Among 348 microbial strains isolated from petroleum hydrocarbon-contaminated soil, five were selected for their ability to produce biosurfactant based on battery of screening assay including hemolytic activity, surface tension reduction, drop collapse assay, emulsification activity, and cell surface hydrophobicity studies. Of these, bacterial isolate DSVP20 was identified as Pseudomonas aeruginosa (NCBI GenBank accession no. GQ865644) based on biochemical characterization and the 16S rDNA analysis, and it was found to be a potential candidate for biosurfactant production. Maximum biosurfactant production recorded by P. aeruginosa DSVP20 was 6.7 g/l after 72 h at 150 rpm and at a temperature of 30 °C. Chromatographic analysis and high-performance liquid chromatography-mass spectrometry (HPLC-MS) revealed that it was a glycolipid in nature which was further confirmed by nuclear magnetic resonance (NMR) spectroscopy. Bioremediation studies using purified biosurfactant showed that P. aeruginosa DSVP20 has the ability to degrade eicosane (97%), pristane (75%), and fluoranthene (47%) when studied at different time intervals for a total of 7 days. The results of this study showed that the P. aeruginosa DSVP20 and/or biosurfactant produced by this isolate have the potential role in bioremediation of petroleum hydrocarbon-contaminated soil. PMID:26146372

  7. Pseudomonas aeruginosa C5-mannuronan epimerase: steady-state kinetics and characterization of the product.

    Science.gov (United States)

    Jerga, Agoston; Raychaudhuri, Aniruddha; Tipton, Peter A

    2006-01-17

    Alginate is a major constituent of mature biofilms produced by Pseudomonas aeruginosa. The penultimate step in the biosynthesis of alginate is the conversion of some beta-D-mannuronate residues in the polymeric substrate polymannuronan to alpha-L-guluronate residues in a reaction catalyzed by C5-mannuronan epimerase. Specificity studies conducted with size-fractionated oligomannuronates revealed that the minimal substrate contained nine monosaccharide residues. The maximum velocity of the reaction increased from 0.0018 to 0.0218 s(-1) as the substrate size increased from 10 to 20 residues, and no additional increase in kcat was observed for substrates up to 100 residues in length. The Km decreased from 80 microM for a substrate containing fewer than 15 residues to 4 microM for a substrate containing more than 100 residues. In contrast to C5-mannuronan epimerases that have been characterized in other bacterial species, P. aeruginosa C5-mannuronan epimerase does not require Ca2+ for activity, and the Ca2+-alginate complex is not a substrate for the enzyme. Analysis of the purified, active enzyme by inductively coupled plasma-emission spectroscopy revealed that no metals were present in the protein. The pH dependence of the kinetic parameters revealed that three residues on the enzyme which all have a pKa of approximately 7.6 must be protonated for catalysis to occur. The composition of the polymeric product of the epimerase reaction was analyzed by 1H NMR spectroscopy, which revealed that tracts of adjacent guluronate residues were readily formed. The reaction reached an apparent equilibrium when the guluronate composition of the polymer was 75%. PMID:16401084

  8. Production of biosurfactants from Pseudomonas aeruginosa PA 1 isolated in oil environments

    Directory of Open Access Journals (Sweden)

    Santa Anna L.M.

    2002-01-01

    Full Text Available The potential production of rhamnolipid-type biosurfactants is assessed based on the development of a fermentative process with a strain of Pseudomonas aeruginosa PA1, which was isolated from oil production wastewater in the Northeast of Brazil. These production of molecules using different carbon (n-hexadecane, paraffinic oil, glycerol and babassu oil and nitrogen sources (NaNO3, (NH42SO4 and CH4N2O was studied. The best results were obtained when using glycerol as substrate. A C/N ratio of 60/1 and use of sodium nitrate as nitrogen source resulted in higher production of the rhamnolipid, expressed by rhamnose (3.16 g/L and by the yield in relation to biomass (Yp/x = 0.70 g/g. Additionally, physical-chemical characteristics of the spent broth with and without cells were studied, providing a low critical micelle concentration of 19 mg/L and toxicity values of 13 and 13.8 mg/L using two test organisms, the micro crustacean Daphnia similis and the bacterium Vibrio fisheri (Microtox, respectively.

  9. Analysis of quorum sensing-dependent virulence factor production and its relationship with antimicrobial susceptibility in Pseudomonas aeruginosa respiratory isolates.

    Science.gov (United States)

    Karatuna, O; Yagci, A

    2010-12-01

    Pseudomonas aeruginosa is an opportunistic pathogen causing severe respiratory infections. The pathogenesis of these infections is multifactorial and the production of many virulence factors is regulated by quorum sensing (QS), a cell-to-cell communication mechanism. The two well defined QS systems in P. aeruginosa, the las and rhl systems, rely on N-acyl homoserine lactone signal molecules, also termed autoinducers. We assessed the activity of QS-dependent virulence factors (including elastase, alkaline protease, pyocyanin and biofilm production) in respiratory isolates of P. aeruginosa and their relationship with antimicrobial susceptibility. We identified sixteen isolates displaying impaired phenotypic activity; among them, eleven isolates were also defective in autoinducer production, and therefore considered QS-deficient. Six of the QS-deficient isolates failed to amplify one or more of the four QS regulatory genes (lasI, lasR, rhlI, rhlR) with PCR: one isolate was negative for rhlR, two isolates were negative for rhlI and rhlR and three isolates were negative for all four genes. The isolates that were negative for virulence factor production were generally less susceptible to the antimicrobials and statistically significant correlations were observed between the lack of elastase production and resistance to piperacillin and ceftazidime; between failure in alkaline protease production and resistance to tobramycin, piperacillin, piperacillin-tazobactam, cefepime, imipenem and ciprofloxacin; and between failure in pyocyanin production and resistance to amikacin, tobramycin, ceftazidime, ciprofloxacin and ofloxacin. The results obtained indicate that, despite the pivotal role of QS in the pathogenesis of P. aeruginosa respiratory infections, QS-deficient strains are still capable of causing infections and tend to be less susceptible to antimicrobials. PMID:20132256

  10. Extracellular electron transfer from cathode to microbes: application for biofuel production

    OpenAIRE

    Choi, Okkyoung; Sang, Byoung-In

    2016-01-01

    Extracellular electron transfer in microorganisms has been applied for bioelectrochemical synthesis utilizing microbes to catalyze anodic and/or cathodic biochemical reactions. Anodic reactions (electron transfer from microbe to anode) are used for current production and cathodic reactions (electron transfer from cathode to microbe) have recently been applied for current consumption for valuable biochemical production. The extensively studied exoelectrogenic bacteria Shewanella and Geobacter ...

  11. PRODUCTION OF AN EXTRACELLULAR CELLOBIASE IN SOLID STATE FERMENTATION

    OpenAIRE

    Ruchi Agrawal; Alok Satlewal; Verma, A. K.

    2013-01-01

    The bioethanol production from lignocellulosic biomass has attracted wide interest globally in last decade. One of the main reasons for the high cost of bioethanol production from lignocellulosic biomass is the expensive enzymes involved in enzymatic hydrolysis of cellulose (cellulase). The utilization of agro-industrial waste as a potential substrate for producing enzymes may serve a dual purpose of reducing the environmental pollution along with producing a high value commercial product. Tw...

  12. Scale up production of Protease using Pseudomonas aeruginosa MCM B-327 and its Detergent Compatibility

    Directory of Open Access Journals (Sweden)

    Vasudeo P Zambare

    2014-01-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 The maximum protease activity was obtained from P. aeruginosa MCM B-327 with soybean meal 1%, tryptone 1%, initial medium pH 7, agitation rate 250 rpm, aeration rate 0.75 vvm and fermentation temperature 30 °C, under submerged fermentation conditions (SmF. The protease productivity at 10 and 120L fermenters was found to be 16,021 and 9,975 UL-1h-1 respectively. Kinetics of cell growth revealed that specific cell growth rate was 0.025 h-1. Protease was active and stable at different pH, temperatures, in anionic, cationic and non-ionic detergent additives, as well as in commercial detergents. The protease exhibited blood stains removing performance indicating its potential in detergent industry. The dried ammonium sulphate precipitated protease was stable at room temperature for a period of one year. The Protease has shown properties suitable for its application in detergents. The results contribute to basic knowledge and application of protease from P.aeruginosa to detergent industry. The studies will help to optimize the production of this protease for biotechnological applications. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  13. Influence of dimethyl sulfoxide on extracellular enzyme production

    Czech Academy of Sciences Publication Activity Database

    Shah, V.; Baldrian, Petr; Eichlerová, Ivana; Dave, R.; Madamwar, D.; Nerud, František; Gross, R.

    2006-01-01

    Roč. 28, - (2006), s. 651-655. ISSN 0141-5492 Institutional research plan: CEZ:AV0Z50200510 Keywords : dmso * enzyme production * induction Subject RIV: EE - Microbiology, Virology Impact factor: 1.134, year: 2006

  14. Purification and characterization of extracellular lipase from a new strain: Pseudomonas aeruginosa SRT 9 Purificação e caracterização de uma lipase extracelular produzida por uma nova cepa: Pseudomonas aeruginosa SRT9

    OpenAIRE

    Borkar, Prita S.; Bodade, Ragini G.; Rao, Srinivasa R.; Khobragade, C.N.

    2009-01-01

    An extra cellular lipase was isolated and purified from the culture broth of Pseudomonas aeruginosa SRT 9 to apparent homogeneity using ammonium sulfate precipitation followed by chromatographic techniques on phenyl Sepharose CL- 4B and Mono Q HR 5/5 column, resulting in a purification factor of 98 fold with specific activity of 12307.8 U/mg. The molecular weight of the purified lipase was estimated by SDS-PAGE to be 29 kDa with isoelectric point of 4.5. Maximum lipase activity was observed i...

  15. In Situ Magnetic Separation for Extracellular Protein Production

    DEFF Research Database (Denmark)

    Kappler, T.; Cerff, Martin; Ottow, Kim Ekelund;

    2009-01-01

    A new approach for in situ product removal from bioreactors is presented in which high-gradient magnetic separation is used. This separation process was used for the adsorptive removal of proteases secreted by Bacillus licheniformis. Small, non-porous bacitracin linked magnetic adsorbents were em...

  16. PRODUCTION OF EXTRACELLULAR KERATINASE BY CHRYSOSPORIUM TROPICUM AND TRICHOPHYTON AJELLOI

    Directory of Open Access Journals (Sweden)

    Jaroslava Kačinová

    2014-02-01

    Full Text Available Keratinous wastes constitute a troublesome environmental contaminant that is produced in large quantities in companies processing of poultry and their further use has ecological significance. We can use for degradation of keratinous wastes enzymes or strains, which produce these enzymes. The aim of this study was isolation of keratinophilic fungi from the soil samples and optimalization of culture conditions of keratinase producing strains in vitro. For the isolation of our strains, we used hair - baiting method. From the all isolated strains, we used for other screening Chrysosporium tropicum (JK39 and Trichophyton ajelloi (JK82. Production of keratinase we monitored with different time of cultivation (7th, 14th, 21th days, sources of carbon (glucose, fructose, mannitol, sucrose, concentration of carbon sources (1%, 2% and cultivation temperature (20, 25, 30, 37ºC. Keratinase production was studied in a liquid medium containing chicken feathers as a source of keratin. We recorded the maximum production of keratinase (10.51 KU/ml by Chrysosporium tropicum on 21th day of incubation with 1% glucose at 25ºC.

  17. Cellular Immune Responses to Extracellular Streptococcal Products in Rheumatic Heart Disease

    OpenAIRE

    Gray, Ernest D.; Wannamaker, Lewis W.; Ayoub, Elia M.; El Kholy, Aziz; Abdin, Zahira H.

    1981-01-01

    The lymphocyte transformation responses to purified preparations of two extracellular products of group A streptococci (blastogen A and nuclease B), to phytohemagglutinin, and to Candida albicans antigen were measured in tonsillar and peripheral blood lymphocytes from patients with rheumatic heart disease (RHD) and suitably matched nonrheumatic (control) subjects.

  18. Extracellular xylanolytic and pectinolytic hydrolase production by A. flavus isolates contributes to crop invasion

    Science.gov (United States)

    Several atoxigenic Aspergillus flavus isolates, including some biocontrol agents, and one toxigenic isolate were surveyed for the ability to produce extracellular xylanolytic and pectinolytic hydrolases. All of the tested isolates displayed good production of endoxylanases when grown on a medium ut...

  19. Single Cell Responses to Spatially Controlled Photosensitized Production of Extracellular Singlet Oxygen

    DEFF Research Database (Denmark)

    Pedersen, Brian Wett; Sinks, Louise E.; Breitenbach, Thomas;

    2011-01-01

    The response of individual HeLa cells to extracellularly produced singlet oxygen was examined. The spatial domain of singlet oxygen production was controlled using the combination of a membrane-impermeable Pd porphyrin-dendrimer, which served as a photosensitizer, and a focused laser, which serve...

  20. Extracellular ligninolytic enzymes production by Pleurotus eryngii on agroindustrial wastes.

    Science.gov (United States)

    Akpinar, Merve; Urek, Raziye Ozturk

    2014-01-01

    Pleurotus eryngii (DC.) Gillet (MCC58) was investigated for its ligninolytic ability to produce laccase (Lac), manganese peroxidase (MnP), aryl alcohol oxidase (AAO), and lignin peroxidase (LiP) enzymes through solid-state fermentation using apricot and pomegranate agroindustrial wastes. The reducing sugar, protein, lignin, and cellulose levels in these were studied. Also, the production of these ligninolytic enzymes was researched over the growth of the microorganism throughout 20 days, and the reducing sugar, protein, and nitrogen levels were recorded during the stationary cultivation at 28 ± 0.5°C. The highest Lac activity was obtained as 1618.5 ± 25 U/L on day 12 of cultivation using apricot. The highest MnP activity was attained as 570.82 ± 15 U/L on day 17 in pomegranate culture and about the same as apricot culture. There were low LiP activities in both cultures. The maximum LiP value detected was 16.13 ± 0.8 U/L in apricot cultures. In addition, AAO activities in both cultures showed similar trends up to day 17 of cultivation, with the highest AAO activity determined as 105.99 ± 6.3 U/L on day 10 in apricot cultures. Decolorization of the azo dye methyl orange was also achieved with produced ligninolytic enzymes by P. eryngii using apricot and pomegranate wastes. PMID:24279903

  1. Hfq regulates antibacterial antibiotic biosynthesis and extracellular lytic-enzyme production in Lysobacter enzymogenes OH11.

    Science.gov (United States)

    Xu, Gaoge; Zhao, Yuxin; Du, Liangcheng; Qian, Guoliang; Liu, Fengquan

    2015-05-01

    Lysobacter enzymogenes is an important biocontrol agent with the ability to produce a variety of lytic enzymes and novel antibiotics. Little is known about their regulatory mechanisms. Understanding these will be helpful for improving biocontrol of crop diseases and potential medical application. In the present study, we generated an hfq (encoding a putative ribonucleic acid chaperone) deletion mutant, and then utilized a new genomic marker-free method to construct an hfq-complemented strain. We showed for the first time that Hfq played a pleiotropic role in regulating the antibacterial antibiotic biosynthesis and extracellular lytic enzyme activity in L. enzymogenes. Mutation of hfq significantly increased the yield of WAP-8294A2 (an antibacterial antibiotic) as well as the transcription of its key biosynthetic gene, waps1. However, inactivation of hfq almost abolished the extracellular chitinase activity and remarkably decreased the activity of both extracellular protease and cellulase in L. enzymogenes. We further showed that the regulation of hfq in extracellular chitinase production was in part through the impairment of the secretion of chitinase A. Collectively, our results reveal the regulatory roles of hfq in antibiotic metabolite and extracellular lytic enzymes in the underexplored genus of Lysobacter. PMID:25683974

  2. In vitro antimicrobial activity of Pseudomonas aeruginosa by-products against single and mixed biofilms : the role of Gram- bacteria in the biofilm consortium

    OpenAIRE

    Pereira, Maria Olívia; Machado, Idalina; Lopes, Susana Patrícia

    2010-01-01

    Since bacteria are permanently acquiring resistance to chemicals, the development of novel strategies for biofilm control is needed. Certain microorganisms represent an important source of novel bioactive compounds with marked antibacterial activity, as the secondary metabolites. This work aimed to investigate the antimicrobial effect of P.aeruginosa by-products on planktonic and sessile growth of several pathogenic bacteria. Supernatants from P.aeruginosa planktonic cultures (iso...

  3. Production of Quorum Sensing Inhibitors in Growing Onion Bulbs Infected with Pseudomonas aeruginosa E (HQ324110)

    OpenAIRE

    Abd-Alla, Mohamed H.; Bashandy, Shymaa R.

    2012-01-01

    Eighteen organic compounds were present in growing onion bulbs cultivar Giza 6 infected with P. aeruginosa, but only fourteen of them are present in dry infected onion bulbs; however, four compounds were missing in dry onion. The missing compounds in dry infected onion bulbs are pantolactone, 4,5-dihydro-4,5-dimethylfuran-2(3H)-one, myristic acid, and linoleic acid. All of them were detected in growing onion (living cell) during Pseudomonas aeruginosa infection, and it is hypothesized that it...

  4. STUDY OF METALLO-Β-LACTAMASE PRODUCTION IN CLINICAL ISOLATES OF PSEUDOMONAS AERUGINOSA IN A TEACHING HOSPITAL OF RURAL GUJARAT - INDIA

    Directory of Open Access Journals (Sweden)

    Yagnesh

    2013-05-01

    Full Text Available ABSTRACT: BACKGROUND: Pseudomonas aeruginosa exhibits intrinsic resistanc e to a variety of antimicrobials including beta lactams. Imipenem-res istant Pseudomonas aeruginosa resulting from metallo-β-lactamases production represent a signifi cant and rapidly emerging problem and threat in most part of the world. Detection of metallo-β-l actamase (MBL-producing Pseudomonas aeruginosa is crucial for the optimal antibiotic tr eatment of the seriously ill patients. AIM OF THE STUDY : The study was undertaken to detect Metallo-β-lactam ases among clinical isolates of Pseudomonas aeruginosa in the multidisciplinary tertiary care 520-bedded h ospital. MATERIAL AND METHODS: Two hundred eighty three consecutive clinical isolates of Pseudomonas aeruginosa were subjected to susceptibility testing by disc-di ffusion assay and mini API system (bioMerieux-France. Imipenem resistant Pseudomonas aeruginosa isolates were studied for metallo-β-lactamase production by IPM-EDTA-disk syn ergy test. RESULTS: Imipenem- resistance by disc diffusion method was found in 35 out of 283 isolates (12.3% of Pseudomonas aeruginosa . Of the 35 imipenem-resistant isolates 30 (85.7% we re Metallo-beta-lactamases producers with average zone diameter difference of 16.5 mm between imipenem disk and imipenem plus EDTA disk. Of 35 imipenem-resistant isolates, 21(60% we re from ICU patients and 14(40% were from Wards. CONCLUSION: IPM-EDTA-disk synergy test can be used as a suitabl e screening method in the clinical microbiology laboratory. Presence of M etallo-β-lactamase production among imipenem-resistant Pseudomonas aeruginosa was high in our institution which is disturbing and forces us for prompt infection control measures whi ch are well-organized and continued. Combined approaches of rotational antibiotic therapy and tra ining programmes for the health care workers might be beneficial to fight against these multi dr ug resistant pathogens

  5. Extracellular lipase production by a sapwood-staining fungus, Ophiostoma piceae.

    Science.gov (United States)

    Gao, Y; Breuil, C

    1995-11-01

    The extracellular lipase production of a sapwood-staining fungus, Ophiostoma piceae, grown in liquid media, was optimally active at pH 5.5 and 37°C. Although glucose, fructose, sucrose, starch and dextrin, as carbon sources for growth gave similar mycelial yields, which were higher than those obtained with arabinose, galactose or raffinose, the cells growing on those carbohydrates produced little extracellular lipase. However, both high biomass and lipase activity were obtained when plant oils (olive, soybean, corn, sunflower seed, sesame, cotton seed or peanut) were used as carbon sources. Among the nitrogen sources examined, Casamino acids gave the best growth, whereas (NH4)2SO4 gave the best lipase production. The highest lipase productivity seen was obtained in a medium with olive oil as carbon source and a combination of (NH4)2SO4and peptone as nitrogen source. PMID:24415011

  6. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery.

    Science.gov (United States)

    Amani, Hossein; Müller, Markus Michael; Syldatk, Christoph; Hausmann, Rudolf

    2013-07-01

    Recently, several investigations have been carried out on the in situ bacteria flooding, but the ex situ biosurfactant production and addition to the sand pack as agents for microbial enhanced oil recovery (MEOR) has little been studied. In order to develop suitable technology for ex situ MEOR processes, it is essential to carry out tests about it. Therefore, this work tries to fill the gap. The intention of this study was to investigate whether the rhamnolipid mix could be produced in high enough quantities for enhanced oil recovery in the laboratory scale and prove its potential use as an effective material for field application. In this work, the ability of Pseudomonas aeruginosa MM1011 to grow and produce rhamnolipid on sunflower as sole carbon source under nitrogen limitation was shown. The production of Rha-C10-C10 and Rha2-C10-C10 was confirmed by thin-layer chromatography and high-performance liquid chromatography analysis. The rhamnolipid mixture obtained was able to reduce the surface and interfacial tension of water to 26 and 2 mN/m, respectively. The critical micelle concentration was 120 mg/L. Maximum rhamnolipid production reached to about 0.7 g/L in a shake flask. The yield of rhamnolipid per biomass (Y RL/x ), rhamnolipid per sunflower oil (Y RL/s ), and the biomass per sunflower oil (Y x/s ) for shake flask were obtained about 0.01, 0.0035, and 0.035 g g(-1), respectively. The stability of the rhamnolipid at different salinities, pH and temperature, and also, its emulsifying activity has been investigated. It is an effective surfactant at very low concentrations over a wide range of temperatures, pHs, and salt concentrations, and it also has the ability to emulsify oil, which is essential for enhanced oil recovery. With 120 mg/L rhamnolipid, 27 % of original oil in place was recovered after water flooding from a sand pack. This result not only suggests rhamnolipids as appropriate model biosurfactants for MEOR, but it even shows the potential as a

  7. Extracellular production and degradation of superoxide in the coral Stylophora pistillata and cultured Symbiodinium.

    Directory of Open Access Journals (Sweden)

    Eldad Saragosti

    Full Text Available BACKGROUND: Reactive oxygen species (ROS are thought to play a major role in cell death pathways and bleaching in scleractinian corals. Direct measurements of ROS in corals are conspicuously in short supply, partly due to inherent problems with ROS quantification in cellular systems. METHODOLOGY/PRINCIPAL FINDINGS: In this study we characterized the dynamics of the reactive oxygen species superoxide anion radical (O(2(- in the external milieu of the coral Stylophora pistillata. Using a sensitive, rapid and selective chemiluminescence-based technique, we measured extracellular superoxide production and detoxification activity of symbiont (non-bleached and aposymbiont (bleached corals, and of cultured Symbiodinium (from clades A and C. Bleached and non-bleached Stylophora fragments were found to produce superoxide at comparable rates of 10(-11-10(-9 mol O(2(- mg protein(-1 min(-1 in the dark. In the light, a two-fold enhancement in O(2(- production rates was observed in non-bleached corals, but not in bleached corals. Cultured Symbiodinium produced superoxide in the dark at a rate of . Light was found to markedly enhance O(2(- production. The NADPH Oxidase inhibitor Diphenyleneiodonium chloride (DPI strongly inhibited O(2(- production by corals (and more moderately by algae, possibly suggesting an involvement of NADPH Oxidase in the process. An extracellular O(2(- detoxifying activity was found for bleached and non-bleached Stylophora but not for Symbiodinium. The O(2(- detoxifying activity was partially characterized and found to resemble that of the enzyme superoxide dismutase (SOD. CONCLUSIONS/SIGNIFICANCE: The findings of substantial extracellular O(2(- production as well as extracellular O(2(- detoxifying activity may shed light on the chemical interactions between the symbiont and its host and between the coral and its environment. Superoxide production by Symbiodinium possibly implies that algal bearing corals are more susceptible to an

  8. Engineering PQS biosynthesis pathway for enhancement of bioelectricity production in Pseudomonas aeruginosa microbial fuel cells

    DEFF Research Database (Denmark)

    Wang, Victor Bochuan; Chua, Song-Lin; Cao, Bin;

    2013-01-01

    . aeruginosa strain that produces higher concentrations of phenazines under anaerobic conditions by over-expressing the PqsE effector in a PQS negative ΔpqsC mutant. The engineered strain exhibited an improved electrical performance in microbial fuel cells (MFCs) and potentiostat-controlled electrochemical...... genetic engineering is a suitable technique to improve power output of bioelectrochemical systems....

  9. Variation in hydrogen cyanide production between different strains of Pseudomonas aeruginosa

    Czech Academy of Sciences Publication Activity Database

    Gilchrist, F. J.; Alcock, A.; Belcher, J.; Brady, M.; Jones, A.; Smith, D.; Španěl, Patrik; Webb, K.; Lenney, W.

    2011-01-01

    Roč. 38, č. 2 (2011), s. 409-414. ISSN 0903-1936 Institutional research plan: CEZ:AV0Z40400503 Keywords : microbiology * pseudomonas aeruginosa Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.895, year: 2011

  10. Antimicrobial potential of bioconverted products of omega-3 fatty acids by Pseudomonas aeruginosa PR3

    Science.gov (United States)

    Bioconverted omega-3 fatty acids, eicosapentaenoic acid (bEPA) and docosahexanoic acid (bDHA), obtained from the microbial conversion of non-bioconverted eicosapentaenoic and docosahexaenoic acids by Pseudomonas aeruginosa PR3 were evaluated for their antimicrobial potential. bEPA and bDHA at 5 µl/...

  11. The effects of nickel(II) complexes with imidazole derivatives on pyocyanin and pyoverdine production by Pseudomonas aeruginosa strains isolated from cystic fibrosis.

    Science.gov (United States)

    Gałczyńska, Katarzyna; Kurdziel, Krystyna; Adamus-Białek, Wioletta; Wąsik, Sławomir; Szary, Karol; Drabik, Marcin; Węgierek-Ciuk, Aneta; Lankoff, Anna; Arabski, Michał

    2015-01-01

    Pseudomonas aeruginosa infection is problematic in patients with cystic fibrosis (CF). P. aeruginosa secretes a diversity of pigments, such as pyocyanin and pyoverdine. The aim of this study was to evaluate the effects of complexes of nickel(II) ([Ni(iaa)2(H2O)2]·H2O (iaa = imidazole-4-acetate anion), [Ni(1-allim)6](NO3)2 (1-allim = 1-allylimidazole) and NiCl2 on pyocyanin and pyoverdine production by 23 strains of P. aeruginosa isolated from cystic fibrosis under growth conditions specific for the CF respiratory system. The antibacterial effects and biophysical properties of the tested substances were measured by spectrofluorometric techniques, as well as by laser interferometry, confocal and atomic force microscopy. The cytotoxic properties of all compounds were measured by Annexin/IP assay against A549 cells. All tested compounds have no effect on pyocyanin production and decrease the pyoverdine secretion in about 40% of tested P. aeruginosa strains at non-cytotoxic range of concentrations. Imidazole-4-acetate anion and 1-allylimidazole have good diffusion properties in the mature P. aeruginosa PAO1 biofilm. In conclusion, the tested nickel(II) complexes do not have clinical implications in P. aeruginosa eradication in cystic fibrosis. The diffusion properties of 1-allylimidazole and imidazole-4-acetate and their lack of effect on A549 cells suggest that they might be considered for chemical synthesis with other transition metals. PMID:26645324

  12. Extracellular peptidase hunting for improvement of protein production in plant cells and roots

    Directory of Open Access Journals (Sweden)

    Jérôme eLallemand

    2015-02-01

    Full Text Available Plant-based recombinant protein production systems have gained an extensive interest over the past few years, because of their reduced cost and relative safety. Although the first products are now reaching the market, progress are still needed to improve plant hosts and strategies for biopharming. Targeting recombinant proteins toward the extracellular space offers several advantages in terms of protein folding and purification, but degradation events are observed, due to endogenous peptidases. This paper focuses on the analysis of extracellular proteolytic activities in two production systems: cell cultures and root-secretion (rhizosecretion, in Arabidopsis thaliana and Nicotiana tabacum. Proteolytic activities of extracellular proteomes (secretomes were evaluated in vitro against two substrate proteins: bovine serum albumin (BSA and human serum immunoglobulins G (hIgGs. Both targets were found to be degraded by the secretomes, BSA being more prone to proteolysis than hIgGs. The analysis of the proteolysis pH-dependence showed that target degradation was mainly dependent upon the production system: rhizosecretomes contained more peptidase activity than extracellular medium of cell suspensions, whereas variations due to plant species were smaller. Using class-specific peptidase inhibitors, serine and metallopeptidases were found to be responsible for degradation of both substrates. An in-depth in silico analysis of genomic and transcriptomic data from Arabidopsis was then performed and led to the identification of a limited number of serine and metallo-peptidases that are consistently expressed in both production systems. These peptidases should be prime candidates for further improvement of plant hosts by targeted silencing.

  13. Optimization of environmental factors for improved production of rhamnolipid biosurfactant by Pseudomonas aeruginosa RS29 on glycerol.

    Science.gov (United States)

    Saikia, Rashmi Rekha; Deka, Suresh; Deka, Manab; Sarma, Hemen

    2012-08-01

    A biosurfactant producing Pseudomonas aeruginosa RS29 (identified on the basis of 16S rDNA analysis) with good foaming and emulsification properties has been isolated from crude oil contaminated sites. Optimization of different environmental factors was carried out with an objective to achieve maximum production of biosurfactant. Production of biosurfactant was estimated in terms of surface tension reduction and emulsification (E24) index. It was recorded that the isolated strain produced highest biosurfactant after 48 h of incubation at 37.5 °C, with a pH range of 7-8 and at salinity Ammonium nitrate used in the experiment was the best nitrogen source for the growth of biomass of P. aeruginosa RS29. On the other hand sodium and potassium nitrate enhanced the production of biosurfactant (Surface tension, 26.3 and 26.4 mN/m and E24 index, 80 and 79% respectively). The CMC of the biosurfactant was 90 mg/l. Maximum biomass (6.30 g/l) and biosurfactant production (0.80 g/l) were recorded at an optimal C/N ratio of 12.5. Biochemical analysis and FTIR spectra confirmed that the biosurfactant was rhamnolipid in nature. GC-MS analysis revealed the presence of C(8) and C(10) fatty acid components in the purified biosurfactant. PMID:22144225

  14. THE ROLE OF CHLORIDE ANION AND CFTR IN KILLING OF PSEUDOMONAS AERUGINOSA BY NORMAL AND CF NEUTROPHILS

    OpenAIRE

    Painter, Richard G.; Bonvillain, Ryan W.; Valentine, Vincent G.; Lombard, Gisele A.; LaPlace, Stephanie G.; Nauseef, William M.; Wang, Guoshun

    2008-01-01

    Chloride anion is essential for myeloperoxidase to produce hypochlorous acid (HOCl) in neutrophils (PMNs). To define whether chloride availability to PMNs affects their HOCl production and microbicidal capacity, we examined how extracellular chloride concentration affects killing of Pseudomonas aeruginosa (PsA) by normal neutrophils. PMN-mediated bacterial killing was strongly dependent on extracellular chloride concentration. Neutrophils in a chloride-deficient medium killed PsA poorly. Howe...

  15. Species-Level Variability in Extracellular Production Rates of Reactive Oxygen Species by Diatoms

    OpenAIRE

    Schneider, Robin J.; Roe, Kelly L.; Hansel, Colleen M.; Voelker, Bettina M.

    2016-01-01

    Biological production and decay of the reactive oxygen species (ROS) hydrogen peroxide (H2O2) and superoxide (O2-) likely have significant effects on the cycling of trace metals and carbon in marine systems. In this study, extracellular production rates of H2O2 and O2- were determined for five species of marine diatoms in the presence and absence of light. Production of both ROS was measured in parallel by suspending cells on filters and measuring the ROS downstream using chemiluminescence pr...

  16. Species-Level Variability in Extracellular Production Rates of Reactive Oxygen Species by Diatoms

    OpenAIRE

    Schneider, Robin J.; Roe, Kelly L.; Hansel, Colleen M.; Voelker, Bettina M.

    2016-01-01

    Biological production and decay of the reactive oxygen species (ROS) hydrogen peroxide (H2O2) and superoxide (O 2 - ) likely have significant effects on the cycling of trace metals and carbon in marine systems. In this study, extracellular production rates of H2O2 and O 2 - were determined for five species of marine diatoms in the presence and absence of light. Production of both ROS was measured in parallel by suspending cells on filters and measuring the ROS downstream using chemiluminescen...

  17. Antibacterial Activity within Degradation Products of Biological Scaffolds Composed of Extracellular Matrix

    OpenAIRE

    BRENNAN, ELLEN P.; Reing, Janet; CHEW, DOUGLAS; MYERS-IRVIN, JULIE M.; YOUNG, E.J.; Badylak, Stephen F.

    2006-01-01

    Biological scaffolds composed of extracellular matrix (ECM) have been shown to be resistant to deliberate bacterial contamination in preclinical in vivo studies. The present study evaluated the degradation products resulting from the acid digestion of ECM scaffolds for antibacterial effects against clinical strains of Staphylococcus aureus and Escherichia coli. The ECM scaffolds were derived from porcine urinary bladder (UBM-ECM) and liver (L-ECM). These biological scaffolds were digested wit...

  18. PRODUCTION OF EXTRACELLULAR ENZYMES BY HALOPHILIC BACTERIA ISOLATED FROM SOLAR SALTERNS

    OpenAIRE

    Jhuma Biswas; A. K. Paul

    2013-01-01

    During the course of survey of halophilic microorganisms, a total of sixteen bacterial isolates were obtained from coastal solar salterns of Orissa and West Bengal, India. Morphological, physiological and biochemical characteristics of these isolates indicate that majority of them belong to the genus Halomonas, however, members belonging to Cobetia and Halococcus were not uncommon. These isolates were screened for the production of extracellular enzymes such as amylase, glutaminase, asparagin...

  19. Purification and characterization of extracellular lipase from a new strain: Pseudomonas aeruginosa SRT 9 Purificação e caracterização de uma lipase extracelular produzida por uma nova cepa: Pseudomonas aeruginosa SRT9

    Directory of Open Access Journals (Sweden)

    Prita S. Borkar

    2009-06-01

    Full Text Available An extra cellular lipase was isolated and purified from the culture broth of Pseudomonas aeruginosa SRT 9 to apparent homogeneity using ammonium sulfate precipitation followed by chromatographic techniques on phenyl Sepharose CL- 4B and Mono Q HR 5/5 column, resulting in a purification factor of 98 fold with specific activity of 12307.8 U/mg. The molecular weight of the purified lipase was estimated by SDS-PAGE to be 29 kDa with isoelectric point of 4.5. Maximum lipase activity was observed in a wide range of temperature and pH values with optimum temperature of 55ºC and pH 6.9. The lipase preferably acted on triacylglycerols of long chain (C14-C16 fatty acids. The lipase was inhibited strongly by EDTA suggesting the enzyme might be metalloprotein. SDS and metal ions such as Hg2+, Zn2+, Cu2+, Ag2+ and Fe2+ decreased the lipase activity remarkedly. Its marked stability and activity in organic solvents suggest that this lipase is highly suitable as a biotechnological tool with a variety of applications including organo synthetic reactions and preparation of enantiomerically pure pharmaceuticals. The Km and Vmax value of the purified enzyme for triolein hydrolysis were calculated to be 1.11 mmol/L and 0.05 mmol/L/minrespectively.Uma lipase extracelular foi isolada e purificada a partir de um caldo de cultura de Pseudomonas aeruginosa SRT9 até homogeneidade visível empregando-se precipitação com sulfato de amônia, seguida de técnicas cromatográficas em colunas de fenil sefarose CL-4B e Mono Q HR 5/5, obtendo-se um fator de purificação de 98 vezes, e atividade especifica de 12307,8 U/mg. Por SDS_PAGE, estimou-se que o peso molecular da lipase purificada é 29kDa, com um ponto isoelétrico de 4,5. A lipase apresentou atividade máxima em uma ampla faixa de temperatura e pH, com ótimos a 55ºC e pH 6,9. A lípase foi mais ativa sobre triacilglicerois de cadeia longa (C14-C16. A lipase foi fortemente inibida por EDTA, o que sugere que a

  20. Production of extracellular proteases by Mucor circinelloides using D-glucose as carbon source / substrate

    Directory of Open Access Journals (Sweden)

    Andrade Vânia Sousa

    2002-01-01

    Full Text Available Recently, some Mucorales species have been reported as protease producers. The production of extracellular proteases by Mucor circinelloides using glucose as substrate was studied. Experiments were carried out with different D-glucose concentrations (40, 60 and 80 g/L. Biomass, pH and protease activity were determined. Although biomass production had reached best yields for the medium containing D-glucose in a concentration of 80 g/L, the enzymatic production was higher when the substrate concentration was reduced to 40 g/L. The yield factor for product on cell growth and the yield factor for product on carbon substrate were higher when the microorganism grew in medium containing 40 g/L glucose. The kinetics parameters suggest that this strain seems to be promising as an alternative microorganism for protease production.

  1. PRODUCTION OPTIMIZATION OF EXTRACELLULAR L-ASPARAGINASE THROUGH SOLID- STATE FERMENTATION BY ISOLATED BACILLUS SUBTILIS.

    Directory of Open Access Journals (Sweden)

    Susmita Shukla

    2013-02-01

    Full Text Available L-asparaginase has been used as anti-tumor agent for the treatment of acute lymphoblastic leukemia and food processing aid to reduce the formation of cancer causing acrylamide. Extracellular Lasparaginase production was optimized through solid state fermentation using ground nut cake by isolated Bacillus subtilis. which was not reported in literature.Optimum production of L-asparaginase enzyme (18.4U/ml was obtained after 48h of incubation at 370C moisture content of 70% and at pH 7.

  2. Nitrous oxide production in sputum from cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection

    DEFF Research Database (Denmark)

    Kolpen, Mette; Kühl, Michael; Bjarnsholt, Thomas;

    2014-01-01

    local anoxia by consuming the majority of O2 for production of reactive oxygen species (ROS). We hypothesized that P. aeruginosa acquires energy for growth in anaerobic endobronchial mucus by denitrification, which can be demonstrated by production of nitrous oxide (N2O), an intermediate in the...... denitrification pathway. We measured N2O and O2 with electrochemical microsensors in 8 freshly expectorated sputum samples from 7 CF patients with chronic P. aeruginosa infection. The concentrations of NO3(-) and NO2(-) in sputum were estimated by the Griess reagent. We found a maximum median concentration of 41.......8 µM N2O (range 1.4-157.9 µM N2O). The concentration of N2O in the sputum was higher below the oxygenated layers. In 4 samples the N2O concentration increased during the initial 6 h of measurements before decreasing for approximately 6 h. Concomitantly, the concentration of NO3(-) decreased in sputum...

  3. Pseudomonas aeruginosa LBI production as an integrated process using the wastes from sunflower-oil refining as a substrate.

    Science.gov (United States)

    Benincasa, Maria; Accorsini, Fábio Raphael

    2008-06-01

    Pseudomonas aeruginosa LBI produced surface active rhamnolipids when cultivated on waste from the sunflower-oil process under different conditions. These biosurfactants, which reduce the superficial and interfacial tensions between fluids, offer advantages over their chemical counterparts, especially because of their ecological acceptability. These molecules can be used in fields as diverse as chemical, pharmaceutical and petrochemical industries. In this work, we present the effect of C/N ratio on growth and production yield. The best production yields (Y P/S) were achieved for C/N ratios (in g/g) of 8/1 (0.22) and 6.4/1 (0.23). The product concentration was very satisfactory (7.3g/L) at C/N ratio of 8/1, especially when considering that the substrate was basically composed of wastes that would otherwise constitute an environmental disposal problem. PMID:17698353

  4. Ecological screening of lipolytic cultures and process optimization for extracellular lipase production from fungal hyperproducer

    International Nuclear Information System (INIS)

    Present investigation describes the biosynthesis of extracellular lipases by various local fungal strains isolated from various lipid rich habitats of Faisalabad. The isolated cultures of Aspergillus niger, Penicillium chrysogenum, Rhizopus microsporus, Mucor mucedo, Alternaria alternata, Trichophyton sp., Fusarium semitectum, E (un-identified), Curvularia sp., Aspergillus flavus, G (un-identified), F (Mucor sp.) and H (Synnematous) were identified and screened for the extracelluler lipases production. Different environmental parameters such as pH, temperature, inoculum size, amount of substrate and incubation time were optimized for the selected hyper producer. It was found that maximum production of lipases by Trichophyton sp., was obtained after 48 h of batch fermentation. Similarly, the diluent pH of 7.0 and incubation temperature of 30 deg. C were found optimum for enzyme production by the microorganism. The maximum production of lipases during the course of present studies was 65.20 +- 1.13a U/g. (author)

  5. Cloning of a catabolite repression control (crc) gene from Pseudomonas aeruginosa, expression of the gene in Escherichia coli, and identification of the gene product in Pseudomonas aeruginosa.

    OpenAIRE

    MacGregor, C H; Wolff, J A; Arora, S K; Phibbs, P V

    1991-01-01

    Mutants which are defective in catabolite repression control (CRC) of multiple independently regulated catabolic pathways have been previously described. The mutations were mapped at 11 min on the Pseudomonas aeruginosa chromosome and designated crc. This report describes the cloning of a gene which restores normal CRC to these Crc- mutants in trans. The gene expressing this CRC activity was subcloned on a 2-kb piece of DNA. When this 2-kb fragment was placed in a plasmid behind a phage T7 pr...

  6. Extracellular xylanase production by Pleurotus species on lignocellulosic wastes under in vivo condition using novel pretreatment.

    Science.gov (United States)

    Singh, M P; Pandey, A K; Vishwakarma, S K; Srivastava, A K; Pandey, V K

    2012-01-01

    The production of extracellular xylanase by three species of Pleurotus species i.e. P. florida, P. flabellatus and P. sajor caju was studied under in vivo condition during their cultivation on pretreated lignocellulosic wastes. Neem (Azadirachta indica) oil and ashoka (Saraca indica) leaves extract were used for pretreatment of paddy straw and wheat straw. Between these two wastes, paddy straw pretreated with neem oil, supported better xylanase production than wheat straw. Initially, xylanase production was low but it increased in subsequent days and reached at peak on 25th day of cultivation of Pleurotus species. Thereafter, there was decrease in the activity of the enzyme. On 25th day of incubation P. florida produced maximum xylanase on neem oil pretreated paddy straw i.e. 10.59 Uh—1ml—1. Among the three species, P. florida showed maximum enzyme activity followed by P. flabellatus and P. sajor caju. PMID:23273208

  7. Production of Extracellular Polymeric Substances by Halophilic Bacteria of Solar Salterns

    Directory of Open Access Journals (Sweden)

    Jhuma Biswas

    2014-01-01

    Full Text Available Moderately halophilic aerobic bacteria were isolated from 31 soil and 18 water samples collected from multipond solar salterns of Gujarat, Orissa, and West Bengal, India. A total of 587 bacterial isolates with distinct morphological features were obtained from these samples following dilution and plating on MH agar medium supplemented with NaCl. The isolates were screened for growth associated extracellular polymeric substances (EPS production in MY medium under batch culture. In all, 20 isolates were selected as potent ones producing more than 1 g/L of EPS. These EPS producing isolates were characterized in detail for their morphological, physiological, and biochemical features and tentatively identified as members belonging to the genera Halomonas, Salinicoccus, Bacillus, Aidingimonas, Alteromonas, and Chromohalobacter. Apart from EPS production, these isolates also hold promise towards the production of various biomolecules of industrial importance.

  8. Membrane-anchored MucR mediates nitrate-dependent regulation of alginate production in Pseudomonas aeruginosa

    KAUST Repository

    Wang, Yajie

    2015-04-29

    Alginates exhibit unique material properties suitable for medical and industrial applications. However, if produced by Pseudomonas aeruginosa, it is an important virulence factor in infection of cystic fibrosis patients. The alginate biosynthesis machinery is activated by c-di-GMP imparted by the inner membrane protein, MucR. Here, it was shown that MucR impairs alginate production in response to nitrate in P. aeruginosa. Subsequent site-specific mutagenesis of MucR revealed that the second MHYT sensor motif (MHYT II, amino acids 121–124) of MucR sensor domain was involved in nitrate sensing. We also showed that both c-di-GMP synthesizing and degrading active sites of MucR were important for alginate production. Although nitrate and deletion of MucR impaired alginate promoter activity and global c-di-GMP levels, alginate yields were not directly correlated with alginate promoter activity or c-di-GMP levels, suggesting that nitrate and MucR modulate alginate production at a post-translational level through a localized pool of c-di-GMP. Nitrate increased pel promoter activity in the mucR mutant while in the same mutant the psl promoter activity was independent of nitrate. Nitrate and deletion of mucR did not impact on swarming motility but impaired attachment to solid surfaces. Nitrate and deletion of mucR promoted the formation of biofilms with increased thickness, cell density, and survival. Overall, this study provided insight into the functional role of MucR with respect to nitrate-mediated regulation of alginate biosynthesis. © 2015 Springer-Verlag Berlin Heidelberg

  9. Mechanisms involved in the evasion of the host defence by Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Kharazmi, A

    1991-01-01

    Pseudomonas aeruginosa, an extracellular opportunistic pathogen, utilizes two major mechanisms to evade the host defence system. One of these mechanisms is the production of a large number of extracellular products, such as proteases, toxins, and lipases. The two proteases, alkaline protease and...... elastase, inhibit the function of the cells of the immune system (phagocytes, NK cells, T cells), inactivate several cytokines (IL-1, IL-2, IFN-r, TNF), cleave immunoglobulins and inactivate complement. Inhibition of the local immune response by bacterial proteases provides an environment for the...

  10. Extracellular polysaccharide production in Bacillus licheniformis SVD1 and its immunomodulatory effect

    Directory of Open Access Journals (Sweden)

    J. Susan van Dyk

    2012-11-01

    Full Text Available Bacillus licheniformis SVD1 exhibited highest production of three different polysaccharides when sucrose was used as the carbon source for polysaccharide production and yeast extract was used as the nitrogen source. Polysaccharides were characterized using size exclusion chromatography (SEC, thin layer chromatography (TLC, gas chromatography with mass spectrometry (GCMS, and Fourier Transform Infrared (FTIR analysis. Field emission scanning electron microscopy (FESEM and transmission electron microscopy (TEM were used to examine the topography of the cells and polysaccharides. The cell-associated polysaccharides were composed of galactose, while two different polysaccharides were present in the extracellular medium, one of 2,000 kDa (EPS1, consisting of fructose monomers and identified as a levan with (2→6-linkages and (1→2-branching linkages. The other extracellular polysaccharide (EPS2 consisted of mannose and galactose and had a range of sizes as identified through SEC. All three polysaccharides displayed an immune modulatory effect as measured using Interleukin 6 (IL6 and tumor necrosis factor alpha (TNFα.

  11. Extracellular acidification stimulates GPR68 mediated IL-8 production in human pancreatic β cells.

    Science.gov (United States)

    Chandra, Vikash; Karamitri, Angeliki; Richards, Paul; Cormier, Françoise; Ramond, Cyrille; Jockers, Ralf; Armanet, Mathieu; Albagli-Curiel, Olivier; Scharfmann, Raphael

    2016-01-01

    Acute or chronic metabolic complications such as diabetic ketoacidosis are often associated with extracellular acidification and pancreatic β-cell dysfunction. However, the mechanisms by which human β-cells sense and respond to acidic pH remain elusive. In this study, using the recently developed human β-cell line EndoC-βH2, we demonstrate that β-cells respond to extracellular acidification through GPR68, which is the predominant proton sensing receptor of human β-cells. Using gain- and loss-of-function studies, we provide evidence that the β-cell enriched transcription factor RFX6 is a major regulator of GPR68. Further, we show that acidic pH stimulates the production and secretion of the chemokine IL-8 by β-cells through NF-кB activation. Blocking of GPR68 or NF-кB activity severely attenuated acidification induced IL-8 production. Thus, we provide mechanistic insights into GPR68 mediated β-cell response to acidic microenvironment, which could be a new target to protect β-cell against acidosis induced inflammation. PMID:27166427

  12. Extracellular electron transfer from cathode to microbes: application for biofuel production.

    Science.gov (United States)

    Choi, Okkyoung; Sang, Byoung-In

    2016-01-01

    Extracellular electron transfer in microorganisms has been applied for bioelectrochemical synthesis utilizing microbes to catalyze anodic and/or cathodic biochemical reactions. Anodic reactions (electron transfer from microbe to anode) are used for current production and cathodic reactions (electron transfer from cathode to microbe) have recently been applied for current consumption for valuable biochemical production. The extensively studied exoelectrogenic bacteria Shewanella and Geobacter showed that both directions for electron transfer would be possible. It was proposed that gram-positive bacteria, in the absence of cytochrome C, would accept electrons using a cascade of membrane-bound complexes such as membrane-bound Fe-S proteins, oxidoreductase, and periplasmic enzymes. Modification of the cathode with the addition of positive charged species such as chitosan or with an increase of the interfacial area using a porous three-dimensional scaffold electrode led to increased current consumption. The extracellular electron transfer from the cathode to the microbe could catalyze various bioelectrochemical reductions. Electrofermentation used electrons from the cathode as reducing power to produce more reduced compounds such as alcohols than acids, shifting the metabolic pathway. Electrofuel could be generated through artificial photosynthesis using electrical energy instead of solar energy in the process of carbon fixation. PMID:26788124

  13. Production of extracellular alkaline protease from Bacillus subtilis RSKK96 with solid state fermentation

    Directory of Open Access Journals (Sweden)

    Nurullah Akcan

    2011-09-01

    Full Text Available The production of extracellular alkaline protease by producing Bacillus subtilis RSKK96 was studied with solid state fermentation (SSF. Different agro residues as substrate were studied for enzyme production. The highest enzyme production was expressed with lentil husk as units per mass of dry substrate (3937.0 U/mg. Production parameters were optimized as incubation time 120 h, extraction medium Triton-X100 1%, initial moisture content 30%, initial pH 9.0. The high level of alkaline protease was obtained in the medium containing arabinose followed by lactose, galactose, and fructose. Among various nitrogen sources, beef extract was found to be the best inducer of alkaline protease, while other nitrogen sources repressed enzyme production. Among metal salts FeSO4.7H2O and MgSO4.7H2O was found to increase protease production. The maximum enzyme production (5759.2 U/mg was observed with lentil husk in 1000 mL of fermentation medium volume.

  14. PRODUCTION OF EXTRACELLULAR ENZYMES BY HALOPHILIC BACTERIA ISOLATED FROM SOLAR SALTERNS

    Directory of Open Access Journals (Sweden)

    Jhuma Biswas

    2013-12-01

    Full Text Available During the course of survey of halophilic microorganisms, a total of sixteen bacterial isolates were obtained from coastal solar salterns of Orissa and West Bengal, India. Morphological, physiological and biochemical characteristics of these isolates indicate that majority of them belong to the genus Halomonas, however, members belonging to Cobetia and Halococcus were not uncommon. These isolates were screened for the production of extracellular enzymes such as amylase, glutaminase, asparaginase, xylanase, cellulase, gelatinase, inulinase, caseinase, pectinase, urease and lipase. Among these hydrolytic enzymes, glutamine and asparagine hydrolytic activities were predominant, although lipid and casein degrading activities were not inferior. However, amylase and gelatinase production were rare. None of these halophiles was able to degrade cellulose, inulin, pectin and xylan and only one isolate was capable of hydrolyzing urea

  15. Detection of a vascular permeability factor in the extracellular products of Renibacterium salmoninarum.

    Science.gov (United States)

    Bandín, I; Santos, Y; Toranzo, A E; Barja, J L

    1992-09-01

    The presence of vascular permeability factors in the extracellular products (ECP) of 10 strains of Renibacterium salmoninarum with different geographical origin and serological characteristics are reported. All the ECP produced haemorrhagic and/or oedematous zones at the injection site with a diameter ranging from 10-30 mm. However, the ECP samples did not display toxic effect in fish at the same dose as inoculated in rabbit (180-400 micrograms protein/0.1 ml). No differences were observed in the production of this dermatotoxic factor between the two antigenic groups found in this microorganism. Whereas heating (80 and 100 degrees C/15 min) the ECP samples resulted in a complete loss of their proteolytic activity, only a decrease (but not total inactivation) of the dermatotoxic effects was detected. Therefore, although proteases could be implicated in the permeability factor, they are not totally responsible for this activity. PMID:1291845

  16. Medium factors on anaerobic production of rhamnolipids by Pseudomonas aeruginosa SG and a simplifying medium for in situ microbial enhanced oil recovery applications.

    Science.gov (United States)

    Zhao, Feng; Zhou, Jidong; Han, Siqin; Ma, Fang; Zhang, Ying; Zhang, Jie

    2016-04-01

    Aerobic production of rhamnolipid by Pseudomonas aeruginosa was extensively studied. But effect of medium composition on anaerobic production of rhamnolipid by P. aeruginosa was unknown. A simplifying medium facilitating anaerobic production of rhamnolipid is urgently needed for in situ microbial enhanced oil recovery (MEOR). Medium factors affecting anaerobic production of rhamnolipid were investigated using P. aeruginosa SG (Genbank accession number KJ995745). Medium composition for anaerobic production of rhamnolipid by P. aeruginosa is different from that for aerobic production of rhamnolipid. Both hydrophobic substrate and organic nitrogen inhibited rhamnolipid production under anaerobic conditions. Glycerol and nitrate were the best carbon and nitrogen source. The commonly used N limitation under aerobic conditions was not conducive to rhamnolipid production under anaerobic conditions because the initial cell growth demanded enough nitrate for anaerobic respiration. But rhamnolipid was also fast accumulated under nitrogen starvation conditions. Sufficient phosphate was needed for anaerobic production of rhamnolipid. SO4(2-) and Mg(2+) are required for anaerobic production of rhamnolipid. Results will contribute to isolation bacteria strains which can anaerobically produce rhamnolipid and medium optimization for anaerobic production of rhamnolipid. Based on medium optimization by response surface methodology and ions composition of reservoir formation water, a simplifying medium containing 70.3 g/l glycerol, 5.25 g/l NaNO3, 5.49 g/l KH2PO4, 6.9 g/l K2HPO4·3H2O and 0.40 g/l MgSO4 was designed. Using the simplifying medium, 630 mg/l of rhamnolipid was produced by SG, and the anaerobic culture emulsified crude oil to EI24 = 82.5 %. The simplifying medium was promising for in situ MEOR applications. PMID:26925616

  17. Three-dimensional culture of human meniscal cells: Extracellular matrix and proteoglycan production

    Directory of Open Access Journals (Sweden)

    Norton H James

    2008-06-01

    Full Text Available Abstract Background The meniscus is a complex tissue whose cell biology has only recently begun to be explored. Published models rely upon initial culture in the presence of added growth factors. The aim of this study was to test a three-dimensional (3D collagen sponge microenvironment (without added growth factors for its ability to provide a microenvironment supportive for meniscal cell extracellular matrix (ECM production, and to test the responsiveness of cells cultured in this manner to transforming growth factor-β (TGF-β. Methods Experimental studies were approved prospectively by the authors' Human Subjects Institutional Review Board. Human meniscal cells were isolated from surgical specimens, established in monolayer culture, seeded into a 3D scaffold, and cell morphology and extracellular matrix components (ECM evaluated either under control condition or with addition of TGF-β. Outcome variables were evaluation of cultured cell morphology, quantitative measurement of total sulfated proteoglycan production, and immunohistochemical study of the ECM components chondroitin sulfate, keratan sulfate, and types I and II collagen. Result and Conclusion Meniscal cells attached well within the 3D microenvironment and expanded with culture time. The 3D microenvironment was permissive for production of chondroitin sulfate, types I and II collagen, and to a lesser degree keratan sulfate. This microenvironment was also permissive for growth factor responsiveness, as indicated by a significant increase in proteoglycan production when cells were exposed to TGF-β (2.48 μg/ml ± 1.00, mean ± S.D., vs control levels of 1.58 ± 0.79, p

  18. Species-level variability in extracellular production rates of reactive oxygen species by diatoms

    Science.gov (United States)

    Schneider, Robin; Roe, Kelly; Hansel, Colleen; Voelker, Bettina

    2016-03-01

    Biological production and decay of the reactive oxygen species (ROS) hydrogen peroxide (H2O2) and superoxide (O2-) likely have significant effects on the cycling of trace metals and carbon in marine systems. In this study, extracellular production rates of H2O2 and O2- were determined for five species of marine diatoms in the presence and absence of light. Production of both ROS was measured in parallel by suspending cells on filters and measuring the ROS downstream using chemiluminescence probes. In addition, the ability of these organisms to break down O2- and H2O2 was examined by measuring recovery of O2- and H2O2 added to the influent medium. O2- production rates ranged from undetectable to 7.3 x 10-16 mol cell-1 hr-1, while H2O2 production rates ranged from undetectable to 3.4 x 10-16 mol cell-1 hr-1. Results suggest that extracellular ROS production occurs through a variety of pathways even amongst organisms of the same genus. Thalassiosira spp. produced more O2- in light than dark, even when the organisms were killed, indicating that O2- is produced via a passive photochemical process on the cell surface. The ratio of H2O¬2 to O2- production rates was consistent with production of H2O2 solely through dismutation of O2- for T. oceanica, while T. pseudonana made much more H2O2 than O2 . T. weissflogii only produced H2O2 when stressed or killed. P. tricornutum cells did not make cell-associated ROS, but did secrete H2O2-producing substances into the growth medium. In all organisms, recovery rates for killed cultures (94-100% H2O2; 10-80% O2-) were consistently higher than those for live cultures (65-95% H2O2; 10-50% O2-). While recovery rates for killed cultures in H2O2 indicate that nearly all H2O2 was degraded by active cell processes, O2- decay appeared to occur via a combination of active and passive processes. Overall, this study shows that the rates and pathways for ROS production and decay vary greatly among diatom species, even between those that are

  19. Assembly and development of the Pseudomonas aeruginosa biofilm matrix.

    Directory of Open Access Journals (Sweden)

    Luyan Ma

    2009-03-01

    Full Text Available Virtually all cells living in multicellular structures such as tissues and organs are encased in an extracellular matrix. One of the most important features of a biofilm is the extracellular polymeric substance that functions as a matrix, holding bacterial cells together. Yet very little is known about how the matrix forms or how matrix components encase bacteria during biofilm development. Pseudomonas aeruginosa forms environmentally and clinically relevant biofilms and is a paradigm organism for the study of biofilms. The extracellular polymeric substance of P. aeruginosa biofilms is an ill-defined mix of polysaccharides, nucleic acids, and proteins. Here, we directly visualize the product of the polysaccharide synthesis locus (Psl exopolysaccharide at different stages of biofilm development. During attachment, Psl is anchored on the cell surface in a helical pattern. This promotes cell-cell interactions and assembly of a matrix, which holds bacteria in the biofilm and on the surface. Chemical dissociation of Psl from the bacterial surface disrupted the Psl matrix as well as the biofilm structure. During biofilm maturation, Psl accumulates on the periphery of 3-D-structured microcolonies, resulting in a Psl matrix-free cavity in the microcolony center. At the dispersion stage, swimming cells appear in this matrix cavity. Dead cells and extracellular DNA (eDNA are also concentrated in the Psl matrix-free area. Deletion of genes that control cell death and autolysis affects the formation of the matrix cavity and microcolony dispersion. These data provide a mechanism for how P. aeruginosa builds a matrix and subsequently a cavity to free a portion of cells for seeding dispersal. Direct visualization reveals that Psl is a key scaffolding matrix component and opens up avenues for therapeutics of biofilm-related complications.

  20. Extracellular α-Galactosidase from Trichoderma sp. (WF-3: Optimization of Enzyme Production and Biochemical Characterization

    Directory of Open Access Journals (Sweden)

    Aishwarya Singh Chauhan

    2015-01-01

    Full Text Available Trichoderma spp. have been reported earlier for their excellent capacity of secreting extracellular α-galactosidase. This communication focuses on the optimization of culture conditions for optimal production of enzyme and its characterization. The evaluation of the effects of different enzyme assay parameters such as stability, pH, temperature, substrate concentrations, and incubation time on enzyme activity has been made. The most suitable buffer for enzyme assay was found to be citrate phosphate buffer (50 mM, pH 6.0 for optimal enzyme activity. This enzyme was fairly stable at higher temperature as it exhibited 72% activity at 60°C. The enzyme when incubated at room temperature up to two hours did not show any significant loss in activity. It followed Michaelis-Menten curve and showed direct relationship with varying substrate concentrations. Higher substrate concentration was not inhibitory to enzyme activity. The apparent Michaelis-Menten constant (Km, maximum rate of reaction (Vmax, Kcat, and catalytic efficiency values for this enzyme were calculated from the Lineweaver-Burk double reciprocal plot and were found to be 0.5 mM, 10 mM/s, 1.30 U mg−1, and 2.33 U mg−1 mM−1, respectively. This information would be helpful in understanding the biophysical and biochemical characteristics of extracellular α-galactosidase from other microbial sources.

  1. Extracellular production of Pseudozyma (Candida) antarctica lipase B with genuine primary sequence in recombinant Escherichia coli.

