WorldWideScience

Sample records for aerosol modeling decadal

  1. Decadal shifts of East Asian summer monsoon in a climate model free of explicit GHGs and aerosols

    Science.gov (United States)

    Lin, Renping; Zhu, Jiang; Zheng, Fei

    2016-12-01

    The East Asian summer monsoon (EASM) experienced decadal transitions over the past few decades, and the associated "wetter-South-drier-North" shifts in rainfall patterns in China significantly affected the social and economic development in China. Two viewpoints stand out to explain these decadal shifts, regarding the shifts either a result of internal variability of climate system or that of external forcings (e.g. greenhouse gases (GHGs) and anthropogenic aerosols). However, most climate models, for example, the Atmospheric Model Intercomparison Project (AMIP)-type simulations and the Coupled Model Intercomparison Project (CMIP)-type simulations, fail to simulate the variation patterns, leaving the mechanisms responsible for these shifts still open to dispute. In this study, we conducted a successful simulation of these decadal transitions in a coupled model where we applied ocean data assimilation in the model free of explicit aerosols and GHGs forcing. The associated decadal shifts of the three-dimensional spatial structure in the 1990s, including the eastward retreat, the northward shift of the western Pacific subtropical high (WPSH), and the south-cool-north-warm pattern of the upper-level tropospheric temperature, were all well captured. Our simulation supports the argument that the variations of the oceanic fields are the dominant factor responsible for the EASM decadal transitions.

  2. The influence of anthropogenic aerosol on multi-decadal variations of historical global climate

    International Nuclear Information System (INIS)

    Wilcox, L J; Highwood, E J; Dunstone, N J

    2013-01-01

    Analysis of single forcing runs from CMIP5 (the fifth Coupled Model Intercomparison Project) simulations shows that the mid-twentieth century temperature hiatus, and the coincident decrease in precipitation, is likely to have been influenced strongly by anthropogenic aerosol forcing. Models that include a representation of the indirect effect of aerosol better reproduce inter-decadal variability in historical global-mean near-surface temperatures, particularly the cooling in the 1950s and 1960s, compared to models with representation of the aerosol direct effect only. Models with the indirect effect also show a more pronounced decrease in precipitation during this period, which is in better agreement with observations, and greater inter-decadal variability in the inter-hemispheric temperature difference. This study demonstrates the importance of representing aerosols, and their indirect effects, in general circulation models, and suggests that inter-model diversity in aerosol burden and representation of aerosol–cloud interaction can produce substantial variation in simulations of climate variability on multi-decadal timescales. (letter)

  3. Increases in aerosol concentrations over eastern China due to the decadal-scale weakening of the East Asian summer monsoon

    Science.gov (United States)

    Zhu, Jianlei; Liao, Hong; Li, Jianping

    2012-05-01

    China has been experiencing increased concentrations of aerosols, commonly attributed to the large increases in emissions associated with the rapid economic development. We show by using a chemical transport model driven by the assimilated meteorological fields that the observed decadal-scale weakening of the East Asian summer monsoon also contributed to the increases in aerosols in China. We find that the simulated aerosol concentrations have strong negative correlations with the strength of the East Asian Summer monsoon. Accounting for sulfate, nitrate, ammonium, black carbon, and organic carbon aerosols, the summer surface-layer PM2.5 concentration averaged over eastern China (110°-125°E, 20°-45°N) can be 17.7% higher in the weakest monsoon years than in the strongest monsoon years. The weakening of the East Asian Summer monsoon increases aerosol concentrations mainly by the changes in atmospheric circulation (the convergence of air pollutants) in eastern China.

  4. Changes in atmospheric aerosol loading retrieved from space based measurements during the past decade

    Science.gov (United States)

    Yoon, J.; Burrows, J. P.; Vountas, M.; von Hoyningen-Huene, W.; Chang, D. Y.; Richter, A.; Hilboll, A.

    2013-10-01

    Atmospheric aerosol, generated from natural and anthropogenic sources, plays a key role in regulating visibility, air quality, and acid deposition. It is directly linked to and impacts on human health. It also reflects and absorbs incoming solar radiation and thereby influences the climate change. The cooling by aerosols is now recognized to have partly masked the atmospheric warming from fossil fuel combustion emissions. The role and potential management of short-lived climate pollutants such as aerosol are currently a topic of much scientific and public debate. Our limited knowledge of atmospheric aerosol and its influence on the Earth's radiation balance has a significant impact on the accuracy and error of current predictions of the future global climate change. In the past decades, environmental legislation in industrialized countries has begun to limit the release of anthropogenic pollutants. In contrast, in Asia as a result of the recent rapid economic development, emissions from industry and traffic have increased dramatically. In this study, the temporal changes/trends of atmospheric aerosols, derived from the satellite instruments MODIS (on board Terra and Aqua), MISR (Terra), and SeaWiFS (OrbView-2) during the past decade, are investigated. Whilst the aerosol optical thickness, AOT, over Western Europe decreases (i.e. by up to about -40% from 2003 to 2008) and parts of North America, a statistically significant increase (about +34% in the same period) over East China is observed and attributed to both the increase in industrial output and the Asian desert dust.

  5. A Decade of Field Changing Atmospheric Aerosol Research: Outcomes of EPA’s STAR Program

    Science.gov (United States)

    Conference: Gordon Research Conference in Atmospheric Chemistry, July 28 – August 2, 2013, VermontPresentation Type: PosterTitle: An Analysis of EPA’s STAR Program and a Decade of Field Changing Research in Atmospheric AerosolsAuthors: Kristina M. Wagstrom1,2, Sherri ...

  6. Increase of surface solar irradiance across East China related to changes in aerosol properties during the past decade

    Science.gov (United States)

    Li, Jing; Jiang, Yiwei; Xia, Xiangao; Hu, Yongyun

    2018-03-01

    Previously, it was widely documented that an overall decrease in surface solar radiation occurred in China at least until 2005, in contrast to the general background of ‘global brightening’. Increased anthropogenic aerosol emissions were speculated to be the source of the reduction. In this study, we extend the trend analysis to the most recent decade from 2005-2015 and find that surface solar radiation has shifted from ‘dimming’ to ‘brightening’ over East China, with the largest increase over the northeast and southeast parts. Meanwhile, satellite and ground observation both indicate a reduction in aerosol optical depth (AOD) during the same period, whereas no significant trends in cloud amount show up. Detailed analysis using co-located radiation and aerosol observation at the XiangHe station in North China suggests that both AOD and single scattering albedo (SSA) changes contribute to the radiation trends. AOD reduction contributes to the increase of direct solar radiation, also decreasing the diffuse radiation, while the increase of SSA serves to increase the diffuse fraction. Simple calculations using a radiative transfer model confirm that the two effects combined explain changes in the global solar radiation and its components effectively. Our results have implications for potential climate effects with the reduction of China’s aerosol emissions, and the necessity to monitor aerosol composition in addition to its loading.

  7. Aerosol behaviour modeling and measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gieseke, J A; Reed, L D [Batelle Memorial Institute, Columbus, OH (United States)

    1977-01-01

    Aerosol behavior within Liquid Metal Fast Breeder Reactor (LMFBR) containments is of critical importance since most of the radioactive species are expected to be associated with particulate forms and the mass of radiologically significant material leaked to the ambient atmosphere is directly related to the aerosol concentration airborne within the containment. Mathematical models describing the behavior of aerosols in closed environments, besides providing a direct means of assessing the importance of specific assumptions regarding accident sequences, will also serve as the basic tool with which to predict the consequences of various postulated accident situations. Consequently, considerable efforts have been recently directed toward the development of accurate and physically realistic theoretical aerosol behavior models. These models have accounted for various mechanisms affecting agglomeration rates of airborne particulate matter as well as particle removal rates from closed systems. In all cases, spatial variations within containments have been neglected and a well-mixed control volume has been assumed. Examples of existing computer codes formulated from the mathematical aerosol behavior models are the Brookhaven National Laboratory TRAP code, the PARDISEKO-II and PARDISEKO-III codes developed at Karlsruhe Nuclear Research Center, and the HAA-2, HAA-3, and HAA-3B codes developed by Atomics International. Because of their attractive short computation times, the HAA-3 and HAA-3B codes have been used extensively for safety analyses and are attractive candidates with which to demonstrate order of magnitude estimates of the effects of various physical assumptions. Therefore, the HAA-3B code was used as the nucleus upon which changes have been made to account for various physical mechanisms which are expected to be present in postulated accident situations and the latest of the resulting codes has been termed the HAARM-2 code. It is the primary purpose of the HAARM

  8. Impact of Emissions and Long-Range Transport on Multi-Decadal Aerosol Trends: Implications for Air Quality and Climate

    Science.gov (United States)

    Chin, Mian

    2012-01-01

    We present a global model analysis of the impact of long-range transport and anthropogenic emissions on the aerosol trends in the major pollution regions in the northern hemisphere and in the Arctic in the past three decades. We will use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model to analyze the multi-spatial and temporal scale data, including observations from Terra, Aqua, and CALIPSO satellites and from the long-term surface monitoring stations. We will analyze the source attribution (SA) and source-receptor (SR) relationships in North America, Europe, East Asia, South Asia, and the Arctic at the surface and free troposphere and establish the quantitative linkages between emissions from different source regions. We will discuss the implications for regional air quality and climate change.

  9. A mathematical model of aerosol holding chambers

    DEFF Research Database (Denmark)

    Zak, M; Madsen, J; Berg, E

    1999-01-01

    A mathematical model of aerosol delivery from holding chambers (spacers) was developed incorporating tidal volume (VT), chamber volume (Vch), apparatus dead space (VD), effect of valve insufficiency and other leaks, loss of aerosol by immediate impact on the chamber wall, and fallout of aerosol...... in the chamber with time. Four different spacers were connected via filters to a mechanical lung model, and aerosol delivery during "breathing" was determined from drug recovery from the filters. The formula correctly predicted the delivery of budesonide aerosol from the AeroChamber (Trudell Medical, London...

  10. Modelling aerosol behavior in reactor cooling systems

    International Nuclear Information System (INIS)

    McDonald, B.H.

    1990-01-01

    This paper presents an overview of some of the areas of concern in using computer codes to model fission-product aerosol behavior in the reactor cooling system (RCS) of a water-cooled nuclear reactor during a loss-of-coolant accident. The basic physical processes that require modelling include: fission product release and aerosol formation in the reactor core, aerosol transport and deposition in the reactor core and throughout the rest of the RCS, and the interaction between aerosol transport processes and the thermalhydraulics. In addition to these basic physical processes, chemical reactions can have a large influence on the nature of the aerosol and its behavior in the RCS. The focus is on the physics and the implications of numerical methods used in the computer codes to model aerosol behavior in the RCS

  11. Steam condensation modelling in aerosol codes

    International Nuclear Information System (INIS)

    Dunbar, I.H.

    1986-01-01

    The principal subject of this study is the modelling of the condensation of steam into and evaporation of water from aerosol particles. These processes introduce a new type of term into the equation for the development of the aerosol particle size distribution. This new term faces the code developer with three major problems: the physical modelling of the condensation/evaporation process, the discretisation of the new term and the separate accounting for the masses of the water and of the other components. This study has considered four codes which model the condensation of steam into and its evaporation from aerosol particles: AEROSYM-M (UK), AEROSOLS/B1 (France), NAUA (Federal Republic of Germany) and CONTAIN (USA). The modelling in the codes has been addressed under three headings. These are the physical modelling of condensation, the mathematics of the discretisation of the equations, and the methods for modelling the separate behaviour of different chemical components of the aerosol. The codes are least advanced in area of solute effect modelling. At present only AEROSOLS/B1 includes the effect. The effect is greater for more concentrated solutions. Codes without the effect will be more in error (underestimating the total airborne mass) the less condensation they predict. Data are needed on the water vapour pressure above concentrated solutions of the substances of interest (especially CsOH and CsI) if the extent to which aerosols retain water under superheated conditions is to be modelled. 15 refs

  12. Forced decadal changes in the East Asian summer monsoon: the roles of greenhouse gases and anthropogenic aerosols

    Science.gov (United States)

    Tian, Fangxing; Dong, Buwen; Robson, Jon; Sutton, Rowan

    2018-02-01

    Since the mid-1990s precipitation trends over eastern China display a dipole pattern, characterized by positive anomalies in the south and negative anomalies in the north, named as the Southern-Flood-Northern-Drought (SFND) pattern. This work investigates the drivers of decadal changes of the East Asian summer monsoon (EASM), and the dynamical mechanisms involved, by using a coupled climate model (specifically an atmospheric general circulation model coupled to an ocean mixed layer model) forced by changes in (1) anthropogenic greenhouse gases (GHG), (2) anthropogenic aerosol (AA) and (3) the combined effects of both GHG and AA (All Forcing) between two periods across the mid-1990s. The model experiment forced by changes in All Forcing shows a dipole pattern of response in precipitation over China that is similar to the observed SFND pattern across the mid-1990s, which suggests that anthropogenic forcing changes played an important role in the observed decadal changes. Furthermore, the experiments with separate forcings indicate that GHG and AA forcing dominate different parts of the SFND pattern. In particular, changes in GHG increase precipitation over southern China, whilst changes in AA dominate in the drought conditions over northern China. Increases in GHG cause increased moisture transport convergence over eastern China, which leads to increased precipitation. The AA forcing changes weaken the EASM, which lead to divergent wind anomalies over northern China and reduced precipitation.

  13. Aerosol modelling and validation during ESCOMPTE 2001

    Science.gov (United States)

    Cousin, F.; Liousse, C.; Cachier, H.; Bessagnet, B.; Guillaume, B.; Rosset, R.

    The ESCOMPTE 2001 programme (Atmospheric Research. 69(3-4) (2004) 241) has resulted in an exhaustive set of dynamical, radiative, gas and aerosol observations (surface and aircraft measurements). A previous paper (Atmospheric Research. (2004) in press) has dealt with dynamics and gas-phase chemistry. The present paper is an extension to aerosol formation, transport and evolution. To account for important loadings of primary and secondary aerosols and their transformation processes in the ESCOMPTE domain, the ORISAM aerosol module (Atmospheric Environment. 35 (2001) 4751) was implemented on-line in the air-quality Meso-NH-C model. Additional developments have been introduced in ORganic and Inorganic Spectral Aerosol Module (ORISAM) to improve the comparison between simulations and experimental surface and aircraft field data. This paper discusses this comparison for a simulation performed during one selected day, 24 June 2001, during the Intensive Observation Period IOP2b. Our work relies on BC and OCp emission inventories specifically developed for ESCOMPTE. This study confirms the need for a fine resolution aerosol inventory with spectral chemical speciation. BC levels are satisfactorily reproduced, thus validating our emission inventory and its processing through Meso-NH-C. However, comparisons for reactive species generally denote an underestimation of concentrations. Organic aerosol levels are rather well simulated though with a trend to underestimation in the afternoon. Inorganic aerosol species are underestimated for several reasons, some of them have been identified. For sulphates, primary emissions were introduced. Improvement was obtained too for modelled nitrate and ammonium levels after introducing heterogeneous chemistry. However, no modelling of terrigeneous particles is probably a major cause for nitrates and ammonium underestimations. Particle numbers and size distributions are well reproduced, but only in the submicrometer range. Our work points out

  14. Multi-compartment Aerosol Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Joshua Allen; Santarpia, Joshua; Brotherton, Christopher M.; Omana, Michael Alexis; Rivera, Danielle; Lucero, Gabriel Anthony

    2017-06-01

    A simple aerosol transport model was developed for a multi-compartmented cleanroom. Each compartment was treated as a well-mixed volume with ventilating supply and return air. Gravitational settling, intercompartment transport, and leakage of exterior air into the system were included in the model. A set of first order, coupled, ordinary differential equations was derived from the conservation equations of aerosol mass and air mass. The system of ODEs was then solved in MATLAB using pre-existing numerical methods. The model was verified against cases of (1) constant inlet-duct concentration, and (2) exponentially decaying inlet-duct concentration. Numerical methods resulted in normalized error of less than 10 -9 when model solutions were compared to analytical solutions. The model was validated against experimental measurements from a single field test and showed good agreement in the shape and magnitude of the aerosol concentration profile with time.

  15. Assessing physical models used in nuclear aerosol transport models

    International Nuclear Information System (INIS)

    McDonald, B.H.

    1987-01-01

    Computer codes used to predict the behaviour of aerosols in water-cooled reactor containment buildings after severe accidents contain a variety of physical models. Special models are in place for describing agglomeration processes where small aerosol particles combine to form larger ones. Other models are used to calculate the rates at which aerosol particles are deposited on building structures. Condensation of steam on aerosol particles is currently a very active area in aerosol modelling. In this paper, the physical models incorporated in the current available international codes for all of these processes are reviewed and documented. There is considerable variation in models used in different codes, and some uncertainties exist as to which models are superior. 28 refs

  16. Decadal trends in aerosol chemical composition at Barrow, Alaska: 1976–2008

    Directory of Open Access Journals (Sweden)

    G. E. Shaw

    2009-11-01

    Full Text Available Aerosol measurements at Barrow, Alaska during the past 30 years have identified the long range transport of pollution associated with Arctic Haze as well as ocean-derived aerosols of more local origin. Here, we focus on measurements of aerosol chemical composition to assess (1 trends in Arctic Haze aerosol and implications for source regions, (2 the interaction between pollution-derived and ocean-derived aerosols and the resulting impacts on the chemistry of the Arctic boundary layer, and (3 the response of aerosols to a changing climate. Aerosol chemical composition measured at Barrow, AK during the Arctic haze season is compared for the years 1976–1977 and 1997–2008. Based on these two data sets, concentrations of non-sea salt (nss sulfate (SO4= and non-crustal (nc vanadium (V have decreased by about 60% over this 30 year period. Consistency in the ratios of nss SO4=/ncV and nc manganese (Mn/ncV between the two data sets indicates that, although emissions have decreased in the source regions, the source regions have remained the same over this time period. The measurements from 1997–2008 indicate that, during the haze season, the nss SO4= aerosol at Barrow is becoming less neutralized by ammonium (NH4+ yielding an increasing sea salt aerosol chloride (Cl deficit. The expected consequence is an increase in the release of Cl atoms to the atmosphere and a change in the lifetime of volatile organic compounds (VOCs including methane. In addition, summertime concentrations of biogenically-derived methanesulfonate (MSA and nss SO4= are increasing at a rate of 12 and 8% per year, respectively. Further research is required to assess the environmental factors behind the increasing concentrations of biogenic aerosol.

  17. Retrieving global aerosol sources from satellites using inverse modeling

    Directory of Open Access Journals (Sweden)

    O. Dubovik

    2008-01-01

    Full Text Available Understanding aerosol effects on global climate requires knowing the global distribution of tropospheric aerosols. By accounting for aerosol sources, transports, and removal processes, chemical transport models simulate the global aerosol distribution using archived meteorological fields. We develop an algorithm for retrieving global aerosol sources from satellite observations of aerosol distribution by inverting the GOCART aerosol transport model.

    The inversion is based on a generalized, multi-term least-squares-type fitting, allowing flexible selection and refinement of a priori algorithm constraints. For example, limitations can be placed on retrieved quantity partial derivatives, to constrain global aerosol emission space and time variability in the results. Similarities and differences between commonly used inverse modeling and remote sensing techniques are analyzed. To retain the high space and time resolution of long-period, global observational records, the algorithm is expressed using adjoint operators.

    Successful global aerosol emission retrievals at 2°×2.5 resolution were obtained by inverting GOCART aerosol transport model output, assuming constant emissions over the diurnal cycle, and neglecting aerosol compositional differences. In addition, fine and coarse mode aerosol emission sources were inverted separately from MODIS fine and coarse mode aerosol optical thickness data, respectively. These assumptions are justified, based on observational coverage and accuracy limitations, producing valuable aerosol source locations and emission strengths. From two weeks of daily MODIS observations during August 2000, the global placement of fine mode aerosol sources agreed with available independent knowledge, even though the inverse method did not use any a priori information about aerosol sources, and was initialized with a "zero aerosol emission" assumption. Retrieving coarse mode aerosol emissions was less successful

  18. Modeling of Viral Aerosol Transmission and Detection

    KAUST Repository

    Khalid, Maryam; Amin, Osama; Ahmed, Sajid; Alouini, Mohamed-Slim

    2018-01-01

    The objective of this work is to investigate the spread mechanism of diseases in the atmosphere as an engineering problem. Among the viral transmission mechanisms that do not include physical contact, aerosol transmission is the most significant mode of transmission where virus-laden droplets are carried over long distances by wind. In this work, we focus on aerosol transmission of virus and introduce the idea of viewing virus transmission through aerosols and their transport as a molecular communication problem, where one has no control over transmission source but a robust receiver can be designed using nano-biosensors. To investigate this idea, a complete system is presented and end-toend mathematical model for the aerosol transmission channel is derived under certain constraints and boundary conditions. In addition to transmitter and channel, a receiver architecture composed of air sampler and Silicon Nanowire field effect transistor is also discussed. Furthermore, a detection problem is formulated for which maximum likelihood decision rule and the corresponding missed detection probability is discussed. At the end, simulation results are presented to investigate the parameters that affect the performance and justify the feasibility of proposed setup in related applications.

  19. Aerosol numerical modelling at local scale

    International Nuclear Information System (INIS)

    Albriet, Bastien

    2007-01-01

    At local scale and in urban areas, an important part of particulate pollution is due to traffic. It contributes largely to the high number concentrations observed. Two aerosol sources are mainly linked to traffic. Primary emission of soot particles and secondary nanoparticle formation by nucleation. The emissions and mechanisms leading to the formation of such bimodal distribution are still badly understood nowadays. In this thesis, we try to provide an answer to this problematic by numerical modelling. The Modal Aerosol Model MAM is used, coupled with two 3D-codes: a CFD (Mercure Saturne) and a CTM (Polair3D). A sensitivity analysis is performed, at the border of a road but also in the first meters of an exhaust plume, to identify the role of each process involved and the sensitivity of different parameters used in the modelling. (author) [fr

  20. Modelling aerosol transfer in a ventilated room

    International Nuclear Information System (INIS)

    Nerisson, Ph.

    2009-02-01

    When particulate radioactive contamination is likely to become airborne in a ventilated room, assessment of aerosol concentration in every point of this room is important, in order to ensure protection of operators and supervision of workspaces. Thus, a model of aerosol transport and deposition has been developed as part of a project started with IRSN, EDF and IMFT. A simplified Eulerian model, called 'diffusion-inertia model' is used for particle transport. It contains a single transport equation of aerosol concentration. The specific study of deposition on walls has permitted to develop a boundary condition approach, which determines precisely the particle flux towards the wall in the boundary layer, for any deposition regime and surface orientation.The final transport and deposition models retained have been implemented in a CFD code called Code-Saturne. These models have been validated according to literature data in simple geometries and tracing experiments in ventilated rooms, which have been carried out in 30 m 3 and 1500 m 3 laboratory rooms. (author)

  1. Variability of aerosol optical depth and Angstrom wavelength exponent derived from AERONET observations in recent decades

    International Nuclear Information System (INIS)

    Xia Xiangao

    2011-01-01

    Using aerosol loading data from 79 Aerosol Robotic Network (AERONET) stations with observations from more than six years, changes in aerosol optical depth (AOD) and Angstrom wavelength exponent (AWE) were studied. A statistical method was developed to determine whether AOD changes were due to increased background AOD values and/or an increased number of high AOD events. AOD decreased significantly at AERONET sites in northeastern North American and in Western Europe, which was accompanied by decreased AWE. Reduction of AOD there was mainly due to a decreased frequency of high AOD events and an increased frequency of background AOD events. In addition, decreased AOD values for high AOD events also accounted for ∼ 16–32% of the AOD reduction. This is indicative of significant meteorological effects on AOD variability. AOD trends in other regions were marginal and most were not significant; however, AOD increased significantly at one site in the Sahel and another in Saudi Arabia, predominantly due to the increased frequency of high AOD events and their average AOD.

  2. Major Influence of Tropical Volcanic Eruptions on the Stratospheric Aerosol Layer During the Last Decade

    Science.gov (United States)

    Vernier, Jean-Paul; Thomason, Larry W.; Pommereau, J.-P.; Bourassa, Adam; Pelon, Jacques; Garnier, Anne; Hauchecorne, A.; Blanot, L.; Trepte, Charles R.; Degenstein, Doug; hide

    2011-01-01

    The variability of stratospheric aerosol loading between 1985 and 2010 is explored with measurements from SAGE II, CALIPSO, GOMOS/ENVISAT, and OSIRIS/Odin space-based instruments. We find that, following the 1991 eruption of Mount Pinatubo, stratospheric aerosol levels increased by as much as two orders of magnitude and only reached background levels between 1998 and 2002. From 2002 onwards, a systematic increase has been reported by a number of investigators. Recently, the trend, based on ground-based lidar measurements, has been tentatively attributed to an increase of SO2 entering the stratosphere associated with coal burning in Southeast Asia. However, we demonstrate with these satellite measurements that the observed trend is mainly driven by a series of moderate but increasingly intense volcanic eruptions primarily at tropical latitudes. These events injected sulfur directly to altitudes between 18 and 20 km. The resulting aerosol particles are slowly lofted into the middle stratosphere by the Brewer-Dobson circulation and are eventually transported to higher latitudes.

  3. Aerosol domination of mesosheric ionization: In situ data spanning five decades

    Science.gov (United States)

    Hale, L.

    Local mesospheric electrical phenomena are controlled by ionization production and recombination, and by electron attachment and detachment. These in turn are controlled by ionizing and detaching radiation, and by neutral atmosphere dynamics and chemistry, the latter frequently dominated by aerosol particles. Many detailed studies have been made of these phenomena for a gas phase atmosphere, but much less has been determined about the characteristics of aerosol particles, particularly those in the "invisible" range of order 10 nm. Aerosol dominates gas phase phenomena in many situations at all latitudes. The presence of larger particles at high latitudes has been known for over a century from the presence of "noctilucent clouds," and their variability has been inferred by Thomas, et al. (Nature v.337, 1989) from the relative absence of observations in earlier eras, before the massive release of industrial pollution. Studies of such particles are being well researched at the present time, and this paper is mainly concerned with "invisible" particles at lower latitudes. The presence of such particles was first inferred from a rocket launched at White Sands by Bourdeau, et al. in 1950 (JGR, 1959), and has been confirmed by many subsequent measurements (e.g. Hale, COSPAR, 1983). However the aerosol contributes to a variability so large (over six orders of magnitude in total conductivity at a single altitude) that it is difficult to study their variability with the limited amount of data (a few hundred rockets as compared to hundreds of thousands launched to measure temperature). One rocket series conducted during relatively "stationary" conditions without much chemistry or cosmic ray variat ions led to the conclusion that they were ice or water coated (Chesworth and Hale, v.1, GRL., 1974). The aerosol contributes to a very low nighttime conductivity that facilitates the penetration of ELF energy to about 80 km at night. Quasi static fields following- large lightning

  4. Comparing multiple model-derived aerosol optical properties to spatially collocated ground-based and satellite measurements

    Science.gov (United States)

    Ocko, Ilissa B.; Ginoux, Paul A.

    2017-04-01

    Anthropogenic aerosols are a key factor governing Earth's climate and play a central role in human-caused climate change. However, because of aerosols' complex physical, optical, and dynamical properties, aerosols are one of the most uncertain aspects of climate modeling. Fortunately, aerosol measurement networks over the past few decades have led to the establishment of long-term observations for numerous locations worldwide. Further, the availability of datasets from several different measurement techniques (such as ground-based and satellite instruments) can help scientists increasingly improve modeling efforts. This study explores the value of evaluating several model-simulated aerosol properties with data from spatially collocated instruments. We compare aerosol optical depth (AOD; total, scattering, and absorption), single-scattering albedo (SSA), Ångström exponent (α), and extinction vertical profiles in two prominent global climate models (Geophysical Fluid Dynamics Laboratory, GFDL, CM2.1 and CM3) to seasonal observations from collocated instruments (AErosol RObotic NETwork, AERONET, and Cloud-Aerosol Lidar with Orthogonal Polarization, CALIOP) at seven polluted and biomass burning regions worldwide. We find that a multi-parameter evaluation provides key insights on model biases, data from collocated instruments can reveal underlying aerosol-governing physics, column properties wash out important vertical distinctions, and improved models does not mean all aspects are improved. We conclude that it is important to make use of all available data (parameters and instruments) when evaluating aerosol properties derived by models.

  5. Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5

    Directory of Open Access Journals (Sweden)

    X. Liu

    2012-05-01

    Full Text Available A modal aerosol module (MAM has been developed for the Community Atmosphere Model version 5 (CAM5, the atmospheric component of the Community Earth System Model version 1 (CESM1. MAM is capable of simulating the aerosol size distribution and both internal and external mixing between aerosol components, treating numerous complicated aerosol processes and aerosol physical, chemical and optical properties in a physically-based manner. Two MAM versions were developed: a more complete version with seven lognormal modes (MAM7, and a version with three lognormal modes (MAM3 for the purpose of long-term (decades to centuries simulations. In this paper a description and evaluation of the aerosol module and its two representations are provided. Sensitivity of the aerosol lifecycle to simplifications in the representation of aerosol is discussed.

    Simulated sulfate and secondary organic aerosol (SOA mass concentrations are remarkably similar between MAM3 and MAM7. Differences in primary organic matter (POM and black carbon (BC concentrations between MAM3 and MAM7 are also small (mostly within 10%. The mineral dust global burden differs by 10% and sea salt burden by 30–40% between MAM3 and MAM7, mainly due to the different size ranges for dust and sea salt modes and different standard deviations of the log-normal size distribution for sea salt modes between MAM3 and MAM7. The model is able to qualitatively capture the observed geographical and temporal variations of aerosol mass and number concentrations, size distributions, and aerosol optical properties. However, there are noticeable biases; e.g., simulated BC concentrations are significantly lower than measurements in the Arctic. There is a low bias in modeled aerosol optical depth on the global scale, especially in the developing countries. These biases in aerosol simulations clearly indicate the need for improvements of aerosol processes (e.g., emission fluxes of anthropogenic aerosols and

  6. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Richard A. Ferrare; David D. Turner

    2011-09-01

    Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

  7. Modelization and numerical simulation of atmospheric aerosols dynamics

    International Nuclear Information System (INIS)

    Debry, Edouard

    2004-01-01

    Chemical-transport models are now able to describe in a realistic way gaseous pollutants behavior in the atmosphere. Nevertheless atmospheric pollution also exists as a fine suspended particles, called aerosols which interact with gaseous phase, solar radiation, and have their own dynamic behavior. The goal of this thesis is the modelization and numerical simulation of the General Dynamic Equation of aerosols (GDE). Part I deals with some theoretical aspects of aerosol modelization. Part II is dedicated to the building of one size resolved aerosol model (SIREAM). In part III we perform the reduction of this model in order to use it in dispersion models as POLAIR3D. Several modelization issues are still opened: organic aerosol matter, externally mixed aerosols, coupling with turbulent mixing, and nano-particles. (author) [fr

  8. Collaborative Research: Quantifying the Uncertainties of Aerosol Indirect Effects and Impacts on Decadal-Scale Climate Variability in NCAR CAM5 and CESM1

    Energy Technology Data Exchange (ETDEWEB)

    Nenes, Athanasios [Georgia Inst. of Technology, Atlanta, GA (United States)

    2017-06-23

    The goal of this proposed project is to assess the climatic importance and sensitivity of aerosol indirect effect (AIE) to cloud and aerosol processes and feedbacks, which include organic aerosol hygroscopicity, cloud condensation nuclei (CCN) activation kinetics, Giant CCN, cloud-scale entrainment, ice nucleation in mixed-phase and cirrus clouds, and treatment of subgrid variability of vertical velocity. A key objective was to link aerosol, cloud microphysics and dynamics feedbacks in CAM5 with a suite of internally consistent and integrated parameterizations that provide the appropriate degrees of freedom to capture the various aspects of the aerosol indirect effect. The proposal integrated new parameterization elements into the cloud microphysics, moist turbulence and aerosol modules used by the NCAR Community Atmospheric Model version 5 (CAM5). The CAM5 model was then used to systematically quantify the uncertainties of aerosol indirect effects through a series of sensitivity tests with present-day and preindustrial aerosol emissions. New parameterization elements were developed as a result of these efforts, and new diagnostic tools & methodologies were also developed to quantify the impacts of aerosols on clouds and climate within fully coupled models. Observations were used to constrain key uncertainties in the aerosol-cloud links. Advanced sensitivity tools were developed and implements to probe the drivers of cloud microphysical variability with unprecedented temporal and spatial scale. All these results have been published in top and high impact journals (or are in the final stages of publication). This proposal has also supported a number of outstanding graduate students.

  9. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Turner, David, D.; Ferrare, Richard, A.

    2011-07-06

    The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

  10. 2-D model of global aerosol transport

    Energy Technology Data Exchange (ETDEWEB)

    Rehkopf, J; Newiger, M; Grassl, H

    1984-01-01

    The distribution of aerosol particles in the troposphere is described. Starting with long term mean seasonal flow and diffusivities as well as temperature, cloud distribution (six cloud classes), relative humidity and OH radical concentration, the steady state concentration of aerosol particles and SO/sub 2/ are calculated in a two-dimensional global (height and latitude) model. The following sources and sinks for particles are handled: direct emission, gas-to-particle conversion from SO/sub 2/, coagulation, rainout, washout, gravitational settling, and dry deposition. The sinks considered for sulphur emissions are dry deposition, washout, rainout, gasphase oxidation, and aqueous phase oxidation. Model tests with the water vapour cycle show a good agreement between measured and calculated zonal mean precipitation distribution. The steady state concentration distribution for natural emissions reached after 10 weeks model time, may be described by a mean exponent ..cap alpha.. = 3.2 near the surface assuming a modified Junge distribution and an increased value, ..cap alpha.. = 3.7, for the combined natural and man-made emission. The maximum ground level concentrations are 2000 and 10,000 particules cm/sup -3/ for natural and natural plus man-made emissions, respectively. The resulting distribution of sulphur dioxide agrees satisfactorily with measurements given by several authors. 37 references, 4 figures.

  11. A Simple Model of Global Aerosol Indirect Effects

    Science.gov (United States)

    Ghan, Steven J.; Smith, Steven J.; Wang, Minghuai; Zhang, Kai; Pringle, Kirsty; Carslaw, Kenneth; Pierce, Jeffrey; Bauer, Susanne; Adams, Peter

    2013-01-01

    Most estimates of the global mean indirect effect of anthropogenic aerosol on the Earth's energy balance are from simulations by global models of the aerosol lifecycle coupled with global models of clouds and the hydrologic cycle. Extremely simple models have been developed for integrated assessment models, but lack the flexibility to distinguish between primary and secondary sources of aerosol. Here a simple but more physically based model expresses the aerosol indirect effect (AIE) using analytic representations of cloud and aerosol distributions and processes. Although the simple model is able to produce estimates of AIEs that are comparable to those from some global aerosol models using the same global mean aerosol properties, the estimates by the simple model are sensitive to preindustrial cloud condensation nuclei concentration, preindustrial accumulation mode radius, width of the accumulation mode, size of primary particles, cloud thickness, primary and secondary anthropogenic emissions, the fraction of the secondary anthropogenic emissions that accumulates on the coarse mode, the fraction of the secondary mass that forms new particles, and the sensitivity of liquid water path to droplet number concentration. Estimates of present-day AIEs as low as 5 W/sq m and as high as 0.3 W/sq m are obtained for plausible sets of parameter values. Estimates are surprisingly linear in emissions. The estimates depend on parameter values in ways that are consistent with results from detailed global aerosol-climate simulation models, which adds to understanding of the dependence on AIE uncertainty on uncertainty in parameter values.

  12. MATRIX-VBS Condensing Organic Aerosols in an Aerosol Microphysics Model

    Science.gov (United States)

    Gao, Chloe Y.; Tsigaridis, Konstas; Bauer, Susanne E.

    2015-01-01

    The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.

  13. On the response of Indian summer monsoon to aerosol forcing in CMIP5 model simulations

    Science.gov (United States)

    Sanap, S. D.; Pandithurai, G.; Manoj, M. G.

    2015-11-01

    The Indo-Gangetic plains (IGP), which hosts 1/7th of the world population, has undergone significant anomalous changes in hydrological cycle in recent decades. In present study, the role of aerosols in the precipitation changes over IGP region is investigated using Coupled Model Inter-comparison Project-5 (CMIP5) experiments with adequate representation of aerosols in state-of-the art climate models. The climatological sea surface temperature experiments are used to explore the relative impact of the aerosols. The diagnostic analysis on representation of aerosols and precipitation over Indian region was investigated in CMIP5 models. After the evaluation, multi-model ensemble was used for further analysis. It is revealed from the analysis that aerosol-forcing plays an important role in observed weakening of the monsoon circulation and decreased precipitation over the IGP region. The significant cooling of the continental Indian region (mainly IGP) caused by the aerosols leads to reduction in land sea temperature contrast, which further leads to weakening of monsoon overturning circulation and reduction in precipitation.

  14. Simultaneously combining AOD and multiple trace gas measurements to identify decadal changes in urban and biomass burning aerosols

    Science.gov (United States)

    Cohen, Jason

    2017-04-01

    This work presents a methodology by which to comprehensively analyze simultaneous tropospheric measurements of AOD and associated trace gasses. It then applies this methodology by focusing over the past 11 years (2006-2016) on one of the most rapidly changing regions of the troposphere: Eastern and Southeastern Asia. The specific work presented incorporates measurements of both aerosol and related gas phase tropospheric measurements across different spectral, spatial, temporal, and passive/active sensors and properties, including: MODIS, MISR, OMI, CALIOP, and others. This new characterization reveals a trio of new information, including a time-invariant urban signal, slowly-time-varying new-urbanization signal, and a rapidly time-varying biomass burning signal. Additionally, due to the different chemical properties of the various species analyzed, analyzing the different spatial domains of the resulting products allows for further information in terms of the amounts of aerosols produced both through primary emissions as well as secondary processing. The end result is a new characterization, in space, time, and magnitude, of both anthropogenic and biomass burning aerosols. These results are then used to drive an advanced modeling system including aerosol chemistry, physics, optics, and transport, and employing an aerosol routine based on multi-modal and both externally mixed and core-shell mixing. The resulting characterization in space, time, and quantity is analyzed and compared against AERONET, NOAA, and other ground networks, with the results comparing consistently to or better than present approaches which set up net emissions separately from urban and biomass burning products. Scientifically, new source regions of emissions are identified, some of which were previously non-urbanized or found to not contain any fire hotspots. This new approach is consistent with the underlying economic and development pathways of expanding urban areas and rapid economic growth

  15. Reusing Information Management Services for Recommended Decadal Study Missions to Facilitate Aerosol and Cloud Studies

    Science.gov (United States)

    Kempler, Steve; Alcott, Gary; Lynnes, Chris; Leptoukh, Greg; Vollmer, Bruce; Berrick, Steve

    2008-01-01

    NASA Earth Sciences Division (ESD) has made great investments in the development and maintenance of data management systems and information technologies, to maximize the use of NASA generated Earth science data. With information management system infrastructure in place, mature and operational, very small delta costs are required to fully support data archival, processing, and data support services required by the recommended Decadal Study missions. This presentation describes the services and capabilities of the Goddard Space Flight Center (GSFC) Earth Sciences Data and Information Services Center (GES DISC) and the reusability for these future missions. The GES DISC has developed a series of modular, reusable data management components currently in use. They include data archive and distribution (Simple, Scalable, Script-based, Science [S4] Product Archive aka S4PA), data processing (S4 Processor for Measurements aka S4PM), data search (Mirador), data browse, visualization, and analysis (Giovanni), and data mining services. Information management system components are based on atmospheric scientist inputs. Large development and maintenance cost savings can be realized through their reuse in future missions.

  16. Decadal-scale relationship between measurements of aerosols, land-use change, and fire over Southeast Asia

    Science.gov (United States)

    Blake Cohen, Jason; Lecoeur, Eve; Loong Ng, Daniel Hui

    2017-01-01

    A simultaneous analysis of 13 years of remotely sensed data of land cover, fires, precipitation, and aerosols from the MODIS, TRMM, and MISR satellites and the AERONET network over Southeast Asia is performed, leading to a set of robust relationships between land-use change and fire being found on inter-annual and intra-annual scales over Southeast Asia, reflecting the heavy amounts of anthropogenic influence over land-use change and fires in this region of the world. First, we find that fires occur annually, but with a considerable amount of variance in their onset, duration, and intensity from year to year, and from two separate regions within Southeast Asia. Second, we show that a simple regression model of the land-cover, fire, and precipitation data can be used to recreate a robust representation of the timing and magnitude of measured aerosol optical depth (AOD) from multiple measurements sources of this region using either 8-day (better for onset and duration) or monthly (better for magnitude) measurements, but not daily measurements. We find that the reconstructed AOD matches the timing and intensity from AERONET measurements to within 70 to 90 % and the timing and intensity of MISR measurements to within 50 to 95 %. This is a unique finding in this part of the world since cloud-covered regions are large, yet the model is still robustly capable, including over regions where no fires are observed and hence no emissions would be expected to contribute to AOD. Third, we determine that while Southeast Asia is a source region of such intense smoke emissions, portions of it are also impacted by smoke transported from other regions. There are regions in northern Southeast Asia which have two annual AOD peaks, one during the local fire season and the other, smaller peak corresponding to a combination of some local smoke sources as well as transport of aerosols from fires in southern Southeast Asia and possibly even from anthropogenic sources in South Asia. Overall

  17. A general circulation model (GCM) parameterization of Pinatubo aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Lacis, A.A.; Carlson, B.E.; Mishchenko, M.I. [NASA Goddard Institute for Space Studies, New York, NY (United States)

    1996-04-01

    The June 1991 volcanic eruption of Mt. Pinatubo is the largest and best documented global climate forcing experiment in recorded history. The time development and geographical dispersion of the aerosol has been closely monitored and sampled. Based on preliminary estimates of the Pinatubo aerosol loading, general circulation model predictions of the impact on global climate have been made.

  18. Model of optical response of marine aerosols to Forbush decreases

    DEFF Research Database (Denmark)

    Bondo, Torsten; Enghoff, Martin Andreas Bødker; Svensmark, Henrik

    2010-01-01

    In order to elucidate the effect of galactic cosmic rays on cloud formation, we investigate the optical response of marine aerosols to Forbush decreases - abrupt decreases in galactic cosmic rays - by means of modeling. We vary the nucleation rate of new aerosols, in a sectional coagulation...

  19. Comparisons of Airborne HSRL and Modeled Aerosol Profiles

    Science.gov (United States)

    Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.; Ismail, S.; Rogers, R. R.; Notari, A.; Berkoff, T.; Butler, C. F.; Collins, J. E., Jr.; Fenn, M. A.; Scarino, A. J.; Clayton, M.; Mueller, D.; Chemyakin, E.; Fast, J. D.; Berg, L. K.; Randles, C. A.; Colarco, P. R.; daSilva, A.

    2014-12-01

    Aerosol profiles derived from a regional and a global model are compared with aerosol profiles acquired by NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidars (HSRLs) during recent field missions. We compare simulated aerosol profiles obtained from the WRF-Chem regional model with those measured by the airborne HSRL-2 instrument over the Atlantic Ocean east of Cape Cod in July 2012 during the Department of Energy Two-Column Aerosol Project (TCAP). While deployed on the LaRC King Air during TCAP, HSRL-2 acquired profiles of aerosol extinction at 355 and 532 nm, as well as aerosol backscatter and depolarization at 355, 532, and 1064 nm. Additional HSRL-2 data products include profiles of aerosol type, mixed layer depth, and aerosol microphysical parameters (e.g. effective radius, concentration). The HSRL-2 and WRF-Chem aerosol profiles are compared along the aircraft flight tracks. HSRL-2 profiles acquired during the NASA Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission over Houston during September 2013 are compared with the NASA Goddard Earth Observing System global model, version 5 (GEOS-5) profiles. In addition to comparing backscatter and extinction profiles, the fraction of aerosol extinction and optical thickness from various aerosol species from GEOS-5 are compared with aerosol extinction and optical thickness contributed by aerosol types derived from HSRL-2 data. We also compare aerosol profiles modeled by GEOS-5 with those measured by the airborne LaRC DIAL/HSRL instrument during August and September 2013 when it was deployed on the NASA DC-8 for the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) mission. DIAL/HSRL measured extinction (532 nm), backscatter (532 and 1064 nm), and depolarization profiles (532 and 1064 nm) in both nadir and zenith directions during long transects over the

  20. Why Is Improvement of Earth System Models So Elusive? Challenges and Strategies From Dust Aerosol Modeling

    Science.gov (United States)

    Miller, R. L.; Pérez García-Pando, C.; Perlwitz, J. P.; Ginoux, P. A.

    2015-12-01

    Past decades have seen an accelerating increase in computing efficiency,while climate models are representing a rapidly widening set ofphysical processes. Yet simulations of some fundamental aspects ofclimate like precipitation or aerosol forcing remain highly uncertainand resistent to progress. Dust aerosol modeling of soil particleslofted by wind erosion has seen a similar conflict between increasingmodel sophistication and remaining uncertainty. Dust aerosols perturbthe energy and water cycles by scattering radiation and acting as icenuclei, while mediating atmospheric chemistry and marinephotosynthesis (and thus the carbon cycle). These effects take placeacross scales from the dimensions of an ice crystal to theplanetary-scale circulation that disperses dust far downwind of itsparent soil. Representing this range leads to several modelingchallenges. Should we limit complexity in our model, which consumescomputer resources and inhibits interpretation? How do we decide if aprocess involving dust is worthy of inclusion within our model? Canwe identify a minimal representation of a complex process that isefficient yet retains the physics relevant to climate? Answeringthese questions about the appropriate degree of representation isguided by model evaluation, which presents several more challenges.How do we proceed if the available observations do not directlyconstrain our process of interest? (This could result from competingprocesses that influence the observed variable and obscure thesignature of our process of interest.) Examples will be presentedfrom dust modeling, with lessons that might be more broadlyapplicable. The end result will either be clinical depression or thereassuring promise of continued gainful employment as the communityconfronts these challenges.

  1. Effects of increasing aerosol on regional climate change in China: Observation and modeling

    Science.gov (United States)

    Qian, Y.; Leung, L.; Ghan, S. J.

    2002-12-01

    We present regional simulations of climate, aerosol properties, and direct radiative forcing and climatic effects of aerosol and analyze the pollutant emissions and observed climatic data during the latter decades of last century in China. The regional model generally captures the spatial distributions and seasonal pattern of temperature and precipitation. Aerosol extinction coefficient and aerosol optical depth are generally well simulated in both magnitude and spatial distribution, which provides a reliable foundation for estimating the radiative forcing and climatic effects of aerosol. The radiative forcing of aerosol is in the range of -1 to -14 W m-2 in autumn and summer and -1 to -9 W m-2 in spring and winter, with substantial spatial variability at the sub-regional scale. A strong maximum in negative radiative forcing corresponding to the maximum optical depth is found over the Sichuan Basin, where emission as well as relative humidity are high, and stagnant atmospheric conditions inhibit pollutants dispersion. Negative radiative forcing of aerosol induces a surface cooling, which is stronger in the range of -0.6 to -1.2oC in autumn and winter than in spring (-0.3 to -0.6oC) and summer (0.0 to -0.9oC) over the Sichuan Basin and East China due to more significant effects of cloud and precipitation in the summer and spring. Aerosol-induced cooling is mainly contributed by cooling in the daytime temperature. The cooling reaches a maximum and is statistically significant in the Sichuan Basin. The effect of aerosol on precipitation is not evident in our simulations. The temporal and spatial patterns of temperature trends observed in the second half of the twentieth century, including the asymmetric daily maximum and minimum temperature trends, are at least qualitatively consistent with the simulated aerosol-induced cooling over the Sichuan Basin and East China. It supports the hypothesis that the observed temperature trends during the latter decades of the

  2. Climate implications of carbonaceous aerosols: An aerosol microphysical study using the GISS/MATRIX climate model

    International Nuclear Information System (INIS)

    Bauer, Susanne E.; Menon, Surabi; Koch, Dorothy; Bond, Tami; Tsigaridis, Kostas

    2010-01-01

    Recently, attention has been drawn towards black carbon aerosols as a likely short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and its climate interactions. Black carbon is directly released as particle into the atmosphere, but then interacts with other gases and particles through condensation and coagulation processes leading to further aerosol growth, aging and internal mixing. A detailed aerosol microphysical scheme, MATRIX, embedded within the global GISS modelE includes the above processes that determine the lifecycle and climate impact of aerosols. This study presents a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing. Our best estimate for net direct and indirect aerosol radiative forcing change is -0.56 W/m 2 between 1750 and 2000. However, the direct and indirect aerosol effects are very sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing change can vary between -0.32 to -0.75 W/m 2 depending on these carbonaceous particle properties. Assuming that sulfates, nitrates and secondary organics form a coating shell around a black carbon core, rather than forming a uniformly mixed particles, changes the overall net radiative forcing from a negative to a positive number. Black carbon mitigation scenarios showed generally a benefit when mainly black carbon sources such as diesel emissions are reduced, reducing organic and black carbon sources such as bio-fuels, does not lead to reduced warming.

  3. Sensitivity of tropospheric heating rates to aerosols: A modeling study

    International Nuclear Information System (INIS)

    Hanna, A.F.; Shankar, U.; Mathur, R.

    1994-01-01

    The effect of aerosols on the radiation balance is critical to the energetics of the atmosphere. Because of the relatively long residence of specific types of aerosols in the atmosphere and their complex thermal and chemical interactions, understanding their behavior is crucial for understanding global climate change. The authors used the Regional Particulate Model (RPM) to simulate aerosols in the eastern United States in order to identify the aerosol characteristics of specific rural and urban areas these characteristics include size, concentration, and vertical profile. A radiative transfer model based on an improved δ-Eddington approximation with 26 spectral intervals spanning the solar spectrum was then used to analyze the tropospheric heating rates associated with these different aerosol distributions. The authors compared heating rates forced by differences in surface albedo associated with different land-use characteristics, and found that tropospheric heating and surface cooling are sensitive to surface properties such as albedo

  4. New trajectory-driven aerosol and chemical process model Chemical and Aerosol Lagrangian Model (CALM

    Directory of Open Access Journals (Sweden)

    P. Tunved

    2010-11-01

    Full Text Available A new Chemical and Aerosol Lagrangian Model (CALM has been developed and tested. The model incorporates all central aerosol dynamical processes, from nucleation, condensation, coagulation and deposition to cloud formation and in-cloud processing. The model is tested and evaluated against observations performed at the SMEAR II station located at Hyytiälä (61° 51' N, 24° 17' E over a time period of two years, 2000–2001. The model shows good agreement with measurements throughout most of the year, but fails in reproducing the aerosol properties during the winter season, resulting in poor agreement between model and measurements especially during December–January. Nevertheless, through the rest of the year both trends and magnitude of modal concentrations show good agreement with observation, as do the monthly average size distribution properties. The model is also shown to capture individual nucleation events to a certain degree. This indicates that nucleation largely is controlled by the availability of nucleating material (as prescribed by the [H2SO4], availability of condensing material (in this model 15% of primary reactions of monoterpenes (MT are assumed to produce low volatile species and the properties of the size distribution (more specifically, the condensation sink. This is further demonstrated by the fact that the model captures the annual trend in nuclei mode concentration. The model is also used, alongside sensitivity tests, to examine which processes dominate the aerosol size distribution physical properties. It is shown, in agreement with previous studies, that nucleation governs the number concentration during transport from clean areas. It is also shown that primary number emissions almost exclusively govern the CN concentration when air from Central Europe is advected north over Scandinavia. We also show that biogenic emissions have a large influence on the amount of potential CCN observed

  5. Model and Computing Experiment for Research and Aerosols Usage Management

    Directory of Open Access Journals (Sweden)

    Daler K. Sharipov

    2012-09-01

    Full Text Available The article deals with a math model for research and management of aerosols released into the atmosphere as well as numerical algorithm used as hardware and software systems for conducting computing experiment.

  6. Modelling and numerical simulation of the General Dynamic Equation of aerosols; Modelisation et simulation des aerosols atmospheriques

    Energy Technology Data Exchange (ETDEWEB)

    Debry, E.

    2005-01-15

    Chemical-transport models are now able to describe in a realistic way gaseous pollutants behavior in the atmosphere. Nevertheless atmospheric pollution also exists as fine suspended particles, called aerosols, which interact with gaseous phase, solar radiation, and have their own dynamic behavior. The goal of this thesis is the modelling and numerical simulation of the General Dynamic Equation of aerosols (GDE). Part I deals with some theoretical aspects of aerosol modelling. Part II is dedicated to the building of one size resolved aerosol model (SIREAM). In part III we perform the reduction of this model in order to use it in dispersion models as POLAIR3D. Several modelling issues are still opened: organic aerosol matter, externally mixed aerosols, coupling with turbulent mixing, and nano-particles. (author)

  7. Chemical Thermodynamics of Aqueous Atmospheric Aerosols: Modeling and Microfluidic Measurements

    Science.gov (United States)

    Nandy, L.; Dutcher, C. S.

    2017-12-01

    Accurate predictions of gas-liquid-solid equilibrium phase partitioning of atmospheric aerosols by thermodynamic modeling and measurements is critical for determining particle composition and internal structure at conditions relevant to the atmosphere. Organic acids that originate from biomass burning, and direct biogenic emission make up a significant fraction of the organic mass in atmospheric aerosol particles. In addition, inorganic compounds like ammonium sulfate and sea salt also exist in atmospheric aerosols, that results in a mixture of single, double or triple charged ions, and non-dissociated and partially dissociated organic acids. Statistical mechanics based on a multilayer adsorption isotherm model can be applied to these complex aqueous environments for predictions of thermodynamic properties. In this work, thermodynamic analytic predictive models are developed for multicomponent aqueous solutions (consisting of partially dissociating organic and inorganic acids, fully dissociating symmetric and asymmetric electrolytes, and neutral organic compounds) over the entire relative humidity range, that represent a significant advancement towards a fully predictive model. The model is also developed at varied temperatures for electrolytes and organic compounds the data for which are available at different temperatures. In addition to the modeling approach, water loss of multicomponent aerosol particles is measured by microfluidic experiments to parameterize and validate the model. In the experimental microfluidic measurements, atmospheric aerosol droplet chemical mimics (organic acids and secondary organic aerosol (SOA) samples) are generated in microfluidic channels and stored and imaged in passive traps until dehydration to study the influence of relative humidity and water loss on phase behavior.

  8. Sodium oxide aerosol behavior in a closed vessel. Comparison of computer modeling with aerosol experiments

    International Nuclear Information System (INIS)

    Fermandjian, Jean.

    1979-08-01

    Fast breeder reactor safety needs models validated to predict the behavior of sodium aerosols in the different reactor compartments during hypothetical sodium accident. Besides their chemical toxicity, the sodium aerosols are a transfer vector of radioactivity during a contaminated sodium fire. The purpose of this work is to validate models (HAARM 2 and PARDISEKO 3) with tests of sodium pool fires in a 400 m 3 concrete vessel in a confined atmosphere (CASSANDRE tests). The comparison between calculations and experimental results reveals that difficulties still exist, especially as to the selection of the values to be given to some input parameters (physical data of experimental origin, in particular the aerosols source function, the characteristics of the distribution of the emitted particles and the form factor of the agglomerated particles) [fr

  9. Secondary organic aerosol in the global aerosol – chemical transport model Oslo CTM2

    Directory of Open Access Journals (Sweden)

    I. S. A. Isaksen

    2007-11-01

    Full Text Available The global chemical transport model Oslo CTM2 has been extended to include the formation, transport and deposition of secondary organic aerosol (SOA. Precursor hydrocarbons which are oxidised to form condensible species include both biogenic species such as terpenes and isoprene, as well as species emitted predominantly by anthropogenic activities (toluene, m-xylene, methylbenzene and other aromatics. A model simulation for 2004 gives an annual global SOA production of approximately 55 Tg. Of this total, 2.5 Tg is found to consist of the oxidation products of anthropogenically emitted hydrocarbons, and about 15 Tg is formed by the oxidation products of isoprene. The global production of SOA is increased to about 69 Tg yr−1 by allowing semi-volatile species to partition to ammonium sulphate aerosol. This brings modelled organic aerosol values closer to those observed, however observations in Europe remain significantly underestimated. Allowing SOA to partition into ammonium sulphate aerosol increases the contribution of anthropogenic SOA from about 4.5% to 9.4% of the total production. Total modelled organic aerosol (OA values are found to represent a lower fraction of the measured values in winter (when primary organic aerosol (POA is the dominant OA component than in summer, which may be an indication that estimates of POA emissions are too low. Additionally, for measurement stations where the summer OA values are higher than in winter, the model generally underestimates the increase in summertime OA. In order to correctly model the observed increase in OA in summer, additional SOA sources or formation mechanisms may be necessary. The importance of NO3 as an oxidant of SOA precursors is found to vary regionally, causing up to 50%–60% of the total amount of SOA near the surface in polluted regions and less than 25% in more remote areas, if the yield of condensible oxidation products for β-pinene is used for NO3 oxidation of all terpenes

  10. On the importance of aerosol nitrate over Europe : data analysis and modelling

    NARCIS (Netherlands)

    Schaap, M.

    2003-01-01

    The central theme of this thesis is the nitrate content of aerosols (or particulate matter (PM)). Aerosols play an important role in the climate system by scattering and/or absorbing solar radiation. In the last decades research has been devoted to quantify the radiative forcing of aerosols

  11. MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models

    OpenAIRE

    Bauer , S. E.; Wright , D.; Koch , D.; Lewis , E. R.; Mcgraw , R.; Chang , L.-S.; Schwartz , S. E.; Ruedy , R.

    2008-01-01

    A new aerosol microphysical module MATRIX, the Multiconfiguration Aerosol TRacker of mIXing state, and its application in the Goddard Institute for Space Studies (GISS) climate model (ModelE) are described. This module, which is based on the quadrature method of moments (QMOM), represents nucleation, condensation, coagulation, internal and external mixing, and cloud-drop activation and provides aerosol particle mass and number concentration and particle size information for up to 16 mixed-mod...

  12. Dynamic-chemistry-aerosol modelling interaction: the ESCOMPTE 2001 experiment

    International Nuclear Information System (INIS)

    Cousin, F.

    2004-09-01

    After most pollution studies independently devoted to gases and aerosols, there now appears an urgent need to consider their interactions. In this view, an aerosol module has been implemented in the Meso-NH-C model to simulate two IOPs documented during the ESCOMPTE campaign which took place in the Marseille/Fos-Berre region in June-July 2001. First, modelled dynamic parameters (winds, temperatures, boundary layer thickness) and gaseous chemistry have been validated with measurements issued from the exhaustive ESCOMPTE database. Sensitivity analysis have also been performed using different gaseous emission inventories at various resolution. These simulations have illustrated the deep impact of both synoptic and local dynamics on observed ozone concentrations on June 24 (IOP2b) in the ESCOMPTE domain. Afterwards, the ORISAM aerosol module has been introduced into the Meso-NH-C model. Dynamics, gaseous chemistry and aerosol processes have thus been coupled on-line. The particulate pollution episode on June 24 (IOP2b) has been characterised through a satisfactory comparison, specially from sub-micron particles, between modelling and measurements at different representative stations in the domain. This study, with validation of the particulate emission inventory has also highlighted the need for future improvements, such as further characterisation of organic and inorganic aerosol species and consideration of coarse particles. Aerosol impact on gaseous chemistry has been preliminary approached in view of future development and modification to be given to the Meso-NH-C model. (author)

  13. MATRIX (Multiconfiguration Aerosol TRacker of mIXing state: an aerosol microphysical module for global atmospheric models

    Directory of Open Access Journals (Sweden)

    S. E. Bauer

    2008-10-01

    Full Text Available A new aerosol microphysical module MATRIX, the Multiconfiguration Aerosol TRacker of mIXing state, and its application in the Goddard Institute for Space Studies (GISS climate model (ModelE are described. This module, which is based on the quadrature method of moments (QMOM, represents nucleation, condensation, coagulation, internal and external mixing, and cloud-drop activation and provides aerosol particle mass and number concentration and particle size information for up to 16 mixed-mode aerosol populations. Internal and external mixing among aerosol components sulfate, nitrate, ammonium, carbonaceous aerosols, dust and sea-salt particles are represented. The solubility of each aerosol population, which is explicitly calculated based on its soluble and insoluble components, enables calculation of the dependence of cloud drop activation on the microphysical characterization of multiple soluble aerosol populations.

    A detailed model description and results of box-model simulations of various aerosol population configurations are presented. The box model experiments demonstrate the dependence of cloud activating aerosol number concentration on the aerosol population configuration; comparisons to sectional models are quite favorable. MATRIX is incorporated into the GISS climate model and simulations are carried out primarily to assess its performance/efficiency for global-scale atmospheric model application. Simulation results were compared with aircraft and station measurements of aerosol mass and number concentration and particle size to assess the ability of the new method to yield data suitable for such comparison. The model accurately captures the observed size distributions in the Aitken and accumulation modes up to particle diameter 1 μm, in which sulfate, nitrate, black and organic carbon are predominantly located; however the model underestimates coarse-mode number concentration and size, especially in the marine environment

  14. The regional aerosol-climate model REMO-HAM

    Directory of Open Access Journals (Sweden)

    J.-P. Pietikäinen

    2012-11-01

    Full Text Available REMO-HAM is a new regional aerosol-climate model. It is based on the REMO regional climate model and includes most of the major aerosol processes. The structure for aerosol is similar to the global aerosol-climate model ECHAM5-HAM, for example the aerosol module HAM is coupled with a two-moment stratiform cloud scheme. On the other hand, REMO-HAM does not include an online coupled aerosol-radiation nor a secondary organic aerosol module. In this work, we evaluate the model and compare the results against ECHAM5-HAM and measurements. Four different measurement sites were chosen for the comparison of total number concentrations, size distributions and gas phase sulfur dioxide concentrations: Hyytiälä in Finland, Melpitz in Germany, Mace Head in Ireland and Jungfraujoch in Switzerland. REMO-HAM is run with two different resolutions: 50 × 50 km2 and 10 × 10 km2. Based on our simulations, REMO-HAM is in reasonable agreement with the measured values. The differences in the total number concentrations between REMO-HAM and ECHAM5-HAM can be mainly explained by the difference in the nucleation mode. Since we did not use activation nor kinetic nucleation for the boundary layer, the total number concentrations are somewhat underestimated. From the meteorological point of view, REMO-HAM represents the precipitation fields and 2 m temperature profile very well compared to measurement. Overall, we show that REMO-HAM is a functional aerosol-climate model, which will be used in further studies.

  15. Toward a Minimal Representation of Aerosols in Climate Models: Description and Evaluation in the Community Atmosphere Model CAM5

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaohong; Easter, Richard C.; Ghan, Steven J.; Zaveri, Rahul A.; Rasch, Philip J.; Shi, Xiangjun; Lamarque, J.-F.; Gettelman, A.; Morrison, H.; Vitt, Francis; Conley, Andrew; Park, S.; Neale, Richard; Hannay, Cecile; Ekman, A. M.; Hess, Peter; Mahowald, N.; Collins, William D.; Iacono, Michael J.; Bretherton, Christopher S.; Flanner, M. G.; Mitchell, David

    2012-05-21

    A modal aerosol module (MAM) has been developed for the Community Atmosphere Model version 5 (CAM5), the atmospheric component of the Community Earth System Model version 1 (CESM1). MAM is capable of simulating the aerosol size distribution and both internal and external mixing between aerosol components, treating numerous complicated aerosol processes and aerosol physical, chemical and optical properties in a physically based manner. Two MAM versions were developed: a more complete version with seven-lognormal modes (MAM7), and a three-lognormal mode version (MAM3) for the purpose of long-term (decades to centuries) simulations. Major approximations in MAM3 include assuming immediate mixing of primary organic matter (POM) and black carbon (BC) with other aerosol components, merging of the MAM7 fine dust and fine sea salt modes into the accumulation mode, merging of the MAM7 coarse dust and coarse sea salt modes into the single coarse mode, and neglecting the explicit treatment of ammonia and ammonium cycles. Simulated sulfate and secondary organic aerosol (SOA) mass concentrations are remarkably similar between MAM3 and MAM7 as most ({approx}90%) of these aerosol species are in the accumulation mode. Differences of POM and BC concentrations between MAM3 and MAM7 are also small (mostly within 10%) because of the assumed hygroscopic nature of POM, so that freshly emitted POM and BC are wet-removed before mixing internally with soluble aerosol species. Sensitivity tests with the POM assumed to be hydrophobic and with slower aging process increase the POM and BC concentrations, especially at high latitudes (by several times). The mineral dust global burden differs by 10% and sea salt burden by 30-40% between MAM3 and MAM7 mainly due to the different size ranges for dust and sea salt modes and different standard deviations of log-normal size distribution for sea salt modes between MAM3 and MAM7. The model is able to qualitatively capture the observed geographical and

  16. Receptor models for source apportionment of remote aerosols in Brazil

    International Nuclear Information System (INIS)

    Artaxo Netto, P.E.

    1985-11-01

    The PIXE (particle induced X-ray emission), and PESA (proton elastic scattering analysis) method were used in conjunction with receptor models for source apportionment of remote aerosols in Brazil. The PIXE used in the determination of concentration for elements with Z >- 11, has a detection limit of about 1 ng/m 3 . The concentrations of carbon, nitrogen and oxygen in the fine fraction of Amazon Basin aerosols was measured by PESA. We sampled in Jureia (SP), Fernando de Noronha, Arembepe (BA), Firminopolis (GO), Itaberai (GO) and Amazon Basin. For collecting the airbone particles we used cascade impactors, stacked filter units, and streaker samplers. Three receptor models were used: chemical mass balance, stepwise multiple regression analysis and principal factor analysis. The elemental and gravimetric concentrations were explained by the models within the experimental errors. Three sources of aerosol were quantitatively distinguished: marine aerosol, soil dust and aerosols related to forests. The emission of aerosols by vegetation is very clear for all the sampling sites. In Amazon Basin and Jureia it is the major source, responsible for 60 to 80% of airborne concentrations. (Author) [pt

  17. Why Is Improvement of Earth System Models so Elusive? Challenges and Strategies from Dust Aerosol Modeling

    Science.gov (United States)

    Miller, Ronald L.; Garcia-Pando, Carlos Perez; Perlwitz, Jan; Ginoux, Paul

    2015-01-01

    Past decades have seen an accelerating increase in computing efficiency, while climate models are representing a rapidly widening set of physical processes. Yet simulations of some fundamental aspects of climate like precipitation or aerosol forcing remain highly uncertain and resistant to progress. Dust aerosol modeling of soil particles lofted by wind erosion has seen a similar conflict between increasing model sophistication and remaining uncertainty. Dust aerosols perturb the energy and water cycles by scattering radiation and acting as ice nuclei, while mediating atmospheric chemistry and marine photosynthesis (and thus the carbon cycle). These effects take place across scales from the dimensions of an ice crystal to the planetary-scale circulation that disperses dust far downwind of its parent soil. Representing this range leads to several modeling challenges. Should we limit complexity in our model, which consumes computer resources and inhibits interpretation? How do we decide if a process involving dust is worthy of inclusion within our model? Can we identify a minimal representation of a complex process that is efficient yet retains the physics relevant to climate? Answering these questions about the appropriate degree of representation is guided by model evaluation, which presents several more challenges. How do we proceed if the available observations do not directly constrain our process of interest? (This could result from competing processes that influence the observed variable and obscure the signature of our process of interest.) Examples will be presented from dust modeling, with lessons that might be more broadly applicable. The end result will either be clinical depression or there assuring promise of continued gainful employment as the community confronts these challenges.

