WorldWideScience

Sample records for aerodynamic noise propagation

  1. An aerodynamic noise propagation model for wind turbines

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Sørensen, Jens Nørkær; Shen, Wen Zhong

    2005-01-01

    A model based on 2-D sound ray theory for aerodynamic noise propagation from wind turbine rotating blades is introduced. The model includes attenuation factors from geometric spreading, sound directivity of source, air absorption, ground deflection and reflection, as well as effects from...... temperature and airflow. At a given receiver point, the sound pressure is corrected by taking into account these propagation effects. As an overall assumption, the noise field generated by the wind turbine is simplified as a point source placed at the hub height of the wind turbine. This assumtion...

  2. Prop-fan noise propagation

    Science.gov (United States)

    1989-02-07

    This report summarizes studies of enroute propfan noise propagation involving noise data obtained by DOT/TSC at ground stations during fly-over tests on October 30-31, 1987. These data have been analsyzed by DOT/TSC for comparison with in flight data...

  3. Wind turbines. Unsteady aerodynamics and inflow noise

    Energy Technology Data Exchange (ETDEWEB)

    Riget Broe, B.

    2009-12-15

    Aerodynamical noise from wind turbines due to atmospheric turbulence has the highest emphasis in semi-empirical models. However it is an open question whether inflow noise has a high emphasis. This illustrates the need to investigate and improve the semi-empirical model for noise due to atmospheric turbulence. Three different aerodynamical models are investigated in order to estimate the lift fluctuations due to unsteady aerodynamics. Two of these models are investigated to find the unsteady lift distribution or pressure difference as function of chordwise position on the aerofoil. An acoustic model is investigated using a model for the lift distribution as input. The two models for lift distribution are used in the acoustic model. One of the models for lift distribution is for completely anisotropic turbulence and the other for perfectly isotropic turbulence, and so is also the corresponding models for the lift fluctuations derived from the models for lift distribution. The models for lift distribution and lift are compared with pressure data which are obtained by microphones placed flush with the surface of an aerofoil. The pressure data are from two experiments in a wind tunnel, one experiment with a NACA0015 profile and a second with a NACA63415 profile. The turbulence is measured by a triple wired hotwire instrument in the experiment with a NACA0015 profile. Comparison of the aerodynamical models with data shows that the models capture the general characteristics of the measurements, but the data are hampered by background noise from the fan propellers in the wind tunnel. The measurements are in between the completely anisotropic turbulent model and the perfectly isotropic turbulent model. This indicates that the models capture the aerodynamics well. Thus the measurements suggest that the noise due to atmospheric turbulence can be described and modeled by the two models for lift distribution. It was not possible to test the acoustical model by the measurements

  4. Noise aspects at aerodynamic blade optimisation projects

    Energy Technology Data Exchange (ETDEWEB)

    Schepers, J.G. [Netherlands Energy Research Foundation, Petten (Netherlands)

    1997-12-31

    This paper shows an example of an aerodynamic blade optimisation, using the program PVOPT. PVOPT calculates the optimal wind turbine blade geometry such that the maximum energy yield is obtained. Using the aerodynamic optimal blade design as a basis, the possibilities of noise reduction are investigated. The aerodynamic optimised geometry from PVOPT is the `real` optimum (up to the latest decimal). The most important conclusion from this study is, that it is worthwhile to investigate the behaviour of the objective function (in the present case the energy yield) around the optimum: If the optimum is flat, there is a possibility to apply modifications to the optimum configuration with only a limited loss in energy yield. It is obvious that the modified configurations emits a different (and possibly lower) noise level. In the BLADOPT program (the successor of PVOPT) it will be possible to quantify the noise level and hence to assess the reduced noise emission more thoroughly. At present the most promising approaches for noise reduction are believed to be a reduction of the rotor speed (if at all possible), and a reduction of the tip angle by means of low lift profiles, or decreased twist at the outboard stations. These modifications were possible without a significant loss in energy yield. (LN)

  5. Wind Turbines: Unsteady Aerodynamics and Inflow Noise

    DEFF Research Database (Denmark)

    Broe, Brian Riget

    the highest emphasis in semi-empirical models. However it is an open question whether inflow noise has a high emphasis. This illustrates the need to investigate and improve the semi-empirical model for noise due to atmospheric turbulence. Three different aerodynamical models are investigated...... in order to estimate the lift fluctuations due to unsteady aerodynamics (Sears, W. R.: 1941, Some aspects of non-stationary airfoil theory and its practical application; Goldstein, M. E. and Atassi, H. M.: 1976, A complete second-order theory for the unsteady flow about an airfoil due to a periodic gust......; and Graham, J. M. R.: 1970, Lifting surface theory for the problem of an arbitrarily yawed sinusoidal gust incident on a thin aerofoil in incompressible flow). Two of these models are investigated to find the unsteady lift distribution or pressure difference as function of chordwise position on the aerofoil...

  6. Aerodynamical noise from wind turbine generators

    International Nuclear Information System (INIS)

    Jakobsen, J.; Andersen, B.

    1993-06-01

    Two extensive measurement series of noise from wind turbines have been made during different modifications of their rotors. One series focused on the influence from the tip shape on the noise, while the other series dealt with the influence from the trailing edge. The experimental layout for the two investigations was identical. The total A-weighted noise from the wind turbine was measured in 1/3 octave bands from 50 Hz to 10 kHz in 1-minute periods simultaneously with wind speed measurements. The microphone was mounted on a hard board on the ground about 40 m directly downwind of the wind turbine, and the wind speed meter was placed at the same distance upwind of the wind turbine 10 m above ground. Regression analysis was made between noise and wind speed in each 1/3 octave band to determine the spectrum at 8 m/s. During the measurements care was taken to avoid influence from background noise, and the influence from machinery noise was minimized and corrected for. Thus the results display the aerodynamic rotor noise from the wind turbines. By use of this measurement technique, the uncertainty has been reduced to 1.5 - 2 dB per 1/3 octave band in the relevant frequency range and to about 1 dB on the total A-weighted levels. (au) (10 refs.)

  7. Aeroacoustics: Acoustic wave propagation; Aircraft noise prediction; Aeroacoustic instrumentation

    Science.gov (United States)

    Schwartz, I. R.

    1976-01-01

    The papers in this volume deal with recent research into acoustic-wave propagation through the atmosphere and progress in aeroacoustic instrumentation, facilities, and test techniques. Topics include the propagation of aircraft noise over long distances in the lower atmosphere, measured effects of turbulence on the rise time of a weak shock, sound scattering from atmospheric turbulence, saturation effects associated with sound propagation in a turbulent medium, and a computer model of the lightning-thunder process. Other papers discuss the development of a computer system for aircraft noise prediction; aircraft flyover noise measurements; and theories and methods for the prediction of ground effects on aircraft noise propagation, for the prediction of airframe aerodynamic noise, for turbine noise prediction, and for combustion noise prediction. Attention is also given to the use of Hartmann generators as sources of high-intensity sound in a large absorption flow-duct facility, an outdoor jet noise facility, factors in the design and performance of free-jet acoustic wind tunnels, and the use of a laser shadowgraph for jet noise diagnosis.

  8. Analysis of broadband aerodynamic noise from VS45

    Energy Technology Data Exchange (ETDEWEB)

    Dundabin, P. [Renewable Energy Systems Ltd., Glasgow, Scotland (United Kingdom)

    1997-12-31

    This paper describes the analysis of acoustic data taken from the VS45 at Kaiser-Wilhelm-Koog. The aim was to investigate the dependence of aerodynamic noise on tip speed and angle of attack. In particular, the dependence of noise in individual third octave bands on these variable is examined. The analysis is divided into 3 sections: data selection, data checks and analysis of broadband nacelle noise; analysis of broadband aerodynamic noise and its sensitivity to tip speed and angle of attack. (LN)

  9. Aerodynamic Noise An Introduction for Physicists and Engineers

    CERN Document Server

    Bose, Tarit

    2013-01-01

    Aerodynamic Noise extensively covers the theoretical basis and mathematical modeling of sound, especially the undesirable sounds produced by aircraft. This noise could come from an aircraft’s engine—propellers, fans, combustion chamber, jets—or the vehicle itself—external surfaces—or from sonic booms. The majority of the sound produced is due to the motion of air and its interaction with solid boundaries, and this is the main discussion of the book. With problem sets at the end of each chapter, Aerodynamic Noise is ideal for graduate students of mechanical and aerospace engineering. It may also be useful for designers of cars, trains, and wind turbines.

  10. Assessment of the hybrid propagation model, Volume 1: Analysis of noise propagation effects

    Science.gov (United States)

    2012-08-31

    This is the first of two volumes of a report on the Hybrid Propagation Model (HPM), an advanced prediction model for aviation noise propagation. This volume presents the noise level predictions for eleven different sets of propagation conditions, run...

  11. Advanced Noise Control Fan Aerodynamic Performance

    Science.gov (United States)

    Bozak, Richard F., Jr.

    2009-01-01

    The Advanced Noise Control Fan at the NASA Glenn Research Center is used to experimentally analyze fan generated acoustics. In order to determine how a proposed noise reduction concept affects fan performance, flow measurements can be used to compute mass flow. Since tedious flow mapping is required to obtain an accurate mass flow, an equation was developed to correlate the mass flow to inlet lip wall static pressure measurements. Once this correlation is obtained, the mass flow for future configurations can be obtained from the nonintrusive wall static pressures. Once the mass flow is known, the thrust and fan performance can be evaluated. This correlation enables fan acoustics and performance to be obtained simultaneously without disturbing the flow.

  12. Time domain analysis method for aerodynamic noises from wind turbine blades

    Directory of Open Access Journals (Sweden)

    Hua ZHAO

    2015-04-01

    Full Text Available The issue of the aerodynamic noises from wind turbine blades affecting the surrounding residents life begins to attract researcher's attention. Most of the existing researches are based on CFD software or experimental data fitting method to analyze the aerodynamic noises, so it is difficult to adapt the demand to dynamic analysis of the aerodynamic noises from wind speed variation. In this paper, the operation parameters, the inflow wind speed and the receiver location are considered, and a modified model to calculate aerodynamic noises from wind turbine blades which is based on traditional acoustic formulas is established. The program to calculate the aerodynamic noises from the 2 MW wind turbine blades is compiled using a time-domain analysis method based on the Simulink modular in Matlab software. And the pressure time sequence diagrams of the aerodynamic noises from wind turbine blades are drawn. It has provided a theoretical foundation to develop low noise wind turbine blades.

  13. Computation of Aerodynamic Noise Radiated from Ducted Tail Rotor Using Boundary Element Method

    Directory of Open Access Journals (Sweden)

    Yunpeng Ma

    2017-01-01

    Full Text Available A detailed aerodynamic performance of a ducted tail rotor in hover has been numerically studied using CFD technique. The general governing equations of turbulent flow around ducted tail rotor are given and directly solved by using finite volume discretization and Runge-Kutta time integration. The calculations of the lift characteristics of the ducted tail rotor can be obtained. In order to predict the aerodynamic noise, a hybrid method combining computational aeroacoustic with boundary element method (BEM has been proposed. The computational steps include the following: firstly, the unsteady flow around rotor is calculated using the CFD method to get the noise source information; secondly, the radiate sound pressure is calculated using the acoustic analogy Curle equation in the frequency domain; lastly, the scattering effect of the duct wall on the propagation of the sound wave is presented using an acoustic thin-body BEM. The aerodynamic results and the calculated sound pressure levels are compared with the known technique for validation. The sound pressure directivity and scattering effect are shown to demonstrate the validity and applicability of the method.