    Science.gov (United States)

    Ujiie, Ayana; Nakano, Hideo; Iwasaki, Yugo

    2016-03-01

    An Escherichia coli expression system was established to produce recombinant extracellular Pseudozyma (Candida) antarctica lipase B (CALB). With the aim of producing the genuine CALB without additional amino acid residues, the mature portion of the CALB gene was fused seamlessly to a pelB signal sequence and expressed in E. coli BL21(DE3) using the pET system. Inducing gene expression at low temperature (20°C) was crucial for the production of active CALB; higher temperatures caused inclusion body formation. Prolonged induction for 48 h at 20°C allowed for the enzyme to be released into the culture medium, with more than half of the activity detected in the culture supernatant. A catalytically inactive CALB mutant (S105A) protein was similarly released, suggesting that the lipid-hydrolyzing activity of the enzyme was not the reason for the release. The CALB production level was further improved by optimizing the culture medium. Under the optimized conditions, the CALB in the culture supernatant amounted to 550 mg/L. The recombinant CALB was purified from the culture supernatant, yielding 5.67 mg of purified CALB from 50 mL of culture. N-terminal sequencing and ESI-MS analyses showed proper removal of the pelB signal sequence and the correct molecular weight of the protein, respectively, confirming the structural integrity of the recombinant CALB. The kinetic parameters towards p-nitrophenylbutyrate and the enantiomeric selectivity on rac-1-phenylethylacetate of the recombinant CALB were consistent with those of the authentic CALB. This is the first example of E. coli-based extracellular production of a CALB enzyme without extra amino acid residues. PMID:26272415

  2. Enhancement of protease production by Pseudomonas aeruginosa isolated from dairy effluent sludge and determination of its fibrinolytic potential

    Institute of Scientific and Technical Information of China (English)

    Amrita Raj; Nancy Khess; Namrata Pujari; Sourav Bhattacharya; Arijit Das; Subbaramiah Sundara Rajan

    2012-01-01

    Objective: The present study aimed at isolating proteolytic bacteria from dairy effluent sludge, designing the process parameters for the enhanced production of protease and determination of its fibrinolytic potential. Methods: The dairy sludge was processed according to the microbiological criteria for the isolation of proteolytic bacteria. All the isolates were screened for their protease production ability and the isolate showing highest proteolysis was selected for further studies. Effects of various media components and process parameters like carbon and nitrogen supplementation, temperature, pH and incubation period were investigated. Partial purification of the protease was done using ammonium sulphate fractionation, following which its molecular weight and fibrinolytic activity were determined. Results: Based on the biochemical studies, the selected isolate was identified as Pseudomonas aeruginosa. The highest protease yield was obtained with maltose and yeast extract as supplements. The optimum pH, temperature and incubation period for protease production by the isolate was found to be 7.0, 37℃ and 48 h respectively. The partially purified enzyme preparation showed a single protein band in sodium dodecyl sulphate polyacrylamide gel electrophoresis, revealing the apparent molecular weight of the enzyme to be 35 kDa. The efficient removal of the blood stain emphasized its fibrinolytic potential. Conclusions: From the present study it is envisaged that cultural parameters significantly affect the protease production. Based upon the fibrinolytic activity, this protease may find broad applications in detergent and pharmaceutical industries.

  3. Extra-cellular isoamylase production by Rhizopus oryzae in solid-state fermentation of agro wastes

    Directory of Open Access Journals (Sweden)

    Barnita Ghosh

    2011-10-01

    Full Text Available Extra-cellular isoamylase was produced by Rhizopus oryzae PR7 in solid-state fermentations of various agro wastes, among which millet, oat, tapioca, and arum (Colocasia esculenta showed promising results. The highest amount of enzyme production was obtained after 72 h of growth at 28°C. The optimum pH for enzyme production was - 8.0. Among the various additives tested, enzyme production increased with ions such as Ca2+, Mg2+ and also with cysteine, GSH, and DTT. The enzyme synthesis was reduced in the presence of thiol inhibitors like Cu2+ and pCMB. The surfactants like Tween-40, Tween-80 and Triton X-100 helped in enhancing the enzyme activity. The production could be further increased by using the combinations of substrates. The ability to produce high amount of isoamylase within a relatively very short period and the capability of degrading wastes could make the strain suitable for commercial production of the enzyme.

  4. Production of extracellular protease and glucose uptake in Bacillus clausii in steady-state and transient continuous cultures

    DEFF Research Database (Denmark)

    Christiansen, Torben; Nielsen, Jens

    2002-01-01

    The production of the extracellular alkaline protease Savinase(R) (EC 3.4.21.62) and glucose uptake in a non-sporulating strain of Bacillus clausii were investigated by analysing steady-state and transients during continuous cultivations. The specific production rate was found to have an optimum at...

  5. Production of chelating agents by Pseudomonas aeruginosa grown in the presence of thorium and uranium

    International Nuclear Information System (INIS)

    Chelating agents produced by microorganisms enhance the dissolution of iron increasing the mobility and bioavailability of the metal. Since some similarities exist in the biological behavior of ferric, thorium and uranyl ions, microorganisms resistant to these metals and which grow in their presence may produce sequestering agents of Th and U, and other metals in a manner similar to the complexation of iron by siderophores. The ability of P. aeruginosa to elaborate sequestering agents in medium containing thorium or uranium salts was tested. Uranium has a stronger inhibitory effect on growth of the organism than thorium at similar concentrations. Analyses of the culture media have shown, that relative to the control, and under the experimental conditions used, the microorganisms have produced several new chelating agents for thorium and uranium. Extracts containing these chelating agents have been tested for their decorporation potential. In vitro mouse liver bioassay and in vivo mouse toxicity tests indicate that their efficiency is comparable to DTPA and DFOA and that they are virtually non-toxic to mice. The bacterially produced compounds resemble, but are not identical to the known iron chelating siderophores isolated from microorganisms. Some of their chemical properties are also discussed. (author)

  6. Acortatarin A inhibits high glucose-induced extracellular matrix production in mesangial cells

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhi-fang; ZHOU Li-li; CHEN Xia; CHENG Yong-xian; HOU Fan-fan; NIE Jing

    2013-01-01

    Background Diabetic nephropathy (DN) is the leading cause of end-stage renal disease.Various treatment regimens and combinations of therapies provide only partial renoprotection.Therefore new approaches are needed to retard the progression of DN.The aim of the present study was to evaluate the role of a novel spiroalkaloid from Acorus tatarinowii named acortatarin A (AcorA) in inhibiting high glucose-induced extracellular matrix accumulation in mesangial cells (MCs).Methods The cytotoxity of AcorA on MCs was examined by 3-(4,5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide (MTT) assay.The expression of fibronectin and collagen Ⅳ was examined by real time PCR and western blotting.The expression of p22phox and p47phox was detected by western blot.The interaction between p22phox and p47phox was examined by co-immunoprecipitation.The phosphorylation of p47phox was examined by immunoprecipitation.The phosphorylation of protein kinase C (PKC) α,PKCβ,phospholiase C gamma (PLCγ1),and the p85 subunit of PI3K was determined by Western blotting.Results AcorA significantly inhibited high glucose-induced activation of NADPH oxidase,a ROS-generating enzyme,by increasing phosphorylation of p47phox and enhancing interaction between p22phox and p47phox.Preincubation of AcorA with MCs inhibited high glucose-induced collagen Ⅳ and fibronectin production in a dose-dependent manner.Moreover,AcorA attenuated high glucose enhanced phosphorylation of PKCα,PKCβ,PLCγ1,and the p85 subunit of PI3K.Conclusion AcorA inhibits high glucose-induced extracellular matrix production via blocking NADPH oxidase activation.

  7. Cloning and characterization of a pair of novel genes that regulate production of extracellular enzymes in Bacillus subtilis.

    OpenAIRE

    Pang, A S; Nathoo, S; Wong, S L

    1991-01-01

    Two novel Bacillus subtilis genes that regulate the production of several extracellular enzymes were clones and characterized. These two genes are organized as part of an operon. When cloned in a multicopy plasmid, the first gene (tenA, transcription enhancement) stimulates alkaline protease production at the transcriptional level. The second gene (tenI) exerts an opposite effect to reduce alkaline protease production. The production of neutral protease, levansucrase, and alkaline protease ca...

  8. Effect of herbizid and touchdown herbicides on soil fungi and on production of some extracellular enzymes.

    Science.gov (United States)

    El-Said, A H M; Abdel-Hafez, S I I; Saleem, A

    2005-01-01

    Glucophilic and cellulose-decomposing fungi were significantly reduced in soil samples treated with 0.019-0.152 mg a.i./kg soil of the herbicides Herbizid and Touchdown. The decrease was regularly correlated with the doses of the two herbicides and persisted till the end of the experiment (12 weeks). The isolated fungi were found to be able to produce hydrolytic extracellular enzymes in solid media but with variable capabilities. The ability to produce enzymes was adversily affected by the incorporation of herbicides in culture media. Lower doses of herbicides were occasionally promotive to enzyme production and mycelial growth of some fungi. Incorporation of 50 ppm of Herbizid and Touchdown significantly activated amylase production and mycelial dry weight in cultures of Fusarium oxysporum, Mucor hiemalis and Penicillium chrysogenum. There was a significant increase in C1-cellulase produced by F. oxysporum and P. aurantiogriseum when cultures were treated with 50, 100 and 200 ppm of Herbizid which induced also more Cx-cellulase production by P. chrysogenum. Lipase and protease production was always lower in treated than in control fungal cultures. PMID:15957238

  9. High-level extracellular production and characterization of Candida antarctica lipase B in Pichia pastoris.

    Science.gov (United States)

    Eom, Gyeong Tae; Lee, Seung Hwan; Song, Bong Keun; Chung, Keun-Wo; Kim, Young-Wun; Song, Jae Kwang

    2013-08-01

    The gene encoding lipase B from Candida antarctica (CalB) was expressed in Pichia pastoris after it was synthesized by the recursive PCR and cloned into the Pichia expression plasmid, pPICZαA. The CalB was successfully secreted in the recombinant P. pastoris strain X-33 with an apparent molecular weight of 34 kDa. For 140 h flask culture, the dry cell weight and the extracellular lipase activity reached at 5.4 g/l and 57.9 U/l toward p-nitrophenyl palmitate, respectively. When we performed the fed-batch fermentation using a methanol feeding strategy for 110 h, the dry cell weight and the extracellular lipase activity were increased to 135.7 g/l and 11,900 U/l; the CalB protein concentration was 1.18 g/l of culture supernatant. The characteristics of CalB recovered from the P. pastoris culture were compared with the commercial form of CalB produced in Aspergillus oryzae. The kinetic constants and specific activity, the effects of activity and stability on temperature and pH, the glycosylation extent, the degree of immobilization on macroporous resin and the yield of esterification reaction between oleic acid and n-butanol were almost identical to each other. Therefore, we successfully proved that the Pichia-based expression system for CalB in this study was industrially promising compared with one of the most efficient production systems. PMID:23571105

  10. Evaluating the influence of light intensity in mcyA gene expression and microcystin production in toxic strains of Planktothrix agardhii and Microcystis aeruginosa.

    Science.gov (United States)

    Salvador, Daniel; Churro, Catarina; Valério, Elisabete

    2016-04-01

    Cyanobacteria are phytoplanktonic organisms widely occurring in freshwaters, being frequently associated with the production of toxins, namely microcystins (MCs). MCs are produced non-ribosomally by a multienzyme complex (mcy genes). It has been reported that environmental factors, such as light intensity, can influence toxin production. The aim of this study was to assess the influence of light intensity in the transcription of the mcyA gene and corresponding production of microcystins in toxic isolates of Planktothrix agardhii, where little is known, and compare them to Microcystis aeruginosa. For that purpose, cultures were exposed to three different light intensities (4, 20 and 30μmol photons m(-2)s(-1)) for 18days at 20±1°C. The growth was followed daily using absorbance readings. Samples were collected at each growth stage for cell counting, microcystins quantification and RNA extraction. The level of transcripts was quantified by RT-qPCR and the relative expression determined using 16S rDNA, gltA and rpoC1 as reference genes. The most stable reference genes in M. aeruginosa were rpoC1 and gltA, whereas in P. agardhii were 16S rDNA and gltA. There was a correspondence between the growth rate and light intensity in M. aeruginosa and P. agardhii. The growth rates for both species were lower at 4 and higher at 30μmol photons m(-2)s(-1). Microcystin concentration per cell was similar between light intensities in M. aeruginosa and over time, while in P. agardhii it was higher in the stationary phase at 4μmol photons m(-2)s(-1). There were differences in the expression of mcyA between the two species. In M. aeruginosa, the highest levels of expression occurred at 4μmol photons m(-2)s(-1) in the adaptation phase, whereas for P. agardhii it was at 4μmol photons m(-2)s(-1) in the exponential growth phase. Our results indicate that the light intensities tested had distinct influences on the growth, microcystin production and mcyA expression levels, presenting

  11. Chinese Yellow Wine Inhibit Production of Homocysteine-induced Extracellular Matrix Metalloproteinase-2 in Cultured Rat Vascular Smooth Muscle Cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objectives Regular consumption of moderate amounts of Chinese yellow wine is associated with a reduced risk of coronary disease.Matrix metalloproteinases (MMPs) that participate in extracellular matrix degradation have been involved in atherosclerotic plaque growth and instability. The present research aimed to study the effects of Chinese yellow wine on the production of homocysteineinduced extracellular MMP-2 in cultured rats' vascular smooth muscle cells. Methods The effects of different homocysteine levels (0-1000 μmol/l) on MMP-2 production, and the effects of Chinese yellow wine with low alcohol concentrations (12-19% ) on homocysteine-induced MMP-2 in cultured rat vascular smooth muscle cells (VSMCs) were examined using gelatin zymography and western blotting. The changes of MMP-2 under various treatments for 12h, 24h and 48 h were further compared. Results Homocysteine (50-1000 μmol/l) increased the production of MMP-2 significantly in a dose-dependent manner. Increased production of MMP-2 induced by homocysteine was reduced by extracellularly added Chinese yellow wine.Production of MMP-2 under various treatments for 48 h increased more than 12 h and 24 h. Conclusions Extracellularly added Chinese yellow wine decreased homocysteine-induced MMP-2 secretion. The inhibitory effect of yellow wine on the activation of MMP-2 might contribute to their beneficial effects on the cardiovascular system.

  12. Efficacy of ciprofloxacin in experimental aortic valve endocarditis caused by a multiply beta-lactam-resistant variant of Pseudomonas aeruginosa stably derepressed for beta-lactamase production.

    OpenAIRE

    Bayer, A S; Lindsay, P.; Yih, J; Hirano, L; Lee, D.; Blomquist, I K

    1986-01-01

    The emergence of multi-beta-lactam resistance is a limiting factor in treating invasive Pseudomonas infections with newer cephalosporins. The in vivo efficacy of ciprofloxacin, a new carboxy-quinolone, was evaluated in experimental aortic valve endocarditis caused by a strain of Pseudomonas aeruginosa which is stably derepressed for beta-lactamase production and is resistant to ceftazidime and multiple other beta-lactam agents. A total of 51 catheterized rabbits with aortic catheters in place...

  13. Extracellular Xylanolytic and Pectinolytic Hydrolase Production by Aspergillus flavus Isolates Contributes to Crop Invasion.

    Science.gov (United States)

    Mellon, Jay E

    2015-08-01

    Several atoxigenic Aspergillus flavus isolates, including some being used as biocontrol agents, and one toxigenic isolate were surveyed for the ability to produce extracellular xylanolytic and pectinolytic hydrolases. All of the tested isolates displayed good production of endoxylanases when grown on a medium utilizing larch xylan as a sole carbon substrate. Four of the tested isolates produced reasonably high levels of esterase activity, while the atoxigenic biocontrol agent NRRL 21882 isolate esterase level was significantly lower than the others. Atoxigenic A. flavus isolates 19, 22, K49, AF36 (the latter two are biocontrol agents) and toxigenic AF13 produced copious levels of pectinolytic activity when grown on a pectin medium. The pectinolytic activity levels of the atoxigenic A. flavus 17 and NRRL 21882 isolates were significantly lower than the other tested isolates. In addition, A. flavus isolates that displayed high levels of pectinolytic activity in the plate assay produced high levels of endopolygalacturonase (pectinase) P2c, as ascertained by isoelectric focusing electrophoresis. Isolate NRRL 21882 displayed low levels of both pectinase P2c and pectin methyl esterase. A. flavus appears capable of producing these hydrolytic enzymes irrespective of aflatoxin production. This ability of atoxigenic isolates to produce xylanolytic and pectinolytic hydrolases mimics that of toxigenic isolates and, therefore, contributes to the ability of atoxigenic isolates to occupy the same niche as A. flavus toxigenic isolates. PMID:26295409

  14. Extracellular Xylanolytic and Pectinolytic Hydrolase Production by Aspergillus flavus Isolates Contributes to Crop Invasion

    Directory of Open Access Journals (Sweden)

    Jay E. Mellon

    2015-08-01

    Full Text Available Several atoxigenic Aspergillus flavus isolates, including some being used as biocontrol agents, and one toxigenic isolate were surveyed for the ability to produce extracellular xylanolytic and pectinolytic hydrolases. All of the tested isolates displayed good production of endoxylanases when grown on a medium utilizing larch xylan as a sole carbon substrate. Four of the tested isolates produced reasonably high levels of esterase activity, while the atoxigenic biocontrol agent NRRL 21882 isolate esterase level was significantly lower than the others. Atoxigenic A. flavus isolates 19, 22, K49, AF36 (the latter two are biocontrol agents and toxigenic AF13 produced copious levels of pectinolytic activity when grown on a pectin medium. The pectinolytic activity levels of the atoxigenic A. flavus 17 and NRRL 21882 isolates were significantly lower than the other tested isolates. In addition, A. flavus isolates that displayed high levels of pectinolytic activity in the plate assay produced high levels of endopolygalacturonase (pectinase P2c, as ascertained by isoelectric focusing electrophoresis. Isolate NRRL 21882 displayed low levels of both pectinase P2c and pectin methyl esterase. A. flavus appears capable of producing these hydrolytic enzymes irrespective of aflatoxin production. This ability of atoxigenic isolates to produce xylanolytic and pectinolytic hydrolases mimics that of toxigenic isolates and, therefore, contributes to the ability of atoxigenic isolates to occupy the same niche as A. flavus toxigenic isolates.

  15. Virulence of Aeromonas hydrophila to channel catfish Ictalurus punctatus fingerlings in the presence and absence of bacterial extracellular products

    Science.gov (United States)

    Virulence of three 2009 West Alabama isolates (AL09-71, AL09-72, and AL09-73) of Aeromonas hydrophila in the presence or absence of extracellular products (ECP) from overnight bacterial culture to channel catfish fingerlings (4.6 +/- 1.3g) was investigated by both bath immersion and intraperitoneal ...

  16. Vaccination of channel catfish with extracellular products of Aeromonas hydrophila provides protection against infection by the pathogen

    Science.gov (United States)

    Aeromonas hydrophila, a Gram-negative bacterium, is one of the economically-important pathogens in modern aquaculture. Among various traits, extracellular products (ECP) secreted by the bacterium are considered to be essential factors for virulence. Whether vaccination with the ECP could produce imm...

  17. Inquisition of Microcystis aeruginosa and Synechocystis nanowires: characterization and modelling.

    Science.gov (United States)

    Sure, Sandeep; Torriero, Angel A J; Gaur, Aditya; Li, Lu Hua; Chen, Ying; Tripathi, Chandrakant; Adholeya, Alok; Ackland, M Leigh; Kochar, Mandira

    2015-11-01

    Identification of extracellular conductive pilus-like structures (PLS) i.e. microbial nanowires has spurred great interest among scientists due to their potential applications in the fields of biogeochemistry, bioelectronics, bioremediation etc. Using conductive atomic force microscopy, we identified microbial nanowires in Microcystis aeruginosa PCC 7806 which is an aerobic, photosynthetic microorganism. We also confirmed the earlier finding that Synechocystis sp. PCC 6803 produces microbial nanowires. In contrast to the use of highly instrumented continuous flow reactors for Synechocystis reported earlier, we identified simple and optimum culture conditions which allow increased production of nanowires in both test cyanobacteria. Production of these nanowires in Synechocystis and Microcystis were found to be sensitive to the availability of carbon source and light intensity. These structures seem to be proteinaceous in nature and their diameter was found to be 4.5-7 and 8.5-11 nm in Synechocystis and M. aeruginosa, respectively. Characterization of Synechocystis nanowires by transmission electron microscopy and biochemical techniques confirmed that they are type IV pili (TFP) while nanowires in M. aeruginosa were found to be similar to an unnamed protein (GenBank : CAO90693.1). Modelling studies of the Synechocystis TFP subunit i.e. PilA1 indicated that strategically placed aromatic amino acids may be involved in electron transfer through these nanowires. This study identifies PLS from Microcystis which can act as nanowires and supports the earlier hypothesis that microbial nanowires are widespread in nature and play diverse roles. PMID:26319534

  18. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Garry Laverty

    2014-07-01

    Full Text Available Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl, pellicle Formation (Pel and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation.

  19. Cultural conditions on the production of extracellular enzymes by Trichoderma isolates from tobacco rhizosphere

    Directory of Open Access Journals (Sweden)

    K.L.N Mallikharjuna Rao

    2016-03-01

    Full Text Available Abstract Twelve isolates of Trichoderma spp. isolated from tobacco rhizosphere were evaluated for their ability to produce chitinase and β-1,3-glucanase extracellular hydrolytic enzymes. Isolates ThJt1 and TvHt2, out of 12 isolates, produced maximum activities of chitinase and β-1,3-glucanase, respectively. In vitro production of chitinase and β-1,3-glucanase by isolates ThJt1 and TvHt2 was tested under different cultural conditions. The enzyme activities were significantly influenced by acidic pH and the optimum temperature was 30 °C. The chitin and cell walls of Sclerotium rolfsii, as carbon sources, supported the maximum and significantly higher chitinase activity by both isolates. The chitinase activity of isolate ThJt1 was suppressed significantly by fructose (80.28%, followed by glucose (77.42%, whereas the β-1,3-glucanase activity of ThJt1 and both enzymes of isolate TvHt2 were significantly suppressed by fructose, followed by sucrose. Ammonium nitrate as nitrogen source supported the maximum activity of chitinase in both isolates, whereas urea was a poor nitrogen source. Production of both enzymes by the isolates was significantly influenced by the cultural conditions. Thus, the isolates ThJt1 and TvHt2 showed higher levels of chitinase and β-1,3-glucanase activities and were capable of hydrolyzing the mycelium of S. rolfsii infecting tobacco. These organisms can be used therefore for assessment of their synergism in biomass production and biocontrol efficacy and for their field biocontrol ability against S. rolfsii and Pythium aphanidermatum infecting tobacco.

  20. Cultural conditions on the production of extracellular enzymes by Trichoderma isolates from tobacco rhizosphere.

    Science.gov (United States)

    Mallikharjuna Rao, K L N; Siva Raju, K; Ravisankar, H

    2016-01-01

    Twelve isolates of Trichoderma spp. isolated from tobacco rhizosphere were evaluated for their ability to produce chitinase and β-1,3-glucanase extracellular hydrolytic enzymes. Isolates ThJt1 and TvHt2, out of 12 isolates, produced maximum activities of chitinase and β-1,3-glucanase, respectively. In vitro production of chitinase and β-1,3-glucanase by isolates ThJt1 and TvHt2 was tested under different cultural conditions. The enzyme activities were significantly influenced by acidic pH and the optimum temperature was 30°C. The chitin and cell walls of Sclerotium rolfsii, as carbon sources, supported the maximum and significantly higher chitinase activity by both isolates. The chitinase activity of isolate ThJt1 was suppressed significantly by fructose (80.28%), followed by glucose (77.42%), whereas the β-1,3-glucanase activity of ThJt1 and both enzymes of isolate TvHt2 were significantly suppressed by fructose, followed by sucrose. Ammonium nitrate as nitrogen source supported the maximum activity of chitinase in both isolates, whereas urea was a poor nitrogen source. Production of both enzymes by the isolates was significantly influenced by the cultural conditions. Thus, the isolates ThJt1 and TvHt2 showed higher levels of chitinase and β-1,3-glucanase activities and were capable of hydrolyzing the mycelium of S. rolfsii infecting tobacco. These organisms can be used therefore for assessment of their synergism in biomass production and biocontrol efficacy and for their field biocontrol ability against S. rolfsii and Pythium aphanidermatum infecting tobacco. PMID:26887223

  1. Pseudomonas aeruginosa biofilm infections

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2014-01-01

    Bacteria in natural, industrial and clinical settings predominantly live in biofilms, i.e., sessile structured microbial communities encased in self-produced extracellular matrix material. One of the most important characteristics of microbial biofilms is that the resident bacteria display a...... remarkable increased tolerance toward antimicrobial attack. Biofilms formed by opportunistic pathogenic bacteria are involved in devastating persistent medical device-associated infections, and chronic infections in individuals who are immune-compromised or otherwise impaired in the host defense. Because the...... use of conventional antimicrobial compounds in many cases cannot eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. The present review is focussed on the important opportunistic pathogen and biofilm model organism Pseudomonas aeruginosa. Initially...

  2. High-yield production of extracellular type-I cellulose by the cyanobacterium Synechococcus sp. PCC 7002.

    Science.gov (United States)

    Zhao, Chi; Li, Zhongkui; Li, Tao; Zhang, Yingjiao; Bryant, Donald A; Zhao, Jindong

    2015-01-01

    Cellulose synthase, encoded by the cesA gene, is responsible for the synthesis of cellulose in nature. We show that the cell wall of the cyanobacterium Synechococcus sp. PCC 7002 naturally contains cellulose. Cellulose occurs as a possibly laminated layer between the inner and outer membrane, as well as being an important component of the extracellular glycocalyx in this cyanobacterium. Overexpression of six genes, cmc-ccp-cesAB-cesC-cesD-bgl, from Gluconacetobacter xylinus in Synechococcus sp. PCC 7002 resulted in very high-yield production of extracellular type-I cellulose. High-level cellulose production only occurred when the native cesA gene was inactivated and when cells were grown at low salinity. This system provides a method for the production of lignin-free cellulose from sunlight and CO2 for biofuel production and other biotechnological applications. PMID:27462405

  3. Slime production a virulence marker in Pseudomonas aeruginosa strains isolated from clinical and environmental specimens: A comparative study of two methods

    Directory of Open Access Journals (Sweden)

    Prasad S

    2009-04-01

    Full Text Available Detection of slime in Pseudomonas aeruginosa can be useful in understanding the virulence of this organism. Here, comparative studies of two phenotypic methods using the tube method and the spectrophotometric method for slime production from 100 clinically and 21 environmentally significant isolates of P. aeruginosa were performed. A total of 68 isolates were positive by either of the tests whereas only 34 were positive by both the tests. The tube method detected slime significantly in more number of isolates than the spectrophotometric method. The tube test was found to be superior to the spectrophotometric method in ease of performance, interpretation and sensitivity. Among the clinical isolates, systemic isolates produce less slime compared to wound, respiratory and urinary isolates. Isolates from the hospital environment produced more slime indicating that this virulence marker helps the organism to survive for longer periods and cause nosocomial infections.

  4. Phenolic compounds affect production of pyocyanin, swarming motility and biofilm formation of Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Aylin Ugurlu

    2016-08-01

    Conclusions: We may suggest that if swarming and consecutive biofilm formation could be inhibited by the natural products as shown in our study, the bacteria could not attach to the surfaces and produce chronic infections. Antimicrobials and natural products could be combined and the dosage of antimicrobials could be reduced to overcome antimicrobial resistance and drug side effects.

  5. Regulation of Motility and Phenazine Pigment Production by FliA Is Cyclic-di-GMP Dependent in Pseudomonas aeruginosa PAO1

    Science.gov (United States)

    Lo, Yi-Ling; Shen, Lunda; Chang, Chih-Hsuan; Bhuwan, Manish; Chiu, Cheng-Hsun; Chang, Hwan-You

    2016-01-01

    The transcription factor FliA, also called sigma 28, is a major regulator of bacterial flagellar biosynthesis genes. Growing evidence suggest that in addition to motility, FliA is involved in controlling numerous bacterial behaviors, even though the underlying regulatory mechanism remains unclear. By using a transcriptional fusion to gfp that responds to cyclic (c)-di-GMP, this study revealed a higher c-di-GMP concentration in the fliA deletion mutant of Pseudomonas aeruginosa than in its wild-type strain PAO1. A comparative analysis of transcriptome profiles of P. aeruginosa PAO1 and its fliA deletion mutant revealed an altered expression of several c-di-GMP-modulating enzyme-encoding genes in the fliA deletion mutant. Moreover, the downregulation of PA4367 (bifA), a Glu-Ala-Leu motif-containing phosphodiesterase, in the fliA deletion mutant was confirmed using the β-glucuronidase reporter gene assay. FliA also altered pyocyanin and pyorubin production by modulating the c-di-GMP concentration. Complementing the fliA mutant strain with bifA restored the motility defect and pigment overproduction of the fliA mutant. Our results indicate that in addition to regulating flagellar gene transcription, FliA can modulate the c-di-GMP concentration to regulate the swarming motility and phenazine pigment production in P. aeruginosa. PMID:27175902

  6. Evaluation of extracellular products and mutagenicity in cyanobacteria cultures separated from a eutrophic reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Huang, W.-J. [Department of Environmental Engineering, Hung Kuang University, 34 Chung Chie Road, Sha-Lu, Taichung, Taiwan (China)]. E-mail: huangwj@sunrise.hk.edu.tw; Lai, C.-H. [Department of Environmental Engineering, Hung Kuang University, 34 Chung Chie Road, Sha-Lu, Taichung, Taiwan (China); Cheng, Y.-L. [Environmental Toxin and Analysis Laboratory, Hung Kuang University, 34 Chung Chie Road, Sha-Lu, Taichung, Taiwan (China)]. E-mail: octling@yahoo.com.tw

    2007-05-15

    The algal extracellular products (ECPs) in three cultures of cyanobacteria species (Anabaena, Microcystis, and Oscillatoria) dominating the eutrophic reservoir populations and their toxins have been investigated in the present work. Using gas chromatography coupled with high-resolution electron-impact mass spectrometry (GC/EI-MS) and high performance anion-exchange chromatography (HPAEC) techniques, more than 20 compounds were found in the algal culture (including cells and filtrates) extracts. The main identified ECPs were classified to polysaccharides, hydrocarbons, and aldehydes. Odor causing substances such as trans-1,10-dimethyl-trans-9-decalol (geosmin) and 2-methylisoborneol (2-MIB)were also found in the algal cultures. The potential mutagenicity of the algal suspensions was also studied with the Ames test. The organic extracts of the algal suspension from the axenic cultures were mutagenicity in TA98 without S9 mix and in TA100 with and without S9 mix. The results indicate that the ECPs of three algae species dominating the eutrophic reservoir were mutagenic clearly in the bacterial test.

  7. Evaluation of extracellular products and mutagenicity in cyanobacteria cultures separated from a eutrophic reservoir

    International Nuclear Information System (INIS)

    The algal extracellular products (ECPs) in three cultures of cyanobacteria species (Anabaena, Microcystis, and Oscillatoria) dominating the eutrophic reservoir populations and their toxins have been investigated in the present work. Using gas chromatography coupled with high-resolution electron-impact mass spectrometry (GC/EI-MS) and high performance anion-exchange chromatography (HPAEC) techniques, more than 20 compounds were found in the algal culture (including cells and filtrates) extracts. The main identified ECPs were classified to polysaccharides, hydrocarbons, and aldehydes. Odor causing substances such as trans-1,10-dimethyl-trans-9-decalol (geosmin) and 2-methylisoborneol (2-MIB)were also found in the algal cultures. The potential mutagenicity of the algal suspensions was also studied with the Ames test. The organic extracts of the algal suspension from the axenic cultures were mutagenicity in TA98 without S9 mix and in TA100 with and without S9 mix. The results indicate that the ECPs of three algae species dominating the eutrophic reservoir were mutagenic clearly in the bacterial test

  8. The Int-2/Fgf-3 oncogene product is secreted and associates with extracellular matrix: implications for cell transformation.

    OpenAIRE

    Kiefer, P; Peters, G.; Dickson, C

    1991-01-01

    NIH3T3 cells transformed by mouse Int-2/Fgf-3 cDNA express a series of Int-2-related products representing discrete stages of processing and glycosylation. We confirm that in at least two highly transformed clonal lines, Int-2 products acquire further modifications and are efficiently secreted into the culture medium. Secreted proteins become associated with the cell surface and extracellular matrix and can be displaced by addition of soluble glycosaminoglycans, specifically heparin, heparan ...

  9. Biosynthesis of pyocyanin pigment by Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    M.Z. El-Fouly

    2015-01-01

    Full Text Available Sixty-three isolates belonging to the genus Pseudomonas were isolated from different environmental sources including; soil, water and clinical specimens. Twenty out of them were identified as Pseudomonas aeruginosa and individually screened for pyocyanin production. P. aeruginosa R1; isolated from rice-cultivated soil and P. aeruginosa U3 selected from clinical specimen (Urinary tract infection were the highest pyocyanin producers; pyocyanin production reached 9.3 and 5.9 μg/ml, respectively on synthetic glucose supplemented nutrient medium (GSNB. The identification of both selected strains (P. aeruginosa R1 and P. aeruginosa U3 was confirmed by 16S rRNA, the similarity with other strains available in database was 97% (with P. aeruginosa FPVC 14 and 94% (with P. aeruginosa 13.A, respectively. P. aeruginosa R1 and P. aeruginosa U3 are accessed at gene bank with accession numbers KM924432 and KM603511, in the same order. Pyocyanin was extracted by standard methods, purified by column chromatography and characterized by UV-Vis absorption, mass spectrometry and nuclear magnetic resonance. The antimicrobial activity of purified pyocyanin against multi-drug resistant microbes was investigated; the efficiency of pyocyanin was more obvious in Gram +ve bacteria than Gram−ve bacteria and yeast. To reduce the cost of pyocyanin production, a new conventional medium based on cotton seed meal supplemented with peptone was designed. The pyocyanin production of both selected strains P. aeruginosa R1 and P. aeruginosa U3 using the new medium is increased by 30.1% and 17.2%, respectively in comparison with synthetic GSNB medium, while the cost of production process is reduced by 56.7%.

  10. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production

    DEFF Research Database (Denmark)

    Bagge, N.; Schuster, M.; Hentzer, Morten;

    2004-01-01

    The lungs of cystic fibrosis (CF) patients are commonly colonized with Pseudomonas aeruginosa biofilms. Chronic endobronchial P. aeruginosa infections are impossible to eradicate with antibiotics, but intensive suppressive antibiotic therapy is essential to maintain the lung function of CF patients....... The treatment often includes beta-lactam antibiotics. How these antibiotics influence gene expression in the surviving biofilm population of P. aeruginosa is not clear. Thus, we used the microarray technology to study the effects of subinhibitory concentrations of a beta-lactam antibiotic, imipenem......, on gene expression in biofilm populations. Many genes showed small but statistically significant differential expression in response to imipenem. We identified 34 genes that were induced or repressed in biofilms exposed to imipenem more than fivefold compared to the levels of induction or repression...

  11. UTILIZATION OF MUSTARD OIL FOR THE PRODUCTION OF POLYHYDROXYALKANOATES BY Pseudomonas aeruginosa

    OpenAIRE

    Hasnain Javed; Nazia Jamil

    2015-01-01

    With the unnecessary use of plastics and cumulative pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. Bioplastic production from mustard oil was considered relatively cheap, easily available, included in vegetable oil and don’t having much volatile characteristics. Total of 67 bacterial strains were isolated and purified from different regio...

  12. Facultative control of matrix production optimizes competitive fitness in Pseudomonas aeruginosa PA14 biofilm models

    DEFF Research Database (Denmark)

    Madsen, Jonas Stenløkke; Lin, Yu Cheng; Squyres, Georgia R.;

    2015-01-01

    to the colony edge produced mutants with clear competitive advantages against the wild type in this O2-replete niche. In general, the structurally heterogeneous colony environment promoted more diversification than the more homogeneous pellicle. These results suggest that the role of Pel in community structure...... formation in response to electron acceptor limitation is unique to specific biofilm models and that the facultative control of Pel production is required for PA14 to maintain optimum benefit in different types of communities....

  13. Experimental investigation and optimization of process variables affecting the production of extracellular lipase by Kluyveromyces marxianus IFO 0288.

    Science.gov (United States)

    Stergiou, Panagiota-Yiolanda; Foukis, Athanasios; Sklivaniti, Helen; Zacharaki, Paraskevi; Papagianni, Maria; Papamichael, Emmanuel M

    2012-10-01

    In this study, the production and optimization of extracellular lipase from Kluyveromyces marxianus IFO 0288 was investigated by using optimized nutritional and cultural conditions in a yeast medium containing glucose as the carbon source in fully aerobic batch fermentation (150 rpm). The influence of four fermentation parameters (type of lipidic source, initial culture pH, temperature, and length of fermentation) on growth and lipase production was investigated and evaluated using the conventional "one variable at a time" approach and response surface methodology. An 18-fold increase in lipase production during 65 h of fermentation was obtained with optimized nutritional (0.5 % olive oil) and cultivation (pH 6.5, 35 °C) conditions by employing the conventional optimization method. By applying the response surface methodology technique the initial pH value of 6.4 and temperature of 32.5 °C were identified as optimal and led to further improvements (up to 18-fold) of extracellular lipase production. The results provide, for the first time, evidence that K. marxianus has the potential to be used as an efficient producer of extracellular lipase with prospective application in a variety of industrial and biotechnological areas. PMID:22843062

  14. Optimization of the production of extracellular α-amylase by Kluyveromyces marxianus IF0 0288 by response surface methodology

    Directory of Open Access Journals (Sweden)

    Panagiota-Yiolanda Stergiou

    2014-06-01

    Full Text Available The aim of this work was to study the production of extracellular α-amylase by Kluyveromyces marxianus IF0 0288 using optimized nutritional and cultural conditions in a complex yeast medium under aerobic batch fermentation. By applying the conventional "one-variable-at-a-time" approach and the response surface methodology, the effect of four fermentation parameters (type of carbon source, initial culture pH, temperature, and incubation time on the growth and α-amylase production was evaluated. The production of α-amylase during 60 h of fermentation increased 13-fold under optimized conditions (1% starch, pH 6.0, 30ºC in comparison to the conventional optimization method. The initial pH value of 6.13 and temperature of 30.3ºC were optimal conditions by the response surface methodology, leading to further improvement (up to 13-fold in the production of extracellular α-amylase. These results constituted first evidence that K. marxianus could be potentially used as an effective source of extracellular α-amylase.

  15. Extracellular heat shock protein 90 binding to TGFβ receptor I participates in TGFβ-mediated collagen production in myocardial fibroblasts.

    Science.gov (United States)

    García, Raquel; Merino, David; Gómez, Jenny M; Nistal, J Francisco; Hurlé, María A; Cortajarena, Aitziber L; Villar, Ana V

    2016-10-01

    The pathological remodeling heart shows an increase in left ventricular mass and an excess of extracellular matrix deposition that can over time cause heart failure. Transforming growth factor β (TGFβ) is the main cytokine controlling this process. The molecular chaperone heat shock protein 90 (Hsp90) has been shown to play a critical role in TGFβ signaling by stabilizing the TGFβ signaling cascade. We detected extracellular Hsp90 in complex with TGFβ receptor I (TGFβRI) in fibroblasts and determined a close proximity between both proteins suggesting a potential physical interaction between the two at the plasma membrane. This was supported by in silico studies predicting Hsp90 dimers and TGFβRI extracellular domain interaction. Both, Hsp90aa1 and Hsp90ab1 isoforms participate in TGFβRI complex. Extracellular Hsp90 inhibition lessened the yield of collagen production as well as the canonical TGFβ signaling cascade, and collagen protein synthesis was drastically reduced in Hsp90aa1 KO mice. These observations together with the significant increase in activity of Hsp90 at the plasma membrane pointed to a functional cooperative partnership between Hsp90 and TGFβRI in the fibrotic process. We propose that a surface population of Hsp90 extracellularly binds TGFβRI and this complex behaves as an active participant in collagen production in TGFβ-activated fibroblasts. We also offer an in vivo insight into the role of Hsp90 and its isoforms during cardiac remodeling in murine aortic banding model suffering from pathological cardiac remodeling and detect circulating Hsp90 overexpressed in remodeling mice. PMID:27418101

  16. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells

    International Nuclear Information System (INIS)

    Highlights: → The involvement of extracellular acidification in airway remodeling was investigated. → Extracellular acidification alone induced CTGF production in human ASMCs. → Extracellular acidification enhanced TGF-β-induced CTGF production in human ASMCs. → Proton-sensing receptor OGR1 was involved in acidic pH-stimulated CTGF production. → OGR1 may play an important role in airway remodeling in asthma. -- Abstract: Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connective tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-β-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the Gq/11 protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP3) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/Gq/11 protein and inositol-1,4,5-trisphosphate-induced Ca2+ mobilization in human ASMCs.

  17. Production of extracellular ferulic acid esterases by Lactobacillus strains using natural and synthetic carbon sources

    Directory of Open Access Journals (Sweden)

    Dominik Szwajgier

    2011-09-01

    Full Text Available Background. Ferulic acid esterases (FAE, EC 3.1.1.73, also known as feruloyl esterases, cinnamic acid esterases or cinnamoyl esterases, belong to a common group of hydrolases distributed in the plant kingdom. Especially the fungal enzymes were very well characterised in the past whereas the enzyme was rarely found in the lactic acid bacteria (LAB strains. It is well known that strong antioxidants free phenolic acids can be released from the dietary fiber by the action of intestinal microflora composed among others also of Lactobacillus strains. The aim of this study was to examine four Lactobacillus strains (L. acidophilus K1, L. rhamnosus E/N, PEN, OXYfor the ability to produce extracellular FAE on different synthetic and natural carbon sources. Material and methods. The LAB strains were grown in the minimal growth media using German wheat bran, rye bran, brewers’ spent grain, isolated larchwood arabinogalactan, apple pectin, corn pectin, methyl ferulate, methyl p-coumarate, methyl syringate or methyl vanillate as the sole carbon source. FAE activity was determined using the post-cultivation supernatants, methyl ferulate and HPLC with UV detection. Results. The highest FAE activity was obtained with L. acidophilus K1 and methyl ferulate (max. 23.34 ±0.05 activity units and methyl p-coumarate (max. 14.96 ±0.47 activity units as carbon sources. L. rhamnosus E/N, OXY and PEN exhibited the limited ability to produce FAE with cinnamic acids methyl esters. Methyl syringate and methyl vanillate (MS and MV were insufficient carbon sources for FAE production. Brewers’ spent grain was the most suitable substrate for FAE production by L. acidophilus K1 (max. 2.64 ±0.06 activity units and L. rhamnosus E/N, OXY and PEN. FAE was also successfully induced by natural substrates rye bran, corn pectin (L. acidophilus K1, German wheat bran and larchwood arabinogalactan (E/N, PEN or German wheat bran and corn pectin (OXY. Conclusions. This study proved the

  18. Production and Purification of Extracellular D-Xylose Isomerase from an Alkaliphilic, Thermophilic Bacillus sp. †

    OpenAIRE

    Chauthaiwale, Jyoti; Rao, Mala

    1994-01-01

    An alkaliphilic, thermophilic Bacillus sp. (NCIM 59) produced extracellular xylose isomerase at pH 10 and 50°C by using xylose or wheat bran as the carbon source. The distribution of xylose isomerase as a function of growth in comparison with distributions of extra- and intracellular marker enzymes such as xylanase and β-galactosidase revealed that xylose isomerase was truly secreted as an extracellular enzyme and was not released because of sporulation or lysis. The enzyme was purified to ho...

  19. Advances in time course extracellular production of human pre-miR-29b from Rhodovulum sulfidophilum.

    Science.gov (United States)

    Pereira, Patrícia; Pedro, Augusto Q; Tomás, Joana; Maia, Cláudio J; Queiroz, João A; Figueiras, Ana; Sousa, Fani

    2016-04-01

    The present study reports the successful production of human pre-miR-29b both intra- and extracellularly in the marine phototrophic bacterium Rhodovulum sulfidophilum using recombinant RNA technology. In a first stage, the optimal transformation conditions (0.025 μg of plasmid DNA, with a heat-shock of 2 min at 35 °C) were established, in order to transfer the pre-miR-29b encoding plasmid to R. sulfidophilum host. Furthermore, the extracellular recovery of this RNA product from the culture medium was greatly improved, achieving quantities that are compatible with the majority of applications, namely for in vitro or in vivo studies. Using this system, the extracellular human pre-miR-29b concentration was approximately 182 μg/L, after 40 h of bacterial growth, and the total intracellular pre-miR-29b was of about 358 μg/L, at 32 h. At the end of the fermentation, it was verified that almost 87 % of cells were viable, indicating that cell lysis is minimized and that the extracellular medium is not highly contaminated with the host intracellular ribonucleases (RNases) and endotoxins, which is a critical parameter to guarantee the microRNA (miRNA) integrity. These findings demonstrate that pre-miRNAs can be produced by recombinant RNA technology, offering novel clues for the production of natural pre-miRNA agents for functional studies and RNA interference (RNAi)-based therapeutics. PMID:26860940

  20. The influence of extracellular H2O2 production on decolorization ability in fungi

    Czech Academy of Sciences Publication Activity Database

    Eichlerová, Ivana; Homolka, Ladislav; Lisá, Ludmila; Nerud, František

    2006-01-01

    Roč. 46, č. 6 (2006), s. 449-455. ISSN 0233-111X R&D Projects: GA ČR GP206/02/D119 Institutional research plan: CEZ:AV0Z50200510 Keywords : decolorization * fungi * extracellular H2O2 Subject RIV: EE - Microbiology, Virology Impact factor: 0.722, year: 2006

  1. Antibiofilm activities of certain biocides in Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    S Gharavi

    2009-12-01

    Full Text Available Background and objectives: Pseudomonas aeruginosa is an opportunistic pathogen that can produce biofilm. Biofilm is a complex, three dimensional structure in which microorganisms are attached to a surface and embedded in a matrix made of extracellular polymers. Due to high resistance to antimicrobial agents, biofilms create difficulties in various situations in healthcare. In this study, antibiofilm activities of some biocides in P. aeruginosa were studied."nMaterials and methods: The biofilm production ability of P. aeruginosa strain 214 (a clinical isolate was determined in the presence of six biocides including of ethylene diamine tetra acetic acid (EDTA, silver nitrate (AgNO3, bismuth ethanedithiol (BisEDT, bismuth dimercaprol (BisBAL, bismuth-2-mercaptoethanol (BisMEO and bismuth propanedithiol (BisPDT using the modified microtiter plate method. Bactericidal activity of the biocides against biofilm and planktonic cells was investigated. In this study, permeation of biocides through alginate layer was evaluated with a sandwich cup method."nResults: The results demonstrated that in the presence of bismuth thiols, biofilm production in MIC and sub MIC concentrations was considerably inhibited. Bismuththiols had lower antibiofilm bactericidal activity than EDTA and silver nitrate. One possible mechanism of biofilm resistance is exopolysaccharide production which prevents the access of antimicrobial agents to cells inside the biofilm. Bismuth thiols could not penetrate, while EDTA and silver nitrate had high penetration rate."nConclusions: Due to the frequent use of silver nitrate and EDTA in various applications, low efficacy in the inhibition of biofilm production, unstudied toxicity of BTs for humans and high efficacy in the inhibition of biofilm production, it is suggested that combinatory effect of BTs with silver nitrate or EDTA on biofilms and biofilm production be investigated.

  2. Application of repeated aspartate tags to improving extracellular production of Escherichia coli L-asparaginase isozyme II.

    Science.gov (United States)

    Kim, Sun-Ki; Min, Won-Ki; Park, Yong-Cheol; Seo, Jin-Ho

    2015-11-01

    Asparaginase isozyme II from Escherichia coli is a popular enzyme that has been used as a therapeutic agent against acute lymphoblastic leukemia. Here, fusion tag systems consisting of the pelB signal sequence and various lengths of repeated aspartate tags were devised to highly express and to release active asparaginase isozyme II extracellularly in E. coli. Among several constructs, recombinant asparaginase isozyme II fused with the pelB signal sequence and five aspartate tag was secreted efficiently into culture medium at 34.6 U/mg cell of specific activity. By batch fermentation, recombinant E. coli produced 40.8 U/ml asparaginase isozyme II in the medium. In addition, deletion of the gspDE gene reduced extracellular production of asparaginase isozyme II, indicating that secretion of recombinant asparaginase isozyme II was partially ascribed to the recognition by the general secretion machinery. This tag system composed of the pelB signal peptide, and repeated aspartates can be applied to extracellular production of other recombinant proteins. PMID:26320714

  3. Secretion of Elastinolytic Enzymes and Their Propeptides by Pseudomonas aeruginosa

    OpenAIRE

    Braun, Peter; de Groot, Arjan; Bitter, Wilbert; Tommassen, Jan

    1998-01-01

    Elastase of Pseudomonas aeruginosa is synthesized as a preproenzyme. The signal sequence is cleaved off during transport across the inner membrane and, in the periplasm, proelastase is further processed. We demonstrate that the propeptide and the mature elastase are both secreted but that the propeptide is degraded extracellularly. In addition, reduction of the extracellular proteolytic activity led to the accumulation of unprocessed forms of LasA and LasD in the extracellular medium, which s...

  4. Extracellular ATP-induced NO production and its dependence on membrane Ca2+ flux in Salvia miltiorrhiza hairy roots

    OpenAIRE

    Wu, Shu-Jing; Wu, Jian-yong

    2008-01-01

    Extracellular ATP (eATP) is a novel signalling agent, and nitric oxide (NO) is a well-established signal molecule with diverse functions in plant growth and development. This study characterizes NO production induced by exogenous ATP and examines its relationship with other important signalling agents, Ca2+ and H2O2 in Salvia miltiorrhiza hairy root culture. Exogenous ATP was applied at 10–500 μM to the hairy root cultures and stimulated NO production was detectable within 30 min. The NO leve...

  5. Macromolecularly crowded in vitro microenvironments accelerate the production of extracellular matrix-rich supramolecular assemblies

    OpenAIRE

    Kumar, Pramod; Satyam, Abhigyan; Fan, Xingliang; Rodriguez, Brian J.; et al

    2015-01-01

    Therapeutic strategies based on the principles of tissue engineering by self-assembly put forward the notion that functional regeneration can be achieved by utilising the inherent capacity of cells to create highly sophisticated supramolecular assemblies. However, in dilute ex vivo microenvironments, prolonged culture time is required to develop an extracellular matrix-rich implantable device. Herein, we assessed the influence of macromolecular crowding, a biophysical phenomenon that regulate...

  6. Phosphate starvation triggers production and secretion of an extracellular lipoprotein in Caulobacter crescentus.

    Directory of Open Access Journals (Sweden)

    Sophie Le Blastier

    Full Text Available Life in oligotrophic environments necessitates quick adaptive responses to a sudden lack of nutrients. Secretion of specific degradative enzymes into the extracellular medium is a means to mobilize the required nutrient from nearby sources. The aquatic bacterium Caulobacter crescentus must often face changes in its environment such as phosphate limitation. Evidence reported in this paper indicates that under phosphate starvation, C. crescentus produces a membrane surface-anchored lipoprotein named ElpS subsequently released into the extracellular medium. A complete set of 12 genes encoding a type II secretion system (T2SS is located adjacent to the elpS locus in the C. crescentus genome. Deletion of this T2SS impairs release of ElpS in the environment, which surprisingly remains present at the cell surface, indicating that the T2SS is not involved in the translocation of ElpS to the outer membrane but rather in its release. Accordingly, treatment with protease inhibitors prevents release of ElpS in the extracellular medium suggesting that ElpS secretion relies on a T2SS-secreted protease. Finally, secretion of ElpS is associated with an increase in alkaline phosphatase activity in culture supernatants, suggesting a role of the secreted protein in inorganic phosphate mobilization. In conclusion, we have shown that upon phosphate starvation, C. crescentus produces an outer membrane bound lipoprotein, ElpS, which is further cleaved and released in the extracellular medium in a T2SS-dependent manner. Our data suggest that ElpS is associated with an alkaline phosphatase activity, thereby allowing the bacterium to gather inorganic phosphates from a poor environment.

  7. Extracellular enzymes and production parameters in two canyon reservoirs of different trophy: spatial patterns

    Czech Academy of Sciences Publication Activity Database

    Vrba, Jaroslav; Nedoma, Jiří; Šimek, Karel; Straškrábová, Viera; Štrojsová, Alena; Fuksa, J. K.; Svoboda, J.

    Praha : ICARIS, 2002. s. 362-365. [International Conference on Reservoir Limnology and Water Quality /4./. 12.08.2002-16.08.2002, České Budějovice] R&D Projects: GA ČR GA206/99/0028; GA ČR GA206/02/0003; GA AV ČR IBS6017004 Keywords : extracellular enzymes * reservoir * spatial patterns Subject RIV: DA - Hydrology ; Limnology

  8. Production of an extracellular polyethylene-degrading enzyme(s) by Streptomyces species.

    OpenAIRE

    Pometto, A L; Lee, B T; Johnson, K. E.

    1992-01-01

    Extracellular culture concentrates were prepared from Streptomyces viridosporus T7A, Streptomyces badius 252, and Streptomyces setonii 75Vi2 shake flask cultures. Ten-day-heat-treated (70 degrees C) starch-polyethylene degradable plastic films were incubated with shaking with active or inactive enzyme for 3 weeks (37 degrees C). Active enzyme illustrated changes in the films' Fourier transform infrared spectra, mechanical properties, and polyethylene molecular weight distributions.

  9. Extracellular nucleotide catabolism in human B and T lymphocytes. The source of adenosine production

    International Nuclear Information System (INIS)

    Extracellular nucleotide degradation was studied in intact human B and T lymphocyte subpopulations and in lymphoblastoid cell lines. Cells of B lymphocyte lineage showed high nucleotide degrading activity, whereas T lymphocytes were unable to degrade extracellular nucleotides. The external surface of B cells contained active sites of ecto-triphosphonucleotidase (ecto-ATPase), ecto-diphosphonucleotidase (ecto-ADPase), and ecto-monophosphonucleotidase (ecto-AMPase). The expression of all three ectoenzyme activities seemed closely associated with B cell development. ATPase and ADPase activities increase continuously during B cell maturation, ecto-AMPase activity, on the other hand, reaches maximal activity in late pre-B cells. These results combined with our previous studies of intracellular ATP catabolism provide evidence that extracellular ATP catabolism may represent exclusive source for adenosine in lymphocytes. It is suggested that adenosine may serve as a means of communication between B and T cells in lymphoid organs, B lymphocytes being the sole producers of adenosine and T lymphocytes being the recipients of this signal

  10. Changes in metabolites, antioxidant system, and gene expression in Microcystis aeruginosa under sodium chloride stress.

    Science.gov (United States)

    Chen, Lei; Mao, Feijian; Kirumba, George Chira; Jiang, Cheng; Manefield, Mike; He, Yiliang

    2015-12-01

    Microcystis (M.) aeruginosa, one of the most common bloom-forming cyanobacteria, occurs worldwide. The Qingcaosha (QCS) Reservoir is undergoing eutrophication and faces the problem of saltwater intrusion. The aim of this study was to investigate the effects of sudden salinity changes on physiological parameters and related gene transcription in M. aeruginosa under controlled laboratory conditions. The results showed that sodium chloride (50, 200 and 500 mg L(-1) NaCl) inhibited the algal growth and decreased pigment concentrations (chlorophyll a, carotenoid and phycocyanin). Sodium chloride increased both the intracellular and extracellular microcystin contents and elevated the mcyD transcript level in M. aeruginosa. It also increased the malondialdehyde (MDA) content and caused cytomembrane damage. This damage caused the release of intracellular toxins into the culture medium. In addition, NaCl decreased the maximum electron transport rate, increased the levels of reactive oxygen species (ROS) and changed the cellular redox status. Consequently, NaCl inhibited the expression of cpcB, psbA and rbcL. Furthermore, NaCl increased the activities of superoxide dismutases (SOD), catalase (CAT), glutathione reductase (GR), and total glutathione peroxidase (GPx). The transcript levels of sod and reduced glutathione (gsh) were also increased after exposure to NaCl. Our results indicate that a sudden increase in salinity increases the production and excretion of microcystin, changes the cellular redox status, enhances the activities of antioxidant enzymes, inhibits photosynthesis, and affects transcript levels of related genes in M. aeruginosa. PMID:26232039

  11. Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: A combinatorial study with azithromycin and gentamicin

    Science.gov (United States)

    Das, Manash C.; Sandhu, Padmani; Gupta, Priya; Rudrapaul, Prasenjit; de, Utpal C.; Tribedi, Prosun; Akhter, Yusuf; Bhattacharjee, Surajit

    2016-03-01

    Microbial biofilm are communities of surface-adhered cells enclosed in a matrix of extracellular polymeric substances. Extensive use of antibiotics to treat biofilm associated infections has led to the emergence of multiple drug resistant strains. Pseudomonas aeruginosa is recognised as a model biofilm forming pathogenic bacterium. Vitexin, a polyphenolic group of phytochemical with antimicrobial property, has been studied for its antibiofilm potential against Pseudomonas aeruginosa in combination with azithromycin and gentamicin. Vitexin shows minimum inhibitory concentration (MIC) at 260 μg/ml. It’s antibiofilm activity was evaluated by safranin staining, protein extraction, microscopy methods, quantification of EPS and in vivo models using several sub-MIC doses. Various quorum sensing (QS) mediated phenomenon such as swarming motility, azocasein degrading protease activity, pyoverdin and pyocyanin production, LasA and LasB activity of the bacteria were also evaluated. Results showed marked attenuation in biofilm formation and QS mediated phenotype of Pseudomonas aeruginosa in presence of 110 μg/ml vitexin in combination with azithromycin and gentamicin separately. Molecular docking of vitexin with QS associated LuxR, LasA, LasI and motility related proteins showed high and reasonable binding affinity respectively. The study explores the antibiofilm potential of vitexin against P. aeruginosa which can be used as a new antibiofilm agent against microbial biofilm associated pathogenesis.

  12. Characterization of biofilm-like structures formed by Pseudomonas aeruginosa in a synthetic mucus medium

    Directory of Open Access Journals (Sweden)

    Haley Cecily L

    2012-08-01

    Full Text Available Abstract Background The accumulation of thick stagnant mucus provides a suitable environment for the growth of Pseudomonas aeruginosa and Staphylococcus aureus within the lung alveoli of cystic fibrosis (CF patients. These infections cause significant lung damage, leading to respiratory failure and death. In an artificial mucin containing medium ASM+, P. aeruginosa forms structures that resemble typical biofilms but are not attached to any surface. We refer to these structures as biofilm like structures (BLS. Using ASM+ in a static microtiter plate culture system, we examined the roles of mucin, extracellular DNA, environmental oxygen (EO2, and quorum sensing (QS in the development of biofilm-like structures (BLS by P. aeruginosa; and the effect of EO2 and P. aeruginosa on S. aureus BLS. Results Under 20% EO2, P. aeruginosa strain PAO1 produced BLS that resemble typical biofilms but are confined to the ASM+ and not attached to the surface. Levels of mucin and extracellular DNA within the ASM+ were optimized to produce robust well developed BLS. At 10% EO2, PAO1 produced thicker, more developed BLS, while under 0% EO2, BLS production was diminished. In contrast, the S. aureus strain AH133 produced well-developed BLS only under 20% EO2. In PAO1, loss of the QS system genes rhlI and rhlR affected the formation of BLS in ASM+ in terms of both structure and architecture. Whether co-inoculated into ASM+ with AH133, or added to established AH133 BLS, PAO1 eliminated AH133 within 48–56 h. Conclusions The thick, viscous ASM+, which contains mucin and extracellular DNA levels similar to those found in the CF lung, supports the formation of biofilm-like structures similar to the aggregates described within CF airways. Alterations in environmental conditions or in the QS genes of P. aeruginosa, as occurs naturally during the progression of CF lung infection, affect the architecture and quantitative structural features of these BLS. Thus, ASM+ provides an

  13. Combined Beta-Agonists and Corticosteroids Do Not Inhibit Extracellular Matrix Protein Production In Vitro

    OpenAIRE

    Qi Ge; Poniris, Maree H; Moir, Lyn M.; Black, Judith L; Burgess, Janette K.

    2012-01-01

    Background. Persistent asthma is characterized by airway remodeling. Whereas we have previously shown that neither β 2-agonists nor corticosteroids inhibit extracellular matrix (ECM) protein release from airway smooth muscle (ASM) cells, the effect of their combination is unknown and this forms the rationale for the present study. Methods. ASM cells from people with and without asthma were stimulated with TGFβ1 (1 ng/ml) with or without budesonide (10−8 M) and formoterol (10−10 and 10−8 M), a...

  14. Combined Beta-agonists and corticosteroids do not inhibit extracellular matrix protein production in vitro

    OpenAIRE

    Ge, Qi; Poniris, Maree H; Moir, Lyn M.; Black, Judith L; Burgess, Janette K.

    2012-01-01

    Background. Persistent asthma is characterized by airway remodeling. Whereas we have previously shown that neither β(2)-agonists nor corticosteroids inhibit extracellular matrix (ECM) protein release from airway smooth muscle (ASM) cells, the effect of their combination is unknown and this forms the rationale for the present study. Methods. ASM cells from people with and without asthma were stimulated with TGFβ1 (1 ng/ml) with or without budesonide (10(-8) M) and formoterol (10(-10) and 10(-8...