  18. Assessment of aerosol models to AOD retrieval from HJ1 Satellites

    International Nuclear Information System (INIS)

    Yuhuan, Zhang; Zhengqiang, Li; Weizhen, Hou; Ying, Zhang; Yan, Ma; Li Donghui

    2014-01-01

    The Chinese environmental satellites HJ1 A and B can play a significant role in the aerosol retrieval due to their high spatial and temporal resolution. The current Aerosol Optical Depth (AOD) retrieval methods from HJ1-CCD are almost based on the LUT (Look-Up Table), by selecting the best fitting result to determine the AOD. However, aerosol model selection has an important impact on the retrieval results when creating the lookup table; inappropriate choice of aerosol model will significantly affect the accuracy and applicability of the method. This paper determined the local aerosol physical properties (such as complex refractive index, and size distribution) based on the observational data, thus we defined the aerosol type and retrieved the AOD of the local aerosol. Furthermore we compared the results retrieved from the measurement aerosol model with those retrieved from the inherent aerosol model in the radiative transfer model and then evaluate its effect on the aerosol type

  19. Modeling of Aerosol Vertical Profiles Using GIS and Remote Sensing

    Directory of Open Access Journals (Sweden)

    Kwon Ho Lee

    2009-06-01

    Full Text Available The use of Geographic Information Systems (GIS and Remote Sensing (RS by climatologists, environmentalists and urban planners for three dimensional modeling and visualization of the landscape is well established. However no previous study has implemented these techniques for 3D modeling of atmospheric aerosols because air quality data is traditionally measured at ground points, or from satellite images, with no vertical dimension. This study presents a prototype for modeling and visualizing aerosol vertical profiles over a 3D urban landscape in Hong Kong. The method uses a newly developed technique for the derivation of aerosol vertical profiles from AERONET sunphotometer measurements and surface visibility data, and links these to a 3D urban model. This permits automated modeling and visualization of aerosol concentrations at different atmospheric levels over the urban landscape in near-real time. Since the GIS platform permits presentation of the aerosol vertical distribution in 3D, it can be related to the built environment of the city. Examples are given of the applications of the model, including diagnosis of the relative contribution of vehicle emissions to pollution levels in the city, based on increased near-surface concentrations around weekday rush-hour times. The ability to model changes in air quality and visibility from ground level to the top of tall buildings is also demonstrated, and this has implications for energy use and environmental policies for the tall mega-cities of the future.

  20. Modeling of pollution aerosols in Ile-de-France

    International Nuclear Information System (INIS)

    Hodzic, A.

    2005-10-01

    The modeling of aerosols is a major stake in the understanding of the emission processes and evolution of particulates in the atmosphere. However, the parameterizations used in today's aerosol models still comprise many uncertainties. This work has been motivated by the need of better identifying the weaknesses of aerosols modeling tools and by the necessity of having new validation methods for a 3D evaluation of models. The studies have been carried out using the CHIMERE chemistry-transport model, which allows to simulate the concentrations and physico-chemical characteristics of pollution aerosols at the European scale and in Ile-de-France region. The validation approach used is based on the complementarity of the measurements performed on the ground by monitoring networks with those acquired during the ESQUIF campaign (study and simulation of air quality in Ile-de-France), with lidar and photometric measurements and with satellite observations. The comparison between the observations and the simulations has permitted to identify and reduce the modeling errors, and to characterize the aerosol properties in the vicinity of an urban area. (J.S.)

  1. Aerosol activation and cloud processing in the global aerosol-climate model ECHAM5-HAM

    Directory of Open Access Journals (Sweden)

    G. J. Roelofs

    2006-01-01

    Full Text Available A parameterization for cloud processing is presented that calculates activation of aerosol particles to cloud drops, cloud drop size, and pH-dependent aqueous phase sulfur chemistry. The parameterization is implemented in the global aerosol-climate model ECHAM5-HAM. The cloud processing parameterization uses updraft speed, temperature, and aerosol size and chemical parameters simulated by ECHAM5-HAM to estimate the maximum supersaturation at the cloud base, and subsequently the cloud drop number concentration (CDNC due to activation. In-cloud sulfate production occurs through oxidation of dissolved SO2 by ozone and hydrogen peroxide. The model simulates realistic distributions for annually averaged CDNC although it is underestimated especially in remote marine regions. On average, CDNC is dominated by cloud droplets growing on particles from the accumulation mode, with smaller contributions from the Aitken and coarse modes. The simulations indicate that in-cloud sulfate production is a potentially important source of accumulation mode sized cloud condensation nuclei, due to chemical growth of activated Aitken particles and to enhanced coalescence of processed particles. The strength of this source depends on the distribution of produced sulfate over the activated modes. This distribution is affected by uncertainties in many parameters that play a direct role in particle activation, such as the updraft velocity, the aerosol chemical composition and the organic solubility, and the simulated CDNC is found to be relatively sensitive to these uncertainties.

  2. A model of aerosol evaporation kinetics in a thermodenuder

    Directory of Open Access Journals (Sweden)

    C. D. Cappa

    2010-05-01

    Full Text Available Aerosol thermodenuders provide a measure of particle volatility. The information provided by a thermodenuder is fundamentally related to the kinetics of evaporation and condensation within the device. Here, a time-dependent, multi-component model of particle and gas-phase mass transfer in a thermodenuder is described. This model empirically accounts for the temperature profile along the length of a typical thermodenuder and distinguishes between the influence of the heating section and of the adsorbent denuder section. It is shown that "semi-volatile" aerosol is particularly sensitive to the inclusion of an adsorbent denuder in the model. As expected, the mass loss from evaporation of particles as they pass through the thermodenuder is directly related to the compound vapor pressure, although the assumptions regarding the enthalpy of vaporization are shown to also have a large influence on the overall calculated mass thermograms. The model has been validated by comparison with previously measured mass thermograms for single-component aerosols and is shown to provide reasonable semi-quantitative agreement. The model that has been developed here can be used to provide quantitative understanding of aerosol volatility measurements of single and multi-component aerosol made using thermodenuders that include adsorbent denuder sections.

  3. Aerosol cluster impact and break-up: model and implementation

    International Nuclear Information System (INIS)

    Lechman, Jeremy B.

    2010-01-01

    In this report a model for simulating aerosol cluster impact with rigid walls is presented. The model is based on JKR adhesion theory and is implemented as an enhancement to the granular (DEM) package within the LAMMPS code. The theory behind the model is outlined and preliminary results are shown. Modeling the interactions of small particles is relevant to a number of applications (e.g., soils, powders, colloidal suspensions, etc.). Modeling the behavior of aerosol particles during agglomeration and cluster dynamics upon impact with a wall is of particular interest. In this report we describe preliminary efforts to develop and implement physical models for aerosol particle interactions. Future work will consist of deploying these models to simulate aerosol cluster behavior upon impact with a rigid wall for the purpose of developing relationships for impact speed and probability of stick/bounce/break-up as well as to assess the distribution of cluster sizes if break-up occurs. These relationships will be developed consistent with the need for inputs into system-level codes. Section 2 gives background and details on the physical model as well as implementations issues. Section 3 presents some preliminary results which lead to discussion in Section 4 of future plans.

  4. Dust in the Sky: Atmospheric Composition. Modeling of Aerosol Optical Thickness

    Science.gov (United States)

    Chin, Mian; Ginoux, Paul; Kinne, Stefan; Torres, Omar; Holben, Brent; Duncan, Bryan; Martin, Randall; Logan, Jennifer; Higurashi, Akiko; Nakajima, Teruyuki

    2000-01-01

    Aerosol is any small particle of matter that rests suspended in the atmosphere. Natural sources, such as deserts, create some aerosols; consumption of fossil fuels and industrial activity create other aerosols. All the microscopic aerosol particles add up to a large amount of material floating in the atmosphere. You can see the particles in the haze that floats over polluted cities. Beyond this visible effect, aerosols can actually lower temperatures. They do this by blocking, or scattering, a portion of the sun's energy from reaching the surface. Because of this influence, scientists study the physical properties of atmospheric aerosols. Reliable numerical models for atmospheric aerosols play an important role in research.

  5. An animal model of tinnitus: a decade of development.

    Science.gov (United States)

    Jastreboff, P J; Sasaki, C T

    1994-01-01

    Although tinnitus affects approximately 9 million people in the United States, a cure remains elusive and the mechanisms of its origin are speculative. The crucial obstacle in tinnitus research has been the lack of an animal model. Over the last decade we have been creating such a model by combining a variety of methodologies, including a behavioral component, to allow for the detection of tinnitus perception. Initially, 2-deoxyglucose had been used to map changes in the metabolic activity after unilateral destruction of the cochlea. It has been found that the initial decrease of the metabolic rate in the auditory nuclei recovered to preoperative values, which could be attributable to the development of tinnitus. The spontaneous activity of single units recorded from the inferior colliculus before and after salicylate administration revealed an increase of discharges, which might reflect the presence of salicylate-induced tinnitus. Recent data have confirmed, and further elaborated this observation, including the discovery of abnormal, epileptic-like, neuronal activity. Finally, the authors have developed a behavioral model of tinnitus, tested it extensively, and used it to measure tinnitus pitch and loudness. The model is presently used for investigating the hypotheses for the mechanisms of tinnitus.

  6. he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study

    Energy Technology Data Exchange (ETDEWEB)

    Keene, William C. [University of Virginia; Long, Michael S. [University of Virginia

    2013-05-20

    This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistry's MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences

  7. Integrated aerosol and thermalhydraulics modelling for CANDU safety analysis

    International Nuclear Information System (INIS)

    McDonald, B.H.; Hanna, B.N.

    1990-08-01

    Analysis of postulated accidents in CANDU reactors that could result in severe fuel damage requires the ability to model the formation of aerosols containing fission product materials and the transport of these aerosols from the fuel, through containment, to any leak to the atmosphere. Best-estimate calculations require intimate coupling and simultaneous solution of all the equations describing the entire range of physical and chemical phenomena involved. The prototype CATHENA/PACE-3D has been developed for integrated calculation of thermalhydraulic and aerosol events in a CANDU reactor during postulated accidents. Examples demonstrate the ability of CATHENA/PACE-3D to produce realistic flow and circulation patterns and reasonable accuracy in solution of two simple fluid-flow test cases for which analytical solutions exist

  8. The Naval Ocean Vertical Aerosol Model : Progress Report

    NARCIS (Netherlands)

    Leeuw, G. de; Gathman, S.G.; Davidson, K.L.; Jensen, D.R.

    1990-01-01

    The Naval Oceanic Vertical Aerosol Model (NOVAM) has been formulated to estimate the vertical structure of the optical and infrared extinction coefficients in the marine atmospheric boundary layer (MABL). NOVAM was designed to predict the non-uniform and non-logarithmic extinction profiles which are

  9. Verification of the Naval Oceanic Vertical Aerosol Model During Fire

    NARCIS (Netherlands)

    Davidson, K.L.; Leeuw, G. de; Gathman, S.G.; Jensen, D.R.

    1990-01-01

    The Naval Oceanic Vertical Aerosol Model (NOVAM) has been formulated to estimate the vertical structure of the optical and infrared extinction coefficients in the marine atmospheric boundary layer (MABL), for waverengths between 0,2 and 40 um. NOVAM was designed to predict, utilizing a set of

  10. Nuclear aerosol behaviour in LMFBR. Comparison of computer modelling with aerosol experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fermandjian, J [DSN/Centre de Fontenay-aux-Roses, Fontenay-aux-Roses (France)

    1979-03-01

    For the purpose of studying the behaviour of the concentration of aerosols confined in a vessel, various models have been developed, especially in the United States: HAA 3B, HAARM 2 and HAARM 3 - in the Federal Republic of Germany: PARDISEKO 3 and PARDISEKO 3 B - in Japan: ABC 2 and ABC 3 - in the United Kingdom: AEROSIM and in the Netherlands: ETHERDEMO and MADCA. These codes were validated on the basis of tests conducted in vessels whose volumes varied between 0.022 and 850 m{sup 3}. The aerosols studied differed in nature (sodium oxide, fuel oxide, sodium oxide-fuel oxide, gold) and method of production (sodium pool fires, sodium spray fires, arc vaporization, exploding wire) in various atmospheres air, air with variable amounts of oxygen, and nitrogen. This comparison between calculation and experimental results reveals that difficulties still exist, especially as to the selection of the values to be given to some input parameters of the codes (physical data of experimental origin, in particular, the aerosol source function and the characteristics of the size distribution of the emitted particles). Furthermore, the importance of thermophoresis and convection currents has been proved: including the soaring effect in the ABC 3 code enables to fit the experiment. (author)

  11. Nuclear aerosol behaviour in LMFBR. Comparison of computer modelling with aerosol experiments

    International Nuclear Information System (INIS)

    Fermandjian, J.

    1979-01-01

    For the purpose of studying the behaviour of the concentration of aerosols confined in a vessel, various models have been developed, especially in the United States: HAA 3B, HAARM 2 and HAARM 3 - in the Federal Republic of Germany: PARDISEKO 3 and PARDISEKO 3 B - in Japan: ABC 2 and ABC 3 - in the United Kingdom: AEROSIM and in the Netherlands: ETHERDEMO and MADCA. These codes were validated on the basis of tests conducted in vessels whose volumes varied between 0.022 and 850 m 3 . The aerosols studied differed in nature (sodium oxide, fuel oxide, sodium oxide-fuel oxide, gold) and method of production (sodium pool fires, sodium spray fires, arc vaporization, exploding wire) in various atmospheres air, air with variable amounts of oxygen, and nitrogen. This comparison between calculation and experimental results reveals that difficulties still exist, especially as to the selection of the values to be given to some input parameters of the codes (physical data of experimental origin, in particular, the aerosol source function and the characteristics of the size distribution of the emitted particles). Furthermore, the importance of thermophoresis and convection currents has been proved: including the soaring effect in the ABC 3 code enables to fit the experiment. (author)

  12. MATRIX-VBS (v1.0): Implementing an Evolving Organic Aerosol Volatility in an Aerosol Microphysics Model

    Science.gov (United States)

    Gao, Chloe Y.; Tsigaridis, Kostas; Bauer, Susanne E.

    2017-01-01

    The gas-particle partitioning and chemical aging of semi-volatile organic aerosol are presented in a newly developed box model scheme, where its effect on the growth, composition, and mixing state of particles is examined. The volatility-basis set (VBS) framework is implemented into the aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves mass and number aerosol concentrations and in multiple mixing-state classes. The new scheme, MATRIX-VBS, has the potential to significantly advance the representation of organic aerosols in Earth system models by improving upon the conventional representation as non-volatile particulate organic matter, often also with an assumed fixed size distribution. We present results from idealized cases representing Beijing, Mexico City, a Finnish forest, and a southeastern US forest, and investigate the evolution of mass concentrations and volatility distributions for organic species across the gas and particle phases, as well as assessing their mixing state among aerosol populations. Emitted semi-volatile primary organic aerosols evaporate almost completely in the intermediate-volatility range, while they remain in the particle phase in the low-volatility range. Their volatility distribution at any point in time depends on the applied emission factors, oxidation by OH radicals, and temperature. We also compare against parallel simulations with the original scheme, which represented only the particulate and non-volatile component of the organic aerosol, examining how differently the condensed-phase organic matter is distributed across the mixing states in the model. The results demonstrate the importance of representing organic aerosol as a semi-volatile aerosol, and explicitly calculating the partitioning of organic species between the gas and particulate phases.

  13. On the relationship between aerosol model uncertainty and radiative forcing uncertainty.

    Science.gov (United States)

    Lee, Lindsay A; Reddington, Carly L; Carslaw, Kenneth S

    2016-05-24

    The largest uncertainty in the historical radiative forcing of climate is caused by the interaction of aerosols with clouds. Historical forcing is not a directly measurable quantity, so reliable assessments depend on the development of global models of aerosols and clouds that are well constrained by observations. However, there has been no systematic assessment of how reduction in the uncertainty of global aerosol models will feed through to the uncertainty in the predicted forcing. We use a global model perturbed parameter ensemble to show that tight observational constraint of aerosol concentrations in the model has a relatively small effect on the aerosol-related uncertainty in the calculated forcing between preindustrial and present-day periods. One factor is the low sensitivity of present-day aerosol to natural emissions that determine the preindustrial aerosol state. However, the major cause of the weak constraint is that the full uncertainty space of the model generates a large number of model variants that are equally acceptable compared to present-day aerosol observations. The narrow range of aerosol concentrations in the observationally constrained model gives the impression of low aerosol model uncertainty. However, these multiple "equifinal" models predict a wide range of forcings. To make progress, we need to develop a much deeper understanding of model uncertainty and ways to use observations to constrain it. Equifinality in the aerosol model means that tuning of a small number of model processes to achieve model-observation agreement could give a misleading impression of model robustness.

  14. A global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties

    Directory of Open Access Journals (Sweden)

    D. V. Spracklen

    2005-01-01

    Full Text Available A GLObal Model of Aerosol Processes (GLOMAP has been developed as an extension to the TOMCAT 3-D Eulerian off-line chemical transport model. GLOMAP simulates the evolution of the global aerosol size distribution using a sectional two-moment scheme and includes the processes of aerosol nucleation, condensation, growth, coagulation, wet and dry deposition and cloud processing. We describe the results of a global simulation of sulfuric acid and sea spray aerosol. The model captures features of the aerosol size distribution that are well established from observations in the marine boundary layer and free troposphere. Modelled condensation nuclei (CN>3nm vary between about 250–500 cm-3 in remote marine boundary layer regions and are generally in good agreement with observations. Modelled continental CN concentrations are lower than observed, which may be due to lack of some primary aerosol sources or the neglect of nucleation mechanisms other than binary homogeneous nucleation of sulfuric acid-water particles. Remote marine CN concentrations increase to around 2000–10 000 cm (at standard temperature and pressure in the upper troposphere, which agrees with typical observed vertical profiles. Cloud condensation nuclei (CCN at 0.2% supersaturation vary between about 1000 cm-3 in polluted regions and between 10 and 500 cm-3 in the remote marine boundary layer. New particle formation through sulfuric acid-water binary nucleation occurs predominantly in the upper troposphere, but the model results show that these particles contribute greatly to aerosol concentrations in the marine boundary layer. For this sulfur-sea salt system it is estimated that sea spray emissions account for only ~10% of CCN in the tropical marine boundary layer, but between 20 and 75% in the mid-latitude Southern Ocean. In a run with only natural sulfate and sea salt emissions the global mean surface CN concentration is more than 60% of that from a run with 1985 anthropogenic

  15. Large-Scale Aerosol Modeling and Analysis

    Science.gov (United States)

    2008-09-30

    intrusion that occurred over the Iberian Peninsula (IP) during the last few decades. NAAPS simulations were used to investigate the origin and...Torres, R. Rodrigo, J. de la Rosa, and A. M. De Frutos, Strongest desert dust intrusion mixed with smoke over the Iberian Peninsula registered with...impact cloud processes globally. With increasing dust storms due to climate change and land use changes in desert regions, the impact of the

  16. Interfacing the NRL 1-D High Vertical Resolution Aerosol Model with COAMPS

    Science.gov (United States)

    2006-09-30

    model integrated with mesoscale meterological data to study marine boundary layer aerosol dynamics, J. Geophys. Res., in press, 2006. Hoppel, W. A...W.A. Hoppel, J.J. Shi: A one-dimensional sectional aerosol model integrated with mesoscale meterological data to study marine boundary layer aerosol

  17. Direct Radiative Impacts of Central American Biomass Burning Smoke Aerosols: Analysis from a Coupled Aerosol-Radiation-Meteorology Model RAMS-AROMA

    Science.gov (United States)

    Wang, J.; Christopher, S. A.; Nair, U. S.; Reid, J. S.; Prins, E. M.

    2005-12-01

    Considerable efforts including various field experiments have been carried out in the last decade for studying the regional climatic impact of smoke aerosols produced by biomass burning activities in Africa and South America. In contrast, only few investigations have been conducted for Central American Biomass Burning (CABB) region. Using a coupled aerosol-radiation-meteorology model called RAMS-AROMA together with various ground-based observations, we present a comprehensive analysis of the smoke direct radiative impacts on the surface energy budget, boundary layer evolution, and e precipitation process during the CABB events in Spring 2003. Quantitative estimates are also made regarding the transboundary carbon mass to the U.S. in the form of smoke particles. Buult upon the Regional Atmospheric Modeling System (RAMS) mesoscale model, the RAMS AROMA has several features including Assimilation and Radiation Online Modeling of Aerosols (AROMA) algorithms. The model simulates smoke transport by using hourly smoke emission inventory from the Fire Locating and Modeling of Burning Emissions (FLAMBE) geostationary satellite database. It explicitly considers the smoke effects on the radiative transfer at each model time step and model grid, thereby coupling the dynamical processes and aerosol transport. Comparison with ground-based observation show that the simulation realistically captured the smoke transport timeline and distribution from daily to hourly scales. The effects of smoke radiative extinction on the decrease of 2m air temperature (2mT), diurnal temperature range (DTR), and boundary layer height over the land surface are also quantified. Warming due to smoke absorption of solar radiation can be found in the lower troposphere over the ocean, but not near the underlying land surface. The increase of boundary layer stability produces a positive feedback where more smoke particles are trapped in the lower boundary layer. These changes in temperature, surface

  18. MIRAGE: Model description and evaluation of aerosols and trace gases

    Science.gov (United States)

    Easter, Richard C.; Ghan, Steven J.; Zhang, Yang; Saylor, Rick D.; Chapman, Elaine G.; Laulainen, Nels S.; Abdul-Razzak, Hayder; Leung, L. Ruby; Bian, Xindi; Zaveri, Rahul A.

    2004-10-01

    The Model for Integrated Research on Atmospheric Global Exchanges (MIRAGE) modeling system, designed to study the impacts of anthropogenic aerosols on the global environment, is described. MIRAGE consists of a chemical transport model coupled online with a global climate model. The chemical transport model simulates trace gases, aerosol number, and aerosol chemical component mass (sulfate, methane sulfonic acid (MSA), organic matter, black carbon (BC), sea salt, and mineral dust) for four aerosol modes (Aitken, accumulation, coarse sea salt, and coarse mineral dust) using the modal aerosol dynamics approach. Cloud-phase and interstitial aerosol are predicted separately. The climate model, based on Community Climate Model, Version 2 (CCM2), has physically based treatments of aerosol direct and indirect forcing. Stratiform cloud water and droplet number are simulated using a bulk microphysics parameterization that includes aerosol activation. Aerosol and trace gas species simulated by MIRAGE are presented and evaluated using surface and aircraft measurements. Surface-level SO2 in North American and European source regions is higher than observed. SO2 above the boundary layer is in better agreement with observations, and surface-level SO2 at marine locations is somewhat lower than observed. Comparison with other models suggests insufficient SO2 dry deposition; increasing the deposition velocity improves simulated SO2. Surface-level sulfate in North American and European source regions is in good agreement with observations, although the seasonal cycle in Europe is stronger than observed. Surface-level sulfate at high-latitude and marine locations, and sulfate above the boundary layer, are higher than observed. This is attributed primarily to insufficient wet removal; increasing the wet removal improves simulated sulfate at remote locations and aloft. Because of the high sulfate bias, radiative forcing estimates for anthropogenic sulfur given in 2001 by S. J. Ghan and

  19. Modeling the Explicit Chemistry of Anthropogenic and Biogenic Organic Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Madronich, Sasha [Univ. Corporation for Atmospheric Research, Boulder, CO (United States)

    2015-12-09

    The atmospheric burden of Secondary Organic Aerosols (SOA) remains one of the most important yet uncertain aspects of the radiative forcing of climate. This grant focused on improving our quantitative understanding of SOA formation and evolution, by developing, applying, and improving a highly detailed model of atmospheric organic chemistry, the Generation of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) model. Eleven (11) publications have resulted from this grant.

  20. Development of a global aerosol model using a two-dimensional sectional method: 1. Model design

    Science.gov (United States)

    Matsui, H.

    2017-08-01

    This study develops an aerosol module, the Aerosol Two-dimensional bin module for foRmation and Aging Simulation version 2 (ATRAS2), and implements the module into a global climate model, Community Atmosphere Model. The ATRAS2 module uses a two-dimensional (2-D) sectional representation with 12 size bins for particles from 1 nm to 10 μm in dry diameter and 8 black carbon (BC) mixing state bins. The module can explicitly calculate the enhancement of absorption and cloud condensation nuclei activity of BC-containing particles by aging processes. The ATRAS2 module is an extension of a 2-D sectional aerosol module ATRAS used in our previous studies within a framework of a regional three-dimensional model. Compared with ATRAS, the computational cost of the aerosol module is reduced by more than a factor of 10 by simplifying the treatment of aerosol processes and 2-D sectional representation, while maintaining good accuracy of aerosol parameters in the simulations. Aerosol processes are simplified for condensation of sulfate, ammonium, and nitrate, organic aerosol formation, coagulation, and new particle formation processes, and box model simulations show that these simplifications do not substantially change the predicted aerosol number and mass concentrations and their mixing states. The 2-D sectional representation is simplified (the number of advected species is reduced) primarily by the treatment of chemical compositions using two interactive bin representations. The simplifications do not change the accuracy of global aerosol simulations. In part 2, comparisons with measurements and the results focused on aerosol processes such as BC aging processes are shown.

  1. Preparatory studies for modelling steam condensation on soluble aerosols

    International Nuclear Information System (INIS)

    Dunbar, I.H.

    1988-01-01

    Of the fission products which would be released from the core of an LWR in the event of a severe accident, only the noble gases and possibly some of the iodine (depending on chemical form) are likely not to be in the form of aerosols when they reach the containment building atmosphere. Therefore in order to predict the extent of fission product retention on containment building internal structures, one needs to have a good understanding of aerosol deposition processes and of the factors which affect them. Following a severe accident in an LWR, a major component of the containment atmosphere will be steam. If the thermodynamic conditions allow condensation of this steam, this condensation is most likely to occur on the aerosol particles. A major component of the aerosol formed during the in-vessel release following a severe reactor accident will be fission product caesium. It is believed that much of this will enter the containment in the form of the hydroxide which has a great affinity for water, so particle growth due to steam condensation is likely to be a very important mechanism for retaining radioactive caesium within the containment builing. The author provides a systematic review of the basic chemical and physical issues which must be addressed if the phenomena are to be modelled accurately, and gives recommendations on how computer models of condensation onto soluble aerosols should be constructed. He proposes also to perform a systematic review of the existing literature and to perform small-scale thermodynamic experiments wherever important gaps in the data base are discovered

  2. Modeling Secondary Organic Aerosol Formation From Emissions of Combustion Sources

    Science.gov (United States)

    Jathar, Shantanu Hemant

    Atmospheric aerosols exert a large influence on the Earth's climate and cause adverse public health effects, reduced visibility and material degradation. Secondary organic aerosol (SOA), defined as the aerosol mass arising from the oxidation products of gas-phase organic species, accounts for a significant fraction of the submicron atmospheric aerosol mass. Yet, there are large uncertainties surrounding the sources, atmospheric evolution and properties of SOA. This thesis combines laboratory experiments, extensive data analysis and global modeling to investigate the contribution of semi-volatile and intermediate volatility organic compounds (SVOC and IVOC) from combustion sources to SOA formation. The goals are to quantify the contribution of these emissions to ambient PM and to evaluate and improve models to simulate its formation. To create a database for model development and evaluation, a series of smog chamber experiments were conducted on evaporated fuel, which served as surrogates for real-world combustion emissions. Diesel formed the most SOA followed by conventional jet fuel / jet fuel derived from natural gas, gasoline and jet fuel derived from coal. The variability in SOA formation from actual combustion emissions can be partially explained by the composition of the fuel. Several models were developed and tested along with existing models using SOA data from smog chamber experiments conducted using evaporated fuel (this work, gasoline, fischertropschs, jet fuel, diesels) and published data on dilute combustion emissions (aircraft, on- and off-road gasoline, on- and off-road diesel, wood burning, biomass burning). For all of the SOA data, existing models under-predicted SOA formation if SVOC/IVOC were not included. For the evaporated fuel experiments, when SVOC/IVOC were included predictions using the existing SOA model were brought to within a factor of two of measurements with minor adjustments to model parameterizations. Further, a volatility

  3. Installation of aerosol behavior model into multi-dimensional thermal hydraulic analysis code AQUA

    International Nuclear Information System (INIS)

    Kisohara, Naoyuki; Yamaguchi, Akira

    1997-12-01

    The safety analysis of FBR plant system for sodium leak phenomena needs to evaluate the deposition of the aerosol particle to the components in the plant, the chemical reaction of aerosol to humidity in the air and the effect of the combustion heat through aerosol to the structural component. For this purpose, ABC-INTG (Aerosol Behavior in Containment-INTeGrated Version) code has been developed and used until now. This code calculates aerosol behavior in the gas area of uniform temperature and pressure by 1 cell-model. Later, however, more detailed calculation of aerosol behavior requires the installation of aerosol model into multi-cell thermal hydraulic analysis code AQUA. AQUA can calculate the carrier gas flow, temperature and the distribution of the aerosol spatial concentration. On the other hand, ABC-INTG can calculate the generation, deposition to the wall and flower, agglomeration of aerosol particle and figure out the distribution of the aerosol particle size. Thus, the combination of these two codes enables to deal with aerosol model coupling the distribution of the aerosol spatial concentration and that of the aerosol particle size. This report describes aerosol behavior model, how to install the aerosol model to AQUA and new subroutine equipped to the code. Furthermore, the test calculations of the simple structural model were executed by this code, appropriate results were obtained. Thus, this code has prospect to predict aerosol behavior by the introduction of coupling analysis with multi-dimensional gas thermo-dynamics for sodium combustion evaluation. (J.P.N.)

  4. On the representation of aerosol activation and its influence on model-derived estimates of the aerosol indirect effect

    Science.gov (United States)

    Rothenberg, Daniel; Avramov, Alexander; Wang, Chien

    2018-06-01

    Interactions between aerosol particles and clouds contribute a great deal of uncertainty to the scientific community's understanding of anthropogenic climate forcing. Aerosol particles serve as the nucleation sites for cloud droplets, establishing a direct linkage between anthropogenic particulate emissions and clouds in the climate system. To resolve this linkage, the community has developed parameterizations of aerosol activation which can be used in global climate models to interactively predict cloud droplet number concentrations (CDNCs). However, different activation schemes can exhibit different sensitivities to aerosol perturbations in different meteorological or pollution regimes. To assess the impact these different sensitivities have on climate forcing, we have coupled three different core activation schemes and variants with the CESM-MARC (two-Moment, Multi-Modal, Mixing-state-resolving Aerosol model for Research of Climate (MARC) coupled with the National Center for Atmospheric Research's (NCAR) Community Earth System Model (CESM; version 1.2)). Although the model produces a reasonable present-day CDNC climatology when compared with observations regardless of the scheme used, ΔCDNCs between the present and preindustrial era regionally increase by over 100 % in zonal mean when using the most sensitive parameterization. These differences in activation sensitivity may lead to a different evolution of the model meteorology, and ultimately to a spread of over 0.8 W m-2 in global average shortwave indirect effect (AIE) diagnosed from the model, a range which is as large as the inter-model spread from the AeroCom intercomparison. Model-derived AIE strongly scales with the simulated preindustrial CDNC burden, and those models with the greatest preindustrial CDNC tend to have the smallest AIE, regardless of their ΔCDNC. This suggests that present-day evaluations of aerosol-climate models may not provide useful constraints on the magnitude of the AIE, which

  5. Cloud-Resolving Model Simulations of Aerosol-Cloud Interactions Triggered by Strong Aerosol Emissions in the Arctic

    Science.gov (United States)

    Wang, H.; Kravitz, B.; Rasch, P. J.; Morrison, H.; Solomon, A.

    2014-12-01

    Previous process-oriented modeling studies have highlighted the dependence of effectiveness of cloud brightening by aerosols on cloud regimes in warm marine boundary layer. Cloud microphysical processes in clouds that contain ice, and hence the mechanisms that drive aerosol-cloud interactions, are more complicated than in warm clouds. Interactions between ice particles and liquid drops add additional levels of complexity to aerosol effects. A cloud-resolving model is used to study aerosol-cloud interactions in the Arctic triggered by strong aerosol emissions, through either geoengineering injection or concentrated sources such as shipping and fires. An updated cloud microphysical scheme with prognostic aerosol and cloud particle numbers is employed. Model simulations are performed in pure super-cooled liquid and mixed-phase clouds, separately, with or without an injection of aerosols into either a clean or a more polluted Arctic boundary layer. Vertical mixing and cloud scavenging of particles injected from the surface is still quite efficient in the less turbulent cold environment. Overall, the injection of aerosols into the Arctic boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. The pure liquid clouds are more susceptible to the increase in aerosol number concentration than the mixed-phase clouds. Rain production processes are more effectively suppressed by aerosol injection, whereas ice precipitation (snow) is affected less; thus the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. Aerosol injection into a clean boundary layer results in a greater cloud albedo increase than injection into a polluted one, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, the impact of dynamical feedback due to precipitation changes is small. According to these results, which are dependent upon the representation of ice nucleation

  6. Linking Aerosol Optical Properties Between Laboratory, Field, and Model Studies

    Science.gov (United States)

    Murphy, S. M.; Pokhrel, R. P.; Foster, K. A.; Brown, H.; Liu, X.

    2017-12-01

    The optical properties of aerosol emissions from biomass burning have a significant impact on the Earth's radiative balance. Based on measurements made during the Fourth Fire Lab in Missoula Experiment, our group published a series of parameterizations that related optical properties (single scattering albedo and absorption due to brown carbon at multiple wavelengths) to the elemental to total carbon ratio of aerosols emitted from biomass burning. In this presentation, the ability of these parameterizations to simulate the optical properties of ambient aerosol is assessed using observations collected in 2017 from our mobile laboratory chasing wildfires in the Western United States. The ambient data includes measurements of multi-wavelength absorption, scattering, and extinction, size distribution, chemical composition, and volatility. In addition to testing the laboratory parameterizations, this combination of measurements allows us to assess the ability of core-shell Mie Theory to replicate observations and to assess the impact of brown carbon and mixing state on optical properties. Finally, both laboratory and ambient data are compared to the optical properties generated by a prominent climate model (Community Earth System Model (CESM) coupled with the Community Atmosphere Model (CAM 5)). The discrepancies between lab observations, ambient observations and model output will be discussed.

  7. Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling

    Directory of Open Access Journals (Sweden)

    T. S. Bates

    2006-01-01

    Full Text Available The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar radiation by anthropogenic aerosols in cloud-free conditions (IPCC, 2001. Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean (NIO during INDOEX, the Northwest Pacific Ocean (NWP during ACE-Asia, and the Northwest Atlantic Ocean (NWA during ICARTT, incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART. Measurements of burdens, extinction optical depth (AOD, and direct radiative effect of aerosols (DRE – change in radiative flux due to total aerosols are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity are used as input parameters to two radiative transfer models (GFDL and University of Michigan to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Constraining the radiative

  8. Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two-Column Aerosol Project

    Energy Technology Data Exchange (ETDEWEB)

    Fast, Jerome D.; Berg, Larry K.; Zhang, Kai; Easter, Richard C.; Ferrare, Richard A.; Hair, John; Hostetler, Chris A.; Liu, Ying; Ortega, Ivan; Sedlacek, Art; Shilling, John E.; Shrivastava, ManishKumar B.; Springston, Stephen R.; Tomlinson, Jason M.; Volkamer, Rainer M.; Wilson, Jacqueline M.; Zaveri, Rahul A.; Zelenyuk-Imre, Alla

    2016-08-22

    The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy’s Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surface measurements during July, and two days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. While a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.

  9. Modeling organic aerosol concentrations and properties during winter 2014 in the northwestern Mediterranean region

    OpenAIRE

    Chrit, Mounir; Sartelet, Karine; Sciare, Jean; Majdi, Marwa; Nicolas, José; Petit, Jean-Eudes; Dulac, François

    2018-01-01

    Organic aerosols are measured at a remote site (Ersa) on Corsica Cape in the northwestern Mediterranean basin during the Chemistry-Aerosol Mediterranean Experiment (CharMEx) winter campaign of 2014, when high organic concentrations from anthropogenic origin are observed. This work aims at representing the observed organic aerosol concentrations and properties (oxidation state) using the air-quality model Polyphemus with a surrogate approach for secondary organic aerosol (SOA) formation. Becau...

  10. Several thoughts for using new satellite remote sensing and global modeling for aerosol and cloud climate studies

    Science.gov (United States)

    Nakajima, Teruyuki; Hashimoto, Makiko; Takenaka, Hideaki; Goto, Daisuke; Oikawa, Eiji; Suzuki, Kentaroh; Uchida, Junya; Dai, Tie; Shi, Chong

    2017-04-01

    The rapid growth of satellite remote sensing technologies in the last two decades widened the utility of satellite data for understanding climate impacts of aerosols and clouds. The climate modeling community also has received the benefit of the earth observation and nowadays closed-collaboration of the two communities make us possible to challenge various applications for societal problems, such as for global warming and global-scale air pollution and others. I like to give several thoughts of new algorithm developments, model use of satellite data for climate impact studies and societal applications related with aerosols and clouds. Important issues are 1) Better aerosol detection and solar energy application using expanded observation ability of the third generation geostationary satellites, i.e. Himawari-8, GOES-R and future MTG, 2) Various observation functions by directional, polarimetric, and high resolution near-UV band by MISR, POLDER&PARASOL, GOSAT/CAI and future GOSAT2/CAI2, 3) Various applications of general purpose-imagers, MODIS, VIIRS and future GCOM-C/SGLI, and 4) Climate studies of aerosol and cloud stratification and convection with active and passive sensors, especially climate impact of BC aerosols using CLOUDSAT&CALIPSO and future Earth Explorer/EarthCARE.

  11. Modeling of pollution aerosols in Ile-de-France; Modelisation des aerosols de pollution en Ile-de-France

    Energy Technology Data Exchange (ETDEWEB)

    Hodzic, A

    2005-10-15

    The modeling of aerosols is a major stake in the understanding of the emission processes and evolution of particulates in the atmosphere. However, the parameterizations used in today's aerosol models still comprise many uncertainties. This work has been motivated by the need of better identifying the weaknesses of aerosols modeling tools and by the necessity of having new validation methods for a 3D evaluation of models. The studies have been carried out using the CHIMERE chemistry-transport model, which allows to simulate the concentrations and physico-chemical characteristics of pollution aerosols at the European scale and in Ile-de-France region. The validation approach used is based on the complementarity of the measurements performed on the ground by monitoring networks with those acquired during the ESQUIF campaign (study and simulation of air quality in Ile-de-France), with lidar and photometric measurements and with satellite observations. The comparison between the observations and the simulations has permitted to identify and reduce the modeling errors, and to characterize the aerosol properties in the vicinity of an urban area. (J.S.)

  12. Modeling of pollution aerosols in Ile-de-France; Modelisation des aerosols de pollution en Ile-de-France

    Energy Technology Data Exchange (ETDEWEB)

    Hodzic, A

    2005-10-15

    The modeling of aerosols is a major stake in the understanding of the emission processes and evolution of particulates in the atmosphere. However, the parameterizations used in today's aerosol models still comprise many uncertainties. This work has been motivated by the need of better identifying the weaknesses of aerosols modeling tools and by the necessity of having new validation methods for a 3D evaluation of models. The studies have been carried out using the CHIMERE chemistry-transport model, which allows to simulate the concentrations and physico-chemical characteristics of pollution aerosols at the European scale and in Ile-de-France region. The validation approach used is based on the complementarity of the measurements performed on the ground by monitoring networks with those acquired during the ESQUIF campaign (study and simulation of air quality in Ile-de-France), with lidar and photometric measurements and with satellite observations. The comparison between the observations and the simulations has permitted to identify and reduce the modeling errors, and to characterize the aerosol properties in the vicinity of an urban area. (J.S.)

  13. A simplified model of aerosol removal by containment sprays

    Energy Technology Data Exchange (ETDEWEB)

    Powers, D.A. (Sandia National Labs., Albuquerque, NM (United States)); Burson, S.B. (Nuclear Regulatory Commission, Washington, DC (United States). Div. of Safety Issue Resolution)

    1993-06-01

    Spray systems in nuclear reactor containments are described. The scrubbing of aerosols from containment atmospheres by spray droplets is discussed. Uncertainties are identified in the prediction of spray performance when the sprays are used as a means for decontaminating containment atmospheres. A mechanistic model based on current knowledge of the physical phenomena involved in spray performance is developed. With this model, a quantitative uncertainty analysis of spray performance is conducted using a Monte Carlo method to sample 20 uncertain quantities related to phenomena of spray droplet behavior as well as the initial and boundary conditions expected to be associated with severe reactor accidents. Results of the uncertainty analysis are used to construct simplified expressions for spray decontamination coefficients. Two variables that affect aerosol capture by water droplets are not treated as uncertain; they are (1) [open quote]Q[close quote], spray water flux into the containment, and (2) [open quote]H[close quote], the total fall distance of spray droplets. The choice of values of these variables is left to the user since they are plant and accident specific. Also, they can usually be ascertained with some degree of certainty. The spray decontamination coefficients are found to be sufficiently dependent on the extent of decontamination that the fraction of the initial aerosol remaining in the atmosphere, m[sub f], is explicitly treated in the simplified expressions. The simplified expressions for the spray decontamination coefficient are given. Parametric values for these expressions are found for median, 10 percentile, and 90 percentile values in the uncertainty distribution for the spray decontamination coefficient. Examples are given to illustrate the utility of the simplified expressions to predict spray decontamination of an aerosol-laden atmosphere.

  14. Evaluation of simulated aerosol properties with the aerosol-climate model ECHAM5-HAM using observations from the IMPACT field campaign

    NARCIS (Netherlands)

    Roelofs, G.-J.; Brink, H. ten; Kiendler-Scharr, A.; Leeuw, G. de; Mensah, A.; Minikin, A.; Otjes, R.

    2010-01-01

    In May 2008, the measurement campaign IMPACT for observation of atmospheric aerosol and cloud properties was conducted in Cabauw, The Netherlands. With a nudged version of the coupled aerosol-climate model ECHAM5-HAM we simulate the size distribution and chemical composition of the aerosol and the

  15. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia during the last decade.

    Science.gov (United States)

    O'Sullivan, Michael; Rap, Alex; Reddington, Carly; Spracklen, Dominick; Buermann, Wolfgang

    2016-04-01

    The global terrestrial carbon sink has increased since the start of this century at a time of rapidly growing carbon dioxide emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning have increased the diffuse fraction of incoming solar radiation and the efficiency of photosynthesis leading to increased plant carbon uptake. Using a combination of atmospheric and biospheric models, we find that changes in diffuse light associated with fossil fuel aerosol emission accounts for only 2.8% of the increase in global net primary production (1.221 PgC/yr) over the study period 1998 to 2007. This relatively small global signal is however a result of large regional compensations. Over East Asia, the strong increase in fossil fuel emissions contributed nearly 70% of the increased plant carbon uptake (21 TgC/yr), whereas the declining fossil fuel aerosol emissions in Europe and North America contributed negatively (-16% and -54%, respectively) to increased plant carbon uptake. At global scale, we also find the CO2 fertilization effect on photosynthesis to be the dominant driver of increased plant carbon uptake, in line with previous studies. These results suggest that further research into alternative mechanisms by which fossil fuel emissions could increase carbon uptake, such as nitrogen deposition and carbon-nitrogen interactions, is required to better understand a potential link between the recent changes in fossil fuel emissions and terrestrial carbon uptake.

  16. Modelling of primary aerosols in the chemical transport model MOCAGE: development and evaluation of aerosol physical parameterizations

    Directory of Open Access Journals (Sweden)

    B. Sič

    2015-02-01

    Full Text Available This paper deals with recent improvements to the global chemical transport model of Météo-France MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle that consists of updates to different aerosol parameterizations. MOCAGE only contains primary aerosol species: desert dust, sea salt, black carbon, organic carbon, and also volcanic ash in the case of large volcanic eruptions. We introduced important changes to the aerosol parameterization concerning emissions, wet deposition and sedimentation. For the emissions, size distribution and wind calculations are modified for desert dust aerosols, and a surface sea temperature dependant source function is introduced for sea salt aerosols. Wet deposition is modified toward a more physically realistic representation by introducing re-evaporation of falling rain and snowfall scavenging and by changing the in-cloud scavenging scheme along with calculations of precipitation cloud cover and rain properties. The sedimentation scheme update includes changes regarding the stability and viscosity calculations. Independent data from satellites (MODIS, SEVIRI, the ground (AERONET, EMEP, and a model inter-comparison project (AeroCom are compared with MOCAGE simulations and show that the introduced changes brought a significant improvement on aerosol representation, properties and global distribution. Emitted quantities of desert dust and sea salt, as well their lifetimes, moved closer towards values of AeroCom estimates and the multi-model average. When comparing the model simulations with MODIS aerosol optical depth (AOD observations over the oceans, the updated model configuration shows a decrease in the modified normalized mean bias (MNMB; from 0.42 to 0.10 and a better correlation (from 0.06 to 0.32 in terms of the geographical distribution and the temporal variability. The updates corrected a strong positive MNMB in the sea salt representation at high latitudes (from 0.65 to 0.16, and a negative MNMB in

  17. Multi-sensor cloud and aerosol retrieval simulator and remote sensing from model parameters - Part 2: Aerosols

    Science.gov (United States)

    Wind, Galina; da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-07-01

    The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a "simulated radiance" product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land-ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers.This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled.In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model subgrid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to

  18. Multi-Sensor Cloud and Aerosol Retrieval Simulator and Remote Sensing from Model Parameters . Part 2; Aerosols

    Science.gov (United States)

    Wind, Galina; Da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-01-01

    The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a simulated radiance product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers. This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled. In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model sub grid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to

  19. Modeling of secondary organic aerosol yields from laboratory chamber data

    Directory of Open Access Journals (Sweden)

    M. N. Chan

    2009-08-01

    Full Text Available Laboratory chamber data serve as the basis for constraining models of secondary organic aerosol (SOA formation. Current models fall into three categories: empirical two-product (Odum, product-specific, and volatility basis set. The product-specific and volatility basis set models are applied here to represent laboratory data on the ozonolysis of α-pinene under dry, dark, and low-NOx conditions in the presence of ammonium sulfate seed aerosol. Using five major identified products, the model is fit to the chamber data. From the optimal fitting, SOA oxygen-to-carbon (O/C and hydrogen-to-carbon (H/C ratios are modeled. The discrepancy between measured H/C ratios and those based on the oxidation products used in the model fitting suggests the potential importance of particle-phase reactions. Data fitting is also carried out using the volatility basis set, wherein oxidation products are parsed into volatility bins. The product-specific model is most likely hindered by lack of explicit inclusion of particle-phase accretion compounds. While prospects for identification of the majority of SOA products for major volatile organic compounds (VOCs classes remain promising, for the near future empirical product or volatility basis set models remain the approaches of choice.

  20. Collaborative Research. Separating Forced and Unforced Decadal Predictability in Models and Observations

    Energy Technology Data Exchange (ETDEWEB)

    DelSole, Timothy [George Mason Univ., Fairfax, VA (United States)

    2015-08-31

    The purpose of the proposed research was to identify unforced predictable components on decadal time scales, distinguish these components from forced predictable components, and to assess the reliability of model predictions of these components. The question of whether anthropogenic forcing changes decadal predictability, or gives rise to new forms of decadal predictability, also will be

  1. An investigation of the sub-grid variability of trace gases and aerosols for global climate modeling

    Directory of Open Access Journals (Sweden)

    Y. Qian

    2010-07-01

    Full Text Available One fundamental property and limitation of grid based models is their inability to identify spatial details smaller than the grid cell size. While decades of work have gone into developing sub-grid treatments for clouds and land surface processes in climate models, the quantitative understanding of sub-grid processes and variability for aerosols and their precursors is much poorer. In this study, WRF-Chem is used to simulate the trace gases and aerosols over central Mexico during the 2006 MILAGRO field campaign, with multiple spatial resolutions and emission/terrain scenarios. Our analysis focuses on quantifying the sub-grid variability (SGV of trace gases and aerosols within a typical global climate model grid cell, i.e. 75×75 km2.

    Our results suggest that a simulation with 3-km horizontal grid spacing adequately reproduces the overall transport and mixing of trace gases and aerosols downwind of Mexico City, while 75-km horizontal grid spacing is insufficient to represent local emission and terrain-induced flows along the mountain ridge, subsequently affecting the transport and mixing of plumes from nearby sources. Therefore, the coarse model grid cell average may not correctly represent aerosol properties measured over polluted areas. Probability density functions (PDFs for trace gases and aerosols show that secondary trace gases and aerosols, such as O3, sulfate, ammonium, and nitrate, are more likely to have a relatively uniform probability distribution (i.e. smaller SGV over a narrow range of concentration values. Mostly inert and long-lived trace gases and aerosols, such as CO and BC, are more likely to have broad and skewed distributions (i.e. larger SGV over polluted regions. Over remote areas, all trace gases and aerosols are more uniformly distributed compared to polluted areas. Both CO and O3 SGV vertical profiles are nearly constant within the PBL during daytime, indicating that trace gases

  2. Trend of surface solar radiation over Asia simulated by aerosol transport-climate model

    Science.gov (United States)

    Takemura, T.; Ohmura, A.

    2009-12-01

    Long-term records of surface radiation measurements indicate a decrease in the solar radiation between the 1950s and 1980s (“global dimming”), then its recovery afterward (“global brightening”) at many locations all over the globe [Wild, 2009]. On the other hand, the global brightening is delayed over the Asian region [Ohmura, 2009]. It is suggested that these trends of the global dimming and brightening are strongly related with a change in aerosol loading in the atmosphere which affect the climate change through the direct, semi-direct, and indirect effects. In this study, causes of the trend of the surface solar radiation over Asia during last several decades are analyzed with an aerosol transport-climate model, SPRINTARS. SPRINTARS is coupled with MIROC which is a general circulation model (GCM) developed by Center for Climate System Research (CCSR)/University of Tokyo, National Institute for Environmental Studies (NIES), and Frontier Research Center for Global Change (FRCGC) [Takemura et al., 2000, 2002, 2005, 2009]. The horizontal and vertical resolutions are T106 (approximately 1.1° by 1.1°) and 56 layers, respectively. SPRINTARS includes the transport, radiation, cloud, and precipitation processes of all main tropospheric aerosols (black and organic carbons, sulfate, soil dust, and sea salt). The model treats not only the aerosol mass mixing ratios but also the cloud droplet and ice crystal number concentrations as prognostic variables, and the nucleation processes of cloud droplets and ice crystals depend on the number concentrations of each aerosol species. Changes in the cloud droplet and ice crystal number concentrations affect the cloud radiation and precipitation processes in the model. Historical emissions, that is consumption of fossil fuel and biofuel, biomass burning, aircraft emissions, and volcanic eruptions are prescribed from database provided by the Aerosol Model Intercomparison Project (AeroCom) and the latest IPCC inventories

  3. A numerical model of aerosol scavenging

    International Nuclear Information System (INIS)

    Bradley, M.M.; Molenkamp, C.R.

    1991-10-01

    Using a three-dimensional numerical cloud/smoke-plume model, we have simulated the burning of a large, mid-latitude city following a nuclear exchange. The model includes 18 dynamic and microphysical equations that predict the fire-driven airflow, cloud processes, and smoke-cloud interactions. In the simulation, the intense heating from the burning city produces a firestorm with updraft velocities exceeding 60 m/s. Within 15 minutes of ignition, the smoke plume penetrates the tropopause. The updraft triggers a cumulonimbus cloud that produces significant quantities of ice, snow, and hail. These solid hydrometeors, as well as cloud droplets and rain, interact with the smoke particles from the fire. At the end of the one-hour simulation, over 20% of the smoke is in slowly falling snowflakes. If the snow reaches the ground before the flakes completely sublimate (or melt and then evaporate), then only approximately 50% of the smoke will survive the scavenging processes and remain in the atmosphere to affect the global climate

  4. Modeling organic aerosols during MILAGRO: importance of biogenic secondary organic aerosols

    Directory of Open Access Journals (Sweden)

    A. Hodzic

    2009-09-01

    Full Text Available The meso-scale chemistry-transport model CHIMERE is used to assess our understanding of major sources and formation processes leading to a fairly large amount of organic aerosols – OA, including primary OA (POA and secondary OA (SOA – observed in Mexico City during the MILAGRO field project (March 2006. Chemical analyses of submicron aerosols from aerosol mass spectrometers (AMS indicate that organic particles found in the Mexico City basin contain a large fraction of oxygenated organic species (OOA which have strong correspondence with SOA, and that their production actively continues downwind of the city. The SOA formation is modeled here by the one-step oxidation of anthropogenic (i.e. aromatics, alkanes, biogenic (i.e. monoterpenes and isoprene, and biomass-burning SOA precursors and their partitioning into both organic and aqueous phases. Conservative assumptions are made for uncertain parameters to maximize the amount of SOA produced by the model. The near-surface model evaluation shows that predicted OA correlates reasonably well with measurements during the campaign, however it remains a factor of 2 lower than the measured total OA. Fairly good agreement is found between predicted and observed POA within the city suggesting that anthropogenic and biomass burning emissions are reasonably captured. Consistent with previous studies in Mexico City, large discrepancies are encountered for SOA, with a factor of 2–10 model underestimate. When only anthropogenic SOA precursors were considered, the model was able to reproduce within a factor of two the sharp increase in OOA concentrations during the late morning at both urban and near-urban locations but the discrepancy increases rapidly later in the day, consistent with previous results, and is especially obvious when the column-integrated SOA mass is considered instead of the surface concentration. The increase in the missing SOA mass in the afternoon coincides with the sharp drop in POA

  5. A multi-model evaluation of aerosols over South Asia: common problems and possible causes

    Science.gov (United States)

    Pan, X.; Chin, M.; Gautam, R.; Bian, H.; Kim, D.; Colarco, P. R.; Diehl, T. L.; Takemura, T.; Pozzoli, L.; Tsigaridis, K.; Bauer, S.; Bellouin, N.

    2015-05-01

    Atmospheric pollution over South Asia attracts special attention due to its effects on regional climate, water cycle and human health. These effects are potentially growing owing to rising trends of anthropogenic aerosol emissions. In this study, the spatio-temporal aerosol distributions over South Asia from seven global aerosol models are evaluated against aerosol retrievals from NASA satellite sensors and ground-based measurements for the period of 2000-2007. Overall, substantial underestimations of aerosol loading over South Asia are found systematically in most model simulations. Averaged over the entire South Asia, the annual mean aerosol optical depth (AOD) is underestimated by a range 15 to 44% across models compared to MISR (Multi-angle Imaging SpectroRadiometer), which is the lowest bound among various satellite AOD retrievals (from MISR, SeaWiFS (Sea-Viewing Wide Field-of-View Sensor), MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua and Terra). In particular during the post-monsoon and wintertime periods (i.e., October-January), when agricultural waste burning and anthropogenic emissions dominate, models fail to capture AOD and aerosol absorption optical depth (AAOD) over the Indo-Gangetic Plain (IGP) compared to ground-based Aerosol Robotic Network (AERONET) sunphotometer measurements. The underestimations of aerosol loading in models generally occur in the lower troposphere (below 2 km) based on the comparisons of aerosol extinction profiles calculated by the models with those from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data. Furthermore, surface concentrations of all aerosol components (sulfate, nitrate, organic aerosol (OA) and black carbon (BC)) from the models are found much lower than in situ measurements in winter. Several possible causes for these common problems of underestimating aerosols in models during the post-monsoon and wintertime periods are identified: the aerosol hygroscopic growth and formation of

  6. Aerosol data assimilation in the chemical transport model MOCAGE during the TRAQA/ChArMEx campaign: aerosol optical depth

    Science.gov (United States)

    Sič, Bojan; El Amraoui, Laaziz; Piacentini, Andrea; Marécal, Virginie; Emili, Emanuele; Cariolle, Daniel; Prather, Michael; Attié, Jean-Luc

    2016-11-01

    In this study, we describe the development of the aerosol optical depth (AOD) assimilation module in the chemistry transport model (CTM) MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle). Our goal is to assimilate the spatially averaged 2-D column AOD data from the National Aeronautics and Space Administration (NASA) Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, and to estimate improvements in a 3-D CTM assimilation run compared to a direct model run. Our assimilation system uses 3-D-FGAT (first guess at appropriate time) as an assimilation method and the total 3-D aerosol concentration as a control variable. In order to have an extensive validation dataset, we carried out our experiment in the northern summer of 2012 when the pre-ChArMEx (CHemistry and AeRosol MEditerranean EXperiment) field campaign TRAQA (TRAnsport à longue distance et Qualité de l'Air dans le bassin méditerranéen) took place in the western Mediterranean basin. The assimilated model run is evaluated independently against a range of aerosol properties (2-D and 3-D) measured by in situ instruments (the TRAQA size-resolved balloon and aircraft measurements), the satellite Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instrument and ground-based instruments from the Aerosol Robotic Network (AERONET) network. The evaluation demonstrates that the AOD assimilation greatly improves aerosol representation in the model. For example, the comparison of the direct and the assimilated model run with AERONET data shows that the assimilation increased the correlation (from 0.74 to 0.88), and reduced the bias (from 0.050 to 0.006) and the root mean square error in the AOD (from 0.12 to 0.07). When compared to the 3-D concentration data obtained by the in situ aircraft and balloon measurements, the assimilation consistently improves the model output. The best results as expected occur when the shape of the vertical profile is correctly simulated by the direct model. We

  7. Regional modeling of carbonaceous aerosols over Europe-focus on secondary organic aerosols

    International Nuclear Information System (INIS)

    Bessagnet, B.; Menut, L.; Curci, G.; Hodzic, A.; Guillaume, B.; Liousse, C.; Moukhtar, S.; Pun, B.; Seigneur, C.; Schulz, M.

    2008-01-01

    In this study, an improved and complete secondary organic aerosols (SOA) chemistry scheme was implemented in the CHIMERE model. The implementation of isoprene chemistry for SOA significantly improves agreement between long series of simulated and observed particulate matter concentrations. While simulated organic carbon concentrations are clearly improved at elevated sites by adding the SOA scheme, time correlation are impaired at low level sites in Portugal, Italy and Slovakia. At several sites a clear underestimation by the CHIMERE model is noticed in wintertime possibly due to missing wood burning emissions as shown in previous modeling studies. In Europe, the CHIMERE model gives yearly average SOA concentrations ranging from 0.5 μg m -3 in the Northern Europe to 4 μg m -3 over forested regions in Spain, France, Germany and Italy. In addition, our work suggests that during the highest fire emission periods, fires can be the dominant source of primary organic carbon over the Mediterranean Basin, but the SOA contribution from fire emissions is low. Isoprene chemistry has a strong impact on SOA formation when using current available kinetic schemes. (authors)

  8. Regional modeling of carbonaceous aerosols over Europe-focus on secondary organic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Bessagnet, B. [INERIS, Inst Nat Env Indust Risques, F-60550 Verneuil en Halatte, (France); Menut, L. [Ecole Poltechnique, Inst Pierre Simon Laplace, Lab Meteorol Dyn, F-91128 Palaiseau, (France); Curci, G. [Univ degli Studi dell' Aquila, CETEMPS, 67010 Coppito - L' Aquila, (Italy); Hodzic, A. [NCAR, Nat Center for Atmosph Research, Boulder, 80301, CO, (United States); Guillaume, B.; Liousse, C. [LA/OMP, Lab Aerol/Observ Midi-Pyrenees, F-31400 Toulouse, (France); Moukhtar, S. [York Univ, Centre Atmosph Chem, Toronto, (Italy); Pun, B.; Seigneur, C. [Atmosph and Environ Research, San Ramon, CA 94583, (United States); Schulz, M. [CEA-CNRS-UVSQ, IPSL, Lab Sciences Climat et Environm, F-91191 Gif sur Yvette, (France)

    2008-07-01

    In this study, an improved and complete secondary organic aerosols (SOA) chemistry scheme was implemented in the CHIMERE model. The implementation of isoprene chemistry for SOA significantly improves agreement between long series of simulated and observed particulate matter concentrations. While simulated organic carbon concentrations are clearly improved at elevated sites by adding the SOA scheme, time correlation are impaired at low level sites in Portugal, Italy and Slovakia. At several sites a clear underestimation by the CHIMERE model is noticed in wintertime possibly due to missing wood burning emissions as shown in previous modeling studies. In Europe, the CHIMERE model gives yearly average SOA concentrations ranging from 0.5 {mu}g m{sup -3} in the Northern Europe to 4 {mu}g m{sup -3} over forested regions in Spain, France, Germany and Italy. In addition, our work suggests that during the highest fire emission periods, fires can be the dominant source of primary organic carbon over the Mediterranean Basin, but the SOA contribution from fire emissions is low. Isoprene chemistry has a strong impact on SOA formation when using current available kinetic schemes. (authors)

  9. More than two decades of Apc modeling in rodents

    Science.gov (United States)

    Zeineldin, Maged; Neufeld, Kristi L.

    2013-01-01

    Mutation of tumor suppressor gene Adenomatous polyposis coli (APC) is an initiating step in most colon cancers. This review summarizes Apc models in mice and rats, with particular concentration on those most recently developed, phenotypic variation among different models, and genotype/ phenotype correlations. PMID:23333833

  10. A new inorganic atmospheric aerosol phase equilibrium model (UHAERO

    Directory of Open Access Journals (Sweden)

    N. R. Amundson

    2006-01-01

    Full Text Available A variety of thermodynamic models have been developed to predict inorganic gas-aerosol equilibrium. To achieve computational efficiency a number of the models rely on a priori specification of the phases present in certain relative humidity regimes. Presented here is a new computational model, named UHAERO, that is both efficient and rigorously computes phase behavior without any a priori specification. The computational implementation is based on minimization of the Gibbs free energy using a primal-dual method, coupled to a Newton iteration. The mathematical details of the solution are given elsewhere. The model computes deliquescence behavior without any a priori specification of the relative humidities of deliquescence. Also included in the model is a formulation based on classical theory of nucleation kinetics that predicts crystallization behavior. Detailed phase diagrams of the sulfate/nitrate/ammonium/water system are presented as a function of relative humidity at 298.15 K over the complete space of composition.

  11. A detailed aerosol mixing state model for investigating interactions between mixing state, semivolatile partitioning, and coagulation

    OpenAIRE

    J. Lu; F. M. Bowman

    2010-01-01

    A new method for describing externally mixed particles, the Detailed Aerosol Mixing State (DAMS) representation, is presented in this study. This novel method classifies aerosols by both composition and size, using a user-specified mixing criterion to define boundaries between compositional populations. Interactions between aerosol mixing state, semivolatile partitioning, and coagulation are investigated with a Lagrangian box model that incorporates the DAMS approach. Model results predict th...

  12. Aerosol Infection Model of Tuberculosis in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Sheshagiri Gaonkar

    2010-01-01

    Full Text Available We explored suitability of a rat tuberculosis aerosol infection model for investigating the pharmacodynamics of new antimycobacterial agents. Infection of rats via the aerosol route led to a reproducible course of M. tuberculosis infection in the lungs. The pulmonary bacterial load increased logarithmically during the first six weeks, thereafter, the infection stabilized for the next 12 weeks. We observed macroscopically visible granulomas in the lungs with demonstrable acid-fast bacilli and associated histopathology. Rifampicin (RIF at a dose range of 30 to 270 mg/kg exhibited a sharp dose response while isoniazid (INH at a dose range of 10 to 90 mg/kg and ethambutol (EMB at 100 to 1000 mg/kg showed shallow dose responses. Pyrazinamide (PZA had no dose response between 300 and 1000 mg/kg dose range. In a separate time kill study at fixed drug doses (RIF 90 mg/kg, INH 30 mg/kg, EMB 300 mg/kg, and PZA 300 mg/kg the bactericidal effect of all the four drugs increased with longer duration of treatment from two weeks to four weeks. The observed infection profile and therapeutic outcomes in this rat model suggest that it can be used as an additional, pharmacologically relevant efficacy model to develop novel antitubercular compounds at the interface of discovery and development.

  13. The role of aerosols in cloud drop parameterizations and its applications in global climate models

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, C.C.; Penner, J.E. [Lawrence Livermore National Lab., CA (United States)

    1996-04-01

    The characteristics of the cloud drop size distribution near cloud base are initially determined by aerosols that serve as cloud condensation nuclei and the updraft velocity. We have developed parameterizations relating cloud drop number concentration to aerosol number and sulfate mass concentrations and used them in a coupled global aerosol/general circulation model (GCM) to estimate the indirect aerosol forcing. The global aerosol model made use of our detailed emissions inventories for the amount of particulate matter from biomass burning sources and from fossil fuel sources as well as emissions inventories of the gas-phase anthropogenic SO{sub 2}. This work is aimed at validating the coupled model with the Atmospheric Radiation Measurement (ARM) Program measurements and assessing the possible magnitude of the aerosol-induced cloud effects on climate.

  14. Distributions and climate effects of atmospheric aerosols from the preindustrial era to 2100 along Representative Concentration Pathways (RCPs simulated using the global aerosol model SPRINTARS

    Directory of Open Access Journals (Sweden)

    T. Takemura

    2012-12-01

    Full Text Available Global distributions and associated climate effects of atmospheric aerosols were simulated using a global aerosol climate model, SPRINTARS, from 1850 to the present day and projected forward to 2100. Aerosol emission inventories used by the Coupled Model Intercomparison Project Phase 5 (CMIP5 were applied to this study. Scenarios based on the Representative Concentration Pathways (RCPs were used for the future projection. Aerosol loading in the atmosphere has already peaked and is now reducing in Europe and North America. However, in Asia where rapid economic growth is ongoing, aerosol loading is estimated to reach a maximum in the first half of this century. Atmospheric aerosols originating from the burning of biomass have maintained high loadings throughout the 21st century in Africa, according to the RCPs. Evolution of the adjusted forcing by direct and indirect aerosol effects over time generally correspond to the aerosol loading. The probable future pathways of global mean forcing differ based on the aerosol direct effect for different RCPs. Because aerosol forcing will be close to the preindustrial level by the end of the 21st century for all RCPs despite the continuous increases in greenhouse gases, global warming will be accelerated with reduced aerosol negative forcing.