  14. A noise generation and propagation model for large wind farms

    DEFF Research Database (Denmark)

    Bertagnolio, Franck

    2016-01-01

    A wind turbine noise calculation model is combined with a ray tracing method in order to estimate wind farm noise in its surrounding assuming an arbitrary topography. The wind turbine noise model is used to generate noise spectra for which each turbine is approximated as a point source. However......, the detailed three-dimensional directivity features are taken into account for the further calculation of noise propagation over the surrounding terrain. An arbitrary number of turbines constituting a wind farm can be spatially distributed. The noise from each individual turbine is propagated into the far......-field using the ray tracing method. These results are added up assuming the noise from each turbine is uncorrelated. The methodology permits to estimate a wind farm noise map over the surrounding terrain in a reasonable amount of computational time on a personal computer....

  15. Numerical Modeling and Investigation on Aerodynamic Noise Characteristics of Pantographs in High-Speed Trains

    Directory of Open Access Journals (Sweden)

    Xiaoqi Sun

    2018-01-01

    Full Text Available Pantographs are important devices on high-speed trains. When a train runs at a high speed, concave and convex parts of the train cause serious airflow disturbances and result in flow separation, eddy shedding, and breakdown. A strong fluctuation pressure field will be caused and transformed into aerodynamic noises. When high-speed trains reach 300 km/h, aerodynamic noises become the main noise source. Aerodynamic noises of pantographs occupy a large proportion in far-field aerodynamic noises of the whole train. Therefore, the problem of aerodynamic noises for pantographs is outstanding among many aerodynamics problems. This paper applies Detached Eddy Simulation (DES to conducting numerical simulations of flow fields around pantographs of high-speed trains which run in the open air. Time-domain characteristics, frequency-domain characteristics, and unsteady flow fields of aerodynamic noises for pantographs are obtained. The acoustic boundary element method is used to study noise radiation characteristics of pantographs. Results indicate that eddies with different rotation directions and different scales are in regions such as pantograph heads, hinge joints, bottom frames, and insulators, while larger eddies are on pantograph heads and bottom frames. These eddies affect fluctuation pressures of pantographs to form aerodynamic noise sources. Slide plates, pantograph heads, balance rods, insulators, bottom frames, and push rods are the main aerodynamic noise source of pantographs. Radiated energies of pantographs are mainly in mid-frequency and high-frequency bands. In high-frequency bands, the far-field aerodynamic noise of pantographs is mainly contributed by the pantograph head. Single-frequency noises are in the far-field aerodynamic noise of pantographs, where main frequencies are 293 Hz, 586 Hz, 880 Hz, and 1173 Hz. The farther the observed point is from the noise source, the faster the sound pressure attenuation will be. When the

  16. Intelligent switching between different noise propagation algorithms: analysis and sensitivity

    Science.gov (United States)

    2012-08-10

    When modeling aircraft noise on a large scale (such as an analysis of annual aircraft : operations at an airport), it is important that the noise propagation model used for the : analysis be both efficient and accurate. In this analysis, three differ...

  17. A Numerical Study of Aerodynamic Performance and Noise of a Bionic Airfoil Based on Owl Wing

    Directory of Open Access Journals (Sweden)

    Xiaomin Liu

    2014-08-01

    Full Text Available Noise reduction and efficiency enhancement are the two important directions in the development of the multiblade centrifugal fan. In this study, we attempt to develop a bionic airfoil based on the owl wing and investigate its aerodynamic performance and noise-reduction mechanism at the relatively low Reynolds number. Firstly, according to the geometric characteristics of the owl wing, a bionic airfoil is constructed as the object of study at Reynolds number of 12,300. Secondly, the large eddy simulation (LES with the Smagorinsky model is adopted to numerically simulate the unsteady flow fields around the bionic airfoil and the standard NACA0006 airfoil. And then, the acoustic sources are extracted from the unsteady flow field data, and the Ffowcs Williams-Hawkings (FW-H equation based on Lighthill's acoustic theory is solved to predict the propagation of these acoustic sources. The numerical results show that the lift-to-drag ratio of bionic airfoil is higher than that of the traditional NACA 0006 airfoil because of its deeply concave lower surface geometry. Finally, the sound field of the bionic airfoil is analyzed in detail. The distribution of the A-weighted sound pressure levels, the scaled directivity of the sound, and the distribution of dP/dt on the airfoil surface are provided so that the characteristics of the acoustic sources could be revealed.

  18. An artificial neural network approach for aerodynamic performance retention in airframe noise reduction design of a 3D swept wing model

    Directory of Open Access Journals (Sweden)

    Tao Jun

    2016-10-01

    Full Text Available With the progress of high-bypass turbofan and the innovation of silencing nacelle in engine noise reduction, airframe noise has now become another important sound source besides the engine noise. Thus, reducing airframe noise makes a great contribution to the overall noise reduction of a civil aircraft. However, reducing airframe noise often leads to aerodynamic performance loss in the meantime. In this case, an approach based on artificial neural network is introduced. An established database serves as a basis and the training sample of a back propagation (BP artificial neural network, which uses confidence coefficient reasoning method for optimization later on. Then the most satisfactory configuration is selected for validating computations through the trained BP network. On the basis of the artificial neural network approach, an optimization process of slat cove filler (SCF for high lift devices (HLD on the Trap Wing is presented. Aerodynamic performance of both the baseline and optimized configurations is investigated through unsteady detached eddy simulations (DES, and a hybrid method, which combines unsteady DES method with acoustic analogy theory, is employed to validate the noise reduction effect. The numerical results indicate not merely a significant airframe noise reduction effect but also excellent aerodynamic performance retention simultaneously.

  19. Numerical modeling of wind turbine aerodynamic noise in the time domain.

    Science.gov (United States)

    Lee, Seunghoon; Lee, Seungmin; Lee, Soogab

    2013-02-01

    Aerodynamic noise from a wind turbine is numerically modeled in the time domain. An analytic trailing edge noise model is used to determine the unsteady pressure on the blade surface. The far-field noise due to the unsteady pressure is calculated using the acoustic analogy theory. By using a strip theory approach, the two-dimensional noise model is applied to rotating wind turbine blades. The numerical results indicate that, although the operating and atmospheric conditions are identical, the acoustical characteristics of wind turbine noise can be quite different with respect to the distance and direction from the wind turbine.

  20. Noise barriers and the harmonoise sound propagation model

    NARCIS (Netherlands)

    Salomons, E.M.; Maercke, D. van; Randrianoelina, A.

    2009-01-01

    The Harmonoise sound propagation model ('the Harmonoise engineering model') was developed in the European project Harmonoise (2001-2004) for road and rail traffic noise. In 2008, CSTB Grenoble and TNO Delft have prepared a detailed description of the various steps involved in a calculation with the

  1. Surrogate Based Optimization of Aerodynamic Noise for Streamlined Shape of High Speed Trains

    Directory of Open Access Journals (Sweden)

    Zhenxu Sun

    2017-02-01

    Full Text Available Aerodynamic noise increases with the sixth power of the running speed. As the speed increases, aerodynamic noise becomes predominant and begins to be the main noise source at a certain high speed. As a result, aerodynamic noise has to be focused on when designing new high-speed trains. In order to perform the aerodynamic noise optimization, the equivalent continuous sound pressure level (SPL has been used in the present paper, which could take all of the far field observation probes into consideration. The Non-Linear Acoustics Solver (NLAS approach has been utilized for acoustic calculation. With the use of Kriging surrogate model, a multi-objective optimization of the streamlined shape of high-speed trains has been performed, which takes the noise level in the far field and the drag of the whole train as the objectives. To efficiently construct the Kriging model, the cross validation approach has been adopted. Optimization results reveal that both the equivalent continuous sound pressure level and the drag of the whole train are reduced in a certain extent.

  2. High speed PIV applied to aerodynamic noise investigation

    NARCIS (Netherlands)

    Koschatzky, V.; Moore, P.D.; Westerweel, J.; Scarano, F.; Boersma, B.J.

    2010-01-01

    In this paper, we study the acoustic emissions of the flow over a rectangular cavity. Especially, we investigate the possibility of estimating the acoustic emission by analysis of PIV data. Such a possibility is appealing, since it would allow to directly relate the flow behavior to the aerodynamic

  3. Aerodynamics

    DEFF Research Database (Denmark)

    Sørensen, J. N.; Ferreira, C.

    2016-01-01

    Wind turbine aerodynamics is a central discipline for modelling and prediction of the aerodynamic forces on a wind turbine. From the aerodynamic analysis the performance and loads on the rotor blades, as well as other structures exposed to the wind, are determined. An aerodynamic model is normally...... integrated with models for wind conditions and structural dynamics. Integrated aeroelastic models for predicting performance and structural deflections are a prerequisite for the design, development and optimisation of wind turbines. Aerodynamic modelling also concerns the design of specific components...

  4. Noise propagation in iterative reconstruction algorithms with line searches

    International Nuclear Information System (INIS)

    Qi, Jinyi

    2003-01-01

    In this paper we analyze the propagation of noise in iterative image reconstruction algorithms. We derive theoretical expressions for the general form of preconditioned gradient algorithms with line searches. The results are applicable to a wide range of iterative reconstruction problems, such as emission tomography, transmission tomography, and image restoration. A unique contribution of this paper comparing to our previous work [1] is that the line search is explicitly modeled and we do not use the approximation that the gradient of the objective function is zero. As a result, the error in the estimate of noise at early iterations is significantly reduced

  5. A Novel Numerical Approach for Generation and Propagation of Rotor-Stator Interaction Noise

    Science.gov (United States)

    Patel, Krishna

    As turbofan engine designs move towards bypass ratios ≥12 and corresponding low pressure ratios, fan rotor blade tip Mach numbers are reduced, leading to rotor-stator interaction becoming an important contributor to tonal fan noise. For future aircraft configurations employing boundary layer ingestion, non-uniform flow enters the fan. The impact of such non-uniform flows on the generation and propagation of rotor-stator interaction tones has yet to be assessed. In this thesis, a novel approach is proposed to numerically predict the generation and propagation of rotor-stator interaction noise with distorted inflow. The approach enables a 42% reduction in computational cost compared to traditional approaches employing a sliding interface between the rotor and stator. Such an interface may distort rotor wakes and can cause non-physical acoustic wave reflections if time steps are not sufficiently small. Computational costs are reduced by modelling the rotor using distributed, volumetric body forces. This eliminates the need for a sliding interface and thus allows a larger time step size. The force model responds to local flow conditions and thus can capture the effects of long-wavelength flow distortions. Since interaction noise is generated by the incidence of the rotor wakes onto the stator vanes, the key challenge is to produce the wakes using a body force field since the rotor blades are not directly modelled. It is shown that such an approach can produce wakes by concentrating the viscous forces along streamtubes in the last 15% chord. The new approach to rotor wake generation is assessed on the GE R4 fan from NASA's Source Diagnostic Test, for which the computed overall aerodynamic performance matches the experiment to within 1%. The rotor blade wakes are generated with widths in excellent agreement and depths in fair agreement with the experiment. An assessment of modal sound power levels computed in the exhaust duct indicates that this approach can be used

  6. Development of design tools for reduced aerodynamic noise wind turbines (draw)

    NARCIS (Netherlands)

    Wagner, S.; Guidati, G.; Ostertag, J.; Bareiss, R.; Wittum, G.; Huurdeman, B.; Braun, K.; Hirsch, C.; Kang, S.; Khodak, A.; Overmeire, M. van; Bladt, G.; Nienhaus, A.; Dassen, A.G.M.; Parchen, R.R.; Looijmans, K.