  15. Biodegradation of cytotoxic 7-Ketocholesterol by Pseudomonas aeruginosa PseA.

    Science.gov (United States)

    Ghosh, Shubhrima; Khare, S K

    2016-08-01

    The present study aims to degrade 7-Ketocholesterol (7KC), a major oxysterol implicated in many age-related disorders, through microbial means and find candidate enzymes involved for further application in food systems and as a therapeutic. During initial screening of previously isolated bacteria from our laboratory, Pseudomonas aeruginosa PseA was found to be a potential degrader strain using 7KC as a sole carbon source. Under optimized conditions, it is able to degrade 88% of an initial concentration of 1000ppm (1g/l) 7KC. Preliminary in vitro studies with extra-cellular extract has shown degradation of the compound, thus reinforcing the occurrence of suitable enzymatic systems involved in the process. We have been able to identify cholesterol oxidase as one such potential enzyme. Some intermediate products of degradation have also been identified. This is the first detailed report of 7KC degradation by a P. aeruginosa strain. PMID:27020128

  16. Extracellular Lipase and Protease Production from a Model Drinking Water Bacterial Community Is Functionally Robust to Absence of Individual Members.

    Directory of Open Access Journals (Sweden)

    Graham G Willsey

    Full Text Available Bacteria secrete enzymes into the extracellular space to hydrolyze macromolecules into constituents that can be imported for microbial nutrition. In bacterial communities, these enzymes and their resultant products can be modeled as community property. Our goal was to investigate the impact of individual community member absence on the resulting community production of exoenzymes (extracellular enzymes involved in lipid and protein hydrolysis. Our model community contained nine bacteria isolated from the potable water system of the International Space Station. Bacteria were grown in static conditions individually, all together, or in all combinations of eight species and exoproduct production was measured by colorimetric or fluorometric reagents to assess short chain and long chain lipases, choline-specific phospholipases C, and proteases. The exoenzyme production of each species grown alone varied widely, however, the enzyme activity levels of the mixed communities were functionally robust to absence of any single species, with the exception of phospholipase C production in one community. For phospholipase C, absence of Chryseobacterium gleum led to increased choline-specific phospholipase C production, correlated with increased growth of Burkholderia cepacia and Sphingomonas sanguinis. Because each individual species produced different enzyme activity levels in isolation, we calculated an expected activity value for each bacterial mixture using input levels or known final composition. This analysis suggested that robustness of each exoenzyme activity is not solely mediated by community composition, but possibly influenced by bacterial communication, which is known to regulate such pathways in many bacteria. We conclude that in this simplified model of a drinking water bacterial community, community structure imposes constraints on production and/or secretion of exoenzymes to generate a level appropriate to exploit a given nutrient environment.

  17. Temperature and Light Effects on Extracellular Superoxide Production by Algal and Bacterial Symbionts in Corals: Implications for Coral Bleaching

    Science.gov (United States)

    Brighi, C.; Diaz, J. M.; Apprill, A.; Hansel, C. M.

    2014-12-01

    Increased surface seawater temperature due to global warming is one of the main causes of coral bleaching, a phenomenon in which corals lose their photosynthetic algae. Light and temperature induced production of superoxide and other reactive oxygen species (ROS) by these symbiotic algae has been implicated in the breakdown of their symbiotic association with the coral host and subsequent coral bleaching. Nevertheless, a direct link between Symbiodinium ROS production and coral bleaching has not been demonstrated. In fact, given the abundance and diversity of microorganisms within the coral holobiont, the concentration and fluxes of ROS within corals may involve several microbial sources and sinks. Here, we explore the role of increased light and temperature on superoxide production by coral-derived cultures of Symbiodinium algae and Oceanospirillales bacteria of the genus Endozoicomonas, which are globally common and abundant associates of corals. Using a high sensitivity chemiluminescent technique, we find that heat stress (exposure to 34°C vs. 23°C for 2hr or 24hr) has no significant effect on extracellular superoxide production by Symbiodinium isolates within clades B and C, regardless of the level of light exposure. Exposure to high light, however, increased superoxide production by these organisms at both 34°C and 23°C. On the other hand, extracellular superoxide production by Endozoicomonas bacteria tested under the same conditions was stimulated by the combined effects of thermal and light stress. The results of this research suggest that the sources and physical triggers for biological superoxide production within corals are more complex than currently assumed. Thus, further investigations into the biological processes controlling ROS dynamics within corals are required to improve our understanding of the mechanisms underpinning coral bleaching and to aid in the development of mitigation strategies.

  18. Extracellular enzyme production and phylogenetic distribution of yeasts in wastewater treatment systems.

    Science.gov (United States)

    Yang, Qingxiang; Zhang, Hao; Li, Xueling; Wang, Zhe; Xu, Ying; Ren, Siwei; Chen, Xuanyu; Xu, Yuanyuan; Hao, Hongxin; Wang, Hailei

    2013-02-01

    The abilities of yeasts to produce different extracellular enzymes and their distribution characteristics were studied in municipal, inosine fermentation, papermaking, antibiotic fermentation, and printing and dyeing wastewater treatment systems. The results indicated that of the 257 yeasts, 16, 14, 55, and 11 produced lipase, protease, manganese dependant peroxidase (MnP), and lignin peroxidase (LiP), respectively. They were distributed in 12 identified and four unidentified genera, in which Candida rugosa (AA-M17) and an unidentified Saccharomycetales (AA-Y5), Pseudozyma sp. (PH-M15), Candida sp. (MO-Y11), and Trichosporon montevideense (MO-M16) were shown to have the highest activity of lipase, protease, Mnp, and LiP, respectively. No yeast had amylase, cellulose, phytase, or laccase activity. Although only 60 isolates produced ligninolytic enzymes, 249 of the 257 yeasts could decolorize different dyes through the mechanism of biodegradation (222 isolates) or bio-sorption. The types of extracellular enzymes that the yeasts produced were significantly shaped by the types of wastewater treated. PMID:23261999

  19. Inhibition of Streptococcus mutans biofilm formation, extracellular polysaccharide production, and virulence by an oxazole derivative.

    Science.gov (United States)

    Chen, Lulu; Ren, Zhi; Zhou, Xuedong; Zeng, Jumei; Zou, Jing; Li, Yuqing

    2016-01-01

    Dental caries, a biofilm-related oral disease, is a result of disruption of the microbial ecological balance in the oral environment. Streptococcus mutans, which is one of the primary cariogenic bacteria, produces glucosyltransferases (Gtfs) that synthesize extracellular polysaccharides (EPSs). The EPSs, especially water-insoluble glucans, contribute to the formation of dental plaque, biofilm stability, and structural integrity, by allowing bacteria to adhere to tooth surfaces and supplying the bacteria with protection against noxious stimuli and other environmental attacks. The identification of novel alternatives that selectively inhibit cariogenic organisms without suppressing oral microbial residents is required. The goal of the current study is to investigate the influence of an oxazole derivative on S. mutans biofilm formation and the development of dental caries in rats, given that oxazole and its derivatives often exhibit extensive and pharmacologically important biological activities. Our data shows that one particular oxazole derivative, named 5H6, inhibited the formation of S. mutans biofilms and prevented synthesis of extracellular polysaccharides by antagonizing Gtfs in vitro, without affecting the growth of the bacteria. In addition, topical applications with the inhibitor resulted in diminished incidence and severity of both smooth and sulcal surface caries in vivo with a lower percentage of S. mutans in the animals' dental plaque compared to the control group (P biofilm formation and cariogenicity of S. mutans. PMID:26526453

  20. Inhibition of Quorum Sensing-Controlled Virulence Factor Production in Pseudomonas aeruginosa PAO1 by Ayurveda Spice Clove (Syzygium Aromaticum Bud Extract

    Directory of Open Access Journals (Sweden)

    Kok-Gan Chan

    2012-03-01

    Full Text Available Quorum sensing controls the virulence determinants in most proteobacteria. In this work, the hexane, chloroform and methanol extracts of an Ayurveda spice, namely clove (Syzygium aromaticum, shown anti-quorum sensing activity. Hexane and methanol extracts of clove inhibited the response of C. violaceum CV026 to exogenously supplied N‑hexanoylhomoserine lactone, in turn preventing violacein production. Chloroform and methanol extracts of clove significantly reduced bioluminescence production by E. coli [pSB1075] grown in the presence of N-(3-oxododecanoyl-L-homoserine lactone. We demonstrated that clove extract inhibited quorum sensing-regulated phenotypes in Pseudomonas aeruginosa PA01, including expression of lecA::lux (by hexane extract, swarming (maximum inhibition by methanol extract, pyocyanin (maximum inhibition by hexane extract. This study shows that the presence of natural compounds that exhibit anti-quorum sensing activity in the clove extracts may be useful as the lead of anti-infective drugs.

  1. Pseudomonas aeruginosa invasion of and multiplication within corneal epithelial cells in vitro.

    OpenAIRE

    Fleiszig, S M; Zaidi, T S; Pier, G.B. (G.B.)

    1995-01-01

    Pseudomonas aeruginosa is usually considered an extracellular pathogen. Using assays to determine intracellular survival in the presence of gentamicin, we have previously demonstrated that P. aeruginosa is able to invade corneal cells during infectious keratitis in mice. In vitro, P. aeruginosa was found to enter the following cells: human corneal cells removed by irrigation; epithelial cells in the cornea of rats, mice, and rabbits; and primary corneal epithelial cells cultured from rat and ...

  2. Pseudomonas aeruginosa relA Contributes to Virulence in Drosophila melanogaster

    OpenAIRE

    Erickson, David L.; Lines, J. Louise; Pesci, Everett C.; Venturi, Vittorio; Storey, Douglas G.

    2004-01-01

    The stringent response is a mechanism by which bacteria adapt to nutritional deficiencies through the production of the guanine nucleotides ppGpp and pppGpp, produced by the RelA enzyme. We investigated the role of the relA gene in the ability of an extracellular pathogen, Pseudomonas aeruginosa, to cause infection. Strains lacking the relA gene were created from the prototypical laboratory strain PAO1 as well as the mucoid cystic fibrosis isolate 6106, which lacks functional quorum-sensing s...

  3. Suppression of Aspergillus by Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Jensen, Britt Guillaume; Jelsbak, Lars; Søndergaard, Ib;

    suppressed growth of A. fumigatus, A. niger, A. flavus, A. oryzae, A. terreus and E. nidulans. HPLC and LC-DAD-MS results showed an increase in phenazine-1-carboxylic acid and phenazine-1-carboxamide production by P. aeruginosa in the contact area of Aspergillus. Different quinolones were also identified......, here among 2-heptyl-3-hydroxy-4-quinolone (PQS). An unidentified green pseudomonas compound was also observed. Interestingly the P. aeruginosa mutant rpoN was unable to suppress A. fumigatus, but suppressed A. flavus, A. oryzae and A. niger. However several other P. aeruginosa mutants suppressed A...

  4. Polysaccharides serve as scaffold of biofilms formed by mucoid Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Yang, Liang; Hengzhuang, Wang; Wu, Hong;

    2012-01-01

    Chronic lung infection by mucoid Pseudomonas aeruginosa is one of the major pathologic features in patients with cystic fibrosis. Mucoid P. aeruginosa is notorious for its biofilm forming capability and resistance to immune attacks. In this study, the roles of extracellular polymeric substances f...

  5. Evaluation of the heteroantagonism between Enterobacter agglomerans strains isolated from vulture (Coragyps atratus for production and Pseudomonas aeruginosa as developed

    Directory of Open Access Journals (Sweden)

    L.A. Lima

    2011-06-01

    Full Text Available The heteroantagonism between Enterobacter agglomerans, isolated from the gastrointestinal tract of American vulture Coragyps atratus, and Pseudomonas aeruginosa isolated from a hospital environment was evaluated. The slow (layer and the wells (direct techniques were tested, using agar and soy tryptone broth pH 7.3 at 37ºC. Through the slow method from 196 tests, inhibition growth halos, related heteroantagonism phenomenon observed in 118, corresponding to 60.2% positive results. Equivalent positive results were detected using wells (direct methodology. The seven samples of E. agglomerans tested were capable of revealing heteroantagonism in the experimental conditions; antagonism reveled by the presence of a clear growth inhibition halo. The added 1% yeast extract to media was adequate for revealing antagonisms best.

  6. Buckling Reduces eNOS Production and Stimulates Extracellular Matrix Remodeling in Arteries in Organ Culture.

    Science.gov (United States)

    Xiao, Yangming; Liu, Qin; Han, Hai-Chao

    2016-09-01

    Artery buckling alters the fluid shear stress and wall stress in the artery but its temporal effect on vascular wall remodeling is poorly understood. The purpose of this study was to investigate the early effect of artery buckling on endothelial nitric oxide synthase (eNOS) expression and extracellular matrix remodeling. Bilateral porcine carotid arteries were maintained in an ex vivo organ culture system with and without buckling while under the same physiological pressure and flow rate for 3-7 days. Matrix metalloproteinase-2 (MMP-2), MMP-9, fibronectin, elastin, collagen I, III and IV, tissue inhibitor of metalloproteinase-2 (TIMP-2), and eNOS were determined using Western blotting and immunohistochemistry. Our results showed that MMP-2 expression level was significantly higher in buckled arteries than in the controls and higher at the inner curve than at the outer curve of buckled arteries, while collagen IV content showed an opposite trend, suggesting that artery buckling increased MMP-2 expression and collagen IV degradation in a site-specific fashion. However, no differences for MMP-9, fibronectin, elastin, collagen I, III, and TIMP-2 were observed among the outer and inner curve sides of buckled arteries and straight controls. Additionally, eNOS expression was significantly decreased in buckled arteries. These results suggest that artery buckling triggers uneven wall remodeling that could lead to development of tortuous arteries. PMID:26913855

  7. Biofilm dispersion in Pseudomonas aeruginosa.

    Science.gov (United States)

    Kim, Soo-Kyoung; Lee, Joon-Hee

    2016-02-01

    In recent decades, many researchers have written numerous articles about microbial biofilms. Biofilm is a complex community of microorganisms and an example of bacterial group behavior. Biofilm is usually considered a sessile mode of life derived from the attached growth of microbes to surfaces, and most biofilms are embedded in self-produced extracellular matrix composed of extracellular polymeric substances (EPSs), such as polysaccharides, extracellular DNAs (eDNA), and proteins. Dispersal, a mode of biofilm detachment indicates active mechanisms that cause individual cells to separate from the biofilm and return to planktonic life. Since biofilm cells are cemented and surrounded by EPSs, dispersal is not simple to do and many researchers are now paying more attention to this active detachment process. Unlike other modes of biofilm detachment such as erosion or sloughing, which are generally considered passive processes, dispersal occurs as a result of complex spatial differentiation and molecular events in biofilm cells in response to various environmental cues, and there are many biological reasons that force bacterial cells to disperse from the biofilms. In this review, we mainly focus on the spatial differentiation of biofilm that is a prerequisite for dispersal, as well as environmental cues and molecular events related to the biofilm dispersal. More specifically, we discuss the dispersal-related phenomena and mechanisms observed in Pseudomonas aeruginosa, an important opportunistic human pathogen and representative model organism for biofilm study. PMID:26832663

  8. Optimization of Extracellular Lipase Production by Penicillium chrysogenum Using Factorial Design

    OpenAIRE

    Shafei, M. S.; Mohamed, T. A.; Abd Elsalam, I. S.

    2011-01-01

    The effect of oxygen on lipase production by Penicillium chrysogenum was studied under two operating modes, controlled aeration rate tested and controlled agitation at dissolved oxygen concentration (DO) 1.00 vvm. Lipase production and cell dry weight were tested in a stirred batch fermenter 5 L. Improvement in oxygen transfer rate (OTR) either by aeration or agitation resulted in an increase in lipase production. Growth curves and lipase activities of P.chrysogenum were examined at agitation...

  9. The potential for hydrocarbon biodegradation and production of extracellular polymeric substances by aerobic bacteria isolated from a Brazilian petroleum reservoir.

    Science.gov (United States)

    Vasconcellos, S P; Dellagnezze, B M; Wieland, A; Klock, J-H; Santos Neto, E V; Marsaioli, A J; Oliveira, V M; Michaelis, W

    2011-06-01

    Extracellular polymeric substances (EPS) can contribute to the cellular degradation of hydrocarbons and have a huge potential for application in biotechnological processes, such as bioremediation and microbial enhanced oil recovery (MEOR). Four bacterial strains from a Brazilian petroleum reservoir were investigated for EPS production, emulsification ability and biodegradation activity when hydrocarbons were supplied as substrates for microbial growth. Two strains of Bacillus species had the highest EPS production when phenanthrene and n-octadecane were offered as carbon sources, either individually or in a mixture. While Pseudomonas sp. and Dietzia sp., the other two evaluated strains, had the highest hydrocarbon biodegradation indices, EPS production was not detected. Low EPS production may not necessarily be indicative of an absence of emulsifier activity, as indicated by the results of a surface tension reduction assay and emulsification indices for the strain of Dietzia sp. The combined results gathered in this work suggest that a microbial consortium consisting of bacteria with interdependent metabolisms could thrive in petroleum reservoirs, thus overcoming the limitations imposed on each individual species by the harsh conditions found in such environments. PMID:25187151

  10. Assembly and development of the Pseudomonas aeruginosa biofilm matrix.

    OpenAIRE

    Luyan Ma; Matthew Conover; Haiping Lu; Parsek, Matthew R.; Kenneth Bayles; Wozniak, Daniel J.

    2009-01-01

    Virtually all cells living in multicellular structures such as tissues and organs are encased in an extracellular matrix. One of the most important features of a biofilm is the extracellular polymeric substance that functions as a matrix, holding bacterial cells together. Yet very little is known about how the matrix forms or how matrix components encase bacteria during biofilm development. Pseudomonas aeruginosa forms environmentally and clinically relevant biofilms and is a paradigm organis...

  11. OPTIMIZATION OF EXTRACELLULAR TANNASE PRODUCTION BY ASPERGILLUS NIGER VAN TIEGHEM USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Hamada Abou-Bakr

    2013-12-01

    Full Text Available Response surface methodology (RSM was used to optimize the production of tannase by a newly isolate of Aspergillus niger Van Tieghem using rotatable central composite design (RCCD. This statistical optimization process was carried out involving four of quantitative growth parameters (variables, namely tannic acid concentration, nitrogen source concentration, initial pH of the medium and inoculum size. A mathematical model expressing the production process of tannase by submerged fermentation (SmF technique was generated statistically in the form of a second order polynomial equation. The model indicated the presence of significant linear, quadratic and interaction effects of the studied variables on tannase production by the fungal isolate. The results showed maximum tannase production (580 U/50 ml medium at 2% tannic acid, 4 g/l sodium nitrate, pH 4 and inoculum size of 5×107 spores/50 ml medium, which was also verified by experimental data.

  12. Antipathogenic potential of marine Bacillus sp. SS4 on N-acyl-homoserine-lactone-mediated virulence factors production in Pseudomonas aeruginosa (PAO1)

    Indian Academy of Sciences (India)

    K Syed Musthafa; V Saroja; S Karutha Pandian; A Veera Ravi

    2011-03-01

    Antipathogenic therapy is an outcome of the quorum-sensing inhibition (QSI) mechanism, which targets autoinducer-dependent virulent gene expression in bacterial pathogens. -acyl homoserine lactone (AHL) acts as a key regulator in the production of virulence factors and biofilm formation in Pseudomonas aeruginosa PAO1 and violacein pigment production in Chromobacterium violaceum. In the present study, the marine bacterial strain SS4 showed potential QSI activity in a concentration-dependent manner (0.5–2 mg/ml) against the AHL-mediated violacein production in C. violaceum (33–86%) and biofilm formation (33–88%), total protease (20–65%), LasA protease (59–68%), LasB elastase (36–68%), pyocyanin (17–86%) and pyoverdin productions in PAO1. The light and confocal laser scanning microscopic analyses confirmed the reduction of the biofilm-forming ability of PAO1 when treated with SS4 extract. Furthermore, the antibiofilm potential was confirmed through static biofilm ring assay, in which ethyl acetate extract of SS4 showed concentration-dependent reduction in the biofilm-forming ability of PAO1. Thus, the result of this study clearly reveals the antipathogenic and antibiofilm properties of the bacterial isolate SS4. Through 16S rDNA analysis, the strain SS4 was identified as Bacillus sp. (GenBank Accession Number: GU471751).

  13. OPTIMIZATION OF EXTRACELLULAR ACID PROTEASE PRODUCTION FROM ASPERGILLUS NIGER BY FACTORIAL DESIGN

    OpenAIRE

    Vishalkirti Vijay Kalaskar; Narayanan Kasinathan; Volety Mallikarjuna Subrahmanyam; Josyula Venkata Rao

    2014-01-01

    The cultural conditions for acid protease production by Aspergillus niger was optimised using factorial design experiments and one factor-at-a time approach. In the production medium casein served as substrate and protease activity was measured in terms of tyrosine yield. The yield was further improved through UV mutation. Tyrosine yield amounted to 29.22 mg / g on casein substrate. Protease from this microbial strain was mesophilic. The enzyme was stable over a wide temperature range (30 to ...

  14. Production and Cytotoxicity of Extracellular Insoluble and Droplets of Soluble Melanin by Streptomyces lusitanus DMZ-3

    OpenAIRE

    Madhusudhan, D. N.; Bi Bi Zainab Mazhari; Dastager, Syed G.; Dayanand Agsar

    2014-01-01

    A Streptomyces lusitanus DMZ-3 strain with potential to synthesize both insoluble and soluble melanins was detected. Melanins are quite distinguished based on their solubility for varied biotechnological applications. The present investigation reveals the enhanced production of insoluble and soluble melanins in tyrosine medium by a single culture. Streptomyces lusitanus DMZ-3 was characterized by 16S rRNA gene analysis. An enhanced production of 5.29 g/L insoluble melanin was achieved in a su...

  15. Pomelo peels as alternative substrate for extracellular pectinase production by Aspergillus niger HFM-8

    Directory of Open Access Journals (Sweden)

    Ibrahim, D.

    2013-12-01

    Full Text Available Aims: The aim of this work was to develop an effective bioprocess to enhance the pectinase production by solid-state cultures of Aspergillus niger HFM-8. Methodology and results: The pectinase production produced by A. niger HFM-8 was studied under solid state fermentation using Malaysian pomelo (Citrus grandis peel as the substrate. This local agricultural waste is rich with lignocellulolytic material including pectin acts as the inducer of pectinase production. Under optimized conditions, 5 g of 0.75 mm pomelo peel size, moisture content of 60% (v/w sterile distilled water pH 5.0, inoculums size of 1x10^4 spores/mL, cultivation temperature of room temperature (30 ± 2 °C, no mixing incurred and with the addition of 1% (w/w citrus pectin and 0.1% (w/w urea has produced pectinase production of 306.89 U/g substrate and 0.78 mg glucosamine/g substrate of fungal growth on the 8th day of cultivation. Conclusion, significance and impact of study: There was 48.82% increment in enzyme production after the improvement of parameters. It was found that pomelo peel is a suitable feedstock for pectinase production.

  16. Antibiofilm and anti-infection of a marine bacterial exopolysaccharide against Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Shimei eWu

    2016-02-01

    Full Text Available Pseudomonas aeruginosa is a well-known pathogenic bacterium that forms biofilms and produces virulence factors, thus leading to major problems in many fields, such as clinical infection, food contamination and marine biofouling. In this study, we report the purification and characterization of an exopolysaccharide EPS273 from the culture supernatant of marine bacterium Pseudomonas stutzeri 273. The exopolysaccharide EPS273 not only effectively inhibits biofilm formation but also disperses preformed biofilm of Pseudomonas aeruginosa PAO1. High performance liquid chromatography traces of the hydrolyzed polysaccharides shows that EPS273 primarily consists of glucosamine, rhamnose, glucose and mannose. Further investigation demonstrates that EPS273 reduces the production of the virulence factors pyocyanin, exoprotease and rhamnolipid, and the virulence of P. aeruginosa PAO1 to human lung cells A549 and zebrafish embryos is also obviously attenuated by EPS273. In addition, EPS273 also greatly reduces the production of hydrogen peroxide (H2O2 and extracellular DNA (eDNA, which are important factors for biofilm formation. Furthermore, EPS273 exhibits strong antioxidant potential by quenching hydroxyl and superoxide anion radicals. Notably, the antibiofouling activity of EPS273 is observed in the marine environment up to two weeks according to the amounts of bacteria and diatoms in the glass slides submerged in the ocean. Taken together, the properties of EPS273 indicate that it has a promising prospect in combating bacterial biofilm-associated infection, food-processing contamination and marine biofouling.

  17. Production of extracellular exoinulinase from Kluyveromyces marxianus YS-1 using root tubers of Asparagus officinalis.

    Science.gov (United States)

    Singh, R S; Bhermi, H K

    2008-10-01

    Root tubers of Asparagus officinalis were used as a source of raw inulin for the production of exoinulinase (EC 3.2.1.7) from Kluyveromyces marxianus YS-1. Root extract prepared at 10kg/cm2 pressure for 10min showed maximum inulinase production. Medium components and process parameters were standardized to improve the enzyme production. Inulinase yield of 40.2IU/mL in a medium containing raw inulin (3.5%), beef extract (2%), SDS (0.001%), Mn2+ (2.0mM), Mg2+ (1.5mM), Co2+ (2mM) and pH 6.5 has been obtained under agitation (150rpm) after 60h of incubation at 30 degrees C at shake flask level. After optimization, the enzyme production was 4.8 times more than the basal medium. To test the feasibility of raw inulin from A. officinalis for the production of inulinase, trials were also made in a bioreactor (1.5L). Inulinase activity of 50.2IU/mL was obtained from raw inulin (4.0%) under agitation (200rpm) and aeration (0.75vvm) at 30 degrees C after 60h of fermentation. Inulinase yield in bioreactor was almost six times higher than the basal medium used initially in shake flask. PMID:18280145

  18. Recombinant production, crystallization and X-ray crystallographic structure determination of the peptidyl-tRNA hydrolase of Pseudomonas aeruginosa

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Ronny C.; McFeeters, Hana; Coates, Leighton; McFeeters, Robert L.

    2014-10-15

    The peptidyl-tRNA hydrolase enzyme from the pathogenic bacterium Pseudomonas aeruginosa (Pth; EC 3.1.1.29) has been cloned, expressed in Escherichia coli and crystallized for X-ray structural analysis. Suitable crystals were grown using the sitting-drop vapour-diffusion method after one week of incubation against a reservoir solution consisting of 20% polyethylene glycol 4000, 100 mM Tris pH 7.5, 10%(v/v) isopropyl alcohol. The crystals were used to obtain the three-dimensional structure of the native protein at 1.77 Å resolution. The structure was determined by molecular replacement of the crystallographic data processed in space group P6122 with unit-cell parameters a = b = 63.62,c = 155.20 Å, α = β = 90, γ = 120°. The asymmetric unit of the crystallographic lattice was composed of a single copy of the enzyme molecule with a 43% solvent fraction, corresponding to a Matthews coefficient of 2.43 Å3 Da-1. The crystallographic structure reported here will serve as the foundation for future structure-guided efforts towards the development of novel small-molecule inhibitors specific to bacterial Pths.

  19. Stimulation of rhamnolipid biosurfactants production in Pseudomonas aeruginosa AK6U by organosulfur compounds provided as sulfur sources

    Directory of Open Access Journals (Sweden)

    Wael Ismail

    2015-09-01

    Full Text Available A Pseudomonas aeruginosa AK6U strain produced rhamnolipid biosurfactants to variable extents when grown on MgSO4 or organosulfur compounds as sulfur sources and glucose as a carbon source. Organosulfur cultures produced much higher biosurfactants amounts compared to the MgSO4 cultures. The surface tension of the growth medium was reduced from 72 mN/m to 54 and 30 mN/m in cultures containing MgSO4 and 4,6-dimethyldibenzothiophene (4,6-DM-DBT, respectively. AK6U cultures produced different rhamnolipid congener profiles depending on the provided sulfur source. The dibenzothiophene (DBT culture produced more diverse and a higher number of rhamnolipid congeners as compared to the DBT-sulfone and MgSO4 cultures. The number of mono-rhamnolipid congeners in the DBT culture was also higher than that detected in the DBT-sulfone and MgSO4 cultures. Di-rhamnolipids dominated the congener profiles in all the analyzed cultures. The sulfur source can have a profound impact on the quality and quantity of the produced biosurfactants.

  20. Detection of HOCl-mediated protein oxidation products in the extracellular matrix of human atherosclerotic plaques

    DEFF Research Database (Denmark)

    Woods, Alan A; Linton, Stuart M; Davies, Michael Jonathan

    2003-01-01

    83-96% of the total oxidized protein side-chain products detected in these plaques. Oxidation of matrix components extracted from healthy artery tissue, and model proteins, with reagent HOCl is shown to give rise to a similar pattern of products to those detected in advanced human lesions. The......Oxidation is believed to play a role in atherosclerosis. Oxidized lipids, sterols and proteins have been detected in early, intermediate and advanced human lesions at elevated levels. The spectrum of oxidized side-chain products detected on proteins from homogenates of advanced human lesions has...... material obtained from advanced human atherosclerotic lesions are shown to contain elevated levels of oxidized amino acids [3,4-dihydroxyphenylalanine (DOPA), di-tyrosine, 2-hydroxyphenylalanine ( o-Tyr)] when compared with healthy (human and pig) arterial tissue. These matrix-derived materials account for...

  1. Production and characterization of an extracellular polysaccharide of antarctic marine bacteria Pseudoalteromonas sp. S-15-13

    Institute of Scientific and Technical Information of China (English)

    LI Jiang; CHEN Kaoshan; LIN Xuezheng; HE Peiqing; LI Guangyou

    2006-01-01

    Twenty-seven antarctic bacteria producing extracellular polysaccharide (EPS) were selected from 57 strains by staining technology. The effects of major environmental factors on the growth and EPS production of Pseudoalteromonas sp. S-15-13 were investigated, and the EPS was separated and purified for characterization analysis. The results showed that the optimal conditions for the EPS production were culture period, 56 h; growth temperature, 8 ℃; carbon source, 1.0% glucose; NaCl concentration, 3.0%; pH 6.0~7.0. The EPS was purified by cold ethanol precipitation, proteins removal, ion exchange chromatography and gel chromatography technology. The molecular mass of EPS-II was 62 kDa as determined by the high performance gel permeation chromatography. Its sugar composition was a homopolymer of mannose analyzed by gas chromatograph spectroscopy. After repeated freezing and thawing of the bacteria biomass in the presence of EPS, the bacterial growth was much higher than that observed after freezing in the absence of EPS and the difference augmented with the increase of freeze-thaw cycles. It is hypothesized that the adaptation of Pseudoalteromonas sp. S-15-13 to the antarctic marine conditions, characterized by low temperature, high NaCl concentration and repeated freeze-thaw cycles, might be related to the EPS production ability.

  2. Optimization of Extracellular Lipase Production by Penicillium chrysogenum Using Factorial Design

    Directory of Open Access Journals (Sweden)

    Shafei, M. S.

    2011-01-01

    Full Text Available The effect of oxygen on lipase production by Penicillium chrysogenum was studied under two operating modes, controlled aeration rate tested and controlled agitation at dissolved oxygen concentration (DO 1.00 vvm. Lipase production and cell dry weight were tested in a stirred batch fermenter 5 L. Improvement in oxygen transfer rate (OTR either by aeration or agitation resulted in an increase in lipase production. Growth curves and lipase activities of P.chrysogenum were examined at agitation rates (200,400,600 rpm, aeration rates (2,4 vvm at different fermentation periods (24,48,72,96,120 h. Response Surface Methodology (RSM using Design Expert software was used to study the effect of aeration, agitation, and fermentation time on lipase activity and cell dry weight. These factors were analyzed using 21. 32 level factorial design. An optimal set of conditions that maximize lipase production: (2 vvm aeration; 600 rpm agitation after 72 h was obtained. The maximum lipase activity obtained was 240 U/mL. Beside lipase activity, this paper also studies the optimal combination of the controllable factors (aeration; agitation and fermentation time that will maximize the cell dry weight.

  3. Pulsed-low intensity ultrasound enhances extracellular matrix production by fibroblasts encapsulated in alginate

    Directory of Open Access Journals (Sweden)

    Siti PM Bohari

    2012-07-01

    Full Text Available In this study, the effect of pulsed-low intensity ultrasound on cell proliferation, collagen production and glycosaminoglycan deposition by 3T3 fibroblasts encapsulated in alginate was evaluated. Hoechst 33258 assay for cell number, hydroxyproline assay for collagen content and dimethylamine blue assay for glycosaminoglycan content were performed on samples from cell cultures treated with pulsed-low intensity ultrasound and a control group. Pulsed-low intensity ultrasound shows no effect on cell proliferation, while collagen and glycosaminoglycan contents were consistently higher in the samples treated with pulsed-low intensity ultrasound, showing a statistically significant difference (p < 0.05 on day 10. Alcian blue staining showed that glycosaminoglycans were deposited around the cells in both groups. These results suggest that pulsed-low intensity ultrasound shows no effect on cell proliferation but has potential for inducing collagen and glycosaminoglycan production in cells cultured in alginate gels.

  4. Process optimization by response surface methodology for extracellular alkaline protease production from bacillus subtilis

    International Nuclear Information System (INIS)

    Three microbial cultures Bacillus subtilis DSM 1970, Bacillus subtilis GCU-8 and Bacillus licheniformis DSM 1969 were screened for protease production by casein agar plate method. Among these Bacillus subtilis GCU-8 was found to be the most potent protease producer in wide pH range (5.0 to 8.0). Fermentation conditions were optimized for the production of alkaline protease using two statistical tools: Placket Burmen Model for linear regression study and Response Surface Model for interactive effects of significant factors on production. The alkaline protease was optimally produced after 48 hours of incubation at 37 degree C in fermentation media containing equal amounts of substrates (soybean meal and wheat bran, 7.5 g), MgSO/sub 4/ 7H/sub 2/O, 0.10 g and yeast extract 0.55 g. The protease was purified to homogeneity by salt precipitation, ion-exchange chromatography and size exclusion chromatography. The homogeneity and molecular weights were checked by SDS-PAGE. The protease was 45 KDa protein, predominantly alkaline and optimally active at pH 8.0. (author)

  5. Character of extracellular polymeric substances and soluble microbial products and their effect on membrane hydraulics during airlift membrane bioreactor applications.

    Science.gov (United States)

    Alvarez-Vazquez, Hector; Pidou, Marc; Holdner, Jennifer; Judd, Simon J

    2008-12-01

    The effect of extracellular polymeric substances and soluble microbial products developed from wastewater and mature landfill leachate biomass was assessed using a pilot-scale membrane bioreactor operating polymeric and ceramic air-lift sidestream multichannel membranes. The plant was operated under identical conditions of sludge retention time, system hydrodynamics ,and parity of food-to-microorganism ratios. Biomass samples were extracted and fractionated (fixed and bound material, carbohydrate and protein extracts) and chemically and physically analyzed with the feedwaters. Both ceramic and polymeric membranes were tested and the critical flux (J(C)) determined according to the classical flux-step analysis. Although permeability (K) of both materials reduced with increasing flux (J), the ceramic material had a higher resistance to fouling, demonstrating a higher K (by a factor of 1.2 and 3.2 for wastewater and leachate, respectively, at J of 30 L x m(-2) x h(-1)) and lower fouling rate (dP/dt) (by more than an order of magnitude at the same J) than the polymeric membrane. Evidence suggests that deterioration of membrane permeability resulting from leachate biomass arises from the feedwater itself, rather than the products derived from the biomass, and that colloidal and/or soluble total organic carbon is primarily responsible for it. PMID:19146096

  6. Analytical methods for soluble microbial products (SMP) and extracellular polymers (ECP) in wastewater treatment systems: a review.

    Science.gov (United States)

    Kunacheva, Chinagarn; Stuckey, David C

    2014-09-15

    Effluents from biological processes contain a wide range of complex organic compounds, including soluble microbial products (SMP) and extracellular polymers (ECP), released during bacteria metabolism in mixed culture in bioreactors. It is important to clearly identify the primary components of SMPs and ECPs in order to understand the fundamental mechanisms of biological activity that create these compounds, and how to reduce these compounds in the effluent. In addition, these compounds constitute the main foulants in membrane bioreactors which are being used more widely around the world. A review on the extraction of ECP, characterization, and identification of SMPs and ECPs is presented, and we summarize up-to-date pretreatments and analytical methods for SMPs. Most researchers have focused more on the overall properties of SMPs and ECPs such as their concentrations, molecular weight distribution, aromaticity, hydrophobic and hydrophilic properties, biodegradability, and toxicity characteristics. Many studies on the identification of effluent SMPs show that most of these compounds were not present in the influent, such as humic acids, polysaccharides, proteins, nucleic acids, organic acids, amino acids, exocellular enzymes, structural components of cells and products of energy metabolism. A few groups of researchers have been working on the identification of compounds in SMPs using advanced analytical techniques such as GC-MS, LC-IT-TOF-MS and MALDI-TOF-MS. However, there is still considerably more work needed to be done analytically to fully understand the chemical characteristics of SMPs and ECPs. PMID:24878622

  7. PRODUCTION PURIFICATION AND CHARACTERIZATION OF EXTRACELLULAR ANTI-LEUKAEMIC L-ASPARAGINASE FROM ISOLATED BACILLUS SUBTILIS USING SOLID STATE FERMENTATION.

    Directory of Open Access Journals (Sweden)

    Susmita Shukla

    2013-08-01

    Full Text Available Bacterial L-asparaginase has been widely used as therapeutic agent in treatment of various lymphoblastic leukemia and food processing aid to reduce the formation of cancer causing acrylamide. The present work deals with production and purification of extracellular L-asparaginase from soil isolates using solid state fermentation. The isolate was characterized by big chemical test and identified as Bacillus subtilis. The enzyme production was carried out by solid state fermentation comparing the results with submerged fermentation. The enzyme was purified to near homogeneity by ammonium sulphate precipitation, dialysis, followed by gel filtration on Sephadex G-100 column, CM Sephadex C-50 and SDS-PAGE. The enzyme was purified at 110.2 folds and showed a final specific activity of 1785.7 IU/mg with 26.5% yield. SDS-PAGE of the purified enzyme revealed an apparent molecular weight of 109 kDa. The purified enzyme showed maximum activity at pH 9 when it was incubated at 50°C for 35 min. The enzyme was activated by Mg+2 and strongly inhibited by EDTA.

  8. Production and characterization of a novel yeast extracellular invertase activity towards improved dibenzothiophene biodesulfurization

    OpenAIRE

    Arez, B. F.; Alves, Luís Manuel; Paixão, Susana M.

    2014-01-01

    The main goal of this work was the production and characterization of a novel invertase activity from Zygosaccharomyces bailii strain Talf1 for further application to biodesulfurization (BDS) in order to expand the exploitable alternative carbon sources to renewable sucrose-rich feedstock. The maximum invertase activity (163 U ml.1) was achieved after 7 days of Z. bailii strain Talf1 cultivation at pH 5.5–6.0, 25 °C, and 150 rpm in Yeast Malt Broth with 25 % Jerusalem artichoke pulp as in...

  9. Lipase and Protease Double-Deletion Mutant of Pseudomonas fluorescens Suitable for Extracellular Protein Production

    OpenAIRE

    Son, Myunghan; Moon, Yuseok; Oh, Mi Jin; Han, Sang Bin; Park, Ki Hyun; Kim, Jung-Gon; Ahn, Jung Hoon

    2012-01-01

    Pseudomonas fluorescens, a widespread Gram-negative bacterium, is an ideal protein manufacturing factory (PMF) because of its safety, robust growth, and high protein production. P. fluorescens possesses a type I secretion system (T1SS), which mediates secretion of a thermostable lipase (TliA) and a protease (PrtA) through its ATP-binding cassette (ABC) transporter. Recombinant proteins in P. fluorescens are attached to the C-terminal signal region of TliA for transport as fusion proteins to t...

  10. An efficient protocol to enhance the extracellular production of recombinant protein from Escherichia coli by the synergistic effects of sucrose, glycine, and Triton X-100.

    Science.gov (United States)

    Bao, Ru-Meng; Yang, Hong-Ming; Yu, Chang-Mei; Zhang, Wei-Fen; Tang, Jin-Bao

    2016-10-01

    Targeting recombinant proteins at highly extracellular production in the culture medium of Escherichia coli presents a significant advantage over cytoplasmic or periplasmic expression. In this work, a recombinant protein between ZZ protein and alkaline phosphatase (rZZ-AP) was constructed. Because rZZ-AP has the IgG-binding capacity and enzymatic activity, it can serve as an immunoreagent in immunoassays. However, only a very small portion of rZZ-AP is generally secreted into the aqueous medium under conventional cultivation procedure. Hence, we emphasized on the optimization of the culture procedures and attempted to dramatically enhance the yield of extracellular rZZ-AP from E. coli HB101 host cells by adding sucrose, glycine, and Triton X-100 in the culture medium. Results showed that the extracellular production of rZZ-AP in the culture medium containing 5% sucrose, 1% glycine, and 1% Triton X-100 was 18.6 mg/l, which was 18.6-fold higher than that without the three chemicals. And the β-galactosidase activity test showed that the increased extracellular rZZ-AP was not due to cell lysis. Further analysis suggested a significant interaction effect among the three chemicals for the enhancement of extracellular production. Ultrastructural analysis indicated that the enhancement may be due to the influence of sucrose, glycine, and Triton X-100 on the periplasmic osmolality, permeability, or integrity of the cell wall, respectively. This proposed approach presents a simple strategy to enhance the extracellular secretion of recombinant proteins in the E. coli system at the process of cell cultivation. PMID:27189822

  11. Computation of interactive effects and optimization of process parameters for alkaline lipase production by mutant strain of Pseudomonas aeruginosa using response surface methodology

    Directory of Open Access Journals (Sweden)

    Deepali Bisht

    2013-01-01

    Full Text Available Alkaline lipase production by mutant strain of Pseudomonas aeruginosa MTCC 10,055 was optimized in shake flask batch fermentation using response surface methodology. An empirical model was developed through Box-Behnken experimental design to describe the relationship among tested variables (pH, temperature, castor oil, starch and triton-X-100. The second-order quadratic model determined the optimum conditions as castor oil, 1.77 mL.L-1; starch, 15.0 g.L-1; triton-X-100, 0.93 mL.L-1; incubation temperature, 34.12 ºC and pH 8.1 resulting into maximum alkaline lipase production (3142.57 U.mL-1. The quadratic model was in satisfactory adjustment with the experimental data as evidenced by a high coefficient of determination (R² value (0.9987. The RSM facilitated the analysis and interpretation of experimental data to ascertain the optimum conditions of the variables for the process and recognized the contribution of individual variables to assess the response under optimal conditions. Hence Box-Behnken approach could fruitfully be applied for process optimization.

  12. Cloning and expression of the immunogenic moiety of Pseudomonas aeruginosa exotoxin A

    Directory of Open Access Journals (Sweden)

    Sahar Nouri Gharajelar *

    2013-01-01

    Full Text Available Introduction: Pseudomonas aeruginosa, as an opportunistic microorganism, is a major cause of nosocomial infections worldwide. Exotoxin A (ETA is an extracellular enzyme that is produced by most clinical strains of P. aeruginosa. Although the pathogenesis of the diseases due to Pseudomonas are complex, clinical and experimental data linking ETA with the morbid and lethal consequences of Pseudomonas infection are accumulating.Materials and methods: An immunogenic 490–bp DNA segment including translocation domain plus 1b domain of the ETA from P. aeruginosa strain PAO1 were reproduced by PCR. The PCR product was cloned in E.coli DH5α and expressed in E.coli BL21 using recombinant pET28a vector. The cloned polypeptide was found to have an electrophoretic mobility in sodium dodecyle sulfate- polyacrylamide gels (SDS -PAGE of 18kDa.Results: PCR and colony PCR results approved the cloning of immunogenic moiety of exotoxin A. Analysis of the location of cloned polypeptide by SDS- PAGE electrophoresis revealed that it was exported by E.coli into the bacterial periplasmic space.Discussion and conclusion: Since the whole toxin is not necessary for enhancing the immune responses and this recombinant polypeptide has antigenic qualities, so it may serve as a useful vaccine to prevent Pseudomonas infections.

  13. Extracellular production of riboflavin-binding protein, a potential bitter inhibitor, by Brevibacillus choshinensis.

    Science.gov (United States)

    Maehashi, Kenji; Matano, Mami; Saito, Makiko; Udaka, Shigezo

    2010-05-01

    Riboflavin-binding protein (RBP) is a glycophosphoprotein found in hen eggs. We previously identified the extraordinary characteristic of RBP in reducing bitterness. For a more detailed study on the mode of action and industrial application of this characteristic, we investigated the microbial production of recombinant RBP (rRBP). We constructed a chicken RBP gene expression vector by inserting the RBP cDNA in pNCMO2, the Escherichia coli-Brevibacillus choshinensis shuttle vector. B. choshinensis HPD31 transformants produced 0.8g/l of processed and unglycosylated RBP in a soluble form in the culture supernatant. However, the expressed RBP was partially dimerized and monomeric RBP was purified by two step anion-exchange and gel-filtration chromatographies. The purified rRBP elicited bitterness reduction against quinine and caffeine, although it largely lost its riboflavin-binding ability. These results indicated that glycosylation and riboflavin-binding ability are not essential for the bitterness reduction of RBP. In addition, we assessed the usefulness of the Brevibacillus system for the expression and secretion of RBP as a new type of bitterness inhibitor. PMID:20045733

  14. Extracellular polysaccharides from Ascomycota and Basidiomycota: production conditions, biochemical characteristics, and biological properties.

    Science.gov (United States)

    Osińska-Jaroszuk, Monika; Jarosz-Wilkołazka, Anna; Jaroszuk-Ściseł, Jolanta; Szałapata, Katarzyna; Nowak, Artur; Jaszek, Magdalena; Ozimek, Ewa; Majewska, Małgorzata

    2015-12-01

    Fungal polysaccharides (PSs) are the subject of research in many fields of science and industry. Many properties of PSs have already been confirmed and the list of postulated functions continues to grow. Fungal PSs are classified into different groups according to systematic affinity, structure (linear and branched), sugar composition (homo- and heteropolysaccharides), type of bonds between the monomers (β-(1 → 3), β-(1 → 6), and α-(1 → 3)) and their location in the cell (cell wall PSs, exoPSs, and endoPSs). Exopolysaccharides (EPSs) are most frequently studied fungal PSs but their definition, classification, and origin are still not clear and should be explained. Ascomycota and Basidiomycota fungi producing EPS have different ecological positions (saprotrophic and endophytic, pathogenic or symbiotic-mycorrhizae fungi); therefore, EPSs play different biological functions, for example in the protection against environmental stress factors and in interactions with other organisms. EPSs obtained from Ascomycota and Basidiomycota fungal cultures are known for their antioxidant, immunostimulating, antitumor, and antimicrobial properties. The major objective of the presented review article was to provide a detailed description of the state-of-the-art knowledge of the effectiveness of EPS production by filamentous and yeast Ascomycota and Basidiomycota fungi and techniques of derivation of EPSs, their biochemical characteristics, and biological properties allowing comprehensive analysis as well as indication of similarities and differences between these fungal groups. Understanding the role of EPSs in a variety of processes and their application in food or pharmaceutical industries requires improvement of the techniques of their derivation, purification, and characterization. The detailed analyses of data concerning the derivation and application of Ascomycota and Basidiomycota EPSs can facilitate development and trace the direction of application of these EPSs

  15. Large strain stimulation promotes extracellular matrix production and stiffness in an elastomeric scaffold model.

    Science.gov (United States)

    D׳Amore, Antonio; Soares, Joao S; Stella, John A; Zhang, Will; Amoroso, Nicholas J; Mayer, John E; Wagner, William R; Sacks, Michael S

    2016-09-01

    Mechanical conditioning of engineered tissue constructs is widely recognized as one of the most relevant methods to enhance tissue accretion and microstructure, leading to improved mechanical behaviors. The understanding of the underlying mechanisms remains rather limited, restricting the development of in silico models of these phenomena, and the translation of engineered tissues into clinical application. In the present study, we examined the role of large strip-biaxial strains (up to 50%) on ECM synthesis by vascular smooth muscle cells (VSMCs) micro-integrated into electrospun polyester urethane urea (PEUU) constructs over the course of 3 weeks. Experimental results indicated that VSMC biosynthetic behavior was quite sensitive to tissue strain maximum level, and that collagen was the primary ECM component synthesized. Moreover, we found that while a 30% peak strain level achieved maximum ECM synthesis rate, further increases in strain level lead to a reduction in ECM biosynthesis. Subsequent mechanical analysis of the formed collagen fiber network was performed by removing the scaffold mechanical responses using a strain-energy based approach, showing that the denovo collagen also demonstrated mechanical behaviors substantially better than previously obtained with small strain training and comparable to mature collagenous tissues. We conclude that the application of large deformations can play a critical role not only in the quantity of ECM synthesis (i.e. the rate of mass production), but also on the modulation of the stiffness of the newly formed ECM constituents. The improved understanding of the process of growth and development of ECM in these mechano-sensitive cell-scaffold systems will lead to more rational design and manufacturing of engineered tissues operating under highly demanding mechanical environments. PMID:27344402

  16. N-acetyl-L-cysteine affects growth, extracellular polysaccharide production, and bacterial biofilm formation on solid surfaces.

    Science.gov (United States)

    Olofsson, Ann-Cathrin; Hermansson, Malte; Elwing, Hans

    2003-08-01

    N-Acetyl-L-cysteine (NAC) is used in medical treatment of patients with chronic bronchitis. The positive effects of NAC treatment have primarily been attributed to the mucus-dissolving properties of NAC, as well as its ability to decrease biofilm formation, which reduces bacterial infections. Our results suggest that NAC also may be an interesting candidate for use as an agent to reduce and prevent biofilm formation on stainless steel surfaces in environments typical of paper mill plants. Using 10 different bacterial strains isolated from a paper mill, we found that the mode of action of NAC is chemical, as well as biological, in the case of bacterial adhesion to stainless steel surfaces. The initial adhesion of bacteria is dependent on the wettability of the substratum. NAC was shown to bind to stainless steel, increasing the wettability of the surface. Moreover, NAC decreased bacterial adhesion and even detached bacteria that were adhering to stainless steel surfaces. Growth of various bacteria, as monocultures or in a multispecies community, was inhibited at different concentrations of NAC. We also found that there was no detectable degradation of extracellular polysaccharides (EPS) by NAC, indicating that NAC reduced the production of EPS, in most bacteria tested, even at concentrations at which growth was not affected. Altogether, the presence of NAC changes the texture of the biofilm formed and makes NAC an interesting candidate for use as a general inhibitor of formation of bacterial biofilms on stainless steel surfaces. PMID:12902275

  17. Optimization of Extracellular Polymeric Substances production using Azotobacter beijreinckii and Bacillus subtilis and its application in chromium (VI) removal.

    Science.gov (United States)

    Chug, Ravneet; Gour, Vinod Singh; Mathur, Shruti; Kothari, S L

    2016-08-01

    Extracellular Polymeric Substances (EPS) of microbial origin are complex biopolymers and vary greatly in their chemical composition. They have a great potential in chelation of metal ions. In this work, the effect of growth phase, temperature and pH on production of EPS by two bacteria Azotobacter beijreinckii and Bacillus subtilis have been studied. Extracted EPS was used to remove Cr(VI) from aqueous system. A. beijreinckii produced maximum EPS after 24h at pH 7 and temperature 30°C while B. subtilis produced maximum EPS after 96h at pH 7 and temperature 37°C. For an initial concentration of 10ppm, 26% and 48% Cr(VI) removal was recorded for EPS derived from A. beijreinckii and B. subtilis respectively. The presence of functional groups on EPS and their interaction with Cr(VI) was confirmed using Fourier-transform infrared (FTIR) spectra analysis. In both the bacteria, carboxyl and phosphate groups show involvement in metal binding. PMID:27183236

  18. Reuse of waste frying oil for production of rhamnolipids using Pseudomonas aeruginosa zju.u1M

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this work, rhamnolipid production was investigated using waste frying oil as the sole carbon source. By culture in shaking flasks, a naturally isolated strain synthesized rhamnolipid at concentration of 12.47 g/L and its mutant after treatment by UV light increased this productivity to 24.61 g/L. Fermentation was also conducted in a 50 L bioreactor and the productivity reached over 20 g/L. Hence, with a stable and high productive mutant strain, it could be feasible to reuse waste frying oil for rhamnolipid production on industrial scale.

  19. Cystic Fibrosis Transmembrane Conductance Regulator is an Epithelial Cell Receptor for Clearance of Pseudomonas aeruginosa from the Lung

    Science.gov (United States)

    Pier, Gerald B.; Grout, Martha; Zaidi, Tanweer S.

    1997-10-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride ion channel, but its relationship to the primary clinical manifestation of CF, chronic Pseudomonas aeruginosa pulmonary infection, is unclear. We report that CFTR is a cellular receptor for binding, endocytosing, and clearing P. aeruginosa from the normal lung. Murine cells expressing recombinant human wild-type CFTR ingested 30-100 times as many P. aeruginosa as cells lacking CFTR or expressing mutant Δ F508 CFTR protein. Purified CFTR inhibited ingestion of P. aeruginosa by human airway epithelial cells. The first extracellular domain of CFTR specifically bound to P. aeruginosa and a synthetic peptide of this region inhibited P. aeruginosa internalization in vivo, leading to increased bacterial lung burdens. CFTR clears P. aeruginosa from the lung, indicating a direct connection between mutations in CFTR and the clinical consequences of CF.

  20. Produção de enzimas extracelulares por Crinipellis perniciosa Production of extracellular enzymes by Crinipellis perniciosa

    Directory of Open Access Journals (Sweden)

    Cleber N. Bastos

    2005-06-01

    Full Text Available Isolados de Crinipellis perniciosa, obtidos a partir de cacaueiro (Theobromae cacao, cupuaçuzeiro (T. grandiflorum e solanáceas silvestres foram testados quanto à capacidade de produzirem enzimas extracelulares que degradam celulose, amido, lipídios e lignina. A produção de todas as enzimas foi determinada em meios sólidos e representada por uma estimativa, baseada na intensidade de cor, ou pela avaliação do diâmetro dos halos formado nos meios. Foi detectada variabilidade entre os isolados na capacidade de produzir enzimas celulolíticas, amilases, lipases, polifenol-oxidases, peroxidases e esterases. Quanto às enzimas proteolíticas, todos os isolados apresentaram alto nível de atividade, não sendo observada diferença no comportamento entre eles. Por outro lado, nenhum dos isolados produziu pectinase, urease e fosfatase-ácida. Os papéis das enzimas líticas produzidas pelos isolados de C. perniciosa na patogênese e na produção de basidiomas são discutidosStrains of Crinipellis perniciosa isolated from cocoa (Theobromae cacao, cupuassu (T. grandiflorum and wild solanaceous were tested for their ability to produce extracellular enzymes which degrade cellulose, starch, lipids and lignin. The production of all enzymes was examined in solid media and was estimated based on the intensity of color or on the diameter of halos formed on the media. Variability was detected among the isolates in their capacity to produce cellulolytic enzymes, amylase, lypase, phenol-oxidase, peroxidase and esterase. All isolates presented high level of activity, regarding proteolytic enzymes. On the other hand, none of the isolates produced pectinase, urease and acid phosphatase. The roles of lytic enzymes of C. perniciosa on pathogenesis and on basidiome production are discussed.

  1. Involvement of platelet-derived growth factor receptor β in fibrosis through extracellular matrix protein production after ischemic stroke.

    Science.gov (United States)

    Makihara, Noriko; Arimura, Koichi; Ago, Tetsuro; Tachibana, Masaki; Nishimura, Ataru; Nakamura, Kuniyuki; Matsuo, Ryu; Wakisaka, Yoshinobu; Kuroda, Junya; Sugimori, Hiroshi; Kamouchi, Masahiro; Kitazono, Takanari

    2015-02-01

    Fibrosis is concomitant with repair processes following injuries in the central nervous system (CNS). Pericytes are considered as an origin of fibrosis-forming cells in the CNS. Here, we examined whether platelet-derived growth factor receptor β (PDGFRβ), a well-known indispensable molecule for migration, proliferation, and survival of pericytes, was involved in the production of extracellular matrix proteins, fibronectin and collagen type I, which is crucial for fibrosis after ischemic stroke. Immunohistochemistry demonstrated induction of PDGFRβ expression in vascular cells of peri-infarct areas at 3-7days in a mouse stroke model. The PDGFRβ-expressing cells extended from peri-infarct areas toward the ischemic core after day 7 while expressing fibronectin and collagen type I in the infarct areas. In contrast, desmin and α-smooth muscle actin, markers of pericytes, were only expressed in vascular cells. In PDGFRβ heterozygous knockout mice, the expression of fibronectin and collagen type I was attenuated at both mRNA and protein levels with an enlargement of the infarct volume after ischemic stroke compared with that in wild-type littermates. In cultured brain pericytes, the expression of PDGF-B, PDGFRβ, fibronectin, and collagen type I, but not desmin, was significantly increased by serum depletion (SD). The SD-induced upregulation of fibronectin and collagen type I was suppressed by SU11652, an inhibitor of PDGFRβ, while PDGF-B further increased the SD-induced upregulation. In conclusion, the expression level of PDGFRβ may be a crucial determinant of fibrosis after ischemic stroke. Moreover, PDGFRβ signaling participates in the production of fibronectin and collagen type I after ischemic stroke. PMID:25510317

  2. Complement activation by Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Jensen, E T; Kharazmi, A; Garred, P;

    1993-01-01

    In chronic infections, such as the bronchopulmonary Pseudomonas aeruginosa infection in cystic fibrosis (CF) patients, bacteria persist despite an intact host immune defense and frequent antibiotic treatment. An important reason for the persistence of the bacteria is their capacity for the biofilm...... mode of growth. In this study we investigated the role of biofilms in activation of complement, a major contributor to the inflammatory process. Complement activation by P. aeruginosa was examined in a complement consumption assay, production of C3 and factor B conversion products assessed by crossed...... immuno-electrophoresis, C5a generation tested by a PMN chemotactic assay, and terminal complement complex formation measured by ELISA. Two of the four assays showed that P. aeruginosa grown in biofilm activated complement less than planktonic bacteria, and all assays showed that activation by intact...

  3. Extracellular glucose supports lactate production but not aerobic metabolism in cardiomyocytes from both normoglycemic Atlantic cod and low glycemic short-horned sculpin.

    Science.gov (United States)

    Clow, Kathy A; Short, Connie E; Driedzic, William R

    2016-05-01

    Fish exhibit a wide range of species-specific blood glucose levels. How this relates to glucose utilization is yet to be fully realized. Here, we assessed glucose transport and metabolism in myocytes isolated from Atlantic cod (Gadus morhua) and short-horned sculpin (Myoxocephalus scorpius), species with blood glucose levels of 3.7 and 0.57 mmol l(-1), respectively. Glucose metabolism was assessed by the production of (3)H2O from [2-(3)H]glucose. Glucose metabolism was 3.5- to 6-fold higher by myocytes from Atlantic cod than by those from short-horned sculpin at the same level of extracellular glucose. In Atlantic cod myocytes, glucose metabolism displayed what appears to be a saturable component with respect to extracellular glucose, and cytochalasin B inhibited glucose metabolism. These features revealed a facilitated glucose diffusion mechanism that accounts for between 30% and 55% of glucose entry at physiological levels of extracellular glucose. Facilitated glucose diffusion appears to be minimal in myocytes for short-horned sculpin. Glucose entry by simple diffusion occurs in both cell types with the same linear relationship between glucose metabolism and extracellular glucose concentration, presumably due to similarities in membrane composition. Oxygen consumption by myocytes incubated in medium containing physiological levels of extracellular glucose (Atlantic cod 5 mmol l(-1), short-horned sculpin 0.5 mmol l(-1)) was similar in the two species and was not decreased by cytochalasin B, suggesting that these cells have the capability of oxidizing alternative on-board metabolic fuels. Cells produced lactate at low rates but glycogen levels did not change during the incubation period. In cells from both species, glucose utilization assessed by both simple chemical analysis of glucose disappearance from the medium and (3)H2O production was half the rate of lactate production and as such extracellular glucose was not available for oxidative metabolism

  4. Efflux pumps expression and its association with porin down-regulation and β-lactamase production among Pseudomonas aeruginosa causing bloodstream infections in Brazil

    Directory of Open Access Journals (Sweden)

    Xavier Danilo E

    2010-08-01

    Full Text Available Abstract Background Multi-drug efflux pumps have been increasingly recognized as a major component of resistance in P. aeruginosa. We have investigated the expression level of efflux systems among clinical isolates of P. aeruginosa, regardless of their antimicrobial susceptibility profile. Results Aztreonam exhibited the highest in vitro activity against the P. aeruginosa isolates studied (64.4% susceptibility, whereas susceptibility rates of imipenem and meropenem were both 47.5%. The MexXY-OprM and MexAB-OprM efflux systems were overexpressed in 50.8% and 27.1% of isolates studied, respectively. Overexpression of the MexEF-OprN and MexCD-OprJ systems was not observed. AmpC β-lactamase was overexpressed in 11.9% of P. aeruginosa isolates. In addition, decreased oprD expression was also observed in 69.5% of the whole collection, and in 87.1% of the imipenem non-susceptible P. aeruginosa clinical isolates. The MBL-encoding genes blaSPM-1 and blaIMP-1 were detected in 23.7% and 1.7% P. aeruginosa isolates, respectively. The blaGES-1 was detected in 5.1% of the isolates, while blaGES-5 and blaCTX-M-2 were observed in 1.7% of the isolates evaluated. In the present study, we have observed that efflux systems represent an adjuvant mechanism for antimicrobial resistance. Conclusions Efflux systems in association of distinct mechanisms such as the porin down-regulation, AmpC overproduction and secondary β-lactamases play also an important role in the multi-drug resistance phenotype among P. aeruginosa clinical isolates.

