WorldWideScience

Sample records for aeroelastic code development

  1. The aeroelastic code FLEXLAST

    Energy Technology Data Exchange (ETDEWEB)

    Visser, B. [Stork Product Eng., Amsterdam (Netherlands)

    1996-09-01

    To support the discussion on aeroelastic codes, a description of the code FLEXLAST was given and experiences within benchmarks and measurement programmes were summarized. The code FLEXLAST has been developed since 1982 at Stork Product Engineering (SPE). Since 1992 FLEXLAST has been used by Dutch industries for wind turbine and rotor design. Based on the comparison with measurements, it can be concluded that the main shortcomings of wind turbine modelling lie in the field of aerodynamics, wind field and wake modelling. (au)

  2. Development of an aeroelastic code based on three-dimensional viscous–inviscid method for wind turbine computations

    DEFF Research Database (Denmark)

    Sessarego, Matias; Ramos García, Néstor; Sørensen, Jens Nørkær

    2017-01-01

    Aerodynamic and structural dynamic performance analysis of modern wind turbines are routinely estimated in the wind energy field using computational tools known as aeroelastic codes. Most aeroelastic codes use the blade element momentum (BEM) technique to model the rotor aerodynamics and a modal......, multi-body or the finite-element approach to model the turbine structural dynamics. The present work describes the development of a novel aeroelastic code that combines a three-dimensional viscous–inviscid interactive method, method for interactive rotor aerodynamic simulations (MIRAS...... Code Comparison Collaboration Project. Simulation tests consist of steady wind inflow conditions with different combinations of yaw error, wind shear, tower shadow and turbine-elastic modeling. Turbulent inflow created by using a Mann box is also considered. MIRAS-FLEX results, such as blade tip...

  3. Implementation of the Actuator Cylinder Flow Model in the HAWC2 code for Aeroelastic Simulations on Vertical Axis Wind Turbines

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Larsen, Torben J.; Schmidt Paulsen, Uwe

    2013-01-01

    The paper presents the implementation of the Actuator Cylinder (AC) flow model in the HAWC2 aeroelastic code originally developed for simulation of Horizontal Axis Wind Turbine (HAWT) aeroelasticity. This is done within the DeepWind project where the main objective is to explore the competitiveness...

  4. OC3—Benchmark Exercise of Aero-elastic Offshore Wind Turbine Codes

    Science.gov (United States)

    Passon, P.; Kühn, M.; Butterfield, S.; Jonkman, J.; Camp, T.; Larsen, T. J.

    2007-07-01

    This paper introduces the work content and status of the first international investigation and verification of aero-elastic codes for offshore wind turbines as performed by the "Offshore Code Comparison Collaboration"(OC3) within the "IEA Wind Annex XXIII - Subtask 2". An overview is given on the state-of-the-art of the concerned offshore wind turbine simulation codes. Exemplary results of benchmark simulations from the first phase of the project are presented and discussed while subsequent phases are introduced. Furthermore, the paper discusses areas where differences between the codes have been identified and the sources of those differences, such as the differing theories implemented into the individual codes. Finally, further research and code development needs are presented based on the latest findings from the current state of the project.

  5. Harmonic Balance Computations of Fan Aeroelastic Stability

    Science.gov (United States)

    Bakhle, Milind A.; Reddy, T. S. R.

    2010-01-01

    A harmonic balance (HB) aeroelastic analysis, which has been recently developed, was used to determine the aeroelastic stability (flutter) characteristics of an experimental fan. To assess the numerical accuracy of this HB aeroelastic analysis, a time-domain aeroelastic analysis was also used to determine the aeroelastic stability characteristics of the same fan. Both of these three-dimensional analysis codes model the unsteady flowfield due to blade vibrations using the Reynolds-averaged Navier-Stokes (RANS) equations. In the HB analysis, the unsteady flow equations are converted to a HB form and solved using a pseudo-time marching method. In the time-domain analysis, the unsteady flow equations are solved using an implicit time-marching approach. Steady and unsteady computations for two vibration modes were carried out at two rotational speeds: 100 percent (design) and 70 percent (part-speed). The steady and unsteady results obtained from the two analysis methods compare well, thus verifying the recently developed HB aeroelastic analysis. Based on the results, the experimental fan was found to have no aeroelastic instability (flutter) at the conditions examined in this study.

  6. Aeroelastic code development activities in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A.D. [National Renewable Energy Lab., Golden, Colorado (United States)

    1996-09-01

    Designing wind turbines to be fatigue resistant and to have long lifetimes at minimal cost is a major goal of the federal wind program and the wind industry in the United States. To achieve this goal, we must be able to predict critical loads for a wide variety of different wind turbines operating under extreme conditions. The codes used for wind turbine dynamic analysis must be able to analyze a wide range of different wind turbine configurations as well as rapidly predict the loads due to turbulent wind inflow with a minimal set of degrees of freedom. Code development activities in the US have taken a two-pronged approach in order to satisfy both of these criteria: (1) development of a multi-purpose code which can be used to analyze a wide variety of wind turbine configurations without having to develop new equations of motion with each configuration change, and (2) development of specialized codes with minimal sets of specific degrees of freedom for analysis of two- and three-bladed horizontal axis wind turbines and calculation of machine loads due to turbulent inflow. In the first method we have adapted a commercial multi-body dynamics simulation package for wind turbine analysis. In the second approach we are developing specialized codes with limited degrees of freedom, usually specified in the modal domain. This paper will summarize progress to date in the development, validation, and application of these codes. (au) 13 refs.

  7. Sensitivity Analysis and Error Control for Computational Aeroelasticity, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is the development of a next-generation computational aeroelasticity code, suitable for real-world complex geometries, and...

  8. Aeroelastic simulation using CFD based reduced order models

    International Nuclear Information System (INIS)

    Zhang, W.; Ye, Z.; Li, H.; Yang, Q.

    2005-01-01

    This paper aims at providing an accurate and efficient method for aeroelastic simulation. System identification is used to get the reduced order models of unsteady aerodynamics. Unsteady Euler codes are used to compute the output signals while 3211 multistep input signals are utilized. LS(Least Squares) method is used to estimate the coefficients of the input-output difference model. The reduced order models are then used in place of the unsteady CFD code for aeroelastic simulation. The aeroelastic equations are marched by an improved 4th order Runge-Kutta method that only needs to compute the aerodynamic loads one time at every time step. The computed results agree well with that of the direct coupling CFD/CSD methods. The computational efficiency is improved 1∼2 orders while still retaining the high accuracy. A standard aeroelastic computing example (isogai wing) with S type flutter boundary is computed and analyzed. It is due to the system has more than one neutral points at the Mach range of 0.875∼0.9. (author)

  9. Optimization of wind turbine rotors - using advanced aerodynamic and aeroelastic models and numerical optimization

    DEFF Research Database (Denmark)

    Døssing, Mads

    of very large machines introduces new problems in the practical design, and optimization tools are necessary. These must combine the dynamic eects of both aerodynamics and structure in an integrated optimization environment. This is referred to as aeroelastic optimization. The Ris DTU optimization...... software HAWTOPT has been used in this project. The quasi-steady aerodynamic module have been improved with a corrected blade element momentum method. A structure module has also been developed which lays out the blade structural properties. This is done in a simplied way allowing fast conceptual design...... studies and with focus on the overall properties relevant for the aeroelastic properties. Aeroelastic simulations in the time domain were carried out using the aeroelastic code HAWC2. With these modules coupled to HAWTOPT, optimizations have been made. In parallel with the developments of the mentioned...

  10. Applications of potential theory computations to transonic aeroelasticity

    Science.gov (United States)

    Edwards, J. W.

    1986-01-01

    Unsteady aerodynamic and aeroelastic stability calculations based upon transonic small disturbance (TSD) potential theory are presented. Results from the two-dimensional XTRAN2L code and the three-dimensional XTRAN3S code are compared with experiment to demonstrate the ability of TSD codes to treat transonic effects. The necessity of nonisentropic corrections to transonic potential theory is demonstrated. Dynamic computational effects resulting from the choice of grid and boundary conditions are illustrated. Unsteady airloads for a number of parameter variations including airfoil shape and thickness, Mach number, frequency, and amplitude are given. Finally, samples of transonic aeroelastic calculations are given. A key observation is the extent to which unsteady transonic airloads calculated by inviscid potential theory may be treated in a locally linear manner.

  11. Numerical Simulations of the Aeroelastic Behavior of Large Horizontal-Axis Wind Turbines: The Drivetrain Case

    DEFF Research Database (Denmark)

    Gebhardt, Cristian; Veluri, Badrinath; Preidikman, Sergio

    2010-01-01

    In this work an aeroelastic model that describes the interaction between aerodynamics and drivetrain dynamics of a large horizontal–axis wind turbine is presented. Traditional designs for wind turbines are based on the output of specific aeroelastic simulation codes. The output of these codes giv...

  12. Introduction of the ASP3D Computer Program for Unsteady Aerodynamic and Aeroelastic Analyses

    Science.gov (United States)

    Batina, John T.

    2005-01-01

    A new computer program has been developed called ASP3D (Advanced Small Perturbation 3D), which solves the small perturbation potential flow equation in an advanced form including mass-consistent surface and trailing wake boundary conditions, and entropy, vorticity, and viscous effects. The purpose of the program is for unsteady aerodynamic and aeroelastic analyses, especially in the nonlinear transonic flight regime. The program exploits the simplicity of stationary Cartesian meshes with the movement or deformation of the configuration under consideration incorporated into the solution algorithm through a planar surface boundary condition. The new ASP3D code is the result of a decade of developmental work on improvements to the small perturbation formulation, performed while the author was employed as a Senior Research Scientist in the Configuration Aerodynamics Branch at the NASA Langley Research Center. The ASP3D code is a significant improvement to the state-of-the-art for transonic aeroelastic analyses over the CAP-TSD code (Computational Aeroelasticity Program Transonic Small Disturbance), which was developed principally by the author in the mid-1980s. The author is in a unique position as the developer of both computer programs to compare, contrast, and ultimately make conclusions regarding the underlying formulations and utility of each code. The paper describes the salient features of the ASP3D code including the rationale for improvements in comparison with CAP-TSD. Numerous results are presented to demonstrate the ASP3D capability. The general conclusion is that the new ASP3D capability is superior to the older CAP-TSD code because of the myriad improvements developed and incorporated.

  13. A methodology for aeroelastic constraint analysis in a conceptual design environment

    Science.gov (United States)

    de Baets, Peter Wilfried Gaston

    The objective of this study is the infusion of aeroelastic constraint knowledge into the design space. The mapping of such aeroelastic information in the conceptual design space has long been a desire of the design community. The conceptual design phase of an aircraft is a multidisciplinary environment and has the most influence on the future design of the vehicle. However, sufficient results cannot he obtained in a timely enough manner to materially contribute to early design decisions. Furthermore, the natural division of the engineering team into specialty groups is not well supported by the monolithic aerodynamic-structures codes typically used in modern aeroelastic analysis. The research examines how the Bi-Level Integrated System Synthesis decomposition technique can be adapted to perform as the conceptual aeroelastic design tool. The study describes a comprehensive solution of the aeroelastic coupled problem cast in this decomposition format and implemented in an integrated framework. The method is supported by application details of a proof of concept high speed vehicle. Physics-based codes such as finite element and an aerodynamic panel method are used to model the high-definition geometric characteristics of the vehicle. A synthesis and sizing code was added to referee the conflicts that arise between the two disciplines. This research's novelty lies in four points. First is the use of physics-based tools at the conceptual design phase to calculate the aeroelastic properties. Second is the projection of flutter and divergence velocity constraint lines in a power loading versus wing loading graph. Third is the aeroelastic assessment time reduction, which has moved from a matter of years to months. Lastly, this assessment allowed verification of the impact of changing velocity, altitude, and angle of attack on the aeroelastic properties. This then allowed identification of robust design space with respect to these three mission properties. The method

  14. Nonlinear aeroelastic modelling for wind turbine blades based on blade element momentum theory and geometrically exact beam theory

    International Nuclear Information System (INIS)

    Wang, Lin; Liu, Xiongwei; Renevier, Nathalie; Stables, Matthew; Hall, George M.

    2014-01-01

    Due to the increasing size and flexibility of large wind turbine blades, accurate and reliable aeroelastic modelling is playing an important role for the design of large wind turbines. Most existing aeroelastic models are linear models based on assumption of small blade deflections. This assumption is not valid anymore for very flexible blade design because such blades often experience large deflections. In this paper, a novel nonlinear aeroelastic model for large wind turbine blades has been developed by combining BEM (blade element momentum) theory and mixed-form formulation of GEBT (geometrically exact beam theory). The nonlinear aeroelastic model takes account of large blade deflections and thus greatly improves the accuracy of aeroelastic analysis of wind turbine blades. The nonlinear aeroelastic model is implemented in COMSOL Multiphysics and validated with a series of benchmark calculation tests. The results show that good agreement is achieved when compared with experimental data, and its capability of handling large deflections is demonstrated. Finally the nonlinear aeroelastic model is applied to aeroelastic modelling of the parked WindPACT 1.5 MW baseline wind turbine, and reduced flapwise deflection from the nonlinear aeroelastic model is observed compared to the linear aeroelastic code FAST (Fatigue, Aerodynamics, Structures, and Turbulence). - Highlights: • A novel nonlinear aeroelastic model for wind turbine blades is developed. • The model takes account of large blade deflections and geometric nonlinearities. • The model is reliable and efficient for aeroelastic modelling of wind turbine blades. • The accuracy of the model is verified by a series of benchmark calculation tests. • The model provides more realistic aeroelastic modelling than FAST (Fatigue, Aerodynamics, Structures, and Turbulence)

  15. Aeroelastic System Development Using Proper Orthogonal Decomposition and Volterra Theory

    Science.gov (United States)

    Lucia, David J.; Beran, Philip S.; Silva, Walter A.

    2003-01-01

    This research combines Volterra theory and proper orthogonal decomposition (POD) into a hybrid methodology for reduced-order modeling of aeroelastic systems. The out-come of the method is a set of linear ordinary differential equations (ODEs) describing the modal amplitudes associated with both the structural modes and the POD basis functions for the uid. For this research, the structural modes are sine waves of varying frequency, and the Volterra-POD approach is applied to the fluid dynamics equations. The structural modes are treated as forcing terms which are impulsed as part of the uid model realization. Using this approach, structural and uid operators are coupled into a single aeroelastic operator. This coupling converts a free boundary uid problem into an initial value problem, while preserving the parameter (or parameters) of interest for sensitivity analysis. The approach is applied to an elastic panel in supersonic cross ow. The hybrid Volterra-POD approach provides a low-order uid model in state-space form. The linear uid model is tightly coupled with a nonlinear panel model using an implicit integration scheme. The resulting aeroelastic model provides correct limit-cycle oscillation prediction over a wide range of panel dynamic pressure values. Time integration of the reduced-order aeroelastic model is four orders of magnitude faster than the high-order solution procedure developed for this research using traditional uid and structural solvers.

  16. Development of Variable Camber Continuous Trailing Edge Flap for Performance Adaptive Aeroelastic Wing

    Science.gov (United States)

    Nguyen, Nhan; Kaul, Upender; Lebofsky, Sonia; Ting, Eric; Chaparro, Daniel; Urnes, James

    2015-01-01

    This paper summarizes the recent development of an adaptive aeroelastic wing shaping control technology called variable camber continuous trailing edge flap (VCCTEF). As wing flexibility increases, aeroelastic interactions with aerodynamic forces and moments become an increasingly important consideration in aircraft design and aerodynamic performance. Furthermore, aeroelastic interactions with flight dynamics can result in issues with vehicle stability and control. The initial VCCTEF concept was developed in 2010 by NASA under a NASA Innovation Fund study entitled "Elastically Shaped Future Air Vehicle Concept," which showed that highly flexible wing aerodynamic surfaces can be elastically shaped in-flight by active control of wing twist and bending deflection in order to optimize the spanwise lift distribution for drag reduction. A collaboration between NASA and Boeing Research & Technology was subsequently funded by NASA from 2012 to 2014 to further develop the VCCTEF concept. This paper summarizes some of the key research areas conducted by NASA during the collaboration with Boeing Research and Technology. These research areas include VCCTEF design concepts, aerodynamic analysis of VCCTEF camber shapes, aerodynamic optimization of lift distribution for drag minimization, wind tunnel test results for cruise and high-lift configurations, flutter analysis and suppression control of flexible wing aircraft, and multi-objective flight control for adaptive aeroelastic wing shaping control.

  17. Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis

    Science.gov (United States)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2013-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a coupled aeroelastic modeling capability by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed in the framework of modal analysis. Transient aeroelastic nozzle startup analyses of the Block I Space Shuttle Main Engine at sea level were performed. The computed results from the aeroelastic nozzle modeling are presented.

  18. GAROS, an aeroelastic code for coupled fixed-rotating structures

    Energy Technology Data Exchange (ETDEWEB)

    Rees, M. [Aerodyn Energiestyseme GmbH, Rendsburg (Germany); Vollan, A. [Pilatus Flugzeugwerke, Stans (Switzerland)

    1996-09-01

    The GAROS (General Analysis of Rotating Structures) program system has been specially designed to calculate aeroelastic stability and dynamic response of horizontal axis wind energy converters. Nevertheless it is also suitable for the dynamic analysis of helicopter rotors and has been used in the analysis of car bodies taking account of rotating wheels. GAROS was developed over the last 17 years. In the following the mechanical and the aerodynamic model will be discussed in detail. A short overview of the solution methods for the equation of motion in time and frequency domain will ge given. After this one example for the FEM model of the rotor and tower will be discussed. (EG)

  19. The aeroelastic code HawC - model and comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Thirstrup Petersen, J. [Risoe National Lab., The Test Station for Wind Turbines, Roskilde (Denmark)

    1996-09-01

    A general aeroelastic finite element model for simulation of the dynamic response of horizontal axis wind turbines is presented. The model has been developed with the aim to establish an effective research tool, which can support the general investigation of wind turbine dynamics and research in specific areas of wind turbine modelling. The model concentrates on the correct representation of the inertia forces in a form, which makes it possible to recognize and isolate effects originating from specific degrees of freedom. The turbine structure is divided into substructures, and nonlinear kinematic terms are retained in the equations of motion. Moderate geometric nonlinearities are allowed for. Gravity and a full wind field including 3-dimensional 3-component turbulence are included in the loading. Simulation results for a typical three bladed, stall regulated wind turbine are presented and compared with measurements. (au)

  20. Generator dynamics in aeroelastic analysis and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, T.J.; Hansen, M.H.; Iov, F.

    2003-05-01

    This report contains a description of a dynamic model for a doubly-fed induction generator implemented in the aeroelastic code HAWC. The model has physical input parameters (resistance, reactance etc.) and input variables (stator and rotor voltage and rotor speed). The model can be used to simulate the generator torque as well as the rotor and stator currents, active and reactive power. A perturbation method has been used to reduce the original generator model equations to a set of equations which can be solved with the same time steps as a typical aeroelastic code. The method is used to separate the fast transients of the model from the slow variations and deduce a reduced order expression for the slow part. Dynamic effects of the first order terms in the model as well as the influence on drive train eigenfrequencies and damping has been investigated. Load response during time simulation of wind turbine response have been compared to simulations with a linear static generator model originally implemented i HAWC. A 2 MW turbine has been modelled in the aeroelastic code HAWC. When using the new dynamic generator model there is an interesting coupling between the generator dynamics and a global turbine vibration mode at 4.5 Hz, which only occurs when a dynamic formulation of the generator equations is applied. This frequency can especially be seen in the electrical power of the generator and the rotational speed of the generator, but also as torque variations in the drive train. (au)

  1. Aeroelastic modal dynamics of wind turbines including anisotropic effects

    DEFF Research Database (Denmark)

    Skjoldan, Peter Fisker

    frequency is thus identified as the dominant frequency in the response of a pure excitation of the mode observed in the inertial frame. A modal analysis tool based directly on the complex aeroelastic wind turbine code BHawC is presented. It uses the Coleman approach in isotropic conditions......Several methods for aeroelastic modal analysis of a rotating wind turbine are developed and used to analyse the modal dynamics of two simplified models and a complex model in isotropic and anisotropic conditions. The Coleman transformation is used to enable extraction of the modal frequencies...... of Floquet analysis or Hill's method which do not provide a unique reference frame for observing the modal frequency, to which any multiple of the rotor speed can be added. This indeterminacy is resolved by requiring that the periodic mode shape be as constant as possible in the inertial frame. The modal...

  2. Transonic aeroelastic numerical simulation in aeronautical engineering

    International Nuclear Information System (INIS)

    Yang, G.

    2005-01-01

    An LU-SGS (lower-upper symmetric Gauss-Seidel) subiteration scheme is constructed for time-marching of the fluid equations. The HLLEW (Harten-Lax-van Leer-Einfeldt-Wada) scheme is used for the spatial discretization. The same subiteration formulation is applied directly to the structural equations of motion in generalized coordinates. Through subiteration between the fluid and structural equations, a fully implicit aeroelastic solver is obtained for the numerical simulation of fluid/structure interaction. To improve the ability for application to complex configurations, a multiblock grid is used for the flow field calculation and Transfinite Interpolation (TFI) is employed for the adaptive moving grid deformation. The infinite plate spline (IPS) and the principal of virtual work are utilized for the data transformation between the fluid and structure. The developed code was first validated through the comparison of experimental and computational results for the AGARD 445.6 standard aeroelastic wing. Then the flutter character of a tail wing with control surface was analyzed. Finally, flutter boundaries of a complex aircraft configuration were predicted. (author)

  3. Aeroelastic research programme EFP-2001[YAW;STALL]; Forskning i aeroelasticitet EFP-2001

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard Madsen, H. (ed.)

    2002-12-01

    The project covers the one year period from mid 2001 to mid 2002 and is the last part of a 5 years research programme on aeroelasticity. The overall objectives of the project are to improve the load and design basis for wind turbines and to ensure in collaboration with industry a continu-ously running process on development of new designs and solution of actual problems. Specifi-cally the main objectives for the present period are the following: a) development of a design tool for analysis of dynamic stability b) investigations of blade tip aerodynamics and blade tip design on basis of 3D CFD computa-tions c) publication of an airfoil catalogue d) load reduction using new control strategies e) aeroacoustic modelling of noise propagation During the present project period the computer code HAWCModal has been finished. The code computes the modal characteristics for a turbine as function of rotational speed. It is based on the structural modelling in the aeroelastic code HAWC and uses the same input files. The computed eigen frequencies are shown in a Campbell diagram and the corresponding modal forms can be shown graphically for an operating turbine. Finally, the structural damping is also computed by the code. HAWCModal is the basis for the stability analysis tool HAWCStab which is now under devel-opment. With HAWCStab the aeroelastic stability of a turbine can be analysed. The complex aerodynamics at three different blade tip shapes have been analysed with the three-dimensional CFD code EllipSys3D. The tip vortex was visualised and the lift and drag coef-ficients in the tip region were analysed in order to study the influence of the tip geometry on the performance and aerodynamic damping. An airfoil catalogue containing computations on 28 different airfoils for wind turbine applica-tion in comparison with experimental data has been developed and is available via the internet. Besides the main themes of the project as mentioned above there have been research

  4. Three-Dimensional Aeroelastic and Aerothermoelastic Behavior in Hypersonic Flow

    Science.gov (United States)

    McNamara, Jack J.; Friedmann, Peretz P.; Powell, Kenneth G.; Thuruthimattam, Biju J.; Bartels, Robert E.

    2005-01-01

    The aeroelastic and aerothermoelastic behavior of three-dimensional configurations in hypersonic flow regime are studied. The aeroelastic behavior of a low aspect ratio wing, representative of a fin or control surface on a generic hypersonic vehicle, is examined using third order piston theory, Euler and Navier-Stokes aerodynamics. The sensitivity of the aeroelastic behavior generated using Euler and Navier-Stokes aerodynamics to parameters governing temporal accuracy is also examined. Also, a refined aerothermoelastic model, which incorporates the heat transfer between the fluid and structure using CFD generated aerodynamic heating, is used to examine the aerothermoelastic behavior of the low aspect ratio wing in the hypersonic regime. Finally, the hypersonic aeroelastic behavior of a generic hypersonic vehicle with a lifting-body type fuselage and canted fins is studied using piston theory and Euler aerodynamics for the range of 2.5 less than or equal to M less than or equal to 28, at altitudes ranging from 10,000 feet to 80,000 feet. This analysis includes a study on optimal mesh selection for use with Euler aerodynamics. In addition to the aeroelastic and aerothermoelastic results presented, three time domain flutter identification techniques are compared, namely the moving block approach, the least squares curve fitting method, and a system identification technique using an Auto-Regressive model of the aeroelastic system. In general, the three methods agree well. The system identification technique, however, provided quick damping and frequency estimations with minimal response record length, and therefore o ers significant reductions in computational cost. In the present case, the computational cost was reduced by 75%. The aeroelastic and aerothermoelastic results presented illustrate the applicability of the CFL3D code for the hypersonic flight regime.

  5. Recent advance in nonlinear aeroelastic analysis and control of the aircraft

    Directory of Open Access Journals (Sweden)

    Xiang Jinwu

    2014-02-01

    Full Text Available A review on the recent advance in nonlinear aeroelasticity of the aircraft is presented in this paper. The nonlinear aeroelastic problems are divided into three types based on different research objects, namely the two dimensional airfoil, the wing, and the full aircraft. Different nonlinearities encountered in aeroelastic systems are discussed firstly, where the emphases is placed on new nonlinear model to describe tested nonlinear relationship. Research techniques, especially new theoretical methods and aeroelastic flutter control methods are investigated in detail. The route to chaos and the cause of chaotic motion of two-dimensional aeroelastic system are summarized. Various structural modeling methods for the high-aspect-ratio wing with geometric nonlinearity are discussed. Accordingly, aerodynamic modeling approaches have been developed for the aeroelastic modeling of nonlinear high-aspect-ratio wings. Nonlinear aeroelasticity about high-altitude long-endurance (HALE and fight aircrafts are studied separately. Finally, conclusions and the challenges of the development in nonlinear aeroelasticity are concluded. Nonlinear aeroelastic problems of morphing wing, energy harvesting, and flapping aircrafts are proposed as new directions in the future.

  6. Centrifugal Compressor Aeroelastic Analysis Code

    Science.gov (United States)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    2002-01-01

    Centrifugal compressors are very widely used in the turbomachine industry where low mass flow rates are required. Gas turbine engines for tanks, rotorcraft and small jets rely extensively on centrifugal compressors for rugged and compact design. These compressors experience problems related with unsteadiness of flowfields, such as stall flutter, separation at the trailing edge over diffuser guide vanes, tip vortex unsteadiness, etc., leading to rotating stall and surge. Considerable interest exists in small gas turbine engine manufacturers to understand and eventually eliminate the problems related to centrifugal compressors. The geometric complexity of centrifugal compressor blades and the twisting of the blade passages makes the linear methods inapplicable. Advanced computational fluid dynamics (CFD) methods are needed for accurate unsteady aerodynamic and aeroelastic analysis of centrifugal compressors. Most of the current day industrial turbomachines and small aircraft engines are designed with a centrifugal compressor. With such a large customer base and NASA Glenn Research Center being, the lead center for turbomachines, it is important that adequate emphasis be placed on this area as well. Currently, this activity is not supported under any project at NASA Glenn.

  7. Development of a structural optimization capability for the aeroelastic tailoring of composite rotor blades with straight and swept tips

    Science.gov (United States)

    Friedmann, P. P.; Venkatesan, C.; Yuan, K.

    1992-01-01

    This paper describes the development of a new structural optimization capability aimed at the aeroelastic tailoring of composite rotor blades with straight and swept tips. The primary objective is to reduce vibration levels in forward flight without diminishing the aeroelastic stability margins of the blade. In the course of this research activity a number of complicated tasks have been addressed: (1) development of a new, aeroelastic stability and response analysis; (2) formulation of a new comprehensive sensitive analysis, which facilitates the generation of the appropriate approximations for the objective and the constraints; (3) physical understanding of the new model and, in particular, determination of its potential for aeroelastic tailoring, and (4) combination of the newly developed analysis capability, the sensitivity derivatives and the optimizer into a comprehensive optimization capability. The first three tasks have been completed and the fourth task is in progress.

  8. Optimization of wind turbine rotors - using advanced aerodynamic and aeroelastic models and numerical optimization

    Energy Technology Data Exchange (ETDEWEB)

    Doessing, M.

    2011-05-15

    During the last decades the annual energy produced by wind turbines has increased dramatically and wind turbines are now available in the 5MW range. Turbines in this range are constantly being developed and it is also being investigated whether turbines as large as 10-20MW are feasible. The design of very large machines introduces new problems in the practical design, and optimization tools are necessary. These must combine the dynamic effects of both aerodynamics and structure in an integrated optimization environment. This is referred to as aeroelastic optimization. The Risoe DTU optimization software HAWTOPT has been used in this project. The quasi-steady aerodynamic module have been improved with a corrected blade element momentum method. A structure module has also been developed which lays out the blade structural properties. This is done in a simplified way allowing fast conceptual design studies and with focus on the overall properties relevant for the aeroelastic properties. Aeroelastic simulations in the time domain were carried out using the aeroelastic code HAWC2. With these modules coupled to HAWTOPT, optimizations have been made. In parallel with the developments of the mentioned numerical modules, focus has been on analysis and a fundamental understanding of the key parameters in wind turbine design. This has resulted in insight and an effective design methodology is presented. Using the optimization environment a 5MW wind turbine rotor has been optimized for reduced fatigue loads due to apwise bending moments. Among other things this has indicated that airfoils for wind turbine blades should have a high lift coefficient. The design methodology proved to be stable and a help in the otherwise challenging task of numerical aeroelastic optimization. (Author)

  9. New aeroelastic studies for a morphing wing

    Directory of Open Access Journals (Sweden)

    Ruxandra Mihaela BOTEZ*

    2012-06-01

    Full Text Available For this study, the upper surface of a rectangular finite aspect ratio wing, with a laminar airfoil cross-section, was made of a carbon-Kevlar composite material flexible skin. This flexible skin was morphed by use of Shape Memory Alloy actuators for 35 test cases characterized by combinations of Mach numbers, Reynolds numbers and angles of attack. The Mach numbers varied from 0.2 to 0.3 and the angles of attack ranged between -1° and 2°. The optimized airfoils were determined by use of the CFD XFoil code. The purpose of this aeroelastic study was to determine the flutter conditions to be avoided during wind tunnel tests. These studies show that aeroelastic instabilities for the morphing configurations considered appeared at Mach number 0.55, which was higher than the wind tunnel Mach number limit speed of 0.3. The wind tunnel tests could thus be performed safely in the 6’×9’ wind tunnel at the Institute for Aerospace Research at the National Research Council Canada (IAR/NRC, where the new aeroelastic studies, applied on morphing wings, were validated.

  10. An overview of selected NASP aeroelastic studies at the NASA Langley Research Center

    Science.gov (United States)

    Spain, Charles V.; Soistmann, David L.; Parker, Ellen C.; Gibbons, Michael D.; Gilbert, Michael G.

    1990-01-01

    Following an initial discussion of the NASP flight environment, the results of recent aeroelastic testing of NASP-type highly swept delta-wing models in Langley's Transonic Dynamics Tunnel (TDT) are summarized. Subsonic and transonic flutter characteristics of a variety of these models are described, and several analytical codes used to predict flutter of these models are evaluated. These codes generally provide good, but conservative predictions of subsonic and transonic flutter. Also, test results are presented on a nonlinear transonic phenomena known as aileron buzz which occurred in the wind tunnel on highly swept delta wings with full-span ailerons. An analytical procedure which assesses the effects of hypersonic heating on aeroelastic instabilities (aerothermoelasticity) is also described. This procedure accurately predicted flutter of a heated aluminum wing on which experimental data exists. Results are presented on the application of this method to calculate the flutter characteristics of a fine-element model of a generic NASP configuration. Finally, it is demonstrated analytically that active controls can be employed to improve the aeroelastic stability and ride quality of a generic NASP vehicle flying at hypersonic speeds.

  11. Aeroelastic Flutter of Subsonic Aircraft Wing Section with Control Surface

    Directory of Open Access Journals (Sweden)

    Aeroelastic Flutter of Subsonic Aircraft Wing Section with Control Surface

    2015-12-01

    Full Text Available Aeroelastic flutter in aircraft mechanisms is unavoidable, essentially in the wing and control surface. In this work a three degree-of-freedom aeroelastic wing section with trailing edge flap is modeled numerically and theoretically. FLUENT code based on the steady finite volume is used for the prediction of the steady aerodynamic characteristics (lift, drag, pitching moment, velocity, and pressure distribution as well as the Duhamel formulation is used to model the aerodynamic loads theoretically. The system response (pitch, flap pitch and plunge was determined by integration the governing equations using MATLAB with a standard Runge–Kutta algorithm in conjunction with Henon’s method. The results are compared with previous experimental data. The results show that the aerodynamic loads and wing-flap system response are increased when increasing the flow speed. On the other hand the aeroelastic response led up to limit cycle oscillation when the flow equals or more than flutter speed.

  12. Development of an aeroelastic methodology for surface morphing rotors

    Science.gov (United States)

    Cook, James R.

    Helicopter performance capabilities are limited by maximum lift characteristics and vibratory loading. In high speed forward flight, dynamic stall and transonic flow greatly increase the amplitude of vibratory loads. Experiments and computational simulations alike have indicated that a variety of active rotor control devices are capable of reducing vibratory loads. For example, periodic blade twist and flap excitation have been optimized to reduce vibratory loads in various rotors. Airfoil geometry can also be modified in order to increase lift coefficient, delay stall, or weaken transonic effects. To explore the potential benefits of active controls, computational methods are being developed for aeroelastic rotor evaluation, including coupling between computational fluid dynamics (CFD) and computational structural dynamics (CSD) solvers. In many contemporary CFD/CSD coupling methods it is assumed that the airfoil is rigid to reduce the interface by single dimension. Some methods retain the conventional one-dimensional beam model while prescribing an airfoil shape to simulate active chord deformation. However, to simulate the actual response of a compliant airfoil it is necessary to include deformations that originate not only from control devices (such as piezoelectric actuators), but also inertial forces, elastic stresses, and aerodynamic pressures. An accurate representation of the physics requires an interaction with a more complete representation of loads and geometry. A CFD/CSD coupling methodology capable of communicating three-dimensional structural deformations and a distribution of aerodynamic forces over the wetted blade surface has not yet been developed. In this research an interface is created within the Fully Unstructured Navier-Stokes (FUN3D) solver that communicates aerodynamic forces on the blade surface to University of Michigan's Nonlinear Active Beam Solver (UM/NLABS -- referred to as NLABS in this thesis). Interface routines are developed for

  13. Aeroelastic Research Programme EFP-2000; Forskning i Aeroelasticitet - EFP-2000

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard Madsen, H. (ed.)

    2001-07-01

    The report presents the main results achieved within (Program for forskning i aeroelasticitet EFP-2000), which is a project carried out in collaboration between Risoe, DTU and the wind turbine industry. The project period has been 2000-2001 and it is the fourth period of a five years research program on aeroelasticity initiated in 1997. Within the present period the project has comprised the following six milestones: a.) status on 2D and 3D CFD computations b.) implementation of improved aerodynamic and structural sub models in the aeroelastic codes FLEX4 and HAWC c.) design of an airfoil family with high maximum lift d.) determination of the potential in prediction of dynamic stability e.) analysis of the uncertainty in computation of design loads f.) guidelines for optimised blade dynamics Within the project important results have been obtained and in particular within the following three main ares: 1) verification, development and application of 2D and 3D CFD computation on airfoils an rotors; 2) dynamic stability of a complete wind turbine structure; 3) importance of non-linearity's related to big blade deflections. The development of rotor computations with the 3D CFD code EllipSys3D has been an important research area since the start of the aeroelastic research programme in 1997, where initial results of 3D computations on a rotor were presented. However, first within the present project a verification of these 3D rotor computations has been possible. A blind test of rotor codes was carried out by NREL in USA using experimental data from a comprehensive wind tunnel experiment on a 10 m rotor. Out of about 20 different codes EllipSys3D gave results with the best correlation with the experimental data and in particular the 3D effect on the airfoil characteristics was well predicted. Within the research area on dynamic stability a simple, linear structural model has been developed enabling the computation of a Cambell diagram within a few seconds. Such a

  14. Chaotic Patterns in Aeroelastic Signals

    Directory of Open Access Journals (Sweden)

    F. D. Marques

    2009-01-01

    patterns. With the reconstructed state spaces, qualitative analyses may be done, and the attractors evolutions with parametric variation are presented. Overall results reveal complex system dynamics associated with highly separated flow effects together with nonlinear coupling between aeroelastic modes. Bifurcations to the nonlinear aeroelastic system are observed for two investigations, that is, considering oscillations-induced aeroelastic evolutions with varying freestream speed, and aeroelastic evolutions at constant freestream speed and varying oscillations. Finally, Lyapunov exponent calculation is proceeded in order to infer on chaotic behavior. Poincaré mappings also suggest bifurcations and chaos, reinforced by the attainment of maximum positive Lyapunov exponents.

  15. KNOW-BLADE task-4 report. Navier-Stokes aeroelasticity

    Energy Technology Data Exchange (ETDEWEB)

    Politis, E.S.; Nikolaou, I.G.; Chaviaropoulos, P.K.; Bertagnolio, F.; Soerensen, N.N.; Johansen, J.

    2005-01-01

    The problem of the aeroelastic stability of wind turbine blades is addressed in this report by advancing the aerodynamic modelling in the beam element type codes from the engineering-type empirical models to unsteady, 2D or 3D, Navier-Stokes solvers. In this project, structural models for the full wind turbine blade have been combined with 2D and 3D unsteady Navier-Stokes solvers. The relative disadvantage of the quasi-3D approach (where the elastic solver is coupled with a 2D Navier-Stokes solver) is its inability to model induced flow. The lack of a validation test case did not allow for quantitative comparisons with experimental data to be carried out; instead the results of the advanced aeroelastic tools are qualitatively cross-compared. All investigated methods predicted qualitatively similar results. They all resulted in positive aerodynamic damping values for the flap mode, in a decrease in damping with the increase of wind speeds and in a minimum value for the damping for wind speed around 15{approx}m/s. The eigenvalue analyses resulted in steeper distributions for this mode. The agreement in aerodynamic damping decrease with the increase of wind speed is also observed in the distributions for the lead-lag mode. In perspective, the uncoupled, linear method results in higher values of aerodynamic damping compared to the 3D aeroelastic tool. The quasi-3D tool results in lower aerodynamic damping values in the higher wind speeds and in lower damping values in the lower wind speed regime. Apart from the computations for the full blade, 2D computations for the so-called 'typical section' have been carried out. The 2D aeroelastic tools resulted in similar aerodynamic damping values. Qualitative agreement was better for the lead-lag mode. The presence of roughness tapes has a small, rather negligible impact on aeroelastic stability as depicted by the results of both aeroelastic tools. On the other hand, in conformity to the inability of the adopted

  16. Viscous and Aeroelastic Effects on Wind Turbine Blades. The VISCEL Project. Part II: Aeroelastic Stability Investigations

    Science.gov (United States)

    Chaviaropoulos, P. K.; Soerensen, N. N.; Hansen, M. O. L.; Nikolaou, I. G.; Aggelis, K. A.; Johansen, J.; Gaunaa, Mac; Hambraus, T.; Frhr. von Geyr, Heiko; Hirsch, Ch.; Shun, Kang; Voutsinas, S. G.; Tzabiras, G.; Perivolaris, Y.; Dyrmose, S. Z.

    2003-10-01

    The recent introduction of ever larger wind turbines poses new challenges with regard to understanding the mechanisms of unsteady flow-structure interaction. An important aspect of the problem is the aeroelastic stability of the wind turbine blades, especially in the case of combined flap/lead-lag vibrations in the stall regime. Given the limited experimental information available in this field, the use of CFD techniques and state-of-the-art viscous flow solvers provides an invaluable alternative towards the identification of the underlying physics and the development and validation of sound engineering-type aeroelastic models. Navier-Stokes-based aeroelastic stability analysis of individual blade sections subjected to combined pitch/flap or flap/lead-lag motion has been attempted by the present consortium in the framework of the concluded VISCEL JOR3-CT98-0208 Joule III project.

  17. Real-time simulation of aeroelastic rotor loads for horizontal axis wind turbines

    International Nuclear Information System (INIS)

    Marnett, M; Wellenberg, S; Schröder, W

    2014-01-01

    Wind turbine drivetrain research and test facilities with hardware-in-the-loop capabilities require a robust and accurate aeroelastic real-time rotor simulation environment. Recent simulation environments do not guarantee a computational response at real-time. Which is why a novel simulation tool has been developed. It resolves the physical time domain of the turbulent wind spectra and the operational response of the turbine at real-time conditions. Therefore, there is a trade-off between accuracy of the physical models and the computational costs. However, the study shows the possibility to preserve the necessary computational accuracy while simultaneously granting dynamic interaction with the aeroelastic rotor simulation environment. The achieved computational costs allow a complete aeroelastic rotor simulation at a resolution frequency of 100 Hz on standard computer platforms. Results obtained for the 5-MW reference wind turbine by the National Renewable Energy Laboratory (NREL) are discussed and compared to NREL's fatigue, aerodynamics, structures, and turbulence (FAST)- Code. The rotor loads show a convincing match. The novel simulation tool is applied to the wind turbine drivetrain test facility at the Center for Wind Power Drives (CWD), RWTH Aachen University to show the real-time hardware-in-the-loop capabilities

  18. Aeroelasticity of morphing wings using neural networks

    Science.gov (United States)

    Natarajan, Anand

    In this dissertation, neural networks are designed to effectively model static non-linear aeroelastic problems in adaptive structures and linear dynamic aeroelastic systems with time varying stiffness. The use of adaptive materials in aircraft wings allows for the change of the contour or the configuration of a wing (morphing) in flight. The use of smart materials, to accomplish these deformations, can imply that the stiffness of the wing with a morphing contour changes as the contour changes. For a rapidly oscillating body in a fluid field, continuously adapting structural parameters may render the wing to behave as a time variant system. Even the internal spars/ribs of the aircraft wing which define the wing stiffness can be made adaptive, that is, their stiffness can be made to vary with time. The immediate effect on the structural dynamics of the wing, is that, the wing motion is governed by a differential equation with time varying coefficients. The study of this concept of a time varying torsional stiffness, made possible by the use of active materials and adaptive spars, in the dynamic aeroelastic behavior of an adaptable airfoil is performed here. Another type of aeroelastic problem of an adaptive structure that is investigated here, is the shape control of an adaptive bump situated on the leading edge of an airfoil. Such a bump is useful in achieving flow separation control for lateral directional maneuverability of the aircraft. Since actuators are being used to create this bump on the wing surface, the energy required to do so needs to be minimized. The adverse pressure drag as a result of this bump needs to be controlled so that the loss in lift over the wing is made minimal. The design of such a "spoiler bump" on the surface of the airfoil is an optimization problem of maximizing pressure drag due to flow separation while minimizing the loss in lift and energy required to deform the bump. One neural network is trained using the CFD code FLUENT to

  19. Non-linear aeroelastic prediction for aircraft applications

    Science.gov (United States)

    de C. Henshaw, M. J.; Badcock, K. J.; Vio, G. A.; Allen, C. B.; Chamberlain, J.; Kaynes, I.; Dimitriadis, G.; Cooper, J. E.; Woodgate, M. A.; Rampurawala, A. M.; Jones, D.; Fenwick, C.; Gaitonde, A. L.; Taylor, N. V.; Amor, D. S.; Eccles, T. A.; Denley, C. J.

    2007-05-01

    Current industrial practice for the prediction and analysis of flutter relies heavily on linear methods and this has led to overly conservative design and envelope restrictions for aircraft. Although the methods have served the industry well, it is clear that for a number of reasons the inclusion of non-linearity in the mathematical and computational aeroelastic prediction tools is highly desirable. The increase in available and affordable computational resources, together with major advances in algorithms, mean that non-linear aeroelastic tools are now viable within the aircraft design and qualification environment. The Partnership for Unsteady Methods in Aerodynamics (PUMA) Defence and Aerospace Research Partnership (DARP) was sponsored in 2002 to conduct research into non-linear aeroelastic prediction methods and an academic, industry, and government consortium collaborated to address the following objectives: To develop useable methodologies to model and predict non-linear aeroelastic behaviour of complete aircraft. To evaluate the methodologies on real aircraft problems. To investigate the effect of non-linearities on aeroelastic behaviour and to determine which have the greatest effect on the flutter qualification process. These aims have been very effectively met during the course of the programme and the research outputs include: New methods available to industry for use in the flutter prediction process, together with the appropriate coaching of industry engineers. Interesting results in both linear and non-linear aeroelastics, with comprehensive comparison of methods and approaches for challenging problems. Additional embryonic techniques that, with further research, will further improve aeroelastics capability. This paper describes the methods that have been developed and how they are deployable within the industrial environment. We present a thorough review of the PUMA aeroelastics programme together with a comprehensive review of the relevant research

  20. Preliminary Computational Analysis of the (HIRENASD) Configuration in Preparation for the Aeroelastic Prediction Workshop

    Science.gov (United States)

    Chwalowski, Pawel; Florance, Jennifer P.; Heeg, Jennifer; Wieseman, Carol D.; Perry, Boyd P.

    2011-01-01

    This paper presents preliminary computational aeroelastic analysis results generated in preparation for the first Aeroelastic Prediction Workshop (AePW). These results were produced using FUN3D software developed at NASA Langley and are compared against the experimental data generated during the HIgh REynolds Number Aero- Structural Dynamics (HIRENASD) Project. The HIRENASD wind-tunnel model was tested in the European Transonic Windtunnel in 2006 by Aachen University0s Department of Mechanics with funding from the German Research Foundation. The computational effort discussed here was performed (1) to obtain a preliminary assessment of the ability of the FUN3D code to accurately compute physical quantities experimentally measured on the HIRENASD model and (2) to translate the lessons learned from the FUN3D analysis of HIRENASD into a set of initial guidelines for the first AePW, which includes test cases for the HIRENASD model and its experimental data set. This paper compares the computational and experimental results obtained at Mach 0.8 for a Reynolds number of 7 million based on chord, corresponding to the HIRENASD test conditions No. 132 and No. 159. Aerodynamic loads and static aeroelastic displacements are compared at two levels of the grid resolution. Harmonic perturbation numerical results are compared with the experimental data using the magnitude and phase relationship between pressure coefficients and displacement. A dynamic aeroelastic numerical calculation is presented at one wind-tunnel condition in the form of the time history of the generalized displacements. Additional FUN3D validation results are also presented for the AGARD 445.6 wing data set. This wing was tested in the Transonic Dynamics Tunnel and is commonly used in the preliminary benchmarking of computational aeroelastic software.

  1. Aeroelastic analysis of large horizontal wind turbine baldes?

    Institute of Scientific and Technical Information of China (English)

    Di TANG; Zhiliang LU; Tongqing GUO

    2016-01-01

    A nonlinear aeroelastic analysis method for large horizontal wind turbines is described. A vortex wake method and a nonlinear ?nite element method (FEM) are coupled in the approach. The vortex wake method is used to predict wind turbine aero-dynamic loads of a wind turbine, and a three-dimensional (3D) shell model is built for the rotor. Average aerodynamic forces along the azimuth are applied to the structural model, and the nonlinear static aeroelastic behaviors are computed. The wind rotor modes are obtained at the static aeroelastic status by linearizing the coupled equations. The static aeroelastic performance and dynamic aeroelastic responses are calculated for the NH1500 wind turbine. The results show that structural geometrical nonlinearities signi?cantly reduce displacements and vibration amplitudes of the wind turbine blades. Therefore, structural geometrical nonlinearities cannot be neglected both in the static aeroelastic analysis and dynamic aeroelastic analysis.

  2. Static aeroelastic analysis including geometric nonlinearities based on reduced order model

    Directory of Open Access Journals (Sweden)

    Changchuan Xie

    2017-04-01

    Full Text Available This paper describes a method proposed for modeling large deflection of aircraft in nonlinear aeroelastic analysis by developing reduced order model (ROM. The method is applied for solving the static aeroelastic and static aeroelastic trim problems of flexible aircraft containing geometric nonlinearities; meanwhile, the non-planar effects of aerodynamics and follower force effect have been considered. ROMs are computational inexpensive mathematical representations compared to traditional nonlinear finite element method (FEM especially in aeroelastic solutions. The approach for structure modeling presented here is on the basis of combined modal/finite element (MFE method that characterizes the stiffness nonlinearities and we apply that structure modeling method as ROM to aeroelastic analysis. Moreover, the non-planar aerodynamic force is computed by the non-planar vortex lattice method (VLM. Structure and aerodynamics can be coupled with the surface spline method. The results show that both of the static aeroelastic analysis and trim analysis of aircraft based on structure ROM can achieve a good agreement compared to analysis based on the FEM and experimental result.

  3. A Nonlinear Modal Aeroelastic Solver for FUN3D

    Science.gov (United States)

    Goldman, Benjamin D.; Bartels, Robert E.; Biedron, Robert T.; Scott, Robert C.

    2016-01-01

    A nonlinear structural solver has been implemented internally within the NASA FUN3D computational fluid dynamics code, allowing for some new aeroelastic capabilities. Using a modal representation of the structure, a set of differential or differential-algebraic equations are derived for general thin structures with geometric nonlinearities. ODEPACK and LAPACK routines are linked with FUN3D, and the nonlinear equations are solved at each CFD time step. The existing predictor-corrector method is retained, whereby the structural solution is updated after mesh deformation. The nonlinear solver is validated using a test case for a flexible aeroshell at transonic, supersonic, and hypersonic flow conditions. Agreement with linear theory is seen for the static aeroelastic solutions at relatively low dynamic pressures, but structural nonlinearities limit deformation amplitudes at high dynamic pressures. No flutter was found at any of the tested trajectory points, though LCO may be possible in the transonic regime.

  4. Effects of extreme wind shear on aeroelastic modal damping of wind turbines

    DEFF Research Database (Denmark)

    Skjoldan, P.F.; Hansen, Morten Hartvig

    2013-01-01

    Wind shear is an important contributor to fatigue loads on wind turbines. Because it causes an azimuthal variation in angle of attack, it can also affect aerodynamic damping. In this paper, a linearized model of a wind turbine, based on the nonlinear aeroelastic code BHawC, is used to investigate...

  5. Aeroelastic Tailoring of Transport Aircraft Wings: State-of-the-Art and Potential Enabling Technologies

    Science.gov (United States)

    Jutte, Christine; Stanford, Bret K.

    2014-01-01

    This paper provides a brief overview of the state-of-the-art for aeroelastic tailoring of subsonic transport aircraft and offers additional resources on related research efforts. Emphasis is placed on aircraft having straight or aft swept wings. The literature covers computational synthesis tools developed for aeroelastic tailoring and numerous design studies focused on discovering new methods for passive aeroelastic control. Several new structural and material technologies are presented as potential enablers of aeroelastic tailoring, including selectively reinforced materials, functionally graded materials, fiber tow steered composite laminates, and various nonconventional structural designs. In addition, smart materials and structures whose properties or configurations change in response to external stimuli are presented as potential active approaches to aeroelastic tailoring.

  6. Aeroelastic Stability Investigations for Large-scale Vertical Axis Wind Turbines

    International Nuclear Information System (INIS)

    2 P O Box 5800, Albuquerque, NM, 87185 (United States))" data-affiliation=" (Senior Member of Technical Staff, Analytical Structural Dynamics Sandia National Laboratories2 P O Box 5800, Albuquerque, NM, 87185 (United States))" >Owens, B C; 2 P O Box 5800, Albuquerque, NM, 87185 (United States))" data-affiliation=" (Principal Member of Technical Staff, Wind Energy Technologies Sandia National Laboratories2 P O Box 5800, Albuquerque, NM, 87185 (United States))" >Griffith, D T

    2014-01-01

    The availability of offshore wind resources in coastal regions, along with a high concentration of load centers in these areas, makes offshore wind energy an attractive opportunity for clean renewable electricity production. High infrastructure costs such as the offshore support structure and operation and maintenance costs for offshore wind technology, however, are significant obstacles that need to be overcome to make offshore wind a more cost-effective option. A vertical-axis wind turbine (VAWT) rotor configuration offers a potential transformative technology solution that significantly lowers cost of energy for offshore wind due to its inherent advantages for the offshore market. However, several potential challenges exist for VAWTs and this paper addresses one of them with an initial investigation of dynamic aeroelastic stability for large-scale, multi-megawatt VAWTs. The aeroelastic formulation and solution method from the BLade Aeroelastic STability Tool (BLAST) for HAWT blades was employed to extend the analysis capability of a newly developed structural dynamics design tool for VAWTs. This investigation considers the effect of configuration geometry, material system choice, and number of blades on the aeroelastic stability of a VAWT, and provides an initial scoping for potential aeroelastic instabilities in large-scale VAWT designs

  7. Aeroelastic Stability Investigations for Large-scale Vertical Axis Wind Turbines

    Science.gov (United States)

    Owens, B. C.; Griffith, D. T.

    2014-06-01

    The availability of offshore wind resources in coastal regions, along with a high concentration of load centers in these areas, makes offshore wind energy an attractive opportunity for clean renewable electricity production. High infrastructure costs such as the offshore support structure and operation and maintenance costs for offshore wind technology, however, are significant obstacles that need to be overcome to make offshore wind a more cost-effective option. A vertical-axis wind turbine (VAWT) rotor configuration offers a potential transformative technology solution that significantly lowers cost of energy for offshore wind due to its inherent advantages for the offshore market. However, several potential challenges exist for VAWTs and this paper addresses one of them with an initial investigation of dynamic aeroelastic stability for large-scale, multi-megawatt VAWTs. The aeroelastic formulation and solution method from the BLade Aeroelastic STability Tool (BLAST) for HAWT blades was employed to extend the analysis capability of a newly developed structural dynamics design tool for VAWTs. This investigation considers the effect of configuration geometry, material system choice, and number of blades on the aeroelastic stability of a VAWT, and provides an initial scoping for potential aeroelastic instabilities in large-scale VAWT designs.

  8. Aeroelastic Wingbox Stiffener Topology Optimization

    Science.gov (United States)

    Stanford, Bret K.

    2017-01-01

    This work considers an aeroelastic wingbox model seeded with run-out blade stiffeners along the skins. Topology optimization is conducted within the shell webs of the stiffeners, in order to add cutouts and holes for mass reduction. This optimization is done with a global-local approach in order to moderate the computational cost: aeroelastic loads are computed at the wing-level, but the topology and sizing optimization is conducted at the panel-level. Each panel is optimized separately under stress, buckling, and adjacency constraints, and periodically reassembled to update the trimmed aeroelastic loads. The resulting topology is baselined against a design with standard full-depth solid stiffener blades, and found to weigh 7.43% less.

  9. An Aeroelastic Evaluation of the Flexible Thermal Protection System for an Inatable Aerodynamic Decelerator

    Science.gov (United States)

    Goldman, Benjamin D.

    The purpose of this dissertation is to study the aeroelastic stability of a proposed flexible thermal protection system (FTPS) for the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). A flat, square FTPS coupon exhibits violent oscillations during experimental aerothermal testing in NASA's 8 Foot High Temperature Tunnel, leading to catastrophic failure. The behavior of the structural response suggested that aeroelastic flutter may be the primary instability mechanism, prompting further experimental investigation and theoretical model development. Using Von Karman's plate theory for the panel-like structure and piston theory aerodynamics, a set of aeroelastic models were developed and limit cycle oscillations (LCOs) were calculated at the tunnel flow conditions. Similarities in frequency content of the theoretical and experimental responses indicated that the observed FTPS oscillations were likely aeroelastic in nature, specifically LCO/flutter. While the coupon models can be used for comparison with tunnel tests, they cannot predict accurately the aeroelastic behavior of the FTPS in atmospheric flight. This is because the geometry of the flight vehicle is no longer a flat plate, but rather (approximately) a conical shell. In the second phase of this work, linearized Donnell conical shell theory and piston theory aerodynamics are used to calculate natural modes of vibration and flutter dynamic pressures for various structural models composed of one or more conical shells resting on several circumferential elastic supports. When the flight vehicle is approximated as a single conical shell without elastic supports, asymmetric flutter in many circumferential waves is observed. When the elastic supports are included, the shell flutters symmetrically in zero circumferential waves. Structural damping is found to be important in this case, as "hump-mode" flutter is possible. Aeroelastic models that consider the individual FTPS layers as separate shells exhibit

  10. The aeroelasticity research project 2004[Wind turbines]; Forskning i aeroelasticitet EFP-2004

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C.

    2005-05-01

    The report presents the results of the project ''Programme for Applied Aeroelasticity'', the Danish Energy Research Programme 2004. The main results are: 1) Based on an analysis of the NREL/NASA experiment with a wind turbine in a wind tunnel a new model is formulated for 3D corrections of profile data for aeroelastic codes. Use of the model on three rotors suggests that the load distribution is determined more correctly than in existing 3D models. 2) A near-wake model, originally developed for aerodynamic loads on helicopter rotors, is implemented for calculating dynamic induction on wind turbine rotors. The model has several advantages to the other normally used model BEM. 3) A detailed comparison of the aeroelastic models FLEX5 and HAWC shows that there are no model differences that can result in large differences in the calculated loads. The comparison shows that differences in the calculated loads are due to the use of the models. 4) A model for pitch-servo dynamics on a modern wind turbine is formed and implemented in HAWC2. The conclusion from analysis of the importance of the pitch-servo characteristics showed that coupling between structure/aerodynamics and pitch actuator may be of importance, especially for the loads on the actuator itself. Also large deflections are coupled to the pitch moment and thus also to torsion of the wing and wing bearing. 5) An un-linear stability analysis has been performed in which periodic loads are included and compared to a linear analysis used in HAWCStab. For a profile with near zero aerodynamic damping in one oscillation direction, the aerodynamic force in this direction depends mostly of the square on the profile's speed. The linear damping is changed only a little by the profile's forced oscillation. It is assumed that the present HAWCStab can predict the mean aeroelastic damping for turbines' oscillations in operation. (LN)

  11. Nonlinear aeroelastic behavior of compliant airfoils

    International Nuclear Information System (INIS)

    Thwapiah, G; Campanile, L F

    2010-01-01

    Since the beginning of aviation and up to the present time, airfoils have always been built as rigid structures. They are designed to fly under their divergence speed in order to avoid static aeroelastic instabilities and the resulting large deformations, which are not compatible with the typically low compliance of such airfoils. In recent years, research on airfoil morphing has generated interest in innovative ideas like the use of compliant systems, i.e. systems built to allow for large deformations without failure, in airfoil construction. Such systems can operate in the neighborhood of divergence and take advantage of large aeroelastic servo-effects. This, in turn, allows compact, advanced actuators to control the airfoil's deformation and loads, and hence complement or even replace conventional flaps. In order to analyze and design such compliant, active aeroelastic structures a nonlinear approach to static aeroelasticity is needed, which takes into account the effect of large deformations on aerodynamics and structure. Such an analytical approach is presented in this paper and applied to a compliant passive airfoil as the preliminary step in the realization of a piezoelectrically driven, active aeroelastic airfoil. Wind tunnel test results are also presented and compared with the analytic prediction. The good agreement and the observed behavior in the wind tunnel give confidence in the potential of this innovative idea

  12. Nonlinear aeroelastic behavior of compliant airfoils

    Science.gov (United States)

    Thwapiah, G.; Campanile, L. F.

    2010-03-01

    Since the beginning of aviation and up to the present time, airfoils have always been built as rigid structures. They are designed to fly under their divergence speed in order to avoid static aeroelastic instabilities and the resulting large deformations, which are not compatible with the typically low compliance of such airfoils. In recent years, research on airfoil morphing has generated interest in innovative ideas like the use of compliant systems, i.e. systems built to allow for large deformations without failure, in airfoil construction. Such systems can operate in the neighborhood of divergence and take advantage of large aeroelastic servo-effects. This, in turn, allows compact, advanced actuators to control the airfoil's deformation and loads, and hence complement or even replace conventional flaps. In order to analyze and design such compliant, active aeroelastic structures a nonlinear approach to static aeroelasticity is needed, which takes into account the effect of large deformations on aerodynamics and structure. Such an analytical approach is presented in this paper and applied to a compliant passive airfoil as the preliminary step in the realization of a piezoelectrically driven, active aeroelastic airfoil. Wind tunnel test results are also presented and compared with the analytic prediction. The good agreement and the observed behavior in the wind tunnel give confidence in the potential of this innovative idea.

  13. Computational Models for Nonlinear Aeroelastic Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Clear Science Corp. and Duke University propose to develop and demonstrate new and efficient computational methods of modeling nonlinear aeroelastic systems. The...