    1997-01-01

    The major aim of the present project was the development of new predictïon models for the aerodynamic noise generation at wind turbine blades. These models should be transferred to computer codes and should be sensitive enough to consider even small changes in the airfoil geometry. This accuracy is

  7. Wave propagation in tyres and the resultant noise radiation

    Science.gov (United States)

    Gi-Jeon, Kim

    Tyre noise has become an increasingly important road traffic noise source. This is because other sources on the vehicle, such as the air intake system, the exhaust system and the engine, have tended to become relatively quieter. This situation forces the tyre noise component to be reduced in order to achieve a reduction in the overall traffic noise level. In the research reported here, vibration, sound radiation and sound transmission of a passenger car radial tyre were investigated. The first half of this thesis discusses the vibration characteristics using two methods; (1)FEM to analysis modal behaviour in detail, (2)Analytical models to interpret the FEM results. These methods have both advantages and disadvantages in investigating tyre vibration. Combining the two methods is necessary in order to a fully understand the vibration behaviour of a tyre. Dispersion relationships and the related frequency of tyre modes is analysed by FEM and the flexural wave propagation in the tyre shell and the sound radiation of the tyre wall by flexural modes is analyzed using plate and shell theory. The second part of this thesis discusses the radiation and transmission of tyre noise. To predict the radiation of sound with only a knowledge of the surface vibration velocity, the experimental Green's functions were estimated by using the acoustic reciprocity principle. This technique was also applied to separate airborne structure borne noise for identification of the transmission path of tyre noise into a vehicle cabin and quantification of the relative contribution of various regions of the vibrating tyre surface to vehicle interior noise. The application of acoustic reciprocity for the tyre noise problem was verified and compared with BEM analysis.

  8. Improved prediction of aerodynamic noise from wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Guidati, G.; Bareiss, R.; Wagner, S. [Univ. of Stuttgart, Inst. of Aerodynamics and Gasdynamics, Stuttgart (Germany)

    1997-12-31

    This paper focuses on an improved prediction model for inflow-turbulence noise which takes the true airfoil shape into account. Predictions are compared to the results of acoustic measurements on three 2D-models of 0.25 m chord. Two of the models have NACA-636xx airfoils of 12% and 18% relative thickness. The third airfoil was acoustically optimized by using the new prediction model. In the experiments the turbulence intensity of the flow was strongly increased by mounting a grid with 60 mm wide meshes and 12 mm thick rods onto the tunnel exhaust nozzle. The sound radiated from the airfoil was distinguished by the tunnel background noise by using an acoustic antenna consisting of a cross array of 36 microphones in total. An application of a standard beam-forming algorithm allows to determine how much noise is radiated from different parts of the models. This procedure normally results in a peak at the leading and trailing edge of the airfoil. The strength of the leading-edge peak is taken as the source strength for inflow-turbulence noise. (LN) 14 refs.

  9. Noise propagation in synthetic gene circuits for metabolic control.

    Science.gov (United States)

    Oyarzún, Diego A; Lugagne, Jean-Baptiste; Stan, Guy-Bart V

    2015-02-20

    Dynamic control of enzyme expression can be an effective strategy to engineer robust metabolic pathways. It allows a synthetic pathway to self-regulate in response to changes in bioreactor conditions or the metabolic state of the host. The implementation of this regulatory strategy requires gene circuits that couple metabolic signals with the genetic machinery, which is known to be noisy and one of the main sources of cell-to-cell variability. One of the unexplored design aspects of these circuits is the propagation of biochemical noise between enzyme expression and pathway activity. In this article, we quantify the impact of a synthetic feedback circuit on the noise in a metabolic product in order to propose design criteria to reduce cell-to-cell variability. We consider a stochastic model of a catalytic reaction under negative feedback from the product to enzyme expression. On the basis of stochastic simulations and analysis, we show that, depending on the repression strength and promoter strength, transcriptional repression of enzyme expression can amplify or attenuate the noise in the number of product molecules. We obtain analytic estimates for the metabolic noise as a function of the model parameters and show that noise amplification/attenuation is a structural property of the model. We derive an analytic condition on the parameters that lead to attenuation of metabolic noise, suggesting that a higher promoter sensitivity enlarges the parameter design space. In the theoretical case of a switch-like promoter, our analysis reveals that the ability of the circuit to attenuate noise is subject to a trade-off between the repression strength and promoter strength.

  10. Aerodynamic noise from rigid trailing edges with finite porous extensions

    Science.gov (United States)

    Kisil, A.; Ayton, L. J.

    2018-02-01

    This paper investigates the effects of finite flat porous extensions to semi-infinite impermeable flat plates in an attempt to control trailing-edge noise through bio-inspired adaptations. Specifically the problem of sound generated by a gust convecting in uniform mean steady flow scattering off the trailing edge and permeable-impermeable junction is considered. This setup supposes that any realistic trailing-edge adaptation to a blade would be sufficiently small so that the turbulent boundary layer encapsulates both the porous edge and the permeable-impermeable junction, and therefore the interaction of acoustics generated at these two discontinuous boundaries is important. The acoustic problem is tackled analytically through use of the Wiener-Hopf method. A two-dimensional matrix Wiener-Hopf problem arises due to the two interaction points (the trailing edge and the permeable-impermeable junction). This paper discusses a new iterative method for solving this matrix Wiener-Hopf equation which extends to further two-dimensional problems in particular those involving analytic terms that exponentially grow in the upper or lower half planes. This method is an extension of the commonly used "pole removal" technique and avoids the needs for full matrix factorisation. Convergence of this iterative method to an exact solution is shown to be particularly fast when terms neglected in the second step are formally smaller than all other terms retained. The final acoustic solution highlights the effects of the permeable-impermeable junction on the generated noise, in particular how this junction affects the far-field noise generated by high-frequency gusts by creating an interference to typical trailing-edge scattering. This effect results in partially porous plates predicting a lower noise reduction than fully porous plates when compared to fully impermeable plates.

  11. Aerodynamic Measurements of a Gulfstream Aircraft Model With and Without Noise Reduction Concepts

    Science.gov (United States)

    Neuhart, Dan H.; Hannon, Judith A.; Khorrami, Mehdi R.

    2014-01-01

    Steady and unsteady aerodynamic measurements of a high-fidelity, semi-span 18% scale Gulfstream aircraft model are presented. The aerodynamic data were collected concurrently with acoustic measurements as part of a larger aeroacoustic study targeting airframe noise associated with main landing gear/flap components, gear-flap interaction noise, and the viability of related noise mitigation technologies. The aeroacoustic tests were conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Wind Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the measurements were obtained with the model in landing configuration with the flap deflected at 39º and the main landing gear on and off. Data were acquired at Mach numbers of 0.16, 0.20, and 0.24. Global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Comparison of the present results with those acquired during a previous test shows a significant reduction in the lift experienced by the model. The underlying cause was traced to the likely presence of a much thicker boundary layer on the tunnel floor, which was acoustically treated for the present test. The steady and unsteady pressure fields on the flap, particularly in the regions of predominant noise sources such as the inboard and outboard tips, remained unaffected. It is shown that the changes in lift and drag coefficients for model configurations fitted with gear/flap noise abatement technologies fall within the repeatability of the baseline configuration. Therefore, the noise abatement technologies evaluated in this experiment have no detrimental impact on the aerodynamic performance of the aircraft model.

  12. Development of an advanced noise propagation model for noise optimization in wind farm

    DEFF Research Database (Denmark)

    Barlas, Emre

    2017-01-01

    wind directions or time of the day). The latter causes turbines to be located at less resourceful sites in advance. Both of these scenarios increase the cost of energy. Hence there is a need for more accurate noise mapping tools. The thesis addresses this issue via development of a new tool based...... on combined source, propagation and flow models.The parabolic wave equation method is used for modelling the frequency dependent wave propagation. Different numerical techniques such as FFT’s or finite difference method are implemented to solve the equations. The wind speed and temperature distributions...

  13. A Study on Aerodynamic Characteristics and Noise of a Ring Fan

    OpenAIRE

    佐々木, 壮一; 福田, 雅治; 林, 秀千人

    2009-01-01

    The ring fan is a blower that has a shroud at the tip side of the axial flow impeller. In this study, to clarify the influence of the flow around the impeller on the aerodynamic characteristics and noise of the fan is aimed. The following characteristics were obtained; the efficiency of the ring fan is improved about 13% than the current propeller fan, the specific noise level is reduced approximately 6dB. The potential of the blade tip vortex of the ring fan has been weakened by the shroud. ...

  14. Environmental propagation of noise in mines and nearby villages: A study through noise mapping

    Directory of Open Access Journals (Sweden)

    Veena D Manwar

    2016-01-01

    Full Text Available Background: Noise mapping being an established practice in Europe is hardly practiced for noise management in India although it is mandatory in Indian mines as per guidelines of the Directorate General of Mines Safety (DGMS. As a pilot study, noise mapping was conducted in an opencast mine with three different models; one based on the baseline operating conditions in two shifts (Situation A, and two other virtual situations where either production targets were enhanced by extending working hours to three shifts (Situation B or only by increased mechanization and not changing the duration of work (Situation C. Methods: Noise sources were categorized as point, line, area, and moving sources. Considering measured power of the sources, specific meteorological and geographical parameters, noise maps were generated using Predictor LimA software. Results: In all three situations, Lden values were 95 dB(A and 70–80 dB(A near drill machine and haul roads, respectively. Noise contours were wider in Situation C due to increase in frequency of dumpers. Lden values near Shovel 1 and Shovel 2 under Situation B increased by 5 dB and 3 dB, respectively due to expansion of working hours. In Situation C, noise levels were >82 dB(A around shovels. Noise levels on both sides of conveyor belts were in the range of 80–85 dB(A in Situations A and C whereas it was 85–90 dB(A in Situation B. Near crusher plants, it ranged from 80 to 90 dB(A in Situations A and C and between 85 and 95 dB(A in Situation B. In all situations, noise levels near residential areas exceeded the Central Pollution Control Board (CPCB limits, i.e., 55 dB(A. Conclusions: For all situations, predicted noise levels exceeded CPCB limits within the mine and nearby residential area. Residential areas near the crusher plants are vulnerable to increased noise propagation. It is recommended to put an acoustic barrier near the crusher plant to attenuate the noise propagation.

  15. Effects of Geometric Details on Slat Noise Generation and Propagation

    Science.gov (United States)

    Khorrami, Mehdi R.; Lockard, David P.

    2009-01-01

    The relevance of geometric details to the generation and propagation of noise from leading-edge slats is considered. Typically, such details are omitted in computational simulations and model-scale experiments thereby creating ambiguities in comparisons with acoustic results from flight tests. The current study uses two-dimensional, computational simulations in conjunction with a Ffowcs Williams-Hawkings (FW-H) solver to investigate the effects of previously neglected slat "bulb" and "blade" seals on the local flow field and the associated acoustic radiation. The computations show that the presence of the "blade" seal at the cusp in the simulated geometry significantly changes the slat cove flow dynamics, reduces the amplitudes of the radiated sound, and to a lesser extent, alters the directivity beneath the airfoil. Furthermore, the computations suggest that a modest extension of the baseline "blade" seal further enhances the suppression of slat noise. As a side issue, the utility and equivalence of FW-H methodology for calculating far-field noise as opposed to a more direct approach is examined and demonstrated.

  16. Effect of Trailing Edge Flow Injection on Fan Noise and Aerodynamic Performance

    Science.gov (United States)

    Fite, E. Brian; Woodward, Richard P.; Podboy, Gary G.