  5. Effects of growth conditions on the production of neurotoxin 2,4-diaminobutyric acid (DAB) in Microcystis aeruginosa and its universal presence in diverse cyanobacteria isolated from freshwater in China.

    Science.gov (United States)

    Fan, Hua; Qiu, Jiangbing; Fan, Lin; Li, Aifeng

    2015-04-01

    Neurotoxins β-N-methylamino-L-alanine (BMAA) and its isomer 2,4-diaminobutyric acid (DAB) have been reported previously in diverse strains of cyanobacteria. In this study, BMAA and DAB were analyzed for two strains of Microcystis aeruginosa incubated with four different levels of phosphate, nitrate, illumination, and temperature, respectively, in order to explore the effects of growth factors on toxin-producing ability of cyanobacteria. Both toxins were also screened in 17 cyanobacterial strains cultured with BG-11 medium and conventional illumination and temperature conditions, and in three field phytoplankton samples collected from different lakes in China. All samples were analyzed using a liquid chromatography-tandem quadrupole mass spectrometry (LC-MS/MS) system coupled with a hydrophilic interaction liquid chromatography (HILIC) column. Results showed that no BMAA was detected in any of the cyanobacterial strains grown under our laboratory culture conditions, or in any of the field samples. Production of DAB in M. aeruginosa was significantly enhanced by extreme concentrations of nutrient and physical factors. Various concentrations of DAB were also present in most cultured samples (13 of 17) of cyanobacteria and were not species specific. This is the first time to report the production of DAB in M. aeruginosa cultured under alterative conditions in laboratory. Occurrence of DAB in most of the strains examined here means that consideration should be given to the presence of this compound in freshwater environment in China. PMID:25354443

  6. Increasing Superoxide Production and the Labile Iron Pool in Tumor Cells May Sensitize Them to Extracellular Ascorbate

    Directory of Open Access Journals (Sweden)

    Mark Frederick Mccarty

    2014-09-01

    Full Text Available Low millimolar concencentrations of ascorbate are capable of inflicting lethal damage on a high proportion of cancer cells lines, yet leave non-transformed cell lines unscathed; extracellular generation of hydrogen peroxide, reflecting reduction of molecular oxygen by ascorbate, has been shown to mediate this effect. Although some cancer cell lines express low catalase activity, this cannot fully explain the selective sensitivity of cancer cells to hydrogen peroxide. Ranzato and colleagues have presented evidence for a plausible new explanation of this sensitivity - a high proportion of cancers, via NADPH oxidase complexes or dysfunctional mitochondria, produce elevated amounts of superoxide. This superoxide, via a transition metal-catalyzed transfer of an electron to the hydrogen peroxide produced by ascorbate, can generate deadly hydroxyl radical (Haber-Weiss reaction. It thus can be predicted that concurrent measures which somewhat selectively boost superoxide production in cancers will enhance their sensitivity to i.v. ascorbate therapy. One way to achieve this is to increase the provision of substrate to cancer mitochondria. Measures which inhibit the constitutive hypoxia-inducible factor-1 (HIF-1 activity in cancers (such as salsalate and mTORC1 inhibitors, or an improvement of tumor oxygenation, or that inhibit the HIF-1-inducible pyruvate dehydrogenase kinase (such as dichloroacetate, can be expected to increase pyruvate oxidation. A ketogenic diet should provide more lipid substrate for tumor mitochondria. The cancer-killing activity of 42°C hyperthermia is to some degree contingent on an increase in oxidative stress, likely of mitochondrial origin; reports that hydrogen peroxide synergizes with hyperthermia in killing cancer cells suggest that hyperthermia and i.v. ascorbate could potentiate each other’s efficacy. A concurrent enhancement of tumor oxygenation might improve results by decreasing HIF-1 activity while increasing the

  7. Moderate extracellular acidification inhibits capsaicin-induced cell death through regulating calcium mobilization, NF-κB translocation and ROS production in synoviocytes

    International Nuclear Information System (INIS)

    Highlights: ► Moderate extracellular acidification regulates intracellular Ca2+ mobilization. ► Moderate acidification activates NF-κB nuclear translocation in synoviocytes. ► Moderate acidification depresses the ROS production induced by capsaicin. ► Moderate acidification inhibits capsaicin-caused synoviocyte death. -- Abstract: We previously show the expression of transient receptor potential vanilloid 1 (TRPV1) in primary synoviocytes from collagen-induced arthritis (CIA) rats. Capsaicin and lowered extracellular pH from 7.4 to 5.5 induce cell death through TRPV1-mediated Ca2+ entry and reactive oxygen species (ROS) production. However, under the pathological condition in rheumatoid arthritis, the synovial fluid is acidified to a moderate level (about pH 6.8). In the present study, we examined the effects of pH 6.8 on the TRPV1-mediated cell death. Our finding is different or even opposite from what was observed at pH 5.5. We found that the moderate extracellular acidification (from pH 7.4 to 6.8) inhibited the capsaicin-induced Ca2+ entry through attenuating the activity of TRPV1. In the mean time, it triggered a phospholipse C (PLC)-related Ca2+ release from intracellular stores. The nuclear translocation of NF-κB was found at pH 6.8, and this also depends on PLC activation. Moreover, the capsaicin-evoked massive ROS production and cell death were depressed at pH 6.8, both of which are dependent on the activation of PLC and NF-κB. Taken together, these results suggested that the moderate extracellular acidification inhibited the capsaicin-induced synoviocyte death through regulating Ca2+ mobilization, activating NF-κB nuclear translocation and depressing ROS production.

  8. Moderate extracellular acidification inhibits capsaicin-induced cell death through regulating calcium mobilization, NF-{kappa}B translocation and ROS production in synoviocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Fen; Yang, Shuang; Zhao, Dan; Zhu, Shuyan; Wang, Yuxiang [Department of Biophysics, School of Physics and Key Laboratory of Bioactive Materials of Education Ministry, Nankai University, Tianjin 300071 (China); Li, Junying, E-mail: jyli04@nankai.edu.cn [Department of Biophysics, School of Physics and Key Laboratory of Bioactive Materials of Education Ministry, Nankai University, Tianjin 300071 (China)

    2012-07-20

    Highlights: Black-Right-Pointing-Pointer Moderate extracellular acidification regulates intracellular Ca{sup 2+} mobilization. Black-Right-Pointing-Pointer Moderate acidification activates NF-{kappa}B nuclear translocation in synoviocytes. Black-Right-Pointing-Pointer Moderate acidification depresses the ROS production induced by capsaicin. Black-Right-Pointing-Pointer Moderate acidification inhibits capsaicin-caused synoviocyte death. -- Abstract: We previously show the expression of transient receptor potential vanilloid 1 (TRPV1) in primary synoviocytes from collagen-induced arthritis (CIA) rats. Capsaicin and lowered extracellular pH from 7.4 to 5.5 induce cell death through TRPV1-mediated Ca{sup 2+} entry and reactive oxygen species (ROS) production. However, under the pathological condition in rheumatoid arthritis, the synovial fluid is acidified to a moderate level (about pH 6.8). In the present study, we examined the effects of pH 6.8 on the TRPV1-mediated cell death. Our finding is different or even opposite from what was observed at pH 5.5. We found that the moderate extracellular acidification (from pH 7.4 to 6.8) inhibited the capsaicin-induced Ca{sup 2+} entry through attenuating the activity of TRPV1. In the mean time, it triggered a phospholipse C (PLC)-related Ca{sup 2+} release from intracellular stores. The nuclear translocation of NF-{kappa}B was found at pH 6.8, and this also depends on PLC activation. Moreover, the capsaicin-evoked massive ROS production and cell death were depressed at pH 6.8, both of which are dependent on the activation of PLC and NF-{kappa}B. Taken together, these results suggested that the moderate extracellular acidification inhibited the capsaicin-induced synoviocyte death through regulating Ca{sup 2+} mobilization, activating NF-{kappa}B nuclear translocation and depressing ROS production.

  9. Extracellular polysaccharide production by a strain of Pleurotus djamor isolated in the south of Brazil and antitumor activity on Sarcoma 180

    OpenAIRE

    Gisele Martini Borges; Fabiana Figueredo Molin De Barba; Ana Paula Schiebelbein; Bruna Parmezzani Pereira; Mariane Bonatti Chaves; Marcia Luciane Lange Silveira; Mauro de Souza Leite Pinho; Sandra Aparecida Furlan; Elisabeth Wisbeck

    2014-01-01

    Polysaccharides with medicinal properties can be obtained from fruiting bodies, mycelium and culture broth of several fungus species. This work was carried out in batch culture using a stirred tank reactor with two different initial glucose concentrations (40-50 g/L) and pH values (3.0-4.0) to enhance extracellular polysaccharides production by Pleurotus djamor UNIVILLE 001 and evaluate antitumor effect of intraperitonial administration of Pleurotus djamor extract on sarcoma 180 animal model....

  10. Antibacterial activity of five Peruvian medicinal plants against Pseudomonas aeruginosa

    Institute of Scientific and Technical Information of China (English)

    Gabriela; Ulloa-Urizar; Miguel; Angel; Aguilar-Luis; María; del; Carmen; De; Lama-Odría; José; Camarena-Lizarzaburu; Juana; del; Valle; Mendoza

    2015-01-01

    Objective: To evaluate the susceptibility of Pseudomonas aeruginosa(P. aeruginosa)in vitro to the ethanolic extracts obtained from five different Peruvian medicinal plants.Methods: The plants were chopped and soaked in absolute ethanol(1:2, w/v). The antibacterial activity of compounds against P. aeruginosa was evaluated using the cupplate agar diffusion method.Results: The extracts from Maytenus macrocarpa("Chuchuhuasi"), Dracontium loretense Krause("Jergon Sacha"), Tabebuia impetiginosa("Tahuari"), Eucalyptus camaldulensis Dehn(eucalyptus), Uncaria tomentosa("U?a de gato") exhibited favorable antibacterial activity against P. aeruginosa. The inhibitory effect of the extracts on the strains of P. aeruginosa tested demonstrated that Tabebuia impetiginosa and Maytenus macrocarpa possess higher antibacterial activity.Conclusions: The results of the present study scientifically validate the inhibitory capacity of the five medicinal plants attributed by their common use in folk medicine and contribute towards the development of new treatment options based on natural products.

  11. Antibacterial activity of ifve Peruvian medicinal plants against Pseudomonas aeruginosa

    Institute of Scientific and Technical Information of China (English)

    Gabriela Ulloa-Urizar; Miguel Angel Aguilar-Luis; Mara del Carmen De Lama-Odra; Jos Camarena-Lizarzaburu; Juana del Valle Mendoza

    2015-01-01

    Objective:To evaluate the susceptibility of Pseudomonas aeruginosa (P. aeruginosa) in vitro to the ethanolic extracts obtained from five different Peruvian medicinal plants. Methods:The plants were chopped and soaked in absolute ethanol (1:2, w/v). The antibacterial activity of compounds against P. aeruginosa was evaluated using the cup-plate agar diffusion method. Results:The extracts from Maytenus macrocarpa (“Chuchuhuasi”), Dracontium loretense Krause (“Jergon Sacha”), Tabebuia impetiginosa (“Tahuari”), Eucalyptus camaldulensis Dehn (eucalyptus), Uncaria tomentosa (“Uña de gato”) exhibited favorable antibacterial activity against P. aeruginosa. The inhibitory effect of the extracts on the strains of P. aeruginosa tested demonstrated that Tabebuia impetiginosa and Maytenus macrocarpa possess higher antibacterial activity. Conclusions:The results of the present study scientifically validate the inhibitory capacity of the five medicinal plants attributed by their common use in folk medicine and contribute towards the development of new treatment options based on natural products.

  12. Standardized chemical synthesis of Pseudomonas aeruginosa pyocyanin

    Directory of Open Access Journals (Sweden)

    Rajkumar Cheluvappa

    2014-01-01

    As we have extracted pyocyanin both from P. aeruginosa cultures, and via chemical synthesis; we know the procedural and product-quality differences. We endorse the relative ease, safety, and convenience of using the chemical synthesis described here. Crucially, our “naturally endotoxin-free” pyocyanin can be extracted easily without using infectious bacteria.

  13. Airway epithelial cell tolerance to Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Verghese Margrith W

    2005-04-01

    Full Text Available Abstract Background The respiratory tract epithelium is a critical environmental interface that regulates inflammation. In chronic infectious airway diseases, pathogens may permanently colonize normally sterile luminal environments. Host-pathogen interactions determine the intensity of inflammation and thus, rates of tissue injury. Although many cells become refractory to stimulation by pathogen products, it is unknown whether the airway epithelium becomes either tolerant or hypersensitive in the setting of chronic infection. Our goals were to characterize the response of well-differentiated primary human tracheobronchial epithelial cells to Pseudomonas aeruginosa, to understand whether repeated exposure induced tolerance and, if so, to explore the mechanism(s. Methods The apical surface of well-differentiated primary human tracheobronchial epithelial cell cultures was repetitively challenged with Pseudomonas aeruginosa culture filtrates or the bacterial media control. Toxicity, cytokine production, signal transduction events and specific effects of dominant negative forms of signaling molecules were examined. Additional experiments included using IL-1β and TNFα as challenge agents, and performing comparative studies with a novel airway epithelial cell line. Results An initial challenge of the apical surface of polarized human airway epithelial cells with Pseudomonas aeruginosa culture filtrates induced phosphorylation of IRAK1, JNK, p38, and ERK, caused degradation of IκBα, generation of NF-κB and AP-1 transcription factor activity, and resulted in IL-8 secretion, consistent with activation of the Toll-like receptor signal transduction pathway. These responses were strongly attenuated following a second Pseudomonas aeruginosa, or IL-1β, but not TNFα, challenge. Tolerance was associated with decreased IRAK1 protein content and kinase activity and dominant negative IRAK1 inhibited Pseudomonas aeruginosa -stimulated NF-κB transcriptional

  14. Extracellular polysaccharide production by a strain of Pleurotus djamor isolated in the south of Brazil and antitumor activity on Sarcoma 180

    Science.gov (United States)

    Borges, Gisele Martini; De Barba, Fabiana Figueredo Molin; Schiebelbein, Ana Paula; Pereira, Bruna Parmezzani; Chaves, Mariane Bonatti; Silveira, Marcia Luciane Lange; Pinho, Mauro Souza Leite; Furlan, Sandra Aparecida; Wisbeck, Elisabeth

    2013-01-01

    Polysaccharides with medicinal properties can be obtained from fruiting bodies, mycelium and culture broth of several fungus species. This work was carried out in batch culture using a stirred tank reactor with two different initial glucose concentrations (40–50 g/L) and pH values (3.0–4.0) to enhance extracellular polysaccharides production by Pleurotus djamor UNIVILLE 001 and evaluate antitumor effect of intraperitonial administration of Pleurotus djamor extract on sarcoma 180 animal model. According to factorial design, the low pH value (pH 3.0) led to a gain of 1.6 g/L on the extracellular polysaccharide concentration, while glucose concentration in the tested range had no significant effect on the concentration of polysaccharide. With 40 g/L initial glucose concentration and pH 3.0, it was observed that yield factor of extracellular polysaccharide on substrate (YP/S = 0.072) and maximum extracellular polysaccharide productivity (QPmax = 11.26 mg/L.h) were about 188% and 321% respectively higher than those obtained in the experiment performed at pH 4.0. Under these conditions, the highest values of the yield factor of biomass on substrate (YX/S = 0.24) and maximal biomass productivity (QXmax = 32.2 mg/L.h) were also reached. In tumor response study, mean tumor volume on the 21th day was 35.3 cm3 in untreated group and 1.6 cm3 in treated group (p = 0.05) with a tumor inhibition rate of 94%. These impressive results suggests an inhibitory effect of P.djamor extract on cancer cells. PMID:24688493

  15. Extracellular polysaccharide production by a strain of Pleurotus djamor isolated in the south of Brazil and antitumor activity on Sarcoma 180

    Directory of Open Access Journals (Sweden)

    Gisele Martini Borges

    2013-12-01

    Full Text Available Polysaccharides with medicinal properties can be obtained from fruiting bodies, mycelium and culture broth of several fungus species. This work was carried out in batch culture using a stirred tank reactor with two different initial glucose concentrations (40-50 g/L and pH values (3.0-4.0 to enhance extracellular polysaccharides production by Pleurotus djamor UNIVILLE 001 and evaluate antitumor effect of intraperitonial administration of Pleurotus djamor extract on sarcoma 180 animal model. According to factorial design, the low pH value (pH 3.0 led to a gain of 1.6 g/L on the extracellular polysaccharide concentration, while glucose concentration in the tested range had no significant effect on the concentration of polysaccharide. With 40 g/L initial glucose concentration and pH 3.0, it was observed that yield factor of extracellular polysaccharide on substrate (Y P/S = 0.072 and maximum extracellular polysaccharide productivity (Q Pmax = 11.26 mg/L.h were about 188% and 321% respectively higher than those obtained in the experiment performed at pH 4.0. Under these conditions, the highest values of the yield factor of biomass on substrate (Y X/S = 0.24 and maximal biomass productivity (Q Xmax = 32.2 mg/L.h were also reached. In tumor response study, mean tumor volume on the 21th day was 35.3 cm³ in untreated group and 1.6 cm³ in treated group (p = 0.05 with a tumor inhibition rate of 94%. These impressive results suggests an inhibitory effect of P.djamor extract on cancer cells.

  16. Levels of Circulating MMCN-151, a Degradation Product of Mimecan, Reflect Pathological Extracellular Matrix Remodeling in Apolipoprotein E Knockout Mice

    DEFF Research Database (Denmark)

    Barascuk, N; Vassiliadis, E; Zheng, Qiuju; Wang, Yu; Wang, W; Larsen, L; Rasmussen, L M; Karsdal, M A

    2011-01-01

    Arterial extracellular matrix (ECM) remodeling by matrix metalloproteinases (MMPs) is one of the major hallmarks of atherosclerosis. Mimecan, also known as osteoglycin has been implicated in the integrity of the ECM. This study assessed the validity of an enzyme-linked immunosorbent assay (ELISA...

  17. Imported PER-1 producing Pseudomonas aeruginosa, PER-1 producing Acinetobacter baumanii and VIM-2-producing Pseudomonas aeruginosa strains in Hungary

    Directory of Open Access Journals (Sweden)

    Nagy Károly

    2008-05-01

    Full Text Available Abstract Introduction Pseudomonas aeruginosa and Acinetobacter baumanii are important nosocomial pathogens with wide intrinsic resistance. However, due to the dissemination of the acquired resistance mechanisms, such as extended-spectrum beta-lactamase (ESBL and metallo beta-lactamase (MBL production, multidrug resistant strains have been isolated more often. Case presentation We report a case of a Hungarian tourist, who was initially hospitalized in Egypt and later transferred to Hungary. On the day of admission PER-1-producing P. aeruginosa, PER-1 producing A. baumannii, SHV-5-producing Klebsiella pneumoniae and VIM-2-producing P. aeruginosa isolates were subcultured from the patient's samples in Hungary. Comparing the pulsed-field gel electrophoresis (PFGE patterns of the P. aeruginosa strains from the patient to the P. aeruginosa strains occurring in this hospital, we can state that the PER-1-producing P. aeruginosa and VIM-2-producing P. aeruginosa had external origin. Conclusion This is the first report of PER-1-producing P. aeruginosa,and PER-1-producing A. baumanii strains in Hungary. This case highlights the importance of spreading of the beta-lactamase-mediated resistance mechanisms between countries and continents, showing the importance of careful screening and the isolation of patients arriving from a different country.

  18. Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: A combinatorial study with azithromycin and gentamicin

    OpenAIRE

    Das, Manash C.; Padmani Sandhu; Priya Gupta; Prasenjit Rudrapaul; Utpal C. De; Prosun Tribedi; Yusuf Akhter; Surajit Bhattacharjee

    2016-01-01

    Microbial biofilm are communities of surface-adhered cells enclosed in a matrix of extracellular polymeric substances. Extensive use of antibiotics to treat biofilm associated infections has led to the emergence of multiple drug resistant strains. Pseudomonas aeruginosa is recognised as a model biofilm forming pathogenic bacterium. Vitexin, a polyphenolic group of phytochemical with antimicrobial property, has been studied for its antibiofilm potential against Pseudomonas aeruginosa in combin...

  19. Chromosomal beta-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Ciofu, O; Beveridge, T J; Kadurugamuwa, J; Walther-Rasmussen, J; Høiby, N

    2000-01-01

    Membrane vesicles were isolated from one beta-lactam-sensitive and three beta-lactam-resistant Pseudomonas aeruginosa clinical isolates from patients with cystic fibrosis. The presence of the chromosomally encoded beta-lactamase in the membrane vesicles was shown by electron microscopy and...... enzymatic studies. This is the first report of extracellular secretion of beta-lactamase in P. aeruginosa and it seems that the enzyme is packaged into membrane vesicles....

  20. A complex multilevel attack on Pseudomonas aeruginosa algT/U expression and AlgT/U activity results in the loss of alginate production

    DEFF Research Database (Denmark)

    Sautter, Robert; Ramos, Damaris; Schneper, Lisa;

    2012-01-01

    Infection by the opportunistic pathogen Pseudomonas aeruginosa is a leading cause of morbidity and mortality seen in cystic fibrosis (CF) patients. This is mainly due to the genotypic and phenotypic changes of the bacteria that cause conversion from a typical nonmucoid to a mucoid form in the CF ...

  1. Pattern differentiation in co-culture biofilms formed by Staphylococcus aureus and Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Markussen, Trine;

    2011-01-01

    -culture biofilms. By growing co-culture biofilms of S. aureus with P. aeruginosa mutants in a flow-chamber system and observing them using confocal laser scanning microscopy, we show that wild-type P. aeruginosa PAO1 facilitates S. aureus microcolony formation. In contrast, P. aeruginosa mucA and rpoN mutants do...... not facilitate S. aureus microcolony formation and tend to outcompete S. aureus in co-culture biofilms. Further investigations reveal that extracellular DNA (eDNA) plays an important role in S. aureus microcolony formation and that P. aeruginosa type IV pili are required for this process, probably through...... their ability to bind to eDNA. Furthermore, P. aeruginosa is able to protect S. aureus against Dictyostelium discoideum phagocytosis in co-culture biofilms....

  2. Screening of Coprinus species for the production of extracellular peroxidase and evaluation of its applicability to the treatment of aqueous phenol

    International Nuclear Information System (INIS)

    Twenty-nine strains of Coprinus species comprising 16 strains from 12 identified species and 13 unidentified strains as well as one Arthromyces ramosus strain were screened for the production of extracellular peroxidase. Among the fungi examined, three strains of C. cinereus, UAMH 4103, UAMH 7907 and IFO 30116, as well as one Coprinus sp., UAMH 10067, which was isolated from urea treated soil, were shown to produce large amounts of extracellular peroxidase. The performance of crude peroxidase, obtained from liquid culture of C. cinereus, (CIP) on phenol removal from synthetic wastewater was evaluated and compared with that of purified horseradish peroxidase and A. ramosus peroxidase. Although crude CIP performed better than both purified enzymes, its superiority vanished in the presence of poly(ethylene glycol), a known protective agent of peroxidase. This suggests that the residual soluble substances present in crude CIP have protective effects similar to those of poly(ethylene glycol). (author)

  3. Pseudomonas aeruginosa biofilm infections

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2014-01-01

    use of conventional antimicrobial compounds in many cases cannot eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. The present review is focussed on the important opportunistic pathogen and biofilm model organism Pseudomonas aeruginosa. Initially...

  4. Effect of a pesticide on the extracellular slime production and pathogenicity of a non-target phytopathogen

    International Nuclear Information System (INIS)

    Aldicarb (2 methyl thio) propionaldehyde-0-(methyl carbamoyl oxime), a systemic insecticide treatment altered the quantity and the quality of the extracellular polysaccharides (slime) produced by Pseudomonas solanacearum. Although 5 ppm (normal dose) aldicarb treatment reduced the quality of polysaccharides produced by the cells, the incorporation of 14C (glucose) label and the reducing sugar contents was higher than the other treatments. Chromatographic analysis of the hydrolysed polysaccharides showed that aldicarb treatment altered their qualitative composition also. The extracellular polysaccharides produced by the pathogen treated with 5 ppm aldicarb caused wilting of tomato seedlings earlier than others, indicating thereby, that the wilt inducing factor in the slime was altered by the pesticide treatment. The limited translocation of the 14C labelled polysaccharides in the wilted seedlings indicated mechanical blocking of the vascular system of the plants. (author)

  5. Extracellular Production of Silver Nanoparticles by Using Three Common Species of Dermatophytes: Trichophyton rubrum, Trichophyton mentagrophytes and Microsporum canis

    OpenAIRE

    Moazeni, Maryam; Rashidi, Niloofar; Shahverdi, Ahmad R; Noorbakhsh, Fatemeh; Sassan REZAIE

    2012-01-01

    Background: To develop a new green approach for biosynthesis of silver nanoparticles, myconanotechnology has been represented as a novel field of study in nanotechnology. In this study, we have reported the extracellular synthesis of highly stable silver nanoparticles using three species of dermatophytes: Trichophyton rubrum, Trichophyton mentagrophytes and Microsporum canis. Methods: Clinical strains of these species were grown in a liquid medium containing mineral salt and incubated at 25°C...

  6. Accumulation of Extracellular Matrix and Developmental Dysregulation in the Pancreas by Transgenic Production of Transforming Growth Factor-β1

    OpenAIRE

    Lee, Myung-Shik; Gu, Danling; Feng, Lili; Curriden, Scott; Arnush, Marc; Krahl, Troy; Gurushanthaiah, Deepak; Wilson, Curtis; Loskutoff, David L.; Fox, Howard; Sarvetnick, Nora

    1995-01-01

    Transgenic mice expressing transforming growth factor-β1 (TGF-β1) in the pancreatic β-islet cells directed by human insulin promoter were produced to study in vivo effects of TGF-β1. Fibroblast proliferation and abnormal deposition of extracellular matrix were observed from birth onward, finally replacing almost all the exocrine pancreas. Cellular infiltrates comprising macrophages and neutrophils were also observed. Plasminogen activator inhibitor was induced in the transgenic pancreas as we...

  7. Quinolone accumulation in Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus.

    OpenAIRE

    McCaffrey, C; Bertasso, A; Pace, J.; Georgopapadakou, N H

    1992-01-01

    The accumulation of quinolones by Escherichia coli JF568, Pseudomonas aeruginosa PAO1, and Staphylococcus aureus ATCC 29213 was measured by a modified fluorometric assay (J. S. Chapman and N. H. Georgopapadakou, Antimicrob. Agents Chemother. 33:27-29, 1989). The quinolones examined were fleroxacin, pefloxacin, norfloxacin, difloxacin, A56620, ciprofloxacin, ofloxacin, and Ro 09-1168. In all three organisms, uptake was complete in less than 5 min and was proportional to extracellular quinolone...

  8. More productive in vitro culture of Cryptosporidium parvum for better study of the intra- and extracellular phases

    Directory of Open Access Journals (Sweden)

    G Perez Cordón

    2007-08-01

    Full Text Available The great difficulties in treating people and animals suffering from cryptosporidiosis have prompted the development of in vitro experimental models. Due to the models of in vitro culture, new extracellular stages of Cryptosporidium have been demonstrated. The development of these extracellular phases depends on the technique of in vitro culture and on the species and genotype of Cryptosporidium used. Here, we undertake the molecular characterization by polymerase chain reaction-restriction fragment lenght polymorphism of different Cryptosporidium isolates from calves, concluding that all are C. parvum of cattle genotype, although differing in the nucleotide at positions 472 and 498. Using these parasites, modified the in vitro culture technique for HCT-8 cells achieving greater multiplication of parasites. The HCT-8 cell cultures, for which the culture had not been renewed in seven days, were infected with C. parvum sporozoites in RPMI-1640 medium with 10% IFBS, CaCl2 and MgCl2 1 mM at pH 7.2. Percentages of cell parasitism were increased with respect to control cultures (71% at 48 h vs 14.5%, even after two weeks (47% vs 1.9%. Also, the percentage of extracellular stages augmented (25.3% vs 1.1% at 96 h. This new model of in vitro culture of C. parvum will enable easier study of the developmental phases of C. parvum in performing new chemotherapeutic assays.

  9. Transcription factor σB plays an important role in the production of extracellular membrane-derived vesicles in Listeria monocytogenes.

    Directory of Open Access Journals (Sweden)

    Jung Hwa Lee

    Full Text Available Gram-negative bacteria produce extracellular outer membrane vesicles (OMVs that interact with host cells. Unlike Gram-negative bacteria, less is known about the production and role of extracellular membrane vesicles (MVs in Gram-positive bacteria. The food-borne pathogen Listeria monocytogenes can survive under extreme environmental and energy stress conditions and the transcription factor σ(B is involved in this survival ability. Here, we first determined the production of MVs from L. monocytogenes and evaluated whether general stress transcription factor σ(B affected production of MVs in L. monocytogenes. L. monocytogenes secreted MVs during in vitro broth culture. The wild-type strain actively produced MVs approximately nine times more and also produced more intact shapes of MVs than those of the isogenic ΔsigB mutant. A proteomic analysis showed that 130 and 89 MV proteins were identified in the wild-type and ΔsigB mutant strains, respectively. Wild-type strain-derived MVs contained proteins regulated by σ(B such as transporters (OpuCA and OpuCC, stress response (Kat, metabolism (LacD, translation (InfC, and cell division protein (FtsZ. Gene Ontology (GO enrichment analysis showed that wild-type-derived MV proteins corresponded to several GO terms, including response to stress (heat, acid, and bile resistance and extracellular polysaccharide biosynthetic process, but not the ΔsigB mutant. Internalin B (InlB was almost three times more contained in MVs derived from the wild-type strain than in MVs derived from the ΔsigB mutant. Taken together, these results suggest that σ(B plays a pivotal role in the production of MVs and protein profiles contained in MVs. L. monocytogenes MVs may contribute to host infection and survival ability under various stressful conditions.

  10. Influence of Extracellular Cellulose and Colanic Acid Production on the Survival of Shiga Toxin-Producing Escherichia coli on Spinach and Lettuce after Chlorine Treatment.

    Science.gov (United States)

    Lee, Chi-Ching; Chen, Jinru; Frank, Joseph F

    2016-04-01

    Shiga toxin-producing Escherichia coli (STEC) strains produce extracellular cellulose and colanic acid, which may influence stress tolerance. This study investigates the role of these extracellular polymers on the tolerance of STEC to chlorine treatment after attachment to lettuce and spinach. Four STEC strains, two wild-type cellulose-producing and their cellulosedeficient derivatives, were used. One strain pair produced colanic acid in addition to cellulose. Spinach and lettuce with attached cells were treated with chlorinated water (50 and 150 ppm of free chlorine). The production of the extracellular polymers by the planktonic cells had small, but significant, effects on the survival of the attached pathogen when subjected to chlorine treatment. On the lettuce surface, the colanic acid-producing, cellulose-negative mutant (49d) was most susceptible to the treatment, declining significantly (P population by 0.9 and 1.4 log units after treatment with 50 and 150 ppm of chlorine, respectively. Chlorine treatment reduced populations of cellulose-deficient cells on the intact spinach surface 1.2 log units more than the wild type when treated with 150 ppm of chlorine (P populations of cellulose-producing cells were reduced by 1.5 log units more than their mutant counterparts when the cells also produced colanic acid (P < 0.05). A greater proportion of cells attached to the spinach leaf edge were injured by chlorine treatment compared with attached to the leaf surface. These results indicate that extracellular polymers do not generally increase the ability of STEC to survive chlorine treatment and that any effects on survival are influenced by location of attachment, type of leafy green, and concentration of chlorine. PMID:27052873

  11. Two distinct ferritin-like molecules in P. aeruginosa: The product of the bfrA gene is a bacterial ferritin (FtnA) not a bacterioferritin (Bfr)†€

    Science.gov (United States)

    Yao, Huili; Jepkorir, Grace; Lovell, Scott; Nama, Pavithra V.; Weeratunga, Saroja; Battaile, Kevin P.; Rivera, Mario

    2011-01-01

    Two distinct types of ferritin-like molecules often coexist in bacteria, the heme binding bacterioferritins (Bfr) and the non-heme binding bacterial ferritins (Ftn). The early isolation of a ferritin-like molecule from P. aeruginosa suggested the possibility of a bacterioferritin assembled from two different subunits [Moore, G. R., Kadir, F. H., Al-Massad, F. K., Le Brun, N. E., Thomson, A. J., Greenwood, C., Keen, J. N. and Findlay, J. B. C. (1994) Biochem. J. 304, 493–497]. Subsequent studies demonstrated the presence of two genes coding for ferritin-like molecules in P. aeruginosa, designated bfrA and bfrB, and suggested that two distinct bacterioferritins may coexist [Ma, J.-F., Ochsner, U. A., Klotz, M. G, Nanayakkara, V. K., Howell, M. L., Johnson, Z., Posey, J. E., Vasil, M. L., Monaco, J. J., and Hassett, D. J. (1999) J. Bacteriol. 181, 3730–3742]. In this report we present structural evidence demonstrating that the product of the bfrA gene is a ferritin-like molecule not capable of binding heme which harbors a catalytically active ferroxidase center with structural properties similar to those characteristic of bacterial and archaeal Ftns and clearly distinct from the ferroxidase center typical of Bfrs. Consequently, the product of the bfrA gene in P. aeruginosa is a bacterial ferritin, which we propose should be termed Pa FtnA. These results, together with the previous characterization of the product of the bfrB gene as a genuine bacterioferritin (Pa BfrB) [Weeratunga, S. J., Lovell, S., Yao, H., Battaile, K. P., Fischer, C. J., Gee, C. E., and Rivera, M. (2010) Biochemistry 49. 1160–1175] indicate the coexistence of a bacterial ferritin (Pa FtnA) and a bacterioferritin (Pa BfrB) in P. aeruginosa. In agreement with this idea, we also obtained evidence demonstrating that release of iron from Pa BfrB and Pa FtnA is likely subject to different regulation in P. aerugionsa: Whereas the efficient release of iron stored in Pa FtnA requires only the input of

  12. Two distinct ferritin-like molecules in Pseudomonas aeruginosa: the product of the bfrA gene is a bacterial ferritin (FtnA) and not a bacterioferritin (Bfr).

    Science.gov (United States)

    Yao, Huili; Jepkorir, Grace; Lovell, Scott; Nama, Pavithra V; Weeratunga, Saroja; Battaile, Kevin P; Rivera, Mario

    2011-06-14

    Two distinct types of ferritin-like molecules often coexist in bacteria, the heme binding bacterioferritins (Bfr) and the non-heme binding bacterial ferritins (Ftn). The early isolation of a ferritin-like molecule from Pseudomonas aeruginosa suggested the possibility of a bacterioferritin assembled from two different subunits [Moore, G. R., et al. (1994) Biochem. J. 304, 493-497]. Subsequent studies demonstrated the presence of two genes encoding ferritin-like molecules in P. aeruginosa, designated bfrA and bfrB, and suggested that two distinct bacterioferritins may coexist [Ma, J.-F., et al. (1999) J. Bacteriol. 181, 3730-3742]. In this report, we present structural evidence demonstrating that the product of the bfrA gene is a ferritin-like molecule not capable of binding heme that harbors a catalytically active ferroxidase center with structural properties similar to those characteristic of bacterial and archaeal Ftns and clearly distinct from those of the ferroxidase center typical of Bfrs. Consequently, the product of the bfrA gene in P. aeruginosa is a bacterial ferritin, which we propose should be termed Pa FtnA. These results, together with the previous characterization of the product of the bfrB gene as a genuine bacterioferritin (Pa BfrB) [Weeratunga, S. J., et al. (2010) Biochemistry 49, 1160-1175], indicate the coexistence of a bacterial ferritin (Pa FtnA) and a bacterioferritin (Pa BfrB) in P. aeruginosa. In agreement with this idea, we also obtained evidence demonstrating that release of iron from Pa BfrB and Pa FtnA is likely subject to different regulation in P. aerugionsa. Whereas the efficient release of iron stored in Pa FtnA requires only the input of electrons from a ferredoxin NADP reductase (Pa Fpr), the release of iron stored in Pa BfrB requires not only electron delivery by Pa Fpr but also the presence of a "regulator", the apo form of a bacterioferritin-associated ferredoxin (apo Pa Bfd). Finally, structural analysis of iron uptake in

  13. Production, purification, and characterization of antifungal metabolite from Pseudomonas aeruginosa SD12, a new strain obtained from tannery waste polluted soil.

    Science.gov (United States)

    Dharni, Seema; Alam, Mansoor; Kalani, Komal; Abdul-Khaliq; Samad, Abdul; Srivastava, Santosh Kumar; Patra, Dharani Dhar

    2012-05-01

    A new strain, SD12, was isolated from tannery waste polluted soil and identified as Pseudomonas aeruginosa on the basis of phenotypic traits and by comparison of 16S rRNA sequences. This bacterium exhibited broad-spectrum antagonistic activity against phytopathogenic fungi. The strain produced phosphatases, cellulases, proteases, pectinases, and HCN and also retained its ability to produce hydroxamate-type siderophore. A bioactive metabolite was isolated from P. aeruginosa SD12 and was characterized as 1-hydroxyphenazine ((1-OH-PHZ) by nuclear magnetic resonance (NMR) spectral analysis. The strain was used as a biocontrol agent against root rot and wilt disease of pyrethrum caused by Rhizoctonia solani. The stain is also reported to increase the growth and biomass of Plantago ovata. The purified compound, 1-hydroxyphenazine, also showed broad-spectrum antagonistic activity towards a range of phytopathogenic fungi, which is the first report of its kind. PMID:22561863

  14. Immunological study on integrated PilQ and disulphide loop region of PilA against acute Pseudomonas aeruginosa infection:In silico analysis and in vitro production

    Institute of Scientific and Technical Information of China (English)

    Alireza Salimi Chirani; Robabeh Majidzadeh; Hossein Dabiri; Javad Rezaei; Ali Esmaili; Yasamin Abdanan Kord; Narges Khabazzadeh Tehrani; Negin Attaran

    2016-01-01

    Objective: Nowadays, Pseudomonas aeruginosa (P. aeruginosa), the highly regarded opportunistic pathogen, is the leading cause of morbidity and mortality worldwide. The P. aeruginosa type IV pili (T4P) as a multiple functional surface organelle in the development of acute P. aeruginosa infections have been well documented. Today, in silico analysis is a quick, and cost-effective tool for vaccine development. Methods: In present study, several turns' motifs along with the chimeric protein were predicted. Based on the hydropathy analysis, numerous antibody-accessible hydrophilic regions were characterized in the chimeric protein. A synthetic chimeric gene, encoding integrated PilQ and disulphide loop region of PilA, was designed. Modeling was done to predict the 3D structure of protein. The model was validated by using Ramachandran plot statistics and by ProSA server. Identification of B-cell and T-cell corresponding epitopes was done by using appropriate servers. Results: The closer 3D model to the native form of the chimeric protein was achieved. Validation results showed that 95.1%residues were in favor region and 3.6%of amino acid residues were in the allowed region. The B-cell epitope mappings showed that almost all the epitopes had irregular enriched structures. The major histocompatibility complex binding sequence prediction identified several human major histocompatibility complex class I and II restricted T-cell epitopes. The integrated PilQ and PilA disulphide loop encoding regions in the frame of pET28a(+) vector were expressed and purified efficiently. Conclusions: We expect that the two recognized antigenic determinants from our chimeric protein, “AYHKGNWSGYGKDGNIGIKDEDGMNCGPIAGSCTFPTTGTS-KSPSPFVDLGAKDATSG” and “GPIAGSCTFPTTGTSKSPSP”, can be able to evoke strong both humoral and cell-mediated immune responses in mouse models.

  15. Spaceflight Effects on Virulence of Pseudomonas Aeruginosa

    Science.gov (United States)

    Broadway, S.; Goins, T.; Crandell, C.; Richards, C.; Patel, M.; Pyle, B.

    2008-06-01

    Pseudomonas aeruginosa is an opportunistic pathogen found in the environment. It is known to infect the immunocompromised. The organism has about 25 virulence genes that play different roles in disease processes. Several exotoxin proteins may be produced, including ExoA, ExoS, ExoT and ExoY, and other virulence factors. In spaceflight, possible increased expression of P. aeruginosa virulence proteins could increase health risks for spaceflight crews who experience decreased immunity. Cultures of P. aeruginosa strains PA01 and PA103 grown on orbit on Shuttle Endeavour flight STS-123 vs. static ground controls were used for analysis. The production of ETA was quantitated using an ELISA procedure. Results showed that while flight cultures of PA103 produced slightly more ETA than corresponding ground controls, the opposite was found for PA01. While it appears that spaceflight has little effect on ETA, stimulation of other virulence factors could cause increased virulence of this organism in space flight. Similar increased virulence in spaceflight has been observed for other bacteria. This is important because astronauts may be more susceptible to opportunistic pathogens including P. aeruginosa.

  16. Detection of extracellular proteases from microorganisms on agar plates

    Directory of Open Access Journals (Sweden)

    Alane Beatriz Vermelho

    1996-12-01

    Full Text Available We present herein an improved assay for detecting the presence of extracellular proteases from microorganisms on agar plates. Using different substrates (gelatin, BSA, hemoglobin incorporated into the agar and varying the culture medium composition, we were able to detect proteolytic activities from Pseudomonas aeruginosa, Micrococcus luteus and Serratia marcescens as well as the influence that these components displayed in the expression of these enzymes. For all microorganisms tested we found that in agar-BHI or yeast extract medium containing gelatin the sensitivity of proteinase detection was considerably greater than in BSA-agar or hemoglobin-agar. However, when BSA or hemoglobin were added to the culture medium, there was an increase in growth along with a marked reduction in the amount of proteinase production. In the case of M. luteus the incorporation of glycerol in BHI or yeast extract gelatin-agar induced protease liberation. Our results indicate that the technique described here is of value for detecting extracellular proteases directly in the culture medium, by means of a qualitative assay, simple, inexpensive, straight forward method to assess the presence of the proteolytic activity of a given microorganism colony with great freedom in substrate selection.

  17. Effect of Carbon and Nitrogen Sources on the Production of Reducing Sugars, Extra-cellular Protein and Cellulolytic Enzymes by Two Cellulolytic Bacterial Isolates

    OpenAIRE

    Kashem, M. A.; M.A. Manchur; M.S. Rahman; M.N. Anwar

    2004-01-01

    Two thermophilic cellulolytic bacterial isolates were tested to determine the effect of carbon and nitrogen sources on the production of extra-cellular proteins, reducing sugars and cellulolytic enzymes. Lactose was found to be the most potential carbon source for Avicelase (342.52 U mL-1) and ß-glucosidase (256.89 U mL-1) activity where as NH4Cl was found to be the potential nitrogen source for CMCase (144.68 U mL-1) activity.

  18. High level extracellular production of a recombinant alkaline catalase in E. coli BL21 under ethanol stress and its application in hydrogen peroxide removal after cotton fabrics bleaching.

    Science.gov (United States)

    Yu, Zhenxiao; Zheng, Hongchen; Zhao, Xingya; Li, Shufang; Xu, Jianyong; Song, Hui

    2016-08-01

    The effects of induction parameters, osmolytes and ethanol stress on the productivity of the recombinant alkaline catalase (KatA) in Escherichia coli BL21 (pET26b-KatA) were investigated. The yield of soluble KatA was significantly enhanced by 2% ethanol stress. And a certain amount of Triton X-100 supplementation could markedly improved extracellular ratio of KatA. A total soluble catalase activity of 78,762U/mL with the extracellular ratio of 92.5% was achieved by fed-batch fermentation in a 10L fermentor, which was the highest yield so far. The purified KatA showed high stability at 50°C and pH 6-10. Application of KatA for elimination of H2O2 after cotton fabrics bleaching led to less consumption of water, steam and electric power by 25%, 12% and 16.7% respectively without productivity and quality losing of cotton fabrics. Thus, the recombinant KatA is a promising candidate for industrial production and applications. PMID:27151682

  19. Effect of C/N Ratio and Media Optimization through Response Surface Methodology on Simultaneous Productions of Intra- and Extracellular Inulinase and Invertase from Aspergillus niger ATCC 20611

    Directory of Open Access Journals (Sweden)

    Mojdeh Dinarvand

    2013-01-01

    Full Text Available The study is to identify the extraction of intracellular inulinase (exo- and endoinulinase and invertase as well as optimization medium composition for maximum productions of intra- and extracellular enzymes from Aspergillus niger ATCC 20611. From two different methods for extraction of intracellular enzymes, ultrasonic method was found more effective. Response surface methodology (RSM with a five-variable and three-level central composite design (CCD was employed to optimize the medium composition. The effect of five main reaction parameters including sucrose, yeast extract, NaNO3, Zn+2, and Triton X-100 on the production of enzymes was analyzed. A modified quadratic model was fitted to the data with a coefficient of determination (R2 more than 0.90 for all responses. The intra-extracellular inulinase and invertase productions increased in the range from 16 to 8.4 times in the optimized medium (10% (w/v sucrose, 2.5% (w/v yeast extract, 2% (w/v NaNO3, 1.5 mM (v/v Zn+2, and 1% (v/v Triton X-100 by RSM and from around 1.2 to 1.3 times greater than in the medium optimized by one-factor-at-a-time, respectively. The results of bioprocesses optimization can be useful in the scale-up fermentation and food industry.

  20. Regulatory and metabolic networks for the adaptation of Pseudomonas aeruginosa biofilms to urinary tract-like conditions.

    Directory of Open Access Journals (Sweden)

    Petra Tielen

    Full Text Available Biofilms of the Gram-negative bacterium Pseudomonas aeruginosa are one of the major causes of complicated urinary tract infections with detrimental outcome. To develop novel therapeutic strategies the molecular adaption strategies of P. aeruginosa biofilms to the conditions of the urinary tract were investigated thoroughly at the systems level using transcriptome, proteome, metabolome and enzyme activity analyses. For this purpose biofilms were grown anaerobically in artificial urine medium (AUM. Obtained data were integrated bioinformatically into gene regulatory and metabolic networks. The dominating response at the transcriptome and proteome level was the adaptation to iron limitation via the broad Fur regulon including 19 sigma factors and up to 80 regulated target genes or operons. In agreement, reduction of the iron cofactor-dependent nitrate respiratory metabolism was detected. An adaptation of the central metabolism to lactate, citrate and amino acid as carbon sources with the induction of the glyoxylate bypass was observed, while other components of AUM like urea and creatinine were not used. Amino acid utilization pathways were found induced, while fatty acid biosynthesis was reduced. The high amounts of phosphate found in AUM explain the reduction of phosphate assimilation systems. Increased quorum sensing activity with the parallel reduction of chemotaxis and flagellum assembly underscored the importance of the biofilm life style. However, reduced formation of the extracellular polysaccharide alginate, typical for P. aeruginosa biofilms in lungs, indicated a different biofilm type for urinary tract infections. Furthermore, the obtained quorum sensing response results in an increased production of virulence factors like the extracellular lipase LipA and protease LasB and AprA explaining the harmful cause of these infections.

  1. The Pel Polysaccharide Can Serve a Structural and Protective Role in the Biofilm Matrix of Pseudomonas aeruginosa

    OpenAIRE

    Colvin, Kelly M.; Gordon, Vernita D.; Murakami, Keiji; Borlee, Bradley R; Wozniak, Daniel J.; Wong, Gerard C. L.; Parsek, Matthew R.

    2011-01-01

    Bacterial extracellular polysaccharides are a key constituent of the extracellular matrix material of biofilms. Pseudomonas aeruginosa is a model organism for biofilm studies and produces three extracellular polysaccharides that have been implicated in biofilm development, alginate, Psl and Pel. Significant work has been conducted on the roles of alginate and Psl in biofilm development, however we know little regarding Pel. In this study, we demonstrate that Pel can serve two functions in bio...

  2. Clove bud oil reduces kynurenine and inhibits pqs A gene expression in P. aeruginosa.

    Science.gov (United States)

    H, Jayalekshmi; Omanakuttan, Athira; Pandurangan, N; S Vargis, Vidhu; Maneesh, M; G Nair, Bipin; B Kumar, Geetha

    2016-04-01

    Quorum sensing (QS), a communication system involved in virulence of pathogenic bacteria like Pseudomonas aeruginosa is a promising target to combat multiple drug resistance. In vitro studies using clove bud oil (CBO) in P. aeruginosa revealed a concentration dependent attenuation of a variety of virulence factors including motility, extracellular DNA, exopolysaccharides and pigment production. Furthermore, treatment with CBO demonstrated a distinct dose-dependent reduction in biofilm formation as well as promoting dispersion of already formed biofilm, observations that were also supported by porcine skin ex vivo studies. Expression studies of genes involved in signalling systems of P. aeruginosa indicated a specific decrease in transcription of pqsA, but not in the lasI or rhlI levels. Additionally, the expression of vfr and gacA genes, involved in regulation, was also not affected by CBO treatment. CBO also influenced the PQS signalling pathway by decreasing the levels of kynurenine, an effect which was reversed by the addition of exogenous kynurenine. Though the synthesis of the signalling molecules of the Las and Rhl pathways was not affected by CBO, their activity was significantly affected, as observed by decrease in levels of their various effectors. Molecular modelling studies demonstrated that eugenol, the major component of CBO, favourably binds to the QS receptor by hydrophobic interactions as well as by hydrogen bonding with Arg61 and Tyr41 which are key amino acid residues of the LasR receptor. These results thus elucidate the molecular mechanism underlying the action of CBO and provide the basis for the identification of an attractive QS inhibitor. PMID:26821927

  3. The production-influencing factors of extracellular polysacchadde(EPS) from a Strain of lactic acid bacteria and EPS extraction

    Institute of Scientific and Technical Information of China (English)

    CHEN Ying; SUN Liping; ZENG Yong; WANG Lei; AN Liguo

    2006-01-01

    The influencing factors of extracellular polysaccharide(EPS)produced from a strain of lactic acid bacteria(LAB L15)were studied by using the phenol-H2SO4 method.It was demonstrated that the strain produced EPS at the most amount when it was incubated for 40-48 h and when the pH value was 4 under 30℃.Glucose was the most suitable carbon source for LAB-producing EPS.The rough EPS was obtained from L15 culture after centrifugation,dialysis,deprotein,decoloration,and ethanol-precipitation.The sample was at least composed of two polysaccharides mat were completely different in molecular weight and the amount.The purified EPS was passed through the SephadexG-200 colunm and it showed that it was a sample purified by thin layer chromatography.

  4. Ellagic acid derivatives from Terminalia chebula Retz. downregulate the expression of quorum sensing genes to attenuate Pseudomonas aeruginosa PAO1 virulence.

    Directory of Open Access Journals (Sweden)

    Sajal Sarabhai

    Full Text Available BACKGROUND: Burgeoning antibiotic resistance in Pseudomonas aeruginosa has necessitated the development of anti pathogenic agents that can quench acylhomoserine lactone (AHL mediated QS with least risk of resistance. This study explores the anti quorum sensing potential of T. chebula Retz. and identification of probable compounds(s showing anti QS activity and the mechanism of attenuation of P. aeruginosa PAO1 virulence factors. METHODS AND RESULTS: Methanol extract of T. chebula Retz. fruit showed anti QS activity using Agrobacterium tumefaciens A136. Bioactive fraction (F7, obtained by fractionation of methanol extract using Sephadex LH20, showed significant reduction (p<0.001 in QS regulated production of extracellular virulence factors in P. aeruginosa PAO1. Biofilm formation and alginate were significantly (p<0.05 reduced with enhanced (20% susceptibility to tobramycin. Real Time PCR of F7 treated P. aeruginosa showed down regulation of autoinducer synthase (lasI and rhlI and their cognate receptor (lasR and rhlR genes by 89, 90, 90 and 93%, respectively. Electrospray Ionization Mass Spectrometry also showed 90 and 64% reduction in the production of 3-oxo-C(12HSL and C(4HSL after treatment. Decrease in AHLs as one of the mechanisms of quorum quenching by F7 was supported by the reversal of inhibited swarming motility in F7-treated P. aeruginosa PAO1 on addition of C(4HSL. F7 also showed antagonistic activity against 3-oxo-C(12HSL-dependent QS in E. coli bioreporter. C. elegans fed on F7-treated P. aeruginosa showed enhanced survival with LT50 increasing from 24 to 72 h. LC-ESI-MS of F7 revealed the presence of ellagic acid derivatives responsible for anti QS activity in T. chebula extract. CONCLUSIONS: This is the first report on anti QS activity of T. chebula fruit linked to EADs which down regulate the expression of lasIR and rhlIR genes with concomitant decrease in AHLs in P. aeruginosa PAO1 causing attenuation of its virulence factors

  5. Acquisition and role of molybdate in Pseudomonas aeruginosa.

    Science.gov (United States)

    Pederick, Victoria G; Eijkelkamp, Bart A; Ween, Miranda P; Begg, Stephanie L; Paton, James C; McDevitt, Christopher A

    2014-11-01

    In microaerophilic or anaerobic environments, Pseudomonas aeruginosa utilizes nitrate reduction for energy production, a process dependent on the availability of the oxyanionic form of molybdenum, molybdate (MoO4 (2-)). Here, we show that molybdate acquisition in P. aeruginosa occurs via a high-affinity ATP-binding cassette permease (ModABC). ModA is a cluster D-III solute binding protein capable of interacting with molybdate or tungstate oxyanions. Deletion of the modA gene reduces cellular molybdate concentrations and results in inhibition of anaerobic growth and nitrate reduction. Further, we show that conditions that permit nitrate reduction also cause inhibition of biofilm formation and an alteration in fatty acid composition of P. aeruginosa. Collectively, these data highlight the importance of molybdate for anaerobic growth of P. aeruginosa and reveal novel consequences of nitrate reduction on biofilm formation and cell membrane composition. PMID:25172858

  6. Extracellular Production of Silver Nanoparticles by Using Three Common Species of Dermatophytes: Trichophyton rubrum, Trichophyton mentagrophytes and Microsporum canis

    International Nuclear Information System (INIS)

    To develop a new green approach for biosynthesis of silver nanoparticles, myconanotechnology has been represented as a novel field of study in nano technology. In this study, we have reported the extracellular synthesis of highly stable silver nanoparticles using three species of dermatophytes: Trichophyton rubrum, Trichophyton mentagrophytes and Microsporum canis. Methods: Clinical strains of these species were grown in a liquid medium containing mineral salt and incubated at 25degreeC for 5-7 days. The cell-free filtrate of each culture was obtained and subjected to synthesize silver nanoparticles in the presence of 1 m M AgNO3. Results: The reduction of Ag+ ions in metal nanoparticles was investigated virtually by tracing the solution color which was switched into reddish-light brown after 72 h. For T. mentagrophytes, a UV-visible spectra demonstrating a strong, quite narrow peak located between 422 and 425 nm was obtained. For M. canis, a fairly wide peak centering at 441 nm and for T. rubrum, a weak spectrum to decipher were observed. According to transmission electron microscopy results, fairly uniform, spherical, and small in size with almost less than 50 nm particles were forms in case of T. mentagrophytes. For the other two species, transmission electron microscopy images showed existence of small spherical nano silvers but not as small as nanoparticles synthesized by T. mentagrophytes. Conclusion: We observed that species belong to a single genus of the fungi have variable ability to synthesize silver nanoparticles extracellulary with different efficiency. Furthermore, the extracellular synthesis may make the process simpler and easier for following processes.

  7. Antibodies against Pseudomonas aeruginosa chromosomal beta-lactamase inpatients with cystic fibrosis are markers of the development of resistance of P. aeruginosa to beta-lactams

    DEFF Research Database (Denmark)

    Ciofu, O; Giwercman, B; Walter-Rasmussen, J; Pressler, T; Pedersen, S S; Høiby, N

    1995-01-01

    Chromosomal beta-lactamase production is considered to be the most important resistance mechanism of Pseudomonas aeruginosa against beta-lactams. Recently we have detected serum and sputum antibodies against P. aeruginosa chromosomal beta-lactamase (a beta ab), using immunoblotting techniques. In...

  8. Cloning and surface expression of Pseudomonas aeruginosa O antigen in Escherichia coli.

    OpenAIRE

    Goldberg, J B; Hatano, K; Meluleni, G S; Pier, G B

    1992-01-01

    As a step toward developing recombinant oral vaccines, we have explored the feasibility of expression of O polysaccharide antigens from Pseudomonas aeruginosa by Escherichia coli. We cloned in E. coli HB101 a 26.2-kilobase DNA fragment from P. aeruginosa strain PA103 that specifies the production of the O polysaccharide of Fisher immunotype 2 (IT-2) strains. The recombinant organism incorporated the P. aeruginosa IT-2 O polysaccharide onto the core of the E. coli lipopolysaccharide (LPS). Tra...

  9. Inhibition of Pseudomonas aeruginosa elastase and Pseudomonas keratitis using a thiol-based peptide.

    OpenAIRE

    Burns, F R; Paterson, C. A.; Gray, R. D.; Wells, J T

    1990-01-01

    Pseudomonas aeruginosa elastase is a zinc metalloproteinase which is released during P. aeruginosa infections. Pseudomonas keratitis, which occurs following contact lens-induced corneal trauma, can lead to rapid, liquefactive necrosis of the cornea. This destruction has been attributed to the release of both host-derived enzymes and the bacterial products P. aeruginosa elastase, alkaline protease, exotoxin A, and lipopolysaccharide endotoxin. A synthetic metalloproteinase inhibitor, HSCH2 (DL...

  10. OPTIMIZATION OF FERMENTATION PARAMETERS FOR THE PRODUCTION OF EXTRACELLULAR ENDOGLUCANASE, β –GLUCOSIDASE AND ENDOXYLANASE BY A CHROMIUM RESISTANT STRAIN OF TRICHODERMA PSEUDOKONINGII

    Directory of Open Access Journals (Sweden)

    Rina Rani Ray

    2013-08-01

    Full Text Available Trichoderma pseudokoningii, a chromate reducing fungal strain, was isolated from the tannery-effluents. The present Cr (VI resistant strain was found to produce good amount of various extracellular enzymes that included cellulases (endoglucanase and β–glucosidase and hemicellulase (endoxylanase in submerged fermentation (SmF. The titre of β–glucosidase was found to be higher than that of endoglucanase. Cellulases were best induced in presence of 1% of respective substrates whereas only 0.5% xylan could induce endoxylanase production in this strain. Although the optimum temperature for all three enzymes was found to be 27oC, the pH optimum of cellulases (pH 5 were different from that of endoxylanase (pH 6. Under optimized conditions, maximum of production of all these enzymes was achieved within 48 hours of cultivation. Among nitrogen sources tested, potassium nitrate was found to be the most effective followed by gelatin.

  11. Magnesium limitation is an environmental trigger of the Pseudomonas aeruginosa biofilm lifestyle.

    Directory of Open Access Journals (Sweden)

    Heidi Mulcahy

    Full Text Available Biofilm formation is a conserved strategy for long-term bacterial survival in nature and during infections. Biofilms are multicellular aggregates of cells enmeshed in an extracellular matrix. The RetS, GacS and LadS sensors control the switch from a planktonic to a biofilm mode of growth in Pseudomonas aeruginosa. Here we detail our approach to identify environmental triggers of biofilm formation by investigating environmental conditions that repress expression of the biofilm repressor RetS. Mg(2+ limitation repressed the expression of retS leading to increased aggregation, exopolysaccharide (EPS production and biofilm formation. Repression of retS expression under Mg(2+ limitation corresponded with induced expression of the GacA-controlled small regulatory RNAs rsmZ and rsmY and the EPS biosynthesis operons pel and psl. We recently demonstrated that extracellular DNA sequesters Mg(2+ cations and activates the cation-sensing PhoPQ two-component system, which leads to increased antimicrobial peptide resistance in biofilms. Here we show that exogenous DNA and EDTA, through their ability to chelate Mg(2+, promoted biofilm formation. The repression of retS in low Mg(2+ was directly controlled by PhoPQ. PhoP also directly controlled expression of rsmZ but not rsmY suggesting that PhoPQ controls the equilibrium of the small regulatory RNAs and thus fine-tunes the expression of genes in the RetS pathway. In summary, Mg(2+ limitation is a biologically relevant environmental condition and the first bonafide environmental signal identified that results in transcriptional repression of retS and promotes P. aeruginosa biofilm formation.