  14. Aero-elastic stability of airfoil flow using 2-D CFD

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, J [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    A three degrees-of-freedom structural dynamics model has been coupled to a two-dimensional incompressible CFD code. The numerical investigation considers aero-elastic stability for two different airfoils; the NACA0012 and the LM 2 18 % airfoils. Stable and unstable configurations and limit cycle oscillations are predicted in accordance with literature for the first airfoil. An attempt to predict stall induced edge-wise vibrations on a wind turbine airfoil fails using this two-dimensional approach. (au)

  15. Code Development for Control Design Applications: Phase I: Structural Modeling

    International Nuclear Information System (INIS)

    Bir, G. S.; Robinson, M.

    1998-01-01

    The design of integrated controls for a complex system like a wind turbine relies on a system model in an explicit format, e.g., state-space format. Current wind turbine codes focus on turbine simulation and not on system characterization, which is desired for controls design as well as applications like operating turbine model analysis, optimal design, and aeroelastic stability analysis. This paper reviews structural modeling that comprises three major steps: formation of component equations, assembly into system equations, and linearization

  16. Aeroelastic characteristics of composite bearingless rotor blades

    Science.gov (United States)

    Bielawa, R. L.

    1976-01-01

    Owing to the inherent unique structural features of composite bearingless rotors, various assumptions upon which conventional rotor aeroelastic analyses are formulated, are violated. Three such features identified are highly nonlinear and time-varying structural twist, structural redundancy in bending and torsion, and for certain configurations a strongly coupled low frequency bending-torsion mode. An examination of these aeroelastic considerations and appropriate formulations required for accurate analyses of such rotor systems is presented. Also presented are test results from a dynamically scaled model rotor and complementary analytic results obtained with the appropriately reformulated aeroelastic analysis.

  17. A combined aeroelastic-aeroacoustic model for wind turbine noise: Verification and analysis of field measurements

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Aagaard Madsen, Helge; Fischer, Andreas

    2017-01-01

    In this paper, semi-empirical engineering models for the three main wind turbine aerodynamic noise sources, namely, turbulent inflow, trailing edge and stall noise, are introduced. They are implemented into the in-house aeroelastic code HAWC2 commonly used for wind turbine load calculations...... and design. The results of the combined aeroelastic and aeroacoustic model are compared with field noise measurements of a 500kW wind turbine. Model and experimental data are in fairly good agreement in terms of noise levels and directivity. The combined model allows separating the various noise sources...... and highlights a number of mechanisms that are difficult to differentiate when only the overall noise from a wind turbine is measured....

  18. On the way to reliable aeroelastic load simulation on VAWT's

    DEFF Research Database (Denmark)

    Larsen, Torben J.; Aagaard Madsen, Helge

    2013-01-01

    In this paper a method for an implementation of a 2D actuator cylinder flow model of an Vertical Axis Wind Turbine (VAWT) is presented. The model is implemented in a full aeroelastic code including consideration of structural dynamics, dynamic inflow, tower shadow and dynamic stall, which is needed...... for a full load analysis relating to eg. certification of a VAWT turbine. Further on, principal load cases according to the IEC61400-1 are simulated for a fictitious 5MW VAWT turbine in it’s simplest 2 bladed Darrieus configuration. The IEC61400-1 load cases, originally developed for Horizontal Axis Wind...... Turbines (HAWT’s), are discussed regarding the application to VAWT’s. Further on a small section regarding aerodynamic flow in curved motion is included....

  19. Computational Models for Nonlinear Aeroelastic Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Clear Science Corp. and Duke University propose to develop and demonstrate a new and efficient computational method of modeling nonlinear aeroelastic systems. The...

  20. A modern course in aeroelasticity

    CERN Document Server

    Dowell, Earl H

    2015-01-01

    This book cover the basics of aeroelasticity or the dynamics of fluid-structure interaction. While the field began in response to the rapid development of aviation, it has now expanded into many branches of engineering and scientific disciplines and treat physical phenomena from aerospace engineering, bioengineering, civil engineering, and mechanical engineering in addition to drawing the attention of mathematicians and physicists.   The basic questions addressed are dynamic stability and response of fluid structural systems as revealed  by both linear and nonlinear mathematical models and correlation with experiment. The use of scaled models and full scale experiments and tests play a key role where theory is not considered sufficiently reliable.  In this new edition the more recent literature on nonlinear aeroelasticity has been brought up to date and the opportunity has been taken to correct the inevitable typographical errors that the authors and our readers have found to date. The early chapters of t...

  1. Aero-Elastic Optimization of a 10 MW Wind Turbine

    DEFF Research Database (Denmark)

    Zahle, Frederik; Tibaldi, Carlo; Verelst, David Robert

    2015-01-01

    This article describes a multi-disciplinary optimization and analysis tool for wind turbines that is based on the open-source framework OpenMDAO. Interfaces to several simulation codes have been implemented which allows for a wide variety of problem formulations and combinations of models....... In this article concurrent aeroelastic optimization of a 10 MW wind turbine rotor is carried out with respect to material distribution distribution and planform. The optimizations achieve up to 13% mass reduction while maintaining the same power production compared to the baseline DTU 10MW RWT....

  2. Aeroelastic Modeling of a Nozzle Startup Transient

    Science.gov (United States)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2014-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a tightly coupled aeroelastic modeling algorithm by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed under the framework of modal analysis. Transient aeroelastic nozzle startup analyses at sea level were performed, and the computed transient nozzle fluid-structure interaction physics presented,

  3. Combined Structural Optimization and Aeroelastic Analysis of a Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Roscher, Björn; Ferreira, Carlos Simao; Bernhammer, Lars O.

    2015-01-01

    Floating offshore wind energy poses challenges on the turbine design. A possible solution is vertical axis wind turbines, which are possibly easier to scale-up and require less components (lower maintenance) and a smaller floating structure than horizontal axis wind turbines. This paper presents...... a structural optimization and aeroelastic analysis of an optimized Troposkein vertical axis wind turbine to minimize the relation between the rotor mass and the swept area. The aeroelastic behavior of the different designs has been analyzed using a modified version of the HAWC2 code with the Actuator Cylinder...... model to compute the aerodynamics of the vertical axis wind turbine. The combined shape and topology optimization of a vertical axis wind turbine show a minimum mass to area ratio of 1.82 kg/m2 for blades with varying blade sections from a NACA 0040 at the attachment points to a NACA 0015...

  4. Aeroelastic Simulation Tool for Inflatable Ballute Aerocapture, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop a much-needed multidisciplinary analysis tool for predicting the impact of aeroelastic effects on the functionality of inflatable...

  5. Static aeroelastic analysis and tailoring of a single-element racing car wing

    Science.gov (United States)

    Sadd, Christopher James

    This thesis presents the research from an Engineering Doctorate research programme in collaboration with Reynard Motorsport Ltd, a manufacturer of racing cars. Racing car wing design has traditionally considered structures to be rigid. However, structures are never perfectly rigid and the interaction between aerodynamic loading and structural flexibility has a direct impact on aerodynamic performance. This interaction is often referred to as static aeroelasticity and the focus of this research has been the development of a computational static aeroelastic analysis method to improve the design of a single-element racing car wing. A static aeroelastic analysis method has been developed by coupling a Reynolds-Averaged Navier-Stokes CFD analysis method with a Finite Element structural analysis method using an iterative scheme. Development of this method has included assessment of CFD and Finite Element analysis methods and development of data transfer and mesh deflection methods. Experimental testing was also completed to further assess the computational analyses. The computational and experimental results show a good correlation and these studies have also shown that a Navier-Stokes static aeroelastic analysis of an isolated wing can be performed at an acceptable computational cost. The static aeroelastic analysis tool was used to assess methods of tailoring the structural flexibility of the wing to increase its aerodynamic performance. These tailoring methods were then used to produce two final wing designs to increase downforce and reduce drag respectively. At the average operating dynamic pressure of the racing car, the computational analysis predicts that the downforce-increasing wing has a downforce of C[1]=-1.377 in comparison to C[1]=-1.265 for the original wing. The computational analysis predicts that the drag-reducing wing has a drag of C[d]=0.115 in comparison to C[d]=0.143 for the original wing.

  6. Unsteady airfoil flows with application to aeroelastic stability

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, Jeppe

    1999-09-01

    The present report describes numerical investigation of two-dimensional unsteady airfoil flows with application to aeroelastic stability. The report is divided in two parts. Part A describes the purely aerodynamic part, while Part B includes the aeroelastic part. In Part A a transition prediction algorithm based on a simplified version of the e{sup n} method is proposed. Laminar Boundary Layer instability data are stored in a database from which stability characteristics can be extracted by interpolation. Input to the database are laminar integral boundary layer parameters. These are computed from an integral boundary layer formulation coupled to a Navier-Stokes flow solver. Five different airfoils are considered at fixed angle of attack, and the flow is computed assuming both fully turbulent and transitional flow and compared with experimental data. Results indicate that using a transition model the drag prediction is improved considerably. Also the lift is slightly improved. At high angles of attack transition will affect leading edge separation which again will affect the overall vortex shedding. If the transition point is not properly predicted this will affect the whole hysteresis curve. The transition model developed in the present work showed more stable predictions compared to the empirical transition model. In Part B a simple three degrees-of-freedom (DOF) structural dynamics model is developed and coupled to the aerodynamics models from Part A. A 2nd order accurate time integration scheme is used to solve the equations of motion. Two airfoils are investigated. The aeroelastic models predict stable conditions well at low angle of attack. But at high angles of attack, and where unstable behaviour is expected, only the Navier-Stokes solver predict correct aeroelastic response. The semi-empirical dynamic stall model does not predict vortex shedding and moment correctly leading to an erroneous aerodynamic damping. (au) 5 tabs.; 55 ills., 52 refs.

  7. Aeroelastic response and blade loads of a composite rotor in forward flight

    Science.gov (United States)

    Smith, Edward C.; Chopra, Inderjit

    1992-01-01

    The aeroelastic response, blade and hub loads, and shaft-fixed aeroelastic stability is investigated for a helicopter with elastically tailored composite rotor blades. A new finite element based structural analysis including nonclassical effects such as transverse shear, torsion related warping and inplane elasticity is integrated with the University of Maryland Advanced Rotorcraft Code. The structural dynamics analysis is correlated against both experimental data and detailed finite element results. Correlation of rotating natural frequencies of coupled composite box-beams is generally within 5-10 percent. The analysis is applied to a soft-inplane hingeless rotor helicopter in free flight propulsive trim. For example, lag mode damping can be increased 300 percent over a range of thrust conditions and forward speeds. The influence of unsteady aerodynamics on the blade response and vibratory hub loads is also investigated. The magnitude and phase of the flap response is substantially altered by the unsteady aerodynamic effects. Vibratory hub loads increase up to 30 percent due to unsteady aerodynamic effects.

  8. Investigations on precursor measures for aeroelastic flutter

    Science.gov (United States)

    Venkatramani, J.; Sarkar, Sunetra; Gupta, Sayan

    2018-04-01

    Wind tunnel experiments carried out on a pitch-plunge aeroelastic system in the presence of fluctuating flows reveal that flutter instability is presaged by a regime of intermittency. It is observed that as the flow speed gradually increases towards the flutter speed, there appears intermittent bursts of periodic oscillations which become more frequent as the wind speed increases and eventually the dynamics transition into fully developed limit cycle oscillations, marking the onset of flutter. The signature from these intermittent oscillations are exploited to develop measures that forewarn a transition to flutter and can serve as precursors. This study investigates a suite of measures that are obtained directly from the time history of measurements and are hence model independent. The dependence of these precursors on the size of the measured data set and the time required for their computation is investigated. These measures can be useful in structural health monitoring of aeroelastic structures.

  9. Calibration and Validation of the Dynamic Wake Meandering Model for Implementation in an Aeroelastic Code

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Larsen, Gunner Chr.; Larsen, Torben J.

    2010-01-01

    in an aeroelastic model. Calibration and validation of the different parts of the model is carried out by comparisons with actuator disk and actuator line (ACL) computations as well as with inflow measurements on a full-scale 2 MW turbine. It is shown that the load generating part of the increased turbulence....... Finally, added turbulence characteristics are compared with correlation results from literature. ©2010 American Society of Mechanical Engineers...

  10. Low-order aeroelastic models of wind turbines for controller design

    DEFF Research Database (Denmark)

    Sønderby, Ivan Bergquist

    Wind turbine controllers are used to optimize the performance of wind turbines such as to reduce power variations and fatigue and extreme loads on wind turbine components. Accurate tuning and design of modern controllers must be done using low-order models that accurately captures the aeroelastic...... response of the wind turbine. The purpose of this thesis is to investigate the necessary model complexity required in aeroelastic models used for controller design and to analyze and propose methods to design low-order aeroelastic wind turbine models that are suited for model-based control design....... The thesis contains a characterization of the dynamics that influence the open-loop aeroelastic frequency response of a modern wind turbine, based on a high-order aeroelastic wind turbine model. One main finding is that the transfer function from collective pitch to generator speed is affected by two low...

  11. Aeroelasticity and structural optimization of composite helicopter rotor blades with swept tips

    Science.gov (United States)

    Yuan, K. A.; Friedmann, P. P.

    1995-01-01

    This report describes the development of an aeroelastic analysis capability for composite helicopter rotor blades with straight and swept tips, and its application to the simulation of helicopter vibration reduction through structural optimization. A new aeroelastic model is developed in this study which is suitable for composite rotor blades with swept tips in hover and in forward flight. The hingeless blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. Arbitrary cross-sectional shape, generally anisotropic material behavior, transverse shears and out-of-plane warping are included in the blade model. The nonlinear equations of motion, derived using Hamilton's principle, are based on a moderate deflection theory. Composite blade cross-sectbnal properties are calculated by a separate linear, two-dimensional cross section analysis. The aerodynamic loads are obtained from quasi-steady, incompressible aerodynamics, based on an implicit formulation. The trim and steady state blade aeroelastic response are solved in a fully coupled manner. In forward flight, where the blade equations of motion are periodic, the coupled trim-aeroelastic response solution is obtained from the harmonic balance method. Subsequently, the periodic system is linearized about the steady state response, and its stability is determined from Floquet theory.

  12. CFD and Aeroelastic Analysis of the MEXICO Wind Turbine

    International Nuclear Information System (INIS)

    Carrión, M; Woodgate, M; Steijl, R; Barakos, G; Gómez-Iradi, S; Munduate, X

    2014-01-01

    This paper presents an aerodynamic and aeroelastic analysis of the MEXICO wind turbine, using the compressible HMB solver of Liverpool. The aeroelasticity of the blade, as well as the effect of a low-Mach scheme were studied for the zero-yaw 15m/s wind case and steady- state computations. The wake developed behind the rotor was also extracted and compared with the experimental data, using the compressible solver and a low-Mach scheme. It was found that the loads were not sensitive to the Mach number effects, although the low-Mach scheme improved the wake predictions. The sensitivity of the results to the blade structural properties was also highlighted

  13. KNOW-BLADE task-4 report: Navier-Stokes aeroelasticity

    DEFF Research Database (Denmark)

    Politis, E.S.; Nikolaou, I.G.; Chaviaropoulos, P.K.

    2004-01-01

    wind turbine blade have been combined with 2D and 3D unsteady Navier-Stokes solvers. The relative disadvantage of the quasi-3D approach (where the elastic solver is coupled with a 2D Navier-Stokes solver) isits inability to model induced flow. The lack of a validation test case did not allow...... the computations for the full blade, 2D computations for the so-called “typical section” have been carried out. The 2D aeroelastic tools resulted in similar aerodynamic damping values. Qualitative agreement was better for the lead-lagmode. The presence of roughness tapes has a small, rather negligible impact...... on aeroelastic stability as depicted by the results of both aeroelastic tools. On the other hand, in conformity to the inability of the adopted computational model to successfullypredict the corresponding test cases under work package 2 of the project, the aeroelastic tools are not capable to predict the correct...

  14. A Rapid Aeroelasticity Optimization Method Based on the Stiffness characteristics

    OpenAIRE

    Yuan, Zhe; Huo, Shihui; Ren, Jianting

    2018-01-01

    A rapid aeroelasticity optimization method based on the stiffness characteristics was proposed in the present study. Large time expense in static aeroelasticity analysis based on traditional time domain aeroelasticity method is solved. Elastic axis location and torsional stiffness are discussed firstly. Both torsional stiffness and the distance between stiffness center and aerodynamic center have a direct impact on divergent velocity. The divergent velocity can be adjusted by changing the cor...

  15. Aeroelastic Stability of Suspension Bridges using CFD

    DEFF Research Database (Denmark)

    Stærdahl, Jesper Winther; Sørensen, Niels; Nielsen, Søren R.K.

    2007-01-01

    using CFD models and the aeroelastic stability boundary has been successfully determined when comparing two-dimensional flow situations using wind tunnel test data and CFD methods for the flow solution and two-degrees-of-freedom structural models in translation perpendicular to the flow direction......In recent years large span suspension bridges with very thin and slender profiles have been built without proportional increasing torsional and bending stiffness. As a consequence large deformations at the mid-span can occur with risk of aeroelastic instability and structural failure. Analysis...... of aeroelastic stability also named flutter stability is mostly based on semi-empirical engineering models, where model specific parameters, the so-called flutter derivatives, need calibration from wind tunnel tests or numerical methods. Several papers have been written about calibration of flutter derivatives...

  16. Unstructed Navier-Stokes Analysis of Wind-Tunnel Aeroelastic Effects on TCA Model 2

    Science.gov (United States)

    Frink, Neal T.; Allison, Dennis O.; Parikh, Paresh C.

    1999-01-01

    The aim of this work is to demonstrate a simple technique which accounts for aeroelastic deformations experienced by HSR wind-tunnel models within CFD computations. With improved correlations, CFD can become a more effective tool for augmenting the post-test understanding of experimental data. The present technique involves the loose coupling of a low-level structural representation within the ELAPS code, to an unstructured Navier-Stokes flow solver, USM3Dns. The ELAPS model is initially calibrated against bending characteristics of the wind-tunnel model. The strength of this method is that, with a single point calibration of a simple structural representation, the static aeroelastic effects can be accounted for in CFD calculations across a range of test conditions. No prior knowledge of the model deformation during the wind-on test is required. This approach has been successfully applied to the high aspect-ratio planforms of subsonic transports. The current challenge is to adapt the procedure to low aspect-ratio planforms typical of HSR configurations.

  17. Indicial lift response function: an empirical relation for finite‐thickness airfoils, and effects on aeroelastic simulations

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Gaunaa, Mac; Heinz, Joachim Christian

    2013-01-01

    The aeroelastic response of wind turbines is often simulated in the time domain by using indicial response techniques. Unsteady aerodynamics in attached flow are usually based on Jones's approximation of the flat plate indicial response, although the response for finite‐thickness airfoils differs...... from the flat plate one. The indicial lift response of finite‐thickness airfoils is simulated with a panel code, and an empirical relation is outlined connecting the airfoil indicial response to its geometric characteristics. The effects of different indicial approximations are evaluated on a 2D...... of equivalent fatigue loads, ultimate loads, and stability limits. The agreement with CFD computations of a 2D profile in harmonic motion is improved by the indicial function accounting for the finite‐thickness of the airfoil. Concerning the full wind turbine aeroelastic behavior, the differences between...

  18. Unified Nonlinear Flight Dynamics and Aeroelastic Simulator Tool, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes a R&D effort to develop a Unified Nonlinear Flight Dynamics and Aeroelastic Simulator (UNFDAS) Tool that will combine...

  19. Benchmarking (Code2Code) of the 1Hs 3-Bladed Onshore VAWT

    DEFF Research Database (Denmark)

    Galinos, Christos; Schmidt Paulsen, Uwe

    This study is part of the Inflow project. In this report the Nenuphar’s onshore 3-bladed Vertical Axis Wind Turbine (VAWT) prototype (1HS) is modelled in HAWC2 aeroelastic code. In the first part the model properties are summarized. Then the analysis is focused on the rotor performance and various...

  20. Active aeroelastic flutter analysis and vibration control of supersonic beams using the piezoelectric actuator/sensor pairs

    International Nuclear Information System (INIS)

    Song, Zhi-Guang; Li, Feng-Ming

    2011-01-01

    The active vibration control of all kinds of structures by using the piezoelectric material has been extensively investigated. In this paper, the active aeroelastic flutter characteristics and vibration control of supersonic beams applying the piezoelectric material are studied further. The piezoelectric materials are bonded on the top and bottom surfaces of the beams to act as the actuator and sensor so that the active aeroelastic flutter suppression for the supersonic beams can be conducted. The supersonic piston theory is adopted to evaluate the aerodynamic pressure. Hamilton's principle with the assumed mode method is used to develop the dynamical model of the structural systems. By using the standard eigenvalue methodology, the solutions for the complex eigenvalue problem are obtained. A negative velocity feedback control strategy is used to obtain active damping. The aeroelastic flutter bounds are calculated and the active aeroelastic flutter characteristics are analyzed. The impulse responses of the structural system are obtained by using the Houbolt numerical algorithm to study the active aeroelastic vibration control. The influences of the non-dimensional aerodynamic pressure on the active flutter control are analyzed. From the numerical results it is observed that the aeroelastic flutter characteristics of the supersonic beams can be significantly improved and that the aeroelastic vibration amplitudes can be remarkably reduced, especially at the flutter points, by using the piezoelectric actuator/sensor pairs which can provide an active damping. Within a certain value of the feedback control gain, with the increase of it, the flutter aerodynamic pressure (or flutter velocity) can be increased and the control results are also improved

  1. Aeroelastic Optimization of MW Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig; Zahle, Frederik

    This report contains the results from the Energy Development and Demonstration Project “Aeroelastic Optimization of MW wind turbine” (AeroOpt). The project has had the following five Work Packages: 1. Geometric non-linear, anisotropic beamelement forHAWC2 2. Closed-loop eigenvalue analysis...... of controlled wind turbines 3. Resonant wave excitation of lateral tower bending modes 4. Development of next generation aerodynamic design tools 5. Advanced design and verification of airfoils The purposes of these Work Packages are briefly described in the Preface and a summary of the results are given...

  2. Aeroelastic instability problems for wind turbines

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig

    2007-01-01

    This paper deals with the aeroelostic instabilities that have occurred and may still occur for modem commercial wind turbines: stall-induced vibrations for stall-turbines, and classical flutter for pitch-regulated turbines. A review of previous works is combined with derivations of analytical...... stiffness and chordwise position of the center of gravity along the blades are the main parameters for flutter. These instability characteristics are exemplified by aeroelastic stability analyses of different wind turbines. The review of each aeroelastic instability ends with a list of current research...... issues that represent unsolved aeroelostic instability problems for wind turbines. Copyright (c) 2007 John Wiley & Sons, Ltd....

  3. Static aeroelastic behavior of an adaptive laminated piezoelectric composite wing

    Science.gov (United States)

    Weisshaar, T. A.; Ehlers, S. M.

    1990-01-01

    The effect of using an adaptive material to modify the static aeroelastic behavior of a uniform wing is examined. The wing structure is idealized as a laminated sandwich structure with piezoelectric layers in the upper and lower skins. A feedback system that senses the wing root loads applies a constant electric field to the piezoelectric actuator. Modification of pure torsional deformaton behavior and pure bending deformation are investigated, as is the case of an anisotropic composite swept wing. The use of piezoelectric actuators to create an adaptive structure is found to alter static aeroelastic behavior in that the proper choice of the feedback gain can increase or decrease the aeroelastic divergence speed. This concept also may be used to actively change the lift effectiveness of a wing. The ability to modify static aeroelastic behavior is limited by physical limitations of the piezoelectric material and the manner in which it is integrated into the parent structure.

  4. Research in aeroelasticity[Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C.

    2006-05-15

    In the Energy Research Project 'Program for Research in Applied Aeroelasticity' (EFP2005), Risoe National Laboratory (Risoe) and the Technical University of Denmark (DTU) have applied and further developed the tools in the aeroelastic design complex. The main results from the project are: 1) Adding a winglet to a wind turbine blade for minimizing the induced drag of the blade led to the biggest increase in power of 1.4%. 2) Transient wind loads during pitch motion are determined using CFD. Compared to the NREL/NASA Ames test, reasonably good agreement is seen. 3) A general method was developed for the determination of 3D angle of attack for rotating blades from either measurements or numerical computations using CFD. 4) A model of the far wake behind wind turbines was developed for stability studies of the tip vortices in the far wake. 5) Investigating the blade root region showed that the power efficiency, CP, locally can be increased significantly beyond the Betz limit, but that the global CP for the rotor cannot exceed the Betz limit. When including tip losses and a minimum blade drag coefficient, a maximum rotor CP in the range of 0.51-0.52 was obtained. 6) A new airfoil family was designed and a 3D airfoil design tool was developed. Compared to the Risoe-B1 family, the new airfoil family showed similar or improved aerodynamic and structural characteristics. 7) Four different airfoils were analyzed to reveal the differences between 2D and 3D CFD. The major conclusions are the dependency of computational results to transition modelling, and the ability of 3D DES calculations to realistically simulate the turbulent wake of an airfoil in stall. 8) The capability of a theory for simulation of Gaussian turbulence driven gust events was demonstrated by emulating a violent shear gust event from a complex site. An asymptotic model for the PDF of the largest excursion from the mean level, during an arbitrary recurrence period, has been derived for a stochastic

  5. Helicopter rotor dynamics and aeroelasticity - Some key ideas and insights

    Science.gov (United States)

    Friedmann, Peretz P.

    1990-01-01

    Four important current topics in helicopter rotor dynamics and aeroelasticity are discussed: (1) the role of geometric nonlinearities in rotary-wing aeroelasticity; (2) structural modeling, free vibration, and aeroelastic analysis of composite rotor blades; (3) modeling of coupled rotor/fuselage areomechanical problems and their active control; and (4) use of higher-harmonic control for vibration reduction in helicopter rotors in forward flight. The discussion attempts to provide an improved fundamental understanding of the current state of the art. In this way, future research can be focused on problems which remain to be solved instead of producing marginal improvements on problems which are already understood.

  6. Multifidelity Robust Aeroelastic Design, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Nielsen Engineering & Research (NEAR) proposes a new method to generate mathematical models of wind-tunnel models and flight vehicles for robust aeroelastic...

  7. Generator dynamics in aeroelastic analysis and simulations

    DEFF Research Database (Denmark)

    Larsen, Torben J.; Hansen, Morten Hartvig; Iov, F.

    2003-01-01

    This report contains a description of a dynamic model for a doubly-fed induction generator. The model has physical input parameters (voltage, resistance, reactance etc.) and can be used to calculate rotor and stator currents, hence active and reactivepower. A perturbation method has been used...... to reduce the original generator model equations to a set of equations which can be solved with the same time steps as a typical aeroelastic code. The method is used to separate the fast transients of the modelfrom the slow variations and deduce a reduced order expression for the slow part. Dynamic effects...... of the first order terms in the model as well as the influence on drive train eigenfrequencies and damping has been investigated. Load response during timesimulation of wind turbine response have been compared to simulations with a traditional static generator model based entirely on the slip angle. A 2 MW...

  8. Aeroelastic Tailoring of a Plate Wing with Functionally Graded Materials

    Science.gov (United States)

    Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia; Jutte, Christine V.

    2014-01-01

    This work explores the use of functionally graded materials for the aeroelastic tailoring of a metallic cantilevered plate-like wing. Pareto trade-off curves between dynamic stability (flutter) and static aeroelastic stresses are obtained for a variety of grading strategies. A key comparison is between the effectiveness of material grading, geometric grading (i.e., plate thickness variations), and using both simultaneously. The introduction of material grading does, in some cases, improve the aeroelastic performance. This improvement, and the physical mechanism upon which it is based, depends on numerous factors: the two sets of metallic material parameters used for grading, the sweep of the plate, the aspect ratio of the plate, and whether the material is graded continuously or discretely.

  9. Nonlinear Aeroelastic Study of Stall Induced Oscillation in a Symmetric Airfoil

    NARCIS (Netherlands)

    Sarkar, S.; Bijl, H.

    2006-01-01

    In this paper the aeroelastic stability of a wind turbine rotor in the dynamic stall regime is investigated. Increased flexibility of modern turbine blades makes them more susceptible to aeroelastic instabilities. Complex oscillation modes like flap/lead-lag are of particular concern, which give way

  10. Presentations from the Aeroelastic Workshop – latest results from AeroOpt

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig

    This report contains the slides of the presentations at the Aeroelastic Workshop held at Risø-DTU for the wind energy industry in Denmark on January 27, 2011. The scientific part of the agenda at this workshop was • Anisotropic beam element in HAWC2 for modelling of composite lay-ups (Taeseong Kim...... (Robert Mikkelsen) • Potential of fatigue and extreme load reductions on swept blades using HAWC2 (David Verelst) • Aeroelastic modal analysis of backward swept blades using HAWCStab2 (Morten H. Hansen) • Aeroelastic rotor design minimizing the loads (Christian Bak) • A small study of flat back airfoils...

  11. Aeroelastic analysis of an adaptive trailing edge with a smart elastic skin

    Science.gov (United States)

    Arena, Maurizio; Pecora, Rosario; Amoroso, Francesco; Noviello, Maria Chiara; Rea, Francesco; Concilio, Antonio

    2017-09-01

    Nowadays, the design choices of the new generation aircraft are moving towards the research and development of innovative technologies, aimed at improving performance as well as to minimize the environmental impact. In the current "greening" context, the morphing structures represent a very attractive answer to such requirements: both aerodynamic and structural advantages are ensured in several flight conditions, safeguarding the fuel consumption at the same time. An aeronautical intelligent system is therefore the outcome of combining complex smart materials and structures, assuring the best functionality level in the flight envelope. The Adaptive Trailing Edge Device (ATED) is a sub-project inside SARISTU (Smart Intelligent Aircraft Structures), an L2 level project of the 7th EU Framework programme coordinated by Airbus, aimed at developing technologies for realizing a morphing wing extremity addressed to improve the general aircraft performance and to reduce the fuel burning up to 5%. This specific study, divided into design, manufacturing and testing phases, involved universities, research centers and leading industries of the European consortium. The paper deals with the aeroelastic impact assessment of a full-scale morphing wing trailing edge on a Large Aeroplanes category aircraft. The FE (Finite Element) model of the technology demonstrator, located in the aileron region and manufactured within the project, was referenced to for the extrapolation of the structural properties of the whole adaptive trailing edge device placed in its actual location in the outer wing. The input FE models were processed within MSC-Nastran® environment to estimate stiffness and inertial distributions suitable to construct the aeroelastic stick-beam mock-up of the reference structure. Afterwards, a flutter analysis in simulated operative condition, have been carried out by means of Sandy®, an in-house code, according to meet the safety requirements imposed by the applicable

  12. Wing-Body Aeroelasticity Using Finite-Difference Fluid/Finite-Element Structural Equations on Parallel Computers

    Science.gov (United States)

    Byun, Chansup; Guruswamy, Guru P.; Kutler, Paul (Technical Monitor)

    1994-01-01

    In recent years significant advances have been made for parallel computers in both hardware and software. Now parallel computers have become viable tools in computational mechanics. Many application codes developed on conventional computers have been modified to benefit from parallel computers. Significant speedups in some areas have been achieved by parallel computations. For single-discipline use of both fluid dynamics and structural dynamics, computations have been made on wing-body configurations using parallel computers. However, only a limited amount of work has been completed in combining these two disciplines for multidisciplinary applications. The prime reason is the increased level of complication associated with a multidisciplinary approach. In this work, procedures to compute aeroelasticity on parallel computers using direct coupling of fluid and structural equations will be investigated for wing-body configurations. The parallel computer selected for computations is an Intel iPSC/860 computer which is a distributed-memory, multiple-instruction, multiple data (MIMD) computer with 128 processors. In this study, the computational efficiency issues of parallel integration of both fluid and structural equations will be investigated in detail. The fluid and structural domains will be modeled using finite-difference and finite-element approaches, respectively. Results from the parallel computer will be compared with those from the conventional computers using a single processor. This study will provide an efficient computational tool for the aeroelastic analysis of wing-body structures on MIMD type parallel computers.

  13. Gravo-Aeroelastic Scaling for Extreme-Scale Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Fingersh, Lee J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Loth, Eric [University of Virginia; Kaminski, Meghan [University of Virginia; Qin, Chao [University of Virginia; Griffith, D. Todd [Sandia National Laboratories

    2017-06-09

    A scaling methodology is described in the present paper for extreme-scale wind turbines (rated at 10 MW or more) that allow their sub-scale turbines to capture their key blade dynamics and aeroelastic deflections. For extreme-scale turbines, such deflections and dynamics can be substantial and are primarily driven by centrifugal, thrust and gravity forces as well as the net torque. Each of these are in turn a function of various wind conditions, including turbulence levels that cause shear, veer, and gust loads. The 13.2 MW rated SNL100-03 rotor design, having a blade length of 100-meters, is herein scaled to the CART3 wind turbine at NREL using 25% geometric scaling and blade mass and wind speed scaled by gravo-aeroelastic constraints. In order to mimic the ultralight structure on the advanced concept extreme-scale design the scaling results indicate that the gravo-aeroelastically scaled blades for the CART3 are be three times lighter and 25% longer than the current CART3 blades. A benefit of this scaling approach is that the scaled wind speeds needed for testing are reduced (in this case by a factor of two), allowing testing under extreme gust conditions to be much more easily achieved. Most importantly, this scaling approach can investigate extreme-scale concepts including dynamic behaviors and aeroelastic deflections (including flutter) at an extremely small fraction of the full-scale cost.

  14. Anisotropic piezoelectric twist actuation of helicopter rotor blades: Aeroelastic analysis and design optimization

    Science.gov (United States)

    Wilkie, William Keats

    1997-12-01

    An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain a soluti An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain amited additional piezoelectric material mass, it is shown that blade twist actuation approaches which exploit in-plane piezoelectric free-stain anisotropies are capable of producing amplitudes of oscillatory blade twisting sufficient for rotor vibration reduction applications. The second study examines the effectiveness of using embedded piezoelectric actuator laminae to alleviate vibratory loads due to retreating blade stall. A 10 to 15 percent improvement in dynamic stall limited forward flight speed, and a 5 percent improvement in stall limited rotor thrust were numerically demonstrated for the active twist rotor blade relative to a conventional blade design. The active twist blades are also demonstrated to be more susceptible than the conventional blades to dynamic stall induced vibratory loads when not operating with twist actuation. This is the result of designing the active twist blades with low torsional stiffness in order to maximize piezoelectric twist authority

  15. Flight Dynamics of Flexible Aircraft with Aeroelastic and Inertial Force Interactions

    Science.gov (United States)

    Nguyen, Nhan T.; Tuzcu, Ilhan

    2009-01-01

    This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures coupled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling method that describes the elasticity of a flexible, twisted, swept wing using an equivalent beam-rod model. The structural dynamic model allows for three types of wing elastic motion: flapwise bending, chordwise bending, and torsion. Inertial force coupling with the wing elasticity is formulated to account for aircraft acceleration. The structural deflections create an effective aeroelastic angle of attack that affects the rigid-body motion of flexible aircraft. The aeroelastic effect contributes to aerodynamic damping forces that can influence aerodynamic stability. For wing-mounted engines, wing flexibility can cause the propulsive forces and moments to couple with the wing elastic motion. The integrated flight dynamics for a flexible aircraft are formulated by including generalized coordinate variables associated with the aeroelastic-propulsive forces and moments in the standard state-space form for six degree-of-freedom flight dynamics. A computational structural model for a generic transport aircraft has been created. The eigenvalue analysis is performed to compute aeroelastic frequencies and aerodynamic damping. The results will be used to construct an integrated flight dynamic model of a flexible generic transport aircraft.

  16. Model Reduction of Nonlinear Aeroelastic Systems Experiencing Hopf Bifurcation

    KAUST Repository

    Abdelkefi, Abdessattar

    2013-06-18

    In this paper, we employ the normal form to derive a reduced - order model that reproduces nonlinear dynamical behavior of aeroelastic systems that undergo Hopf bifurcation. As an example, we consider a rigid two - dimensional airfoil that is supported by nonlinear springs in the pitch and plunge directions and subjected to nonlinear aerodynamic loads. We apply the center manifold theorem on the governing equations to derive its normal form that constitutes a simplified representation of the aeroelastic sys tem near flutter onset (manifestation of Hopf bifurcation). Then, we use the normal form to identify a self - excited oscillator governed by a time - delay ordinary differential equation that approximates the dynamical behavior while reducing the dimension of the original system. Results obtained from this oscillator show a great capability to predict properly limit cycle oscillations that take place beyond and above flutter as compared with the original aeroelastic system.

  17. Aeroelastic stability analysis of a Darrieus wind turbine

    Science.gov (United States)

    Popelka, D.

    1982-02-01

    An aeroelastic stability analysis was developed for predicting flutter instabilities on vertical axis wind turbines. The analytical model and mathematical formulation of the problem are described as well as the physical mechanism that creates flutter in Darrieus turbines. Theoretical results are compared with measured experimental data from flutter tests of the Sandia 2 Meter turbine. Based on this comparison, the analysis appears to be an adequate design evaluation tool.

  18. Aeroelastic stability analysis of a Darrieus wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Popelka, D.

    1982-02-01

    An aeroelastic stability analysis has been developed for predicting flutter instabilities on vertical axis wind turbines. The analytical model and mathematical formulation of the problem are described as well as the physical mechanism that creates flutter in Darrieus turbines. Theoretical results are compared with measured experimental data from flutter tests of the Sandia 2 Meter turbine. Based on this comparison, the analysis appears to be an adequate design evaluation tool.

  19. Research in aeroelasticity EFP-2007-II

    Energy Technology Data Exchange (ETDEWEB)

    Buhl, T. (ed.)

    2009-06-15

    This report contains results from the EFP-2007-II project 'Program for Research in Applied Aeroelasticity'. The main results can be summed up into the following bullets: 1) 2D CFD was used to investigate tower shadow effects on both upwind and downwind turbines, and was used to validate the tower shadow models implemented in the aeroelastic code HAWC2. 2) Using a streamlined tower reduces the tower shadow by 50% compared to a cylindrical tower. Similar reductions can be achieved using a four legged lattice tower. 3) The application of laminar/turbulent transition in CFD computations for airfoils is demonstrated. For attached flow over thin airfoils (18%) 2D computations provide good results while a combination of Detached Eddy Simulation and laminar/ turbulent transition modeling improve the results in stalled conditions for a thick airfoil. 4) The unsteady flow in the nacelle region of a wind turbine is dominated by large flow gradients caused by unsteady shedding of vortices from the root sections of the blades. 5) The averaged nacelle wind speed compares well to the freestream wind speed, whereas the nacelle flow angle is highly sensitive to vertical positioning and tilt in the inflow. 6) The trailing edge noise model, TNO, was implemented and validated. The results showed that the noise was not predicted accurately, but the model captured the trends and can be used in airfoil design. The model was implemented in the airfoil design tool AIRFOILOPT and existing airfoils can be adjusted to maintain the aerodynamic characteristics, but with reduced noise in the order of up to 3dB in total sound power level and up to 1dB with A-weighting. 7) 2D CFD simulations are performed to verify their capability in predicting multi element airfoil configurations. The present computations show good agreement with measured performance from wind tunnel experiments. 8) The stochastic fluctuations of the aerodynamic forces on blades in deep-stall have an insignificant

  20. Results of including geometric nonlinearities in an aeroelastic model of an F/A-18

    Science.gov (United States)

    Buttrill, Carey S.

    1989-01-01

    An integrated, nonlinear simulation model suitable for aeroelastic modeling of fixed-wing aircraft has been developed. While the author realizes that the subject of modeling rotating, elastic structures is not closed, it is believed that the equations of motion developed and applied herein are correct to second order and are suitable for use with typical aircraft structures. The equations are not suitable for large elastic deformation. In addition, the modeling framework generalizes both the methods and terminology of non-linear rigid-body airplane simulation and traditional linear aeroelastic modeling. Concerning the importance of angular/elastic inertial coupling in the dynamic analysis of fixed-wing aircraft, the following may be said. The rigorous inclusion of said coupling is not without peril and must be approached with care. In keeping with the same engineering judgment that guided the development of the traditional aeroelastic equations, the effect of non-linear inertial effects for most airplane applications is expected to be small. A parameter does not tell the whole story, however, and modes flagged by the parameter as significant also need to be checked to see if the coupling is not a one-way path, i.e., the inertially affected modes can influence other modes.

  1. Efficient computation of aerodynamic influence coefficients for aeroelastic analysis on a transputer network

    Science.gov (United States)

    Janetzke, David C.; Murthy, Durbha V.

    1991-01-01

    Aeroelastic analysis is multi-disciplinary and computationally expensive. Hence, it can greatly benefit from parallel processing. As part of an effort to develop an aeroelastic capability on a distributed memory transputer network, a parallel algorithm for the computation of aerodynamic influence coefficients is implemented on a network of 32 transputers. The aerodynamic influence coefficients are calculated using a 3-D unsteady aerodynamic model and a parallel discretization. Efficiencies up to 85 percent were demonstrated using 32 processors. The effect of subtask ordering, problem size, and network topology are presented. A comparison to results on a shared memory computer indicates that higher speedup is achieved on the distributed memory system.

  2. Parallel computation of aerodynamic influence coefficients for aeroelastic analysis on a transputer network

    Science.gov (United States)

    Janetzke, D. C.; Murthy, D. V.

    1991-01-01

    Aeroelastic analysis is mult-disciplinary and computationally expensive. Hence, it can greatly benefit from parallel processing. As part of an effort to develop an aeroelastic analysis capability on a distributed-memory transputer network, a parallel algorithm for the computation of aerodynamic influence coefficients is implemented on a network of 32 transputers. The aerodynamic influence coefficients are calculated using a three-dimensional unsteady aerodynamic model and a panel discretization. Efficiencies up to 85 percent are demonstrated using 32 processors. The effects of subtask ordering, problem size and network topology are presented. A comparison to results on a shared-memory computer indicates that higher speedup is achieved on the distributed-memory system.

  3. Nonlinear Aeroelastic Analysis of the HIAD TPS Coupon in the NASA 8' High Temperature Tunnel: Theory and Experiment

    Science.gov (United States)

    Goldman, Benjamin D.; Scott, Robert C,; Dowell, Earl H.

    2014-01-01

    The purpose of this work is to develop a set of theoretical and experimental techniques to characterize the aeroelasticity of the thermal protection system (TPS) on the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). A square TPS coupon experiences trailing edge oscillatory behavior during experimental testing in the 8' High Temperature Tunnel (HTT), which may indicate the presence of aeroelastic flutter. Several theoretical aeroelastic models have been developed, each corresponding to a different experimental test configuration. Von Karman large deflection theory is used for the plate-like components of the TPS, along with piston theory for the aerodynamics. The constraints between the individual TPS layers and the presence of a unidirectional foundation at the back of the coupon are included by developing the necessary energy expressions and using the Rayleigh Ritz method to derive the nonlinear equations of motion. Free vibrations and limit cycle oscillations are computed and the frequencies and amplitudes are compared with accelerometer and photogrammetry data from the experiments.

  4. Static Aeroelastic and Longitudinal Trim Model of Flexible Wing Aircraft Using Finite-Element Vortex-Lattice Coupled Solution

    Science.gov (United States)

    Ting, Eric; Nguyen, Nhan; Trinh, Khanh

    2014-01-01

    This paper presents a static aeroelastic model and longitudinal trim model for the analysis of a flexible wing transport aircraft. The static aeroelastic model is built using a structural model based on finite-element modeling and coupled to an aerodynamic model that uses vortex-lattice solution. An automatic geometry generation tool is used to close the loop between the structural and aerodynamic models. The aeroelastic model is extended for the development of a three degree-of-freedom longitudinal trim model for an aircraft with flexible wings. The resulting flexible aircraft longitudinal trim model is used to simultaneously compute the static aeroelastic shape for the aircraft model and the longitudinal state inputs to maintain an aircraft trim state. The framework is applied to an aircraft model based on the NASA Generic Transport Model (GTM) with wing structures allowed to flexibly deformed referred to as the Elastically Shaped Aircraft Concept (ESAC). The ESAC wing mass and stiffness properties are based on a baseline "stiff" values representative of current generation transport aircraft.

  5. Aeroelastic modeling of composite rotor blades with straight and swept tips

    Science.gov (United States)

    Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur

    1992-01-01

    This paper presents an analytical study of the aeroelastic behavior of composite rotor blades with straight and swept tips. The blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. The nonlinear equations of motion for the FEM are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. It is shown that composite ply orientation has a substantial effect on blade stability. At low thrust conditions, certain ply orientations can cause instability in the lag mode. The flap-torsion coupling associated with tip sweep can also induce aeroelastic instability in the blade. This instability can be removed by appropriate ply orientation in the composite construction. These results illustrate the inherent potential for aeroelastic tailoring present in composite rotor blades with swept tips, which still remains to be exploited in the design process.

  6. Aeroelastic modal dynamics of wind turbines including anisotropic effects

    Energy Technology Data Exchange (ETDEWEB)

    Fisker Skjoldan, P.

    2011-03-15

    Several methods for aeroelastic modal analysis of a rotating wind turbine are developed and used to analyse the modal dynamics of two simplified models and a complex model in isotropic and anisotropic conditions. The Coleman transformation is used to enable extraction of the modal frequencies, damping, and periodic mode shapes of a rotating wind turbine by describing the rotor degrees of freedom in the inertial frame. This approach is valid only for an isotropic system. Anisotropic systems, e.g., with an unbalanced rotor or operating in wind shear, are treated with the general approaches of Floquet analysis or Hill's method which do not provide a unique reference frame for observing the modal frequency, to which any multiple of the rotor speed can be added. This indeterminacy is resolved by requiring that the periodic mode shape be as constant as possible in the inertial frame. The modal frequency is thus identified as the dominant frequency in the response of a pure excitation of the mode observed in the inertial frame. A modal analysis tool based directly on the complex aeroelastic wind turbine code BHawC is presented. It uses the Coleman approach in isotropic conditions and the computationally efficient implicit Floquet analysis in anisotropic conditions. The tool is validated against system identifications with the partial Floquet method on the nonlinear BHawC model of a 2.3 MW wind turbine. System identification results show that nonlinear effects on the 2.3 MW turbine in most cases are small, but indicate that the controller creates nonlinear damping. In isotropic conditions the periodic mode shape contains up to three harmonic components, but in anisotropic conditions it can contain an infinite number of harmonic components with frequencies that are multiples of the rotor speed. These harmonics appear in calculated frequency responses of the turbine. Extreme wind shear changes the modal damping when the flow is separated due to an interaction between

  7. Implementation of a Forth-Order Aeroelastic Coupling into a Viscous-Inviscid Flow Solver with Experimental Validation (for One Degree of Freedom)

    Science.gov (United States)

    Bartholomay, Sirko; Ramos-García, Néstor; Mikkelsen, Robert Flemming; Technical University of Denmark (DTU)-WInd Energy Team

    2014-11-01

    The viscous-inviscid flow solver Q3UIC for 2D aerodynamics has recently been developed at the Technical University of Denmark. The Q3UIC solver takes viscous and unsteady effects into account by coupling an unsteady inviscid panel method with the integral boundary layer equations by means of a strong coupling between the viscous and inviscid parts, and in this respect differs from other classic panel codes e.g. Xfoil. In the current work a Runge-Kutta-Nyström scheme was employed to couple inertial, elastic and aerodynamical forces and moments calculated by Q3UIC for a two-dimensional blade section in the time-domain. Numerical simulations are validated by a three step experimental verification process carried out in the low-turbulence wind tunnel at DTU. First, a comparison against steady experiments for a NACA 64418 profile and a flexible trailing edge flap is presented for different fixed flap angles, and second, the measured aerodynamic characteristics considering prescribed motion of the airfoil with a moving flap are compared to the Q3UIC predictions. Finally, an aeroelastic experiment for one degree of freedom-airfoil pitching- is used to evaluate the accuracy of aeroelastic coupling.

  8. Numerical techniques for the improved performance of a finite element approach to wind turbine aeroelastics

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, M.B. [Renewable Energy Systems Ltd., Hemel Hempstead (United Kingdom)

    1996-09-01

    It is possible to compute the aeroelastic response of a horizontal axis wind turbine comprising; Structural: rotor substructure 144 dof, tower substructure 48 dof, induction, synchronous or variable speed, and gearbox. Aerodynamic: 3 blades (10 elements per blade), dynamic stall, and 6 different aerofoil types with combination of fixed or pitching elements. Control: stall or power regulation or speed control and shutdowns, wind shear, and tower shadow. Turbulence: 8 radial points, 32 circumferential, and 3 components. On a DEC Alpha Workstation the code will simulate the response inclose to real-time. As the code is presently formulated deflections from the initial starting point have to be small and therefore its ability to fully analyse very flexible structures is limited. (EG)

  9. Aeroelastic Uncertainty Quantification Studies Using the S4T Wind Tunnel Model

    Science.gov (United States)

    Nikbay, Melike; Heeg, Jennifer

    2017-01-01

    This paper originates from the joint efforts of an aeroelastic study team in the Applied Vehicle Technology Panel from NATO Science and Technology Organization, with the Task Group number AVT-191, titled "Application of Sensitivity Analysis and Uncertainty Quantification to Military Vehicle Design." We present aeroelastic uncertainty quantification studies using the SemiSpan Supersonic Transport wind tunnel model at the NASA Langley Research Center. The aeroelastic study team decided treat both structural and aerodynamic input parameters as uncertain and represent them as samples drawn from statistical distributions, propagating them through aeroelastic analysis frameworks. Uncertainty quantification processes require many function evaluations to asses the impact of variations in numerous parameters on the vehicle characteristics, rapidly increasing the computational time requirement relative to that required to assess a system deterministically. The increased computational time is particularly prohibitive if high-fidelity analyses are employed. As a remedy, the Istanbul Technical University team employed an Euler solver in an aeroelastic analysis framework, and implemented reduced order modeling with Polynomial Chaos Expansion and Proper Orthogonal Decomposition to perform the uncertainty propagation. The NASA team chose to reduce the prohibitive computational time by employing linear solution processes. The NASA team also focused on determining input sample distributions.

  10. Parallel scalability and efficiency of vortex particle method for aeroelasticity analysis of bluff bodies

    Science.gov (United States)

    Tolba, Khaled Ibrahim; Morgenthal, Guido

    2018-01-01

    This paper presents an analysis of the scalability and efficiency of a simulation framework based on the vortex particle method. The code is applied for the numerical aerodynamic analysis of line-like structures. The numerical code runs on multicore CPU and GPU architectures using OpenCL framework. The focus of this paper is the analysis of the parallel efficiency and scalability of the method being applied to an engineering test case, specifically the aeroelastic response of a long-span bridge girder at the construction stage. The target is to assess the optimal configuration and the required computer architecture, such that it becomes feasible to efficiently utilise the method within the computational resources available for a regular engineering office. The simulations and the scalability analysis are performed on a regular gaming type computer.

  11. Aeroelastic behavior of composite rotor blades with swept tips

    Science.gov (United States)

    Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur

    1992-01-01

    This paper presents an analytical study of the aeroelastic behavior of composite rotor blades with straight and swept tips. The blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. The nonlinear equations of motion for the finite element model are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. It is shown that composite ply orientation has a substantial effect on blade stability. At low thrust conditions, certain ply orientations can cause instability in the lag mode. The flap-torsion coupling associated with tip sweep can also induce aeroelastic instability in the blade. This instability can be removed by appropriate ply orientation in the composite construction.

  12. Development of a Fast Fluid-Structure Coupling Technique for Wind Turbine Computations

    DEFF Research Database (Denmark)

    Sessarego, Matias; Ramos García, Néstor; Shen, Wen Zhong

    2015-01-01

    Fluid-structure interaction simulations are routinely used in the wind energy industry to evaluate the aerodynamic and structural dynamic performance of wind turbines. Most aero-elastic codes in modern times implement a blade element momentum technique to model the rotor aerodynamics and a modal......, multi-body, or finite-element approach to model the turbine structural dynamics. The present paper describes a novel fluid-structure coupling technique which combines a threedimensional viscous-inviscid solver for horizontal-axis wind-turbine aerodynamics, called MIRAS, and the structural dynamics model...... used in the aero-elastic code FLEX5. The new code, MIRASFLEX, in general shows good agreement with the standard aero-elastic codes FLEX5 and FAST for various test cases. The structural model in MIRAS-FLEX acts to reduce the aerodynamic load computed by MIRAS, particularly near the tip and at high wind...

  13. Continuous-time state-space unsteady aerodynamic modelling for efficient aeroelastic load analysis

    NARCIS (Netherlands)

    Werter, N.P.M.; De Breuker, R.; Abdalla, M.M.

    2015-01-01

    Over the years, wings have become lighter and more flexible, making them more prone to aeroelastic effects. Thus, aeroelasticity in design becomes more important. In order to determine the response of an aircraft to, for example, a gust, an unsteady aerodynamic model is required to determine the

  14. NeoCASS: An integrated tool for structural sizing, aeroelastic analysis and MDO at conceptual design level

    Science.gov (United States)

    Cavagna, Luca; Ricci, Sergio; Travaglini, Lorenzo

    2011-11-01

    This paper presents a design framework called NeoCASS (Next generation Conceptual Aero-Structural Sizing Suite), developed at the Department of Aerospace Engineering of Politecnico di Milano in the frame of SimSAC (Simulating Aircraft Stability And Control Characteristics for Use in Conceptual Design) project, funded by EU in the context of 6th Framework Program. It enables the creation of efficient low-order, medium fidelity models particularly suitable for structural sizing, aeroelastic analysis and optimization at the conceptual design level. The whole methodology is based on the integration of geometry construction, aerodynamic and structural analysis codes that combine depictive, computational, analytical, and semi-empirical methods, validated in an aircraft design environment. The work here presented aims at including the airframe and its effect from the very beginning of the conceptual design. This aspect is usually not considered in this early phase. In most cases, very simplified formulas and datasheets are adopted, which implies a low level of detail and a poor accuracy. Through NeoCASS, a preliminar distribution of stiffness and inertias can be determined, given the initial layout. The adoption of empirical formulas is reduced to the minimum in favor of simple numerical methods. This allows to consider the aeroelastic behavior and performances, as well, improving the accuracy of the design tools during the iterative steps and lowering the development costs and reducing the time to market. The result achieved is a design tool based on computational methods for the aero-structural analysis and Multi-Disciplinary Optimization (MDO) of aircraft layouts at the conceptual design stage. A complete case study regarding the TransoniCRuiser aircraft, including validation of the results obtained using industrial standard tools like MSC/NASTRAN and a CFD (Computational Fluid Dynamics) code, is reported. As it will be shown, it is possible to improve the degree of

  15. New Flutter Analysis Technique for Time-Domain Computational Aeroelasticity

    Science.gov (United States)

    Pak, Chan-Gi; Lung, Shun-Fat

    2017-01-01

    A new time-domain approach for computing flutter speed is presented. Based on the time-history result of aeroelastic simulation, the unknown unsteady aerodynamics model is estimated using a system identification technique. The full aeroelastic model is generated via coupling the estimated unsteady aerodynamic model with the known linear structure model. The critical dynamic pressure is computed and used in the subsequent simulation until the convergence of the critical dynamic pressure is achieved. The proposed method is applied to a benchmark cantilevered rectangular wing.

  16. Aeroelastic optimization of MW wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hartvig Hansen, M.; Zahle, F.

    2011-12-15

    This report contains the results from the Energy Development and Demonstration Project ''Aeroelastic Optimization of MW wind turbine'' (AeroOpt). The project has had the following five Work Packages: 1. Geometric non-linear, anisotropic beam element for HAWC2. 2. Closed-loop eigenvalue analysis of controlled wind turbines. 3. Resonant wave excitation of lateral tower bending modes. 4. Development of next generation aerodynamic design tools. 5. Advanced design and verification of airfoils. The purposes of these Work Packages are briefly described in the Preface and a summary of the results are given in Section 2. Thereafter, the results from each Work Package are described in eight subsequent chapters. (Author)

  17. Aeroelastic equations of motion of a Darrieus vertical-axis wind-turbine blade

    Science.gov (United States)

    Kaza, K. R. V.; Kvaternik, R. G.

    1979-01-01

    The second-degree nonlinear aeroelastic equations of motion for a slender, flexible, nonuniform, Darrieus vertical-axis wind turbine blade which is undergoing combined flatwise bending, edgewise bending, torsion, and extension are developed using Hamilton's principle. The blade aerodynamic loading is obtained from strip theory based on a quasi-steady approximation of two-dimensional incompressible unsteady airfoil theory. The derivation of the equations has its basis in the geometric nonlinear theory of elasticity and the resulting equations are consistent with the small deformation approximation in which the elongations and shears are negligible compared to unity. These equations are suitable for studying vibrations, static and dynamic aeroelastic instabilities, and dynamic response. Several possible methods of solution of the equations, which have periodic coefficients, are discussed.

  18. Enhanced aeroelastic energy harvesting by exploiting combined nonlinearities: theory and experiment

    International Nuclear Information System (INIS)

    Sousa, V C; De M Anicézio, M; De Marqui Jr, C; Erturk, A

    2011-01-01

    Converting aeroelastic vibrations into electricity for low power generation has received growing attention over the past few years. In addition to potential applications for aerospace structures, the goal is to develop alternative and scalable configurations for wind energy harvesting to use in wireless electronic systems. This paper presents modeling and experiments of aeroelastic energy harvesting using piezoelectric transduction with a focus on exploiting combined nonlinearities. An airfoil with plunge and pitch degrees of freedom (DOF) is investigated. Piezoelectric coupling is introduced to the plunge DOF while nonlinearities are introduced through the pitch DOF. A state-space model is presented and employed for the simulations of the piezoaeroelastic generator. A two-state approximation to Theodorsen aerodynamics is used in order to determine the unsteady aerodynamic loads. Three case studies are presented. First the interaction between piezoelectric power generation and linear aeroelastic behavior of a typical section is investigated for a set of resistive loads. Model predictions are compared to experimental data obtained from the wind tunnel tests at the flutter boundary. In the second case study, free play nonlinearity is added to the pitch DOF and it is shown that nonlinear limit-cycle oscillations can be obtained not only above but also below the linear flutter speed. The experimental results are successfully predicted by the model simulations. Finally, the combination of cubic hardening stiffness and free play nonlinearities is considered in the pitch DOF. The nonlinear piezoaeroelastic response is investigated for different values of the nonlinear-to-linear stiffness ratio. The free play nonlinearity reduces the cut-in speed while the hardening stiffness helps in obtaining persistent oscillations of acceptable amplitude over a wider range of airflow speeds. Such nonlinearities can be introduced to aeroelastic energy harvesters (exploiting

  19. Aeroelastic Optimization of a 10 MW Wind Turbine Blade with Active Trailing Edge Flaps

    DEFF Research Database (Denmark)

    Barlas, Athanasios; Tibaldi, Carlo; Zahle, Frederik

    2016-01-01

    This article presents the aeroelastic optimization of a 10MW wind turbine ‘smart blade’ equipped with active trailing edge flaps. The multi-disciplinary wind turbine analysis and optimization tool HawtOpt2 is utilized, which is based on the open-source framework Open-MDAO. The tool interfaces...... to several state-of-the art simulation codes, allowing for a wide variety of problem formulations and combinations of models. A simultaneous aerodynamic and structural optimization of a 10 MW wind turbine rotor is carried out with respect to material layups and outer shape. Active trailing edge flaps...

  20. STARS: An Integrated, Multidisciplinary, Finite-Element, Structural, Fluids, Aeroelastic, and Aeroservoelastic Analysis Computer Program

    Science.gov (United States)

    Gupta, K. K.

    1997-01-01

    A multidisciplinary, finite element-based, highly graphics-oriented, linear and nonlinear analysis capability that includes such disciplines as structures, heat transfer, linear aerodynamics, computational fluid dynamics, and controls engineering has been achieved by integrating several new modules in the original STARS (STructural Analysis RoutineS) computer program. Each individual analysis module is general-purpose in nature and is effectively integrated to yield aeroelastic and aeroservoelastic solutions of complex engineering problems. Examples of advanced NASA Dryden Flight Research Center projects analyzed by the code in recent years include the X-29A, F-18 High Alpha Research Vehicle/Thrust Vectoring Control System, B-52/Pegasus Generic Hypersonics, National AeroSpace Plane (NASP), SR-71/Hypersonic Launch Vehicle, and High Speed Civil Transport (HSCT) projects. Extensive graphics capabilities exist for convenient model development and postprocessing of analysis results. The program is written in modular form in standard FORTRAN language to run on a variety of computers, such as the IBM RISC/6000, SGI, DEC, Cray, and personal computer; associated graphics codes use OpenGL and IBM/graPHIGS language for color depiction. This program is available from COSMIC, the NASA agency for distribution of computer programs.