    2006-01-01

    An experimental investigation using trailing edge blowing for reducing fan rotor/guide vane wake interaction noise was completed in the NASA Glenn 9- by 15-foot Low Speed Wind Tunnel. Data were acquired to measure noise, aerodynamic performance, and flow features for a 22" tip diameter fan representative of modern turbofan technology. The fan was designed to use trailing edge blowing to reduce the fan blade wake momentum deficit. The test objective was to quantify noise reductions, measure impacts on fan aerodynamic performance, and document the flow field using hot-film anemometry. Measurements concentrated on approach, cutback, and takeoff rotational speeds as those are the primary conditions of acoustic interest. Data are presented for a 2% (relative to overall fan flow) trailing edge injection rate and show a 2 dB reduction in Overall Sound Power Level (OAPWL) at all fan test speeds. The reduction in broadband noise is nearly constant and is approximately 1.5 dB up to 20 kHz at all fan speeds. Measurements of tone noise show significant variation, as evidenced by reductions of up to 6 dB in the 2 BPF tone at 6700 rpm.: and increases of nearly 2 dB for the 4 BPF tone at approach speed. Aerodynamic performance measurements show the fan with 2 % injection has an overall efficiency that is comparable to the baseline fan and operates, as intended, with nearly the same pressure ratio and mass flow parameters. Hot-film measurements obtained at the approach operating condition indicate that mean blade wake filling in the tip region was not as significant as expected. This suggests that additional acoustic benefits could be realized if the trailing edge blowing could be modified to provide better filling of the wake momentum deficit. Nevertheless, the hot-film measurements indicate that the trailing edge blowing provided significant reductions in blade wake turbulence. Overall, these results indicate that further work may be required to fully understand the proper

  17. Prediction and Reduction of Aerodynamic Noise of the Multiblade Centrifugal Fan

    Directory of Open Access Journals (Sweden)

    Shuiqing Zhou

    2014-08-01

    Full Text Available An aerodynamic and aeroacoustic investigation of the multiblade centrifugal fan is proposed in this paper, and a hybrid technique of combining flow field calculation and acoustic analysis is applied to solve the aeroacoustic problem of multiblade centrifugal fan. The unsteady flow field of the multiblade centrifugal fan is predicted by solving the incompressible Reynolds-averaged Navier-Stokes (RANS equations with conventional computing techniques for fluid dynamics. The principal noise source induced is extracted from the calculation of the flow field by using acoustic principles, and the modeled sources on inner and outer surfaces of the volute are calculated with multiregional boundary element method (BEM. Through qualitative analysis, the sound pressure amplitude distribution of the multiblade centrifugal fan in near field is given and the sound pressure level (SPL spectrum diagram of monitoring points in far field is obtained. Based on the analysis results, the volute tongue structure is adjusted and then a low-noise design for the centrifugal fan is proposed. The comparison of noise tests shows the noise reduction of improved fan model is more obvious, which is in good agreement with the prediction using the hybrid techniques.

  18. Wind turbine noise propagation modelling: An unsteady approach

    DEFF Research Database (Denmark)

    Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong

    2016-01-01

    Wind turbine sound generation and propagation phenomena are inherently time dependent, hence tools that incorporate the dynamic nature of these two issues are needed for accurate modelling. In this paper, we investigate the sound propagation from a wind turbine by considering the effects of unste......Wind turbine sound generation and propagation phenomena are inherently time dependent, hence tools that incorporate the dynamic nature of these two issues are needed for accurate modelling. In this paper, we investigate the sound propagation from a wind turbine by considering the effects...

  19. Scaling properties of the aerodynamic noise generated by low-speed fans

    Science.gov (United States)

    Canepa, Edward; Cattanei, Andrea; Mazzocut Zecchin, Fabio

    2017-11-01

    The spectral decomposition algorithm presented in the paper may be applied to selected parts of the SPL spectrum, i.e. to specific noise generating mechanisms. It yields the propagation and the generation functions, and indeed the Mach number scaling exponent associated with each mechanism as a function of the Strouhal number. The input data are SPL spectra obtained from measurements taken during speed ramps. Firstly, the basic theory and the implemented algorithm are described. Then, the behaviour of the new method is analysed with reference to numerically generated spectral data and the results are compared with the ones of an existing method based on the assumption that the scaling exponent is constant. Guidelines for the employment of both methods are provided. Finally, the method is applied to measurements taken on a cooling fan mounted on a test plenum designed following the ISO 10302 standards. The most common noise generating mechanisms are present and attention is focused on the low-frequency part of the spectrum, where the mechanisms are superposed. Generally, both propagation and generation functions are determined with better accuracy than the scaling exponent, whose values are usually consistent with expectations based on coherence and compactness of the acoustic sources. For periodic noise, the computed exponent is less accurate, as the related SPL data set has usually a limited size. The scaling exponent is very sensitive to the details of the experimental data, e.g. to slight inconsistencies or random errors.

  20. Atmospheric dispersion and noise propagation at Imperial Valley Geothermal Fields

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, R.E.

    1976-04-15

    Quantitative estimations are made for the atmospheric dispersion of gases, heat, and noise due to geothermal energy sources in Southern California's Imperial Valley. In particular, gas concentration per unit source strength, change in mixing ratio, relative humidity, temperature, and the ratio of heat flux to solar constant are calculated. The possibility of atmospheric refraction of source noise is also considered.

  1. Development of a wind farm noise propagation prediction model - project progress to date

    International Nuclear Information System (INIS)

    Robinson, P.; Bullmore, A.; Bass, J.; Sloth, E.

    1998-01-01

    This paper describes a twelve month measurement campaign which is part of a European project (CEC Project JOR3-CT95-0051) with the aim to substantially reduce the uncertainties involved in predicting environmentally radiated noise levels from wind farms (1). This will be achieved by comparing noise levels measure at varying distances from single and multiple sources over differing complexities of terrain with those predicted using a number of currently adopted sound propagation models. Specific objectives within the project are to: establish the important parameters controlling the propagation of wind farm noise to the far field; develop a planning tool for predicting wind farm noise emission levels under practically encountered conditions; place confidence limits on the upper and lower bounds of the noise levels predicted, thus enabling developers to quantify the risk whether noise emission from wind farms will cause nuisance to nearby residents. (Author)

  2. Computation of interactional aerodynamics for noise prediction of heavy lift rotorcraft

    Science.gov (United States)

    Hennes, Christopher C.

    Many computational tools are used when developing a modern helicopter. As the design space is narrowed, more accurate and time-intensive tools are brought to bear. These tools are used to determine the effect of a design decision on the performance, handling, stability and efficiency of the aircraft. One notable parameter left out of this process is acoustics. This is due in part to the difficulty in making useful acoustics calculations that reveal the differences between various design configurations. This thesis presents a new approach designed to bridge the gap in prediction capability between fast but low-fidelity Lagrangian particle methods, and slow but high-fidelity Eulerian computational fluid dynamics simulations. A multi-pronged approach is presented. First, a simple flow solver using well-understood and tested flow solution methodologies is developed specifically to handle bodies in arbitrary motion. To this basic flow solver two new technologies are added. The first is an Immersed Boundary technique designed to be tolerant of geometric degeneracies and low-resolution grids. This new technique allows easy inclusion of complex fuselage geometries at minimal computational cost, improving the ability of a solver to capture the complex interactional aerodynamic effects expected in modern rotorcraft design. The second new technique is an extension of a concept from flow visualization where the motion of tip vortices are tracked through the solution using massless particles convecting with the local flow. In this extension of that concept, the particles maintain knowledge of the expected and actual vortex strength. As a post-processing step, when the acoustic calculations are made, these particles are used to augment the loading noise calculation and reproduce the highly-impulsive character of blade-vortex interaction noise. In combination these new techniques yield a significant improvement to the state of the art in rotorcraft blade-vortex interaction noise

  3. High frequency green function for aerodynamic noise in moving media. I - General theory. II - Noise from a spreading jet

    Science.gov (United States)

    Durbin, P. A.

    1983-01-01

    It is shown how a high frequency analysis can be made for general problems involving flow-generated noise. In the parallel shear flow problem treated by Balsa (1976) and Goldstein (1982), the equation governing sound propagation in the moving medium could be transformed into a wave equation for a stationary medium with an inhomogeneous index of refraction. It is noted that the procedure of Avila and Keller (1963) was then used to construct a high frequency Green function. This procedure involves matching a solution valid in an inner region around the point source to an outer, ray-acoustics solution. This same procedure is used here to construct the Green function for a source in an arbitrary mean flow. In view of the fact that there is no restriction to parallel flow, the governing equations cannot be transformed into a wave equation; the analysis therefore proceeds from the equations of motion themselves.

  4. Aerodynamic Optimization of an Over-the-Wing-Nacelle-Mount Configuration

    OpenAIRE

    Sasaki, Daisuke; Nakahashi, Kazuhiro

    2011-01-01

    An over-the-wing-nacelle-mount airplane configuration is known to prevent the noise propagation from jet engines toward ground. However, the configuration is assumed to have low aerodynamic efficiency due to the aerodynamic interference effect between a wing and a nacelle. In this paper, aerodynamic design optimization is conducted to improve aerodynamic efficiency to be equivalent to conventional under-the-wing-nacelle-mount configuration. The nacelle and wing geometry are modified to achiev...

  5. Noise characteristics of CT perfusion imaging: how does noise propagate from source images to final perfusion maps?

    Science.gov (United States)

    Li, Ke; Chen, Guang-Hong

    2016-03-01

    Cerebral CT perfusion (CTP) imaging is playing an important role in the diagnosis and treatment of acute ischemic strokes. Meanwhile, the reliability of CTP-based ischemic lesion detection has been challenged due to the noisy appearance and low signal-to-noise ratio of CTP maps. To reduce noise and improve image quality, a rigorous study on the noise transfer properties of CTP systems is highly desirable to provide the needed scientific guidance. This paper concerns how noise in the CTP source images propagates to the final CTP maps. Both theoretical deviations and subsequent validation experiments demonstrated that, the noise level of background frames plays a dominant role in the noise of the cerebral blood volume (CBV) maps. This is in direct contradiction with the general belief that noise of non-background image frames is of greater importance in CTP imaging. The study found that when radiation doses delivered to the background frames and to all non-background frames are equal, lowest noise variance is achieved in the final CBV maps. This novel equality condition provides a practical means to optimize radiation dose delivery in CTP data acquisition: radiation exposures should be modulated between background frames and non-background frames so that the above equality condition is satisïnAed. For several typical CTP acquisition protocols, numerical simulations and in vivo canine experiment demonstrated that noise of CBV can be effectively reduced using the proposed exposure modulation method.

  6. Propagation of Partial Discharge and Noise Pulses in Turbine Generators

    DEFF Research Database (Denmark)

    Henriksen, Mogens; Stone, G. C.; Kurtz, M.

    1986-01-01

    Changes with time in the partial discharge (PD) activity originating in a generator stator's insulation system provide information about the electrical integrity of the stator winding. It is desirable to measure PD during normal service to minimize costs. To do this successfully, the influence...... of electrical interference must be reduced. Tests are reported which characterize the nature of discharge and noise pulses when using capacitive couplers mounted on each of the phase leads and an RF current transformer mounted on the neutral lead for signal detection. Significant differences between PD...... and electrical noise have been observed....