  12. Cell-free production of integral membrane aspartic acid proteases reveals zinc-dependent methyltransferase activity of the Pseudomonas aeruginosa prepilin peptidase PilD

    Science.gov (United States)

    Aly, Khaled A; Beebe, Emily T; Chan, Chi H; Goren, Michael A; Sepúlveda, Carolina; Makino, Shin-ichi; Fox, Brian G; Forest, Katrina T

    2013-01-01

    Integral membrane aspartic acid proteases are receiving growing recognition for their fundamental roles in cellular physiology of eukaryotes and prokaryotes, and may be medically important pharmaceutical targets. The Gram-negative Pseudomonas aeruginosa PilD and the archaeal Methanococcus voltae FlaK were synthesized in the presence of unilamellar liposomes in a cell-free translation system. Cosynthesis of PilD with its full-length substrate, PilA, or of FlaK with its full-length substrate, FlaB2, led to complete cleavage of the substrate signal peptides. Scaled-up synthesis of PilD, followed by solubilization in dodecyl-β-d-maltoside and chromatography, led to a pure enzyme that retained both of its known biochemical activities: cleavage of the PilA signal peptide and S-adenosyl methionine-dependent methylation of the mature pilin. X-ray fluorescence scans show for the first time that PilD is a zinc-binding protein. Zinc is required for the N-terminal methylation of the mature pilin, but not for signal peptide cleavage. Taken together, our work identifies the P. aeruginosa prepilin peptidase PilD as a zinc-dependent N-methyltransferase and provides a new platform for large-scale synthesis of PilD and other integral membrane proteases important for basic microbial physiology and virulence. PMID:23255525

  13. In vitro production of biofilm in a flow cell system in a strain of Pseudomonas aeruginosa and Staphylococcus aureus and determination of efficiency of ciprofloxacin against them

    Directory of Open Access Journals (Sweden)

    Soham Gupta

    2011-01-01

    Full Text Available Background: Microorganisms develop biofilm on various medical devices. The process is particularly relevant in public health since biofilm associated organisms are much more resistant to antibiotics and have a potential to cause infections in patients with indwelling medical devices. Materials and Methods: To determine the efficiency of an antibiotic against the biofilm it is inappropriate to use traditional technique of determining Minimum Inhibitory Concentration (MIC on the free floating laboratory phenotype. Thus we have induced formation of biofilm in two strains (Pseudomonas aeruginosa and Staphylococcus aureus, which showed heavy growth of biofilm in screening by Tube method in a flow cell system and determined their antibiotic susceptibility against ciprofloxacin by agar dilution method in the range (0.25 mg/ml to 8 mg/ml. The MIC value of ciprofloxacin for the biofilm produced organism was compared with its free form and a standard strain as control on the same plates. Observations: Both the biofilm produced strains showed a higher resistance (MIC > 8 mg/ml than its free form, which were 2 μg/ml for Pseudomonas aeruginosa and 4 mg/ml for Staphylococcus aureus. Thus biofilm can pose a threat in the patient treatment.

  14. In Vitro Analysis of Tobramycin-Treated Pseudomonas aeruginosa Biofilms on Cystic Fibrosis-Derived Airway Epithelial Cells▿ †

    OpenAIRE

    Anderson, Gregory G.; Moreau-Marquis, Sophie; Stanton, Bruce A.; O'Toole, George A.

    2008-01-01

    P. aeruginosa forms biofilms in the lungs of individuals with cystic fibrosis (CF); however, there have been no effective model systems for studying biofilm formation in the CF lung. We have developed a tissue culture system for growth of P. aeruginosa biofilms on CF-derived human airway cells that promotes the formation of highly antibiotic-resistant microcolonies, which produce an extracellular polysaccharide matrix and require the known abiotic biofilm formation genes flgK and pilB. Treatm...

  15. Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines.

    Science.gov (United States)

    Morales, Diana K; Grahl, Nora; Okegbe, Chinweike; Dietrich, Lars E P; Jacobs, Nicholas J; Hogan, Deborah A

    2013-01-01

    Candida albicans has developmental programs that govern transitions between yeast and filamentous morphologies and between unattached and biofilm lifestyles. Here, we report that filamentation, intercellular adherence, and biofilm development were inhibited during interactions between Candida albicans and Pseudomonas aeruginosa through the action of P. aeruginosa-produced phenazines. While phenazines are toxic to C. albicans at millimolar concentrations, we found that lower concentrations of any of three different phenazines (pyocyanin, phenazine methosulfate, and phenazine-1-carboxylate) allowed growth but affected the development of C. albicans wrinkled colony biofilms and inhibited the fungal yeast-to-filament transition. Phenazines impaired C. albicans growth on nonfermentable carbon sources and led to increased production of fermentation products (ethanol, glycerol, and acetate) in glucose-containing medium, leading us to propose that phenazines specifically inhibited respiration. Methylene blue, another inhibitor of respiration, also prevented the formation of structured colony biofilms. The inhibition of filamentation and colony wrinkling was not solely due to lowered extracellular pH induced by fermentation. Compared to smooth, unstructured colonies, wrinkled colony biofilms had higher oxygen concentrations within the colony, and wrinkled regions of these colonies had higher levels of respiration. Together, our data suggest that the structure of the fungal biofilm promotes access to oxygen and enhances respiratory metabolism and that the perturbation of respiration by bacterial molecules such as phenazines or compounds with similar activities disrupts these pathways. These findings may suggest new ways to limit fungal biofilms in the context of disease. IMPORTANCE Many of the infections caused by Candida albicans, a major human opportunistic fungal pathogen, involve both morphological transitions and the formation of surface-associated biofilms. Through the

  16. Stimulation of extracellular invertase production from spent yeast when sugarcane pressmud used as substrate through solid state fermentation

    OpenAIRE

    Kumar, Rahul; Kesavapillai, Balakrishnan

    2012-01-01

    Efforts were made to utilize the waste/by-product of two agro-process industries namely pressmud from sugar processing industries and spent yeast from distilleries manufacturing ethanol from cane molasses, for the production of microbial invertase. Our experimentation indicated that these two sources could be ideally utilized for the production of invertase through solid substrate fermentation (SSF). SSF with spent yeast had given highest specific activity of 430 U/mg in 72 h of fermentation....

  17. Improving production of extracellular proteases by random mutagenesis and biochemical characterization of a serine protease in Bacillus subtilis S1-4.

    Science.gov (United States)

    Wang, X C; Zhao, H Y; Liu, G; Cheng, X J; Feng, H

    2016-01-01

    The feather is a valuable by-product with a huge annual yield produced by the poultry industry. Degradation of feathers by microorganisms is a prerequisite to utilize this insoluble protein resource. To improve the degrading efficiency of feathers, mutagenesis of the bacterium Bacillus subtilis S1-4 was performed. By combining ultraviolet irradiation and N-methyl-N'-nitro-N-nitrosoguanidine treatment for mutagenesis, a high protease-producing mutant (UMU4) of B. subtilis S1-4 was selected, which exhibited 2.5-fold higher extracellular caseinolytic activity than did the wild-type strain. UMU4 degraded chicken feathers more efficiently, particularly for the release of soluble proteins from the feathers, compared to the wild-type strain. Furthermore, an extracellular protease with a molecular weight of 45 kDa, as determined by SDS-PAGE, was purified from UMU4. Biochemical characterization indicated that the caseinolytic activity of the protease was largely inhibited by phenylmethanesulfonyl fluoride, suggesting that the purified enzyme is a serine protease. This protease was highly active over a wide range of pHs (6.0 to 12.0) and temperatures (50° to 75°C) with an optimal pH and temperature of 8.0 and 65°C, respectively. The purified enzyme exhibited good thermostability with a 72.2 min half-life of thermal denaturation at 60°C. In addition, this protease was not sensitive to heavy metal ions, surfactants, or oxidative reagents. In conclusion, strain improvement for protease production can serve as an alternative strategy to promote feather degradation. The UMU4 mutant of B. subtilis and its serine protease could be potentially used in various industries. PMID:27323184

  18. Lignocellulosic hydrolysates and extracellular electron shuttles for H2 production using co-culture fermentation with Clostridium beijerinckii and Geobacter metallireducens.

    Science.gov (United States)

    Zhang, Xinyu; Ye, Xiaofeng; Guo, Bin; Finneran, Kevin T; Zilles, Julie L; Morgenroth, Eberhard

    2013-11-01

    A co-culture of Clostridium beijerinckii and Geobacter metallireducens with AH2QDS produced hydrogen from lignocellulosic hydrolysates (biomass of Miscanthus prepared by hydrothermal treatment with dilute acids). This co-culture system enhanced hydrogen production from lignocellulosic hydrolysates by improving substrate utilization and diminishing acetate accumulation, despite the presence of fermentation inhibitors in the hydrolysates. The improvements were greater for xylose-rich hydrolysates. The increase in maximum cumulative hydrogen production for hydrolysates with glucose:xylose mass ratios of 1:0.2, 1:1 and 1:10 g/g was 0%, 22% and 11%, respectively. Alternative extracellular electron shuttles (EES), including indigo dye, juglone, lawsone, fulvic acids and humic acids, were able to substitute for AH2QDS, improving hydrogen production in the co-culture system using xylose as model substrate. Increased utilization of xylose-rich hydrolysates and substitution of alternative EES make the co-culture with EES system a more attractive strategy for industrial biohydrogen production. PMID:23994308

  19. The implication of Pseudomonas aeruginosa biofilms in infections

    DEFF Research Database (Denmark)

    Rybtke, Morten Theil; Jensen, Peter Ø; Høiby, Niels; Givskov, Michael Christian; Tolker-Nielsen, Tim; Bjarnsholt, Thomas

    2011-01-01

    Biofilm formation by bacteria is recognized as a major problem in chronic infections due to their recalcitrance against the immune defense and available antibiotic treatment schemes. The opportunistic pathogen Pseudomonas aeruginosa has drawn special attention in this regard due to its severity of...... extracellular matrix encasing the biofilm-associated bacteria as well as the elaborate signaling mechanisms employed by the bacterium enables it to withstand the continuous stresses imposed by the immune defense and administered antibiotics resulting in a state of chronic inflammation that damages the host. The...... immune response leading to this chronic inflammation is described. Finally, novel treatment strategies againstP. aeruginosa are described including, quorum-sensing inhibition and induced biofilm-dispersion. The tolerance towards currently available antimicrobials calls for development of alternative...

  20. In vitro cartilage production using an extracellular matrix-derived scaffold and bone marrow-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yan-hong; YANG Qiang; XIA Qun; PENG Jiang; LU Shi-bi; GUO Quan-yi; MA Xin-long

    2013-01-01

    Background Cartilage repair is a challenging research area because of the limited healing capacity of adult articular cartilage.We had previously developed a natural,human cartilage extracellular matrix (ECM)-derived scaffold for in vivo cartilage tissue engineering in nude mice.However,before these scaffolds can be used in clinical applications in vivo,the in vitro effects should be further explored.Methods We produced cartilage in vitro using a natural cartilage ECM-derived scaffold.The scaffolds were fabricated by combining a decellularization procedure with a freeze-drying technique and were characterized by scanning electron microscopy (SEM),micro-computed tomography (micro-CT),histological staining,cytotoxicity assay,biochemical and biomechanical analysis.After being chondrogenically induced,the induction results of BMSCs were analyzed by histology and Immunohisto-chemistry.The attachment and viability assessment of the cells on scaffolds were analyzed using SEM and LIVE/DEAD staining.Cell-scaffold constructs cultured in vitro for 1 week and 3 weeks were analyzed using histological and immunohistochemical methods.Results SEM and micro-CT revealed a 3-D interconnected porous structure.The majority of the cartilage ECM was found in the scaffold following the removal of cellular debris,and stained positive for safranin O and collagen Ⅱ.Viability staining indicated no cytotoxic effects of the scaffold.Biochemical analysis showed that collagen content was (708.2±44.7)μg/mg,with GAG (254.7±25.9) μg/mg.Mechanical testing showed the compression moduli (E) were (1.226±0.288) and (0.052±0.007) MPa in dry and wet conditions,respectively.Isolated canine bone marrow-derived stem cells (BMSCs) were induced down a chondrogenic pathway,labeled with PKH26,and seeded onto the scaffold.Immunofluorescent staining of the cell-scaffold constructs indicated that chondrocyte-like cells were derived from seeded BMSCs and excreted ECM.The cell-scaffold constructs contained

  1. Comparative genomic analysis of Geobacter sulfurreducens KN400, a strain with enhanced capacity for extracellular electron transfer and electricity production

    Directory of Open Access Journals (Sweden)

    Butler Jessica E

    2012-09-01

    Full Text Available Abstract Background A new strain of Geobacter sulfurreducens, strain KN400, produces more electrical current in microbial fuel cells and reduces insoluble Fe(III oxides much faster than the wildtype strain, PCA. The genome of KN400 was compared to wildtype with the goal of discovering how the network for extracellular electron transfer has changed and how these two strains evolved. Results Both genomes were re-annotated, resulting in 14 fewer genes (net in the PCA genome; 28 fewer (net in the KN400 genome; and ca. 400 gene start and stop sites moved. 96% of genes in KN400 had clear orthologs with conserved synteny in PCA. Most of the remaining genes were in regions of genomic mobility and were strain-specific or conserved in other Geobacteraceae, indicating that the changes occurred post-divergence. There were 27,270 single nucleotide polymorphisms (SNP between the genomes. There was significant enrichment for SNP locations in non-coding or synonymous amino acid sites, indicating significant selective pressure since the divergence. 25% of orthologs had sequence differences, and this set was enriched in phosphorylation and ATP-dependent enzymes. Substantial sequence differences (at least 12 non-synonymous SNP/kb were found in 3.6% of the orthologs, and this set was enriched in cytochromes and integral membrane proteins. Genes known to be involved in electron transport, those used in the metabolic cell model, and those that exhibit changes in expression during growth in microbial fuel cells were examined in detail. Conclusions The improvement in external electron transfer in the KN400 strain does not appear to be due to novel gene acquisition, but rather to changes in the common metabolic network. The increase in electron transfer rate and yield in KN400 may be due to changes in carbon flux towards oxidation pathways and to changes in ATP metabolism, both of which indicate that the overall energy state of the cell may be different. The

  2. Extracellular production of a glycolipid biosurfactant, mannosylerythritol lipid, by Candida sp. SY16 using fed-batch fermentation.

    Science.gov (United States)

    Kim, Hee-Sik; Jeon, Jong-Woon; Kim, Byung-Hyuk; Ahn, Chi-Yong; Oh, Hee-Mock; Yoon, Byung-Dae

    2006-04-01

    Candida sp. strain SY16 produces a glycolipid-type biosurfactant, mannosylerythritol lipid (MEL-SY16), which can reduce the surface tension of a culture broth from 72 to 30 dyne cm(-1) and highly emulsify hydrocarbons when cultured in soybean-oil-containing media. As such, laboratory-scale fermentation for MEL-SY16 production was performed using optimized conditions. In batch fermentation, MEL-SY16 was mainly produced during the stationary phase of growth, and the concentration of MEL-SY16 reached 37 g l(-1) after 200 h. The effect of pH control on the production of MEL-SY16 was also examined in batch fermentation. The highest production yield of MEL-SY16 was when the pH was controlled at 4.0, and the production was significantly improved compared to batch fermentation without pH control. In fed-batch fermentation, glucose and soybean oil (1:1, w/w) were used in combination as the initial carbon sources for cell growth, and soybean oil was used as the feeding carbon source during the MEL production phase. The feeding of soybean oil resulted in the disappearance of any foam and a sharp increase in the MEL production until 200 h, at which point the concentration of MEL-SY16 was 95 g l(-1). Among the investigated culture systems, the highest MEL-SY16 production and volumetric production rate were achieved with fed-batch fermentation. PMID:16133323

  3. Paerucumarin, a new metabolite produced by the pvc gene cluster from Pseudomonas aeruginosa.

    Science.gov (United States)

    Clarke-Pearson, Michael F; Brady, Sean F

    2008-10-01

    The pvc gene cluster from Pseudomonas aeruginosa has been linked to the biosynthesis of both the pyoverdine chromophore and pseudoverdine. Our reinvestigation of the role this gene cluster plays in P. aeruginosa secondary metabolite biosynthesis shows that its major product is actually paerucumarin, a novel isonitrile functionalized cumarin. PMID:18689486

  4. Pseudomonas and neutrophil products modify transferrin and lactoferrin to create conditions that favor hydroxyl radical formation.

    OpenAIRE

    Britigan, B E; Edeker, B L

    1991-01-01

    In vivo most extracellular iron is bound to transferrin or lactoferrin in such a way as to be unable to catalyze the formation of hydroxyl radical from superoxide (.O2-) and hydrogen peroxide (H2O2). At sites of Pseudomonas aeruginosa infection bacterial and neutrophil products could possibly modify transferrin and/or lactoferrin forming catalytic iron complexes. To examine this possibility, diferrictransferrin and diferriclactoferrin which had been incubated with pseudomonas elastase, pseudo...

  5. Extracellular polysaccharide production by a novel osmotolerant marine strain of Alteromonas macleodii and its application towards biomineralization of silver.

    Directory of Open Access Journals (Sweden)

    Ananya Mehta

    Full Text Available The present study demonstrates exopolysaccharide production by an osmotolerant marine isolate and also describes further application of the purified polysaccharide for production of colloidal suspension of silver nanoparticles with narrow size distribution. Phylogenetic analysis based on 16S r RNA gene sequencing revealed close affinity of the isolate to Alteromonas macleodii. Unlike earlier reports, where glucose was used as the carbon source, lactose was found to be the most suitable substrate for polysaccharide production. The strain was capable of producing 23.4 gl(-1 exopolysaccharide with a productivity of 7.8 gl(-1 day(-1 when 15% (w/v lactose was used as carbon source. Furthermore, the purified polysaccharide was able to produce spherical shaped silver nanoparticles of around 70 nm size as characterized by Uv-vis spectroscopy, Dynamic light scattering and Transmission electron microscopy. These observations suggested possible commercial potential of the isolated strain for production of a polysaccharide which has the capability of synthesizing biocompatible metal nanoparticle.

  6. Expression and Characterization of the Extracellular Domain of Human HER2 from Escherichia Coli, and Production of Polyclonal Antibodies Against the Recombinant Proteins.

    Science.gov (United States)

    Sun, Yong; Feng, Xue; Qu, Jiao; Han, Wenqi; Liu, Zi; Li, Xu; Zou, Ming; Zhen, Yuhong; Zhu, Jie

    2015-06-01

    Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor (EGFR) family. In this study, the whole extracellular domain gene of HER2 was amplified by RT-PCR from human breast cancer cell line SK-BR-3. The genes of membrane-distal region (A) and membrane proximal region (B) of HER2 extracellular domain were amplified from the cloned template, and then inserted into the expression vector pET-28a and pET-30a, respectively. The recombinant expression vectors were transformed into Escherichia coli BL21 (DE3) cells and induced by isopropyl-b-D-thiogalactopyranoside (IPTG) for expression of proteins His-A and His-B. The expressed proteins were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot. The optimization of culture conditions led us to accomplish the recombinant protein induction with 1.0 mM IPTG at 37 °C for 8 h, and both proteins were expressed in the insoluble form. Both proteins were purified under the denaturing condition using Ni-NTA sepharose column. Balb/c mice were immunized with the purified proteins and then effectively produced polyclonal antibodies, which reached to a relatively high titer by ELISA testing and had good specificity by western blot detection. The HER2 ECD proteins His-A and His-B could be expressed in E. coli and were suitable for production of high titer antibodies against HER2 ECD. PMID:25906688

  7. Pseudomonas aeruginosa in Healthcare Settings

    Science.gov (United States)

    ... CDC.gov . Healthcare-associated Infections (HAIs) Share Compartir Pseudomonas aeruginosa in Healthcare Settings On this Page What ... and/or help treat infections? What is a Pseudomonas infection? Pseudomonas infection is caused by strains of ...

  8. Extracellular production of neoculin, a sweet-tasting heterodimeric protein with taste-modifying activity, by Aspergillus oryzae.

    Science.gov (United States)

    Nakajima, Ken-ichiro; Asakura, Tomiko; Maruyama, Jun-ichi; Morita, Yuji; Oike, Hideaki; Shimizu-Ibuka, Akiko; Misaka, Takumi; Sorimachi, Hiroyuki; Arai, Soichi; Kitamoto, Katsuhiko; Abe, Keiko

    2006-05-01

    Neoculin (NCL), a protein with sweetness approximately 500-fold that of sugar, can be utilized as a nonglycemic sweetener. It also has taste-modifying activity to convert sourness to sweetness. NCL is a heterodimer composed of an N-glycosylated acidic subunit (NAS) and a basic subunit (NBS), which are conjugated by disulfide bonds. For the production of recombinant NCL (rNCL) by Aspergillus oryzae, alpha-amylase with a KEX2 cleavage site, -K-R-, was fused upstream of each of NAS and NBS and the resulting fusion proteins were simultaneously expressed. For accurate and efficient cleavage of the fusion construct by KEX2-like protease, a triglycine motif was inserted after the KEX2 cleavage site. As NBS showed lower production efficiency than did NAS, a larger amount of the NBS expression plasmid than of NAS expression plasmid was introduced during cotransformation, resulting in successful production of rNCL in the culture medium. Moreover, to obtain a higher production yield of rNCL, the active form of hacA cDNA encoding a transcription factor that induces an unfolded protein response was cloned and expressed constitutively. This resulted in a 1.5-fold increase in the level of rNCL production (2.0 mg/liter). rNCL was purified by chromatography, and its NAS was found to be N-glycosylated as expected. The original sweetness and taste-modifying activity of rNCL were comparable to those of native NCL when confirmed by calcium imaging with human embryonic kidney cells expressing the human sweet taste receptor and by sensory tests. PMID:16672522

  9. Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption

    OpenAIRE

    Wang, Benjamin L.; Ghaderi, Adel; Zhou, Hang; Agresti, Jeremy; David A Weitz; Fink, Gerald R; Stephanopoulos, Gregory

    2013-01-01

    Phenotyping single cells based on the products they secrete or consume is a key bottleneck in many biotechnology applications, such as combinatorial metabolic engineering for the overproduction of secreted metabolites. Here we present a flexible high-throughput approach that uses microfluidics to compartmentalize individual cells for growth and analysis in monodisperse nanoliter aqueous droplets surrounded by an immiscible fluorinated oil phase. We use this system to identify xylose-overconsu...

  10. OPTIMIZATION OF THE PRODUCTION AND PARTIAL CHARACTERIZATION OF AN EXTRACELLULAR ALKALINE PROTEASE FROM THERMO-HALO-ALKALOPHILIC LONAR LAKE BACTERIA

    OpenAIRE

    Sandhya D Tambekar; Tambekar, D. H.

    2013-01-01

    LONAR Lake, an impact crater located in the Buldhana district of Maharashtra State, India is occupied by saline water and harbors various unidentified, unique haloalkaliphilic bacterial bacillus species which produces thermo-halo-alkaliphilic proteases. The present study deals with the isolation, production dynamics, purification, characterization and optimization of a protease from Bacillus pseudofirmus, Cohnella thermotolerans and Bacillus odysseyi isolated and identified by 16S rRNA riboty...

  11. Stimulation of extracellular invertase production from spent yeast when sugarcane pressmud used as substrate through solid state fermentation.

    Science.gov (United States)

    Kumar, Rahul; Kesavapillai, Balakrishnan

    2012-12-01

    Efforts were made to utilize the waste/by-product of two agro-process industries namely pressmud from sugar processing industries and spent yeast from distilleries manufacturing ethanol from cane molasses, for the production of microbial invertase. Our experimentation indicated that these two sources could be ideally utilized for the production of invertase through solid substrate fermentation (SSF). SSF with spent yeast had given highest specific activity of 430 U/mg in 72 h of fermentation. Inoculum percentage of yeast cells on pressmud was optimized as 50% (w/w) with a combination inoculum of spent yeast and fresh cultured yeast at a ratio of 7:3. Crude enzyme was characterized for optimum pH and temperature and maximum activity was recorded at pH 5.0 and at a temperature of 40°C. Impacts of metal ions and detergents on invertase action were studied in which Mn(2+), Fe(3+), Al(3+) and detergents had enhanced the activity of the enzyme whereas Cu(2+) and Zn(2+) inhibited the enzyme activity. Purification of 9.8 folds was obtained by using three phase partition method. PMID:23420549

  12. Evaluation of Enoyl-Acyl Carrier Protein Reductase Inhibitors as Pseudomonas aeruginosa Quorum-Quenching Reagents

    Directory of Open Access Journals (Sweden)

    Søren Molin

    2010-02-01

    Full Text Available Pseudomonas aeruginosa is an opportunistic pathogen which is responsible for a wide range of infections. Production of virulence factors and biofilm formation by P. aeruginosa are partly regulated by cell-to-cell communication quorum-sensing systems. Identification of quorum-quenching reagents which block the quorum-sensing process can facilitate development of novel treatment strategies for P. aeruginosa infections. We have used molecular dynamics simulation and experimental studies to elucidate the efficiencies of two potential quorum-quenching reagents, triclosan and green tea epigallocatechin gallate (EGCG, which both function as inhibitors of the enoyl-acyl carrier protein (ACP reductase (ENR from the bacterial type II fatty acid synthesis pathway. Our studies suggest that EGCG has a higher binding affinity towards ENR of P. aeruginosa and is an efficient quorum-quenching reagent. EGCG treatment was further shown to be able to attenuate the production of virulence factors and biofilm formation of P. aeruginosa.

  13. Optimization studies on production of a salt-tolerant protease from Pseudomonas aeruginosa strain BC1 and its application on tannery saline wastewater treatment

    Directory of Open Access Journals (Sweden)

    Senthilkumar Sivaprakasam

    2011-12-01

    Full Text Available Treatment and safe disposal of tannery saline wastewater, a primary effluent stream that is generated by soaking salt-laden hides and skin is one of the major problems faced by the leather manufacturing industries. Conventional treatment methods like solar evaporation ponds and land composting are not eco-friendly as they deteriorate the ground water quality. Though, this waste stream is comprised of high concentration of dissolved proteins the presence of high salinity (1-6 % NaCl by wt makes it non-biodegradable. Enzymatic treatment is one of the positive alternatives for management of such kind of waste streams. A novel salt-tolerant alkaline protease obtained from P.aeruginosa (isolated from tannery saline wastewater was used for enzymatic degradation studies. The effect of various physical factors including pH, temperature, incubation time, protein source and salinity on the activity of identified protease were investigated. Kinetic parameters (Km , Vmax were calculated for the identified alkaline protease at varying substrate concentrations. Tannery saline wastewater treated with identified salt tolerant protease showed 75 % protein removal at 6 h duration and 2 % (v/v protease addition was found to be the optimum dosage value.

  14. Optimization of extracellular mannanase production from Penicillium oxalicum KUB-SN2-1 and application for hydrolysis property

    Directory of Open Access Journals (Sweden)

    Sudathip Titapoka Chantorn

    2013-02-01

    Full Text Available Effects of media composition, and physical properties on the production of crude mannanase by Penicillium oxalicumKUB-SN2-1 were investigated. P.oxalicum KUB-SN2-1 was propagated in a shaking incubator at 30°C with rotation speed of200 rpm of 7 days. The specific activity obtained during growth on robusta coffee residues (RCR of 16.21 U/mg protein wasmuch higher than other carbon sources tested. For nitrogen sources, yeast extract (0.11 U/mg protein and ammonium nitrate(0.09 U/mg protein showed maximum specific activity. Hence, guar gum was the best inducer for producing mannanase (14U/mg protein. For evaluating the optimal concentration, the result showed that 1% guar gum, 0.5% yeast extract, 0.25%ammonium nitrate, and 0.25% RCR were the suitable sources of inducer, organic nitrogen, inorganic nitrogen, and carbon,respectively. Modified medium with initial culture pH of 5.0 at 30°C was optimum for mannanase production (53.77 U/ml for3 day. Reducing sugars were analyzed by dinitrosalicylic acid methods. The highest reducing sugar of 7517.82 g/mlwas obtained from copra meal hydrolysate after 30 h.

  15. Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension cultured cells by using cyclodextrins and coronatine.

    Science.gov (United States)

    Almagro, Lorena; Belchí-Navarro, Sarai; Martínez-Márquez, Ascensión; Bru, Roque; Pedreño, María A

    2015-12-01

    In the present work the effect of cyclodextrin and coronatine on both trans-resveratrol production and the expression of stilbene biosynthetic genes in Vitis vinifera L. cv Monastrell suspension cultured cells were evaluated. The results showed the maximum level of trans-resveratrol produced by cells and secreted to the culture medium with 50 mM cyclodextrins and 1 μM coronatine. Since the levels of trans-resveratrol produced in the combined treatment were higher than the sum of the individual treatments, a synergistic effect between both elicitors was assumed. In addition, all the analysed genes were induced by cyclodextrins and/or coronatine. The expression of the phenylalanine ammonia lyase and stilbene synthase genes was greatly enhanced by coronatine although an increase in the amount of trans-resveratrol in the spent medium was not detected. Therefore, despite the fact that trans-resveratrol production is related with the expression of genes involved in the biosynthetic process, other factors may be involved, such as post-transcriptional and post-traductional regulation. The expression maximal levels of cinnamate 4-hydroxylase and 4-coumarate-CoA ligase genes were found with cyclodextrins alone or in combination with coronatine suggesting that the activity of these enzymes could be not only important for the formation of intermediates of trans-R biosynthesis but also for those intermediates involved in the biosynthesis of lignins and/or flavonoids. PMID:26529079

  16. OPTIMIZATION OF THE PRODUCTION AND PARTIAL CHARACTERIZATION OF AN EXTRACELLULAR ALKALINE PROTEASE FROM THERMO-HALO-ALKALOPHILIC LONAR LAKE BACTERIA

    Directory of Open Access Journals (Sweden)

    Sandhya D Tambekar

    2013-01-01

    Full Text Available LONAR Lake, an impact crater located in the Buldhana district of Maharashtra State, India is occupied by saline water and harbors various unidentified, unique haloalkaliphilic bacterial bacillus species which produces thermo-halo-alkaliphilic proteases. The present study deals with the isolation, production dynamics, purification, characterization and optimization of a protease from Bacillus pseudofirmus, Cohnella thermotolerans and Bacillus odysseyi isolated and identified by 16S rRNA ribotyping from the Alkaline Lonar Lake. The Bacillus pseudofirmus, Cohnella thermotolerans and Bacillus odysseyi produced protease at maximum rate after 72 h of incubation at 370C with agitation speed of 120 rpm and 5% of starter culture. The best carbon sources for this Bacillus pseudofirmus, Cohnella thermotolerans and Bacillus odysseyi were fructose, maltose, starch and lactose respectively where as the best nitrogen sources were yeast extract, soy tone and soyabean cake respectively. While the most effective inorganic nitrogen sources was ammonium carbonate for Bacillus pseudofirmus, Cohnella thermotolerans and urea for Bacillus odysseyi. Supplementation of the culture medium with amino acid L-glutamic acid for Bacillus pseudofirmus and L-glycine for Cohnella thermotolerans and Bacillus odysseyi and metal ion Mg2+ for all the three bacillus species improved the protease production substantially. Under these conditions, newly isolated Bacillus pseudofirmus, Cohnella thermotolerans and Bacillus odysseyi strain were found to produce alkaline proteases at a maximum rate of optimum pH 10 and temperature at 750C.

  17. Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis

    DEFF Research Database (Denmark)

    Marvig, Rasmus Lykke; Madsen Sommer, Lea Mette; Molin, Søren;

    2015-01-01

    Little is known about how within-host evolution compares between genotypically different strains of the same pathogenic species. We sequenced the whole genomes of 474 longitudinally collected clinical isolates of Pseudomonas aeruginosa sampled from 34 children and young individuals with cystic...... fibrosis. Our analysis of 36 P. aeruginosa lineages identified convergent molecular evolution in 52 genes. This list of genes suggests a role in host adaptation for remodeling of regulatory networks and central metabolism, acquisition of antibiotic resistance and loss of extracellular virulence factors...... genes involved in host adaptation may help in predicting bacterial evolution in patients with cystic fibrosis and in the design of future intervention strategies....

  18. Nitric oxide production by Biomphalaria glabrata haemocytes: effects of Schistosoma mansoni ESPs and regulation through the extracellular signal-regulated kinase pathway

    Directory of Open Access Journals (Sweden)

    Kirk Ruth S

    2009-04-01

    Full Text Available Abstract Background Schistosoma mansoni uses Biomphalaria glabrata as an intermediate host during its complex life cycle. In the snail, the parasite initially transforms from a miracidium into a mother sporocyst and during this process excretory-secretory products (ESPs are released. Nitric oxide (NO and its reactive intermediates play an important role in host defence responses against pathogens. This study therefore aimed to determine the effects of S. mansoni ESPs on NO production in defence cells (haemocytes from schistosome-susceptible and schistosome-resistant B. glabrata strains. As S. mansoni ESPs have previously been shown to inhibit extracellular signal-regulated kinase (ERK phosphorylation (activation in haemocytes from susceptible, but not resistant, B. glabrata the regulation of NO output by ERK in these cells was also investigated. Results Haemocytes from resistant snails challenged with S. mansoni ESPs (20 μg/ml over 5 h displayed an increase in NO production that was 3.3 times greater than that observed for unchallenged haemocytes; lower concentrations of ESPs (0.1–10 μg/ml did not significantly increase NO output. In contrast, haemocytes from susceptible snails showed no significant change in NO output following challenge with ESPs at any concentration used (0.1–20 μg/ml. Western blotting revealed that U0126 (1 μM or 10 μM blocked the phosphorylation (activation status of ERK in haemocytes from both snail strains. Inhibition of ERK signalling by U0126 attenuated considerably intracellular NO production in haemocytes from both susceptible and resistant B. glabrata strains, identifying ERK as a key regulator of NO output in these cells. Conclusion S. mansoni ESPs differentially influence intracellular NO levels in susceptible and resistant B. glabrata haemocytes, possibly through modulation of the ERK signalling pathway. Such effects might facilitate survival of S. mansoni in its intermediate host.

  19. Intracellular phase for an extracellular bacterial pathogen: MgtC shows the way

    Directory of Open Access Journals (Sweden)

    Audrey Bernut

    2015-08-01

    Full Text Available Pseudomonas aeruginosa is an extracellular pathogen known to impair host phagocytic functions. However, our recent results identify MgtC as a novel actor in P. aeruginosa virulence, which plays a role in an intramacrophage phase of this pathogen. In agreement with its intracellular function, P. aeruginosa mgtC gene expression is strongly induced when the bacteria reside within macrophages. MgtC was previously known as a horizontally-acquired virulence factor important for multiplication inside macrophages in several intracellular bacterial pathogens. MgtC thus provides a singular example of a virulence determinant that subverts macrophages both in intracellular and extracellular pathogens. Moreover, we demonstrate that P. aeru-ginosa MgtC is required for optimal growth in Mg2+ deprived medium, a property shared by MgtC factors from intracellular pathogens and, under Mg2+ limitation, P. aeruginosaMgtC prevents biofilm formation. We propose that MgtC has a similar function in intracellular and extracellular pathogens, which contributes to macrophage resistance and fine-tune adaptation to the host in relation to the different bacterial lifestyles. MgtC thus appears as an attractive target for antivirulence strategies and our work provides a natural peptide as MgtC antagonist, which paves the way for the development of MgtC inhibitors.

  20. Detection and characterization of metallo beta lactamases producing Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Manoharan A

    2010-01-01

    Full Text Available This study was undertaken to evaluate phenotypic and genotypic methods for detection of Metallo-Beta-Lactamases (MBLs among nosocomial Pseudomonas aeruginosa. Sixty one among 176 P. aeruginosa isolates, collected as part of a multicentric study (2005-2007, were evaluated for carbapenem resistance (CARB-R; resistant to either imipenem/meropenem and screened for MBL by Combination Disk Diffusion Test (CDDT using imipenem (IMP, meropenem (MER and ceftazidime (CAZ with EDTA. MBL positives were further confirmed by IMP + EDTA Etest. Twenty strains (42.6% were found to be MBL producers among the 61 P. aeruginosa. PCR for IMP and VIM MBL was performed on 48 of the 61, 15 were positive for VIM MBL type. CDDT using IMP + EDTA had the highest sensitivity and specificity of 87.8% and 84.4% when compared to Etest, which was higher than the values obtained for CAZ + EDTA and MER + EDTA. CDDT using IMP + EDTA also compared very well with the PCR (specificity = 90.9%, sensitivity = 93.3%. CARB-R among P. aeruginosa is mediated predominantly via MBL production. Clinical P. aeruginosa isolates can be screened routinely using the less expensive IMP + EDTA CDDT in clinical microbiology laboratories.

  1. METALLO-BETA-LACTAMASE PRODUCING PSEUDOMONAS AERUGINOSA IN NEONATAL SEPTICEMIA

    Directory of Open Access Journals (Sweden)

    Murthy

    2014-05-01

    Full Text Available The emergence, selective multiplication & dissemination of antibacterial resistance is a serious global problem. This study was conducted with the objective to examine the incidence of metallo-beta-lactamase (MβL producing strains among multidrug resistant (MDR Pseudomonas aeruginosa from the suspected cases of neonatal sepsis between January 2011 – December 2013. A total of 994 cases admitted with the suspicion of neonatal sepsis were investigated. 295 (29.7% isolates were obtained from the blood cultures of neonates. The isolates were identified and tested for the susceptibility to various antimicrobial agents. Pseudomonas aeruginosa with 116 (48.3% isolation among 240 Gram negative isolates, was the predominant pathogen in our study. All the 74 (63.8% multidrug resistant P. aeruginosa isolates were screened initially for Imipenem resistance, which were further tested for the presence of MβL by Imipenem-ethylene diamine tetraacetic acid (EDTA disc method. MβL production was seen in 20 (71.4% of the 28 Imipenem-resistant Pseudomonas aeruginosa isolates. MβL producing Pseudomonas aeruginosa has emerged as a potential threat in cases of neonatal septicemia and poses great therapeutic challenge for physicians treating such infections.

  2. The efficacy of immediate versus delayed antibiotic administration on bacterial growth and biofilm production of selected strains of uropathogenic Escherichia coli and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Leah Gandee

    2015-02-01

    Full Text Available Purpose The treatment of urinary tract infections (UTI with antibiotics is commonly used, but recurrence and antibiotic resistance have been growing and concerning clinicians. We studied whether the rapid onset of a protective biofilm may be responsible for the lack of effectiveness of antibiotics against selected bacteria. Materials and Methods Two established uropathogenic Escherichia coli strains, UTI89 and CFT073, and two Pseudomonas aeruginosa strains, PA01 and Boston-41501, were studied to establish a reliable biofilm formation process. Bacterial growth (BG was determined by optical density at 600 nm (OD 600 using a spectrophotometer, while biofilm formation (BF using crystal violet staining was measured at OD 550. Next, these bacterial strains were treated with clinically relevant antibiotics, ciprofloxacin HCl (200 ng/mL and 2 μg/mL, nitrofurantoin (20 μg/mL and 40 μg/mL and ampicillin (50 μg/mL at time points of 0 (T0 or after 6 hours of culture (T6. All measurements, including controls (bacteria -1% DMSO, were done in triplicates and repeated three times for consistency. Results The tested antibiotics effectively inhibited both BG and BF when administered at T0 for UPEC strains, but not when the antibiotic administration started 6 hours later. For Pseudomonas strains, only Ciprofloxacin was able to significantly inhibit bacterial growth at T0 but only at the higher concentration of 2 μg/mL for T6. Conclusion When established UPEC and Pseudomonas bacteria were allowed to culture for 6 hours before initialization of treatment, the therapeutic effect of selected antibiotics was greatly suppressed when compared to immediate treatment, probably as a result of the protective nature of the biofilm.

  3. Effects of antibiotics on quorum sensing in pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Skindersø, Mette Elena; Alhede, Morten; Phipps, Richard Kerry;

    2008-01-01

    impeding QS, thereby reducing the pathogenicity of P. aeruginosa. This led us to investigate whether QS inhibition is a common feature of antibiotics. We present the results of a screening of 12 antibiotics for their QS-inhibitory activities using a previously described QS inhibitor selector 1 strain...... animal infection models. Treatment of cystic fibrosis (CF) patients chronically infected with P. aeruginosa with the macrolide antibiotic azithromycin (AZM) has been demonstrated to improve the clinical outcome. Several studies indicate that AZM may accomplish its beneficial action in CF patients by....... Three of the antibiotics tested, AZM, ceftazidime (CFT), and ciprofloxacin (CPR), were very active in the assay and were further examined for their effects on QS-regulated virulence factor production in P. aeruginosa. The effects of the three antibiotics administered at subinhibitory concentrations were...

  4. The crystal structure of SdsA1, an alkylsulfatase from Pseudomonas aeruginosa, defines a third class of sulfatases

    OpenAIRE

    Hagelueken, Gregor; Adams, Thorsten M.; Wiehlmann, Lutz; Widow, Ute; Kolmar, Harald; Tümmler, Burkhard; Heinz, Dirk W.; Schubert, Wolf-Dieter

    2006-01-01

    Pseudomonas aeruginosa is both a ubiquitous environmental bacterium and an opportunistic human pathogen. A remarkable metabolic versatility allows it to occupy a multitude of ecological niches, including wastewater treatment plants and such hostile environments as the human respiratory tract. P. aeruginosa is able to degrade and metabolize biocidic SDS, the detergent of most commercial personal hygiene products. We identify SdsA1 of P. aeruginosa as a secreted SDS hydrolase that allows the ba...

  5. Functional study of elafin cleaved by Pseudomonas aeruginosa metalloproteinases.

    LENUS (Irish Health Repository)

    Guyot, Nicolas

    2010-06-01

    Elafin is a 6-kDa innate immune protein present at several epithelial surfaces including the pulmonary epithelium. It is a canonical protease inhibitor of two neutrophil serine proteases [neutrophil elastase (NE) and proteinase 3] with the capacity to covalently bind extracellular matrix proteins by transglutamination. In addition to these properties, elafin also possesses antimicrobial and immunomodulatory activities. The aim of the present study was to investigate the effect of Pseudomonas aeruginosa proteases on elafin function. We found that P. aeruginosa PAO1-conditioned medium and two purified Pseudomonas metalloproteases, pseudolysin (elastase) and aeruginolysin (alkaline protease), are able to cleave recombinant elafin. Pseudolysin was shown to inactivate the anti-NE activity of elafin by cleaving its protease-binding loop. Interestingly, antibacterial properties of elafin against PAO1 were found to be unaffected after pseudolysin treatment. In contrast to pseudolysin, aeruginolysin failed to inactivate the inhibitory properties of elafin against NE. Aeruginolysin cleaves elafin at the amino-terminal Lys6-Gly7 peptide bond, resulting in a decreased ability to covalently bind purified fibronectin following transglutaminase activity. In conclusion, this study provides evidence that elafin is susceptible to proteolytic cleavage at alternative sites by P. aeruginosa metalloproteinases, which can affect different biological functions of elafin.

  6. Evaluation of a FRET-peptide substrate to predict virulence in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Wendy E Kaman

    Full Text Available Pseudomonas aeruginosa produces a number of proteases that are associated with virulence and disease progression. A substrate able to detect P. aeruginosa-specific proteolytic activity could help to rapidly alert clinicians to the virulence potential of individual P. aeruginosa strains. For this purpose we designed a set of P. aeruginosa-specific fluorogenic substrates, comprising fluorescence resonance energy transfer (FRET-labeled peptides, and evaluated their applicability to P. aeruginosa virulence in a range of clinical isolates. A FRET-peptide comprising three glycines (3xGly was found to be specific for the detection of P. aeruginosa proteases. Further screening of 97 P. aeruginosa clinical isolates showed a wide variation in 3xGly cleavage activity. The absence of 3xGly degradation by a lasI knock out strain indicated that 3xGly cleavage by P. aeruginosa could be quorum sensing (QS-related, a hypothesis strengthened by the observation of a strong correlation between 3xGly cleavage, LasA staphylolytic activity and pyocyanin production. Additionally, isolates able to cleave 3xGly were more susceptible to the QS inhibiting antibiotic azithromycin (AZM. In conclusion, we designed and evaluated a 3xGly substrate possibly useful as a simple tool to predict virulence and AZM susceptibility.

  7. Pseudomonas aeruginosa and Its Bacterial Components Influence the Cytokine Response in Thymocytes and Splenocytes.

    Science.gov (United States)

    Weber, Andreas; Zimmermann, Corinna; Mausberg, Anne K; Dehmel, Thomas; Kieseier, Bernd C; Hartung, Hans-Peter; Hofstetter, Harald H

    2016-05-01

    Infections with Pseudomonas aeruginosa may cause many different diseases. The spectrum of such infections in general includes inflammation and bacterial sepsis. Hospital-acquired pneumonia, naturally resistant to a wide range of antibiotics, is associated with a particularly high mortality rate in mechanically ventilated patients. The pathogenesis of P. aeruginosa is complex and mediated by several virulence factors, as well as cell-associated factors. We have previously demonstrated that stimulation with different bacteria triggers the cytokine response of thymocytes. In this study, we investigated the effect of P. aeruginosa and its different components on the cytokine production of immature and mature immune cells. We found that the induced cytokine pattern in the thymus and the spleen after infections with P. aeruginosa is primarily mediated by lipopolysaccharide (LPS) of the outer cell membrane, but other components of the bacterium can influence the cytokine secretion as well. Stimulation with heat-killed P. aeruginosa and LPS does not influence the amount of cytokine-producing CD4(+) T cells but instead suppresses the emergence of Th17 cells. However, stimulation with P. aeruginosa or its components triggers the interleukin-17 (IL-17) response both in thymocytes and in splenocytes. We conclude that infections with P. aeruginosa affect the cytokine secretion of immature and mature cells and that IL-17 and Th17 cells play only a minor role in the development of pathological systemic inflammatory disease conditions during P. aeruginosa infections. Therefore, other inflammatory immune responses must be responsible for septic reactions of the host. PMID:26902726

  8. The pulmonary extracellular lining.

    OpenAIRE

    George, G; Hook, G E

    1984-01-01

    The extracellular lining of the lungs is reviewed. The pulmonary extracellular lining is a complex mixture of phospholipids, proteins and carbohydrates which is absolutely essential for the maintenance of normal pulmonary functions such as gas exchange. Without the lining the lungs would collapse. Alterations in the pulmonary extracellular lining may underlie some disease conditions induced by toxic agents, especially those which interfere with the formation of pulmonary surfactant. The extra...

  9. Biotransformation of myrcene by Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Hashemi Elham

    2011-05-01

    Full Text Available Abstract Background Dihydrolinalool and terpineol are sources of fragrances that provide a unique volatile terpenoid alcohol of low toxicity and thus are widely used in the perfumery industry, in folk medicine, and in aromatherapy. They are important chemical constituents of the essential oil of many plants. Previous studies have concerned the biotransformation of limonene by Pseudomonas putida. The objective of this research was to study biotransformation of myrcene by Pseudomonas aeruginosa. The culture preparation was done using such variables as different microbial methods and incubation periods to obtain maximum cells of P. aeruginosa for myrcene biotransformation. Results It was found that myrcene was converted to dihydrolinalool and 2,6-dimethyloctane in high percentages. The biotransformation products were identified by Fourier-transform infrared spectroscopy (FT-IR, ultraviolet (UV analysis, gas chromatography (GC, and gas chromatography-mass spectroscopy (GC-MS. Comparison of the different incubation times showed that 3 days was more effective, the major products being 2,6-dimethyloctane (90.0% and α-terpineol (7.7% and comprising 97.7%. In contrast, the main compounds derived for an incubation time of 1.5 days were dihydrolinalool (79.5% and 2,6-dimethyloctane (9.3%, with a total yield of 88.8%.

  10. Extracellular DNA as matrix component in microbial biofilms

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Tolker-Nielsen, Tim

    2010-01-01

    to various persistent infections in humans and animals, and to a variety of complications in industry, where solid–water interfaces occur. Knowledge about the molecular mechanisms involved in biofilm formation is necessary for creating strategies to control biofilms. Recent studies have shown that......Bacteria in nature primarily live in surface-associated communities commonly known as biofilms. Because bacteria in biofilms, in many cases, display tolerance to host immune systems, antibiotics, and biocides, they are often difficult or impossible to eradicate. Biofilm formation, therefore, leads...... extracellular DNA is an important component of the extracellular matrix of microbial biofilms. The present chapter is focussed on extracellular DNA as matrix component in biofilms formed by Pseudomonas aeruginosa as an example from the Gram-negative bacteria, and Streptococcus and Staphylococcus as examples...

  11. Pseudomonas aeruginosa alkaline protease degrades human gamma interferon and inhibits its bioactivity.

    OpenAIRE

    Horvat, R T; Parmely, M J

    1988-01-01

    This study was performed to determine the effect of Pseudomonas aeruginosa on gamma interferon (IFN-gamma) production by antigen-stimulated human T-cell clones. Crude bacterial filtrates prepared from certain strains of P. aeruginosa inhibited IFN-gamma production by T cells and reduced the antiviral activity of preformed IFN-gamma. Bacterial filtrates prepared from mutant strains that did not produce the exoenzyme alkaline protease (AP) did not inhibit IFN-gamma activity. The inhibitory acti...

  12. Growth of genetically engineered Pseudomonas aeruginosa and Pseudomonas putida in soil and rhizosphere.

    OpenAIRE

    Yeung, K H; Schell, M A; Hartel, P. G.

    1989-01-01

    The effect of the addition of a recombinant plasmid containing the pglA gene encoding an alpha-1,4-endopolygalacturonase from Pseudomonas solanacearum on the growth of Pseudomonas aeruginosa and Pseudomonas putida in soil and rhizosphere was determined. Despite a high level of polygalacturonase production by genetically engineered P. putida and P. aeruginosa, the results suggest that polygalacturonase production had little effect on the growth of these strains in soil or rhizosphere.

  13. Optimization of Nutrient Requirements and Culture Conditions for the Production of Rhamnolipid from Pseudomonas aeruginosa (MTCC 7815) using Mesua ferrea Seed Oil

    OpenAIRE

    Singh, Salam Pradeep; Bharali, Pranjal; Konwar, Bolin Kumar

    2013-01-01

    Environmental awareness has led to a serious consideration for biological surfactants and hence non-edible vegetable oils may serve as a substitute carbon source for bio-surfactant production (rhamnolipid) which might be an alternative to complex synthetic surfactants. There are reports of rhamnolipid production from plant based oil giving higher production than that of glucose because of their hydrophobicity and high carbon content. Therefore the contribution of non-edible oil such as Mesua ...

  14. Interactions between the antimicrobial agent triclosan and the bloom-forming cyanobacteria Microcystis aeruginosa.

    Science.gov (United States)

    Huang, Xiaolong; Tu, Yenan; Song, Chaofeng; Li, Tiancui; Lin, Juan; Wu, Yonghong; Liu, Jiantong; Wu, Chenxi

    2016-03-01

    Cyanobacteria can co-exist in eutrophic waters with chemicals or other substances derived from personal care products discharged in wastewater. In this work, we investigate the interactions between the antimicrobial agent triclosan (TCS) and the bloom-forming cyanobacteria Microcystis aeruginosa. M. aeruginosa was very sensitive to TCS with the 96h lowest observed effect concentration of 1.0 and 10μg/L for inhibition of growth and photosynthetic activity, respectively. Exposure to TCS at environmentally relevant levels (0.1-2.0μg/L) also affected the activities of superoxide dismutase (SOD) and the generation of reduced glutathione (GSH), while microcystin production was not affected. Transmission electron microscope (TEM) examination showed the destruction of M. aeruginosa cell ultrastructure during TCS exposure. TCS however, can be biotransformed by M. aeruginosa with methylation as a major biotransformation pathway. Furthermore, the presence of M. aeruginosa in solution promoted the photodegradation of TCS. Overall, our results demonstrate that M. aeruginosa plays an important role in the dissipation of TCS in aquatic environments but high residual TCS can exert toxic effects on M. aeruginosa. PMID:26800489

  15. Escherichia coli BdcA controls biofilm dispersal in Pseudomonas aeruginosa and Rhizobium meliloti

    Directory of Open Access Journals (Sweden)

    Wood Thomas K

    2011-10-01

    Full Text Available Abstract Background Previously we showed that BdcA controls Escherichia coli biofilm dispersal by binding the ubiquitous bacterial signal cyclic diguanylate (c-di-GMP; upon reducing the concentration of c-di-GMP, the cell shifts to the planktonic state by increasing motility, decreasing aggregation, and decreasing production of biofilm adhesins. Findings Here we report that BdcA also increases biofilm dispersal in other Gram-negative bacteria including Pseudomonas aeruginosa, Pseudomonas fluorescens, and Rhizobium meliloti. BdcA binds c-di-GMP in these strains and thereby reduces the effective c-di-GMP concentrations as demonstrated by increases in swimming motility and swarming motility as well as by a reduction in extracellular polysaccharide production. We also develop a method to displace existing biofilms by adding BdcA via conjugation from E. coli in mixed-species biofilms. Conclusion Since BdcA shows the ability to control biofilm dispersal in diverse bacteria, BdcA has the potential to be used as a tool to disperse biofilms for engineering and medical applications.

  16. Adherence of Pseudomonas aeruginosa to hydrophilic contact lenses and other substrata.

    OpenAIRE

    Miller, M J; Ahearn, D G

    1987-01-01

    Nonmucoid Pseudomonas aeruginosa isolated from corneal ulcers and contact lens cases and solutions were examined for their ability to adhere to polystyrene, glass, and hydrophilic contact lenses of varying water content and polymer composition. Adherence to the various substrates was strain specific. Adherence also was influenced by hydrophobicity and chemical composition of the substratum, as well as pH and electrolyte concentration. An extracellular polymeric adhesive appeared to be involve...

  17. Role of energy metabolism in conversion of nonmucoid Pseudomonas aeruginosa to the mucoid phenotype.

    OpenAIRE

    Terry, J M; Piña, S E; Mattingly, S J

    1992-01-01

    Phosphatidylcholine, the major component of lung surfactant, when supplied as the sole source of phosphate for Pseudomonas aeruginosa PAO1, resulted in conversion of as much as 2% of the population to the mucoid phenotype under continuous culture conditions over a 24-day culture period. In addition, growth in phosphatidylcholine resulted in the highest yields of extracellular alginate compared with other environmental conditions. Iron limitation, another environmental condition relevant to th...

  18. Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa.

    OpenAIRE

    Ochsner, U A; Reiser, J

    1995-01-01

    The opportunistic human pathogen Pseudomonas aeruginosa produces a variety of virulence factors, including exotoxin A, elastase, alkaline protease, alginate, phospholipases, and extracellular rhamnolipids. The previously characterized rhlABR gene cluster encodes a regulatory protein (RhlR) and a rhamnosyltransferase (RhlAB), both of which are required for rhamnolipid synthesis. Another gene, rhII, has now been identified downstream of the rhlABR gene cluster. The putative RhlI protein shares ...

  19. Impact of a Transposon Insertion in phzF2 on the Specialized Metabolite Production and Interkingdom Interactions of Pseudomonas aeruginosa

    OpenAIRE

    Phelan, Vanessa V.; Moree, Wilna J; Aguilar, Julieta; Cornett, Dale S.; Koumoutsi, Alexandra; Noble, Suzanne M.; Pogliano, Kit; Guerrero, Carlos A.; Dorrestein, Pieter C.

    2014-01-01

    In microbiology, gene disruption and subsequent experiments often center on phenotypic changes caused by one class of specialized metabolites (quorum sensors, virulence factors, or natural products), disregarding global downstream metabolic effects. With the recent development of mass spectrometry-based methods and technologies for microbial metabolomics investigations, it is now possible to visualize global production of diverse classes of microbial specialized metabolites simultaneously. Us...

  20. Inability of Pseudomonas stutzeri denitrification mutants with the phenotype of Pseudomonas aeruginosa to grow in nitrous oxide.

    OpenAIRE

    1985-01-01

    Pseudomonas aeruginosa PAO1 reduced nitrous oxide to dinitrogen but did not grow anaerobically in nitrous oxide. Two transposon insertion Nos- mutants of Pseudomonas stutzeri exhibited the P. aeruginosa phenotype. Growth yield studies demonstrated that nitrous oxide produced in vivo was productively respired, but nitrous oxide supplied exogenously was not. The defect may be in electron transport or in nitrous oxide uptake.

  1. Screening of Molecular Virulence Markers in Staphylococcus aureus and Pseudomonas aeruginosa Strains Isolated from Clinical Infections

    Directory of Open Access Journals (Sweden)

    Veronica Lazar

    2010-12-01

    Full Text Available Staphylococcus (S. aureus and Pseudomonas (Ps. aeruginosa are two of the most frequently opportunistic pathogens isolated in nosocomial infections, responsible for severe infections in immunocompromised hosts. The frequent emergence of antibiotic-resistant S. aureus and Ps. aeruginosa strains has determined the development of new strategies in order to elucidate the different mechanisms used by these bacteria at different stages of the infectious process, providing the scientists with new procedures for preventing, or at least improving, the control of S. aureus and Ps. aeruginosa infections. The purpose of this study was to characterize the molecular markers of virulence in S. aureus and Ps. aeruginosa strains isolated from different clinical specimens. We used multiplex and uniplex PCR assays to detect the genes encoding different cell-wall associated and extracellular virulence factors, in order to evaluate potential associations between the presence of putative virulence genes and the outcome of infections caused by these bacteria. Our results demonstrate that all the studied S. aureus and Ps. aeruginosa strains synthesize the majority of the investigated virulence determinants, probably responsible for different types of infections.

  2. Catheter-related infections caused by Pseudomonas aeruginosa: virulence factors involved and their relationships.

    Science.gov (United States)

    Olejnickova, Katerina; Hola, Veronika; Ruzicka, Filip

    2014-11-01

    The nosocomial pathogen Pseudomonas aeruginosa is equipped with a large arsenal of cell-associated and secreted virulence factors which enhance its invasive potential. The complex relationships among virulence determinants have hitherto not been fully elucidated. In the present study, 175 catheter-related isolates were observed for the presence of selected virulence factors, namely extracellular enzymes and siderophore production, biofilm formation, resistance to antibiotics, and motility. A high percentage of the strains produced most of the tested virulence factors. A positive correlation was identified between the production of several exoproducts, and also between the formation of both types of biofilm. An opposite trend was observed between the two types of biofilm and the production of siderophores. Whereas the relationship between the submerged biofilm production (i.e. the biofilm formed on the solid surface below the water level) and the siderophore secretion was negative, the production of air-liquid interface (A-L) biofilm (i.e. the biofilm floating on the surface of the cultivation medium) and the siderophore secretion were positively correlated. All correlations were statistically significant at the level P = 0.05 with the correlation coefficient γ ≥ 0.50. Our results suggest that: (1) the co-production of the lytic enzymes and siderophores can play an important role in the pathogenesis of the catheter-related infections and should be taken into account when the virulence potential is assessed; (2) biofilm-positive strains are capable of forming both submerged and non-attached A-L biofilms; and (3) the different micro-environment in the submerged biofilm and A-L biofilm layers have opposite consequences for the production of other virulence factors. PMID:24842562

  3. Detection of N-acylhomoserine lactones in lung tissues of mice infected with Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Wu, H; Song, Z; Hentzer, Morten;

    2000-01-01

    The pathogenesis of Pseudomonas aeruginosa is associated with expression of virulence factors, many of which are controlled by two N:-acylhomoserine lactone (AHL)-based quorum-sensing systems. Escherichia coli strains equipped with a luxR-based monitor system expressing green fluorescent protein...... (GFP) in the presence of exogenous AHL molecules were used to detect the production of AHLs from P. aeruginosa in vivo. Mice were challenged intratracheally with alginate beads containing P. aeruginosa and E. coli and killed on different days after the challenge. By means of confocal scanning laser...... microscopy, GFP-expressing E. coli bacteria could be detected in the lung tissues, indicating production and excretion of AHL molecules in vivo by the infecting P. aeruginosa. AHL signals were detected mainly in lung tissues exhibiting severe pathological changes. These findings support the view that...