  1. Research in Aeroelasticity EFP-2006[Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C.

    2007-07-15

    This report contains the results from the Energy Research Project 'Program for Research in Applied Aeroelasticity, EFP-2006' covering the period from 1. April 2006 to 31. March 2007. A summary of the main results from the project is given in the following. The aerodynamics for rotors incl. spinner and winglets were clarified and the needed premises for an optimal rotor were explained. Also, the influence of viscous effects on rotor blades was investigated and the results indicated a range of optimum tip speed ratios. The use of winglets for wind turbine rotor was investigated and it was found that they can be used successfully, but that downwind and short winglets are most efficient. Investigating a strategy for reduction of loads and vibrations at extreme wind speeds showed that there are considerably uncertainties in the numerical models and that the main concluding remark is that measurements on a real blade or a real turbine are needed to further conclude the investigation. In the study of flutter and other torsional vibrations of blades at large deflections, modeling and analysis of the dynamics of a hydraulic pitch system for a 5 MW wind turbine was carried out. It was shown that the compressibility of the hydraulic oil introduced a dynamic mode in the pitch bearing degree of freedom. Also, investigating flutter for blades at large deflections showed that the flutter limit for a 5MW blade was moved significantly compared to blades without large deflections. The influence of modeling nacelle components was investigated by developing a generalized method to interface dynamic systems to the aeroelastic program HAWC2 and by exemplify by modeling the nacelle of an aeroelastic wind turbine model in a more detailed way by including a single planet stage of a gearbox. This simplified gearbox model captures in essence the splitting of the driving torque from the rotor shaft to the frame of the nacelle and to the generator. Investigating the influence of wind

  2. Control Application of Piezoelectric Materials to Aeroelastic Self-Excited Vibrations

    Directory of Open Access Journals (Sweden)

    Mohammad Amin Rashidifar

    2014-01-01

    Full Text Available A method for application of piezoelectric materials to aeroelasticity of turbomachinery blades is presented. The governing differential equations of an overhung beam are established. The induced voltage in attached piezoelectric sensors due to the strain of the beam is calculated. In aeroelastic self-excited vibrations, the aerodynamic generalized force of a specified mode can be described as a linear function of the generalized coordinate and its derivatives. This simplifies the closed loop system designed for vibration control of the corresponding structure. On the other hand, there is an industrial interest in measurement of displacement, velocity, acceleration, or a contribution of them for machinery condition monitoring. Considering this criterion in quadratic optimal control systems, a special style of performance index is configured. Utilizing the current relations in an aeroelastic case with proper attachment of piezoelectric elements can provide higher margin of instability and lead to lower vibration magnitude.

  3. Research in aeroelasticity EFP-2005

    DEFF Research Database (Denmark)

    2006-01-01

    In the Energy Research Project ”Program for Research in Applied Aeroelasticity” (EFP2005), Risø National Laboratory (Risø) and the Technical University of Denmark (DTU) have applied and further developed the tools in the aeroelastic design complex. Themain results from the project are: Adding...... a winglet to a wind turbine blade for minimizing the induced drag of the blade led to the biggest increase in power of 1.4%. Transient wind loads during pitch motion are determined using CFD. Compared to theNREL/NASA Ames test, reasonably good agreement is seen. A general method was developed...... for the determination of 3D angle of attack for rotating blades from either measurements or numerical computations using CFD. A model of the far wake behind windturbines was developed for stability studies of the tip vortices in the far wake. Investigating the blade root region showed that the power efficiency, CP...

  4. Level-Set Topology Optimization with Aeroelastic Constraints

    Science.gov (United States)

    Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia

    2015-01-01

    Level-set topology optimization is used to design a wing considering skin buckling under static aeroelastic trim loading, as well as dynamic aeroelastic stability (flutter). The level-set function is defined over the entire 3D volume of a transport aircraft wing box. Therefore, the approach is not limited by any predefined structure and can explore novel configurations. The Sequential Linear Programming (SLP) level-set method is used to solve the constrained optimization problems. The proposed method is demonstrated using three problems with mass, linear buckling and flutter objective and/or constraints. A constraint aggregation method is used to handle multiple buckling constraints in the wing skins. A continuous flutter constraint formulation is used to handle difficulties arising from discontinuities in the design space caused by a switching of the critical flutter mode.

  5. Variable Fidelity Aeroelastic Toolkit - Structural Model, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a methodology to incorporate variable fidelity structural models into steady and unsteady aeroelastic and aeroservoelastic analyses in...

  6. Linearized FUN3D for Rapid Aeroelastic and Aeroservoelastic Design and Analysis, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of this Phase I project is to develop a hybrid approach in FUN3D, referred herein to as the Linearized FUN3D, for rapid aeroelastic and...

  7. Studying aeroelastic oscillations with tensoresistor and Arduino

    Science.gov (United States)

    Demenkov, Maxim

    2018-05-01

    We describe a modification of the Flexy device, originally developed at the Slovak University of Technology. With our version of it, constructed at the Institute of Control Sciences, one can study aeroelastic oscillations (flutter) using cheap and freely available components. Flex sensor (tensoresistor) changes its electrical resistance proportionally to its bending. The lightweight plastic plate (attached to the resistor) plays the role of a wing in the flow generated by a small fan. Both fan and tensoresistor are connected to an Arduino microcontroller and it is possible to obtain and analyze experimental data from the device on a personal computer.

  8. Physics-Based Identification, Modeling and Risk Management for Aeroelastic Flutter and Limit-Cycle Oscillations (LCO), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed research program will develop a physics-based identification, modeling and risk management infrastructure for aeroelastic transonic flutter and...

  9. Aeroelastic Dynamics Simulation of Two BaffleBased Connected Shells

    Directory of Open Access Journals (Sweden)

    G. A. Shcheglov

    2015-01-01

    Full Text Available The present work is an extention study of aeroelastic vibrations of thin-walled structures with a spatial subsonic flow. An original algorithm for solving complex conjugated aeroelasticity problem, allowing to carry out direct numerical simulation of structural oscillations in the spatial flow of an incompressible medium are developed and tested. On the basis of this simulation study of the spectrum comes the driving forces acting on the flow in a spatial component elastic structure mounted on an impenetrable screen.Currently, updating the mathematical models of unsteady loads that act on the spacepurpose elastic designs such as launch vehicles, service tower installed on the launch pad is a challenge. We consider two thin-walled cantilevered rotating shells connected by a system of elastic couplings, installed next to the impenetrable baffle so that the axes of rotation are perpendicular to the baffle. Dynamics of elastic system is investigated numerically, using the vortex element method with the spatial separated flow of an incompressible medium. A feature of the algorithm is the common commercial complex MSC Patran / Nastran which is used in preparing data to calculate the shell dynamics thereby allowing to consider very complex dynamic schemes.The work performs the first calculations of the model problem concerning the forced oscillations of two coupled cylindrical shells in the flow of an incompressible medium. Comparing the load spectra for the elastic and absolutely rigid structure has shown that the frequency spectra vary slightly. Further calculations are required in which it will be necessary to increase the duration of the calculations, sampling in construction of design scheme, and given the large number of vibration modes that require increasing computing power.Experience in calculating aeroelastic dynamics of complex elastic structures taking into account the screen proved to be successful as a whole, thereby allowing to turn to

  10. Aeroelastic Modeling of Elastically Shaped Aircraft Concept via Wing Shaping Control for Drag Reduction

    Science.gov (United States)

    Nguyen, Nhan; James Urnes, Sr.

    2012-01-01

    Lightweight aircraft design has received a considerable attention in recent years as a means for improving cruise efficiency. Reducing aircraft weight results in lower lift requirements which directly translate into lower drag, hence reduced engine thrust requirements during cruise. The use of lightweight materials such as advanced composite materials has been adopted by airframe manufacturers in current and future aircraft. Modern lightweight materials can provide less structural rigidity while maintaining load-carrying capacity. As structural flexibility increases, aeroelastic interactions with aerodynamic forces and moments become an increasingly important consideration in aircraft design and aerodynamic performance. Furthermore, aeroelastic interactions with flight dynamics can result in issues with vehicle stability and control. Abstract This paper describes a recent aeroelastic modeling effort for an elastically shaped aircraft concept (ESAC). The aircraft model is based on the rigid-body generic transport model (GTM) originally developed at NASA Langley Research Center. The ESAC distinguishes itself from the GTM in that it is equipped with highly flexible wing structures as a weight reduction design feature. More significantly, the wings are outfitted with a novel control effector concept called variable camber continuous trailing edge (VCCTE) flap system for active control of wing aeroelastic deflections to optimize the local angle of attack of wing sections for improved aerodynamic efficiency through cruise drag reduction and lift enhancement during take-off and landing. The VCCTE flap is a multi-functional and aerodynamically efficient device capable of achieving high lift-to-drag ratios. The flap system is comprised of three chordwise segments that form the variable camber feature of the flap and multiple spanwise segments that form a piecewise continuous trailing edge. By configuring the flap camber and trailing edge shape, drag reduction could be

  11. Approximate analytical relationships for linear optimal aeroelastic flight control laws

    Science.gov (United States)

    Kassem, Ayman Hamdy

    1998-09-01

    This dissertation introduces new methods to uncover functional relationships between design parameters of a contemporary control design technique and the resulting closed-loop properties. Three new methods are developed for generating such relationships through analytical expressions: the Direct Eigen-Based Technique, the Order of Magnitude Technique, and the Cost Function Imbedding Technique. Efforts concentrated on the linear-quadratic state-feedback control-design technique applied to an aeroelastic flight control task. For this specific application, simple and accurate analytical expressions for the closed-loop eigenvalues and zeros in terms of basic parameters such as stability and control derivatives, structural vibration damping and natural frequency, and cost function weights are generated. These expressions explicitly indicate how the weights augment the short period and aeroelastic modes, as well as the closed-loop zeros, and by what physical mechanism. The analytical expressions are used to address topics such as damping, nonminimum phase behavior, stability, and performance with robustness considerations, and design modifications. This type of knowledge is invaluable to the flight control designer and would be more difficult to formulate when obtained from numerical-based sensitivity analysis.

  12. 14 CFR 25.629 - Aeroelastic stability requirements.

    Science.gov (United States)

    2010-01-01

    ... stability envelopes as follows: (1) For normal conditions without failures, malfunctions, or adverse conditions, all combinations of altitudes and speeds encompassed by the VD/MD versus altitude envelope... necessary by the Administrator. (b) Aeroelastic stability envelopes. The airplane must be designed to be...

  13. Non-contact test set-up for aeroelasticity in a rotating turbomachine combining a novel acoustic excitation system with tip-timing

    International Nuclear Information System (INIS)

    Freund, O; Seume, J R; Montgomery, M; Mittelbach, M

    2014-01-01

    Due to trends in aero-design, aeroelasticity becomes increasingly important in modern turbomachines. Design requirements of turbomachines lead to the development of high aspect ratio blades and blade integral disc designs (blisks), which are especially prone to complex modes of vibration. Therefore, experimental investigations yielding high quality data are required for improving the understanding of aeroelastic effects in turbomachines. One possibility to achieve high quality data is to excite and measure blade vibrations in turbomachines. The major requirement for blade excitation and blade vibration measurements is to minimize interference with the aeroelastic effects to be investigated. Thus in this paper, a non-contact—and thus low interference—experimental set-up for exciting and measuring blade vibrations is proposed and shown to work. A novel acoustic system excites rotor blade vibrations, which are measured with an optical tip-timing system. By performing measurements in an axial compressor, the potential of the acoustic excitation method for investigating aeroelastic effects is explored. The basic principle of this method is described and proven through the analysis of blade responses at different acoustic excitation frequencies and at different rotational speeds. To verify the accuracy of the tip-timing system, amplitudes measured by tip-timing are compared with strain gage measurements. They are found to agree well. Two approaches to vary the nodal diameter (ND) of the excited vibration mode by controlling the acoustic excitation are presented. By combining the different excitable acoustic modes with a phase-lag control, each ND of the investigated 30 blade rotor can be excited individually. This feature of the present acoustic excitation system is of great benefit to aeroelastic investigations and represents one of the main advantages over other excitation methods proposed in the past. In future studies, the acoustic excitation method will be used

  14. Nonlinear Aerodynamic and Nonlinear Structures Interations (NANSI) Methodology for Ballute/Inflatable Aeroelasticity in Hypersonic Atmospheric Entry, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA proposes a phase II effort to fully develop a comprehensive methodology for aeroelastic predictions of the nonlinear aerodynamic/aerothermodynamic - structure...

  15. Quasi-Static Condensation of Aeroelastic Suspension Bridge Model

    DEFF Research Database (Denmark)

    Møller, Randi N.; Krenk, Steen; N. Svendsen, Martin

    2017-01-01

    For long span bridges the wind-induced dynamic response is a design driving factor and therefore continuously a subject for detailed analysis. Traditionally both buffeting and stability calculations have been considered in the frequency domain. However, this yields alimitation in accounting...... for turbulence when considering the stability limit and further it is not possible to account for non-linear effects. These limitations suggest to do simulations of the aeroelastic response of long span bridges in the time domain. For this it is of interest to have an efficient model while still maintaining...... sufficient accuracy. This contribution is on quasi-static reduction of an aeroelastic finite element model of a 3000m suspension bridge proposed for crossing Sulafjorden in Norway. The model is intended for stability limit calculation where the representation of higher modes is of less importance...

  16. Development of an unsteady wake theory appropriate for aeroelastic analyses of rotors in hover and forward flight

    Science.gov (United States)

    Peters, David A.

    1988-01-01

    The purpose of this research is the development of an unsteady aerodynamic model for rotors such that it can be used in conventional aeroelastic analysis (e.g., eigenvalue determination and control system design). For this to happen, the model must be in a state-space formulation such that the states of the flow can be defined, calculated and identified as part of the analysis. The fluid mechanics of the problem is given by a closed-form inversion of an acceleration potential. The result is a set of first-order differential equations in time for the unknown flow coefficients. These equations are hierarchical in the sense that they may be truncated at any number of radial or azimuthal terms.

  17. Coupled Vortex-Lattice Flight Dynamic Model with Aeroelastic Finite-Element Model of Flexible Wing Transport Aircraft with Variable Camber Continuous Trailing Edge Flap for Drag Reduction

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh

    2013-01-01

    This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.

  18. Mapped Chebyshev Pseudo-Spectral Method for Dynamic Aero-Elastic Problem of Limit Cycle Oscillation

    Science.gov (United States)

    Im, Dong Kyun; Kim, Hyun Soon; Choi, Seongim

    2018-05-01

    A mapped Chebyshev pseudo-spectral method is developed as one of the Fourier-spectral approaches and solves nonlinear PDE systems for unsteady flows and dynamic aero-elastic problem in a given time interval, where the flows or elastic motions can be periodic, nonperiodic, or periodic with an unknown frequency. The method uses the Chebyshev polynomials of the first kind for the basis function and redistributes the standard Chebyshev-Gauss-Lobatto collocation points more evenly by a conformal mapping function for improved numerical stability. Contributions of the method are several. It can be an order of magnitude more efficient than the conventional finite difference-based, time-accurate computation, depending on the complexity of solutions and the number of collocation points. The method reformulates the dynamic aero-elastic problem in spectral form for coupled analysis of aerodynamics and structures, which can be effective for design optimization of unsteady and dynamic problems. A limit cycle oscillation (LCO) is chosen for the validation and a new method to determine the LCO frequency is introduced based on the minimization of a second derivative of the aero-elastic formulation. Two examples of the limit cycle oscillation are tested: nonlinear, one degree-of-freedom mass-spring-damper system and two degrees-of-freedom oscillating airfoil under pitch and plunge motions. Results show good agreements with those of the conventional time-accurate simulations and wind tunnel experiments.

  19. Aeroelastic oscillations of a cantilever with structural nonlinearities: theory and numerical simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Brandon [Carleton Univ., Ottawa, ON (Canada). Dept. of Civil and Environmental Engineering; Rocha da Costa, Leandro Jose [Carleton Univ., Ottawa, ON (Canada). Dept. of Civil and Environmental Engineering; Poirel, Dominique [Royal Military College of Canada, Kingston (Canada). Dept. of Mechanical and Aerospace Engineering; Pettit, Chris [US Naval Academy, Annapolis, MD (United States). Dept. of Mechanical and Aerospace Engineering; Khalil, Mohammad [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sarkar, Abhijit [Carleton Univ., Ottawa, ON (Canada). Dept. of Civil and Environmental Engineering

    2017-09-01

    Our study details the derivation of the nonlinear equations of motion for the axial, biaxial bending and torsional vibrations of an aeroelastic cantilever undergoing rigid body (pitch) rotation at the base. The primary attenstion is focussed on the geometric nonlinearities of the system, whereby the aeroelastic load is modeled by the theory of linear quasisteady aerodynamics. This modelling effort is intended to mimic the wind-tunnel experimental setup at the Royal Military College of Canada. While the derivation closely follows the work of Hodges and Dowell [1] for rotor blades, this aeroelastic system contains new inertial terms which stem from the fundamentally different kinematics than those exhibited by helicopter or wind turbine blades. Using the Hamilton’s principle, a set of coupled nonlinear partial differential equations (PDEs) and an ordinary differential equation (ODE) are derived which describes the coupled axial-bending-bending-torsion-pitch motion of the aeroelastic cantilever with the pitch rotation. The finite dimensional approximation of the coupled system of PDEs are obtained using the Galerkin projection, leading to a coupled system of ODEs. Subsequently, these nonlinear ODEs are solved numerically using the built-in MATLAB implicit ODE solver and the associated numerical results are compared with those obtained using Houbolt’s method. It is demonstrated that the system undergoes coalescence flutter, leading to a limit cycle oscillation (LCO) due to coupling between the rigid body pitching mode and teh flexible mode arising from the flapwise bending motion.

  20. Development of an anisotropic beam finite element for composite wind turbine blades in multibody system

    DEFF Research Database (Denmark)

    Kim, Taeseong; Hansen, Anders Melchior; Branner, Kim

    2013-01-01

    In this paper a new anisotropic beam finite element for composite wind turbine blades is developed and implemented into the aeroelastic nonlinear multibody code, HAWC2, intended to be used to investigate if use of anisotropic material layups in wind turbine blades can be tailored for improved...

  1. A new aeroelastic model for composite rotor blades with straight and swept tips

    Science.gov (United States)

    Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur

    1992-01-01

    An analytical model for predicting the aeroelastic behavior of composite rotor blades with straight and swept tips is presented. The blade is modeled by beam type finite elements along the elastic axis. A single finite element is used to model the swept tip. The nonlinear equations of motion for the finite element model are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. Tip sweep can induce aeroelastic instability by flap-twist coupling. Tip anhedral causes lag-torsion and flap-axial couplings, however, its effects on blade stability is less pronounced than the effect due to sweep. Composite ply orientation has a substantial effect on blade stability.

  2. Design of Large Wind Turbines using Fluid-Structure Coupling Technique

    DEFF Research Database (Denmark)

    Sessarego, Matias

    Aerodynamic and structural dynamic performance analysis of modern wind turbines are routinely carried out in the wind energy field using computational tools known as aero-elastic codes. Most aero-elastic codes use the blade element momentum (BEM) technique to model the rotor aerodynamics......-dimensional viscous-inviscid interactive method, MIRAS, with the dynamics model used in the aero-elastic code FLEX5. Following the development of MIRAS-FLEX, a surrogate optimization methodology using MIRAS alone has been developed for the aerodynamic design of wind-turbine rotors. Designing a rotor using...... a computationally expensive MIRAS instead of an inexpensive BEM code represents a challenge, which is resolved by using the proposed surrogate-based approach. The approach is unique because most aerodynamic wind-turbine rotor design codes use the more common and inexpensive BEM technique. As a verification case...

  3. The influence of turbulence on the aero-elastic instability of wind turbines

    DEFF Research Database (Denmark)

    Zhang, Zili; Nielsen, Søren R.K.

    2014-01-01

    Modern multi-megawatt wind turbines are designed with longer and slender blades using new composite materials and advanced fabrication methods. The trend towards lighter and more flexible blades may lead to aeroelastic instability of wind turbines under certain circumstances, thus resulting...... calibrated to the NREL 5 MW baseline wind turbine. Aeroelastic stability of the wind turbine system has been evaluated for various values of the rated generator torque, the rated rotational speed of the rotor, the mean wind speed and the turbulence intensity. Critical turbulence intensity, at which the wind...

  4. Aeroelastic stability of full-span tiltrotor aircraft model in forward flight

    Directory of Open Access Journals (Sweden)

    Zhiquan LI

    2017-12-01

    Full Text Available The existing full-span models of the tiltrotor aircraft adopted the rigid blade model without considering the coupling relationship among the elastic blade, wing and fuselage. To overcome the limitations of the existing full-span models and improve the precision of aeroelastic analysis of tiltrotor aircraft in forward flight, the aeroelastic stability analysis model of full-span tiltrotor aircraft in forward flight has been presented in this paper by considering the coupling among elastic blade, wing, fuselage and various components. The analytical model is validated by comparing with the calculation results and experimental data in the existing references. The influence of some structural parameters, such as the fuselage degrees of freedom, relative displacement between the hub center and the gravity center, and nacelle length, on the system stability is also investigated. The results show that the fuselage degrees of freedom decrease the critical stability velocity of tiltrotor aircraft, and the variation of the structural parameters has great influence on the system stability, and the instability form of system can change between the anti-symmetric and symmetric wing motions of vertical and chordwise bending. Keywords: Aeroelastic stability, Forward flight, Full-span model, Modal analysis, Tiltrotor aircraft

  5. Optimal Topology of Aircraft Rib and Spar Structures under Aeroelastic Loads

    Science.gov (United States)

    Stanford, Bret K.; Dunning, Peter D.

    2014-01-01

    Several topology optimization problems are conducted within the ribs and spars of a wing box. It is desired to locate the best position of lightening holes, truss/cross-bracing, etc. A variety of aeroelastic metrics are isolated for each of these problems: elastic wing compliance under trim loads and taxi loads, stress distribution, and crushing loads. Aileron effectiveness under a constant roll rate is considered, as are dynamic metrics: natural vibration frequency and flutter. This approach helps uncover the relationship between topology and aeroelasticity in subsonic transport wings, and can therefore aid in understanding the complex aircraft design process which must eventually consider all these metrics and load cases simultaneously.

  6. Preliminary investigation study of code of developed country for developing Korean fuel cycle code

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Ko, Won Il; Lee, Ho Hee; Cho, Dong Keun; Park, Chang Je

    2012-01-01

    In order to develop Korean fuel cycle code, the analyses has been performed with the fuel cycle codes which are used in advanced country. Also, recommendations were proposed for future development. The fuel cycle codes are AS FLOOWS: VISTA which has been developed by IAEA, DANESS code which developed by ANL and LISTO, and VISION developed by INL for the Advanced Fuel Cycle Initiative (AFCI) system analysis. The recommended items were proposed for software, program scheme, material flow model, isotope decay model, environmental impact analysis model, and economics analysis model. The described things will be used for development of Korean nuclear fuel cycle code in future

  7. An Aeroelastic Perspective of Floating Offshore Wind Turbine Wake Formation and Instability

    Science.gov (United States)

    Rodriguez, Steven N.; Jaworski, Justin W.

    2015-11-01

    The wake formation and wake stability of floating offshore wind turbines are investigated from an aeroelastic perspective. The aeroelastic model is composed of the Sebastian-Lackner free-vortex wake aerodynamic model coupled to the nonlinear Hodges-Dowell beam equations, which are extended to include the effects of blade profile asymmetry, higher-order torsional effects, and kinetic energy components associated with periodic rigid-body motions of floating platforms. Rigid-body platform motions are also assigned to the aerodynamic model as varying inflow conditions to emulate operational rotor-wake interactions. Careful attention is given to the wake formation within operational states where the ratio of inflow velocity to induced velocity is over 50%. These states are most susceptible to aerodynamic instabilities, and provide a range of states about which a wake stability analysis can be performed. In addition, the stability analysis used for the numerical framework is implemented into a standalone free-vortex wake aerodynamic model. Both aeroelastic and standalone aerodynamic results are compared to evaluate the level of impact that flexible blades have on the wake formation and wake stability.

  8. Aeroelastic Deformation Measurements of Flap, Gap, and Overhang on a Semispan Model

    Science.gov (United States)

    Burner, A. W.; Liu, Tian-Shu; Garg, Sanjay; Ghee, Terence A.; Taylor, Nigel J.

    2001-01-01

    Single-camera, single-view videogrammetry has been used for the first time to determine static aeroelastic deformation of a slotted flap configuration on a semispan model at the National Transonic Facility (NTF). Deformation was determined by comparing wind-off to wind-on spatial data from targets placed on the main element, shroud, and flap of the model. Digitized video images from a camera were recorded and processed to automatically determine target image plane locations that were then corrected for sensor, lens, and frame grabber spatial errors. The videogrammetric technique used for the measurements presented here has been established at NASA facilities as the technique of choice when high-volume static aeroelastic data with minimum impact on data taking is required. However, the primary measurement at the NTF with this technique in the past has been the measurement of the static aeroelastic wing twist of the main wing element on full span models rather than for the measurement of component deformation. Considerations for using the videogrammetric technique for semispan component deformation measurements as well as representative results are presented.

  9. Constructal Theory and Aeroelastic Design of Flexible Flying Wing Aircraft

    Directory of Open Access Journals (Sweden)

    Pezhman Mardanpour

    2017-07-01

    Full Text Available The aeroelastic behavior of high-aspect-ratio very flexible flying wing is highly affected by the geometric nonlinearities of the aircraft structure. This paper reviews the findings on how these nonlinearities influence the structural and flight dynamics, and it shows that the aeroelastic flight envelope could significantly be extended with proper choices of design parameters such as engine placement. Moreover, in order to investigate the physics behind the effects of design parameters, constructal theory of design is reviewed. The constructal theory advances the philosophy of design as science, it states that the better structural design emerges when stress flow strangulation is avoided. Furthermore, it shows that airplanes, through their evolution, have obeyed theoretical allometric rules that unite their designs.

  10. Aeroelastic Tailoring of the NASA Common Research Model via Novel Material and Structural Configurations

    Science.gov (United States)

    Jutte, Christine V.; Stanford, Bret K.; Wieseman, Carol D.; Moore, James B.

    2014-01-01

    This work explores the use of tow steered composite laminates, functionally graded metals (FGM), thickness distributions, and curvilinear rib/spar/stringer topologies for aeroelastic tailoring. Parameterized models of the Common Research Model (CRM) wing box have been developed for passive aeroelastic tailoring trade studies. Metrics of interest include the wing weight, the onset of dynamic flutter, and the static aeroelastic stresses. Compared to a baseline structure, the lowest aggregate static wing stresses could be obtained with tow steered skins (47% improvement), and many of these designs could reduce weight as well (up to 14%). For these structures, the trade-off between flutter speed and weight is generally strong, although one case showed both a 100% flutter improvement and a 3.5% weight reduction. Material grading showed no benefit in the skins, but moderate flutter speed improvements (with no weight or stress increase) could be obtained by grading the spars (4.8%) or ribs (3.2%), where the best flutter results were obtained by grading both thickness and material. For the topology work, large weight reductions were obtained by removing an inner spar, and performance was maintained by shifting stringers forward and/or using curvilinear ribs: 5.6% weight reduction, a 13.9% improvement in flutter speed, but a 3.0% increase in stress levels. Flutter resistance was also maintained using straightrotated ribs although the design had a 4.2% lower flutter speed than the curved ribs of similar weight and stress levels were higher. These results will guide the development of a future design optimization scheme established to exploit and combine the individual attributes of these technologies.

  11. Strain actuated aeroelastic control

    Science.gov (United States)

    Lazarus, Kenneth B.

    1992-01-01

    Viewgraphs on strain actuated aeroelastic control are presented. Topics covered include: structural and aerodynamic modeling; control law design methodology; system block diagram; adaptive wing test article; bench-top experiments; bench-top disturbance rejection: open and closed loop response; bench-top disturbance rejection: state cost versus control cost; wind tunnel experiments; wind tunnel gust alleviation: open and closed loop response at 60 mph; wind tunnel gust alleviation: state cost versus control cost at 60 mph; wind tunnel command following: open and closed loop error at 60 mph; wind tunnel flutter suppression: open loop flutter speed; and wind tunnel flutter suppression: closed loop state cost curves.

  12. Aeroelastic Limit-Cycle Oscillations resulting from Aerodynamic Non-Linearities

    NARCIS (Netherlands)

    van Rooij, A.C.L.M.

    2017-01-01

    Aerodynamic non-linearities, such as shock waves, boundary layer separation or boundary layer transition, may cause an amplitude limitation of the oscillations induced by the fluid flow around a structure. These aeroelastic limit-cycle oscillations (LCOs) resulting from aerodynamic non-linearities

  13. Optimum Design of a Helicopter Rotor for Low Vibration Using Aeroelastic Analysis and Response Surface Methods

    Science.gov (United States)

    Ganguli, R.

    2002-11-01

    An aeroelastic analysis based on finite elements in space and time is used to model the helicopter rotor in forward flight. The rotor blade is represented as an elastic cantilever beam undergoing flap and lag bending, elastic torsion and axial deformations. The objective of the improved design is to reduce vibratory loads at the rotor hub that are the main source of helicopter vibration. Constraints are imposed on aeroelastic stability, and move limits are imposed on the blade elastic stiffness design variables. Using the aeroelastic analysis, response surface approximations are constructed for the objective function (vibratory hub loads). It is found that second order polynomial response surfaces constructed using the central composite design of the theory of design of experiments adequately represents the aeroelastic model in the vicinity of the baseline design. Optimization results show a reduction in the objective function of about 30 per cent. A key accomplishment of this paper is the decoupling of the analysis problem and the optimization problems using response surface methods, which should encourage the use of optimization methods by the helicopter industry.

  14. Wind turbine rotor blade monitoring using digital image correlation: a comparison to aeroelastic simulations of a multi-megawatt wind turbine

    International Nuclear Information System (INIS)

    Winstroth, J; Ernst, B; Seume, J R; Schoen, L

    2014-01-01

    Optical full-field measurement methods such as Digital Image Correlation (DIC) provide a new opportunity for measuring deformations and vibrations with high spatial and temporal resolution. However, application to full-scale wind turbines is not trivial. Elaborate preparation of the experiment is vital and sophisticated post processing of the DIC results essential. In the present study, a rotor blade of a 3.2 MW wind turbine is equipped with a random black-and-white dot pattern at four different radial positions. Two cameras are located in front of the wind turbine and the response of the rotor blade is monitored using DIC for different turbine operations. In addition, a Light Detection and Ranging (LiDAR) system is used in order to measure the wind conditions. Wind fields are created based on the LiDAR measurements and used to perform aeroelastic simulations of the wind turbine by means of advanced multibody codes. The results from the optical DIC system appear plausible when checked against common and expected results. In addition, the comparison of relative out-ofplane blade deflections shows good agreement between DIC results and aeroelastic simulations

  15. Wind turbine rotor blade monitoring using digital image correlation: a comparison to aeroelastic simulations of a multi-megawatt wind turbine

    Science.gov (United States)

    Winstroth, J.; Schoen, L.; Ernst, B.; Seume, J. R.

    2014-06-01

    Optical full-field measurement methods such as Digital Image Correlation (DIC) provide a new opportunity for measuring deformations and vibrations with high spatial and temporal resolution. However, application to full-scale wind turbines is not trivial. Elaborate preparation of the experiment is vital and sophisticated post processing of the DIC results essential. In the present study, a rotor blade of a 3.2 MW wind turbine is equipped with a random black-and-white dot pattern at four different radial positions. Two cameras are located in front of the wind turbine and the response of the rotor blade is monitored using DIC for different turbine operations. In addition, a Light Detection and Ranging (LiDAR) system is used in order to measure the wind conditions. Wind fields are created based on the LiDAR measurements and used to perform aeroelastic simulations of the wind turbine by means of advanced multibody codes. The results from the optical DIC system appear plausible when checked against common and expected results. In addition, the comparison of relative out-ofplane blade deflections shows good agreement between DIC results and aeroelastic simulations.

  16. Response types and general stability conditions of linear aero-elastic system with two degrees-of-freedom

    Czech Academy of Sciences Publication Activity Database

    Náprstek, Jiří; Pospíšil, Stanislav

    2012-01-01

    Roč. 111, č. 1 (2012), s. 1-13 ISSN 0167-6105 R&D Projects: GA ČR(CZ) GA103/09/0094; GA AV ČR(CZ) IAA200710902 Institutional support: RVO:68378297 Keywords : aero-elastic system * self-excited vibration * instability * aero-elastic derivatives Subject RIV: JN - Civil Engineering Impact factor: 1.342, year: 2012

  17. Parameter estimation of an aeroelastic aircraft using neural networks

    Indian Academy of Sciences (India)

    Many proposed model reduction procedures rely on numerical techniques andaor ... The capacity to act as general function approximator presents FFNNs as an alternative tool ... This paper investigates the aerodynamic modelling of an aeroelastic aircraft using ... the learning (training) process ± backpropagation of error.

  18. Aeroelastic Loads Modeling for Composite Aircraft Design Support

    NARCIS (Netherlands)

    Baluch, H.A.

    2009-01-01

    With regard to the simulation of structural vibrations and consequent aeroelastic loads in aircraft components, the use of elastic axis e.a as reference of vibrations is quite common. The e.a decouples the bending and torsion degrees of freedom (D.o.F) during the dynamic analysis. The use of the e.a

  19. Research in aeroelasticity EFP-2002; Forskning i aeroelasticitet EFP-2002

    Energy Technology Data Exchange (ETDEWEB)

    Bak, Christian (ed.)

    2004-02-01

    This report contains results from the Energy Research Project 'Application, demonstration and further development of advanced aerodynamic and aeroelastic models' (EFP 2002), covering the time from July 1 2002 to December 31 2003. The partners in the project are Risoe National Labo-ratory (Risoe), The Technical University of Denmark (DTU), Bonus Energy A/S, LM Glasfiber A/S, NEG Micon A/S og Vestas Wind Systems A/S. In the project, Risoe and DTU have de-monstrated the application of their advanced computational methods on several different mega-Watt-size wind turbine designs. Compared to traditional methods the advanced methods have among other results shown: 1) that the aerodynamics at the blade tip for a wind turbine cannot be analysed correctly for a non-rotating blade. 2) that the drag coefficient distribution on a rotor in stand still according to Computational Fluid Dynamics should be increased from the blade root towards the blade tip. 3) that the maximum 2D lift coefficient in airfoil characteristics should be reduced at the blade tip and should be increased significantly on the inner part of the rotor. The drag coefficients should in general be increased for all sections on the blade, when the flow is separating. 4) that the choice of airfoil characteristics, aerodynamical as well as structural, are impor-tant for the loads, the noise and the design of a wind turbine. 5) that blade edgewise vibrations in stand still computed with an aeroelastic code are most critical around 40 deg. and 140 deg. angles of attack and that these vibrations depend completely on the given values of lift and drag. 6) that the energy production decreases in the case of large deflections of the blades. 7) that the blade flap eigenfrequency increases in the case of large deflections. 8) that there is an increased coupling between blade edge and blade torsional frequency in the case of large deflections. 9) that an overview of the dynamics for a wind turbine design can be

  20. Analysis of non-linear aeroelastic response of a supersonic thick fin with plunging, pinching and flapping free-plays

    Science.gov (United States)

    Firouz-Abadi, R. D.; Alavi, S. M.; Salarieh, H.

    2013-07-01

    The flutter of a 3-D rigid fin with double-wedge section and free-play in flapping, plunging and pitching degrees-of-freedom operating in supersonic and hypersonic flight speed regimes have been considered. Aerodynamic model is obtained by local usage of the piston theory behind the shock and expansion analysis, and structural model is obtained based on Lagrange equation of motion. Such model presents fast, accurate algorithm for studying the aeroelastic behavior of the thick supersonic fin in time domain. Dynamic behavior of the fin is considered over large number of parameters that characterize the aeroelastic system. Results show that the free-play in the pitching, plunging and flapping degrees-of-freedom has significant effects on the oscillation exhibited by the aeroelastic system in the supersonic/hypersonic flight speed regimes. The simulations also show that the aeroelastic system behavior is greatly affected by some parameters, such as the Mach number, thickness, angle of attack, hinge position and sweep angle.

  1. Static Aeroelastic Deformation Effects in Preliminary Wind-tunnel Tests of Silent Supersonic Technology Demonstrator

    OpenAIRE

    Makino, Yoshikazu; Ohira, Keisuke; Makimoto, Takuya; Mitomo, Toshiteru; 牧野, 好和; 大平, 啓介; 牧本, 卓也; 三友, 俊輝

    2011-01-01

    Effects of static aeroelastic deformation of a wind-tunnel test model on the aerodynamic characteristics are discussed in wind-tunnel tests in the preliminary design phase of the silent supersonic technology demonstrator (S3TD). The static aeroelastic deformation of the main wing is estimated for JAXA 2m x 2m transonic wind-tunnel and 1m x 1m supersonic wind-tunnel by a finite element method (FEM) structural analysis in which its structural model is tuned with the model deformation calibratio...

  2. Numerical studies of static aeroelastic effects on grid fin aerodynamic performances

    Directory of Open Access Journals (Sweden)

    Chengde HUANG

    2017-08-01

    Full Text Available The grid fin is an unconventional control surface used on missiles and rockets. Although aerodynamics of grid fin has been studied by many researchers, few considers the aeroelastic effects. In this paper, the static aeroelastic simulations are performed by the coupled viscous computational fluid dynamics with structural flexibility method in transonic and supersonic regimes. The developed coupling strategy including fluid–structure interpolation and volume mesh motion schemes is based on radial basis functions. Results are presented for a vertical and a horizontal grid fin mounted on a body. Horizontal fin results show that the deformed fin is swept backward and the axial force is increased. The deformations also induce the movement of center of pressure, causing the reduction and reversal in hinge moment for the transonic flow and the supersonic flow, respectively. For the vertical fin, the local effective incidences are increased due to the deformations so that the deformed normal force is greater than the original one. At high angles of attack, both the deformed and original normal forces experience a sudden reduction due to the interference of leeward separated vortices on the fin. Additionally, the increment in axial force is shown to correlate strongly with the increment in the square of normal force.

  3. The importance of including dynamic soil-structure interaction into wind turbine simulation codes

    DEFF Research Database (Denmark)

    Damgaard, Mads; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2014-01-01

    A rigorous numerical model, describing a wind turbine structure and subsoil, may contain thousands of degrees of freedom, making the approach computationally inefficient for fast time domain analysis. In order to meet the requirements of real-time calculations, the dynamic impedance of the founda......A rigorous numerical model, describing a wind turbine structure and subsoil, may contain thousands of degrees of freedom, making the approach computationally inefficient for fast time domain analysis. In order to meet the requirements of real-time calculations, the dynamic impedance...... of the foundation from a rigorous analysis can be formulated into a so-called lumped-parameter model consisting of a few springs, dashpots and point masses which are easily implemented into aeroelastic codes. In this paper, the quality of consistent lumped-parameter models of rigid surface footings and mono piles...... is examined. The optimal order of the models is determined and implemented into the aeroelastic code HAWC2, where the dynamic response of a 5.0 MW wind turbine is evaluated. In contrast to the fore-aft vibrations, the inclusion of soil-structure interaction is shown to be critical for the side-side vibrations...

  4. Presentations from the Aeroelastic Workshop - latest results from AeroOpt

    Energy Technology Data Exchange (ETDEWEB)

    Hartvig Hansen, M. (ed.)

    2011-10-15

    This report contains the slides of the presentations at the Aeroelastic Workshop held at Risoe-DTU for the wind energy industry in Denmark on October 27, 2011. The scientific part of the agenda at this workshop was 1) Detailed and reduced models of dynamic mooring system (Anders M. Hansen). 2) Bend-twist coupling investigation in HAWC2 (Taeseong Kim). 3) Q3UIC - A new aerodynamic airfoil tool including rotational effects (Nestor R. Garcia). 4) Influence of up-scaling on loads, control and aerodynamic modeling (Helge Aa. Madsen). 5) Aerodynamic damping of lateral tower vibrations (Bjarne S. Kallesoee). 6) Open- and closed-loop aeroservoelastic analysis with HAWCStab2 (Morten H. Hansen). 7) Design and test of a thick, flatback, high-lift multielement airfoil (Frederik Zahle). The presented results are mainly obtained in the EUDP project ''Aeroelastic Optimization of MW Wind Turbines (AeroOpt)''. (Author)

  5. Support-Vector-Machine-Based Reduced-Order Model for Limit Cycle Oscillation Prediction of Nonlinear Aeroelastic System

    Directory of Open Access Journals (Sweden)

    Gang Chen

    2012-01-01

    Full Text Available It is not easy for the system identification-based reduced-order model (ROM and even eigenmode based reduced-order model to predict the limit cycle oscillation generated by the nonlinear unsteady aerodynamics. Most of these traditional ROMs are sensitive to the flow parameter variation. In order to deal with this problem, a support vector machine- (SVM- based ROM was investigated and the general construction framework was proposed. The two-DOF aeroelastic system for the NACA 64A010 airfoil in transonic flow was then demonstrated for the new SVM-based ROM. The simulation results show that the new ROM can capture the LCO behavior of the nonlinear aeroelastic system with good accuracy and high efficiency. The robustness and computational efficiency of the SVM-based ROM would provide a promising tool for real-time flight simulation including nonlinear aeroelastic effects.

  6. Contribution to finite element modelling of airfoil aeroelastic instabilities

    Czech Academy of Sciences Publication Activity Database

    Horáček, Jaromír; Sváček, P.; Růžička, M.; Feistauer, M.

    2007-01-01

    Roč. 1, č. 1 (2007), s. 43-52 ISSN 1802-680X. [Computational Mechanics 2007. Hrad Nečtiny, 05.11.2007-07.11.2007] R&D Projects: GA MPO FT-TA/026 Institutional research plan: CEZ:AV0Z20760514 Keywords : induced vibration * aeroelasticity * nonlinear vibrations Subject RIV: BI - Acoustics

  7. LiveCode mobile development

    CERN Document Server

    Lavieri, Edward D

    2013-01-01

    A practical guide written in a tutorial-style, ""LiveCode Mobile Development Hotshot"" walks you step-by-step through 10 individual projects. Every project is divided into sub tasks to make learning more organized and easy to follow along with explanations, diagrams, screenshots, and downloadable material.This book is great for anyone who wants to develop mobile applications using LiveCode. You should be familiar with LiveCode and have access to a smartphone. You are not expected to know how to create graphics or audio clips.

  8. Effect of compressive force on aeroelastic stability of a strut-braced wing

    Science.gov (United States)

    Sulaeman, Erwin

    2002-01-01

    Recent investigations of a strut-braced wing (SBW) aircraft show that, at high positive load factors, a large tensile force in the strut leads to a considerable compressive axial force in the inner wing, resulting in a reduced bending stiffness and even buckling of the wing. Studying the influence of this compressive force on the structural response of SBW is thus of paramount importance in the early stage of SBW design. The purpose of the this research is to investigate the effect of compressive force on aeroelastic stability of the SBW using efficient structural finite element and aerodynamic lifting surface methods. A procedure is developed to generate wing stiffness distribution for detailed and simplified wing models and to include the compressive force effect in the SBW aeroelastic analysis. A sensitivity study is performed to generate response surface equations for the wing flutter speed as functions of several design variables. These aeroelastic procedures and response surface equations provide a valuable tool and trend data to study the unconventional nature of SBW. In order to estimate the effect of the compressive force, the inner part of the wing structure is modeled as a beam-column. A structural finite element method is developed based on an analytical stiffness matrix formulation of a non-uniform beam element with arbitrary polynomial variations in the cross section. By using this formulation, the number of elements to model the wing structure can be reduced without degrading the accuracy. The unsteady aerodynamic prediction is based on a discrete element lifting surface method. The present formulation improves the accuracy of existing lifting surface methods by implementing a more rigorous treatment on the aerodynamic kernel integration. The singularity of the kernel function is isolated by implementing an exact expansion series to solve an incomplete cylindrical function problem. A hybrid doublet lattice/doublet point scheme is devised to reduce

  9. State of the art in wind turbine aerodynamics and aeroelasticity

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Sørensen, Jens Nørkær; Voutsinas, S

    2006-01-01

    A comprehensive review of wind turbine aeroelasticity is given. The aerodynamic part starts with the simple aerodynamic Blade Element Momentum Method and ends with giving a review of the work done applying CFD on wind turbine rotors. In between is explained some methods of intermediate complexity...

  10. Verification of aero-elastic offshore wind turbine design codes under IEA Wind Task XXIII

    DEFF Research Database (Denmark)

    Vorpahl, Fabian; Strobel, Michael; Jonkman, Jason M.

    2014-01-01

    with the incident waves, sea current, hydrodynamics and foundation dynamics of the support structure. A large set of time series simulation results such as turbine operational characteristics, external conditions, and load and displacement outputs was compared and interpreted. Load cases were defined and run...... to differences in the model fidelity, aerodynamic implementation, hydrodynamic load discretization and numerical difficulties within the codes. The comparisons resulted in a more thorough understanding of the modeling techniques and better knowledge of when various approximations are not valid.More importantly...... is to summarize the lessons learned and present results that code developers can compare to. The set of benchmark load cases defined and simulated during the course of this project—the raw data for this paper—is available to the offshore wind turbine simulation community and is already being used for testing...

  11. Vertical axis wind turbine turbulent response model. Part 2: Response of Sandia National laboratories' 34-meter VAWT with aeroelastic effects

    Science.gov (United States)

    1990-01-01

    The dynamic response of Sandia National Laboratories' 34-m Darrieus rotor wind turbine at Bushland, Texas, is presented. The formulation used a double-multiple streamtube aerodynamic model with a turbulent airflow and included the effects of linear aeroelastic forces. The structural analysis used established procedures with the program MSC/NASTRAN. The effects of aeroelastic forces on the damping of natural modes agree well with previous results at operating rotor speeds, but show some discrepancies at very high rotor speeds. A number of alternative expressions for the spectrum of turbulent wind were investigated. The model loading represented by each does not differ significantly; a more significant difference is caused by imposing a full lateral coherence of the turbulent flow. Spectra of the predicted stresses at various locations show that without aeroelastic forces, very severe resonance is likely to occur at certain natural frequencies. Inclusion of aeroelastic effects greatly attenuates this stochastic response, especially in modes involving in-plane blade bending.

  12. Integrated analysis on static/dynamic aeroelasticity of curved panels based on a modified local piston theory

    Science.gov (United States)

    Yang, Zhichun; Zhou, Jian; Gu, Yingsong

    2014-10-01

    A flow field modified local piston theory, which is applied to the integrated analysis on static/dynamic aeroelastic behaviors of curved panels, is proposed in this paper. The local flow field parameters used in the modification are obtained by CFD technique which has the advantage to simulate the steady flow field accurately. This flow field modified local piston theory for aerodynamic loading is applied to the analysis of static aeroelastic deformation and flutter stabilities of curved panels in hypersonic flow. In addition, comparisons are made between results obtained by using the present method and curvature modified method. It shows that when the curvature of the curved panel is relatively small, the static aeroelastic deformations and flutter stability boundaries obtained by these two methods have little difference, while for curved panels with larger curvatures, the static aeroelastic deformation obtained by the present method is larger and the flutter stability boundary is smaller compared with those obtained by the curvature modified method, and the discrepancy increases with the increasing of curvature of panels. Therefore, the existing curvature modified method is non-conservative compared to the proposed flow field modified method based on the consideration of hypersonic flight vehicle safety, and the proposed flow field modified local piston theory for curved panels enlarges the application range of piston theory.

  13. The Use of a Code-generating System for the Derivation of the Equations for Wind Turbine Dynamics

    Science.gov (United States)

    Ganander, Hans

    2003-10-01

    For many reasons the size of wind turbines on the rapidly growing wind energy market is increasing. Relations between aeroelastic properties of these new large turbines change. Modifications of turbine designs and control concepts are also influenced by growing size. All these trends require development of computer codes for design and certification. Moreover, there is a strong desire for design optimization procedures, which require fast codes. General codes, e.g. finite element codes, normally allow such modifications and improvements of existing wind turbine models. This is done relatively easy. However, the calculation times of such codes are unfavourably long, certainly for optimization use. The use of an automatic code generating system is an alternative for relevance of the two key issues, the code and the design optimization. This technique can be used for rapid generation of codes of particular wind turbine simulation models. These ideas have been followed in the development of new versions of the wind turbine simulation code VIDYN. The equations of the simulation model were derived according to the Lagrange equation and using Mathematica®, which was directed to output the results in Fortran code format. In this way the simulation code is automatically adapted to an actual turbine model, in terms of subroutines containing the equations of motion, definitions of parameters and degrees of freedom. Since the start in 1997, these methods, constituting a systematic way of working, have been used to develop specific efficient calculation codes. The experience with this technique has been very encouraging, inspiring the continued development of new versions of the simulation code as the need has arisen, and the interest for design optimization is growing.

  14. Fast Trailed Vorticity Modeling for Wind Turbine Aerodynamics and its Influence on Aeroelastic Stability

    DEFF Research Database (Denmark)

    Pirrung, Georg

    In this work, an aerodynamic model for the use in aeroelastic wind turbine codes is presented. It consists of a simplified lifting line model covering the induction due to the trailed vorticity in the near wake, a 2D shed vorticity model and a far wake model using the well known blade element...... to earlier implementations, the model has been improved in several ways: Among other things, the need for model-specific user input has been removed, the effect of downwind convection of the trailed vorticity is modeled, the near wake induction is iterated to stabilize the computations and the numerical......-of-plane vibrations agrees much better with high fidelity models. Further, the trailed vorticity effects on the aerodynamic work are found to be of the same order of magnitude as the shed vorticity effects. The trailed vorticity effects are, however, mainly important close to the tip in the investigated cases, which...

  15. Development status of TUF code

    International Nuclear Information System (INIS)

    Liu, W.S.; Tahir, A.; Zaltsgendler

    1996-01-01

    An overview of the important development of the TUF code in 1995 is presented. The development in the following areas is presented: control of round-off error propagation, gas resolution and release models, and condensation induced water hammer. This development is mainly generated from station requests for operational support and code improvement. (author)

  16. Internal Structural Design of the Common Research Model Wing Box for Aeroelastic Tailoring

    Science.gov (United States)

    Jutte, Christine V.; Stanford, Bret K.; Wieseman, Carol D.

    2015-01-01

    This work explores the use of alternative internal structural designs within a full-scale wing box structure for aeroelastic tailoring, with a focus on curvilinear spars, ribs, and stringers. The baseline wing model is a fully-populated, cantilevered wing box structure of the Common Research Model (CRM). Metrics of interest include the wing weight, the onset of dynamic flutter, and the static aeroelastic stresses. Twelve parametric studies alter the number of internal structural members along with their location, orientation, and curvature. Additional evaluation metrics are considered to identify design trends that lead to lighter-weight, aeroelastically stable wing designs. The best designs of the individual studies are compared and discussed, with a focus on weight reduction and flutter resistance. The largest weight reductions were obtained by removing the inner spar, and performance was maintained by shifting stringers forward and/or using curvilinear ribs: 5.6% weight reduction, a 13.9% improvement in flutter speed, but a 3.0% increase in stress levels. Flutter resistance was also maintained using straight-rotated ribs although the design had a 4.2% lower flutter speed than the curved ribs of similar weight and stress levels were higher. For some configurations, the differences between curved and straight ribs were smaller, which provides motivation for future optimization-based studies to fully exploit the trade-offs.

  17. Recent activities in accelerator code development

    International Nuclear Information System (INIS)

    Copper, R.K.; Ryne, R.D.

    1992-01-01

    In this paper we will review recent activities in the area of code development as it affects the accelerator community. We will first discuss the changing computing environment. We will review how the computing environment has changed in the last 10 years, with emphasis on computing power, operating systems, computer languages, graphics standards, and massively parallel processing. Then we will discuss recent code development activities in the areas of electromagnetics codes and beam dynamics codes

  18. A Cybernetic Approach to Assess the Longitudinal Handling Qualities of Aeroelastic Aircraft

    NARCIS (Netherlands)

    Damveld, H.J.

    2009-01-01

    The future demand for larger and lighter civil transport aircraft leads to more flexible aircraft, which bring their own controlling and handling problems. A review of established handling qualities methods showed that they were either unsuitable for aeroelastic aircraft, or had significant

  19. Aeroelastic experiments with measurement of the kinematic properties based on optical methods

    Czech Academy of Sciences Publication Activity Database

    Chládek, Štěpán; Zolotarev, Igor

    2015-01-01

    Roč. 21, č. 1 (2015), s. 43-53 ISSN 1803-9782 R&D Projects: GA ČR GA13-10527S Institutional support: RVO:61388998 Keywords : aeroelasticity * optical measurements * vibration frequencies * kinematic properties * profile in the wind tunnel Subject RIV: BI - Acoustics

  20. Aeroelastic modelling without the need for excessive computing power

    Energy Technology Data Exchange (ETDEWEB)

    Infield, D. [Loughborough Univ., Centre for Renewable Energy Systems Technology, Dept. of Electronic and Electrical Engineering, Loughborough (United Kingdom)

    1996-09-01

    The aeroelastic model presented here was developed specifically to represent a wind turbine manufactured by Northern Power Systems which features a passive pitch control mechanism. It was considered that this particular turbine, which also has low solidity flexible blades, and is free yawing, would provide a stringent test of modelling approaches. It was believed that blade element aerodynamic modelling would not be adequate to properly describe the combination of yawed flow, dynamic inflow and unsteady aerodynamics; consequently a wake modelling approach was adopted. In order to keep computation time limited, a highly simplified, semi-free wake approach (developed in previous work) was used. a similarly simple structural model was adopted with up to only six degrees of freedom in total. In order to take account of blade (flapwise) flexibility a simple finite element sub-model is used. Good quality data from the turbine has recently been collected and it is hoped to undertake model validation in the near future. (au)

  1. Using Coding Apps to Support Literacy Instruction and Develop Coding Literacy

    Science.gov (United States)

    Hutchison, Amy; Nadolny, Larysa; Estapa, Anne

    2016-01-01

    In this article the authors present the concept of Coding Literacy and describe the ways in which coding apps can support the development of Coding Literacy and disciplinary and digital literacy skills. Through detailed examples, we describe how coding apps can be integrated into literacy instruction to support learning of the Common Core English…

  2. Material and Thickness Grading for Aeroelastic Tailoring of the Common Research Model Wing Box

    Science.gov (United States)

    Stanford, Bret K.; Jutte, Christine V.

    2014-01-01

    This work quantifies the potential aeroelastic benefits of tailoring a full-scale wing box structure using tailored thickness distributions, material distributions, or both simultaneously. These tailoring schemes are considered for the wing skins, the spars, and the ribs. Material grading utilizes a spatially-continuous blend of two metals: Al and Al+SiC. Thicknesses and material fraction variables are specified at the 4 corners of the wing box, and a bilinear interpolation is used to compute these parameters for the interior of the planform. Pareto fronts detailing the conflict between static aeroelastic stresses and dynamic flutter boundaries are computed with a genetic algorithm. In some cases, a true material grading is found to be superior to a single-material structure.

  3. Theoretical Atomic Physics code development II: ACE: Another collisional excitation code

    International Nuclear Information System (INIS)

    Clark, R.E.H.; Abdallah, J. Jr.; Csanak, G.; Mann, J.B.; Cowan, R.D.

    1988-12-01

    A new computer code for calculating collisional excitation data (collision strengths or cross sections) using a variety of models is described. The code uses data generated by the Cowan Atomic Structure code or CATS for the atomic structure. Collisional data are placed on a random access file and can be displayed in a variety of formats using the Theoretical Atomic Physics Code or TAPS. All of these codes are part of the Theoretical Atomic Physics code development effort at Los Alamos. 15 refs., 10 figs., 1 tab

  4. Aeroelastic tailoring of composite aircraft wings

    Science.gov (United States)

    Mihaila-Andres, Mihai; Larco, Ciprian; Rosu, Paul-Virgil; Rotaru, Constantin

    2017-07-01

    The need of a continuously increasing size and performance of aerospace structures has settled the composite materials as the preferred materials in aircraft structures. Apart from the clear capacity to reduce the structural weight and with it the manufacture cost and the fuel consumption while preserving proper airworthiness, the prospect of tailoring a structure using the unique directional stiffness properties of composite materials allows an aerospace engineer to optimize aircraft structures to achieve particular design objectives. This paper presents a brief review of what is known as the aeroelastic tailoring of airframes with the intent of understanding the evolution of this research topic and at the same time providing useful references for further studies.

  5. Aeroelastic Analysis of a Distributed Electric Propulsion Wing

    Science.gov (United States)

    Massey, Steven J.; Stanford, Bret K.; Wieseman, Carol D.; Heeg, Jennifer

    2017-01-01

    An aeroelastic analysis of a prototype distributed electric propulsion wing is presented. Results using MSC Nastran (Registered Trademark) doublet lattice aerodynamics are compared to those based on FUN3D Reynolds Averaged Navier- Stokes aerodynamics. Four levels of grid refinement were examined for the FUN3D solutions and solutions were seen to be well converged. It was found that no oscillatory instability existed, only that of divergence, which occurred in the first bending mode at a dynamic pressure of over three times the flutter clearance condition.

  6. Development and validation of sodium fire codes

    International Nuclear Information System (INIS)

    Morii, Tadashi; Himeno Yoshiaki; Miyake, Osamu

    1989-01-01

    Development, verification, and validation of the spray fire code, SPRAY-3M, the pool fire codes, SOFIRE-M2 and SPM, the aerosol behavior code, ABC-INTG, and the simultaneous spray and pool fires code, ASSCOPS, are presented. In addition, the state-of-the-art of development of the multi-dimensional natural convection code, SOLFAS, for the analysis of heat-mass transfer during a fire, is presented. (author)

  7. Reactor safety computer code development at INEL

    International Nuclear Information System (INIS)

    Johnsen, G.W.

    1985-01-01

    This report provides a brief overview of the computer code development programs being conducted at EG and G Idaho, Inc. on behalf of US Nuclear Regulatory Commission and the Department of Energy, Idaho Operations Office. Included are descriptions of the codes being developed, their development status as of the date of this report, and resident code development expertise

  8. Development of a coupled code system based on system transient code, RETRAN, and 3-D neutronics code, MASTER

    International Nuclear Information System (INIS)

    Kim, K. D.; Jung, J. J.; Lee, S. W.; Cho, B. O.; Ji, S. K.; Kim, Y. H.; Seong, C. K.

    2002-01-01

    A coupled code system of RETRAN/MASTER has been developed for best-estimate simulations of interactions between reactor core neutron kinetics and plant thermal-hydraulics by incorporation of a 3-D reactor core kinetics analysis code, MASTER into system transient code, RETRAN. The soundness of the consolidated code system is confirmed by simulating the MSLB benchmark problem developed to verify the performance of a coupled kinetics and system transient codes by OECD/NEA

  9. Computer code development plant for SMART design

    International Nuclear Information System (INIS)

    Bae, Kyoo Hwan; Choi, S.; Cho, B.H.; Kim, K.K.; Lee, J.C.; Kim, J.P.; Kim, J.H.; Chung, M.; Kang, D.J.; Chang, M.H.