  7. Noise propagation in gene regulation networks involving interlinked positive and negative feedback loops.

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    Full Text Available It is well known that noise is inevitable in gene regulatory networks due to the low-copy numbers of molecules and local environmental fluctuations. The prediction of noise effects is a key issue in ensuring reliable transmission of information. Interlinked positive and negative feedback loops are essential signal transduction motifs in biological networks. Positive feedback loops are generally believed to induce a switch-like behavior, whereas negative feedback loops are thought to suppress noise effects. Here, by using the signal sensitivity (susceptibility and noise amplification to quantify noise propagation, we analyze an abstract model of the Myc/E2F/MiR-17-92 network that is composed of a coupling between the E2F/Myc positive feedback loop and the E2F/Myc/miR-17-92 negative feedback loop. The role of the feedback loop on noise effects is found to depend on the dynamic properties of the system. When the system is in monostability or bistability with high protein concentrations, noise is consistently suppressed. However, the negative feedback loop reduces this suppression ability (or improves the noise propagation and enhances signal sensitivity. In the case of excitability, bistability, or monostability, noise is enhanced at low protein concentrations. The negative feedback loop reduces this noise enhancement as well as the signal sensitivity. In all cases, the positive feedback loop acts contrary to the negative feedback loop. We also found that increasing the time scale of the protein module or decreasing the noise autocorrelation time can enhance noise suppression; however, the systems sensitivity remains unchanged. Taken together, our results suggest that the negative/positive feedback mechanisms in coupled feedback loop dynamically buffer noise effects rather than only suppressing or amplifying the noise.

  8. Effect of Two Advanced Noise Reduction Technologies on the Aerodynamic Performance of an Ultra High Bypass Ratio Fan

    Science.gov (United States)

    Hughes, Christoper E.; Gazzaniga, John A.

    2013-01-01

    A wind tunnel experiment was conducted in the NASA Glenn Research Center anechoic 9- by 15-Foot Low-Speed Wind Tunnel to investigate two new advanced noise reduction technologies in support of the NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project. The goal of the experiment was to demonstrate the noise reduction potential and effect on fan model performance of the two noise reduction technologies in a scale model Ultra-High Bypass turbofan at simulated takeoff and approach aircraft flight speeds. The two novel noise reduction technologies are called Over-the-Rotor acoustic treatment and Soft Vanes. Both technologies were aimed at modifying the local noise source mechanisms of the fan tip vortex/fan case interaction and the rotor wake-stator interaction. For the Over-the-Rotor acoustic treatment, two noise reduction configurations were investigated. The results showed that the two noise reduction technologies, Over-the-Rotor and Soft Vanes, were able to reduce the noise level of the fan model, but the Over-the-Rotor configurations had a significant negative impact on the fan aerodynamic performance; the loss in fan aerodynamic efficiency was between 2.75 to 8.75 percent, depending on configuration, compared to the conventional solid baseline fan case rubstrip also tested. Performance results with the Soft Vanes showed that there was no measurable change in the corrected fan thrust and a 1.8 percent loss in corrected stator vane thrust, which resulted in a total net thrust loss of approximately 0.5 percent compared with the baseline reference stator vane set.

  9. Spatiotemporal variability and propagation of equatorial noise observed by Cluster

    Czech Academy of Sciences Publication Activity Database

    Santolík, Ondřej; Pickett, J. S.; Gurnett, D. A.; Maksimovic, M.; Cornilleau-Wehrlin, N.

    2002-01-01

    Roč. 107, A12, 1495 (2002), s. SMP 43-1-43-8, doi: 10.1029/2001JA009159 ISSN 0148-0227 R&D Projects: GA ČR GA205/01/1064 Grant - others:NASA(US) NAG5-9974 Institutional research plan: CEZ:AV0Z3042911; CEZ:MSM 113200004 Keywords : outer plasmasphere * proton-cyclotron frequency * electromagnetic equatorial noise Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.245, year: 2002

  10. Assessment of noise level and noise propagation generated by light-lift helicopters in mountain natural environments.

    Science.gov (United States)

    Grigolato, Stefano; Mologni, Omar; Proto, Andrea Rosario; Zimbalatti, Giuseppe; Cavalli, Raffaele

    2018-01-20

    The use of helicopter rises discussion about environmental noise propagation especially when it operates in proximity of environmentally sensitive areas (ESAs) for an extended period because of its potential implications in wildlife behaviours. In order to support decisions on helicopter logging operation management in proximity of ESAs, this study focused on (i) analysing the noise spectrum of a light-lift helicopter during logging operations and on (ii) assessing the noise propagation in the surrounding environments. This study investigated a helicopter logging operation for wood fuel extraction in the eastern part of the Italian Alps. The potential disturbance area covered for the entire helicopter logging operation was evaluated by a specific GIS application according to hearing sensitivity of the most sensitive wildlife species in the study area (different strigiform species). The noise level at the ground appeared to be affected by the location regardless both the use of equivalent continuous sound pressures level dB(A) (LAeq) and the single-event level (SEL) noise metrics. The lowest values were recorded when the helicopter was flown over the sound meter level located under the forest canopy, while the highest was recorded when the helicopter was unhooking the loads at the landing. The GIS application highlighted the consistent of the exceeded noise area (weighted to strigiform hearing range and sensitivity) for the lower frequency bands (0.016-0.250 kHz). A more restricted exceeded noise area concerned instead the most sensitive frequency bands" for the strigiform (1-2 kHz). Graphical abstract ᅟ.

  11. Consistent modelling of wind turbine noise propagation from source to receiver.

    Science.gov (United States)

    Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong; Dag, Kaya O; Moriarty, Patrick

    2017-11-01

    The unsteady nature of wind turbine noise is a major reason for annoyance. The variation of far-field sound pressure levels is not only caused by the continuous change in wind turbine noise source levels but also by the unsteady flow field and the ground characteristics between the turbine and receiver. To take these phenomena into account, a consistent numerical technique that models the sound propagation from the source to receiver is developed. Large eddy simulation with an actuator line technique is employed for the flow modelling and the corresponding flow fields are used to simulate sound generation and propagation. The local blade relative velocity, angle of attack, and turbulence characteristics are input to the sound generation model. Time-dependent blade locations and the velocity between the noise source and receiver are considered within a quasi-3D propagation model. Long-range noise propagation of a 5 MW wind turbine is investigated. Sound pressure level time series evaluated at the source time are studied for varying wind speeds, surface roughness, and ground impedances within a 2000 m radius from the turbine.

  12. Extension of the noise propagation matrix method for higher mode solutions

    Science.gov (United States)

    Zhang, Peng; Lee, Hyunsuk; Lee, Deokjung

    2017-09-01

    The noise propagation matrix method (NPMM) has been extended to get higher mode solutions. Previous studies show that the NPMM can be used to compute the dominance ratio of a system. It is essentially the same as the Coarse Mesh Projection Method (CMPM), both of which use the noise propagation matrix (NPM) to determine the dominance ratio, either after finishing the Monte Carlo simulation or on-the-fly during the simulation. Since only the fundamental fission source information is explicitly utilized while the higher mode information is implicitly contained in the statistical noises, the NPMM can usually only give an approximate estimation of the dominance ratio after thousands of cycles. In this study, the NPMM is extended by simulating the higher modes explicitly, so that the dominance ratio estimation can be more accurate and efficient. Besides, the higher mode solutions can be obtained at the same time with good accuracy and efficiency.

  13. Modeling of signal propagation and sensor performance for infrasound and blast noise

    Science.gov (United States)

    Glaser, Danney R.; Wilson, D. Keith; Waldrop, Lauren E.; Hart, Carl R.; White, Michael J.; Nykaza, Edward T.; Swearingen, Michelle E.

    2017-05-01

    This paper describes a comprehensive modeling approach for infrasonic (sub-audible acoustic) signals, which starts with an accurate representation of the source spectrum and directivity, propagates the signals through the environment, and senses and processes the signals at the receiver. The calculations are implemented within EASEE (Environmental Awareness for Sensor and Emitter Employment), which is a general software framework for modeling the impacts of terrain and weather on target signatures and the performance of a diverse range of battlefield sensing systems, including acoustic, seismic, RF, visible, and infrared. At each stage in the modeling process, the signals are described by realistic statistical distributions. Sensor performance is quantified using statistical metrics such as probability of detection and target location error. To extend EASEE for infrasonic calculations, new feature sets were created including standard octaves and one-third octaves. A library of gunfire and blast noise spectra and directivity functions was added from ERDC's BNOISE (Blast Noise) and SARNAM (Small Arms Range Noise Assessment Model) software. Infrasonic propagation modeling is supported by extension of several existing propagation algorithms, including a basic ground impedance model, and the Green's function parabolic equation (GFPE), which provides accurate numerical solutions for wave propagation in a refractive atmosphere. The BNOISE propagation algorithm, which is based on tables generated by a fast-field program (FFP), was also added. Finally, an extensive library of transfer functions for microphones operating in the infrasonic range were added, which interface to EASEE's sensor performance algorithms. Example calculations illustrate terrain and atmospheric impacts on infrasonic signal propagation and the directivity characteristics of blast noise.

  14. High Fidelity Tool for Noise Source Identification, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorough understanding of airframe and propulsion aerodynamic noise sources and the subsequent acoustic propagation to the farfield is necessary to the design and...

  15. Critical assessment of indoor noise propagation and prediction in power plants

    Science.gov (United States)

    Brittain, Frank H.

    2005-09-01

    Accurate prediction of indoor noise propagation in power plants is important to help estimate occupational noise exposures, and to help predict community noise radiated by plant walls-from levels predicted just inside of each wall. Unfortunately, the basic theories of room acoustics are not applicable. Most power plant rooms are both too large, and too odd shaped for basic room theory, including the Sabine and Norris-Erying theories, to be applicable. Even more important, basic room theory requires empty rooms, and power plant spaces are densely packed with equipment, piping, cable trays, etc. (called fittings). This paper reviews basic room theory, and outlines deficiencies for use in predicting noise propagation inside power plant buildings. Examples are given of walk-away measurements showing that there is no reverberant field, and that reverberation measurements do not correlate well with walk-away test data. Using measurements as an alternative to levels predicted just inside of plant walls to help predict community noise radiated by each wall are discussed. Software for predicting noise in industrial spaces is identified, and their suitability for power plants, which have unusually high fitting densities, is also discussed.

  16. The Effect of Bypass Nozzle Exit Area on Fan Aerodynamic Performance and Noise in a Model Turbofan Simulator

    Science.gov (United States)

    Hughes, Christopher E.; Podboy, Gary, G.; Woodward, Richard P.; Jeracki, Robert, J.

    2013-01-01

    The design of effective new technologies to reduce aircraft propulsion noise is dependent on identifying and understanding the noise sources and noise generation mechanisms in the modern turbofan engine, as well as determining their contribution to the overall aircraft noise signature. Therefore, a comprehensive aeroacoustic wind tunnel test program was conducted called the Fan Broadband Source Diagnostic Test as part of the NASA Quiet Aircraft Technology program. The test was performed in the anechoic NASA Glenn 9- by 15-Foot Low Speed Wind Tunnel using a 1/5 scale model turbofan simulator which represented a current generation, medium pressure ratio, high bypass turbofan aircraft engine. The investigation focused on simulating in model scale only the bypass section of the turbofan engine. The test objectives were to: identify the noise sources within the model and determine their noise level; investigate several component design technologies by determining their impact on the aerodynamic and acoustic performance of the fan stage; and conduct detailed flow diagnostics within the fan flow field to characterize the physics of the noise generation mechanisms in a turbofan model. This report discusses results obtained for one aspect of the Source Diagnostic Test that investigated the effect of the bypass or fan nozzle exit area on the bypass stage aerodynamic performance, specifically the fan and outlet guide vanes or stators, as well as the farfield acoustic noise level. The aerodynamic performance, farfield acoustics, and Laser Doppler Velocimeter flow diagnostic results are presented for the fan and four different fixed-area bypass nozzle configurations. The nozzles simulated fixed engine operating lines and encompassed the fan stage operating envelope from near stall to cruise. One nozzle was selected as a baseline reference, representing the nozzle area which would achieve the design point operating conditions and fan stage performance. The total area change from

  17. The role of aerodynamic drag in propagation of interplanetary coronal mass ejections

    DEFF Research Database (Denmark)

    Vršnak, B.; Žic, T.; Falkenberg, Thea Vilstrup

    2010-01-01

    Context. The propagation of interplanetary coronal mass ejections (ICMEs) and the forecast of their arrival on Earth is one of the central issues of space weather studies. Aims. We investigate to which degree various ICME parameters (mass, size, take-off speed) and the ambient solar-wind parameters...