  4. Extracellular metalloproteinases in Phytomonas serpens.

    Science.gov (United States)

    Vermelho, Alane B; Almeida, Flávia V S; Bronzato, Leandro S; Branquinha, Marta H

    2003-03-01

    The detection of extracellular proteinases in Phytomonas serpens, a trypanosomatid isolated from tomato fruits, is demonstrated in this paper. Maximal production occurred at the end of the logarithmic phase of growth. These enzymes exhibited selective substrate utilization in SDS-PAGE, being more active with gelatin; hemoglobin and bovine serum albumin were not degraded. Three proteinases were detected in SDS-PAGE-gelatin, with apparent molecular masses between 94 and 70 kDa. The proteolytic activity was completely blocked by 1,10-phenanthroline and strongly inhibited by EDTA, whereas a partial inhibition was observed with trans-epoxysuccinyl-L-leucylamido-(4-guanidino) butane (E-64) and soybean trypsin inhibitor; phenylmethylsulfonyl fluoride weakly inhibited the enzymes. This inhibition profile indicated that these extracellular proteinases belong to the metalloproteinase class. PMID:12795409

  5. Zingerone silences quorum sensing and attenuates virulence of Pseudomonas aeruginosa.

    Science.gov (United States)

    Kumar, Lokender; Chhibber, Sanjay; Kumar, Rajnish; Kumar, Manoj; Harjai, Kusum

    2015-04-01

    Quorum sensing in Pseudomonas aeruginosa plays an imperative role in virulence factor, biofilm formation and antimicrobial resistance. Blocking quorum sensing pathways are viewed as viable anti-virulent therapy in association with traditional antimicrobial therapy. Anti-quorum sensing dietary phytochemicals with may prove to be a safe and viable choice as anti-virulent drug candidates. Previously, our lab proved zingerone as potent anti-biofilm agent hence; further its anti-virulent and anti-quorum activities were evaluated. Zingerone, besides decreasing swimming, swarming and twitching phenotypes of P. aeruginosa PAO1, reduced biofilm forming capacity and production of virulence factors including rhamnolipid, elastase, protease, pyocyanin, cell free and cell bound hemolysin (pproduction of quorum sensing signal molecules by clinical isolates of P. aeruginosa but also showed significant interference with the activation of QS reporter strains. To study the mechanism of blocking quorum sensing cascade, in silico analysis was carried out. Anti-QS activity was attributed to interference with the ligand receptor interaction of zingerone with QS receptors (TraR, LasR, RhlR and PqsR). Zingerone showed a good comparative docking score to respective autoinducer molecules which was even higher than that of vanillin, a proven anti-quorum sensing phytochemical. The results of the present study revealed the anti-quorum sensing activity of zingerone targeting ligand-receptor interaction, hence proposing zingerone as a suitable anti-virulent drug candidate against P. aeruginosa infections. PMID:25704369

  6. Genetic characterization of Microcystis aeruginosa isolates from Portuguese freshwater systems.

    Science.gov (United States)

    Moreira, Cristiana; Vasconcelos, Vitor; Antunes, Agostinho

    2016-07-01

    Cyanobacteria are microorganisms that pose a serious threat to the aquatic waterways through the production of dense blooms under eutrophic conditions and the release of toxic secondary metabolites-cyanotoxins. Within cyanobacteria, the colonial planktonic Microcystis aeruginosa is widely distributed in both fresh and brackish aquatic environments throughout the world being frequently observed in the Portuguese water systems. Apart from the well-established distribution of M. aeruginosa in Portugal, knowledge of its genetic diversity and population structure is unknown. Therefore, in this study twenty-seven strains were obtained from the North, Centre and South regions of Portugal and were subjected to extensive phylogenetic analyses using simultaneously four distinct genetic markers (16S rRNA, 16S-23S ITS, DNA gyrase subunit ß and cell division protein (ftsZ)) encompassing in total 2834 bp. With this work we characterized the phylogenetic relationship among the Portuguese strains, with the southern strains showing higher genetic structure relatively to the North and Centre strains. A total of fifteen genotypes were determined for M. aeruginosa in Portuguese water systems revealing a high genetic diversity. This is also the first study to report geographic variation on the population structure of the Portuguese M. aeruginosa. PMID:27263013

  7. Specific cleavage of human type III and IV collagens by Pseudomonas aeruginosa elastase.

    OpenAIRE

    Heck, L W; Morihara, K; McRae, W B; Miller, E J

    1986-01-01

    Purified Pseudomonas aeruginosa elastase cleaved human type III and IV collagens with the formation of specific cleavage products. Furthermore, type I collagen appeared to be slowly cleaved by both P. aeruginosa elastase and alkaline protease. These cleavage fragments from type III and IV collagens were separated from the intact collagen chains by SDS polyacrylamide gradient gel electrophoresis run under reducing conditions, and they were detected by their characteristic Coomassie blue staini...

  8. Silver against Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Kirketerp-Møller, K.; Kristiansen, S.;

    2007-01-01

    bacteria in both the planktonic and biofilm modes of growth. The action of silver on mature in vitro biofilms of Pseudomonas aeruginosa, a primary pathogen of chronic infected wounds, was investigated. The results show that silver is very effective against mature biofilms of P. aeruginosa, but that the...... silver concentration is important. A concentration of 5-10 ig/mL silver sulfadiazine eradicated the biofilm whereas a lower concentration (1 ig/mL) had no effect. The bactericidal concentration of silver required to eradicate the bacterial biofilm was 10-100 times higher than that used to eradicate...... planktonic bacteria. These observations strongly indicate that the concentration of silver in currently available wound dressings is much too low for treatment of chronic biofilm wounds. It is suggested that clinicians and manufacturers of the said wound dressings consider whether they are treating wounds...

  9. Phosphate taxis in Pseudomonas aeruginosa.

    OpenAIRE

    Kato, J.; Ito, A.; Nikata, T; Ohtake, H

    1992-01-01

    Pseudomonas aeruginosa was shown to be attracted to phosphate. The chemotactic response was induced by phosphate starvation. The specificity of chemoreceptors for phosphate was high so that no other tested phosphorus compounds elicited a chemotactic response as strong as that elicited by phosphate. Competition experiments showed that the chemoreceptors for phosphate appeared to be different from those for the common amino acids. Mutants constitutive for alkaline phosphatase showed the chemota...

  10. Cis-2-dodecenoic acid signal modulates virulence of Pseudomonas aeruginosa through interference with quorum sensing systems and T3SS

    Science.gov (United States)

    2013-01-01

    Background Cis-2-dodecenoic acid (BDSF) is well known for its important functions in intraspecies signaling in Burkholderia cenocepacia. Previous work has also established an important role of BDSF in interspecies and inter-kingdom communications. It was identified that BDSF modulates virulence of Pseudomonas aeruginosa. However, how BDSF interferes with virulence of P. aeruginosa is still not clear. Results We report here that BDSF mediates the cross-talk between B. cenocepacia and P. aeruginosa through interference with quorum sensing (QS) systems and type III secretion system (T3SS) of P. aeruginosa. Bioassay results revealed that exogenous addition of BDSF not only reduced the transcriptional expression of the regulator encoding gene of QS systems, i.e., lasR, pqsR, and rhlR, but also simultaneously decreased the production of QS signals including 3-oxo-C12-HSL, Pseudomonas quinolone signal (PQS) and C4-HSL, consequently resulting in the down-regulation of biofilm formation and virulence factor production of P. aeruginosa. Furthermore, BDSF and some of its derivatives are also capable of inhibiting T3SS of P. aeruginosa at a micromolar level. Treatment with BDSF obviously reduced the virulence of P. aeruginosa in both HeLa cell and zebrafish infection models. Conclusions These results depict that BDSF modulates virulence of P. aeruginosa through interference with QS systems and T3SS. PMID:24134835

  11. Extracellular calcium sensing and extracellular calcium signaling

    Science.gov (United States)

    Brown, E. M.; MacLeod, R. J.; O'Malley, B. W. (Principal Investigator)

    2001-01-01

    The cloning of a G protein-coupled extracellular Ca(2+) (Ca(o)(2+))-sensing receptor (CaR) has elucidated the molecular basis for many of the previously recognized effects of Ca(o)(2+) on tissues that maintain systemic Ca(o)(2+) homeostasis, especially parathyroid chief cells and several cells in the kidney. The availability of the cloned CaR enabled the development of DNA and antibody probes for identifying the CaR's mRNA and protein, respectively, within these and other tissues. It also permitted the identification of human diseases resulting from inactivating or activating mutations of the CaR gene and the subsequent generation of mice with targeted disruption of the CaR gene. The characteristic alterations in parathyroid and renal function in these patients and in the mice with "knockout" of the CaR gene have provided valuable information on the CaR's physiological roles in these tissues participating in mineral ion homeostasis. Nevertheless, relatively little is known about how the CaR regulates other tissues involved in systemic Ca(o)(2+) homeostasis, particularly bone and intestine. Moreover, there is evidence that additional Ca(o)(2+) sensors may exist in bone cells that mediate some or even all of the known effects of Ca(o)(2+) on these cells. Even more remains to be learned about the CaR's function in the rapidly growing list of cells that express it but are uninvolved in systemic Ca(o)(2+) metabolism. Available data suggest that the receptor serves numerous roles outside of systemic mineral ion homeostasis, ranging from the regulation of hormonal secretion and the activities of various ion channels to the longer term control of gene expression, programmed cell death (apoptosis), and cellular proliferation. In some cases, the CaR on these "nonhomeostatic" cells responds to local changes in Ca(o)(2+) taking place within compartments of the extracellular fluid (ECF) that communicate with the outside environment (e.g., the gastrointestinal tract). In others

  12. A comparison of the character of algal extracellular versus cellular organic matter produced by cyanobacterium, diatom and green alga

    OpenAIRE

    Pivokonský, M.; Šafaříková, J. (Jana); Barešová, M. (Magdalena); Pivokonská, L. (Lenka); I. Kopecká

    2014-01-01

    This study investigated characteristics of algal organic matter (AOM) derived from three species (cyanobacterium Microcystis aeruginosa, diatom Fragilaria crotonensis and green alga Chlamydomonas geitleri) which dominate phytoplanktonic populations in reservoirs supplying drinking water treatment plants. Algal growth was monitored by cell counting, optical density and dissolved organic carbon concentration measurements. Extracellular organic matter (EOM) released at exponential and stationary...

  13. Activation of human pro-urokinase by unrelated proteases secreted by Pseudomonas aeruginosa : LasB and protease IV activate human pro-urokinase

    OpenAIRE

    Beaufort, Nathalie; Seweryn, Paulina; De Bentzmann, Sophie; Tang, Aihua; Kellermann, Josef; Grebenchtchikov, Nicolai; Schmitt, Manfred; Sommerhoff, Christian,; Pidard, Dominique; Magdolen, Viktor

    2010-01-01

    Abstract Pathogenic bacteria, including Pseudomonas aeruginosa, interact with and engage the host plasminogen (Plg) activation system, which encompasses the urokinase(uPA)-type Plg activator, and is involved in extracellular proteolysis, including matrilysis and fibrinolysis. We hypothesized that secreted bacterial proteases might contribute to the activation of this major extracellular proteolytic system, thereby participating in bacterial dissemination. We report that LasB, a...

  14. Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Jensen, Peter Østrup; Rasmussen, Thomas B;

    2005-01-01

    The opportunistic human pathogen Pseudomonas aeruginosa is the predominant micro-organism of chronic lung infections in cystic fibrosis patients. P. aeruginosa colonizes the lungs by forming biofilm microcolonies throughout the lung. Quorum sensing (QS) renders the biofilm bacteria highly tolerant...... garlic-treated biofilm. Garlic extract was administered as treatment for a mouse pulmonary infection model. Mice were treated with garlic extract or placebo for 7 days, with the initial 2 days being prophylactic before P. aeruginosa was instilled in the left lung of the mice. Bacteriology, mortality......, histopathology and cytokine production were used as indicators. The garlic treatment initially provoked a higher degree of inflammation, and significantly improved clearing of the infecting bacteria. The results indicate that a QS-inhibitory extract of garlic renders P. aeruginosa sensitive to tobramycin...

  15. The Formation of Biofilms by Pseudomonas aeruginosa: A Review of the Natural and Synthetic Compounds Interfering with Control Mechanisms

    Directory of Open Access Journals (Sweden)

    Tsiry Rasamiravaka

    2015-01-01

    Full Text Available P. aeruginosa is an opportunistic pathogenic bacterium responsible for both acute and chronic infections. Beyond its natural resistance to many drugs, its ability to form biofilm, a complex biological system, renders ineffective the clearance by immune defense systems and antibiotherapy. The objective of this report is to provide an overview (i on P. aeruginosa biofilm lifestyle cycle, (ii on the main key actors relevant in the regulation of biofilm formation by P. aeruginosa including QS systems, GacS/GacA and RetS/LadS two-component systems and C-di-GMP-dependent polysaccharides biosynthesis, and (iii finally on reported natural and synthetic products that interfere with control mechanisms of biofilm formation by P. aeruginosa without affecting directly bacterial viability. Concluding remarks focus on perspectives to consider biofilm lifestyle as a target for eradication of resistant infections caused by P. aeruginosa.

  16. Determination and Characterization of Extracellular Melanin from Setosphaeria turcica and Influencing Factors of Its Production%玉米大斑病菌的胞外黑色素种类及影响其产量的因素

    Institute of Scientific and Technical Information of China (English)

    吴楠; 李青为; 曹志艳; 张娇; 郝志敏; 董金皋

    2013-01-01

    [目的]对玉米大斑病菌胞外黑色素的种类进行确定,探索影响玉米大斑病菌野生型菌株胞外黑色素产量的因素.[方法]利用酸碱沉淀法提取玉米大斑病菌01-23(野生型)菌株和1,3,8-三羟基萘还原酶(3HNR)基因缺失突变菌株△St3hnr-3的胞外黑色素,采用红外光谱分析确定黑色素的种类.通过在培养基中添加不同的物质,确定影响胞外黑色素产量的因素.[结果]玉米大斑病菌胞外黑色素不同于DHN黑色素,2种黑色素的理化性质相似,溶解于热碱溶液,且与FeCl3反应产生沉淀.在振荡培养条件下,加入酪氨酸和三环唑分别使胞外黑色素的产量提高了2倍和1.5倍,而Cu2+浓度低于0.5μmol·L-1利于胞外黑色素的合成,反之则表现抑制作用;pH值为6时较利于对胞外黑色素分泌.[结论]玉米大斑病菌胞外黑色素为DOPA黑色素类型,酪氨酸和三环唑对胞外黑色素的产生具有明显促进作用.%[Objective] The objective of this study is to determine the type of extracellular melanin from Setosphaeria turcica and explore the influencing factors of its production to lay a foundation for further clarification of the relationship between melanin and pathogenicity.[Method] Acid precipitation method was used to extract the extracellular melanin of 01-23 and △St3hnr-3 strain.The type of melanin was preliminarily identified with infrared spectroscopy.Media containing tyrosine,tricyclazole,Cu2+ and different pH values were used to determine the influences of these factors on the production of extracellular melanin.[Result] The infrared spectroscopy of extracellular melanin in S.turcica was different from the DHN melanin,while the physical and chemical properties of the samples from both strains were similar.It could dissolve in hot alkaline solution and produce precipitation when it was reacted with FeCl3.Under the shaking culture,the contents of extracellular melanin in the culture filtrates

  17. Innate immune responses to Pseudomonas aeruginosa infection

    OpenAIRE

    Lavoie, Elise G.; Wangdi, Tamding; Kazmierczak, Barbara I.

    2011-01-01

    Innate immune responses play a critical role in controlling acute infections due to Pseudomonas aeruginosa in both mice and in humans. In this review we focus on innate immune recognition and clearance mechanisms that are important for controlling P. aeruginosa in the mammalian lung, with particular attention to those that influence the outcome of in vivo infection in murine models.

  18. Ambroxol interferes with Pseudomonas aeruginosa quorum sensing.

    Science.gov (United States)

    Lu, Qi; Yu, Jialin; Yang, Xiqiang; Wang, Jiarong; Wang, Lijia; Lin, Yayin; Lin, Lihua

    2010-09-01

    The mucolytic agent ambroxol has been reported to interfere with the formation of Pseudomonas aeruginosa-derived biofilms in addition to reducing alginate production by undefined mechanisms. Since quorum sensing is a key regulator of virulence and biofilm formation, we examined the effects of ambroxol on P. aeruginosa PAO1 wild-type bacterial clearance rates, adhesion profiles and biofilm formation compared with the quorum sensing-deficient, double-mutant strains DeltalasR DeltarhlR and DeltalasI DeltarhlI. Data presented in this report demonstrated that ambroxol treatment reduced survival rates of the double-mutant strains compared with the wild-type strain in a dose-dependent manner even though the double-mutants had increased adhesion in the presence of ambroxol compared with the wild-type strain. The PAO1 wild-type strain produced a significantly thicker biofilm (21.64+/-0.57 microm) compared with the biofilms produced by the DeltalasR DeltarhlR (7.36+/-0.2 microm) and DeltalasI DeltarhlI (6.62+/-0.31 microm) isolates. Ambroxol treatment reduced biofilm thickness, increased areal porosity, and decreased the average diffusion distance and textual entropy of wild-type and double-mutant strains. However, compared with the double-mutant strains, the changes observed for the wild-type strain were more clearly defined. Finally, ambroxol exhibited significant antagonistic quorum-sensing properties, suggesting that it could be adapted for use clinically in the treatment of cystic fibrosis and to reduce biofilm formation and in the colonisation of indwelling devices. PMID:20580207

  19. Interspecific small molecule interactions between clinical isolates of Pseudomonas aeruginosa and Staphylococcus aureus from adult cystic fibrosis patients.

    Directory of Open Access Journals (Sweden)

    Alexandre Fugère

    Full Text Available Pseudomonas aeruginosa and Staphylococcus aureus are the most prevalent pathogens in airway infections of cystic fibrosis (CF patients. We studied how these pathogens coexist and interact with each other. Clinical isolates of both species were retrieved from adult CF patients. Culture supernatants from 63 P. aeruginosa isolates triggered a wide range of biofilm-stimulatory activities when added to the culture of a control S. aureus strain. The extent of biofilm formation by S. aureus was positively correlated to the levels of the 2-alkyl-4-(1H-quinolones (AQs Pseudomonas Quinolone Signal (PQS and 2-heptyl-4-hydroxy quinoline N-oxide (HQNO produced by the P. aeruginosa isolates. Supernatants from P. aeruginosa isogenic mutants deficient in PQS and HQNO production stimulated significantly less biofilm formation by S. aureus than that seen with the parental strain PA14. When studying co-isolated pairs of P. aeruginosa and S. aureus retrieved from patients showing both pathogens, P. aeruginosa supernatants stimulated less biofilm production by the S. aureus counterparts compared to that observed using the control S. aureus strain. Accordingly, some P. aeruginosa isolates produced low levels of exoproducts and also some of the clinical S. aureus isolates were not stimulated by their co-isolates or by PA14 despite adequate production of HQNO. This suggests that colonization of the CF lungs promotes some type of strain selection, or that co-existence requires specific adaptations by either or both pathogens. Results provide insights on bacterial interactions in CF.

  20. Extracellular Vesicle (EV) Array

    DEFF Research Database (Denmark)

    Jørgensen, Malene; Bæk, Rikke; Pedersen, Shona;

    2013-01-01

    Exosomes are one of the several types of cell-derived vesicles with a diameter of 30-100 nm. These extracellular vesicles are recognized as potential markers of human diseases such as cancer. However, their use in diagnostic tests requires an objective and high-throughput method to define...

  1. Bacterial extracellular lignin peroxidase

    Science.gov (United States)

    Crawford, Donald L.; Ramachandra, Muralidhara

    1993-01-01

    A newly discovered lignin peroxidase enzyme is provided. The enzyme is obtained from a bacterial source and is capable of degrading the lignin portion of lignocellulose in the presence of hydrogen peroxide. The enzyme is extracellular, oxidative, inducible by lignin, larch wood xylan, or related substrates and capable of attacking certain lignin substructure chemical bonds that are not degradable by fungal lignin peroxidases.

  2. Interactions between Microcystis aeruginosa and coexisting amoxicillin contaminant at different phosphorus levels.

    Science.gov (United States)

    Liu, Ying; Chen, Shi; Chen, Xiao; Zhang, Jian; Gao, Baoyu

    2015-10-30

    Microcystis aeruginosa was cultured with 0.05-5 mg L(-1) of phosphorus and exposed to 200-500 ng L(-1) of amoxicillin for seven days. Amoxicillin presented no significant effect (p>0.05) on the growth of M. aeruginosa at phosphorus levels of 0.05 and 0.2 mg L(-1), but stimulated algal growth as a hormesis effect at phosphorus levels of 1 and 5 mg L(-1). Phosphorus and amoxicillin affected the contents of chlorophyll-a, adenosine triphosphate (ATP) and malondialdehyde, the expression of psbA and rbcL, as well as the activities of adenosinetriphosphatase and glutathione S-transferase in similar manners, but regulated the production and release of microcystins and the activities of superoxide dismutase and peroxidase in different ways. Increased photosynthesis activity was related with the ATP consumption for the stress response to amoxicillin, and the stress response was enhanced as the phosphorus concentration increased. The biodegradation of amoxicillin by M. aeruginosa increased from 11.5% to 28.2% as the phosphorus concentration increased. Coexisting amoxicillin aggravated M. aeruginosa pollution by increasing cell density and concentration of microcystins, while M. aeruginosa alleviated amoxicillin pollution via biodegradation. The interactions between M. aeruginosa and amoxicillin were significantly regulated by phosphorus (p<0.05) and led to a complicated situation of combined pollution. PMID:25956638

  3. Expression of Human Vascular Endothelial Growth Factor Receptor Flt-1 Extracellular Domain 1-3 Loop cDNA in Pichia pastoris, Purification of the Expressed Product and Detection of Its Biological Activity

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To express human vascular endothelial growth factor receptor Flt-1 extracellular domain 1-3 loop cDNA in Pichia. Pastroris, and to purify the expressed product and detect its biological activity. Methods By inserting human Flt-1 (1-3 loop) cDNA coding 316 amino acid residues into Pichia pastoris expression vector pPIC9K containing AOX1 promoter and the sequences of α secreting signal peptides, a recombinant expression plasmid pPIC9K/Flt-1 (1-3) was constructed and transformed to yeast host strain GS115, then His+ Muts phenotype transformant was screened out and cultured in flasks, and Flt-1 (1-3) was expressed under the induction of 1% methanol. Results SDS-PAGE showed that after being induced with 1% methanol for 4d, the expressed product existed in supernatant in the form of soluble molecule and contained 60% of total protein expressed. Western blot showed good antigenicity and specificity of expressed product. After being purified by CM-Sepharose FF and Sephacryl S-100 chromatography, the purity of the expressed product reached above 90%. Biological assay proved that the expressed product could bind to hVEGF165 and inhibit the proliferation of HUVEC stimulated by hVEGF165. Conclusion Human vascular endothelial growth factor receptor Flt-1 extracellular domain 1-3 loop was successfully expressed. The study lays a foundation for further application of the expressed product in the treatment of vasoformation related diseases, such as tumor and diabetic retinopathy.

  4. ANTIMICROBIAL ACTIVITY OF EXTRACELLULAR METABOLITE OF ENDOPHYTIC FUNGI Phomopsis spp. ISOLATED FROM FOUR DIFFERENT MEDICINAL PLANTS OF INDIA

    Directory of Open Access Journals (Sweden)

    K. Gopinath

    2013-06-01

    Full Text Available The present investigation is on endophytic fungus Phomopsis spp isolated from four Indian medicinal plants like., Artabotrys odoratissimus, Cassia auriculata, Guazuma ulmifolia and Terminalia catappa in four different months. Antimicrobial activity of ethyl acetate extract from the culture filtrate of Phomopsis spp were tested against six human pathogenic bacteria. Isolated three Phomopsis spp. were grown in Czapex Dox Broth for 21-days. The extracellular secondary metabolites present in the culture filtrate were extracted with ethyl acetate solvent. The extracellular bio-active compounds of the isolated fungus were tested for its anti microbial potential in well diffusion method, against three, Gram-positive and Gram-negative bacteria such as Staphylococcus aureus, Bacillus subtilis, Micrococcus luteus, Escherichia coli, Klebsiella Pneumoniae and Pseudomonas aeruginosa. Among all the three Phomopsis spp, the extract obtained from Phomopsis sp.2 exhibited a promising activity against the entire test bacteria. This bioactivity compounds focus on clinical pharmacology to identify a novel therapeutic targets and it can be easily scaled up for the large-scale commercial production.

  5. Chemical Inhibition of Kynureninase Reduces Pseudomonas aeruginosa Quorum Sensing and Virulence Factor Expression.

    Science.gov (United States)

    Kasper, Stephen H; Bonocora, Richard P; Wade, Joseph T; Musah, Rabi Ann; Cady, Nathaniel C

    2016-04-15

    The opportunistic pathogen Pseudomonas aeruginosa utilizes multiple quorum sensing (QS) pathways to coordinate an arsenal of virulence factors. We previously identified several cysteine-based compounds inspired by natural products from the plant Petiveria alliacea which are capable of antagonizing multiple QS circuits as well as reducing P. aeruginosa biofilm formation. To understand the global effects of such compounds on virulence factor production and elucidate their mechanism of action, RNA-seq transcriptomic analysis was performed on P. aeruginosa PAO1 exposed to S-phenyl-l-cysteine sulfoxide, the most potent inhibitor from the prior study. Exposure to this inhibitor down-regulated expression of several QS-regulated virulence operons (e.g., phenazine biosynthesis, type VI secretion systems). Interestingly, many genes that were differentially regulated pertain to the related metabolic pathways that yield precursors of pyochelin, tricarboxylic acid cycle intermediates, phenazines, and Pseudomonas quinolone signal (PQS). Activation of the MexT-regulon was also indicated, including the multidrug efflux pump encoded by mexEF-oprN, which has previously been shown to inhibit QS and pathogenicity. Deeper investigation of the metabolites involved in these systems revealed that S-phenyl-l-cysteine sulfoxide has structural similarity to kynurenine, a precursor of anthranilate, which is critical for P. aeruginosa virulence. By supplementing exogenous anthranilate, the QS-inhibitory effect was reversed. Finally, it was shown that S-phenyl-l-cysteine sulfoxide competitively inhibits P. aeruginosa kynureninase (KynU) activity in vitro and reduces PQS production in vivo. The kynurenine pathway has been implicated in P. aeruginosa QS and virulence factor expression; however, this is the first study to show that targeted inhibition of KynU affects P. aeruginosa gene expression and QS, suggesting a potential antivirulence strategy. PMID:26785289

  6. High level extracellular production of a truncated alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5 in Escherichia coli by the optimization of induction condition and fed-batch fermentation.

    Science.gov (United States)

    Zheng, Hongchen; Yu, Zhenxiao; Fu, Xiaoping; Li, Shufang; Xu, Jianyong; Song, Hui; Ma, Yanhe

    2016-07-01

    To improve the extracellular production of alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5 in Escherichia coli, two truncated recombinant mannanases (32a-ManAR2 and 22b-ManAR2) were obtained. Compared with the full-length mannanases (32a-ManAR1 and 22b-ManAR1), the truncated mannanases not only showed higher secretion rate, but also exhibited higher thermostability and alkalistability. The K m value (11 mg/mL) of 32a-ManAR2 was higher than that (1.46 mg/mL) of 32a-ManAR1. The specific activity of 22b-ManAR2 was 2.7 times higher than that of 22b-ManAR1. 22b-ManAR2 showed the highest k cat/K m value of 602.7 ml/mg s. The parameters of induction for recombinant mannanase production of E. coli BL21 (pET32a-manAR2) and E. coli BL21 (pET22b-manAR2) were subsequently optimized. The yield of soluble mannanase was found to be enhanced with lower induction temperature (25 °C), lower IPTG concentration (0.01-0.05 mM), and Triton X-100 supplement (0.1 %) in a shake flask. Moreover, a one-time feeding strategy and Triton X-100 supplement were applied in production of 22b-ManAR2 in a 10 L fermentor. The productivity of the total soluble mannanase reached 9284.64 U/mL with the extracellular rate of 74 % at 46 h of fermentation, which was the highest productive level of alkaline β-mannanase in recombinant E. coli to date. PMID:27130461

  7. Efficacy of methanolic extract of green and black teas against extended-spectrum β-Lactamase-producing Pseudomonas aeruginosa.

    Science.gov (United States)

    Taherpour, Arezou; Hashemi, Ali; Erfanimanesh, Soroor; Taki, Elahe

    2016-07-01

    Pseudomonas aeruginosa is one of the major bacteria causing acute infections. β-Lactamase production is the principal defense mechanism in gram-negative bacteria. The aim of our study was to evaluate the antibacterial activity of Methanolic Extracts of Green and Black Teas on P. aeruginosa Extended Spectrum-β-Lactamases (ESBLs) production. This research was carried out on burn wounds of 245 hospitalized patients in Kerman, Iran. P. aeruginosa ESBLs and MBL producing strains were detected by Combination Disk Diffusion Test (CDDT) and Epsilometer test (E-test) strips, respectively. Minimum inhibitory concentration (MIC) was measured for Ceftazidime, Meropenem, Imipenem, Aztreonam, Cefotaxime and methanollic extracts of Camellia Sinensis (Green Tea). From 245 patients in the burn ward, 120 cases were infected with P. aeruginosa. 41 isolates contained ESBL while MBL was not detected. P. aeruginosa were resistant to Cefotaxime, Aztreonam, Ceftazidime, Meropenem and Imipenem, 72 (60%), 50 (41.66%), 79 (65.83%), 33 (27.5%) and 24 (20%), respectively. Green tea extract had the highest anti-bacterial effect on standard and P. aeruginosa strains in 1.25mg/ml concentration. This study determined that the methanolic extract of green tea has a higher effect against ESBL producing P. aeruginosa than Cefotaxime, Aztreonam and Ceftazidime. PMID:27393439

  8. Microbial cells as biosorbents for heavy metals: accumulation of Uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Uranium accumulated extracellularly on the surfaces of Saccharomyces cerevisiae cells. The rate and extent of accumulation were subject to environmental parameters, such as pH, temperature, and interference by certain anions and cations. Uranium accumulation by Pseudomonas aeruginosa occurred intracellularly and was extremely rapid (<10 s), and no response to environmental parameters could be detected. Metabolism was not required for metal uptake by either organism. Cell-bound uranium reached a concentration of 10 to 15% of the dry cell weight, but only 32% of the S. cerevisiae cells and 44% of the P. aeruginosa cells within a given population possessed visible uranium deposits when examined by electron microscopy. Rates of uranium uptake by S. cerevisiae were increased by chemical pretreatment of the cells. Uranium could be removed chemically from S. cerevisiae cells, and the cells could then be reused as a biosorbent

  9. Degradation of Uniquely Glycosylated Secretory Immunoglobulin A in Tears From Patients With Pseudomonas aeruginosa Keratitis

    DEFF Research Database (Denmark)

    Lomholt, Jeanet Andersen; Kilian, Mogens

    2008-01-01

    PURPOSE. To investigate the integrity of secretory IgA (S-IgA) in tear fluid during bacterial keratitis and to evaluate the significance of specific Pseudomonas aeruginosa extracellular proteases in the observed degradation of S-IgA. METHODS. The integrity of component chains of S-IgA in tear fluid...... strains and an extent closely correlated with their expression and activity of individual proteases. Experiments using isogenic mutants of P. aeruginosa PAO1 lacking either elastase or alkaline protease indicate that several proteases work in concert. CONCLUSIONS. Surprisingly, SC of tear S-IgA is more...... abundantly glycosylated than SC of S-IgA in other secretions, a difference of potentially great functional significance. Primarily SC and alpha-chains are partially degraded in vivo during pseudomonas keratitis by the concerted action of several proteases including elastase and alkaline protease....

  10. Cell aggregation of Pseudomonas aeruginosa strain PAO1 as an energy-dependent stress response during growth sodium dodecyl sulfate

    OpenAIRE

    Klebensberger, Janosch; Rui, Oliver; Fritz, Eva; Schink, Bernhard; Philipp, Bodo

    2006-01-01

    Pseudomonas aeruginosa strain PAO1 grew with the detergent sodium dodecyl sulfate (SDS). The growth started with the formation of macroscopic cell aggregates which consisted of respiring cells embedded in an extracellular matrix composed of acidic polysaccharides and DNA. Damaged and uncultivable cells accumulated in these aggregates compared to those cells that remained suspended. We investigated the response of suspended cells to SDS under different conditions. At high energy supply, the ce...

  11. Disulfide Bond in Pseudomonas aeruginosa Lipase Stabilizes the Structure but Is Not Required for Interaction with Its Foldase

    OpenAIRE

    Liebeton, Klaus; Zacharias, Annette; Jaeger, Karl-Erich

    2001-01-01

    Pseudomonas aeruginosa secretes a 29-kDa lipase which is dependent for folding on the presence of the lipase-specific foldase Lif. The lipase contains two cysteine residues which form an intramolecular disulfide bond. Variant lipases with either one or both cysteines replaced by serines showed severely reduced levels of extracellular lipase activity, indicating the importance of the disulfide bond for secretion of lipase through the outer membrane. Wild-type and variant lipase genes fused to ...

  12. Versatile cloning vector for Pseudomonas aeruginosa.

    OpenAIRE

    Wood, D O; Hollinger, M F; Tindol, M B

    1981-01-01

    A pBR322:RSF1010 composite plasmid, constructed in vitro, was used as a cloning vector in Pseudomonas aeruginosa. This nonamplifiable plasmid, pMW79, has a molecular weight of 8.4 X 10(6) and exists as a multicopy plasmid in both P. aeruginosa and Escherichia coli. In P. aeruginosa strain PAO2003, pMW79 conferred resistance to carbenicillin and tetracycline. Characterization of pMW79 with restriction enzymes revealed that four enzymes (BamHI, SalI, HindIII, and HpaI) cleaved the plasmid at un...

  13. Pattern formation in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Parsek, Matthew R.; Tolker-Nielsen, Tim

    2008-01-01

    Bacteria are capable of forming elaborate multicellular communities called biofilms. Pattern formation in biofilms depends on cell proliferation and cellular migration in response to the available nutrients and other external cues, as well as on self-generated intercellular signal molecules and the...... production of an extracellular matrix that serves as a structural 'scaffolding' for the biofilm cells. Pattern formation in biofilms allows cells to position themselves favorably within nutrient gradients and enables buildup and maintenance of physiologically distinct subpopulations, which facilitates...... survival of one or more subpopulations upon environmental insult, and therefore plays an important role in the innate tolerance displayed by biofilms toward adverse conditions....

  14. Electrical conductivity measurements of bacterial nanowires from Pseudomonas aeruginosa

    Science.gov (United States)

    Maruthupandy, Muthusamy; Anand, Muthusamy; Maduraiveeran, Govindhan; Sait Hameedha Beevi, Akbar; Jeeva Priya, Radhakrishnan

    2015-12-01

    The extracellular appendages of bacteria (flagella) that transfer electrons to electrodes are called bacterial nanowires. This study focuses on the isolation and separation of nanowires that are attached via Pseudomonas aeruginosa bacterial culture. The size and roughness of separated nanowires were measured using transmission electron microscopy (TEM) and atomic force microscopy (AFM), respectively. The obtained bacterial nanowires indicated a clear image of bacterial nanowires measuring 16 nm in diameter. The formation of bacterial nanowires was confirmed by microscopic studies (AFM and TEM) and the conductivity nature of bacterial nanowire was investigated by electrochemical techniques. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), which are nondestructive voltammetry techniques, suggest that bacterial nanowires could be the source of electrons—which may be used in various applications, for example, microbial fuel cells, biosensors, organic solar cells, and bioelectronic devices. Routine analysis of electron transfer between bacterial nanowires and the electrode was performed, providing insight into the extracellular electron transfer (EET) to the electrode. CV revealed the catalytic electron transferability of bacterial nanowires and electrodes and showed excellent redox activities. CV and EIS studies showed that bacterial nanowires can charge the surface by producing and storing sufficient electrons, behave as a capacitor, and have features consistent with EET. Finally, electrochemical studies confirmed the development of bacterial nanowires with EET. This study suggests that bacterial nanowires can be used to fabricate biomolecular sensors and nanoelectronic devices.

  15. Pseudomonas aeruginosa outcompetes other bacteria in the manifestation and maintenance of a biofilm in polyvinylchloride tubing as used in dental devices.

    Science.gov (United States)

    Ammann, Christoph Gert; Nagl, Markus; Nogler, Michael; Coraça-Huber, Débora Cristina

    2016-05-01

    In a PVC tube as a model system for dental devices, Pseudomonas aeruginosa outcompetes Staphylococcus aureus and Klebsiella pneumoniae for the biofilm formation. P. aeruginosa has advantage over the other strains due to higher tolerance for low-nutrient situations or direct killing by the production of soluble factors like pyocyanin. PMID:26980595

  16. INHIBITION OF VIRULENCE FACTORS OF PSEUDOMONAS AERUGINOSA BY DICLOFENAC SODIUM.

    Science.gov (United States)

    Abbas, Hisham A

    2015-01-01

    Resistance of Pseudomonas aeruginosa to antibiotics is a major problem. Targeting virulence factors is an alternative option to avoid the emergence of resistance to antibiotics. The effect of sub-inhibitory concentration of diclofenac sodium on the production of virulence factors of P. aeruginosa was investigated. The virulence factors included protease, haemolysin, pyocyanin and pyoverdin, in addition to pathogenic behaviors such as swimming and twitching motilities and biofilm formation. Diclofenac sodium showed significant inhibition of virulence factors as compared to the control. Diclofenac sodium decreased twitching and swimming motilities by 29.27% and 45.36%, respectively. The percentage of inhibition of pyocyanin by diclofenac sodium was 42.32%. On the other hand, pyoverdin was inhibited to a lesser extent (36.72%). Diclofenac sodium reduced protease by 52.58% and biofilm formation by 58.37%. Moreover, haemolytic activity in the presence of diclofenac sodium was 15.64% as compared to the control (100% haemolytic activity). The inhibitory activities may be due to inhibition of quorum sensing that regulates the expression of virulence factors. This study suggests the potential for the use of diclofenac sodium as an anti-virulence agent in the treatment of Pseudomonas aeruginosa infections. PMID:27328521

  17. PA3297 Counteracts Antimicrobial Effects of Azithromycin in Pseudomonas aeruginosa.

    Science.gov (United States)

    Tan, Hao; Zhang, Lu; Weng, Yuding; Chen, Ronghao; Zhu, Feng; Jin, Yongxin; Cheng, Zhihui; Jin, Shouguang; Wu, Weihui

    2016-01-01

    Pseudomonas aeruginosa causes acute and chronic infections in human. Its increasing resistance to antibiotics requires alternative treatments that are more effective than available strategies. Among the alternatives is the unconventional usage of conventional antibiotics, of which the macrolide antibiotic azithromycin (AZM) provides a paradigmatic example. AZM therapy is associated with a small but consistent improvement in respiratory function of cystic fibrosis patients suffering from chronic P. aeruginosa infection. Besides immunomodulating activities, AZM represses bacterial genes involved in virulence, quorum sensing, biofilm formation, and motility, all of which are due to stalling of ribosome and depletion of cellular tRNA pool. However, how P. aeruginosa responds to and counteracts the effects of AZM remain elusive. Here, we found that deficiency of PA3297, a gene encoding a DEAH-box helicase, intensified AZM-mediated bacterial killing, suppression of pyocyanin production and swarming motility, and hypersusceptibility to hydrogen peroxide. We demonstrated that expression of PA3297 is induced by the interaction between AZM and ribosome. Importantly, mutation of PA3297 resulted in elevated levels of unprocessed 23S-5S rRNA in the presence of AZM, which might lead to increased susceptibility to AZM-mediated effects. Our results revealed one of the bacterial responses in counteracting the detrimental effects of AZM. PMID:27014238

  18. PA3297 Counteracts Antimicrobial Effects of Azithromycin in Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Hao eTan

    2016-03-01

    Full Text Available Pseudomonas aeruginosa causes acute and chronic infections in human. Its increasing resistance to antibiotics requires alternative treatments that are more effective than available strategies. Among the alternatives is the unconventional usage of conventional antibiotics, of which the macrolide antibiotic azithromycin (AZM provides a paradigmatic example. AZM therapy is associated with a small but consistent improvement in respiratory function of cystic fibrosis (CF patients suffering from chronic P. aeruginosa infection. Besides immunomodulating activities, AZM represses bacterial genes involved in virulence, quorum sensing, biofilm formation, and motility, all of which are due to stalling of ribosome and depletion of cellular tRNA pool. However, how P. aeruginosa responds to and counteracts the effects of AZM remain elusive. Here we found that deficiency of PA3297, a gene encoding a DEAH-box helicase, intensified AZM-mediated bacterial killing, suppression of pyocyanin production and swarming motility, and hypersusceptibility to hydrogen peroxide. We demonstrated that expression of PA3297 is induced by the interaction between AZM and ribosome. Importantly, mutation of PA3297 resulted in elevated levels of unprocessed 23S-5S rRNA in the presence of AZM, which might lead to increased susceptibility to AZM-mediated effects. Our results revealed one of the bacterial responses in counteracting the detrimental effects of AZM.

  19. Application of Dual Inhibition Concept within Looped Autoregulatory Systems toward Antivirulence Agents against Pseudomonas aeruginosa Infections.

    Science.gov (United States)

    Thomann, Andreas; de Mello Martins, Antonio G G; Brengel, Christian; Empting, Martin; Hartmann, Rolf W

    2016-05-20

    Pseudomonas aeruginosa quorum-sensing (QS) is a sophisticated network of genome-wide regulation triggered in response to population density. A major component is the self-inducing pseudomonas quinolone signal (PQS) QS system that regulates the production of several nonvital virulence- and biofilm-related determinants. Hence, QS circuitry is an attractive target for antivirulence agents with lowered resistance development potential and a good model to study the concept of polypharmacology in autoloop-regulated systems per se. Based on the finding that a combination of PqsR antagonist and PqsD inhibitor synergistically lowers pyocyanin, we have developed a dual-inhibitor compound of low molecular weight and high solubility that targets PQS transcriptional regulator (PqsR) and PqsD, a key enzyme in the biosynthesis of PQS-QS signal molecules (HHQ and PQS). In vitro, this compound markedly reduced virulence factor production and biofilm formation accompanied by a diminished content of extracellular DNA (eDNA). Additionally, coadministration with ciprofloxacin increased susceptibility of PA14 to antibiotic treatment under biofilm conditions. Finally, disruption of pathogenicity mechanisms was also assessed in vivo, with significantly increased survival of challenged larvae in a Galleria mellonella infection model. Favorable physicochemical properties and effects on virulence/biofilm establish a promising starting point for further optimization. In particular, the ability to address two targets of the PQS autoinduction cycle at the same time with a single compound holds great promise in achieving enhanced synergistic cellular effects while potentially lowering rates of resistance development. PMID:26882081

  20. Antibiotic Conditioned Growth Medium of Pseudomonas Aeruginosa

    Science.gov (United States)

    Benathen, Isaiah A.; Cazeau, Barbara; Joseph, Njeri

    2004-01-01

    A simple method to study the consequences of bacterial antibiosis after interspecific competition between microorganisms is presented. Common microorganisms are used as the test organisms and Pseudomonas aeruginosa are used as the source of the inhibitor agents.

  1. Foodomics study on the effects of extracellular production of hydrogen peroxide by rosemary polyphenols on the anti-proliferative activity of rosemary polyphenols against HT-29 cells.

    Science.gov (United States)

    Valdés, Alberto; García-Cañas, Virginia; Koçak, Engin; Simó, Carolina; Cifuentes, Alejandro

    2016-07-01

    A number of studies have demonstrated a strong association between the antioxidant properties of rosemary polyphenols and their chemoprotective activity. However, the prooxidant effects of rosemary polyphenols have been rarely reported. In this work, a foodomics study is performed to investigate the in vitro autooxidation of carnosic acid (CA), carnosol (CS) and a polyphenol-enriched rosemary extract (SC-RE) in cell culture conditions. The results revealed that rosemary polyphenols autooxidation in culture medium generated H2 O2 at different rates. Generated H2 O2 levels by SC-RE and CA, but not CS, were correlated with intracellular reactive oxygen species (ROS) generation in HT-29 cells, and were partially involved in their anti-proliferative effect in this cell line. These compounds also induced different effects on glutathione metabolism. Results also indicated that high extracellular H2 O2 concentrations, resulting of using high (45 μg/mL) SC-RE concentration in culture media, exerted some artifactual effects related with cell cycle, but they did not influence the expression of relevant molecular biomarkers of stress. PMID:26842614

  2. Pseudomonas aeruginosa Evolutionary Adaptation and Diversification in Cystic Fibrosis Chronic Lung Infections.

    Science.gov (United States)

    Winstanley, Craig; O'Brien, Siobhan; Brockhurst, Michael A

    2016-05-01

    Pseudomonas aeruginosa populations undergo a characteristic evolutionary adaptation during chronic infection of the cystic fibrosis (CF) lung, including reduced production of virulence factors, transition to a biofilm-associated lifestyle, and evolution of high-level antibiotic resistance. Populations of P. aeruginosa in chronic CF lung infections typically exhibit high phenotypic diversity, including for clinically important traits such as antibiotic resistance and toxin production, and this diversity is dynamic over time, making accurate diagnosis and treatment challenging. Population genomics studies reveal extensive genetic diversity within patients, including for transmissible strains the coexistence of highly divergent lineages acquired by patient-to-patient transmission. The inherent spatial structure and spatial heterogeneity of selection in the CF lung appears to play a key role in driving P. aeruginosa diversification. PMID:26946977

  3. 双孢菇深层发酵培养基的响应面优化%Optimization of submerged fermentation medium of Agaricus bisporus for extracellular polysaccharide production by response surface analysis

    Institute of Scientific and Technical Information of China (English)

    毛勇; 毛健; 李华钟; 孟祥勇

    2013-01-01

    The effect of carbon sources,nitrogen source and mineral salt on extracellular polysaccharide production by submerged fermentation medium of Agaricus bisporus had been studied. On the base of single factors experiments,response surface analysis was applied to optimize the submerged fermentation medium of Agaricus bisporus for extracellular polysaccharide production. The quadratic regression analysis was applied to get the optimal level of main factors,and optimal quality concentrations of the variables were obtained as follows:glucose 35.7g/L,KH2PO4 2.1g/L and peptone 3.1g/L. Under these optimal conditions,the predicted and experimental production of extracellular polysaccharide was high up to 1.86g/L and 1.87g/L,respectively.%研究了碳源、氮源、无机盐对双孢菇胞外多糖产量的影响.在单因素实验的基础上,采用响应面实验设计对双孢菇(Agaricus bisporus)深层发酵生产胞外多糖的培养基进行了优化,并建立了葡萄糖、KH2PO4、蛋白胨变化的二次回归方程,探讨了各因子对胞外多糖产量的影响.最终确定适宜的培养基条件为葡萄糖35.7g/L,KH2PO42.1g/L,蛋白胨3.1g/L;在此条件下可得到胞外多糖的最大产量,预测值为1.86g/L,对实验结果进行验证,得到胞外多糖的产量为1.87g/L.

  4. Two distinct ferritin-like molecules in P. aeruginosa: The product of the bfrA gene is a bacterial ferritin (FtnA) not a bacterioferritin (Bfr)†€

    OpenAIRE

    Huili YAO; Jepkorir, Grace; Lovell, Scott; Nama, Pavithra V.; Weeratunga, Saroja; Battaile, Kevin P.; Rivera, Mario

    2011-01-01

    Two distinct types of ferritin-like molecules often coexist in bacteria, the heme binding bacterioferritins (Bfr) and the non-heme binding bacterial ferritins (Ftn). The early isolation of a ferritin-like molecule from P. aeruginosa suggested the possibility of a bacterioferritin assembled from two different subunits [Moore, G. R., Kadir, F. H., Al-Massad, F. K., Le Brun, N. E., Thomson, A. J., Greenwood, C., Keen, J. N. and Findlay, J. B. C. (1994) Biochem. J. 304, 493–497]. Subsequent studi...

  5. Epigenetic Control of Virulence Gene Expression in Pseudomonas aeruginosa by a LysR-Type Transcription Regulator

    OpenAIRE

    Turner, Keith H.; Isabelle Vallet-Gely; Dove, Simon L.

    2009-01-01

    Phenotypic variation within an isogenic bacterial population is thought to ensure the survival of a subset of cells in adverse conditions. The opportunistic pathogen Pseudomonas aeruginosa variably expresses several phenotypes, including antibiotic resistance, biofilm formation, and the production of CupA fimbriae. Here we describe a previously unidentified bistable switch in P. aeruginosa. This switch controls the expression of a diverse set of genes, including aprA, which encodes the secret...

  6. Pseudomonas aeruginosa AlgG is a polymer level alginate C5-mannuronan epimerase.

    OpenAIRE

    Franklin, M J; Chitnis, C E; Gacesa, P; Sonesson, A; White, D. C.; Ohman, D E

    1994-01-01

    Alginate is a viscous extracellular polymer produced by mucoid strains of Pseudomonas aeruginosa that cause chronic pulmonary infections in patients with cystic fibrosis. Alginate is polymerized from GDP-mannuronate to a linear polymer of beta-1-4-linked residues of D-mannuronate and its C5-epimer, L-guluronate. We previously identified a gene called algG in the alginate biosynthetic operon that is required for incorporation of L-guluronate residues into alginate. In this study, we tested the...

  7. Serratia secondary metabolite prodigiosin inhibit Pseudomonas aeruginosa biofilm development by producing reactive oxygen species that damage biological molecules.

    Directory of Open Access Journals (Sweden)

    Onder eKimyon

    2016-06-01

    Full Text Available Prodigiosin is a heterocyclic bacterial secondary metabolite belonging to the class of tripyrrole compounds, synthesized by various types of bacteria including Serratia species. Prodigiosin has been the subject of intense research over the last decade for its ability to induce apoptosis in several cancer cell lines. Reports suggest that prodigiosin promotes oxidative damage to double-stranded DNA (dsDNA in the presence of copper ions and consequently leads to inhibition of cell-cycle progression and cell death. However, prodigiosin has not been previously implicated in biofilm inhibition. In this study, the link between prodigiosin and biofilm inhibition through the production of redox active metabolites is presented. Our study showed that prodigiosin (500 µM (extracted from Serratia marcescens culture and a prodigiosin/copper(II (100 µM each complex have strong RNA and dsDNA cleaving properties while they have no pronounced effect on protein. Results support a role for oxidative damage to biomolecules by H2O2 and hydroxyl radical generation. Further, it was demonstrated that reactive oxygen species scavengers significantly reduced the DNA and RNA cleaving property of prodigiosin. P. aeruginosa cell surface hydrophobicity and biofilm integrity were significantly altered due to the cleavage of nucleic acids by prodigiosin or the prodigiosin/copper(II complex. In addition, prodigiosin also facilitated the bactericidal activity. The ability of prodigiosin to cause nucleic acid degradation offers novel opportunities to interfere with extracellular DNA dependent bacterial biofilms.

  8. Protective role of murine norovirus against Pseudomonas aeruginosa acute pneumonia.

    Science.gov (United States)

    Thépaut, Marion; Grandjean, Teddy; Hober, Didier; Lobert, Pierre-Emmanuel; Bortolotti, Perrine; Faure, Karine; Dessein, Rodrigue; Kipnis, Eric; Guery, Benoit

    2015-01-01

    The murine norovirus (MNV) is a recently discovered mouse pathogen, representing the most common contaminant in laboratory mouse colonies. Nevertheless, the effects of MNV infection on biomedical research are still unclear. We tested the hypothesis that MNV infection could alter immune response in mice with acute lung infection. Here we report that co-infection with MNV increases survival of mice with Pseudomonas aeruginosa acute lung injury and decreases in vivo production of pro-inflammatory cytokines. Our results suggest that MNV infection can deeply modify the parameters studied in conventional models of infection and lead to false conclusions in experimental models. PMID:26338794

  9. Functional analysis of the Pseudomonas aeruginosa autoinducer PAI.

    OpenAIRE

    Passador, L; Tucker, K D; Guertin, K R; Journet, M P; Kende, A S; Iglewski, B H

    1996-01-01

    A series of structural analogs of the Pseudomonas aeruginosa autoinducer [PAI, N-3-oxo-dodecanoyl homoserine lactone] were obtained and tested for their ability to act as autoinducers in stimulating the expression of the gene for elastase (lasB) by measuring beta-galactosidase production from a lasB-lacZ gene fusion in the presence of the transcriptional activator LasR. The data suggest that the length of the acyl side chain of the autoinducer molecule is the most critical factor for activity...

  10. A titanium surface with nano-ordered spikes and pores enhances human dermal fibroblastic extracellular matrix production and integration of collagen fibers.

    Science.gov (United States)

    Yamada, Masahiro; Kato, Eiji; Yamamoto, Akiko; Sakurai, Kaoru

    2016-02-01

    The acquisition of substantial dermal sealing determines the prognosis of percutaneous titanium-based medical devices or prostheses. A nano-topographic titanium surface with ordered nano-spikes and pores has been shown to induce periodontal-like connective tissue attachment and activate gingival fibroblastic functions. This in vitro study aimed to determine whether an alkali-heat (AH) treatment-created nano-topographic titanium surface could enhance human dermal fibroblastic functions and binding strength to the deposited collagen on the titanium surface. The surface topographies of commercially pure titanium machined discs exposed to two different AH treatments were evaluated. Human dermal fibroblastic cultures grown on the discs were evaluated in terms of cellular morphology, proliferation, extracellular matrix (ECM) and proinflammatory cytokine synthesis, and physicochemical binding strength of surface-deposited collagen. An isotropically-patterned, shaggy nano-topography with a sponge-like inner network and numerous well-organized, anisotropically-patterned fine nano-spikes and pores were observed on each nano-topographic surface type via scanning electron microscopy. In contrast to the typical spindle-shaped cells on the machined surfaces, the isotropically- and anisotropically-patterned nano-topographic titanium surfaces had small circular/angular cells containing contractile ring-like structures and elongated, multi-shaped cells with a developed cytoskeletal network and multiple filopodia and lamellipodia, respectively. These nano-topographic surfaces enhanced dermal-related ECM synthesis at both the protein and gene levels, without proinflammatory cytokine synthesis or reduced proliferative activity. Deposited collagen fibers were included in these surfaces and sufficiently bound to the nano-topographies to resist the physical, enzymatic and chemical detachment treatments, in contrast to machined surfaces. Well-organized, isotropically

  11. Extracellular Signatures as Indicators of Processing Methods

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, Karen L.

    2012-01-09

    As described in other chapters within this volume, many aspects of microbial cells vary with culture conditions and therefore can potentially be analyzed as forensic signatures of growth conditions. In addition to changes or variations in components of the microbes themselves, extracellular materials indicative of production processes may remain associated with the final bacterial product. It is well recognized that even with considerable effort to make pure products such as fine chemicals or pharmaceuticals, trace impurities from components or synthesis steps associated with production processes can be detected in the final product. These impurities can be used as indicators of production source or methods, such as to help connect drugs of abuse to supply chains. Extracellular residue associated with microbial cells could similarly help to characterize production processes. For successful growth of microorganisms on culture media there must be an available source of carbon, nitrogen, inorganic phosphate and sulfur, trace metals, water and vitamins. The pH, temperature, and a supply of oxygen or other gases must also be appropriate for a given organism for successful culture. The sources of these components and the range in temperature, pH and other variables has adapted over the years with currently a wide range of possible combinations of media components, recipes and parameters to choose from for a given organism. Because of this wide variability in components, mixtures of components, and other parameters, there is the potential for differentiation of cultured organisms based on changes in culture conditions. The challenge remains how to narrow the field of potential combinations and be able to attribute variations in the final bacterial product and extracellular signatures associated with the final product to information about the culture conditions or recipe used in the production of that product.

  12. Divergence of a strain of Pseudomonas aeruginosa during an outbreak of ovine mastitis.

    Science.gov (United States)

    Wright, Elli A; Di Lorenzo, Valeria; Trappetti, Claudia; Liciardi, Manuele; Orru, Germano; Viti, Carlo; Bronowski, Christina; Hall, Amanda J; Darby, Alistair C; Oggioni, Marco R; Winstanley, Craig

    2015-01-30

    Bacterial infections causing mastitis in sheep can result in severe economic losses for farmers. A large survey of milk samples from ewes with mastitis in Sardinia, Italy, indicated an increasing prevalence of Pseudomonas aeruginosa infections. It has been shown previously that during chronic, biofilm-associated infections P. aeruginosa populations diversify. We report the phenotypic and genomic characterisation of two clonal P. aeruginosa isolates (PSE305 and PSE306) from a mastitis infection outbreak, representing distinct colony morphology variants. In addition to pigment production, PSE305 and PSE306 differed in phenotypic characteristics including biofilm formation, utilisation of various carbon and nitrogen sources, twitching motility. We found higher levels of expression of genes associated with biofilm formation (pelB) and twitching motility (flgD) in PSE305, compared to the biofilm and twitching-defective PSE306. Comparative genomics analysis revealed single nucleotide polymorphisms (SNPs) and minor insertion/deletion variations between PSE305 and PSE306, including a SNP mutation in the pilP gene of PSE306. By introducing a wild-type pilP gene we were able to partially complement the defective twitching motility of PSE306. There were also three larger regions of difference between the two genomes, indicating genomic instability. Hence, we have demonstrated that P. aeruginosa population divergence can occur during an outbreak of mastitis, leading to significant variations in phenotype and genotype, and resembling the behaviour of P. aeruginosa during chronic biofilm-associated infections. PMID:25475851

  13. Associations among Human-Associated Fecal Contamination, Microcystis aeruginosa, and Microcystin at Lake Erie Beaches.

    Science.gov (United States)

    Lee, Cheonghoon; Marion, Jason W; Cheung, Melissa; Lee, Chang Soo; Lee, Jiyoung

    2015-09-01

    Lake Erie beaches exhibit impaired water quality due to fecal contamination and cyanobacterial blooms, though few studies address potential relationships between these two public health hazards. Using quantitative polymerase chain reaction (qPCR), Microcystis aeruginosa was monitored in conjunction with a human-associated fecal marker (Bacteroides fragilis group; g-Bfra), microcystin, and water quality parameters at two beaches to evaluate their potential associations. During the summer of 2010, water samples were collected 32 times from both Euclid and Villa Angela beaches. The phycocyanin intergenic spacer (PC-IGS) and the microcystin-producing (mcyA) gene in M. aeruginosa were quantified with qPCR. PC-IGS and mcyA were detected in 50.0% and 39.1% of samples, respectively, and showed increased occurrences after mid-August. Correlation and regression analyses showed that water temperature was negatively correlated with M. aeruginosa markers and microcystin. The densities of mcyA and the g-Bfra were predicted by nitrate, implicating fecal contamination as contributing to the growth of M. aeruginosa by nitrate loading. Microcystin was correlated with mcyA (r = 0.413, p < 0.01), suggesting toxin-producing M. aeruginosa populations may significantly contribute to microcystin production. Additionally, microcystin was correlated with total phosphorus (r = 0.628, p < 0.001), which was higher at Euclid (p < 0.05), possibly contributing to higher microcystin concentrations at Euclid. PMID:26378564

  14. Associations among Human-Associated Fecal Contamination, Microcystis aeruginosa, and Microcystin at Lake Erie Beaches

    Directory of Open Access Journals (Sweden)

    Cheonghoon Lee

    2015-09-01

    Full Text Available Lake Erie beaches exhibit impaired water quality due to fecal contamination and cyanobacterial blooms, though few studies address potential relationships between these two public health hazards. Using quantitative polymerase chain reaction (qPCR, Microcystis aeruginosa was monitored in conjunction with a human-associated fecal marker (Bacteroides fragilis group; g-Bfra, microcystin, and water quality parameters at two beaches to evaluate their potential associations. During the summer of 2010, water samples were collected 32 times from both Euclid and Villa Angela beaches. The phycocyanin intergenic spacer (PC-IGS and the microcystin-producing (mcyA gene in M. aeruginosa were quantified with qPCR. PC-IGS and mcyA were detected in 50.0% and 39.1% of samples, respectively, and showed increased occurrences after mid-August. Correlation and regression analyses showed that water temperature was negatively correlated with M. aeruginosa markers and microcystin. The densities of mcyA and the g-Bfra were predicted by nitrate, implicating fecal contamination as contributing to the growth of M. aeruginosa by nitrate loading. Microcystin was correlated with mcyA (r = 0.413, p < 0.01, suggesting toxin-producing M. aeruginosa populations may significantly contribute to microcystin production. Additionally, microcystin was correlated with total phosphorus (r = 0.628, p < 0.001, which was higher at Euclid (p < 0.05, possibly contributing to higher microcystin concentrations at Euclid.

  15. Role of small colony variants in persistence of Pseudomonas aeruginosa infections in cystic fibrosis lungs

    Directory of Open Access Journals (Sweden)

    Malone JG

    2015-07-01

    Full Text Available Jacob G Malone1,21John Innes Centre, Norwich, UK; 2School of Biological Sciences, University of East Anglia, Norwich, UKAbstract: Pseudomonas aeruginosa is an opportunistic pathogen that predominates during the later stages of cystic fibrosis (CF lung infections. Over many years of chronic lung colonization, P. aeruginosa undergoes extensive adaptation to the lung environment, evolving both toward a persistent, low virulence state and simultaneously diversifying to produce a number of phenotypically distinct morphs. These lung-adapted P. aeruginosa strains include the small colony variants (SCVs, small, autoaggregative isolates that show enhanced biofilm formation, strong attachment to surfaces, and increased production of exopolysaccharides. Their appearance in the sputum of CF patients correlates with increased resistance to antibiotics, poor lung function, and prolonged persistence of infection, increasing their relevance as a subject for clinical investigation. The evolution of SCVs in the CF lung is associated with overproduction of the ubiquitous bacterial signaling molecule cyclic-di-GMP, with increased cyclic-di-GMP levels shown to be responsible for the SCV phenotype in a number of different CF lung isolates. Here, we review the current state of research in clinical P. aeruginosa SCVs. We will discuss the phenotypic characteristics underpinning the SCV morphotype, the clinical implications of lung colonization with SCVs, and the molecular basis and clinical evolution of the SCV phenotype in the CF lung environment.Keywords: small colony variants, cystic fibrosis, cyclic-di-GMP, Pseudomonas aeruginosa, RsmA, antibiotics

  16. Analysis of AmpC β-lactamase Gene in Pseudomonas aeruginosa

    Institute of Scientific and Technical Information of China (English)

    NI Ming; ZHANG Dongshen; QI Junying

    2005-01-01

    The gene and the amino acid sequence of the structural and regulatory region of the Pseudomonas aeruginosa with different resistance patterns were analyzed. Six strains with different resistance patterns were selected and the AmpC β-lactamase was identified. The objective gene fragment was amplified by colonies PCR. The sequences of the PCR-products were analyzed. The DNA sequence of the structural gene ampC and the regulatory genes ampR, ampD and ampE was detected. The 6 strains and the wild-type Pseudomonas aeruginosa are highly homogeneous in structural and regulatory region. Some new mutant points were found.

  17. Respiratory syncytial virus infection facilitates acute colonization of Pseudomonas aeruginosa in mice

    DEFF Research Database (Denmark)

    de Vrankrijker, Angélica M M; Wolfs, Tom F W; Ciofu, Oana;

    2009-01-01

    Pseudomonas aeruginosa causes opportunistic infections in immunocompromised individuals and patients ventilated mechanically and is the major pathogen in patients with cystic fibrosis, in which it causes chronic infections. Epidemiological, in vitro and animal data suggest a role for respiratory...... the lung homogenates when compared to mice which were only infected with P. aeruginosa and lung function changes were more severe in co-infected mice. Control mice receiving RSV alone showed no significant changes in lung function or cytokine production, and no inflammatory changes in the lung...