    1999-03-01

    In accordance with the localization plan for the nuclear reactor design driven since the middle of 1980s, various computer codes have been transferred into the korea nuclear industry through the technical transfer program from the worldwide major pressurized water reactor supplier or through the international code development program. These computer codes have been successfully utilized in reactor and reload core design works. As the results, design- related technologies have been satisfactorily accumulated. However, the activities for the native code development activities to substitute the some important computer codes of which usages are limited by the original technique owners have been carried out rather poorly. Thus, it is most preferentially required to secure the native techniques on the computer code package and analysis methodology in order to establish the capability required for the independent design of our own model of reactor. Moreover, differently from the large capacity loop-type commercial reactors, SMART (SYSTEM-integrated Modular Advanced ReacTor) design adopts a single reactor pressure vessel containing the major primary components and has peculiar design characteristics such as self-controlled gas pressurizer, helical steam generator, passive residual heat removal system, etc. Considering those peculiar design characteristics for SMART, part of design can be performed with the computer codes used for the loop-type commercial reactor design. However, most of those computer codes are not directly applicable to the design of an integral reactor such as SMART. Thus, they should be modified to deal with the peculiar design characteristics of SMART. In addition to the modification efforts, various codes should be developed in several design area. Furthermore, modified or newly developed codes should be verified their reliability through the benchmarking or the test for the object design. Thus, it is necessary to proceed the design according to the

  10. Computer code development plant for SMART design

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyoo Hwan; Choi, S.; Cho, B.H.; Kim, K.K.; Lee, J.C.; Kim, J.P.; Kim, J.H.; Chung, M.; Kang, D.J.; Chang, M.H

    1999-03-01

    In accordance with the localization plan for the nuclear reactor design driven since the middle of 1980s, various computer codes have been transferred into the korea nuclear industry through the technical transfer program from the worldwide major pressurized water reactor supplier or through the international code development program. These computer codes have been successfully utilized in reactor and reload core design works. As the results, design- related technologies have been satisfactorily accumulated. However, the activities for the native code development activities to substitute the some important computer codes of which usages are limited by the original technique owners have been carried out rather poorly. Thus, it is most preferentially required to secure the native techniques on the computer code package and analysis methodology in order to establish the capability required for the independent design of our own model of reactor. Moreover, differently from the large capacity loop-type commercial reactors, SMART (SYSTEM-integrated Modular Advanced ReacTor) design adopts a single reactor pressure vessel containing the major primary components and has peculiar design characteristics such as self-controlled gas pressurizer, helical steam generator, passive residual heat removal system, etc. Considering those peculiar design characteristics for SMART, part of design can be performed with the computer codes used for the loop-type commercial reactor design. However, most of those computer codes are not directly applicable to the design of an integral reactor such as SMART. Thus, they should be modified to deal with the peculiar design characteristics of SMART. In addition to the modification efforts, various codes should be developed in several design area. Furthermore, modified or newly developed codes should be verified their reliability through the benchmarking or the test for the object design. Thus, it is necessary to proceed the design according to the

  11. Status of SPACE Safety Analysis Code Development

    International Nuclear Information System (INIS)

    Lee, Dong Hyuk; Yang, Chang Keun; Kim, Se Yun; Ha, Sang Jun

    2009-01-01

    In 2006, the Korean the Korean nuclear industry started developing a thermal-hydraulic analysis code for safety analysis of PWR(Pressurized Water Reactor). The new code is named as SPACE(Safety and Performance Analysis Code for Nuclear Power Plant). The SPACE code can solve two-fluid, three-field governing equations in one dimensional or three dimensional geometry. The SPACE code has many component models required for modeling a PWR, such as reactor coolant pump, safety injection tank, etc. The programming language used in the new code is C++, for new generation of engineers who are more comfortable with C/C++ than old FORTRAN language. This paper describes general characteristics of SPACE code and current status of SPACE code development

  12. Study of the feasibility aspects of flight testing an aeroelastically tailored forward swept research wing on a BQM-34F drone vehicle

    Science.gov (United States)

    Mourey, D. J.

    1979-01-01

    The aspects of flight testing an aeroelastically tailored forward swept research wing on a BQM-34F drone vehicle are examined. The geometry of a forward swept wing, which is incorporated into the BQM-34F to maintain satisfactory flight performance, stability, and control is defined. A preliminary design of the aeroelastically tailored forward swept wing is presented.

  13. Towards Product Lining Model-Driven Development Code Generators

    OpenAIRE

    Roth, Alexander; Rumpe, Bernhard

    2015-01-01

    A code generator systematically transforms compact models to detailed code. Today, code generation is regarded as an integral part of model-driven development (MDD). Despite its relevance, the development of code generators is an inherently complex task and common methodologies and architectures are lacking. Additionally, reuse and extension of existing code generators only exist on individual parts. A systematic development and reuse based on a code generator product line is still in its inf...

  14. Probabilistic characterization of wind turbine blades via aeroelasticity and spinning finite element formulation

    Science.gov (United States)

    Velazquez, Antonio; Swartz, R. Andrew

    2012-04-01

    Wind energy is an increasingly important component of this nation's renewable energy portfolio, however safe and economical wind turbine operation is a critical need to ensure continued adoption. Safe operation of wind turbine structures requires not only information regarding their condition, but their operational environment. Given the difficulty inherent in SHM processes for wind turbines (damage detection, location, and characterization), some uncertainty in conditional assessment is expected. Furthermore, given the stochastic nature of the loading on turbine structures, a probabilistic framework is appropriate to characterize their risk of failure at a given time. Such information will be invaluable to turbine controllers, allowing them to operate the structures within acceptable risk profiles. This study explores the characterization of the turbine loading and response envelopes for critical failure modes of the turbine blade structures. A framework is presented to develop an analytical estimation of the loading environment (including loading effects) based on the dynamic behavior of the blades. This is influenced by behaviors including along and across-wind aero-elastic effects, wind shear gradient, tower shadow effects, and centrifugal stiffening effects. The proposed solution includes methods that are based on modal decomposition of the blades and require frequent updates to the estimated modal properties to account for the time-varying nature of the turbine and its environment. The estimated demand statistics are compared to a code-based resistance curve to determine a probabilistic estimate of the risk of blade failure given the loading environment.

  15. First-order aerodynamic and aeroelastic behavior of a single-blade installation setup

    DEFF Research Database (Denmark)

    Gaunaa, Mac; Bergami, Leonardo; Guntur, Srinivas

    2014-01-01

    the first-order aerodynamic and aeroelastic behavior of a single blade installation system, where the blade is grabbed by a yoke, which is lifted by the crane and stabilized by two taglines. A simple engineering model is formulated to describe the aerodynamic forcing on the blade subject to turbulent wind...

  16. Aeroelastic/Aeroservoelastic Uncertainty and Reliability of Advanced Aerospace Vehicles in Flight and Ground Operations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ASSURE - Aeroelastic / Aeroservoelastic (AE/ASE) Uncertainty and Reliability Engineering capability - is a set of probabilistic computer programs for isolating...

  17. Development of 2-d cfd code

    International Nuclear Information System (INIS)

    Mirza, S.A.

    1999-01-01

    In the present study, a two-dimensional computer code has been developed in FORTRAN using CFD technique, which is basically a numerical scheme. This computer code solves the Navier Stokes equations and continuity equation to find out the velocity and pressure fields within a given domain. This analysis has been done for the developed within a square cavity driven by the upper wall which has become a bench mark for testing and comparing the newly developed numerical schemes. Before to handle this task, different one-dimensional cases have been studied by CFD technique and their FORTRAN programs written. The cases studied are Couette flow, Poiseuille flow with and without using symmetric boundary condition. Finally a comparison between CFD results and analytical results has also been made. For the cavity flow the results from the developed code have been obtained for different Reynolds numbers which are finally presented in the form of velocity vectors. The comparison of the developed code results have been made with the results obtained from the share ware version of a commercially available code for Reynolds number of 10.0. The disagreement in the results quantitatively and qualitatively at some grid points of the calculation domain have been discussed and future recommendations in this regard have also been made. (author)

  18. Low-fidelity 2D isogeometric aeroelastic optimization with application to a morphing airfoil

    NARCIS (Netherlands)

    Gillebaart, E.; De Breuker, R.

    2015-01-01

    Low-fidelity isogeometric aeroelastic analysis has not received much attention since the introduction of the isogeometric analysis (IGA) concept, while the combination of IGA and the boundary element method in the form of the potential flow theory shows great potential. This paper presents a

  19. Computer-assisted Particle-in-Cell code development

    International Nuclear Information System (INIS)

    Kawata, S.; Boonmee, C.; Teramoto, T.; Drska, L.; Limpouch, J.; Liska, R.; Sinor, M.

    1997-12-01

    This report presents a new approach for an electromagnetic Particle-in-Cell (PIC) code development by a computer: in general PIC codes have a common structure, and consist of a particle pusher, a field solver, charge and current density collections, and a field interpolation. Because of the common feature, the main part of the PIC code can be mechanically developed on a computer. In this report we use the packages FIDE and GENTRAN of the REDUCE computer algebra system for discretizations of field equations and a particle equation, and for an automatic generation of Fortran codes. The approach proposed is successfully applied to the development of 1.5-dimensional PIC code. By using the generated PIC code the Weibel instability in a plasma is simulated. The obtained growth rate agrees well with the theoretical value. (author)

  20. Contribution to finite element modelling of airfoil aeroelastic instabilities

    Directory of Open Access Journals (Sweden)

    Horáček J.

    2007-10-01

    Full Text Available Nonlinear equations of motion for a flexibly supported rigid airfoil with additional degree of freedom for controlling of the profile motion by a trailing edge flap are derived for large vibration amplitudes. Preliminary results for numerical simulation of flow-induced airfoil vibrations in a laminar incompressible flow are presented for the NACA profile 0012 with three-degrees of freedom (vertical translation, rotation around the elastic axis and rotation of the flap. The developed numerical solution of the Navier – Stokes equations and the Arbitrary Eulerian-Lagrangian approach enable to consider the moving grid for the finite element modelling of the fluid flow around the oscillating airfoil. A sequence of numerical simulation examples is presented for Reynolds numbers up to about Re~10^5, when the system loses the aeroelastic stability, and when the large displacements of the profile and a post-critical behaviour of the system take place.

  1. In-Flight Aeroelastic Stability of the Thermal Protection System on the NASA HIAD, Part I: Linear Theory

    Science.gov (United States)

    Goldman, Benjamin D.; Dowell, Earl H.; Scott, Robert C.

    2014-01-01

    Conical shell theory and piston theory aerodynamics are used to study the aeroelastic stability of the thermal protection system (TPS) on the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). Structural models of the TPS consist of single or multiple orthotropic conical shell systems resting on several circumferential linear elastic supports. The shells in each model may have pinned (simply-supported) or elastically-supported edges. The Lagrangian is formulated in terms of the generalized coordinates for all displacements and the Rayleigh-Ritz method is used to derive the equations of motion. The natural modes of vibration and aeroelastic stability boundaries are found by calculating the eigenvalues and eigenvectors of a large coefficient matrix. When the in-flight configuration of the TPS is approximated as a single shell without elastic supports, asymmetric flutter in many circumferential waves is observed. When the elastic supports are included, the shell flutters symmetrically in zero circumferential waves. Structural damping is found to be important in this case. Aeroelastic models that consider the individual TPS layers as separate shells tend to flutter asymmetrically at high dynamic pressures relative to the single shell models. Several parameter studies also examine the effects of tension, orthotropicity, and elastic support stiffness.

  2. How 2 HAWC2, the user's manual

    Energy Technology Data Exchange (ETDEWEB)

    Juul Larsen, T.; Melchior Hansen, A.

    2007-12-15

    The report contains the user's manual for the aeroelastic code HAWC2. The code is intended for calculating wind turbine response in time domain and has a structural formulation based on multi-body dynamics. The aerodynamic part of the code is based on the blade element momentum theory, but extended from the classic approach to handle dynamic inflow, dynamic stall, skew inflow, shear effects on the induction and effects from large deflections. It has been developed within the years 2003-2006 at the aeroelastic design research programme at Risoe National Laboratory, Denmark. This manual is updated for HAWC2 version 6.4. (au)

  3. Aeroelasticity and mechanical stability report, 0.27 Mach scale model of the YAH-64 advanced attack helicopter

    Science.gov (United States)

    Straub, F. K.; Johnston, R. A.

    1987-01-01

    A 27% dynamically scaled model of the YAH-64 Advanced Attack Helicopter main rotor and hub has been designed and fabricated. The model will be tested in the NASA Langley Research Center V/STOL wind tunnel using the General Rotor Model System (GRMS). This report documents the studies performed to ensure dynamic similarity of the model with its full scale parent. It also contains a preliminary aeroelastic and aeromechanical substantiation for the rotor installation in the wind tunnel. From the limited studies performed no aeroelastic stability or load problems are projected. To alleviate a projected ground resonance problem, a modification of the roll characteristics of the GRMS is recommended.

  4. Towards Better Modeling and Simulation of Nonlinear Aeroelasticity On and Beyond Transonic Regimes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The need to accurately predict aeroelastic phenomenon for a wide range of Mach numbers is a critical step in the design process of any aerospace vehicle. Complex...

  5. Simplified Aeroelastic Model for Fluid Structure Interaction between Microcantilever Sensors and Fluid Surroundings.

    Directory of Open Access Journals (Sweden)

    Fei Wang

    Full Text Available Fluid-structural coupling occurs when microcantilever sensors vibrate in a fluid. Due to the complexity of the mechanical characteristics of microcantilevers and lack of high-precision microscopic mechanical testing instruments, effective methods for studying the fluid-structural coupling of microcantilevers are lacking, especially for non-rectangular microcantilevers. Here, we report fluid-structure interactions (FSI of the cable-membrane structure via a macroscopic study. The simplified aeroelastic model was introduced into the microscopic field to establish a fluid-structure coupling vibration model for microcantilever sensors. We used the finite element method to solve the coupled FSI system. Based on the simplified aeroelastic model, simulation analysis of the effects of the air environment on the vibration of the commonly used rectangular microcantilever was also performed. The obtained results are consistent with the literature. The proposed model can also be applied to the auxiliary design of rectangular and non-rectangular sensors used in fluid environments.

  6. Aeroelastic response and stability of tiltrotors with elastically-coupled composite rotor blades. Ph.D. Thesis

    Science.gov (United States)

    Nixon, Mark W.

    1993-01-01

    There is a potential for improving the performance and aeroelastic stability of tiltrotors through the use of elastically-coupled composite rotor blades. To study the characteristics of tiltrotors with these types of rotor blades it is necessary to formulate a new analysis which has the capabilities of modeling both a tiltrotor configuration and an anisotropic rotor blade. Background for these formulations is established in two preliminary investigations. In the first, the influence of several system design parameters on tiltrotor aeroelastic stability is examined for the high-speed axial flight mode using a newly-developed rigid-blade analysis with an elastic wing finite element model. The second preliminary investigation addresses the accuracy of using a one-dimensional beam analysis to predict frequencies of elastically-coupled highly-twisted rotor blades. Important aspects of the new aeroelastic formulations are the inclusion of a large steady pylon angle which controls tilt of the rotor system with respect to the airflow, the inclusion of elastic pitch-lag coupling terms related to rotor precone, the inclusion of hub-related degrees of freedom which enable modeling of a gimballed rotor system and engine drive-train dynamics, and additional elastic coupling terms which enable modeling of the anisotropic features for both the rotor blades and the tiltrotor wing. Accuracy of the new tiltrotor analysis is demonstrated by a comparison of the results produced for a baseline case with analytical and experimental results reported in the open literature. Two investigations of elastically tailored blades on a baseline tiltrotor are then conducted. One investigation shows that elastic bending-twist coupling of the rotor blade is a very effective means for increasing the flutter velocity of a tiltrotor, and the magnitude of coupling required does not have an adverse effect on performance or blade loads. The second investigation shows that passive blade twist control via

  7. Blades Forced Vibration Under Aero-Elastic Excitation Modeled by Van der Pol

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk

    2017-01-01

    Roč. 27, č. 11 (2017), č. článku 1750166. ISSN 0218-1274 R&D Projects: GA ČR GA16-04546S Institutional support: RVO:61388998 Keywords : ade vibration * aero-elastic force * self-excitation * van der Pol Subject RIV: BI - Acoustics OBOR OECD: Applied mechanics Impact factor: 1.329, year: 2016

  8. Development of Coolant Radioactivity Interpretation Code

    International Nuclear Information System (INIS)

    Kim, Kiyoung; Jung, Youngsuk; Kim, Kyounghyun; Kim, Jangwook

    2013-01-01

    In Korea, the coolant radioactivity analysis has been performed by using the computer codes of foreign companies such as CADE (Westinghouse), IODYNE and CESIUM (ABB-CE). However, these computer codes are too conservative and have involved considerable errors. Furthermore, since these codes are DOS-based program, their easy operability is not satisfactory. Therefore it is required development of an enhanced analysis algorithm applying an analytical method reflecting the change of operational environments of domestic nuclear power plants and a fuel failure evaluation software considering user' conveniences. We have developed a nuclear fuel failure evaluation code able to estimate the number of failed fuel rods and the burn-up of failed fuels during nuclear power plant operation cycle. A Coolant Radio-activity Interpretation Code (CRIC) for LWR has been developed as the output of the project 'Development of Fuel Reliability Enhanced Technique' organized by Korea Institute of Energy Technology Evaluation and Planning (KETEP). The CRIC is Windows based-software able to evaluate the number of failed fuel rods and the burn-up of failed fuel region by analyzing coolant radioactivity of LWR in operation. The CRIC is based on the model of fission products release commonly known as 'three region model' (pellet region, gap region, and coolant region), and we are verifying the CRIC results based on the cases of domestic fuel failures. CRIC users are able to estimate the number of failed fuel rods, burn-up and regions of failed fuel considered enrichment and power distribution of fuel region by using operational cycle data, coolant activity data, fuel loading pattern, Cs-134/Cs-137 ratio according to burn-up and U-235 enrichment provided in the code. Due to development of the CRIC, it is secured own unique fuel failure evaluation code. And, it is expected to have the following significant meaning. This is that the code reflecting a proprietary technique for quantitatively

  9. Graphical user interface development for the MARS code

    International Nuclear Information System (INIS)

    Jeong, J.-J.; Hwang, M.; Lee, Y.J.; Kim, K.D.; Chung, B.D.

    2003-01-01

    KAERI has developed the best-estimate thermal-hydraulic system code MARS using the RELAP5/MOD3 and COBRA-TF codes. To exploit the excellent features of the two codes, we consolidated the two codes. Then, to improve the readability, maintainability, and portability of the consolidated code, all the subroutines were completely restructured by employing a modular data structure. At present, a major part of the MARS code development program is underway to improve the existing capabilities. The code couplings with three-dimensional neutron kinetics, containment analysis, and transient critical heat flux calculations have also been carried out. At the same time, graphical user interface (GUI) tools have been developed for user friendliness. This paper presents the main features of the MARS GUI. The primary objective of the GUI development was to provide a valuable aid for all levels of MARS users in their output interpretation and interactive controls. Especially, an interactive control function was designed to allow operator actions during simulation so that users can utilize the MARS code like conventional nuclear plant analyzers (NPAs). (author)

  10. Experimental set-up for advanced aeroelastic tests on sectional models

    Czech Academy of Sciences Publication Activity Database

    Král, Radomil; Pospíšil, Stanislav; Náprstek, Jiří

    2016-01-01

    Roč. 40, č. 1 (2016), s. 3-13 ISSN 0732-8818 R&D Projects: GA ČR GA103/09/0094; GA AV ČR IAA200710902; GA MŠk(CZ) ED1.1.00/02.0060 Institutional support: RVO:68378297 Keywords : bridge aeroelasticity * wind tunnel * experimental set-up * non- linear response Subject RIV: JM - Building Engineering Impact factor: 0.932, year: 2016 http://link.springer.com/article/10.1007%2Fs40799-015-0004-6

  11. CATHARE code development and assessment methodologies

    International Nuclear Information System (INIS)

    Micaelli, J.C.; Barre, F.; Bestion, D.

    1995-01-01

    The CATHARE thermal-hydraulic code has been developed jointly by Commissariat a l'Energie Atomique (CEA), Electricite de France (EdF), and Framatorne for safety analysis. Since the beginning of the project (September 1979), development and assessment activities have followed a methodology supported by two series of experimental tests: separate effects tests and integral effects tests. The purpose of this paper is to describe this methodology, the code assessment status, and the evolution to take into account two new components of this program: the modeling of three-dimensional phenomena and the requirements of code uncertainty evaluation

  12. MIDAS/PK code development using point kinetics model

    International Nuclear Information System (INIS)

    Song, Y. M.; Park, S. H.

    1999-01-01

    In this study, a MIDAS/PK code has been developed for analyzing the ATWS (Anticipated Transients Without Scram) which can be one of severe accident initiating events. The MIDAS is an integrated computer code based on the MELCOR code to develop a severe accident risk reduction strategy by Korea Atomic Energy Research Institute. In the mean time, the Chexal-Layman correlation in the current MELCOR, which was developed under a BWR condition, is appeared to be inappropriate for a PWR. So as to provide ATWS analysis capability to the MIDAS code, a point kinetics module, PKINETIC, has first been developed as a stand-alone code whose reference model was selected from the current accident analysis codes. In the next step, the MIDAS/PK code has been developed via coupling PKINETIC with the MIDAS code by inter-connecting several thermal hydraulic parameters between the two codes. Since the major concern in the ATWS analysis is the primary peak pressure during the early few minutes into the accident, the peak pressure from the PKINETIC module and the MIDAS/PK are compared with the RETRAN calculations showing a good agreement between them. The MIDAS/PK code is considered to be valuable for analyzing the plant response during ATWS deterministically, especially for the early domestic Westinghouse plants which rely on the operator procedure instead of an AMSAC (ATWS Mitigating System Actuation Circuitry) against ATWS. This capability of ATWS analysis is also important from the view point of accident management and mitigation

  13. Aeroelastic Control of a Segmented Trailing Edge Using Fiber Optic Strain Sensing Technology

    Science.gov (United States)

    Graham, Corbin Jay; Martins, Benjamin; Suppanade, Nathan

    2014-01-01

    Currently, design of aircraft structures incorporate a safety factor which is essentially an over design to mitigate the risk of structure failure during operation. Typically this safety factor is to design the structure to withstand loads much greater than what is expected to be experienced during flight. NASA Dryden Flight Research Centers has developed a Fiber Optic Strain Sensing (FOSS) system which can measure strain values in real-time. The Aeroelastics Lab at the AERO Institute is developing a segmented trailing edged wing with multiple control surfaces that can utilize the data from the FOSS system, in conjunction with an adaptive controller to redistribute the lift across a wing. This redistribution can decrease the amount of strain experienced by the wing as well as be used to dampen vibration and reduce flutter.

  14. Accident consequence assessment code development

    International Nuclear Information System (INIS)

    Homma, T.; Togawa, O.

    1991-01-01

    This paper describes the new computer code system, OSCAAR developed for off-site consequence assessment of a potential nuclear accident. OSCAAR consists of several modules which have modeling capabilities in atmospheric transport, foodchain transport, dosimetry, emergency response and radiological health effects. The major modules of the consequence assessment code are described, highlighting the validation and verification of the models. (author)

  15. Development of MCNP interface code in HFETR

    International Nuclear Information System (INIS)

    Qiu Liqing; Fu Rong; Deng Caiyu

    2007-01-01

    In order to describe the HFETR core with MCNP method, the interface code MCNPIP for HFETR and MCNP code is developed. This paper introduces the core DXSY and flowchart of MCNPIP code, and the handling of compositions of fuel elements and requirements on hardware and software. Finally, MCNPIP code is validated against the practical application. (authors)

  16. Development of realistic thermal hydraulic system analysis code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Chung, B. D; Kim, K. D. [and others

    2002-05-01

    The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others.

  17. Development of realistic thermal hydraulic system analysis code

    International Nuclear Information System (INIS)

    Lee, Won Jae; Chung, B. D; Kim, K. D.

    2002-05-01

    The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others

  18. 8th International Symposium on Unsteady Aerodynamics and Aeroelasticity of Turbomachines

    CERN Document Server

    1998-01-01

    Twenty-one years have passed since the first symposium in this series was held in Paris (1976). Since then there have been meetings in Lausanne (1980), Cambridge (1984), Aachen (1987), Beijing (1989), Notre Dame (1991) and Fukuoka (1994). During this period a tremendous development in the field of unsteady aerodynamics and aeroelasticity in turbomachines has taken place. As steady-state flow conditions become better known, and as blades in the turbomachine are constantly pushed towards lower weight, and higher load and efficiency, the importance of unsteady phenomena appear more clearly. th The 8 Symposium was, as the previous ones, of high quality. Furthermore, it presented the audience with the latest developments in experimental, numerical and theoretical research. More papers than ever before were submitted to the conference. As the organising committee wanted to preserve the uniqueness of the symposium by having single sessions, and thus mingle speakers and audience with different backgrounds in this int...

  19. Development of a nuclear power plant system analysis code

    International Nuclear Information System (INIS)

    Sim, Suk K.; Jeong, J. J.; Ha, K. S.; Moon, S. K.; Park, J. W.; Yang, S. K.; Song, C. H.; Chun, S. Y.; Kim, H. C.; Chung, B. D.; Lee, W. J.; Kwon, T. S.

    1997-07-01

    During the period of this study, TASS 1.0 code has been prepared for the non-LOCA licensing and reload safety analyses of the Westinghouse and the Korean Standard Nuclear Power Plants (KSNPP) type reactors operating in Korea. TASS-NPA also has been developed for a real time simulation of the Kori-3/4 transients using on-line graphical interactions. TASS 2.0 code has been further developed to timely apply the TASS 2.0 code for the design certification of the KNGR. The COBRA/RELAP5 code, a multi-dimensional best estimate system code, has been developed by integrating the realistic three-dimensional reactor vessel model with the RELAP5 /MOD3.2 code, a one-dimensional system code. Also, a 3D turbulent two-phase flow analysis code, FEMOTH-TF, has been developed using finite element technique to analyze local thermal hydraulic phenomena in support of the detailed design analysis for the development of the advanced reactors. (author). 84 refs., 27 tabs., 83 figs

  20. Influence of stationary vehicles on bridge aerodynamic and aeroelastic coefficients

    Czech Academy of Sciences Publication Activity Database

    Pospíšil, Stanislav; Buljac, A.; Kozmar, H.; Kuznetsov, Sergeii; Macháček, Michael; Král, Radomil

    2017-01-01

    Roč. 22, č. 4 (2017), č. článku 05016012. ISSN 1084-0702 R&D Projects: GA ČR(CZ) GA15-01035S; GA MŠk(CZ) LO1219 Keywords : wind-vehicle-bridge system * cable-supported bridge * bridge aerodynamics and aeroelasticity * stationary vehicles * wind tunnel tests Subject RIV: JM - Building Engineering OBOR OECD: Construction engineering, Municipal and structural engineering Impact factor: 1.476, year: 2016 http://ascelibrary.org/doi/full/10.1061/%28ASCE%29BE.1943-5592.0001017

  1. Electrical Components Library for HAWC2

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos A.; Larsen, Torben J.; Sørensen, Poul

    and Aalborg University. In this project, the focus is on the development of a simulation platform for wind turbine systems using different simulation tools. This report presents the electric component library developed for use in the aeroelastic code HAWC2. The developed library includes both steady state...... was developed. The model includes the dynamics of the rotor fluxes. The model is suitable for a more detailed investigation of the mechanical - electrical interaction, both under normal and fault operation. For the variable speed wind turbine, a steadystate model, typically used in aeroelastic design...

  2. HAWCStab2 with super element foundations: A new tool for frequency analysis of offshore wind turbines

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Hansen, Anders Melchior; Kragh, Knud Abildgaard

    2013-01-01

    HAWCStab2 is a linear frequency domain aero-elastic tool, developed by DTU Wind Energy, suitable for frequency and stability analysis of horizontal axis 3 bladed wind turbines [1]. This tool has now been extended to also handle complex offshore foundation types, such as jacket structures...... and floating structures with mooring lines, using super elements calculated by the nonlinear time domain aero-elastic code HAWC2 [2,3]....

  3. A wind turbine hybrid simulation framework considering aeroelastic effects

    Science.gov (United States)

    Song, Wei; Su, Weihua

    2015-04-01

    In performing an effective structural analysis for wind turbine, the simulation of turbine aerodynamic loads is of great importance. The interaction between the wake flow and the blades may impact turbine blades loading condition, energy yield and operational behavior. Direct experimental measurement of wind flow field and wind profiles around wind turbines is very helpful to support the wind turbine design. However, with the growth of the size of wind turbines for higher energy output, it is not convenient to obtain all the desired data in wind-tunnel and field tests. In this paper, firstly the modeling of dynamic responses of large-span wind turbine blades will consider nonlinear aeroelastic effects. A strain-based geometrically nonlinear beam formulation will be used for the basic structural dynamic modeling, which will be coupled with unsteady aerodynamic equations and rigid-body rotations of the rotor. Full wind turbines can be modeled by using the multi-connected beams. Then, a hybrid simulation experimental framework is proposed to potentially address this issue. The aerodynamic-dominant components, such as the turbine blades and rotor, are simulated as numerical components using the nonlinear aeroelastic model; while the turbine tower, where the collapse of failure may occur under high level of wind load, is simulated separately as the physical component. With the proposed framework, dynamic behavior of NREL's 5MW wind turbine blades will be studied and correlated with available numerical data. The current work will be the basis of the authors' further studies on flow control and hazard mitigation on wind turbine blades and towers.

  4. Effect of randomness on multi-frequency aeroelastic responses resolved by Unsteady Adaptive Stochastic Finite Elements

    International Nuclear Information System (INIS)

    Witteveen, Jeroen A.S.; Bijl, Hester

    2009-01-01

    The Unsteady Adaptive Stochastic Finite Elements (UASFE) method resolves the effect of randomness in numerical simulations of single-mode aeroelastic responses with a constant accuracy in time for a constant number of samples. In this paper, the UASFE framework is extended to multi-frequency responses and continuous structures by employing a wavelet decomposition pre-processing step to decompose the sampled multi-frequency signals into single-frequency components. The effect of the randomness on the multi-frequency response is then obtained by summing the results of the UASFE interpolation at constant phase for the different frequency components. Results for multi-frequency responses and continuous structures show a three orders of magnitude reduction of computational costs compared to crude Monte Carlo simulations in a harmonically forced oscillator, a flutter panel problem, and the three-dimensional transonic AGARD 445.6 wing aeroelastic benchmark subject to random fields and random parameters with various probability distributions.

  5. COSINE software development based on code generation technology

    International Nuclear Information System (INIS)

    Ren Hao; Mo Wentao; Liu Shuo; Zhao Guang

    2013-01-01

    The code generation technology can significantly improve the quality and productivity of software development and reduce software development risk. At present, the code generator is usually based on UML model-driven technology, which can not satisfy the development demand of nuclear power calculation software. The feature of scientific computing program was analyzed and the FORTRAN code generator (FCG) based on C# was developed in this paper. FCG can generate module variable definition FORTRAN code automatically according to input metadata. FCG also can generate memory allocation interface for dynamic variables as well as data access interface. FCG was applied to the core and system integrated engine for design and analysis (COSINE) software development. The result shows that FCG can greatly improve the development efficiency of nuclear power calculation software, and reduce the defect rate of software development. (authors)

  6. Development and application of the waste code

    International Nuclear Information System (INIS)

    Morison, I.W.

    1984-01-01

    This paper discusses the objectives and general approach underlying the Australian Code of Practice on the Management of Radioactive Wastes arising from the Mining and Milling of Radioactive Ores 1982. Background to the development of the Code is provided and the guidelines which supplement the Code are considered

  7. Health Code Number (HCN) Development Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Petrocchi, Rocky; Craig, Douglas K.; Bond, Jayne-Anne; Trott, Donna M.; Yu, Xiao-Ying

    2013-09-01

    This report provides the detailed description of health code numbers (HCNs) and the procedure of how each HCN is assigned. It contains many guidelines and rationales of HCNs. HCNs are used in the chemical mixture methodology (CMM), a method recommended by the department of energy (DOE) for assessing health effects as a result of exposures to airborne aerosols in an emergency. The procedure is a useful tool for proficient HCN code developers. Intense training and quality assurance with qualified HCN developers are required before an individual comprehends the procedure to develop HCNs for DOE.

  8. SCDAP/RELAP5/MOD3 code development

    International Nuclear Information System (INIS)

    Allison, C.M.; Siefken, J.L.; Coryell, E.W.

    1992-01-01

    The SCOAP/RELAP5/MOD3 computer code is designed to describe the overall reactor coolant system (RCS) thermal-hydraulic response, core damage progression, and fission product release and transport during severe accidents. The code is being developed at the Idaho National Engineering Laboratory (INEL) under the primary sponsorship of the Office of Nuclear Regulatory Research of the US Nuclear Regulatory Commission (NRC). Code development activities are currently focused on three main areas - (a) code usability, (b) early phase melt progression model improvements, and (c) advanced reactor thermal-hydraulic model extensions. This paper describes the first two activities. A companion paper describes the advanced reactor model improvements being performed under RELAP5/MOD3 funding

  9. Analysis of Limit Cycle Oscillation Data from the Aeroelastic Test of the SUGAR Truss-Braced Wing Model

    Science.gov (United States)

    Bartels, Robert E.; Funk, Christie; Scott, Robert C.

    2015-01-01

    Research focus in recent years has been given to the design of aircraft that provide significant reductions in emissions, noise and fuel usage. Increases in fuel efficiency have also generally been attended by overall increased wing flexibility. The truss-braced wing (TBW) configuration has been forwarded as one that increases fuel efficiency. The Boeing company recently tested the Subsonic Ultra Green Aircraft Research (SUGAR) Truss-Braced Wing (TBW) wind-tunnel model in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT). This test resulted in a wealth of accelerometer data. Other publications have presented details of the construction of that model, the test itself, and a few of the results of the test. This paper aims to provide a much more detailed look at what the accelerometer data says about the onset of aeroelastic instability, usually known as flutter onset. Every flight vehicle has a location in the flight envelope of flutter onset, and the TBW vehicle is not different. For the TBW model test, the flutter onset generally occurred at the conditions that the Boeing company analysis said it should. What was not known until the test is that, over a large area of the Mach number dynamic pressure map, the model displayed wing/engine nacelle aeroelastic limit cycle oscillation (LCO). This paper dissects that LCO data in order to provide additional insights into the aeroelastic behavior of the model.

  10. Development of the DTNTES code

    International Nuclear Information System (INIS)

    Ortega Prieto, P.; Morales Dorado, M.D.; Alonso Santos, A.

    1987-01-01

    The DTNTES code has been developed in the Department of Nuclear Technology of the Polytechnical University in Madrid as a part of the Research Program on Quantitative Risk Analysis. DTNTES code calculates several time-dependent probabilistic characteristics of basic events, minimal cut sets and the top event of a fault tree. The code assumes that basic events are statistically independent, and they have failure and repair distributions. It computes the minimal cut upper bound approach for the top event unavailability, and the time-dependent unreliability of the top event by means of different methods, selected by the user. These methods are: expected number of system failures, failure rate, Barlow-Proschan bound, steady-state upper bound, and T* method. (author)

  11. Development of an Auto-Validation Program for MARS Code Assessments

    International Nuclear Information System (INIS)

    Lee, Young Jin; Chung, Bub Dong

    2006-01-01

    MARS (Multi-dimensional Analysis of Reactor Safety) code is a best-estimate thermal hydraulic system analysis code developed at KAERI. It is important for a thermal hydraulic computer code to be assessed against theoretical and experimental data to verify and validate the performance and the integrity of the structure, models and correlations of the code. The code assessment efforts for complex thermal hydraulics code such as MARS code can be tedious, time-consuming and require large amount of human intervention in data transfer to see the results in graphic forms. Code developers produce many versions of a code during development and each version need to be verified for integrity. Thus, for MARS code developers, it is desirable to have an automatic way of carrying out the code assessment calculations. In the present work, an Auto-Validation program that carries out the code assessment efforts has been developed. The program uses the user supplied configuration file (with '.vv' extension) which contain commands to read input file, to execute the user selected MARS program, and to generate result graphs. The program can be useful if a same set of code assessments is repeated with different versions of the code. The program is written with the Delphi program language. The program runs under the Microsoft Windows environment

  12. Optics code development at Los Alamos

    International Nuclear Information System (INIS)

    Mottershead, C.T.; Lysenko, W.P.

    1988-01-01

    This paper is an overview of part of the beam optics code development effort in the Accelerator Technology Division at Los Alamos National Laboratory. The aim of this effort is to improve our capability to design advanced beam optics systems. The work reported is being carried out by a collaboration of permanent staff members, visiting consultants, and student research assistants. The main components of the effort are: building a new framework of common supporting utilities and software tools to facilitate further development; research and development on basic computational techniques in classical mechanics and electrodynamics; and evaluation and comparison of existing beam optics codes, and support for their continuing development. 17 refs

  13. Optics code development at Los Alamos

    International Nuclear Information System (INIS)

    Mottershead, C.T.; Lysenko, W.P.

    1988-01-01

    This paper is an overview of part of the beam optics code development effort in the Accelerator Technology Division at Los Alamos National Laboratory. The aim of this effort is to improve our capability to design advanced beam optics systems. The work reported is being carried out by a collaboration of permanent staff members, visiting consultants, and student research assistants. The main components of the effort are building a new framework of common supporting utilities and software tools to facilitate further development. research and development on basic computational techniques in classical mechanics and electrodynamics, and evaluation and comparison of existing beam optics codes, and support for their continuing development

  14. Subchannel analysis code development for CANDU fuel channel

    International Nuclear Information System (INIS)

    Park, J. H.; Suk, H. C.; Jun, J. S.; Oh, D. J.; Hwang, D. H.; Yoo, Y. J.

    1998-07-01

    Since there are several subchannel codes such as COBRA and TORC codes for a PWR fuel channel but not for a CANDU fuel channel in our country, the subchannel analysis code for a CANDU fuel channel was developed for the prediction of flow conditions on the subchannels, for the accurate assessment of the thermal margin, the effect of appendages, and radial/axial power profile of fuel bundles on flow conditions and CHF and so on. In order to develop the subchannel analysis code for a CANDU fuel channel, subchannel analysis methodology and its applicability/pertinence for a fuel channel were reviewed from the CANDU fuel channel point of view. Several thermalhydraulic and numerical models for the subchannel analysis on a CANDU fuel channel were developed. The experimental data of the CANDU fuel channel were collected, analyzed and used for validation of a subchannel analysis code developed in this work. (author). 11 refs., 3 tabs., 50 figs

  15. Developments of fuel performance analysis codes in KEPCO NF

    International Nuclear Information System (INIS)

    Han, H. T.; Choi, J. M.; Jung, C. D.; Yoo, J. S.

    2012-01-01

    The KEPCO NF has developed fuel performance analysis and design code named as ROPER, and utility codes of XGCOL and XDNB in order to perform fuel rod design evaluation for Korean nuclear power plants. The ROPER code intends to cover full range of fuel performance evaluation. The XGCOL code is for the clad flattening evaluation and the XDNB code is for the extensive DNB propagation evaluation. In addition to these, the KEPCO NF is now in the developing stage for 3-dimensional fuel performance analysis code, named as OPER3D, using 3-dimensional FEM for the nest generation within the joint project CANDU ENERGY in order to analyze PCMI behavior and fuel performance under load following operation. Of these, the ROPER code is now in the stage of licensing activities by Korean regulatory body and the other two are almost in the final developing stage. After finishing the developing, licensing activities are to be performed. These activities are intending to acquire competitiveness, originality, vendor-free ownership of fuel performance codes in the KEPCO NF

  16. Meeting the challenges with the Douglas Aircraft Company Aeroelastic Design Optimization Program (ADOP)

    Science.gov (United States)

    Rommel, Bruce A.

    1989-01-01

    An overview of the Aeroelastic Design Optimization Program (ADOP) at the Douglas Aircraft Company is given. A pilot test program involving the animation of mode shapes with solid rendering as well as wire frame displays, a complete aircraft model of a high-altitude hypersonic aircraft to test ADOP procedures, a flap model, and an aero-mesh modeler for doublet lattice aerodynamics are discussed.

  17. Development of computer code in PNC, 3

    International Nuclear Information System (INIS)

    Ohtaki, Akira; Ohira, Hiroaki

    1990-01-01

    Super-COPD, a code which is integrated by calculation modules, has been developed in order to evaluate kinds of dynamics of LMFBR plant by improving COPD. The code involves all models and its advanced models of COPD in module structures. The code makes it possible to simulate the system dynamics of LMFBR plant of any configurations and components. (author)

  18. Design of an aeroelastically tailored 10 MW wind turbine rotor

    DEFF Research Database (Denmark)

    Zahle, Frederik; Tibaldi, Carlo; Pavese, Christian

    2016-01-01

    This work presents an integrated multidisciplinary wind turbine optimization framework utilizing state-of-the-art aeroelastic and structural tools, capable of simultaneous design of the outer geometry and internal structure of the blade. The framework is utilized to design a 10 MW rotor constrained...... not to exceed the design loads of an existing reference wind turbine. The results show that through combined geometric tailoring of the internal structure and aerodynamic shape of the blade it is possible to achieve significant passive load alleviation that allows for a 9% longer blade with an increase in AEP...

  19. NASA space radiation transport code development consortium

    International Nuclear Information System (INIS)

    Townsend, L. W.

    2005-01-01

    Recently, NASA established a consortium involving the Univ. of Tennessee (lead institution), the Univ. of Houston, Roanoke College and various government and national laboratories, to accelerate the development of a standard set of radiation transport computer codes for NASA human exploration applications. This effort involves further improvements of the Monte Carlo codes HETC and FLUKA and the deterministic code HZETRN, including developing nuclear reaction databases necessary to extend the Monte Carlo codes to carry out heavy ion transport, and extending HZETRN to three dimensions. The improved codes will be validated by comparing predictions with measured laboratory transport data, provided by an experimental measurements consortium, and measurements in the upper atmosphere on the balloon-borne Deep Space Test Bed (DSTB). In this paper, we present an overview of the consortium members and the current status and future plans of consortium efforts to meet the research goals and objectives of this extensive undertaking. (authors)

  20. Development of thermal hydraulic evaluation code for CANDU reactors

    International Nuclear Information System (INIS)

    Kim, Man Woong; Yu, Seon Oh; Choi, Yong Seog; Shin, Chull; Hwang, Soo Hyun

    2004-02-01

    To enhance the safety of operating CANDU reactors, the establishment of the safety analysis codes system for CANDU reactors is in progress. As for the development of thermal-hydraulic analysis code for CANDU system, the studies for improvement of evaluation model inside RELAP/CANDU code and the development of safety assessment methodology for GSI (Generic Safety Issues) are in progress as a part of establishment of CANDU safety assessment system. To develop the 3-D thermal-hydraulic analysis code for moderator system, the CFD models for analyzing the CANDU-6 moderator circulation are developed. One model uses a structured grid system with the porous media approach for the 380 Calandria tubes in the core region. The other uses a unstructured grid system on the real geometry of 380 Calandria tubes, so that the detailed fluid flow between the Calandria tubes can be observed. As to the development of thermal-hydraulic analysis code for containment, the study on the applicability of CONTAIN 2.0 code to a CANDU containment was conducted and a simulation of the thermal-hydraulic phenomena during the accident was performed. Besides, the model comparison of ESFs (Engineered Safety Features) inside CONTAIN 2.0 code and PRESCON code has also conducted

  1. Aeroelastic Response from Indicial Functions with a Finite Element Model of a Suspension Bridge

    Science.gov (United States)

    Mikkelsen, O.; Jakobsen, J. B.

    2017-12-01

    The present paper describes a comprehensive analysis of the aeroelastic bridge response in time-domain, with a finite element model of the structure. The main focus is on the analysis of flutter instability, accounting for the wind forces generated by the bridge motion, including twisting as well as vertical and horizontal translation, i.e. all three global degrees of freedom. The solution is obtained by direct integration of the equations of motion for the bridge-wind system, with motion-dependent forces approximated from flutter derivatives in terms of rational functions. For the streamlined bridge box-girder investigated, the motion dependent wind forces related to the along-wind response are found to have a limited influence on the flutter velocity. The flutter mode shapes in the time-domain and the frequency domain are consistent, and composed of the three lowest symmetrical vertical modes coupled with the first torsional symmetric mode. The method applied in this study provides detailed response estimates and contributes to an increased understanding of the complex aeroelastic behaviour of long-span bridges.

  2. ICARE/CATHARE and ASTEC code development trends

    International Nuclear Information System (INIS)

    Chatelard, P.; Dorsselaere, J.-P. van

    2000-01-01

    Regarding the computer code development for simulation of LWR severe accidents, IPSN developed a two-tier approach based on detailed codes such as ICARE/CATHARE and simplified models to be assembled in the ASTEC integral code. The ICARE/CATHARE code results from the coupling between the ICARE2 code modelling the core degradation phenomena and the thermalhydraulics code CATHARE2. It allows to calculate PWR and VVER severe accident sequences in the whole RCS. The modelling of the early degradation phase can be considered as rather complete in the ICARE/CATHARE V1 mod1 version (to be released by mid-2000) whereas some models are still missing for the late phase. The main future developments (ICARE/CATHARE V2) will concern the multi-dimensional thermalhydraulics, the quenching of partially damaged cores (mechanical and chemical effects), the debris bed two-phase thermalhydraulics (including reflooding) and the corium behaviour in the lower head. The main other physical improvements should concern the behaviour of boron carbide control rods, the processes governing the core loss of geometry (transition phase) and the oxidation of relocated melts. The ASTEC (Accident Source Term Evaluation Code) integral code, commonly developed by IPSN and GRS, aims to predict an entire LWR (PWR, VVER and BWR) severe accident sequence from the initiating event through to FP release out of the containment, for source term, PSA level 2, or accident management studies. The version ASTEC VO.3 to be released by mid-2000 can be considered now as robust and fast-running enough (between 2 and 12 hours for a one day accident) and allows to perform, with a containment multi-compartment configuration, any scenario accident study accounting for the main safety systems and operator procedures (spray, recombiner, etc.). The next version ASTEC V1, to be released beginning of 2002, will include the frontend simulation and improve modelling of in-vessel core degradation. A large validation activity will

  3. Active aeroelastic control aspects of an aircraft wing by using synthetic jet actuators : Modeling, simulations, experiments

    NARCIS (Netherlands)

    Donnell, K.O.; Schober, S.; Stolk, M.; Marzocca, P.; De Breuker, R.; Abdalla, M.; Nicolini, E.; Gürdal, Z.

    2007-01-01

    This paper discusses modeling, simulations and experimental aspects of active aeroelastic control on aircraft wings by using Synthetic Jet Actuators (SJAs). SJAs, a particular class of zero-net mass-flux actuators, have shown very promising results in numerous aeronautical applications, such as

  4. Research in Aeroelasticity EFP-2007-II

    DEFF Research Database (Denmark)

    is demonstrated. For attached flow over thin airfoils (18%) 2D computations provide good results while a combination of Detached Eddy Simulation and laminar/ turbulent transition modeling improve the results in stalled conditions for a thick airfoil. • The unsteady flow in the nacelle region of a wind turbine......This report contains results from the EFP-2007-II project "Program for Research in Applied Aeroelasticity". The main results can be summed up into the following bullets: • 2D CFD was used to investigate tower shadow effects on both upwind and downwind turbines, and was used to validate the tower...... is dominated by large flow gradients caused by unsteady shedding of vortices from the root sections of the blades. • The averaged nacelle wind speed compares well to the freestream wind speed, whereas the nacelle flow angle is highly sensitive to vertical positioning and tilt in the inflow. • The trailing edge...

  5. Monte Carlo code development in Los Alamos

    International Nuclear Information System (INIS)

    Carter, L.L.; Cashwell, E.D.; Everett, C.J.; Forest, C.A.; Schrandt, R.G.; Taylor, W.M.; Thompson, W.L.; Turner, G.D.

    1974-01-01

    The present status of Monte Carlo code development at Los Alamos Scientific Laboratory is discussed. A brief summary is given of several of the most important neutron, photon, and electron transport codes. 17 references. (U.S.)

  6. Developing an Australian code of construction ethics

    Directory of Open Access Journals (Sweden)

    Sean Francis McCarthy

    2012-05-01

    Full Text Available This article looks at the increasing need to consider the role of ethics in construction. The industry, historically, has been challenged by allegations of a serious shortfall in ethical standards. Only limited attempts to date in Australia have been made to address that concern. Any ethical analysis should consider the definition of ethics and its historical development. This paper considers major historical developments in ethical thinking as well as contemporary thinking on ethics for professional sub-sets. A code could be developed specific to construction. Current methods of addressing ethics in construction and in other industries are also reviewed. This paper argues that developing a code of ethics, supported by other measures is the way forward. The author’s aim is to promote further discussion and promote the drafting of a code. This paper includes a summary of other ethical codes that may provide a starting point. The time for reform is upon us, and there is an urgent need for an independent body to take the lead, for fear of floundering and having only found ‘another debating topic’ (Uff 2006.

  7. Methodology, status and plans for development and assessment of Cathare code

    Energy Technology Data Exchange (ETDEWEB)

    Bestion, D.; Barre, F.; Faydide, B. [CEA - Grenoble (France)

    1997-07-01

    This paper presents the methodology, status and plans for the development, assessment and uncertainty evaluation of the Cathare code. Cathare is a thermalhydraulic code developed by CEA (DRN), IPSN, EDF and FRAMATOME for PWR safety analysis. First, the status of the code development and assessment is presented. The general strategy used for the development and the assessment of the code is presented. Analytical experiments with separate effect tests, and component tests are used for the development and the validation of closure laws. Successive Revisions of constitutive laws are implemented in successive Versions of the code and assessed. System tests or integral tests are used to validate the general consistency of the Revision. Each delivery of a code Version + Revision is fully assessed and documented. A methodology is being developed to determine the uncertainty on all constitutive laws of the code using calculations of many analytical tests and applying the Discrete Adjoint Sensitivity Method (DASM). At last, the plans for the future developments of the code are presented. They concern the optimization of the code performance through parallel computing - the code will be used for real time full scope plant simulators - the coupling with many other codes (neutronic codes, severe accident codes), the application of the code for containment thermalhydraulics. Also, physical improvements are required in the field of low pressure transients and in the modeling for the 3-D model.

  8. Developments of HTGR thermofluid dynamic analysis codes and HTGR plant dynamic simulation code

    International Nuclear Information System (INIS)

    Tanaka, Mitsuhiro; Izaki, Makoto; Koike, Hiroyuki; Tokumitsu, Masashi

    1983-01-01

    In nuclear power plants as well as high temperature gas-cooled reactor plants, the design is mostly performed on the basis of the results after their characteristics have been grasped by carrying out the numerical simulation using the analysis code. Also in Kawasaki Heavy Industries Ltd., on the basis of the system engineering accumulated with gas-cooled reactors since several years ago, the preparation and systematization of analysis codes have been advanced, aiming at lining up the analysis codes for heat transferring flow and control characteristics, taking up HTGR plants as the main object. In this report, a part of the results is described. The example of the analysis applying the two-dimensional compressible flow analysis codes SOLA-VOF and SALE-2D, which were developed by Los Alamos National Laboratory in USA and modified for use in Kawasaki, to HTGR system is reported. Besides, Kawasaki has developed the control characteristics analyzing code DYSCO by which the change of system composition is easy and high versatility is available. The outline, fundamental equations, fundamental algorithms and examples of application of the SOLA-VOF and SALE-2D, the present status of system characteristic simulation codes and the outline of the DYSCO are described. (Kako, I.)

  9. Development of ADINA-J-integral code

    International Nuclear Information System (INIS)

    Kurihara, Ryoichi

    1988-07-01

    A general purpose finite element program ADINA (Automatic Dynamic Incremental Nonlinear Analysis), which was developed by Bathe et al., was revised to be able to calculate the J- and J-integral. This report introduced the numerical method to add this capability to the code, and the evaluation of the revised ADINA-J code by using a few of examples of the J estimation model, i.e. a compact tension specimen, a center cracked panel subjected to dynamic load, and a thick shell cylinder having inner axial crack subjected to thermal load. The evaluation testified the function of the revised code. (author)

  10. Development and application of best-estimate LWR safety analysis codes

    International Nuclear Information System (INIS)

    Reocreux, M.

    1997-01-01

    This paper is a review of the status and the future orientations of the development and application of best estimate LWR safety analysis codes. The present status of these codes exhibits a large success and almost a complete fulfillment of the objectives which were assigned in the 70s. The applications of Best Estimate codes are numerous and cover a large variety of safety questions. However these applications raised a number of problems. The first ones concern the need to have a better control of the quality of the results. This means requirements on code assessment and on uncertainties evaluation. The second ones concern needs for code development and specifically regarding physical models, numerics, coupling with other codes and programming. The analysis of the orientations for code developments and applications in the next years, shows that some developments should be made without delay in order to solve today questions whereas some others are more long term and should be tested for example in some pilot programmes before being eventually applied in main code development. Each of these development programmes are analyzed in the paper by detailing their main content and their possible interest. (author)

  11. Development of codes for physical calculations of WWER

    International Nuclear Information System (INIS)

    Novikov, A.N.

    2000-01-01

    A package of codes for physical calculations of WWER reactors, used at the RRC 'Kurchatov Institute' is discussed including the purpose of these codes, approximations used, degree of data verification, possibilities of automation of calculations and presentation of results, trends of further development of the codes. (Authors)

  12. SCDAP/RELAP5 code development and assessment

    International Nuclear Information System (INIS)

    Allison, C.M.; Hohorst, J.K.

    1996-01-01

    The SCDAP/RELAP5 computer code is designed to describe the overall reactor coolant system thermal-hydraulic response, core damage progression, and fission product release during severe accidents. The code is being developed at the Idaho National Engineering Laboratory under the primary sponsorship of the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission. The current version of the code is SCDAP/RELAP5/MOD3.1e. Although MOD3.1e contains a number of significant improvements since the initial version of MOD3.1 was released, new models to treat the behavior of the fuel and cladding during reflood have had the most dramatic impact on the code's calculations. This paper provides a brief description of the new reflood models, presents highlights of the assessment of the current version of MOD3.1, and discusses future SCDAP/RELAP5/MOD3.2 model development activities

  13. Development of Regulatory Audit Core Safety Code : COREDAX

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chae Yong; Jo, Jong Chull; Roh, Byung Hwan [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Lee, Jae Jun; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2005-07-01

    Korea Institute of Nuclear Safety (KINS) has developed a core neutronics simulator, COREDAX code, for verifying core safety of SMART-P reactor, which is technically supported by Korea Advanced Institute of Science and Technology (KAIST). The COREDAX code would be used for regulatory audit calculations of 3- dimendional core neutronics. The COREDAX code solves the steady-state and timedependent multi-group neutron diffusion equation in hexagonal geometry as well as rectangular geometry by analytic function expansion nodal (AFEN) method. AFEN method was developed at KAIST, and it was internationally verified that its accuracy is excellent. The COREDAX code is originally programmed based on the AFEN method. Accuracy of the code on the AFEN method was excellent for the hexagonal 2-dimensional problems, but there was a need for improvement for hexagonal-z 3-dimensional problems. Hence, several solution routines of the AFEN method are improved, and finally the advanced AFEN method is created. COREDAX code is based on the advanced AFEN method . The initial version of COREDAX code is to complete a basic framework, performing eigenvalue calculations and kinetics calculations with thermal-hydraulic feedbacks, for audit calculations of steady-state core design and reactivity-induced accidents of SMART-P reactor. This study describes the COREDAX code for hexagonal geometry.

  14. Development of a domestically-made system code

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    According to lessons learned from the Fukushima-Daiichi NPP accidents, a new safety standard based on state-of-the-art findings has been established by the Japanese Nuclear Regulation Authority (NRA) and will soon come into force in Japan. In order to ensure a precise response to this movement from a technological point of view, it should be required for safety regulation to develop a new system code with much smaller uncertainty and reinforced simulation capability even in application to beyond-DBAs (BDBAs), as well as with the capability of close coupling to a newly developing severe accident code. Accordingly, development of a new domestically-made system code that incorporates 3-dimensional and 3 or more fluid thermal-hydraulics in tandem with a 3-dimensional neutronics has been started in 2012. In 2012, two branches of development activities, the development of 'main body' and advanced features have been started in parallel for development efficiency. The main body has been started from scratch and the following activities have therefore been performed: 1) development and determination of key principles and methodologies to realize a flexible, extensible and robust platform, 2) determination of requirements definition, 3) start of basic program design and coding and 4) start of a development of prototypical GUI-based pre-post processor. As for the advanced features, the following activities have been performed: 1) development of Phenomena Identification and Ranking Tables (PIRTs) and model capability matrix from normal operations to BDBAs in order to address requirements definition for advanced modeling, 2) development of detailed action plan for modification of field equations, numerical schemes and solvers and 3) start of the program development of field equations with an interfacial area concentration transport equation, a robust solver for condensation induced water hammer phenomena and a versatile Newton-Raphson solver. (author)

  15. Development of the point-depletion code DEPTH

    International Nuclear Information System (INIS)

    She, Ding; Wang, Kan; Yu, Ganglin

    2013-01-01

    Highlights: ► The DEPTH code has been developed for the large-scale depletion system. ► DEPTH uses the data library which is convenient to couple with MC codes. ► TTA and matrix exponential methods are implemented and compared. ► DEPTH is able to calculate integral quantities based on the matrix inverse. ► Code-to-code comparisons prove the accuracy and efficiency of DEPTH. -- Abstract: The burnup analysis is an important aspect in reactor physics, which is generally done by coupling of transport calculations and point-depletion calculations. DEPTH is a newly-developed point-depletion code of handling large burnup depletion systems and detailed depletion chains. For better coupling with Monte Carlo transport codes, DEPTH uses data libraries based on the combination of ORIGEN-2 and ORIGEN-S and allows users to assign problem-dependent libraries for each depletion step. DEPTH implements various algorithms of treating the stiff depletion systems, including the Transmutation trajectory analysis (TTA), the Chebyshev Rational Approximation Method (CRAM), the Quadrature-based Rational Approximation Method (QRAM) and the Laguerre Polynomial Approximation Method (LPAM). Three different modes are supported by DEPTH to execute the decay, constant flux and constant power calculations. In addition to obtaining the instantaneous quantities of the radioactivity, decay heats and reaction rates, DEPTH is able to calculate the integral quantities by a time-integrated solver. Through calculations compared with ORIGEN-2, the validity of DEPTH in point-depletion calculations is proved. The accuracy and efficiency of depletion algorithms are also discussed. In addition, an actual pin-cell burnup case is calculated to illustrate the DEPTH code performance in coupling with the RMC Monte Carlo code

  16. Challenges on innovations of newly-developed safety analysis codes

    International Nuclear Information System (INIS)

    Yang, Yanhua; Zhang, Hao

    2016-01-01

    With the development of safety analysis method, the safety analysis codes meet more challenges. Three challenges are presented in this paper, which are mathematic model, code design and user interface. Combined with the self-reliance safety analysis code named COSINE, the ways of meeting these requirements are suggested, that is to develop multi-phases, multi-fields and multi-dimension models, to adopt object-oriented code design ideal and to improve the way of modeling, calculation control and data post-processing in the user interface.

  17. Challenges on innovations of newly-developed safety analysis codes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yanhua [Shanghai Jiao Tong Univ. (China). School of Nuclear Science and Engineering; Zhang, Hao [State Nuclear Power Software Development Center, Beijing (China). Beijing Future Science and Technology City

    2016-05-15

    With the development of safety analysis method, the safety analysis codes meet more challenges. Three challenges are presented in this paper, which are mathematic model, code design and user interface. Combined with the self-reliance safety analysis code named COSINE, the ways of meeting these requirements are suggested, that is to develop multi-phases, multi-fields and multi-dimension models, to adopt object-oriented code design ideal and to improve the way of modeling, calculation control and data post-processing in the user interface.

  18. Recent developments in the CONTAIN-LMR code

    International Nuclear Information System (INIS)

    Murata, K.K.

    1990-01-01

    Through an international collaborative effort, a special version of the CONTAIN code is being developed for integrated mechanistic analysis of the conditions in liquid metal reactor (LMR) containments during severe accidents. The capabilities of the most recent code version, CONTAIN LMR/1B-Mod.1, are discussed. These include new models for the treatment of two condensables, sodium condensation on aerosols, chemical reactions, hygroscopic aerosols, and concrete outgassing. This code version also incorporates all of the previously released LMR model enhancements. The results of an integral demonstration calculation of a sever core-melt accident scenario are given to illustrate the features of this code version. 11 refs., 7 figs., 1 tab

  19. HELIAS module development for systems codes

    Energy Technology Data Exchange (ETDEWEB)

    Warmer, F., E-mail: Felix.Warmer@ipp.mpg.de; Beidler, C.D.; Dinklage, A.; Egorov, K.; Feng, Y.; Geiger, J.; Schauer, F.; Turkin, Y.; Wolf, R.; Xanthopoulos, P.

    2015-02-15

    In order to study and design next-step fusion devices such as DEMO, comprehensive systems codes are commonly employed. In this work HELIAS-specific models are proposed which are designed to be compatible with systems codes. The subsequently developed models include: a geometry model based on Fourier coefficients which can represent the complex 3-D plasma shape, a basic island divertor model which assumes diffusive cross-field transport and high radiation at the X-point, and a coil model which combines scaling aspects based on the HELIAS 5-B reactor design in combination with analytic inductance and field calculations. In addition, stellarator-specific plasma transport is discussed. A strategy is proposed which employs a predictive confinement time scaling derived from 1-D neoclassical and 3-D turbulence simulations. This paper reports on the progress of the development of the stellarator-specific models while an implementation and verification study within an existing systems code will be presented in a separate work. This approach is investigated to ultimately allow one to conduct stellarator system studies, develop design points of HELIAS burning plasma devices, and to facilitate a direct comparison between tokamak and stellarator DEMO and power plant designs.