  15. Modeling Rabbit Responses to Single and Multiple Aerosol ...

    Science.gov (United States)

    Journal Article Survival models are developed here to predict response and time-to-response for mortality in rabbits following exposures to single or multiple aerosol doses of Bacillus anthracis spores. Hazard function models were developed for a multiple dose dataset to predict the probability of death through specifying dose-response functions and the time between exposure and the time-to-death (TTD). Among the models developed, the best-fitting survival model (baseline model) has an exponential dose-response model with a Weibull TTD distribution. Alternative models assessed employ different underlying dose-response functions and use the assumption that, in a multiple dose scenario, earlier doses affect the hazard functions of each subsequent dose. In addition, published mechanistic models are analyzed and compared with models developed in this paper. None of the alternative models that were assessed provided a statistically significant improvement in fit over the baseline model. The general approach utilizes simple empirical data analysis to develop parsimonious models with limited reliance on mechanistic assumptions. The baseline model predicts TTDs consistent with reported results from three independent high-dose rabbit datasets. More accurate survival models depend upon future development of dose-response datasets specifically designed to assess potential multiple dose effects on response and time-to-response. The process used in this paper to dev

  16. Uncertainty associated with convective wet removal of entrained aerosols in a global climate model

    Directory of Open Access Journals (Sweden)

    B. Croft

    2012-11-01

    Full Text Available The uncertainties associated with the wet removal of aerosols entrained above convective cloud bases are investigated in a global aerosol-climate model (ECHAM5-HAM under a set of limiting assumptions for the wet removal of the entrained aerosols. The limiting assumptions for the wet removal of entrained aerosols are negligible scavenging and vigorous scavenging (either through activation, with size-dependent impaction scavenging, or with the prescribed fractions of the standard model. To facilitate this process-based study, an explicit representation of cloud-droplet-borne and ice-crystal-borne aerosol mass and number, for the purpose of wet removal, is introduced into the ECHAM5-HAM model. This replaces and is compared with the prescribed cloud-droplet-borne and ice-crystal-borne aerosol fraction scavenging scheme of the standard model.

    A 20% to 35% uncertainty in simulated global, annual mean aerosol mass burdens and optical depth (AOD is attributed to different assumptions for the wet removal of aerosols entrained above convective cloud bases. Assumptions about the removal of aerosols entrained above convective cloud bases control modeled upper tropospheric aerosol concentrations by as much as one order of magnitude.

    Simulated aerosols entrained above convective cloud bases contribute 20% to 50% of modeled global, annual mean aerosol mass convective wet deposition (about 5% to 10% of the total dry and wet deposition, depending on the aerosol species, when including wet scavenging of those entrained aerosols (either by activation, size-dependent impaction, or with the prescribed fraction scheme. Among the simulations, the prescribed fraction and size-dependent impaction schemes yield the largest global, annual mean aerosol mass convective wet deposition (by about two-fold. However, the prescribed fraction scheme has more vigorous convective mixed-phase wet removal (by two to five-fold relative to the size-dependent impaction

  17. Uncertainty associated with convective wet removal of entrained aerosols in a global climate model

    Science.gov (United States)

    Croft, B.; Pierce, J. R.; Martin, R. V.; Hoose, C.; Lohmann, U.

    2012-11-01

    The uncertainties associated with the wet removal of aerosols entrained above convective cloud bases are investigated in a global aerosol-climate model (ECHAM5-HAM) under a set of limiting assumptions for the wet removal of the entrained aerosols. The limiting assumptions for the wet removal of entrained aerosols are negligible scavenging and vigorous scavenging (either through activation, with size-dependent impaction scavenging, or with the prescribed fractions of the standard model). To facilitate this process-based study, an explicit representation of cloud-droplet-borne and ice-crystal-borne aerosol mass and number, for the purpose of wet removal, is introduced into the ECHAM5-HAM model. This replaces and is compared with the prescribed cloud-droplet-borne and ice-crystal-borne aerosol fraction scavenging scheme of the standard model. A 20% to 35% uncertainty in simulated global, annual mean aerosol mass burdens and optical depth (AOD) is attributed to different assumptions for the wet removal of aerosols entrained above convective cloud bases. Assumptions about the removal of aerosols entrained above convective cloud bases control modeled upper tropospheric aerosol concentrations by as much as one order of magnitude. Simulated aerosols entrained above convective cloud bases contribute 20% to 50% of modeled global, annual mean aerosol mass convective wet deposition (about 5% to 10% of the total dry and wet deposition), depending on the aerosol species, when including wet scavenging of those entrained aerosols (either by activation, size-dependent impaction, or with the prescribed fraction scheme). Among the simulations, the prescribed fraction and size-dependent impaction schemes yield the largest global, annual mean aerosol mass convective wet deposition (by about two-fold). However, the prescribed fraction scheme has more vigorous convective mixed-phase wet removal (by two to five-fold relative to the size-dependent impaction scheme) since nearly all

  18. Maritime Aerosol Network as a Component of AERONET - First Results and Comparison with Global Aerosol Models and Satellite Retrievals

    Science.gov (United States)

    Smirnov, A.; Holben, B. N.; Giles, D. M.; Slutsker, I.; O'Neill, N. T.; Eck, T. F.; Macke, A.; Croot, P.; Courcoux, Y.; Sakerin, S. M.; hide

    2011-01-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. Over 80 cruises were completed through early 2010 with deployments continuing. Measurement areas included various parts of the Atlantic Ocean, the Northern and Southern Pacific Ocean, the South Indian Ocean, the Southern Ocean, the Arctic Ocean and inland seas. MAN deploys Microtops handheld sunphotometers and utilizes a calibration procedure and data processing traceable to AERONET. Data collection included areas that previously had no aerosol optical depth (AOD) coverage at all, particularly vast areas of the Southern Ocean. The MAN data archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we present results of AOD measurements over the oceans, and make a comparison with satellite AOD retrievals and model simulations.

  19. Maritime aerosol network as a component of AERONET – first results and comparison with global aerosol models and satellite retrievals

    Directory of Open Access Journals (Sweden)

    A. Smirnov

    2011-03-01

    Full Text Available The Maritime Aerosol Network (MAN has been collecting data over the oceans since November 2006. Over 80 cruises were completed through early 2010 with deployments continuing. Measurement areas included various parts of the Atlantic Ocean, the Northern and Southern Pacific Ocean, the South Indian Ocean, the Southern Ocean, the Arctic Ocean and inland seas. MAN deploys Microtops hand-held sunphotometers and utilizes a calibration procedure and data processing traceable to AERONET. Data collection included areas that previously had no aerosol optical depth (AOD coverage at all, particularly vast areas of the Southern Ocean. The MAN data archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we present results of AOD measurements over the oceans, and make a comparison with satellite AOD retrievals and model simulations.

  20. The theoretical modelling of aerosol behaviour within containment buildings

    International Nuclear Information System (INIS)

    Dunbar, I.H.

    1988-01-01

    The modelling of the deposition of aerosol particles within the containment building plays an important part in determining the effectiveness of the building in reducing releases of activity following accidents. This paper describes attempts to ensure the accuracy of computer codes which model aerosol behaviour, with special reference to the code AEROSIM-M. Code intercomparisons have been used to test the reliability of the coding and the accuracy of the numerical methods. Those codes which assume that the particle size distribution is always lognormal give significantly different results from those which do not make this assumption but instead discretise the range of particle sizes. When the same physical assumptions are made, the predictions of different discrete codes are in reasonable agreement. In comparisons between an earlier version of AEROSIM and sodium fire experiments, the code achieved good agreement on the overall time-scale of deposition. An extensive set of tests of AEROSIM-M against experiments relevant to LWR conditions is underway. (author)

  1. Development of a portable sodium fluorescence aerosol generator model

    CERN Document Server

    LiuQun; Gao Xiao Mei; Jia Ming; Guo Chuang Cheng; Wu Tao; Liu Zhao Feng; Qiu Dan Gui

    2002-01-01

    A portable sodium fluorescence aerosol generator has been developed. It is a key equipment for in-situ testing of HEPA filters using sodium fluorescence method. The structure and technical specifications of the model generator are presented, along with its performance testing methods. The performance comparison result of the model with two French-made generators is also presented. The self-made generator has performances as follows: the average mass generating rate is 32.9 mg/h, mass median diameter of the particles 0.22 mu m and geometric standard deviation 1.58. The filtration efficiency up to 99.99% can be achieved flow-rate of ventilation system is less than 150000 m sup 3 /h. The portable model weight 25 kg, which is convenient for in situ testing

  2. Modeling the Fate of Expiratory Aerosols and the Associated Infection Risk in an Aircraft Cabin Environment

    DEFF Research Database (Denmark)

    Wan, M.P.; To, G.N.S.; Chao, C.Y.H.

    2009-01-01

    to estimate the risk of infection by contact. The environmental control system (ECS) in a cabin creates air circulation mainly in the lateral direction, making lateral dispersions of aerosols much faster than longitudinal dispersions. Aerosols with initial sizes under 28 m in diameter can stay airborne......The transport and deposition of polydispersed expiratory aerosols in an aircraft cabin were simulated using a Lagrangian-based model validated by experiments conducted in an aircraft cabin mockup. Infection risk by inhalation was estimated using the aerosol dispersion data and a model was developed...

  3. A Pure Marine Aerosol Model, for Use in Remote Sensing Applications

    Science.gov (United States)

    Sayer, A. M.; Smirnov, A.; Hsu, N. C.; Holben, B. N.

    2011-01-01

    Retrievals of aerosol optical depth (AOD) and related parameters from satellite measurements typically involve prescribed models of aerosol size and composition, and are therefore dependent on how well these models are able to represent the radiative behaviour of real aerosols, This study uses aerosol volume size distributions retrieved from Sun-photometer measurements at 11 Aerosol Robotic Network (AERONET) island sites, spread throughout the world's oceans, as a basis to define such a model for unpolluted maritime aerosols. Size distributions are observed to be bimodal and approximately lognormal, although the coarse mode is skewed with a long tail on the low-radius end, The relationship of AOD and size distribution parameters to meteorological conditions is also examined, As wind speed increases, so do coarse-mode volume and radius, The AOD and Angstrom exponent (alpha) show linear relationships with wind speed, although there is considerable scatter in all these relationships, limiting their predictive power. Links between aerosol properties and near-surface relative humidity, columnar water vapor, and sea surface temperature are also explored. A recommended bimodal maritime model, which is able to reconstruct the AERONET AOD with accuracy of order 0.01-0.02, is presented for use in aerosol remote sensing applications. This accuracy holds at most sites and for wavelengths between 340 nm and 1020 nm. Calculated lidar ratios are also provided, and differ significantly from those currently used in Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) processing.

  4. Uncertainties in modelling the spatial and temporal variations in aerosol concentrations

    NARCIS (Netherlands)

    Meij, de A.

    2009-01-01

    Aerosols play a key role in air quality (health aspects) and climate. In this thesis atmospheric chemistry transport models are used to study the uncertainties in aerosol modelling and to evaluate the effects of emission reduction scenarios on air quality. Uncertainties in: the emissions of gas and

  5. Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model version 5.0.2

    Data.gov (United States)

    U.S. Environmental Protection Agency — The uploaded data consists of the BRACE Na aerosol observations paired with CMAQ model output, the updated model's parameterization of sea salt aerosol emission size...

  6. Modelled radiative forcing of the direct aerosol effect with multi-observation evaluation

    Directory of Open Access Journals (Sweden)

    G. Myhre

    2009-02-01

    Full Text Available A high-resolution global aerosol model (Oslo CTM2 driven by meteorological data and allowing a comparison with a variety of aerosol observations is used to simulate radiative forcing (RF of the direct aerosol effect. The model simulates all main aerosol components, including several secondary components such as nitrate and secondary organic carbon. The model reproduces the main chemical composition and size features observed during large aerosol campaigns. Although the chemical composition compares best with ground-based measurement over land for modelled sulphate, no systematic differences are found for other compounds. The modelled aerosol optical depth (AOD is compared to remote sensed data from AERONET ground and MODIS and MISR satellite retrievals. To gain confidence in the aerosol modelling, we have tested its ability to reproduce daily variability in the aerosol content, and this is performing well in many regions; however, we also identified some locations where model improvements are needed. The annual mean regional pattern of AOD from the aerosol model is broadly similar to the AERONET and the satellite retrievals (mostly within 10–20%. We notice a significant improvement from MODIS Collection 4 to Collection 5 compared to AERONET data. Satellite derived estimates of aerosol radiative effect over ocean for clear sky conditions differs significantly on regional scales (almost up to a factor two, but also in the global mean. The Oslo CTM2 has an aerosol radiative effect close to the mean of the satellite derived estimates. We derive a radiative forcing (RF of the direct aerosol effect of −0.35 Wm−2 in our base case. Implementation of a simple approach to consider internal black carbon (BC mixture results in a total RF of −0.28 Wm−2. Our results highlight the importance of carbonaceous particles, producing stronger individual RF than considered in the recent IPCC estimate; however, net RF is less different

  7. Experimental and Modeling Studies of Interactions of Marine Aerosols and Clouds

    National Research Council Canada - National Science Library

    Kreidenweis, Sonia

    1995-01-01

    The specific objectives of the modeling component are to develop models of the marine boundary layer, including models that predict cloud formation and evolution and the effects of such processes on the marine aerosol (and vice versa...

  8. Global Climate Models Intercomparison of Anthropogenic Aerosols Effects on Regional Climate over North Pacific

    Science.gov (United States)

    Hu, J.; Zhang, R.; Wang, Y.; Ming, Y.; Lin, Y.; Pan, B.

    2015-12-01

    Aerosols can alter atmospheric radiation and cloud physics, which further exert impacts on weather and global climate. With the development and industrialization of the developing Asian countries, anthropogenic aerosols have received considerable attentions and remain to be the largest uncertainty in the climate projection. Here we assess the performance of two stat-of-art global climate models (National Center for Atmospheric Research-Community Atmosphere Model 5 (CAM5) and Geophysical Fluid Dynamics Laboratory Atmosphere Model 3 (AM3)) in simulating the impacts of anthropogenic aerosols on North Pacific storm track region. By contrasting two aerosol scenarios, i.e. present day (PD) and pre-industrial (PI), both models show aerosol optical depth (AOD) enhanced by about 22%, with CAM5 AOD 40% lower in magnitude due to the long range transport of anthropogenic aerosols. Aerosol effects on the ice water path (IWP), stratiform precipitation, convergence and convection strengths in the two models are distinctive in patterns and magnitudes. AM3 shows qualitatively good agreement with long-term satellite observations, while CAM5 overestimates convection and liquid water path resulting in an underestimation of large-scale precipitation and IWP. Due to coarse resolution and parameterization in convection schemes, both models' performance on convection needs to be improved. Aerosols performance on large-scale circulation and radiative budget are also examined in this study.

  9. BVOC-aerosol-climate interactions in the global aerosol-climate model ECHAM5.5-HAM2

    Directory of Open Access Journals (Sweden)

    R. Makkonen

    2012-11-01

    Full Text Available The biosphere emits volatile organic compounds (BVOCs which, after oxidation in the atmosphere, can partition on the existing aerosol population or even form new particles. The large quantities emitted provide means for a large potential impact on both aerosol direct and indirect effects. Biogenic responses to atmospheric temperature change can establish feedbacks even in rather short timescales. However, due to the complexity of organic aerosol partitioning, even the sign of these feedbacks is of large uncertainty. We use the global aerosol-climate model ECHAM5.5-HAM2 to explore the effect of BVOC emissions on new particle formation, clouds and climate. Two BVOC emission models, MEGAN2 and LPJ-GUESS, are used. MEGAN2 shows a 25% increase while LPJ-GUESS shows a slight decrease in global BVOC emission between years 2000 and 2100. The change of shortwave cloud forcing from year 1750 to 2000 ranges from −1.4 to −1.8 W m−2 with 5 different nucleation mechanisms. We show that the change in shortwave cloud forcing from the year 2000 to 2100 ranges from 1.0 to 1.5 W m−2. Although increasing future BVOC emissions provide 3–5% additional CCN, the effect on the cloud albedo change is modest. Due to simulated decreases in future cloud cover, the increased CCN concentrations from BVOCs can not provide significant additional cooling in the future.

  10. Evaluation of aerosol distributions in the GISS-TOMAS global aerosol microphysics model with remote sensing observations

    Directory of Open Access Journals (Sweden)

    Y. H. Lee

    2010-03-01

    Full Text Available The Aerosol Optical Depth (AOD and Angstrom Coefficient (AC predictions in the GISS-TOMAS model of global aerosol microphysics are evaluated against remote sensing data from MODIS, MISR, and AERONET. The model AOD agrees well (within a factor of two over polluted continental (or high sulfate, dusty, and moderate sea-salt regions but less well over the equatorial, high sea-salt, and biomass burning regions. Underprediction of sea-salt in the equatorial region is likely due to GCM meteorology (low wind speeds and high precipitation. For the Southern Ocean, overprediction of AOD is very likely due to high sea-salt emissions and perhaps aerosol water uptake in the model. However, uncertainties in cloud screening at high latitudes make it difficult to evaluate the model AOD there with the satellite-based AOD. AOD in biomass burning regions is underpredicted, a tendency found in other global models but more severely here. Using measurements from the LBA-SMOCC 2002 campaign, the surface-level OC concentration in the model are found to be underpredicted severely during the dry season while much less severely for EC concentration, suggesting the low AOD in the model is due to underpredictions in OM mass. The potential for errors in emissions and wet deposition to contribute to this bias is discussed.

  11. Evaluating model parameterizations of submicron aerosol scattering and absorption with in situ data from ARCTAS 2008

    Directory of Open Access Journals (Sweden)

    M. J. Alvarado

    2016-07-01

    Full Text Available Accurate modeling of the scattering and absorption of ultraviolet and visible radiation by aerosols is essential for accurate simulations of atmospheric chemistry and climate. Closure studies using in situ measurements of aerosol scattering and absorption can be used to evaluate and improve models of aerosol optical properties without interference from model errors in aerosol emissions, transport, chemistry, or deposition rates. Here we evaluate the ability of four externally mixed, fixed size distribution parameterizations used in global models to simulate submicron aerosol scattering and absorption at three wavelengths using in situ data gathered during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS campaign. The four models are the NASA Global Modeling Initiative (GMI Combo model, GEOS-Chem v9-02, the baseline configuration of a version of GEOS-Chem with online radiative transfer calculations (called GC-RT, and the Optical Properties of Aerosol and Clouds (OPAC v3.1 package. We also use the ARCTAS data to perform the first evaluation of the ability of the Aerosol Simulation Program (ASP v2.1 to simulate submicron aerosol scattering and absorption when in situ data on the aerosol size distribution are used, and examine the impact of different mixing rules for black carbon (BC on the results. We find that the GMI model tends to overestimate submicron scattering and absorption at shorter wavelengths by 10–23 %, and that GMI has smaller absolute mean biases for submicron absorption than OPAC v3.1, GEOS-Chem v9-02, or GC-RT. However, the changes to the density and refractive index of BC in GC-RT improve the simulation of submicron aerosol absorption at all wavelengths relative to GEOS-Chem v9-02. Adding a variable size distribution, as in ASP v2.1, improves model performance for scattering but not for absorption, likely due to the assumption in ASP v2.1 that BC is present at a constant mass

  12. Aerosols at the poles: an AeroCom Phase II multi-model evaluation

    Directory of Open Access Journals (Sweden)

    M. Sand

    2017-10-01

    Full Text Available Atmospheric aerosols from anthropogenic and natural sources reach the polar regions through long-range transport and affect the local radiation balance. Such transport is, however, poorly constrained in present-day global climate models, and few multi-model evaluations of polar anthropogenic aerosol radiative forcing exist. Here we compare the aerosol optical depth (AOD at 550 nm from simulations with 16 global aerosol models from the AeroCom Phase II model intercomparison project with available observations at both poles. We show that the annual mean multi-model median is representative of the observations in Arctic, but that the intermodel spread is large. We also document the geographical distribution and seasonal cycle of the AOD for the individual aerosol species: black carbon (BC from fossil fuel and biomass burning, sulfate, organic aerosols (OAs, dust, and sea-salt. For a subset of models that represent nitrate and secondary organic aerosols (SOAs, we document the role of these aerosols at high latitudes.The seasonal dependence of natural and anthropogenic aerosols differs with natural aerosols peaking in winter (sea-salt and spring (dust, whereas AOD from anthropogenic aerosols peaks in late spring and summer. The models produce a median annual mean AOD of 0.07 in the Arctic (defined here as north of 60° N. The models also predict a noteworthy aerosol transport to the Antarctic (south of 70° S with a resulting AOD varying between 0.01 and 0.02. The models have estimated the shortwave anthropogenic radiative forcing contributions to the direct aerosol effect (DAE associated with BC and OA from fossil fuel and biofuel (FF, sulfate, SOAs, nitrate, and biomass burning from BC and OA emissions combined. The Arctic modelled annual mean DAE is slightly negative (−0.12 W m−2, dominated by a positive BC FF DAE in spring and a negative sulfate DAE in summer. The Antarctic DAE is governed by BC FF. We perform sensitivity

  13. The Advanced Navy Aerosol Model (ANAM) : Validation of small-particle modes

    NARCIS (Netherlands)

    Eijk, A.M.J. van; Kusmierczyk-Michulec, J.T.; Piazzola, J.P.

    2011-01-01

    The image quality of electro-optical sensors in the (lower-altitude marine) atmosphere is limited by aerosols, which cause contrast reduction due to transmission losses and impact on the thermal signature of objects by scattering solar radiation. The Advanced Navy Aerosol Model (ANAM) aims at

  14. A model study of the size and composition distribution of aerosols in an aircraft exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Sorokin, A.A. [SRC `ECOLEN`, Moscow (Russian Federation)

    1997-12-31

    A two-dimensional, axisymmetric flow field model which includes water and sulphate aerosol formation represented by moments of the size and composition distribution function is used to calculate the effect of radial turbulent jet mixing on the aerosol size distribution and mean modal composition. (author) 6 refs.

  15. Representation of aerosol particles and associated transport pathways in regional climate modelling in Africa

    CSIR Research Space (South Africa)

    Garland, Rebecca M

    2016-11-01

    Full Text Available Aerosol particles can have large impacts on air quality and on the climate system. Regional climate models for Africa have not been well-tested and validated for their representation and simulation of aerosol particles. This study aimed to validate...

  16. A model study of the size and composition distribution of aerosols in an aircraft exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Sorokin, A A [SRC ` ECOLEN` , Moscow (Russian Federation)

    1998-12-31

    A two-dimensional, axisymmetric flow field model which includes water and sulphate aerosol formation represented by moments of the size and composition distribution function is used to calculate the effect of radial turbulent jet mixing on the aerosol size distribution and mean modal composition. (author) 6 refs.

  17. Improving the UNC Passive Aerosol Sampler Model Based on Comparison with Commonly Used Aerosol Sampling Methods.

    Science.gov (United States)

    Shirdel, Mariam; Andersson, Britt M; Bergdahl, Ingvar A; Sommar, Johan N; Wingfors, Håkan; Liljelind, Ingrid E

    2018-03-12

    In an occupational environment, passive sampling could be an alternative to active sampling with pumps for sampling of dust. One passive sampler is the University of North Carolina passive aerosol sampler (UNC sampler). It is often analysed by microscopic imaging. Promising results have been shown for particles above 2.5 µm, but indicate large underestimations for PM2.5. The aim of this study was to evaluate, and possibly improve, the UNC sampler for stationary sampling in a working environment. Sampling was carried out at 8-h intervals during 24 h in four locations in an open pit mine with UNC samplers, respirable cyclones, PM10 and PM2.5 impactors, and an aerodynamic particle sizer (APS). The wind was minimal. For quantification, two modifications of the UNC sampler analysis model, UNC sampler with hybrid model and UNC sampler with area factor, were compared with the original one, UNC sampler with mesh factor derived from wind tunnel experiments. The effect of increased resolution for the microscopic imaging was examined. Use of the area factor and a higher resolution eliminated the underestimation for PM10 and PM2.5. The model with area factor had the overall lowest deviation versus the impactor and the cyclone. The intraclass correlation (ICC) showed that the UNC sampler had a higher precision and better ability to distinguish between different exposure levels compared to the cyclone (ICC: 0.51 versus 0.24), but lower precision compared to the impactor (PM10: 0.79 versus 0.99; PM2.5: 0.30 versus 0.45). The particle size distributions as calculated from the different UNC sampler analysis models were visually compared with the distributions determined by APS. The distributions were obviously different when the UNC sampler with mesh factor was used but came to a reasonable agreement when the area factor was used. High resolution combined with a factor based on area only, results in no underestimation of small particles compared to impactors and cyclones and a

  18. Impact of Asian Aerosols on Precipitation Over California: An Observational and Model Based Approach

    Science.gov (United States)

    Naeger, Aaron R.; Molthan, Andrew L.; Zavodsky, Bradley T.; Creamean, Jessie M.

    2015-01-01

    Dust and pollution emissions from Asia are often transported across the Pacific Ocean to over the western United States. Therefore, it is essential to fully understand the impact of these aerosols on clouds and precipitation forming over the eastern Pacific and western United States, especially during atmospheric river events that account for up to half of California's annual precipitation and can lead to widespread flooding. In order for numerical modeling simulations to accurately represent the present and future regional climate of the western United States, we must account for the aerosol-cloud-precipitation interactions associated with Asian dust and pollution aerosols. Therefore, we have constructed a detailed study utilizing multi-sensor satellite observations, NOAA-led field campaign measurements, and targeted numerical modeling studies where Asian aerosols interacted with cloud and precipitation processes over the western United States. In particular, we utilize aerosol optical depth retrievals from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS), NOAA Geostationary Operational Environmental Satellite (GOES-11), and Japan Meteorological Agency (JMA) Multi-functional Transport Satellite (MTSAT) to effectively detect and monitor the trans-Pacific transport of Asian dust and pollution. The aerosol optical depth (AOD) retrievals are used in assimilating the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) in order to provide the model with an accurate representation of the aerosol spatial distribution across the Pacific. We conduct WRF-Chem model simulations of several cold-season atmospheric river events that interacted with Asian aerosols and brought significant precipitation over California during February-March 2011 when the NOAA CalWater field campaign was ongoing. The CalWater field campaign consisted of aircraft and surface measurements of aerosol and precipitation processes that help extensively validate our WRF

  19. Pinhole Breaches in Spent Fuel Containers: Improvements to Conservative Models of Aerosol Release and Plugging

    International Nuclear Information System (INIS)

    Casella, Andrew M.; Loyalka, Sudarsham K.; Hanson, Brady D.

    2007-01-01

    By taking the differential forms of transport and equations of state, the equations describing aerosol transport in pinhole breaches can be solved directly using continuous models. The results are compared with discrete models.

  20. Evaluation of black carbon estimations in global aerosol models

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2009-11-01

    Full Text Available We evaluate black carbon (BC model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD retrievals from AERONET and Ozone Monitoring Instrument (OMI and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column AAOD or BC burden retreivals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.7 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50N, the average model is a factor of 8 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC ratio is 0.4 and models underestimate the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates for refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model

  1. Quasi-decadal Oscillation in the CMIP5 and CMIP3 Climate Model Simulations: California Case

    Science.gov (United States)

    Wang, J.; Yin, H.; Reyes, E.; Chung, F. I.

    2014-12-01

    The ongoing three drought years in California are reminding us of two other historical long drought periods: 1987-1992 and 1928-1934. This kind of interannual variability is corresponding to the dominating 7-15 yr quasi-decadal oscillation in precipitation and streamflow in California. When using global climate model projections to assess the climate change impact on water resources planning in California, it is natural to ask if global climate models are able to reproduce the observed interannual variability like 7-15 yr quasi-decadal oscillation. Further spectral analysis to tree ring retrieved precipitation and historical precipitation record proves the existence of 7-15 yr quasi-decadal oscillation in California. But while implementing spectral analysis to all the CMIP5 and CMIP3 global climate model historical simulations using wavelet analysis approach, it was found that only two models in CMIP3 , CGCM 2.3.2a of MRI and NCAP PCM1.0, and only two models in CMIP5, MIROC5 and CESM1-WACCM, have statistically significant 7-15 yr quasi-decadal oscillations in California. More interesting, the existence of 7-15 yr quasi-decadal oscillation in the global climate model simulation is also sensitive to initial conditions. 12-13 yr quasi-decadal oscillation occurs in one ensemble run of CGCM 2.3.2a of MRI but does not exist in the other four ensemble runs.

  2. Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean – potential impacts

    Directory of Open Access Journals (Sweden)

    M. Astitha

    2010-07-01

    Full Text Available Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size distribution, using chemistry-transport models, satellite data and in situ measurements. We focus on August 2005, a period with intense hurricane and tropical storm activity over the Atlantic Ocean. A mixture of anthropogenic (sulphates, nitrates, natural (desert dust, sea salt and chemically aged (sulphate and nitrate on dust aerosols is found entering the hurricane genesis region, most likely interacting with clouds in the area. Results from our modelling study suggest rather small amounts of accumulation mode desert dust, sea salt and chemically aged dust aerosols in this Atlantic Ocean region. Aerosols of smaller size (Aitken mode are more abundant in the area and in some occasions sulphates of anthropogenic origin and desert dust are of the same magnitude in terms of number concentrations. Typical aerosol number concentrations are derived for the vertical layers near shallow cloud formation regimes, indicating that the aerosol number concentration can reach several thousand particles per cubic centimetre. The vertical distribution of the aerosols shows that the desert dust particles are often transported near the top of the marine cloud layer as they enter into the region where deep convection is initiated. The anthropogenic sulphate aerosol can be transported within a thick layer and enter the cloud deck through multiple ways (from the top, the base of the cloud, and by entrainment. The sodium (sea salt related aerosol is mostly found below the cloud base. The results of this work may provide insights relevant for studies that consider aerosol influences on cloud processes and storm development in the Central Atlantic region.

  3. Aerosol-induced thermal effects increase modelled terrestrial photosynthesis and transpiration

    International Nuclear Information System (INIS)

    Steiner, Allison L.; Chameides, W.L.

    2005-01-01

    Previous studies suggest that the radiative effects of atmospheric aerosols (reducing total radiation while increasing the diffuse fraction) can enhance terrestrial productivity. Here, simulations using a regional climate/terrestrial biosphere model suggest that atmospheric aerosols could also enhance terrestrial photosynthesis and transpiration through an interaction between solar radiation, leaf temperature and stomatal conductance. During midday, clear-sky conditions, sunlit-leaf temperatures can exceed the optimum for photosynthesis, depressing both photosynthesis and transpiration. Aerosols decrease surface solar radiation, thereby reducing leaf temperatures and enhancing sunlit-leaf photosynthesis and transpiration. This modelling study finds that, under certain conditions, this thermal response of aerosols can have a greater impact on photosynthesis and transpiration than the radiative response. This implies that a full understanding of the impact of aerosols on climate and the global carbon cycle requires consideration of the biophysical responses of terrestrial vegetation as well as atmospheric radiative and thermodynamic effects

  4. ARI3SG: Aerosol retention in the secondary side of a steam generator. Part II: Model validation and uncertainty analysis

    International Nuclear Information System (INIS)

    Lopez, Claudia; Herranz, Luis E.

    2012-01-01

    Highlights: ► Validation of a model (ARI3SG) for the aerosol retention in the break stage of a steam generator under SGTR conditions. ► Interpretation of the experimental SGTR and CAAT data by using the ARI3SG model. ► Assessment of the epistemic and stochastic uncertainties effect on the ARI3SG results. - Abstract: A large body of data has been gathered in the last decade through the EU-SGTR, ARTIST and ARTIST 2 projects for aerosol retention in the steam generator during SGTR severe accident sequences. At the same time the attempt to extend the analytical capability has resulted in models that need to be validated. The ARI3SG is one of such developments and it has been built to estimate the aerosol retention in the break stage of a “dry” steam generator. This paper assesses the ARI3SG predictability by comparing its estimates to open data and by analyzing the effect of associated uncertainties. Datamodel comparison has been shown to be satisfactory and highlight the potential use of an ARI3SG-like formulation in system codes.

  5. Improved modelling of sodium-spray fires and sodium-combustion aerosol chemical evolution - 15488

    International Nuclear Information System (INIS)

    Mathe, E.; Kissane, M.; Petitprez, D.

    2015-01-01

    In the context of the Generation IV Initiative, the consequences of a severe-accident in sodium-cooled fast reactor (SFR) must be studied. Being pyrophoric, sodium will burn upon contact with air in a containment creating toxic aerosols and we must take into account these fire aerosols when assessing the source term. We have developed a numerical simulation named NATRAC to calculate the mass of aerosols produced during a spray fire in a SFR severe accident. The results show that the mass of oxide aerosols can involve more than 60% of the ejected sodium. In a second part we have developed a numerical simulation named STARK based on the Cooper model that models the physico-chemical transformations of the aerosols. However, this model has never been validated and the literature does not permit to do so. In these conditions, we have designed and performed our own experiment ESSTIA to obtain the missing values of the parameters that govern Cooper model. The modified Cooper model we propose with the new parameters reproduces correctly the ESSTIA experimental data. The only parameter that has not yet been measured is the tortuosity of the sodium-fire aerosols surface layers. A dedicated experiment using real sodium-fire aerosols could eliminate any doubts about the uncertainty of the proposed Cooper model

  6. A simplified model of aerosol removal by natural processes in reactor containments

    Energy Technology Data Exchange (ETDEWEB)

    Powers, D.A.; Washington, K.E.; Sprung, J.L. [Sandia National Labs., Albuquerque, NM (United States); Burson, S.B. [Nuclear Regulatory Commission, Washington, DC (United States)

    1996-07-01

    Simplified formulae are developed for estimating the aerosol decontamination that can be achieved by natural processes in the containments of pressurized water reactors and in the drywells of boiling water reactors under severe accident conditions. These simplified formulae were derived by correlation of results of Monte Carlo uncertainty analyses of detailed models of aerosol behavior under accident conditions. Monte Carlo uncertainty analyses of decontamination by natural aerosol processes are reported for 1,000, 2,000, 3,000, and 4,000 MW(th) pressurized water reactors and for 1,500, 2,500, and 3,500 MW(th) boiling water reactors. Uncertainty distributions for the decontamination factors and decontamination coefficients as functions of time were developed in the Monte Carlo analyses by considering uncertainties in aerosol processes, material properties, reactor geometry and severe accident progression. Phenomenological uncertainties examined in this work included uncertainties in aerosol coagulation by gravitational collision, Brownian diffusion, turbulent diffusion and turbulent inertia. Uncertainties in aerosol deposition by gravitational settling, thermophoresis, diffusiophoresis, and turbulent diffusion were examined. Electrostatic charging of aerosol particles in severe accidents is discussed. Such charging could affect both the coagulation and deposition of aerosol particles. Electrostatic effects are not considered in most available models of aerosol behavior during severe accidents and cause uncertainties in predicted natural decontamination processes that could not be taken in to account in this work. Median (50%), 90 and 10% values of the uncertainty distributions for effective decontamination coefficients were correlated with time and reactor thermal power. These correlations constitute a simplified model that can be used to estimate the decontamination by natural aerosol processes at 3 levels of conservatism. Applications of the model are described.

  7. Bounding the heterogeneous gas uptake on aerosols and ground using resistance model

    Science.gov (United States)

    Su, H.; Li, M.; Cheng, Y.

    2017-12-01

    Heterogeneous uptake on aerosols and ground are potential important atmospheric sinks for gases. Different schemes have been used to characterize the dry deposition and heterogeneous aerosol gas uptake, although they share similar characteristics. In this work, we propose a unified resistance model to compare the uptake flux on both ground and aerosols, to identify the dominate heterogeneous process within the planetary boundary layer (PBL). The Gamma(eq) is introduced to represent the reactive uptake coefficient on aerosols when these two processes are equally important. It's shown that Gamma(eq) is proportional to the dry deposition velocity, inversely proportional to aerosol surface area concentration. Under typical regional background condition, Gamma(eq) vary from 1x10-5 to 4x10-4 with gas species, land-use type and season, which indicates that aerosol gas uptake should be included in atmospheric models when uptake coefficient higher than 10-5. We address the importance of heterogeneous gas uptake on aerosols over ground especially for ozone uptake on liquid organic aerosols and for marine PBL atmosphere.

  8. Aerosol-cloud interactions in a multi-scale modeling framework

    Science.gov (United States)

    Lin, G.; Ghan, S. J.

    2017-12-01

    Atmospheric aerosols play an important role in changing the Earth's climate through scattering/absorbing solar and terrestrial radiation and interacting with clouds. However, quantification of the aerosol effects remains one of the most uncertain aspects of current and future climate projection. Much of the uncertainty results from the multi-scale nature of aerosol-cloud interactions, which is very challenging to represent in traditional global climate models (GCMs). In contrast, the multi-scale modeling framework (MMF) provides a viable solution, which explicitly resolves the cloud/precipitation in the cloud resolved model (CRM) embedded in the GCM grid column. In the MMF version of community atmospheric model version 5 (CAM5), aerosol processes are treated with a parameterization, called the Explicit Clouds Parameterized Pollutants (ECPP). It uses the cloud/precipitation statistics derived from the CRM to treat the cloud processing of aerosols on the GCM grid. However, this treatment treats clouds on the CRM grid but aerosols on the GCM grid, which is inconsistent with the reality that cloud-aerosol interactions occur on the cloud scale. To overcome the limitation, here, we propose a new aerosol treatment in the MMF: Explicit Clouds Explicit Aerosols (ECEP), in which we resolve both clouds and aerosols explicitly on the CRM grid. We first applied the MMF with ECPP to the Accelerated Climate Modeling for Energy (ACME) model to have an MMF version of ACME. Further, we also developed an alternative version of ACME-MMF with ECEP. Based on these two models, we have conducted two simulations: one with the ECPP and the other with ECEP. Preliminary results showed that the ECEP simulations tend to predict higher aerosol concentrations than ECPP simulations, because of the more efficient vertical transport from the surface to the higher atmosphere but the less efficient wet removal. We also found that the cloud droplet number concentrations are also different between the

  9. A detailed aerosol mixing state model for investigating interactions between mixing state, semivolatile partitioning, and coagulation

    Directory of Open Access Journals (Sweden)

    J. Lu

    2010-04-01

    Full Text Available A new method for describing externally mixed particles, the Detailed Aerosol Mixing State (DAMS representation, is presented in this study. This novel method classifies aerosols by both composition and size, using a user-specified mixing criterion to define boundaries between compositional populations. Interactions between aerosol mixing state, semivolatile partitioning, and coagulation are investigated with a Lagrangian box model that incorporates the DAMS approach. Model results predict that mixing state affects the amount and types of semivolatile organics that partition to available aerosol phases, causing external mixtures to produce a more size-varying composition than internal mixtures. Both coagulation and condensation contribute to the mixing of emitted particles, producing a collection of multiple compositionally distinct aerosol populations that exists somewhere between the extremes of a strictly external or internal mixture. The selection of mixing criteria has a significant impact on the size and type of individual populations that compose the modeled aerosol mixture. Computational demands for external mixture modeling are significant and can be controlled by limiting the number of aerosol populations used in the model.

  10. Modeling organic aerosol from the oxidation of α-pinene in a Potential Aerosol Mass (PAM chamber

    Directory of Open Access Journals (Sweden)

    S. Chen

    2013-05-01

    Full Text Available A model has been developed to simulate the formation and evolution of secondary organic aerosol (SOA and was tested against data produced in a Potential Aerosol Mass (PAM flow reactor and a large environmental chamber. The model framework is based on the two-dimensional volatility basis set approach (2D-VBS, in which SOA oxidation products in the model are distributed on the 2-D space of effective saturation concentration (Ci* and oxygen-to-carbon ratio (O : C. The modeled organic aerosol mass concentrations (COA and O : C agree with laboratory measurements within estimated uncertainties. However, while both measured and modeled O : C increase with increasing OH exposure as expected, the increase of modeled O : C is rapid at low OH exposure and then slows as OH exposure increases while the increase of measured O : C is initially slow and then accelerates as OH exposure increases. A global sensitivity analysis indicates that modeled COA values are most sensitive to the assumed values for the number of Ci* bins, the heterogeneous OH reaction rate coefficient, and the yield of first-generation products. Modeled SOA O : C values are most sensitive to the assumed O : C of first-generation oxidation products, the number of Ci* bins, the heterogeneous OH reaction rate coefficient, and the number of O : C bins. All these sensitivities vary as a function of OH exposure. The sensitivity analysis indicates that the 2D-VBS model framework may require modifications to resolve discrepancies between modeled and measured O : C as a function of OH exposure.

  11. Biomass burning aerosol over Romania using dispersion model and Calipso data

    Science.gov (United States)

    Nicolae, Victor; Dandocsi, Alexandru; Marmureanu, Luminita; Talianu, Camelia

    2018-04-01

    The purpose of the study is to analyze the seasonal variability, for the hot and cold seasons, of biomass burning aerosol observed over Romania using forward dispersion calculations based on FLEXPART model. The model was set up to use as input the MODIS fire data with a degree of confidence over 25% after transforming the emitted power in emission rate. The modelled aerosols in this setup was black carbon coated by organics. Distribution in the upper layers were compared to Calipso retrieval.

  12. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    Science.gov (United States)

    Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne

    2008-01-01

    ]. Please see Tao et al. (2007) for more detailed description on aerosol impact on precipitation. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated.

  13. Evaluation of VIIRS AOD over North China Plain: biases from aerosol models

    Science.gov (United States)

    Zhu, J.; Xia, X.; Wang, J.; Chen, H.; Zhang, J.; Oo, M. M.; Holz, R.

    2014-12-01

    With the launch of the Visible Infrared Imaging Radiometer Suit (VIIRS) instrument onboard Suomi National Polar-orbiting Partnership(S-NPP) in late 2011, the aerosol products of VIIRS are receiving much attention.To date, mostevaluations of VIIRS aerosol productswere carried out about aerosol optical depth (AOD). To further assess the VIIRS AOD in China which is a heavy polluted region in the world,we made a comparison between VIIRS AOD and CE-318 radiometerobservation at the following three sites overNorth China Plain (NCP): metropolis-Beijing (AERONET), suburbs-XiangHe (AERONET) and regional background site- Xinglong (CARSNET).The results showed the VIIRS AOD at 550 nm has a positive mean bias error (MBE) of 0.14-0.15 and root mean square error (RMBE) 0.20. Among three sites, Beijing is mainly a source of bias with MBE 0.17-0.18 and RMBE 0.23-0.24, and this bias is larger than some recent global statics recently published in the literature. Further analysis shows that this large bias in VIIRS AOD overNCP may be partly caused by the aerosol model selection in VIIRS aerosol inversion. According to the retrieval of sky radiance from CE-318 at three sites, aerosols in NCP have high mean real part of refractive indices (1.52-1.53), large volume mean radius (0.17-0.18) and low concentration (0.04-0.09) of fine aerosol, and small mean radius (2.86-2.92) and high concentration (0.06-0.16) of coarse mode aerosol. These observation-based aerosol single scattering properties and size of fine and coarse aerosols differ fromthe aerosol properties used in VIIRSoperational algorithm.The dominant aerosol models used in VIIRS algorithm for these three sites are less polluted urban aerosol in Beijing and low-absorption smoke in other two sites, all of which don't agree with the high imaginary part of refractive indices from CE-318 retrieval. Therefore, the aerosol models in VIIRS algorithm are likely to be refined in NCP region.

  14. Impacts of aerosol mitigation on Chinese rice photosynthesis: An integrated modeling approach

    Science.gov (United States)

    Zhang, T.; Li, T.; Yue, X.; Yang, X.

    2017-12-01

    Aerosol pollution in China is significantly altering radiative transfer processes and is thereby potentially affecting rice photosynthesis. However, the response of rice photosynthesis to aerosol-induced radiative perturbations is still not well understood. Here, we employ an integrated process-based modeling approach to simulate changes in incoming radiation (RAD) and the diffuse radiation fraction (DF) with aerosol mitigation in China and their associated impacts on rice yields. Aerosol reduction has the positive effect of increasing RAD and the negative effect of decreasing DF on rice photosynthesis and yields. In rice production areas where the average RAD during the growing season is lower than 250 W m-2, aerosol reduction is beneficial for higher rice yields, whereas in areas with RAD>250 W m-2, aerosol mitigation causes yield declines due to the associated reduction in the DF, which decreases the light use efficiency. This response pattern and threshold are similar with observations, even through more data are needed in future investigation. As a net effect, rice yields were estimated to significantly increase by 0.8-2.6% with aerosol concentrations reductions from 20 to 100%, which is lower than the estimates obtained in earlier studies that only considered the effects of RAD. This finding suggests that both RAD and DF are important processes influencing rice yields and should be incorporated into future assessments of agricultural responses to variations in aerosol-induced radiation under climate change.

  15. Using satellites and global models to investigate aerosol-cloud interactions

    Science.gov (United States)

    Gryspeerdt, E.; Quaas, J.; Goren, T.; Sourdeval, O.; Mülmenstädt, J.

    2017-12-01

    Aerosols are known to impact liquid cloud properties, through both microphysical and radiative processes. Increasing the number concentration of aerosol particles can increase the cloud droplet number concentration (CDNC). Through impacts on precipitation processes, this increase in CDNC may also be able to impact the cloud fraction (CF) and the cloud liquid water path (LWP). Several studies have looked into the effect of aerosols on the CDNC, but as the albedo of a cloudy scene depends much more strongly on LWP and CF, an aerosol influence on these properties could generate a significant radiative forcing. While the impact of aerosols on cloud properties can be seen in case studies involving shiptracks and volcanoes, producing a global estimate of these effects remains challenging due to the confounding effect of local meteorology. For example, relative humidity significantly impacts the aerosol optical depth (AOD), a common satellite proxy for CCN, as well as being a strong control on cloud properties. This can generate relationships between AOD and cloud properties, even when there is no impact of aerosol-cloud interactions. In this work, we look at how aerosol-cloud interactions can be distinguished from the effect of local meteorology in satellite studies. With a combination global climate models and multiple sources of satellite data, we show that the choice of appropriate mediating variables and case studies can be used to develop constraints on the aerosol impact on CF and LWP. This will lead to improved representations of clouds in global climate models and help to reduce the uncertainty in the global impact of anthropogenic aerosols on cloud properties.

  16. Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles

    Directory of Open Access Journals (Sweden)

    B. Ervens

    2010-09-01

    Full Text Available This study presents a modeling framework based on laboratory data to describe the kinetics of glyoxal reactions that form secondary organic aerosol (SOA in aqueous aerosol particles. Recent laboratory results on glyoxal reactions are reviewed and a consistent set of empirical reaction rate constants is derived that captures the kinetics of glyoxal hydration and subsequent reversible and irreversible reactions in aqueous inorganic and water-soluble organic aerosol seeds. Products of these processes include (a oligomers, (b nitrogen-containing products, (c photochemical oxidation products with high molecular weight. These additional aqueous phase processes enhance the SOA formation rate in particles and yield two to three orders of magnitude more SOA than predicted based on reaction schemes for dilute aqueous phase (cloud chemistry for the same conditions (liquid water content, particle size.

    The application of the new module including detailed chemical processes in a box model demonstrates that both the time scale to reach aqueous phase equilibria and the choice of rate constants of irreversible reactions have a pronounced effect on the predicted atmospheric relevance of SOA formation from glyoxal. During day time, a photochemical (most likely radical-initiated process is the major SOA formation pathway forming ∼5 μg m−3 SOA over 12 h (assuming a constant glyoxal mixing ratio of 300 ppt. During night time, reactions of nitrogen-containing compounds (ammonium, amines, amino acids contribute most to the predicted SOA mass; however, the absolute predicted SOA masses are reduced by an order of magnitude as compared to day time production. The contribution of the ammonium reaction significantly increases in moderately acidic or neutral particles (5 < pH < 7.

    Glyoxal uptake into ammonium sulfate seed under dark conditions can be represented with a single reaction parameter keffupt that does not depend

  17. Assimilation of Polder aerosol optical thickness into LMD2-Inca model in order to study aerosol-climate interactions; Etude des interactions entre aerosols et climat: assimilation des observations spatiales de Polder dans LMDz-Inca

    Energy Technology Data Exchange (ETDEWEB)

    Generoso, S.

    2004-12-15

    Aerosols influence the Earth radiative budget both through their direct (scattering and absorption of solar radiation) and indirect (impacts on cloud microphysics) effects. The anthropogenic perturbation due to aerosol emissions is of the same order of magnitude than the one due to greenhouse gases, but less well known. To improve our knowledge, we need to better know aerosol spatial and temporal distributions. Indeed, aerosol modeling still suffers from large uncertainties in sources and transport, while satellite observations are incomplete (no detection in the presence of clouds, no information on the vertical distribution or on the chemical nature). Moreover, field campaigns are localized in space and time. This study aims to reduce uncertainties in aerosol distributions, developing assimilation of satellite data into a chemical transport model. The basic idea is to combine information obtained from spatial observation (optical thickness) and modeling studies (aerosol types, vertical distribution). In this study, we assimilate data from the POLDER space-borne instrument into the LMDz-INCA model. The results show the advantage of merging information from different sources. In many regions, the method reduces uncertainties on aerosol distribution (reduction of RMS error). An application of the method to the study of aerosol impact on cloud microphysics is shown. (author)

  18. Evaluation of simulated aerosol properties with the aerosol-climate model ECHAM5-HAM using observations from the IMPACT field campaign

    Directory of Open Access Journals (Sweden)

    G.-J. Roelofs

    2010-08-01

    Full Text Available In May 2008, the measurement campaign IMPACT for observation of atmospheric aerosol and cloud properties was conducted in Cabauw, The Netherlands. With a nudged version of the coupled aerosol-climate model ECHAM5-HAM we simulate the size distribution and chemical composition of the aerosol and the associated aerosol optical thickness (AOT for the campaign period. Synoptic scale meteorology is represented realistically through nudging of the vorticity, the divergence, the temperature and the surface pressure. Simulated concentrations of aerosol sulfate and organics at the surface are generally within a factor of two from observed values. The monthly averaged AOT from the model is 0.33, about 20% larger than observed. For selected periods of the month with relatively dry and moist conditions discrepancies are approximately −30% and +15%, respectively. Discrepancies during the dry period are partly caused by inaccurate representation of boundary layer (BL dynamics by the model affecting the simulated AOT. The model simulates too strong exchange between the BL and the free troposphere, resulting in weaker concentration gradients at the BL top than observed for aerosol and humidity, while upward mixing from the surface layers into the BL appears to be underestimated. The results indicate that beside aerosol sulfate and organics also aerosol ammonium and nitrate significantly contribute to aerosol water uptake. The simulated day-to-day variability of AOT follows synoptic scale advection of humidity rather than particle concentration. Even for relatively dry conditions AOT appears to be strongly influenced by the diurnal cycle of RH in the lower boundary layer, further enhanced by uptake and release of nitric acid and ammonia by aerosol water.

  19. Volcano and ship tracks indicate excessive aerosol-induced cloud water increases in a climate model.

    Science.gov (United States)

    Toll, Velle; Christensen, Matthew; Gassó, Santiago; Bellouin, Nicolas

    2017-12-28

    Aerosol-cloud interaction is the most uncertain mechanism of anthropogenic radiative forcing of Earth's climate, and aerosol-induced cloud water changes are particularly poorly constrained in climate models. By combining satellite retrievals of volcano and ship tracks in stratocumulus clouds, we compile a unique observational dataset and confirm that liquid water path (LWP) responses to aerosols are bidirectional, and on average the increases in LWP are closely compensated by the decreases. Moreover, the meteorological parameters controlling the LWP responses are strikingly similar between the volcano and ship tracks. In stark contrast to observations, there are substantial unidirectional increases in LWP in the Hadley Centre climate model, because the model accounts only for the decreased precipitation efficiency and not for the enhanced entrainment drying. If the LWP increases in the model were compensated by the decreases as the observations suggest, its indirect aerosol radiative forcing in stratocumulus regions would decrease by 45%.

  20. Multiscale modeling of multi-decadal trends in air pollutant concentrations and their radiative properties: the role of models in an integrated observing system

    Science.gov (United States)

    Mathur, R.; Xing, J.; Szykman, J.; Gan, C. M.; Hogrefe, C.; Pleim, J. E.

    2015-12-01

    Air Pollution simulation models must address the increasing complexity arising from new model applications that treat multi-pollutant interactions across varying space and time scales. Setting and attaining lower ambient air quality standards requires an improved understanding and quantification of source attribution amongst the multiple anthropogenic and natural sources, on time scales ranging from episodic to annual and spatial scales ranging from urban to continental. Changing emission patterns over the developing regions of the world are likely to exacerbate the impacts of long-range pollutant transport on background pollutant levels, which may then impact the attainment of local air quality standards. Thus, strategies for reduction of pollution levels of surface air over a region are complicated not only by the interplay of local emissions sources and several complex physical, chemical, dynamical processes in the atmosphere, but also hemispheric background levels of pollutants. Additionally, as short-lived climate forcers, aerosols and ozone exert regionally heterogeneous radiative forcing and influence regional climate trends. EPA's coupled WRF-CMAQ modeling system is applied over a domain encompassing the northern hemisphere for the period spanning 1990-2010. This period has witnessed significant reductions in anthropogenic emissions in North America and Europe as a result of implementation of control measures and dramatic increases across Asia associated with economic and population growth, resulting in contrasting trends in air pollutant distributions and transport patterns across the northern hemisphere. Model results (trends in pollutant concentrations, optical and radiative characteristics) across the northern hemisphere are analyzed in conjunction with surface, aloft and remote sensing measurements to contrast the differing trends in air pollution and aerosol-radiation interactions in these regions over the past two decades. Given the future LEO (Trop

  1. Prediction of health effects of cross-border atmospheric pollutants using an aerosol forecast model.

    Science.gov (United States)

    Onishi, Kazunari; Sekiyama, Tsuyoshi Thomas; Nojima, Masanori; Kurosaki, Yasunori; Fujitani, Yusuke; Otani, Shinji; Maki, Takashi; Shinoda, Masato; Kurozawa, Youichi; Yamagata, Zentaro

    2018-08-01

    Health effects of cross-border air pollutants and Asian dust are of significant concern in Japan. Currently, models predicting the arrival of aerosols have not investigated the association between arrival predictions and health effects. We investigated the association between subjective health symptoms and unreleased aerosol data from the Model of Aerosol Species in the Global Atmosphere (MASINGAR) acquired from the Japan Meteorological Agency, with the objective of ascertaining if these data could be applied to predicting health effects. Subjective symptom scores were collected via self-administered questionnaires and, along with modeled surface aerosol concentration data, were used to conduct a risk evaluation using generalized estimating equations between October and November 2011. Altogether, 29 individuals provided 1670 responses. Spearman's correlation coefficients were determined for the relationship between the proportion of the participants reporting the maximum score of two or more for each symptom and the surface concentrations for each considered aerosol species calculated using MASINGAR; the coefficients showed significant intermediate correlations between surface sulfate aerosol concentration and respiratory, throat, and fever symptoms (R = 0.557, 0.454, and 0.470, respectively; p < 0.01). In the general estimation equation (logit link) analyses, a significant linear association of surface sulfate aerosol concentration, with an endpoint determined by reported respiratory symptom scores of two or more, was observed (P trend = 0.001, odds ratio [OR] of the highest quartile [Q4] vs. the lowest [Q1] = 5.31, 95% CI = 2.18 to 12.96), with adjustment for potential confounding. The surface sulfate aerosol concentration was also associated with throat and fever symptoms. In conclusion, our findings suggest that modeled data are potentially useful for predicting health risks of cross-border aerosol arrivals. Copyright © 2018 Elsevier Ltd

  2. Effects of stratospheric aerosol surface processes on the LLNL two-dimensional zonally averaged model

    International Nuclear Information System (INIS)

    Connell, P.S.; Kinnison, D.E.; Wuebbles, D.J.; Burley, J.D.; Johnston, H.S.

    1992-01-01

    We have investigated the effects of incorporating representations of heterogeneous chemical processes associated with stratospheric sulfuric acid aerosol into the LLNL two-dimensional, zonally averaged, model of the troposphere and stratosphere. Using distributions of aerosol surface area and volume density derived from SAGE 11 satellite observations, we were primarily interested in changes in partitioning within the Cl- and N- families in the lower stratosphere, compared to a model including only gas phase photochemical reactions

  3. Evaluation of operational forecast model of aerosol transportation using ceilometer network measurements

    Science.gov (United States)

    Chan, Ka Lok; Wiegner, Matthias; Flentje, Harald; Mattis, Ina; Wagner, Frank; Gasteiger, Josef; Geiß, Alexander

    2017-04-01

    Due to technical improvements of ceilometers in recent years, ceilometer measurements are not only limited to determine cloud base heights but also providing information on the vertical aerosol distribution. Therefore, several national weather services implemented ceilometer networks. These measurements are e.g. valuable for the evaluation of the chemical transport model simulations. In this study, we present comparisons of European Centre for Medium-Range Weather Forecast Integrated Forecast System (ECMWF-IFS) model simulation of aerosol backscatter coefficients with ceilometer network measurements operated by the German weather service (DWD) . Five different types of aerosol are available in the model simulations which include two natural aerosols, sea salt and dust. The other three aerosol types, i.e. sulfate, organic carbon and black carbon, have significant anthropogenic contributions. As the model output provides mass mixing ratios of the above mentioned types of aerosol and the ceilometers measure attenuated backscatter (β∗) provided that calibration took place, it is necessary to determine a common physical quantity for the comparison. We have chosen the aerosol backscatter coefficient (β) for this purpose. The β-profiles are calculated from the mass mixing ratios of the model output assuming the inherent aerosol microphysics properties. It shall be emphasized that in the model calculations, all particles are assumed to be spherical. We have examined the sensitivity of the intercomparison on the hygroscopic growth of particles and on the role of particle shape. Our results show that the hygroscopic growth of particle is crucial (up to a factor of 22) in converting the model output to backscatter coefficient profiles whereas the effect of non-sphericity of dust particles is comparably small (˜44%). Furthermore, the calibration of the ceilometer signals can be an issue. The agreements between modeled and retrieved β-profiles show different

  4. Numerical modeling of aerosol particles scavenging by drops as a process of air depollution

    OpenAIRE

    Cherrier , Gaël

    2017-01-01

    This PhD-Thesis is dedicated to the numerical modeling of aerosol particles scavenging by drops. Investigated situations are about aerosol particles of aerodynamic diameter ranging from 1 nm to 100 µm captured in the air by water drops of diameter varying between 80 µm and 600 µm, with corresponding droplet Reynolds number ranging between 1 and 100. This air depollution modeling is achieved in two steps. The first step consists in obtaining a scavenging kernel predicting the flow rate of aero...

  5. Modeling regional aerosol and aerosol precursor variability over California and its sensitivity to emissions and long-range transport during the 2010 CalNex and CARES campaigns

    Science.gov (United States)

    Fast, J. D.; Allan, J.; Bahreini, R.; Craven, J.; Emmons, L.; Ferrare, R.; Hayes, P. L.; Hodzic, A.; Holloway, J.; Hostetler, C.; Jimenez, J. L.; Jonsson, H.; Liu, S.; Liu, Y.; Metcalf, A.; Middlebrook, A.; Nowak, J.; Pekour, M.; Perring, A.; Russell, L.; Sedlacek, A.; Seinfeld, J.; Setyan, A.; Shilling, J.; Shrivastava, M.; Springston, S.; Song, C.; Subramanian, R.; Taylor, J. W.; Vinoj, V.; Yang, Q.; Zaveri, R. A.; Zhang, Q.

    2014-09-01

    The performance of the Weather Research and Forecasting regional model with chemistry (WRF-Chem) in simulating the spatial and temporal variations in aerosol mass, composition, and size over California is quantified using the extensive meteorological, trace gas, and aerosol measurements collected during the California Nexus of Air Quality and Climate Experiment (CalNex) and the Carbonaceous Aerosol and Radiative Effects Study (CARES) conducted during May and June of 2010. The overall objective of the field campaigns was to obtain data needed to better understand processes that affect both climate and air quality, including emission assessments, transport and chemical aging of aerosols, aerosol radiative effects. Simulations were performed that examined the sensitivity of aerosol concentrations to anthropogenic emissions and to long-range transport of aerosols into the domain obtained from a global model. The configuration of WRF-Chem used in this study is shown to reproduce the overall synoptic conditions, thermally driven circulations, and boundary layer structure observed in region that controls the transport and mixing of trace gases and aerosols. Reducing the default emissions inventory by 50% led to an overall improvement in many simulated trace gases and black carbon aerosol at most sites and along most aircraft flight paths; however, simulated organic aerosol was closer to observed when there were no adjustments to the primary organic aerosol emissions. We found that sulfate was better simulated over northern California whereas nitrate was better simulated over southern California. While the overall spatial and temporal variability of aerosols and their precursors were simulated reasonably well, we show cases where the local transport of some aerosol plumes were either too slow or too fast, which adversely affects the statistics quantifying the differences between observed and simulated quantities. Comparisons with lidar and in situ measurements indicate

  6. Models of neural dynamics in brain information processing - the developments of 'the decade'

    International Nuclear Information System (INIS)

    Borisyuk, G N; Borisyuk, R M; Kazanovich, Yakov B; Ivanitskii, Genrikh R

    2002-01-01

    Neural network models are discussed that have been developed during the last decade with the purpose of reproducing spatio-temporal patterns of neural activity in different brain structures. The main goal of the modeling was to test hypotheses of synchronization, temporal and phase relations in brain information processing. The models being considered are those of temporal structure of spike sequences, of neural activity dynamics, and oscillatory models of attention and feature integration. (reviews of topical problems)

  7. Modeling of thermophoretic deposition of aerosols in nuclear reactor containments

    International Nuclear Information System (INIS)

    Fernandes, A.; Loyalka, S.K.

    1996-01-01

    Aerosol released in postulated or real nuclear reactor accidents can deposit on containment surfaces via motion induced by temperature gradients in addition to the motion due to diffusion and gravity. The deposition due to temperature gradients is known as thermophoretic deposition, and it is currently modeled in codes such as CONTAIN in direct analogy with heat transfer, but there have been questions about such analogies. This paper focuses on a numerical solution of the particle continuity equation in laminar flow condition characteristics of natural convection. First, the thermophoretic deposition rate is calculated as a function of the Prandtl and Schmidt numbers, the thermophoretic coefficient K, and the temperature difference between the atmosphere and the wall. Then, the cases of diffusion alone and a boundary-layer approximation (due to Batchelor and Shen) to the full continuity equation are considered. It is noted that an analogy with heat transfer does not hold, but for the circumstances considered in this paper, the deposition rates from the diffusion solution and the boundary-layer approximation can be added to provide reasonably good agreement (maximum deviation 30%) with the full solution of the particle continuity equation. Finally, correlations useful for implementation in the reactor source term codes are provided

  8. A Global Modeling Study on Carbonaceous Aerosol Microphysical Characteristics and Radiative Effects

    Science.gov (United States)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-01-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects. Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux.

  9. AMOC decadal variability in Earth system models: Mechanisms and climate impacts

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, Alexey [Yale Univ., New Haven, CT (United States)

    2017-09-06

    This is the final report for the project titled "AMOC decadal variability in Earth system models: Mechanisms and climate impacts". The central goal of this one-year research project was to understand the mechanisms of decadal and multi-decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) within a hierarchy of climate models ranging from realistic ocean GCMs to Earth system models. The AMOC is a key element of ocean circulation responsible for oceanic transport of heat from low to high latitudes and controlling, to a large extent, climate variations in the North Atlantic. The questions of the AMOC stability, variability and predictability, directly relevant to the questions of climate predictability, were at the center of the research work.

  10. Development of systematic models for aerosol agglomeration and spray removal under severe accident conditions

    International Nuclear Information System (INIS)

    Kajimoto, Mitsuhiro

    2008-01-01

    Radionuclide behavior during various severe accident conditions has been addressed as one of the important issues to discuss environmental safety in nuclear power plants. The present paper deals with the development of analytical models and their validations for the agglomeration of multiple-component aerosol and spray removal that controls source terms to the environment of both aerosols and gaseous radionuclides during recirculation mode operation in a containment system for a light water reactor. As for aerosol agglomeration, the single collision kernel model that can cover all types of two-body collision of aerosol was developed. In addition, the dynamic model that can treat aerosol and vapor transfer leading to the equilibrium condition under the containment spray operation was developed. The validations of the present models for multiple-component aerosol growth by agglomeration were performed by comparisons with Nuclear Safety Pilot Plant (NSPP) experiments at Oak Ridge National Laboratory (ORNL) and AB experiments at Hanford Engineering National Laboratory (HEDL). In addition, the spray removal models were applied to the analysis of containment spray experiment (CSE) at HEDL. The results calculated by the models showed good agreements with experimental results. (author)

  11. Modelling and measurements of urban aerosol processes on the neighborhood scale in Rotterdam, Oslo and Helsinki

    Science.gov (United States)

    Karl, M.; Kukkonen, J.; Keuken, M. P.; Lützenkirchen, S.; Pirjola, L.; Hussein, T.

    2015-12-01

    This study evaluates the influence of aerosol processes on the particle number (PN) concentrations in three major European cities on the temporal scale of one hour, i.e. on the neighborhood and city scales. We have used selected measured data of particle size distributions from previous campaigns in the cities of Helsinki, Oslo and Rotterdam. The aerosol transformation processes were evaluated using an aerosol dynamics model MAFOR, combined with a simplified treatment of roadside and urban atmospheric dispersion. We have compared the model predictions of particle number size distributions with the measured data, and conducted sensitivity analyses regarding the influence of various model input variables. We also present a simplified parameterization for aerosol processes, which is based on the more complex aerosol process computations; this simple model can easily be implemented to both Gaussian and Eulerian urban dispersion models. Aerosol processes considered in this study were (i) the coagulation of particles, (ii) the condensation and evaporation of n-alkanes, and (iii) dry deposition. The chemical transformation of gas-phase compounds was not taken into account. It was not necessary to model the nucleation of gas-phase vapors, as the computations were started with roadside conditions. Dry deposition and coagulation of particles were identified to be the most important aerosol dynamic processes that control the evolution and removal of particles. The effect of condensation and evaporation of organic vapors emitted by vehicles on particle numbers and on particle size distributions was examined. Under inefficient dispersion conditions, condensational growth contributed significantly to the evolution of PN from roadside to the neighborhood scale. The simplified parameterization of aerosol processes can predict particle number concentrations between roadside and the urban background with an inaccuracy of ∼ 10 %, compared to the fully size-resolved MAFOR model.

  12. Characterizing aerosol transport into the Canadian High Arctic using aerosol mass spectrometry and Lagrangian modelling

    Science.gov (United States)

    Kuhn, T.; Damoah, R.; Bacak, A.; Sloan, J. J.