  18. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound

    DEFF Research Database (Denmark)

    Hentzer, Morten; Riedel, Kathrin; Rasmussen, Thomas B;

    2002-01-01

    Novel molecular tools have been constructed which allow for in situ detection of N-acyl homoserine lactone (AHL)-mediated quorum sensing in Pseudomonas aeruginosa biofilms. The reporter responds to AHL activation of LasR by expression of an unstable version of the green-fluorescent protein (Gfp...... macroalga Delisea pulchra, is capable of interfering with AHL-mediated quorum sensing in P. aeruginosa. It is demonstrated that the furanone compound specifically represses expression of a PlasB-gfp reporter fusion without affecting growth or protein synthesis. In addition, it reduces the production of...

  19. HD-GYP domain proteins regulate biofilm formation and virulence in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Ryan, Robert P.; Lucey, Jean; O'Donovan, Karen;

    2009-01-01

    residues (YN-GYP). Here we have investigated the role of these proteins in biofilm formation, virulence factor synthesis and virulence of P. aeruginosa. Mutation of PA4108 and PA4781 led to an increase in the level of cyclic-di-GMP in P. aeruginosa, consistent with the predicted activity of the encoded...... proteins as cyclic-di-GMP phosphodiesterases. Mutation of both genes led to reduced swarming motility but had differing effects on production of the virulence factors pyocyanin, pyoverdin and ExoS. Mutation of PA2572 had no effect on cyclic-di-GMP levels and did not influence swarming motility. However, PA......2572 had a negative influence on swarming that was cryptic and was revealed only after removal of an uncharacterized C-terminal domain. Mutation of PA4108, PA4781 and PA2572 had distinct effects on biofilm formation and architecture of P. aeruginosa. All three proteins contributed to virulence of P...

  20. Experimental study of the antergic effect of Pseudomonas aeruginosa and its metabolic products on Vibrio cholerae%铜绿假单胞菌及其代谢产物对霍乱弧菌拮抗性作用的实验研究

    Institute of Scientific and Technical Information of China (English)

    马智龙

    2011-01-01

    Objective To find out whether Pseudomonas aeruginosa had antergic effect on Vibrio cholerae growth during its isolation and culture. Method Typical strains of Vibrio cholerae and Pseudomonas aeruginosa were picked up, enrichment culture, isolation and observed the results and followed drug sensitive tests by MH agar medium and alkaline agar medium. Results Mixed incubation Pseudomonas aeruginosa and Vibrio cholerae at 37℃ , 6 hours later, only 1 strain of Vibrio cholerae ( O139) was detected out, after 18 hours, there was no Vibrio cholera. Before and after disinfection, different dilution degree of Pseudomonas aeruginosa mixed incubation with Vibrio cholerae, when above the dilution degree of 1 ∶ 12 and 1∶ 4 could detect Vibrio cholerae. The diameters of inhibition zones of doxycycline and tetracycline were 16. 5mm and 7. Omm respectively on MH agar medium plates, and were 11. 5mm and 6. 5mm respectively on alkaline agar medium plates. Conclusions This artide indicated that Pseudomonas aeruginosa and its metabolic products had antergic effect on Vibrio cholerae growth, and the inhibitive effect of doxycycline and tetracyeline on Vibrio cholerae in alkaline environment was more significantly weaker than in neutral environment.%目的 研究铜绿假单胞菌在霍乱弧菌分离、培养过程中对霍乱弧菌的生长是否存在拮抗作用.方法 挑取典型的霍乱弧菌和铜绿假单胞菌共同增菌、分离培养,观察分离、培养的结果,并分别用MH琼脂和碱性琼脂进行药敏试验.结果 10株霍乱弧菌和10株铜绿假单胞菌对应等量混合接种于碱性蛋白胨水,37℃培养6h后划线接种碱性琼脂平板,只检出1例霍乱弧菌(O139),碱性蛋白水37℃培养18h后划线接种碱性琼脂平板则未检出霍乱弧菌;将10株霍乱弧菌接种于不同稀释度灭菌前和灭菌后铜绿假单胞菌菌液中,37℃培养6h后划线接种碱性琼脂平板,只有当灭菌前菌液稀释度>1∶12

  1. Pseudomonas aeruginosa Dose-Response and Bathing Water Infection

    Science.gov (United States)

    Pseudomonas aeruginosa is the most commonly identified opportunistic pathogen associated with pool acquired bather disease. To better understand why this microorganism poses this protracted problem we recently appraised P. aeruginosa pool risk management. Much is known about the ...

  2. Clonal complex Pseudomonas aeruginosa in horses.

    Science.gov (United States)

    Kidd, Timothy J; Gibson, Justine S; Moss, Susan; Greer, Ristan M; Cobbold, Rowland N; Wright, John D; Ramsay, Kay A; Grimwood, Keith; Bell, Scott C

    2011-05-01

    Pseudomonas aeruginosa is associated with infectious endometritis in horses. Although infectious endometritis is often considered a venereal infection, there is relatively limited genotypic-based evidence to support this mode of transmission. The study sought to determine the relatedness between genital P. aeruginosa isolates collected from a limited geographical region using molecular strain typing. Enterobacterial repetitive intergenic consensus PCR typing was performed on 93 isolates collected between 2005 and 2009 from 2058 thoroughbred horses (including 18 stallions) at 66 studs. While P. aeruginosa was not detected in the stallions, 53/93 (57%) mares harbouring P. aeruginosa had clonally related strains, which included a single dominant genotype detected in 42 (45%) mares from 13 different studs. These novel findings suggest that most equine genital P. aeruginosa infections in this region may have been acquired from mechanisms other than direct horse to horse transmission. Instead, other potential acquisition pathways, as well as strain specific adaptation to the equine genital tract, should be investigated. PMID:21183294

  3. Effects of the two-component system comprising GacA and GacS of Erwinia carotovora subsp. carotovora on the production of global regulatory rsmB RNA, extracellular enzymes, and harpinEcc.

    Science.gov (United States)

    Cui, Y; Chatterjee, A; Chatterjee, A K

    2001-04-01

    Posttranscriptional regulation mediated by the regulator of secondary metabolites (RSM) RsmA-rsmB pair is the most important factor in the expression of genes for extracellular enzymes and HarpinEcc in Erwinia carotovora subsp. carotovora. RsmA is a small RNA-binding protein, which acts by lowering the half-life of a mRNA species. rsmB specifies an untranslated regulatory RNA and neutralizes the RsmA effect. It has been speculated that GacA-GacS, members of a two-component system, may affect gene expression via RsmA. Because expA, a gacA homolog, and expS (or rpfA), a gacS homolog, have been identified in E. carotovora subsp. carotovora, we examined the effects of these gacA and gacS homologs on the expression of rsmA, rsmB, and an assortment of exoprotein genes. The gacA gene of E. carotovora subsp. carotovora strain 71 stimulated transcription of genes for several extracellular enzymes (pel-1, a pectate lyase gene; peh-1, a polygalacturonase gene; and celV, a cellulase gene), hrpNEcc (an E. carotovora subsp. carotovora gene specifying the elicitor of hypersensitive reaction), and rsmB in GacA+ and GacS+ E. carotovora subsp. carotovora strains. Similarly, the E. carotovora subsp. carotovora gacA gene stimulated csrB (rsmB) transcription in Escherichia coli. A GacS- mutant of E. carotovora subsp. carotovora strain AH2 and a GacA- mutant of E. carotovora subsp. carotovora strain Ecc71 compared with their parent strains produced very low levels of rsmB, pel-1, peh-1, celV, and hrpNEcc transcripts but produced similar levels of rsmA RNA and RsmA protein as well as transcripts of hyperproduction of extracellular enzymes (Hex) hexA, kdgR (repressor of genes for uronate and pectate catabolism), rsmC, and rpoS (gene for Sigma-S, an alternate Sigma factor). The levels of rsmB, pel-1, peh-1, celV, and hrpNEcc transcripts as well as production of pectate lyase, polygalacturonase, cellulase, protease, and HarpinEcc proteins were stimulated in GacS- and GacA- mutants by Gac

  4. Screening Three Strains of Pseudomonas aeruginosa: Prediction of Biosurfactant-Producer Strain

    Directory of Open Access Journals (Sweden)

    Gholamreza Dehghan-Noudeh

    2009-01-01

    Full Text Available Problem statement: The chemical surfactants have some disadvantages; especially, toxicity and no biodegradability. Approach: Biosurfactants were the structurally diverse group of surface-active molecules synthesize by micro-organisms. The microbial surfactants were interesting, because of the biodegradable and have many applications in industry, agriculture, medicine. Results: In the present study, the production of biosurfactant by three strains of Pseudomonas aeruginosa (PTCC 1074, 1310 and 1430 was investigated. The hemolytic and foam forming activity of different strains were studied and consequently, P. aeruginosa PTCC 1074 was selected as the suitable strain. P. aeruginosa PTCC 1074 was grown in the nutrient broth medium and biosurfactant production was evaluated every 24 h by emulsification index and surface tension for the best of production time. After that, in order to get maximum production of biosurfactant, the selected strain was grown with different additives in nutrient broth and the best culture medium was found. The biosurfactant was isolated from the supernatant and its amphipathic structure was confirmed by chemical methods. Conclusion: Biosurfactant produced by Pseudomonas aeruginosa PTCC 1074 would be considered as a suitable surfactant in industries due to its low toxicity.

  5. Effects of pyrogallic acid on Microcystis aeruginosa: oxidative stress related toxicity.

    Science.gov (United States)

    Lu, Zhiying; Zhang, Yongyuan; Gao, Yunni; Liu, Biyun; Sun, Xuemei; He, Feng; Zhou, Qiaohong; Wu, Zhenbin

    2016-10-01

    Pyrogallic acid (PA) is used in various industrial and consumer products. The molecular mechanisms underlying PA's toxicity was not fully understood. In this study, toxicity of PA on Microcystis aeruginosa with reactive oxygen species (ROS) generation as an end point was investigated. The results showed an increase in the percentage of cells with loss of membrane integrity and enhanced intracellular ROS production. Exposure to 50mgL(-1) PA for 48h caused the highest percentage of loss of membrane integrity (56.7%), and a 2.54-fold higher intracellular ROS level compared to control. Further investigation revealed that PA caused a dose-dependent increase in DNA strand breaks (DSB) of M. aeruginosa at exposure concentration from 2 to 50mgL(-1). The incubation of cells with ROS scavengers ascorbic acid, N-acetyl-l-cysteine (NAC) and tocopherol markedly alleviated the level of PA-induced DSB. Analysis of PA autoxidized products in culture solution showed that PA was quickly converted to purpurogallin (PG), and PG was further autoxidized to other polyphenolic compounds. PA and PG might participate a futile redox cycle, which mediated ROS production in M. aeruginosa. These results suggested DNA strands and cell membrane were two targets of ROS induced by PA, and oxidative damage was an important mechanism for the toxicity of PA against M. aeruginosa. PMID:27400421

  6. Presence of Pseudomonas aeruginosa influences biofilm formation and surface protein expression of Staphylococcus aureus.

    Science.gov (United States)

    Kumar, Amit; Ting, Yen Peng

    2015-11-01

    Although Staphylococcus aureus and Pseudomonas aeruginosa can individually colonize and infect their hosts, the commensalistic effect of the two is more tenacious and lethal. In this study, it was shown that in co-culture with P. aeruginosa, a sub-population of S. aureus exhibited improved resistance to kanamycin by selection of small colony variant (SCV) phenotype. Additionally, biofilm formation by the two bacteria was denser in the co-culture, compared with biofilm formed in individual pure cultures. Using Atomic Force Microscope (AFM) force spectroscopy for single cells, it was demonstrated that S. aureus cultured in the presence of P. aeruginosa bound more tenaciously to substrates. Surface-shaved peptides were isolated and identified using ultra-performance liquid chromatography-quadrupole-time of flight and a homology search program spider. Results indicated that serine-rich adhesin, extracellular matrix binding protein and other putative adhesion proteins could be responsible for the enhanced attachment of S. aureus in the co-culture. Besides, several other proteins were differentially expressed, indicating the occurrence of a range of other interactions. Of particular interest was a multidrug resistant protein named ABC transporter permease which is known to expel xenobiotics out of the cells. Positive regulation of this protein could be involved in the SCV selection of S. aureus in the co-culture. PMID:25925222

  7. Vaccines for preventing infection with Pseudomonas aeruginosa in cystic fibrosis

    DEFF Research Database (Denmark)

    Johansen, Helle Krogh; Gøtzsche, Peter C

    2013-01-01

    Chronic pulmonary infection in cystic fibrosis results in progressive lung damage. Once colonisation of the lungs with Pseudomonas aeruginosa occurs, it is almost impossible to eradicate. Vaccines, aimed at reducing infection with Pseudomonas aeruginosa, have been developed.......Chronic pulmonary infection in cystic fibrosis results in progressive lung damage. Once colonisation of the lungs with Pseudomonas aeruginosa occurs, it is almost impossible to eradicate. Vaccines, aimed at reducing infection with Pseudomonas aeruginosa, have been developed....

  8. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function

    DEFF Research Database (Denmark)

    Hentzer, Morten; Teitzel, G.M.; Balzer, G.J.;

    2001-01-01

    During the course of chronic cystic fibrosis (CF) infections, Pseudomonas aeruginosa undergoes a conversion to a mucoid phenotype, which is characterized by overproduction of the exopolysaccharide alginate. Chronic P. aeruginosa infections involve surface-attached, highly antibiotic-resistant com......During the course of chronic cystic fibrosis (CF) infections, Pseudomonas aeruginosa undergoes a conversion to a mucoid phenotype, which is characterized by overproduction of the exopolysaccharide alginate. Chronic P. aeruginosa infections involve surface-attached, highly antibiotic...

  9. N-Acyl-L-homoserine lactone autoinducers control production of an extracellular lipopeptide biosurfactant required for swarming motility of Serratia liquefaciens MG1

    DEFF Research Database (Denmark)

    Lindum, Peter Wurtz; Anthoni, U; Christophersen, Carsten;

    1998-01-01

    A nonswarming Serratia liquefaciens mutant deficient in serrawettin W2 production was constructed by transposon mutagenesis. Sequence homology indicated that insertion had occurred in gene swrA, which encodes a putative peptide synthetase. Expression of swrA is controlled by quorum sensing....

  10. A Novel Promising Strain of Trichoderma evansii (WF-3 for Extracellular α-Galactosidase Production by Utilizing Different Carbon Sources under Optimized Culture Conditions

    Directory of Open Access Journals (Sweden)

    Aishwarya Chauhan

    2014-01-01

    Full Text Available A potential fungal strain of Trichoderma sp. (WF-3 was isolated and selected for the production of α-galactosidase. Optimum conditions for mycelial growth and enzyme induction were determined. Basal media selected for the growth of fungal isolate containing different carbon sources like guar gum (GG, soya bean meal (SM, and wheat straw (WS and combinations of these carbon substrates with basic sugars like galactose and sucrose were used to monitor their effects on α-galactosidase production. The results of this study indicated that galactose and sucrose enhanced the enzyme activity in guar gum (GG and wheat straw (WS. Maximum α-galactosidase production (213.63 UmL−1 was obtained when the basic medium containing GG is supplemented with galactose (5 mg/mL. However, the presence of galactose and sucrose alone in the growth media shows no effect. Soya meal alone was able to support T. evansii to produce maximum enzyme activity (170.36 UmL−1. The incubation time, temperature, and pH for the maximum enzyme synthesis were found to be 120 h (5 days, 28°C, and 4.5–5.5, respectively. All the carbon sources tested exhibited maximum enzyme production at 10 mg/mL concentration. Among the metal ions tested, Hg was found to be the strongest inhibitor of the enzyme. Among the chelators, EDTA acted as stronger inhibitor than succinic acid.

  11. Effect of gamma irradiation and environmental factors on the production of extracellular cellulase enzyme by trichoderma Spp. using banana waste under solid state bio processing

    International Nuclear Information System (INIS)

    Fungal strains were isolated from degraded banana waste including leaves, pseudo stems and skins. Many isolated strains showed cellulolytic activities using the plate screening medium. The hyper cellulolytic isolates were selected on the basis of the diameter of the hydrolysis zone surrounding the colonies and identified to the genus level. The identified strains were found to belong to one of the genera Trichoderma, Aspergillus, Pleurotus or Penicillium. The strain with the larger diameter of the hydrolysis zone was found to belong to the genus Trichoderma. It was further identified to be Trichoderma harzianum, which was selected to be studied. Banana waste including leaves and pseudo stems were inoculated by the selected fungus and the production of the carboxymethyl cellulase (CMCase) and filter paper cellulase (FPCase) was followed during changes of the growth conditions under solid state fermentation. It was found that the two enzymes shared the same incubation temperature (25 degree C) and incubation period (18 days) for the maximum enzyme production. The gamma radiation dose of 1.5 KGy increased the production of CMCase produced on leaves by 4.0% and on pseudo stems by 5.6% and the production of FPCase produced on leaves by 2.4% and on pseudo stems by 2.3%. The results also suggest that FPCase and CMCase enzymes produced on leaves were higher than those produced from pseudo stems and the level of CMCase enzyme produced was higher than that of FPCase

  12. Extracellular enzymes of Fusarium graminearum isolates

    OpenAIRE

    Gisele Eleonora Kikot; Roque Alberto Hours; Teresa María Alconada

    2010-01-01

    Fusarium graminearum isolates from three different agroecological regions in Argentina were examined according to the production of different extracellular enzyme activities of potential biotechnological interest: pectinases (PGase: polygalacturonase and PMGase: polymethylgalacturonase), cellulase (CMCase: carboxymethylcellulase) and hemicellulase (xylanase). The isolates were grown in minimum salt medium supplemented with 0.25% glucose, 0.125% citric pectin and 0.125% oat bran as carbon sour...

  13. Protein Tyrosine Phosphatase-1B Negatively Impacts Host Defense against Pseudomonas aeruginosa Infection.

    Science.gov (United States)

    Yue, Lei; Xie, Zhongping; Li, Hua; Pang, Zheng; Junkins, Robert D; Tremblay, Michel L; Chen, Xiaochun; Lin, Tong-Jun

    2016-05-01

    Pseudomonas aeruginosa is a major opportunistic pathogen in immune-compromised individuals. Mechanisms governing immune responses to P. aeruginosa infection remain incompletely defined. Herein, we demonstrate that protein tyrosine phosphatase-1B (PTP1B) is a critical negative regulator in P. aeruginosa infection. PTP1B-deficient mice display greatly enhanced bacterial clearance and reduced disease scores, which are accompanied by increased neutrophil infiltration and cytokine production. Interestingly, PTP1B deficiency mainly up-regulates the production of interferon-stimulated response elements-regulated cytokines and chemokines, including chemokine ligand 5 (regulated on activation normal T cell expressed and secreted), CXCL10 (interferon γ-inducible protein 10), and interferon-β production. Further studies reveal that PTP1B deficiency leads to increased interferon regulatory factor 7 (IRF7) expression and activation. These findings demonstrate a novel regulatory mechanism of the immune response to P. aeruginosa infection through PTP1B-IRF7 interaction. This novel PTP1B-IRF7-interferon-stimulated response elements pathway may have broader implications in Toll-like receptor-mediated innate immunity. PMID:27105736

  14. Expression, purification, crystallization and preliminary crystallographic analysis of PA3885 (TpbA) from Pseudomonas aeruginosa PAO1

    International Nuclear Information System (INIS)

    PA3885 (TpbA), a tyrosine phosphatase, may function as a balancing factor between biofilm formation and motility in the opportunistic pathogen P. aeruginosa. Here, the expression, purification, crystallization and preliminary crystallographic analysis of PA3885 from P. aeruginosa PAO1 are reported. Biofilms are important in cell communication and growth in most bacteria and are also responsible for most human clinical infections and diseases. Quorum-sensing systems have been identified to be crucial for biofilm formation and regulation. PA3885 (TpbA), a tyrosine phosphatase, is reported to convert extracellular quorum-sensing signals into internal gene-cascade reactions that result in reduced biofilm formation in the opportunistic pathogen Pseudomonas aeruginosa. Here, PA3885 from P. aeruginosa PAO1 was expressed, purified and crystallized. Single crystals were studied by X-ray crystallography and native diffraction data were collected to 2.8 Å resolution. These crystals were determined to belong to space group C2. It was not possible to conclusively determine the number of proteins in the asymmetric unit from the preliminary X-ray diffraction data analysis alone and attempts to determine the crystal structure of PA3885 are currently under way

  15. PARTIAL PURIFICATION AND CHARACTERIZATION OF ALKALOPHILIC PROTEASE FROM PSEUDOMONAS AERUGINOSA

    Directory of Open Access Journals (Sweden)

    R. Satheeskumar

    2013-10-01

    Full Text Available Partial purification and characterization of alkalophilic protease production from Pseudomonas aeruginosa was isolated from the gut of marine and coastal waters shrimp Penaeus monodon. The protease production was assayed in submerged fermentation to produce maximum protease activity (423 ± 0.09 U/ml. The enzyme was precipitated with ammonium sulphate and partially purified by ion exchange chromatography through DEAE Sephadex A-50 column. In 10th fraction showed maximum protease activity (734 ± 0.18 U/ml with increase in purification fold. The molecular weight of protease from Pseudomonas aeruginosa was recorded as 60 kDa. The stability of protease was tested at various pH and temperature; it showed maximum protease activity at pH-9 and temperature 50ºC. Among the various surfactants tested for enzyme stability, maximum activity was retained in poly ethylene glycol. The compatibility of protease enzyme with various commercial detergents; the enzyme retained maximum protease activity in tide. The results are indicated that all these properties make the bacterial proteases are most suitable for wide industrial applications.

  16. The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa.

    Science.gov (United States)

    Diggle, Stephen P; Stacey, Rachael E; Dodd, Christine; Cámara, Miguel; Williams, Paul; Winzer, Klaus

    2006-06-01

    LecA (PA-IL) is a cytotoxic lectin and adhesin produced by Pseudomonas aeruginosa which binds hydrophobic galactosides with high specificity and affinity. By using a lecA-egfp translation fusion and immunoblot analysis of the biofilm extracellular matrix, we show that lecA is expressed in biofilm-grown cells. In static biofilm assays on both polystyrene and stainless steel, biofilm depth and surface coverage was reduced by mutation of lecA and enhanced in the LecA-overproducing strain PAO-P47. Biofilm surface coverage by the parent strain, PAO-P47 but not the lecA mutant on steel coupons was also inhibited by growth in the presence of either isopropyl-beta-D-thiogalactoside (IPTG) or p-nitrophenyl-alpha-D-galactoside (NPG). Furthermore, mature wild-type biofilms formed in the absence of these hydrophobic galactosides could be dispersed by the addition of IPTG. In contrast, addition of p-nitrophenyl-alpha-L-fucose (NPF) which has a high affinity for the P. aeruginosa LecB (PA-IIL) lectin had no effect on biofilm formation or dispersal. Planktonic growth of P. aeruginosa PAO1 was unaffected by the presence of IPTG, NPG or NPF, nor was the strain able to utilize these sugars as carbon sources, suggesting that the observed effects on biofilm formation were due to the competitive inhibition of LecA-ligand binding. Similar results were also obtained for biofilms grown under dynamic flow conditions on steel coupons, suggesting that LecA contributes to P. aeruginosa biofilm architecture under different environmental conditions. PMID:16689730

  17. Nitrite reductase is critical for Pseudomonas aeruginosa survival during co-infection with the oral commensal Streptococcus parasanguinis.

    Science.gov (United States)

    Scoffield, Jessica A; Wu, Hui

    2016-02-01

    Pseudomonas aeruginosa is the major aetiological agent of chronic pulmonary infections in cystic fibrosis (CF) patients. However, recent evidence suggests that the polymicrobial community of the CF lung may also harbour oral streptococci, and colonization by these micro-organisms may have a negative impact on P. aeruginosa within the CF lung. Our previous studies demonstrated that nitrite abundance plays an important role in P. aeruginosa survival during co-infection with oral streptococci. Nitrite reductase is a key enzyme involved in nitrite metabolism. Therefore, the objective of this study was to examine the role nitrite reductase (gene nirS) plays in P. aeruginosa survival during co-infection with an oral streptococcus, Streptococcus parasanguinis. Inactivation of nirS in both the chronic CF isolate FRD1 and acute wound isolate PAO1 reduced the survival rate of P. aeruginosa when co-cultured with S. parasanguinis. Growth of both mutants was restored when co-cultured with S. parasanguinis that was defective for H2O2 production. Furthermore, the nitrite reductase mutant was unable to kill Drosophila melanogaster during co-infection with S. parasanguinis. Taken together, these results suggest that nitrite reductase plays an important role for survival of P. aeruginosa during co-infection with S. parasanguinis. PMID:26673783

  18. Ceasing down Pseudomonas aeruginosa Invasiveness in A Mouse Burn Wound Sepsis Model by Recombinant OprF

    Directory of Open Access Journals (Sweden)

    Zohreh Rasooli

    2015-10-01

    Full Text Available Background: Bacterial infections in burn and wound patients are common and difficult to control. The aim of the current study was to evaluate the ability of full length OprF to elicit the production of protective IgG in mice burn wound sepsis model against P. aeruginosa infection.Methods: OprF protein was expressed and purified by Ni-NTA. The purified protein as used to immunize BALB/c mice. The antibody raised against OprF was confirmed by ELISA and evaluated by immunoblot analysis. After burn and bacterial challenge, mortality rate was monitored in the control and immunized mice groups. Bacterial quantity in skin, blood, spleenand liver was evaluated to study spread or inhibition of the infection.Results: Immunization of mice with OprF brought about a significant rise in anti-OprF sera titer. Protection was imparted in the immunized group resulting in 100% survival against 1000 fold LD50 challenge with P. aeruginosa. The antiserum against OprF was able to significantlyinhibit the systemic spread of P. aeruginosa infection from the infection site to internal organs.Conclusions: The results suggest that anti-P. aeruginosa OprF antibodies elicited in burn wound sepsis model by active immunization are protective against infection with P. aeruginosa, and provide a rational for further development of the vaccine for prevention against P. aeruginosa infection in burn patients.

  19. Metallo‐beta‐lactamases among imipenem‐resistant Pseudomonas aeruginosa in a brazilian university hospital

    Science.gov (United States)

    Franco, Maria Renata Gomes; Caiaffa‐Filho, Hélio Hehl; Burattini, Marcelo Nascimento; Rossi, Flávia

    2010-01-01

    INTRODUCTION: Imipenem‐resistant Pseudomonas aeruginosa resulting from metallo‐β‐lactamases has been reported to be an important cause of nosocomial infection and is a critical therapeutic problem worldwide, especially in the case of bacteremia. OBJECTIVES: To determine the frequency of metallo‐β‐lactamases among imipenem‐resistant Pseudomonas aeruginosa isolates and to compare methods of phenotypic and molecular detection. METHODS: During 2006, 69 imipenem‐resistant Pseudomonas aeruginosa samples were isolated from blood and tested for metallo‐β‐lactamase production using phenotypic methods. Minimal Inhibitory Concentratrions (MIC) (µg/mL) was determined with commercial microdilution panels. Pulsed Field Gel Electrophoresis (PFGE) was performed among metallo‐β‐lactamase producers. RESULTS: Of all the blood isolates, 34.5% were found to be imipenem‐resistant Pseudomonas aeruginosa. Positive phenotypic tests for metallo‐β‐lactamases ranged from 28%‐77%, and Polymerase Chain Reaction (PCR) were positive in 30% (of note, 81% of those samples were blaSPM‐1 and 19% were blaVIM‐2). Ethylenediamine tetracetic acid (EDTA) combinations for the detected enzymes had low kappa values; thus, care should be taken when use it as a phenotypic indicator of MBL. Despite a very resistant antibiogram, four isolates demonstrated the worrisome finding of a colistin MIC in the resistant range. PFGE showed a clonal pattern. CONCLUSION: Metallo‐β‐lactamases among imipenem‐resistant Pseudomonas aeruginosa were detected in 30.4% of imipenem‐resistant Pseudomonas aeruginosa isolates. This number might have been higher if other genes were included. SPM‐1 was the predominant enzyme found. Phenotypic tests with low kappa values could be misleading when testing for metallo‐β‐lactamases. Polymerase Chain Reaction detection remains the gold standard. PMID:21049207

  20. Metallo-beta-lactamases among imipenem-resistant Pseudomonas aeruginosa in a Brazilian university hospital

    Directory of Open Access Journals (Sweden)

    Maria Renata Gomes Franco

    2010-01-01

    Full Text Available INTRODUCTION: Imipenem-resistant Pseudomonas aeruginosa resulting from metallo-β-lactamases has been reported to be an important cause of nosocomial infection and is a critical therapeutic problem worldwide, especially in the case of bacteremia. OBJECTIVES: To determine the frequency of metallo-β-lactamases among imipenem-resistant Pseudomonas aeruginosa isolates and to compare methods of phenotypic and molecular detection. METHODS: During 2006, 69 imipenem-resistant Pseudomonas aeruginosa samples were isolated from blood and tested for metallo-β-lactamase production using both phenotypic methods. Minimal Inhibitory Concentratrions (MIC (μg/mL was determined with commercial microdilution panels. Pulsed Field Gel Electrophoresis (PFGE was performed among metallo-β-lactamase producers. RESULTS: Of all the blood isolates, 34.5% were found to be imipenem-resistant Pseudomonas aeruginosa. Positive phenotypic tests for metallo-β-lactamases ranged from 28%-77%, and Polymerase Chain Reaction (PCR were positive in 30% (of note, 81% of those samples were blaSPM-1 and 19% were blaVIM-2. Ethylenediamine tetracetic acid (EDTA combinations for the detected enzymes had low kappa values; thus, care should be taken when use it as a phenotypic indicator of MBL. Despite a very resistant antibiogram, four isolates demonstrated the worrisome finding of a colistin MIC in the resistant range. PFGE showed a clonal pattern. CONCLUSION: Metallo-β-lactamases among imipenem-resistant Pseudomonas aeruginosa were detected in 30.4% of imipenem-resistant Pseudomonas aeruginosa isolates. This number might have been higher if other genes were included. SPM-1 was the predominant enzyme found. Phenotypic tests with low kappa values could be misleading when testing for metallo-β-lactamases. Polymerase Chain Reaction detection remains the gold standard.

  1. Extracellular vesicles are the Trojan horses of viral infection.

    Science.gov (United States)

    Altan-Bonnet, Nihal

    2016-08-01

    Extracellular vesicles have recently emerged as a novel mode of viral propagation exploited by both enveloped and non-enveloped viruses. In particular non-enveloped viruses utilize the hosts' production of extracellular vesicles to exit from cells non-lytically and to hide and manipulate the immune system. Moreover, challenging the long held idea that viruses behave as independent genetic units, extracellular vesicles enable multiple viral particles and genomes to collectively traffic in and out of cells, which can promote genetic cooperativity among viral quasispecies and enhance the fitness of the overall viral population. PMID:27232382

  2. Pseudomonas aeruginosa biofilms in cystic fibrosis

    DEFF Research Database (Denmark)

    Høiby, Niels; Ciofu, Oana; Bjarnsholt, Thomas

    2010-01-01

    The persistence of chronic Pseudomonas aeruginosa lung infections in cystic fibrosis (CF) patients is due to biofilm-growing mucoid (alginate-producing) strains. A biofilm is a structured consortium of bacteria, embedded in a self-produced polymer matrix consisting of polysaccharide, protein and...

  3. [Macrolides, Pseudomonas aeruginosa and cystic fibrosis].

    Science.gov (United States)

    Guillot, M; Amiour, M; El Hachem, C; Harchaoui, S; Ribault, V; Paris, C

    2006-10-01

    Long-term low dose azithromycin treatment in cystic fibrosis patients with chronic Pseudomonas aeruginosa infection is safe and reduces the decline in lung function, the number of acute exacerbations and improves nutritional status; underlying efficacy mechanisms are multiple and synergistic. PMID:17370396

  4. Characterization of the wzc gene from Pantoea sp. strain PPE7 and its influence on extracellular polysaccharide production and virulence on Pleurotus eryngii.

    Science.gov (United States)

    Kim, Min Keun; Lee, Young Han; Kim, Hyeran; Lee, Jeongyeo; Ryu, Jae San

    2015-01-01

    To characterize of the pathogenicity gene from the soft rot pathogen Pantoea sp. PPE7 in Pleurotus eryngii, we constructed over 10,000 kanamycin-resistant transposon mutants of Pantoea sp. strain PPE7 by transposon mutagenesis. One mutant, Pantoea sp. NPPE9535, did not cause a soft rot disease on Pleurotus eryngii was confirmed by the pathogenicity test. The transposon was inserted into the wzc gene and the disruption of the wzc gene resulted in the reduction of polysaccharide production and abolished the virulence of Pantoea sp. strain PPE7 in P. eryngii. Analysis of the hydropathic profile of this protein indicated that it is composed of two main domains: an N-terminal domain including two transmembrane α-helices and a C-terminal cytoplasmic domain consisting of a tyrosine-rich region. Comparative analysis indicated that the amino acid sequence of Wzc is similar to that of a number of proteins involved in the synthesis or export of polysaccharides in other bacterial species. Purified GST-Wzc was found to affect the phosphorylation of tyrosine residue in vivo. These results showed that the wzc gene might play an important role in the virulence of Pantoea sp. strain PPE7 in P. eryngii. PMID:25183654

  5. Hydnophytum formicarum Jack ethanol extract modulates quorum sensing-controlled pathogenicity in Pseudomonas aeruginosa.

    Science.gov (United States)

    Hertiani, Triana; Pratiwi, Sylvia Utami Tunjung

    2015-09-01

    The discovery of new mechanism to control microbial pathogenicity by quorum sensing modulation has generated the search for quorum sensing inhibitor from natural resources. The objective of this research was to evaluate the ability of Hydnophytum formicarum Jack (Rubiaceae) ethanol extract to antagonize cell-to cell communication. Pulverized H. formicarum tuber was macerated in ethyl alcohol 96% and evaporated to yield ethanol extract. A dillution technique using Luria-Bertani (LB) medium was used to observe the capability of the extract to reduce the violacein production in Chromobacterium violaceum. Samples in two-fold dilution were prepared to obtain 2 - 0.0625 mg/mL concentration. The effects on swimming, swarming and twitching motility as well as the formation of biofilm towards Pseudomonas aeruginosa PAO1 were recorded over control. All experiments were done in triplicate. The architecture of Ps. aeruginosa biofilm treated with samples was examined by CLSM (Confocal Laser Scanning Microscopy) . Our results suggested that the ethanol extract of H. formicarum caused violacein production inhibition. Furthermore, inhibition of Ps. aeruginosa motility and biofilm formation were recorded to be significant over control in a concentration dependent manner. H. formicarum serves as a potential source for new QS-based antibacterial drugs towards Ps. aeruginosa. PMID:26408889

  6. Structure–function analysis reveals that the Pseudomonas aeruginosa Tps4 two-partner secretion system is involved in CupB5 translocation

    OpenAIRE

    Garnett, James A; Muhl, Daniela; Douse, Christopher H.; Hui, Kailyn; Busch, Andreas; Omisore, Ayodele; Yang, Yi; Simpson, Peter; Marchant, Jan; Waksman, Gabriel; Matthews, Steve; Filloux, Alain

    2015-01-01

    Pseudomonas aeruginosa is a Gram-negative opportunistic bacterium, synonymous with cystic fibrosis patients, which can cause chronic infection of the lungs. This pathogen is a model organism to study biofilms: a bacterial population embedded in an extracellular matrix that provide protection from environmental pressures and lead to persistence. A number of Chaperone-Usher Pathways, namely CupA-CupE, play key roles in these processes by assembling adhesive pili on the bacterial surface. One of...

  7. Structural and Biochemical Analysis of Tyrosine Phosphatase Related to Biofilm Formation A (TpbA) from the Opportunistic Pathogen Pseudomonas aeruginosa PAO1

    OpenAIRE

    Kun Xu; Shanshan Li; Wen Yang; Kan Li; Yuwei Bai; Yueyang Xu; Jin Jin; Yingying Wang; Mark Bartlam

    2015-01-01

    Biofilms are important for cell communication and growth in most bacteria, and are responsible for a number of human clinical infections and diseases. TpbA (PA3885) is a dual specific tyrosine phosphatase (DUSP) that negatively regulates biofilm formation in the opportunistic pathogen Pseudomonas aeruginosa PAO1 by converting extracellular quorum sensing signals into internal gene cascade reactions that result in reduced biofilm formation. We have determined the three-dimensional crystal stru...

  8. Use of monoclonal antibodies to demonstrate different sites with different functional characteristics in a bacterial lipase from Pseudomonas aeruginosa YS-7.

    OpenAIRE

    Daya-Mishne, N; Shabtai, Y

    1992-01-01

    Structural and functional features of the extracellular lipase from the low-water-tolerant bacterium Pseudomonas aeruginosa YS-7 were studied immunochemically with the aid of monoclonal antibodies (MAbs) raised against the enzyme. Fourteen different MAbs were obtained, verified as immunoglobulin G types, and characterized by their interaction with the enzyme in relation to (i) inhibition of activity of free enzyme, (ii) inhibition of activity of adsorbed enzyme, (iii) interaction with the cel...

  9. Analysis on the relevance of pyocyanin production and form biological membrane formation and carbapenems in Pseudomonas aeruginosa causing low respiratory tract infections%下呼吸道感染铜绿假单胞菌产绿脓菌素及生物膜形成能力与耐碳青霉烯类抗菌药物相关性分析

    Institute of Scientific and Technical Information of China (English)

    孟小斌; 古汉福; 雷南凤; 张国雄; 范晓怡

    2015-01-01

    目的:探讨下呼吸道感染铜绿假单胞菌的绿脓菌素分泌水平、生物膜形成能力与碳青霉烯类药物耐药性关系,为临床抗感染治疗提供依据。方法收集2013年1-6月从患者痰液中分离到的60株铜绿假单胞菌,菌种鉴定采用VITEK‐2全自动微生物分析仪;药敏测定采用K‐B法;通过96孔板生物膜形成试验分析菌株生物膜形成能力;绿脓菌素通过氯仿萃取法测定;采用随机扩增多态性DNA法进行耐菌株的基因分型。结果60株铜绿假单胞菌对亚胺培南的耐药率高达41.7%,对头孢吡肟和哌拉西林/他唑巴坦的耐药率较低,均为16.7%,25株亚胺培南耐药菌株在绿脓菌素产生及生物膜形成能力上要明显高于敏感株;25株耐药菌株分为8个基因型。结论产绿脓菌素和生物膜形成能力强的铜绿假单胞菌对碳青霉烯类药物耐药率高,临床不宜选用该类药物进行抗感染的经验治疗。%OBJECTIVE To explore the relationship among pyocyanin production ,biofilm formation and drug resist‐ance to carbapenem in Pseudomonas aeruginosa isolating from lower respiratory tract so as to provide basis for clinical anti‐infection therapy .METHODS A total of 60 P .aeruginosa were isolated from the sputum of the pa‐tients from Jan .to Jun .2013 .The species were determined through VITEK‐2 automated system .K‐B method was used for the antimicrobial susceptibility testing .Pyocyanlysin level and biofilm formation were examined by chloroform extraction method and 96‐well microtiter dish biofilm formation assay , respectively . The resistant strains genotyping were established by using random amplified polymorphic DNA fingerprinting .RESULTS The drug resistance rate of P .aeruginosa against imipenem was over 41 .7% ,however ,they were less resistant to cefepime and piperacillin/tazobactam with the rate of only 16 .7% for both .The 25 imipenem‐resistant strains were

  10. Extracellular magnesium and calcium blockers modulate macrophage activity.

    Science.gov (United States)

    Libako, Patrycja; Nowacki, Wojciech; Castiglioni, Sara; Mazur, Andrzej; Maier, Jeanette A M

    2016-03-01

    Magnesium (Mg) possesses anti-inflammatory properties, partly because it antagonizes calcium (Ca) and inhibits L-type Ca channels. Our aim was to determine the effects of different concentrations of extracellular Mg, with or without Ca-channel blockers, in macrophages. A macrophage-like cell line J774.E was cultured in different concentrations of extracellular Mg and exposed to i) the phorbol ester PMA to induce the production of reactive oxygen species ii) lipopolysaccharide to induce the production of pro-inflammatory cytokines, or iii) ovalbumin to study endocytosis. The Ca antagonists verapamil and/or TMB-8 were used to interfere with Ca homeostasis. Different concentrations of extracellular Mg did not impact on endocytosis, while Ca antagonists markedly decreased it. Low extracellular Mg exacerbated, whereas Ca antagonists inhibited, PMA-induced production of free radicals. Ca blockers prevented lipopolysaccharide-induced transcription and release of IL-1β, IL-6 and TNF-α, while extracellular Mg had only a marginal effect. Ca channel inhibitors markedly reduced the activity of J774.E cells, thus underscoring the critical role of Ca in the non-specific immune response, a role which was, in some instances, also modulated by extracellular Mg. PMID:27160489

  11. Pseudomonas Aeruginosa Resistance Phenotypes and Phenotypic Highlighting Methods

    Science.gov (United States)

    BĂLĂŞOIU, MARIA; BĂLĂŞOIU, A.T.; MĂNESCU, RODICA; AVRAMESCU, CARMEN; IONETE, OANA

    2014-01-01

    Pseudomonas aeruginosa genus bacteria are well known for their increased drug resistance (phenotypic ang genotypic resistance). The most important resistance mechanisms are: enzyme production, reduction of pore expression, reduction of the external membrane proteins expression, efflux systems, topoisomerase mutations. These mechanisms often accumulate and lead to multidrug ressitance strains emergence. The most frequent acquired resistance mechanisms are betalactamase-type enzyme production (ESBLs, AmpC, carbapenemases), which determine variable phenotypes of betalactamines resistance, phenotypes which are associated with aminoglycosides and quinolones resistance. The nonenzymatic drug resistance mechanisms are caused by efflux systems, pore reduction and penicillin-binding proteins (PBP) modification, which are often associated to other resistance mechanisms. Phenotypic methods used for testing these mechanisms are based on highlighting these phenotypes using Kirby Bauer antibiogram, clinical breakpoints, and “cut off” values recommended by EUCAST 2013 standard, version 3.1. PMID:25729587

  12. Activation of human pro-urokinase by unrelated proteases secreted by Pseudomonas aeruginosa.

    Science.gov (United States)

    Beaufort, Nathalie; Seweryn, Paulina; de Bentzmann, Sophie; Tang, Aihua; Kellermann, Josef; Grebenchtchikov, Nicolai; Schmitt, Manfred; Sommerhoff, Christian P; Pidard, Dominique; Magdolen, Viktor

    2010-06-15

    Pathogenic bacteria, including Pseudomonas aeruginosa, interact with and engage the host plasminogen (Plg) activation system, which encompasses the urokinase (uPA)-type Plg activator, and is involved in extracellular proteolysis, including matrilysis and fibrinolysis. We hypothesized that secreted bacterial proteases might contribute to the activation of this major extracellular proteolytic system, thereby participating in bacterial dissemination. We report that LasB, a thermolysin-like metalloprotease secreted by Ps. aeruginosa, converts the human uPA zymogen into its active form (kcat=4.9 s-1, Km=8.9 microM). Accordingly, whereas the extracellular secretome from the LasB-expressing pseudomonal strain PAO1 efficiently activates pro-uPA, the secretome from the isogenic LasB-deficient strain PDO240 is markedly less potent in pro-uPA activation. Still, both secretomes induce some metalloprotease-independent activation of the human zymogen. The latter involves a serine protease, which we identified via both recombinant protein expression in Escherichia coli and purification from pseudomonal cultures as protease IV (PIV; kcat=0.73 s-1, Km=6.2 microM). In contrast, neither secretomes nor the pure proteases activate Plg. Along with this, LasB converts Plg into mini-Plg and angiostatin, whereas, as reported previously, it processes the uPA receptor, inactivates the plasminogen activator inhibitor 1, and activates pro-matrix metalloproteinase 2. PIV does not target these factors at all. To conclude, LasB and PIV, although belonging to different protease families and displaying quite different substrate specificities, both activate the urokinase-type precursor of the Plg activation cascade. Direct pro-uPA activation, as also reported for other bacterial proteases, might be a frequent phenomenon that contributes to bacterial virulence. PMID:20337595

  13. Recombinant expression, refolding, purification and characterization of Pseudomonas aeruginosa protease IV in Escherichia coli.

    Science.gov (United States)

    Zhao, Mingzhi; Cai, Man; Wu, Feilin; Zhang, Yao; Xiong, Zhi; Xu, Ping

    2016-10-01

    Several protease IV enzymes are widely used in proteomic research. Specifically, protease IV from Pseudomonas aeruginosa has lysyl endopeptidase activity. Here, we report the recombinant expression, refolding, activation, and purification of this protease in Escherichia coli. Proteolytic instability of the activated intermediate, a major obstacle for efficient production, is controlled through ammonium sulfate precipitation. The purified protease IV exhibits superior lysyl endopeptidase activity compared to a commercial product. PMID:27260967

  14. N-acetylcysteine inhibit biofilms produced by Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Liu Youning

    2010-05-01

    Full Text Available Abstract Background Pseudomonas aeruginosa is a common pathogen in chronic respiratory tract infections. It typically makes a biofilm, which makes treatment of these infections difficult. In this study, we investigated the inhibitory effects of N-acetylcysteine (NAC on biofilms produced by P. aeruginosa. Results We found that minimum inhibitory concentrations (MICs of NAC for most isolates of P. aeruginosa were 10 to 40 mg/ml, the combination of NAC and ciprofloxacin (CIP demonstrated either synergy (50% or no interaction (50% against the P. aeruginosa strains. NAC at 0.5 mg/ml could detach mature P. aeruginosa biofilms. Disruption was proportional to NAC concentrations, and biofilms were completely disrupted at 10 mg/ml NAC. Analysis using COMSTAT software also showed that PAO1 biofilm biomass decreased and its heterogeneity increased as NAC concentration increased. NAC and ciprofloxacin showed significant killing of P. aeruginosa in biofilms at 2.5 mg/ml and > 2 MIC, respectively (p p P. aeruginosa also decreased by 27.64% and 44.59% at NAC concentrations of 0.5 mg/ml and 1 mg/ml. Conclusions NAC has anti-bacterial properties against P. aeruginosa and may detach P. aeruginosa biofilms. Use of NAC may be a new strategy for the treatment of biofilm-associated chronic respiratory infections due to P. aeruginosa, although it would be appropriate to conduct clinical studies to confirm this.

  15. Enterococcus faecalis and Pseudomonas aeruginosa behaviour in frozen watercress (Nasturtium officinale) submitted to temperature abuses

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Silvia R.; Vieira, Margarida C.; Gaspar, Maria N. [Laboratorio de Microbiologia, Escola Superior de Tecnologia, Universidade do Algarve, Campus da Penha, 8005-139 Faro (Portugal); Cruz, Rui M.S.; Silva, Cristina L.M. [Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal)

    2009-05-15

    Watercress is an herb traditionally consumed fresh. If frozen, would be readily available to consumers. However, pathogenics resistant to frozen storage are a safety concern in this new product. In this study watercress was artificially contaminated with Pseudomonas aeruginosa ATCC 27853 and Enterococcus faecalis ATCC 29212. Their survival was evaluated after blanching, frozen storage and temperature fluctuations of the frozen product. The blanching caused a reduction of about 2 log cfu per gram of product of total viable count (TVC) and about 1.7 and 1.3 log cfu per gram of product of P. aeruginosa and E. faecalis, respectively. P. aeruginosa seemed to be more sensitive to temperature abuses than E. faecalis. After 3 months, TVC was still observed with a reduction of about 3 log cfu per gram of product. At the end of the study, exposure to freeze-thaw cycles resulted in death or injury of the microorganisms. These findings on the behaviour of two microorganisms of concern in frozen watercress will help improving the safety and cold chain settings for this product. (author)

  16. A Phytoanticipin Derivative, Sodium Houttuyfonate, Induces in Vitro Synergistic Effects with Levofloxacin against Biofilm Formation by Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Jing Shao

    2012-09-01

    Full Text Available Antibiotic resistance has become the main deadly factor in infections, as bacteria can protect themselves by hiding in a self-constructed biofilm. Consequently, more attention is being paid to the search for “non-antibiotic drugs” to solve this problem. Phytoanticipins, the natural antibiotics from plants, could be a suitable alternative, but few works on this aspect have been reported. In this study, a preliminary study on the synergy between sodium houttuyfonate (SH and levofloxacin (LFX against the biofilm formation of Pseudomonas aeruginosa was performed. The minimal inhibitory concentrations (MIC of LFX and SH, anti-biofilm formation and synergistic effect on Pseudomonas aeruginosa, and quantification of alginate were determined by the microdilution method, crystal violet (CV assay, checkerboard method, and hydroxybiphenyl colorimetry. The biofilm morphology of Pseudomonas aeruginosa was observed by fluorescence microscope and scanning electric microscope (SEM. The results showed that: (i LFX and SH had an obvious synergistic effect against Pseudomonas aeruginosa with MIC values of 0.25 μg/mL and 128 μg/mL, respectively; (ii ½ × MIC SH combined with 2 × MIC LFX could suppress the biofilm formation of Pseudomonas aeruginosa effectively, with up to 73% inhibition; (iii the concentration of alginate decreased dramatically by a maximum of 92% after treatment with the combination of antibiotics; and (iv more dead cells by fluorescence microscope and more removal of extracellular polymeric structure (EPS by SEM were observed after the combined treatment of LFX and SH. Our experiments demonstrate the promising future of this potent antimicrobial agent against biofilm-associated infections.

  17. Candida albicans ethanol stimulates Pseudomonas aeruginosa WspR-controlled biofilm formation as part of a cyclic relationship involving phenazines.

    Directory of Open Access Journals (Sweden)

    Annie I Chen

    2014-10-01

    Full Text Available In chronic infections, pathogens are often in the presence of other microbial species. For example, Pseudomonas aeruginosa is a common and detrimental lung pathogen in individuals with cystic fibrosis (CF and co-infections with Candida albicans are common. Here, we show that P. aeruginosa biofilm formation and phenazine production were strongly influenced by ethanol produced by the fungus C. albicans. Ethanol stimulated phenotypes that are indicative of increased levels of cyclic-di-GMP (c-di-GMP, and levels of c-di-GMP were 2-fold higher in the presence of ethanol. Through a genetic screen, we found that the diguanylate cyclase WspR was required for ethanol stimulation of c-di-GMP. Multiple lines of evidence indicate that ethanol stimulates WspR signaling through its cognate sensor WspA, and promotes WspR-dependent activation of Pel exopolysaccharide production, which contributes to biofilm maturation. We also found that ethanol stimulation of WspR promoted P. aeruginosa colonization of CF airway epithelial cells. P. aeruginosa production of phenazines occurs both in the CF lung and in culture, and phenazines enhance ethanol production by C. albicans. Using a C. albicans adh1/adh1 mutant with decreased ethanol production, we found that fungal ethanol strongly altered the spectrum of P. aeruginosa phenazines in favor of those that are most effective against fungi. Thus, a feedback cycle comprised of ethanol and phenazines drives this polymicrobial interaction, and these relationships may provide insight into why co-infection with both P. aeruginosa and C. albicans has been associated with worse outcomes in cystic fibrosis.

  18. The transcriptional regulator AlgR is essential for Pseudomonas aeruginosa pathogenesis.

    Science.gov (United States)

    Lizewski, Stephen E; Lundberg, Derek S; Schurr, Michael J

    2002-11-01

    Chronic Pseudomonas aeruginosa lung infection is the major cause of morbidity and mortality in cystic fibrosis (CF) patients. One P. aeruginosa virulence factor unique to CF isolates is overproduction of alginate, phenotypically termed mucoidy. Mucoidy is the result of increased transcription from the algD gene and is activated by the transcriptional regulator AlgR. Mutations in algR result in a nonmucoid phenotype and loss of twitching motility. Additionally, AlgR controls transcription of algC, encoding a dual-function enzyme necessary for both lipopolysaccharide (LPS) and alginate production. Therefore, to determine the effect of algR on P. aeruginosa virulence, an algR mutant was examined for sensitivity to reactive oxygen intermediates, killing by phagocytes, systemic virulence, and the ability to maintain a murine lung infection. We found that P. aeruginosa PAO700 (algR::Gm(r)) was less lethal than PAO1, as tested in an acute septicemia infection mouse model, and was cleared more efficiently in a mouse pneumonia model. Additionally, the algR mutant (PAO700) was more sensitive to hypochlorite. However, PAO700 was more resistant to hydrogen peroxide and killed less readily in an acellular myeloperoxidase assay than PAO1. There was little difference in killing between PAO1 and PAO700 with macrophage-like J774 cells and human polymorhonuclear leukocytes. Two-dimensional gel analysis of P. aeruginosa algR mutant and wild-type protein extracts revealed 47 differentially regulated proteins, suggesting that AlgR plays both a positive role and a negative role in gene expression. Together, these results imply that AlgR is necessary for virulence and regulates genes in addition to the genes associated with alginate and LPS production and pilus function. PMID:12379685

  19. Effects of Dracontomelon duperreanum defoliation extract on Microcystis aeruginosa: physiological and morphological aspects.

    Science.gov (United States)

    Wang, Xiaoxiong; Jiang, Chenchun; Szeto, Yim-Tong; Li, Ho-Kin; Yam, Kwei-Lam; Wang, Xiaojun

    2016-05-01

    Harmful cyanobacteria bloom contributes to economic loss as well as the threat to human health. Agricultural waste products, particularly straw, have been used to control bloom while arbor plant is the potential candidate for limiting antialgal activity. This study investigated the use of Dracontomelon duperreanum defoliation extract (DDDE) to inhibit the activity of Microcystis aeruginosa. The primary goal of the research was to explore the solution to control cyanobacterial bloom. The photosynthetic activity, cell morphology, membrane integrity, and esterase activity of M. aeruginosa were determined using phytoplankton analyzer pulse amplitude modulation (Phyto-PAM) and flow cytometry before and after exposure to DDDE. The inhibitory rate of M. aeruginosa was about 99.6 % on day 15 when exposed to 2.0 g L(-1). A reduction of chlorophyll a (Chl-a) activity and changes in cell membrane suggested the algistatic property of DDDE. Inhibition of photosynthetic activity was reflected by changing mean Chl-a fluorescence intensity (MFI) which was about 52.5 % on day 15 when exposed to 2.0 g L(-1) DDDE as well as relative electron transport rates (rETRs) of algal cell. These changes might contribute to the suppression of M. aeruginosa. Algal cell exposed to DDDE may lead to cell volume reduction or slow growth. This resulted in a decreased proportion of normal or swollen granular cells after DDDE treatment. PMID:26803752

  20. Incidence of metallo-beta-lactamase-producing Pseudomonas aeruginosa in diabetes and cancer patients

    Directory of Open Access Journals (Sweden)

    Varaiya Ami

    2008-04-01

    Full Text Available Metallo-beta-lactamase (MBL-producing Pseudomonas aeruginosa strains have been reported to be an important cause of nosocomial infections. There is not enough information from India regarding their prevalence in diabetic and cancer patients. The present study was undertaken over a period of one year from January to December 2006 to study the incidence of MBL P. aeruginosa and the clinical outcome in diabetes and cancer patients admitted to S.L. Raheja Hospital, Mumbai. Two hundred and thirty isolates of P. aeruginosa were obtained from different samples of patients. These isolates were subjected to susceptibility testing to anti-pseudomonal drugs as per CLSI guidelines. They were further screened for the production of MBL by disc potentiation testing using EDTA-impregnated imipenem and meropenem discs. Of the 230 isolates of P. aeruginosa, 60 (26% isolates were found resistant to carbapenems (both imipenem and meropenem and 33 (14.3% were found to be MBL producers. Of the 33 MBL-producing isolates, 24 (72.7% were diabetic patients, six (18.1% were cancer patients and three (9% patients had both diabetes and cancer. Five (15.1% patients responded to the combination therapy of colistin, piperacillin with tazobactam and amikacin, while 28 (84.8% patients responded to the combination therapy of amikacin, piperacillin with tazobactam and gatifloxacin. Thus, the rapid dissemination of MBL producers is worrisome and necessitates the implementation of not just surveillance studies but also proper and judicious selection of antibiotics, especially carbapenems.

  1. Maternal effects of inducible tolerance against the toxic cyanobacterium Microcystis aeruginosa in the grazer Daphnia carinata

    International Nuclear Information System (INIS)

    Cyanobacterial blooms are becoming potent agents of natural selection in aquatic ecosystems because of their high production of some toxins and increased frequency in recent decades with eutrophication and climate change. Maternal exposure to the toxic Microcystis aeruginosa significantly increased the intrinsic rates of population increase, average life span, and net reproductive rates of a clone of the planktonic grazer Daphnia carinata in an offspring environment where cyanobacteria were present, but not for two additional clones. Offspring from mothers exposed to M. aeruginosa had lower intrinsic rates of population increase, average life span, and net reproductive rates than individuals from unexposed mothers when fed exclusively a green alga. These results suggest that benefits, costs, and clonal variations of maternal effects of inducible tolerance should be considered when trying to understand ecological consequences of cyanobacterial blooms since they can shape the trophic interactions between cyanobacteria and daphnids. -- Highlights: •Maternal exposure to Microcystis aeruginosa significantly increased the offspring tolerance in a Daphnia carinata clone. •Another two clones, however, failed to response to maternal exposure. •Offspring from exposed mothers had lower fitness when fed exclusively a green alga. -- Capsule: Maternal exposure to the toxic Microcystis aeruginosa increased offspring fitness in one of three Daphnia carinata clones and carried a cost

  2. Therapeutic effect of Pseudomonas aeruginosa phage YH30 on mink hemorrhagic pneumonia.

    Science.gov (United States)

    Gu, Jingmin; Li, Xinwei; Yang, Mei; Du, Chongtao; Cui, Ziyin; Gong, Pengjuan; Xia, Feifei; Song, Jun; Zhang, Lei; Li, Juecheng; Yu, Chuang; Sun, Changjiang; Feng, Xin; Lei, Liancheng; Han, Wenyu

    2016-07-15

    Hemorrhagic pneumonia caused by Pseudomonas aeruginosa remains one of the most costly infectious diseases among farmed mink and commonly leads to large economic losses during mink production. The objective of this study was to investigate the potential of using phages as a therapy against hemorrhagic pneumonia in mink. A broad-host-range phage from the Podoviridae family, YH30, was isolated using the mink-originating P. aeruginosa (serotype G) D7 strain as a host. The genome of YH30 was 72,192bp (54.92% G+C), contained 86 open reading frames and lacked regions encoding known virulence factors, integration-related proteins or antibiotic resistance determinants. These characteristics make YH30 eligible for use in phage therapy. The results of a curative treatment experiment demonstrated that a single intranasal administration of YH30 was sufficient to cure hemorrhagic pneumonia in mink. The mean colony count of P. aeruginosa in the blood and lung of YH30-protected mink was less than 10(3) CFU/mL (g) within 24h of bacterial challenge and ultimately became undetectable, whereas that in unprotected mink reached more than 10(8) CFU/mL (g). Additionally, YH30 dramatically improved the pathological manifestations of lung injury in mink with hemorrhagic pneumonia. Our work demonstrates the potential of phages to treat P. aeruginosa-caused hemorrhagic pneumonia in mink. PMID:27283850

  3. Phosphatidylserine externalization and procoagulant activation of erythrocytes induced by Pseudomonas aeruginosa virulence factor pyocyanin.

    Science.gov (United States)

    Qadri, Syed M; Donkor, David A; Bhakta, Varsha; Eltringham-Smith, Louise J; Dwivedi, Dhruva J; Moore, Jane C; Pepler, Laura; Ivetic, Nikola; Nazi, Ishac; Fox-Robichaud, Alison E; Liaw, Patricia C; Sheffield, William P

    2016-04-01

    The opportunistic pathogen Pseudomonas aeruginosa causes a wide range of infections in multiple hosts by releasing an arsenal of virulence factors such as pyocyanin. Despite numerous reports on the pleiotropic cellular targets of pyocyanin toxicity in vivo, its impact on erythrocytes remains elusive. Erythrocytes undergo an apoptosis-like cell death called eryptosis which is characterized by cell shrinkage and phosphatidylserine (PS) externalization; this process confers a procoagulant phenotype on erythrocytes as well as fosters their phagocytosis and subsequent clearance from the circulation. Herein, we demonstrate that P. aeruginosa pyocyanin-elicited PS exposure and cell shrinkage in erythrocyte while preserving the membrane integrity. Mechanistically, exposure of erythrocytes to pyocyanin showed increased cytosolic Ca(2+) activity as well as Ca(2+) -dependent proteolytic processing of μ-calpain. Pyocyanin further up-regulated erythrocyte ceramide abundance and triggered the production of reactive oxygen species. Pyocyanin-induced increased PS externalization in erythrocytes translated into enhanced prothrombin activation and fibrin generation in plasma. As judged by carboxyfluorescein succinimidyl-ester labelling, pyocyanin-treated erythrocytes were cleared faster from the murine circulation as compared to untreated erythrocytes. Furthermore, erythrocytes incubated in plasma from patients with P. aeruginosa sepsis showed increased PS exposure as compared to erythrocytes incubated in plasma from healthy donors. In conclusion, the present study discloses the eryptosis-inducing effect of the virulence factor pyocyanin, thereby shedding light on a potentially important mechanism in the systemic complications of P. aeruginosa infection. PMID:26781477

  4. Diversity of Antimicrobial Resistance and Virulence Determinants in Pseudomonas aeruginosa Associated with Fresh Vegetables

    Directory of Open Access Journals (Sweden)

    Kashina Allydice-Francis

    2012-01-01

    Full Text Available With the increased focus on healthy eating and consuming raw vegetables, this study assessed the extent of contamination of fresh vegetables by Pseudomonas aeruginosa in Jamaica and examined the antibiotic susceptibility profiles and the presence of various virulence associated determinants of P. aeruginosa. Analyses indicated that vegetables from retail markets and supermarkets were widely contaminated by P. aeruginosa; produce from markets were more frequently contaminated, but the difference was not significant. Lettuce and carrots were the most frequently contaminated vegetables, while tomatoes were the least. Pigment production (Pyoverdine, pyocyanin, pyomelanin and pyorubin, fluorescein and alginate were common in these isolates. Imipenem, gentamicin and ciprofloxacin were the most inhibitory antimicrobial agents. However, isolates were resistant or showed reduced susceptibility to ampicillin, chloramphenicol, sulphamethoxazole/trimethoprim and aztreonam, and up to 35% of the isolates were resistant to four antimicrobial agents. As many as 30% of the isolates were positive for the fpv1 gene, and 13% had multiple genes. Sixty-four percent of the isolates harboured an exoenzyme gene (exoS, exoT, exoU or exoY, and multiple exo genes were common. We conclude that P. aeruginosa is a major contaminant of fresh vegetables, which might be a source of infection for susceptible persons within the community.