  20. Development of the next generation reactor analysis code system, MARBLE

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Hazama, Taira; Nagaya, Yasunobu; Chiba, Go; Kugo, Teruhiko; Ishikawa, Makoto; Tatsumi, Masahiro; Hirai, Yasushi; Hyoudou, Hideaki; Numata, Kazuyuki; Iwai, Takehiko; Jin, Tomoyuki

    2011-03-01

    A next generation reactor analysis code system, MARBLE, has been developed. MARBLE is a successor of the fast reactor neutronics analysis code systems, JOINT-FR and SAGEP-FR (conventional systems), which were developed for so-called JUPITER standard analysis methods. MARBLE has the equivalent analysis capability to the conventional system because MARBLE can utilize sub-codes included in the conventional system without any change. On the other hand, burnup analysis functionality for power reactors is improved compared with the conventional system by introducing models on fuel exchange treatment and control rod operation and so on. In addition, MARBLE has newly developed solvers and some new features of burnup calculation by the Krylov sub-space method and nuclear design accuracy evaluation by the extended bias factor method. In the development of MARBLE, the object oriented technology was adopted from the view-point of improvement of the software quality such as flexibility, expansibility, facilitation of the verification by the modularization and assistance of co-development. And, software structure called the two-layer system consisting of scripting language and system development language was applied. As a result, MARBLE is not an independent analysis code system which simply receives input and returns output, but an assembly of components for building an analysis code system (i.e. framework). Furthermore, MARBLE provides some pre-built analysis code systems such as the fast reactor neutronics analysis code system. SCHEME, which corresponds to the conventional code and the fast reactor burnup analysis code system, ORPHEUS. (author)

  1. Development and Application of a Code for Internal Exposure (CINEX) based on the CINDY code

    International Nuclear Information System (INIS)

    Kravchik, T.; Duchan, N.; Sarah, R.; Gabay, Y.; Kol, R.

    2004-01-01

    Internal exposure to radioactive materials at the NRCN is evaluated using the CINDY (Code for Internal Dosimetry) Package. The code was developed by the Pacific Northwest Laboratory to assist the interpretation of bioassay data, provide bioassay projections and evaluate committed and calendar-year doses from intake or bioassay measurement data. It provides capabilities to calculate organ dose and effective dose equivalents using the International Commission on Radiological Protection (ICRP) 30 approach. The CINDY code operates under DOS operating system and consequently its operation needs a relatively long procedure which also includes a lot of manual typing that can lead to personal human mistakes. A new code has been developed at the NRCN, the CINEX (Code for Internal Exposure), which is an Excel application and leads to a significant reduction in calculation time (in the order of 5-10 times) and in the risk of personal human mistakes. The code uses a database containing tables which were constructed by the CINDY and contain the bioassay values predicted by the ICRP30 model after an intake of an activity unit of each isotope. Using the database, the code than calculates the appropriate intake and consequently the committed effective dose and organ dose. Calculations with the CINEX code were compared to similar calculations with the CINDY code. The discrepancies were less than 5%, which is the rounding error of the CINDY code. Attached is a table which compares parameters calculated with the CINEX and the CINDY codes (for a class Y uranium). The CINEX is now used at the NRCN to calculate occupational intakes and doses to workers with radioactive materials

  2. Code Development and Analysis Program: developmental checkout of the BEACON/MOD2A code

    International Nuclear Information System (INIS)

    Ramsthaler, J.A.; Lime, J.F.; Sahota, M.S.

    1978-12-01

    A best-estimate transient containment code, BEACON, is being developed by EG and G Idaho, Inc. for the Nuclear Regulatory Commission's reactor safety research program. This is an advanced, two-dimensional fluid flow code designed to predict temperatures and pressures in a dry PWR containment during a hypothetical loss-of-coolant accident. The most recent version of the code, MOD2A, is presently in the final stages of production prior to being released to the National Energy Software Center. As part of the final code checkout, seven sample problems were selected to be run with BEACON/MOD2A

  3. Development of a tritium dispersion code

    International Nuclear Information System (INIS)

    Bell, R.P.; Davis, M.W.; Joseph, S.; Wong, K.Y.

    1985-01-01

    This paper describes the development and verification of a computer code designed to calculate the radiation dose to man following acute or chronic atmospheric releases of tritium gas and oxide from a point source. The Ontario Hydro Tritium Dispersion Code calculates tritium concentrations in air, soil, and vegetation and doses to man resulting from inhalation/immersion and ingestion of food, milk meat and water. The deposition of HT to soil, conversion of HT to HTO by soil enzymes and resuspension of HTO to air have been incorporated into the terrestrial compartment model and are unique features of the code. Sensitivity analysis has identified the HT deposition velocity and the equivalent water depth of the vegetation compartment as two parameters which have a strong influence on dose calculations. Tritium concentrations in vegetation and soil calculated by the code were in reasonable agreement with experimental results. The radiological significance of including the mechanisms of HT to HTO conversion and resuspension of HTO to air is illustrated

  4. Recent developments in KTF. Code optimization and improved numerics

    International Nuclear Information System (INIS)

    Jimenez, Javier; Avramova, Maria; Sanchez, Victor Hugo; Ivanov, Kostadin

    2012-01-01

    The rapid increase of computer power in the last decade facilitated the development of high fidelity simulations in nuclear engineering allowing a more realistic and accurate optimization as well as safety assessment of reactor cores and power plants compared to the legacy codes. Thermal hydraulic subchannel codes together with time dependent neutron transport codes are the options of choice for an accurate prediction of local safety parameters. Moreover, fast running codes with the best physical models are needed for high fidelity coupled thermal hydraulic / neutron kinetic solutions. Hence at KIT, different subchannel codes such as SUBCHANFLOW and KTF are being improved, validated and coupled with different neutron kinetics solutions. KTF is a subchannel code developed for best-estimate analysis of both Pressurized Water Reactor (PWR) and BWR. It is based on the Pennsylvania State University (PSU) version of COBRA-TF (Coolant Boling in Rod Arrays Two Fluids) named CTF. In this paper, the investigations devoted to the enhancement of the code numeric and informatics structure are presented and discussed. By some examples the gain on code speed-up will be demonstrated and finally an outlook of further activities concentrated on the code improvements will be given. (orig.)

  5. Recent developments in KTF. Code optimization and improved numerics

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, Javier; Avramova, Maria; Sanchez, Victor Hugo; Ivanov, Kostadin [Karlsruhe Institute of Technology (KIT) (Germany). Inst. for Neutron Physics and Reactor Technology (INR)

    2012-11-01

    The rapid increase of computer power in the last decade facilitated the development of high fidelity simulations in nuclear engineering allowing a more realistic and accurate optimization as well as safety assessment of reactor cores and power plants compared to the legacy codes. Thermal hydraulic subchannel codes together with time dependent neutron transport codes are the options of choice for an accurate prediction of local safety parameters. Moreover, fast running codes with the best physical models are needed for high fidelity coupled thermal hydraulic / neutron kinetic solutions. Hence at KIT, different subchannel codes such as SUBCHANFLOW and KTF are being improved, validated and coupled with different neutron kinetics solutions. KTF is a subchannel code developed for best-estimate analysis of both Pressurized Water Reactor (PWR) and BWR. It is based on the Pennsylvania State University (PSU) version of COBRA-TF (Coolant Boling in Rod Arrays Two Fluids) named CTF. In this paper, the investigations devoted to the enhancement of the code numeric and informatics structure are presented and discussed. By some examples the gain on code speed-up will be demonstrated and finally an outlook of further activities concentrated on the code improvements will be given. (orig.)

  6. Development of code SFINEL (Spent fuel integrity evaluator)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Soo; Min, Chin Young; Ohk, Young Kil; Yang, Yong Sik; Kim, Dong Ju; Kim, Nam Ku [Hanyang University, Seoul (Korea)

    1999-01-01

    SFINEL code, an integrated computer program for predicting the spent fuel rod integrity based on burn-up history and major degradation mechanisms, has been developed through this project. This code can sufficiently simulate the power history of a fuel rod during the reactor operation and estimate the degree of deterioration of spent fuel cladding using the recently-developed models on the degradation mechanisms. SFINEL code has been thoroughly benchmarked against the collected in-pile data and operating experiences: deformation and rupture, and cladding oxidation, rod internal pressure creep, then comprehensive whole degradation process. (author). 75 refs., 51 figs., 5 tabs.

  7. Development of FBR integrity system code. Basic concept

    International Nuclear Information System (INIS)

    Asayama, Tai

    2001-05-01

    For fast breeder reactors to be commercialized, they must be more reliable, safer, and at the same, economically competitive with future light water reactors. Innovation of elevated temperature structural design standard is necessary to achieve this goal. The most powerful way is to enlarge the scope of structural integrity code to cover items other than design evaluation that has been addressed in existing codes. Items that must be newly covered are prerequisites of design, fabrication, examination, operation and maintenance, etc. This allows designers to choose the most economical combination of design variations to achieve specific reliability that is needed for a particular component. Designing components by this concept, a cost-minimum design of a whole plant can be realized. By determining the reliability that must be achieved for a component by risk technologies, further economical improvement can be expected by avoiding excessive quality. Recognizing the necessity for the codes based on the new concept, the development of 'FBR integrity system code' began in 2000. Research and development will last 10 years. For this development, the basic logistics and system as well as technologies that materialize the concept are necessary. Original logistics and system must be developed, because no existing researches are available in and out of Japan. This reports presents the results of the work done in the first year regarding the basic idea, methodology, and structure of the code. (author)

  8. Development of authentication code for multi-access optical code division multiplexing based quantum key distribution

    Science.gov (United States)

    Taiwo, Ambali; Alnassar, Ghusoon; Bakar, M. H. Abu; Khir, M. F. Abdul; Mahdi, Mohd Adzir; Mokhtar, M.

    2018-05-01

    One-weight authentication code for multi-user quantum key distribution (QKD) is proposed. The code is developed for Optical Code Division Multiplexing (OCDMA) based QKD network. A unique address assigned to individual user, coupled with degrading probability of predicting the source of the qubit transmitted in the channel offer excellent secure mechanism against any form of channel attack on OCDMA based QKD network. Flexibility in design as well as ease of modifying the number of users are equally exceptional quality presented by the code in contrast to Optical Orthogonal Code (OOC) earlier implemented for the same purpose. The code was successfully applied to eight simultaneous users at effective key rate of 32 bps over 27 km transmission distance.

  9. Development of HTGR plant dynamics simulation code

    International Nuclear Information System (INIS)

    Ohashi, Kazutaka; Tazawa, Yujiro; Mitake, Susumu; Suzuki, Katsuo.

    1987-01-01

    Plant dynamics simulation analysis plays an important role in the design work of nuclear power plant especially in the plant safety analysis, control system analysis, and transient condition analysis. The authors have developed the plant dynamics simulation code named VESPER, which is applicable to the design work of High Temperature Engineering Test Reactor, and have been improving the code corresponding to the design changes made in the subsequent design works. This paper describes the outline of VESPER code and shows its sample calculation results selected from the recent design work. (author)

  10. Integrated code development for studying laser driven plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Takabe, Hideaki; Nagatomo, Hideo; Sunahara, Atsusi; Ohnishi, Naofumi; Naruo, Syuji; Mima, Kunioki [Osaka Univ., Suita (Japan). Inst. of Laser Engineering

    1998-03-01

    Present status and plan for developing an integrated implosion code are briefly explained by focusing on motivation, numerical scheme and issues to be developed more. Highly nonlinear stage of Rayleigh-Taylor instability of ablation front by laser irradiation has been simulated so as to be compared with model experiments. Improvement in transport and rezoning/remapping algorithms in ILESTA code is described. (author)

  11. Dynamic aeroelastic stability of vertical-axis wind turbines under constant wind velocity

    Science.gov (United States)

    Nitzsche, Fred

    1994-05-01

    The flutter problem associated with the blades of a class of vertical-axis wind turbines called Darrieus is studied in detail. The spinning blade is supposed to be initially curved in a particular shape characterized by a state of pure tension at the blade cross section. From this equilibrium position a three-dimensional linear perturbation pattern is superimposed to determine the dynamic aeroelastic stability of the blade in the presence of free wind speed by means of the Floquet-Lyapunov theory for periodic systems.

  12. An overview of the Douglas Aircraft Company Aeroelastic Design Optimization Program (ADOP)

    Science.gov (United States)

    Dodd, Alan J.

    1989-01-01

    From a program manager's viewpoint, the history, scope and architecture of a major structural design program at Douglas Aircraft Company called Aeroelastic Design Optimization Program (ADOP) are described. ADOP was originally intended for the rapid, accurate, cost-effective evaluation of relatively small structural models at the advanced design level, resulting in improved proposal competitiveness and avoiding many costly changes later in the design cycle. Before release of the initial version in November 1987, however, the program was expanded to handle very large production-type analyses.

  13. A pragmatic approach to including complex natural modes of vibration in aeroelastic analysis

    CSIR Research Space (South Africa)

    Van Zyl, Lourens H

    2015-09-01

    Full Text Available complex natural modes of vibration in aeroelastic analysis Louw van Zyl International Aerospace Symposium of South Africa 14 to 16 September, 2015 Stellenbosch, South Africa Slide 2 © CSIR 2006 www.csir.co.za Problem statement..., the square of the angular frequencies in radians per second) [ ]{ } [ ]{ } [ ]{ } { }fxKxCxM =++ &&& [ ]{ } [ ]{ } 0=+ xKxMs2 Slide 4 © CSIR 2006 www.csir.co.za Structural Dynamics (continued) • The corresponding eigenvectors are real...

  14. Coupled geochemical and solute transport code development

    International Nuclear Information System (INIS)

    Morrey, J.R.; Hostetler, C.J.

    1985-01-01

    A number of coupled geochemical hydrologic codes have been reported in the literature. Some of these codes have directly coupled the source-sink term to the solute transport equation. The current consensus seems to be that directly coupling hydrologic transport and chemical models through a series of interdependent differential equations is not feasible for multicomponent problems with complex geochemical processes (e.g., precipitation/dissolution reactions). A two-step process appears to be the required method of coupling codes for problems where a large suite of chemical reactions must be monitored. Two-step structure requires that the source-sink term in the transport equation is supplied by a geochemical code rather than by an analytical expression. We have developed a one-dimensional two-step coupled model designed to calculate relatively complex geochemical equilibria (CTM1D). Our geochemical module implements a Newton-Raphson algorithm to solve heterogeneous geochemical equilibria, involving up to 40 chemical components and 400 aqueous species. The geochemical module was designed to be efficient and compact. A revised version of the MINTEQ Code is used as a parent geochemical code

  15. Code development and analyses within the area of transmutation and safety

    International Nuclear Information System (INIS)

    Maschek, W.

    2002-01-01

    A strong code development is going on to meet various demands resulting from the development of dedicated reactors for transmutation and incineration. Code development is concerned with safety codes and general codes needed for assessing scenarios and transmutation strategies. Analyses concentrate on various ADS systems with solid and liquid molten salt fuels. Analyses deal with ADS Demo Plant (5th FP EU) and transmuters with advanced fuels

  16. The development of code benchmarks

    International Nuclear Information System (INIS)

    Glass, R.E.

    1986-01-01

    Sandia National Laboratories has undertaken a code benchmarking effort to define a series of cask-like problems having both numerical solutions and experimental data. The development of the benchmarks includes: (1) model problem definition, (2) code intercomparison, and (3) experimental verification. The first two steps are complete and a series of experiments are planned. The experiments will examine the elastic/plastic behavior of cylinders for both the end and side impacts resulting from a nine meter drop. The cylinders will be made from stainless steel and aluminum to give a range of plastic deformations. This paper presents the results of analyses simulating the model's behavior using materials properties for stainless steel and aluminum

  17. Development of Evaluation Code for MUF Uncertainty

    International Nuclear Information System (INIS)

    Won, Byung Hee; Han, Bo Young; Shin, Hee Sung; Ahn, Seong-Kyu; Park, Geun-Il; Park, Se Hwan

    2015-01-01

    Material Unaccounted For (MUF) is the material balance evaluated by measured nuclear material in a Material Balance Area (MBA). Assuming perfect measurements and no diversion from a facility, one can expect a zero MUF. However, non-zero MUF is always occurred because of measurement uncertainty even though the facility is under normal operation condition. Furthermore, there are many measurements using different equipment at various Key Measurement Points (KMPs), and the MUF uncertainty is affected by errors of those measurements. Evaluating MUF uncertainty is essentially required to develop safeguards system including nuclear measurement system in pyroprocessing, which is being developed for reducing radioactive waste from spent fuel in Korea Atomic Energy Research Institute (KAERI). The evaluation code for analyzing MUF uncertainty has been developed and it was verified using sample problem from the IAEA reference. MUF uncertainty can be simply and quickly calculated by using this evaluation code which is made based on graphical user interface for user friendly. It is also expected that the code will make the sensitivity analysis on the MUF uncertainty for the various safeguards systems easy and more systematic. It is suitable for users who want to evaluate the conventional safeguards system as well as to develop a new system for developing facilities

  18. Development of Evaluation Code for MUF Uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Won, Byung Hee; Han, Bo Young; Shin, Hee Sung; Ahn, Seong-Kyu; Park, Geun-Il; Park, Se Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Material Unaccounted For (MUF) is the material balance evaluated by measured nuclear material in a Material Balance Area (MBA). Assuming perfect measurements and no diversion from a facility, one can expect a zero MUF. However, non-zero MUF is always occurred because of measurement uncertainty even though the facility is under normal operation condition. Furthermore, there are many measurements using different equipment at various Key Measurement Points (KMPs), and the MUF uncertainty is affected by errors of those measurements. Evaluating MUF uncertainty is essentially required to develop safeguards system including nuclear measurement system in pyroprocessing, which is being developed for reducing radioactive waste from spent fuel in Korea Atomic Energy Research Institute (KAERI). The evaluation code for analyzing MUF uncertainty has been developed and it was verified using sample problem from the IAEA reference. MUF uncertainty can be simply and quickly calculated by using this evaluation code which is made based on graphical user interface for user friendly. It is also expected that the code will make the sensitivity analysis on the MUF uncertainty for the various safeguards systems easy and more systematic. It is suitable for users who want to evaluate the conventional safeguards system as well as to develop a new system for developing facilities.

  19. Numerical unsteady aerodynamics for turbomachinery aeroelasticity; Simulation numerique en aerodynamique instationnaire pour l'aeroelasticite des turbomachines

    Energy Technology Data Exchange (ETDEWEB)

    Dugeai, A.; Sens, A.S. [Office National d' Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France); Madec, A. [Societe Nationale d' Etude et de Construction de Moteurs d' Aviation SNECMA, 77 - Villaroche (France)

    2001-07-01

    A computational tool for the prediction of aeronautical machineries aeroelastic stability is presented. Numerical features of the quasi-3D Navier-Stokes unsteady solver are discussed: turbulence models, grid deformation techniques, specific boundary conditions. Isolated profile and cascade computational results are compared to experimental data, for steady and unsteady cases. (authors)

  20. The Development of the World Anti-Doping Code.

    Science.gov (United States)

    Young, Richard

    2017-01-01

    This chapter addresses both the development and substance of the World Anti-Doping Code, which came into effect in 2003, as well as the subsequent Code amendments, which came into effect in 2009 and 2015. Through an extensive process of stakeholder input and collaboration, the World Anti-Doping Code has transformed the hodgepodge of inconsistent and competing pre-2003 anti-doping rules into a harmonized and effective approach to anti-doping. The Code, as amended, is now widely recognized worldwide as the gold standard in anti-doping. The World Anti-Doping Code originally went into effect on January 1, 2004. The first amendments to the Code went into effect on January 1, 2009, and the second amendments on January 1, 2015. The Code and the related international standards are the product of a long and collaborative process designed to make the fight against doping more effective through the adoption and implementation of worldwide harmonized rules and best practices. © 2017 S. Karger AG, Basel.

  1. Development of probabilistic fracture mechanics code PASCAL and user's manual

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Katsuyuki; Onizawa, Kunio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Li, Yinsheng; Kato, Daisuke [Fuji Research Institute Corporation, Tokyo (Japan)

    2001-03-01

    As a part of the aging and structural integrity research for LWR components, a new PFM (Probabilistic Fracture Mechanics) code PASCAL (PFM Analysis of Structural Components in Aging LWR) has been developed since FY1996. This code evaluates the failure probability of an aged reactor pressure vessel subjected to transient loading such as PTS (Pressurized Thermal Shock). The development of the code has been aimed to improve the accuracy and reliability of analysis by introducing new analysis methodologies and algorithms considering the recent development in the fracture mechanics methodologies and computer performance. The code has some new functions in optimized sampling and cell dividing procedure in stratified Monte Carlo simulation, elastic-plastic fracture criterion of R6 method, extension analysis models in semi-elliptical crack, evaluation of effect of thermal annealing and etc. In addition, an input data generator of temperature and stress distribution time histories was also prepared in the code. Functions and performance of the code have been confirmed based on the verification analyses and some case studies on the influence parameters. The present phase of the development will be completed in FY2000. Thus this report provides the user's manual and theoretical background of the code. (author)

  2. Aeroelastic Analysis of Helicopter Rotor Blades Incorporating Anisotropic Piezoelectric Twist Actuation

    Science.gov (United States)

    Wilkie, W. Keats; Belvin, W. Keith; Park, K. C.

    1996-01-01

    A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consists of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for dynamics simulation using numerical integration. The twist actuation responses for three conceptual fullscale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.

  3. Flight Test of the F/A-18 Active Aeroelastic Wing Airplane

    Science.gov (United States)

    Voracek, David

    2007-01-01

    A viewgraph presentation of flight tests performed on the F/A active aeroelastic wing airplane is shown. The topics include: 1) F/A-18 AAW Airplane; 2) F/A-18 AAW Control Surfaces; 3) Flight Test Background; 4) Roll Control Effectiveness Regions; 5) AAW Design Test Points; 6) AAW Phase I Test Maneuvers; 7) OBES Pitch Doublets; 8) OBES Roll Doublets; 9) AAW Aileron Flexibility; 10) Phase I - Lessons Learned; 11) Control Law Development and Verification & Validation Testing; 12) AAW Phase II RFCS Envelopes; 13) AAW 1-g Phase II Flight Test; 14) Region I - Subsonic 1-g Rolls; 15) Region I - Subsonic 1-g 360 Roll; 16) Region II - Supersonic 1-g Rolls; 17) Region II - Supersonic 1-g 360 Roll; 18) Region III - Subsonic 1-g Rolls; 19) Roll Axis HOS/LOS Comparison Region II - Supersonic (open-loop); 20) Roll Axis HOS/LOS Comparison Region II - Supersonic (closed-loop); 21) AAW Phase II Elevated-g Flight Test; 22) Region I - Subsonic 4-g RPO; and 23) Phase II - Lessons Learned

  4. SWAAM code development, verification and application to steam generator design

    International Nuclear Information System (INIS)

    Shin, Y.W.; Valentin, R.A.

    1990-01-01

    This paper describes the family of SWAAM codes developed by Argonne National Laboratory to analyze the effects of sodium/water reactions on LMR steam generators. The SWAAM codes were developed as design tools for analyzing various phenomena related to steam generator leaks and to predict the resulting thermal and hydraulic effects on the steam generator and the intermediate heat transport system (IHTS). The theoretical foundations and numerical treatments on which the codes are based are discussed, followed by a description of code capabilities and limitations, verification of the codes by comparison with experiment, and applications to steam generator and IHTS design. (author). 25 refs, 14 figs

  5. Development of the versatile reactor analysis code system, MARBLE2

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Jin, Tomoyuki; Hazama, Taira; Hirai, Yasushi

    2015-07-01

    The second version of the versatile reactor analysis code system, MARBLE2, has been developed. A lot of new functions have been added in MARBLE2 by using the base technology developed in the first version (MARBLE1). Introducing the remaining functions of the conventional code system (JOINT-FR and SAGEP-FR), MARBLE2 enables one to execute almost all analysis functions of the conventional code system with the unified user interfaces of its subsystem, SCHEME. In particular, the sensitivity analysis functionality is available in MARBLE2. On the other hand, new built-in solvers have been developed, and existing ones have been upgraded. Furthermore, some other analysis codes and libraries developed in JAEA have been consolidated and prepared in SCHEME. In addition, several analysis codes developed in the other institutes have been additionally introduced as plug-in solvers. Consequently, gamma-ray transport calculation and heating evaluation become available. As for another subsystem, ORPHEUS, various functionality updates and speed-up techniques have been applied based on user experience of MARBLE1 to enhance its usability. (author)

  6. Development of TIME2 code

    International Nuclear Information System (INIS)

    1986-02-01

    The paper reviews the progress on the development of a computer model TIME2, for modelling the long term evolution of shallow burial site environments for low- and intermediate-level radioactive waste disposal. The subject is discussed under the five topic headings: 1) background studies, including geomorphology, climate, human-induced effects, and seismicity, 2) development of the TIME2 code, 3) verification and testing, 4) documentation, and, 5) role of TIME2 in radiological risk assessment. (U.K.)

  7. Theoretical atomic physics code development III TAPS: A display code for atomic physics data

    International Nuclear Information System (INIS)

    Clark, R.E.H.; Abdallah, J. Jr.; Kramer, S.P.

    1988-12-01

    A large amount of theoretical atomic physics data is becoming available through use of the computer codes CATS and ACE developed at Los Alamos National Laboratory. A new code, TAPS, has been written to access this data, perform averages over terms and configurations, and display information in graphical or text form. 7 refs., 13 figs., 1 tab

  8. Research in aeroelasticity EFP-2007

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C.

    2008-07-15

    This report contains results from the EFP2007 project 'Program for Research in Applied Aeroelasticity'. The main results from this project are: 1) The rotor aerodynamics were computed using different types of models with focus on the flow around the tip. The results showed similar trend for all models. 2) Comparison of 3D CFD computations with and without inflow shear showed that the integrated rotor thrust and power were largely identical in the two situations. 3) The influence of tower shadow with and without inflow shear showed significant differences compared to BEMcomputations, which gives cause for further investigation. 4) 3D CFD computations showed that the flow in the region of the nacelle anemometer measured the flow angle in the wake with errors up to as much as 7 deg. relative to the freestream flow angle. 5) As long as the flow over a blade remains attached there is little difference between 2-D and 3-D flow. However, at separation an increased lift is observed close to the rotational axis. 6) A correlation based transition model has been implemented in the incompressible EllipSys2D/3D Navier-Stokes solver. Computations on airfoils and rotors showed good agreement and distinct improvement in the drag predictions compared to using fully turbulent computations. 7) Comparing the method of Dynamic Wake Meandering (DWM) and IEC, the IECmodel seems conservative regarding fatigue and extreme loads for the yaw, driving torque and flapwise bending, whereas the loads on tower and blade torsion are non-conservative. 8) An experimental method for measuring transition point and energy spectra in airfoil boundary layers using microphones has been developed. 9) A robust and automatic method for detecting transition based on microphone measurement on airfoil surfaces has been developed. 10) Transition points and the corresponding instabilities have clearly been observed in airfoil boundary layers. 11) Predictions of the transition points on airfoils using

  9. Development of LWR fuel performance code FEMAXI-6

    International Nuclear Information System (INIS)

    Suzuki, Motoe

    2006-01-01

    LWR fuel performance code: FEMAXI-6 (Finite Element Method in AXIs-symmetric system) is a representative fuel analysis code in Japan. Development history, background, design idea, features of model, and future are stated. Characteristic performance of LWR fuel and analysis code, what is model, development history of FEMAXI, use of FEMAXI code, fuel model, and a special feature of FEMAXI model is described. As examples of analysis, PCMI (Pellet-Clad Mechanical Interaction), fission gas release, gap bonding, and fission gas bubble swelling are reported. Thermal analysis and dynamic analysis system of FEMAXI-6, function block at one time step of FEMAXI-6, analytical example of PCMI in the output increase test by FEMAXI-III, analysis of fission gas release in Halden reactor by FEMAXI-V, comparison of the center temperature of fuel in Halden reactor, and analysis of change of diameter of fuel rod in high burn up BWR fuel are shown. (S.Y.)

  10. Code development for nuclear reactor simulation

    International Nuclear Information System (INIS)

    Chauliac, C.; Verwaerde, D.; Pavageau, O.

    2006-01-01

    Full text of publication follows: Since several years, CEA, EDF and FANP have developed several numerical codes which are currently used for nuclear industry applications and will be remain in use for the coming years. Complementary to this set of codes and in order to better meet the present and future needs, a new system is being developed through a joint venture between CEA, EDF and FANP, with a ten year prospect and strong intermediate milestones. The focus is put on a multi-scale and multi-physics approach enabling to take into account phenomena from microscopic to macroscopic scale, and to describe interactions between various physical fields such as neutronics (DESCARTES), thermal-hydraulics (NEPTUNE) and fuel behaviour (PLEIADES). This approach is based on a more rational design of the softwares and uses a common integration platform providing pre-processing, supervision of computation and post-processing. This paper will describe the overall system under development and present the first results obtained. (authors)

  11. Foundational development of an advanced nuclear reactor integrated safety code

    International Nuclear Information System (INIS)

    Clarno, Kevin; Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth; Hooper, Russell Warren; Humphries, Larry LaRon

    2010-01-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  12. Foundational development of an advanced nuclear reactor integrated safety code.

    Energy Technology Data Exchange (ETDEWEB)

    Clarno, Kevin (Oak Ridge National Laboratory, Oak Ridge, TN); Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth (Ktech Corporation, Albuquerque, NM); Hooper, Russell Warren; Humphries, Larry LaRon

    2010-02-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  13. Aeroelastic simulation of multi-MW wind turbines using a free vortex model coupled to a geometrically exact beam model

    International Nuclear Information System (INIS)

    Saverin, Joseph; Peukert, Juliane; Marten, David; Pechlivanoglou, George; Paschereit, Christian Oliver; Greenblatt, David

    2016-01-01

    The current paper investigates the aeroelastic modelling of large, flexible multi- MW wind turbine blades. Most current performance prediction tools make use of the Blade Element Momentum (BEM) model, based upon a number of simplifying assumptions that hold only under steady conditions. This is why a lifting line free vortex wake (LLFVW) algorithm is used here to accurately resolve unsteady wind turbine aerodynamics. A coupling to the structural analysis tool BeamDyn, based on geometrically exact beam theory, allows for time-resolved aeroelastic simulations with highly deflected blades including bend-twist, coupling. Predictions of blade loading and deformation for rigid and flexible blades are analysed with reference to different aerodynamic and structural approaches. The emergency shutdown procedure is chosen as an examplary design load case causing large deflections to place emphasis on the influence of structural coupling and demonstrate the necessity of high fidelity structural models. (paper)

  14. FDA Developments: Food Code 2013 and Proposed Trans Fat Determination

    NARCIS (Netherlands)

    Grossman, M.R.

    2014-01-01

    268 Reports EFFL 4|2014 USA FDA Developments: Food Code 2013 and Proposed Trans Fat Determination Margaret Rosso Grossman* I. Food Code 2013 and Food Code Reference System Since 1993, the US Food and Drug Administration has published a Food Code, now updated every four years. In November 2013, the

  15. Control System on a Wind Turbine: Evaluation of Control Strategies for a Wind Turbine with Hydraulic Drive Train by Means of Aeroelastic Analysis

    OpenAIRE

    Frøyd, Lars

    2009-01-01

    The evolution of wind turbines are going towards floating offshore structures. To improve the stability of these turbines, the weight of the nacelle should be as low as possible. The company ChapDrive has developed a hydraulic drive train that gives the ability to move the generator to the base of the tower and to replace the traditional gearbox. To test the system, ChapDrive has constructed a prototype turbine which is located at Valsneset.This thesis describes the combined aero-elastic and...

  16. Development of a Fully-Automated Monte Carlo Burnup Code Monteburns

    International Nuclear Information System (INIS)

    Poston, D.I.; Trellue, H.R.

    1999-01-01

    Several computer codes have been developed to perform nuclear burnup calculations over the past few decades. In addition, because of advances in computer technology, it recently has become more desirable to use Monte Carlo techniques for such problems. Monte Carlo techniques generally offer two distinct advantages over discrete ordinate methods: (1) the use of continuous energy cross sections and (2) the ability to model detailed, complex, three-dimensional (3-D) geometries. These advantages allow more accurate burnup results to be obtained, provided that the user possesses the required computing power (which is required for discrete ordinate methods as well). Several linkage codes have been written that combine a Monte Carlo N-particle transport code (such as MCNP TM ) with a radioactive decay and burnup code. This paper describes one such code that was written at Los Alamos National Laboratory: monteburns. Monteburns links MCNP with the isotope generation and depletion code ORIGEN2. The basis for the development of monteburns was the need for a fully automated code that could perform accurate burnup (and other) calculations for any 3-D system (accelerator-driven or a full reactor core). Before the initial development of monteburns, a list of desired attributes was made and is given below. o The code should be fully automated (that is, after the input is set up, no further user interaction is required). . The code should allow for the irradiation of several materials concurrently (each material is evaluated collectively in MCNP and burned separately in 0RIGEN2). o The code should allow the transfer of materials (shuffling) between regions in MCNP. . The code should allow any materials to be added or removed before, during, or after each step in an automated fashion. . The code should not require the user to provide input for 0RIGEN2 and should have minimal MCNP input file requirements (other than a working MCNP deck). . The code should be relatively easy to use

  17. Development and verification of a coupled code system RETRAN-MASTER-TORC

    International Nuclear Information System (INIS)

    Cho, J.Y.; Song, J.S.; Joo, H.G.; Zee, S.Q.

    2004-01-01

    Recently, coupled thermal-hydraulics (T-H) and three-dimensional kinetics codes have been widely used for the best-estimate simulations such as the main steam line break (MSLB) and locked rotor problems. This work is to develop and verify one of such codes by coupling the system T-H code RETRAN, the 3-D kinetics code MASTER and sub-channel analysis code TORC. The MASTER code has already been applied to such simulations after coupling with the MARS or RETRAN-3D multi-dimensional system T-H codes. The MASTER code contains a sub-channel analysis code COBRA-III C/P, and the coupled systems MARSMASTER-COBRA and RETRAN-MASTER-COBRA had been already developed and verified. With these previous studies, a new coupled system of RETRAN-MASTER-TORC is to be developed and verified for the standard best-estimate simulation code package in Korea. The TORC code has already been applied to the thermal hydraulics design of the several ABB/CE type plants and Korean Standard Nuclear Power Plants (KSNP). This justifies the choice of TORC rather than COBRA. Because the coupling between RETRAN and MASTER codes are already established and verified, this work is simplified to couple the TORC sub-channel T-H code with the MASTER neutronics code. The TORC code is a standalone code that solves the T-H equations for a given core problem from reading the input file and finally printing the converged solutions. However, in the coupled system, because TORC receives the pin power distributions from the neutronics code MASTER and transfers the T-H results to MASTER iteratively, TORC needs to be controlled by the MASTER code and does not need to solve the given problem completely at each iteration step. By this reason, the coupling of the TORC code with the MASTER code requires several modifications in the I/O treatment, flow iteration and calculation logics. The next section of this paper describes the modifications in the TORC code. The TORC control logic of the MASTER code is then followed. The

  18. Development and Verification of Behavior of Tritium Analytic Code (BOTANIC)

    International Nuclear Information System (INIS)

    Park, Min Young; Kim, Eung Soo

    2014-01-01

    VHTR, one of the Generation IV reactor concepts, has a relatively high operation temperature and is usually suggested as a heat source for many industrial processes, including hydrogen production process. Thus, it is vital to trace tritium behavior in the VHTR system and the potential permeation rate to the industrial process. In other words, tritium is a crucial issue in terms of safety in the fission reactor system. Therefore, it is necessary to understand the behavior of tritium and the development of the tool to enable this is vital.. In this study, a Behavior of Tritium Analytic Code (BOTANIC) an analytic tool which is capable of analyzing tritium behavior is developed using a chemical process code called gPROMS. BOTANIC was then further verified using the analytic solutions and benchmark codes such as Tritium Permeation Analysis Code (TPAC) and COMSOL. In this study, the Behavior of Tritium Analytic Code, BOTANIC, has been developed using a chemical process code called gPROMS. The code has several distinctive features including non-diluted assumption, flexible applications and adoption of distributed permeation model. Due to these features, BOTANIC has the capability to analyze a wide range of tritium level systems and has a higher accuracy as it has the capacity to solve distributed models. BOTANIC was successfully developed and verified using analytical solution and the benchmark code calculation result. The results showed very good agreement with the analytical solutions and the calculation results of TPAC and COMSOL. Future work will be focused on the total system verification

  19. Reactor Systems Technology Division code development and configuration/quality control procedures

    International Nuclear Information System (INIS)

    Johnson, E.C.

    1985-06-01

    Procedures are prescribed for executing a code development task and implementing the resulting coding in an official version of a computer code. The responsibilities of the project manager, development staff members, and the Code Configuration/Quality Control Group are defined. Examples of forms, logs, computer job control language, and suggested outlines for reports associated with software production and implementation are included in Appendix A. 1 raf., 2 figs

  20. Effect of steady deflections on the aeroelastic stability of a turbine blade

    DEFF Research Database (Denmark)

    Kallesøe, Bjarne Skovmose

    2011-01-01

    This paper deals with effects of geometric non-linearities on the aeroelastic stability of a steady-state defl ected blade. Today, wind turbine blades are long and slender structures that can have a considerable steady-state defl ection which affects the dynamic behaviour of the blade. The fl...... apwise blade defl ection causes the edgewise blade motion to couple to torsional blade motion and thereby to the aerodynamics through the angle of attack. The analysis shows that in the worst case for this particular blade, the edgewise damping can be decreased by half. Copyright © 2010 John Wiley & Sons......, Ltd....

  1. Theoretical Atomic Physics code development IV: LINES, A code for computing atomic line spectra

    International Nuclear Information System (INIS)

    Abdallah, J. Jr.; Clark, R.E.H.

    1988-12-01

    A new computer program, LINES, has been developed for simulating atomic line emission and absorption spectra using the accurate fine structure energy levels and transition strengths calculated by the (CATS) Cowan Atomic Structure code. Population distributions for the ion stages are obtained in LINES by using the Local Thermodynamic Equilibrium (LTE) model. LINES is also useful for displaying the pertinent atomic data generated by CATS. This report describes the use of LINES. Both CATS and LINES are part of the Theoretical Atomic PhysicS (TAPS) code development effort at Los Alamos. 11 refs., 9 figs., 1 tab

  2. Low frequency noise from wind turbines mechanisms of generation and its modelling

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge

    2010-01-01

    competitive designs compared with the upwind threebladed rotor. The simulation package comprises an aeroelastic time simulation code HAWC2 and an acoustic low frequency noise (LFN) prediction model. Computed time traces of rotor thrust and rotor torque from the aeroelastic model are input to the acoustic...

  3. On transform coding tools under development for VP10

    Science.gov (United States)

    Parker, Sarah; Chen, Yue; Han, Jingning; Liu, Zoe; Mukherjee, Debargha; Su, Hui; Wang, Yongzhe; Bankoski, Jim; Li, Shunyao

    2016-09-01

    Google started the WebM Project in 2010 to develop open source, royaltyfree video codecs designed specifically for media on the Web. The second generation codec released by the WebM project, VP9, is currently served by YouTube, and enjoys billions of views per day. Realizing the need for even greater compression efficiency to cope with the growing demand for video on the web, the WebM team embarked on an ambitious project to develop a next edition codec, VP10, that achieves at least a generational improvement in coding efficiency over VP9. Starting from VP9, a set of new experimental coding tools have already been added to VP10 to achieve decent coding gains. Subsequently, Google joined a consortium of major tech companies called the Alliance for Open Media to jointly develop a new codec AV1. As a result, the VP10 effort is largely expected to merge with AV1. In this paper, we focus primarily on new tools in VP10 that improve coding of the prediction residue using transform coding techniques. Specifically, we describe tools that increase the flexibility of available transforms, allowing the codec to handle a more diverse range or residue structures. Results are presented on a standard test set.

  4. SWAAM-code development and verification and application to steam generator designs

    International Nuclear Information System (INIS)

    Shin, Y.W.; Valentin, R.A.

    1990-01-01

    This paper describes the family of SWAAM codes which were developed by Argonne National Laboratory to analyze the effects of sodium-water reactions on LMR steam generators. The SWAAM codes were developed as design tools for analyzing various phenomena related to steam generator leaks and the resulting thermal and hydraulic effects on the steam generator and the intermediate heat transport system (IHTS). The paper discusses the theoretical foundations and numerical treatments on which the codes are based, followed by a description of code capabilities and limitations, verification of the codes and applications to steam generator and IHTS designs. 25 refs., 14 figs

  5. Qualifying codes under software quality assurance: Two examples as guidelines for codes that are existing or under development

    Energy Technology Data Exchange (ETDEWEB)

    Mangold, D.

    1993-05-01

    Software quality assurance is an area of concem for DOE, EPA, and other agencies due to the poor quality of software and its documentation they have received in the past. This report briefly summarizes the software development concepts and terminology increasingly employed by these agencies and provides a workable approach to scientific programming under the new requirements. Following this is a practical description of how to qualify a simulation code, based on a software QA plan that has been reviewed and officially accepted by DOE/OCRWM. Two codes have recently been baselined and qualified, so that they can be officially used for QA Level 1 work under the DOE/OCRWM QA requirements. One of them was baselined and qualified within one week. The first of the codes was the multi-phase multi-component flow code TOUGH version 1, an already existing code, and the other was a geochemistry transport code STATEQ that was under development The way to accomplish qualification for both types of codes is summarized in an easy-to-follow step-by step fashion to illustrate how to baseline and qualify such codes through a relatively painless procedure.

  6. Qualifying codes under software quality assurance: Two examples as guidelines for codes that are existing or under development

    International Nuclear Information System (INIS)

    Mangold, D.

    1993-05-01

    Software quality assurance is an area of concern for DOE, EPA, and other agencies due to the poor quality of software and its documentation they have received in the past. This report briefly summarizes the software development concepts and terminology increasingly employed by these agencies and provides a workable approach to scientific programming under the new requirements. Following this is a practical description of how to qualify a simulation code, based on a software QA plan that has been reviewed and officially accepted by DOE/OCRWM. Two codes have recently been baselined and qualified, so that they can be officially used for QA Level 1 work under the DOE/OCRWM QA requirements. One of them was baselined and qualified within one week. The first of the codes was the multi-phase multi-component flow code TOUGH version 1, an already existing code, and the other was a geochemistry transport code STATEQ that was under development The way to accomplish qualification for both types of codes is summarized in an easy-to-follow step-by step fashion to illustrate how to baseline and qualify such codes through a relatively painless procedure

  7. Proposed Wind Turbine Aeroelasticity Studies Using Helicopter Systems Analysis

    Science.gov (United States)

    Ladkany, Samaan G.

    1998-01-01

    Advanced systems for the analysis of rotary wing aeroelastic structures (helicopters) are being developed at NASA Ames by the Rotorcraft Aeromechanics Branch, ARA. The research has recently been extended to the study of wind turbines, used for electric power generation Wind turbines play an important role in Europe, Japan & many other countries because they are non polluting & use a renewable source of energy. European countries such as Holland, Norway & France have been the world leaders in the design & manufacture of wind turbines due to their historical experience of several centuries, in building complex wind mill structures, which were used in water pumping, grain grinding & for lumbering. Fossil fuel cost in Japan & in Europe is two to three times higher than in the USA due to very high import taxes. High fuel cost combined with substantial governmental subsidies, allow wind generated power to be competitive with the more traditional sources of power generation. In the USA, the use of wind energy has been limited mainly because power production from wind is twice as expensive as from other traditional sources. Studies conducted at the National Renewable Energy Laboratories (NREL) indicate that the main cost in the production of wind turbines is due to the materials & the labor intensive processes used in the construction of turbine structures. Thus, for the US to assume world leadership in wind power generation, new lightweight & consequently very flexible wind turbines, that could be economically mass produced, would have to be developed [4,5]. This effort, if successful, would result in great benefit to the US & the developing nations that suffer from overpopulation & a very high cost of energy.

  8. Development of fast and accurate Monte Carlo code MVP

    International Nuclear Information System (INIS)

    Mori, Takamasa

    2001-01-01

    The development work of fast and accurate Monte Carlo code MVP has started at JAERI in late 80s. From the beginning, the code was designed to utilize vector supercomputers and achieved higher computation speed by a factor of 10 or more compared with conventional codes. In 1994, the first version of MVP was released together with cross section libraries based on JENDL-3.1 and JENDL-3.2. In 1996, minor revision was made by adding several functions such as treatments of ENDF-B6 file 6 data, time dependent problem, and so on. Since 1996, several works have been carried out for the next version of MVP. The main works are (1) the development of continuous energy Monte Carlo burn-up calculation code MVP-BURN, (2) the development of a system to generate cross section libraries at arbitrary temperature, and (3) the study on error estimations and their biases in Monte Carlo eigenvalue calculations. This paper summarizes the main features of MVP, results of recent studies and future plans for MVP. (author)

  9. Development of throughflow calculation code for axial flow compressors

    International Nuclear Information System (INIS)

    Kim, Ji Hwan; Kim, Hyeun Min; No, Hee Cheon

    2005-01-01

    The power conversion systems of the current HTGRs are based on closed Brayton cycle and major concern is thermodynamic performance of the axial flow helium gas turbines. Particularly, the helium compressor has some unique design challenges compared to the air-breathing compressor such as high hub-to-tip ratios throughout the machine and a large number of stages due to the physical property of the helium and thermodynamic cycle. Therefore, it is necessary to develop a design and analysis code for helium compressor that can estimate the design point and off-design performance accurately. KAIST nuclear system laboratory has developed a compressor design and analysis code by means of throughflow calculation and several loss models. This paper presents the outline of the development of a throughflow calculation code and its verification results

  10. Developing and modifying behavioral coding schemes in pediatric psychology: a practical guide.

    Science.gov (United States)

    Chorney, Jill MacLaren; McMurtry, C Meghan; Chambers, Christine T; Bakeman, Roger

    2015-01-01

    To provide a concise and practical guide to the development, modification, and use of behavioral coding schemes for observational data in pediatric psychology. This article provides a review of relevant literature and experience in developing and refining behavioral coding schemes. A step-by-step guide to developing and/or modifying behavioral coding schemes is provided. Major steps include refining a research question, developing or refining the coding manual, piloting and refining the coding manual, and implementing the coding scheme. Major tasks within each step are discussed, and pediatric psychology examples are provided throughout. Behavioral coding can be a complex and time-intensive process, but the approach is invaluable in allowing researchers to address clinically relevant research questions in ways that would not otherwise be possible. © The Author 2014. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Aeroelastic Analysis of Olsen Wings 14.3m Blade-Blatigue Project

    DEFF Research Database (Denmark)

    Galinos, Christos

    HAWC2 model description and basic analysis of a 15 m rotor radius horizontal axis wind turbine (HAWT) based on 14.3m blade from Olsen Wings and the V27 wind turbine (WT) tower and nacelle properties. The subcomponents of the aero-elastic HAWC2 model have been created in previous projects. The aim...... of this analysis is to give an overview of the whole model properties and response through simulations. The blade structural and aerodynamic properties in HAWC2 format have been provided by Frederik Zahle and the HAWC2 model of the V27 structure by Morten H. Hansen of DTU Wind Energy Department. The current...... analysis is part of the Bladigue project ( Blatigue, 2020)....

  12. Experimental Investigation of Aeroelastic Deformation of Slender Wings at Supersonic Speeds Using a Video Model Deformation Measurement Technique

    Science.gov (United States)

    Erickson, Gary E.

    2013-01-01

    A video-based photogrammetric model deformation system was established as a dedicated optical measurement technique at supersonic speeds in the NASA Langley Research Center Unitary Plan Wind Tunnel. This system was used to measure the wing twist due to aerodynamic loads of two supersonic commercial transport airplane models with identical outer mold lines but different aeroelastic properties. One model featured wings with deflectable leading- and trailing-edge flaps and internal channels to accommodate static pressure tube instrumentation. The wings of the second model were of single-piece construction without flaps or internal channels. The testing was performed at Mach numbers from 1.6 to 2.7, unit Reynolds numbers of 1.0 million to 5.0 million, and angles of attack from -4 degrees to +10 degrees. The video model deformation system quantified the wing aeroelastic response to changes in the Mach number, Reynolds number concurrent with dynamic pressure, and angle of attack and effectively captured the differences in the wing twist characteristics between the two test articles.

  13. Developments in the Generation and Interpretation of Wire Codes (invited paper)

    International Nuclear Information System (INIS)

    Ebi, K.L.

    1999-01-01

    Three new developments in the generation and interpretation of wire codes are discussed. First, a method was developed to computer generate wire codes using data gathered from a utility database of the local distribution system and from tax assessor records. This method was used to wire code more than 250,000 residences in the greater Denver metropolitan area. There was an approximate 75% agreement with field wire coding. Other research in Denver suggests that wire codes predict some characteristics of a residence and its neighbourhood, including age, assessed value, street layout and traffic density. A third new development is the case-specular method to study the association between wire codes and childhood cancers. Recent results from applying the method to the Savitz et al and London et al studies suggest that the associations between childhood cancer and VHCC residences were strongest for residences with a backyard rather than street service drop, and for VHCC residences with LCC speculars. (author)

  14. Development of LMR basic design technology - Development of 3-D multi-group nodal kinetics code for liquid metal reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Hyun [Kyunghee University, Seoul (Korea, Republic of)

    1996-07-01

    A development project of 3-dimensional kinetics code for ALMR has three level of works. In the first level, a multi-group, nodal kinetics code for the HEX-Z geometry has been developed. A code showed very good results for the static analysis as well as for the kinetics problems. At the second level, a core thermal-hydraulic analysis code was developed for the temperature feedback calculation in ALMR transients analysis. This code is coupled with kinetics code. A sodium property table was programmed and tested to the KAERI data and thermal feedback model was developed and coupled in code. Benchmarking of T/H calculation has been performed and showed fairly good results. At the third level of research work, reactivity feedback model for structure thermal expansion is developed and added to the code. At present, basic model was studied. However, code development in now on going. Benchmarking of this model developed can not be done because of lack of data. 31 refs., 17 tabs., 38 figs. (author)

  15. Application of software to development of reactor-safety codes

    International Nuclear Information System (INIS)

    Wilburn, N.P.; Niccoli, L.G.

    1980-09-01

    Over the past two-and-a-half decades, the application of new techniques has reduced hardware cost for digital computer systems and increased computational speed by several orders of magnitude. A corresponding cost reduction in business and scientific software development has not occurred. The same situation is seen for software developed to model the thermohydraulic behavior of nuclear systems under hypothetical accident situations. For all cases this is particularly noted when costs over the total software life cycle are considered. A solution to this dilemma for reactor safety code systems has been demonstrated by applying the software engineering techniques which have been developed over the course of the last few years in the aerospace and business communities. These techniques have been applied recently with a great deal of success in four major projects at the Hanford Engineering Development Laboratory (HEDL): 1) a rewrite of a major safety code (MELT); 2) development of a new code system (CONACS) for description of the response of LMFBR containment to hypothetical accidents, and 3) development of two new modules for reactor safety analysis

  16. Development of 1D Liner Compression Code for IDL

    Science.gov (United States)

    Shimazu, Akihisa; Slough, John; Pancotti, Anthony

    2015-11-01

    A 1D liner compression code is developed to model liner implosion dynamics in the Inductively Driven Liner Experiment (IDL) where FRC plasmoid is compressed via inductively-driven metal liners. The driver circuit, magnetic field, joule heating, and liner dynamics calculations are performed at each time step in sequence to couple these effects in the code. To obtain more realistic magnetic field results for a given drive coil geometry, 2D and 3D effects are incorporated into the 1D field calculation through use of correction factor table lookup approach. Commercial low-frequency electromagnetic fields solver, ANSYS Maxwell 3D, is used to solve the magnetic field profile for static liner condition at various liner radius in order to derive correction factors for the 1D field calculation in the code. The liner dynamics results from the code is verified to be in good agreement with the results from commercial explicit dynamics solver, ANSYS Explicit Dynamics, and previous liner experiment. The developed code is used to optimize the capacitor bank and driver coil design for better energy transfer and coupling. FRC gain calculations are also performed using the liner compression data from the code for the conceptual design of the reactor sized system for fusion energy gains.

  17. Development and application of methods to characterize code uncertainty

    International Nuclear Information System (INIS)

    Wilson, G.E.; Burtt, J.D.; Case, G.S.; Einerson, J.J.; Hanson, R.G.

    1985-01-01

    The United States Nuclear Regulatory Commission sponsors both international and domestic studies to assess its safety analysis codes. The Commission staff intends to use the results of these studies to quantify the uncertainty of the codes with a statistically based analysis method. Development of the methodology is underway. The Idaho National Engineering Laboratory contributions to the early development effort, and testing of two candidate methods are the subjects of this paper

  18. The development of the code package PERMAK--3D//SC--1

    International Nuclear Information System (INIS)

    Bolobov, P. A.; Oleksuk, D. A.

    2011-01-01

    Code package PERMAK-3D//SC-1 was developed for performing pin-by-pin coupled neutronic and thermal hydraulic calculation of the core fragment of seven fuel assemblies and was designed on the basis of 3D multigroup pin-by-pin code PERMAK-3D and 3D (subchannel) thermal hydraulic code SC-1 The code package predicts axial and radial pin-by-pin power distribution and coolant parameters in stimulated region (enthalpies,, velocities,, void fractions,, boiling and DNBR margins).. The report describes some new steps in code package development. Some PERMAK-3D//SC-1 outcomes of WWER calculations are presented in the report. (Authors)

  19. Cooperation of experts' opinion, experiment and computer code development

    International Nuclear Information System (INIS)

    Wolfert, K.; Hicken, E.

    The connection between code development, code assessment and confidence in the analysis of transients will be discussed. In this manner, the major sources of errors in the codes and errors in applications of the codes will be shown. Standard problem results emphasize that, in order to have confidence in licensing statements, the codes must be physically realistic and the code user must be qualified and experienced. We will discuss why there is disagreement between the licensing authority and vendor concerning assessment of the fullfillment of safety goal requirements. The answer to the question lies in the different confidence levels of the assessment of transient analysis. It is expected that a decrease in the disagreement will result from an increased confidence level. Strong efforts will be made to increase this confidence level through improvements in the codes, experiments and related organizational strcutures. Because of the low probability for loss-of-coolant-accidents in the nuclear industry, assessment must rely on analytical techniques and experimental investigations. (orig./HP) [de

  20. Development of parallel Fokker-Planck code ALLAp

    International Nuclear Information System (INIS)

    Batishcheva, A.A.; Sigmar, D.J.; Koniges, A.E.

    1996-01-01

    We report on our ongoing development of the 3D Fokker-Planck code ALLA for a highly collisional scrape-off-layer (SOL) plasma. A SOL with strong gradients of density and temperature in the spatial dimension is modeled. Our method is based on a 3-D adaptive grid (in space, magnitude of the velocity, and cosine of the pitch angle) and a second order conservative scheme. Note that the grid size is typically 100 x 257 x 65 nodes. It was shown in our previous work that only these capabilities make it possible to benchmark a 3D code against a spatially-dependent self-similar solution of a kinetic equation with the Landau collision term. In the present work we show results of a more precise benchmarking against the exact solutions of the kinetic equation using a new parallel code ALLAp with an improved method of parallelization and a modified boundary condition at the plasma edge. We also report first results from the code parallelization using Message Passing Interface for a Massively Parallel CRI T3D platform. We evaluate the ALLAp code performance versus the number of T3D processors used and compare its efficiency against a Work/Data Sharing parallelization scheme and a workstation version

  1. Development of chemical equilibrium analysis code 'CHEEQ'

    International Nuclear Information System (INIS)

    Nagai, Shuichiro

    2006-08-01

    'CHEEQ' code which calculates the partial pressure and the mass of the system consisting of ideal gas and pure condensed phase compounds, was developed. Characteristics of 'CHEEQ' code are as follows. All the chemical equilibrium equations were described by the formation reactions from the mono-atomic gases in order to simplify the code structure and input preparation. Chemical equilibrium conditions, Σν i μ i =0 for the gaseous compounds and precipitated condensed phase compounds and Σν i μ i > 0 for the non-precipitated condensed phase compounds, were applied. Where, ν i and μ i are stoichiometric coefficient and chemical potential of component i. Virtual solid model was introduced to perform the calculation of constant partial pressure condition. 'CHEEQ' was consisted of following 3 parts, (1) analysis code, zc132. f. (2) thermodynamic data base, zmdb01 and (3) input data file, zindb. 'CHEEQ' code can calculate the system which consisted of elements (max.20), condensed phase compounds (max.100) and gaseous compounds. (max.200). Thermodynamic data base, zmdb01 contains about 1000 elements and compounds, and 200 of them were Actinide elements and their compounds. This report describes the basic equations, the outline of the solution procedure and instructions to prepare the input data and to evaluate the calculation results. (author)

  2. Development of code PRETOR for stellarator simulation

    International Nuclear Information System (INIS)

    Dies, J.; Fontanet, J.; Fontdecaba, J.M.; Castejon, F.; Alejandre, C.

    1998-01-01

    The Department de Fisica i Enginyeria Nuclear (DFEN) of the UPC has some experience in the development of the transport code PRETOR. This code has been validated with shots of DIII-D, JET and TFTR, it has also been used in the simulation of operational scenarios of ITER fast burnt termination. Recently, the association EURATOM-CIEMAT has started the operation of the TJ-II stellarator. Due to the need of validating the results given by others transport codes applied to stellarators and because all of them made some approximations, as a averaging magnitudes in each magnetic surface, it was thought suitable to adapt the PRETOR code to devices without axial symmetry, like stellarators, which is very suitable for the specific needs of the study of TJ-II. Several modifications are required in PRETOR; the main concerns to the models of: magnetic equilibrium, geometry and transport of energy and particles. In order to solve the complex magnetic equilibrium geometry the powerful numerical code VMEC has been used. This code gives the magnetic surface shape as a Fourier series in terms of the harmonics (m,n). Most of the geometric magnitudes are also obtained from the VMEC results file. The energy and particle transport models will be replaced by other phenomenological models that are better adapted to stellarator simulation. Using the proposed models, it is pretended to reproduce experimental data available from present stellarators, given especial attention to the TJ-II of the association EURATOM-CIEMAT. (Author)

  3. Multiple application coded switch development report

    International Nuclear Information System (INIS)

    Bernal, E.L.; Kestly, J.D.

    1979-03-01

    The development of the Multiple Application Coded Switch (MACS) and its related controller are documented; the functional and electrical characteristics are described; the interface requirements defined, and a troubleshooting guide provided. The system was designed for the Safe Secure Trailer System used for secure transportation of nuclear material

  4. Development of steam explosion simulation code JASMINE

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, Kiyofumi; Yamano, Norihiro; Maruyama, Yu; Kudo, Tamotsu; Sugimoto, Jun [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nagano, Katsuhiro; Araki, Kazuhiro

    1995-11-01

    A steam explosion is considered as a phenomenon which possibly threatens the integrity of the containment vessel of a nuclear power plant in a severe accident condition. A numerical calculation code JASMINE (JAeri Simulator for Multiphase INteraction and Explosion) purposed to simulate the whole process of steam explosions has been developed. The premixing model is based on a multiphase flow simulation code MISTRAL by Fuji Research Institute Co. In JASMINE code, the constitutive equations and the flow regime map are modified for the simulation of premixing related phenomena. The numerical solution method of the original code is succeeded, i.e. the basic equations are discretized semi-implicitly, BCGSTAB method is used for the matrix solver to improve the stability and convergence, also TVD scheme is applied to capture a steep phase distribution accurately. Test calculations have been performed for the conditions correspond to the experiments by Gilbertson et al. and Angelini et al. in which mixing of solid particles and water were observed in iso-thermal condition and with boiling, respectively. (author).

  5. Development of steam explosion simulation code JASMINE

    International Nuclear Information System (INIS)

    Moriyama, Kiyofumi; Yamano, Norihiro; Maruyama, Yu; Kudo, Tamotsu; Sugimoto, Jun; Nagano, Katsuhiro; Araki, Kazuhiro.

    1995-11-01

    A steam explosion is considered as a phenomenon which possibly threatens the integrity of the containment vessel of a nuclear power plant in a severe accident condition. A numerical calculation code JASMINE (JAeri Simulator for Multiphase INteraction and Explosion) purposed to simulate the whole process of steam explosions has been developed. The premixing model is based on a multiphase flow simulation code MISTRAL by Fuji Research Institute Co. In JASMINE code, the constitutive equations and the flow regime map are modified for the simulation of premixing related phenomena. The numerical solution method of the original code is succeeded, i.e. the basic equations are discretized semi-implicitly, BCGSTAB method is used for the matrix solver to improve the stability and convergence, also TVD scheme is applied to capture a steep phase distribution accurately. Test calculations have been performed for the conditions correspond to the experiments by Gilbertson et al. and Angelini et al. in which mixing of solid particles and water were observed in iso-thermal condition and with boiling, respectively. (author)

  6. Present status of transport code development based on Monte Carlo method

    International Nuclear Information System (INIS)

    Nakagawa, Masayuki

    1985-01-01

    The present status of development in Monte Carlo code is briefly reviewed. The main items are the followings; Application fields, Methods used in Monte Carlo code (geometry spectification, nuclear data, estimator and variance reduction technique) and unfinished works, Typical Monte Carlo codes and Merits of continuous energy Monte Carlo code. (author)

  7. Python-Assisted MODFLOW Application and Code Development

    Science.gov (United States)

    Langevin, C.