  18. Enhanced propagation modeling of directional aviation noise: A hybrid parabolic equation-fast field program method

    Science.gov (United States)

    Rosenbaum, Joyce E.

    2011-12-01

    Commercial air traffic is anticipated to increase rapidly in the coming years. The impact of aviation noise on communities surrounding airports is, therefore, a growing concern. Accurate prediction of noise can help to mitigate the impact on communities and foster smoother integration of aerospace engineering advances. The problem of accurate sound level prediction requires careful inclusion of all mechanisms that affect propagation, in addition to correct source characterization. Terrain, ground type, meteorological effects, and source directivity can have a substantial influence on the noise level. Because they are difficult to model, these effects are often included only by rough approximation. This dissertation presents a model designed for sound propagation over uneven terrain, with mixed ground type and realistic meteorological conditions. The model is a hybrid of two numerical techniques: the parabolic equation (PE) and fast field program (FFP) methods, which allow for physics-based inclusion of propagation effects and ensure the low frequency content, a factor in community impact, is predicted accurately. Extension of the hybrid model to a pseudo-three-dimensional representation allows it to produce aviation noise contour maps in the standard form. In order for the model to correctly characterize aviation noise sources, a method of representing arbitrary source directivity patterns was developed for the unique form of the parabolic equation starting field. With this advancement, the model can represent broadband, directional moving sound sources, traveling along user-specified paths. This work was prepared for possible use in the research version of the sound propagation module in the Federal Aviation Administration's new standard predictive tool.

  19. Noise propagation in x-ray phase-contrast imaging and computed tomography

    International Nuclear Information System (INIS)

    Nesterets, Yakov I; Gureyev, Timur E

    2014-01-01

    Three phase-retrieval algorithms, based on the transport-of-intensity equation and on the contrast transfer function for propagation-based imaging, and on the linearized geometrical optics approximation for analyser-based imaging, are investigated. The algorithms are compared in terms of their effect on propagation of noise from projection images to the corresponding phase-retrieved images and further to the computed tomography (CT) images/slices of a monomorphous object reconstructed using filtered backprojection algorithm. The comparison is carried out in terms of an integral noise characteristic, the variance, as well as in terms of a simple figure-of-merit, i.e. signal-to-noise ratio per unit dose. A gain factor is introduced that quantitatively characterizes the effect of phase retrieval on the variance of noise in the reconstructed projection images and in the axial slices of the object. Simple analytical expressions are derived for the gain factor and the signal-to-noise ratio, which indicate that the application of phase-retrieval algorithms can increase these parameters by up to two orders of magnitude compared to raw projection images and conventional CT, thus allowing significant improvement in the image quality and/or reduction of the x-ray dose delivered to the patient. (paper)

  20. Propagation of equatorial noise to low altitudes: Decoupling from the magnetosonic mode

    Czech Academy of Sciences Publication Activity Database

    Santolík, Ondřej; Parrot, M.; Němec, F.

    2016-01-01

    Roč. 43, č. 13 (2016), s. 6694-6704 ISSN 0094-8276 R&D Projects: GA ČR(CZ) GA14-31899S; GA MŠk(CZ) LH15304 Institutional support: RVO:68378289 Keywords : equatorial noise * magnetosonic waves * polarization and propagation analysis * ray tracing Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.253, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/2016GL069582/full

  1. Sonic Boom Pressure Signature Uncertainty Calculation and Propagation to Ground Noise

    Science.gov (United States)

    West, Thomas K., IV; Bretl, Katherine N.; Walker, Eric L.; Pinier, Jeremy T.

    2015-01-01

    The objective of this study was to outline an approach for the quantification of uncertainty in sonic boom measurements and to investigate the effect of various near-field uncertainty representation approaches on ground noise predictions. These approaches included a symmetric versus asymmetric uncertainty band representation and a dispersion technique based on a partial sum Fourier series that allows for the inclusion of random error sources in the uncertainty. The near-field uncertainty was propagated to the ground level, along with additional uncertainty in the propagation modeling. Estimates of perceived loudness were obtained for the various types of uncertainty representation in the near-field. Analyses were performed on three configurations of interest to the sonic boom community: the SEEB-ALR, the 69o DeltaWing, and the LM 1021-01. Results showed that representation of the near-field uncertainty plays a key role in ground noise predictions. Using a Fourier series based dispersion approach can double the amount of uncertainty in the ground noise compared to a pure bias representation. Compared to previous computational fluid dynamics results, uncertainty in ground noise predictions were greater when considering the near-field experimental uncertainty.

  2. Pulse propagation in a model for the photosensitive Belousov-Zhabotinsky reaction with external noise

    Science.gov (United States)

    Beato, Valentina; Engel, Harald

    2003-05-01

    We study the dynamics of excitation pulses in a modified Oregonator model for the light-sensitive Belousov-Zhabotinsky (BZ)reaction assuming that the intensity of the applied illumination is a spatiotemporal stochastic field with finite correlation time and correlation length. For a two-component version of the model we discuss the dependence of the pulse speed on the characteristic parameters of the noise in the framework of a small noise approximation up to the first order in the correlation time. In the full three-component model we find enhancement of coherence resonance for suitable chosen correlation time. Based on this observation, we propose a mechanism for noise-enhanced propagation of pulse trains in excitable media subjected to external fluctuations.

  3. Prediction of Broadband Shock-Associated Noise Including Propagation Effects Originating NASA

    Science.gov (United States)

    Miller, Steven; Morris, Philip J.

    2012-01-01

    An acoustic analogy is developed based on the Euler equations for broadband shock-associated noise (BBSAN) that directly incorporates the vector Green s function of the linearized Euler equations and a steady Reynolds-Averaged Navier-Stokes solution (SRANS) to describe the mean flow. The vector Green s function allows the BBSAN propagation through the jet shear layer to be determined. The large-scale coherent turbulence is modeled by two-point second order velocity cross-correlations. Turbulent length and time scales are related to the turbulent kinetic energy and dissipation rate. An adjoint vector Green s function solver is implemented to determine the vector Green s function based on a locally parallel mean flow at different streamwise locations. The newly developed acoustic analogy can be simplified to one that uses the Green s function associated with the Helmholtz equation, which is consistent with a previous formulation by the authors. A large number of predictions are generated using three different nozzles over a wide range of fully-expanded jet Mach numbers and jet stagnation temperatures. These predictions are compared with experimental data from multiple jet noise experimental facilities. In addition, two models for the so-called fine-scale mixing noise are included in the comparisons. Improved BBSAN predictions are obtained relative to other models that do not include propagation effects.

  4. Aerodynamic noise characterization of a full-scale wind turbine through high-frequency surface pressure measurements

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Aagaard Madsen, Helge; Bak, Christian

    2015-01-01

    wind turbine with a 80 m diameter rotor as well as measurements of an airfoil section tested in a wind tunnel. The turbine was extensively equipped in order to monitor the local inflow onto the rotating blades. Further a section of the 38 m long blade was instrumented with 50 microphones flush...... in a wind tunnel on a copy of the blade section of the full scale blade. Computational Fluid Dynamics calculations were conducted to investigate the influence of the inflow conditions on the airfoil and blade sections aerodynamics and aeroacoustics. Comparisons between measurement data and model results......The aim of this work is to investigate and characterize the high-frequency surface pressure fluctuations on a full-scale wind turbine blade and in particular the influence of the atmospheric turbulence. As these fluctuations are highly correlated to the sources of both turbulent inflow noise...

  5. Covert communications using random noise signals: effects of atmospheric propagation nulls and rain

    Science.gov (United States)

    Mohan, Karen M.; Narayanan, Ram M.

    2005-06-01

    In military communications, there exist numerous potential threats to message security. Ultra-wideband (UWB) signals provide secure communications because they cannot, in general, be detected using conventional receivers and they can be made relatively immune from jamming. The security of an UWB signal can be further improved by mixing it with random noise. By using a random noise signal, the user can conceal the message signal within the noise waveform and thwart detection by hostile forces. This paper describes a novel spread spectrum technique that can be used for secure and covert communications. The technique is based on the use of heterodyne correlation techniques to inject coherence in a random noise signal. The modulated signal to be transmitted containing the coherent carrier is mixed with a sample of an ultra-wideband (UWB) random noise signal. The frequency range of the UWB noise signal is appropriately chosen so that the lower sideband of the mixing process falls over the same frequency range. Both the frequency-converted noise-like signal and the original random noise signal are simultaneously transmitted on orthogonally polarized channels through a dual-polarized transmitting antenna. The receiver consists of a similar dual-polarized antenna that simultaneously receives the two orthogonally polarized transmitted signals, amplifies each in a minimum phase limiting amplifier, and mixes these signals in a double sideband upconverter. The upper sideband of the mixing process recovers the modulated signal, which can then be demodulated. The advantage of this technique lies in the relative immunity of the random noise-like unpolarized transmit signal from detection and jamming. Since the transmitted signal "appears" totally unpolarized and noise-like, linearly polarized receivers are unable to identify, decode, or otherwise extract useful information from the signal. The system is immune from interference caused by high power linearly polarized signal

  6. Near-field shock formation in noise propagation from a high-power jet aircraft.

    Science.gov (United States)

    Gee, Kent L; Neilsen, Tracianne B; Downing, J Micah; James, Michael M; McKinley, Richard L; McKinley, Robert C; Wall, Alan T

    2013-02-01

    Noise measurements near the F-35A Joint Strike Fighter at military power are analyzed via spatial maps of overall and band pressure levels and skewness. Relative constancy of the pressure waveform skewness reveals that waveform asymmetry, characteristic of supersonic jets, is a source phenomenon originating farther upstream than the maximum overall level. Conversely, growth of the skewness of the time derivative with distance indicates that acoustic shocks largely form through the course of near-field propagation and are not generated explicitly by a source mechanism. These results potentially counter previous arguments that jet "crackle" is a source phenomenon.

  7. Study on degradation of propagation delay time and low-frequency noise of high-speed optocoupler

    Science.gov (United States)

    Huang, Jiaoying; Hu, Sicong; Wang, Xiangfen; Hu, Linjiang

    2017-02-01

    CTR (Current transfer ratio) is generally used to characterize the reliability parameters of optocoupler in engineering. However, high-speed optocoupler has a different structure from the common optocoupler, therefore its most important parameter should be propagation delay time. In addition, CTR serving as the macroscopic parameters, its changes can't directly reflect microscopic changes of the internal defects in device. It is discovered that the number of microscopic defects in the device and the level of low-frequency noise shows a positive correlation. In terms of high-speed optocoupler, this paper proposed a method of combining propagation delay time and low-frequency noise to evaluate the storage reliability. The paper demonstrated how to design circuit to test these parameters and obtain their variations trajectory in accelerated degradation test. In this paper, 20 VO2630 devices were divided into four groups, and a accelerated test at 100°C, 125°C, 150°C and 175°C was conducted to monitor propagation delay time and other parameters related with low-frequency noise. These parameters had different degrees of degradation. This paper showed the degradation process of propagation delay time. It was found that the initial value of propagation delay time was nearly identical, but parameters related with low-frequency noise had different initial values. The larger the initial value of low frequency noise is, the faster propagation delay time will degrade. The main cause of degradation of propagation delay time is Schottky clamped transistor degradation. Finally, this paper discussed the advantages and disadvantages about utilizing conventional electrical parameters or low frequency noise to evaluate the reliability.