    2010-05-01

    We report the analysis of measurements made using an aerosol mass spectrometer (AMS; Aerodyne Research Inc.) that was installed in the Polar Environment Atmospheric Research Laboratory (PEARL) in summer 2006. PEARL is located in the Canadian high Arctic at 610 m above sea level on Ellesmere Island (80° N 86° W). PEARL is unique for its remote location in the Arctic and because most of the time it is situated within the free troposphere. It is therefore well suited as a receptor site to study the long range tropospheric transport of pollutants into the Arctic. Some information about the successful year-round operation of an AMS at a high Arctic site such as PEARL will be reported here, together with design considerations for reliable sampling under harsh low-temperature conditions. Computational fluid dynamics calculations were made to ensure that sample integrity was maintained while sampling air at temperatures that average -40 °C in the winter and can be as low as -55 °C. Selected AMS measurements of aerosol mass concentration, size, and chemical composition recorded during the months of August, September and October 2006 will be reported. During this period, sulfate was at most times the predominant aerosol component with on average 0.115 μg m-3 (detection limit 0.003 μg m-3). The second most abundant component was undifferentiated organic aerosol, with on average 0.11 μg m-3 detection limit (0.04 μg m-3). The nitrate component, which averaged 0.007 μg m-3, was above its detection limit (0.002 μg m-3), whereas the ammonium ion had an apparent average concentration of 0.02 μg m-3, which was approximately equal to its detection limit. A few episodes having increased mass concentrations and lasting from several hours to several days are apparent in the data. These were investigated further using a statistical analysis to determine their common characteristics. High correlations among some of the components arriving during the short term episodes provide

  13. Intercomparison between CMIP5 model and MODIS satellite-retrieved data of aerosol optical depth, cloud fraction, and cloud-aerosol interactions

    Science.gov (United States)

    Sockol, Alyssa; Small Griswold, Jennifer D.

    2017-08-01

    Aerosols are a critical component of the Earth's atmosphere and can affect the climate of the Earth through their interactions with solar radiation and clouds. Cloud fraction (CF) and aerosol optical depth (AOD) at 550 nm from the Moderate Resolution Imaging Spectroradiometer (MODIS) are used with analogous cloud and aerosol properties from Historical Phase 5 of the Coupled Model Intercomparison Project (CMIP5) model runs that explicitly include anthropogenic aerosols and parameterized cloud-aerosol interactions. The models underestimate AOD by approximately 15% and underestimate CF by approximately 10% overall on a global scale. A regional analysis is then used to evaluate model performance in two regions with known biomass burning activity and absorbing aerosol (South America (SAM) and South Africa (SAF)). In SAM, the models overestimate AOD by 4.8% and underestimate CF by 14%. In SAF, the models underestimate AOD by 35% and overestimate CF by 13.4%. Average annual cycles show that the monthly timing of AOD peaks closely match satellite data in both SAM and SAF for all except the Community Atmosphere Model 5 and Geophysical Fluid Dynamics Laboratory (GFDL) models. Monthly timing of CF peaks closely match for all models (except GFDL) for SAM and SAF. Sorting monthly averaged 2° × 2.5° model or MODIS CF as a function of AOD does not result in the previously observed "boomerang"-shaped CF versus AOD relationship characteristic of regions with absorbing aerosols from biomass burning. Cloud-aerosol interactions, as observed using daily (or higher) temporal resolution data, are not reproducible at the spatial or temporal resolution provided by the CMIP5 models.

  14. Multi-Model Simulations of Aerosol and Ozone Radiative Forcing Due to Anthropogenic Emission Changes During the Period 1990-2015

    Science.gov (United States)

    Myhre, Gunnar; Aas, Wenche; Ribu, Cherian; Collins, William; Faluvegi, Gregory S.; Flanner, Mark; Forster, Piers; Hodnebrog, Oivind; Klimont, Zbigniew; Lund, Marianne T.

    2017-01-01

    Over the past few decades, the geographical distribution of emissions of substances that alter the atmospheric energy balance has changed due to economic growth and air pollution regulations. Here, we show the resulting changes to aerosol and ozone abundances and their radiative forcing using recently updated emission data for the period 1990-2015, as simulated by seven global atmospheric composition models. The models broadly reproduce large-scale changes in surface aerosol and ozone based on observations (e.g. 1 to 3 percent per year in aerosols over the USA and Europe). The global mean radiative forcing due to ozone and aerosol changes over the 1990-2015 period increased by 0.17 plus or minus 0.08 watts per square meter, with approximately one-third due to ozone. This increase is more strongly positive than that reported in IPCC AR5 (Intergovernmental Panel on Climate Change Fifth Assessment Report). The main reasons for the increased positive radiative forcing of aerosols over this period are the substantial reduction of global mean SO2 emissions, which is stronger in the new emission inventory compared to that used in the IPCC analysis, and higher black carbon emissions.

  15. Development of an in vitro cytotoxicity model for aerosol exposure using 3D reconstructed human airway tissue; application for assessment of e-cigarette aerosol.

    Science.gov (United States)

    Neilson, Louise; Mankus, Courtney; Thorne, David; Jackson, George; DeBay, Jason; Meredith, Clive

    2015-10-01

    Development of physiologically relevant test methods to analyse potential irritant effects to the respiratory tract caused by e-cigarette aerosols is required. This paper reports the method development and optimisation of an acute in vitro MTT cytotoxicity assay using human 3D reconstructed airway tissues and an aerosol exposure system. The EpiAirway™ tissue is a highly differentiated in vitro human airway culture derived from primary human tracheal/bronchial epithelial cells grown at the air-liquid interface, which can be exposed to aerosols generated by the VITROCELL® smoking robot. Method development was supported by understanding the compatibility of these tissues within the VITROCELL® system, in terms of airflow (L/min), vacuum rate (mL/min) and exposure time. Dosimetry tools (QCM) were used to measure deposited mass, to confirm the provision of e-cigarette aerosol to the tissues. EpiAirway™ tissues were exposed to cigarette smoke and aerosol generated from two commercial e-cigarettes for up to 6 h. Cigarette smoke reduced cell viability in a time dependent manner to 12% at 6 h. E-cigarette aerosol showed no such decrease in cell viability and displayed similar results to that of the untreated air controls. Applicability of the EpiAirway™ model and exposure system was demonstrated, showing little cytotoxicity from e-cigarette aerosol and different aerosol formulations when compared directly with reference cigarette smoke, over the same exposure time. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Aerosol indirect effects -- general circulation model intercomparison and evaluation with satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristjansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael

    2009-04-10

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterizes aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (Ta) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over the ocean. The relationship between Ta and liquid water path is simulated much too strongly by the models. It is shown that this is partly related to the representation of the second aerosol indirect effect in terms of autoconversion. A positive relationship between total cloud fraction (fcld) and Ta as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld - Ta relationship, our results indicate that none can be identified as unique explanation. Relationships similar to the ones found in satellite data between Ta and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - Ta relationship show a strong positive correlation between Ta and fcld The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of Ta, and parameterisation assumptions such as a lower bound on Nd

  17. A simple model for variations in global mean temperature: implications for decadal variability, the global warming hiatus, and recent temperature rise

    Science.gov (United States)

    Hu, S.; Fedorov, A. V.

    2017-12-01

    Global mean surface temperature (GMST) has steadily risen since the mid-19th century, and at the same time experienced significant variations on interannual and decadal timescales. Various mechanisms have been proposed to explain such variations, ranging from the Pacific decadal oscillation to volcanic eruptions. In this study, we construct a simple, physically-based model of GMST variations that incorporates greenhouse gas emissions, ENSO forcing, and stratospheric sulfate aerosols. The model closely reproduces the history of GMST changes since 1880 with the mean squared error about 0.05°C for the past 60 years, smaller than the typical error of GMST observations (see the figure attached). It also accurately captures decadal GMST variations, including the global warming hiatus in the early 21stcentury. This model can be used to understand the causes of the observed GMST variations and requires little computational resource. Our results confirm that weak El Niño activity was the major cause of the recent global warming hiatus, while the rapid temperature rise since 2014 is due to atmospheric heat release during 2014-2016 El Niño conditions in addition to the continuing background global warming trend. The model can be also used to make predictions for next-year GMST in the short term, and future climate projections in the long term. We will also discuss the implications of this simple model for paleoclimate reconstructions and GCM performance evaluations.

  18. An overview of the first decade of PollyNET: an emerging network of automated Raman-polarization lidars for continuous aerosol profiling

    Directory of Open Access Journals (Sweden)

    H. Baars

    2016-04-01

    Full Text Available A global vertically resolved aerosol data set covering more than 10 years of observations at more than 20 measurement sites distributed from 63° N to 52° S and 72° W to 124° E has been achieved within the Raman and polarization lidar network PollyNET. This network consists of portable, remote-controlled multiwavelength-polarization-Raman lidars (Polly for automated and continuous 24/7 observations of clouds and aerosols. PollyNET is an independent, voluntary, and scientific network. All Polly lidars feature a standardized instrument design with different capabilities ranging from single wavelength to multiwavelength systems, and now apply unified calibration, quality control, and data analysis. The observations are processed in near-real time without manual intervention, and are presented online at http://polly.tropos.de/. The paper gives an overview of the observations on four continents and two research vessels obtained with eight Polly systems. The specific aerosol types at these locations (mineral dust, smoke, dust-smoke and other dusty mixtures, urban haze, and volcanic ash are identified by their Ångström exponent, lidar ratio, and depolarization ratio. The vertical aerosol distribution at the PollyNET locations is discussed on the basis of more than 55 000 automatically retrieved 30 min particle backscatter coefficient profiles at 532 nm as this operating wavelength is available for all Polly lidar systems. A seasonal analysis of measurements at selected sites revealed typical and extraordinary aerosol conditions as well as seasonal differences. These studies show the potential of PollyNET to support the establishment of a global aerosol climatology that covers the entire troposphere.

  19. Modeling the Influences of Aerosols on Pre-Monsoon Circulation and Rainfall over Southeast Asia

    Science.gov (United States)

    Lee, D.; Sud, Y. C.; Oreopoulos, L.; Kim, K.-M.; Lau, W. K.; Kang, I.-S.

    2014-01-01

    We conduct several sets of simulations with a version of NASA's Goddard Earth Observing System, version 5, (GEOS-5) Atmospheric Global Climate Model (AGCM) equipped with a two-moment cloud microphysical scheme to understand the role of biomass burning aerosol (BBA) emissions in Southeast Asia (SEA) in the pre-monsoon period of February-May. Our experiments are designed so that both direct and indirect aerosol effects can be evaluated. For climatologically prescribed monthly sea surface temperatures, we conduct sets of model integrations with and without biomass burning emissions in the area of peak burning activity, and with direct aerosol radiative effects either active or inactive. Taking appropriate differences between AGCM experiment sets, we find that BBA affects liquid clouds in statistically significantly ways, increasing cloud droplet number concentrations, decreasing droplet effective radii (i.e., a classic aerosol indirect effect), and locally suppressing precipitation due to a deceleration of the autoconversion process, with the latter effect apparently also leading to cloud condensate increases. Geographical re-arrangements of precipitation patterns, with precipitation increases downwind of aerosol sources are also seen, most likely because of advection of weakly precipitating cloud fields. Somewhat unexpectedly, the change in cloud radiative effect (cloud forcing) at surface is in the direction of lesser cooling because of decreases in cloud fraction. Overall, however, because of direct radiative effect contributions, aerosols exert a net negative forcing at both the top of the atmosphere and, perhaps most importantly, the surface, where decreased evaporation triggers feedbacks that further reduce precipitation. Invoking the approximation that direct and indirect aerosol effects are additive, we estimate that the overall precipitation reduction is about 40% due to the direct effects of absorbing aerosols, which stabilize the atmosphere and reduce

  20. Reducing the uncertainty in background marine aerosol radiative properties using CAM5 model results and CALIPSO-retrievals

    Science.gov (United States)

    Meskhidze, N.; Gantt, B.; Dawson, K.; Johnson, M. S.; Gasso, S.

    2012-12-01

    Abundance of natural aerosols in the atmosphere strongly affects global aerosol optical depth (AOD) and influences clouds and the hydrological cycle through its ability to act as cloud condensation nuclei (CCN). Because the anthropogenic contribution to climate forcing represents the difference between the total forcing and that from natural aerosols, understanding background aerosols is necessary to evaluate the influences of anthropogenic aerosols on cloud reflectivity and persistence (so-called indirect radiative forcing). The effects of marine aerosols are explored using remotely sensed data obtained by Cloud-aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and the NCAR Community Atmosphere Model (CAM5.0), coupled with the PNNL Modal Aerosol Model. CALIPSO-provided high resolution vertical profile information about different aerosol subtypes (defined as clean continental, marine, desert dust, polluted continental, polluted dust, and biomass burning), particulate depolarization ratio (or particle non-sphericity), reported aerosol color ratio (the ratio of aerosol backscatter at the two wavelengths) and lidar ratios over different parts of the oceans are compared to model-simulations to help evaluate the contribution of biogenic aerosol to CCN budget in the marine boundary layer. Model-simulations show that over biologically productive ocean waters primary organic aerosols of marine origin can contribute up to a 20% increase in CCN (at a supersaturation of 0.2%) number concentrations. Corresponding changes associated with cloud properties (liquid water path and droplet number) can decrease global annual mean indirect radiative forcing of anthropogenic aerosol (less cooling) by ~0.1 Wm-2 (7%). This study suggests ignoring the complex chemical composition and size distribution of sea spray particles could result in considerable uncertainties in predicted anthropogenic aerosol indirect effect.

  1. How Models Simulate the Radiative Effect in the Transition Zone of the Aerosol-Cloud Continuum

    Science.gov (United States)

    Calbo Angrill, J.; González, J. A.; Long, C. N.; McComiskey, A. C.

    2017-12-01

    Several studies have pointed towards dealing with clouds and aerosols as two manifestations of what is essentially the same physical phenomenon: a suspension of tiny particles in the air. Although the two extreme cases (i.e., pure aerosol and well-defined cloud) are easily distinguished, and obviously produce different radiative effects, there are many situations in the transition (or "twilight") zone. In a recent paper [Calbó et al., Atmos. Res. 2017, j.atmosres.2017.06.010], the authors of the current communication estimated that about 10% of time there might be a suspension of particles in the air that is difficult to distinguish as either cloud or aerosol. Radiative transfer models, however, simulate the effect of clouds and aerosols with different modules, routines, or parameterizations. In this study, we apply a sensitivity analysis approach to assess the ability of two radiative transfer models (SBDART and RRTM) in simulating the radiative effect of a suspension of particles with characteristics in the boundary between cloud and aerosol. We simulate this kind of suspension either in "cloud mode" or in "aerosol mode" and setting different values of optical depth, droplet size, water path, aerosol type, cloud height, etc. Irradiances both for solar and infrared bands are studied, both at ground level and at the top of the atmosphere, and all analyses are repeated for different solar zenith angles. We obtain that (a) water clouds and ice clouds have similar radiative effects if they have the same optical depth; (b) the spread of effects regarding different aerosol type/aerosol characteristics is remarkable; (c) radiative effects of an aerosol layer and of a cloud layer are different, even if they have similar optical depth; (d) for a given effect on the diffuse component, the effect on the direct component is usually greater (more extinction of direct beam) by aerosols than by clouds; (e) radiative transfer models are somewhat limited when simulating the

  2. Simulating gas-aerosol-cirrus interactions: Process-oriented microphysical model and applications

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2003-01-01

    Full Text Available This work describes a process-oriented, microphysical-chemical model to simulate the formation and evolution of aerosols and ice crystals under the conditions prevailing in the upper troposphere and lower stratosphere. The model can be run as a box model or along atmospheric trajectories, and considers mixing, gas phase chemistry of aerosol precursors, binary homogeneous aerosol nucleation, homogeneous and heterogeneous ice nucleation, coagulation, condensation and dissolution, gas retention during particle freezing, gas trapping in growing ice crystals, and reverse processes. Chemical equations are solved iteratively using a second order implicit integration method. Gas-particle interactions and coagulation are treated over various size structures, with fully mass conserving and non-iterative numerical solution schemes. Particle types include quinternary aqueous solutions composed of H2SO4, HNO3, HCl, and HBr with and without insoluble components, insoluble aerosol particles, and spherical or columnar ice crystals deriving from each aerosol type separately. Three case studies are discussed in detail to demonstrate the potential of the model to simulate real atmospheric processes and to highlight current research topics concerning aerosol and cirrus formation near the tropopause. Emphasis is placed on how the formation of cirrus clouds and the scavenging of nitric acid in cirrus depends on small-scale temperature fluctuations and the presence of efficient ice nuclei in the tropopause region, corroborating and partly extending the findings of previous studies.

  3. Assessing numerical methods used in nuclear aerosol transport models

    International Nuclear Information System (INIS)

    McDonald, B.H.

    1987-01-01

    Several computer codes are in use for predicting the behaviour of nuclear aerosols released into containment during postulated accidents in water-cooled reactors. Each of these codes uses numerical methods to discretize and integrate the equations that govern the aerosol transport process. Computers perform only algebraic operations and generate only numbers. It is in the numerical methods that sense can be made of these numbers and where they can be related to the actual solution of the equations. In this report, the numerical methods most commonly used in the aerosol transport codes are examined as special cases of a general solution procedure, the Method of Weighted Residuals. It would appear that the numerical methods used in the codes are all capable of producing reasonable answers to the mathematical problem when used with skill and care. 27 refs

  4. Modeling the evolution of the aerosol cloud of toxicants in the atmosphere

    Directory of Open Access Journals (Sweden)

    Bondarchuk Ivan

    2017-01-01

    Full Text Available Using the methods of mathematical modeling, the formation and evolution of aerosol clouds of toxicants in the atmosphere from the chemical industry enterprises, thermal power engineering and rocket carriers of space vehicles is analyzed. The processes of dynamic interaction of drops between themselves and a two-phase flow, processes of agglomeration, crushing and evaporation of aerosol particles are taken into account. The results of numerical calculations are presented.

  5. Modeling aerosol suspension from soils and oceans as sources of micropollutants to air.

    Science.gov (United States)

    Qureshi, Asif; MacLeod, Matthew; Hungerbühler, Konrad

    2009-10-01

    Soil and marine aerosol suspension are two physical mass transfer processes that are not usually included in models describing fate and transport of environmental pollutants. Here, we review the literature on soil and marine aerosol suspension and estimate aerosol suspension mass transfer velocities for inclusion in multimedia models, as a global average and on a 1 x 1 scale. The yearly, global average mass transfer velocity for soil aerosol suspension is estimated to be 6 x 10(-10)mh(-1), approximately an order of magnitude smaller than marine aerosol suspension, which is estimated to be 8 x 10(-9)mh(-1). Monthly averages of these velocities can be as high as 10(-7)mh(-1) and 10(-5)mh(-1) for soil and marine aerosol suspension, respectively, depending on location. We use a unit-world multimedia model to analyze the relevance of these two suspension processes as a mechanism that enhances long-range atmospheric transport of pollutants. This is done by monitoring a metric of long-range transport potential, phi-one thousand (phi1000), that denotes the fraction of modeled emissions to air, water or soil in a source region that reaches a distance of 1000 km in air. We find that when the yearly, globally averaged mass transfer velocity is used, marine aerosol suspension increases phi1000 only fractionally for both emissions to air and water. However, enrichment of substances in marine aerosols, or speciation between ionic and neutral forms in ocean water may increase the influence of this surface-to-air transfer process. Soil aerosol suspension can be the dominant process for soil-to-air transfer in an emission-to-soil scenario for certain substances that have a high affinity to soil. When a suspension mass transfer velocity near the maximum limit is used, soil suspension remains important if the emissions are made to soil, and marine aerosol suspension becomes important regardless of if emissions are made to air or water compartments. We recommend that multimedia models

  6. Online Simulations of Global Aerosol Distributions in the NASA GEOS-4 Model and Comparisons to Satellite and Ground-Based Aerosol Optical Depth

    Science.gov (United States)

    Colarco, Peter; daSilva, Arlindo; Chin, Mian; Diehl, Thomas

    2010-01-01

    We have implemented a module for tropospheric aerosols (GO CART) online in the NASA Goddard Earth Observing System version 4 model and simulated global aerosol distributions for the period 2000-2006. The new online system offers several advantages over the previous offline version, providing a platform for aerosol data assimilation, aerosol-chemistry-climate interaction studies, and short-range chemical weather forecasting and climate prediction. We introduce as well a methodology for sampling model output consistently with satellite aerosol optical thickness (AOT) retrievals to facilitate model-satellite comparison. Our results are similar to the offline GOCART model and to the models participating in the AeroCom intercomparison. The simulated AOT has similar seasonal and regional variability and magnitude to Aerosol Robotic Network (AERONET), Moderate Resolution Imaging Spectroradiometer, and Multiangle Imaging Spectroradiometer observations. The model AOT and Angstrom parameter are consistently low relative to AERONET in biomass-burning-dominated regions, where emissions appear to be underestimated, consistent with the results of the offline GOCART model. In contrast, the model AOT is biased high in sulfate-dominated regions of North America and Europe. Our model-satellite comparison methodology shows that diurnal variability in aerosol loading is unimportant compared to sampling the model where the satellite has cloud-free observations, particularly in sulfate-dominated regions. Simulated sea salt burden and optical thickness are high by a factor of 2-3 relative to other models, and agreement between model and satellite over-ocean AOT is improved by reducing the model sea salt burden by a factor of 2. The best agreement in both AOT magnitude and variability occurs immediately downwind of the Saharan dust plume.

  7. Combined observational and modeling efforts of aerosol-cloud-precipitation interactions over Southeast Asia

    Science.gov (United States)

    Loftus, Adrian; Tsay, Si-Chee; Nguyen, Xuan Anh

    2016-04-01

    Low-level stratocumulus (Sc) clouds cover more of the Earth's surface than any other cloud type rendering them critical for Earth's energy balance, primarily via reflection of solar radiation, as well as their role in the global hydrological cycle. Stratocumuli are particularly sensitive to changes in aerosol loading on both microphysical and macrophysical scales, yet the complex feedbacks involved in aerosol-cloud-precipitation interactions remain poorly understood. Moreover, research on these clouds has largely been confined to marine environments, with far fewer studies over land where major sources of anthropogenic aerosols exist. The aerosol burden over Southeast Asia (SEA) in boreal spring, attributed to biomass burning (BB), exhibits highly consistent spatiotemporal distribution patterns, with major variability due to changes in aerosol loading mediated by processes ranging from large-scale climate factors to diurnal meteorological events. Downwind from source regions, the transported BB aerosols often overlap with low-level Sc cloud decks associated with the development of the region's pre-monsoon system, providing a unique, natural laboratory for further exploring their complex micro- and macro-scale relationships. Compared to other locations worldwide, studies of springtime biomass-burning aerosols and the predominately Sc cloud systems over SEA and their ensuing interactions are underrepresented in scientific literature. Measurements of aerosol and cloud properties, whether ground-based or from satellites, generally lack information on microphysical processes; thus cloud-resolving models are often employed to simulate the underlying physical processes in aerosol-cloud-precipitation interactions. The Goddard Cumulus Ensemble (GCE) cloud model has recently been enhanced with a triple-moment (3M) bulk microphysics scheme as well as the Regional Atmospheric Modeling System (RAMS) version 6 aerosol module. Because the aerosol burden not only affects cloud

  8. Aerosol particle transport modeling for preclosure safety studies of nuclear waste repositories

    International Nuclear Information System (INIS)

    Gelbard, F.

    1989-01-01

    An important concern for preclosure safety analysis of a nuclear waste repository is the potential release to the environment of respirable aerosol particles. Such particles, less than 10 μm in aerodynamic diameter, may have significant adverse health effects if inhaled. To assess the potential health effects of these particles, it is not sufficient to determine the mass fraction of respirable aerosol. The chemical composition of the particles is also of importance since different radionuclides may pose vastly different health hazards. Thus, models are needed to determine under normal and accident conditions the particle size and the chemical composition distributions of aerosol particles as a function of time and of position in the repository. In this work a multicomponent sectional aerosol model is used to determine the aerosol particle size and composition distributions in the repository. A range of aerosol mass releases with varying mean particle sizes and chemical compositions is used to demonstrate the sensitivities and uncertainties of the model. Decontamination factors for some locations in the repository are presented. 8 refs., 1 tab

  9. A New Paradigm for Diagnosing Contributions to Model Aerosol Forcing Error

    Science.gov (United States)

    Jones, A. L.; Feldman, D. R.; Freidenreich, S.; Paynter, D.; Ramaswamy, V.; Collins, W. D.; Pincus, R.

    2017-12-01

    A new paradigm in benchmark absorption-scattering radiative transfer is presented that enables both the globally averaged and spatially resolved testing of climate model radiation parameterizations in order to uncover persistent sources of biases in the aerosol instantaneous radiative effect (IRE). A proof of concept is demonstrated with the Geophysical Fluid Dynamics Laboratory AM4 and Community Earth System Model 1.2.2 climate models. Instead of prescribing atmospheric conditions and aerosols, as in prior intercomparisons, native snapshots of the atmospheric state and aerosol optical properties from the participating models are used as inputs to an accurate radiation solver to uncover model-relevant biases. These diagnostic results show that the models' aerosol IRE bias is of the same magnitude as the persistent range cited ( 1 W/m2) and also varies spatially and with intrinsic aerosol optical properties. The findings underscore the significance of native model error analysis and its dispositive ability to diagnose global biases, confirming its fundamental value for the Radiative Forcing Model Intercomparison Project.

  10. Aerosol effects on cloud water amounts were successfully simulated by a global cloud-system resolving model.

    Science.gov (United States)

    Sato, Yousuke; Goto, Daisuke; Michibata, Takuro; Suzuki, Kentaroh; Takemura, Toshihiko; Tomita, Hirofumi; Nakajima, Teruyuki

    2018-03-07

    Aerosols affect climate by modifying cloud properties through their role as cloud condensation nuclei or ice nuclei, called aerosol-cloud interactions. In most global climate models (GCMs), the aerosol-cloud interactions are represented by empirical parameterisations, in which the mass of cloud liquid water (LWP) is assumed to increase monotonically with increasing aerosol loading. Recent satellite observations, however, have yielded contradictory results: LWP can decrease with increasing aerosol loading. This difference implies that GCMs overestimate the aerosol effect, but the reasons for the difference are not obvious. Here, we reproduce satellite-observed LWP responses using a global simulation with explicit representations of cloud microphysics, instead of the parameterisations. Our analyses reveal that the decrease in LWP originates from the response of evaporation and condensation processes to aerosol perturbations, which are not represented in GCMs. The explicit representation of cloud microphysics in global scale modelling reduces the uncertainty of climate prediction.

  11. Dynamic-chemistry-aerosol modelling interaction: the ESCOMPTE 2001 experiment; Modelisation de l'interaction dynamique- chimie - aerosol: campagne ESCOMPTE 2001

    Energy Technology Data Exchange (ETDEWEB)

    Cousin, F

    2004-09-01

    After most pollution studies independently devoted to gases and aerosols, there now appears an urgent need to consider their interactions. In this view, an aerosol module has been implemented in the Meso-NH-C model to simulate two IOPs documented during the ESCOMPTE campaign which took place in the Marseille/Fos-Berre region in June-July 2001. First, modelled dynamic parameters (winds, temperatures, boundary layer thickness) and gaseous chemistry have been validated with measurements issued from the exhaustive ESCOMPTE database. Sensitivity analysis have also been performed using different gaseous emission inventories at various resolution. These simulations have illustrated the deep impact of both synoptic and local dynamics on observed ozone concentrations on June 24 (IOP2b) in the ESCOMPTE domain. Afterwards, the ORISAM aerosol module has been introduced into the Meso-NH-C model. Dynamics, gaseous chemistry and aerosol processes have thus been coupled on-line. The particulate pollution episode on June 24 (IOP2b) has been characterised through a satisfactory comparison, specially from sub-micron particles, between modelling and measurements at different representative stations in the domain. This study, with validation of the particulate emission inventory has also highlighted the need for future improvements, such as further characterisation of organic and inorganic aerosol species and consideration of coarse particles. Aerosol impact on gaseous chemistry has been preliminary approached in view of future development and modification to be given to the Meso-NH-C model. (author)

  12. AMARSI: Aerosol modeling and retrieval from multi-spectral imagers

    NARCIS (Netherlands)

    Leeuw, G. de; Curier, R.L.; Staroverova, A.; Kokhanovsky, A.; Hoyningen-Huene, W. van; Rozanov, V.V.; Burrows, J.P.; Hesselmans, G.; Gale, L.; Bouvet, M.

    2008-01-01

    The AMARSI project aims at the development and validation of aerosol retrieval algorithms over ocean. One algorithm will be developed for application with data from the Multi Spectral Imager (MSI) on EarthCARE. A second algorithm will be developed using the combined information from AATSR and MERIS,

  13. Evaluation of climate model aerosol seasonal and spatial variability

    CSIR Research Space (South Africa)

    Horowitz, HM

    2017-11-01

    Full Text Available , regional circulation transports dust from deserts in Iraq and southern Iran during summer and a mixture of fine pollution aerosols from the Persian Gulf throughout the year (Eck et al., 2008; Basart et al., 2009). The Izaña site has a different seasonal...

  14. Modeling Dry Deposition of Aerosol Particles on Rough Surfaces

    Czech Academy of Sciences Publication Activity Database

    Hussein, T.; Smolík, Jiří; Kerminen, V.-M.; Kulmala, M.

    2012-01-01

    Roč. 46, č. 1 (2012), s. 44-59 ISSN 0278-6826 Institutional research plan: CEZ:AV0Z40720504 Keywords : aerosol particles * dry deposition * transport Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.780, year: 2012

  15. Potential decadal predictability and its sensitivity to sea ice albedo parameterization in a global coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Koenigk, Torben; Caian, Mihaela; Doescher, Ralf; Wyser, Klaus [Swedish Meteorological and Hydrological Institute, Rossby Centre, Norrkoeping (Sweden); Koenig Beatty, Christof [Universite Catholique de Louvain, Louvain-la-Neuve (Belgium)

    2012-06-15

    Decadal prediction is one focus of the upcoming 5th IPCC Assessment report. To be able to interpret the results and to further improve the decadal predictions it is important to investigate the potential predictability in the participating climate models. This study analyzes the upper limit of climate predictability on decadal time scales and its dependency on sea ice albedo parameterization by performing two perfect ensemble experiments with the global coupled climate model EC-Earth. In the first experiment, the standard albedo formulation of EC-Earth is used, in the second experiment sea ice albedo is reduced. The potential prognostic predictability is analyzed for a set of oceanic and atmospheric parameters. The decadal predictability of the atmospheric circulation is small. The highest potential predictability was found in air temperature at 2 m height over the northern North Atlantic and the southern South Atlantic. Over land, only a few areas are significantly predictable. The predictability for continental size averages of air temperature is relatively good in all northern hemisphere regions. Sea ice thickness is highly predictable along the ice edges in the North Atlantic Arctic Sector. The meridional overturning circulation is highly predictable in both experiments and governs most of the decadal climate predictability in the northern hemisphere. The experiments using reduced sea ice albedo show some important differences like a generally higher predictability of atmospheric variables in the Arctic or higher predictability of air temperature in Europe. Furthermore, decadal variations are substantially smaller in the simulations with reduced ice albedo, which can be explained by reduced sea ice thickness in these simulations. (orig.)

  16. Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region

    Science.gov (United States)

    Moreira, Demerval S.; Longo, Karla M.; Freitas, Saulo R.; Yamasoe, Marcia A.; Mercado, Lina M.; Rosário, Nilton E.; Gloor, Emauel; Viana, Rosane S. M.; Miller, John B.; Gatti, Luciana V.; Wiedemann, Kenia T.; Domingues, Lucas K. G.; Correia, Caio C. S.

    2017-12-01

    Every year, a dense smoke haze covers a large portion of South America originating from fires in the Amazon Basin and central parts of Brazil during the dry biomass burning season between August and October. Over a large portion of South America, the average aerosol optical depth at 550 nm exceeds 1.0 during the fire season, while the background value during the rainy season is below 0.2. Biomass burning aerosol particles increase scattering and absorption of the incident solar radiation. The regional-scale aerosol layer reduces the amount of solar energy reaching the surface, cools the near-surface air, and increases the diffuse radiation fraction over a large disturbed area of the Amazon rainforest. These factors affect the energy and CO2 fluxes at the surface. In this work, we applied a fully integrated atmospheric model to assess the impact of biomass burning aerosols in CO2 fluxes in the Amazon region during 2010. We address the effects of the attenuation of global solar radiation and the enhancement of the diffuse solar radiation flux inside the vegetation canopy. Our results indicate that biomass burning aerosols led to increases of about 27 % in the gross primary productivity of Amazonia and 10 % in plant respiration as well as a decline in soil respiration of 3 %. Consequently, in our model Amazonia became a net carbon sink; net ecosystem exchange during September 2010 dropped from +101 to -104 TgC when the aerosol effects are considered, mainly due to the aerosol diffuse radiation effect. For the forest biome, our results point to a dominance of the diffuse radiation effect on CO2 fluxes, reaching a balance of 50-50 % between the diffuse and direct aerosol effects for high aerosol loads. For C3 grasses and savanna (cerrado), as expected, the contribution of the diffuse radiation effect is much lower, tending to zero with the increase in aerosol load. Taking all biomes together, our model shows the Amazon during the dry season, in the presence of high

  17. Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region

    Directory of Open Access Journals (Sweden)

    D. S. Moreira

    2017-12-01

    Full Text Available Every year, a dense smoke haze covers a large portion of South America originating from fires in the Amazon Basin and central parts of Brazil during the dry biomass burning season between August and October. Over a large portion of South America, the average aerosol optical depth at 550 nm exceeds 1.0 during the fire season, while the background value during the rainy season is below 0.2. Biomass burning aerosol particles increase scattering and absorption of the incident solar radiation. The regional-scale aerosol layer reduces the amount of solar energy reaching the surface, cools the near-surface air, and increases the diffuse radiation fraction over a large disturbed area of the Amazon rainforest. These factors affect the energy and CO2 fluxes at the surface. In this work, we applied a fully integrated atmospheric model to assess the impact of biomass burning aerosols in CO2 fluxes in the Amazon region during 2010. We address the effects of the attenuation of global solar radiation and the enhancement of the diffuse solar radiation flux inside the vegetation canopy. Our results indicate that biomass burning aerosols led to increases of about 27 % in the gross primary productivity of Amazonia and 10 % in plant respiration as well as a decline in soil respiration of 3 %. Consequently, in our model Amazonia became a net carbon sink; net ecosystem exchange during September 2010 dropped from +101 to −104 TgC when the aerosol effects are considered, mainly due to the aerosol diffuse radiation effect. For the forest biome, our results point to a dominance of the diffuse radiation effect on CO2 fluxes, reaching a balance of 50–50 % between the diffuse and direct aerosol effects for high aerosol loads. For C3 grasses and savanna (cerrado, as expected, the contribution of the diffuse radiation effect is much lower, tending to zero with the increase in aerosol load. Taking all biomes together, our model shows the Amazon during the dry

  18. The Role of Cloud Contamination, Aerosol Layer Height and Aerosol Model in the Assessment of the OMI Near-UV Retrievals Over the Ocean

    Science.gov (United States)

    Gasso, Santiago; Torres, Omar

    2016-01-01

    Retrievals of aerosol optical depth (AOD) at 388 nm over the ocean from the Ozone Monitoring Instrument (OMI) two-channel near-UV algorithm (OMAERUV) have been compared with independent AOD measurements. The analysis was carried out over the open ocean (OMI and MODerate-resolution Imaging Spectrometer (MODIS) AOD comparisons) and over coastal and island sites (OMI and AERONET, the AErosol RObotic NETwork). Additionally, a research version of the retrieval algorithm (using MODIS and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) information as constraints) was utilized to evaluate the sensitivity of the retrieval to different assumed aerosol properties. Overall, the comparison resulted in differences (OMI minus independent measurements) within the expected levels of uncertainty for the OMI AOD retrievals (0.1 for AOD less than 0.3, 30% for AOD greater than 0.3). Using examples from case studies with outliers, the reasons that led to the observed differences were examined with specific purpose to determine whether they are related to instrument limitations (i.e., pixel size, calibration) or algorithm assumptions (such as aerosol shape, aerosol height). The analysis confirms that OMAERUV does an adequate job at rejecting cloudy scenes within the instrument's capabilities. There is a residual cloud contamination in OMI pixels with quality flag 0 (the best conditions for aerosol retrieval according to the algorithm), resulting in a bias towards high AODs in OMAERUV. This bias is more pronounced at low concentrations of absorbing aerosols (AOD 388 nm approximately less than 0.5). For higher aerosol loadings, the bias remains within OMI's AOD uncertainties. In pixels where OMAERUV assigned a dust aerosol model, a fraction of them (less than 20 %) had retrieved AODs significantly lower than AERONET and MODIS AODs. In a case study, a detailed examination of the aerosol height from CALIOP and the AODs from MODIS, along with sensitivity tests, was carried out by

  19. A new technique for measuring aerosols with moonlight observations and a sky background model

    Science.gov (United States)

    Jones, Amy; Noll, Stefan; Kausch, Wolfgang; Kimeswenger, Stefan; Szyszka, Ceszary; Unterguggenberger, Stefanie

    2014-05-01

    There have been an ample number of studies on aerosols in urban, daylight conditions, but few for remote, nocturnal aerosols. We have developed a new technique for investigating such aerosols using our sky background model and astronomical observations. With a dedicated observing proposal we have successfully tested this technique for nocturnal, remote aerosol studies. This technique relies on three requirements: (a) sky background model, (b) observations taken with scattered moonlight, and (c) spectrophotometric standard star observations for flux calibrations. The sky background model was developed for the European Southern Observatory and is optimized for the Very Large Telescope at Cerro Paranal in the Atacama desert in Chile. This is a remote location with almost no urban aerosols. It is well suited for studying remote background aerosols that are normally difficult to detect. Our sky background model has an uncertainty of around 20 percent and the scattered moonlight portion is even more accurate. The last two requirements are having astronomical observations with moonlight and of standard stars at different airmasses, all during the same night. We had a dedicated observing proposal at Cerro Paranal with the instrument X-Shooter to use as a case study for this method. X-Shooter is a medium resolution, echelle spectrograph which covers the wavelengths from 0.3 to 2.5 micrometers. We observed plain sky at six different distances (7, 13, 20, 45, 90, and 110 degrees) to the Moon for three different Moon phases (between full and half). Also direct observations of spectrophotometric standard stars were taken at two different airmasses for each night to measure the extinction curve via the Langley method. This is an ideal data set for testing this technique. The underlying assumption is that all components, other than the atmospheric conditions (specifically aerosols and airglow), can be calculated with the model for the given observing parameters. The scattered

  20. The Asian Tropopause Aerosol Layer: Balloon-Borne Measurements, Satellite Observations and Modeling Approaches

    Science.gov (United States)

    Fairlie, T. D.; Vernier, J.-P.; Natarajan, M.; Deshler, Terry; Liu, H.; Wegner, T.; Baker, N.; Gadhavi, H.; Jayaraman, A.; Pandit, A.; hide

    2016-01-01

    Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) can provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols associated with ASM anticyclone, in the upper troposphere and lower stratosphere (UTLS). The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instrumentation, aircraft and satellite observations, combined with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical and optical properties of aerosols in the ATAL. In particular, we show balloon-based observations from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, including in situ backscatter measurements from COBALD instruments, and some of the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous contributions to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that 80-90% of ATAL aerosols originate from south Asian sources, in contrast with some earlier studies.

  1. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data

    Science.gov (United States)

    Scanlon, Bridget R.; Zhang, Zizhan; Save, Himanshu; Sun, Alexander Y.; van Beek, Ludovicus P. H.; Wiese, David N.; Reedy, Robert C.; Longuevergne, Laurent; Döll, Petra; Bierkens, Marc F. P.

    2018-01-01

    Assessing reliability of global models is critical because of increasing reliance on these models to address past and projected future climate and human stresses on global water resources. Here, we evaluate model reliability based on a comprehensive comparison of decadal trends (2002–2014) in land water storage from seven global models (WGHM, PCR-GLOBWB, GLDAS NOAH, MOSAIC, VIC, CLM, and CLSM) to trends from three Gravity Recovery and Climate Experiment (GRACE) satellite solutions in 186 river basins (∼60% of global land area). Medians of modeled basin water storage trends greatly underestimate GRACE-derived large decreasing (≤−0.5 km3/y) and increasing (≥0.5 km3/y) trends. Decreasing trends from GRACE are mostly related to human use (irrigation) and climate variations, whereas increasing trends reflect climate variations. For example, in the Amazon, GRACE estimates a large increasing trend of ∼43 km3/y, whereas most models estimate decreasing trends (−71 to 11 km3/y). Land water storage trends, summed over all basins, are positive for GRACE (∼71–82 km3/y) but negative for models (−450 to −12 km3/y), contributing opposing trends to global mean sea level change. Impacts of climate forcing on decadal land water storage trends exceed those of modeled human intervention by about a factor of 2. The model-GRACE comparison highlights potential areas of future model development, particularly simulated water storage. The inability of models to capture large decadal water storage trends based on GRACE indicates that model projections of climate and human-induced water storage changes may be underestimated. PMID:29358394

  2. More Realistic Face Model Surface Improves Relevance of Pediatric In-Vitro Aerosol Studies.

    Science.gov (United States)

    Amirav, Israel; Halamish, Asaf; Gorenberg, Miguel; Omar, Hamza; Newhouse, Michael T

    2015-01-01

    Various hard face models are commonly used to evaluate the efficiency of aerosol face masks. Softer more realistic "face" surface materials, like skin, deform upon mask application and should provide more relevant in-vitro tests. Studies that simultaneously take into consideration many of the factors characteristic of the in vivo face are lacking. These include airways, various application forces, comparison of various devices, comparison with a hard-surface model and use of a more representative model face based on large numbers of actual faces. To compare mask to "face" seal and aerosol delivery of two pediatric masks using a soft vs. a hard, appropriately representative, pediatric face model under various applied forces. Two identical face models and upper airways replicas were constructed, the only difference being the suppleness and compressibility of the surface layer of the "face." Integrity of the seal and aerosol delivery of two different masks [AeroChamber (AC) and SootherMask (SM)] were compared using a breath simulator, filter collection and realistic applied forces. The soft "face" significantly increased the delivery efficiency and the sealing characteristics of both masks. Aerosol delivery with the soft "face" was significantly greater for the SM compared to the AC (pmasks was observed with the hard "face." The material and pliability of the model "face" surface has a significant influence on both the seal and delivery efficiency of face masks. This finding should be taken into account during in-vitro aerosol studies.

  3. A nonhuman primate aerosol deposition model for toxicological and pharmaceutical studies

    Energy Technology Data Exchange (ETDEWEB)

    Martonen, T.B.; Katz, I.M.; Musante, C.J. [US EPA, Research Triangle Park, NC (USA)

    2001-07-01

    Nonhuman primates may be used as human surrogates in inhalation exposure studies to assess either the (1) adverse health effects of airborne particulate matter or (2) therapeutic effects of aerosolized drugs and proteins. Mathematical models describing the behavior and fate of inhaled aerosols may be used to complement such laboratory investigations. In this work a mathematical description of the rhesus monkey (Macaca mulatta) lung is presented for use with an aerosol deposition model. Deposition patterns of 0.01- to 5-{mu}m-diameter monodisperse aerosols within lungs were calculated for 3 monkey lung models (using different descriptions of alveolated regions) and compared to human lung results obtained using a previously validated mathematical model of deposition physics. The findings suggest that there are significant differences between deposition patterns in monkeys and humans. The nonhuman primates had greater exposures to inhaled substances, particularly on the basis of deposition per unit airway surface area. However, the different alveolar volumes in the rhesus monkey models had only minor effects on aerosol dosimetry within those lungs. By being aware of such quantitative differences, investigators can employ the respective primate models (human and nonhuman) to more effectively design and interpret the results of future inhalation exposure experiments.

  4. Aerosol indirect effects ? general circulation model intercomparison and evaluation with satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Grandey, Benjamin; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael

    2010-03-12

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth ({tau}{sub a}) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (N{sub d}) compares relatively well to the satellite data at least over the ocean. The relationship between {tau}{sub a} and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (f{sub cld}) and {tau}{sub a} as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong f{sub cld} - {tau}{sub a} relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between {tau}{sub a} and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - {tau}{sub a} relationship show a strong positive correlation between {tau}{sub a} and f{sub cld} The short-wave total aerosol radiative forcing as simulated by the GCMs is

  5. Modeling of aerosol formation during biomass combustion in grate furnaces and comparison with measurements

    NARCIS (Netherlands)

    Joeller, M.; Brunner, T.; Obernberger, I.

    2005-01-01

    Results from mathematical modeling of aerosol formation during combustion of woody biomass fuels were compared with results from particle size distribution (PSD) measurements at a pilot-scale biomass combustion unit with moving grate and flame tube boiler. The mathematical model is a plug flow model

  6. Modelling iodide – iodate speciation in atmospheric aerosol: Contributions of inorganic and organic iodine chemistry

    Directory of Open Access Journals (Sweden)

    S. Pechtl

    2007-01-01

    Full Text Available The speciation of iodine in atmospheric aerosol is currently poorly understood. Models predict negligible iodide concentrations but accumulation of iodate in aerosol, both of which is not confirmed by recent measurements. We present an updated aqueous phase iodine chemistry scheme for use in atmospheric chemistry models and discuss sensitivity studies with the marine boundary layer model MISTRA. These studies show that iodate can be reduced in acidic aerosol by inorganic reactions, i.e., iodate does not necessarily accumulate in particles. Furthermore, the transformation of particulate iodide to volatile iodine species likely has been overestimated in previous model studies due to negligence of collision-induced upper limits for the reaction rates. However, inorganic reaction cycles still do not seem to be sufficient to reproduce the observed range of iodide – iodate speciation in atmospheric aerosol. Therefore, we also investigate the effects of the recently suggested reaction of HOI with dissolved organic matter to produce iodide. If this reaction is fast enough to compete with the inorganic mechanism, it would not only directly lead to enhanced iodide concentrations but, indirectly via speed-up of the inorganic iodate reduction cycles, also to a decrease in iodate concentrations. Hence, according to our model studies, organic iodine chemistry, combined with inorganic reaction cycles, is able to reproduce observations. The presented chemistry cycles are highly dependent on pH and thus offer an explanation for the large observed variability of the iodide – iodate speciation in atmospheric aerosol.

  7. Radiative effects of absorbing aerosols over northeastern India: Observations and model simulations

    Science.gov (United States)

    Gogoi, Mukunda M.; Babu, S. Suresh; Moorthy, K. Krishna; Bhuyan, Pradip Kumar; Pathak, Binita; Subba, Tamanna; Chutia, Lakhima; Kundu, Shyam Sundar; Bharali, Chandrakala; Borgohain, Arup; Guha, Anirban; De, Barin Kumar; Singh, Brajamani; Chin, Mian

    2017-01-01

    Multiyear measurements of spectral properties of aerosol absorption are examined over four geographically distinct locations of northeastern India. Results indicated significant spatiotemporal variation in aerosol absorption coefficients (σabs) with highest values in winter and lowest in monsoon. The western parts of the region, close to the outflow of Indo-Gangetic Plains, showed higher values of σabs and black carbon (BC) concentration—mostly associated with fossil fuel combustion. But, the eastern parts showed higher contributions from biomass-burning aerosols, as much as 20-25% to the total aerosol absorption, conspicuously during premonsoon season. This is attributed to a large number of burning activities over the Southeast Asian region, as depicted from Moderate Resolution Imaging Spectroradiometer fire count maps, whose spatial extent and magnitude peaks during March/April. The nearly consistent high values of aerosol index (AI) and layer height from Ozone Monitoring Instrument indicate the presence of absorbing aerosols in the upper atmosphere. The observed seasonality has been captured fairly well by Goddard Chemistry Aerosol Radiation and Transport (GOCART) as well as Weather Research and Forecasting-Chemistry (WRF-Chem) model simulations. The ratio of column-integrated optical depths due to particulate organic matter and BC from GOCART showed good coincidence with satellite-based observations, indicating the increased vertical dispersion of absorbing aerosols, probably by the additional local convection due to higher fire radiative power caused by the intense biomass-burning activities. In the WRF-Chem though underperformed by different magnitude in winter, the values are closer or overestimated near the burnt areas. Atmospheric forcing due to BC was highest ( 30 Wm-2) over the western part associated with the fossil fuel combustion.

  8. Aerosols, Chemistry, and Radiative Forcing: A 3-D Model Analysis of Satellite and ACE-Asia data (ACMAP)

    Science.gov (United States)

    Chin, Mian; Ginoux, Paul; Torres, Omar; Zhao, Xue-Peng

    2005-01-01

    We propose a research project to incorporate a global 3-D model and satellite data into the multi-national Aerosol Characterization Experiment-Asia (ACE-Asia) mission. Our objectives are (1) to understand the physical, chemical, and optical properties of aerosols and the processes that control those properties over the Asian-Pacific region, (2) to investigate the interaction between aerosols and tropospheric chemistry, and (3) to determine the aerosol radiative forcing over the Asia-Pacific region. We will use the Georgia TecWGoddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model to link satellite observations and the ACE-Asia measurements. First, we will use the GOCART model to simulate aerosols and related species, and evaluate the model with satellite and in-situ observations. Second, the model generated aerosol vertical profiles and compositions will be used to validate the satellite products; and the satellite data will be used for during- and post- mission analysis. Third, we will use the model to analyze and interpret both satellite and ACE- Asia field campaign data and investigate the aerosol-chemistry interactions. Finally, we will calculate aerosol radiative forcing over the Asian-Pacific region, and assess the influence of Asian pollution in the global atmosphere. We propose a research project to incorporate a global 3-D model and satellite data into

  9. Creating Aerosol Types from CHemistry (CATCH): A New Algorithm to Extend the Link Between Remote Sensing and Models

    Science.gov (United States)

    Dawson, K. W.; Meskhidze, N.; Burton, S. P.; Johnson, M. S.; Kacenelenbogen, M. S.; Hostetler, C. A.; Hu, Y.

    2017-11-01

    Current remote sensing methods can identify aerosol types within an atmospheric column, presenting an opportunity to incrementally bridge the gap between remote sensing and models. Here a new algorithm was designed for Creating Aerosol Types from CHemistry (CATCH). CATCH-derived aerosol types—dusty mix, maritime, urban, smoke, and fresh smoke—are based on first-generation airborne High Spectral Resolution Lidar (HSRL-1) retrievals during the Ship-Aircraft Bio-Optical Research (SABOR) campaign, July/August 2014. CATCH is designed to derive aerosol types from model output of chemical composition. CATCH-derived aerosol types are determined by multivariate clustering of model-calculated variables that have been trained using retrievals of aerosol types from HSRL-1. CATCH-derived aerosol types (with the exception of smoke) compare well with HSRL-1 retrievals during SABOR with an average difference in aerosol optical depth (AOD) methods. In the future, spaceborne HSRL-1 and CATCH can be used to gain insight into chemical composition of aerosol types, reducing uncertainties in estimates of aerosol radiative forcing.

  10. Simulation of Cloud-aerosol Lidar with Orthogonal Polarization (CALIOP Attenuated Backscatter Profiles Using the Global Model of Aerosol Processes (GLOMAP

    Directory of Open Access Journals (Sweden)

    Young Stuart

    2016-01-01

    Full Text Available To permit the calculation of the radiative effects of atmospheric aerosols, we have linked our aerosol-chemical transport model (CTMGLOMAP to a new radiation module (UKCARADAER. In order to help assess and improve the accuracy of the radiation code, in particular the height dependence of the predicted scattering, we have developed a module that simulates attenuated backscatter (ABS profiles that would be measured by the satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP if it were to sample an atmosphere with the same aerosol loading as predicted by the CTM. Initial results of our comparisons of the predicted ABS profiles with actual CALIOP data are encouraging but some differences are noted, particularly in marine boundary layers where the scattering is currently under-predicted and in dust layers where it is often over-predicted. The sources of these differences are being investigated.

  11. Computational modeling and experimental characterization of indoor aerosol transport

    International Nuclear Information System (INIS)

    Konecni, Snezana; Whicker, Jeffrey J.; Martin, Richard A.

    2002-01-01

    When a hazardous aerosol or gas is inadvertently or deliberately released in an occupied facility, the airborne material presents a hazard to people. Inadvertent accidents and exposures continue to occur in Los Alamos and other nuclear facilities despite state-of-art engineering and administrative controls, and heightened diligence. Despite the obvious need in occupational settings and for homeland defense, the body of research in hazardous aerosol dispersion and control in large, complex, ventilated enclosures is extremely limited. The science governing generation, transport, inhalation, and detection of airborne hazards is lacking and must be developed to where it can be used by engineers or safety professionals in the prediction of worker exposure, in the prevention of accidents, or in the mitigation of terrorist actions. In this study, a commercial computational fluid dynamics (CFD) code, CFX5.4, and experiments were used to assess flow field characteristics, and to investigate aerosol release and transport in a large, ventilated workroom in a facility at Savannah River Site. Steady state CFD results illustrating a complex, ventilation-induced, flow field with vortices, velocity gradients, and quiet zones are presented, as are time-dependent CFD and experimental aerosol dispersion results. The comparison of response times between CFD and experimental results was favorable. It is believed that future applications of CFD and experiments can have a favorable impact on the design of ventilation (HVAC) systems and worker safety with consideration to facility costs. Ultimately, statistical methods will be used in conjunction with CFD calculations to determine the optimal number and location of detectors, as well as optimal egress routes in event of a release.

  12. Cloud albedo changes in response to anthropogenic sulfate and non-sulfate aerosol forcings in CMIP5 models

    Directory of Open Access Journals (Sweden)

    L. Frey

    2017-07-01

    Full Text Available The effects of different aerosol types on cloud albedo are analysed using the linear relation between total albedo and cloud fraction found on a monthly mean scale in regions of subtropical marine stratocumulus clouds and the influence of simulated aerosol variations on this relation. Model experiments from the Coupled Model Intercomparison Project phase 5 (CMIP5 are used to separately study the responses to increases in sulfate, non-sulfate and all anthropogenic aerosols. A cloud brightening on the month-to-month scale due to variability in the background aerosol is found to dominate even in the cases where anthropogenic aerosols are added. The aerosol composition is of importance for this cloud brightening, that is thereby region dependent. There is indication that absorbing aerosols to some extent counteract the cloud brightening but scene darkening with increasing aerosol burden is generally not supported, even in regions where absorbing aerosols dominate. Month-to-month cloud albedo variability also confirms the importance of liquid water content for cloud albedo. Regional, monthly mean cloud albedo is found to increase with the addition of anthropogenic aerosols and more so with sulfate than non-sulfate. Changes in cloud albedo between experiments are related to changes in cloud water content as well as droplet size distribution changes, so that models with large increases in liquid water path and/or cloud droplet number show large cloud albedo increases with increasing aerosol. However, no clear relation between model sensitivities to aerosol variations on the month-to-month scale and changes in cloud albedo due to changed aerosol burden is found.

  13. A model ensemble for projecting multi‐decadal coastal cliff retreat during the 21st century

    Science.gov (United States)

    Limber, Patrick; Barnard, Patrick; Vitousek, Sean; Erikson, Li

    2018-01-01

    Sea cliff retreat rates are expected to accelerate with rising sea levels during the 21st century. Here we develop an approach for a multi‐model ensemble that efficiently projects time‐averaged sea cliff retreat over multi‐decadal time scales and large (>50 km) spatial scales. The ensemble consists of five simple 1‐D models adapted from the literature that relate sea cliff retreat to wave impacts, sea level rise (SLR), historical cliff behavior, and cross‐shore profile geometry. Ensemble predictions are based on Monte Carlo simulations of each individual model, which account for the uncertainty of model parameters. The consensus of the individual models also weights uncertainty, such that uncertainty is greater when predictions from different models do not agree. A calibrated, but unvalidated, ensemble was applied to the 475 km‐long coastline of Southern California (USA), with 4 SLR scenarios of 0.5, 0.93, 1.5, and 2 m by 2100. Results suggest that future retreat rates could increase relative to mean historical rates by more than two‐fold for the higher SLR scenarios, causing an average total land loss of 19 – 41 m by 2100. However, model uncertainty ranges from +/‐ 5 – 15 m, reflecting the inherent difficulties of projecting cliff retreat over multiple decades. To enhance ensemble performance, future work could include weighting each model by its skill in matching observations in different morphological settings

  14. Modelling of the aerosol deposition in a hydrogen catalytic recombiner

    International Nuclear Information System (INIS)

    Vendel, J.; Studer, E.; Zavaleta, P.; Hadida, Ph.

    1997-01-01

    Catalytic recombiners are used to remove the hydrogen released in case of a severe accident in a nuclear power plant, so as to reduce the risk of deflagration or detonation. H 2 PAR experiments are carried out to precise the behaviour of recombiners in term of poisoning by aerosols. Firstly, some calculations have been done with the Trio-EF code to assess the structure of convection loops in the experimental tent. We note that when the recombiner is active, it may have a strong influence on the flow inside the tent and may even interact with an other heat source such as a furnace. In the second part, we study the deposition of aerosols on catalytic plates for a given recombiner, when it is active or passive. We list the different mechanisms and quantify them by introducing the deposition velocity. In fact, thermophoresis appears to be the main mechanism, compared to brownian diffusion or difrusiophoresis, which governs aerosols deposition. It favours deposition on > plates and acts against it for > plates. (author)

  15. Global modelling of secondary organic aerosol in the troposphere: a sensitivity analysis

    Directory of Open Access Journals (Sweden)

    K. Tsigaridis

    2003-01-01

    Full Text Available A global 3-dimensional chemistry/transport model able to describe O3, NOx, Volatile Organic Compounds (VOC, sulphur and NH3 chemistry has been extended to simulate the temporal and spatial distribution of primary and secondary carbonaceous aerosols in the troposphere focusing on Secondary Organic Aerosol (SOA formation. A number of global simulations have been performed to determine a possible range of annual global SOA production and investigate uncertainties associated with the model results. The studied uncertainties in the SOA budget have been evaluated to be in decreasing importance: the potentially irreversible sticking of the semi-volatile compounds on aerosols, the enthalpy of vaporization of these compounds, the partitioning of SOA on non-carbonaceous aerosols, the conversion of aerosols from hydrophobic to hydrophilic, the emissions of primary carbonaceous aerosols, the chemical fate of the first generation products and finally the activity coefficient of the condensable species. The large uncertainties associated with the emissions of VOC and the adopted simplification of chemistry have not been investigated in this study. Although not all sources of uncertainties have been investigated, according to our calculations, the above factors within the experimental range of variations could result to an overall uncertainty of about a factor of 20 in the global SOA budget. The global annual SOA production from biogenic VOC might range from 2.5 to 44.5 Tg of organic matter per year, whereas that from anthropogenic VOC ranges from 0.05 to 2.62 Tg of organic matter per year. These estimates can be considered as a lower limit, since partitioning on coarse particles like nitrate, dust or sea-salt, together with the partitioning and the dissociation of the semi-volatile products in aerosol water has been neglected. Comparison of model results to observations, where available, shows a better agreement for the upper budget estimates than for the

  16. Evaluation of climate model aerosol seasonal and spatial variability over Africa using AERONET

    Science.gov (United States)

    Horowitz, Hannah M.; Garland, Rebecca M.; Thatcher, Marcus; Landman, Willem A.; Dedekind, Zane; van der Merwe, Jacobus; Engelbrecht, Francois A.

    2017-11-01

    The sensitivity of climate models to the characterization of African aerosol particles is poorly understood. Africa is a major source of dust and biomass burning aerosols and this represents an important research gap in understanding the impact of aerosols on radiative forcing of the climate system. Here we evaluate the current representation of aerosol particles in the Conformal Cubic Atmospheric Model (CCAM) with ground-based remote retrievals across Africa, and additionally provide an analysis of observed aerosol optical depth at 550 nm (AOD550 nm) and Ångström exponent data from 34 Aerosol Robotic Network (AERONET) sites. Analysis of the 34 long-term AERONET sites confirms the importance of dust and biomass burning emissions to the seasonal cycle and magnitude of AOD550 nm across the continent and the transport of these emissions to regions outside of the continent. In general, CCAM captures the seasonality of the AERONET data across the continent. The magnitude of modeled and observed multiyear monthly average AOD550 nm overlap within ±1 standard deviation of each other for at least 7 months at all sites except the Réunion St Denis Island site (Réunion St. Denis). The timing of modeled peak AOD550 nm in southern Africa occurs 1 month prior to the observed peak, which does not align with the timing of maximum fire counts in the region. For the western and northern African sites, it is evident that CCAM currently overestimates dust in some regions while others (e.g., the Arabian Peninsula) are better characterized. This may be due to overestimated dust lifetime, or that the characterization of the soil for these areas needs to be updated with local information. The CCAM simulated AOD550 nm for the global domain is within the spread of previously published results from CMIP5 and AeroCom experiments for black carbon, organic carbon, and sulfate aerosols. The model's performance provides confidence for using the model to estimate large-scale regional impacts

  17. Evaluation of climate model aerosol seasonal and spatial variability over Africa using AERONET

    Directory of Open Access Journals (Sweden)

    H. M. Horowitz

    2017-11-01

    Full Text Available The sensitivity of climate models to the characterization of African aerosol particles is poorly understood. Africa is a major source of dust and biomass burning aerosols and this represents an important research gap in understanding the impact of aerosols on radiative forcing of the climate system. Here we evaluate the current representation of aerosol particles in the Conformal Cubic Atmospheric Model (CCAM with ground-based remote retrievals across Africa, and additionally provide an analysis of observed aerosol optical depth at 550 nm (AOD550 nm and Ångström exponent data from 34 Aerosol Robotic Network (AERONET sites. Analysis of the 34 long-term AERONET sites confirms the importance of dust and biomass burning emissions to the seasonal cycle and magnitude of AOD550 nm across the continent and the transport of these emissions to regions outside of the continent. In general, CCAM captures the seasonality of the AERONET data across the continent. The magnitude of modeled and observed multiyear monthly average AOD550 nm overlap within ±1 standard deviation of each other for at least 7 months at all sites except the Réunion St Denis Island site (Réunion St. Denis. The timing of modeled peak AOD550 nm in southern Africa occurs 1 month prior to the observed peak, which does not align with the timing of maximum fire counts in the region. For the western and northern African sites, it is evident that CCAM currently overestimates dust in some regions while others (e.g., the Arabian Peninsula are better characterized. This may be due to overestimated dust lifetime, or that the characterization of the soil for these areas needs to be updated with local information. The CCAM simulated AOD550 nm for the global domain is within the spread of previously published results from CMIP5 and AeroCom experiments for black carbon, organic carbon, and sulfate aerosols. The model's performance provides confidence for using the model to estimate

  18. Assessment of source-receptor relationships of aerosols: An integrated forward and backward modeling approach

    Science.gov (United States)

    Kulkarni, Sarika

    This dissertation presents a scientific framework that facilitates enhanced understanding of aerosol source -- receptor (S/R) relationships and their impact on the local, regional and global air quality by employing a complementary suite of modeling methods. The receptor -- oriented Positive Matrix Factorization (PMF) technique is combined with Potential Source Contribution Function (PSCF), a trajectory ensemble model, to characterize sources influencing the aerosols measured at Gosan, Korea during spring 2001. It is found that the episodic dust events originating from desert regions in East Asia (EA) that mix with pollution along the transit path, have a significant and pervasive impact on the air quality of Gosan. The intercontinental and hemispheric transport of aerosols is analyzed by a series of emission perturbation simulations with the Sulfur Transport and dEposition Model (STEM), a regional scale Chemical Transport Model (CTM), evaluated with observations from the 2008 NASA ARCTAS field campaign. This modeling study shows that pollution transport from regions outside North America (NA) contributed ˜ 30 and 20% to NA sulfate and BC surface concentration. This study also identifies aerosols transported from Europe, NA and EA regions as significant contributors to springtime Arctic sulfate and BC. Trajectory ensemble models are combined with source region tagged tracer model output to identify the source regions and possible instances of quasi-lagrangian sampled air masses during the 2006 NASA INTEX-B field campaign. The impact of specific emission sectors from Asia during the INTEX-B period is studied with the STEM model, identifying residential sector as potential target for emission reduction to combat global warming. The output from the STEM model constrained with satellite derived aerosol optical depth and ground based measurements of single scattering albedo via an optimal interpolation assimilation scheme is combined with the PMF technique to

  19. Comparison of Decadal Water Storage Trends from Global Hydrological Models and GRACE Satellite Data

    Science.gov (United States)

    Scanlon, B. R.; Zhang, Z. Z.; Save, H.; Sun, A. Y.; Mueller Schmied, H.; Van Beek, L. P.; Wiese, D. N.; Wada, Y.; Long, D.; Reedy, R. C.; Doll, P. M.; Longuevergne, L.

    2017-12-01

    Global hydrology is increasingly being evaluated using models; however, the reliability of these global models is not well known. In this study we compared decadal trends (2002-2014) in land water storage from 7 global models (WGHM, PCR-GLOBWB, and GLDAS: NOAH, MOSAIC, VIC, CLM, and CLSM) to storage trends from new GRACE satellite mascon solutions (CSR-M and JPL-M). The analysis was conducted over 186 river basins, representing about 60% of the global land area. Modeled total water storage trends agree with those from GRACE-derived trends that are within ±0.5 km3/yr but greatly underestimate large declining and rising trends outside this range. Large declining trends are found mostly in intensively irrigated basins and in some basins in northern latitudes. Rising trends are found in basins with little or no irrigation and are generally related to increasing trends in precipitation. The largest decline is found in the Ganges (-12 km3/yr) and the largest rise in the Amazon (43 km3/yr). Differences between models and GRACE are greatest in large basins (>0.5x106 km2) mostly in humid regions. There is very little agreement in storage trends between models and GRACE and among the models with values of r2 mostly store water over decadal timescales that is underrepresented by the models. The storage capacity in the modeled soil and groundwater compartments may be insufficient to accommodate the range in water storage variations shown by GRACE data. The inability of the models to capture the large storage trends indicates that model projections of climate and human-induced changes in water storage may be mostly underestimated. Future GRACE and model studies should try to reduce the various sources of uncertainty in water storage trends and should consider expanding the modeled storage capacity of the soil profiles and their interaction with groundwater.

  20. Aerosol Emissions from Fuse-Deposition Modeling 3D Printers in a Chamber and in Real Indoor Environments.

    Science.gov (United States)

    Vance, Marina E; Pegues, Valerie; Van Montfrans, Schuyler; Leng, Weinan; Marr, Linsey C

    2017-09-05

    Three-dimensional (3D) printers are known to emit aerosols, but questions remain about their composition and the fundamental processes driving emissions. The objective of this work was to characterize the aerosol emissions from the operation of a fuse-deposition modeling 3D printer. We modeled the time- and size-resolved emissions of submicrometer aerosols from the printer in a chamber study, gained insight into the chemical composition of emitted aerosols using Raman spectroscopy, and measured the potential for exposure to the aerosols generated by 3D printers under real-use conditions in a variety of indoor environments. The average aerosol emission rates ranged from ∼10 8 to ∼10 11 particles min -1 , and the rates varied over the course of a print job. Acrylonitrile butadiene styrene (ABS) filaments generated the largest number of aerosols, and wood-infused polylactic acid (PLA) filaments generated the smallest amount. The emission factors ranged from 6 × 10 8 to 6 × 10 11 per gram of printed part, depending on the type of filament used. For ABS, the Raman spectra of the filament and the printed part were indistinguishable, while the aerosol spectra lacked important peaks corresponding to styrene and acrylonitrile, which are both present in ABS. This observation suggests that aerosols are not a result of volatilization and subsequent nucleation of ABS or direct release of ABS aerosols.