    2013-12-01

    The U.S. Geological Survey (USGS) has a long history of developing and maintaining free, open-source software for hydrological investigations. The MODFLOW program is one of the most popular hydrologic simulation programs released by the USGS, and it is considered to be the most widely used groundwater flow simulation code. MODFLOW was written using a modular design and a procedural FORTRAN style, which resulted in code that could be understood, modified, and enhanced by many hydrologists. The code is fast, and because it uses standard FORTRAN it can be run on most operating systems. Most MODFLOW users rely on proprietary graphical user interfaces for constructing models and viewing model results. Some recent efforts, however, have focused on construction of MODFLOW models using open-source Python scripts. Customizable Python packages, such as FloPy (https://code.google.com/p/flopy), can be used to generate input files, read simulation results, and visualize results in two and three dimensions. Automating this sequence of steps leads to models that can be reproduced directly from original data and rediscretized in space and time. Python is also being used in the development and testing of new MODFLOW functionality. New packages and numerical formulations can be quickly prototyped and tested first with Python programs before implementation in MODFLOW. This is made possible by the flexible object-oriented design capabilities available in Python, the ability to call FORTRAN code from Python, and the ease with which linear systems of equations can be solved using SciPy, for example. Once new features are added to MODFLOW, Python can then be used to automate comprehensive regression testing and ensure reliability and accuracy of new versions prior to release.

  8. Development of thermal hydraulic models for the reliable regulatory auditing code

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B. D.; Song, C. H.; Lee, Y. J.; Kwon, T. S.; Lee, S. W. [Korea Automic Energy Research Institute, Taejon (Korea, Republic of)

    2004-02-15

    The objective of this project is to develop thermal hydraulic models for use in improving the reliability of the regulatory auditing codes. The current year fall under the second step of the 3 year project, and the main researches were focused on the development of downcorner boiling model. During the current year, the bubble stream model of downcorner has been developed and installed in he auditing code. The model sensitivity analysis has been performed for APR1400 LBLOCA scenario using the modified code. The preliminary calculation has been performed for the experimental test facility using FLUENT and MARS code. The facility for air bubble experiment has been installed. The thermal hydraulic phenomena for VHTR and super critical reactor have been identified for the future application and model development.

  9. Safety, codes and standards for hydrogen installations. Metrics development and benchmarking

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Aaron P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dedrick, Daniel E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LaFleur, Angela Christine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); San Marchi, Christopher W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-04-01

    Automakers and fuel providers have made public commitments to commercialize light duty fuel cell electric vehicles and fueling infrastructure in select US regions beginning in 2014. The development, implementation, and advancement of meaningful codes and standards is critical to enable the effective deployment of clean and efficient fuel cell and hydrogen solutions in the energy technology marketplace. Metrics pertaining to the development and implementation of safety knowledge, codes, and standards are important to communicate progress and inform future R&D investments. This document describes the development and benchmarking of metrics specific to the development of hydrogen specific codes relevant for hydrogen refueling stations. These metrics will be most useful as the hydrogen fuel market transitions from pre-commercial to early-commercial phases. The target regions in California will serve as benchmarking case studies to quantify the success of past investments in research and development supporting safety codes and standards R&D.

  10. Development and validation of the ENIGMA code for MOX fuel performance modelling

    International Nuclear Information System (INIS)

    Palmer, I.; Rossiter, G.; White, R.J.

    2000-01-01

    The ENIGMA fuel performance code has been under development in the UK since the mid-1980s with contributions made by both the fuel vendor (BNFL) and the utility (British Energy). In recent years it has become the principal code for UO 2 fuel licensing for both PWR and AGR reactor systems in the UK and has also been used by BNFL in support of overseas UO 2 and MOX fuel business. A significant new programme of work has recently been initiated by BNFL to further develop the code specifically for MOX fuel application. Model development is proceeding hand in hand with a major programme of MOX fuel testing and PIE studies, with the objective of producing a fuel modelling code suitable for mechanistic analysis, as well as for licensing applications. This paper gives an overview of the model developments being undertaken and of the experimental data being used to underpin and to validate the code. The paper provides a summary of the code development programme together with specific examples of new models produced. (author)

  11. Development of the PRO-LOCA Probabilistic Fracture Mechanics Code, MERIT Final Report

    International Nuclear Information System (INIS)

    Scott, Paul; Kurth, Robert; Cox, Andrew; Olson, Rick; Rudland, Dave

    2010-12-01

    The MERIT project has been an internationally financed program with the main purpose of developing probabilistic models for piping failure of nuclear components and to include these models in a probabilistic code named PRO-LOCA. The principal objective of the project has been to develop probabilistic models for piping failure of nuclear components and to include these models in a probabilistic code. The MERIT program has produced a code named PRO-LOCA with the following features: - Crack initiation models for fatigue or stress corrosion cracking for previously unflawed material. - Subcritical crack growth models for fatigue and stress corrosion cracking for both initiated and pre-existing circumferential defects. - Models for flaw detection by inspections and leak detection. - Crack stability. The PRO-LOCA code can thus predict the leak or break frequency for the whole sequence of initiation, subcritical crack growth until wall penetration and leakage, instability of the through-wall crack (pipe rupture). The outcome of the PRO-LOCA code are a sequence of failure frequencies which represents the probability of surface crack developing, a through-wall crack developing and six different sizes of crack opening areas corresponding to different leak flow rates or LOCA categories. Note that the level of quality assurance of the PRO-LOCA code is such that the code in its current state of development is considered to be more of a research code than a regulatory tool.

  12. Development of the PRO-LOCA Probabilistic Fracture Mechanics Code, MERIT Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Paul; Kurth, Robert; Cox, Andrew; Olson, Rick (Battelle Columbus (United States)); Rudland, Dave (Nuclear Regulatory Commission (United States))

    2010-12-15

    The MERIT project has been an internationally financed program with the main purpose of developing probabilistic models for piping failure of nuclear components and to include these models in a probabilistic code named PRO-LOCA. The principal objective of the project has been to develop probabilistic models for piping failure of nuclear components and to include these models in a probabilistic code. The MERIT program has produced a code named PRO-LOCA with the following features: - Crack initiation models for fatigue or stress corrosion cracking for previously unflawed material. - Subcritical crack growth models for fatigue and stress corrosion cracking for both initiated and pre-existing circumferential defects. - Models for flaw detection by inspections and leak detection. - Crack stability. The PRO-LOCA code can thus predict the leak or break frequency for the whole sequence of initiation, subcritical crack growth until wall penetration and leakage, instability of the through-wall crack (pipe rupture). The outcome of the PRO-LOCA code are a sequence of failure frequencies which represents the probability of surface crack developing, a through-wall crack developing and six different sizes of crack opening areas corresponding to different leak flow rates or LOCA categories. Note that the level of quality assurance of the PRO-LOCA code is such that the code in its current state of development is considered to be more of a research code than a regulatory tool.

  13. Theoretical atomic physics code development I: CATS: Cowan Atomic Structure Code

    International Nuclear Information System (INIS)

    Abdallah, J. Jr.; Clark, R.E.H.; Cowan, R.D.

    1988-12-01

    An adaptation of R.D. Cowan's Atomic Structure program, CATS, has been developed as part of the Theoretical Atomic Physics (TAPS) code development effort at Los Alamos. CATS has been designed to be easy to run and to produce data files that can interface with other programs easily. The CATS produced data files currently include wave functions, energy levels, oscillator strengths, plane-wave-Born electron-ion collision strengths, photoionization cross sections, and a variety of other quantities. This paper describes the use of CATS. 10 refs

  14. Wing aeroelasticity analysis based on an integral boundary-layer method coupled with Euler solver

    Directory of Open Access Journals (Sweden)

    Ma Yanfeng

    2016-10-01

    Full Text Available An interactive boundary-layer method, which solves the unsteady flow, is developed for aeroelastic computation in the time domain. The coupled method combines the Euler solver with the integral boundary-layer solver (Euler/BL in a “semi-inverse” manner to compute flows with the inviscid and viscous interaction. Unsteady boundary conditions on moving surfaces are taken into account by utilizing the approximate small-perturbation method without moving the computational grids. The steady and unsteady flow calculations for the LANN wing are presented. The wing tip displacement of high Reynolds number aero-structural dynamics (HIRENASD Project is simulated under different angles of attack. The flutter-boundary predictions for the AGARD 445.6 wing are provided. The results of the interactive boundary-layer method are compared with those of the Euler method and experimental data. The study shows that viscous effects are significant for these cases and the further data analysis confirms the validity and practicability of the coupled method.

  15. Recent developments in the Los Alamos radiation transport code system

    International Nuclear Information System (INIS)

    Forster, R.A.; Parsons, K.

    1997-01-01

    A brief progress report on updates to the Los Alamos Radiation Transport Code System (LARTCS) for solving criticality and fixed-source problems is provided. LARTCS integrates the Diffusion Accelerated Neutral Transport (DANT) discrete ordinates codes with the Monte Carlo N-Particle (MCNP) code. The LARCTS code is being developed with a graphical user interface for problem setup and analysis. Progress in the DANT system for criticality applications include a two-dimensional module which can be linked to a mesh-generation code and a faster iteration scheme. Updates to MCNP Version 4A allow statistical checks of calculated Monte Carlo results

  16. Development of Nuclear Energy Security Code

    International Nuclear Information System (INIS)

    Shimamura, Takehisa; Suzuki, Atsuyuki; Okubo, Hiroo; Kikuchi, Masahiro.

    1990-01-01

    In establishing of the nuclear fuel cycle in Japan that have a vulnerability in own energy structure, an effectiveness of energy security should be taken into account as well as an economy based on the balance of supply and demand of nuclear fuels. NMCC develops the 'Nuclear Energy Security Code' which was able to evaluate the effectiveness of energy security. Evaluation method adopted in this code is 'Import Premium' which was proposed in 'World Oil', EMF Report 6. The viewpoints of evaluation are as follows: 1. How much uranium fuel quantity can be reduced by using plutonium fuel? 2. How much a sudden rise of fuel cost can be absorbed by establishing the plutonium cycle beforehand the energy crisis? (author)

  17. Perspectives on the development of next generation reactor systems safety analysis codes

    International Nuclear Information System (INIS)

    Zhang, H.

    2015-01-01

    'Full text:' Existing reactor system analysis codes, such as RELAP5-3D and TRAC, have gained worldwide success in supporting reactor safety analyses, as well as design and licensing of new reactors. These codes are important assets to the nuclear engineering research community, as well as to the nuclear industry. However, most of these codes were originally developed during the 1970s', and it becomes necessary to develop next-generation reactor system analysis codes for several reasons. Firstly, as new reactor designs emerge, there are new challenges emerging in numerical simulations of reactor systems such as long lasting transients and multi-physics phenomena. These new requirements are beyond the range of applicability of the existing system analysis codes. Advanced modeling and numerical methods must be taken into consideration to improve the existing capabilities. Secondly, by developing next-generation reactor system analysis codes, the knowledge (know how) in two phase flow modeling and the highly complex constitutive models will be transferred to the young generation of nuclear engineers. And thirdly, all computer codes have limited shelf life. It becomes less and less cost-effective to maintain a legacy code, due to the fast change of computer hardware and software environment. There are several critical perspectives in terms of developing next-generation reactor system analysis codes: 1) The success of the next-generation codes must be built upon the success of the existing codes. The knowledge of the existing codes, not just simply the manuals and codes, but knowing why and how, must be transferred to the next-generation codes. The next-generation codes should encompass the capability of the existing codes. The shortcomings of existing codes should be identified, understood, and properly categorized, for example into model deficiencies or numerical method deficiencies. 2) State-of-the-art models and numerical methods must be considered to

  18. Perspectives on the development of next generation reactor systems safety analysis codes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H., E-mail: Hongbin.Zhang@inl.gov [Idaho National Laboratory, Idaho Falls, ID (United States)

    2015-07-01

    'Full text:' Existing reactor system analysis codes, such as RELAP5-3D and TRAC, have gained worldwide success in supporting reactor safety analyses, as well as design and licensing of new reactors. These codes are important assets to the nuclear engineering research community, as well as to the nuclear industry. However, most of these codes were originally developed during the 1970s', and it becomes necessary to develop next-generation reactor system analysis codes for several reasons. Firstly, as new reactor designs emerge, there are new challenges emerging in numerical simulations of reactor systems such as long lasting transients and multi-physics phenomena. These new requirements are beyond the range of applicability of the existing system analysis codes. Advanced modeling and numerical methods must be taken into consideration to improve the existing capabilities. Secondly, by developing next-generation reactor system analysis codes, the knowledge (know how) in two phase flow modeling and the highly complex constitutive models will be transferred to the young generation of nuclear engineers. And thirdly, all computer codes have limited shelf life. It becomes less and less cost-effective to maintain a legacy code, due to the fast change of computer hardware and software environment. There are several critical perspectives in terms of developing next-generation reactor system analysis codes: 1) The success of the next-generation codes must be built upon the success of the existing codes. The knowledge of the existing codes, not just simply the manuals and codes, but knowing why and how, must be transferred to the next-generation codes. The next-generation codes should encompass the capability of the existing codes. The shortcomings of existing codes should be identified, understood, and properly categorized, for example into model deficiencies or numerical method deficiencies. 2) State-of-the-art models and numerical methods must be considered to

  19. Dynamic behavior of parked wind turbine at extreme wind speed

    DEFF Research Database (Denmark)

    Totsuka, Yoshitaka; Imamura, Hiroshi; Yde, Anders

    2016-01-01

    of standstill and idling is analyzed by time domain simulations using two different coupled aero-hydro-servo-elastic codes. Trend in modern wind turbines is development of bigger, lighter and more flexible rotors where vibration issues may cause aero-elastic instabilities which have a serious impact...

  20. Open-Source Development of the Petascale Reactive Flow and Transport Code PFLOTRAN

    Science.gov (United States)

    Hammond, G. E.; Andre, B.; Bisht, G.; Johnson, T.; Karra, S.; Lichtner, P. C.; Mills, R. T.

    2013-12-01

    Open-source software development has become increasingly popular in recent years. Open-source encourages collaborative and transparent software development and promotes unlimited free redistribution of source code to the public. Open-source development is good for science as it reveals implementation details that are critical to scientific reproducibility, but generally excluded from journal publications. In addition, research funds that would have been spent on licensing fees can be redirected to code development that benefits more scientists. In 2006, the developers of PFLOTRAN open-sourced their code under the U.S. Department of Energy SciDAC-II program. Since that time, the code has gained popularity among code developers and users from around the world seeking to employ PFLOTRAN to simulate thermal, hydraulic, mechanical and biogeochemical processes in the Earth's surface/subsurface environment. PFLOTRAN is a massively-parallel subsurface reactive multiphase flow and transport simulator designed from the ground up to run efficiently on computing platforms ranging from the laptop to leadership-class supercomputers, all from a single code base. The code employs domain decomposition for parallelism and is founded upon the well-established and open-source parallel PETSc and HDF5 frameworks. PFLOTRAN leverages modern Fortran (i.e. Fortran 2003-2008) in its extensible object-oriented design. The use of this progressive, yet domain-friendly programming language has greatly facilitated collaboration in the code's software development. Over the past year, PFLOTRAN's top-level data structures were refactored as Fortran classes (i.e. extendible derived types) to improve the flexibility of the code, ease the addition of new process models, and enable coupling to external simulators. For instance, PFLOTRAN has been coupled to the parallel electrical resistivity tomography code E4D to enable hydrogeophysical inversion while the same code base can be used as a third

  1. Numerical simulation of aeroelastic response of an airfoil in flow with laminar-turbulence transition

    Czech Academy of Sciences Publication Activity Database

    Sváček, P.; Horáček, Jaromír

    2015-01-01

    Roč. 267, September (2015), s. 28-41 ISSN 0096-3003 R&D Projects: GA ČR(CZ) GAP101/11/0207; GA ČR GAP101/12/1271 Institutional support: RVO:61388998 Keywords : aeroelasticity * finite element method * 2D RANS equations * sudden gust Subject RIV: BI - Acoustics Impact factor: 1.345, year: 2015 http://www.sciencedirect.com/science/article/pii/S0096300315008887/pdfft?md5=1329144b9cc04b57a05c506ae7f54b0a&pid=1-s2.0-S0096300315008887-main.pdf

  2. Control of Limit Cycle Oscillations of a Two-Dimensional Aeroelastic System

    Directory of Open Access Journals (Sweden)

    M. Ghommem

    2010-01-01

    Full Text Available Linear and nonlinear static feedback controls are implemented on a nonlinear aeroelastic system that consists of a rigid airfoil supported by nonlinear springs in the pitch and plunge directions and subjected to nonlinear aerodynamic loads. The normal form is used to investigate the Hopf bifurcation that occurs as the freestream velocity is increased and to analytically predict the amplitude and frequency of the ensuing limit cycle oscillations (LCO. It is shown that linear control can be used to delay the flutter onset and reduce the LCO amplitude. Yet, its required gains remain a function of the speed. On the other hand, nonlinear control can be effciently implemented to convert any subcritical Hopf bifurcation into a supercritical one and to significantly reduce the LCO amplitude.

  3. Development and validation of sodium fire analysis code ASSCOPS

    International Nuclear Information System (INIS)

    Ohno, Shuji

    2001-01-01

    A version 2.1 of the ASSCOPS sodium fire analysis code was developed to evaluate the thermal consequences of a sodium leak and consequent fire in LMFBRs. This report describes the computational models and the validation studies using the code. The ASSCOPS calculates sodium droplet and pool fire, and consequential heat/mass transfer behavior. Analyses of sodium pool or spray fire experiments confirmed that this code and parameters used in the validation studies gave valid results on the thermal consequences of sodium leaks and fires. (author)

  4. Development of statistical analysis code for meteorological data (W-View)

    International Nuclear Information System (INIS)

    Tachibana, Haruo; Sekita, Tsutomu; Yamaguchi, Takenori

    2003-03-01

    A computer code (W-View: Weather View) was developed to analyze the meteorological data statistically based on 'the guideline of meteorological statistics for the safety analysis of nuclear power reactor' (Nuclear Safety Commission on January 28, 1982; revised on March 29, 2001). The code gives statistical meteorological data to assess the public dose in case of normal operation and severe accident to get the license of nuclear reactor operation. This code was revised from the original code used in a large office computer code to enable a personal computer user to analyze the meteorological data simply and conveniently and to make the statistical data tables and figures of meteorology. (author)

  5. Development of REFLA/TRAC code for engineering work station

    International Nuclear Information System (INIS)

    Ohnuki, Akira; Akimoto, Hajime; Murao, Yoshio

    1994-03-01

    The REFLA/TRAC code is a best-estimate code which is expected to check reactor safety analysis codes for light water reactors (LWRs) and to perform accident analyses for LWRs and also for an advanced LWR. Therefore, a high predictive capability is required and the assessment of each physical model becomes important because the models govern the predictive capability. In the case of the assessment of three-dimensional models in REFLA/TRAC code, a conventional large computer is being used and it is difficult to perform the assessment efficiently because the turnaround time for the calculation and the analysis is long. Then, a REFLA/TRAC code which can run on an engineering work station (EWS) was developed. Calculational speed of the current EWS is the same order as that of large computers and the EWS has an excellent function for multidimensional graphical drawings. Besides, the plotting processors for X-Y drawing and for two-dimensional graphical drawing were developed in order to perform efficient analyses for three-dimensional calculations. In future, we can expect that the assessment of three-dimensional models becomes more efficient by introducing an EWS with higher calculational speed and with improved graphical drawings. In this report, each outline for the following three programs is described: (1) EWS version of REFLA/TRAC code, (2) Plot processor for X-Y drawing and (3) Plot processor for two-dimensional graphical drawing. (author)

  6. Development of particle and heavy ion transport code system

    International Nuclear Information System (INIS)

    Niita, Koji

    2004-01-01

    Particle and heavy ion transport code system (PHITS) is 3 dimension general purpose Monte Carlo simulation codes for description of transport and reaction of particle and heavy ion in materials. It is developed on the basis of NMTC/JAM for design and safety of J-PARC. What is PHITS, it's physical process, physical models and development process of PHITC code are described. For examples of application, evaluation of neutron optics, cancer treatment by heavy particle ray and cosmic radiation are stated. JAM and JQMD model are used as the physical model. Neutron motion in six polar magnetic field and gravitational field, PHITC simulation of trace of C 12 beam and secondary neutron track of small model of cancer treatment device in HIMAC and neutron flux in Space Shuttle are explained. (S.Y.)

  7. Development of CAP code for nuclear power plant containment: Lumped model

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Soon Joon, E-mail: sjhong90@fnctech.com [FNC Tech. Co. Ltd., Heungdeok 1 ro 13, Giheung-gu, Yongin-si, Gyeonggi-do 446-908 (Korea, Republic of); Choo, Yeon Joon; Hwang, Su Hyun; Lee, Byung Chul [FNC Tech. Co. Ltd., Heungdeok 1 ro 13, Giheung-gu, Yongin-si, Gyeonggi-do 446-908 (Korea, Republic of); Ha, Sang Jun [Central Research Institute, Korea Hydro & Nuclear Power Company, Ltd., 70, 1312-gil, Yuseong-daero, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)

    2015-09-15

    Highlights: • State-of-art containment analysis code, CAP, has been developed. • CAP uses 3-field equations, water level oriented upwind scheme, local head model. • CAP has a function of linked calculation with reactor coolant system code. • CAP code assessments showed appropriate prediction capabilities. - Abstract: CAP (nuclear Containment Analysis Package) code has been developed in Korean nuclear society for the analysis of nuclear containment thermal hydraulic behaviors including pressure and temperature trends and hydrogen concentration. Lumped model of CAP code uses 2-phase, 3-field equations for fluid behaviors, and has appropriate constitutive equations, 1-dimensional heat conductor model, component models, trip and control models, and special process models. CAP can run in a standalone mode or a linked mode with a reactor coolant system analysis code. The linked mode enables the more realistic calculation of a containment response and is expected to be applicable to a more complicated advanced plant design calculation. CAP code assessments were carried out by gradual approaches: conceptual problems, fundamental phenomena, component and principal phenomena, experimental validation, and finally comparison with other code calculations on the base of important phenomena identifications. The assessments showed appropriate prediction capabilities of CAP.

  8. Development of CAP code for nuclear power plant containment: Lumped model

    International Nuclear Information System (INIS)

    Hong, Soon Joon; Choo, Yeon Joon; Hwang, Su Hyun; Lee, Byung Chul; Ha, Sang Jun

    2015-01-01

    Highlights: • State-of-art containment analysis code, CAP, has been developed. • CAP uses 3-field equations, water level oriented upwind scheme, local head model. • CAP has a function of linked calculation with reactor coolant system code. • CAP code assessments showed appropriate prediction capabilities. - Abstract: CAP (nuclear Containment Analysis Package) code has been developed in Korean nuclear society for the analysis of nuclear containment thermal hydraulic behaviors including pressure and temperature trends and hydrogen concentration. Lumped model of CAP code uses 2-phase, 3-field equations for fluid behaviors, and has appropriate constitutive equations, 1-dimensional heat conductor model, component models, trip and control models, and special process models. CAP can run in a standalone mode or a linked mode with a reactor coolant system analysis code. The linked mode enables the more realistic calculation of a containment response and is expected to be applicable to a more complicated advanced plant design calculation. CAP code assessments were carried out by gradual approaches: conceptual problems, fundamental phenomena, component and principal phenomena, experimental validation, and finally comparison with other code calculations on the base of important phenomena identifications. The assessments showed appropriate prediction capabilities of CAP

  9. Development of AGNES, a kinetics code for fissile solutions, 1

    International Nuclear Information System (INIS)

    Nakajima, Ken; Ohnishi, Nobuaki

    1986-01-01

    A kinetics code for fissile solutions, AGNES (Accidentally Generated Nuclear Excursion Simulation code), has been developed. This code calculates the radiolytic gas void effect as a reactivity feedback. Physical and calculative models of the radiolytic gas void are summarized and the usage of AGNES is described. In addition, some benchmark calculations were performed and results of calculations show good agreement with those of experiments. (author)

  10. A Highly Accurate Approach for Aeroelastic System with Hysteresis Nonlinearity

    Directory of Open Access Journals (Sweden)

    C. C. Cui

    2017-01-01

    Full Text Available We propose an accurate approach, based on the precise integration method, to solve the aeroelastic system of an airfoil with a pitch hysteresis. A major procedure for achieving high precision is to design a predictor-corrector algorithm. This algorithm enables accurate determination of switching points resulting from the hysteresis. Numerical examples show that the results obtained by the presented method are in excellent agreement with exact solutions. In addition, the high accuracy can be maintained as the time step increases in a reasonable range. It is also found that the Runge-Kutta method may sometimes provide quite different and even fallacious results, though the step length is much less than that adopted in the presented method. With such high computational accuracy, the presented method could be applicable in dynamical systems with hysteresis nonlinearities.

  11. Development of System Based Code: Case Study of Life-Cycle Margin Evaluation

    International Nuclear Information System (INIS)

    Tai Asayama; Masaki Morishita; Masanori Tashimo

    2006-01-01

    For a leap of progress in structural deign of nuclear plant components, The late Professor Emeritus Yasuhide Asada proposed the System Based Code. The key concepts of the System Based Code are; (1) life-cycle margin optimization, (2) expansion of technical options as well as combinations of technical options beyond the current codes and standards, and (3) designing to clearly defined target reliabilities. Those concepts are very new to most of the nuclear power plant designers who are naturally obliged to design to current codes and standards; the application of the concepts of the System Based Code to design will lead to entire change of practices that designers have long been accustomed to. On the other hand, experienced designers are supposed to have expertise that can support and accelerate the development of the System Based Code. Therefore, interfacing with experienced designers is of crucial importance for the development of the System Based Code. The authors conducted a survey on the acceptability of the System Based Code concept. The results were analyzed from the possibility of improving structural design both in terms of reliability and cost effectiveness by the introduction of the System Based Code concept. It was concluded that the System Based Code is beneficial for those purposes. Also described is the expertise elicited from the results of the survey that can be reflected to the development of the System Based Code. (authors)

  12. Development of an advanced code system for fast-reactor transient analysis

    International Nuclear Information System (INIS)

    Konstantin Mikityuk; Sandro Pelloni; Paul Coddington

    2005-01-01

    FAST (Fast-spectrum Advanced Systems for power production and resource management) is a recently approved PSI activity in the area of fast spectrum core and safety analysis with emphasis on generic developments and Generation IV systems. In frames of the FAST project we will study both statics and transients core physics, reactor system behaviour and safety; related international experiments. The main current goal of the project is to develop unique analytical and code capability for core and safety analysis of critical (and sub-critical) fast spectrum systems with an initial emphasis on a gas cooled fast reactors. A structure of the code system is shown on Fig. 1. The main components of the FAST code system are 1) ERANOS code for preparation of basic x-sections and their partial derivatives; 2) PARCS transient nodal-method multi-group neutron diffusion code for simulation of spatial (3D) neutron kinetics in hexagonal and square geometries; 3) TRAC/AAA code for system thermal hydraulics; 4) FRED transient model for fuel thermal-mechanical behaviour; 5) PVM system as an interface between separate parts of the code system. The paper presents a structure of the code system (Fig. 1), organization of interfaces and data exchanges between main parts of the code system, examples of verification and application of separate codes and the system as a whole. (authors)

  13. An aeroelastic analysis of helicopter rotor blades incorporating piezoelectric fiber composite twist actuation

    Science.gov (United States)

    Wilkie, W. Keats; Park, K. C.

    1996-01-01

    A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consist of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for numerical integration. The twist actuation responses for three conceptual full-scale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.

  14. Development of safety analysis codes for light water reactor

    International Nuclear Information System (INIS)

    Akimoto, Masayuki

    1985-01-01

    An overview is presented of currently used major codes for the prediction of thermohydraulic transients in nuclear power plants. The overview centers on the two-phase fluid dynamics of the coolant system and the assessment of the codes. Some of two-phase phenomena such as phase separation are not still predicted with engineering accuracy. MINCS-PIPE are briefly introduced. The MINCS-PIPE code is to assess constitutive relations and to aid development of various experimental correlations for 1V1T model to 2V2T model. (author)

  15. Development of a new EMP code at LANL

    Science.gov (United States)

    Colman, J. J.; Roussel-Dupré, R. A.; Symbalisty, E. M.; Triplett, L. A.; Travis, B. J.

    2006-05-01

    A new code for modeling the generation of an electromagnetic pulse (EMP) by a nuclear explosion in the atmosphere is being developed. The source of the EMP is the Compton current produced by the prompt radiation (γ-rays, X-rays, and neutrons) of the detonation. As a first step in building a multi- dimensional EMP code we have written three kinetic codes, Plume, Swarm, and Rad. Plume models the transport of energetic electrons in air. The Plume code solves the relativistic Fokker-Planck equation over a specified energy range that can include ~ 3 keV to 50 MeV and computes the resulting electron distribution function at each cell in a two dimensional spatial grid. The energetic electrons are allowed to transport, scatter, and experience Coulombic drag. Swarm models the transport of lower energy electrons in air, spanning 0.005 eV to 30 keV. The swarm code performs a full 2-D solution to the Boltzmann equation for electrons in the presence of an applied electric field. Over this energy range the relevant processes to be tracked are elastic scattering, three body attachment, two body attachment, rotational excitation, vibrational excitation, electronic excitation, and ionization. All of these occur due to collisions between the electrons and neutral bodies in air. The Rad code solves the full radiation transfer equation in the energy range of 1 keV to 100 MeV. It includes effects of photo-absorption, Compton scattering, and pair-production. All of these codes employ a spherical coordinate system in momentum space and a cylindrical coordinate system in configuration space. The "z" axis of the momentum and configuration spaces is assumed to be parallel and we are currently also assuming complete spatial symmetry around the "z" axis. Benchmarking for each of these codes will be discussed as well as the way forward towards an integrated modern EMP code.

  16. Recent developments in seismic analysis in the code Aster

    International Nuclear Information System (INIS)

    Guihot, P.; Devesa, G.; Dumond, A.; Panet, M.; Waeckel, F.

    1996-01-01

    Progress in the field of seismic qualification and design methods made these last few years allows physical phenomena actually in play to be better considered, while cutting down the conservatism associated with some simplified design methods. So following the change in methods and developing the most advantageous ones among them contributes to the process of the seismic margins assessment and the preparation of new design tools for future series. In this paper, the main developments and improvements in methods which have been made these last two years in the Code Aster, in order to improve seismic calculation methods and seismic margin assessment are presented. The first development relates to making the MISS3D soil structure interaction code available, thanks to an interface made with the Code Aster. The second relates to the possibility of making modal basis time calculations on multi-supported structures by considering local non linearities like impact, friction or squeeze fluid forces. Recent developments in random dynamics and postprocessing devoted to earthquake designs are then mentioned. Three applications of these developments are then ut forward. The first application relates to a test case for soil structure interaction design using MISS3D-Aster coupling. The second is a test case for a multi-supported structure. The last application, more for manufacturing, refers to seismic qualification of Main Live Steam stop valves. First results of the independent validation of the Code Aster seismic design functionalities, which provide and improve the quality of software, are also recalled. (authors)

  17. Development of probabilistic fracture mechanics code PASCAL and user's manual

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Katsuyuki; Onizawa, Kunio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Li, Yinsheng; Kato, Daisuke [Fuji Research Institute Corporation, Tokyo (Japan)

    2001-03-01

    As a part of the aging and structural integrity research for LWR components, a new PFM (Probabilistic Fracture Mechanics) code PASCAL (PFM Analysis of Structural Components in Aging LWR) has been developed since FY1996. This code evaluates the failure probability of an aged reactor pressure vessel subjected to transient loading such as PTS (Pressurized Thermal Shock). The development of the code has been aimed to improve the accuracy and reliability of analysis by introducing new analysis methodologies and algorithms considering the recent development in the fracture mechanics methodologies and computer performance. The code has some new functions in optimized sampling and cell dividing procedure in stratified Monte Carlo simulation, elastic-plastic fracture criterion of R6 method, extension analysis models in semi-elliptical crack, evaluation of effect of thermal annealing and etc. In addition, an input data generator of temperature and stress distribution time histories was also prepared in the code. Functions and performance of the code have been confirmed based on the verification analyses and some case studies on the influence parameters. The present phase of the development will be completed in FY2000. Thus this report provides the user's manual and theoretical background of the code. (author)

  18. Development and assessment of the COBRA/RELAP5 code

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Jun; Ha, Kwi Seok; Sim, Seok Ku

    1997-04-01

    The COBRA/RELAP5 code, a merged version of the COBRA-TF and RELAP5/MOD3.2 codes, has been developed to combine the realistic three-dimensional reactor vessel model of COBRA-TF with RELAP5/MOD3, thus to produce an advanced system analysis code with a multidimensional thermal-hydraulic module. This report provides the integration scheme of the two codes and the results of developmental assessments. These includes single channel tests, manometric flow oscillation problem, THTF Test 105, and LOFT L2-3 large-break loss-of-coolant experiment. From the single channel tests the integration scheme and its implementation were proven to be valid. Other simulation results showed good agreement with the experiments. The computational speed was also satisfactory. So it is confirmed that COBRA/RELAP5 can be a promising tool for analysis of complicated, multidimensional two-phase flow transients. The area of further improvements in the code integration are also identified. This report also serves as a user`s manual for the COBRA/RELAP5 code. (author). 6 tabs., 20 figs., 20 refs.

  19. Development of statistical analysis code for meteorological data (W-View)

    Energy Technology Data Exchange (ETDEWEB)

    Tachibana, Haruo; Sekita, Tsutomu; Yamaguchi, Takenori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    A computer code (W-View: Weather View) was developed to analyze the meteorological data statistically based on 'the guideline of meteorological statistics for the safety analysis of nuclear power reactor' (Nuclear Safety Commission on January 28, 1982; revised on March 29, 2001). The code gives statistical meteorological data to assess the public dose in case of normal operation and severe accident to get the license of nuclear reactor operation. This code was revised from the original code used in a large office computer code to enable a personal computer user to analyze the meteorological data simply and conveniently and to make the statistical data tables and figures of meteorology. (author)

  20. Development of Monte Carlo-based pebble bed reactor fuel management code

    International Nuclear Information System (INIS)

    Setiadipura, Topan; Obara, Toru

    2014-01-01

    Highlights: • A new Monte Carlo-based fuel management code for OTTO cycle pebble bed reactor was developed. • The double-heterogeneity was modeled using statistical method in MVP-BURN code. • The code can perform analysis of equilibrium and non-equilibrium phase. • Code-to-code comparisons for Once-Through-Then-Out case were investigated. • Ability of the code to accommodate the void cavity was confirmed. - Abstract: A fuel management code for pebble bed reactors (PBRs) based on the Monte Carlo method has been developed in this study. The code, named Monte Carlo burnup analysis code for PBR (MCPBR), enables a simulation of the Once-Through-Then-Out (OTTO) cycle of a PBR from the running-in phase to the equilibrium condition. In MCPBR, a burnup calculation based on a continuous-energy Monte Carlo code, MVP-BURN, is coupled with an additional utility code to be able to simulate the OTTO cycle of PBR. MCPBR has several advantages in modeling PBRs, namely its Monte Carlo neutron transport modeling, its capability of explicitly modeling the double heterogeneity of the PBR core, and its ability to model different axial fuel speeds in the PBR core. Analysis at the equilibrium condition of the simplified PBR was used as the validation test of MCPBR. The calculation results of the code were compared with the results of diffusion-based fuel management PBR codes, namely the VSOP and PEBBED codes. Using JENDL-4.0 nuclide library, MCPBR gave a 4.15% and 3.32% lower k eff value compared to VSOP and PEBBED, respectively. While using JENDL-3.3, MCPBR gave a 2.22% and 3.11% higher k eff value compared to VSOP and PEBBED, respectively. The ability of MCPBR to analyze neutron transport in the top void of the PBR core and its effects was also confirmed

  1. Windows user-friendly code package development for operation of research reactors

    International Nuclear Information System (INIS)

    Hoang Anh Tuan

    1998-01-01

    The content of the project was to developed: 1. MS Windows interface to spectral codes like THERMOS, PEACO-COLLIS, GRACE and burn-up code. 2. MS Windows C-language burn-up diffusion hexagonal lattice code. The overall scope of the project was to develop a PC-based MS Windows code package for operation of Dalat research reactor. Various problems relating to neutronic physics like thermalization, resonance treatment, fast spectral treatment, change of isotopic concentration during burn-up time as well as burn-up distribution in the reactor core are considered in parallel to application of informatics technique. The developing process is a subject of the concept of user-friendly interface between end-users and the code package. High level input features through system of icon, menu, dialog box with regard to Common User Access (CUA) convention and sophisticated graphical output in MS Windows environment was used. The user-computer interface is also enhanced by using both keyboard and mouse, which creates a very natural manner for end-user. (author)

  2. A restructuring proposal based on MELCOR for severe accident analysis code development

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Hee; Song, Y. M.; Kim, D. H. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    In order to develop a template based on existing MELCOR code, current data saving and transferring methods used in MELCOR are addressed first. Then a naming convention for the constructed module is suggested and an automatic program to convert old variables into new derived type variables has been developed. Finally, a restructured module for the SPR package has been developed to be applied to MELCOR. The current MELCOR code ensures a fixed-size storage for four different data types, and manages the variable-sized data within the storage limit by storing the data on the stacked packages. It uses pointer to identify the variables between the packages. This technique causes a difficult grasping of the meaning of the variables as well as memory waste. New features of FORTRAN90, however, make it possible to allocate the storage dynamically, and to use the user-defined data type which lead to a restructured module development for the SPR package. An efficient memory treatment and as easy understanding of the code are allowed in this developed module. The validation of the template has been done by comparing the results of the modified code with those from the existing code, and it is confirmed that the results are the same. The template for the SPR package suggested in this report hints the extension of the template to the entire code. It is expected that the template will accelerate the code domestication thanks to direct understanding of each variable and easy implementation of modified or newly developed models. 3 refs., 15 figs., 16 tabs. (Author)

  3. Development and Application of Subchannel Analysis Code Technology for Advanced Reactor Systems

    International Nuclear Information System (INIS)

    Hwang, Dae Hyun; Seo, K. W.

    2006-01-01

    A study has been performed for the development and assessment of a subchannel analysis code which is purposed to be used for the analysis of advanced reactor conditions with various configurations of reactor core and several kinds of reactor coolant fluids. The subchannel analysis code was developed on the basis of MATRA code which is being developed at KAERI. A GUI (Graphic User Interface) system was adopted in order to reduce input error and to enhance user convenience. The subchannel code was complemented in the property calculation modules by including various fluids such as heavy liquid metal, gas, refrigerant,and supercritical water. The subchannel code was applied to calculate the local thermal hydraulic conditions inside the non-square test bundles which was employed for the analysis of CHF. The applicability of the subchannel code was evaluated for a high temperature gas cooled reactor condition and supercritical pressure conditions with water and Freon. A subchannel analysis has been conducted for European ADS(Accelerator-Driven subcritical System) with Pb-Bi coolant through the international cooperation work between KAERI and FZK, Germany. In addition, the prediction capability of the subchannel code was evaluated for the subchannel void distribution data by participating an international code benchmark program which was organized by OECD/NRC

  4. Development and Application of Subchannel Analysis Code Technology for Advanced Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dae Hyun; Seo, K. W

    2006-01-15

    A study has been performed for the development and assessment of a subchannel analysis code which is purposed to be used for the analysis of advanced reactor conditions with various configurations of reactor core and several kinds of reactor coolant fluids. The subchannel analysis code was developed on the basis of MATRA code which is being developed at KAERI. A GUI (Graphic User Interface) system was adopted in order to reduce input error and to enhance user convenience. The subchannel code was complemented in the property calculation modules by including various fluids such as heavy liquid metal, gas, refrigerant,and supercritical water. The subchannel code was applied to calculate the local thermal hydraulic conditions inside the non-square test bundles which was employed for the analysis of CHF. The applicability of the subchannel code was evaluated for a high temperature gas cooled reactor condition and supercritical pressure conditions with water and Freon. A subchannel analysis has been conducted for European ADS(Accelerator-Driven subcritical System) with Pb-Bi coolant through the international cooperation work between KAERI and FZK, Germany. In addition, the prediction capability of the subchannel code was evaluated for the subchannel void distribution data by participating an international code benchmark program which was organized by OECD/NRC.

  5. Sub-channel/system coupled code development and its application to SCWR-FQT loop

    International Nuclear Information System (INIS)

    Liu, X.J.; Cheng, X.

    2015-01-01

    Highlights: • A coupled code is developed for SCWR accident simulation. • The feasibility of the code is shown by application to SCWR-FQT loop. • Some measures are selected by sensitivity analysis. • The peak cladding temperature can be reduced effectively by the proposed measures. - Abstract: In the frame of Super-Critical Reactor In Pipe Test Preparation (SCRIPT) project in China, one of the challenge tasks is to predict the transient performance of SuperCritical Water Reactor-Fuel Qualification Test (SCWR-FQT) loop under some accident conditions. Several thermal–hydraulic codes (system code, sub-channel code) are selected to perform the safety analysis. However, the system code cannot simulate the local behavior of the test bundle, and the sub-channel code is incapable of calculating the whole system behavior of the test loop. Therefore, to combine the merits of both codes, and minimizes their shortcomings, a coupled sub-channel and system code system is developed in this paper. Both of the sub-channel code COBRA-SC and system code ATHLET-SC are adapted to transient analysis of SCWR. Two codes are coupled by data transfer and data adaptation at the interface. In the new developed coupled code, the whole system behavior including safety system characteristic is analyzed by system code ATHLET-SC, whereas the local thermal–hydraulic parameters are predicted by the sub-channel code COBRA-SC. The codes are utilized to get the local thermal–hydraulic parameters in the SCWR-FQT fuel bundle under some accident case (e.g. a flow blockage during LOCA). Some measures to mitigate the accident consequence are proposed by the sensitivity study and trialed to demonstrate their effectiveness in the coupled simulation. The results indicate that the new developed code has good feasibility to transient analysis of supercritical water-cooled test. And the peak cladding temperature caused by blockage in the fuel bundle can be reduced effectively by the safety measures

  6. Sub-channel/system coupled code development and its application to SCWR-FQT loop

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.J., E-mail: xiaojingliu@sjtu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China); Cheng, X. [Institute of Fusion and Reactor Technology, Karlsruhe Institute of Technology, Vincenz-Prießnitz-Str. 3, 76131 Karlsruhe (Germany)

    2015-04-15

    Highlights: • A coupled code is developed for SCWR accident simulation. • The feasibility of the code is shown by application to SCWR-FQT loop. • Some measures are selected by sensitivity analysis. • The peak cladding temperature can be reduced effectively by the proposed measures. - Abstract: In the frame of Super-Critical Reactor In Pipe Test Preparation (SCRIPT) project in China, one of the challenge tasks is to predict the transient performance of SuperCritical Water Reactor-Fuel Qualification Test (SCWR-FQT) loop under some accident conditions. Several thermal–hydraulic codes (system code, sub-channel code) are selected to perform the safety analysis. However, the system code cannot simulate the local behavior of the test bundle, and the sub-channel code is incapable of calculating the whole system behavior of the test loop. Therefore, to combine the merits of both codes, and minimizes their shortcomings, a coupled sub-channel and system code system is developed in this paper. Both of the sub-channel code COBRA-SC and system code ATHLET-SC are adapted to transient analysis of SCWR. Two codes are coupled by data transfer and data adaptation at the interface. In the new developed coupled code, the whole system behavior including safety system characteristic is analyzed by system code ATHLET-SC, whereas the local thermal–hydraulic parameters are predicted by the sub-channel code COBRA-SC. The codes are utilized to get the local thermal–hydraulic parameters in the SCWR-FQT fuel bundle under some accident case (e.g. a flow blockage during LOCA). Some measures to mitigate the accident consequence are proposed by the sensitivity study and trialed to demonstrate their effectiveness in the coupled simulation. The results indicate that the new developed code has good feasibility to transient analysis of supercritical water-cooled test. And the peak cladding temperature caused by blockage in the fuel bundle can be reduced effectively by the safety measures

  7. The development, qualification and availability of AECL analytical, scientific and design codes

    International Nuclear Information System (INIS)

    Kupferschmidt, W.C.H.; Fehrenbach, P.J.; Wolgemuth, G.A.; McDonald, B.H.; Snell, V.G.

    2001-01-01

    Over the past several years, AECL has embarked on a comprehensive program to develop, qualify and support its key safety and licensing codes, and to make executable versions of these codes available to the international nuclear community. To this end, we have instituted a company-wide Software Quality Assurance (SQA) Program for Analytical, Scientific and Design Computer Programs to ensure that the design, development, maintenance, modification, procurement and use of computer codes within AECL is consistent with today's quality assurance standards. In addition, we have established a comprehensive Code Validation Project (CVP) with the goal of qualifying AECL's 'front-line' safety and licensing codes by 2001 December. The outcome of this initiative will be qualified codes, which are properly verified and validated for the expected range of applications, with associated statements of accuracy and uncertainty for each application. The code qualification program, based on the CSA N286.7 standard, is intended to ensure (1) that errors are not introduced into safety analyses because of deficiencies in the software, (2) that an auditable documentation base is assembled that demonstrates to the regulator that the codes are of acceptable quality, and (3) that these codes are formally qualified for their intended applications. Because AECL and the Canadian nuclear utilities (i.e., Ontario Power Generation, Bruce Power, Hydro Quebec and New Brunswick Power) generally use the same safety and licensing codes, the nuclear industry in Canada has agreed to work cooperatively together towards the development, qualification and maintenance of a common set of analysis tools, referred to as the Industry Standard Toolset (IST). This paper provides an overview of the AECL Software Quality Assurance Program and the Code Validation Project, and their associated linkages to the Canadian nuclear community's Industry Standard Toolset initiative to cooperatively qualify and support commonly

  8. Development of the integrated system reliability analysis code MODULE

    International Nuclear Information System (INIS)

    Han, S.H.; Yoo, K.J.; Kim, T.W.

    1987-01-01

    The major components in a system reliability analysis are the determination of cut sets, importance measure, and uncertainty analysis. Various computer codes have been used for these purposes. For example, SETS and FTAP are used to determine cut sets; Importance for importance calculations; and Sample, CONINT, and MOCUP for uncertainty analysis. There have been problems when the codes run each other and the input and output are not linked, which could result in errors when preparing input for each code. The code MODULE was developed to carry out the above calculations simultaneously without linking input and outputs to other codes. MODULE can also prepare input for SETS for the case of a large fault tree that cannot be handled by MODULE. The flow diagram of the MODULE code is shown. To verify the MODULE code, two examples are selected and the results and computation times are compared with those of SETS, FTAP, CONINT, and MOCUP on both Cyber 170-875 and IBM PC/AT. Two examples are fault trees of the auxiliary feedwater system (AFWS) of Korea Nuclear Units (KNU)-1 and -2, which have 54 gates and 115 events, 39 gates and 92 events, respectively. The MODULE code has the advantage that it can calculate the cut sets, importances, and uncertainties in a single run with little increase in computing time over other codes and that it can be used in personal computers

  9. Development and validation of a fuel performance analysis code

    International Nuclear Information System (INIS)

    Majalee, Aaditya V.; Chaturvedi, S.

    2015-01-01

    CAD has been developing a computer code 'FRAVIZ' for calculation of steady-state thermomechanical behaviour of nuclear reactor fuel rods. It contains four major modules viz., Thermal module, Fission Gas Release module, Material Properties module and Mechanical module. All these four modules are coupled to each other and feedback from each module is fed back to others to get a self-consistent evolution in time. The computer code has been checked against two FUMEX benchmarks. Modelling fuel performance in Advance Heavy Water Reactor would require additional inputs related to the fuel and some modification in the code.(author)

  10. Shaft flexibility effects on aeroelastic stability of a rotating bladed disk

    Science.gov (United States)

    Khader, Naim; Loewy, Robert

    1989-01-01

    A comprehensive study of Coriolis forces and shaft flexibility effects on the structural dynamics and aeroelastic stability of a rotating bladed-disk assembly attached to a cantilever, massless, flexible shaft is presented. Analyses were performed for an actual bladed-disk assembly, used as the first stage in the fan of the 'E3' engine. In the structural model, both in-plane and out-of-plane elastic deformation of the bladed-disk assembly were considered relative to their hub, in addition to rigid disk translations and rotations introduced by shaft flexibility. Besides structural coupling between blades (through the flexible disk), additional coupling is introduced through quasisteady aerodynamic loads. Rotational effects are accounted for throughout the work, and some mode shapes for the whole structure are presented at a selected rpm.

  11. Object-Oriented Programming in the Development of Containment Analysis Code

    International Nuclear Information System (INIS)

    Han, Tae Young; Hong, Soon Joon; Hwang, Su Hyun; Lee, Byung Chul; Byun, Choong Sup

    2009-01-01

    After the mid 1980s, the new programming concept, Object-Oriented Programming (OOP), was introduced and designed, which has the features such as the information hiding, encapsulation, modularity and inheritance. These offered much more convenient programming paradigm to code developers. The OOP concept was readily developed into the programming language as like C++ in the 1990s and is being widely used in the modern software industry. In this paper, we show that the OOP concept is successfully applicable to the development of safety analysis code for containment and propose the more explicit and easy OOP design for developers

  12. Multi-dimensional Code Development for Safety Analysis of LMR

    International Nuclear Information System (INIS)

    Ha, K. S.; Jeong, H. Y.; Kwon, Y. M.; Lee, Y. B.

    2006-08-01

    A liquid metal reactor loaded a metallic fuel has the inherent safety mechanism due to the several negative reactivity feedback. Although this feature demonstrated through experiments in the EBR-II, any of the computer programs until now did not exactly analyze it because of the complexity of the reactivity feedback mechanism. A multi-dimensional detail program was developed through the International Nuclear Energy Research Initiative(INERI) from 2003 to 2005. This report includes the numerical coupling the multi-dimensional program and SSC-K code which is used to the safety analysis of liquid metal reactors in KAERI. The coupled code has been proved by comparing the analysis results using the code with the results using SAS-SASSYS code of ANL for the UTOP, ULOF, and ULOHS applied to the safety analysis for KALIMER-150

  13. Development of the CRIPTE Code for Electromagnetic Coupling

    National Research Council Canada - National Science Library

    Parmantier, Jean-Philippe

    2005-01-01

    .... This code was originally developed as part of an experiment performed under the joint US-France international data exchange program on the atmospheric electricity/aircraft interactions, DEA-AF-79-7336...

  14. Development of the containment transient analysis code for the passive reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Young Dong; Kim, Young In; Bae, Yoon Young; Chang, Moon Hi [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-05-01

    This study was performed to develop the analysis tools for the passively cooled steel containment and to construct the integrated code system which can analyze a thermal hydraulic behavior of the containment and reactor system during a loss of coolant accident. The computer code CONTEMPT4/MOD5/PCCS was developed by incorporating the passive containment cooling models to the containment pressure and temperature transient analysis computer code CONTEMPT4/MOD5. The integrated reactor thermal hydraulic analysis code system for passive reactor was constructed by coupling the best estimate thermal hydraulic system analysis code RELAP5/MOD3 and CONTEMPT4/MOD5/PCCS through the process control method. In addition, to evaluate the applicability of the code the CONTEMPT4/MOD5/PCCS was applied to the SMART(System-Integrated Modular Advanced Reactor). The pressure and temperature transient following the small break LOCA of SMART was analysed by modeling the safeguard vessel using both the newly added passive containment cooling model and existing pool model. (author). 16 refs., 22 figs., 7 tabs.

  15. Safety analysis code SCTRAN development for SCWR and its application to CGNPC SCWR

    International Nuclear Information System (INIS)

    Wu, Pan; Gou, Junli; Shan, Jianqiang; Jiang, Yang; Yang, Jue; Zhang, Bo

    2013-01-01

    Highlights: ► A new safety analysis code named SCTRAN is developed for SCWRs. ► Capability of SCTRAN is verified by comparing with code APROS and RELAP5-3D. ► A new passive safety system is proposed for CGNPC SCWR and analyzed with SCTRAN. ► CGNPC SCWR is able to cope with two critical accidents for SCWRs, LOFA and LOCA. - Abstract: Design analysis is one of the main difficulties during the research and design of SCWRs. Currently, the development of safety analysis code for SCWR is still in its infancy all around the world, and very few computer codes could carry out the trans-critical calculations where significant changes in water properties would take place. In this paper, a safety analysis code SCTRAN for SCWRs has been developed based on code RETRAN-02, the best estimate code used for safety analysis of light water reactors. The ability of SCTRAN code to simulate transients where both supercritical and subcritical regimes are encountered has been verified by comparing with APROS and RELAP5-3D codes. Furthermore, the LOFA and LOCA transients for the CGNPC SCWR design were analyzed with SCTRAN code. The characteristics and performance of the passive safety systems applied to CGNPC SCWR were evaluated. The results show that: (1) The SCTRAN computer code developed in this study is capable to perform design analysis for SCWRs; (2) During LOFA and LOCA accidents in a CGNPC SCWR, the passive safety systems would significantly mitigate the consequences of these transients and enhance the inherent safety

  16. BBU code development for high-power microwave generators

    International Nuclear Information System (INIS)

    Houck, T.L.; Westenskow, G.A.; Yu, S.S.

    1992-01-01

    We are developing a two-dimensional, time-dependent computer code for the simulation of transverse instabilities in support of relativistic klystron-two beam accelerator research at LLNL. The code addresses transient effects as well as both cumulative and regenerative beam breakup modes. Although designed specifically for the transport of high current (kA) beams through traveling-wave structures, it is applicable to devices consisting of multiple combinations of standing-wave, traveling-wave, and induction accelerator structures. In this paper we compare code simulations to analytical solutions for the case where there is no rf coupling between cavities, to theoretical scaling parameters for coupled cavity structures, and to experimental data involving beam breakup in the two traveling-wave output structure of our microwave generator. (Author) 4 figs., tab., 5 refs

  17. Twelve gordian knots when developing an organizational code of ethics

    NARCIS (Netherlands)

    Kaptein, Muel; Wempe, Johan

    1998-01-01

    Following the example of the many organizations in the United States which have a code of ethics, an increasing interest on the part of companies, trade organizations, (semi-)governmental organizations and professions in the Netherlands to develop codes of ethics can be witnessed. We have been able

  18. TRAC code development status and plans

    International Nuclear Information System (INIS)

    Spore, J.W.; Liles, D.R.; Nelson, R.A.

    1986-01-01

    This report summarizes the characteristics and current status of the TRAC-PF1/MOD1 computer code. Recent error corrections and user-convenience features are described, and several user enhancements are identified. Current plans for the release of the TRAC-PF1/MOD2 computer code and some preliminary MOD2 results are presented. This new version of the TRAC code implements stability-enhancing two-step numerics into the 3-D vessel, using partial vectorization to obtain a code that has run 400% faster than the MOD1 code

  19. Development of a coupling code for PWR reactor cavity radiation streaming calculation

    International Nuclear Information System (INIS)

    Zheng, Z.; Wu, H.; Cao, L.; Zheng, Y.; Zhang, H.; Wang, M.

    2012-01-01

    PWR reactor cavity radiation streaming is important for the safe of the personnel and equipment, thus calculation has to be performed to evaluate the neutron flux distribution around the reactor. For this calculation, the deterministic codes have difficulties in fine geometrical modeling and need huge computer resource; and the Monte Carlo codes require very long sampling time to obtain results with acceptable precision. Therefore, a coupling method has been developed to eliminate the two problems mentioned above in each code. In this study, we develop a coupling code named DORT2MCNP to link the Sn code DORT and Monte Carlo code MCNP. DORT2MCNP is used to produce a combined surface source containing top, bottom and side surface simultaneously. Because SDEF card is unsuitable for the combined surface source, we modify the SOURCE subroutine of MCNP and compile MCNP for this application. Numerical results demonstrate the correctness of the coupling code DORT2MCNP and show reasonable agreement between the coupling method and the other two codes (DORT and MCNP). (authors)

  20. Effects of soil–structure interaction on real time dynamic response of offshore wind turbines on monopiles

    DEFF Research Database (Denmark)

    Damgaard, M.; Zania, Varvara; Andersen, L.V.

    2014-01-01

    , a computationally efficient modelling approach of including the dynamic soil–structure interaction into aeroelastic codes is presented with focus on monopile foundations. Semi-analytical frequency-domain solutions are applied to evaluate the dynamic impedance functions of the soil–pile system at a number...... of discrete frequencies. Based on a general and very stable fitting algorithm, a consistent lumped-parameter model of optimal order is calibrated to the impedance functions and implemented into the aeroelastic nonlinear multi-body code HAWC2 to facilitate the time domain analysis of a wind turbine under...... normal operating mode. The aeroelastic response is evaluated for three different foundation conditions, i.e. apparent fixity length, the consistent lumped-parameter model and fixed support at the seabed. The effect of soil–structure interaction is shown to be critical for the design, estimated in terms...

  1. Development of Visual CINDER Code with Visual C⧣.NET

    International Nuclear Information System (INIS)

    Kim, Oyeon

    2016-01-01

    CINDER code, CINDER' 90 or CINDER2008 that is integrated with the Monte Carlo code, MCNPX, is widely used to calculate the inventory of nuclides in irradiated materials. The MCNPX code provides decay processes to the particle transport scheme that traditionally only covered prompt processes. The integration schemes serve not only the reactor community (MCNPX burnup) but also the accelerator community as well (residual production information). The big benefit for providing these options lies in the easy cross comparison of the transmutation codes since the calculations are based on exactly the same material, neutron flux and isotope production/destruction inputs. However, it is just frustratingly cumbersome to use. In addition, multiple human interventions may increase the possibility of making errors. The number of significant digits in the input data varies in steps, which may cause big errors for highly nonlinear problems. Thus, it is worthwhile to find a new way to wrap all the codes and procedures in one consistent package which can provide ease of use. The visual CINDER code development is underway with visual C .NET framework. It provides a few benefits for the atomic transmutation simulation with CINDER code. A few interesting and useful properties of visual C .NET framework are introduced. We also showed that the wrapper could make the simulation accurate for highly nonlinear transmutation problems and also increase the possibility of direct combination a radiation transport code MCNPX with CINDER code. Direct combination of CINDER with MCNPX in a wrapper will provide more functionalities for the radiation shielding and prevention study

  2. Development of Visual CINDER Code with Visual C⧣.NET

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Oyeon [Institute for Modeling and Simulation Convergence, Daegu (Korea, Republic of)

    2016-10-15

    CINDER code, CINDER' 90 or CINDER2008 that is integrated with the Monte Carlo code, MCNPX, is widely used to calculate the inventory of nuclides in irradiated materials. The MCNPX code provides decay processes to the particle transport scheme that traditionally only covered prompt processes. The integration schemes serve not only the reactor community (MCNPX burnup) but also the accelerator community as well (residual production information). The big benefit for providing these options lies in the easy cross comparison of the transmutation codes since the calculations are based on exactly the same material, neutron flux and isotope production/destruction inputs. However, it is just frustratingly cumbersome to use. In addition, multiple human interventions may increase the possibility of making errors. The number of significant digits in the input data varies in steps, which may cause big errors for highly nonlinear problems. Thus, it is worthwhile to find a new way to wrap all the codes and procedures in one consistent package which can provide ease of use. The visual CINDER code development is underway with visual C .NET framework. It provides a few benefits for the atomic transmutation simulation with CINDER code. A few interesting and useful properties of visual C .NET framework are introduced. We also showed that the wrapper could make the simulation accurate for highly nonlinear transmutation problems and also increase the possibility of direct combination a radiation transport code MCNPX with CINDER code. Direct combination of CINDER with MCNPX in a wrapper will provide more functionalities for the radiation shielding and prevention study.

  3. Stability of two-degrees-of-freedom aero-elastic models with frequency and time variable parametric self-induced forces

    Czech Academy of Sciences Publication Activity Database

    Náprstek, Jiří; Pospíšil, Stanislav; Yau, J. D.

    2015-01-01

    Roč. 57, August (2015), s. 91-107 ISSN 0889-9746 R&D Projects: GA MŠk(CZ) LO1219; GA ČR(CZ) GC13-34405J Institutional support: RVO:68378297 Keywords : aero-elastic system * self-excited vibration * dynamic stability * Routh–Hurwitz conditions * flutter derivatives * divergence Subject RIV: JM - Building Engineering Impact factor: 1.709, year: 2015 http://dx.doi.org/10.1016/j.jfluidstructs.2015.05.010

  4. On the aero-elastic design of the DTU 10MW wind turbine blade for the LIFES50+ wind tunnel scale model

    DEFF Research Database (Denmark)

    Bayati, I.; Belloli, M.; Bernini, L.

    2016-01-01

    and for different angles of attack. The aero-elastic design algorithm was set to define the optimal spanwise thickness over chord ratio (t/c), the chord length and the twist to match the first flapwise scaled natural frequency. An aluminium mould for the carbon fibre was CNC manufactured based on B-Splines CAD...