  8. The Prediction of Broadband Shock-Associated Noise Including Propagation Effects

    Science.gov (United States)

    Miller, Steven; Morris, Philip J.

    2011-01-01

    An acoustic analogy is developed based on the Euler equations for broadband shock- associated noise (BBSAN) that directly incorporates the vector Green's function of the linearized Euler equations and a steady Reynolds-Averaged Navier-Stokes solution (SRANS) as the mean flow. The vector Green's function allows the BBSAN propagation through the jet shear layer to be determined. The large-scale coherent turbulence is modeled by two-point second order velocity cross-correlations. Turbulent length and time scales are related to the turbulent kinetic energy and dissipation. An adjoint vector Green's function solver is implemented to determine the vector Green's function based on a locally parallel mean flow at streamwise locations of the SRANS solution. However, the developed acoustic analogy could easily be based on any adjoint vector Green's function solver, such as one that makes no assumptions about the mean flow. The newly developed acoustic analogy can be simplified to one that uses the Green's function associated with the Helmholtz equation, which is consistent with the formulation of Morris and Miller (AIAAJ 2010). A large number of predictions are generated using three different nozzles over a wide range of fully expanded Mach numbers and jet stagnation temperatures. These predictions are compared with experimental data from multiple jet noise labs. In addition, two models for the so-called 'fine-scale' mixing noise are included in the comparisons. Improved BBSAN predictions are obtained relative to other models that do not include the propagation effects, especially in the upstream direction of the jet.

  9. Aircraft noise prediction program theoretical manual: Rotorcraft System Noise Prediction System (ROTONET), part 4

    Science.gov (United States)

    Weir, Donald S.; Jumper, Stephen J.; Burley, Casey L.; Golub, Robert A.

    1995-01-01

    This document describes the theoretical methods used in the rotorcraft noise prediction system (ROTONET), which is a part of the NASA Aircraft Noise Prediction Program (ANOPP). The ANOPP code consists of an executive, database manager, and prediction modules for jet engine, propeller, and rotor noise. The ROTONET subsystem contains modules for the prediction of rotor airloads and performance with momentum theory and prescribed wake aerodynamics, rotor tone noise with compact chordwise and full-surface solutions to the Ffowcs-Williams-Hawkings equations, semiempirical airfoil broadband noise, and turbulence ingestion broadband noise. Flight dynamics, atmosphere propagation, and noise metric calculations are covered in NASA TM-83199, Parts 1, 2, and 3.

  10. Coupling of an aeroacoustic model and a parabolic equation code for long range wind turbine noise propagation

    Science.gov (United States)

    Cotté, B.

    2018-05-01

    This study proposes to couple a source model based on Amiet's theory and a parabolic equation code in order to model wind turbine noise emission and propagation in an inhomogeneous atmosphere. Two broadband noise generation mechanisms are considered, namely trailing edge noise and turbulent inflow noise. The effects of wind shear and atmospheric turbulence are taken into account using the Monin-Obukhov similarity theory. The coupling approach, based on the backpropagation method to preserve the directivity of the aeroacoustic sources, is validated by comparison with an analytical solution for the propagation over a finite impedance ground in a homogeneous atmosphere. The influence of refraction effects is then analyzed for different directions of propagation. The spectrum modification related to the ground effect and the presence of a shadow zone for upwind receivers are emphasized. The validity of the point source approximation that is often used in wind turbine noise propagation models is finally assessed. This approximation exaggerates the interference dips in the spectra, and is not able to correctly predict the amplitude modulation.

  11. Development of nonlinear acoustic propagation analysis tool toward realization of loud noise environment prediction in aeronautics

    Energy Technology Data Exchange (ETDEWEB)

    Kanamori, Masashi, E-mail: kanamori.masashi@jaxa.jp; Takahashi, Takashi, E-mail: takahashi.takashi@jaxa.jp; Aoyama, Takashi, E-mail: aoyama.takashi@jaxa.jp [Japan Aerospace Exploration Agency, 7-44-1, Jindaijihigashi-machi, Chofu, Tokyo (Japan)

    2015-10-28

    Shown in this paper is an introduction of a prediction tool for the propagation of loud noise with the application to the aeronautics in mind. The tool, named SPnoise, is based on HOWARD approach, which can express almost exact multidimensionality of the diffraction effect at the cost of back scattering. This paper argues, in particular, the prediction of the effect of atmospheric turbulence on sonic boom as one of the important issues in aeronautics. Thanks to the simple and efficient modeling of the atmospheric turbulence, SPnoise successfully re-creates the feature of the effect, which often emerges in the region just behind the front and rear shock waves in the sonic boom signature.

  12. On the precise implications of acoustic analogies for aerodynamic noise at low Mach numbers

    Science.gov (United States)

    Spalart, Philippe R.

    2013-05-01

    We seek a clear statement of the scaling which may be expected with rigour for transportation or other noise at low Mach numbers M, based on Lighthill's and Curle's theories of 1952 and 1955. In the presence of compact solid bodies, the leading term in the acoustic intensity is of order M6. Contrary to the belief held since that time that it is of order M8, the contribution of quadrupoles, in the presence of dipoles, is of order only M7. Retarded-time-difference effects are also of order M7. Curle's widely used approximation based on unsteady forces neglects both effects. Its order of accuracy is thus lower than was thought, and the common estimates of the value of M below which it applies appear precarious. The M6 leading term is modified by powers up to the fourth of (1-Mr), where Mr is the relative Mach number between source and observer; at speeds of interest the effect is several dB. However, this is only one of the corrections of order M7, which makes its value debatable. The same applies to the difference between emission distance and reception distance. The scaling with M6 is theoretically correct to leading order, but this prediction may be so convincing, like the M8 scaling for jet noise, that some authors rush to confirm it when their measurements are in conflict with it. We survey experimental studies of landing-gear noise, and argue that the observed power of M is often well below 6. We also object to comparisons across Mach numbers at fixed frequency; they should be made at fixed Strouhal number St instead. Finally, the compact-source argument does not only require M≪1; it requires MSt≪1. This is more restrictive if the relevant St is well above 1, a situation which can be caused by interference with a boundary or by wake impingement, among other effects. The best length scales to define St for this purpose are discussed.

  13. On the effect of topography on surface wave propagation in the ambient noise frequency range

    Science.gov (United States)

    Köhler, Andreas; Weidle, Christian; Maupin, Valérie

    2012-04-01

    Due to the increasing popularity of analyzing empirical Green's functions obtained from ambient seismic noise, more and more regional tomographical studies based on short-period surface waves are published. Results could potentially be biased in mountainous regions where topography is not small compared to the wavelength and penetration depth of the considered waves. We investigate the effect of topography on the propagation of short-period Rayleigh waves empirically by means of synthetic data using a spectral element code and a 3-D model with real topography. We show that topography along a profile through the studied area can result in an underestimation of phase velocities of up to about 0.7% at the shortest investigated period (3 s). Contrary to the expectation that this bias results from the increased surface distance along topography, we find that this error can be estimated by local topographic contrasts in the vicinity of the receiver alone. We discuss and generalize our results by considering topographic profiles through other mountain ranges and find that southern Norway is a good proxy to assess the topography effect. Nevertheless, topographic bias on phase velocity measurements is in general not large enough to significantly affect recovered velocity variations in the ambient noise frequency range.

  14. Long Range Sound Propagation over Sea: Application to Wind Turbine Noise

    Energy Technology Data Exchange (ETDEWEB)

    Boue, Matieu

    2007-12-13

    The classical theory of spherical wave propagation is not valid at large distances from a sound source due to the influence of wind and temperature gradients that refract, i.e., bend the sound waves. This will in the downwind direction lead to a cylindrical type of wave spreading for large distances (> 1 km). Cylindrical spreading will give a smaller damping with distance as compared to spherical spreading (3 dB/distance doubling instead of 6 dB). But over areas with soft ground, i.e., grass land, the effect of ground reflections will increase the damping so that, if the effect of atmospheric damping is removed, a behavior close to a free field spherical spreading often is observed. This is the standard assumption used in most national recommendations for predicting outdoor sound propagation, e.g., noise from wind turbines. Over areas with hard surfaces, e.g., desserts or the sea, the effect of ground damping is small and therefore cylindrical propagation could be expected in the downwind direction. This observation backed by a limited number of measurements is the background for the Swedish recommendation, which suggests that cylindrical wave spreading should be assumed for distances larger than 200 m for sea based wind turbines. The purpose of this work was to develop measurement procedures for long range sound transmission and to apply this to investigate the occurrence of cylindrical wave spreading in the Baltic Sea. This work has been successfully finished and is described in this report. Another ambition was to develop models for long range sound transmission based on the parabolic equation. Here the work is not finished but must be continued in another project. Long term measurements were performed in the Kalmar strait, Sweden, located between the mainland and Oeland, during 2005 and 2006. Two different directive sound sources placed on a lighthouse in the middle of the strait produced low frequency tones at 80, 200 and 400 Hz. At the reception point on

  15. Sound propagation in and low frequency noise absorption by helium-filled porous material.

    Science.gov (United States)

    Choy, Y S; Huang, Lixi; Wang, Chunqi

    2009-12-01

    Low-frequency noise is difficult to deal with by traditional porous material due to its inherent high acoustic impedance. This study seeks to extend the effective range of sound absorption to lower frequencies by filling a low density gas, such as helium, in the porous material. Compared with conventional air-filled absorption material, the helium-filled porous material has a much reduced characteristic impedance; hence, a good impedance matching with pure air becomes more feasible at low frequencies. The acoustic properties of a series of helium-filled porous materials are investigated with a specially designed test rig. The characteristic of the sound propagation in a helium-filled porous material is established and validated experimentally. Based on the measured acoustic properties, the sound absorption performance of a helium-filled absorber (HA) of finite thickness is studied numerically as well as experimentally. For a random incidence field, the HA is found to perform much better than the air-filled absorber at low frequencies. The main advantage of HA lies in the middle range of oblique incidence angles where wave refraction in the absorber enhances sound absorption. The advantage of HA as duct lining is demonstrated both numerically and experimentally.

  16. Coupled influence of noise and damped propagation of impurity on linear and nonlinear polarizabilities of doped quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, Jayanta [Department of Chemistry, Brahmankhanda Basapara High School, Basapara, Birbhum 731 215, West Bengal (India); Ghosh, Manas, E-mail: pcmg77@rediffmail.com [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India)

    2015-02-02

    Highlights: • Linear and nonlinear polarizabilities of quantum dot are studied. • Quantum dot is doped with a repulsive impurity. • Doped system is subject to Gaussian white noise. • Dopant migrates under damped condition. • Noise-damping coupling affects polarizabilities. - Abstract: We investigate the profiles of diagonal components of static and frequency-dependent linear, first, and second nonlinear polarizabilities of repulsive impurity doped quantum dot. We have considered propagation of dopant within an environment that damps the motion. Simultaneous presence of noise inherent to the system has also been considered. The dopant has a Gaussian potential and noise considered is a Gaussian white noise. The doped system is exposed to an external electric field which could be static or time-dependent. Noise undergoes direct coupling with damping and the noise-damping coupling strength appears to be a crucial parameter that designs the profiles of polarizability components. This happens because the coupling strength modulates the dispersive and asymmetric character of the system. The frequency of external field brings about additional features in the profiles of polarizability components. The present investigation highlights some useful features in the optical properties of doped quantum dots.

  17. Analytical propagation of errors in dynamic SPECT: estimators, degrading factors, bias and noise

    International Nuclear Information System (INIS)

    Kadrmas, D.J.; Huesman, R.H.