  1. Simulation of size-dependent aerosol deposition in a realistic model of the upper human airways

    NARCIS (Netherlands)

    Frederix, E.M.A.; Kuczaj, Arkadiusz K.; Nordlund, Markus; Belka, M.; Lizal, F.; Elcner, J.; Jicha, M.; Geurts, Bernardus J.

    An Eulerian internally mixed aerosol model is used for predictions of deposition inside a realistic cast of the human upper airways. The model, formulated in the multi-species and compressible framework, is solved using the sectional discretization of the droplet size distribution function to

  2. Stratospheric aerosols

    International Nuclear Information System (INIS)

    Rosen, J.; Ivanov, V.A.

    1993-01-01

    Stratospheric aerosol measurements can provide both spatial and temporal data of sufficient resolution to be of use in climate models. Relatively recent results from a wide range of instrument techniques for measuring stratospheric aerosol parameters are described. Such techniques include impactor sampling, lidar system sensing, filter sampling, photoelectric particle counting, satellite extinction-sensing using the sun as a source, and optical depth probing, at sites mainly removed from tropospheric aerosol sources. Some of these techniques have also had correlative and intercomparison studies. The main methods for determining the vertical profiles of stratospheric aerosols are outlined: lidar extinction measurements from satellites; impactor measurements from balloons and aircraft; and photoelectric particle counter measurements from balloons, aircraft, and rockets. The conversion of the lidar backscatter to stratospheric aerosol mass loading is referred to. Absolute measurements of total solar extinction from satellite orbits can be used to extract the aerosol extinction, and several examples of vertical profiles of extinction obtained with the SAGE satellite are given. Stratospheric mass loading can be inferred from extinction using approximate linear relationships but under restrictive conditions. Impactor sampling is essentially the only method in which the physical nature of the stratospheric aerosol is observed visually. Vertical profiles of stratospheric aerosol number concentration using impactor data are presented. Typical profiles using a dual-size-range photoelectric dustsonde particle counter are given for volcanically disturbed and inactive periods. Some measurements of the global distribution of stratospheric aerosols are also presented. Volatility measurements are described, indicating that stratospheric aerosols are composed primarily of about 75% sulfuric acid and 25% water

  3. Modeling and measurements of urban aerosol processes on the neighborhood scale in Rotterdam, Oslo and Helsinki

    Science.gov (United States)

    Karl, Matthias; Kukkonen, Jaakko; Keuken, Menno P.; Lützenkirchen, Susanne; Pirjola, Liisa; Hussein, Tareq

    2016-04-01

    This study evaluates the influence of aerosol processes on the particle number (PN) concentrations in three major European cities on the temporal scale of 1 h, i.e., on the neighborhood and city scales. We have used selected measured data of particle size distributions from previous campaigns in the cities of Helsinki, Oslo and Rotterdam. The aerosol transformation processes were evaluated using the aerosol dynamics model MAFOR, combined with a simplified treatment of roadside and urban atmospheric dispersion. We have compared the model predictions of particle number size distributions with the measured data, and conducted sensitivity analyses regarding the influence of various model input variables. We also present a simplified parameterization for aerosol processes, which is based on the more complex aerosol process computations; this simple model can easily be implemented to both Gaussian and Eulerian urban dispersion models. Aerosol processes considered in this study were (i) the coagulation of particles, (ii) the condensation and evaporation of two organic vapors, and (iii) dry deposition. The chemical transformation of gas-phase compounds was not taken into account. By choosing concentrations and particle size distributions at roadside as starting point of the computations, nucleation of gas-phase vapors from the exhaust has been regarded as post tail-pipe emission, avoiding the need to include nucleation in the process analysis. Dry deposition and coagulation of particles were identified to be the most important aerosol dynamic processes that control the evolution and removal of particles. The error of the contribution from dry deposition to PN losses due to the uncertainty of measured deposition velocities ranges from -76 to +64 %. The removal of nanoparticles by coagulation enhanced considerably when considering the fractal nature of soot aggregates and the combined effect of van der Waals and viscous interactions. The effect of condensation and

  4. Modeling and measurements of urban aerosol processes on the neighborhood scale in Rotterdam, Oslo and Helsinki

    Directory of Open Access Journals (Sweden)

    M. Karl

    2016-04-01

    Full Text Available This study evaluates the influence of aerosol processes on the particle number (PN concentrations in three major European cities on the temporal scale of 1 h, i.e., on the neighborhood and city scales. We have used selected measured data of particle size distributions from previous campaigns in the cities of Helsinki, Oslo and Rotterdam. The aerosol transformation processes were evaluated using the aerosol dynamics model MAFOR, combined with a simplified treatment of roadside and urban atmospheric dispersion. We have compared the model predictions of particle number size distributions with the measured data, and conducted sensitivity analyses regarding the influence of various model input variables. We also present a simplified parameterization for aerosol processes, which is based on the more complex aerosol process computations; this simple model can easily be implemented to both Gaussian and Eulerian urban dispersion models. Aerosol processes considered in this study were (i the coagulation of particles, (ii the condensation and evaporation of two organic vapors, and (iii dry deposition. The chemical transformation of gas-phase compounds was not taken into account. By choosing concentrations and particle size distributions at roadside as starting point of the computations, nucleation of gas-phase vapors from the exhaust has been regarded as post tail-pipe emission, avoiding the need to include nucleation in the process analysis. Dry deposition and coagulation of particles were identified to be the most important aerosol dynamic processes that control the evolution and removal of particles. The error of the contribution from dry deposition to PN losses due to the uncertainty of measured deposition velocities ranges from −76 to +64 %. The removal of nanoparticles by coagulation enhanced considerably when considering the fractal nature of soot aggregates and the combined effect of van der Waals and viscous interactions. The effect of

  5. Resolving the Aerosol Piece of the Global Climate Picture

    Science.gov (United States)

    Kahn, R. A.

    2017-12-01

    Factors affecting our ability to calculate climate forcing and estimate model predictive skill include direct radiative effects of aerosols and their indirect effects on clouds. Several decades of Earth-observing satellite observations have produced a global aerosol column-amount (AOD) record, but an aerosol microphysical property record required for climate and many air quality applications is lacking. Surface-based photometers offer qualitative aerosol-type classification, and several space-based instruments map aerosol air-mass types under favorable conditions. However, aerosol hygroscopicity, mass extinction efficiency (MEE), and quantitative light absorption, must be obtained from in situ measurements. Completing the aerosol piece of the climate picture requires three elements: (1) continuing global AOD and qualitative type mapping from space-based, multi-angle imagers and aerosol vertical distribution from near-source stereo imaging and downwind lidar, (2) systematic, quantitative in situ observations of particle properties unobtainable from space, and (3) continuing transport modeling to connect observations to sources, and extrapolate limited sampling in space and time. At present, the biggest challenges to producing the needed aerosol data record are: filling gaps in particle property observations, maintaining global observing capabilities, and putting the pieces together. Obtaining the PDFs of key particle properties, adequately sampled, is now the leading observational deficiency. One simplifying factor is that, for a given aerosol source and season, aerosol amounts often vary, but particle properties tend to be repeatable. SAM-CAAM (Systematic Aircraft Measurements to Characterize Aerosol Air Masses), a modest aircraft payload deployed frequently could fill this gap, adding value to the entire satellite data record, improving aerosol property assumptions in retrieval algorithms, and providing MEEs to translate between remote-sensing optical constraints

  6. Advances In Global Aerosol Modeling Applications Through Assimilation of Satellite-Based Lidar Measurements

    Science.gov (United States)

    Campbell, James; Hyer, Edward; Zhang, Jianglong; Reid, Jeffrey; Westphal, Douglas; Xian, Peng; Vaughan, Mark

    2010-05-01

    Modeling the instantaneous three-dimensional aerosol field and its downwind transport represents an endeavor with many practical benefits foreseeable to air quality, aviation, military and science agencies. The recent proliferation of multi-spectral active and passive satellite-based instruments measuring aerosol physical properties has served as an opportunity to develop and refine the techniques necessary to make such numerical modeling applications possible. Spurred by high-resolution global mapping of aerosol source regions, and combined with novel multivariate data assimilation techniques designed to consider these new data streams, operational forecasts of visibility and aerosol optical depths are now available in near real-time1. Active satellite-based aerosol profiling, accomplished using lidar instruments, represents a critical element for accurate analysis and transport modeling. Aerosol source functions, alone, can be limited in representing the macrophysical structure of injection scenarios within a model. Two-dimensional variational (2D-VAR; x, y) assimilation of aerosol optical depth from passive satellite observations significantly improves the analysis of the initial state. However, this procedure can not fully compensate for any potential vertical redistribution of mass required at the innovation step. The expense of an inaccurate vertical analysis of aerosol structure is corresponding errors downwind, since trajectory paths within successive forecast runs will likely diverge with height. In this paper, the application of a newly-designed system for 3D-VAR (x,y,z) assimilation of vertical aerosol extinction profiles derived from elastic-scattering lidar measurements is described [Campbell et al., 2009]. Performance is evaluated for use with the U. S. Navy Aerosol Analysis and Prediction System (NAAPS) by assimilating NASA/CNES satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 0.532 μm measurements [Winker et al., 2009

  7. Simulating mesoscale coastal evolution for decadal coastal management: A new framework integrating multiple, complementary modelling approaches

    Science.gov (United States)

    van Maanen, Barend; Nicholls, Robert J.; French, Jon R.; Barkwith, Andrew; Bonaldo, Davide; Burningham, Helene; Brad Murray, A.; Payo, Andres; Sutherland, James; Thornhill, Gillian; Townend, Ian H.; van der Wegen, Mick; Walkden, Mike J. A.

    2016-03-01

    Coastal and shoreline management increasingly needs to consider morphological change occurring at decadal to centennial timescales, especially that related to climate change and sea-level rise. This requires the development of morphological models operating at a mesoscale, defined by time and length scales of the order 101 to 102 years and 101 to 102 km. So-called 'reduced complexity' models that represent critical processes at scales not much smaller than the primary scale of interest, and are regulated by capturing the critical feedbacks that govern landform behaviour, are proving effective as a means of exploring emergent coastal behaviour at a landscape scale. Such models tend to be computationally efficient and are thus easily applied within a probabilistic framework. At the same time, reductionist models, built upon a more detailed description of hydrodynamic and sediment transport processes, are capable of application at increasingly broad spatial and temporal scales. More qualitative modelling approaches are also emerging that can guide the development and deployment of quantitative models, and these can be supplemented by varied data-driven modelling approaches that can achieve new explanatory insights from observational datasets. Such disparate approaches have hitherto been pursued largely in isolation by mutually exclusive modelling communities. Brought together, they have the potential to facilitate a step change in our ability to simulate the evolution of coastal morphology at scales that are most relevant to managing erosion and flood risk. Here, we advocate and outline a new integrated modelling framework that deploys coupled mesoscale reduced complexity models, reductionist coastal area models, data-driven approaches, and qualitative conceptual models. Integration of these heterogeneous approaches gives rise to model compositions that can potentially resolve decadal- to centennial-scale behaviour of diverse coupled open coast, estuary and inner

  8. Global combustion sources of organic aerosols: model comparison with 84 AMS factor-analysis data sets

    Science.gov (United States)

    Tsimpidi, Alexandra P.; Karydis, Vlassis A.; Pandis, Spyros N.; Lelieveld, Jos

    2016-07-01

    Emissions of organic compounds from biomass, biofuel, and fossil fuel combustion strongly influence the global atmospheric aerosol load. Some of the organics are directly released as primary organic aerosol (POA). Most are emitted in the gas phase and undergo chemical transformations (i.e., oxidation by hydroxyl radical) and form secondary organic aerosol (SOA). In this work we use the global chemistry climate model ECHAM/MESSy Atmospheric Chemistry (EMAC) with a computationally efficient module for the description of organic aerosol (OA) composition and evolution in the atmosphere (ORACLE). The tropospheric burden of open biomass and anthropogenic (fossil and biofuel) combustion particles is estimated to be 0.59 and 0.63 Tg, respectively, accounting for about 30 and 32 % of the total tropospheric OA load. About 30 % of the open biomass burning and 10 % of the anthropogenic combustion aerosols originate from direct particle emissions, whereas the rest is formed in the atmosphere. A comprehensive data set of aerosol mass spectrometer (AMS) measurements along with factor-analysis results from 84 field campaigns across the Northern Hemisphere are used to evaluate the model results. Both the AMS observations and the model results suggest that over urban areas both POA (25-40 %) and SOA (60-75 %) contribute substantially to the overall OA mass, whereas further downwind and in rural areas the POA concentrations decrease substantially and SOA dominates (80-85 %). EMAC does a reasonable job in reproducing POA and SOA levels during most of the year. However, it tends to underpredict POA and SOA concentrations during winter indicating that the model misses wintertime sources of OA (e.g., residential biofuel use) and SOA formation pathways (e.g., multiphase oxidation).

  9. Why are models unable to reproduce multi-decadal trends in lower tropospheric baseline ozone levels?

    Science.gov (United States)

    Hu, L.; Liu, J.; Mickley, L. J.; Strahan, S. E.; Steenrod, S.

    2017-12-01

    Assessments of tropospheric ozone radiative forcing rely on accurate model simulations. Parrish et al (2014) found that three chemistry-climate models (CCMs) overestimate present-day O3 mixing ratios and capture only 50% of the observed O3 increase over the last five decades at 12 baseline sites in the northern mid-latitudes, indicating large uncertainties in our understanding of the ozone trends and their implications for radiative forcing. Here we present comparisons of outputs from two chemical transport models (CTMs) - GEOS-Chem and the Global Modeling Initiative model - with O3 observations from the same sites and from the global ozonesonde network. Both CTMs are driven by reanalysis meteorological data (MERRA or MERRA2) and thus are expected to be different in atmospheric transport processes relative to those freely running CCMs. We test whether recent model developments leading to more active ozone chemistry affect the computed ozone sensitivity to perturbations in emissions. Preliminary results suggest these CTMs can reproduce present-day ozone levels but fail to capture the multi-decadal trend since 1980. Both models yield widespread overpredictions of free tropospheric ozone in the 1980s. Sensitivity studies in GEOS-Chem suggest that the model estimate of natural background ozone is too high. We discuss factors that contribute to the variability and trends of tropospheric ozone over the last 30 years, with a focus on intermodel differences in spatial resolution and in the representation of stratospheric chemistry, stratosphere-troposphere exchange, halogen chemistry, and biogenic VOC emissions and chemistry. We also discuss uncertainty in the historical emission inventories used in models, and how these affect the simulated ozone trends.

  10. Simulation of a severe convective storm using a numerical model with explicitly incorporated aerosols

    Science.gov (United States)

    Lompar, Miloš; Ćurić, Mladjen; Romanic, Djordje

    2017-09-01

    Despite an important role the aerosols play in all stages of cloud lifecycle, their representation in numerical weather prediction models is often rather crude. This paper investigates the effects the explicit versus implicit inclusion of aerosols in a microphysics parameterization scheme in Weather Research and Forecasting (WRF) - Advanced Research WRF (WRF-ARW) model has on cloud dynamics and microphysics. The testbed selected for this study is a severe mesoscale convective system with supercells that struck west and central parts of Serbia in the afternoon of July 21, 2014. Numerical products of two model runs, i.e. one with aerosols explicitly (WRF-AE) included and another with aerosols implicitly (WRF-AI) assumed, are compared against precipitation measurements from surface network of rain gauges, as well as against radar and satellite observations. The WRF-AE model accurately captured the transportation of dust from the north Africa over the Mediterranean and to the Balkan region. On smaller scales, both models displaced the locations of clouds situated above west and central Serbia towards southeast and under-predicted the maximum values of composite radar reflectivity. Similar to satellite images, WRF-AE shows the mesoscale convective system as a merged cluster of cumulonimbus clouds. Both models over-predicted the precipitation amounts; WRF-AE over-predictions are particularly pronounced in the zones of light rain, while WRF-AI gave larger outliers. Unlike WRF-AI, the WRF-AE approach enables the modelling of time evolution and influx of aerosols into the cloud which could be of practical importance in weather forecasting and weather modification. Several likely causes for discrepancies between models and observations are discussed and prospects for further research in this field are outlined.

  11. Variation in pH of Model Secondary Organic Aerosol during Liquid-Liquid Phase Separation.

    Science.gov (United States)

    Dallemagne, Magda A; Huang, Xiau Ya; Eddingsaas, Nathan C

    2016-05-12

    The majority of atmospheric aerosols consist of both organic and inorganic components. At intermediate relative humidity (RH), atmospheric aerosol can undergo liquid-liquid phase separation (LLPS) in which the organic and inorganic fractions segregate from each other. We have extended the study of LLPS to the effect that phase separation has on the pH of the overall aerosols and the pH of the individual phases. Using confocal microscopy and pH sensitive dyes, the pH of internally mixed model aerosols consisting of polyethylene glycol 400 and ammonium sulfate as well as the pH of the organic fraction during LLPS have been directly measured. During LLPS, the pH of the organic fraction was observed to increase to 4.2 ± 0.2 from 3.8 ± 0.1 under high RH when the aerosol was internally mixed. In addition, the high spatial resolution of the confocal microscope allowed us to characterize the composition of each of the phases, and we have observed that during LLPS the organic shell still contains large quantities of water and should be characterized as an aqueous organic-rich phase rather than simply an organic phase.

  12. Model studies of the effect of aerosol wastewater emissions on terrestrial mollusks Achatina fulica

    Directory of Open Access Journals (Sweden)

    Kamardin Nikolaj Nikolaevich

    2016-12-01

    Full Text Available The laboratory experiments were carried on using the juvenile mollusk Achatina fulica as a bioindicator of soil contamination and air pollution. It is shown that when experimental animals breathed and had dermal contact with the aerosols prepared from the wastewater and those prepared from two solutions of Ni in distilled water at two concentrations they weighed significantly less than controls . According to the results of AAS, heavy metals (HM, in particular Cd, Cu, Ni of sewage accumulated in the digestive gland of the shell. In model experiments mollusks were contained in the chamber periodically (2 hours of input and 2 hours of pause filled with aerosol containing Ni at concentrations of 30 and 50 mg / dm3 nickel for two weeks It resulted in accumulation of Ni in the digestive gland of mollusks with concentrations 6 to 10 times exceeding controls, respectively. At that the experimental animals gained weight reliably slower than the controls contained in aquatic aerosol without Ni. The subsequent one week exposure of shells in aerosol, prepared from the distilled water without Ni reduced the concentration of nickel in the tissue of the digestive gland. Thus, bioavailability of HM and nickel solutions prepared from untreated wastewaters in breathing aerosol and possibly by skin contact was demonstrated. The toxicant delivery seems to occur apart from food intake.

  13. Dynamic model evaluation for secondary inorganic aerosol and its precursors over Europe between 1990 and 2009

    OpenAIRE

    Banzhaf, S.; Schaap, M.; Kraneburg, R.; Manders, A.M.M.; Segers, A.J.; Visschedijk, A.H.J.; Denier van der on, H.A.C.; Kuenen, J.P.P.; van Meijgaard, E.; van Ulft, L.H.; Cofala, J.; Builtjes, P.J.H.

    2015-01-01

    In this study we present a dynamic model evaluation of the chemistry transport model LOTOS-EUROS to analyse the ability of the model to reproduce observed non-linear responses to emission changes and interannual variability of secondary inorganic aerosol (SIA) and its precursors over Europe from 1990 to 2009. The 20 year simulation was performed using a consistent set of meteorological data provided by the regional climate model RACMO2. Observations at Europ...

  14. A receptor model for urban aerosols based on oblique factor analysis

    DEFF Research Database (Denmark)

    Keiding, Kristian; Sørensen, Morten S.; Pind, Niels

    1987-01-01

    A procedure is outlined for the construction of receptor models of urban aerosols, based on factor analysis. The advantage of the procedure is that the covariation of source impacts is included in the construction of the models. The results are compared with results obtained by other receptor......-modelling procedures. It was found that procedures based on correlating sources were physically sound as well as in mutual agreement. Procedures based on non-correlating sources were found to generate physically obscure models....

  15. Gas-particle partitioning of semi-volatile organics on organic aerosols using a predictive activity coefficient model: analysis of the effects of parameter choices on model performance

    Science.gov (United States)

    Chandramouli, Bharadwaj; Jang, Myoseon; Kamens, Richard M.

    The partitioning of a diverse set of semivolatile organic compounds (SOCs) on a variety of organic aerosols was studied using smog chamber experimental data. Existing data on the partitioning of SOCs on aerosols from wood combustion, diesel combustion, and the α-pinene-O 3 reaction was augmented by carrying out smog chamber partitioning experiments on aerosols from meat cooking, and catalyzed and uncatalyzed gasoline engine exhaust. Model compositions for aerosols from meat cooking and gasoline combustion emissions were used to calculate activity coefficients for the SOCs in the organic aerosols and the Pankow absorptive gas/particle partitioning model was used to calculate the partitioning coefficient Kp and quantitate the predictive improvements of using the activity coefficient. The slope of the log K p vs. log p L0 correlation for partitioning on aerosols from meat cooking improved from -0.81 to -0.94 after incorporation of activity coefficients iγ om. A stepwise regression analysis of the partitioning model revealed that for the data set used in this study, partitioning predictions on α-pinene-O 3 secondary aerosol and wood combustion aerosol showed statistically significant improvement after incorporation of iγ om, which can be attributed to their overall polarity. The partitioning model was sensitive to changes in aerosol composition when updated compositions for α-pinene-O 3 aerosol and wood combustion aerosol were used. The octanol-air partitioning coefficient's ( KOA) effectiveness as a partitioning correlator over a variety of aerosol types was evaluated. The slope of the log K p- log K OA correlation was not constant over the aerosol types and SOCs used in the study and the use of KOA for partitioning correlations can potentially lead to significant deviations, especially for polar aerosols.

  16. Modeling Climate Responses to Spectral Solar Forcing on Centennial and Decadal Time Scales

    Science.gov (United States)

    Wen, G.; Cahalan, R.; Rind, D.; Jonas, J.; Pilewskie, P.; Harder, J.

    2012-01-01

    We report a series of experiments to explore clima responses to two types of solar spectral forcing on decadal and centennial time scales - one based on prior reconstructions, and another implied by recent observations from the SORCE (Solar Radiation and Climate Experiment) SIM (Spectral 1rradiance Monitor). We apply these forcings to the Goddard Institute for Space Studies (GISS) Global/Middle Atmosphere Model (GCMAM). that couples atmosphere with ocean, and has a model top near the mesopause, allowing us to examine the full response to the two solar forcing scenarios. We show different climate responses to the two solar forCing scenarios on decadal time scales and also trends on centennial time scales. Differences between solar maximum and solar minimum conditions are highlighted, including impacts of the time lagged reSponse of the lower atmosphere and ocean. This contrasts with studies that assume separate equilibrium conditions at solar maximum and minimum. We discuss model feedback mechanisms involved in the solar forced climate variations.

  17. Climatology of the Aerosol Optical Depth by Components from the Multi-Angle Imaging Spectroradiometer (MISR) and Chemistry Transport Models

    Science.gov (United States)

    Lee, Huikyo; Kalashnikova, Olga V.; Suzuki, Kentaroh; Braverman, Amy; Garay, Michael J.; Kahn, Ralph A.

    2016-01-01

    The Multi-angle Imaging Spectroradiometer (MISR) Joint Aerosol (JOINT_AS) Level 3 product has provided a global, descriptive summary of MISR Level 2 aerosol optical depth (AOD) and aerosol type information for each month over 16+ years since March 2000. Using Version 1 of JOINT_AS, which is based on the operational (Version 22) MISR Level 2 aerosol product, this study analyzes, for the first time, characteristics of observed and simulated distributions of AOD for three broad classes of aerosols: spherical nonabsorbing, spherical absorbing, and nonspherical - near or downwind of their major source regions. The statistical moments (means, standard deviations, and skew-nesses) and distributions of AOD by components derived from the JOINT_AS are compared with results from two chemistry transport models (CTMs), the Goddard Chemistry Aerosol Radiation and Transport (GOCART) and SPectral RadIatioN-TrAnSport (SPRINTARS). Overall, the AOD distributions retrieved from MISR and modeled by GOCART and SPRINTARS agree with each other in a qualitative sense. Marginal distributions of AOD for each aerosol type in both MISR and models show considerable high positive skewness, which indicates the importance of including extreme AOD events when comparing satellite retrievals with models. The MISR JOINT_AS product will greatly facilitate comparisons between satellite observations and model simulations of aerosols by type.

  18. The effect of harmonized emissions on aerosol properties in global models – an AeroCom experiment

    Directory of Open Access Journals (Sweden)

    C. Textor

    2007-08-01

    Full Text Available The effects of unified aerosol sources on global aerosol fields simulated by different models are examined in this paper. We compare results from two AeroCom experiments, one with different (ExpA and one with unified emissions, injection heights, and particle sizes at the source (ExpB. Surprisingly, harmonization of aerosol sources has only a small impact on the simulated inter-model diversity of the global aerosol burden, and consequently global optical properties, as the results are largely controlled by model-specific transport, removal, chemistry (leading to the formation of secondary aerosols and parameterizations of aerosol microphysics (e.g., the split between deposition pathways and to a lesser extent by the spatial and temporal distributions of the (precursor emissions.

    The burdens of black carbon and especially sea salt become more coherent in ExpB only, because the large ExpA diversities for these two species were caused by a few outliers. The experiment also showed that despite prescribing emission fluxes and size distributions, ambiguities in the implementation in individual models can lead to substantial differences.

    These results indicate the need for a better understanding of aerosol life cycles at process level (including spatial dispersal and interaction with meteorological parameters in order to obtain more reliable results from global aerosol simulations. This is particularly important as such model results are used to assess the consequences of specific air pollution abatement strategies.

  19. Inverse modeling of cloud-aerosol interactions -- Part 1: Detailed response surface analysis

    NARCIS (Netherlands)

    Partridge, D.G.; Vrugt, J.A.; Tunved, P.; Ekman, A.M.L.; Gorea, D.; Sooroshian, A.

    2011-01-01

    New methodologies are required to probe the sensitivity of parameters describing cloud droplet activation. This paper presents an inverse modeling-based method for exploring cloud-aerosol interactions via response surfaces. The objective function, containing the difference between the measured and

  20. A simplified model of aerosol scrubbing by a water pool overlying core debris interacting with concrete

    International Nuclear Information System (INIS)

    Powers, D.A.; Sprung, J.L.

    1993-11-01

    A classic model of aerosol scrubbing from bubbles rising through water is applied to the decontamination of gases produced during core debris interactions with concrete. The model, originally developed by Fuchs, describes aerosol capture by diffusion, sedimentation, and inertial impaction. This original model for spherical bubbles is modified to account for ellipsoidal distortion of the bubbles. Eighteen uncertain variables are identified in the application of the model to the decontamination of aerosols produced during core debris interactions with concrete by a water pool of specified depth and subcooling. These uncertain variables include properties of the aerosols, the bubbles, the water and the ambient pressure. Results are analyzed using a nonparametric, order statistical analysis that allows quantitative differentiation of stochastic and phenomenological uncertainty. The sampled values of the decontamination factors are used to construct estimated probability density functions for the decontamination factor at confidence levels of 50%, 90% and 95%. The decontamination factors for pools 30, 50, 100, 200, 300, and 500 cm deep and subcooling levels of 0, 2, 5, 10, 20, 30, 50, and 70 degrees C are correlated by simple polynomial regression. These polynomial equations can be used to estimate decontamination factors at prescribed confidence levels

  1. Aerosol transport model evaluation of an extreme smoke episode in Southeast Asia

    Science.gov (United States)

    Hyer, Edward J.; Chew, Boon Ning

    2010-04-01

    Biomass burning is one of many sources of particulate pollution in Southeast Asia, but its irregular spatial and temporal patterns mean that large episodes can cause acute air quality problems in urban areas. Fires in Sumatra and Borneo during September and October 2006 contributed to 24-h mean PM 10 concentrations above 150 μg m -3 at multiple locations in Singapore and Malaysia over several days. We use the FLAMBE model of biomass burning emissions and the NAAPS model of aerosol transport and evolution to simulate these events, and compare our simulation results to 24-h average PM 10 measurements from 54 stations in Singapore and Malaysia. The model simulation, including the FLAMBE smoke source as well as dust, sulfate, and sea salt aerosol species, was able to explain 50% or more of the variance in 24-h PM 10 observations at 29 of 54 sites. Simulation results indicated that biomass burning smoke contributed to nearly all of the extreme PM 10 observations during September-November 2006, but the exact contribution of smoke was unclear because the model severely underestimated total smoke emissions. Using regression analysis at each site, the bias in the smoke aerosol flux was determined to be a factor of between 2.5 and 10, and an overall factor of 3.5 was estimated. After application of this factor, the simulated smoke aerosol concentration averaged 20% of observed PM 10, and 40% of PM 10 for days with 24-h average concentrations above 150 μg m -3. These results suggest that aerosol transport models can aid analysis of severe pollution events in Southeast Asia, but that improvements are needed in models of biomass burning smoke emissions.

  2. Coupling aerosol-cloud-radiative processes in the WRF-Chem model: Investigating the radiative impact of elevated point sources

    Directory of Open Access Journals (Sweden)

    E. G. Chapman

    2009-02-01

    Full Text Available The local and regional influence of elevated point sources on summertime aerosol forcing and cloud-aerosol interactions in northeastern North America was investigated using the WRF-Chem community model. The direct effects of aerosols on incoming solar radiation were simulated using existing modules to relate aerosol sizes and chemical composition to aerosol optical properties. Indirect effects were simulated by adding a prognostic treatment of cloud droplet number and adding modules that activate aerosol particles to form cloud droplets, simulate aqueous-phase chemistry, and tie a two-moment treatment of cloud water (cloud water mass and cloud droplet number to precipitation and an existing radiation scheme. Fully interactive feedbacks thus were created within the modified model, with aerosols affecting cloud droplet number and cloud radiative properties, and clouds altering aerosol size and composition via aqueous processes, wet scavenging, and gas-phase-related photolytic processes. Comparisons of a baseline simulation with observations show that the model captured the general temporal cycle of aerosol optical depths (AODs and produced clouds of comparable thickness to observations at approximately the proper times and places. The model overpredicted SO2 mixing ratios and PM2.5 mass, but reproduced the range of observed SO2 to sulfate aerosol ratios, suggesting that atmospheric oxidation processes leading to aerosol sulfate formation are captured in the model. The baseline simulation was compared to a sensitivity simulation in which all emissions at model levels above the surface layer were set to zero, thus removing stack emissions. Instantaneous, site-specific differences for aerosol and cloud related properties between the two simulations could be quite large, as removing above-surface emission sources influenced when and where clouds formed within the modeling domain. When summed spatially over the finest

  3. CFD modelling for atmospheric pollutants/aerosols studies within the complex terrains of urban areas and industrial sites

    Czech Academy of Sciences Publication Activity Database

    Střižík, Michal; Zelinger, Z.; Nevrlý, Václav; Kubát, P.; Berger, P.; Černý, A.; Engst, P.; Bitala, Petr; Janečková, R.; Grigorová, Eva; Bestová, I.; Čadil, J.; Danihelka, P.; Kadeřábek, P.; Kozubková, M.; Drábková, S.; Hartman, D.; Bojko, M.; Zavila, O.

    2014-01-01

    Roč. 54, č. 1 (2014), s. 73-90 ISSN 0957-4352 R&D Projects: GA MV VG20132015108 Institutional support: RVO:61388998 Keywords : aerosol formation * computational fluid dynamic modeling * NH4NO3 aerosol * pollution dispersion * spatial distribution * turbulent environment Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.433, year: 2014

  4. Sea spray aerosol fluxes in the Baltic Sea region: Comparison of the WAM model with measurements

    Science.gov (United States)

    Markuszewski, Piotr; Kosecki, Szymon; Petelski, Tomasz

    2017-08-01

    Sea spray aerosol flux is an important element of sub-regional climate modeling. The majority of works related to this topic concentrate on open ocean research rather than on smaller, inland seas, e.g., the Baltic Sea. The Baltic Sea is one of the largest brackish inland seas by area, where major inflows of oceanic waters are rare. Furthermore, surface waves in the Baltic Sea have a relatively shorter lifespan in comparison with oceanic waves. Therefore, emission of sea spray aerosol may differ greatly from what is known from oceanic research and should be investigated. This article presents a comparison of sea spray aerosol measurements carried out on-board the s/y Oceania research ship with data calculated in accordance to the WAM model. The measurements were conducted in the southern region of the Baltic Sea during four scientific cruises. The gradient method was used to determinate aerosol fluxes. The fluxes were calculated for particles of diameter in range of 0.5-47 μm. The correlation between wind speed measured and simulated has a good agreement (correlation in range of 0.8). The comparison encompasses three different sea spray generation models. First, function proposed by Massel (2006) which is based only on wave parameters, such as significant wave height and peak frequency. Second, Callaghan (2013) which is based on Gong (2003) model (wind speed relation), and a thorough experimental analysis of whitecaps. Third, Petelski et al. (2014) which is based on in-situ gradient measurements with the function dependent on wind speed. The two first models which based on whitecaps analysis are insufficient. Moreover, the research shows strong relation between aerosol emission and wind speed history.

  5. Integrating biomass, sulphate and sea-salt aerosol responses into a microphysical chemical parcel model: implications for climate studies.

    Science.gov (United States)

    Ghosh, S; Smith, M H; Rap, A

    2007-11-15

    Aerosols are known to influence significantly the radiative budget of the Earth. Although the direct effect (whereby aerosols scatter and absorb solar and thermal infrared radiation) has a large perturbing influence on the radiation budget, the indirect effect (whereby aerosols modify the microphysical and hence the radiative properties and amounts of clouds) poses a greater challenge to climate modellers. This is because aerosols undergo chemical and physical changes while in the atmosphere, notably within clouds, and are removed largely by precipitation. The way in which aerosols are processed by clouds depends on the type, abundance and the mixing state of the aerosols concerned. A parametrization with sulphate and sea-salt aerosol has been successfully integrated within the Hadley Centre general circulation model (GCM). The results of this combined parametrization indicate a significantly reduced role, compared with previous estimates, for sulphate aerosol in cloud droplet nucleation and, consequently, in indirect radiative forcing. However, in this bicomponent system, the cloud droplet number concentration, N(d) (a crucial parameter that is used in GCMs for radiative transfer calculations), is a smoothly varying function of the sulphate aerosol loading. Apart from sea-salt and sulphate aerosol particles, biomass aerosol particles are also present widely in the troposphere. We find that biomass smoke can significantly perturb the activation and growth of both sulphate and sea-salt particles. For a fixed salt loading, N(d) increases linearly with modest increases in sulphate and smoke masses, but significant nonlinearities are observed at higher non-sea-salt mass loadings. This non-intuitive N(d) variation poses a fresh challenge to climate modellers.

  6. Improvement and Validation of an Aerosol Deposition Model in the GAMMA-FP, a Fission Product Analysis Module for VHTRs

    International Nuclear Information System (INIS)

    Yoon, Churl; Lim, Hong Sik

    2013-01-01

    GAMMA-FP (GAs Multicomponent Mixture Analysis-Fission Products module), consists of gaseous and aerosol fission product analysis modules. The aerosol FP module adopts a multi-component and multi-sectional aerosol analysis model that has been developed based on the MAEROS model. For the first work of FP module development, the MAEROS model has been implemented and examined against some analytic solutions and experimental data by Yoo et al. An aerosol transport model was developed and implemented in the GAMMA-FP code, and verified. In this study, the aerosol deposition model in the GAMMA-FP code was improved by adopting recent achievements, and was validated against an experimental data available. The aerosol deposition model in the GAMMA-FP code has been improved and successfully validated against the STORM SR-11 deposition test. The simulation with the improved deposition model predicted the matched results with the experimental data well. For future studies, the aerosol deposition model by flow irregularities will be implemented and validated against the TRANSAT bend effect test

  7. Improvement and Validation of an Aerosol Deposition Model in the GAMMA-FP, a Fission Product Analysis Module for VHTRs

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Churl; Lim, Hong Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    GAMMA-FP (GAs Multicomponent Mixture Analysis-Fission Products module), consists of gaseous and aerosol fission product analysis modules. The aerosol FP module adopts a multi-component and multi-sectional aerosol analysis model that has been developed based on the MAEROS model. For the first work of FP module development, the MAEROS model has been implemented and examined against some analytic solutions and experimental data by Yoo et al. An aerosol transport model was developed and implemented in the GAMMA-FP code, and verified. In this study, the aerosol deposition model in the GAMMA-FP code was improved by adopting recent achievements, and was validated against an experimental data available. The aerosol deposition model in the GAMMA-FP code has been improved and successfully validated against the STORM SR-11 deposition test. The simulation with the improved deposition model predicted the matched results with the experimental data well. For future studies, the aerosol deposition model by flow irregularities will be implemented and validated against the TRANSAT bend effect test.

  8. Understanding the Impact of Model Surfactants on Cloud Condensation Nuclei Activity of Sea Spray Aerosols

    Science.gov (United States)

    Forestieri, S.; Cappa, C. D.; Ruehl, C. R.; Bertram, T. H.; Staudt, S.; Kuborn, T.

    2017-12-01

    Aerosol impacts on cloud properties, also known as indirect effects, remain a major source of uncertainty in modeling global radiative forcing. Reducing this uncertainty necessitates better understanding of how aerosol chemical composition impacts the cloud-forming ability of aerosols. The presence of surfactants in aerosols can decrease the surface tension of activating droplets relative to water and lead to more efficient activation. The importance of this effect has been debated, but recent surface tension measurements of microscopic droplets indicate that surface tension is substantially depressed relative to water for lab-generated particles consisting of salt and a single organic species and for complex mixtures of organic matter. However, little work has been done on understanding how chemical complexity (i.e. interaction between different surfactant species) impacts surface tension for particles containing mixtures of surfactants. In this work, we quantified the surface tension of lab-generated aerosols containing surfactants that are commonly found in nascent sea spray aerosol (SSA) at humidities close to activation using a continuous flow stream-wise thermal gradient chamber (CFSTGC). Surface tension was quantified for particles containing single surfactant species and mixtures of these surfactants to investigate the role of chemical complexity on surface tension and molecular packing at the air-water interface. For all surfactants tested in this study, substantial surface tension depression (20-40 mN/m) relative to water was observed for particles containing large fractions of organic matter at humidities just below activation. However, the presence of these surfactants only weakly depressed surface tension at activation. Kinetic limitations were observed for particles coated with just palmitic acid, since palmitic acid molecules inhibit water uptake through their ability to pack tightly at the surface. However, these kinetic limitations disappeared when

  9. Particle-Resolved Modeling of Aerosol Mixing State in an Evolving Ship Plume

    Science.gov (United States)

    Riemer, N. S.; Tian, J.; Pfaffenberger, L.; Schlager, H.; Petzold, A.

    2011-12-01

    The aerosol mixing state is important since it impacts the particles' optical and CCN properties and thereby their climate impact. It evolves continuously during the particles' residence time in the atmosphere as a result of coagulation with other particles and condensation of secondary aerosol species. This evolution is challenging to represent in traditional aerosol models since they require the representation of a multi-dimensional particle distribution. While modal or sectional aerosol representations cannot practically resolve the aerosol mixing state for more than a few species, particle-resolved models store the composition of many individual aerosol particles directly. They thus sample the high-dimensional composition state space very efficiently and so can deal with tens of species, fully resolving the mixing state. Here we use the capabilities of the particle-resolved model PartMC-MOSAIC to simulate the evolution of particulate matter emitted from marine diesel engines and compare the results to aircraft measurements made in the English Channel in 2007 as part of the European campaign QUANTIFY. The model was initialized with values of gas concentrations and particle size distributions and compositions representing fresh ship emissions. These values were obtained from a test rig study in the European project HERCULES in 2006 using a serial four-stroke marine diesel engine operating on high-sulfur heavy fuel oil. The freshly emitted particles consisted of sulfate, black carbon, organic carbon and ash. We then tracked the particle population for several hours as it evolved undergoing coagulation, dilution with the background air, and chemical transformations in the aerosol and gas phase. This simulation was used to compute the evolution of CCN properties and optical properties of the plume on a per-particle basis. We compared our results to size-resolved data of aged ship plumes from the QUANTIFY Study in 2007 and showed that the model was able to reproduce

  10. Indoor aerosol modeling for assessment of exposure and respiratory tract deposited dose

    Science.gov (United States)

    Hussein, Tareq; Wierzbicka, Aneta; Löndahl, Jakob; Lazaridis, Mihalis; Hänninen, Otto

    2015-04-01

    Air pollution is one of the major environmental problems that influence people's health. Exposure to harmful particulate matter (PM) occurs both outdoors and indoors, but while people spend most of their time indoors, the indoor exposures tend to dominate. Moreover, higher PM concentrations due to indoor sources and tightness of indoor environments may substantially add to the outdoor originating exposures. Empirical and real-time assessment of human exposure is often impossible; therefore, indoor aerosol modeling (IAM) can be used as a superior method in exposure and health effects studies. This paper presents a simple approach in combining available aerosol-based modeling techniques to evaluate the real-time exposure and respiratory tract deposited dose based on particle size. Our simple approach consists of outdoor aerosol data base, IAM simulations, time-activity pattern data-base, physical-chemical properties of inhaled aerosols, and semi-empirical deposition fraction of aerosols in the respiratory tract. These modeling techniques allow the characterization of regional deposited dose in any metric: particle mass, particle number, and surface area. The first part of this presentation reviews recent advances in simple mass-balance based modeling methods that are needed in analyzing the health relevance of indoor exposures. The second part illustrates the use of IAM in the calculations of exposure and deposited dose. Contrary to previous methods, the approach presented is a real-time approach and it goes beyond the exposure assessment to provide the required information for the health risk assessment, which is the respiratory tract deposited dose. This simplified approach is foreseen to support epidemiological studies focusing on exposures originating from both indoor and outdoor sources.

  11. Global distribution and climate forcing of marine organic aerosol: 1. Model improvements and evaluation

    Directory of Open Access Journals (Sweden)

    N. Meskhidze

    2011-11-01

    Full Text Available Marine organic aerosol emissions have been implemented and evaluated within the National Center of Atmospheric Research (NCAR's Community Atmosphere Model (CAM5 with the Pacific Northwest National Laboratory's 7-mode Modal Aerosol Module (MAM-7. Emissions of marine primary organic aerosols (POA, phytoplankton-produced isoprene- and monoterpenes-derived secondary organic aerosols (SOA and methane sulfonate (MS are shown to affect surface concentrations of organic aerosols in remote marine regions. Global emissions of submicron marine POA is estimated to be 7.9 and 9.4 Tg yr−1, for the Gantt et al. (2011 and Vignati et al. (2010 emission parameterizations, respectively. Marine sources of SOA and particulate MS (containing both sulfur and carbon atoms contribute an additional 0.2 and 5.1 Tg yr−1, respectively. Widespread areas over productive waters of the Northern Atlantic, Northern Pacific, and the Southern Ocean show marine-source submicron organic aerosol surface concentrations of 100 ng m−3, with values up to 400 ng m−3 over biologically productive areas. Comparison of long-term surface observations of water insoluble organic matter (WIOM with POA concentrations from the two emission parameterizations shows that despite revealed discrepancies (often more than a factor of 2, both Gantt et al. (2011 and Vignati et al. (2010 formulations are able to capture the magnitude of marine organic aerosol concentrations, with the Gantt et al. (2011 parameterization attaining better seasonality. Model simulations show that the mixing state of the marine POA can impact the surface number concentration of cloud condensation nuclei (CCN. The largest increases (up to 20% in CCN (at a supersaturation (S of 0.2% number concentration are obtained over biologically productive ocean waters when marine organic aerosol is assumed to be externally mixed with sea-salt. Assuming

  12. Constraining Carbonaceous Aerosol Climate Forcing by Bridging Laboratory, Field and Modeling Studies

    Science.gov (United States)

    Dubey, M. K.; Aiken, A. C.; Liu, S.; Saleh, R.; Cappa, C. D.; Williams, L. R.; Donahue, N. M.; Gorkowski, K.; Ng, N. L.; Mazzoleni, C.; China, S.; Sharma, N.; Yokelson, R. J.; Allan, J. D.; Liu, D.

    2014-12-01

    Biomass and fossil fuel combustion emits black (BC) and brown carbon (BrC) aerosols that absorb sunlight to warm climate and organic carbon (OC) aerosols that scatter sunlight to cool climate. The net forcing depends strongly on the composition, mixing state and transformations of these carbonaceous aerosols. Complexities from large variability of fuel types, combustion conditions and aging processes have confounded their treatment in models. We analyse recent laboratory and field measurements to uncover fundamental mechanism that control the chemical, optical and microphysical properties of carbonaceous aerosols that are elaborated below: Wavelength dependence of absorption and the single scattering albedo (ω) of fresh biomass burning aerosols produced from many fuels during FLAME-4 was analysed to determine the factors that control the variability in ω. Results show that ω varies strongly with fire-integrated modified combustion efficiency (MCEFI)—higher MCEFI results in lower ω values and greater spectral dependence of ω (Liu et al GRL 2014). A parameterization of ω as a function of MCEFI for fresh BB aerosols is derived from the laboratory data and is evaluated by field data, including BBOP. Our laboratory studies also demonstrate that BrC production correlates with BC indicating that that they are produced by a common mechanism that is driven by MCEFI (Saleh et al NGeo 2014). We show that BrC absorption is concentrated in the extremely low volatility component that favours long-range transport. We observe substantial absorption enhancement for internally mixed BC from diesel and wood combustion near London during ClearFlo. While the absorption enhancement is due to BC particles coated by co-emitted OC in urban regions, it increases with photochemical age in rural areas and is simulated by core-shell models. We measure BrC absorption that is concentrated in the extremely low volatility components and attribute it to wood burning. Our results support

  13. Modeling LIDAR Detection of Biological Aerosols to Determine Optimum Implementation Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, David M.; Aker, Pam M.

    2007-09-19

    This report summarizes work performed for a larger multi-laboratory project named the Background Interferent Measurement and Standards project. While originally tasked to develop algorithms to optimize biological warfare agent detection using UV fluorescence LIDAR, the current uncertainties in the reported fluorescence profiles and cross sections the development of any meaningful models. It was decided that a better approach would be to model the wavelength-dependent elastic backscattering from a number of ambient background aerosol types, and compare this with that generated from representative sporulated and vegetative bacterial systems. Calculations in this report show that a 266, 355, 532 and 1064 nm elastic backscatter LIDAR experiment will allow an operator to immediately recognize when sulfate, VOC-based or road dust (silicate) aerosols are approaching, independent of humidity changes. It will be more difficult to distinguish soot aerosols from biological aerosols, or vegetative bacteria from sporulated bacteria. In these latter cases, the elastic scattering data will most likely have to be combined with UV fluorescence data to enable a more robust categorization.

  14. Cloud Processing of Gases and Aerosols in Air Quality Modeling

    Directory of Open Access Journals (Sweden)

    Leiming Zhang

    2011-10-01

    Full Text Available The representations of cloud processing of gases and aerosols in some of the current state-of-the-art regional air quality models in North America and Europe are reviewed. Key processes reviewed include aerosol activation (or nucleation scavenging of aerosols, aqueous-phase chemistry, and wet deposition/removal of atmospheric tracers. It was found that models vary considerably in the parameterizations or algorithms used in representing these processes. As an emerging area of research, the current understanding of the uptake of water soluble organics by cloud droplets and the potential aqueous-phase reaction pathways leading to the atmospheric secondary organic aerosol (SOA formation is also reviewed. Sensitivity tests using the AURAMS model have been conducted in order to assess the impact on modeled regional particulate matter (PM from: (1 the different aerosol activation schemes, (2 the different below-cloud particle scavenging algorithms, and (3 the inclusion of cloud processing of water soluble organics as a potential pathway for the formation of atmospheric SOA. It was found that the modeled droplet number concentrations and ambient PM size distributions were strongly affected by the use of different aerosol activation schemes. The impact on the modeled average ambient PM mass concentration was found to be limited in terms of averaged PM2.5 concentration (~a few percents but more significant in terms of PM1.0 (up to 10 percents. The modeled ambient PM was found to be moderately sensitive to the below-cloud particle scavenging algorithms, with relative differences up to 10% and 20% in terms of PM2.5 and PM10, respectively, when using the two different algorithms for the scavenging coefficient (Λ corresponding to the lower and upper bounds in the parameterization for Λ. The model simulation with the additional cloud uptake and processing of water-soluble organic gases was shown to improve the evaluation statistics for modeled PM2.5 OA

  15. Urban Surface Temperature Reduction via the Urban Aerosol Direct Effect: A Remote Sensing and WRF Model Sensitivity Study

    Directory of Open Access Journals (Sweden)

    Menglin Jin

    2010-01-01

    Full Text Available The aerosol direct effect, namely, scattering and absorption of sunlight in the atmosphere, can lower surface temperature by reducing surface insolation. By combining National Aeronautics and Space Administration (NASA AERONET (AErosol RObotic NETwork observations in large cities with Weather Research and Forecasting (WRF model simulations, we find that the aerosol direct reduction of surface insolation ranges from 40–100Wm−2, depending on aerosol loading and land-atmosphere conditions. To elucidate the maximum possible effect, values are calculated using a radiative transfer model based on the top quartile of the multiyear instantaneous aerosol data observed by AERONET sites. As a result, surface skin temperature can be reduced by 1°C-2°C while 2-m surface air temperature reductions are generally on the order of 0.5°C–1°C.

  16. Developments in modelling the effect of aerosol on the thermal performance of the Fast Reactor cover gas space

    International Nuclear Information System (INIS)

    Ford, I.J.; Clement, C.F.

    1990-03-01

    The sodium aerosol which forms in the cover gas space of a Fast Reactor couples the processes of heat and mass transfer to and from the bounding surfaces and affects the thermal performance of the cavity. This report describes extensions to previously separate models of heat transfer and aerosol formation and removal in the cover gas space, and the linking of the two calculations in a consistent manner. The extensions made to the theories include thermophoretic aerosol removal, radiative-driven redistribution in aerosol sizes, and the side-wall influence on the bulk cavity temperature. The link between aerosol properties and boundary layer saturations is also examined, especially in the far-from-saturated limit. The models can be used in the interpretation of cover gas space experiments and some example calculations are given. (author)

  17. Enhancing non-refractory aerosol apportionment from an urban industrial site through receptor modeling of complete high time-resolution aerosol mass spectra

    Science.gov (United States)

    McGuire, M. L.; Chang, R. Y.-W.; Slowik, J. G.; Jeong, C.-H.; Healy, R. M.; Lu, G.; Mihele, C.; Abbatt, J. P. D.; Brook, J. R.; Evans, G. J.

    2014-08-01

    Receptor modeling was performed on quadrupole unit mass resolution aerosol mass spectrometer (Q-AMS) sub-micron particulate matter (PM) chemical speciation measurements from Windsor, Ontario, an industrial city situated across the Detroit River from Detroit, Michigan. Aerosol and trace gas measurements were collected on board Environment Canada's Canadian Regional and Urban Investigation System for Environmental Research (CRUISER) mobile laboratory. Positive matrix factorization (PMF) was performed on the AMS full particle-phase mass spectrum (PMFFull MS) encompassing both organic and inorganic components. This approach compared to the more common method of analyzing only the organic mass spectra (PMFOrg MS). PMF of the full mass spectrum revealed that variability in the non-refractory sub-micron aerosol concentration and composition was best explained by six factors: an amine-containing factor (Amine); an ammonium sulfate- and oxygenated organic aerosol-containing factor (Sulfate-OA); an ammonium nitrate- and oxygenated organic aerosol-containing factor (Nitrate-OA); an ammonium chloride-containing factor (Chloride); a hydrocarbon-like organic aerosol (HOA) factor; and a moderately oxygenated organic aerosol factor (OOA). PMF of the organic mass spectrum revealed three factors of similar composition to some of those revealed through PMFFull MS: Amine, HOA and OOA. Including both the inorganic and organic mass proved to be a beneficial approach to analyzing the unit mass resolution AMS data for several reasons. First, it provided a method for potentially calculating more accurate sub-micron PM mass concentrations, particularly when unusual factors are present, in this case the Amine factor. As this method does not rely on a priori knowledge of chemical species, it circumvents the need for any adjustments to the traditional AMS species fragmentation patterns to account for atypical species, and can thus lead to more complete factor profiles. It is expected that this

  18. Enhancing non-refractory aerosol apportionment from an urban industrial site through receptor modelling of complete high time-resolution aerosol mass spectra

    Science.gov (United States)

    McGuire, M. L.; Chang, R. Y.-W.; Slowik, J. G.; Jeong, C.-H.; Healy, R. M.; Lu, G.; Mihele, C.; Abbatt, J. P. D.; Brook, J. R.; Evans, G. J.

    2014-02-01

    Receptor modelling was performed on quadrupole unit mass resolution aerosol mass spectrometer (Q-AMS) sub-micron particulate matter (PM) chemical speciation measurements from Windsor, Ontario, an industrial city situated across the Detroit River from Detroit, Michigan. Aerosol and trace gas measurements were collected on board Environment Canada's CRUISER mobile laboratory. Positive matrix factorization (PMF) was performed on the AMS full particle-phase mass spectrum (PMFFull MS) encompassing both organic and inorganic components. This approach was compared to the more common method of analysing only the organic mass spectra (PMFOrg MS). PMF of the full mass spectrum revealed that variability in the non-refractory sub-micron aerosol concentration and composition was best explained by six factors: an amine-containing factor (Amine); an ammonium sulphate and oxygenated organic aerosol containing factor (Sulphate-OA); an ammonium nitrate and oxygenated organic aerosol containing factor (Nitrate-OA); an ammonium chloride containing factor (Chloride); a hydrocarbon-like organic aerosol (HOA) factor; and a moderately oxygenated organic aerosol factor (OOA). PMF of the organic mass spectrum revealed three factors of similar composition to some of those revealed through PMFFull MS: Amine, HOA and OOA. Including both the inorganic and organic mass proved to be a beneficial approach to analysing the unit mass resolution AMS data for several reasons. First, it provided a method for potentially calculating more accurate sub-micron PM mass concentrations, particularly when unusual factors are present, in this case, an Amine factor. As this method does not rely on a priori knowledge of chemical species, it circumvents the need for any adjustments to the traditional AMS species fragmentation patterns to account for atypical species, and can thus lead to more complete factor profiles. It is expected that this method would be even more useful for HR-ToF-AMS data, due to the ability

  19. Technical Note: On the use of nudging for aerosol-climate model intercomparison studies

    Science.gov (United States)

    Zhang, K.; Wan, H.; Liu, X.; Ghan, S. J.; Kooperman, G. J.; Ma, P.-L.; Rasch, P. J.; Neubauer, D.; Lohmann, U.

    2014-08-01

    Nudging as an assimilation technique has seen increased use in recent years in the development and evaluation of climate models. Constraining the simulated wind and temperature fields using global weather reanalysis facilitates more straightforward comparison between simulation and observation, and reduces uncertainties associated with natural variabilities of the large-scale circulation. On the other hand, the forcing introduced by nudging can be strong enough to change the basic characteristics of the model climate. In the paper we show that for the Community Atmosphere Model version 5 (CAM5), due to the systematic temperature bias in the standard model and the sensitivity of simulated ice formation to anthropogenic aerosol concentration, nudging towards reanalysis results in substantial reductions in the ice cloud amount and the impact of anthropogenic aerosols on long-wave cloud forcing. In order to reduce discrepancies between the nudged and unconstrained simulations, and meanwhile take the advantages of nudging, two alternative experimentation methods are evaluated. The first one constrains only the horizontal winds. The second method nudges both winds and temperature, but replaces the long-term climatology of the reanalysis by that of the model. Results show that both methods lead to substantially improved agreement with the free-running model in terms of the top-of-atmosphere radiation budget and cloud ice amount. The wind-only nudging is more convenient to apply, and provides higher correlations of the wind fields, geopotential height and specific humidity between simulation and reanalysis. Results from both CAM5 and a second aerosol-climate model ECHAM6-HAM2 also indicate that compared to the wind-and-temperature nudging, constraining only winds leads to better agreement with the free-running model in terms of the estimated shortwave cloud forcing and the simulated convective activities. This suggests nudging the horizontal winds but not temperature is a

  20. Modelling the background aerosol climatologies (1989-2010) for the Mediterranean basin

    Science.gov (United States)

    Jimenez-Guerrero, Pedro; Jerez, Sonia

    2014-05-01

    Aerosol levels and composition are influenced by multiple atmospheric physico-chemical processes that can affect them from its release point (as primary aerosol), or via gas-to-particle conversion processes that give rise to secondary aerosols. The contribution of the various aerosol sources, the role of long-range transport and the contribution of primary and secondary particulate matter to the ambient aerosol concentrations over Europe are not well known (Kulmala et al., 2009). Focusing on the Mediterranean, Querol et al. (2009) point out that there is a lack of studies on the variability of particulate matter (PM) along the Mediterranean basin, necessary for understanding the special features that differentiate aerosol processes between the western, eastern and central Mediterranean basins. In this perspective, modelling systems based on state-of-science chemistry transport models (CTMs) are fundamental elements to investigate the transport and chemistry of pollutants behaviour at different scales and to assess the impact of emissions in aerosol levels and composition. Therefore, this study aims to summarise the results on the levels and chemical composition of aerosols along the Mediterranean basin, highlighting the marked gradient between the western-central-eastern coasts. Special attention is paid to the analysis of the seasonality of PM composition and levels. For this purpose, the regional modelling system WRF-CHIMERE-EMEP has been implemented for conducting a full transient simulation for the ERA-Interim period (1989-2010) using year-to-year changing EMEP emissions. The domain of study covers Europe with a horizontal resolution of 25 km and a vertical resolution of 23 layers in the troposphere; however the analysis focuses on the Mediterranean area. The PM levels and composition are compared to the measured values reported by the EMEP network, showing a good agreement with observations for both western and eastern Mediterranean. The modelling results for

  1. Common Practices from Two Decades of Water Resources Modelling Published in Environmental Modelling & Software: 1997 to 2016

    Science.gov (United States)

    Ames, D. P.; Peterson, M.; Larsen, J.

    2016-12-01

    A steady flow of manuscripts describing integrated water resources management (IWRM) modelling has been published in Environmental Modelling & Software since the journal's inaugural issue in 1997. These papers represent two decades of peer-reviewed scientific knowledge regarding methods, practices, and protocols for conducting IWRM. We have undertaken to explore this specific assemblage of literature with the intention of identifying commonly reported procedures in terms of data integration methods, modelling techniques, approaches to stakeholder participation, means of communication of model results, and other elements of the model development and application life cycle. Initial results from this effort will be presented including a summary of commonly used practices, and their evolution over the past two decades. We anticipate that results will show a pattern of movement toward greater use of both stakeholder/participatory modelling methods as well as increased use of automated methods for data integration and model preparation. Interestingly, such results could be interpreted to show that the availability of better, faster, and more integrated software tools and technologies free the modeler to take a less technocratic and more human approach to water resources modelling.

  2. Detection, emission estimation and risk prediction of forest fires in China using satellite sensors and simulation models in the past three decades--an overview.

    Science.gov (United States)

    Zhang, Jia-Hua; Yao, Feng-Mei; Liu, Cheng; Yang, Li-Min; Boken, Vijendra K

    2011-08-01

    Forest fires have major impact on ecosystems and greatly impact the amount of greenhouse gases and aerosols in the atmosphere. This paper presents an overview in the forest fire detection, emission estimation, and fire risk prediction in China using satellite imagery, climate data, and various simulation models over the past three decades. Since the 1980s, remotely-sensed data acquired by many satellites, such as NOAA/AVHRR, FY-series, MODIS, CBERS, and ENVISAT, have been widely utilized for detecting forest fire hot spots and burned areas in China. Some developed algorithms have been utilized for detecting the forest fire hot spots at a sub-pixel level. With respect to modeling the forest burning emission, a remote sensing data-driven Net Primary productivity (NPP) estimation model was developed for estimating forest biomass and fuel. In order to improve the forest fire risk modeling in China, real-time meteorological data, such as surface temperature, relative humidity, wind speed and direction, have been used as the model input for improving prediction of forest fire occurrence and its behavior. Shortwave infrared (SWIR) and near infrared (NIR) channels of satellite sensors have been employed for detecting live fuel moisture content (FMC), and the Normalized Difference Water Index (NDWI) was used for evaluating the forest vegetation condition and its moisture status.

  3. Modeling decadal timescale interactions between surface water and ground water in the central Everglades, Florida, USA

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krupa, Steven L.

    2006-04-01

    Surface-water and ground-water flow are coupled in the central Everglades, although the remoteness of this system has hindered many previous attempts to quantify interactions between surface water and ground water. We modeled flow through a 43,000 ha basin in the central Everglades called Water Conservation Area 2A. The purpose of the model was to quantify recharge and discharge in the basin's vast interior areas. The presence and distribution of tritium in ground water was the principal constraint on the modeling, based on measurements in 25 research wells ranging in depth from 2 to 37 m. In addition to average characteristics of surface-water flow, the model parameters included depth of the layer of 'interactive' ground water that is actively exchanged with surface water, average residence time of interactive ground water, and the associated recharge and discharge fluxes across the wetland ground surface. Results indicated that only a relatively thin (8 m) layer of the 60 m deep surfical aquifer actively exchanges surface water and ground water on a decadal timescale. The calculated storage depth of interactive ground water was 3.1 m after adjustment for the porosity of peat and sandy limestone. Modeling of the tritium data yielded an average residence time of 90 years in interactive ground water, with associated recharge and discharge fluxes equal to 0.01 cm d -1. 3H/ 3He isotopic ratio measurements (which correct for effects of vertical mixing in the aquifer with deeper, tritium-dead water) were available from several wells, and these indicated an average residence time of 25 years, suggesting that residence time was overestimated using tritium measurements alone. Indeed, both residence time and storage depth would be expected to be overestimated due to vertical mixing. The estimate of recharge and discharge (0.01 cm d -1) that resulted from tritium modeling therefore is still considered reliable, because the ratio of residence time and storage depth (used to

  4. Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study

    Directory of Open Access Journals (Sweden)

    P. Stier

    2013-03-01

    Full Text Available Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as a measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in twelve participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is −4.47 Wm−2 and the inter-model standard deviation is 0.55 Wm−2, corresponding to a relative standard deviation of 12%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.04 Wm−2, and the standard deviation increases to 1.01 W−2, corresponding to a significant relative standard deviation of 97%. However, the top-of-atmosphere forcing variability owing to absorption (subtracting the scattering case from the case with scattering and absorption is low, with absolute (relative standard deviations of 0.45 Wm−2 (8% clear-sky and 0.62 Wm−2 (11% all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the AeroCom Direct Effect experiment demonstrates that host model uncertainties could explain about 36% of the overall sulfate forcing diversity of 0.11 Wm−2 in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model

  5. Modeling of the solar radiative impact of biomass burning aerosols during the Dust and Biomass-burning Experiment (DABEX)

    Science.gov (United States)

    Myhre, G.; Hoyle, C. R.; Berglen, T. F.; Johnson, B. T.; Haywood, J. M.

    2008-12-01

    The radiative forcing associated with biomass burning aerosols has been calculated over West Africa using a chemical transport model. The model simulations focus on the period of January˜February 2006 during the Dust and Biomass-burning Experiment (DABEX). All of the main aerosol components for this region are modeled including mineral dust, biomass burning (BB) aerosols, secondary organic carbon associated with BB emissions, and carbonaceous particles from the use of fossil fuel and biofuel. The optical properties of the BB aerosol are specified using aircraft data from DABEX. The modeled aerosol optical depth (AOD) is within 15-20% of data from the few available Aerosol Robotic Network (AERONET) measurement stations. However, the model predicts very high AOD over central Africa, which disagrees somewhat with satellite retrieved AOD from Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR). This indicates that BB emissions may be too high in central Africa or that very high AOD may be incorrectly screened out of the satellite data. The aerosol single scattering albedo increases with wavelength in our model and in AERONET retrievals, which contrasts with results from a previous biomass burning aerosol campaign. The model gives a strong negative radiative forcing of the BB aerosols at the top of the atmosphere (TOA) in clear-sky conditions over most of the domain, except over the Saharan desert where surface albedos are high. The all-sky TOA radiative forcing is quite inhomogeneous with values varying from -10 to 10 W m-2. The regional mean TOA radiative forcing is close to zero for the all-sky calculation and around -1.5 W m-2 for the clear-sky calculation. Sensitivity simulations indicate a positive regional mean TOA radiative forcing of up to 3 W m-2.