  5. Development of general-purpose particle and heavy ion transport monte carlo code

    International Nuclear Information System (INIS)

    Iwase, Hiroshi; Nakamura, Takashi; Niita, Koji

    2002-01-01

    The high-energy particle transport code NMTC/JAM, which has been developed at JAERI, was improved for the high-energy heavy ion transport calculation by incorporating the JQMD code, the SPAR code and the Shen formula. The new NMTC/JAM named PHITS (Particle and Heavy-Ion Transport code System) is the first general-purpose heavy ion transport Monte Carlo code over the incident energies from several MeV/nucleon to several GeV/nucleon. (author)

  6. The development of depletion program coupled with Monte Carlo computer code

    International Nuclear Information System (INIS)

    Nguyen Kien Cuong; Huynh Ton Nghiem; Vuong Huu Tan

    2015-01-01

    The paper presents the development of depletion code for light water reactor coupled with MCNP5 code called the MCDL code (Monte Carlo Depletion for Light Water Reactor). The first order differential depletion system equations of 21 actinide isotopes and 50 fission product isotopes are solved by the Radau IIA Implicit Runge Kutta (IRK) method after receiving neutron flux, reaction rates in one group energy and multiplication factors for fuel pin, fuel assembly or whole reactor core from the calculation results of the MCNP5 code. The calculation for beryllium poisoning and cooling time is also integrated in the code. To verify and validate the MCDL code, high enriched uranium (HEU) and low enriched uranium (LEU) fuel assemblies VVR-M2 types and 89 fresh HEU fuel assemblies, 92 LEU fresh fuel assemblies cores of the Dalat Nuclear Research Reactor (DNRR) have been investigated and compared with the results calculated by the SRAC code and the MCNP R EBUS linkage system code. The results show good agreement between calculated data of the MCDL code and reference codes. (author)

  7. Development of Probabilistic Internal Dosimetry Computer Code

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Siwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kwon, Tae-Eun [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Jai-Ki [Korean Association for Radiation Protection, Seoul (Korea, Republic of)

    2017-02-15

    Internal radiation dose assessment involves biokinetic models, the corresponding parameters, measured data, and many assumptions. Every component considered in the internal dose assessment has its own uncertainty, which is propagated in the intake activity and internal dose estimates. For research or scientific purposes, and for retrospective dose reconstruction for accident scenarios occurring in workplaces having a large quantity of unsealed radionuclides, such as nuclear power plants, nuclear fuel cycle facilities, and facilities in which nuclear medicine is practiced, a quantitative uncertainty assessment of the internal dose is often required. However, no calculation tools or computer codes that incorporate all the relevant processes and their corresponding uncertainties, i.e., from the measured data to the committed dose, are available. Thus, the objective of the present study is to develop an integrated probabilistic internal-dose-assessment computer code. First, the uncertainty components in internal dosimetry are identified, and quantitative uncertainty data are collected. Then, an uncertainty database is established for each component. In order to propagate these uncertainties in an internal dose assessment, a probabilistic internal-dose-assessment system that employs the Bayesian and Monte Carlo methods. Based on the developed system, we developed a probabilistic internal-dose-assessment code by using MATLAB so as to estimate the dose distributions from the measured data with uncertainty. Using the developed code, we calculated the internal dose distribution and statistical values (e.g. the 2.5{sup th}, 5{sup th}, median, 95{sup th}, and 97.5{sup th} percentiles) for three sample scenarios. On the basis of the distributions, we performed a sensitivity analysis to determine the influence of each component on the resulting dose in order to identify the major component of the uncertainty in a bioassay. The results of this study can be applied to various

  8. Development of Probabilistic Internal Dosimetry Computer Code

    International Nuclear Information System (INIS)

    Noh, Siwan; Kwon, Tae-Eun; Lee, Jai-Ki

    2017-01-01

    Internal radiation dose assessment involves biokinetic models, the corresponding parameters, measured data, and many assumptions. Every component considered in the internal dose assessment has its own uncertainty, which is propagated in the intake activity and internal dose estimates. For research or scientific purposes, and for retrospective dose reconstruction for accident scenarios occurring in workplaces having a large quantity of unsealed radionuclides, such as nuclear power plants, nuclear fuel cycle facilities, and facilities in which nuclear medicine is practiced, a quantitative uncertainty assessment of the internal dose is often required. However, no calculation tools or computer codes that incorporate all the relevant processes and their corresponding uncertainties, i.e., from the measured data to the committed dose, are available. Thus, the objective of the present study is to develop an integrated probabilistic internal-dose-assessment computer code. First, the uncertainty components in internal dosimetry are identified, and quantitative uncertainty data are collected. Then, an uncertainty database is established for each component. In order to propagate these uncertainties in an internal dose assessment, a probabilistic internal-dose-assessment system that employs the Bayesian and Monte Carlo methods. Based on the developed system, we developed a probabilistic internal-dose-assessment code by using MATLAB so as to estimate the dose distributions from the measured data with uncertainty. Using the developed code, we calculated the internal dose distribution and statistical values (e.g. the 2.5 th , 5 th , median, 95 th , and 97.5 th percentiles) for three sample scenarios. On the basis of the distributions, we performed a sensitivity analysis to determine the influence of each component on the resulting dose in order to identify the major component of the uncertainty in a bioassay. The results of this study can be applied to various situations. In cases

  9. Development of 3-dimensional neutronics kinetics analysis code for CANDU-PHWR

    International Nuclear Information System (INIS)

    Kim, M. W.; Kim, C. H.; Hong, I. S.

    2005-02-01

    The followings are the major contents and scope of the research : development of kinetics power calculation module, formulation of space-dependent neutron transient analysis - implementation of 3-D and 2-G unified nodal method, verification of the kinetics module by benchmark problem - 3-D PHWR kinetics benchmark problem suggested by AECL, reactor trip simulation by shutdown system 1 in Wolsong unit 2. Development of a dynamic linked library code, SCAN D LL, for the coupled calculation with RELAP-CANDU : modeling of shutdown system 1, development of automatic shutdown module - automatic trip module based on rate log power control logic, automatic insertion of shutdown system 1. Development of a link code for coupled calculation - development of SCAN D LL(windows version), verification of coupled code by - 40% reactor inlet header break LOCA power pulse, 100% reactor outlet header break LOCA power pulse, 50% pump suction break LOCA power pulse

  10. Development Perspective of Regulatory Audit Code System for SFR Nuclear Safety Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Moo Hoon; Lee, Gil Soo; Shin, An Dong; Suh, Nam Duk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-05-15

    A sodium-cooled fast reactor (SFR) in Korea is based on the KALIMER-600 concept developed by KAERI. Based on 'Long-term R and D Plan for Future Reactor Systems' which was approved by the Korea Atomic Energy Commission in 2008, the KAERI designer is scheduled to apply the design certification of the prototype SFR in 2017. In order to establish regulatory infrastructure for the licensing of a prototype SFR, KINS has develop the regulatory requirements for the demonstration SFR since 2010, and are scheduled to develop the regulatory audit code systems in regard to core, fuel, and system, etc. since 2012. In this study, the domestic code systems used for core design and safety evaluation of PWRs and the nuclear physics and code system for SFRs were briefly reviewed, and the development perspective of regulatory audit code system for SFR nuclear safety evaluation were derived

  11. Software Certification - Coding, Code, and Coders

    Science.gov (United States)

    Havelund, Klaus; Holzmann, Gerard J.

    2011-01-01

    We describe a certification approach for software development that has been adopted at our organization. JPL develops robotic spacecraft for the exploration of the solar system. The flight software that controls these spacecraft is considered to be mission critical. We argue that the goal of a software certification process cannot be the development of "perfect" software, i.e., software that can be formally proven to be correct under all imaginable and unimaginable circumstances. More realistically, the goal is to guarantee a software development process that is conducted by knowledgeable engineers, who follow generally accepted procedures to control known risks, while meeting agreed upon standards of workmanship. We target three specific issues that must be addressed in such a certification procedure: the coding process, the code that is developed, and the skills of the coders. The coding process is driven by standards (e.g., a coding standard) and tools. The code is mechanically checked against the standard with the help of state-of-the-art static source code analyzers. The coders, finally, are certified in on-site training courses that include formal exams.

  12. Development of burnup methods and capabilities in Monte Carlo code RMC

    International Nuclear Information System (INIS)

    She, Ding; Liu, Yuxuan; Wang, Kan; Yu, Ganglin; Forget, Benoit; Romano, Paul K.; Smith, Kord

    2013-01-01

    Highlights: ► The RMC code has been developed aiming at large-scale burnup calculations. ► Matrix exponential methods are employed to solve the depletion equations. ► The Energy-Bin method reduces the time expense of treating ACE libraries. ► The Cell-Mapping method is efficient to handle massive amounts of tally cells. ► Parallelized depletion is necessary for massive amounts of burnup regions. -- Abstract: The Monte Carlo burnup calculation has always been a challenging problem because of its large time consumption when applied to full-scale assembly or core calculations, and thus its application in routine analysis is limited. Most existing MC burnup codes are usually external wrappers between a MC code, e.g. MCNP, and a depletion code, e.g. ORIGEN. The code RMC is a newly developed MC code with an embedded depletion module aimed at performing burnup calculations of large-scale problems with high efficiency. Several measures have been taken to strengthen the burnup capabilities of RMC. Firstly, an accurate and efficient depletion module called DEPTH has been developed and built in, which employs the rational approximation and polynomial approximation methods. Secondly, the Energy-Bin method and the Cell-Mapping method are implemented to speed up the transport calculations with large numbers of nuclides and tally cells. Thirdly, the batch tally method and the parallelized depletion module have been utilized to better handle cases with massive amounts of burnup regions in parallel calculations. Burnup cases including a PWR pin and a 5 × 5 assembly group are calculated, thereby demonstrating the burnup capabilities of the RMC code. In addition, the computational time and memory requirements of RMC are compared with other MC burnup codes.

  13. Analyses to support development of risk-informed separation distances for hydrogen codes and standards.

    Energy Technology Data Exchange (ETDEWEB)

    LaChance, Jeffrey L.; Houf, William G. (Sandia National Laboratories, Livermore, CA); Fluer, Inc., Paso Robels, CA; Fluer, Larry (Fluer, Inc., Paso Robels, CA); Middleton, Bobby

    2009-03-01

    The development of a set of safety codes and standards for hydrogen facilities is necessary to ensure they are designed and operated safely. To help ensure that a hydrogen facility meets an acceptable level of risk, code and standard development organizations are tilizing risk-informed concepts in developing hydrogen codes and standards.

  14. Application of software quality assurance to a specific scientific code development task

    International Nuclear Information System (INIS)

    Dronkers, J.J.

    1986-03-01

    This paper describes an application of software quality assurance to a specific scientific code development program. The software quality assurance program consists of three major components: administrative control, configuration management, and user documentation. The program attempts to be consistent with existing local traditions of scientific code development while at the same time providing a controlled process of development

  15. Development of 3-D Flow Analysis Code for Fuel Assembly using Unstructured Grid System

    Energy Technology Data Exchange (ETDEWEB)

    Myong, Hyon Kook; Kim, Jong Eun; Ahn, Jong Ki; Yang, Seung Yong [Kookmin Univ., Seoul (Korea, Republic of)

    2007-03-15

    The flow through a nuclear rod bundle with mixing vanes are very complex and required a suitable turbulence model to be predicted accurately. Final objective of this study is to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system. In order to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system, the following researches are made: - Development of numerical algorithm for CFD code's solver - Grid and geometric connectivity data - Development of software(PowerCFD code) for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system - Modulation of software(PowerCFD code) - Development of turbulence model - Development of analysis module of RANS/LES hybrid models - Analysis of turbulent flow and heat transfer - Basic study on LES analysis - Development of main frame on pre/post processors based on GUI - Algorithm for fully-developed flow.

  16. Development of 3-D Flow Analysis Code for Fuel Assembly using Unstructured Grid System

    International Nuclear Information System (INIS)

    Myong, Hyon Kook; Kim, Jong Eun; Ahn, Jong Ki; Yang, Seung Yong

    2007-03-01

    The flow through a nuclear rod bundle with mixing vanes are very complex and required a suitable turbulence model to be predicted accurately. Final objective of this study is to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system. In order to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system, the following researches are made: - Development of numerical algorithm for CFD code's solver - Grid and geometric connectivity data - Development of software(PowerCFD code) for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system - Modulation of software(PowerCFD code) - Development of turbulence model - Development of analysis module of RANS/LES hybrid models - Analysis of turbulent flow and heat transfer - Basic study on LES analysis - Development of main frame on pre/post processors based on GUI - Algorithm for fully-developed flow

  17. Development and application of a system analysis code for liquid fueled molten salt reactors based on RELAP5 code

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Chengbin [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Cheng, Maosong, E-mail: mscheng@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Liu, Guimin [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-08-15

    Highlights: • New point kinetics and thermo-hydraulics models as well as a numerical method are added into RELAP5 code to be suitable for liquid fueled molten salt reactor. • The extended REALP5 code is verified by the experimental benchmarks of MSRE. • The different transient scenarios of the MSBR are simulated to evaluate performance during the transients. - Abstract: The molten salt reactor (MSR) is one of the six advanced reactor concepts declared by the Generation IV International Forum (GIF), which can be characterized by attractive attributes as inherent safety, economical efficiency, natural resource protection, sustainable development and nuclear non-proliferation. It is important to make system safety analysis for nuclear power plant of MSR. In this paper, in order to developing a system analysis code suitable for liquid fueled molten salt reactors, the point kinetics and thermo-hydraulic models as well as the numerical method in thermal–hydraulic transient code Reactor Excursion and Leak Analysis Program (RELAP5) developed at the Idaho National Engineering Laboratory (INEL) for the U.S. Nuclear Regulatory Commission (NRC) are extended and verified by Molten Salt Reactor Experiment (MSRE) experimental benchmarks. And then, four transient scenarios including the load demand change, the primary flow transient, the secondary flow transient and the reactivity transient of the Molten Salt Breeder Reactor (MSBR) are modeled and simulated so as to evaluate the performance of the reactor during the anticipated transient events using the extended RELAP5 code. The results indicate the extended RELAP5 code is effective and well suited to the liquid fueled molten salt reactor, and the MSBR has strong inherent safety characteristics because of its large negative reactivity coefficient. In the future, the extended RELAP5 code will be used to perform transient safety analysis for a liquid fueled thorium molten salt reactor named TMSR-LF developed by the Center

  18. Development and application of a system analysis code for liquid fueled molten salt reactors based on RELAP5 code

    International Nuclear Information System (INIS)

    Shi, Chengbin; Cheng, Maosong; Liu, Guimin

    2016-01-01

    Highlights: • New point kinetics and thermo-hydraulics models as well as a numerical method are added into RELAP5 code to be suitable for liquid fueled molten salt reactor. • The extended REALP5 code is verified by the experimental benchmarks of MSRE. • The different transient scenarios of the MSBR are simulated to evaluate performance during the transients. - Abstract: The molten salt reactor (MSR) is one of the six advanced reactor concepts declared by the Generation IV International Forum (GIF), which can be characterized by attractive attributes as inherent safety, economical efficiency, natural resource protection, sustainable development and nuclear non-proliferation. It is important to make system safety analysis for nuclear power plant of MSR. In this paper, in order to developing a system analysis code suitable for liquid fueled molten salt reactors, the point kinetics and thermo-hydraulic models as well as the numerical method in thermal–hydraulic transient code Reactor Excursion and Leak Analysis Program (RELAP5) developed at the Idaho National Engineering Laboratory (INEL) for the U.S. Nuclear Regulatory Commission (NRC) are extended and verified by Molten Salt Reactor Experiment (MSRE) experimental benchmarks. And then, four transient scenarios including the load demand change, the primary flow transient, the secondary flow transient and the reactivity transient of the Molten Salt Breeder Reactor (MSBR) are modeled and simulated so as to evaluate the performance of the reactor during the anticipated transient events using the extended RELAP5 code. The results indicate the extended RELAP5 code is effective and well suited to the liquid fueled molten salt reactor, and the MSBR has strong inherent safety characteristics because of its large negative reactivity coefficient. In the future, the extended RELAP5 code will be used to perform transient safety analysis for a liquid fueled thorium molten salt reactor named TMSR-LF developed by the Center

  19. Development Of A Navier-Stokes Computer Code

    Science.gov (United States)

    Yoon, Seokkwan; Kwak, Dochan

    1993-01-01

    Report discusses aspects of development of CENS3D computer code, solving three-dimensional Navier-Stokes equations of compressible, viscous, unsteady flow. Implements implicit finite-difference or finite-volume numerical-integration scheme, called "lower-upper symmetric-Gauss-Seidel" (LU-SGS), offering potential for very low computer time per iteration and for fast convergence.

  20. Development of An Automatic Verification Program for Thermal-hydraulic System Codes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. Y.; Ahn, K. T.; Ko, S. H.; Kim, Y. S.; Kim, D. W. [Pusan National University, Busan (Korea, Republic of); Suh, J. S.; Cho, Y. S.; Jeong, J. J. [System Engineering and Technology Co., Daejeon (Korea, Republic of)

    2012-05-15

    As a project activity of the capstone design competitive exhibition, supported by the Education Center for Green Industry-friendly Fusion Technology (GIFT), we have developed a computer program which can automatically perform non-regression test, which is needed repeatedly during a developmental process of a thermal-hydraulic system code, such as the SPACE code. A non-regression test (NRT) is an approach to software testing. The purpose of the non-regression testing is to verify whether, after updating a given software application (in this case, the code), previous software functions have not been compromised. The goal is to prevent software regression, whereby adding new features results in software bugs. As the NRT is performed repeatedly, a lot of time and human resources will be needed during the development period of a code. It may cause development period delay. To reduce the cost and the human resources and to prevent wasting time, non-regression tests need to be automatized. As a tool to develop an automatic verification program, we have used Visual Basic for Application (VBA). VBA is an implementation of Microsoft's event-driven programming language Visual Basic 6 and its associated integrated development environment, which are built into most Microsoft Office applications (In this case, Excel)

  1. Development of An Automatic Verification Program for Thermal-hydraulic System Codes

    International Nuclear Information System (INIS)

    Lee, J. Y.; Ahn, K. T.; Ko, S. H.; Kim, Y. S.; Kim, D. W.; Suh, J. S.; Cho, Y. S.; Jeong, J. J.

    2012-01-01

    As a project activity of the capstone design competitive exhibition, supported by the Education Center for Green Industry-friendly Fusion Technology (GIFT), we have developed a computer program which can automatically perform non-regression test, which is needed repeatedly during a developmental process of a thermal-hydraulic system code, such as the SPACE code. A non-regression test (NRT) is an approach to software testing. The purpose of the non-regression testing is to verify whether, after updating a given software application (in this case, the code), previous software functions have not been compromised. The goal is to prevent software regression, whereby adding new features results in software bugs. As the NRT is performed repeatedly, a lot of time and human resources will be needed during the development period of a code. It may cause development period delay. To reduce the cost and the human resources and to prevent wasting time, non-regression tests need to be automatized. As a tool to develop an automatic verification program, we have used Visual Basic for Application (VBA). VBA is an implementation of Microsoft's event-driven programming language Visual Basic 6 and its associated integrated development environment, which are built into most Microsoft Office applications (In this case, Excel)

  2. Integrated aeroelastic vibrator for fluid mixing in open microwells

    Science.gov (United States)

    Xia, H. M.; Jin, X.; Zhang, Y. Y.; Wu, J. W.; Zhang, J.; Wang, Z. P.

    2018-01-01

    Fluid mixing in micro-wells/chambers is required in a variety of biological and biochemical processes. However, mixing fluids of small volumes is usually difficult due to increased viscous effects. In this study, we propose a new method for mixing enhancement in microliter-scale open wells. A thin elastic diaphragm is used to seal the bottom of the mixing microwell, underneath which an air chamber connects an aeroelastic vibrator. Driven by an air flow, the vibrator produces self-excited vibrations and causes pressure oscillations in the air chamber. Then the elastic diaphragm is actuated to mix the fluids in the microwell. Two designs that respectively have one single well and 2  ×  2 wells were prototyped. Testing results show that for liquids with a volume ranging from 10-60 µl and viscosity ranging from 1-5 cP, complete mixing can be obtained within 5-20 s. Furthermore, the device is operable with an air micropump, and hence facilitating the miniaturization and integration of lab-on-a-chip and microbioreactor systems.

  3. Aeroelastic characteristics of the AH-64 bearingless tail rotor

    Science.gov (United States)

    Banerjee, D.

    1988-01-01

    The results of a wind tunnel test program to determine the performance loads and dynamic characteristics of the Composite Flexbeam Tail Rotor (CFTR) for the AH-64 Advanced Attack Helicopter are reported. The CFTR uses an elastomeric shear attachment of the flexbeam to the hub to provide soft-inplane S-mode and stiff-inplane C-mode configuration. The properties of the elastomer were selected for proper frequency placement and scale damping of the inplane S-mode. Kinematic pitch-lag coupling was introduced to provide the first cyclic inplane C-mode damping at high collective pitch. The CFTR was tested in a wind tunnel over the full slideslip envelop of the AH-64. It is found that the rotor was aeroelastically stable throughout the complete collective pitch range and up to rotor speeds of 1403 rpm. The dynamic characteristics of the rotor were found to be satisfactory at all pitch angles and rotor speeds of the tunnel tests. The design characteristics of the rotor which permit the high performance characteristics are discussed. Several schematic drawings and photographs of the rotor are provided.

  4. Aeroelastic scaling laws for gust load alleviation control system

    Directory of Open Access Journals (Sweden)

    Tang Bo

    2016-02-01

    Full Text Available Gust load alleviation (GLA tests are widely conducted to study the effectiveness of the control laws and methods. The physical parameters of models in these tests are aeroelastic scaled, while the scaling of GLA control system is always unreached. This paper concentrates on studying the scaling laws of GLA control system. Through theoretical demonstration, the scaling criterion of a classical PID control system has been come up and a scaling methodology is provided and verified. By adopting the scaling laws in this paper, gust response of the scaled model could be directly related to the full-scale aircraft theoretically under both open-loop and closed-loop conditions. Also, the influences of different scaling choices of an important non-dimensional parameter, the Froude number, have been studied in this paper. Furthermore for practical application, a compensating method is given when the theoretical scaled actuators or sensors cannot be obtained. Also, the scaling laws of some non-linear elements in control system such as the rate and amplitude saturations in actuator have been studied and examined by a numerical simulation.

  5. Aeroelastic analysis of an offshore wind turbine: Design and Fatigue Performance of Large Utility-Scale Wind Turbine Blades

    OpenAIRE

    Fossum, Peter Kalsaas

    2012-01-01

    Aeroelastic design and fatigue analysis of large utility-scale wind turbine blades are performed. The applied fatigue model is based on established methods and is incorporated in an iterative numerical design tool for realistic wind turbine blades. All aerodynamic and structural design properties are available in literature. The software tool FAST is used for advanced aero-servo-elastic load calculations and stress-histories are calculated with elementary beam theory.According to wind energy ...

  6. Application of software engineering to development of reactor safety codes

    International Nuclear Information System (INIS)

    Wilburn, N.P.; Niccoli, L.G.

    1981-01-01

    Software Engineering, which is a systematic methodology by which a large scale software development project is partitioned into manageable pieces, has been applied to the development of LMFBR safety codes. The techniques have been applied extensively in the business and aerospace communities and have provided an answer to the drastically increasing cost of developing and maintaining software. The five phases of software engineering (Survey, Analysis, Design, Implementation, and Testing) were applied in turn to development of these codes, along with Walkthroughs (peer review) at each stage. The application of these techniques has resulted in SUPERIOR SOFTWARE which is well documented, thoroughly tested, easy to modify, easier to use and maintain. The development projects have resulted in lower overall cost. (orig.) [de

  7. Development of the criticality accident analysis code, AGNES

    International Nuclear Information System (INIS)

    Nakajima, Ken

    1989-01-01

    In the design works for the facilities which handle nuclear fuel, the evaluation of criticality accidents cannot be avoided even if their possibility is as small as negligible. In particular in the system using solution fuel like uranyl nitrate, solution has the property easily becoming dangerous form, and all the past criticality accidents occurred in the case of solution, therefore, the evaluation of criticality accidents becomes the most important item of safety analysis. When a criticality accident occurred in a solution fuel system, due to the generation and movement of radiolysis gas voids, the oscillation of power output and pressure pulses are observed. In order to evaluate the effect of criticality accidents, these output oscillation and pressure pulses must be calculated accurately. For this purpose, the development of the dynamic characteristic code AGNES (Accidentally Generated Nuclear Excursion Simulation code) was carried out. The AGNES is the reactor dynamic characteristic code having two independent void models. Modified energy model and pressure model, and as the benchmark calculation of the AGNES code, the results of the experimental analysis on the CRAC experiment are reported. (K.I.)

  8. Development of an integral computer code for simulation of heat exchangers

    International Nuclear Information System (INIS)

    Horvat, A.; Catton, I.

    2001-01-01

    Heat exchangers are one of the basic installations in power and process industries. The present guidelines provide an ad-hoc solution to certain design problems. A unified approach based on simultaneous modeling of thermal-hydraulics and structural behavior does not exist. The present paper describes the development of integral numerical code for simulation of heat exchangers. The code is based on Volume Averaging Technique (VAT) for porous media flow modeling. The calculated values of the whole-section drag and heat transfer coefficients show an excellent agreement with already published values. The matching results prove the correctness of the selected approach and verify the developed numerical code used for this calculation.(author)

  9. Development of Advanced Suite of Deterministic Codes for VHTR Physics Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Seog; Cho, J. Y.; Lee, K. H. (and others)

    2007-07-15

    Advanced Suites of deterministic codes for VHTR physics analysis has been developed for detailed analysis of current and advanced reactor designs as part of a US-ROK collaborative I-NERI project. These code suites include the conventional 2-step procedure in which a few group constants are generated by a transport lattice calculation, and the reactor physics analysis is performed by a 3-dimensional diffusion calculation, and a whole core transport code that can model local heterogeneities directly at the core level. Particular modeling issues in physics analysis of the gas-cooled VHTRs were resolved, which include a double heterogeneity of the coated fuel particles, a neutron streaming in the coolant channels, a strong core-reflector interaction, and large spectrum shifts due to changes of the surrounding environment, temperature and burnup. And the geometry handling capability of the DeCART code were extended to deal with the hexagonal fuel elements of the VHTR core. The developed code suites were validated and verified by comparing the computational results with those of the Monte Carlo calculations for the benchmark problems.

  10. Software requirements specification document for the AREST code development

    International Nuclear Information System (INIS)

    Engel, D.W.; McGrail, B.P.; Whitney, P.D.; Gray, W.J.; Williford, R.E.; White, M.D.; Eslinger, P.W.; Altenhofen, M.K.

    1993-11-01

    The Analysis of the Repository Source Term (AREST) computer code was selected in 1992 by the U.S. Department of Energy. The AREST code will be used to analyze the performance of an underground high level nuclear waste repository. The AREST code is being modified by the Pacific Northwest Laboratory (PNL) in order to evaluate the engineered barrier and waste package designs, model regulatory compliance, analyze sensitivities, and support total systems performance assessment modeling. The current version of the AREST code was developed to be a very useful tool for analyzing model uncertainties and sensitivities to input parameters. The code has also been used successfully in supplying source-terms that were used in a total systems performance assessment. The current version, however, has been found to be inadequate for the comparison and selection of a design for the waste package. This is due to the assumptions and simplifications made in the selection of the process and system models. Thus, the new version of the AREST code will be designed to focus on the details of the individual processes and implementation of more realistic models. This document describes the requirements of the new models that will be implemented. Included in this document is a section describing the near-field environmental conditions for this waste package modeling, description of the new process models that will be implemented, and a description of the computer requirements for the new version of the AREST code

  11. Seismic Analysis Code (SAC): Development, porting, and maintenance within a legacy code base

    Science.gov (United States)

    Savage, B.; Snoke, J. A.

    2017-12-01

    The Seismic Analysis Code (SAC) is the result of toil of many developers over almost a 40-year history. Initially a Fortran-based code, it has undergone major transitions in underlying bit size from 16 to 32, in the 1980s, and 32 to 64 in 2009; as well as a change in language from Fortran to C in the late 1990s. Maintenance of SAC, the program and its associated libraries, have tracked changes in hardware and operating systems including the advent of Linux in the early 1990, the emergence and demise of Sun/Solaris, variants of OSX processors (PowerPC and x86), and Windows (Cygwin). Traces of these systems are still visible in source code and associated comments. A major concern while improving and maintaining a routinely used, legacy code is a fear of introducing bugs or inadvertently removing favorite features of long-time users. Prior to 2004, SAC was maintained and distributed by LLNL (Lawrence Livermore National Lab). In that year, the license was transferred from LLNL to IRIS (Incorporated Research Institutions for Seismology), but the license is not open source. However, there have been thousands of downloads a year of the package, either source code or binaries for specific system. Starting in 2004, the co-authors have maintained the SAC package for IRIS. In our updates, we fixed bugs, incorporated newly introduced seismic analysis procedures (such as EVALRESP), added new, accessible features (plotting and parsing), and improved the documentation (now in HTML and PDF formats). Moreover, we have added modern software engineering practices to the development of SAC including use of recent source control systems, high-level tests, and scripted, virtualized environments for rapid testing and building. Finally, a "sac-help" listserv (administered by IRIS) was setup for SAC-related issues and is the primary avenue for users seeking advice and reporting bugs. Attempts are always made to respond to issues and bugs in a timely fashion. For the past thirty-plus years

  12. Development of a detailed core flow analysis code for prismatic fuel reactors

    International Nuclear Information System (INIS)

    Bennett, R.G.

    1990-01-01

    The detailed analysis of the core flow distribution in prismatic fuel reactors is of interest for modular high-temperature gas-cooled reactor (MHTGR) design and safety analyses. Such analyses involve the steady-state flow of helium through highly cross-connected flow paths in and around the prismatic fuel elements. Several computer codes have been developed for this purpose. However, since they are proprietary codes, they are not generally available for independent MHTGR design confirmation. The previously developed codes do not consider the exchange or diversion of flow between individual bypass gaps with much detail. Such a capability could be important in the analysis of potential fuel block motion, such as occurred in the Fort St. Vrain reactor, or for the analysis of the conditions around a flow blockage or misloaded fuel block. This work develops a computer code with fairly general-purpose capabilities for modeling the flow in regions of prismatic fuel cores. The code, called BYPASS solves a finite difference control volume formulation of the compressible, steady-state fluid flow in highly cross-connected flow paths typical of the MHTGR

  13. The development of a transient neutron flux solution in the PANTHER code

    International Nuclear Information System (INIS)

    Hutt, P.K.; Knight, M.P.

    1990-01-01

    In the United Kingdom a new three-dimensional, two-group, homogeneous reactor diffusion code, PANTHER, has been developed for the analysis of pressurized water reactors (PWRs) and advanced gas-cooled reactors (AGRs). The code can perform a comprehensive range of calculations, steady state, depletion, and transient with either a finite difference or analytic nodal flux solution. The nodal solution allows the representation of within-node burnup variation and pin-power reconstruction in either steady-state or transient mode. Specific steady-state and transient thermal feedback modules are included for both PWRs and AGRs. The code is being developed to perform a complete range of reactor calculations from online operational support to fuel management and fault transient analysis. In the area of transient analysis, the code is currently being used for a number of PWR fault transient assessments, including rod ejection and steam-line break. In addition, work is proceeding to incorporate the PANTHER 3D nodal transient solution in the TRAC-P code. This paper outlines the development of the transient flux solutions within PANTHER

  14. Field Validation of the Stability Limit of a Multi MW Turbine

    Science.gov (United States)

    Kallesøe, Bjarne S.; Kragh, Knud A.

    2016-09-01

    Long slender blades of modern multi-megawatt turbines exhibit a flutter like instability at rotor speeds above a critical rotor speed. Knowing the critical rotor speed is crucial to a safe turbine design. The flutter like instability can only be estimated using geometrically non-linear aeroelastic codes. In this study, the estimated rotor speed stability limit of a 7 MW state of the art wind turbine is validated experimentally. The stability limit is estimated using Siemens Wind Powers in-house aeroelastic code, and the results show that the predicted stability limit is within 5% of the experimentally observed limit.

  15. Methodology, status, and plans for development and assessment of the RELAP5 code

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.W.; Riemke, R.A. [Idaho National Engineering Laboratory, Idaho Falls, ID (United States)

    1997-07-01

    RELAP/MOD3 is a computer code used for the simulation of transients and accidents in light-water nuclear power plants. The objective of the program to develop and maintain RELAP5 was and is to provide the U.S. Nuclear Regulatory Commission with an independent tool for assessing reactor safety. This paper describes code requirements, models, solution scheme, language and structure, user interface validation, and documentation. The paper also describes the current and near term development program and provides an assessment of the code`s strengths and limitations.

  16. Methodology, status and plans for development and assessment of TUF and CATHENA codes

    Energy Technology Data Exchange (ETDEWEB)

    Luxat, J.C.; Liu, W.S.; Leung, R.K. [Ontario Hydro, Toronto (Canada)] [and others

    1997-07-01

    An overview is presented of the Canadian two-fluid computer codes TUF and CATHENA with specific focus on the constraints imposed during development of these codes and the areas of application for which they are intended. Additionally a process for systematic assessment of these codes is described which is part of a broader, industry based initiative for validation of computer codes used in all major disciplines of safety analysis. This is intended to provide both the licensee and the regulator in Canada with an objective basis for assessing the adequacy of codes for use in specific applications. Although focused specifically on CANDU reactors, Canadian experience in developing advanced two-fluid codes to meet wide-ranging application needs while maintaining past investment in plant modelling provides a useful contribution to international efforts in this area.

  17. Methodology, status and plans for development and assessment of TUF and CATHENA codes

    International Nuclear Information System (INIS)

    Luxat, J.C.; Liu, W.S.; Leung, R.K.

    1997-01-01

    An overview is presented of the Canadian two-fluid computer codes TUF and CATHENA with specific focus on the constraints imposed during development of these codes and the areas of application for which they are intended. Additionally a process for systematic assessment of these codes is described which is part of a broader, industry based initiative for validation of computer codes used in all major disciplines of safety analysis. This is intended to provide both the licensee and the regulator in Canada with an objective basis for assessing the adequacy of codes for use in specific applications. Although focused specifically on CANDU reactors, Canadian experience in developing advanced two-fluid codes to meet wide-ranging application needs while maintaining past investment in plant modelling provides a useful contribution to international efforts in this area

  18. Development and validation of ALEPH Monte Carlo burn-up code

    International Nuclear Information System (INIS)

    Stankovskiy, A.; Van den Eynde, G.; Vidmar, T.

    2011-01-01

    The Monte-Carlo burn-up code ALEPH is being developed in SCK-CEN since 2004. Belonging to the category of shells coupling Monte Carlo transport (MCNP or MCNPX) and 'deterministic' depletion codes (ORIGEN-2.2), ALEPH possess some unique features that distinguish it from other codes. The most important feature is full data consistency between steady-state Monte Carlo and time-dependent depletion calculations. Recent improvements of ALEPH concern full implementation of general-purpose nuclear data libraries (JEFF-3.1.1, ENDF/B-VII, JENDL-3.3). The upgraded version of the code is capable to treat isomeric branching ratios, neutron induced fission product yields, spontaneous fission yields and energy release per fission recorded in ENDF-formatted data files. The alternative algorithm for time evolution of nuclide concentrations is added. A predictor-corrector mechanism and the calculation of nuclear heating are available as well. The validation of the code on REBUS experimental programme results has been performed. The upgraded version of ALEPH has shown better agreement with measured data than other codes, including previous version of ALEPH. (authors)

  19. Development of three dimensional transient analysis code STTA for SCWR core

    International Nuclear Information System (INIS)

    Wang, Lianjie; Zhao, Wenbo; Chen, Bingde; Yao, Dong; Yang, Ping

    2015-01-01

    Highlights: • A coupled three dimensional neutronics/thermal-hydraulics code STTA is developed for SCWR core transient analysis. • The Dynamic Link Libraries method is adopted for coupling computation for SCWR multi-flow core transient analysis. • The NEACRP-L-335 PWR benchmark problems are studied to verify STTA. • The SCWR rod ejection problems are studied to verify STTA. • STTA meets what is expected from a code for SCWR core 3-D transient preliminary analysis. - Abstract: A coupled three dimensional neutronics/thermal-hydraulics code STTA (SCWR Three dimensional Transient Analysis code) is developed for SCWR core transient analysis. Nodal Green’s Function Method based on the second boundary condition (NGFMN-K) is used for solving transient neutron diffusion equation. The SCWR sub-channel code ATHAS is integrated into NGFMN-K through the serial integration coupling approach. The NEACRP-L-335 PWR benchmark problem and SCWR rod ejection problems are studied to verify STTA. Numerical results show that the PWR solution of STTA agrees well with reference solutions and the SCWR solution is reasonable. The coupled code can be well applied to the core transients and accidents analysis with 3-D core model during both subcritical pressure and supercritical pressure operation

  20. Development of the three dimensional flow model in the SPACE code

    International Nuclear Information System (INIS)

    Oh, Myung Taek; Park, Chan Eok; Kim, Shin Whan

    2014-01-01

    SPACE (Safety and Performance Analysis CodE) is a nuclear plant safety analysis code, which has been developed in the Republic of Korea through a joint research between the Korean nuclear industry and research institutes. The SPACE code has been developed with multi-dimensional capabilities as a requirement of the next generation safety code. It allows users to more accurately model the multi-dimensional flow behavior that can be exhibited in components such as the core, lower plenum, upper plenum and downcomer region. Based on generalized models, the code can model any configuration or type of fluid system. All the geometric quantities of mesh are described in terms of cell volume, centroid, face area, and face center, so that it can naturally represent not only the one dimensional (1D) or three dimensional (3D) Cartesian system, but also the cylindrical mesh system. It is possible to simulate large and complex domains by modelling the complex parts with a 3D approach and the rest of the system with a 1D approach. By 1D/3D co-simulation, more realistic conditions and component models can be obtained, providing a deeper understanding of complex systems, and it is expected to overcome the shortcomings of 1D system codes. (author)

  1. Health effects estimation code development for accident consequence analysis

    International Nuclear Information System (INIS)

    Togawa, O.; Homma, T.

    1992-01-01

    As part of a computer code system for nuclear reactor accident consequence analysis, two computer codes have been developed for estimating health effects expected to occur following an accident. Health effects models used in the codes are based on the models of NUREG/CR-4214 and are revised for the Japanese population on the basis of the data from the reassessment of the radiation dosimetry and information derived from epidemiological studies on atomic bomb survivors of Hiroshima and Nagasaki. The health effects models include early and continuing effects, late somatic effects and genetic effects. The values of some model parameters are revised for early mortality. The models are modified for predicting late somatic effects such as leukemia and various kinds of cancers. The models for genetic effects are the same as those of NUREG. In order to test the performance of one of these codes, it is applied to the U.S. and Japanese populations. This paper provides descriptions of health effects models used in the two codes and gives comparisons of the mortality risks from each type of cancer for the two populations. (author)

  2. Recent development and application of a new safety analysis code for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, Brad J., E-mail: Brad.Merrill@inl.gov; Humrickhouse, Paul W.; Shimada, Masashi

    2016-11-01

    Highlights: • This paper presents recent code development activities for the MELCOR for fusion and Tritium Migration Analysis Program computer codes at the Idaho National Engineering Laboratory. • The capabilities of these computer codes are being merged into a single safety analysis tool for fusion reactor accidents. • The result of benchmarking these codes against previous code versions is presented by the authors of this paper. • This new capability is applied to study the tritium inventory and permeation rate for a water cold tungsten divertor that has neutron damage at 0.3 dpa. - Abstract: This paper describes the recent progress made in the development of two codes for fusion reactor safety assessments at the Idaho National Laboratory (INL): MELCOR for fusion and the Tritium Migration Analysis Program (TMAP). During the ITER engineering design activity (EDA), the INL Fusion Safety Program (FSP) modified the MELCOR 1.8.2 code for fusion applications to perform ITER thermal hydraulic safety analyses. Because MELCOR has undergone many improvements at SNL-NM since version 1.8.2 was released, the INL FSP recently imported these same fusion modifications into the MELCOR 1.8.6 code, along with the multiple fluids modifications of MELCOR 1.8.5 for fusion used in US advanced fusion reactor design studies. TMAP has also been under development for several decades at the INL by the FSP. TMAP treats multi-specie surface absorption and diffusion in composite materials with dislocation traps, plus the movement of these species from room to room by fluid flow within a given facility. Recently, TMAP was updated to consider multiple trap site types to allow the simulation of experimental data from neutron irradiated tungsten. The natural development path for both of these codes is to merge their capabilities into one computer code to provide a more comprehensive safety tool for analyzing accidents in fusion reactors. In this paper we detail recent developments in this

  3. Recent development and application of a new safety analysis code for fusion reactors

    International Nuclear Information System (INIS)

    Merrill, Brad J.; Humrickhouse, Paul W.; Shimada, Masashi

    2016-01-01

    Highlights: • This paper presents recent code development activities for the MELCOR for fusion and Tritium Migration Analysis Program computer codes at the Idaho National Engineering Laboratory. • The capabilities of these computer codes are being merged into a single safety analysis tool for fusion reactor accidents. • The result of benchmarking these codes against previous code versions is presented by the authors of this paper. • This new capability is applied to study the tritium inventory and permeation rate for a water cold tungsten divertor that has neutron damage at 0.3 dpa. - Abstract: This paper describes the recent progress made in the development of two codes for fusion reactor safety assessments at the Idaho National Laboratory (INL): MELCOR for fusion and the Tritium Migration Analysis Program (TMAP). During the ITER engineering design activity (EDA), the INL Fusion Safety Program (FSP) modified the MELCOR 1.8.2 code for fusion applications to perform ITER thermal hydraulic safety analyses. Because MELCOR has undergone many improvements at SNL-NM since version 1.8.2 was released, the INL FSP recently imported these same fusion modifications into the MELCOR 1.8.6 code, along with the multiple fluids modifications of MELCOR 1.8.5 for fusion used in US advanced fusion reactor design studies. TMAP has also been under development for several decades at the INL by the FSP. TMAP treats multi-specie surface absorption and diffusion in composite materials with dislocation traps, plus the movement of these species from room to room by fluid flow within a given facility. Recently, TMAP was updated to consider multiple trap site types to allow the simulation of experimental data from neutron irradiated tungsten. The natural development path for both of these codes is to merge their capabilities into one computer code to provide a more comprehensive safety tool for analyzing accidents in fusion reactors. In this paper we detail recent developments in this

  4. A framework for developing finite element codes for multi-disciplinary applications.

    OpenAIRE

    Dadvand, Pooyan

    2007-01-01

    The world of computing simulation has experienced great progresses in recent years and requires more exigent multidisciplinary challenges to satisfy the new upcoming demands. Increasing the importance of solving multi-disciplinary problems makes developers put more attention to these problems and deal with difficulties involved in developing software in this area. Conventional finite element codes have several difficulties in dealing with multi-disciplinary problems. Many of these codes are d...

  5. Development of a general coupling interface for the fuel performance code transuranus tested with the reactor dynamic code DYN3D

    International Nuclear Information System (INIS)

    Holt, L.; Rohde, U.; Seidl, M.; Schubert, A.; Van Uffelen, P.

    2013-01-01

    Several institutions plan to couple the fuel performance code TRANSURANUS developed by the European Institute for Transuranium Elements with their own codes. One of these codes is the reactor dynamic code DYN3D maintained by the Helmholtz-Zentrum Dresden - Rossendorf. DYN3D was developed originally for VVER type reactors and was extended later to western type reactors. Usually, the fuel rod behavior is modeled in thermal hydraulics and neutronic codes in a simplified manner. The main idea of this coupling is to describe the fuel rod behavior in the frame of core safety analysis in a more detailed way, e.g. including the influence of the high burn-up structure, geometry changes and fission gas release. It allows to take benefit from the improved computational power and software achieved over the last two decades. The coupling interface was developed in a general way from the beginning. Thence it can be easily used also by other codes for a coupling with TRANSURANUS. The user can choose between a one-way as well as a two-way online coupling option. For a one-way online coupling, DYN3D provides only the time-dependent rod power and thermal hydraulics conditions to TRANSURANUS, but the fuel performance code doesn’t transfer any variable back to DYN3D. In a two-way online coupling, TRANSURANUS in addition transfers parameters like fuel temperature and cladding temperature back to DYN3D. This list of variables can be extended easily by geometric and further variables of interest. First results of the code system DYN3D-TRANSURANUS will be presented for a control rod ejection transient in a modern western type reactor. Pre-analyses show already that a detailed fuel rod behavior modeling will influence the thermal hydraulics and thence also the neutronics due to the Doppler reactivity effect of the fuel temperature. The coupled code system has therefore a potential to improve the assessment of safety criteria. The developed code system DYN3D-TRANSURANUS can be used also

  6. Development of essential system technologies for advanced reactor - Development of natural circulation analysis code for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Goon Cherl; Park, Ik Gyu; Kim, Jae Hak; Lee, Sang Min; Kim, Tae Wan [Seoul National University, Seoul (Korea)

    1999-04-01

    The objective of this study is to understand the natural circulation characteristics of integral type reactors and to develope the natural circulation analysis code for integral type reactors. This study is focused on the asymmetric 3-dimensional flow during natural circulation such as 1/4 steam generator section isolation and the inclination of the reactor systems. Natural circulation experiments were done using small-scale facilities of integral reactor SMART (System-Integrated Modular Advanced ReacTor). CFX4 code was used to investigate the flow patterns and thermal mixing phenomena in upper pressure header and downcomer. Differences between normal operation of all steam generators and the 1/4 section isolation conditions were observed and the results were used as the data 1/4 section isolation conditions were observed and the results were used as the data for RETRAN-03/INT code validation. RETRAN-03 code was modified for the development of natural circulation analysis code for integral type reactors, which was development of natural circulation analysis code for integral type reactors, which was named as RETRAN-03/INT. 3-dimensional analysis models for asymmetric flow in integral type reactors were developed using vector momentum equations in RETRAN-03. Analysis results using RETRAN-03/INT were compared with experimental and CFX4 analysis results and showed good agreements. The natural circulation characteristics obtained in this study will provide the important and fundamental design features for the future small and medium integral reactors. (author). 29 refs., 75 figs., 18 tabs.

  7. Development of EASYQAD version β: A Visualization Code System for QAD-CGGP-A Gamma and Neutron Shielding Calculation Code

    International Nuclear Information System (INIS)

    Kim, Jae Cheon; Lee, Hwan Soo; Ha, Pham Nhu Viet; Kim, Soon Young; Shin, Chang Ho; Kim, Jong Kyung

    2007-01-01

    EASYQAD had been previously developed by using MATLAB GUI (Graphical User Interface) in order to perform conveniently gamma and neutron shielding calculations at Hanyang University. It had been completed as version α of radiation shielding analysis code. In this study, EASYQAD was upgraded to version β with many additional functions and more user-friendly graphical interfaces. For general users to run it on Windows XP environment without any MATLAB installation, this version was developed into a standalone code system

  8. Micromagnetic Code Development of Advanced Magnetic Structures Final Report CRADA No. TC-1561-98

    Energy Technology Data Exchange (ETDEWEB)

    Cerjan, Charles J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shi, Xizeng [Read-Rite Corporation, Fremont, CA (United States)

    2017-11-09

    The specific goals of this project were to: Further develop the previously written micromagnetic code DADIMAG (DOE code release number 980017); Validate the code. The resulting code was expected to be more realistic and useful for simulations of magnetic structures of specific interest to Read-Rite programs. We also planned to further the code for use in internal LLNL programs. This project complemented LLNL CRADA TC-840-94 between LLNL and Read-Rite, which allowed for simulations of the advanced magnetic head development completed under the CRADA. TC-1561-98 was effective concurrently with LLNL non-exclusive copyright license (TL-1552-98) to Read-Rite for DADIMAG Version 2 executable code.

  9. Status of development and verification of the CTFD code FLUBOX

    International Nuclear Information System (INIS)

    Graf, U.; Paradimitriou, P.

    2004-01-01

    The Computational Two-Fluid Dynamics (CTFD) code FLUBOX is developed at GRS for the multidimensional simulation of two-phase flows. FLUBOX will also be used as a multidimensional module for the German system code ATHLET. The Benchmark test cases of the European ASTAR project were used to verify the ability of the code FLUBOX to calculate typical two-phase flow phenomena and conditions: void and pressure wave propagation, phase transitions, countercurrent flows, sharp interface movements, compressible (vapour) and nearly incompressible (water) conditions, thermal and mechanical non-equilibrium, stiff source terms due to mass and heat transfer between the phases. Realistic simulations of two-phase require beside the pure conservation equations additional transport equations for the interfacial area, turbulent energy and dissipation. A transport equation for the interfacial area density covering the whole two-phase flow range is in development. First validation calculations are presented in the paper. Turbulent shear stress for two-phase flows will be modelled by the development of transport equations for the turbulent kinetic energy and the turbulent dissipation rate. The development of the transport equations is mainly based on first principles on bubbles or drops and is largely free from empiricism. (author)

  10. Development of RESRAD probabilistic computer codes for NRC decommissioning and license termination applications

    International Nuclear Information System (INIS)

    Chen, S. Y.; Yu, C.; Mo, T.; Trottier, C.

    2000-01-01

    In 1999, the US Nuclear Regulatory Commission (NRC) tasked Argonne National Laboratory to modify the existing RESRAD and RESRAD-BUILD codes to perform probabilistic, site-specific dose analysis for use with the NRC's Standard Review Plan for demonstrating compliance with the license termination rule. The RESRAD codes have been developed by Argonne to support the US Department of Energy's (DOEs) cleanup efforts. Through more than a decade of application, the codes already have established a large user base in the nation and a rigorous QA support. The primary objectives of the NRC task are to: (1) extend the codes' capabilities to include probabilistic analysis, and (2) develop parameter distribution functions and perform probabilistic analysis with the codes. The new codes also contain user-friendly features specially designed with graphic-user interface. In October 2000, the revised RESRAD (version 6.0) and RESRAD-BUILD (version 3.0), together with the user's guide and relevant parameter information, have been developed and are made available to the general public via the Internet for use

  11. Development of M3C code for Monte Carlo reactor physics criticality calculations

    International Nuclear Information System (INIS)

    Kumar, Anek; Kannan, Umasankari; Krishanani, P.D.

    2015-06-01

    The development of Monte Carlo code (M3C) for reactor design entails use of continuous energy nuclear data and Monte Carlo simulations for each of the neutron interaction processes. BARC has started a concentrated effort for developing a new general geometry continuous energy Monte Carlo code for reactor physics calculation indigenously. The code development required a comprehensive understanding of the basic continuous energy cross section sets. The important features of this code are treatment of heterogeneous lattices by general geometry, use of point cross sections along with unionized energy grid approach, thermal scattering model for low energy treatment, capability of handling the microscopic fuel particles dispersed randomly. The capability of handling the randomly dispersed microscopic fuel particles which is very useful for the modeling of High-Temperature Gas-Cooled reactor fuels which are composed of thousands of microscopic fuel particle (TRISO fuel particle), randomly dispersed in a graphite matrix. The Monte Carlo code for criticality calculation is a pioneering effort and has been used to study several types of lattices including cluster geometries. The code has been verified for its accuracy against more than 60 sample problems covering a wide range from simple (like spherical) to complex geometry (like PHWR lattice). Benchmark results show that the code performs quite well for the criticality calculation of the system. In this report, the current status of the code, features of the code, some of the benchmark results for the testing of the code and input preparation etc. are discussed. (author)

  12. Development and Validation of A Nuclear Fuel Cycle Analysis Tool: A FUTURE Code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. K.; Ko, W. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Yoon Hee [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-10-15

    This paper presents the development and validation methods of the FUTURE (FUel cycle analysis Tool for nUcleaR Energy) code, which was developed for a dynamic material flow evaluation and economic analysis of the nuclear fuel cycle. This code enables an evaluation of a nuclear material flow and its economy for diverse nuclear fuel cycles based on a predictable scenario. The most notable virtue of this FUTURE code, which was developed using C and MICROSOFT SQL DBMS, is that a program user can design a nuclear fuel cycle process easily using a standard process on the canvas screen through a drag-and-drop method. From the user's point of view, this code is very easy to use thanks to its high flexibility. In addition, the new code also enables the maintenance of data integrity by constructing a database environment of the results of the nuclear fuel cycle analyses.

  13. Development of in-vessel source term analysis code, tracer

    International Nuclear Information System (INIS)

    Miyagi, K.; Miyahara, S.

    1996-01-01

    Analyses of radionuclide transport in fuel failure accidents (generally referred to source terms) are considered to be important especially in the severe accident evaluation. The TRACER code has been developed to realistically predict the time dependent behavior of FPs and aerosols within the primary cooling system for wide range of fuel failure events. This paper presents the model description, results of validation study, the recent model advancement status of the code, and results of check out calculations under reactor conditions. (author)

  14. Development of MATRA-LMR code α-version for LMR subchannel analysis

    International Nuclear Information System (INIS)

    Kim, Won Seok; Kim, Young Gyun; Kim, Young Gin

    1998-05-01

    Since the sodium boiling point is very high, maximum cladding and pin temperature are used for design limit condition in sodium cooled liquid metal reactor. It is necessary to predict accurately the core temperature distribution to increase the sodium coolant efficiency. Based on the MATRA code, which is developed for PWR analysis, MATRA-LMR is being developed for LMR. The major modification are as follows : A) The sodium properties table is implemented as subprogram in the code. B) Heat transfer coefficients are changed for LMR C) The pressure drop correlations are changed for more accurate calculations, which are Novendstern, Chiu-Rohsenow-Todreas, and Cheng-Todreas correlations. To assess the development status of MATRA-LMR code, calculations have been performed for ORNL 19 pin and EBR-II 61 pin tests. MATRA-LMR calculation results are also compared with the results obtained by the ALTHEN code, which uses more simplied thermal hydraulic model. The MATRA-LMR predictions are found to agree well to the measured values. The differences in results between MATRA-LMR and SLTHEN have occurred because SLTHEN code uses the very simplied thermal-hydraulic model to reduce computing time. MATRA-LMR can be used only for single assembly analysis, but it is planned to extend for multi-assembly calculation. (author). 18 refs., 8 tabs., 14 figs

  15. The development of fluid codes for the laser compression of plasma

    International Nuclear Information System (INIS)

    Nicholas, D.J.

    1982-08-01

    Notes are given on the construction and use of simulation codes in plasma physics requiring only a limited background knowledge in numerical analysis and finite-difference techniques. The development of a 1-D Eulerian codes to source form is followed as an example. (U.K.)

  16. Development of long-lived radionuclide transmutation technology - Development of a code system for core analysis of the transmutation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nam Zin; Kim, Yong Hee; Kim, Tae Hyung; Jo, Chang Keun; Park, Chang Je [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1996-07-01

    The objective of this study is to develop a code system for core analysis= of the critical transmutation reactors utilizing fast neutrons. Core characteristics of the transmutation reactors were identified and four codes, HANCELL for pincell calculation, PRISM and AFEN-H3D for core calculation, and MA{sub B}URN for depletion calculation, were developed. The pincell calculation code is based on one-dimensional collision probability method and may provide homogenized/condensed parameters of a pincell and also can homogenize the control assembly via a nonlinear iterative method. The core calculation codes, PRISM and AFEN-H3D, solve the multi-group, multi-dimensional neutron diffusion equations for a hexagonal geometry and they are based on the finite difference method and analytic function expansion nodal (AFEN) method, respectively. The MA{sub B}URN code san analyze the behavior of actinides and fission products in a reactor core. Through benchmarking, we confirmed that the newly developed codes provide accurate solutions. 30 refs., 10 tabs., 8 figs. (author)

  17. Development of an object oriented lattice QCD code ''Bridge++''

    International Nuclear Information System (INIS)

    Ueda, S; Aoki, S; Aoyama, T; Kanaya, K; Taniguchi, Y; Matsufuru, H; Motoki, S; Namekawa, Y; Nemura, H; Ukita, N

    2014-01-01

    We are developing a new lattice QCD code set ''Bridge++'' aiming at extensible, readable, and portable workbench for QCD simulations, while keeping a high performance at the same time. Bridge++ covers conventional lattice actions and numerical algorithms. The code set is constructed in C++ with an object oriented programming. In this paper we describe fundamental ingredients of the code and the current status of development

  18. Code Development of Radioactive Aerosol Scrubbing in Pool-Injection Zone

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hyun Joung; Ha, Kwang Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jang, Dong Soon [Chungnam National University, Daejeon (Korea, Republic of)

    2015-10-15

    The pool scrubbing models were reviewed and an aerosol scrubbing code has been prepared to calculate decontamination factor through the injection zone. The developed code has been verified using the experimental results and evaluated parametrically on the input variables. In injection zone, the initial steam condensation was most effective mechanism for the aerosol removal, and the steam fraction and pool temperature were highly affected on the decontamination factor by initial steam condensation. The aerosol scrubbing code will be updated to evaluate the decontamination factor at rise zone and finally whole pool scrubber phenomena. If a severe accident occurs in a nuclear power plant (NPP), the aerosol and gaseous fission products might be produced in the reactor vessel, and then released to the environment after the containment failure. FCVS (Filtered Containment Venting System) is one of the severe accident mitigation systems for retaining the containment integrity by discharging the high-temperature and high-pressure fission products to the environment after passing through the filtration system. In general, the FCVS is categorized into two types, wet and dry types. The scrubbing pool could play an important role in the wet type FCVS because a large amount of aerosol is captured in the water pool. The pool scrubbing phenomena have been modelled and embedded in several computer codes, such as SPARC (Suppression Pool Aerosol Removal Code), BUSCA (BUbble Scrubbing Algorithm) and SUPRA (Suppression Pool Retention Analysis). These codes aim at simulating the pool scrubbing process and estimating the decontamination factors (DFs) of the radioactive aerosol and iodine gas in the water pool, which is defined as the ratio of initial mass of the specific radioactive material to final massy after passing through the water pool. The pool scrubbing models were reviewed and an aerosol scrubbing code has been prepared to calculate decontamination factor through the injection

  19. CODE SWITCHING AND THE DEVELOPMENT OF LINGUISTIC SYSTEM OF SIMULTANEOUS BILINGUAL CHILDREN

    Directory of Open Access Journals (Sweden)

    Leni Amelia Suek

    2017-11-01

    Full Text Available Code switching and code mixing are the phenomena commonly seen done by a bilingual. This behavior is influenced by several aspects such as the linguistic system, sociolinguistics, pragmatics, and language competence of the bilingual. If children are able to distinguish two different languages since early age, they will be considered simultaneous bilinguals. They show that they develop multiple, rather than single, linguistic systems. However, it was understood that code switching and code mixing were due to the failure in using proper words, language features, and sociolinguistic competence. Yet, recent studies have shown that bilingual children are able to use both languages proficiently with no signs of confusion or failure in language use. This ability also does not hinder their cognitive development.

  20. Development of GUI systems for the MIDAS code

    International Nuclear Information System (INIS)

    Kim, K.R.; Park, S.H.; Kim, D.H.

    2004-01-01

    MIDAS is being developed at KAERI based on MELCOR as an integrated severe accident analysis code with existing model modification and new model addition. MIDAS was restructured to avoid the pointer based variable referencing style of MELCOR, and enhanced the memory effectiveness using the dynamic allocation method of Fortran 90. This paper describes recent activities of developing the GUI environments for MIDAS code at KAERI. Up to now, we have developed the four PC-based subsystems, which are IEDIT, IPLOT, SATS and HyperKAMG. IEDIT is an input management system that can read MELCOR input files and display its information in the Window panels. Users can modify each item in the panel and the input file will be modified according to that changes. IPLOT is a simple plotting system that can draw MIDAS plot variables trend graphs. SATS is developed as a severe accident training simulator that can display nuclear plant behavior graphically. Moreover SATS provides several controllable pumps and valves which appeared in the severe accidence. Together with SATS and the online severe accident guidance HyperKAMG, combined properly, severe accident mitigation scenarios could be presented graphically and dramatically without any change of MELCOR inputs. GUI development as a part of a severe accident management program package, MIDAS. (author)

  1. DEVELOPMENT OF SALES APPLICATION OF PREPAID ELECTRICITY VOUCHER BASED ON ANFROID PLATFORM USING QUICK RESPONSE CODE (QR CODE

    Directory of Open Access Journals (Sweden)

    Ricky Akbar

    2017-09-01

    Full Text Available Perusahaan Listrik Negara (PLN has implemented a smart electricity system or prepaid electricity. The customers pay the electricity voucher first before use the electricity. The token contained in electricity voucher that has been purchased by the customer is inserted into the Meter Prabayar (MPB installed in the location of customers. When a customer purchases a voucher, it will get a receipt that contains all of the customer's identity and the 20-digit of voucher code (token to be entered into MPB as a substitute for electrical energy credit. Receipts obtained by the customer is certainly vulnerable to loss, or hijacked by unresponsible parties. In this study, authors designed and develop an android based application by utilizing QR code technology as a replacement for the receipt of prepaid electricity credit which contains the identity of the customer and the 20-digit voucher code. The application is developed by implemented waterfall methodology. The implementation process of the waterfall methods used, are (1 analysis of functional requirement of the system by conducting a preliminary study and data collection based on field studies and literature, (2 system design by using UML diagrams and Business Process Model Notation (BPMN and Entity Relationship diagram (ERD, (3 design implementation by using OOP (Object Oriented programming technique. Web application is developed by using laravel PHP framework and database MySQL while mobile application is developed by using B4A (4 developed system is tested by using blackbox method testing. Final result of this research is a Web and mobile applications for the sale of electricityvoucher by QR Code technology.