  5. Involvement of nitric oxide in the mechanism of biochemical alterations induced by simulated microgravity in Microcystis aeruginosa

    Science.gov (United States)

    Xiao, Yuan; Liu, Yongding; Wang, Gaohong

    2012-03-01

    Simulated microgravity (SMG) can inhibit proliferation and enhance microcystin production of Microcystis aeruginosa. We investigated the role of nitric oxide (NO) in regulating the SMG induced changes of proliferation, photochemical system II photochemical activity, pigment, soluble protein and microcystin production in M. aeruginosa. M. aeruginosa was exposed to 0.1 mM sodium nitroprusside (SNP, NO donor) or 0.02 mM 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO, NO scavenger) alone or in combination with SMG for 48 h. SMG and SNP inhibited the growth of M. aeruginosa while c-PTIO had no effect on cell number. As to yield, the negative effect of SMG was augmented by SNP and suppressed by c-PTIO. The intracellular concentrations of chlorophyll a, carotenoid, phycocyanin, soluble protein and microcystin were increased by SMG after 48 h. The effects of SMG on these metabolic processes could be enhanced by SNP and be partly eliminated by c-PTIO. Moreover, SNP and c-PTIO only functioned in these biochemical processes under SMG, unlike in the regulation of cell proliferation and yield. These results showed that the effects of SMG could be enhanced by adding exogenous NO and be mitigated by scavenging endogenous NO, revealing the involvement of NO in the changes in biochemistry processes induced by SMG in M. aeruginosa.

  6. RpoN Regulates Virulence Factors of Pseudomonas aeruginosa via Modulating the PqsR Quorum Sensing Regulator

    Directory of Open Access Journals (Sweden)

    Zhao Cai

    2015-11-01

    Full Text Available The alternative sigma factor RpoN regulates many cell functions, such as motility, quorum sensing, and virulence in the opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa. P. aeruginosa often evolves rpoN-negative variants during the chronic infection in cystic fibrosis patients. It is unclear how RpoN interacts with other regulatory mechanisms to control virulence of P. aeruginosa. In this study, we show that RpoN modulates the function of PqsR, a quorum sensing receptor regulating production of virulence factors including the phenazine pyocyanin. The ∆rpoN mutant is able to synthesize 4-quinolone signal molecule HHQ but unable to activate PqsR and Pseudomonas quinolone signal (pqs quorum sensing. The ∆rpoN mutant produces minimal level of pyocyanin and is unable to produce the anti-staphylococcal agents. Providing pqsR in trans in the ∆rpoN mutant restores its pqs quorum sensing and virulence factor production to the wild-type level. Our study provides evidence that RpoN has a regulatory effect on P. aeruginosa virulence through modulating the function of the PqsR quorum sensing regulator.

  7. Extracellular polysaccharide production by Thraustochytrid protists

    Digital Repository Service at National Institute of Oceanography (India)

    Jain, R.; Raghukumar, S.; Tharanathan, R.; Bhosle, N.B.

    ) are widely se- creted by various marine organisms, including plants, animals, diatoms, microalgae, and bacteria (Decho, 1990; Gutierrez et al., 1996; Philippis et al., 1998; Philippis and Vincenzini, 1998). The EPSs produced by these organisms have been... explored for various biotechnological applications, such as anti- tumor agents, anticoagulants (heparin analogues), and wound dressings for eye and joint surgery. Apart from medical applications, EPSs are also important as emulsion stabilizers (in food...

  8. Production of extracellular carbohydrases by mushrooms

    Directory of Open Access Journals (Sweden)

    A. K. Ghosh

    2014-08-01

    Full Text Available Seven different mushrooms, in submerged culture, are capable of utilizing various polysaccharides, i.e., xylan, mannan, cellulose, dextran, inulin, added in the medium as sole source of carbon. But chitin was found to be not utilized by any of them. Xylan is commonly utilized by all the mushrooms tested. Inducible and constitutive types of hydrolytic enzymes for those polysaccharides have been identified in the fermented broth of the mushrooms. Xylanase was found to be a constitutive enzyme for most of the strains exceipt for Panaeolus papilionaceus (Bull. ex Fr. Fr. for which it is inducible.

  9. EXTRACELLULAR CELLULOLYTIC COMPLEXES PRODUCTION BY MICROSCOPIC FUNGI

    Directory of Open Access Journals (Sweden)

    S. O. Syrchin

    2015-10-01

    Full Text Available The aim of this work was to screen and to study the effect of inducers on the synthesis of the cellulolytic enzyme complexes by microscopic fungi. Cellulolytic and xylanolytic activities were determined by reducing sugar with DNS reagent, and β-glucosidase activity by pNPG hydrolysis. The enzyme preparations were obtained by ammonium sulphate precipitation. Among 32 studied strains of microscopic fungi 14 produced cellulo- and xylanolytic enzyme complexes. Fusarium sp. 5 and Fennellia sp. 2806 demonstrated the highest levels of all studied enzyme activities. Enzyme preparations with high endo-, exoglucanase, xylanase and β-glucosidase activities were obtained from these strains. Fusarium sp. 5 and Fennellia sp. 2806 were active producers of cellulase enzyme complexes during growth on natural substrates. It was shown that inductors of cellulolytic enzymes in Fusarium sp. 5 and Fennellia sp. 2806 differed from the ones in Trichoderma reesei.

  10. Effects of ginseng on Pseudomonas aeruginosa motility and biofilm formation

    DEFF Research Database (Denmark)

    Wu, Hong; Lee, Baoleri; Yang, Liang;

    2011-01-01

    Biofilm-associated chronic Pseudomonas aeruginosa lung infections in patients with cystic fibrosis are virtually impossible to eradicate with antibiotics because biofilm-growing bacteria are highly tolerant to antibiotics and host defense mechanisms. Previously, we found that ginseng treatments....... aeruginosa, but significantly prevented P. aeruginosa from forming biofilm. Exposure to 0.5% ginseng aqueous extract for 24 h destroyed most 7-day-old mature biofilms formed by both mucoid and nonmucoid P. aeruginosa strains. Ginseng treatment enhanced swimming and twitching motility, but reduced swarming of...... P. aeruginosa at concentrations as low as 0.25%. Oral administration of ginseng extracts in mice promoted phagocytosis of P. aeruginosa PAO1 by airway phagocytes, but did not affect phagocytosis of a PAO1-filM mutant. Our study suggests that ginseng treatment may help to eradicate the biofilm...

  11. Cell death in Pseudomonas aeruginosa biofilm development

    DEFF Research Database (Denmark)

    Webb, J.S.; Thompson, L.S.; James, S.;

    2003-01-01

    Bacteria growing in biofilms often develop multicellular, three-dimensional structures known as microcolonies. Complex differentiation within biofilms of Pseudomonas aeruginosa occurs, leading to the creation of voids inside microcolonies and to the dispersal of cells from within these voids....... However, key developmental processes regulating these events are poorly understood. A normal component of multicellular development is cell death. Here we report that a repeatable pattern of cell death and lysis occurs in biofilms of P. aeruginosa during the normal course of development. Cell death...... occurred with temporal and spatial organization within biofilms, inside microcolonies, when the biofilms were allowed to develop in continuous-culture flow cells. A subpopulation of viable cells was always observed in these regions. During the onset of biofilm killing and during biofilm development...

  12. Pseudomonas aeruginosa endophthalmitis masquerading as chronic uveitis

    Directory of Open Access Journals (Sweden)

    Kalpana Badami Nagaraj

    2013-01-01

    Full Text Available A 65-year-old male presented with decreased vision in the left eye of 15-day duration after having undergone an uneventful cataract surgery 10 months back. He had been previously treated with systemic steroids for recurrent uveitis postoperatively on three occasions in the same eye. B-scan ultrasonography showed multiple clumplike echoes suggestive of vitreous inflammation. Aqueous tap revealed Pseudomonas aeruginosa sensitive to ciprofloxacin. The patient was treated with intravitreal ciprofloxacin and vancomycin along with systemic ciprofloxacin with good clinical response. Even a virulent organism such as P.aeruginosa can present as a chronic uveitis, which, if missed, can lead to a delay in accurate diagnosis and appropriate management.

  13. The immune system vs. Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Jensen, Peter Østrup; Givskov, Michael; Bjarnsholt, Thomas;

    2010-01-01

    Ilya Metchnikoff and Paul Ehrlich were awarded the Nobel price in 1908. Since then, numerous studies have unraveled a multitude of mechanistically different immune responses to intruding microorganisms. However, in the vast majority of these studies, the underlying infectious agents have appeared....... Although the present review on the immune system vs. biofilm bacteria is focused on Pseudomonas aeruginosa (mainly because this is the most thoroughly studied), many of the same mechanisms are also seen with biofilm infections generated by other microorganisms....

  14. Proteolytic inactivation of cytokines by Pseudomonas aeruginosa.

    OpenAIRE

    Parmely, M; Gale, A; Clabaugh, M.; Horvat, R; Zhou, W W

    1990-01-01

    Pseudomonas aeruginosa alkaline protease and elastase are thought to contribute to bacterial invasiveness, tissue damage, and immune suppression in animals and patients infected with the bacterium. This study examined the ability of the two proteases to inactivate a number of cytokines that mediate immune and inflammatory responses. Human recombinant gamma interferon (rIFN-gamma) and human recombinant tumor necrosis factor alpha were inactivated by both proteases. Murine rIFN-gamma was relati...

  15. Iron and Pseudomonas aeruginosa biofilm formation

    OpenAIRE

    Banin, Ehud; Vasil, Michael L.; Greenberg, E. Peter

    2005-01-01

    Iron serves as a signal in Pseudomonas aeruginosa biofilm development. We examined the influence of mutations in known and putative iron acquisition-signaling genes on biofilm morphology. In iron-sufficient medium, mutants that cannot obtain iron through the high-affinity pyoverdine iron acquisition system form thin biofilms similar to those formed by the parent under low iron conditions. If an iron source for a different iron acquisition system is provided to a pyoverdine mutant, normal biof...

  16. Interaction between biofilms formed by Pseudomonas aeruginosa and clarithromycin.

    OpenAIRE

    Yasuda, H; Ajiki, Y; Koga, T.; Kawada, H; Yokota, T.

    1993-01-01

    Interactions between bacterial biofilms formed by Pseudomonas aeruginosa and clarithromycin, a macrolide having no anti-P. aeruginosa activity, were investigated. P. aeruginosa incubated for 10 days on membrane filters formed biofilms on the surfaces of the filters. The biofilms were characterized by dense colonizations of bacteria and thick membranous structures that covered the colonies. Treatment of the biofilms with a relatively low concentration of clarithromycin for 5 days resulted in a...

  17. Interleukin-23-Mediated Inflammation in Pseudomonas aeruginosa Pulmonary Infection

    OpenAIRE

    Dubin, Patricia J.; Martz, Ashley; Eisenstatt, Jessica R.; Fox, Michael D.; Logar, Alison; Kolls, Jay K.

    2012-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that is capable of causing acute and chronic pulmonary infection in the immunocompromised host. In the case of cystic fibrosis (CF), chronic P. aeruginosa infection causes increased mortality by promoting overly exuberant airway inflammation and cumulative lung damage. Identifying the key regulators of this inflammation may lead to the development of new therapies that improve P. aeruginosa-related mortality. We report here that interleukin-...

  18. Fecal isolation of Pseudomonas aeruginosa from patients with cystic fibrosis.

    OpenAIRE

    Agnarsson, U; Glass, S; Govan, J R

    1989-01-01

    Fecal isolation of Pseudomonas aeruginosa was observed in 8 of 10 patients with cystic fibrosis who at the time of sampling also exhibited colonization of the respiratory tract. In contrast, P. aeruginosa cells were isolated at low frequency (9.1%) from the stools of 44 patients with cystic fibrosis with no previous history of chronic colonization. The results of this study suggest that the gastrointestinal tract is not a significant chronic reservoir of P. aeruginosa prior to pulmonary colon...

  19. Antivirulence activity of azithromycin in Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Francesco eImperi

    2014-04-01

    Full Text Available Antibiotics represent our bulwark to combat bacterial infections, but the spread of antibiotic resistance compromises their clinical efficacy. Alternatives to conventional antibiotics are urgently needed in order to complement the existing antibacterial arsenal. The macrolide antibiotic azithromycin (AZM provides a paradigmatic example of an unconventional antibacterial drug. Besides its growth-inhibiting activity, AZM displays potent anti-inflammatory properties, as well as antivirulence activity on some intrinsically resistant bacteria, such as Pseudomonas aeruginosa. In this bacterium, the antivirulence activity of AZM mainly relies on its ability to interact with the ribosome, resulting in direct and/or indirect repression of specific subsets of genes involved in virulence, quorum sensing, biofilm formation and intrinsic antibiotic resistance. Both clinical experience and clinical trials have shown the efficacy of AZM in the treatment of chronic pulmonary infections caused by P. aeruginosa. The aim of this review is to combine results from laboratory studies with evidence from clinical trials in order to unify the information on the in vivo mode of action of AZM in P. aeruginosa infection.

  20. Prevalence of extended spectrum beta lactamases among strains of Pseudomonas aeruginosa isolated from burn patients

    Directory of Open Access Journals (Sweden)

    Mirsalehian

    2008-08-01

    Full Text Available Background: The resistance of Pseudomonas aeruginosa strains to broad spectrum cephalosporins may be mediated by extended spectrum b-lactamases (ESBLs. These enzymes are encoded by different genes located either on chromosome or plasmids. In this study, we determined the antimicrobial resistance patterns of P. aeruginosa isolates and screened for ESBL production. Methods: After isolation from burn patients in Tehran Hospital, identification of P. aeruginosa isolates were assessed using biochemical tests. We then performed disk agar diffusion (DAD according to CLSI guidelines to determine the pattern of antimicrobial resistance. The frequency of ESBLs and prevalence of the OXA-10 and PER-1 genes were determined with combined disk and polymerase chain reaction (PCR methods, respectively. Results: One hundred strains of P. aeruginosa were isolated. The resistance of these strains to cephpodoxime, aztreonam, ciprofloxacin, ofloxacin, ceftazidime, cefepime, imipenem, meropenem, cefotaxime, levofloxacin, piperacilin- tazobactam and ceftriaxon was 100%, 90%, 83%, 92%, 85%, 88%, 63%, 66%, 98%, 89%, 70% and 91%, respectively. Of these, 40 strains (40% were ESBL positive, 29 strains (29% were OXA-10 positive and 18 strains (18% were PER-1 positive. Conclusion: Our results confirm the need for proper antimicrobial therapy in burn hospitals, considering the resistance pattern and frequency of strains producing ESBLs and the presence of the OXA-10 and PER-1 genes. Since an increase in the prevalence of ESBL in P. aeruginosa strains might lead to the transfer of these ESBL genes to other gram-negative bacteria, we recommend the use of appropriate drugs, especially cephalosporins, in burn hospitals.

  1. Effect of Shear Stress on Pseudomonas aeruginosa Isolated from the Cystic Fibrosis Lung

    Science.gov (United States)

    Dingemans, Jozef; Monsieurs, Pieter; Yu, Sung-Huan; Crabbé, Aurélie; Förstner, Konrad U.; Malfroot, Anne

    2016-01-01

    ABSTRACT Chronic colonization of the lungs by Pseudomonas aeruginosa is one of the major causes of morbidity and mortality in cystic fibrosis (CF) patients. To gain insights into the characteristic biofilm phenotype of P. aeruginosa in the CF lungs, mimicking the CF lung environment is critical. We previously showed that growth of the non-CF-adapted P. aeruginosa PAO1 strain in a rotating wall vessel, a device that simulates the low fluid shear (LS) conditions present in the CF lung, leads to the formation of in-suspension, self-aggregating biofilms. In the present study, we determined the phenotypic and transcriptomic changes associated with the growth of a highly adapted, transmissible P. aeruginosa CF strain in artificial sputum medium under LS conditions. Robust self-aggregating biofilms were observed only under LS conditions. Growth under LS conditions resulted in the upregulation of genes involved in stress response, alginate biosynthesis, denitrification, glycine betaine biosynthesis, glycerol metabolism, and cell shape maintenance, while genes involved in phenazine biosynthesis, type VI secretion, and multidrug efflux were downregulated. In addition, a number of small RNAs appeared to be involved in the response to shear stress. Finally, quorum sensing was found to be slightly but significantly affected by shear stress, resulting in higher production of autoinducer molecules during growth under high fluid shear (HS) conditions. In summary, our study revealed a way to modulate the behavior of a highly adapted P. aeruginosa CF strain by means of introducing shear stress, driving it from a biofilm lifestyle to a more planktonic lifestyle. PMID:27486191

  2. Angiopoietin-2 enhances survival in experimental sepsis induced by multidrug-resistant Pseudomonas aeruginosa.

    Science.gov (United States)

    Tzepi, Ira-Maria; Giamarellos-Bourboulis, Evangelos J; Carrer, Dionyssia-Pinelopi; Tsaganos, Thomas; Claus, Ralf A; Vaki, Ilia; Pelekanou, Aimilia; Kotsaki, Antigone; Tziortzioti, Vassiliki; Topouzis, Stavros; Bauer, Michael; Papapetropoulos, Andreas

    2012-11-01

    Levels of circulating angiopoietin-2 (Ang-2) increase in sepsis, raising the possibility that Ang-2 acts as a modulator in the sepsis cascade. To investigate this, experimental sepsis was induced in male C57BL6 mice by a multidrug-resistant isolate of Pseudomonas aeruginosa; survival was determined along with neutrophil tissue infiltration and release of proinflammatory cytokines. Survival was significantly increased either by pretreatment with recombinant Ang-2 2 h before or treatment with recombinant Ang-2 30 min after bacterial challenge. Likewise, Ang-2 pretreatment protected against sepsis-related death elicited by Escherichia coli; however, Ang-2 failed to provide protection in lipopolysaccharide (LPS)-challenged mice. The survival advantage of Ang-2 in response to P. aeruginosa challenge was lost in tumor necrosis factor (TNF)-deficient mice or neutropenic mice. Infiltration of the liver by neutrophils was elevated in the Ang-2 group compared with saline-treated animals. Serum TNF-α levels were reduced by Ang-2, whereas those of interleukin (IL)-6 and IL-10 remained unchanged. This was accompanied by lower release of TNF-α by stimulated splenocytes. When applied to U937 cells in vitro, heat-killed P. aeruginosa induced the secretion of IL-6 and TNF-α; low levels of exogenous TNF-α synergized with P. aeruginosa. This synergistic effect was abolished after the addition of Ang-2. These results put in evidence a striking protective role of Ang-2 in experimental sepsis evoked by a multidrug-resistant isolate of P. aeruginosa attributed to modulation of TNF-α production and changes in neutrophil migration. The protective role of Ang-2 is shown when whole microorganisms are used and not LPS, suggesting complex interactions with the host immune response. PMID:22859861

  3. First detection of metallo-β-lactamases in nosocomial isolates of Pseudomonas aeruginosa in Alagoas, Brazil

    Directory of Open Access Journals (Sweden)

    Emmily M. L. R. Barros

    2015-10-01

    Full Text Available ABSTRACTIntroduction:Pseudomonas aeruginosa is a leading cause of opportunistic infections in humans, and the choice of effective antimicrobial agents to control this bacterium has been limited, mainly due to its ability to produce metallo-β-lactamases (MβL, enzymes capable of inactivating many antimicrobials through hydrolysis.Objective:This study aimed to detect the presence of multidrug-resistant (MDR P. aeruginosa strains and the MβL-encoding genes (blaSPM, blaIMP and blaVIM in nosocomial isolates in Maceió (AL.Methods:The isolates were collected from four public institutions/hospitals in Maceió, and cultures were identified by conventional methods. Antibiotic susceptibility was determined by the disk diffusion method according to the Clinical and Laboratory Standards Institute (CLSI, and polymerase chain reaction (PCR was used to identify the presence of the MβL-encoding genes blaSPM, blaIMP and blaVIM.RESULTS:Forty-three strains of P. aeruginosa were MDR among 85 identified nosocomial isolates (50.6%, 79.1% and 20% of which were resistant to carbapenem (imipenem and meropenem and aztreonam, respectively. PCR was performed in susceptible or resistant isolates and we identified nine (20.9% MDR strains with blaSPM gene, whereas only one strain had blaIMP and none blaVIM positive was found.Conclusion:Production of MβL is an important mechanism of resistance to carbapenems and other β-lactams among P. aeruginosa strains in the evaluated samples. We reported the first identification of MβL-encoding genes in P. aeruginosa from nosocomial environments in Maceió, a new insight for the epidemiology of MβL in the Northeastern region of Brazil.

  4. Increased bactericidal activity of colistin on Pseudomonas aeruginosa biofilms in anaerobic conditions

    DEFF Research Database (Denmark)

    Mette, Kolpen; Appeldorff, Cecilie F; Brandt, Sarah;

    2016-01-01

    polymorphonuclear leukocytic activity. In contrast to the main types of bactericidal antibiotics, it has not been possible to establish an association between the bactericidal effects of colistin and the production of detectable levels of OH⋅ on several strains of planktonic P. aeruginosa. Therefore we propose that...... production of OH⋅ may not contribute significantly to the bactericidal activity of colistin on P. aeruginosa biofilm. Thus, we investigated the effect of colistin treatment on biofilm of wildtype PAO1, a catalase deficient mutant (ΔkatA) and a colistin resistant CF isolate cultured in microtiter plates in...... normoxic- or anoxic atmosphere with 1 mM nitrate. The killing of bacteria during colistin treatment was measured by CFU counts and the OH⋅ formation was measured by 3'-(p-hydroxylphenyl fluorescein) fluorescein (HPF) fluorescence. Validation of the assay was done by hydrogenperoxide treatment. OH...

  5. Agaricus Blazei Hot Water Extract Shows Anti Quorum Sensing Activity in the Nosocomial Human Pathogen Pseudomonas Aeruginosa

    Directory of Open Access Journals (Sweden)

    Marina Soković

    2014-04-01

    Full Text Available The edible mushroom Agaricus blazei Murill is known to induce protective immunomodulatory action against a variety of infectious diseases. In the present study we report potential anti-quorum sensing properties of A. blazei hot water extract. Quorum sensing (QS plays an important role in virulence, biofilm formation and survival of many pathogenic bacteria, including the Gram negative Pseudomonas aeruginosa, and is considered as a novel and promising target for anti-infectious agents. In this study, the effect of the sub-MICs of Agaricus blazei water extract on QS regulated virulence factors and biofilm formation was evaluated against P. aeruginosa PAO1. Sub-MIC concentrations of the extract which did not kill P. aeruginosa nor inhibited its growth, demonstrated a statistically significant reduction of virulence factors of P. aeruginosa, such as pyocyanin production, twitching and swimming motility. The biofilm forming capability of P. aeruginosa was also reduced in a concentration-dependent manner at sub-MIC values. Water extract of A. blazei is a promising source of antiquorum sensing and antibacterial compounds.

  6. Pseudomonas aeruginosa can be detected in a polymicrobial competition model using impedance spectroscopy with a novel biosensor.

    Directory of Open Access Journals (Sweden)

    Andrew C Ward

    Full Text Available Electrochemical Impedance Spectroscopy (EIS is a powerful technique that can be used to elicit information about an electrode interface. In this article, we highlight six principal processes by which the presence of microorganisms can affect impedance and show how one of these--the production of electroactive metabolites--changes the impedance signature of culture media containing Pseudomonas aeruginosa. EIS, was used in conjunction with a low cost screen printed carbon sensor to detect the presence of P. aeruginosa when grown in isolation or as part of a polymicrobial infection with Staphylococcus aureus. By comparing the electrode to a starting measurement, we were able to identify an impedance signature characteristic of P. aeruginosa. Furthermore, we are able to show that one of the changes in the impedance signature is due to pyocyanin and associated phenazine compounds. The findings of this study indicate that it might be possible to develop a low cost sensor for the detection of P. aeruginosa in important point of care diagnostic applications. In particular, we suggest that a development of the device described here could be used in a polymicrobial clinical sample such as sputum from a CF patient to detect P. aeruginosa.

  7. Chronic infection phenotypes of Pseudomonas aeruginosa are associated with failure of eradication in children with cystic fibrosis.

    Science.gov (United States)

    Vidya, P; Smith, L; Beaudoin, T; Yau, Y C; Clark, S; Coburn, B; Guttman, D S; Hwang, D M; Waters, V

    2016-01-01

    Early eradication treatment with inhaled tobramycin is successful in the majority of children with cystic fibrosis (CF) with incident Pseudomonas aeruginosa infection. However, in 10-40 % of cases, eradication fails and the reasons for this are poorly understood. The purpose of this study was to determine whether specific microbial characteristics could explain eradication treatment failure. This was a cross-sectional study of CF patients (aged 0-18 years) with incident P. aeruginosa infection from 2011 to 2014 at the Hospital for Sick Children, Toronto, Canada. Phenotypic assays were done on all incident P. aeruginosa isolates, and eradicated and persistent isolates were compared using the Mann-Whitney test or the two-sided Chi-square test. A total of 46 children with CF had 51 incident P. aeruginosa infections. In 72 % (33/46) of the patients, eradication treatment was successful, while 28 % failed eradication therapy. Persistent isolates were less likely to be motile, with significantly less twitch motility (p=0.001), were more likely to be mucoid (p=0.002), and more likely to have a tobramycin minimum inhibitory concentration (MIC) ≥ 128 μg/mL (p=0.02) compared to eradicated isolates. Although biofilm production was similar, there was a trend towards more persistent isolates with deletions in quorum-sensing genes compared with eradicated isolates (p=0.06). Initial acquisition of P. aeruginosa with characteristics of chronic infection is associated with failure of eradication treatment. PMID:26492874

  8. Differentiation of Colletotrichum gloeosporioides isolates by using total proteins and esterase electrophoretic patterns and extracellular enzymes production Diferenciação de isolados de Colletotrichum gloeosporioides por meio de padrões eletroforéticos de proteínas totais e isoesterase, e produção de enzimas extracelulares

    OpenAIRE

    Tereza Cristina de Assis; Maria Menezes; Domingos Eduardo Guimarães Tavares de Andrade; Rildo Sartori Barbosa Coelho

    2010-01-01

    Isolates of Colletotrichum gloeosporioides (ISO-1, ISO-2, ISO-3, ISO-4, ISO-5 and ISO-6), the causal agent of anthracnose disease on mango fruits, were characterized by electrophoretic patterns of total proteins and esterase in polyacrylamida gel, and also, by production of extracellular enzymes on specific solid substrate. The electrophoretic analysis showed variation in number, intensity of coloration and position of the bands in the gel at each studied system tested. In contrast to the mon...

  9. Cyanobacterial reuse of extracellular organic carbon in microbial mats.

    Science.gov (United States)

    Stuart, Rhona K; Mayali, Xavier; Lee, Jackson Z; Craig Everroad, R; Hwang, Mona; Bebout, Brad M; Weber, Peter K; Pett-Ridge, Jennifer; Thelen, Michael P

    2016-05-01

    Cyanobacterial organic matter excretion is crucial to carbon cycling in many microbial communities, but the nature and bioavailability of this C depend on unknown physiological functions. Cyanobacteria-dominated hypersaline laminated mats are a useful model ecosystem for the study of C flow in complex communities, as they use photosynthesis to sustain a more or less closed system. Although such mats have a large C reservoir in the extracellular polymeric substances (EPSs), the production and degradation of organic carbon is not well defined. To identify extracellular processes in cyanobacterial mats, we examined mats collected from Elkhorn Slough (ES) at Monterey Bay, California, for glycosyl and protein composition of the EPS. We found a prevalence of simple glucose polysaccharides containing either α or β (1,4) linkages, indicating distinct sources of glucose with differing enzymatic accessibility. Using proteomics, we identified cyanobacterial extracellular enzymes, and also detected activities that indicate a capacity for EPS degradation. In a less complex system, we characterized the EPS of a cyanobacterial isolate from ES, ESFC-1, and found the extracellular composition of biofilms produced by this unicyanobacterial culture were similar to that of natural mats. By tracing isotopically labeled EPS into single cells of ESFC-1, we demonstrated rapid incorporation of extracellular-derived carbon. Taken together, these results indicate cyanobacteria reuse excess organic carbon, constituting a dynamic pool of extracellular resources in these mats. PMID:26495994

  10. Assessing the Role of Pseudomonas aeruginosa Surface-Active Gene Expression in Hexadecane Biodegradation in Sand

    OpenAIRE

    Holden, P. A.; LaMontagne, M. G.; Bruce, A. K.; Miller, W.G.; Lindow, S E

    2002-01-01

    Low pollutant substrate bioavailability limits hydrocarbon biodegradation in soils. Bacterially produced surface-active compounds, such as rhamnolipid biosurfactant and the PA bioemulsifying protein produced by Pseudomonas aeruginosa, can improve bioavailability and biodegradation in liquid culture, but their production and roles in soils are unknown. In this study, we asked if the genes for surface-active compounds are expressed in unsaturated porous media contaminated with hexadecane. Furth...

  11. Outbreak of infections caused by Pseudomonas aeruginosa producing VIM-1 carbapenemase in Greece.

    Science.gov (United States)

    Tsakris, A; Pournaras, S; Woodford, N; Palepou, M F; Babini, G S; Douboyas, J; Livermore, D M

    2000-03-01

    Resistance to imipenem and meropenem was observed in 211 (16.5%) isolates of Pseudomonas aeruginosa recovered in a Greek university hospital during 1996 to 1998. In six isolates selected from throughout this period, high-level resistance to both carbapenems (MICs >/= 128 microg/ml) was associated with production of the class B beta-lactamase VIM-1. bla(VIM)-bearing isolates belonged to serotype O:12 and were indistinguishable by pulsed-field gel electrophoresis. PMID:10699045

  12. Electrolytic Generation of Oxygen Partially Explains Electrical Enhancement of Tobramycin Efficacy against Pseudomonas aeruginosa Biofilm

    OpenAIRE

    Stewart, Philip S.; Wattanakaroon, Wanida; Goodrum, Lu; Fortun, Susana M.; McLeod, Bruce R.

    1999-01-01

    The role of electrolysis products, including protons, hydroxyl ions, reactive oxygen intermediates, oxygen, hydrogen, and heat, in mediating electrical enhancement of killing of Pseudomonas aeruginosa biofilms by tobramycin (the bioelectric effect) was investigated. The log reduction in biofilm viable cell numbers compared to the numbers for the untreated positive control effected by antibiotic increased from 2.88 in the absence of electric current to 5.58 in the presence of electric current....

  13. Increased concentration of Pseudomonas aeruginosa and Staphylococcus sp. in small animals exposed to aerospace environments

    Science.gov (United States)

    Guthrie, R. K.

    1976-01-01

    The effects of increased concentrations of PSEUDOMONAS AERUGINOSA AND STAPHYLOCOCCUS in the total bacterial flora of small animals exposed to simulated spacecraft environments were evaluated. Tests to detect changes in infectivity, effects of antibiotic treatments, immune responses to bacterial antigens, and effectiveness of immune responses in the experimental environment were conducted. The most significant results appear to be the differences in immune responses at simulated altitudes and the production of infection in the presence of a specific antibody.

  14. Group X Aldehyde Dehydrogenases of Pseudomonas aeruginosa PAO1 Degrade Hydrazones

    OpenAIRE

    Taniyama, Kosuke; Itoh, Hideomi; Takuwa, Atsushi; Sasaki, Yasuyuki; Yajima, Shunsuke; Toyofuku, Masanori; Nomura, Nobuhiko; Takaya, Naoki

    2012-01-01

    Hydrazones are natural and synthetic compounds containing a C=N-N moiety. Here we found that the opportunistic pathogen Pseudomonas aeruginosa PAO1 produced NAD+- or NADP+-dependent hydrazone dehydrogenase (HDH), which converts hydrazones to the corresponding hydrazides and acids rather than to the simple hydrolytic product aldehydes. Gene cloning indicated that the HDH is part of the group X aldehyde dehydrogenase (ALDH) family, which is distributed among bacteria, although the physiological...

  15. Utility of in vivo transcription profiling for identifying Pseudomonas aeruginosa genes needed for gastrointestinal colonization and dissemination

    DEFF Research Database (Denmark)

    Koh, Andrew Y; Mikkelsen, Per J; Smith, Roger S;

    2010-01-01

    mutants and WT P. aeruginosa PA14. To evaluate T3SS factors, we tested GI colonization and neutropenia-induced dissemination of both deletional (PAO1 and PAK) and insertional (PA14) mutants in four genes in the P. aeruginosa T3SS, exoS or exoU, exoT, and popB. There were no significant differences in GI......, increased transcription of genes during in vivo murine GI colonization is not predictive of an essential role for the gene product in either colonization or overall survival following induction of neutropenia....

  16. Detection of Chloramphenicol Resistance Genes (cat in Clinical Isolates of Pseudomonas aeruginosa with Polymerase Chain Reaction Method

    Directory of Open Access Journals (Sweden)

    Tiana Milanda

    2014-12-01

    Full Text Available Pseudomonas aeruginosa is an opportunistic Gram negative bacteria, which may cause infection in eyes, ears, skin, bones, central nervous system, gastrointestinal tract, circulatory system, heart, respiratory system, and urinary tract. Recently, chloramphenicol is no longer used as the main option of the therapy due of its resistance case. The aim of this research was to detect the presence of gene which is responsible to chloramphenicol resistance in clinical isolates of P.aeruginosa. These bacteria isolated from pus of external otitis patients in Hasan Sadikin Hospital in Bandung City. Polymerase Chain Reaction (PCR method (colony-PCR and DNA-PCR were performed to detect this resistance gene. Electropherogram from PCR products showed that the chloramphenicol resistance in clinical isolates of P. aeruginosa was caused by cat gene (317 bp. Based on this research, cat gene may be used to detect the chloramphenicol resistance in patients with external ostitis.

  17. Extracellular enzymes of Legionella pneumophila.

    OpenAIRE

    Thorpe, T C; Miller, R. D.

    1981-01-01

    All strains of Legionella pneumophila tested produced detectable levels of extracellular protease, phosphatase, lipase, deoxyribonuclease, ribonuclease, and beta-lactamase activity. Weak starch hydrolysis was also demonstrated for all strains. Elastase, collagenase, phospholipase C, hyaluronidase, chondroitinase, neuraminidase, or coagulase were not detected in any of these laboratory-maintained strains.

  18. The Pseudomonas aeruginosa Type III Translocon Is Required for Biofilm Formation at the Epithelial Barrier

    DEFF Research Database (Denmark)

    Tran, Cindy S; Rangel, Stephanie M; Almblad, Henrik; Kierbel, Arlinet; Givskov, Michael; Tolker-Nielsen, Tim; Hauser, Alan R; Engel, Joanne N

    2014-01-01

    -associated aggregation on the surface of polarized epithelial cells and at early time points in a murine model of acute pneumonia. In contrast, the translocon was not required for aggregation on abiotic surfaces, suggesting a novel function for the type III secretion system during cell-associated aggregation...... about biofilm formation at the epithelial barrier. We have previously shown that when added to the apical surface of polarized epithelial cells, P. aeruginosa rapidly forms cell-associated aggregates within 60 minutes of infection. By confocal microscopy we now show that cell-associated aggregates...... exhibit key characteristics of biofilms, including the presence of extracellular matrix and increased resistance to antibiotics compared to planktonic bacteria. Using isogenic mutants in the type III secretion system, we found that the translocon, but not the effectors themselves, were required for cell...

  19. Silver Nanoparticles: Biosynthesis Using an ATCC Reference Strain of Pseudomonas aeruginosa and Activity as Broad Spectrum Clinical Antibacterial Agents

    Science.gov (United States)

    Quinteros, Melisa A.; Aiassa Martínez, Ivana M.; Dalmasso, Pablo R.; Páez, Paulina L.

    2016-01-01

    Currently, the biosynthesis of silver-based nanomaterials attracts enormous attention owing to the documented antimicrobial properties of these ones. This study reports the extracellular biosynthesis of silver nanoparticles (Ag-NPs) using a Pseudomonas aeruginosa strain from a reference culture collection. A greenish culture supernatant of P. aeruginosa incubated at 37°C with a silver nitrate solution for 24 h changed to a yellowish brown color, indicating the formation of Ag-NPs, which was confirmed by UV-vis spectroscopy, transmission electron microscopy, and X-ray diffraction. TEM analysis showed spherical and pseudospherical nanoparticles with a distributed size mainly between 25 and 45 nm, and the XRD pattern revealed the crystalline nature of Ag-NPs. Also it provides an evaluation of the antimicrobial activity of the biosynthesized Ag-NPs against human pathogenic and opportunistic microorganisms, namely, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Proteus mirabilis, Acinetobacter baumannii, Escherichia coli, P. aeruginosa, and Klebsiella pneumonia. Ag-NPs were found to be bioactive at picomolar concentration levels showing bactericidal effects against both Gram-positive and Gram-negative bacterial strains. This work demonstrates the first helpful use of biosynthesized Ag-NPs as broad spectrum bactericidal agents for clinical strains of pathogenic multidrug-resistant bacteria such as methicillin-resistant S. aureus, A. baumannii, and E. coli. In addition, these Ag-NPs showed negligible cytotoxic effect in human neutrophils suggesting low toxicity to the host. PMID:27340405

  20. A three-phase in-vitro system for studying Pseudomonas aeruginosa adhesion and biofilm formation upon hydrogel contact lenses

    Directory of Open Access Journals (Sweden)

    Kohlmann Thomas

    2010-11-01

    Full Text Available Abstract Background Pseudomonas aeruginosa is commonly associated with contact lens (CL -related eye infections, for which bacterial adhesion and biofilm formation upon hydrogel CLs is a specific risk factor. Whilst P. aeruginosa has been widely used as a model organism for initial biofilm formation on CLs, in-vitro models that closely reproduce in-vivo conditions have rarely been presented. Results In the current investigation, a novel in-vitro biofilm model for studying the adherence of P. aeruginosa to hydrogel CLs was established. Nutritional and interfacial conditions similar to those in the eye of a CL wearer were created through the involvement of a solid:liquid and a solid:air interface, shear forces and a complex artificial tear fluid. Bioburdens varied depending on the CL material and biofilm maturation occurred after 72 h incubation. Whilst a range of biofilm morphologies were visualised including dispersed and adherent bacterial cells, aggregates and colonies embedded in extracellular polymer substances (EPS, EPS fibres, mushroom-like formations, and crystalline structures, a compact and heterogeneous biofilm morphology predominated on all CL materials. Conclusions In order to better understand the process of biofilm formation on CLs and to test the efficacy of CL care solutions, representative in-vitro biofilm models are required. Here, we present a three-phase biofilm model that simulates the environment in the eye of a CL wearer and thus generates biofilms which resemble those commonly observed in-situ.

  1. General Biochemical Characterization of Thermostable Extracellular β-Amylase from Clostridium thermosulfurogenes

    OpenAIRE

    Hyun, H H; Zeikus, J G

    1985-01-01

    Clostridium thermosulfurogenes, an anaerobic bacterium which ferments starch into ethanol at 62°C, produced an active extracellular amylase and contained intracellular glucoamylase but not pullulanase activity. The extracellular amylase was purified 2.4-fold, and its general physicochemical and catalytic properties were examined. The extracellular amylase was characterized as a β-amylase (1,4-α-d-glucan maltohydrolase) based on demonstration of exocleavage activity and the production of malto...

  2. Chronic Pseudomonas aeruginosa lung infection in normal and athymic rats

    DEFF Research Database (Denmark)

    Johansen, H K; Espersen, F; Pedersen, S S;

    1993-01-01

    We have compared a chronic lung infection with Pseudomonas aeruginosa embedded in alginate beads in normal and athymic rats with an acute infection with free live P. aeruginosa bacteria. The following parameters were observed and described: mortality, macroscopic and microscopic pathologic changes...

  3. Novel Targets for Treatment of Pseudomonas aeruginosa Biofilms

    DEFF Research Database (Denmark)

    Alhede, Morten; Alhede, Maria; Bjarnsholt, Thomas

    2014-01-01

    Pseudomonas aeruginosa causes infection in all parts of the human body. The bacterium is naturally resistant to a wide range of antibiotics. In addition to resistance mechanisms such as efflux pumps, the ability to form aggregates, known as biofilm, further reduces Pseudomonas aeruginosa...

  4. Outbreak of Pseudomonas aeruginosa bacteraemia in a haematology department

    DEFF Research Database (Denmark)

    Rasmussen, Benjamin Schnack; Christensen, Nikolas; Sørensen, Jan;

    2015-01-01

    INTRODUCTION: Infection by Pseudomonas aeruginosa represents a major cause of morbidity and mortality among immunocompromised patients. In Denmark, an increase in P. aeruginosa isolates from blood cultures from a haematology department prompted a hygienic audit in 2007. METHODS: Blood cultures that...

  5. Activation of pulmonary and lymph node dendritic cells during chronic Pseudomonas aeruginosa lung infection in mice.

    Science.gov (United States)

    Damlund, Dina Silke Malling; Christophersen, Lars; Jensen, Peter Østrup; Alhede, Morten; Høiby, Niels; Moser, Claus

    2016-06-01

    The majority of cystic fibrosis (CF) patients acquire chronic Pseudomonas aeruginosa lung infection, resulting in increased mortality and morbidity. The chronic P. aeruginosa lung infection is characterized by bacteria growing in biofilm surrounded by polymorphonuclear neutrophils (PMNs). However, the infection is not eradicated and the inflammatory response leads to gradual degradation of the lung tissue. In CF patients, a Th2-dominated adaptive immune response with a pronounced antibody response is correlated with poorer outcome. Dendritic cells (DCs) are crucial in bridging the innate immune system with the adaptive immune response. Once activated, the DCs deliver a set of signals to uncommitted T cells that induce development, such as expansion of regulatory T cells and polarization of Th1, Th2 or Th17 subsets. In this study, we characterized DCs in lungs and regional lymph nodes in BALB/c mice infected using intratracheal installation of P. aeruginosa embedded in seaweed alginate in the lungs. A significantly elevated concentration of DCs was detected earlier in the lungs than in the regional lymph nodes. To evaluate whether the chronic P. aeruginosa lung infection leads to activation of DCs, costimulatory molecules CD80 and CD86 were analyzed. During infection, the DCs showed significant elevation of CD80 and CD86 expression in both the lungs and the regional lymph nodes. Interestingly, the percentage of CD86-positive cells was significantly higher than the percentage of CD80-positive cells in the lymph nodes. In addition, cytokine production from Lipopolysaccharides (LPS)-stimulated DCs was analyzed demonstrating elevated production of IL-6, IL-10 and IL-12. However, production of IL-12 was suppressed earlier than IL-6 and IL-10. These results support that DCs are involved in skewing of the Th1/Th2 balance in CF and may be a possible treatment target. PMID:27009697

  6. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Gurunathan S

    2012-11-01

    Full Text Available Sangiliyandi Gurunathan, Jae Woong Han, Ahmed Abdal Dayem, Vasuki Eppakayala, Jin-Hoi KimDepartment of Animal Biotechnology, Konkuk University, Seoul, South KoreaBackground: Graphene holds great promise for potential use in next-generation electronic and photonic devices due to its unique high carrier mobility, good optical transparency, large surface area, and biocompatibility. The aim of this study was to investigate the antibacterial effects of graphene oxide (GO and reduced graphene oxide (rGO in Pseudomonas aeruginosa. In this work, we used a novel reducing agent, betamercaptoethanol (BME, for synthesis of graphene to avoid the use of toxic materials. To uncover the impacts of GO and rGO on human health, the antibacterial activity of two types of graphene-based material toward a bacterial model P. aeruginosa was studied and compared.Methods: The synthesized GO and rGO was characterized by ultraviolet-visible absorption spectroscopy, particle-size analyzer, X-ray diffraction, scanning electron microscopy and Raman spectroscopy. Further, to explain the antimicrobial activity of graphene oxide and reduced graphene oxide, we employed various assays, such as cell growth, cell viability, reactive oxygen species generation, and DNA fragmentation.Results: Ultraviolet-visible spectra of the samples confirmed the transition of GO into graphene. Dynamic light-scattering analyses showed the average size among the two types of graphene materials. X-ray diffraction data validated the structure of graphene sheets, and high-resolution scanning electron microscopy was employed to investigate the morphologies of prepared graphene. Raman spectroscopy data indicated the removal of oxygen-containing functional groups from the surface of GO and the formation of graphene. The exposure of cells to GO and rGO induced the production of superoxide radical anion and loss of cell viability. Results suggest that the antibacterial activities are contributed to by loss of

  7. Occurrence of pseudomonas aeruginosa in post-operative wound infection

    International Nuclear Information System (INIS)

    Objective: To determine the prevalence of Pseudomonas aeruginosa in post-operative wound infection. Results: Out of the 60 bacterial isolates found in post-operative wound infection, 20 (33.3%) were Pseudomonas aeruginosa, followed by Staphylococcus aureus 13(21.7%), Klebsiella species 10(16.7%), Escherichia coli 7(11.7%), Atypical coliform 4(6.7%), Proteus species 4(6.7%), Streptococcus pyogenes 1(1.7%) and Enterococcus faecalis 1(1.7%) in the order. Pseudomonas aeruginosa infections was higher in female than male, ratio 3:2 and was found more among young and elderly debilitated patients. The in vitro sensitivity pattern of 20 isolates of Pseudomonas aeruginosa showed colistin (100%), gentamicin (75%), streptomycin (30%), and tetracycline (10%). Conclusion: The role of Pseudomonas aeruginosa as an agent of nosocomial infection is re-emphasised. (author)

  8. Targeting quorum sensing in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Jakobsen, Tim Holm; Bjarnsholt, Thomas; Jensen, Peter Østrup;

    2013-01-01

    Bacterial resistance to conventional antibiotics combined with an increasing acknowledgement of the role of biofilms in chronic infections has led to a growing interest in new antimicrobial strategies that target the biofilm mode of growth. In the aggregated biofilm mode, cell-to-cell communication...... alternative antibacterial strategies. Here, we review state of the art research of quorum sensing inhibitors against the opportunistic human pathogen Pseudomonas aeruginosa, which is found in a number of biofilm-associated infections and identified as the predominant organism infecting the lungs of cystic...

  9. Extracellular enzyme kinetics scale with resource availability

    Science.gov (United States)

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimi...

  10. blaGES carrying Pseudomonas aeruginosa isolates from a public hospital in Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Flávia L. P. C. Pellegrino

    2006-08-01

    Full Text Available Previous analysis of Pseudomonas aeruginosa class-1 integrons from Rio de Janeiro, Brazil, revealed the blaGES gene in one isolate. We screened isolates of two widespread PFGE genotypes, A and B, at a public hospital in Rio, for the presence of blaGES. The gene was detected in all seven P. aeruginosa isolates belonging to genotype B. Three of the seven genotype-B isolates were resistant to amikacin, aztreonam, ceftazidime, cefepime, ciprofloxacin, gentamicin, imipenem, meropenem, piperacillin-tazobactam and ticarcillin-clavulanic acid. The other four isolates were resistant to all these agents, except gentamicin, imipenem, meropenem and piperacillin-tazobactam. A synergistic effect between ceftazidime and imipenem or clavulanic acid suggested the production of GES-type ESBL.

  11. Differentiation and distribution of colistin- and sodium dodecyl sulfate-tolerant cells in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Haagensen, Janus Anders Juul; Klausen, M; Ernst, RK;

    2007-01-01

    During Pseudomonas aeruginosa flow cell biofilm development, the cell population differentiates into a nonmotile subpopulation which forms microcolonies and a migrating subpopulation which eventually colonizes the top of the microcolonies, resulting in the development of mushroom-shaped multicell......During Pseudomonas aeruginosa flow cell biofilm development, the cell population differentiates into a nonmotile subpopulation which forms microcolonies and a migrating subpopulation which eventually colonizes the top of the microcolonies, resulting in the development of mushroom......-targeting antibacterial agents. All biofilm-associated cells were sensitive to the antibacterial agents when tested in standard plate assays. A mutation eliminating the production of type IV pili, and hence surface-associated motility, prevented the formation of regular mushroom-shaped structures in the flow cell...

  12. Antibiotic resistance profiles and quorum sensing-dependent virulence factors in clinical isolates of pseudomonas aeruginosa.

    Science.gov (United States)

    Wang, Huafu; Tu, Faping; Gui, Zhihong; Lu, Xianghong; Chu, Weihua

    2013-06-01

    Pseudomonas aeruginosa produces multiple virulence factors that have been associated with quorum sensing. The aim of this study was to evaluate the prevalence of drug resistant profiles and quorum sensing related virulence factors. Pseudomonas aeruginosa were collected from different patients hospitalized in China, the isolates were tested for their susceptibility to different common antimicrobial drugs and detected QS-related virulence factors. We identified 170 isolates displaying impaired phenotypic activity, approximately 80 % of the isolates were found to exhibit the QS-dependent phenotypes, among them, 12 isolates were defective in AHLs production, and therefore considered QS-deficient strains. Resistance was most often observed to Cefazolin (81.2 %), followed by trimethoprim-sulfamethoxazole (73.5 %), ceftriaxone (62.4 %) and Cefotaxime, Levofloxacin, Ciprofloxacin (58.8 %), and to a lesser extent Meropenem (20.0 %), Cefepime (18.8 %), and Cefoperazone/sulbactam (2.4 %) The QS-deficient isolates that were negative for virulence factor production were generally less susceptible to the antimicrobials. The results showed a high incidences of antibiotic resistance and virulence properties in P. aeruginosa, and indicate that the clinical use of QS-inhibitory drugs that appear superior to conventional antimicrobials by not exerting any selective pressure on resistant strains. PMID:24426103

  13. Adjuvant effect of cranberry proanthocyanidin active fraction on antivirulent property of ciprofloxacin against Pseudomonas aeruginosa.

    Science.gov (United States)

    Vadekeetil, Anitha; Alexandar, V; Chhibber, Sanjay; Harjai, Kusum

    2016-01-01

    Quorum sensing inhibitors (QSIs) act as antivirulent agents since quorum sensing (QS) plays a vital role in regulating pathogenesis of Pseudomonas aeruginosa. However, application of single QSI may not be effective as pathogen is vulnerable to successful mutations. In such conditions, combination of QSIs can be exploited as there can be synergistic or adjuvant action. In the present study, we evaluated the antivirulence efficacy of combination of Vaccinium macrocarpon proanthocyanidin active fraction (PAF) and ciprofloxacin (CIP) at their sub-MICs using standard methods followed by analysis of their mode of action on QS using TLC and molecular docking. There was significant improvement in action of CIP when it was combined with PAF in reducing the QS controlled virulence factors (p < 0.05), motilities and biofilm of P. aeruginosa. TLC profiles of QS signals [(Acyl homoserine lactone (AHL) and Pseudomonas quinolone signal (PQS)] indicated that CIP in combination with PAF, besides showing inhibitory action on production of AHLs, also modulated production and inactivation of PQS. Docking scores also supported the observation. We therefore hypothesize that PAF-CIP combination, having improved anti-virulence property; can be exploited as a potent drug pairing against P. aeruginosa. PMID:26620081

  14. Extracellular matrix in ovarian follicles.

    Science.gov (United States)

    Rodgers, R J; Irving-Rodgers, H F; van Wezel, I L

    2000-05-25

    A lot is known about the control of the development of ovarian follicles by growth factors and hormones, but less is known about the roles of extracellular matrix in the control of follicular growth and development. In this review we focus on the specialized extracellular matrix of the basal laminas that are present in ovarian follicles. These include the follicular basal lamina itself, the Call-Exner bodies of the membrana granulosa, the subendothelial and arteriole smooth muscle basal laminas in the theca, and the basal lamina-like material of the thecal matrix. We discuss the evidence that during follicle development the follicular basal lamina changes in composition, that many of its components are produced by the granulosa cells, and that the follicular basal laminas of different follicles have different ultrastructural appearances, linked to the shape of the aligning granulosa cells. All these studies suggest that the follicular basal lamina is extremely dynamic during follicular development. PMID:10963877

  15. Extracellular Hemicellulolytic Enzymes from the Maize Endophyte Acremonium zeae

    Science.gov (United States)

    The maize endophyte Acremonium zeae was examined for production of extracellular enzymes that hydrolyze cellulose and hemicellulose. The most prominent enzyme activity in cell-free culture media from A. zeae NRRL 6415 was xylanase, with a specific activity of 60 U/mg from cultures grown on crude co...

  16. Persistent cystic fibrosis isolate Pseudomonas aeruginosa strain RP73 exhibits an under-acylated LPS structure responsible of its low inflammatory activity.

    Science.gov (United States)

    Di Lorenzo, Flaviana; Silipo, Alba; Bianconi, Irene; Lore', Nicola Ivan; Scamporrino, Andrea; Sturiale, Luisa; Garozzo, Domenico; Lanzetta, Rosa; Parrilli, Michelangelo; Bragonzi, Alessandra; Molinaro, Antonio

    2015-02-01

    Pseudomonas aeruginosa, the major pathogen involved in lethal infections in cystic fibrosis (CF) population, is able to cause permanent chronic infections that can persist over the years. This ability to chronic colonize CF airways is related to a series of adaptive bacterial changes involving the immunostimulant lipopolysaccharide (LPS) molecule. The structure of LPSs isolated from several P. aeruginosa strains showed conserved features that can undergo chemical changes during the establishment of the chronic infection. In the present paper, we report the elucidation of the structure and the biological activity of the R-LPS (lipooligosaccharide, LOS) isolated from the persistent CF isolate P. aeruginosa strain RP73, in order to give further insights in the adaptation mechanism of the pathogen in the CF environment. The complete structural analysis of P. aeruginosa RP73 LOS was achieved by chemical analyses, NMR spectroscopy and MALDI MS spectrometry, while the assessment of the biological activity was attained testing the in vivo pro-inflammatory capacity of the isolated LOS molecule. While a typical CF LPS is able to trigger a high immune response and production of pro-inflammatory molecules, this P. aeruginosa RP73 LOS showed to possess a low pro-inflammatory capacity. This was possible due to a singular chemical structure possessing an under-acylated lipid A very similar to the LPS of P. aeruginosa found in chronic lung diseases such as bronchiectstasis. PMID:24856407

  17. Contributions of efflux pumps to high level resistance of Pseudomonas aeruginosa to ciprofloxacin

    Institute of Scientific and Technical Information of China (English)

    WANG Dan-dan; SUN Tie-ying; HU Yun-jian

    2007-01-01

    @@ Pseudomonas aeruginosa (P. aeruginosa) is one of the leading pathogens involved in nosocomial pneumonia. In addition, P. aeruginosa infection is associated with significant morbidity and mortality.1 A major problem in P. aeruginosa infection is that this organism exhibits natural and acquired resistance to many structurally and functionally diverse antibiotics.

  18. Differential infection properties of three inducible prophages from an epidemic strain of Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    James Chloe E

    2012-09-01

    Full Text Available Abstract Background Pseudomonas aeruginosa is the most common bacterial pathogen infecting the lungs of patients with cystic fibrosis (CF. The Liverpool Epidemic Strain (LES is transmissible, capable of superseding other P. aeruginosa populations and is associated with increased morbidity. Previously, multiple inducible prophages have been found to coexist in the LES chromosome and to constitute a major component of the accessory genome not found in other sequenced P. aerugionosa strains. LES phages confer a competitive advantage in a rat model of chronic lung infection and may, therefore underpin LES prevalence. Here the infective properties of three LES phages were characterised. Results This study focuses on three of the five active prophages (LESφ2, LESφ3 and LESφ4 that are members of the Siphoviridae. All were induced from LESB58 by norfloxacin. Lytic production of LESφ2 was considerably higher than that of LESφ3 and LESφ4. Each phage was capable of both lytic and lysogenic infection of the susceptible P. aeruginosa host, PAO1, producing phage-specific plaque morphologies. In the PAO1 host background, the LESφ2 prophage conferred immunity against LESφ3 infection and reduced susceptibility to LESφ4 infection. Each prophage was less stable in the PAO1 chromosome with substantially higher rates of spontaneous phage production than when residing in the native LESB58 host. We show that LES phages are capable of horizontal gene transfer by infecting P. aeruginosa strains from different sources and that type IV pili are required for infection by all three phages. Conclusions Multiple inducible prophages with diverse infection properties have been maintained in the LES genome. Our data suggest that LESφ2 is more sensitive to induction into the lytic cycle or has a more efficient replicative cycle than the other LES phages.

  19. Tobramycin at subinhibitory concentration inhibits the RhlI/R quorum sensing system in a Pseudomonas aeruginosa environmental isolate

    Directory of Open Access Journals (Sweden)

    Venturi Vittorio

    2010-06-01

    Full Text Available Abstract Background Antibiotics are not only small molecules with therapeutic activity in killing or inhibiting microbial growth, but can also act as signaling molecules affecting gene expression in bacterial communities. A few studies have demonstrated the effect of tobramycin as a signal molecule on gene expression at the transcriptional level and its effect on bacterial physiology and virulence. These have shown that subinhibitory concentrations (SICs of tobramycin induce biofilm formation and enhance the capabilities of P. aeruginosa to colonize specific environments. Methods Environmental P. aeruginosa strain PUPa3 was grown in the presence of different concentrations of tobramycin and it was determined at which highest concentration SIC, growth, total protein levels and translation efficiency were not affected. At SIC it was then established if phenotypes related to cell-cell signaling known as quorum sensing were altered. Results In this study it was determined whether tobramycin sensing/response at SICs was affecting the two independent AHL QS systems in an environmental P. aeruginosa strain. It is reasonable to assume that P. aeruginosa encounters tobramycin in nature since it is produced by niche mate Streptomyces tenebrarius. It was established that SICs of tobramycin inhibited the RhlI/R system by reducing levels of C4-HSL production. This effect was not due to a decrease of rhlI transcription and required tobramycin-ribosome interaction. Conclusions Tobramycin signaling in P. aeruginosa occurs and different strains can have a different response. Understanding the tobramycin response by an environmental P. aeruginosa will highlight possible inter-species signalling taking place in nature and can possible also have important implications in the mode of utilization for human use of this very important antibiotic.

  20. Pseudomonas aeruginosa exploits lipid A and muropeptides modification as a strategy to lower innate immunity during cystic fibrosis lung infection.

    Directory of Open Access Journals (Sweden)

    Cristina Cigana

    Full Text Available Pseudomonas aeruginosa can establish life-long airways chronic infection in patients with cystic fibrosis (CF with pathogenic variants distinguished from initially acquired strain. Here, we analysed chemical and biological activity of P. aeruginosa Pathogen-Associated Molecular Patterns (PAMPs in clonal strains, including mucoid and non-mucoid phenotypes, isolated during a period of up to 7.5 years from a CF patient. Chemical structure by MS spectrometry defined lipopolysaccharide (LPS lipid A and peptidoglycan (PGN muropeptides with specific structural modifications temporally associated with CF lung infection. Gene sequence analysis revealed novel mutation in pagL, which supported lipid A changes. Both LPS and PGN had different potencies when activating host innate immunity via binding TLR4 and Nod1. Significantly higher NF-kB activation, IL-8 expression and production were detected in HEK293hTLR4/MD2-CD14 and HEK293hNod1 after stimulation with LPS and PGN respectively, purified from early P. aeruginosa strain as compared to late strains. Similar results were obtained in macrophages-like cells THP-1, epithelial cells of CF origin IB3-1 and their isogenic cells C38, corrected by insertion of cystic fibrosis transmembrane conductance regulator (CFTR. In murine model, altered LPS structure of P. aeruginosa late strains induces lower leukocyte recruitment in bronchoalveolar lavage and MIP-2, KC and IL-1beta cytokine levels in lung homogenates when compared with early strain. Histopathological analysis of lung tissue sections confirmed differences between LPS from early and late P. aeruginosa. Finally, in this study for the first time we unveil how P. aeruginosa has evolved the capacity to evade immune system detection, thus promoting survival and establishing favourable conditions for chronic persistence. Our findings provide relevant information with respect to chronic infections in CF.