  6. Development of a Murine Model for Aerosolized Ebolavirus Infection Using a Panel of Recombinant Inbred Mice

    Directory of Open Access Journals (Sweden)

    Malak Kotb

    2012-12-01

    Full Text Available Countering aerosolized filovirus infection is a major priority of biodefense research.  Aerosol models of filovirus infection have been developed in knock-out mice, guinea pigs and non-human primates; however, filovirus infection of immunocompetent mice by the aerosol route has not been reported.  A murine model of aerosolized filovirus infection in mice should be useful for screening vaccine candidates and therapies.  In this study, various strains of wild-type and immunocompromised mice were exposed to aerosolized wild-type (WT or mouse-adapted (MA Ebola virus (EBOV.  Upon exposure to aerosolized WT-EBOV, BALB/c, C57BL/6 (B6, and DBA/2 (D2 mice were unaffected, but 100% of severe combined immunodeficiency (SCID and 90% of signal transducers and activators of transcription (Stat1 knock-out (KO mice became moribund between 7–9 days post-exposure (dpe.  Exposure to MA-EBOV caused 15% body weight loss in BALB/c, but all mice recovered.  In contrast, 10–30% lethality was observed in B6 and D2 mice exposed to aerosolized MA-EBOV, and 100% of SCID, Stat1 KO, interferon (IFN-γ KO and Perforin KO mice became moribund between 7–14 dpe. In order to identify wild-type, inbred, mouse strains in which exposure to aerosolized MA-EBOV is uniformly lethal, 60 BXD (C57BL/6 crossed with DBA/2 recombinant inbred (RI and advanced RI (ARI mouse strains were exposed to aerosolized MA-EBOV, and monitored for disease severity. A complete spectrum of disease severity was observed. All BXD strains lost weight but many recovered. However, infection was uniformly lethal within 7 to 12 days post-exposure in five BXD strains.  Aerosol exposure of these five BXD strains to 10-fold less MA-EBOV resulted in lethality ranging from 0% in two strains to 90–100% lethality in two strains.  Analysis of post-mortem tissue from BXD strains that became moribund and were euthanized at the lower dose of MA-EBOV, showed liver damage in all mice as well as lung lesions in

  7. Modeling the South American regional smoke plume: aerosol optical depth variability and surface shortwave flux perturbation

    Directory of Open Access Journals (Sweden)

    N. E. Rosário

    2013-03-01

    Full Text Available Intra-seasonal variability of smoke aerosol optical depth (AOD and downwelling solar irradiance at the surface during the 2002 biomass burning season in South America was modeled using the Coupled Chemistry-Aerosol-Tracers Transport model with the Brazilian developments on the Regional Atmospheric Modeling System (CCATT-BRAMS. Measurements of total and fine mode fraction (FMF AOD from the AErosol RObotic NETwork (AERONET and solar irradiance at the surface from the Solar Radiation Network (SolRad-NET were used to evaluate model results. In general, the major features associated with AOD evolution over the southern part of the Amazon basin and cerrado ecosystem are captured by the model. The main discrepancies were found for high aerosol loading events. In the northeastern portion of the Amazon basin the model systematically underestimated total AOD, as expected, since smoke contribution is not dominant as it is in the southern portion and emissions other than smoke were not considered in the simulation. Better agreement was obtained comparing the model results with observed FMF AOD, which pointed out the relevance of coarse mode aerosol emission in that region. Likewise, major discrepancies over cerrado during high AOD events were found to be associated with coarse mode aerosol omission in our model. The issue of high aerosol loading events in the southern part of the Amazon was related to difficulties in predicting the smoke AOD field, which was discussed in the context of emissions shortcomings. The Cuiabá cerrado site was the only one where the highest quality AERONET data were unavailable for both total and FMF AOD. Thus, lower quality data were used. Root-mean-square error (RMSE between the model and observed FMF AOD decreased from 0.34 to 0.19 when extreme AOD events (FMF AOD550 nm ≥ 1.0 and Cuiabá were excluded from the analysis. Downward surface solar irradiance comparisons also followed similar trends when extreme AOD were excluded

  8. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    Science.gov (United States)

    Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne

    2012-01-01

    Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low clean concentration and a high dirty concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated.

  9. A terrestrial ecosystem model (SOLVEG) coupled with atmospheric gas and aerosol exchange processes

    International Nuclear Information System (INIS)

    Katata, Genki; Ota, Masakazu

    2017-01-01

    In order to predict the impact of atmospheric pollutants (gases and aerosols) to the terrestrial ecosystem, new schemes for calculating the processes of dry deposition of gases and aerosols, and water and carbon cycles in terrestrial ecosystems were implemented in the one-dimensional atmosphere-SOiL-VEGetation model, SOLVEG. We made performance tests at various vegetation areas to validate the newly developed schemes. In this report, the detail in each modeled process is described with an instruction how to use the modified SOLVEG. The framework of 'terrestrial ecosystem model' was developed for investigation of a change in water, energy, and carbon cycles associated with global warming and air pollution and its impact on terrestrial ecosystems. (author)

  10. Interpreting aerosol lifetimes using the GEOS-Chem model and constraints from radionuclide measurements

    Energy Technology Data Exchange (ETDEWEB)

    Croft, B. [Dalhousie Univ., Halifax (Canada). Dept. of Physics and Atmospheric Science; Pierce, J.R. [Dalhousie Univ., Halifax (Canada). Dept. of Physics and Atmospheric Science; Colorado State Univ., Fort Collins, CO (United States); Martin, R.V. [Dalhousie Univ., Halifax (Canada). Dept. of Physics and Atmospheric Science; Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)

    2014-07-01

    Aerosol removal processes control global aerosol abundance, but the rate of that removal remains uncertain. A recent study of aerosol-bound radionuclide measurements after the Fukushima Daiichi nuclear power plant accident documents {sup 137}Cs removal (e-folding) times of 10.0-13.9 days, suggesting that mean aerosol lifetimes in the range of 3-7 days in global models might be too short by a factor of two. In this study, we attribute this discrepancy to differences between the e-folding and mean aerosol lifetimes. We implement a simulation of {sup 137}Cs and {sup 133}Xe into the GEOS-Chem chemical transport model and examine the removal rates for the Fukushima case. We find a general consistency between modelled and measured e-folding times. The simulated {sup 137}Cs global burden e-folding time is about 14 days. However, the simulated mean lifetime of aerosol-bound {sup 137}Cs over a 6-month post-accident period is only 1.8 days. We find that the mean lifetime depends strongly on the removal rates in the first few days after emissions, before the aerosols leave the boundary layer and are transported to altitudes and latitudes where lifetimes with respect to wet removal are longer by a few orders of magnitude. We present sensitivity simulations that demonstrate the influence of differences in altitude and location of the radionuclides on the mean lifetime. Global mean lifetimes are shown to strongly depend on the altitude of injection. The global mean {sup 137}Cs lifetime is more than one order of magnitude greater for the injection at 7 km than into the boundary layer above the Fukushima site. Instantaneous removal rates are slower during the first few days after the emissions for a free tropospheric versus boundary layer injection and this strongly controls the mean lifetimes. Global mean aerosol lifetimes for the GEOS-Chem model are 3-6 days, which is longer than that for the {sup 137}Cs injected at the Fukushima site (likely due to precipitation shortly after

  11. Modelling of the indirect radiation effect due to background aerosols in Austria

    International Nuclear Information System (INIS)

    Neubauer, D.

    2009-01-01

    Aerosols and greenhouse gases are the two most important contributors to the anthropogenic climate change. The indirect aerosol effect is simulated in this study. The effects of black carbon are investigated. Usually, models use measured aerosol data as input, and their predictions are compared to cloud parameters measured independently from the aerosol measurements. The model developed in this study uses simultaneously measured values for the aerosol and the subsequent cloud. This way, more realistic predictions for the indirect aerosol effect can be expected. The model uses data from an earlier intensive measurement campaign at an Austrian background site. The aerosol and cloud data are taken from the FWF project P 131 43 - CHE and had been collected in 2000 at a measurement site on a mountain in the proximity of Vienna (Rax, 1680 m a.s.l.). The simulation model consists of two parts, a cloud droplet growth model and a radiative model. The growth model for cloud droplets computes the cloud droplet distribution originating from a measured aerosol distribution. The calculated cloud droplet size distributions that are used for further calculations are selected according to the measured liquid water content of the real-world cloud. The radiative model then computes the radiative forcing using the calculated cloud droplet size distribution. The cloud model is a cloud parcel model which describes an ascending air parcel containing the droplets. Turbulent diffusion (important for stratiform clouds) is realized through a simple approach. The model includes nucleation, condensation, coagulation and radiative effects. Because of radiative heating/cooling of the cloud droplets the temperature and the critical super-saturation of the droplets can change. For radiative transfer calculations, the radiative transfer code of the public domain program 'Streamer' was adapted for this study. 'Streamer' accounts for scattering and absorption of radiation in the whole spectral region

  12. A size-composition resolved aerosol model for simulating the dynamics of externally mixed particles: SCRAM (v 1.0)

    Science.gov (United States)

    Zhu, S.; Sartelet, K. N.; Seigneur, C.

    2015-06-01

    The Size-Composition Resolved Aerosol Model (SCRAM) for simulating the dynamics of externally mixed atmospheric particles is presented. This new model classifies aerosols by both composition and size, based on a comprehensive combination of all chemical species and their mass-fraction sections. All three main processes involved in aerosol dynamics (coagulation, condensation/evaporation and nucleation) are included. The model is first validated by comparison with a reference solution and with results of simulations using internally mixed particles. The degree of mixing of particles is investigated in a box model simulation using data representative of air pollution in Greater Paris. The relative influence on the mixing state of the different aerosol processes (condensation/evaporation, coagulation) and of the algorithm used to model condensation/evaporation (bulk equilibrium, dynamic) is studied.

  13. Atmospheric aerosol dispersion models and their applications to environmental risk assessment

    Directory of Open Access Journals (Sweden)

    Andrzej Mazur

    2014-03-01

    Full Text Available Introduction. Numerical models of dispersion of atmospheric pollutants are widely used to forecast the spread of contaminants in the air and to analyze the effects of this phenomenon. The aim of the study is to investigate the possibilities and the quality of diagnosis and prediction of atmospheric transport of aerosols in the air using the dispersion model of atmospheric pollutants, developed at the Institute of Meteorology and Water Management (IMWM in Warsaw. Material and methods. A model of the dispersion of atmospheric pollutants, linked with meteorological models in a diagnostic mode, was used to simulate the transport of the cloud of aerosols released during the crash near the town of Ożydiw (Ukraine and of volcanic ash – during the volcanic eruption of Eyjafjallajökull in Iceland. Results. Possible directions of dispersion of pollutants in the air and its concentration in the atmosphere and deposition to the soil were assessed. The analysis of temporal variability of concentrations of aerosols in the atmosphere confirmed that the model developed at IMWM is an effective tool for diagnosis of air quality in the area of Poland as well as for determination of exposure duration to the aerosol clouds for different weather scenarios. Conclusions. The results are a confirmation of the thesis, that because in the environmental risk assessment, an important element is not only current information on the level of pollution concentrations, but also the time of exposure to pollution and forecast of these elements, and consequently the predicted effects on man or the environment in general; so it is necessary to use forecasting tools, similar to presented application. The dispersion model described in the paper is an operational tool for description, analysis and forecasting of emergency situations in case of emissions of hazardous substances.

  14. A sea surface reflectance model for (AATSR, and application to aerosol retrievals

    Directory of Open Access Journals (Sweden)

    A. M. Sayer

    2010-07-01

    Full Text Available A model of the sea surface bidirectional reflectance distribution function (BRDF is presented for the visible and near-IR channels (over the spectral range 550 nm to 1.6 μm of the dual-viewing Along-Track Scanning Radiometers (ATSRs. The intended application is as part of the Oxford-RAL Aerosols and Clouds (ORAC retrieval scheme. The model accounts for contributions to the observed reflectance from whitecaps, sun-glint and underlight. Uncertainties in the parametrisations used in the BRDF model are propagated through into the forward model and retrieved state. The new BRDF model offers improved coverage over previous methods, as retrievals are possible into the sun-glint region, through the ATSR dual-viewing system. The new model has been applied in the ORAC aerosol retrieval algorithm to process Advanced ATSR (AATSR data from September 2004 over the south-eastern Pacific. The assumed error budget is shown to be generally appropriate, meaning the retrieved states are consistent with the measurements and a priori assumptions. The resulting field of aerosol optical depth (AOD is compared with colocated MODIS-Terra observations, AERONET observations at Tahiti, and cruises over the oceanic region. MODIS and AATSR show similar spatial distributions of AOD, although MODIS reports values which are larger and more variable. It is suggested that assumptions in the MODIS aerosol retrieval algorithm may lead to a positive bias in MODIS AOD of order 0.01 at 550 nm over ocean regions where the wind speed is high.

  15. Model simulations of aerosol effects on clouds and precipitation in comparison with ARM data

    Energy Technology Data Exchange (ETDEWEB)

    Penner, Joyce E. [Univ. of Michigan, Ann Arbor, MI (United States); Zhou, Cheng [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-01-12

    Observation-based studies have shown that the aerosol cloud lifetime effect or the increase of cloud liquid water path (LWP) with increased aerosol loading may have been overestimated in climate models. Here, we simulate shallow warm clouds on 05/27/2011 at the Southern Great Plains (SGP) measurement site established by Department of Energy's Atmospheric Radiation Measurement (ARM) Program using a single column version of a global climate model (Community Atmosphere Model or CAM) and a cloud resolving model (CRM). The LWP simulated by CAM increases substantially with aerosol loading while that in the CRM does not. The increase of LWP in CAM is caused by a large decrease of the autoconversion rate when cloud droplet number increases. In the CRM, the autoconversion rate is also reduced, but this is offset or even outweighed by the increased evaporation of cloud droplets near cloud top, resulting in an overall decrease in LWP. Our results suggest that climate models need to include the dependence of cloud top growth and the evaporation/condensation process on cloud droplet number concentrations.

  16. Validation of an hourly resolved global aerosol model in answer to solar electricity generation information needs

    Directory of Open Access Journals (Sweden)

    M. Schroedter-Homscheidt

    2013-04-01

    Full Text Available Solar energy applications need global aerosol optical depth (AOD information to derive historic surface solar irradiance databases from geostationary meteorological satellites reaching back to the 1980's. This paper validates the MATCH/DLR model originating in the climate community against AERONET ground measurements. Hourly or daily mean AOD model output is evaluated individually for all stations in Europe, Africa and the Middle East – an area highly interesting for solar energy applications being partly dominated by high aerosol loads. Overall, a bias of 0.02 and a root-mean-square error (RMSE of 0.23 are found for daily mean AOD values, while the RMSE increases to 0.28 for hourly mean AOD values. Large differences between various regions and stations are found providing a feedback loop for the aerosol modelling community. The difference in using daily means versus hourly resolved modelling with respect to hourly resolved observations is evaluated. Nowadays state-of-the-art in solar resource assessment relies on monthly turbidity or AOD climatologies while at least hourly resolved irradiance time series are needed by the solar sector. Therefore, the contribution of higher temporally modelled AOD is evaluated.

  17. Multi-Decadal Coastal Behavioural States From A Fusion Of Geohistorical Conceptual Modelling With 2-D Morphodynamic Modelling

    Science.gov (United States)

    Goodwin, I. D.; Mortlock, T.

    2016-02-01

    Geohistorical archives of shoreline and foredune planform geometry provides a unique evidence-based record of the time integral response to coupled directional wave climate and sediment supply variability on annual to multi-decadal time scales. We develop conceptual shoreline modelling from the geohistorical shoreline archive using a novel combination of methods, including: LIDAR DEM and field mapping of coastal geology; a decadal-scale climate reconstruction of sea-level pressure, marine windfields, and paleo-storm synoptic type and frequency, and historical bathymetry. The conceptual modelling allows for the discrimination of directional wave climate shifts and the relative contributions of cross-shore and along-shore sand supply rates at multi-decadal resolution. We present regional examples from south-eastern Australia over a large latitudinal gradient from subtropical Queensland (S 25°) to mid-latitude Bass Strait (S 40°) that illustrate the morphodynamic evolution and reorganization to wave climate change. We then use the conceptual modeling to inform a two-dimensional coupled spectral wave-hydrodynamic-morphodynamic model to investigate the shoreface response to paleo-directional wind and wave climates. Unlike one-line shoreline modelling, this fully dynamical approach allows for the investigation of cumulative and spatial bathymetric change due to wave-induced currents, as well as proxy-shoreline change. The fusion of the two modeling approaches allows for: (i) the identification of the natural range of coastal planform geometries in response to wave climate shifts; and, (ii) the decomposition of the multidecadal coastal change into the cross-shore and along-shore sand supply drivers, according to the best-matching planforms.

  18. Comparison of modeled estimates of inhalation exposure to aerosols during use of consumer spray products.

    Science.gov (United States)

    Park, Jihoon; Yoon, Chungsik; Lee, Kiyoung

    2018-05-30

    In the field of exposure science, various exposure assessment models have been developed to complement experimental measurements; however, few studies have been published on their validity. This study compares the estimated inhaled aerosol doses of several inhalation exposure models to experimental measurements of aerosols released from consumer spray products, and then compares deposited doses within different parts of the human respiratory tract according to deposition models. Exposure models, including the European Center for Ecotoxicology of Chemicals Targeted Risk Assessment (ECETOC TRA), the Consumer Exposure Model (CEM), SprayExpo, ConsExpo Web and ConsExpo Nano, were used to estimate the inhaled dose under various exposure scenarios, and modeled and experimental estimates were compared. The deposited dose in different respiratory regions was estimated using the International Commission on Radiological Protection model and multiple-path particle dosimetry models under the assumption of polydispersed particles. The modeled estimates of the inhaled doses were accurate in the short term, i.e., within 10 min of the initial spraying, with a differences from experimental estimates ranging from 0 to 73% among the models. However, the estimates for long-term exposure, i.e., exposure times of several hours, deviated significantly from the experimental estimates in the absence of ventilation. The differences between the experimental and modeled estimates of particle number and surface area were constant over time under ventilated conditions. ConsExpo Nano, as a nano-scale model, showed stable estimates of short-term exposure, with a difference from the experimental estimates of less than 60% for all metrics. The deposited particle estimates were similar among the deposition models, particularly in the nanoparticle range for the head airway and alveolar regions. In conclusion, the results showed that the inhalation exposure models tested in this study are suitable

  19. Modeling the feedback between aerosol and boundary layer processes: a case study in Beijing, China.

    Science.gov (United States)

    Miao, Yucong; Liu, Shuhua; Zheng, Yijia; Wang, Shu

    2016-02-01

    Rapid development has led to frequent haze in Beijing. With mountains and sea surrounding Beijing, the pollution is found to be influenced by the mountain-plain breeze and sea-land breeze in complex ways. Meanwhile, the presence of aerosols may affect the surface energy balance and impact these boundary layer (BL) processes. The effects of BL processes on aerosol pollution and the feedback between aerosol and BL processes are not yet clearly understood. Thus, the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) is used to investigate the possible effects and feedbacks during a haze episode on 23 September 2011. Influenced by the onshore prevailing wind, sea-breeze, and upslope breeze, about 45% of surface particulate matter (PM)2.5 in Beijing are found to be contributed by its neighbor cities through regional transport. In the afternoon, the development of upslope breeze suppresses the growth of BL in Beijing by imposing a relatively low thermal stable layer above the BL, which exacerbates the pollution. Two kinds of feedback during the daytime are revealed as follows: (1) as the aerosols absorb and scatter the solar radiation, the surface net radiation and sensible heat flux are decreased, while BL temperature is increased, resulting in a more stable and shallower BL, which leads to a higher surface PM2.5 concentration in the morning and (2) in the afternoon, as the presence of aerosols increases the BL temperature over plains, the upslope breeze is weakened, and the boundary layer height (BLH) over Beijing is heightened, resulting in the decrease of the surface PM2.5 concentration there.

  20. Radiative modeling and characterization of aerosol plumes hyper-spectral imagery

    International Nuclear Information System (INIS)

    Alakian, A.

    2008-03-01

    This thesis aims at characterizing aerosols from plumes (biomass burning, industrial discharges, etc.) with hyper-spectral imagery. We want to estimate the optical properties of emitted particles and also their micro-physical properties such as number, size distribution and composition. To reach our goal, we have built a forward semi-analytical model, named APOM (Aerosol Plume Optical Model), which allows to simulate the radiative effects of aerosol plumes in the spectral range [0,4-2,5 μm] for nadir viewing sensors. Mathematical formulation and model coefficients are obtained from simulations performed with the radiative transfer code COMANCHE. APOM is assessed on simulated data and proves to be accurate with modeling errors between 1% and 3%. Three retrieval methods using APOM have been developed: L-APOM, M-APOM and A-APOM. These methods take advantage of spectral and spatial dimensions in hyper-spectral images. L-APOM and M-APOM assume a priori knowledge on particles but can estimate their optical and micro-physical properties. Their performances on simulated data are quite promising. A-APOM method does not require any a priori knowledge on particles but only estimates their optical properties. However, it still needs improvements before being usable. On real images, inversion provides satisfactory results for plumes above water but meets some difficulties for plumes above vegetation, which underlines some possibilities of improvement for the retrieval algorithm. (author)

  1. Cloud processing of gases and aerosols in the Community Multiscale Air Quality (CMAQ) model: Impacts of extended chemistry

    Science.gov (United States)

    Clouds and fogs can significantly impact the concentration and distribution of atmospheric gases and aerosols through chemistry, scavenging, and transport. This presentation summarizes the representation of cloud processes in the Community Multiscale Air Quality (CMAQ) modeling ...

  2. Comparison of different methods used in integral codes to model coagulation of aerosols

    Science.gov (United States)

    Beketov, A. I.; Sorokin, A. A.; Alipchenkov, V. M.; Mosunova, N. A.

    2013-09-01

    The methods for calculating coagulation of particles in the carrying phase that are used in the integral codes SOCRAT, ASTEC, and MELCOR, as well as the Hounslow and Jacobson methods used to model aerosol processes in the chemical industry and in atmospheric investigations are compared on test problems and against experimental results in terms of their effectiveness and accuracy. It is shown that all methods are characterized by a significant error in modeling the distribution function for micrometer particles if calculations are performed using rather "coarse" spectra of particle sizes, namely, when the ratio of the volumes of particles from neighboring fractions is equal to or greater than two. With reference to the problems considered, the Hounslow method and the method applied in the aerosol module used in the ASTEC code are the most efficient ones for carrying out calculations.

  3. Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model

    Directory of Open Access Journals (Sweden)

    N. Mahowald

    2011-02-01

    Full Text Available Coupled-carbon-climate simulations are an essential tool for predicting the impact of human activity onto the climate and biogeochemistry. Here we incorporate prognostic desert dust and anthropogenic aerosols into the CCSM3.1 coupled carbon-climate model and explore the resulting interactions with climate and biogeochemical dynamics through a series of transient anthropogenic simulations (20th and 21st centuries and sensitivity studies. The inclusion of prognostic aerosols into this model has a small net global cooling effect on climate but does not significantly impact the globally averaged carbon cycle; we argue that this is likely to be because the CCSM3.1 model has a small climate feedback onto the carbon cycle. We propose a mechanism for including desert dust and anthropogenic aerosols into a simple carbon-climate feedback analysis to explain the results of our and previous studies. Inclusion of aerosols has statistically significant impacts on regional climate and biogeochemistry, in particular through the effects on the ocean nitrogen cycle and primary productivity of altered iron inputs from desert dust deposition.

  4. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    Science.gov (United States)

    Zhou, C.; Zhang, X.; Gong, S.; Wang, Y.; Xue, M.

    2016-01-01

    A comprehensive aerosol-cloud-precipitation interaction (ACI) scheme has been developed under a China Meteorological Administration (CMA) chemical weather modeling system, GRAPES/CUACE (Global/Regional Assimilation and PrEdiction System, CMA Unified Atmospheric Chemistry Environment). Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN) are interactively fed online into a two-moment cloud scheme (WRF Double-Moment 6-class scheme - WDM6) and a convective parameterization to drive cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred.The results show that aerosols that interact with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content, and cloud droplet number concentrations, while decreasing the mean diameters of cloud droplets with varying magnitudes of the changes in each case and region. These interactive microphysical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24 to 48 % enhancements of threat score for 6 h precipitation in almost all regions. The aerosols that interact with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3 °C.

  5. Tropospheric Aerosols

    Science.gov (United States)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    uncertainties by "the I-beams". Only an uncertainty range rather than a best estimate is presented for direct aerosol forcing by mineral dust and for indirect aerosol forcing. An assessment of the present level of scientific understanding is indicated at the bottom of the figure (reproduced by permission of Intergovernmental Panel on Climate Change). The importance of atmospheric aerosols to issues of societal concern has motivated much research intended to describe their loading, distribution, and properties and to develop understanding of the controlling processes to address such issues as air pollution, acid deposition, and climate influences of aerosols. However, description based wholly on measurements will inevitably be limited in its spatial and temporal coverage and in the limited characterization of aerosol properties. These limitations are even more serious for predictions of future emissions and provide motivation for concurrent theoretical studies and development of model-based description of atmospheric aerosols.An important long-range goal, which has already been partly realized, is to develop quantitative understanding of the processes that control aerosol loading, composition, and microphysical properties as well as the resultant optical and cloud-nucleating properties. An objective is to incorporate these results into chemical transport models that can be used for predictions. Such models are required, for example, to design approaches to achieve air quality standards and to assess and predict aerosol influences on climate change. Much current research is directed toward enhancing this understanding and to evaluating it by comparison of model results and observations. However, compared to gases, models involving particles are far more complex because of the need to specify additional parameters such as particle sizes and size distributions, compositions as a function of size, particle shapes, and temporal and spatial variations, including reactions that occur

  6. Ground truth methods for optical cross-section modeling of biological aerosols

    Science.gov (United States)

    Kalter, J.; Thrush, E.; Santarpia, J.; Chaudhry, Z.; Gilberry, J.; Brown, D. M.; Brown, A.; Carter, C. C.

    2011-05-01

    Light detection and ranging (LIDAR) systems have demonstrated some capability to meet the needs of a fastresponse standoff biological detection method for simulants in open air conditions. These systems are designed to exploit various cloud signatures, such as differential elastic backscatter, fluorescence, and depolarization in order to detect biological warfare agents (BWAs). However, because the release of BWAs in open air is forbidden, methods must be developed to predict candidate system performance against real agents. In support of such efforts, the Johns Hopkins University Applied Physics Lab (JHU/APL) has developed a modeling approach to predict the optical properties of agent materials from relatively simple, Biosafety Level 3-compatible bench top measurements. JHU/APL has fielded new ground truth instruments (in addition to standard particle sizers, such as the Aerodynamic particle sizer (APS) or GRIMM aerosol monitor (GRIMM)) to more thoroughly characterize the simulant aerosols released in recent field tests at Dugway Proving Ground (DPG). These instruments include the Scanning Mobility Particle Sizer (SMPS), the Ultraviolet Aerodynamic Particle Sizer (UVAPS), and the Aspect Aerosol Size and Shape Analyser (Aspect). The SMPS was employed as a means of measuring smallparticle concentrations for more accurate Mie scattering simulations; the UVAPS, which measures size-resolved fluorescence intensity, was employed as a path toward fluorescence cross section modeling; and the Aspect, which measures particle shape, was employed as a path towards depolarization modeling.

  7. Collaborative Proposal: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic System Model (RASM)

    Energy Technology Data Exchange (ETDEWEB)

    Maslowski, Wieslaw [Naval Postgraduate School, Monterey, CA (United States). Dept. of Oceanography; Cassano, John J. [Univ. of Colorado, Boulder, CO (United States); Gutowski, Jr., William J. [Iowa State Univ., Ames, IA (United States); Lipscomb, William H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nijssen, Bart [Univ. of Washington, Seattle, WA (United States); Roberts, Andrew [Naval Postgraduate School, Monterey, CA (United States). Dept. of Oceanography; Robertson, William [Univ. of Texas, El Paso, TX (United States); Tulaczyk, Slawek [Univ. of California, Santa Cruz, CA (United States); Zeng, Xubin [Univ. of Arizona, Tucson, AZ (United States)

    2011-05-15

    The primary outcome of the project was the development of the Regional Arctic System Model (RASM) and evaluation of its individual model components, coupling among them and fully coupled model results. Overall, we have demonstrated that RASM produces realistic mean and seasonal surface climate as well as its interannual and decadal variability and trends.

  8. Gas/aerosol Partitioning Parameterisation For Global Modelling: A Physical Interpretation of The Relationship Between Activity Coefficients and Relative Humidity

    Science.gov (United States)

    Metzger, S.; Dentener, F. J.; Lelieveld, J.; Pandis, S. N.

    A computationally efficient model (EQSAM) to calculate gas/aerosol partitioning ofsemi-volatile inorganic aerosol components has been developed for use in global- atmospheric chemistry and climate models; presented at the EGS 2001.We introduce and discuss here the physics behind the parameterisation, upon whichthe EQuilib- rium Simplified Aerosol Model EQSAM is based. The parameterisation,which ap- proximates the activity coefficient calculation sufficiently accurately forglobal mod- elling, is based on a method that directly relates aerosol activitycoefficients to the ambient relative humidity, assuming chemical equilibrium.It therefore provides an interesting alternative for the computationally expensiveiterative activity coefficient calculation methods presently used in thermodynamicgas/aerosol equilibrium mod- els (EQMs). The parameterisation can be used,however, also in dynamical models that calculate mass transfer between theliquid/solid aerosol phases and the gas/phase explicitly; dynamical models oftenincorporate an EQM to calculate the aerosol com- position. The gain of theparameterisation is that the entire system of the gas/aerosol equilibrium partitioningcan be solved non-iteratively, a substantial advantage in global modelling.Since we have already demonstrated at the EGS 2001 that EQSAM yields similarresults as current state-of-the-art equilibrium models, we focus here on a dis- cussionof our physical interpretation of the parameterisation; the identification of theparameters needed is crucial. Given the lag of reliable data, the best way tothor- oughly validate the parameterisation for global modelling applications is theimple- mentation in current state-of-the-art gas/aerosol partitioning routines, whichare embe- ded in e.g. a global atmospheric chemistry transport model, by comparingthe results of the parameterisation against the ones based on the widely used activitycoefficient calculation methods (i.e. Bromley, Kussik-Meissner or Pitzer). Then

  9. Micron-sized and submicron-sized aerosol deposition in a new ex vivo preclinical model.

    Science.gov (United States)

    Perinel, Sophie; Leclerc, Lara; Prévôt, Nathalie; Deville, Agathe; Cottier, Michèle; Durand, Marc; Vergnon, Jean-Michel; Pourchez, Jérémie

    2016-07-07

    The knowledge of where particles deposit in the respiratory tract is crucial for understanding the health effects associated with inhaled drug particles. An ex vivo study was conducted to assess regional deposition patterns (thoracic vs. extrathoracic) of radioactive polydisperse aerosols with different size ranges [0.15 μm-0.5 μm], [0.25 μm-1 μm] and [1 μm-9 μm]. SPECT/CT analyses were performed complementary in order to assess more precisely the regional deposition of aerosols within the pulmonary tract. Experiments were set using an original respiratory tract model composed of a human plastinated head connected to an ex vivo porcine pulmonary tract. The model was ventilated by passive expansion, simulating pleural depressions. Aerosol was administered during nasal breathing. Planar scintigraphies allowed to calculate the deposited aerosol fractions for particles in the three size ranges from sub-micron to micron The deposited fractions obtained, for thoracic vs. extra-thoracic regions respectively, were 89 ± 4 % vs. 11 ± 4 % for [0.15 μm-0.5 μm], 78 ± 5 % vs. 22 ± 5 % for [0.25 μm-1 μm] and 35 ± 11 % vs.65 ± 11 % for [1 μm-9 μm]. Results obtained with this new ex vivo respiratory tract model are in good agreement with the in vivo data obtained in studies with baboons and humans.

  10. Elucidating determinants of aerosol composition through particle-type-based receptor modeling

    Science.gov (United States)

    McGuire, M. L.; Jeong, C.-H.; Slowik, J. G.; Chang, R. Y.-W.; Corbin, J. C.; Lu, G.; Mihele, C.; Rehbein, P. J. G.; Sills, D. M. L.; Abbatt, J. P. D.; Brook, J. R.; Evans, G. J.

    2011-08-01

    An aerosol time-of-flight mass spectrometer (ATOFMS) was deployed at a semi-rural site in southern Ontario to characterize the size and chemical composition of individual particles. Particle-type-based receptor modelling of these data was used to investigate the determinants of aerosol chemical composition in this region. Individual particles were classified into particle-types and positive matrix factorization (PMF) was applied to their temporal trends to separate and cross-apportion particle-types to factors. The extent of chemical processing for each factor was assessed by evaluating the internal and external mixing state of the characteristic particle-types. The nine factors identified helped to elucidate the coupled interactions of these determinants. Nitrate-laden dust was found to be the dominant type of locally emitted particles measured by ATOFMS. Several factors associated with aerosol transported to the site from intermediate local-to-regional distances were identified: the Organic factor was associated with a combustion source to the north-west; the ECOC Day factor was characterized by nearby local-to-regional carbonaceous emissions transported from the south-west during the daytime; and the Fireworks factor consisted of pyrotechnic particles from the Detroit region following holiday fireworks displays. Regional aerosol from farther emissions sources was reflected through three factors: two Biomass Burning factors and a highly chemically processed Long Range Transport factor. The Biomass Burning factors were separated by PMF due to differences in chemical processing which were in part elucidated by the passage of two thunderstorm gust fronts with different air mass histories. The remaining two factors, ECOC Night and Nitrate Background, represented the night-time partitioning of nitrate to pre-existing particles of different origins. The distinct meteorological conditions observed during this month-long study in the summer of 2007 provided a unique

  11. Comparison of models and measurements of angle-resolved scatter from irregular aerosols

    International Nuclear Information System (INIS)

    Milstein, Adam B.; Richardson, Jonathan M.

    2015-01-01

    We have developed and validated a method for modeling the elastic scattering properties of biological and inert aerosols of irregular shape at near- and mid-wave infrared wavelengths. The method, based on Gaussian random particles, calculates the ensemble-average optical cross section and Mueller scattering matrix, using the measured aerodynamic size distribution and previously-reported refractive index as inputs. The utility of the Gaussian particle model is that it is controlled by only two parameters (σ and Γ) which we have optimized such that the model best reproduces the full angle-resolved Mueller scattering matrices measured at λ=1.55 µm in the Standoff Aerosol Active Signature Testbed (SAAST). The method has been applied to wet-generated singlet biological spore samples, dry-generated biological spore clusters, and kaolin. The scattering computation is performed using the Discrete Dipole Approximation (DDA), which requires significant computational resources, and is thus implemented on LLGrid, a large parallel grid computer. For the cases presented, the best fit Gaussian particle model is in good qualitative correspondence with microscopy images of the corresponding class of particles. The measured and computed cross sections agree well within a factor of two overall, with certain cases bearing closer correspondence. In particular, the DDA reproduces the shape of the measured scatter function more accurately than Mie predictions. The DDA-computed depolarization factors are also in good agreement with measurement. - Highlights: • We model elastic scattering of biological and inert aerosols of irregular shape. • We calculate cross sections and Mueller matrix using random particle shape model. • Scatter models employ refractive index and measured size distribution as inputs. • Discrete dipole approximation (DDA) with parallelization enables model calculations. • DDA-modeled cross section and Mueller matrix agree well with measurements at 1.55 μm

  12. Improvement of Aerosol Optical Depth Retrieval from MODIS Spectral Reflectance over the Global Ocean Using New Aerosol Models Archived from AERONET Inversion Data and Tri-axial Ellipsoidal Dust Database

    Science.gov (United States)

    Lee, J.; Kim, J.; Yang, P.; Hsu, N. C.

    2012-01-01

    New over-ocean aerosol models are developed by integrating the inversion data from the Aerosol Robotic Network (AERONET) sun/sky radiometers with a database for the optical properties of tri-axial ellipsoid particles. The new aerosol models allow more accurate retrieval of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) in the case of high AOD (AOD greater than 0.3). The aerosol models are categorized by using the fine-mode fraction (FMF) at 550 nm and the singlescattering albedo (SSA) at 440 nm from the AERONET inversion data to include a variety of aerosol types found around the globe. For each aerosol model, the changes in the aerosol optical properties (AOPs) as functions of AOD are considered to better represent aerosol characteristics. Comparisons of AODs between AERONET and MODIS for the period from 2003 to 2010 show that the use of the new aerosol models enhances the AOD accuracy with a Pearson coefficient of 0.93 and a regression slope of 0.99 compared to 0.92 and 0.85 calculated using the MODIS Collection 5 data. Moreover, the percentage of data within an expected error of +/-(0.03 + 0.05xAOD) is increased from 62 percent to 64 percent for overall data and from 39 percent to 51 percent for AOD greater than 0.3. Errors in the retrieved AOD are further characterized with respect to the Angstrom exponent (AE), scattering angle, SSA, and air mass factor (AMF). Due to more realistic AOPs assumptions, the new algorithm generally reduces systematic errors in the retrieved AODs compared with the current operational algorithm. In particular, the underestimation of fine-dominated AOD and the scattering angle dependence of dust-dominated AOD are significantly mitigated as results of the new algorithm's improved treatment of aerosol size distribution and dust particle nonsphericity.

  13. Improvement of aerosol optical depth retrieval from MODIS spectral reflectance over the global ocean using new aerosol models archived from AERONET inversion data and tri-axial ellipsoidal dust database

    Directory of Open Access Journals (Sweden)

    J. Lee

    2012-08-01

    Full Text Available New over-ocean aerosol models are developed by integrating the inversion data from the Aerosol Robotic Network (AERONET sun/sky radiometers with a database for the optical properties of tri-axial ellipsoid particles. The new aerosol models allow more accurate retrieval of aerosol optical depth (AOD from the Moderate Resolution Imaging Spectroradiometer (MODIS in the case of high AOD (AOD > 0.3. The aerosol models are categorized by using the fine-mode fraction (FMF at 550 nm and the single-scattering albedo (SSA at 440 nm from the AERONET inversion data to include a variety of aerosol types found around the globe. For each aerosol model, the changes in the aerosol optical properties (AOPs as functions of AOD are considered to better represent aerosol characteristics. Comparisons of AODs between AERONET and MODIS for the period from 2003 to 2010 show that the use of the new aerosol models enhances the AOD accuracy with a Pearson coefficient of 0.93 and a regression slope of 0.99 compared to 0.92 and 0.85 calculated using the MODIS Collection 5 data. Moreover, the percentage of data within an expected error of ± (0.03 + 0.05 × AOD is increased from 62% to 64% for overall data and from 39% to 5% for AOD > 0.3. Errors in the retrieved AOD are further characterized with respect to the Ångström exponent (AE, scattering angle (Θ, SSA, and air mass factor (AMF. Due to more realistic AOPs assumptions, the new algorithm generally reduces systematic errors in the retrieved AODs compared with the current operational algorithm. In particular, the underestimation of fine-dominated AOD and the scattering angle dependence of dust-dominated AOD are significantly mitigated as results of the new algorithm's improved treatment of aerosol size distribution and dust particle nonsphericity.

  14. Assessment of the Aerosol Optics Component of the Coupled WRF-CMAQ Model usingCARES Field Campaign data and a Single Column Model

    Science.gov (United States)

    The Carbonaceous Aerosols and Radiative Effects Study (CARES), a field campaign held in central California in June 2010, provides a unique opportunity to assess the aerosol optics modeling component of the two-way coupled Weather Research and Forecasting (WRF) – Community Multisc...

  15. The Explicit-Cloud Parameterized-Pollutant hybrid approach for aerosol-cloud interactions in multiscale modeling framework models: tracer transport results

    International Nuclear Information System (INIS)

    Jr, William I Gustafson; Berg, Larry K; Easter, Richard C; Ghan, Steven J

    2008-01-01

    All estimates of aerosol indirect effects on the global energy balance have either completely neglected the influence of aerosol on convective clouds or treated the influence in a highly parameterized manner. Embedding cloud-resolving models (CRMs) within each grid cell of a global model provides a multiscale modeling framework for treating both the influence of aerosols on convective as well as stratiform clouds and the influence of clouds on the aerosol, but treating the interactions explicitly by simulating all aerosol processes in the CRM is computationally prohibitive. An alternate approach is to use horizontal statistics (e.g., cloud mass flux, cloud fraction, and precipitation) from the CRM simulation to drive a single-column parameterization of cloud effects on the aerosol and then use the aerosol profile to simulate aerosol effects on clouds within the CRM. Here, we present results from the first component of the Explicit-Cloud Parameterized-Pollutant parameterization to be developed, which handles vertical transport of tracers by clouds. A CRM with explicit tracer transport serves as a benchmark. We show that this parameterization, driven by the CRM's cloud mass fluxes, reproduces the CRM tracer transport significantly better than a single-column model that uses a conventional convective cloud parameterization

  16. The Explicit-Cloud Parameterized-Pollutant hybrid approach for aerosol-cloud interactions in multiscale modeling framework models: tracer transport results

    Energy Technology Data Exchange (ETDEWEB)

    Jr, William I Gustafson; Berg, Larry K; Easter, Richard C; Ghan, Steven J [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, PO Box 999, MSIN K9-30, Richland, WA (United States)], E-mail: William.Gustafson@pnl.gov

    2008-04-15

    All estimates of aerosol indirect effects on the global energy balance have either completely neglected the influence of aerosol on convective clouds or treated the influence in a highly parameterized manner. Embedding cloud-resolving models (CRMs) within each grid cell of a global model provides a multiscale modeling framework for treating both the influence of aerosols on convective as well as stratiform clouds and the influence of clouds on the aerosol, but treating the interactions explicitly by simulating all aerosol processes in the CRM is computationally prohibitive. An alternate approach is to use horizontal statistics (e.g., cloud mass flux, cloud fraction, and precipitation) from the CRM simulation to drive a single-column parameterization of cloud effects on the aerosol and then use the aerosol profile to simulate aerosol effects on clouds within the CRM. Here, we present results from the first component of the Explicit-Cloud Parameterized-Pollutant parameterization to be developed, which handles vertical transport of tracers by clouds. A CRM with explicit tracer transport serves as a benchmark. We show that this parameterization, driven by the CRM's cloud mass fluxes, reproduces the CRM tracer transport significantly better than a single-column model that uses a conventional convective cloud parameterization.

  17. Thermal-hydraulic and aerosol containment phenomena modelling in ASTEC severe accident computer code

    International Nuclear Information System (INIS)

    Kljenak, Ivo; Dapper, Maik; Dienstbier, Jiri; Herranz, Luis E.; Koch, Marco K.; Fontanet, Joan

    2010-01-01

    Transients in containment systems of different scales (Phebus.FP containment, KAEVER vessel, Battelle Model Containment, LACE vessel and VVER-1000 nuclear power plant containment) involving thermal-hydraulic phenomena and aerosol behaviour, were simulated with the computer integral code ASTEC. The results of the simulations in the first four facilities were compared with experimental results, whereas the results of the simulated accident in the VVER-1000 containment were compared to results obtained with the MELCOR code. The main purpose of the simulations was the validation of the CPA module of the ASTEC code. The calculated results support the applicability of the code for predicting in-containment thermal-hydraulic and aerosol phenomena during a severe accident in a nuclear power plant.

  18. Modelling of strong heterogeneities in aerosol single scattering albedos over a polluted region

    Science.gov (United States)

    Mallet, M.; Pont, V.; Liousse, C.

    2005-05-01

    To date, most models dedicated to the investigation of aerosol direct or semi-direct radiative forcings have assumed the various aerosol components to be either completely externally mixed or homogeneously internally mixed. Some recent works have shown that a core-shell treatment of particles should be more realistic, leading to significant differences in the radiative impact as compared to only externally or well-internally mixed states. To account for these studies, an optical module, ORISAM-RAD, has been developed for computing aerosol radiative properties under the hypothesis of internally mixed particles with a n-layer spherical concentric structure. Mesoscale simulations using ORISAM-RAD, coupled with the 3D mesoscale model Meso-NH-C, have been performed for one selected day (06/24/2001) during the ESCOMPTE experiment in the Marseilles-Fos/Berre region, which illustrate the ability of this new module to reproduce spatial heterogeneities of measured single scattering albedo (ωo), due to industrial and/or urban pollution plumes.

  19. Atmospheric effects of nuclar war aerosols in general circulation model simulations: Influence of smoke optical properties

    International Nuclear Information System (INIS)

    Thompson, S.L.; Ramaswamy, V.; Covey, C.

    1987-01-01

    A global atmospheric general circulation model (GCM) is modified to include radiative transfer parameterizations for the absorption and scattering of solar radiation and the absorption of thermal infrared (IR) radiation by smoke aerosols. The solar scattering modifications include a parameterization for diagnosing smoke optical properties as a function of the time- and space-dependent smoke particle radii. The aerosol IR modifications allow for both the ''grey'' absorber approximation and a broadband approximation that resolves the aerosol absorption in four spectral intervals. We examine the sensitivity of some GCM-simulated atmospheric and climatic effects to the optical properties and radiative transfer parameterizations used in studies of massive injections of smoke. Specifically, we test the model response to solar scattering versus nonscattering smoke, variations in prescribed smoke single scattering albedo and IR specific absorption, and interactive versus fixed smoke optical properties. Hypothetical nuclear war created smoke scenarios assume the July injection of 60 or 180 Tg of smoke over portions of the mid-latitude land areas of the northern hemisphere. Atmospheric transport and scavenging of the smoke are included. Nonscattering smoke cases produce roughly 40 Wm/sup -2/ more Earth-atmosphere solar irradiance absorption over the northern hemisphere, when compared to scattering smoke cases having equivalent specific absorption efficiencies. Varying the elemental carbon content of smoke over a plausible range produces a 4 0 --6 0 C change in average mid-latitude land surface temperature, and a variation of about 0.1 in zonally averaged planetary albedo in the northern hemisphere

  20. Radiative modeling and characterization of aerosol plumes hyper-spectral imagery; Modelisation radiative et caracterisation des panaches d'aerosols en imagerie hyperspectrale

    Energy Technology Data Exchange (ETDEWEB)

    Alakian, A

    2008-03-15

    This thesis aims at characterizing aerosols from plumes (biomass burning, industrial discharges, etc.) with hyper-spectral imagery. We want to estimate the optical properties of emitted particles and also their micro-physical properties such as number, size distribution and composition. To reach our goal, we have built a forward semi-analytical model, named APOM (Aerosol Plume Optical Model), which allows to simulate the radiative effects of aerosol plumes in the spectral range [0,4-2,5 {mu}m] for nadir viewing sensors. Mathematical formulation and model coefficients are obtained from simulations performed with the radiative transfer code COMANCHE. APOM is assessed on simulated data and proves to be accurate with modeling errors between 1% and 3%. Three retrieval methods using APOM have been developed: L-APOM, M-APOM and A-APOM. These methods take advantage of spectral and spatial dimensions in hyper-spectral images. L-APOM and M-APOM assume a priori knowledge on particles but can estimate their optical and micro-physical properties. Their performances on simulated data are quite promising. A-APOM method does not require any a priori knowledge on particles but only estimates their optical properties. However, it still needs improvements before being usable. On real images, inversion provides satisfactory results for plumes above water but meets some difficulties for plumes above vegetation, which underlines some possibilities of improvement for the retrieval algorithm. (author)

  1. Plume-exit modeling to determine cloud condensation nuclei activity of aerosols from residential biofuel combustion

    Science.gov (United States)

    Mena, Francisco; Bond, Tami C.; Riemer, Nicole

    2017-08-01

    Residential biofuel combustion is an important source of aerosols and gases in the atmosphere. The change in cloud characteristics due to biofuel burning aerosols is uncertain, in part, due to the uncertainty in the added number of cloud condensation nuclei (CCN) from biofuel burning. We provide estimates of the CCN activity of biofuel burning aerosols by explicitly modeling plume dynamics (coagulation, condensation, chemical reactions, and dilution) in a young biofuel burning plume from emission until plume exit, defined here as the condition when the plume reaches ambient temperature and specific humidity through entrainment. We found that aerosol-scale dynamics affect CCN activity only during the first few seconds of evolution, after which the CCN efficiency reaches a constant value. Homogenizing factors in a plume are co-emission of semi-volatile organic compounds (SVOCs) or emission at small particle sizes; SVOC co-emission can be the main factor determining plume-exit CCN for hydrophobic or small particles. Coagulation limits emission of CCN to about 1016 per kilogram of fuel. Depending on emission factor, particle size, and composition, some of these particles may not activate at low supersaturation (ssat). Hygroscopic Aitken-mode particles can contribute to CCN through self-coagulation but have a small effect on the CCN activity of accumulation-mode particles, regardless of composition differences. Simple models (monodisperse coagulation and average hygroscopicity) can be used to estimate plume-exit CCN within about 20 % if particles are unimodal and have homogeneous composition, or when particles are emitted in the Aitken mode even if they are not homogeneous. On the other hand, if externally mixed particles are emitted in the accumulation mode without SVOCs, an average hygroscopicity overestimates emitted CCN by up to a factor of 2. This work has identified conditions under which particle populations become more homogeneous during plume processes. This

  2. Marine Aerosol Precursor Emissions for Earth System Models

    Energy Technology Data Exchange (ETDEWEB)

    Maltrud, Mathew Einar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-25

    Dimethyl sulfide (DMS) is generated by marine ecosystems and plays a major role in cloud formation over the ocean. Currently, Earth System Models use imposed flux of DMS from the ocean to the atmosphere that is independent of the climate state. We have added DMS as a prognostic variable to the Community Earth System Model (CESM) that depends on the distribution of phytoplankton species, and thus changes with climate.

  3. Does temperature nudging overwhelm aerosol radiative effects in regional integrated climate models?

    Science.gov (United States)

    For over two decades, data assimilation (popularly known as nudging) methods have been used for improving regional weather and climate simulations by reducing model biases in meteorological parameters and processes. Similar practice is also popular in many regional integrated met...

  4. 0D-modelling of carbonaceous aerosols; L'aerosol de combustion dans une region en grande mutation, l'Asie

    Energy Technology Data Exchange (ETDEWEB)

    Michel, Ch.

    2005-06-15

    One of the main uncertainties in the estimate of the climatic impact of aerosols is linked to our knowledge of gases and aerosols emissions. This is particularly crucial over Asia, where a strong regional fingerprint is observed, with different emission types, depending on the various vegetation and climate conditions (biomass burning emissions) and on the very fast changes of the population and industrialization (biofuel and fossil fuel emissions). The main goal of this work was first to derive a biomass burning inventory for gases and particles over Asia for the 2001 ACE-Asia (Aerosol Characterization Experiment) and TRACE-P (Transport and Chemical Evolution over the Pacific) campaigns (March to May 2001). I implemented a methodology that is the most adapted to my study, and based on the burnt area cartography (GBA-2000 project (Global Burnt Area 2000) [Tansey et al., 2005]). The results of this study, ABBI (Asian Biomass Burning Inventory) [Michel et al., 2005] have been compared with another biomass burning emission inventory (ACESS: ACE-Asia and TRACE-P Modelling and Emission Support System) [Streets et al., 2003], built from fire counts and not from burnt areas. This comparison shows the limits of the use of fire counts in the emission inventory maps and underlines the importance and the relevance of the method used in my study. A comparison with the year 2000 emission inventory, obtained with the same method, underlines the importance of the inter-annual variations. The ABBI inventory has been introduced in the Meso-NH-C mesoscale model combined with an aerosol module: ORISAM (ORganic and Inorganic Spectral Aerosol Module) Bessagnet, 2000]. I have focused in particular on the impact of the burnt vegetation emissions over the asian continent. Comparisons between simulated and ground and airborne measured data showed satisfactory results in some cases, but showed also some limits. Sensitivity tests have been carried out firstly to test the impact of fire

  5. A Generic Model for the Resuspension of Multilayer Aerosol Deposits by Turbulent Flow

    International Nuclear Information System (INIS)

    Friess, H.; Yadigaroglu, G.

    2001-01-01

    An idealized lattice structure is considered of multilayer aerosol deposits, where every particle at the deposit surface is associated with a resuspension rate constant depending on a statistically distributed particle parameter and on flow conditions. The response of this generic model is represented by a set of integrodifferential equations. As a first application of the general formalism, the behavior of Fromentin's multilayer model is analyzed, and the model parameters are adapted to experimental data. In addition, improved relations between model parameters and physical input parameters are proposed. As a second application, a method is proposed for building multilayer models by using resuspension rate constants of existing monolayer models. The method is illustrated by a sample of monolayer data resulting from the model of Reeks, Reed, and Hall. Also discussed is the error to be expected if a monolayer resuspension model, which works well for thin aerosol deposits, is applied to thick deposits under the classical monolayer assumption that all deposited particles interact with the fluid at all times

  6. Ozone impacts of gas-aerosol uptake in global chemistry transport models

    Science.gov (United States)

    Stadtler, Scarlet; Simpson, David; Schröder, Sabine; Taraborrelli, Domenico; Bott, Andreas; Schultz, Martin

    2018-03-01

    The impact of six heterogeneous gas-aerosol uptake reactions on tropospheric ozone and nitrogen species was studied using two chemical transport models, the Meteorological Synthesizing Centre-West of the European Monitoring and Evaluation Programme (EMEP MSC-W) and the European Centre Hamburg general circulation model combined with versions of the Hamburg Aerosol Model and Model for Ozone and Related chemical Tracers (ECHAM-HAMMOZ). Species undergoing heterogeneous reactions in both models include N2O5, NO3, NO2, O3, HNO3, and HO2. Since heterogeneous reactions take place at the aerosol surface area, the modelled surface area density (Sa) of both models was compared to a satellite product retrieving the surface area. This comparison shows a good agreement in global pattern and especially the capability of both models to capture the extreme aerosol loadings in east Asia. The impact of the heterogeneous reactions was evaluated by the simulation of a reference run containing all heterogeneous reactions and several sensitivity runs. One reaction was turned off in each sensitivity run to compare it with the reference run. The analysis of the sensitivity runs confirms that the globally most important heterogeneous reaction is the one of N2O5. Nevertheless, NO2, HNO3, and HO2 heterogeneous reactions gain relevance particularly in east Asia due to the presence of high NOx concentrations and high Sa in the same region. The heterogeneous reaction of O3 itself on dust is of minor relevance compared to the other heterogeneous reactions. The impacts of the N2O5 reactions show strong seasonal variations, with the biggest impacts on O3 in springtime when photochemical reactions are active and N2O5 levels still high. Evaluation of the models with northern hemispheric ozone surface observations yields a better agreement of the models with observations in terms of concentration levels, variability, and temporal correlations at most sites when the heterogeneous reactions are

  7. The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations

    Directory of Open Access Journals (Sweden)

    K. Zhang

    2012-10-01

    Full Text Available This paper introduces and evaluates the second version of the global aerosol-climate model ECHAM-HAM. Major changes have been brought into the model, including new parameterizations for aerosol nucleation and water uptake, an explicit treatment of secondary organic aerosols, modified emission calculations for sea salt and mineral dust, the coupling of aerosol microphysics to a two-moment stratiform cloud microphysics scheme, and alternative wet scavenging parameterizations. These revisions extend the model's capability to represent details of the aerosol lifecycle and its interaction with climate. Nudged simulations of the year 2000 are carried out to compare the aerosol properties and global distribution in HAM1 and HAM2, and to evaluate them against various observations. Sensitivity experiments are performed to help identify the impact of each individual update in model formulation.

    Results indicate that from HAM1 to HAM2 there is a marked weakening of aerosol water uptake in the lower troposphere, reducing the total aerosol water burden from 75 Tg to 51 Tg. The main reason is the newly introduced κ-Köhler-theory-based water uptake scheme uses a lower value for the maximum relative humidity cutoff. Particulate organic matter loading in HAM2 is considerably higher in the upper troposphere, because the explicit treatment of secondary organic aerosols allows highly volatile oxidation products of the precursors to be vertically transported to regions of very low temperature and to form aerosols there. Sulfate, black carbon, particulate organic matter and mineral dust in HAM2 have longer lifetimes than in HAM1 because of weaker in-cloud scavenging, which is in turn related to lower autoconversion efficiency in the newly introduced two-moment cloud microphysics scheme. Modification in the sea salt emission scheme causes a significant increase in the ratio (from 1.6 to 7.7 between accumulation mode and coarse mode emission fluxes of

  8. Comparisons of aerosol optical depth provided by seviri satellite observations and CAMx air quality modelling

    Science.gov (United States)

    Fernandes, A.; Riffler, M.; Ferreira, J.; Wunderle, S.; Borrego, C.; Tchepel, O.

    2015-04-01

    Satellite data provide high spatial coverage and characterization of atmospheric components for vertical column. Additionally, the use of air pollution modelling in combination with satellite data opens the challenging perspective to analyse the contribution of different pollution sources and transport processes. The main objective of this work is to study the AOD over Portugal using satellite observations in combination with air pollution modelling. For this purpose, satellite data provided by Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) on-board the geostationary Meteosat-9 satellite on AOD at 550 nm and modelling results from the Chemical Transport Model (CAMx - Comprehensive Air quality Model) were analysed. The study period was May 2011 and the aim was to analyse the spatial variations of AOD over Portugal. In this study, a multi-temporal technique to retrieve AOD over land from SEVIRI was used. The proposed method takes advantage of SEVIRI's high temporal resolution of 15 minutes and high spatial resolution. CAMx provides the size distribution of each aerosol constituent among a number of fixed size sections. For post processing, CAMx output species per size bin have been grouped into total particulate sulphate (PSO4), total primary and secondary organic aerosols (POA + SOA), total primary elemental carbon (PEC) and primary inert material per size bin (CRST1 to CRST_4) to be used in AOD quantification. The AOD was calculated by integration of aerosol extinction coefficient (Qext) on the vertical column. The results were analysed in terms of temporal and spatial variations. The analysis points out that the implemented methodology provides a good spatial agreement between modelling results and satellite observation for dust outbreak studied (10th -17th of May 2011). A correlation coefficient of r=0.79 was found between the two datasets. This work provides relevant background to start the integration of these two different types of the data in order

  9. The Role of Aerosols on Precipitation Processes: Cloud Resolving Model Simulations

    Science.gov (United States)

    Tao, Wei-Kuo; Li, X.; Matsui, T.

    2012-01-01

    Cloud microphysics is inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e. pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region, the sub-tropics (Florida) and midlatitudes using identical thermodynamic conditions but with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. Results indicate that the low CCN concentration case produces rainfall at the surface sooner than the high CeN case but has less cloud water mass aloft. Because the spectral-bin model explicitly calculates and allows for the examination of both the mass and number concentration of species in each size category, a detailed analysis of the instantaneous size spectrum can be obtained for these cases. It is shown that since the low (CN case produces fewer droplets, larger sizes develop due to greater condensational and collection growth, leading to a broader size spectrum in comparison to the high CCN case. Sensitivity tests were performed to

  10. An inverse modeling procedure to determine particle growth and nucleation rates from measured aerosol size distributions

    Directory of Open Access Journals (Sweden)

    B. Verheggen

    2006-01-01

    Full Text Available Classical nucleation theory is unable to explain the ubiquity of nucleation events observed in the atmosphere. This shows a need for an empirical determination of the nucleation rate. Here we present a novel inverse modeling procedure to determine particle nucleation and growth rates based on consecutive measurements of the aerosol size distribution. The particle growth rate is determined by regression analysis of the measured change in the aerosol size distribution over time, taking into account the effects of processes such as coagulation, deposition and/or dilution. This allows the growth rate to be determined with a higher time-resolution than can be deduced from inspecting contour plots ('banana-plots''. Knowing the growth rate as a function of time enables the evaluation of the time of nucleation of measured particles of a certain size. The nucleation rate is then obtained by integrating the particle losses from time of measurement to time of nucleation. The regression analysis can also be used to determine or verify the optimum value of other parameters of interest, such as the wall loss or coagulation rate constants. As an example, the method is applied to smog chamber measurements. This program offers a powerful interpretive tool to study empirical aerosol population dynamics in general, and nucleation and growth in particular.

  11. T-matrix modeling of linear depolarization by morphologically complex soot and soot-containing aerosols

    International Nuclear Information System (INIS)

    Mishchenko, Michael I.; Liu, Li; Mackowski, Daniel W.

    2013-01-01

    We use state-of-the-art public-domain Fortran codes based on the T-matrix method to calculate orientation and ensemble averaged scattering matrix elements for a variety of morphologically complex black carbon (BC) and BC-containing aerosol particles, with a special emphasis on the linear depolarization ratio (LDR). We explain theoretically the quasi-Rayleigh LDR peak at side-scattering angles typical of low-density soot fractals and conclude that the measurement of this feature enables one to evaluate the compactness state of BC clusters and trace the evolution of low-density fluffy fractals into densely packed aggregates. We show that small backscattering LDRs measured with ground-based, airborne, and spaceborne lidars for fresh smoke generally agree with the values predicted theoretically for fluffy BC fractals and densely packed near-spheroidal BC aggregates. To reproduce higher lidar LDRs observed for aged smoke, one needs alternative particle models such as shape mixtures of BC spheroids or cylinders. -- Highlights: ► New superposition T-matrix code is applied to soot aerosols. ► Quasi-Rayleigh side-scattering peak in linear depolarization (LD) is explained. ► LD measurements can be used for morphological characterization of soot aerosols

  12. Modeling regional air quality and climate: improving organic aerosol and aerosol activation processes in WRF/Chem version 3.7.1

    Science.gov (United States)

    Yahya, Khairunnisa; Glotfelty, Timothy; Wang, Kai; Zhang, Yang; Nenes, Athanasios

    2017-06-01

    Air quality and climate influence each other through the uncertain processes of aerosol formation and cloud droplet activation. In this study, both processes are improved in the Weather, Research and Forecasting model with Chemistry (WRF/Chem) version 3.7.1. The existing Volatility Basis Set (VBS) treatments for organic aerosol (OA) formation in WRF/Chem are improved by considering the following: the secondary OA (SOA) formation from semi-volatile primary organic aerosol (POA), a semi-empirical formulation for the enthalpy of vaporization of SOA, and functionalization and fragmentation reactions for multiple generations of products from the oxidation of VOCs. Over the continental US, 2-month-long simulations (May to June 2010) are conducted and results are evaluated against surface and aircraft observations during the Nexus of Air Quality and Climate Change (CalNex) campaign. Among all the configurations considered, the best performance is found for the simulation with the 2005 Carbon Bond mechanism (CB05) and the VBS SOA module with semivolatile POA treatment, 25 % fragmentation, and the emissions of semi-volatile and intermediate volatile organic compounds being 3 times the original POA emissions. Among the three gas-phase mechanisms (CB05, CB6, and SAPRC07) used, CB05 gives the best performance for surface ozone and PM2. 5 concentrations. Differences in SOA predictions are larger for the simulations with different VBS treatments (e.g., nonvolatile POA versus semivolatile POA) compared to the simulations with different gas-phase mechanisms. Compared to the simulation with CB05 and the default SOA module, the simulations with the VBS treatment improve cloud droplet number concentration (CDNC) predictions (normalized mean biases from -40.8 % to a range of -34.6 to -27.7 %), with large differences between CB05-CB6 and SAPRC07 due to large differences in their OH and HO2 predictions. An advanced aerosol activation parameterization based on the Fountoukis and Nenes

  13. Current state of aerosol nucleation parameterizations for air-quality and climate modeling

    Science.gov (United States)

    Semeniuk, Kirill; Dastoor, Ashu

    2018-04-01

    Aerosol nucleation parameterization models commonly used in 3-D air quality and climate models have serious limitations. This includes classical nucleation theory based variants, empirical models and other formulations. Recent work based on detailed and extensive laboratory measurements and improved quantum chemistry computation has substantially advanced the state of nucleation parameterizations. In terms of inorganic nucleation involving BHN and THN including ion effects these new models should be considered as worthwhile replacements for the old models. However, the contribution of organic species to nucleation remains poorly quantified. New particle formation consists of a distinct post-nucleation growth regime which is characterized by a strong Kelvin curvature effect and is thus dependent on availability of very low volatility organic species or sulfuric acid. There have been advances in the understanding of the multiphase chemistry of biogenic and anthropogenic organic compounds which facilitate to overcome the initial aerosol growth barrier. Implementation of processes influencing new particle formation is challenging in 3-D models and there is a lack of comprehensive parameterizations. This review considers the existing models and recent innovations.

  14. Models of neural dynamics in brain information processing - the developments of 'the decade'

    Energy Technology Data Exchange (ETDEWEB)

    Borisyuk, G N; Borisyuk, R M; Kazanovich, Yakov B [Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow region (Russian Federation); Ivanitskii, Genrikh R [Institute for Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region (Russian Federation)

    2002-10-31

    Neural network models are discussed that have been developed during the last decade with the purpose of reproducing spatio-temporal patterns of neural activity in different brain structures. The main goal of the modeling was to test hypotheses of synchronization, temporal and phase relations in brain information processing. The models being considered are those of temporal structure of spike sequences, of neural activity dynamics, and oscillatory models of attention and feature integration. (reviews of topical problems)

  15. A-Train Aerosol Observations Preliminary Comparisons with AeroCom Models and Pathways to Observationally Based All-Sky Estimates

    Science.gov (United States)

    Redemann, J.; Livingston, J.; Shinozuka, Y.; Kacenelenbogen, M.; Russell, P.; LeBlanc, S.; Vaughan, M.; Ferrare, R.; Hostetler, C.; Rogers, R.; hide

    2014-01-01

    We have developed a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) retrievals for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the recently released MODIS Collection 6 data for aerosol optical depths derived with the dark target and deep blue algorithms has extended the coverage of the multi-sensor estimates towards higher latitudes. We compare the spatio-temporal distribution of our multi-sensor aerosol retrievals and calculations of seasonal clear-sky aerosol radiative forcing based on the aerosol retrievals to values derived from four models that participated in the latest AeroCom model intercomparison initiative. We find significant inter-model differences, in particular for the aerosol single scattering albedo, which can be evaluated using the multi-sensor A-Train retrievals. We discuss the major challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed.

  16. Sensitivity Studies on the Influence of Aerosols on Cloud and Precipitation Development Using WRF Mesoscale Model Simulations

    Science.gov (United States)

    Thompson, G.; Eidhammer, T.; Rasmussen, R.

    2011-12-01

    Using the WRF model in simulations of shallow and deep precipitating cloud systems, we investigated the sensitivity to aerosols initiating as cloud condensation and ice nuclei. A global climatological dataset of sulfates, sea salts, and dust was used as input for a control experiment. Sensitivity experiments with significantly more polluted conditions were conducted to analyze the resulting impacts to cloud and precipitation formation. Simulations were performed using the WRF model with explicit treatment of aerosols added to the Thompson et al (2008) bulk microphysics scheme. The modified scheme achieves droplet formation using pre-tabulated CCN activation tables provided by a parcel model. The ice nucleation is parameterized as a function of dust aerosols as well as homogeneous freezing of deliquesced aerosols. The basic processes of aerosol activation and removal by wet scavenging are considered, but aerosol characteristic size or hygroscopicity does not change due to evaporating droplets. In other words, aerosol processing was ignored. Unique aspects of this study include the usage of one to four kilometer grid spacings and the direct parameterization of ice nucleation from aerosols rather than typical temperature and/or supersaturation relationships alone. Initial results from simulations of a deep winter cloud system and its interaction with significant orography show contrasting sensitivities in regions of warm rain versus mixed liquid and ice conditions. The classical view of higher precipitation amounts in relatively clean maritime clouds with fewer but larger droplets is confirmed for regions dominated by the warm-rain process. However, due to complex interactions with the ice phase and snow riming, the simulations revealed the reverse situation in high terrain areas dominated by snow reaching the surface. Results of other cloud systems will be summarized at the conference.

  17. Integration of prognostic aerosol-cloud interactions in a chemistry transport model coupled offline to a regional climate model

    Science.gov (United States)

    Thomas, M. A.; Kahnert, M.; Andersson, C.; Kokkola, H.; Hansson, U.; Jones, C.; Langner, J.; Devasthale, A.