  2. Wing Torsional Stiffness Tests of the Active Aeroelastic Wing F/A-18 Airplane

    Science.gov (United States)

    Lokos, William A.; Olney, Candida D.; Crawford, Natalie D.; Stauf, Rick; Reichenbach, Eric Y.

    2002-01-01

    The left wing of the Active Aeroelastic Wing (AAW) F/A-18 airplane has been ground-load-tested to quantify its torsional stiffness. The test has been performed at the NASA Dryden Flight Research Center in November 1996, and again in April 2001 after a wing skin modification was performed. The primary objectives of these tests were to characterize the wing behavior before the first flight, and provide a before-and-after measurement of the torsional stiffness. Two streamwise load couples have been applied. The wing skin modification is shown to have more torsional flexibility than the original configuration has. Additionally, structural hysteresis is shown to be reduced by the skin modification. Data comparisons show good repeatability between the tests.

  3. Development of best estimate auditing code for CANDU thermal-hydraulic safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Bub Dong; Lee, Won Jae; Hwang, Moon Kyu; Lim, Hong Sik [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    The main purpose of this study is to develop a thermal hydraulic auditing code for the CANDU reactor, modifying the model of existing PWR auditing tool, i.e. RELAP5/MOD3.The study was performed by reconsideration of the previous code assessment works and phenomena identification for essential accident scenario. Improvement areas of model development for auditing tool were identified based on the code comparison and PIRT results. Nine models have been improved significantly for the analysis of LOCA and Mon LOCA event. Conceptual problem or separate effect assessment have been performed to verify the model improvement. The linking calculation with CONTAIN 2.0 has been also enabled to establish the unified auditing code system. Analysis for the CANDU plant real transient and hypothetical LOCA bas been performed using the improved version. It has been concluded that the developed version can be utilized for the auditing analysis of LOCA and non-LOCA event for the CANDU reactor. 25 refs., 84 figs., 36 tabs. (Author)

  4. DEVELOPMENT AND VALIDATION OF A NUCLEAR FUEL CYCLE ANALYSIS TOOL: A FUTURE CODE

    Directory of Open Access Journals (Sweden)

    S.K. KIM

    2013-10-01

    Full Text Available This paper presents the development and validation methods of the FUTURE (FUel cycle analysis Tool for nUcleaR Energy code, which was developed for a dynamic material flow evaluation and economic analysis of the nuclear fuel cycle. This code enables an evaluation of a nuclear material flow and its economy for diverse nuclear fuel cycles based on a predictable scenario. The most notable virtue of this FUTURE code, which was developed using C# and MICROSOFT SQL DBMS, is that a program user can design a nuclear fuel cycle process easily using a standard process on the canvas screen through a drag-and-drop method. From the user's point of view, this code is very easy to use thanks to its high flexibility. In addition, the new code also enables the maintenance of data integrity by constructing a database environment of the results of the nuclear fuel cycle analyses.

  5. The development and application of a sub-channel code in ocean environment

    International Nuclear Information System (INIS)

    Wu, Pan; Shan, Jianqiang; Xiang, Xiong; Zhang, Bo; Gou, Junli; Zhang, Bin

    2016-01-01

    Highlights: • A sub-channel code named ATHAS/OE is developed for nuclear reactors in ocean environment. • ATHAS/OE is verified by another modified sub-channel code based on COBRA-IV. • ATHAS/OE is used to analyze thermal hydraulic of a typical SMR in heaving and rolling motion. • Calculation results show that ocean condition affect the thermal hydraulic of a reactor significantly. - Abstract: An upgraded version of ATHAS sub-channel code ATHAS/OE is developed for the investigation of the thermal hydraulic behavior of nuclear reactor core in ocean environment with consideration of heaving and rolling motion effect. The code is verified by another modified sub-channel code based on COBRA-IV and used to analyze the thermal hydraulic characteristics of a typical SMR under heaving and rolling motion condition. The calculation results show that the heaving and rolling motion affect the thermal hydraulic behavior of a reactor significantly.

  6. Development of seismic analysis model for HTGR core on commercial FEM code

    International Nuclear Information System (INIS)

    Tsuji, Nobumasa; Ohashi, Kazutaka

    2015-01-01

    The aftermath of the Great East Japan Earthquake prods to revise the design basis earthquake intensity severely. In aseismic design of block-type HTGR, the securement of structural integrity of core blocks and other structures which are made of graphite become more important. For the aseismic design of block-type HTGR, it is necessary to predict the motion of core blocks which are collided with adjacent blocks. Some seismic analysis codes have been developed in 1970s, but these codes are special purpose-built codes and have poor collaboration with other structural analysis code. We develop the vertical 2 dimensional analytical model on multi-purpose commercial FEM code, which take into account the multiple impacts and friction between block interfaces and rocking motion on contact with dowel pins of the HTGR core by using contact elements. This model is verified by comparison with the experimental results of 12 column vertical slice vibration test. (author)

  7. Development of non-linear vibration analysis code for CANDU fuelling machine

    International Nuclear Information System (INIS)

    Murakami, Hajime; Hirai, Takeshi; Horikoshi, Kiyomi; Mizukoshi, Kaoru; Takenaka, Yasuo; Suzuki, Norio.

    1988-01-01

    This paper describes the development of a non-linear, dynamic analysis code for the CANDU 600 fuelling machine (F-M), which includes a number of non-linearities such as gap with or without Coulomb friction, special multi-linear spring connections, etc. The capabilities and features of the code and the mathematical treatment for the non-linearities are explained. The modeling and numerical methodology for the non-linearities employed in the code are verified experimentally. Finally, the simulation analyses for the full-scale F-M vibration testing are carried out, and the applicability of the code to such multi-degree of freedom systems as F-M is demonstrated. (author)

  8. Development of a PC code package for the analysis of research and power reactors

    International Nuclear Information System (INIS)

    Urli, N.

    1992-06-01

    Computer codes available for performing reactor physics calculations for nuclear research reactors and power reactors are normally suited for running on mainframe computers. With the fast development in speed and memory of the PCs and affordable prices it became feasible to develop PC versions of commonly used codes. The present work performed under an IAEA sponsored research contract has successfully developed a code package for running on a PC. This package includes a cross-section generating code PSU-LEOPARD and 2D and 1D spatial diffusion codes, MCRAC and MCYC 1D. For adapting PSU-LEOPARD for a PC, the binary library has been reorganized to decimal form, upgraded to FORTRAN-77 standard and arrays and subroutines reorganized to conform to PC compiler. Similarly PC version of MCRAC for FORTRAN-77 and 1D code MCYC 1D have been developed. Tests, verification and bench mark results show excellent agreement with the results obtained from mainframe calculations. The execution speeds are also very satisfactory. 12 refs, 4 figs, 3 tabs

  9. Development of an integrated thermal-hydraulics capability incorporating RELAP5 and PANTHER neutronics code

    Energy Technology Data Exchange (ETDEWEB)

    Page, R.; Jones, J.R.

    1997-07-01

    Ensuring that safety analysis needs are met in the future is likely to lead to the development of new codes and the further development of existing codes. It is therefore advantageous to define standards for data interfaces and to develop software interfacing techniques which can readily accommodate changes when they are made. Defining interface standards is beneficial but is necessarily restricted in application if future requirements are not known in detail. Code interfacing methods are of particular relevance with the move towards automatic grid frequency response operation where the integration of plant dynamic, core follow and fault study calculation tools is considered advantageous. This paper describes the background and features of a new code TALINK (Transient Analysis code LINKage program) used to provide a flexible interface to link the RELAP5 thermal hydraulics code with the PANTHER neutron kinetics and the SIBDYM whole plant dynamic modelling codes used by Nuclear Electric. The complete package enables the codes to be executed in parallel and provides an integrated whole plant thermal-hydraulics and neutron kinetics model. In addition the paper discusses the capabilities and pedigree of the component codes used to form the integrated transient analysis package and the details of the calculation of a postulated Sizewell `B` Loss of offsite power fault transient.

  10. Development of an integrated thermal-hydraulics capability incorporating RELAP5 and PANTHER neutronics code

    International Nuclear Information System (INIS)

    Page, R.; Jones, J.R.

    1997-01-01

    Ensuring that safety analysis needs are met in the future is likely to lead to the development of new codes and the further development of existing codes. It is therefore advantageous to define standards for data interfaces and to develop software interfacing techniques which can readily accommodate changes when they are made. Defining interface standards is beneficial but is necessarily restricted in application if future requirements are not known in detail. Code interfacing methods are of particular relevance with the move towards automatic grid frequency response operation where the integration of plant dynamic, core follow and fault study calculation tools is considered advantageous. This paper describes the background and features of a new code TALINK (Transient Analysis code LINKage program) used to provide a flexible interface to link the RELAP5 thermal hydraulics code with the PANTHER neutron kinetics and the SIBDYM whole plant dynamic modelling codes used by Nuclear Electric. The complete package enables the codes to be executed in parallel and provides an integrated whole plant thermal-hydraulics and neutron kinetics model. In addition the paper discusses the capabilities and pedigree of the component codes used to form the integrated transient analysis package and the details of the calculation of a postulated Sizewell 'B' Loss of offsite power fault transient

  11. Methodology, status and plans for development and assessment of the code ATHLET

    Energy Technology Data Exchange (ETDEWEB)

    Teschendorff, V.; Austregesilo, H.; Lerchl, G. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH Forschungsgelaende, Garching (Germany)

    1997-07-01

    The thermal-hydraulic computer code ATHLET (Analysis of THermal-hydraulics of LEaks and Transients) is being developed by the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) for the analysis of anticipated and abnormal plant transients, small and intermediate leaks as well as large breaks in light water reactors. The aim of the code development is to cover the whole spectrum of design basis and beyond design basis accidents (without core degradation) for PWRs and BWRs with only one code. The main code features are: advanced thermal-hydraulics; modular code architecture; separation between physical models and numerical methods; pre- and post-processing tools; portability. The code has features that are of special interest for applications to small leaks and transients with accident management, e.g. initialization by a steady-state calculation, full-range drift-flux model, dynamic mixture level tracking. The General Control Simulation Module of ATHLET is a flexible tool for the simulation of the balance-of-plant and control systems including the various operator actions in the course of accident sequences with AM measures. The code development is accompained by a systematic and comprehensive validation program. A large number of integral experiments and separate effect tests, including the major International Standard Problems, have been calculated by GRS and by independent organizations. The ATHLET validation matrix is a well balanced set of integral and separate effects tests derived from the CSNI proposal emphasizing, however, the German combined ECC injection system which was investigated in the UPTF, PKL and LOBI test facilities.

  12. Methodology, status and plans for development and assessment of the code ATHLET

    International Nuclear Information System (INIS)

    Teschendorff, V.; Austregesilo, H.; Lerchl, G.

    1997-01-01

    The thermal-hydraulic computer code ATHLET (Analysis of THermal-hydraulics of LEaks and Transients) is being developed by the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) for the analysis of anticipated and abnormal plant transients, small and intermediate leaks as well as large breaks in light water reactors. The aim of the code development is to cover the whole spectrum of design basis and beyond design basis accidents (without core degradation) for PWRs and BWRs with only one code. The main code features are: advanced thermal-hydraulics; modular code architecture; separation between physical models and numerical methods; pre- and post-processing tools; portability. The code has features that are of special interest for applications to small leaks and transients with accident management, e.g. initialization by a steady-state calculation, full-range drift-flux model, dynamic mixture level tracking. The General Control Simulation Module of ATHLET is a flexible tool for the simulation of the balance-of-plant and control systems including the various operator actions in the course of accident sequences with AM measures. The code development is accompained by a systematic and comprehensive validation program. A large number of integral experiments and separate effect tests, including the major International Standard Problems, have been calculated by GRS and by independent organizations. The ATHLET validation matrix is a well balanced set of integral and separate effects tests derived from the CSNI proposal emphasizing, however, the German combined ECC injection system which was investigated in the UPTF, PKL and LOBI test facilities

  13. Proceedings of the 8th topical meeting on nuclear code development

    International Nuclear Information System (INIS)

    1993-03-01

    The 8th Topical Meeting on Nuclear Code Development, organized by Committee on Reactor Physics and Nuclear Codes Committee of Japan Atomic Energy Research Institute (JAERI), was held at Tokai Research Establishment of JAERI, on 11th and 12th of November, 1992. In the meeting, 14 papers were presented on the topics of (1) the next generation nuclear reactor design system and (2) advances of the nuclear fuel reprocessing safety analysis codes. These papers are compiled in this proceedings. (author)

  14. Development of a computer code for Dalat research reactor transient analysis

    International Nuclear Information System (INIS)

    Le Vinh Vinh; Nguyen Thai Sinh; Huynh Ton Nghiem; Luong Ba Vien; Pham Van Lam; Nguyen Kien Cuong

    2003-01-01

    DRSIM (Dalat Reactor SIMulation) computer code has been developed for Dalat reactor transient analysis. It is basically a coupled neutronics-hydrodynamics-heat transfer code employing point kinetics, one dimensional hydrodynamics and one dimensional heat transfer. The work was financed by VAEC and DNRI in the framework of institutional R and D programme. Some transient problems related to reactivity and loss of coolant flow was carried out by DRSIM using temperature and void coefficients calculated by WIMS and HEXNOD2D codes. (author)

  15. Development of 3D CFD code based on structured non-orthogonal grids

    International Nuclear Information System (INIS)

    Vaidya, Abhijeet Mohan; Maheshwari, Naresh Kumar; Rama Rao, A.

    2016-01-01

    Most of the nuclear industry problems involve complex geometries. Solution of flow and heat transfer over complex geometries is a very important requirement for designing new reactor systems. Hence development of a general purpose three dimensional (3D) CFD code is undertaken. For handling complex shape of computational domain, implementation on structured non-orthogonal coordinates is being done. The code is validated by comparing its results for 3D inclined lid driven cavity at different inclination angles and Reynolds numbers with OpenFOAM results. This paper contains formulation and validation of the new code developed. (author)

  16. Code development of the national hemovigilance system and expansion strategies for hospital blood banks

    Directory of Open Access Journals (Sweden)

    Kim Jeongeun

    2012-01-01

    Full Text Available Objectives : The aims of this study were to develop reportable event codes that are applicable to the national hemovigilance systems for hospital blood banks, and to present expansion strategies for the blood banks. Materials and Methods : The data were obtained from a literature review and expert consultation, followed by adding to and revising the established hemovigilance code system and guidelines to develop reportable event codes for hospital blood banks. The Medical Error Reporting System-Transfusion Medicine developed in the US and other codes of reportable events were added to the Korean version of the Biologic Products Deviation Report (BPDR developed by the Korean Red Cross Blood Safety Administration, then using these codes, mapping work was conducted. We deduced outcomes suitable for practice, referred to the results of the advisory councils, and conducted a survey with experts and blood banks practitioners. Results : We developed reportable event codes that were applicable to hospital blood banks and could cover blood safety - from blood product safety to blood transfusion safety - and also presented expansion strategies for hospital blood banks. Conclusion : It was necessary to add 10 major categories to the blood transfusion safety stage and 97 reportable event codes to the blood safety stage. Contextualized solutions were presented on 9 categories of expansion strategies of hemovigilance system for the hospital blood banks.

  17. Development and validation of a nodal code for core calculation

    International Nuclear Information System (INIS)

    Nowakowski, Pedro Mariano

    2004-01-01

    The code RHENO solves the multigroup three-dimensional diffusion equation using a nodal method of polynomial expansion.A comparative study has been made between this code and present internationals nodal diffusion codes, resulting that the RHENO is up to date.The RHENO has been integrated to a calculation line and has been extend to make burnup calculations.Two methods for pin power reconstruction were developed: modulation and imbedded. The modulation method has been implemented in a program, while the implementation of the imbedded method will be concluded shortly.The validation carried out (that includes experimental data of a MPR) show very good results and calculation efficiency

  18. Code development for eigenvalue total sensitivity analysis and total uncertainty analysis

    International Nuclear Information System (INIS)

    Wan, Chenghui; Cao, Liangzhi; Wu, Hongchun; Zu, Tiejun; Shen, Wei

    2015-01-01

    Highlights: • We develop a new code for total sensitivity and uncertainty analysis. • The implicit effects of cross sections can be considered. • The results of our code agree well with TSUNAMI-1D. • Detailed analysis for origins of implicit effects is performed. - Abstract: The uncertainties of multigroup cross sections notably impact eigenvalue of neutron-transport equation. We report on a total sensitivity analysis and total uncertainty analysis code named UNICORN that has been developed by applying the direct numerical perturbation method and statistical sampling method. In order to consider the contributions of various basic cross sections and the implicit effects which are indirect results of multigroup cross sections through resonance self-shielding calculation, an improved multigroup cross-section perturbation model is developed. The DRAGON 4.0 code, with application of WIMSD-4 format library, is used by UNICORN to carry out the resonance self-shielding and neutron-transport calculations. In addition, the bootstrap technique has been applied to the statistical sampling method in UNICORN to obtain much steadier and more reliable uncertainty results. The UNICORN code has been verified against TSUNAMI-1D by analyzing the case of TMI-1 pin-cell. The numerical results show that the total uncertainty of eigenvalue caused by cross sections can reach up to be about 0.72%. Therefore the contributions of the basic cross sections and their implicit effects are not negligible

  19. Recent developments in seismic analysis in the code Aster; Les developpements recents en analyse sismique dans le code aster

    Energy Technology Data Exchange (ETDEWEB)

    Guihot, P.; Devesa, G.; Dumond, A.; Panet, M.; Waeckel, F.

    1996-12-31

    Progress in the field of seismic qualification and design methods made these last few years allows physical phenomena actually in play to be better considered, while cutting down the conservatism associated with some simplified design methods. So following the change in methods and developing the most advantageous ones among them contributes to the process of the seismic margins assessment and the preparation of new design tools for future series. In this paper, the main developments and improvements in methods which have been made these last two years in the Code Aster, in order to improve seismic calculation methods and seismic margin assessment are presented. The first development relates to making the MISS3D soil structure interaction code available, thanks to an interface made with the Code Aster. The second relates to the possibility of making modal basis time calculations on multi-supported structures by considering local non linearities like impact, friction or squeeze fluid forces. Recent developments in random dynamics and postprocessing devoted to earthquake designs are then mentioned. Three applications of these developments are then ut forward. The first application relates to a test case for soil structure interaction design using MISS3D-Aster coupling. The second is a test case for a multi-supported structure. The last application, more for manufacturing, refers to seismic qualification of Main Live Steam stop valves. First results of the independent validation of the Code Aster seismic design functionalities, which provide and improve the quality of software, are also recalled. (authors). 11 refs.

  20. Development of three-dimensional transport code by the double finite element method

    International Nuclear Information System (INIS)

    Fujimura, Toichiro

    1985-01-01

    Development of a three-dimensional neutron transport code by the double finite element method is described. Both of the Galerkin and variational methods are adopted to solve the problem, and then the characteristics of them are compared. Computational results of the collocation method, developed as a technique for the vaviational one, are illustrated in comparison with those of an Ssub(n) code. (author)

  1. Development of environmental dose assessment system (EDAS) code of PC version

    Energy Technology Data Exchange (ETDEWEB)

    Taki, Mitsumasa; Kikuchi, Masamitsu; Kobayashi, Hideo; Yamaguchi, Takenori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-05-01

    A computer code (EDAS) was developed to assess the public dose for the safety assessment to get the license of nuclear reactor operation. This code system is used for the safety analysis of public around the nuclear reactor in normal operation and severe accident. This code was revised and composed for personal computer user according to the Nuclear Safety Guidelines reflected the ICRP1990 recommendation. These guidelines are revised by Nuclear Safety Commission on March, 2001, which are 'Weather analysis guideline for the safety assessment of nuclear power reactor', 'Public dose around the facility assessment guideline corresponding to the objective value for nuclear power light water reactor' and 'Public dose assessment guideline for safety review of nuclear power light water reactor'. This code has been already opened for public user by JAERI, and English version code and user manual are also prepared. This English version code is helpful for international cooperation concerning the nuclear safety assessment with JAERI. (author)

  2. Development of environmental dose assessment system (EDAS) code of PC version

    CERN Document Server

    Taki, M; Kobayashi, H; Yamaguchi, T

    2003-01-01

    A computer code (EDAS) was developed to assess the public dose for the safety assessment to get the license of nuclear reactor operation. This code system is used for the safety analysis of public around the nuclear reactor in normal operation and severe accident. This code was revised and composed for personal computer user according to the Nuclear Safety Guidelines reflected the ICRP1990 recommendation. These guidelines are revised by Nuclear Safety Commission on March, 2001, which are 'Weather analysis guideline for the safety assessment of nuclear power reactor', 'Public dose around the facility assessment guideline corresponding to the objective value for nuclear power light water reactor' and 'Public dose assessment guideline for safety review of nuclear power light water reactor'. This code has been already opened for public user by JAERI, and English version code and user manual are also prepared. This English version code is helpful for international cooperation concerning the nuclear safety assessme...

  3. Computer codes developed in FRG to analyse hypothetical meltdown accidents

    International Nuclear Information System (INIS)

    Hassmann, K.; Hosemann, J.P.; Koerber, H.; Reineke, H.

    1978-01-01

    It is the purpose of this paper to give the status of all significant computer codes developed in the core melt-down project which is incorporated in the light water reactor safety research program of the Federal Ministry of Research and Technology. For standard pressurized water reactors, results of some computer codes will be presented, describing the course and the duration of the hypothetical core meltdown accident. (author)

  4. Current status of the reactor physics code WIMS and recent developments

    International Nuclear Information System (INIS)

    Lindley, B.A.; Hosking, J.G.; Smith, P.J.; Powney, D.J.; Tollit, B.S.; Newton, T.D.; Perry, R.; Ware, T.C.; Smith, P.N.

    2017-01-01

    Highlights: • The current status of the WIMS reactor physics code is presented. • Applications range from 2D lattice calculations up to 3D whole core geometries. • Gamma transport and thermal-hydraulic feedback models added. • Calculations methodologies described for several Gen II, III and IV reactor types. - Abstract: The WIMS modular reactor physics code has been under continuous development for over fifty years. This paper discusses the current status of WIMS and recent developments, in particular developments to the resonance shielding methodology and 3D transport solvers. Traditionally, WIMS is used to perform 2D lattice calculations, typically to generate homogenized reactor physics parameters for a whole core code such as PANTHER. However, with increasing computational resources there has been a growing trend for performing transport calculations on larger problems, up to and including 3D full core models. To this end, a number of the WIMS modules have been parallelised to allow efficient performance for whole core calculations, and WIMS includes a 3D method of characteristics solver with reflective and once-through tracking methods, which can be used to analyse problems of varying size and complexity. A time-dependent flux solver has been incorporated and thermal-hydraulic modelling capability is also being added to allow steady-state and transient coupled calculations to be performed. WIMS has been validated against a range of experimental data and other codes, in particular for water and graphite moderated thermal reactors. Future developments will include improved parallelization, enhancing the thermal-hydraulic feedback models and validating the WIMS/PANTHER code system for BWRs and fast reactors.

  5. Development status of the lattice physics code in COSINE project

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.; Yu, H.; Li, S.; Liu, Z.; Yan, Y. [State Nuclear Power Software Development Center, SNPTC, National Energy Key Laboratory of Nuclear Power Software NEKLS, North Third Ring Road, Beijing 100029 (China)

    2013-07-01

    LATC is an essential part of COSINE code package, which stands for Core and System Integrated Engine for design and analysis. LATC performs 2D multi-group assembly transport calculation and generates few group constants and the required cross-section data for CORE, the core simulator code. LATC is designed to have the capability of modeling the API 000 series assemblies. The development is a continuously improved process. Currently, LATC uses well-proven technology to achieve the key functions. In the next stage, more advanced methods and modules will be implemented. At present, WIMS and WIMS improved format library could be read in LATC code. For resonance calculation, equivalent relation with rational approximations is utilized. For transport calculation, two options are available. One choice is collision probability method in cell homogenization while discrete coordinate method in assembly homogenization, the other is method of characteristics in assembly homogenization directly. For depletion calculation, an improved linear rate 'constant power' depletion method has been developed. (authors)

  6. Development status of the lattice physics code in COSINE project

    International Nuclear Information System (INIS)

    Chen, Y.; Yu, H.; Li, S.; Liu, Z.; Yan, Y.

    2013-01-01

    LATC is an essential part of COSINE code package, which stands for Core and System Integrated Engine for design and analysis. LATC performs 2D multi-group assembly transport calculation and generates few group constants and the required cross-section data for CORE, the core simulator code. LATC is designed to have the capability of modeling the API 000 series assemblies. The development is a continuously improved process. Currently, LATC uses well-proven technology to achieve the key functions. In the next stage, more advanced methods and modules will be implemented. At present, WIMS and WIMS improved format library could be read in LATC code. For resonance calculation, equivalent relation with rational approximations is utilized. For transport calculation, two options are available. One choice is collision probability method in cell homogenization while discrete coordinate method in assembly homogenization, the other is method of characteristics in assembly homogenization directly. For depletion calculation, an improved linear rate 'constant power' depletion method has been developed. (authors)

  7. Conceptual Approach to Forming the Basic Code of Neo-Industrial Development of a Region

    Directory of Open Access Journals (Sweden)

    Elena Leonidovna Andreeva

    2017-09-01

    Full Text Available In the article, the authors propose the conceptual fundamentals of the “code approach” to the regional neo-industrial development. The purpose of the research is to reveal the essence of the transition to a new type of industrial and economic relations through a prism of “genetic codes” of the region. We consider these codes as a system of the “racial memory” of a territory, which determines the specificity and features of neo-industrialization realization. We substantiated the hypothesis about the influence of the “genetic codes” of the region on the effectiveness of the neo-industrialization. We have defined the participants, or else the carriers of the codes in the transformation of regional inheritance for the stimulation of the neoindustrial development of region’s economy. The subject matter of the research is the distinctive features of the functioning of the determinative region’s codes. Their content determines the socio-economic specificity of the region and the features of innovative, informational, value-based and competence-based development of the territory. The determinative codes generate the dynamic codes of the region, which are understood as their derivatives. They have a high probability of occurrence, higher speed of development and distribution, internal forces that make possible the self-development of the region. The scientific contribution is the substantiation of the basic code of the regional neo-industrial development. It represents the evolutionary accumulation of the rapid changes of its innovative, informational, value-based and competence-based codes stimulating the generation and implementation of new ideas regarding to economic entities adapted to the historical and cultural conditions. The article presents the code model of neo-industrial development of the region described by formulas. We applied the system analysis methods, historical and civilization approaches, evolutionary and

  8. Development of a code for the isotopic analysis of Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. H.; Kang, M. Y.; Kim, Jinhyeong; Choi, H. D. [Seoul National Univ., Seoul (Korea, Republic of)

    2013-05-15

    To strengthen the national nuclear nonproliferation regime by an establishment of nuclear forensic system, the techniques for nuclear material analysis and the categorization of important domestic nuclear materials are being developed. MGAU and FRAM are commercial software for the isotopic analysis of Uranium by using γ-spectroscopy, but the diversity of detection geometry and some effects - self attenuation, coincidence summing, etc. - suggest an analysis tool under continual improvement and modification. Hence, developing another code for HPGe γ- and x-ray spectrum analysis is started in this study. The analysis of the 87-101 keV region of Uranium spectrum is attempted based on the isotopic responses similar to those developed in MGAU. The code for isotopic analysis of Uranium is started from a fitting.

  9. Development of a new generation solid rocket motor ignition computer code

    Science.gov (United States)

    Foster, Winfred A., Jr.; Jenkins, Rhonald M.; Ciucci, Alessandro; Johnson, Shelby D.

    1994-01-01

    This report presents the results of experimental and numerical investigations of the flow field in the head-end star grain slots of the Space Shuttle Solid Rocket Motor. This work provided the basis for the development of an improved solid rocket motor ignition transient code which is also described in this report. The correlation between the experimental and numerical results is excellent and provides a firm basis for the development of a fully three-dimensional solid rocket motor ignition transient computer code.

  10. Reduced-order aeroelastic model for limit-cycle oscillations in vortex-dominated unsteady airfoil flows

    Science.gov (United States)

    Suresh Babu, Arun Vishnu; Ramesh, Kiran; Gopalarathnam, Ashok

    2017-11-01

    In previous research, Ramesh et al. (JFM,2014) developed a low-order discrete vortex method for modeling unsteady airfoil flows with intermittent leading edge vortex (LEV) shedding using a leading edge suction parameter (LESP). LEV shedding is initiated using discrete vortices (DVs) whenever the Leading Edge Suction Parameter (LESP) exceeds a critical value. In subsequent research, the method was successfully employed by Ramesh et al. (JFS, 2015) to predict aeroelastic limit-cycle oscillations in airfoil flows dominated by intermittent LEV shedding. When applied to flows that require large number of time steps, the computational cost increases due to the increasing vortex count. In this research, we apply an amalgamation strategy to actively control the DV count, and thereby reduce simulation time. A pair each of LEVs and TEVs are amalgamated at every time step. The ideal pairs for amalgamation are identified based on the requirement that the flowfield in the vicinity of the airfoil is least affected (Spalart, 1988). Instead of placing the amalgamated vortex at the centroid, we place it at an optimal location to ensure that the leading-edge suction and the airfoil bound circulation are conserved. Results of the initial study are promising.

  11. ER@CEBAF: Modeling code developments

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Roblin, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-04-13

    A proposal for a multiple-pass, high-energy, energy-recovery experiment using CEBAF is under preparation in the frame of a JLab-BNL collaboration. In view of beam dynamics investigations regarding this project, in addition to the existing model in use in Elegant a version of CEBAF is developed in the stepwise ray-tracing code Zgoubi, Beyond the ER experiment, it is also planned to use the latter for the study of polarization transport in the presence of synchrotron radiation, down to Hall D line where a 12 GeV polarized beam can be delivered. This Note briefly reports on the preliminary steps, and preliminary outcomes, based on an Elegant to Zgoubi translation.

  12. Further development of the computer code ATHLET-CD

    International Nuclear Information System (INIS)

    Weber, Sebastian; Austregesilo, Henrique; Bals, Christine; Band, Sebastian; Hollands, Thorsten; Koellein, Carsten; Lovasz, Liviusz; Pandazis, Peter; Schubert, Johann-Dietrich; Sonnenkalb, Martin

    2016-10-01

    In the framework of the reactor safety research program sponsored by the German Federal Ministry for Economic Affairs and Energy (BMWi), the computer code system ATHLET/ATHLET-CD has been further developed as an analysis tool for the simulation of accidents in nuclear power plants with pressurized and boiling water reactors as well as for the evaluation of accident management procedures. The main objective was to provide a mechanistic analysis tool for best estimate calculations of transients, accidents, and severe accidents with core degradation in light water reactors. With the continued development, the capability of the code system has been largely improved, allowing best estimate calculations of design and beyond design base accidents, and the simulation of advanced core degradation with enhanced model extent in a reasonable calculation time. ATHLET comprises inter alia a 6-equation model, models for the simulation of non-condensable gases and tracking of boron concentration, as well as additional component and process models for the complete system simulation. Among numerous model improvements, the code application has been extended to super critical pressures. The mechanistic description of the dynamic development of flow regimes on the basis of a transport equation for the interface area has been further developed. This ATHLET version is completely integrated in ATHLET-CD. ATHLET-CD further comprises dedicated models for the simulation of fuel and control assembly degradation for both pressurized and boiling water reactors, debris bed with melting in the core region, as well as fission product and aerosol release and transport in the cooling system, inclusive of decay of nuclide inventories and of chemical reactions in the gas phase. The continued development also concerned the modelling of absorber material release, of melting, melt relocation and freezing, and the interaction with the wall of the reactor pressure vessel. The following models were newly

  13. Long non-coding RNAs and mRNAs profiling during spleen development in pig.

    Science.gov (United States)

    Che, Tiandong; Li, Diyan; Jin, Long; Fu, Yuhua; Liu, Yingkai; Liu, Pengliang; Wang, Yixin; Tang, Qianzi; Ma, Jideng; Wang, Xun; Jiang, Anan; Li, Xuewei; Li, Mingzhou

    2018-01-01

    Genome-wide transcriptomic studies in humans and mice have become extensive and mature. However, a comprehensive and systematic understanding of protein-coding genes and long non-coding RNAs (lncRNAs) expressed during pig spleen development has not been achieved. LncRNAs are known to participate in regulatory networks for an array of biological processes. Here, we constructed 18 RNA libraries from developing fetal pig spleen (55 days before birth), postnatal pig spleens (0, 30, 180 days and 2 years after birth), and the samples from the 2-year-old Wild Boar. A total of 15,040 lncRNA transcripts were identified among these samples. We found that the temporal expression pattern of lncRNAs was more restricted than observed for protein-coding genes. Time-series analysis showed two large modules for protein-coding genes and lncRNAs. The up-regulated module was enriched for genes related to immune and inflammatory function, while the down-regulated module was enriched for cell proliferation processes such as cell division and DNA replication. Co-expression networks indicated the functional relatedness between protein-coding genes and lncRNAs, which were enriched for similar functions over the series of time points examined. We identified numerous differentially expressed protein-coding genes and lncRNAs in all five developmental stages. Notably, ceruloplasmin precursor (CP), a protein-coding gene participating in antioxidant and iron transport processes, was differentially expressed in all stages. This study provides the first catalog of the developing pig spleen, and contributes to a fuller understanding of the molecular mechanisms underpinning mammalian spleen development.

  14. Development and assessment of best estimate integrated safety analysis code

    International Nuclear Information System (INIS)

    Chung, Bub Dong; Lee, Young Jin; Hwang, Moon Kyu

    2007-03-01

    Improvement of the integrated safety analysis code MARS3.0 has been carried out and a multi-D safety analysis application system has been established. Iterative matrix solver and parallel processing algorithm have been introduced, and a LINUX version has been generated to enable MARS to run in cluster PCs. MARS variables and sub-routines have been reformed and modularised to simplify code maintenance. Model uncertainty analyses have been performed for THTF, FLECHT, NEPTUN, and LOFT experiments as well as APR1400 plant. Participations in international cooperation research projects such as OECD BEMUSE, SETH, PKL, BFBT, and TMI-2 have been actively pursued as part of code assessment efforts. The assessment, evaluation and experimental data obtained through international cooperation projects have been registered and maintained in the T/H Databank. Multi-D analyses of APR1400 LBLOCA, DVI Break, SLB, and SGTR have been carried out as a part of application efforts in multi-D safety analysis. GUI based 3D input generator has been developed for user convenience. Operation of the MARS Users Group (MUG) was continued and through MUG, the technology has been transferred to 24 organisations. A set of 4 volumes of user manuals has been compiled and the correction reports for the code errors reported during MARS development have been published

  15. Development and assessment of best estimate integrated safety analysis code

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Bub Dong; Lee, Young Jin; Hwang, Moon Kyu (and others)

    2007-03-15

    Improvement of the integrated safety analysis code MARS3.0 has been carried out and a multi-D safety analysis application system has been established. Iterative matrix solver and parallel processing algorithm have been introduced, and a LINUX version has been generated to enable MARS to run in cluster PCs. MARS variables and sub-routines have been reformed and modularised to simplify code maintenance. Model uncertainty analyses have been performed for THTF, FLECHT, NEPTUN, and LOFT experiments as well as APR1400 plant. Participations in international cooperation research projects such as OECD BEMUSE, SETH, PKL, BFBT, and TMI-2 have been actively pursued as part of code assessment efforts. The assessment, evaluation and experimental data obtained through international cooperation projects have been registered and maintained in the T/H Databank. Multi-D analyses of APR1400 LBLOCA, DVI Break, SLB, and SGTR have been carried out as a part of application efforts in multi-D safety analysis. GUI based 3D input generator has been developed for user convenience. Operation of the MARS Users Group (MUG) was continued and through MUG, the technology has been transferred to 24 organisations. A set of 4 volumes of user manuals has been compiled and the correction reports for the code errors reported during MARS development have been published.

  16. Scientific codes developed and used at GRS. Nuclear simulation chain

    Energy Technology Data Exchange (ETDEWEB)

    Schaffrath, Andreas; Sonnenkalb, Martin; Sievers, Juergen; Luther, Wolfgang; Velkov, Kiril [Gesellschaft fuer Anlagen und Reaktorsicherheit (GRS) gGmbH, Garching/Muenchen (Germany). Forschungszentrum

    2016-05-15

    Over 60 technical experts of the reactor safety research division of the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH are developing and validating reliable methods and computer codes - summarized under the term nuclear simulation chain - for the safety-related assessment for all types of nuclear power plants (NPP) and other nuclear facilities considering the current state of science and technology. This nuclear simulation chain has to be able to simulate and assess all relevant physical processes and phenomena for all operating states and (severe) accidents. In the present contribution, the nuclear simulation chain developed and applied by GRS as well as selected examples of its application are presented. The latter demonstrate impressively the width of its scope and its performance. The GRS codes can be passed on request to other (national as well as international) organizations. This contributes to a worldwide increase of the nuclear safety standards. The code transfer is especially important for developing and emerging countries lacking the financial means and/or the necessary know-how for this purpose. At the end of this contribution, the respective course of action is described.

  17. Development of parallel benchmark code by sheet metal forming simulator 'ITAS'

    International Nuclear Information System (INIS)

    Watanabe, Hiroshi; Suzuki, Shintaro; Minami, Kazuo

    1999-03-01

    This report describes the development of parallel benchmark code by sheet metal forming simulator 'ITAS'. ITAS is a nonlinear elasto-plastic analysis program by the finite element method for the purpose of the simulation of sheet metal forming. ITAS adopts the dynamic analysis method that computes displacement of sheet metal at every time unit and utilizes the implicit method with the direct linear equation solver. Therefore the simulator is very robust. However, it requires a lot of computational time and memory capacity. In the development of the parallel benchmark code, we designed the code by MPI programming to reduce the computational time. In numerical experiments on the five kinds of parallel super computers at CCSE JAERI, i.e., SP2, SR2201, SX-4, T94 and VPP300, good performances are observed. The result will be shown to the public through WWW so that the benchmark results may become a guideline of research and development of the parallel program. (author)

  18. Code development of total sensitivity and uncertainty analysis for reactor physics calculations

    International Nuclear Information System (INIS)

    Wan, C.; Cao, L.; Wu, H.; Zu, T.; Shen, W.

    2015-01-01

    Sensitivity and uncertainty analysis are essential parts for reactor system to perform risk and policy analysis. In this study, total sensitivity and corresponding uncertainty analysis for responses of neutronics calculations have been accomplished and developed the S&U analysis code named UNICORN. The UNICORN code can consider the implicit effects of multigroup cross sections on the responses. The UNICORN code has been applied to typical pin-cell case in this paper, and can be proved correct by comparison the results with those of the TSUNAMI-1D code. (author)

  19. Code development of total sensitivity and uncertainty analysis for reactor physics calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wan, C.; Cao, L.; Wu, H.; Zu, T., E-mail: chenghuiwan@stu.xjtu.edu.cn, E-mail: caolz@mail.xjtu.edu.cn, E-mail: hongchun@mail.xjtu.edu.cn, E-mail: tiejun@mail.xjtu.edu.cn [Xi' an Jiaotong Univ., School of Nuclear Science and Technology, Xi' an (China); Shen, W., E-mail: Wei.Shen@cnsc-ccsn.gc.ca [Xi' an Jiaotong Univ., School of Nuclear Science and Technology, Xi' an (China); Canadian Nuclear Safety Commission, Ottawa, ON (Canada)

    2015-07-01

    Sensitivity and uncertainty analysis are essential parts for reactor system to perform risk and policy analysis. In this study, total sensitivity and corresponding uncertainty analysis for responses of neutronics calculations have been accomplished and developed the S&U analysis code named UNICORN. The UNICORN code can consider the implicit effects of multigroup cross sections on the responses. The UNICORN code has been applied to typical pin-cell case in this paper, and can be proved correct by comparison the results with those of the TSUNAMI-1D code. (author)

  20. Development of a Mechanical Passive Pitch System for a 500W Horizontal Axis Wind Turbine

    DEFF Research Database (Denmark)

    Poryzala, Tomek; Mikkelsen, Robert Flemming; Kim, Taeseong

    2017-01-01

    The goal of this paper is to design, analyze, manufacture, and test a mechanical passive pitch mechanism for a small horizontal axis wind turbine. Several pitching concepts were investigated in the wind industry and related fields before ultimately deciding on a centrifugal governor design concept...... in a pitch-to-stall configuration. Inertial and aerodynamic models were developed in order to predict steady-state performance and an optimization routine was created to optimize the pitch mechanism configuration subject to manufacturing constraints. Dynamic modeling in HAWC2 validated the steady......-state design code, aeroelastic simulations were performed in turbulent wind conditions to simulate the pitch system dynamics. Physical testing of the full turbine was not completed, however the hub sub-assembly was tested on its own to validate the passive pitch characteristics and showed good agreement...

  1. 77 FR 17460 - Multistakeholder Process To Develop Consumer Data Privacy Codes of Conduct

    Science.gov (United States)

    2012-03-26

    ..., 2012, NTIA requested public comments on (1) which consumer data privacy issues should be the focus of.... 120214135-2203-02] RIN 0660-XA27 Multistakeholder Process To Develop Consumer Data Privacy Codes of Conduct... request for public comments on the multistakeholder process to develop consumer data privacy codes of...

  2. Development of a BWR core burn-up calculation code COREBN-BWR

    International Nuclear Information System (INIS)

    Morimoto, Yuichi; Okumura, Keisuke

    1992-05-01

    In order to evaluate core performances of BWR type reactors, the three dimensional core burnup calculation code COREBN-BWR and the fuel management code HIST-BWR have been developed. In analyses of BWR type reactors, thermal hydraulics calculations must be coupled with neutronics calculations to evaluate core performances, because steam void distribution changes according to the change of the power distribution. By installing new functions as follows to the three dimensional core burnup code COREBN2 developed in JAERI for PWR type reactor analyses, the code system becomes to be applicable to burnup analyses of BWR type reactors. (1) Macroscopic cross section calculation function taking into account of coolant void distribution. (2) Thermal hydraulics calculation function to evaluate core flow split, coolant void distribution and thermal margin. (3) Burnup calculation function under the Haling strategy. (4) Fuel management function to incorporate the thermal hydraulics information. This report consists of the general description, calculational models, input data requirements and their explanations, detailed information on usage and sample input. (author)

  3. Basic Pilot Code Development for Two-Fluid, Three-Field Model

    International Nuclear Information System (INIS)

    Jeong, Jae Jun; Bae, S. W.; Lee, Y. J.; Chung, B. D.; Hwang, M.; Ha, K. S.; Kang, D. H.

    2006-03-01

    A basic pilot code for one-dimensional, transient, two-fluid, three-field model has been developed. Using 9 conceptual problems, the basic pilot code has been verified. The results of the verification are summarized below: - It was confirmed that the basic pilot code can simulate various flow conditions (such as single-phase liquid flow, bubbly flow, slug/churn turbulent flow, annular-mist flow, and single-phase vapor flow) and transitions of the flow conditions. A mist flow was not simulated, but it seems that the basic pilot code can simulate mist flow conditions. - The pilot code was programmed so that the source terms of the governing equations and numerical solution schemes can be easily tested. - The mass and energy conservation was confirmed for single-phase liquid and single-phase vapor flows. - It was confirmed that the inlet pressure and velocity boundary conditions work properly. - It was confirmed that, for single- and two-phase flows, the velocity and temperature of non-existing phase are calculated as intended. - During the simulation of a two-phase flow, the calculation reaches a quasisteady state with small-amplitude oscillations. The oscillations seem to be induced by some numerical causes. The research items for the improvement of the basic pilot code are listed in the last section of this report

  4. Basic Pilot Code Development for Two-Fluid, Three-Field Model

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Jun; Bae, S. W.; Lee, Y. J.; Chung, B. D.; Hwang, M.; Ha, K. S.; Kang, D. H

    2006-03-15

    A basic pilot code for one-dimensional, transient, two-fluid, three-field model has been developed. Using 9 conceptual problems, the basic pilot code has been verified. The results of the verification are summarized below: - It was confirmed that the basic pilot code can simulate various flow conditions (such as single-phase liquid flow, bubbly flow, slug/churn turbulent flow, annular-mist flow, and single-phase vapor flow) and transitions of the flow conditions. A mist flow was not simulated, but it seems that the basic pilot code can simulate mist flow conditions. - The pilot code was programmed so that the source terms of the governing equations and numerical solution schemes can be easily tested. - The mass and energy conservation was confirmed for single-phase liquid and single-phase vapor flows. - It was confirmed that the inlet pressure and velocity boundary conditions work properly. - It was confirmed that, for single- and two-phase flows, the velocity and temperature of non-existing phase are calculated as intended. - During the simulation of a two-phase flow, the calculation reaches a quasisteady state with small-amplitude oscillations. The oscillations seem to be induced by some numerical causes. The research items for the improvement of the basic pilot code are listed in the last section of this report.

  5. Thermal-hydraulic analysis code development and application to passive safety reactor at JAERI

    International Nuclear Information System (INIS)

    Araya, F.

    1995-01-01

    After a brief overview of safety assessment process, the author describes the LOCA analysis code system developed in JAERI. It comprises audit calculation code (WREM, WREM-J2, Japanese own code and BE codes (2D/3D, ICAP, ROSA). The codes are applied to development of Japanese passive safety reactor concept JPSR. Special attention is paid to the passive heat removal system and phenomena considered to occur under loss of heat sink event. Examples of LOCA analysis based on operation of JPSR for the cases of heat removal by upper RHR and heat removal from core to atmosphere are given. Experiments for multi-dimensional flow field in RPV and steam condensation in water pool are used for understanding the phenomena in passive safety reactors. The report is in a poster form only. 1 tab., 13 figs

  6. Development of tools for automatic generation of PLC code

    CERN Document Server

    Koutli, Maria; Rochez, Jacques

    This Master thesis was performed at CERN and more specifically in the EN-ICE-PLC section. The Thesis describes the integration of two PLC platforms, that are based on CODESYS development tool, to the CERN defined industrial framework, UNICOS. CODESYS is a development tool for PLC programming, based on IEC 61131-3 standard, and is adopted by many PLC manufacturers. The two PLC development environments are, the SoMachine from Schneider and the TwinCAT from Beckhoff. The two CODESYS compatible PLCs, should be controlled by the SCADA system of Siemens, WinCC OA. The framework includes a library of Function Blocks (objects) for the PLC programs and a software for automatic generation of the PLC code based on this library, called UAB. The integration aimed to give a solution that is shared by both PLC platforms and was based on the PLCOpen XML scheme. The developed tools were demonstrated by creating a control application for both PLC environments and testing of the behavior of the code of the library.

  7. Development of a Computer Code for the Estimation of Fuel Rod Failure

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, I.H.; Ahn, H.J. [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    1997-12-31

    Much research has already been performed to obtain the information on the degree of failed fuel rods from the primary coolant activities of operating PWRs in the last few decades. The computer codes that are currently in use for domestic nuclear power plants, such as CADE code and ABB-CE codes developed by Westinghouse and ABB-CE, respectively, still give significant overall errors in estimating the failed fuel rods. In addition, with the CADE code, it is difficult to predict the degree of fuel rod failures during the transient period of nuclear reactor operation, where as the ABB-CE codes are relatively more difficult to use for end-users. In particular, the rapid progresses made recently in the area of the computer hardware and software systems that their computer programs be more versatile and user-friendly. While the MS windows system that is centered on the graphic user interface and multitasking is now in widespread use, the computer codes currently employed at the nuclear power plants, such as CADE and ABB-CE codes, can only be run on the DOS system. Moreover, it is desirable to have a computer code for the fuel rod failure estimation that can directly use the radioactivity data obtained from the on-line monitoring system of the primary coolant activity. The main purpose of this study is, therefore, to develop a Windows computer code that can predict the location, the number of failed fuel rods,and the degree of failures using the radioactivity data obtained from the primary coolant activity for PWRs. Another objective is to combine this computer code with the on-line monitoring system of the primary coolant radioactivity at Kori 3 and 4 operating nuclear power plants and enable their combined use for on-line evaluation of the number and degree of fuel rod failures. (author). 49 refs., 85 figs., 30 tabs.

  8. How 2 HAWC2, the user's manual

    DEFF Research Database (Denmark)

    Larsen, Torben J.; Hansen, Anders Melchior

    The report contains the user's manual for the aeroleastic code HAWC2. The code is intended for calculating wind turbine response in time domain and has a structural formulation based on multi-body dynamics. The aerodynamic part of the code is based on the blade element momentum theory, but extended...... from the classic approach to handle dynamic inflow, dynamic stall, skew inflow, shear effects on the induction and effects from large deflections. It has been developed within the years 2003-2006 at the aeroelastic design research programme at Risoe, National laboratory Denmark. This manual is updated...

  9. Development of a relativistic Particle In Cell code PARTDYN for linear accelerator beam transport

    Energy Technology Data Exchange (ETDEWEB)

    Phadte, D., E-mail: deepraj@rrcat.gov.in [LPD, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Patidar, C.B.; Pal, M.K. [MAASD, Raja Ramanna Centre for Advanced Technology, Indore (India)

    2017-04-11

    A relativistic Particle In Cell (PIC) code PARTDYN is developed for the beam dynamics simulation of z-continuous and bunched beams. The code is implemented in MATLAB using its MEX functionality which allows both ease of development as well higher performance similar to a compiled language like C. The beam dynamics calculations carried out by the code are compared with analytical results and with other well developed codes like PARMELA and BEAMPATH. The effect of finite number of simulation particles on the emittance growth of intense beams has been studied. Corrections to the RF cavity field expressions were incorporated in the code so that the fields could be calculated correctly. The deviations of the beam dynamics results between PARTDYN and BEAMPATH for a cavity driven in zero-mode have been discussed. The beam dynamics studies of the Low Energy Beam Transport (LEBT) using PARTDYN have been presented.

  10. Development of a graphical interface computer code for reactor fuel reloading optimization

    International Nuclear Information System (INIS)

    Do Quang Binh; Nguyen Phuoc Lan; Bui Xuan Huy

    2007-01-01

    This report represents the results of the project performed in 2007. The aim of this project is to develop a graphical interface computer code that allows refueling engineers to design fuel reloading patterns for research reactor using simulated graphical model of reactor core. Besides, this code can perform refueling optimization calculations based on genetic algorithms as well as simulated annealing. The computer code was verified based on a sample problem, which relies on operational and experimental data of Dalat research reactor. This code can play a significant role in in-core fuel management practice at nuclear research reactor centers and in training. (author)

  11. Development and application of sub-channel analysis code based on SCWR core

    International Nuclear Information System (INIS)

    Fu Shengwei; Xu Zhihong; Yang Yanhua

    2011-01-01

    The sub-channel analysis code SABER was developed for thermal-hydraulic analysis of supercritical water-cooled reactor (SCWR) fuel assembly. The extended computational cell structure, a new boundary conditions, 3 dimensional heat conduction model and water properties package were implemented in SABER code, which could be used to simulate the thermal fuel assembly of SCWR. To evaluate the applicability of the code, a steady state calculation of the fuel assembly was performed. The results indicate good applicability of the SABER code to simulate the counter-current flow and the heat exchange between coolant and moderator channels. (authors)

  12. Development of standards, codes of practice and guidelines at the national level

    International Nuclear Information System (INIS)

    Swindon, T.N.

    1989-01-01

    Standards, codes of practice and guidelines are defined and their different roles in radiation protection specified. The work of the major bodies that develop such documents in Australia - the National Health and Medical Research Council and the Standards Association of Australia - is discussed. The codes of practice prepared under the Environment Protection (Nuclear Codes) Act, 1978, an act of the Australian Federal Parliament, are described and the guidelines associated with them outlined. 5 refs

  13. Development of system analysis code for pyrochemical process using molten salt electrorefining

    International Nuclear Information System (INIS)

    Tozawa, K.; Matsumoto, T.; Kakehi, I.

    2000-04-01

    This report describes accomplishment of development of a cathode processor calculation code to simulate the mass and heat transfer phenomena with the distillation process and development of an analytical model for cooling behavior of the pyrochemical process cell on personal computers. The pyrochemical process using molten salt electrorefining would introduce new technologies for new fuels of particle oxide, particle nitride and metallic fuels. The cathode processor calculation code with distillation process was developed. A code validation calculation has been conducted on the basic of the benchmark problem for natural convection in a square cavity. Results by using the present code agreed well for the velocity-temperature fields, the maximum velocity and its location with the benchmark solution published in a paper. The functions have been added to advance the reality in simulation and to increase the efficiency in utilization. The test run has been conducted using the code with the above modification for an axisymmetric enclosed vessel simulating a cathode processor, and the capability of the distillation process simulation with the code has been confirmed. An analytical model for cooling behavior of the pyrochemical process cell was developed. The analytical model was selected by comparing benchmark analysis with detailed analysis on engineering workstation. Flow and temperature distributions were confirmed by the result of steady state analysis. In the result of transient cooling analysis, an initial transient peak of temperature occurred at balanced heat condition in the steady-state analysis. Final gas temperature distribution was dependent on gas circulation flow in transient condition. Then there were different final gas temperature distributions on the basis of the result of steady-state analysis. This phenomenon has a potential for it's own metastable condition. Therefore it was necessary to design gas cooling flow pattern without cooling gas circulation

  14. Development and validation of GWHEAD, a three-dimensional groundwater head computer code

    International Nuclear Information System (INIS)

    Beckmeyer, R.R.; Root, R.W.; Routt, K.R.

    1980-03-01

    A computer code has been developed to solve the groundwater flow equation in three dimensions. The code has finite-difference approximations solved by the strongly implicit solution procedure. Input parameters to the code include hydraulic conductivity, specific storage, porosity, accretion (recharge), and initial hydralic head. These parameters may be input as varying spatially. The hydraulic conductivity may be input as isotropic or anisotropic. The boundaries either may permit flow across them or may be impermeable. The code has been used to model leaky confined groundwater conditions and spherical flow to a continuous point sink, both of which have exact analytical solutions. The results generated by the computer code compare well with those of the analytical solutions. The code was designed to be used to model groundwater flow beneath fuel reprocessing and waste storage areas at the Savannah River Plant

  15. TOOKUIL: A case study in user interface development for safety code application

    International Nuclear Information System (INIS)

    Gray, D.L.; Harkins, C.K.; Hoole, J.G.

    1997-01-01

    Traditionally, there has been a very high learning curve associated with using nuclear power plant (NPP) analysis codes. Even for seasoned plant analysts and engineers, the process of building or modifying an input model for present day NPP analysis codes is tedious, error prone, and time consuming. Current cost constraints and performance demands place an additional burden on today's safety analysis community. Advances in graphical user interface (GUI) technology have been applied to obtain significant productivity and quality assurance improvements for the Transient Reactor Analysis Code (TRAC) input model development. KAPL Inc. has developed an X Windows-based graphical user interface named TOOKUIL which supports the design and analysis process, acting as a preprocessor, runtime editor, help system, and post processor for TRAC. This paper summarizes the objectives of the project, the GUI development process and experiences, and the resulting end product, TOOKUIL

  16. TOOKUIL: A case study in user interface development for safety code application

    International Nuclear Information System (INIS)

    Gray, D.L.; Harkins, C.K.; Hoole, J.G.; Peebles, R.C.; Smith, R.J.

    1996-11-01

    Traditionally, there has been a very high learning curve associated with using nuclear power plant (NPP) analysis codes. Even for seasoned plant analysts and engineers, the process of building or modifying an input model for present day NPP analysis codes is tedious, error prone, and time consuming. Current cost constraints and performance demands place an additional burden on today's safety analysis community. Advances in graphical user interface (GUI) technology have been applied to obtain significant productivity and quality assurance improvements for the Transient Reactor Analysis Code (TRAC) input model development. KAPL Inc. has developed an X Windows-based graphical user interface named TOOKUIL which supports the design and analysis process, acting as a preprocessor, runtime editor, help system, and post processor for TRAC. This paper summarizes the objectives of the project, the GUI development process and experiences, and the resulting end product, TOOKUIL

  17. Benchmark Simulation for the Development of the Regulatory Audit Subchannel Analysis Code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, G. H.; Song, C.; Woo, S. W. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-05-15

    For the safe and reliable operation of a reactor, it is important to predict accurately the flow and temperature distributions in the thermal-hydraulic design of a reactor core. A subchannel approach can give the reasonable flow and temperature distributions with the short computing time. Korea Institute of Nuclear Safety (KINS) is presently reviewing new subchannel code, THALES, which will substitute for both THINC-IV and TORC code. To assess the prediction performance of THALES, KINS is developing the subchannel analysis code for the independent audit calculation. The code is based on workstation version of COBRA-IV-I. The main objective of the present study is to assess the performance of COBRA-IV-I code by comparing the simulation results with experimental ones for the sample problems

  18. Development of a national code of practice for structural masonry ...

    African Journals Online (AJOL)

    The problems and constraints faced by most developing countries, particularly Ghana, in developing codes of practice for structural masonry are highlighted. The steps that must be undertaken through the coordinated efforts of the National Standards Boards, Research Institutions, Universities and Professional Bodies in the ...

  19. Development and Implementation of CFD-Informed Models for the Advanced Subchannel Code CTF

    Science.gov (United States)

    Blyth, Taylor S.

    The research described in this PhD thesis contributes to the development of efficient methods for utilization of high-fidelity models and codes to inform low-fidelity models and codes in the area of nuclear reactor core thermal-hydraulics. The objective is to increase the accuracy of predictions of quantities of interests using high-fidelity CFD models while preserving the efficiency of low-fidelity subchannel core calculations. An original methodology named Physics-based Approach for High-to-Low Model Information has been further developed and tested. The overall physical phenomena and corresponding localized effects, which are introduced by the presence of spacer grids in light water reactor (LWR) cores, are dissected in corresponding four building basic processes, and corresponding models are informed using high-fidelity CFD codes. These models are a spacer grid-directed cross-flow model, a grid-enhanced turbulent mixing model, a heat transfer enhancement model, and a spacer grid pressure loss model. The localized CFD-models are developed and tested using the CFD code STAR-CCM+, and the corresponding global model development and testing in sub-channel formulation is performed in the thermal-hydraulic subchannel code CTF. The improved CTF simulations utilize data-files derived from CFD STAR-CCM+ simulation results covering the spacer grid design desired for inclusion in the CTF calculation. The current implementation of these models is examined and possibilities for improvement and further development are suggested. The validation experimental database is extended by including the OECD/NRC PSBT benchmark data. The outcome is an enhanced accuracy of CTF predictions while preserving the computational efficiency of a low-fidelity subchannel code.

  20. Development and Implementation of CFD-Informed Models for the Advanced Subchannel Code CTF

    Energy Technology Data Exchange (ETDEWEB)

    Blyth, Taylor S. [Pennsylvania State Univ., University Park, PA (United States); Avramova, Maria [North Carolina State Univ., Raleigh, NC (United States)

    2017-04-01

    The research described in this PhD thesis contributes to the development of efficient methods for utilization of high-fidelity models and codes to inform low-fidelity models and codes in the area of nuclear reactor core thermal-hydraulics. The objective is to increase the accuracy of predictions of quantities of interests using high-fidelity CFD models while preserving the efficiency of low-fidelity subchannel core calculations. An original methodology named Physics- based Approach for High-to-Low Model Information has been further developed and tested. The overall physical phenomena and corresponding localized effects, which are introduced by the presence of spacer grids in light water reactor (LWR) cores, are dissected in corresponding four building basic processes, and corresponding models are informed using high-fidelity CFD codes. These models are a spacer grid-directed cross-flow model, a grid-enhanced turbulent mixing model, a heat transfer enhancement model, and a spacer grid pressure loss model. The localized CFD-models are developed and tested using the CFD code STAR-CCM+, and the corresponding global model development and testing in sub-channel formulation is performed in the thermal- hydraulic subchannel code CTF. The improved CTF simulations utilize data-files derived from CFD STAR-CCM+ simulation results covering the spacer grid design desired for inclusion in the CTF calculation. The current implementation of these models is examined and possibilities for improvement and further development are suggested. The validation experimental database is extended by including the OECD/NRC PSBT benchmark data. The outcome is an enhanced accuracy of CTF predictions while preserving the computational efficiency of a low-fidelity subchannel code.