    2015-06-01

    To reduce uncertainties and hence to obtain a better estimate of aerosol (direct and indirect) radiative forcing, next generation climate models aim for a tighter coupling between chemistry transport models and regional climate models and a better representation of aerosol-cloud interactions. In this study, this coupling is done by first forcing the Rossby Center regional climate model (RCA4) with ERA-Interim lateral boundaries and sea surface temperature (SST) using the standard cloud droplet number concentration (CDNC) formulation (hereafter, referred to as the "stand-alone RCA4 version" or "CTRL" simulation). In the stand-alone RCA4 version, CDNCs are constants distinguishing only between land and ocean surface. The meteorology from this simulation is then used to drive the chemistry transport model, Multiple-scale Atmospheric Transport and Chemistry (MATCH), which is coupled online with the aerosol dynamics model, Sectional Aerosol module for Large Scale Applications (SALSA). CDNC fields obtained from MATCH-SALSA are then fed back into a new RCA4 simulation. In this new simulation (referred to as "MOD" simulation), all parameters remain the same as in the first run except for the CDNCs provided by MATCH-SALSA. Simulations are carried out with this model setup for the period 2005-2012 over Europe, and the differences in cloud microphysical properties and radiative fluxes as a result of local CDNC changes and possible model responses are analysed. Our study shows substantial improvements in cloud microphysical properties with the input of the MATCH-SALSA derived 3-D CDNCs compared to the stand-alone RCA4 version. This model setup improves the spatial, seasonal and vertical distribution of CDNCs with a higher concentration observed over central Europe during boreal summer (JJA) and over eastern Europe and Russia during winter (DJF). Realistic cloud droplet radii (CD radii) values have been simulated with the maxima reaching 13 μm, whereas in the stand

  18. Uncertainty from the choice of microphysics scheme in convection-permitting models significantly exceeds aerosol effects

    Directory of Open Access Journals (Sweden)

    B. White

    2017-10-01

    Full Text Available This study investigates the hydrometeor development and response to cloud droplet number concentration (CDNC perturbations in convection-permitting model configurations. We present results from a real-data simulation of deep convection in the Congo basin, an idealised supercell case, and a warm-rain large-eddy simulation (LES. In each case we compare two frequently used double-moment bulk microphysics schemes and investigate the response to CDNC perturbations. We find that the variability among the two schemes, including the response to aerosol, differs widely between these cases. In all cases, differences in the simulated cloud morphology and precipitation are found to be significantly greater between the microphysics schemes than due to CDNC perturbations within each scheme. Further, we show that the response of the hydrometeors to CDNC perturbations differs strongly not only between microphysics schemes, but the inter-scheme variability also differs between cases of convection. Sensitivity tests show that the representation of autoconversion is the dominant factor that drives differences in rain production between the microphysics schemes in the idealised precipitating shallow cumulus case and in a subregion of the Congo basin simulations dominated by liquid-phase processes. In this region, rain mass is also shown to be relatively insensitive to the radiative effects of an overlying layer of ice-phase cloud. The conversion of cloud ice to snow is the process responsible for differences in cold cloud bias between the schemes in the Congo. In the idealised supercell case, thermodynamic impacts on the storm system using different microphysics parameterisations can equal those due to aerosol effects. These results highlight the large uncertainty in cloud and precipitation responses to aerosol in convection-permitting simulations and have important implications not only for process studies of aerosol–convection interaction, but also for

  19. ACTRIS aerosol vertical profile data and observations: potentiality and first examples of integrated studies with models

    Science.gov (United States)

    Mona, Lucia; Benedetti, Angela; D'Amico, Giuseppe; Myhre, Cathrine Lund; Schulz, Michael; Wandinger, Ulla; Laj, Paolo; Pappalardo, Gelsomina

    2016-04-01

    The ACTRIS-2 project, funded by Horizon 2020, addresses the scope of integrating state-of-the-art European ground-based stations for long term observations of aerosols, clouds and short lived gases, capitalizing on the work of FP7-ACTRIS. It aims at achieving the construction of a user-oriented RI, unique in the EU-RI landscape for providing 4-D integrated high-quality data from near-surface to high altitude (vertical profiles and total-column) which are relevant to climate and air-quality research. ACTRIS-2 develops and implements, in a large network of stations in Europe and beyond, observational protocols that permit the harmonization of collected data and their dissemination. ACTRIS secures provision and dissemination of a unique set of data and data-products that would not otherwise be available with the same level of quality and standardization. This results from a 10-year plus effort in constructing a research infrastructure capable of responding to community needs and requirements, and has been engaged since the start of the FP5 EU commission program. ACTRIS ensures compliance with reporting requirements (timing, format, traceability) defined by the major global observing networks. EARLINET (European Aerosol research Lidar NETwork), the aerosol vertical profiling component of ACTRIS, is providing since May 2000 vertical profiles of aerosol extinction and backscatter over Europe. A new structure of the EARLINET database has been designed in a more user oriented approach reporting new data products which are more effective for specific uses of different communities. In particular, a new era is starting with the Copernicus program during which the aerosol vertical profiling capability will be fundamental for assimilation and validation purposes. The new data products have been designed thanks to a strong link with EARLINET data users, first of all modeling and satellite communities, established since the beginning of EARLINET and re-enforced within ACTRIS2

  20. Representation of Nucleation Mode Microphysics in a Global Aerosol Model with Sectional Microphysics

    Science.gov (United States)

    Lee, Y. H.; Pierce, J. R.; Adams, P. J.

    2013-01-01

    In models, nucleation mode (1 nmnucleation mode microphysics impacts aerosol number predictions in the TwO-Moment Aerosol Sectional (TOMAS) aerosol microphysics model running with the GISS GCM II-prime by varying its lowest diameter boundary: 1 nm, 3 nm, and 10 nm. The model with the 1 nm boundary simulates the nucleation mode particles with fully resolved microphysical processes, while the model with the 10 nm and 3 nm boundaries uses a nucleation mode dynamics parameterization to account for the growth of nucleated particles to 10 nm and 3 nm, respectively.We also investigate the impact of the time step for aerosol microphysical processes (a 10 min versus a 1 h time step) to aerosol number predictions in the TOMAS models with explicit dynamics for the nucleation mode particles (i.e., 3 nm and 1 nm boundary). The model with the explicit microphysics (i.e., 1 nm boundary) with the 10 min time step is used as a numerical benchmark simulation to estimate biases caused by varying the lower size cutoff and the time step. Different representations of the nucleation mode have a significant effect on the formation rate of particles larger than 10 nm from nucleated particles (J10) and the burdens and lifetimes of ultrafinemode (10 nm=Dp =70 nm) particles but have less impact on the burdens and lifetimes of CCN-sized particles. The models using parameterized microphysics (i.e., 10 nm and 3 nm boundaries) result in higher J10 and shorter coagulation lifetimes of ultrafine-mode particles than the model with explicit dynamics (i.e., 1 nm boundary). The spatial distributions of CN10 (Dp =10 nm) and CCN(0.2 %) (i.e., CCN concentrations at 0.2%supersaturation) are moderately affected, especially CN10 predictions above 700 hPa where nucleation contributes most strongly to CN10 concentrations. The lowermost-layer CN10 is substantially improved with the 3 nm boundary (compared to 10 nm) in most areas. The overprediction in CN10 with the 3 nm and 10 nm boundaries can be explained by

  1. A51F-0123: Model Analysis of Tropospheric Aerosol Variability and Sources over the North Atlantic During NAAMES 2015-2016

    Science.gov (United States)

    Liu, Hongyu; Moore, Richard; Hostetler, Chris A.; Ferrare, Richard Anthony; Fairlie, Thomas Duncan; Hu, Youngxiang; Chen, Gao; Hair, Johnathan W.; Johnson, Matthew S.

    2016-01-01

    The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) is a five-year Earth-Venture Suborbital-2 Mission to characterize the plankton ecosystems and their influences on remote marine aerosols, boundary layer clouds, and their implications for climate in the North Atlantic. While marine-sourced aerosols have been shown to make important contributions to surface aerosol loading, cloud condensation nuclei and ice nuclei concentrations over remote marine and coastal regions, it is still a challenge to differentiate the marine biogenic aerosol signal from the strong influence of continental pollution outflow. We examine here the spatiotemporal variability and quantify the sources of tropospheric aerosols over the North Atlantic during the first two phases (November 2015 and May-June 2016) of NAAMES using a state-of-the-art chemical transport model (GEOS-Chem). The model is driven by the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) from the NASA Global Modeling and Assimilation Office (GMAO). It includes sulfate-nitrate-ammonium aerosol thermodynamics coupled to ozone-NOx-hydrocarbon-aerosol chemistry, mineral dust, sea salt, elemental and organic carbon aerosols, and especially a recently implemented parameterization for the marine primary organic aerosol emission. The simulated aerosols over the North Atlantic are evaluated with available satellite (e.g., MODIS) observations of aerosol optical depths (AOD), and aircraft and ship aerosol measurements. We diagnose transport pathways for continental pollution outflow over the North Atlantic using carbon monoxide, an excellent tracer for anthropogenic pollution transport. We also conduct model perturbation experiments to quantify the relative contributions of terrestrial and oceanic sources to the aerosol loading, AOD, and their variability over the North Atlantic.

  2. Model under-representation of decadal Pacific trade wind trends and its link to tropical Atlantic bias

    Science.gov (United States)

    Kajtar, Jules B.; Santoso, Agus; McGregor, Shayne; England, Matthew H.; Baillie, Zak

    2018-02-01

    The strengthening of the Pacific trade winds in recent decades has been unmatched in the observational record stretching back to the early twentieth century. This wind strengthening has been connected with numerous climate-related phenomena, including accelerated sea-level rise in the western Pacific, alterations to Indo-Pacific ocean currents, increased ocean heat uptake, and a slow-down in the rate of global-mean surface warming. Here we show that models in the Coupled Model Intercomparison Project phase 5 underestimate the observed range of decadal trends in the Pacific trade winds, despite capturing the range in decadal sea surface temperature (SST) variability. Analysis of observational data suggests that tropical Atlantic SST contributes considerably to the Pacific trade wind trends, whereas the Atlantic feedback in coupled models is muted. Atmosphere-only simulations forced by observed SST are capable of recovering the time-variation and the magnitude of the trade wind trends. Hence, we explore whether it is the biases in the mean or in the anomalous SST patterns that are responsible for the under-representation in fully coupled models. Over interannual time-scales, we find that model biases in the patterns of Atlantic SST anomalies are the strongest source of error in the precipitation and atmospheric circulation response. In contrast, on decadal time-scales, the magnitude of the model biases in Atlantic mean SST are directly linked with the trade wind variability response.

  3. Aerosol indirect effects on summer precipitation in a regional climate model for the Euro-Mediterranean region

    Science.gov (United States)

    Da Silva, Nicolas; Mailler, Sylvain; Drobinski, Philippe

    2018-03-01

    Aerosols affect atmospheric dynamics through their direct and semi-direct effects as well as through their effects on cloud microphysics (indirect effects). The present study investigates the indirect effects of aerosols on summer precipitation in the Euro-Mediterranean region, which is located at the crossroads of air masses carrying both natural and anthropogenic aerosols. While it is difficult to disentangle the indirect effects of aerosols from the direct and semi-direct effects in reality, a numerical sensitivity experiment is carried out using the Weather Research and Forecasting (WRF) model, which allows us to isolate indirect effects, all other effects being equal. The Mediterranean hydrological cycle has often been studied using regional climate model (RCM) simulations with parameterized convection, which is the approach we adopt in the present study. For this purpose, the Thompson aerosol-aware microphysics scheme is used in a pair of simulations run at 50 km resolution with extremely high and low aerosol concentrations. An additional pair of simulations has been performed at a convection-permitting resolution (3.3 km) to examine these effects without the use of parameterized convection. While the reduced radiative flux due to the direct effects of the aerosols is already known to reduce precipitation amounts, there is still no general agreement on the sign and magnitude of the aerosol indirect forcing effect on precipitation, with various processes competing with each other. Although some processes tend to enhance precipitation amounts, some others tend to reduce them. In these simulations, increased aerosol loads lead to weaker precipitation in the parameterized (low-resolution) configuration. The fact that a similar result is obtained for a selected area in the convection-permitting (high-resolution) configuration allows for physical interpretations. By examining the key variables in the model outputs, we propose a causal chain that links the aerosol

  4. Description and Evaluation of IAP-AACM: A Global-regional Aerosol Chemistry Model for the Earth System Model CAS-ESM

    Science.gov (United States)

    Wei, Y.; Chen, X.

    2017-12-01

    We present a first description and evaluation of the IAP Atmospheric Aerosol Chemistry Model (IAP-AACM) which has been integrated into the earth system model CAS-ESM. In this way it is possible to research into interaction of clouds and aerosol by its two-way coupling with the IAP Atmospheric General Circulation Model (IAP-AGCM). The model has a nested global-regional grid based on the Global Environmental Atmospheric Transport Model (GEATM) and the Nested Air Quality Prediction Modeling System (NAQPMS). The AACM provides two optional gas chemistry schemes, the CBM-Z gas chemistry as well as a sulfur oxidize box designed specifically for the CAS-ESM. Now the model driven by AGCM has been applied to a 1-year simulation of tropospheric chemistry both on global and regional scales for 2014, and been evaluated against various observation datasets, including aerosol precursor gas concentration, aerosol mass and number concentrations. Furthermore, global budgets in AACM are compared with other global aerosol models. Generally, the AACM simulations are within the range of other global aerosol model predictions, and the model has a reasonable agreement with observations of gases and particles concentration both on global and regional scales.

  5. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    Directory of Open Access Journals (Sweden)

    C. Zhou

    2016-01-01

    Full Text Available A comprehensive aerosol–cloud–precipitation interaction (ACI scheme has been developed under a China Meteorological Administration (CMA chemical weather modeling system, GRAPES/CUACE (Global/Regional Assimilation and PrEdiction System, CMA Unified Atmospheric Chemistry Environment. Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN are interactively fed online into a two-moment cloud scheme (WRF Double-Moment 6-class scheme – WDM6 and a convective parameterization to drive cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred.The results show that aerosols that interact with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content, and cloud droplet number concentrations, while decreasing the mean diameters of cloud droplets with varying magnitudes of the changes in each case and region. These interactive microphysical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24 to 48 % enhancements of threat score for 6 h precipitation in almost all regions. The aerosols that interact with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3 °C.

  6. Characterizing the Asian Tropopause Aerosol Layer (ATAL) Using Satellite Observations, Balloon Measurements and a Chemical Transport Model

    Science.gov (United States)

    Fairlie, T. D.; Vernier, J.-P.; Liu, H.; Deshler, T.; Natarajan, M.; Bedka, K.; Wegner, T.; Baker, N.; Gadhavi, H.; Ratnam, M. V.; hide

    2016-01-01

    Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols in the upper troposphere and lower stratosphere (UTLS), associated with the ASM anticyclone. The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instruments, aircraft, and satellite observations, together with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical, and optical properties of aerosols in the ATAL. In particular, we show balloon-data from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, which includes in situ backscatter measurements from COBALD instruments, and the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous components to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that ATAL aerosols originate primary from south Asian sources, in contrast with some earlier studies.

  7. Modeling the Effects of Inhomogeneous Aerosols on the Hot Jupiter Kepler-7b’s Atmospheric Circulation

    Science.gov (United States)

    Roman, Michael; Rauscher, Emily

    2017-11-01

    Motivated by observational evidence of inhomogeneous clouds in exoplanetary atmospheres, we investigate how proposed simple cloud distributions can affect atmospheric circulations and infrared emission. We simulated temperatures and winds for the hot Jupiter Kepler-7b using a three-dimensional atmospheric circulation model that included a simplified aerosol radiative transfer model. We prescribed fixed cloud distributions and scattering properties based on results previously inferred from Kepler-7b optical phase curves, including inhomogeneous aerosols centered along the western terminator and hypothetical cases in which aerosols additionally extended across much of the planet’s nightside. In all cases, a strong jet capable of advecting aerosols from a cooler nightside to dayside was found to persist, but only at the equator. Colder temperatures at mid and polar latitudes might permit aerosol to form on the dayside without the need for advection. By altering the deposition and redistribution of heat, aerosols along the western terminator produced an asymmetric heating that effectively shifts the hottest spot further east of the substellar point than expected for a uniform distribution. The addition of opaque high clouds on the nightside can partly mitigate this enhanced shift by retaining heat that contributes to warming west of the hotspot. These expected differences in infrared phase curves could place constraints on proposed cloud distributions and their infrared opacities for brighter hot Jupiters.

  8. Characteristics and Source Apportionment of Marine Aerosols over East China Sea Using a Source-oriented Chemical Transport Model

    Science.gov (United States)

    Kang, M.; Zhang, H.; Fu, P.

    2017-12-01

    Marine aerosols exert a strong influence on global climate change and biogeochemical cycling, as oceans cover beyond 70% of the Earth's surface. However, investigations on marine aerosols are relatively limited at present due to the difficulty and inconvenience in sampling marine aerosols as well as their diverse sources. East China Sea (ECS), lying over the broad shelf of the western North Pacific, is adjacent to the Asian mainland, where continental-scale air pollution could impose a heavy load on the marine atmosphere through long-range atmospheric transport. Thus, contributions of major sources to marine aerosols need to be identified for policy makers to develop cost effective control strategies. In this work, a source-oriented version of the Community Multiscale Air Quality (CMAQ) model, which can directly track the contributions from multiple emission sources to marine aerosols, is used to investigate the contributions from power, industry, transportation, residential, biogenic and biomass burning to marine aerosols over the ECS in May and June 2014. The model simulations indicate significant spatial and temporal variations of concentrations as well as the source contributions. This study demonstrates that the Asian continent can greatly affect the marine atmosphere through long-range transport.

  9. Modeling the Optical Properties of Biomass Burning Aerosols: Young Smoke Aerosols From Savanna Fires and Comparisons to Observations from SAFARI 2000

    Science.gov (United States)

    Matichuk, R. I.; Smith, J. A.; Toon, O. B.; Colarso, P. R.

    2006-01-01

    Annually, farmers in southern Africa manage their land resources and prepare their fields for cultivation by burning crop residual debris, with a peak in the burning season occurring during August and September. The emissions from these fires in southern Africa are among the greatest from fires worldwide, and the gases and aerosol particles produced adversely affect air quality large distances from their source regions, and can even be tracked in satellite imagery as they cross the Atlantic and Pacific Ocean basins. During August and September 2000 an international group of researchers participating in the Southern African Regional Science Initiate field experiment (SAFARI 2000) made extensive ground-based, airborne, and satellite measurements of these gases and aerosols in order to quantify their amounts and effects on Earth's atmosphere. In this study we interpreted the measurements of smoke aerosol particles made during SAFARI 2000 in order to better represent these particles in a numerical model simulating their transport and fate. Typically, smoke aerosols emitted from fires are concentrated by mass in particles about 0.3 micrometers in diameter (1,000,000 micrometers = 1 meter, about 3 feet); for comparison, the thickness of a human hair is about 50 micrometers, almost 200 times as great. Because of the size of these particles, at the surface they can be easily inhaled into the lungs, and in high concentrations have deleterious health effects on humans. Additionally, these particles reflect and absorb sunlight, impacting both visibility and the balance of sunlight reaching -Earth's surface, and ultimately play a role in modulating Earth's climate. Because of these important effects, it is important that numerical models used to estimate Earth's climate response to changes in atmospheric composition accurately represent the quantity and evolution of smoke particles. In our model, called the Community Aerosol and Radiation Model for Atmospheres (CARMA) we used

  10. Emulation of a complex global aerosol model to quantify sensitivity to uncertain parameters

    Directory of Open Access Journals (Sweden)

    L. A. Lee

    2011-12-01

    Full Text Available Sensitivity analysis of atmospheric models is necessary to identify the processes that lead to uncertainty in model predictions, to help understand model diversity through comparison of driving processes, and to prioritise research. Assessing the effect of parameter uncertainty in complex models is challenging and often limited by CPU constraints. Here we present a cost-effective application of variance-based sensitivity analysis to quantify the sensitivity of a 3-D global aerosol model to uncertain parameters. A Gaussian process emulator is used to estimate the model output across multi-dimensional parameter space, using information from a small number of model runs at points chosen using a Latin hypercube space-filling design. Gaussian process emulation is a Bayesian approach that uses information from the model runs along with some prior assumptions about the model behaviour to predict model output everywhere in the uncertainty space. We use the Gaussian process emulator to calculate the percentage of expected output variance explained by uncertainty in global aerosol model parameters and their interactions. To demonstrate the technique, we show examples of cloud condensation nuclei (CCN sensitivity to 8 model parameters in polluted and remote marine environments as a function of altitude. In the polluted environment 95 % of the variance of CCN concentration is described by uncertainty in the 8 parameters (excluding their interaction effects and is dominated by the uncertainty in the sulphur emissions, which explains 80 % of the variance. However, in the remote region parameter interaction effects become important, accounting for up to 40 % of the total variance. Some parameters are shown to have a negligible individual effect but a substantial interaction effect. Such sensitivities would not be detected in the commonly used single parameter perturbation experiments, which would therefore underpredict total uncertainty. Gaussian process

  11. Direct Aerosol Radiative Forcing from Combined A-Train Observations - Preliminary Comparisons with AeroCom Models and Pathways to Observationally Based All-sky Estimates

    Science.gov (United States)

    Redemann, J.; Livingston, J. M.; Shinozuka, Y.; Kacenelenbogen, M. S.; Russell, P. B.; LeBlanc, S. E.; Vaughan, M.; Ferrare, R. A.; Hostetler, C. A.; Rogers, R. R.; Burton, S. P.; Torres, O.; Remer, L. A.; Stier, P.; Schutgens, N.

    2014-12-01

    We describe a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) retrievals for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the recently released MODIS Collection 6 data for aerosol optical depths derived with the dark target and deep blue algorithms has extended the coverage of the multi-sensor estimates towards higher latitudes. Initial calculations of seasonal clear-sky aerosol radiative forcing based on our multi-sensor aerosol retrievals compare well with over-ocean and top of the atmosphere IPCC-2007 model-based results, and with more recent assessments in the "Climate Change Science Program Report: Atmospheric Aerosol Properties and Climate Impacts" (2009). For the first time, we present comparisons of our multi-sensor aerosol direct radiative forcing estimates to values derived from a subset of models that participated in the latest AeroCom initiative. We discuss the major challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed.

  12. Detection of aerosol pollution sources during sandstorms in Northwestern China using remote sensed and model simulated data

    Science.gov (United States)

    Filonchyk, Mikalai; Yan, Haowen; Yang, Shuwen; Lu, Xiaomin

    2018-02-01

    The present paper has used a comprehensive approach to study atmosphere pollution sources including the study of vertical distribution characteristics, the epicenters of occurrence and transport of atmospheric aerosol in North-West China under intensive dust storm registered in all cities of the region in April 2014. To achieve this goal, the remote sensing data using Moderate Resolution Imaging Spectroradiometer satellite (MODIS) as well as model-simulated data, were used, which facilitate tracking the sources, routes, and spatial extent of dust storms. The results of the study have shown strong territory pollution with aerosol during sandstorm. According to ground-based air quality monitoring stations data, concentrations of PM10 and PM2.5 exceeded 400 μg/m3 and 150 μg/m3, respectively, the ratio PM2.5/PM10 being within the range of 0.123-0.661. According to MODIS/Terra Collection 6 Level-2 aerosol products data and the Deep Blue algorithm data, the aerosol optical depth (AOD) at 550 nm in the pollution epicenter was within 0.75-1. The vertical distribution of aerosols indicates that the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) 532 nm total attenuates backscatter coefficient ranges from 0.01 to 0.0001 km-1 × sr-1 with the distribution of the main types of aerosols in the troposphere of the region within 0-12.5 km, where the most severe aerosol contamination is observed in the lower troposphere (at 3-6 km). According to satellite sounding and model-simulated data, the sources of pollution are the deserted regions of Northern and Northwestern China.

  13. Modeling of meteorology, chemistry and aerosol for the 2017 Utah Winter Fine Particle Study

    Science.gov (United States)

    McKeen, S. A.; Angevine, W. M.; McDonald, B.; Ahmadov, R.; Franchin, A.; Middlebrook, A. M.; Fibiger, D. L.; McDuffie, E. E.; Womack, C.; Brown, S. S.; Moravek, A.; Murphy, J. G.; Trainer, M.

    2017-12-01

    The Utah Winter Fine Particle Study (UWFPS-17) field project took place during January and February of 2017 within the populated region of the Great Salt Lake, Utah. The study focused on understanding the meteorology and chemistry associated with high particulate matter (PM) levels often observed near Salt Lake City during stable wintertime conditions. Detailed composition and meteorological observations were taken from the NOAA Twin-Otter aircraft and several surface sites during the study period, and extremely high aerosol conditions were encountered for two cold-pool episodes occurring in the last 2 weeks of January. A clear understanding of the photochemical and aerosol processes leading to these high PM events is still lacking. Here we present high spatiotemporal resolution simulations of meteorology, PM and chemistry over Utah from January 13 to February 1, 2017 using the WRF/Chem photochemical model. Correctly characterizing the meteorology is difficult due to the complex terrain and shallow inversion layers. We discuss the approach and limitations of the simulated meteorology, and evaluate low-level pollutant mixing using vertical profiles from missed airport approaches by the NOAA Twin-Otter performed routinely during each flight. Full photochemical simulations are calculated using NOx, ammonia and VOC emissions from the U.S. EPA NEI-2011 emissions inventory. Comparisons of the observed vertical column amounts of NOx, ammonia, aerosol nitrate and ammonium with model results shows the inventory estimates for ammonia emissions are low by a factor of four and NOx emissions are low by nearly a factor of two. The partitioning of both nitrate and NH3 between gas and particle phase depends strongly on the NH3 and NOx emissions to the model and calculated NOx to nitrate conversion rates. These rates are underestimated by gas-phase chemistry alone, even though surface snow albedo increases photolysis rates by nearly a factor of two. Several additional conversion

  14. Aerosol typing - key information from aerosol studies

    Science.gov (United States)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    classification. The harmonization of the aerosol typing procedures is a fundamental need in aerosol studies for long-term perspectives, satellite validation, and accuracy. However, the possibilities and limits in defining a common set of aerosol types for satellite missions and ground-based measurements depends on different information content among measurement techniques and for different retrieval conditions (e.g. for low aerosol content there is smaller satellite aerosol type retrieval sensitivity), as well as different historical choices. The concept of aReference database for aerosol typing (REDAT) is developed with the specific purpose of providing a dataset suitable for the comparison of typing procedures (from ground-based, and satellite measurements) and to be used as reference dataset for the modelling community. It will also allow the definition of translating rules between the different aerosol typing nomenclature, information strongly needed for the more and more increased audience of scientific data with no scientific background, as well as policy and decision makers. Acknowledgments: The research leading to these results is partially funded by ACTRIS2 Research Infrastructure Project by the European Union's Horizon 2020 research and innovation programme under the grant agreement n. 654169.

  15. Optical Modeling of Sea Salt Aerosols: The Effects of Nonsphericity and Inhomogeneity

    Science.gov (United States)

    Bi, Lei; Lin, Wushao; Wang, Zheng; Tang, Xiaoyun; Zhang, Xiaoyu; Yi, Bingqi

    2018-01-01

    The nonsphericity and inhomogeneity of marine aerosols (sea salts) have not been addressed in pertinent radiative transfer calculations and remote sensing studies. This study investigates the optical properties of nonspherical and inhomogeneous sea salts using invariant imbedding T-matrix simulations. Dry sea salt aerosols are modeled based on superellipsoidal geometries with a prescribed aspect ratio and roundness parameter. Wet sea salt particles are modeled as coated superellipsoids, as spherical particles with a superellipsoidal core, and as homogeneous spheres depending on the level of relative humidity. Aspect ratio and roundness parameters are found to be critical to interpreting the linear depolarization ratios (LDRs) of NaCl crystals from laboratory measurements. The optimal morphology parameters of NaCl necessary to reproduce the measurements are found to be consistent with data gleaned from an electron micrograph. The LDRs of wet sea salts are computed based on inhomogeneous models and compared with the measured data from ground-based LiDAR. The dependence of the LDR on relative humidity is explicitly considered. The increase in the LDR with relative humidity at the initial phase of deliquescence is attributed to both the size increase and the inhomogeneity effect. For large humidity values, the LDR substantially decreases because the overall particle shape becomes more spherical and the inhomogeneity effect in a particle on the LDR is suppressed for submicron sea salts. However, the effect of inhomogeneity on optical properties is pronounced for coarse-mode sea salts. These findings have important implications for atmospheric radiative transfer and remote sensing involving sea salt aerosols.

  16. Correcting transport errors during advection of aerosol and cloud moment sequences in eulerian models

    Energy Technology Data Exchange (ETDEWEB)

    McGraw R.

    2012-03-01

    Moment methods are finding increasing usage for simulations of particle population balance in box models and in more complex flows including two-phase flows. These highly efficient methods have nevertheless had little impact to date for multi-moment representation of aerosols and clouds in atmospheric models. There are evidently two reasons for this: First, atmospheric models, especially if the goal is to simulate climate, tend to be extremely complex and take many man-years to develop. Thus there is considerable inertia to the implementation of novel approaches. Second, and more fundamental, the nonlinear transport algorithms designed to reduce numerical diffusion during advection of various species (tracers) from cell to cell, in the typically coarse grid arrays of these models, can and occasionally do fail to preserve correlations between the moments. Other correlated tracers such as isotopic abundances, composition of aerosol mixtures, hydrometeor phase, etc., are subject to this same fate. In the case of moments, this loss of correlation can and occasionally does give rise to unphysical moment sets. When this happens the simulation can come to a halt. Following a brief description and review of moment methods, the goal of this paper is to present two new approaches that both test moment sequences for validity and correct them when they fail. The new approaches work on individual grid cells without requiring stored information from previous time-steps or neighboring cells.

  17. Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations

    Science.gov (United States)

    Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne

    2007-12-01

    A two-dimensional cloud-resolving model with detailed spectral bin microphysics is used to examine the effect of aerosols on three different deep convective cloud systems that developed in different geographic locations: south Florida, Oklahoma, and the central Pacific. A pair of model simulations, one with an idealized low cloud condensation nuclei (CCN) (clean) and one with an idealized high CCN (dirty environment), is conducted for each case. In all three cases, rain reaches the ground earlier for the low-CCN case. Rain suppression is also evident in all three cases with high CCN. However, this suppression only occurs during the early stages of the simulations. During the mature stages of the simulations the effects of increasing aerosol concentration range from rain suppression in the Oklahoma case to almost no effect in the Florida case to rain enhancement in the Pacific case. The model results suggest that evaporative cooling in the lower troposphere is a key process in determining whether high CCN reduces or enhances precipitation. Stronger evaporative cooling can produce a stronger cold pool and thus stronger low-level convergence through interactions with the low-level wind shear. Consequently, precipitation processes can be more vigorous. For example, the evaporative cooling is more than two times stronger in the lower troposphere with high CCN for the Pacific case. Sensitivity tests also suggest that ice processes are crucial for suppressing precipitation in the Oklahoma case with high CCN. A comparison and review of other modeling studies are also presented.

  18. GEM-AQ/EC, an on-line global multi-scale chemical weather modelling system: model development and evaluation of global aerosol climatology

    Directory of Open Access Journals (Sweden)

    S. L. Gong

    2012-09-01

    Full Text Available A global air quality modeling system GEM-AQ/EC was developed by implementing tropospheric chemistry and aerosol processes on-line into the Global Environmental Multiscale weather prediction model – GEM. Due to the multi-scale features of the GEM, the integrated model, GEM-AQ/EC, is able to investigate chemical weather at scales from global to urban domains. The current chemical mechanism is comprised of 50 gas-phase species, 116 chemical and 19 photolysis reactions, and is complemented by a sectional aerosol module CAM (The Canadian Aerosol Module with 5 aerosols types: sulphate, black carbon, organic carbon, sea-salt and soil dust. Monthly emission inventories of black carbon and organic carbon from boreal and temperate vegetation fires were assembled using the most reliable areas burned datasets by countries, from statistical databases and derived from remote sensing products of 1995–2004. The model was run for ten years from from 1995–2004 with re-analyzed meteorology on a global uniform 1° × 1° horizontal resolution domain and 28 hybrid levels extending up to 10 hPa. The simulating results were compared with various observations including surface network around the globe and satellite data. Regional features of global aerosols are reasonably captured including emission, surface concentrations and aerosol optical depth. For various types of aerosols, satisfactory correlations were achieved between modeled and observed with some degree of systematic bias possibly due to large uncertainties in the emissions used in this study. A global distribution of natural aerosol contributions to the total aerosols is obtained and compared with observations.

  19. Explicit Cloud Nucleation from Arbitrary Mixtures of Aerosol Types and Sizes Using an Ultra-Efficient In-Line Aerosol Bin Model in High-Resolution Simulations of Hurricanes

    Science.gov (United States)

    Walko, R. L.; Ashby, T.; Cotton, W. R.

    2017-12-01

    The fundamental role of atmospheric aerosols in the process of cloud droplet nucleation is well known, and there is ample evidence that the concentration, size, and chemistry of aerosols can strongly influence microphysical, thermodynamic, and ultimately dynamic properties and evolution of clouds and convective systems. With the increasing availability of observation- and model-based environmental representations of different types of anthropogenic and natural aerosols, there is increasing need for models to be able to represent which aerosols nucleate and which do not in supersaturated conditions. However, this is a very complex process that involves competition for water vapor between multiple aerosol species (chemistries) and different aerosol sizes within each species. Attempts have been made to parameterize the nucleation properties of mixtures of different aerosol species, but it is very difficult or impossible to represent all possible mixtures that may occur in practice. As part of a modeling study of the impact of anthropogenic and natural aerosols on hurricanes, we developed an ultra-efficient aerosol bin model to represent nucleation in a high-resolution atmospheric model that explicitly represents cloud- and subcloud-scale vertical motion. The bin model is activated at any time and location in a simulation where supersaturation occurs and is potentially capable of activating new cloud droplets. The bins are populated from the aerosol species that are present at the given time and location and by multiple sizes from each aerosol species according to a characteristic size distribution, and the chemistry of each species is represented by its absorption or adsorption characteristics. The bin model is integrated in time increments that are smaller than that of the atmospheric model in order to temporally resolve the peak supersaturation, which determines the total nucleated number. Even though on the order of 100 bins are typically utilized, this leads only

  20. NASA's Aerosol Sampling Experiment Summary

    Science.gov (United States)

    Meyer, Marit E.

    2016-01-01

    In a spacecraft cabin environment, the size range of indoor aerosols is much larger and they persist longer than on Earth because they are not removed by gravitational settling. A previous aerosol experiment in 1991 documented that over 90 of the mass concentration of particles in the NASA Space Shuttle air were between 10 m and 100 m based on measurements with a multi-stage virtual impactor and a nephelometer (Liu et al. 1991). While the now-retired Space Shuttle had short duration missions (less than two weeks), the International Space Station (ISS) has been continually inhabited by astronauts for over a decade. High concentrations of inhalable particles on ISS are potentially responsible for crew complaints of respiratory and eye irritation and comments about 'dusty' air. Air filtration is the current control strategy for airborne particles on the ISS, and filtration modeling, performed for engineering and design validation of the air revitalization system in ISS, predicted that PM requirements would be met. However, aerosol monitoring has never been performed on the ISS to verify PM levels. A flight experiment is in preparation which will provide data on particulate matter in ISS ambient air. Particles will be collected with a thermophoretic sampler as well as with passive samplers which will extend the particle size range of sampling. Samples will be returned to Earth for chemical and microscopic analyses, providing the first aerosol data for ISS ambient air.

  1. Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity

    Directory of Open Access Journals (Sweden)

    G. W. Mann

    2014-05-01

    Full Text Available Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multi-model-mean data set simulates the global variation of the particle size distribution with a good degree

  2. The role of lateral boundary conditions in simulations of mineral aerosols by a regional climate model of Southwest Asia

    Energy Technology Data Exchange (ETDEWEB)

    Marcella, Marc Pace [Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Cambridge, MA (United States); Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Eltahir, Elfatih A.B. [Massachusetts Institute of Technology, Cambridge, Massachusetts (United States)

    2012-01-15

    The importance of specifying realistic lateral boundary conditions in the regional modeling of mineral aerosols has not been examined previously. This study examines the impact of assigning values for mineral aerosol (dust) concentrations at the lateral boundaries of Regional Climate Model version 3 (RegCM3) and its aerosol model over Southwest Asia. Currently, the dust emission module of RegCM3 operates over the interior of the domain, allowing dust to be transported to the boundaries, but neglecting any dust emitted at these points or from outside the domain. To account for possible dust occurring at, or entering from the boundaries, mixing ratios of dust concentrations from a larger domain RegCM3 simulation are specified at the boundaries of a smaller domain over Southwest Asia. The lateral boundary conditions are monthly averaged concentration values ({mu}g of dust per kg of dry air) resolved in the vertical for all four dust bin sizes within RegCM3's aerosol model. RegCM3 simulations with the aerosol/dust model including lateral boundary conditions for dust are performed for a five year period and compared to model simulations without prescribed dust concentrations at the boundaries. Results indicate that specifying boundary conditions has a significant impact on dust loading across the entire domain over Southwest Asia. More specifically, a nearly 30% increase in aerosol optical depth occurs during the summer months from specifying realistic dust boundary conditions, bringing model results closer to observations such as MISR. In addition, smaller dust particles at the boundaries have a more important impact than large particles in affecting the dust loading within the interior of this domain. Moreover, increases in aerosol optical depth and dust concentrations within the interior domain are not entirely caused by inflow from the boundaries; results indicate that an increase in the gradient of concentration at the boundaries causes an increase of

  3. Technical Report Series on Global Modeling and Data Assimilation. Volume 32; Estimates of AOD Trends (2002 - 2012) Over the World's Major Cities Based on the MERRA Aerosol Reanalysis

    Science.gov (United States)

    Provencal, Simon; Kishcha, Pavel; Elhacham, Emily; daSilva, Arlindo M.; Alpert, Pinhas; Suarez, Max J.

    2014-01-01

    NASA's Global Modeling and Assimilation Office has extended the Modern-Era Retrospective Analysis for Research and Application (MERRA) tool with five atmospheric aerosol species (sulfates, organic carbon, black carbon, mineral dust and sea salt). This inclusion of aerosol reanalysis data is now known as MERRAero. This study analyses a ten-year period (July 2002 - June 2012) MERRAero aerosol reanalysis applied to the study of aerosol optical depth (AOD) and its trends for the aforementioned aerosol species over the world's major cities (with a population of over 2 million inhabitants). We found that a proportion of various aerosol species in total AOD exhibited a geographical dependence. Cities in industrialized regions (North America, Europe, central and eastern Asia) are characterized by a strong proportion of sulfate aerosols. Organic carbon aerosols are dominant over cities which are located in regions where biomass burning frequently occurs (South America and southern Africa). Mineral dust dominates other aerosol species in cities located in proximity to the major deserts (northern Africa and western Asia). Sea salt aerosols are prominent in coastal cities but are dominant aerosol species in very few of them. AOD trends are declining over cities in North America, Europe and Japan, as a result of effective air quality regulation. By contrast, the economic boom in China and India has led to increasing AOD trends over most cities in these two highly-populated countries. Increasing AOD trends over cities in the Middle East are caused by increasing desert dust.

  4. The aerosol distribution in Europe derived with the Community Multiscale Air Quality (CMAQ) model: comparison to near surface in situ and sunphotometer measurements

    OpenAIRE

    Matthias , V.

    2008-01-01

    The aerosol distribution in Europe was simulated with the Community Multiscale Air Quality (CMAQ) model system version 4.5 for the years 2000 and 2001. The results were compared with daily averages of PM10 measurements taken in the framework of EMEP and with aerosol optical depth (AOD) values measured within AERONET. The modelled total aerosol mass is typically about 30–60% lower than the corresponding measurements. However a comparison of the chemical composition of th...

  5. Updating Sea Spray Aerosol Emissions in the Community Multiscale Air Quality Model

    Science.gov (United States)

    Gantt, B.; Bash, J. O.; Kelly, J.

    2014-12-01

    Sea spray aerosols (SSA) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. In this study, the Community Multiscale Air Quality (CMAQ) model is updated to enhance fine mode SSA emissions, include sea surface temperature (SST) dependency, and revise surf zone emissions. Based on evaluation with several regional and national observational datasets in the continental U.S., the updated emissions generally improve surface concentrations predictions of primary aerosols composed of sea-salt and secondary aerosols affected by sea-salt chemistry in coastal and near-coastal sites. Specifically, the updated emissions lead to better predictions of the magnitude and coastal-to-inland gradient of sodium, chloride, and nitrate concentrations at Bay Regional Atmospheric Chemistry Experiment (BRACE) sites near Tampa, FL. Including SST-dependency to the SSA emission parameterization leads to increased sodium concentrations in the southeast U.S. and decreased concentrations along the Pacific coast and northeastern U.S., bringing predictions into closer agreement with observations at most Interagency Monitoring of Protected Visual Environments (IMPROVE) and Chemical Speciation Network (CSN) sites. Model comparison with California Research at the Nexus of Air Quality and Climate Change (CalNex) observations will also be discussed, with particular focus on the South Coast Air Basin where clean marine air mixes with anthropogenic pollution in a complex environment. These SSA emission updates enable more realistic simulation of chemical processes in coastal environments, both in clean marine air masses and mixtures of clean marine and polluted conditions.

  6. American Association for Aerosol Research (AAAR) `95

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Fourteenth annual meeting of the American Association for Aerosol Research was held October 9-13, 1995 at Westin William Penn Hotel in Pittsburgh, PA. This volume contains the abstracts of the papers and poster sessions presented at this meeting, grouped by the session in which they were presented as follows: Radiation Effects; Aerosol Deposition; Collision Simulations and Microphysical Behavior; Filtration Theory and Measurements; Materials Synthesis; Radioactive and Nuclear Aerosols; Aerosol Formation, Thermodynamic Properties, and Behavior; Particle Contamination Issues in the Computer Industry; Pharmaceutical Aerosol Technology; Modeling Global/Regional Aerosols; Visibility; Respiratory Deposition; Biomass and Biogenic Aerosols; Aerosol Dynamics; Atmospheric Aerosols.

  7. A Generalized Stability Analysis of the AMOC in Earth System Models: Implication for Decadal Variability and Abrupt Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, Alexey V. [Yale Univ., New Haven, CT (United States)

    2015-01-14

    The central goal of this research project was to understand the mechanisms of decadal and multi-decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) as related to climate variability and abrupt climate change within a hierarchy of climate models ranging from realistic ocean models to comprehensive Earth system models. Generalized Stability Analysis, a method that quantifies the transient and asymptotic growth of perturbations in the system, is one of the main approaches used throughout this project. The topics we have explored range from physical mechanisms that control AMOC variability to the factors that determine AMOC predictability in the Earth system models, to the stability and variability of the AMOC in past climates.

  8. Modelling of Aerosol Chemistry and Transport over Europe and Comparison with Measurements

    NARCIS (Netherlands)

    Jeuken, A.; Veefkind, J.P.; Metzger, S.; Denter, F.; Velthoven, P.

    1999-01-01

    Because of the short lifetime of aerosols (days-weeks), the radiative forcing associated with aerosols varies strongly spatially and temporally (see van Dorland et al., poster) Current measurement networks of sulfate and other aerosol species are unable to provide a representative picture of the

  9. Retrieval of Aerosol Optical Depth Over Land by Inverse Modeling of Multi-Source Satellite Data

    NARCIS (Netherlands)

    Wu, Y.

    2018-01-01

    The Aerosol Optical Depth (AOD), a measure of the scattering and absorption of light by aerosols, has been extensively used for scientific research such as monitoring air quality near the surface due to fine particles aggregated, aerosol radiative forcing (cooling effect against the warming effect

  10. An SOA model for toluene oxidation in the presence of inorganic aerosols.

    Science.gov (United States)

    Cao, Gang; Jang, Myoseon

    2010-01-15

    A predictive model for secondary organic aerosol (SOA) formation including both partitioning and heterogeneous reactions is explored for the SOA produced from the oxidation of toluene in the presence of inorganic seed aerosols. The predictive SOA model comprises the explicit gas-phase chemistry of toluene, gas-particle partitioning, and heterogeneous chemistry. The resulting products from the explicit gas phase chemistry are lumped into several classes of chemical species based on their vapor pressure and reactivity for heterogeneous reactions. Both the gas-particle partitioning coefficient and the heterogeneous reaction rate constant of each lumped gas-phase product are theoretically determined using group contribution and molecular structure-reactivity. In the SOA model, the predictive SOA mass is decoupled into partitioning (OM(P)) and heterogeneous aerosol production (OM(H)). OM(P) is estimated from the SOA partitioning model developed by Schell et al. (J. Geophys. Res. 2001, 106, 28275-28293 ) that has been used in a regional air quality model (CMAQ 4.7). OM(H) is predicted from the heterogeneous SOA model developed by Jang et al. (Environ. Sci. Technol. 2006, 40, 3013-3022 ). The SOA model is evaluated using a number of the experimental SOA data that are generated in a 2 m(3) indoor Teflon film chamber under various experimental conditions (e.g., humidity, inorganic seed compositions, NO(x) concentrations). The SOA model reasonably predicts not only the gas-phase chemistry, such as the ozone formation, the conversion of NO to NO(2), and the toluene decay, but also the SOA production. The model predicted that the OM(H) fraction of the total toluene SOA mass increases as NO(x) concentrations decrease: 0.73-0.83 at low NO(x) levels and 0.17-0.47 at middle and high NO(x) levels for SOA experiments with high initial toluene concentrations. Our study also finds a significant increase in the OM(H) mass fraction in the SOA generated with low initial toluene

  11. An assessment of aerosol optical properties from remote-sensing observations and regional chemistry-climate coupled models over Europe

    Science.gov (United States)

    Palacios-Peña, Laura; Baró, Rocío; Baklanov, Alexander; Balzarini, Alessandra; Brunner, Dominik; Forkel, Renate; Hirtl, Marcus; Honzak, Luka; María López-Romero, José; Montávez, Juan Pedro; Pérez, Juan Luis; Pirovano, Guido; San José, Roberto; Schröder, Wolfram; Werhahn, Johannes; Wolke, Ralf; Žabkar, Rahela; Jiménez-Guerrero, Pedro

    2018-04-01

    Atmospheric aerosols modify the radiative budget of the Earth due to their optical, microphysical and chemical properties, and are considered one of the most uncertain climate forcing agents. In order to characterise the uncertainties associated with satellite and modelling approaches to represent aerosol optical properties, mainly aerosol optical depth (AOD) and Ångström exponent (AE), their representation by different remote-sensing sensors and regional online coupled chemistry-climate models over Europe are evaluated. This work also characterises whether the inclusion of aerosol-radiation (ARI) or/and aerosol-cloud interactions (ACI) help improve the skills of modelling outputs.Two case studies were selected within the EuMetChem COST Action ES1004 framework when important aerosol episodes in 2010 all over Europe took place: a Russian wildfire episode and a Saharan desert dust outbreak that covered most of the Mediterranean Sea. The model data came from different regional air-quality-climate simulations performed by working group 2 of EuMetChem, which differed according to whether ARI or ACI was included or not. The remote-sensing data came from three different sensors: MODIS, OMI and SeaWIFS. The evaluation used classical statistical metrics to first compare satellite data versus the ground-based instrument network (AERONET) and then to evaluate model versus the observational data (both satellite and ground-based data).Regarding the uncertainty in the satellite representation of AOD, MODIS presented the best agreement with the AERONET observations compared to other satellite AOD observations. The differences found between remote-sensing sensors highlighted the uncertainty in the observations, which have to be taken into account when evaluating models. When modelling results were considered, a common trend for underestimating high AOD levels was observed. For the AE, models tended to underestimate its variability, except when considering a sectional approach in

  12. Modelling size and structure of nanoparticles formed from drying of submicron solution aerosols

    International Nuclear Information System (INIS)

    Bandyopadhyay, Arpan A.; Pawar, Amol A.; Venkataraman, Chandra; Mehra, Anurag

    2015-01-01

    Drying of submicron solution aerosols, under controlled conditions, has been explored to prepare nanoparticles for drug delivery applications. A computational model of solution drop evaporation is developed to study the evolution of solute gradients inside the drop and predict the size and shell thickness of precipitating nanoparticles. The model considers evaporation as a two-stage process involving droplet shrinkage and shell growth. It was corroborated that droplet evaporation rate controls the solute distribution within a droplet and the resulting particle structure (solid or shell type). At higher gas temperatures, rapid build-up of solute near drop surface from high evaporation rates results in early attainment of critical supersaturation solubility and a steeper solute gradient, which favours formation of larger, shell-type particles. At lower gas temperatures, formation of smaller, solid nanoparticles is indicated. The computed size and shell thickness are in good agreement with experimentally prepared lipid nanoparticles. This study indicates that solid or shell structure of precipitated nanoparticles is strongly affected by evaporation rate, while initial solute concentration in the precursor solution and atomized droplet size affect shell thickness. For the gas temperatures considered, evaporative cooling leads to droplet temperature below the melting point of the lipid solute. Thus, we conclude that control over nanoparticle size and structure, of thermolabile precursor materials suitable for drug delivery, can be achieved by controlling evaporation rates, through selection of aerosol processing conditions

  13. Aerosol penetration of leak pathways : an examination of the available data and models.

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Dana Auburn

    2009-04-01

    Data and models of aerosol particle deposition in leak pathways are described. Pathways considered include capillaries, orifices, slots and cracks in concrete. The Morewitz-Vaughan criterion for aerosol plugging of leak pathways is shown to be applicable only to a limited range of particle settling velocities and Stokes numbers. More useful are sampling efficiency criteria defined by Davies and by Liu and Agarwal. Deposition of particles can be limited by bounce from surfaces defining leak pathways and by resuspension of particles deposited on these surfaces. A model of the probability of particle bounce is described. Resuspension of deposited particles can be triggered by changes in flow conditions, particle impact on deposits and by shock or vibration of the surfaces. This examination was performed as part of the review of the AP1000 Standard Combined License Technical Report, APP-GW-GLN-12, Revision 0, 'Offsite and Control Room Dose Changes' (TR-112) in support of the USNRC AP1000 Standard Combined License Pre-Application Review.

  14. Modelling size and structure of nanoparticles formed from drying of submicron solution aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, Arpan A.; Pawar, Amol A.; Venkataraman, Chandra; Mehra, Anurag, E-mail: mehra@iitb.ac.in [Indian Institute of Technology Bombay, Department of Chemical Engineering (India)

    2015-01-15

    Drying of submicron solution aerosols, under controlled conditions, has been explored to prepare nanoparticles for drug delivery applications. A computational model of solution drop evaporation is developed to study the evolution of solute gradients inside the drop and predict the size and shell thickness of precipitating nanoparticles. The model considers evaporation as a two-stage process involving droplet shrinkage and shell growth. It was corroborated that droplet evaporation rate controls the solute distribution within a droplet and the resulting particle structure (solid or shell type). At higher gas temperatures, rapid build-up of solute near drop surface from high evaporation rates results in early attainment of critical supersaturation solubility and a steeper solute gradient, which favours formation of larger, shell-type particles. At lower gas temperatures, formation of smaller, solid nanoparticles is indicated. The computed size and shell thickness are in good agreement with experimentally prepared lipid nanoparticles. This study indicates that solid or shell structure of precipitated nanoparticles is strongly affected by evaporation rate, while initial solute concentration in the precursor solution and atomized droplet size affect shell thickness. For the gas temperatures considered, evaporative cooling leads to droplet temperature below the melting point of the lipid solute. Thus, we conclude that control over nanoparticle size and structure, of thermolabile precursor materials suitable for drug delivery, can be achieved by controlling evaporation rates, through selection of aerosol processing conditions.

  15. Modeling of the Wegener-Bergeron-Findeisen process-implications for aerosol indirect effects

    International Nuclear Information System (INIS)

    Storelvmo, T; Lohmann, U; Kristjansson, J E; Iversen, T; Kirkevaag, A; Seland, O

    2008-01-01

    A new parameterization of the Wegener-Bergeron-Findeisen (WBF) process has been developed, and implemented in the general circulation model CAM-Oslo. The new parameterization scheme has important implications for the process of phase transition in mixed-phase clouds. The new treatment of the WBF process replaces a previous formulation, in which the onset of the WBF effect depended on a threshold value of the mixing ratio of cloud ice. As no observational guidance for such a threshold value exists, the previous treatment added uncertainty to estimates of aerosol effects on mixed-phase clouds. The new scheme takes subgrid variability into account when simulating the WBF process, allowing for smoother phase transitions in mixed-phase clouds compared to the previous approach. The new parameterization yields a model state which gives reasonable agreement with observed quantities, allowing for calculations of aerosol effects on mixed-phase clouds involving a reduced number of tunable parameters. Furthermore, we find a significant sensitivity to perturbations in ice nuclei concentrations with the new parameterization, which leads to a reversal of the traditional cloud lifetime effect.

  16. Modeling of the Wegener Bergeron Findeisen process—implications for aerosol indirect effects

    Science.gov (United States)

    Storelvmo, T.; Kristjánsson, J. E.; Lohmann, U.; Iversen, T.; Kirkevåg, A.; Seland, Ø.

    2008-10-01

    A new parameterization of the Wegener-Bergeron-Findeisen (WBF) process has been developed, and implemented in the general circulation model CAM-Oslo. The new parameterization scheme has important implications for the process of phase transition in mixed-phase clouds. The new treatment of the WBF process replaces a previous formulation, in which the onset of the WBF effect depended on a threshold value of the mixing ratio of cloud ice. As no observational guidance for such a threshold value exists, the previous treatment added uncertainty to estimates of aerosol effects on mixed-phase clouds. The new scheme takes subgrid variability into account when simulating the WBF process, allowing for smoother phase transitions in mixed-phase clouds compared to the previous approach. The new parameterization yields a model state which gives reasonable agreement with observed quantities, allowing for calculations of aerosol effects on mixed-phase clouds involving a reduced number of tunable parameters. Furthermore, we find a significant sensitivity to perturbations in ice nuclei concentrations with the new parameterization, which leads to a reversal of the traditional cloud lifetime effect.

  17. Experimental and modelling studies of iodine oxide formation and aerosol behaviour relevant to nuclear reactor accidents

    International Nuclear Information System (INIS)

    Dickinson, S.; Auvinen, A.; Ammar, Y.; Bosland, L.; Clément, B.; Funke, F.; Glowa, G.; Kärkelä, T.; Powers, D.A.; Tietze, S.; Weber, G.; Zhang, S.

    2014-01-01

    Highlights: • Radiolytic reactions can influence iodine volatility following a nuclear accident. • Kinetic models have been developed based on atmospheric chemistry studies. • Properties of iodine oxide aerosols produced by radiation have been measured. • Decomposition of iodine oxides by the action of heat or radiation has been observed. - Abstract: Plant assessments have shown that iodine contributes significantly to the source term for a range of accident scenarios. Iodine has a complex chemistry that determines its chemical form and, consequently, its volatility in the containment. If volatile iodine species are formed by reactions in the containment, they will be subject to radiolytic reactions in the atmosphere, resulting in the conversion of the gaseous species into involatile iodine oxides, which may deposit on surfaces or re-dissolve in water pools. The concentration of airborne iodine in the containment will, therefore, be determined by the balance between the reactions contributing to the formation and destruction of volatile species, as well as by the physico-chemical properties of the iodine oxide aerosols which will influence their longevity in the atmosphere. This paper summarises the work that has been done in the framework of the EC SARNET (Severe Accident Research Network) to develop a greater understanding of the reactions of gaseous iodine species in irradiated air/steam atmospheres, and the nature and behaviour of the reaction products. This work has mainly been focussed on investigating the nature and behaviour of iodine oxide aerosols, but earlier work by members of the SARNET group on gaseous reaction rates is also discussed to place the more recent work into context

  18. Quantifying the decadal changes of PM2.5 over New York through a combination of satellite, model and in-situ measurements

    Science.gov (United States)

    Jin, X.; Fiore, A. M.; Curci, G.; Lyapustin, A.; Wang, Y.; Civerolo, K.; Ku, M.; van Donkelaar, A.; Martin, R.

    2017-12-01

    Ambient exposure to fine particulate matter (PM2.5) is one of the top global health concerns. Efforts have been made to regulate PM2.5 precursor emissions across the U.S.A, which are expected to mitigate the air pollution related health impacts. However, quantifying the health outcomes from emission controls requires robust estimates of PM2.5 exposures that accurately describe the spatial and temporal variability of PM2.5. Satellite remote sensing offers the potential to fill the gaps of the sparse, limited sampling of in situ measurement networks and is increasingly being used in health assessments. We provide new estimates of PM2.5 over New York State with 1 km spatial resolution that use Multi-Angle Implementation of Atmospheric Correction (MAIAC) AOD and a regional air quality model (CMAQ) to estimate the AOD-PM2.5 scaling factors. Next, we evaluate three major sources of uncertainties of satellite-derived PM2.5 data and their impacts on the derived decadal changes: 1) satellite retrieval of AOD, 2) optical properties of the particles, 3) relationships between the aerosol burden in the planetary boundary layer and full atmospheric column. Finally, we analyze the decadal changes of PM2.5 over New York State using the newly developed PM2.5 data, alongside four other PM2.5 estimates including satellite-derived PM2.5 developed by van Donkelaar et al. (2015), statistical land use regression developed by Beckerman et al. (2013), CMAQ simulations, and a Bayesian fusion of CMAQ and ground-based measurements. By evaluating the decadal changes of PM2.5 from multiple datasets over areas with dense (e.g. New York City area) and sparse ground-based measurements (e.g. upstate New York), we evaluate the extent to which satellite remote sensing could help better quantify the health outcomes of emission controls. References: Beckerman et al., (2013), A Hybrid Approach to Estimating National Scale Spatiotemporal Variability of PM2.5 in the Contiguous United States, Environ. Sci

  19. Natural and Anthropogenic Influences on Atmospheric Aerosol Variability

    Energy Technology Data Exchange (ETDEWEB)

    Asmi, A.

    2012-07-01

    Aerosol particles are everywhere in the atmosphere. They are a key factor in many important processes in the atmosphere, including cloud formation, scattering of incoming solar radiation and air chemistry. The aerosol particles have relatively short lifetimes in lower atmosphere, typically from days to weeks, and thus they have a high spatial and temporal variability. This thesis concentrates on the extent and reasons of sub-micron aerosol particle variability in the lower atmosphere, using both global atmospheric models and analysis of observational data. Aerosol number size distributions in the lower atmosphere are affected strongly by the new particle formation. Perhaps more importantly, a strong influence new particle formation is also evident in the cloud condensation nuclei (CCN) concentrations, suggesting a major role of the sulphuric acid driven new particle formation in the climate system. In this thesis, the sub-micron aerosol number size distributions in the European regional background air were characterized for the first time from consistent, homogenized and comparable datasets. Some recent studies have suggested that differences in aerosol emissions between weekdays could also affect the weather via aerosol-cloud interactions. In this thesis, the weekday-to-weekday variation of CCN sized aerosol number concentrations in Europe were found to be much smaller than expected from earlier studies, based on particle mass measurements. This result suggests that a lack of week-day variability in meteorology is not necessarily a sign of weak aerosol-cloud interactions. An analysis of statistically significant trends in past decades of measured aerosol number concentrations from Europe, North America, Pacific islands and Antarctica generally show decreases in concentrations. The analysis of these changes show that a potential explanation for the decreasing trends is the general reduction of anthropogenic emissions, especially SO{sub 2}, although a combination of

  20. Development of models to follow vapour-aerosol reactions and iodine chemistry, technical progress report, 1 January - 31 August 1991

    International Nuclear Information System (INIS)

    Deane, A.M.; Henshaw, J.; Sims, H.E.; Ellicott, P.; Morton, D.A.V.; Newland, M.S.; Roberts, G.J.; Smith, P.N.

    1991-12-01

    Iodine chemistry and vapour-aerosol interactions have been identified as key uncertainties in modelling severe accidents in nuclear plant. The objectives of this work programme are to develop a better understanding of such behaviour and to incorporate the findings into a model. This report describes work conducted during the first eight months of the contract. (author)

  1. Prediction of Aerosol Optical Depth in West Asia: Machine Learning Methods versus Numerical Models

    Science.gov (United States)

    Omid Nabavi, Seyed; Haimberger, Leopold; Abbasi, Reyhaneh; Samimi, Cyrus

    2017-04-01

    Dust-prone areas of West Asia are releasing increasingly large amounts of dust particles during warm months. Because of the lack of ground-based observations in the region, this phenomenon is mainly monitored through remotely sensed aerosol products. The recent development of mesoscale Numerical Models (NMs) has offered an unprecedented opportunity to predict dust emission, and, subsequently Aerosol Optical Depth (AOD), at finer spatial and temporal resolutions. Nevertheless, the significant uncertainties in input data and simulations of dust activation and transport limit the performance of numerical models in dust prediction. The presented study aims to evaluate if machine-learning algorithms (MLAs), which require much less computational expense, can yield the same or even better performance than NMs. Deep blue (DB) AOD, which is observed by satellites but also predicted by MLAs and NMs, is used for validation. We concentrate our evaluations on the over dry Iraq plains, known as the main origin of recently intensified dust storms in West Asia. Here we examine the performance of four MLAs including Linear regression Model (LM), Support Vector Machine (SVM), Artificial Neural Network (ANN), Multivariate Adaptive Regression Splines (MARS). The Weather Research and Forecasting model coupled to Chemistry (WRF-Chem) and the Dust REgional Atmosphere Model (DREAM) are included as NMs. The MACC aerosol re-analysis of European Centre for Medium-range Weather Forecast (ECMWF) is also included, although it has assimilated satellite-based AOD data. Using the Recursive Feature Elimination (RFE) method, nine environmental features including soil moisture and temperature, NDVI, dust source function, albedo, dust uplift potential, vertical velocity, precipitation and 9-month SPEI drought index are selected for dust (AOD) modeling by MLAs. During the feature selection process, we noticed that NDVI and SPEI are of the highest importance in MLAs predictions. The data set was divided

  2. Technical Note: On the Use of Nudging for Aerosol-Climate Model Intercomparison Studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Wan, Hui; Liu, Xiaohong; Ghan, Steven J.; Kooperman, G. J.; Ma, Po-Lun; Rasch, Philip J.; Neubauer, David; Lohmann, U.

    2014-08-26

    Nudging is an assimilation technique widely used in the development and evaluation of climate models. Con- straining the simulated wind and temperature fields using global weather reanalysis facilitates more straightforward comparison between simulation and observation, and reduces uncertainties associated with natural variabilities of the large-scale circulation. On the other hand, the artificial forcing introduced by nudging can be strong enough to change the basic characteristics of the model climate. In the paper we show that for the Community Atmosphere Model version 5, due to the systematic temperature bias in the standard model and the relatively strong sensitivity of homogeneous ice nucleation to aerosol concentration, nudging towards reanalysis results in substantial reductions in the ice cloud amount and the impact of anthropogenic aerosols on longwave cloud forcing. In order to reduce discrepancies between the nudged and unconstrained simulations and meanwhile take the advantages of nudging, two alternative experimentation methods are evaluated. The first one constrains only the horizontal winds. The second method nudges both winds and temperature, but replaces the long-term climatology of the reanalysis by that of the model. Results show that both methods lead to substantially improved agreement with the free-running model in terms of the top-of-atmosphere radiation budget and cloud ice amount. The wind-only nudging is more convenient to apply, and provides higher correlations of the wind fields, geopotential height and specific humidity between simulation and reanalysis. This suggests that nudging the horizontal winds but not temperature is a good strategy, especially for studies that involve both warm and cold clouds.

  3. Predicting the Mineral Composition of Dust Aerosols. Part 2; Model Evaluation and Identification of Key Processes with Observations

    Science.gov (United States)

    Perlwitz, J. P.; Garcia-Pando, C. Perez; Miller, R. L.

    2015-01-01

    A global compilation of nearly sixty measurement studies is used to evaluate two methods of simulating the mineral composition of dust aerosols in an Earth system model. Both methods are based upon a Mean Mineralogical Table (MMT) that relates the soil mineral fractions to a global atlas of arid soil type. The Soil Mineral Fraction (SMF) method assumes that the aerosol mineral fractions match the fractions of the soil. The MMT is based upon soil measurements after wet sieving, a process that destroys aggregates of soil particles that would have been emitted from the original, undisturbed soil. The second method approximately reconstructs the emitted aggregates. This model is referred to as the Aerosol Mineral Fraction (AMF) method because the mineral fractions of the aerosols differ from those of the wet-sieved parent soil, partly due to reaggregation. The AMF method remedies some of the deficiencies of the SMF method in comparison to observations. Only the AMF method exhibits phyllosilicate mass at silt sizes, where they are abundant according to observations. In addition, the AMF quartz fraction of silt particles is in better agreement with measured values, in contrast to the overestimated SMF fraction. Measurements at distinct clay and silt particle sizes are shown to be more useful for evaluation of the models, in contrast to the sum over all particles sizes that is susceptible to compensating errors, as illustrated by the SMF experiment. Model errors suggest that allocation of the emitted silt fraction of each mineral into the corresponding transported size categories is an important remaining source of uncertainty. Evaluation of both models and the MMT is hindered by the limited number of size-resolved measurements of mineral content that sparsely sample aerosols from the major dust sources. The importance of climate processes dependent upon aerosol mineral composition shows the need for global and routine mineral measurements.

  4. Evaluation of Aerosol Mixing State Classes in the GISS Modele-matrix Climate Model Using Single-particle Mass Spectrometry Measurements

    Science.gov (United States)

    Bauer, Susanne E.; Ault, Andrew; Prather, Kimberly A.

    2013-01-01

    Aerosol particles in the atmosphere are composed of multiple chemical species. The aerosol mixing state, which describes how chemical species are mixed at the single-particle level, provides critical information on microphysical characteristics that determine the interaction of aerosols with the climate system. The evaluation of mixing state has become the next challenge. This study uses aerosol time-of-flight mass spectrometry (ATOFMS) data and compares the results to those of the Goddard Institute for Space Studies modelE-MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) model, a global climate model that includes a detailed aerosol microphysical scheme. We use data from field campaigns that examine a variety of air mass regimens (urban, rural, and maritime). At all locations, polluted areas in California (Riverside, La Jolla, and Long Beach), a remote location in the Sierra Nevada Mountains (Sugar Pine) and observations from Jeju (South Korea), the majority of aerosol species are internally mixed. Coarse aerosol particles, those above 1 micron, are typically aged, such as coated dust or reacted sea-salt particles. Particles below 1 micron contain large fractions of organic material, internally-mixed with sulfate and black carbon, and few external mixtures. We conclude that observations taken over multiple weeks characterize typical air mass types at a given location well; however, due to the instrumentation, we could not evaluate mass budgets. These results represent the first detailed comparison of single-particle mixing states in a global climate model with real-time single-particle mass spectrometry data, an important step in improving the representation of mixing state in global climate models.

  5. Radiation, Aerosol Joint Observation-Modeling Exploration over Glaciers in Himalayan Asia (RAJO-MEGHA)

    Science.gov (United States)

    Tsay, S. C.; Holben, B. N.

    2016-12-01

    All major rivers that run through densely populated Asia (i.e., Yangtze, Yellow in China; Mekong in Southeast Asian peninsula; Brahmaputra, Ganges, Indus in Indian subcontinent) originate in High Mountain Asia (HMA) and are fed by the seasonal melt of snowpack and glaciers. Although varying greatly in space and time, the overall snowpack/ glaciers in the HMA are losing mass and retreating at an accelerated rate (e.g., Kulkarni et al., 2007; Kehrwald et al., 2008), as revealed from recent observations. This situation poses an imminent danger to the water supply and environmental hazards (e.g., soil erosion, glacial-lake-outburst flood) not only to regional inhabitants, but also to the global ecosystem through feedback mechanisms. Comprehensive regional-to-global assimilation models, advancing in lockstep with the advent of satellite observations (e.g., MODIS-/CERES-like sensors) and complementary surface measurements (e.g., AERONET), are playing an ever-increasing role in developing mitigation strategies. However, the complex characteristics of HMA, such as its ragged terrain, atmospheric inhomogeneity, snow susceptibility, and ground-truth accessibility, introduces difficulties for the aforementioned research tools to retrieve/assess radiative forcing on snow/ice melting with a high degree of fidelity. In terms of quantifying radiative forcing, the key components are transport/evolution of light-absorbing aerosols (e.g., dust, black carbon) aloft, the surface solar/terrestrial irradiance budget, and snow reflectivity/absorptivity with/without impurities. The RAJO-MEGHA (Sanskrit for Dust-Cloud) project is an initiative on the integrated (aerosols, clouds, and precipitation) measurements in the vicinity of HMA (e.g., Indo-Gangetic Plain, Himalaya-Tibetan Plateau). We will discuss an array of ground-based (e.g., AERONET, MPLNET, SMARTLabs, etc.) and satellite (e.g., Terra, A-Train, etc.) sensors utilized to acquire aerosol characteristics, sources/sinks, and

  6. Non-chemistry coupled PM10 modeling in Chiang Mai City, Northern Thailand: A fast operational approach for aerosol forecasts

    Science.gov (United States)

    Macatangay, Ronald; Bagtasa, Gerry; Sonkaew, Thiranan

    2017-09-01

    The Weather Research and Forecasting (WRF v. 3.7) model was applied to model PM10 data in Chiang Mai city for 10-days during a high haze event utilizing updated land use categories from the Moderate Resolution Imaging Spectroradiometer (MODIS). A higher resolution meteorological lateral boundary condition (from 1 degree to 0.25 degree) was also used from the NCEP GDAS/FNL Global Tropospheric Analyses and Forecast Grid system. A 3-category urban canopy model was also added and the Thompson aerosol-aware microphysics parameterization scheme was used to model the aerosol number concentrations that were later converted to PM10 concentrations. Aerosol number concentration monthly climatology was firstly used as initial and lateral boundary conditions to model PM10 concentrations. These were compared to surface data obtained from two stations of the Pollution Control Department (PCD) of Thailand. The results from the modeled PM10 concentrations could not capture the variability (r = 0.29; 0.27 for each site) and underestimated a high PM10 spike during the period studied. The authors then added satellite data to the aerosol climatology that improved the comparison with observations (r = 0.45; 43). However, both model runs still were not able to capture the high PM10 concentration event. This requires further investigation.

  7. Direct and semi-direct aerosol radiative effect on the Mediterranean climate variability using a coupled regional climate system model

    Science.gov (United States)

    Nabat, Pierre; Somot, Samuel; Mallet, Marc; Sevault, Florence; Chiacchio, Marc; Wild, Martin

    2015-02-01

    A fully coupled regional climate system model (CNRM-RCSM4) has been used over the Mediterranean region to investigate the direct and semi-direct effects of aerosols, but also their role in the radiation-atmosphere-ocean interactions through multi-annual ensemble simulations (2003-2009) with and without aerosols and ocean-atmosphere coupling. Aerosols have been taken into account in CNRM-RCSM4 through realistic interannual monthly AOD climatologies. An evaluation of the model has been achieved, against various observations for meteorological parameters, and has shown the ability of CNRM-RCSM4 to reproduce the main patterns of the Mediterranean climate despite some biases in sea surface temperature (SST), radiation and cloud cover. The results concerning the aerosol radiative effects show a negative surface forcing on average because of the absorption and scattering of the incident radiation. The SW surface direct effect is on average -20.9 Wm-2 over the Mediterranean Sea, -14.7 Wm-2 over Europe and -19.7 Wm-2 over northern Africa. The LW surface direct effect is weaker as only dust aerosols contribute (+4.8 Wm-2 over northern Africa). This direct effect is partly counterbalanced by a positive semi-direct radiative effect over the Mediterranean Sea (+5.7 Wm-2 on average) and Europe (+5.0 Wm-2) due to changes in cloud cover and atmospheric circulation. The total aerosol effect is consequently negative at the surface and responsible for a decrease in land (on average -0.4 °C over Europe, and -0.5 °C over northern Africa) and sea surface temperature (on average -0.5 °C for the Mediterranean SST). In addition, the latent heat loss is shown to be weaker (-11.0 Wm-2) in the presence of aerosols, resulting in a decrease in specific humidity in the lower troposphere, and a reduction in cloud cover and precipitation. Simulations also indicate that dust aerosols warm the troposphere by absorbing solar radiation, and prevent radiation from reaching the surface, thus

  8. The Parana paradox: can a model explain the decadal impacts of climate variability and land-cover change?

    Science.gov (United States)

    Lee, E.; Moorcroft, P. R.; Livino, A.; Briscoe, J.

    2013-12-01

    Since the 1970s, despite a decrease in rainfall, flow in the Parana river has increased. This paradox is explored using the Ecosystem Demography (ED) model. If there were no change in land cover, the modeled runoff decreased from the 1970s to the 2000s by 11.8% (with 1970 land cover) or 18.8% (with 2008 land cover). When the model is run holding climate constant, the decadal average of the modeled runoff increased by 24.4% (with the 1970s climate) or by 33.6% (with 2000s climate). When the model is run allowing both the actual climate and land-cover changes, the model gives an increase in the decadal average of runoff by 8.5%. This agrees well with 10.5% increase in the actual stream flow as measured at Itaipu. There are three main conclusions from this work. First, the ED model is able to explain a major, paradoxical, reality in the Parana basin. Second, it is necessary to take into account both climate and land use changes when exploring past or future changes in river flows. Third, the ED model, now coupled with a regional climate model (i.e., EDBRAMS), is a sound basis for exploring likely changes in river flows in major South American rivers.

  9. An overview of regional and local characteristics of aerosols in South Africa using satellite, ground, and modeling data

    Science.gov (United States)

    Hersey, S. P.; Garland, R. M.; Crosbie, E.; Shingler, T.; Sorooshian, A.; Piketh, S.; Burger, R.

    2014-09-01

    We present a comprehensive overview of particulate air quality across the five major metropolitan areas of South Africa (Cape Town, Bloemfontein, Johannesburg and Tshwane (Gauteng Province), the Industrial Highveld Air Quality Priority Area (HVAPA), and Durban), based on a decadal (1 January 2000 to 31 December 2009) aerosol climatology from multiple satellite platforms and a detailed analysis of ground-based data from 19 sites throughout Gauteng. Data include Aerosol Optical Depth (AOD550, 555) from Aqua (550 nm), Terra (550 nm), and MISR (555 nm) platforms, Ängström Exponent (α550/865, 470/660) from Aqua (550/865 nm) and Terra (470/660 nm), Ultraviolet Aerosol Index (UVAI) from TOMS, and model results from the Goddard Ozone Chemistry Aerosol Radiation and Transport (GOCART) model. Results in Cape Town are distinct, owing to a typically clean, marine airmass origin and infrequent continental influence. At continentally-influenced sites, AOD550, AOD555, α550/865, α470/660 and UVAI reach maxima (0.12-0.20, 1.0-1.8, and 1.0-1.2, respectively) during late winter and early spring (August-October), coinciding with a period of enhanced dust generation and the maximum frequency of close-proximity and subtropical fires identified by MODIS Fire Information for Resource Management System (FIRMS). The adjacent metropolitan and industrial Gauteng and HVAPA areas have been identified as a megacity based on NO2 concentrations, but AOD is a factor of 3-6 lower than other megacities worldwide. GOCART results suggest that the contributions of organics and black carbon to AOD are significantly enhanced during biomass burning season (ASO), but that sulfate is the most significant contributor to AOD (~70-80%) through the rest of the year. Dust appears to be underestimated by GOCART emissions inventories at continentally-influenced metropolitan areas of South Africa. Ground monitoring sites were classified according to site type: (1) township and informal settlement sites with

  10. Effects of generation time on spray aerosol transport and deposition in models of the mouth-throat geometry.

    Science.gov (United States)

    Worth Longest, P; Hindle, Michael; Das Choudhuri, Suparna

    2009-06-01

    For most newly developed spray aerosol inhalers, the generation time is a potentially important variable that can be fully controlled. The objective of this study was to determine the effects of spray aerosol generation time on transport and deposition in a standard induction port (IP) and more realistic mouth-throat (MT) geometry. Capillary aerosol generation (CAG) was selected as a representative system in which spray momentum was expected to significantly impact deposition. Sectional and total depositions in the IP and MT geometries were assessed at a constant CAG flow rate of 25 mg/sec for aerosol generation times of 1, 2, and 4 sec using both in vitro experiments and a previously developed computational fluid dynamics (CFD) model. Both the in vitro and numerical results indicated that extending the generation time of the spray aerosol, delivered at a constant mass flow rate, significantly reduced deposition in the IP and more realistic MT geometry. Specifically, increasing the generation time of the CAG system from 1 to 4 sec reduced the deposition fraction in the IP and MT geometries by approximately 60 and 33%, respectively. Furthermore, the CFD predictions of deposition fraction were found to be in good agreement with the in vitro results for all times considered in both the IP and MT geometries. The numerical results indicated that the reduction in deposition fraction over time was associated with temporal dissipation of what was termed the spray aerosol "burst effect." Based on these results, increasing the spray aerosol generation time, at a constant mass flow rate, may be an effective strategy for reducing deposition in the standard IP and in more realistic MT geometries.

  11. Exploring sources of biogenic secondary organic aerosol compounds using chemical analysis and the FLEXPART model

    Directory of Open Access Journals (Sweden)

    J. Martinsson

    2017-09-01

    Full Text Available Molecular tracers in secondary organic aerosols (SOAs can provide information on origin of SOA, as well as regional scale processes involved in their formation. In this study 9 carboxylic acids, 11 organosulfates (OSs and 2 nitrooxy organosulfates (NOSs were determined in daily aerosol particle filter samples from Vavihill measurement station in southern Sweden during June and July 2012. Several of the observed compounds are photo-oxidation products from biogenic volatile organic compounds (BVOCs. Highest average mass concentrations were observed for carboxylic acids derived from fatty acids and monoterpenes (12. 3 ± 15. 6 and 13. 8 ± 11. 6 ng m−3, respectively. The FLEXPART model was used to link nine specific surface types to single measured compounds. It was found that the surface category sea and ocean was dominating the air mass exposure (56 % but contributed to low mass concentration of observed chemical compounds. A principal component (PC analysis identified four components, where the one with highest explanatory power (49 % displayed clear impact of coniferous forest on measured mass concentration of a majority of the compounds. The three remaining PCs were more difficult to interpret, although azelaic, suberic, and pimelic acid were closely related to each other but not to any clear surface category. Hence, future studies should aim to deduce the biogenic sources and surface category of these compounds. This study bridges micro-level chemical speciation to air mass surface exposure at the macro level.

  12. Refined Use of Satellite Aerosol Optical Depth Snapshots to Constrain Biomass Burning Emissions in the GOCART Model

    Science.gov (United States)

    Petrenko, Mariya; Kahn, Ralph; Chin, Mian; Limbacher, James

    2017-10-01

    Simulations of biomass burning (BB) emissions in global chemistry and aerosol transport models depend on external inventories, which provide location and strength for BB aerosol sources. Our previous work shows that to first order, satellite snapshots of aerosol optical depth (AOD) near the emitted smoke plume can be used to constrain model-simulated AOD, and effectively, the smoke source strength. We now refine the satellite-snapshot method and investigate where applying simple multiplicative emission adjustment factors alone to the widely used Global Fire Emission Database version 3 emission inventory can achieve regional-scale consistency between Moderate Resolution Imaging Spectroradiometer (MODIS) AOD snapshots and the Goddard Chemistry Aerosol Radiation and Transport model. The model and satellite AOD are compared globally, over a set of BB cases observed by the MODIS instrument during the 2004, and 2006-2008 biomass burning seasons. Regional discrepancies between the model and satellite are diverse around the globe yet quite consistent within most ecosystems. We refine our approach to address physically based limitations of our earlier work (1) by expanding the number of fire cases from 124 to almost 900, (2) by using scaled reanalysis-model simulations to fill missing AOD retrievals in the MODIS observations, (3) by distinguishing the BB components of the total aerosol load from background aerosol in the near-source regions, and (4) by including emissions from fires too small to be identified explicitly in the satellite observations. The small-fire emission adjustment shows the complimentary nature of correcting for source strength and adding geographically distinct missing sources. Our analysis indicates that the method works best for fire cases where the BB fraction of total AOD is high, primarily evergreen or deciduous forests. In heavily polluted or agricultural burning regions, where smoke and background AOD values tend to be comparable, this approach

  13. Lung dynamics of aerosol particles with special reference to deposition model

    International Nuclear Information System (INIS)

    Takahashi, Kanji

    1977-01-01

    A movement of aerosol particles in the lungs, which was inhaled into the respiratory organ was given an outline by means of technological deposition model. The respiratory organ was considered to be one airway system, and was divided into nasopharyngeal part, trachea-bronchial part, and pulmonary part. The transport of particles in the respiratory tract was explained by mentioning structual model of the airway system, standard respiratory flow, and distribution of flow speed in the respiratory tract. It was explained that particle deposition in the respiratory tract seemed to be caused by inertia impact at bifurcation, gravity deposition and scattering deposition at tubular wall, interruption effect in nasopharyngeal part, and scattering phoresis effect in the upper respiratory tract or gas exchange part. Furthermore, an outline of calculation of the deposition amount of particles was described from a standpoint of the above-mentioned structure, breathing air flow, and deposition structure of particles. (Kanao, N.)

  14. Aerosols concentration in the Candiota area applying different gravimetric methods of sampling and numeric modelling.

    Science.gov (United States)

    Braga, C F; Alves, R C M; Teixeira, E C; Pire, M

    2002-12-01

    The main purpose of the present work is to study the concentration of atmospheric particles in the Candiota region, in the state of Rio Grande do Sul, where the Presidente Médici coal power plant is located. Aerosol samples were collected at the studied locations between December 2000 and December 2001 during 24 h periods at 15 day intervals using HV PM10 and dichotomous samplers. Then, the values obtained with the ISCST (Industrial Source Complex Term) model, with the HV PM10 sampler at all studied stations, and with the dichotomous sampler at the 8 de Agosto station were compared with each other. The results show that the values for the model had been underestimated in relation to the HV PM10 data for the studied stations, but agreed with the values obtained with the dichotomous sampler.

  15. Quantifying the temperature-independent effect of stratospheric aerosol geoengineering on global-mean precipitation in a multi-model ensemble

    International Nuclear Information System (INIS)

    Ferraro, Angus J; Griffiths, Hannah G

    2016-01-01

    The reduction in global-mean precipitation when stratospheric aerosol geoengineering is used to counterbalance global warming from increasing carbon dioxide (CO 2 ) concentrations has been mainly attributed to the temperature-independent effect of CO 2 on atmospheric radiative cooling. We demonstrate here that stratospheric sulphate aerosol itself also acts to reduce global-mean precipitation independent of its effects on temperature. The temperature-independent effect of stratospheric aerosol geoenginering on global-mean precipitation is calculated by removing temperature-dependent effects from climate model simulations of the Geoengineering Model Intercomparison Project (GeoMIP). When sulphate aerosol is injected into the stratosphere at a rate of 5 Tg SO 2 per year the aerosol reduces global-mean precipitation by approximately 0.2 %, though multiple ensemble members are required to separate this effect from internal variability. For comparison, the precipitation reduction from the temperature-independent effect of increasing CO 2 concentrations under the RCP4.5 scenario of the future is approximately 0.5 %. The temperature-independent effect of stratospheric sulphate aerosol arises from the aerosol’s effect on tropospheric radiative cooling. Radiative transfer calculations show this is mainly due to increasing downward emission of infrared radiation by the aerosol, but there is also a contribution from the stratospheric warming the aerosol causes. Our results suggest climate model simulations of solar dimming can capture the main features of the global-mean precipitation response to stratospheric aerosol geoengineering. (letter)

  16. Decadal prediction skill in the ocean with surface nudging in the IPSL-CM5A-LR climate model

    OpenAIRE

    Mignot , Juliette; García-Serrano , Javier; Swingedouw , Didier; Germe , Agathe; Nguyen , Sébastien; Ortega , Pablo; Guilyardi , Éric; Ray , Sulagna

    2016-01-01

    International audience; Two decadal prediction ensembles, based on the same climate model (IPSL-CM5A-LR) and the same surface nudging initialization strategy are analyzed and compared with a focus on upper-ocean variables in different regions of the globe. One ensemble consists of 3-member hindcasts launched every year since 1961 while the other ensemble benefits from 9 members but with start dates only every 5 years. Analysis includes anomaly correlation coefficients and root mean square err...

  17. Aerosol-Cloud-Precipitation Interactions in WRF Model:Sensitivity to Autoconversion Parameterization

    Institute of Scientific and Technical Information of China (English)

    解小宁; 刘晓东

    2015-01-01

    Cloud-to-rain autoconversion process is an important player in aerosol loading, cloud morphology, and precipitation variations because it can modulate cloud microphysical characteristics depending on the par-ticipation of aerosols, and aff ects the spatio-temporal distribution and total amount of precipitation. By applying the Kessler, the Khairoutdinov-Kogan (KK), and the Dispersion autoconversion parameterization schemes in a set of sensitivity experiments, the indirect eff ects of aerosols on clouds and precipitation are investigated for a deep convective cloud system in Beijing under various aerosol concentration backgrounds from 50 to 10000 cm−3. Numerical experiments show that aerosol-induced precipitation change is strongly dependent on autoconversion parameterization schemes. For the Kessler scheme, the average cumulative precipitation is enhanced slightly with increasing aerosols, whereas surface precipitation is reduced signifi-cantly with increasing aerosols for the KK scheme. Moreover, precipitation varies non-monotonically for the Dispersion scheme, increasing with aerosols at lower concentrations and decreasing at higher concentrations. These diff erent trends of aerosol-induced precipitation change are mainly ascribed to diff erences in rain wa-ter content under these three autoconversion parameterization schemes. Therefore, this study suggests that accurate parameterization of cloud microphysical processes, particularly the cloud-to-rain autoconversion process, is needed for improving the scientifi c understanding of aerosol-cloud-precipitation interactions.

  18. Coupling spectral-bin cloud microphysics with the MOSAIC aerosol model in WRF-Chem: Methodology and results for marine stratocumulus clouds

    Science.gov (United States)

    Gao, Wenhua; Fan, Jiwen; Easter, R. C.; Yang, Qing; Zhao, Chun; Ghan, Steven J.

    2016-09-01

    Aerosol-cloud interaction processes can be represented more physically with bin cloud microphysics relative to bulk microphysical parameterizations. However, due to computational power limitations in the past, bin cloud microphysics was often run with very simple aerosol treatments. The purpose of this study is to represent better aerosol-cloud interaction processes in the Chemistry version of Weather Research and Forecast model (WRF-Chem) at convection-permitting scales by coupling spectral-bin cloud microphysics (SBM) with the MOSAIC sectional aerosol model. A flexible interface is built that exchanges cloud and aerosol information between them. The interface contains a new bin aerosol activation approach, which replaces the treatments in the original SBM. It also includes the modified aerosol resuspension and in-cloud wet removal processes with the droplet loss tendencies and precipitation fluxes from SBM. The newly coupled system is evaluated for two marine stratocumulus cases over the Southeast Pacific Ocean with either a simplified aerosol setup or full-chemistry. We compare the aerosol activation process in the newly coupled SBM-MOSAIC against the SBM simulation without chemistry using a simplified aerosol setup, and the results show consistent activation rates. A longer time simulation reinforces that aerosol resuspension through cloud drop evaporation plays an important role in replenishing aerosols and impacts cloud and precipitation in marine stratocumulus clouds. Evaluation of the coupled SBM-MOSAIC with full-chemistry using aircraft measurements suggests that the new model works realistically for the marine stratocumulus clouds, and improves the simulation of cloud microphysical properties compared to a simulation using MOSAIC coupled with the Morrison two-moment microphysics.

  19. Impact of absorbing aerosols on the simulation of climate over the Indian region in an atmospheric general circulation model

    Directory of Open Access Journals (Sweden)

    A. Chakraborty

    2004-04-01

    Full Text Available The impact of anthropogenic absorbing aerosols (such as soot on the climate over the Indian region has been studied using the NCMRWF general circulation model. The absorbing aerosols increase shortwave radiative heating of the lower troposphere and reduce the heating at the surface. These effects have been incorporated as heating of the lower troposphere (up to 700hPa and cooling over the continental surface based on INDOEX measurements. The heating effect is constant in the pre-monsoon season and reduces to zero during the monsoon season. It is shown that even in the monsoon season when the aerosol forcing is zero, there is an overall increase in rainfall and a reduction in surface temperature over the Indian region. The rainfall averaged over the Tropics shows a small reduction in most of the months during the January to September period. The impact of aerosol forcing, the model's sensitivity to this forcing and its interaction with model-physics has been studied by changing the cumulus parameterization from the Simplified Arakawa-Schubert (SAS scheme to the Kuo scheme. During the pre-monsoon season the major changes in precipitation occur in the oceanic Inter Tropical Convergence Zone (ITCZ, where both the schemes show an increase in precipitation. This result is similar to that reported in Chung2002. On the other hand, during the monsoon season the changes in precipitation in the continental region are different in the SAS and Kuo schemes. It is shown that the heating due to absorbing aerosols changes the vertical moist-static stability of the atmosphere. The difference in the precipitation changes in the two cumulus schemes is on account of the different responses in the two parameterization schemes to changes in vertical stability. Key words. Atmospheric composition and structure (aerosols and particles – Meteorology and atmospheric dynamics (tropical meteorology; precipitation

  20. Dust aerosol and optical properties over North Africa simulated with the ALADIN numerical prediction model from 2006 to 2010

    Science.gov (United States)

    Mokhtari, M.; Tulet, P.; Fischer, C.; Bouteloup, Y.; Bouyssel, F.; Brachemi, O.

    2015-02-01

    The seasonal cycle and optical properties of mineral dust aerosols in North Africa were simulated for the period from 2006 to 2010 using the numerical atmospheric model ALADIN coupled to the surface scheme SURFEX. The particularity of the simulations is that the major physical processes responsible for dust emission and transport, as well as radiative effects, are taken into account at short timescales and mesoscale resolution. The aim of these simulations is to quantify the dust emission and deposition, locate the major areas of dust emission and establish a climatology of aerosol optical properties in North Africa. The mean monthly Aerosol Optical Thickness (AOT) simulated by ALADIN is compared with the AOTs derived from the standard Dark Target (DT) and Deep Blue (DB) algorithms of the Aqua-MODIS (MODerate resolution Imaging Spectroradiometer) products over North Africa, and with a set of sun photometer measurements located at Banizoumbou, Cinzana, Soroa, Mbour and Capo Verde. The vertical distribution of dust aerosol represented by extinction profiles is also analysed using CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) observations. The annual dust emission simulated by ALADIN over North Africa is 878 Tg year-1. The Bodélé depression appears to be the main area of dust emission in North Africa, with an average estimate of about 21.6 Tg year-1. The simulated AOTs are in good agreement with satellite and sun photometer observations. The positions of the maxima of the modelled AOTs over North Africa match the observed positions, and the ALADIN simulations satisfactorily reproduce the various dust events over the 2006-2010 period. The AOT climatology proposed in this paper provides a solid database of optical properties and consolidates the existing climatology over this region derived from satellites, the AERONET network and Regional Climate Models. Moreover, the three-dimensional distribution of the simulated AOTs also provides information about the

  1. Optical Properties of the Urban Aerosol Particles Obtained from Ground Based Measurements and Satellite-Based Modelling Studies

    Directory of Open Access Journals (Sweden)

    Genrik Mordas

    2015-01-01

    Full Text Available Applications of satellite remote sensing data combined with ground measurements and model simulation were applied to study aerosol optical properties as well as aerosol long-range transport under the impact of large scale circulation in the urban environment in Lithuania (Vilnius. Measurements included the light scattering coefficients at 3 wavelengths (450, 550, and 700 nm measured with an integrating nephelometer and aerosol particle size distribution (0.5–12 μm and number concentration (Dpa > 0.5 μm registered by aerodynamic particle sizer. Particle number concentration and mean light scattering coefficient varied from relatively low values of 6.0 cm−3 and 12.8 Mm−1 associated with air masses passed over Atlantic Ocean to relatively high value of 119 cm−3 and 276 Mm−1 associated with South-Western air masses. Analysis shows such increase in the aerosol light scattering coefficient (276 Mm−1 during the 3rd of July 2012 was attributed to a major Sahara dust storm. Aerosol size distribution with pronounced coarse particles dominance was attributed to the presence of dust particles, while resuspended dust within the urban environment was not observed.

  2. High resolution modelling of aerosol dispersion regimes during the CAPITOUL field experiment: from regional to local scale interactions

    Directory of Open Access Journals (Sweden)

    B. Aouizerats

    2011-08-01

    Full Text Available High resolution simulation of complex aerosol particle evolution and gaseous chemistry over an atmospheric urban area is of great interest for understanding air quality and processes. In this context, the CAPITOUL (Canopy and Aerosol Particle Interactions in the Toulouse Urban Layer field experiment aims at a better understanding of the interactions between the urban dynamics and the aerosol plumes. During a two-day Intensive Observational Period, a numerical model experiment was set up to reproduce the spatial distribution of specific particle pollutants, from the regional scales and the interactions between different cities, to the local scales with specific turbulent structures. Observations show that local dynamics depends on the day-regime, and may lead to different mesoscale dynamical structures. This study focuses on reproducing these fine scale dynamical structures, and investigate the impact on the aerosol plume dispersion. The 500-m resolution simulation manages to reproduce convective rolls at local scale, which concentrate most of the aerosol particles and can locally affect the pollutant dispersion and air quality.

  3. Research on aerosol formation, aerosol behaviour, aerosol filtration, aerosol measurement techniques and sodium fires at the Laboratory for Aerosol Physics and Filter Technology at the Nuclear Research Center Karlsruhe

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, S; Schikarski, W; Schoeck, W [Gesellschaft fuer Kernforschung mbH, Karlsruhe (Germany)

    1977-01-01

    The behaviour of aerosols in LMFBR plant systems is of great importance for a number of problems, both normal operational and accident kind. This paper covers the following: aerosol modelling for LMFBR containment systems; aerosol size spectrometry by laser light scattering; experimental facilities and experimental results concerned with aerosol release under accident conditions; filtration of sodium oxide aerosols by multilayer sand bed filters.

  4. Research on aerosol formation, aerosol behaviour, aerosol filtration, aerosol measurement techniques and sodium fires at the Laboratory for Aerosol Physics and Filter Technology at the Nuclear Research Center Karlsruhe

    International Nuclear Information System (INIS)

    Jordan, S.; Schikarski, W.; Schoeck, W.

    1977-01-01

    The behaviour of aerosols in LMFBR plant systems is of great importance for a number of problems, both normal operational and accident kind. This paper covers the following: aerosol modelling for LMFBR containment systems; aerosol size spectrometry by laser light scattering; experimental facilities and experimental results concerned with aerosol release under accident conditions; filtration of sodium oxide aerosols by multilayer sand bed filters

  5. The critical assessment of vapour pressure estimation methods for use in modelling the formation of atmospheric organic aerosol

    Directory of Open Access Journals (Sweden)

    M. H. Barley

    2010-01-01

    Full Text Available A selection of models for estimating vapour pressures have been tested against experimental data for a set of compounds selected for their particular relevance to the formation of atmospheric aerosol by gas-liquid partitioning. The experimental vapour pressure data (all <100 Pa of 45 multifunctional compounds provide a stringent test of the estimation techniques, with a recent complex group contribution method providing the best overall results. The effect of errors in vapour pressures upon the formation of organic aerosol by gas-liquid partitioning in an atmospherically relevant example is also investigated. The mass of organic aerosol formed under typical atmospheric conditions was found to be very sensitive to the variation in vapour pressure values typically present when comparing estimation methods.

  6. EDITORIAL: Aerosol cloud interactions—a challenge for measurements and modeling at the cutting edge of cloud climate interactions

    Science.gov (United States)

    Spichtinger, Peter; Cziczo, Daniel J.

    2008-04-01

    Research in aerosol properties and cloud characteristics have historically been considered two separate disciplines within the field of atmospheric science. As such, it has been uncommon for a single researcher, or even research group, to have considerable expertise in both subject areas. The recent attention paid to global climate change has shown that clouds can have a considerable effect on the Earth's climate and that one of the most uncertain aspects in their formation, persistence, and ultimate dissipation is the role played by aerosols. This highlights the need for researchers in both disciplines to interact more closely than they have in the past. This is the vision behind this focus issue of Environmental Research Letters. Certain interactions between aerosols and clouds are relatively well studied and understood. For example, it is known that an increase in the aerosol concentration will increase the number of droplets in warm clouds, decrease their average size, reduce the rate of precipitation, and extend the lifetime. Other effects are not as well known. For example, persistent ice super-saturated conditions are observed in the upper troposphere that appear to exceed our understanding of the conditions required for cirrus cloud formation. Further, the interplay of dynamics versus effects purely attributed to aerosols remains highly uncertain. The purpose of this focus issue is to consider the current state of knowledge of aerosol/cloud interactions, to define the contemporary uncertainties, and to outline research foci as we strive to better understand the Earth's climate system. This focus issue brings together laboratory experiments, field data, and model studies. The authors address issues associated with warm liquid water, cold ice, and intermediate temperature mixed-phase clouds. The topics include the uncertainty associated with the effect of black carbon and organics, aerosol types of anthropogenic interest, on droplet and ice formation. Phases

  7. Evaluation of New and Proposed Organic Aerosol Sources and Mechanisms using the Aerosol Modeling Testbed. MILAGRO, CARES, CalNex, BEACHON, and GVAX

    Energy Technology Data Exchange (ETDEWEB)

    Hodzic, Alma [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Jimenez, Jose L. [Univ. of Colorado, Boulder, CO (United States)

    2015-04-09

    This work investigated the formation and evolution of organic aerosols (OA) arising from anthropogenic and biogenic sources in a framework that combined state-of-the-science process and regional modeling, and their evaluation against advanced and emerging field measurements. Although OA are the dominant constituents of submicron particles, our understanding of their atmospheric lifecycle is limited, and current models fail to describe the observed amounts and properties of chemically formed secondary organic aerosols (SOA), leaving large uncertainties on the effects of SOA on climate. Our work has provided novel modeling constraints on sources, formation, aging and removal of SOA by investigating in particular (i) the contribution of trash burning emissions to OA levels in a megacity, (ii) the contribution of glyoxal to SOA formation in aqueous particles in California during CARES/CalNex and over the continental U.S., (iii) SOA formation and regional growth over a pine forest in Colorado and its sensitivity to anthropogenic NOx levels during BEACHON, and the sensitivity of SOA to (iv) the sunlight exposure during its atmospheric lifetime, and to (v) changes in solubility and removal of organic vapors in the urban plume (MILAGRO, Mexico City), and over the continental U.S.. We have also developed a parameterization of water solubility for condensable organic gases produced from major anthropogenic and biogenic precursors based on explicit chemical modeling, and made it available to the wider community. This work used for the first time constraints from the explicit model GECKO-A to improve SOA representation in 3D regional models such as WRF-Chem.

  8. A single-column particle-resolved model for simulating the vertical distribution of aerosol mixing state: WRF-PartMC-MOSAIC-SCM v1.0

    Science.gov (United States)

    Curtis, Jeffrey H.; Riemer, Nicole; West, Matthew

    2017-11-01

    The PartMC-MOSAIC particle-resolved aerosol model was previously developed to predict the aerosol mixing state as it evolves in the atmosphere. However, the modeling framework was limited to a zero-dimensional box model approach without resolving spatial gradients in aerosol concentrations. This paper presents the development of stochastic particle methods to simulate turbulent diffusion and dry deposition of aerosol particles in a vertical column within the planetary boundary layer. The new model, WRF-PartMC-MOSAIC-SCM, resolves the vertical distribution of aerosol mixing state. We verified the new algorithms with analytical solutions for idealized test cases and illustrate the capabilities with results from a 2-day urban scenario that shows the evolution of black carbon mixing state in a vertical column.

  9. Simulation of aerosol optical properties over a tropical urban site in India using a global model and its comparison with ground measurements

    Directory of Open Access Journals (Sweden)

    D. Goto

    2011-05-01

    Full Text Available Aerosols have great impacts on atmospheric environment, human health, and earth's climate. Therefore, information on their spatial and temporal distribution is of paramount importance. Despite numerous studies have examined the variation and trends of BC and AOD over India, only very few have focused on their spatial distribution or even correlating the observations with model simulations. In the present study, a three-dimensional aerosol transport-radiation model coupled with a general circulation model. SPRINTARS, simulated atmospheric aerosol distributions including BC and aerosol optical properties, i.e., aerosol optical thickness (AOT, Ångström Exponent (AE, and single scattering albedo (SSA. The simulated results are compared with both BC measurements by aethalometer and aerosol optical properties measured by ground-based skyradiometer and by satellite sensor, MODIS/Terra over Hyderabad, which is a tropical urban area of India, for the year 2008. The simulated AOT and AE in Hyderabad are found to be comparable to ground-based measured ones. The simulated SSA tends to be higher than the ground-based measurements. Both these comparisons of aerosol optical properties between the simulations with different emission inventories and the measurements indicate that, firstly the model uncertainties derived from aerosol emission inventory cannot explain the gaps between the simulations and the measurements and secondly the vertical transport of BC and the treatment of BC-containing particles can be the main issue in the global model to solve the gap.

  10. Illustrating the benefit of using hourly monitoring data on secondary inorganic aerosol and its precursors for model evaluation

    NARCIS (Netherlands)

    Schaap, M.; Otjes, R.P.; Weijers, E.P.

    2010-01-01

    Secondary inorganic aerosol, most notably ammonium nitrate and ammonium sulphate, is an important contributor to ambient particulate mass and provides a means for long range transport of acidifying components. The modelling of the formation and fate of these components is challenging. Especially,

  11. Illustrating the benefit of using hourly monitoring data on secondary inorganic aerosol and its precursors for model evaluation

    NARCIS (Netherlands)

    Schaap, M.; Otjes, R.P.; Weijers, E.P.

    2011-01-01

    Secondary inorganic aerosol, most notably ammonium nitrate and ammonium sulphate, is an important contributor to ambient particulate mass and provides a means for long range transport of acidifying components. The modelling of the formation and fate of these components is challenging. Especially,

  12. Global modelling of direct and indirect effects of sea spray aerosol using a source function encapsulating wave state

    Directory of Open Access Journals (Sweden)

    A.-I. Partanen

    2014-11-01

    Full Text Available Recently developed parameterizations for the sea spray aerosol source flux, encapsulating wave state, and its organic fraction were incorporated into the aerosol–climate model ECHAM-HAMMOZ to investigate the direct and indirect radiative effects of sea spray aerosol particles. Our simulated global sea salt emission of 805 Tg yr−1 (uncertainty range 378–1233 Tg yr−1 was much lower than typically found in previous studies. Modelled sea salt and sodium ion concentrations agreed relatively well with measurements in the smaller size ranges at Mace Head (annual normalized mean model bias −13% for particles with vacuum aerodynamic diameter Dva Da Da Da −2, in contrast to previous studies. This positive effect was ascribed to the tendency of sea salt aerosol to suppress both the in-cloud supersaturation and the formation of cloud condensation nuclei from sulfate. These effects can be accounted for only in models with sufficiently detailed aerosol microphysics and physics-based parameterizations of cloud activation. However, due to a strong negative direct effect, the simulated effective radiative forcing (total radiative effect was −0.2 W m−2. The simulated radiative effects of the primary marine organic emissions were small, with a direct effect of 0.03 W m−2 and an indirect effect of −0.07 W m−2.

  13. Intercomparison and Evaluation of Aerosol Microphysical Properties among AeroCom Global Models of a Range of Complexity

    Czech Academy of Sciences Publication Activity Database

    Mann, G.W.; Carslaw, K.S.; Reddington, C.L.; Pringle, K.J.; Schulz, M.; Asmi, A.; Spracklen, D.V.; Ridley, D.A.; Woodhouse, M.T.; Lee, L.A.; Zhang, K.; Ghan, S.H.; Easter, R.C.; Liu, X.; Stier, P.; Lee, Y.H.; Adams, P.J.; Tost, H.; Lelieveld, J.; Bauer, S.E.; Tsigaridis, K.; van Noije, T.P.C.; Strunk, A.; Vignati, E.; Bellouin, N.; Dalvi, M.; Johnson, C.E.; Bergman, T.; Kokkola, H.; von Salzen, K.; Yu, F.; Luo, G.; Petzold, A.; Heintzenberger, J.; Clarke, A.; Ogren, J.A.; Gras, J.; Baltensperger, U.; Kaminski, U.; Jennings, S.G.; O'Dowd, C.D.; Harrison, R. M.; Beddows, D.C.S.; Kulmala, M.; Viisanen, Y.; Ulevicius, V.; Mihalopoulos, N.; Ždímal, Vladimír; Fiebich, M.; Hansson, H.-C.; Swietlicki, E.; Henzig, J.S.

    2014-01-01

    Roč. 14, č. 9 (2014), s. 4679-4713 ISSN 1680-7316 Institutional support: RVO:67985858 Keywords : global climate models * aerosol processes * particle size distributions Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.053, year: 2014

  14. Role of aerosols on the Indian Summer Monsoon variability, as simulated by state-of-the-art global climate models

    Science.gov (United States)

    Cagnazzo, Chiara; Biondi, Riccardo; D'Errico, Miriam; Cherchi, Annalisa; Fierli, Federico; Lau, William K. M.

    2016-04-01

    Recent observational and modeling analyses have explored the interaction between aerosols and the Indian summer monsoon precipitation on seasonal-to-interannual time scales. By using global scale climate model simulations, we show that when increased aerosol loading is found on the Himalayas slopes in the premonsoon period (April-May), intensification of early monsoon rainfall over India and increased low-level westerly flow follow, in agreement with the elevated-heat-pump (EHP) mechanism. The increase in rainfall during the early monsoon season has a cooling effect on the land surface that may also be amplified through solar dimming (SD) by more cloudiness and aerosol loading with subsequent reduction in monsoon rainfall over India. We extend this analyses to a subset of CMIP5 climate model simulations. Our results suggest that 1) absorbing aerosols, by influencing the seasonal variability of the Indian summer monsoon with the discussed time-lag, may act as a source of predictability for the Indian Summer Monsoon and 2) if the EHP and SD effects are operating also in a number of state-of-the-art climate models, their inclusion could potentially improve seasonal forecasts.

  15. Can a coupled meteorology–chemistry model reproduce the historical trend in aerosol direct radiative effects over the Northern Hemisphere?

    Science.gov (United States)

    The ability of a coupled meteorology–chemistry model, i.e., Weather Research and Forecast and Community Multiscale Air Quality (WRF-CMAQ), to reproduce the historical trend in aerosol optical depth (AOD) and clear-sky shortwave radiation (SWR) over the Northern Hemisphere h...

  16. CHAOS-2-a geomagnetic field model derived from one decade of continuous satellite data

    DEFF Research Database (Denmark)

    Olsen, Nils; Mandea, M.; Sabaka, T.J.

    2009-01-01

    We have derived a model of the near-Earth's magnetic field using more than 10 yr of high-precision geomagnetic measurements from the three satellites Orsted, CHAMP and SAC-C. This model is an update of the two previous models, CHAOS (Olsen et al. 2006) and xCHAOS (Olsen & Mandea 2008). Data...... by minimizing the second time derivative of the squared magnetic field intensity at the core-mantle boundary. The CHAOS-2 model describes rapid time changes, as monitored by the ground magnetic observatories, much better than its predecessors....

  17. Bridging the Gap Between Science and Clinical Efficacy: Physiology, Imaging, and Modeling of Aerosols in the Lung.

    Science.gov (United States)

    Darquenne, Chantal; Fleming, John S; Katz, Ira; Martin, Andrew R; Schroeter, Jeffry; Usmani, Omar S; Venegas, Jose; Schmid, Otmar

    2016-04-01

    Development of a new drug for the treatment of lung disease is a complex and time consuming process involving numerous disciplines of basic and applied sciences. During the 2015 Congress of the International Society for Aerosols in Medicine, a group of experts including aerosol scientists, physiologists, modelers, imagers, and clinicians participated in a workshop aiming at bridging the gap between basic research and clinical efficacy of inhaled drugs. This publication summarizes the current consensus on the topic. It begins with a short description of basic concepts of aerosol transport and a discussion on targeting strategies of inhaled aerosols to the lungs. It is followed by a description of both computational and biological lung models, and the use of imaging techniques to determine aerosol deposition distribution (ADD) in the lung. Finally, the importance of ADD to clinical efficacy is discussed. Several gaps were identified between basic science and clinical efficacy. One gap between scientific research aimed at predicting, controlling, and measuring ADD and the clinical use of inhaled aerosols is the considerable challenge of obtaining, in a single study, accurate information describing the optimal lung regions to be targeted, the effectiveness of targeting determined from ADD, and some measure of the drug's effectiveness. Other identified gaps were the language and methodology barriers that exist among disciplines, along with the significant regulatory hurdles that need to be overcome for novel drugs and/or therapies to reach the marketplace and benefit the patient. Despite these gaps, much progress has been made in recent years to improve clinical efficacy of inhaled drugs. Also, the recent efforts by many funding agencies and industry to support multidisciplinary networks including basic science researchers, R&D scientists, and clinicians will go a long way to further reduce the gap between science and clinical efficacy.

  18. The aerosols and the greenhouse effect; Aerosoler og klimaeffekten

    Energy Technology Data Exchange (ETDEWEB)

    Iversen, Trond; Kirkevaag, Alf; Seland, Oeyvind; Debernard, Jens Boldingh; Kristjansson, Jon Egill; Storelvmo, Trude

    2008-07-01

    The article discussed the aerosol effects on the climatic changes and points out that the climate models do not incorporate these components satisfactorily mostly due to insufficient knowledge of the aerosol pollution sources. The direct and indirect effects of aerosols are mentioned as well as the climate response (tk)

  19. Revisiting the Model of Creative Destruction: St. Jacobs, Ontario, a Decade Later

    Science.gov (United States)

    Mitchell, Clare J. A.; de Waal, Sarah B.

    2009-01-01

    Ten years ago, the model of creative destruction was developed to predict the fate of communities that base their development on the commodification of rural heritage (Mitchell, C.J.A., 1998. Entrepreneurialism, commodification and creative destruction: a model of post-modern community development. Journal of Rural Studies 14, 273-286). Its…

  20. Receptor modelling with PMF2 and ME2 using aerosol data from Hong Kong

    International Nuclear Information System (INIS)

    Crawford, J.; Cohen, D.; Dyer, L.; Zahorowski, W.

    2005-01-01

    A number of techniques, such as principal component analysis and factor analysis, have been used in receptor modelling where measured aerosol composition at the sampling site are analysed in order to determine the likely source contributions. In this study factor analysis with non-negative factor elements has been carried out using two techniques as implemented in the PMF2 and ME2 computer codes. The various analysis techniques provided by the two programs are illustrated using measured data at Hong Kong as a case study, which covers a period of three years (2001 to 2003). Both analysis techniques resulted in similar results which are presented in this report. Data bootstrapping was also carried out as an additional check on the quality of the results

  1. Effects of NO(y) aging on the dehydration dynamics of model sea spray aerosol.

    Science.gov (United States)

    Woods, Ephraim; Heylman, Kevin D; Gibson, Amanda K; Ashwell, Adam P; Rossi, Sean R

    2013-05-23

    The reactions of NO(y) species in the atmosphere with sea spray aerosol replace halogen anions with nitrate. These experiments show the effect of increasing the nitrate content of model sea spray aerosol particles on the morphology changes and the phase transitions driven by changes in relative humidity (RH). The components of the model particles include H2O, Na+, Mg2+, Cl-, NO3-, and SO4(2-). Tandem differential mobility analyzer (TDMA) measurements yield the water content and efflorescence relative humidity (ERH) of these particles, and probe molecule spectroscopic measurements reveal subsequent phase transitions and partially characterize the salt composition on the surface of dry particles. The results show three effects of increasing the nitrate composition: decreasing the EFH (46 to 29%), production of a metastable aqueous layer on the surface of effloresced particles, and decreasing the sulfate content near the surface of dry particles. For the mixtures studied here, the initial crystallization event forms a core of NaCl. For particles that contain a substantial metastable aqueous layer following efflorescence, probe molecule spectroscopy shows a second crystallization at a lower RH. This subsequent phase transition is likely the formation of Na2SO4. Homogeneous nucleation theory (HNT) using a semiempirical formulation predicts the ERH of all mixtures within 2.0% RH, with a mean absolute deviation of 1.0%. The calculations suggest that structures associated with highly concentrated or supersaturated magnesium ions strongly affect the interfacial tension between the NaCl crystal nucleus and the droplet from which it forms.

  2. Modeled aerosol nitrate formation pathways during wintertime in the Great Lakes region of North America

    Science.gov (United States)

    Kim, Yoo Jung; Spak, Scott N.; Carmichael, Gregory R.; Riemer, Nicole; Stanier, Charles O.

    2014-11-01

    Episodic wintertime particle pollution by ammonium nitrate is an important air quality concern across the Midwest U.S. Understanding and accurately forecasting PM2.5 episodes are complicated by multiple pathways for aerosol nitrate formation, each with uncertain rate parameters. Here, the Community Multiscale Air Quality model (CMAQ) simulated regional atmospheric nitrate budgets during the 2009 LADCO Winter Nitrate Study, using integrated process rate (IPR) and integrated reaction rate (IRR) tools to quantify relevant processes. Total nitrate production contributing to PM2.5 episodes is a regional phenomenon, with peak production over the Ohio River Valley and southern Great Lakes. Total nitrate production in the lower troposphere is attributed to three pathways, with 57% from heterogeneous conversion of N2O5, 28% from the reaction of OH and NO2, and 15% from homogeneous conversion of N2O5. TNO3 formation rates varied day-to-day and on synoptic timescales. Rate-limited production does not follow urban-rural gradients and NOx emissions due, to counterbalancing of urban enhancement in daytime HNO3 production with nocturnal reductions. Concentrations of HNO3 and N2O5 and nighttime TNO3 formation rates have maxima aloft (100-500 m), leading to net total nitrate vertical flux during episodes, with substantial vertical gradients in nitrate partitioning. Uncertainties in all three pathways are relevant to wintertime aerosol modeling and highlight the importance of interacting transport and chemistry processes during ammonium nitrate episodes, as well as the need for additional constraint on the system through field and laboratory experiments.

  3. Collaborative Proposal: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic System Model (RASM)

    Energy Technology Data Exchange (ETDEWEB)

    Maslowski, Wieslaw [Naval Postgraduate School, Monterey, CA (United States)

    2016-10-17

    This project aims to develop, apply and evaluate a regional Arctic System model (RASM) for enhanced decadal predictions. Its overarching goal is to advance understanding of the past and present states of arctic climate and to facilitate improvements in seasonal to decadal predictions. In particular, it will focus on variability and long-term change of energy and freshwater flows through the arctic climate system. The project will also address modes of natural climate variability as well as extreme and rapid climate change in a region of the Earth that is: (i) a key indicator of the state of global climate through polar amplification and (ii) which is undergoing environmental transitions not seen in instrumental records. RASM will readily allow the addition of other earth system components, such as ecosystem or biochemistry models, thus allowing it to facilitate studies of climate impacts (e.g., droughts and fires) and of ecosystem adaptations to these impacts. As such, RASM is expected to become a foundation for more complete Arctic System models and part of a model hierarchy important for improving climate modeling and predictions.

  4. On the evaluation of global sea-salt aerosol models at coastal/orographic sites

    Science.gov (United States)

    Spada, M.; Jorba, O.; Pérez García-Pando, C.; Janjic, Z.; Baldasano, J. M.

    2015-01-01

    Sea-salt aerosol global models are typically evaluated against concentration observations at coastal stations that are unaffected by local surf conditions and thus considered representative of open ocean conditions. Despite recent improvements in sea-salt source functions, studies still show significant model errors in specific regions. Using a multiscale model, we investigated the effect of high model resolution (0.1° × 0.1° vs. 1° × 1.4°) upon sea-salt patterns in four stations from the University of Miami Network: Baring Head, Chatam Island, and Invercargill in New Zealand, and Marion Island in the sub-antarctic Indian Ocean. Normalized biases improved from +63.7% to +3.3% and correlation increased from 0.52 to 0.84. The representation of sea/land interfaces, mesoscale circulations, and precipitation with the higher resolution model played a major role in the simulation of annual concentration trends. Our results recommend caution when comparing or constraining global models using surface concentration observations from coastal stations.

  5. Grid-scale Indirect Radiative Forcing of Climate due to aerosols over the northern hemisphere simulated by the integrated WRF-CMAQ model: Preliminary results

    Science.gov (United States)

    In this study, indirect aerosol effects on grid-scale clouds were implemented in the integrated WRF3.3-CMAQ5.0 modeling system by including parameterizations for both cloud droplet and ice number concentrations calculated from the CMAQ-predicted aerosol particles. The resulting c...

  6. Compositional evolution of particle-phase reaction products and water in the heterogeneous OH oxidation of model aqueous organic aerosols

    Directory of Open Access Journals (Sweden)

    M. M. Chim

    2017-12-01

    Full Text Available Organic compounds present at or near the surface of aqueous droplets can be efficiently oxidized by gas-phase OH radicals, which alter the molecular distribution of the reaction products within the droplet. A change in aerosol composition affects the hygroscopicity and leads to a concomitant response in the equilibrium amount of particle-phase water. The variation in the aerosol water content affects the aerosol size and physicochemical properties, which in turn governs the oxidation kinetics and chemistry. To attain better knowledge of the compositional evolution of aqueous organic droplets during oxidation, this work investigates the heterogeneous OH-radical-initiated oxidation of aqueous methylsuccinic acid (C5H8O4 droplets, a model compound for small branched dicarboxylic acids found in atmospheric aerosols, at a high relative humidity of 85 % through experimental and modeling approaches. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (Direct Analysis in Real Time, DART coupled with a high-resolution mass spectrometer reveal two major products: a five carbon atom (C5 hydroxyl functionalization product (C5H8O5 and a C4 fragmentation product (C4H6O3. These two products likely originate from the formation and subsequent reactions (intermolecular hydrogen abstraction and carbon–carbon bond scission of tertiary alkoxy radicals resulting from the OH abstraction occurring at the methyl-substituted carbon site. Based on the identification of the reaction products, a kinetic model of oxidation (a two-product model coupled with the Aerosol Inorganic–Organic Mixtures Functional groups Activity Coefficients (AIOMFAC model is built to simulate the size and compositional changes of aqueous methylsuccinic acid droplets during oxidation. Model results show that at the maximum OH exposure, the droplets become slightly more hygroscopic after oxidation, as the mass fraction of water is predicted to increase from

  7. Laboratory Experiments and Modeling for Interpreting Field Studies of Secondary Organic Aerosol Formation Using an Oxidation Flow Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, Jose-Luis [Univ. of Colorado, Boulder, CO (United States)

    2016-02-01

    This grant was originally funded for deployment of a suite of aerosol instrumentation by our group in collaboration with other research groups and DOE/ARM to the Ganges Valley in India (GVAX) to study aerosols sources and processing. Much of the first year of this grant was focused on preparations for GVAX. That campaign was cancelled due to political reasons and with the consultation with our program manager, the research of this grant was refocused to study the applications of oxidation flow reactors (OFRs) for investigating secondary organic aerosol (SOA) formation and organic aerosol (OA) processing in the field and laboratory through a series of laboratory and modeling studies. We developed a gas-phase photochemical model of an OFR which was used to 1) explore the sensitivities of key output variables (e.g., OH exposure, O3, HO2/OH) to controlling factors (e.g., water vapor, external reactivity, UV irradiation), 2) develop simplified OH exposure estimation equations, 3) investigate under what conditions non-OH chemistry may be important, and 4) help guide design of future experiments to avoid conditions with undesired chemistry for a wide range of conditions applicable to the ambient, laboratory, and source studies. Uncertainties in the model were quantified and modeled OH exposure was compared to tracer decay measurements of OH exposure in the lab and field. Laboratory studies using OFRs were conducted to explore aerosol yields and composition from anthropogenic and biogenic VOC as well as crude oil evaporates. Various aspects of the modeling and laboratory results and tools were applied to interpretation of ambient and source measurements using OFR. Additionally, novel measurement methods were used to study gas/particle partitioning. The research conducted was highly successful and details of the key results are summarized in this report through narrative text, figures, and a complete list of publications acknowledging this grant.

  8. Aerosol-Radiation-Cloud Interactions in the South-East Atlantic: Future Suborbital Activities to Address Knowledge Gaps in Satellite and Model Assessments

    Science.gov (United States)

    Redemann, Jens; Wood, R.; Zuidema, P.; Haywood, J.; Piketh, S.; Formenti, P.; L'Ecuyer, T.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; Shinozuka, Y.; hide

    2016-01-01

    Southern Africa produces almost a third of the Earth's biomass burning (BB) aerosol particles. Particles lofted into the mid-troposphere are transported westward over the South-East (SE) Atlantic, home to one of the three permanent subtropical stratocumulus (Sc) cloud decks in the world. The SE Atlantic stratocumulus deck interacts with the dense layers of BB aerosols that initially overlay the cloud deck, but later subside and may mix into the clouds. These interactions include adjustments to aerosol-induced solar heating and microphysical effects, and their global representation in climate models remains one of the largest uncertainties in estimates of future climate. Hence, new observations over the SE Atlantic have significant implications for global climate change scenarios. Our understanding of aerosol-cloud interactions in the SE Atlantic is hindered both by the lack of knowledge on aerosol and cloud properties, as well as the lack of knowledge about detailed physical processes involved. Most notably, we are missing knowledge on the absorptive and cloud nucleating properties of aerosols, including their vertical distribution relative to clouds, on the locations and degree of aerosol mixing into clouds, on the processes that govern cloud property adjustments, and on the importance of aerosol effects on clouds relative to co-varying synoptic scale meteorology. We discuss the current knowledge of aerosol and cloud property distributions based on satellite observations and sparse suborbital sampling. Recent efforts to make full use of A-Train aerosol sensor synergies will be highlighted. We describe planned field campaigns in the region to address the existing knowledge gaps. Specifically, we describe the scientific objectives and implementation of the five synergistic, international research activities aimed at providing some of the key aerosol and cloud properties and a process-level understanding of aerosol-cloud interactions over the SE Atlantic: NASA

  9. Modeling regional air quality and climate: improving organic aerosol and aerosol activation processes in WRF/Chem version 3.7.1

    Directory of Open Access Journals (Sweden)

    K. Yahya

    2017-06-01

    Full Text Available Air quality and climate influence each other through the uncertain processes of aerosol formation and cloud droplet activation. In this study, both processes are improved in the Weather, Research and Forecasting model with Chemistry (WRF/Chem version 3.7.1. The existing Volatility Basis Set (VBS treatments for organic aerosol (OA formation in WRF/Chem are improved by considering the following: the secondary OA (SOA formation from semi-volatile primary organic aerosol (POA, a semi-empirical formulation for the enthalpy of vaporization of SOA, and functionalization and fragmentation reactions for multiple generations of products from the oxidation of VOCs. Over the continental US, 2-month-long simulations (May to June 2010 are conducted and results are evaluated against surface and aircraft observations during the Nexus of Air Quality and Climate Change (CalNex campaign. Among all the configurations considered, the best performance is found for the simulation with the 2005 Carbon Bond mechanism (CB05 and the VBS SOA module with semivolatile POA treatment, 25 % fragmentation, and the emissions of semi-volatile and intermediate volatile organic compounds being 3 times the original POA emissions. Among the three gas-phase mechanisms (CB05, CB6, and SAPRC07 used, CB05 gives the best performance for surface ozone and PM2. 5 concentrations. Differences in SOA predictions are larger for the simulations with different VBS treatments (e.g., nonvolatile POA versus semivolatile POA compared to the simulations with different gas-phase mechanisms. Compared to the simulation with CB05 and the default SOA module, the simulations with the VBS treatment improve cloud droplet number concentration (CDNC predictions (normalized mean biases from −40.8 % to a range of −34.6 to −27.7 %, with large differences between CB05–CB6 and SAPRC07 due to large differences in their OH and HO2 predictions. An advanced aerosol activation

  10. Climate and health implications of future aerosol emission scenarios

    Science.gov (United States)

    Partanen, Antti-Ilari; Landry, Jean-Sébastien; Damon Matthews, H.

    2018-02-01

    Anthropogenic aerosols have a net cooling effect on climate and also cause adverse health effects by degrading air quality. In this global-scale sensitivity study, we used a combination of the aerosol-climate model ECHAM-HAMMOZ and the University of Victoria Earth System Climate Model to assess the climate and health effects of aerosols emissions from three Representative Concentration Pathways (RCP2.6, RCP4.5, and RCP8.5) and two new (LOW and HIGH) aerosol emission scenarios derived from RCP4.5, but that span a wider spectrum of possible future aerosol emissions. All simulations had CO2 emissions and greenhouse gas forcings from RCP4.5. Aerosol forcing declined similarly in the standard RCP aerosol emission scenarios: the aerosol effective radiative forcing (ERF) decreased from -1.3 W m-2 in 2005 to between -0.1 W m-2 and -0.4 W m-2 in 2100. The differences in ERF were substantially larger between LOW (-0.02 W m-2 in 2100) and HIGH (-0.8 W m-2) scenarios. The global mean temperature difference between the simulations with standard RCP aerosol emissions was less than 0.18 °C, whereas the difference between LOW and HIGH reached 0.86 °C in 2061. In LOW, the rate of warming peaked at 0.48 °C per decade in the 2030s, whereas in HIGH it was the lowest of all simulations and never exceeded 0.23 °C per decade. Using present-day population density and baseline mortality rates for all scenarios, PM2.5-induced premature mortality was 2 371 800 deaths per year in 2010 and 525 700 in 2100 with RCP4.5 aerosol emissions; in HIGH, the premature mortality reached its maximum value of 2 780 800 deaths per year in 2030, whereas in LOW the premature mortality at 2030 was below 299 900 deaths per year. Our results show potential trade-offs in aerosol mitigation with respect to climate change and public health as ambitious reduction of aerosol emissions considerably increased warming while decreasing mortality.

  11. New Aerosol Models for the Retrieval of Aerosol Optical Thickness and Normalized Water-Leaving Radiances from the SeaWiFS and MODIS Sensors Over Coastal Regions and Open Oceans

    Science.gov (United States)

    Ahmad, Ziauddin; Franz, Bryan A.; McClain, Charles R.; Kwiatkowska, Ewa J.; Werdell, Jeremy; Shettle, Eric P.; Holben, Brent N.

    2010-01-01

    We describe the development of a new suite of aerosol models for the retrieval of atmospheric and oceanic optical properties from the SeaWiFs and MODIS sensors, including aerosol optical thickness (tau), angstrom coefficient (alpha), and water-leaving radiance (L(sub w)). The new aerosol models are derived from Aerosol Robotic Network (AERONET) observations and have bimodal lognormal distributions that are narrower than previous models used by the Ocean Biology Processing Group. We analyzed AERONET data over open ocean and coastal regions and found that the seasonal variability in the modal radii, particularly in the coastal region, was related to the relative humidity, These findings were incorporated into the models by making the modal radii, as well as the refractive indices, explicitly dependent on relative humidity, From those findings, we constructed a new suite of aerosol models. We considered eight relative humidity values (30%, 50%, 70%, 75%, 80%, 85%, 90%. and 95%) and, for each relative humidity value, we constructed ten distributions by varying the fine-mode fraction from zero to 1. In all. 80 distributions (8Rh x 10 fine-mode fractions) were created to process the satellite data. We. also assumed that the coarse-mode particles were nonabsorbing (sea salt) and that all observed absorptions were entirely due to fine-mode particles. The composition of fine mode was varied to ensure that the new models exhibited the same spectral dependence of single scattering albedo as observed in the AERONET data,

  12. Modeling long distance dispersal of airborne foot-and-mouth disease virus as a polydisperse aerosol - Application to the emergence of a new strain from Egypt to Israel

    Science.gov (United States)

    Klausner, Ziv; Klement, Eyal; Fattal, Eyal

    2015-12-01

    Long distance dispersal (LDD) of airborne aerosol of foot-and-mouth disease (FMD) virus was extensively modeled in the literature. Most studies modeled this aerosol in simplistic approach as a passive tracer, neglecting physical and biological mechanisms that affect bio-aerosols such as the FMD aerosol. This approach was justified either because under persistent wind these mechanisms lower the extant of downwind hazard or on the grounds that the effect of some of the physical mechanisms on particles as small as the FMD particles (0.015-20 μm) is supposed to be negligible compared to the effect of atmospheric turbulence. Even when the FMD aerosol was treated as aerosol, it was assumed that it is monodisperse, i.e., all its particles are of the same size. The aim of the study is to examine whether these simplistic approaches are indeed justified when dealing with LDD of a bio-aerosol under actual atmospheric conditions. In order to do so, the influence of a more realistic modeling of the FMD aerosol as a polydisperse aerosol was compared to passive tracer and to monodisperse aerosol. The comparison refers to a case of a widespread FMD outbreak that occurred in 2012 in Egypt. This outbreak involved the emergence of a new serotype in Egypt, SAT2 and concern was raised that this serotype will advance further to Asia and Europe. Israel is located on the land bridge between Africa, Asia and Europe, and shares a long desert border with Egypt as well as a long Mediterranean shore adjacent to Egypt's shore. This unique location as well as the fact that Israel does not have any cattle trade with its neighboring countries make Israel an interesting test case for the examination of the necessary conditions for the long distance dispersal (LDD) of a new FMD strains from Africa to Europe. The analysis in this study shows that under quasi-stationary wind conditions modeling FMD dispersal as a passive tracer results in a significantly longer hazard distance. Under non

  13. Model analysis of secondary organic aerosol formation by glyoxal in laboratory studies: the case for photoenhanced chemistry.

    Science.gov (United States)

    Sumner, Andrew J; Woo, Joseph L; McNeill, V Faye

    2014-10-21

    The reactive uptake of glyoxal by atmospheric aerosols is believed to be a significant source of secondary organic aerosol (SOA). Several recent laboratory studies have been performed with the goal of characterizing this process, but questions remain regarding the effects of photochemistry on SOA growth. We applied GAMMA (McNeill et al. Environ. Sci. Technol. 2012, 46, 8075-8081), a photochemical box model with coupled gas-phase and detailed aqueous aerosol-phase chemistry, to simulate aerosol chamber studies of SOA formation by the uptake of glyoxal by wet aerosol under dark and irradiated conditions (Kroll et al. J. Geophys. Res. 2005, 110 (D23), 1-10; Volkamer et al. Atmos. Chem. Phys. 2009, 9, 1907-1928; Galloway et al. Atmos. Chem. Phys. 2009, 9, 3331- 306 3345 and Geophys. Res. Lett. 2011, 38, L17811). We find close agreement between simulated SOA growth and the results of experiments conducted under dark conditions using values of the effective Henry's Law constant of 1.3-5.5 × 10(7) M atm(-1). While irradiated conditions led to the production of some organic acids, organosulfates, and other oxidation products via well-established photochemical mechanisms, these additional product species contribute negligible aerosol mass compared to the dark uptake of glyoxal. Simulated results for irradiated experiments therefore fell short of the reported SOA mass yield by up to 92%. This suggests a significant light-dependent SOA formation mechanism that is not currently accounted for by known bulk photochemistry, consistent with recent laboratory observations of SOA production via photosensitizer chemistry.

  14. Modelling temperature-dependent heat production over decades in High Arctic coal waste rock piles

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Elberling, Bo; Jansson, P.E.

    2011-01-01

    Subsurface heat production from oxidation of pyrite is an important process that may increase subsurface temperatures within coal waste rock piles and increase the release of acid mine drainage, AMD. Waste rock piles in the Arctic are especially vulnerable to changes in subsurface temperatures...... such as heat production from coal oxidation may be equally important....... as the release of AMD normally is limited by permafrost. Here we show that temperatures within a 20 year old heat-producing waste rock pile in Svalbard (78°N) can be modelled by the one-dimensional heat and water flow model (CoupModel) with a new temperature-dependent heat-production module that includes both...

  15. Speciation of the major inorganic salts in atmospheric aerosols of Beijing, China: Measurements and comparison with model

    Science.gov (United States)

    Tang, Xiong; Zhang, Xiaoshan; Ci, Zhijia; Guo, Jia; Wang, Jiaqi

    2016-05-01

    In the winter and summer of 2013-2014, we used a sampling system, which consists of annular denuder, back-up filter and thermal desorption set-up, to measure the speciation of major inorganic salts in aerosols and the associated trace gases in Beijing. This sampling system can separate volatile ammonium salts (NH4NO3 and NH4Cl) from non-volatile ammonium salts ((NH4)2SO4), as well as the non-volatile nitrate and chloride. The measurement data was used as input of a thermodynamic equilibrium model (ISORROPIA II) to investigate the gas-aerosol equilibrium characteristics. Results show that (NH4)2SO4, NH4NO3 and NH4Cl were the major inorganic salts in aerosols and mainly existed in the fine particles. The sulfate, nitrate and chloride associated with crustal ions were also important in Beijing where mineral dust concentrations were high. About 19% of sulfate in winter and 11% of sulfate in summer were associated with crustal ions and originated from heterogeneous reactions or direct emissions. The non-volatile nitrate contributed about 33% and 15% of nitrate in winter and summer, respectively. Theoretical thermodynamic equilibrium calculations for NH4NO3 and NH4Cl suggest that the gaseous precursors were sufficient to form stable volatile ammonium salts in winter, whereas the internal mixing with sulfate and crustal species were important for the formation of volatile ammonium salts in summer. The results of the thermodynamic equilibrium model reasonably agreed with the measurements of aerosols and gases, but large discrepancy existed in predicting the speciation of inorganic ammonium salts. This indicates that the assumption on crustal species in the model was important for obtaining better understanding on gas-aerosol partitioning and improving the model prediction.

  16. Global change and sustainable development. A modelling perspective for the next decade

    International Nuclear Information System (INIS)

    Rotmans, J.; Van Asselt, M.B.A.; De Bruin, A.J.; Den Elzen, M.G.J.; De greef, J.; Hilderink, H.; Hoekstra, A.Y.; Janssen, M.A.; Koester, H.W.; Martens, W.J.M.; Niessen, L.W.; De Vries, H.J.M.

    1994-06-01

    The main objective of the title program is to develop an integrated modelling framework for analysing global change and sustainable development