    1999-01-01

    Dynamic SPECT is a relatively new technique that may potentially benefit many imaging applications. Though similar to dynamic PET, the accuracy and precision of dynamic SPECT parameter estimates are degraded by factors that differ from those encountered in PET. In this work we formulate a methodology for analytically studying the propagation of errors from dynamic projection data to kinetic parameter estimates. This methodology is used to study the relationships between reconstruction estimators, image degrading factors, bias and statistical noise for the application of dynamic cardiac imaging with 99m Tc-teboroxime. Dynamic data were simulated for a torso phantom, and the effects of attenuation, detector response and scatter were successively included to produce several data sets. The data were reconstructed to obtain both weighted and unweighted least squares solutions, and the kinetic rate parameters for a two- compartment model were estimated. The expected values and standard deviations describing the statistical distribution of parameters that would be estimated from noisy data were calculated analytically. The results of this analysis present several interesting implications for dynamic SPECT. Statistically weighted estimators performed only marginally better than unweighted ones, implying that more computationally efficient unweighted estimators may be appropriate. This also suggests that it may be beneficial to focus future research efforts upon regularization methods with beneficial bias-variance trade-offs. Other aspects of the study describe the fundamental limits of the bias-variance trade-off regarding physical degrading factors and their compensation. The results characterize the effects of attenuation, detector response and scatter, and they are intended to guide future research into dynamic SPECT reconstruction and compensation methods. (author)

  18. Weak noise in neurons may powerfully inhibit the generation of repetitive spiking but not its propagation.

    Directory of Open Access Journals (Sweden)

    Henry C Tuckwell

    2010-05-01

    Full Text Available Many neurons have epochs in which they fire action potentials in an approximately periodic fashion. To see what effects noise of relatively small amplitude has on such repetitive activity we recently examined the response of the Hodgkin-Huxley (HH space-clamped system to such noise as the mean and variance of the applied current vary, near the bifurcation to periodic firing. This article is concerned with a more realistic neuron model which includes spatial extent. Employing the Hodgkin-Huxley partial differential equation system, the deterministic component of the input current is restricted to a small segment whereas the stochastic component extends over a region which may or may not overlap the deterministic component. For mean values below, near and above the critical values for repetitive spiking, the effects of weak noise of increasing strength is ascertained by simulation. As in the point model, small amplitude noise near the critical value dampens the spiking activity and leads to a minimum as noise level increases. This was the case for both additive noise and conductance-based noise. Uniform noise along the whole neuron is only marginally more effective in silencing the cell than noise which occurs near the region of excitation. In fact it is found that if signal and noise overlap in spatial extent, then weak noise may inhibit spiking. If, however, signal and noise are applied on disjoint intervals, then the noise has no effect on the spiking activity, no matter how large its region of application, though the trajectories are naturally altered slightly by noise. Such effects could not be discerned in a point model and are important for real neuron behavior. Interference with the spike train does nevertheless occur when the noise amplitude is larger, even when noise and signal do not overlap, being due to the instigation of secondary noise-induced wave phenomena rather than switching the system from one attractor (firing regularly to

  19. PREFACE: Aerodynamic sound Aerodynamic sound

    Science.gov (United States)

    Akishita, Sadao

    2010-02-01

    The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the

  20. Aerodynamic Optimization of an Over-the-Wing-Nacelle-Mount Configuration

    Directory of Open Access Journals (Sweden)

    Daisuke Sasaki

    2011-01-01

    Full Text Available An over-the-wing-nacelle-mount airplane configuration is known to prevent the noise propagation from jet engines toward ground. However, the configuration is assumed to have low aerodynamic efficiency due to the aerodynamic interference effect between a wing and a nacelle. In this paper, aerodynamic design optimization is conducted to improve aerodynamic efficiency to be equivalent to conventional under-the-wing-nacelle-mount configuration. The nacelle and wing geometry are modified to achieve high lift-to-drag ratio, and the optimal geometry is compared with a conventional configuration. Pylon shape is also modified to reduce aerodynamic interference effect. The final wing-fuselage-nacelle model is compared with the DLR F6 model to discuss the potential of Over-the-Wing-Nacelle-Mount geometry for an environmental-friendly future aircraft.

  1. Analytical evaluation of the signal and noise propagation in x-ray differential phase-contrast computed tomography

    International Nuclear Information System (INIS)

    Raupach, Rainer; Flohr, Thomas G

    2011-01-01

    We analyze the signal and noise propagation of differential phase-contrast computed tomography (PCT) compared with conventional attenuation-based computed tomography (CT) from a theoretical point of view. This work focuses on grating-based differential phase-contrast imaging. A mathematical framework is derived that is able to analytically predict the relative performance of both imaging techniques in the sense of the relative contrast-to-noise ratio for the contrast of any two materials. Two fundamentally different properties of PCT compared with CT are identified. First, the noise power spectra show qualitatively different characteristics implying a resolution-dependent performance ratio. The break-even point is derived analytically as a function of system parameters such as geometry and visibility. A superior performance of PCT compared with CT can only be achieved at a sufficiently high spatial resolution. Second, due to periodicity of phase information which is non-ambiguous only in a bounded interval statistical phase wrapping can occur. This effect causes a collapse of information propagation for low signals which limits the applicability of phase-contrast imaging at low dose.

  2. Nonlinear acoustic propagation of launch vehicle and military jet aircraft noise

    Science.gov (United States)

    Gee, Kent L.

    2010-10-01

    The noise from launch vehicles and high-performance military jet aircraft has been shown to travel nonlinearly as a result of an amplitude-dependent speed of sound. Because acoustic pressure compressions travel faster than rarefactions, the waveform steepens and shocks form. This process results in a very different (and readily audible) noise signature and spectrum than predicted by linear models. On-going efforts to characterize the nonlinearity using statistical and spectral measures are described with examples from recent static tests of solid rocket boosters and the F-22 Raptor.

  3. Noise Propagation in Multiple-Input ADC-Based Measurement Systems

    Directory of Open Access Journals (Sweden)

    Bellan Diego

    2014-12-01

    Full Text Available In this paper, the complete statistical characterization of the amplitude spectrum at the output of a multiple-input ADC-based measurement system is derived under the assumption of input channels with different noise levels. In practical applications the input channels correspond to the spatial components of a vector field (e.g., magnetic/electric field. Each output spectral line represents the amplitude of the vector field at a specific frequency. Such amplitude is a random variable depending on the noise levels (internal and external noise of the input channels. Closed form analytical solution for the probability density function of the vector field amplitude is not available in the mathematical literature under the hypothesis of different noise levels. Therefore, an analytical expression for the probability density function is derived on the basis of a Laguerre series expansion. The impact of the kind of time window, the sampling frequency, and the number of samples is clearly derived and put into evidence. Approximate analytical expressions for the mean value and the variance of the vector field amplitude are also provided. Analytical results are validated by means of numerical simulations.

  4. Separation of rolling noise and aerodynamic noise by in-service measurement of combined roughness and transfer functions on a high speed slab track

    NARCIS (Netherlands)

    Jansen, H.W.; Dittrich, M.G.

    2012-01-01

    Combined sound and vibration measurements during train pass-bys can be used to quantify contributions from the excitation and transmission of rolling noise. This is useful for the identification of sound sources and the assessment of the track contribution. In this paper, a practical application on

  5. Azimuthal directions of equatorial noise propagation determined using 10 years of data from the Cluster spacecraft

    Czech Academy of Sciences Publication Activity Database

    Němec, F.; Santolík, Ondřej; Pickett, J. S.; Hrbáčková, Zuzana; Cornilleau-Wehrlin, N.

    2013-01-01

    Roč. 118, č. 11 (2013), 7160–7169 ISSN 2169-9380 R&D Projects: GA ČR GAP205/10/2279 Institutional support: RVO:68378289 Keywords : equatorial noise * fast magnetosonic waves * fast magnetosonic waves Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.440, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/2013JA019373/abstract

  6. Noise

    Science.gov (United States)

    Noise is all around you, from televisions and radios to lawn mowers and washing machines. Normally, you ... sensitive structures of the inner ear and cause noise-induced hearing loss. More than 30 million Americans ...

  7. Equalization enhanced phase noise in Nyquist-spaced superchannel transmission systems using multi-channel digital back-propagation.

    Science.gov (United States)

    Xu, Tianhua; Liga, Gabriele; Lavery, Domaniç; Thomsen, Benn C; Savory, Seb J; Killey, Robert I; Bayvel, Polina

    2015-09-14

    Superchannel transmission spaced at the symbol rate, known as Nyquist spacing, has been demonstrated for effectively maximizing the optical communication channel capacity and spectral efficiency. However, the achievable capacity and reach of transmission systems using advanced modulation formats are affected by fibre nonlinearities and equalization enhanced phase noise (EEPN). Fibre nonlinearities can be effectively compensated using digital back-propagation (DBP). However EEPN which arises from the interaction between laser phase noise and dispersion cannot be efficiently mitigated, and can significantly degrade the performance of transmission systems. Here we report the first investigation of the origin and the impact of EEPN in Nyquist-spaced superchannel system, employing electronic dispersion compensation (EDC) and multi-channel DBP (MC-DBP). Analysis was carried out in a Nyquist-spaced 9-channel 32-Gbaud DP-64QAM transmission system. Results confirm that EEPN significantly degrades the performance of all sub-channels of the superchannel system and that the distortions are more severe for the outer sub-channels, both using EDC and MC-DBP. It is also found that the origin of EEPN depends on the relative position between the carrier phase recovery module and the EDC (or MC-DBP) module. Considering EEPN, diverse coding techniques and modulation formats have to be applied for optimizing different sub-channels in superchannel systems.

  8. Wave propagation in ducts using the finite element method. [for aircraft noise reduction

    Science.gov (United States)

    Majjigi, R. K.; Sigman, R. K.; Zinn, B. T.

    1979-01-01

    The paper outlines a comparative study designed to assess and compare the accuracy of the finite element method (FEM) for linear and quadratic elements as applied to problems in duct acoustics. The acoustic disturbances are assumed to be irrotational and isentropic so that the problem can be formulated in terms of the acoustic velocity potential. It is shown that for the case of plane wave propagation in a hard-walled annular cylinder, the accuracy of the FEM solution can be increased at higher frequencies by using quadratic triangular elements instead of linear triangular elements. Evidence is presented to enhance the confidence in applying the developed FEM by comparing results with those obtained by other independently developed numerical approaches such as an integral equation technique and a finite difference method.

  9. Propagation of nuclear burning fronts on accreting neutron stars: X-ray bursts and sub-hertz noise

    Science.gov (United States)

    Bildsten, Lars

    1995-01-01

    We identify a new regime of time dependent helium burning for high accretion rate neutron stars and suggest that this burning is the origin of the low-level luminosity variations (on timescales of 10-10(exp 4) s, designated the 'very low-frequency noise'(VLFN) by van der Klis and collaborators) always detected in the brightest accreting X-ray sources. Only two nuclear burning regimes were previously recognized. At accretion rates in excess of the Eddington limit (dot-M approximately greater than (1-3) x 10(exp -8) solar mass/yr), the accreted matter fuses steadily. At very low dot-M, the star's entire surface is rapidly (approximately less than 10 s) burned by a fast propagating convective burning front at regular intervals, giving quasi-periodic Type I X-ray bursts. We show that for the observationally interesting range of 5 x 10(exp -10) solar mass/yr approximately less than dot-M approximately less than 10(exp -8) solar mass/yr, parts of the stellar surface burn slowly. At these accretion rates, a local thermonuclear instability starts a fire which propagates horizontally at v approximately 300 cm/s. The fire propagates around the flammable surface in roughly the same time it takes to accrete enough fuel for the next instability (approximately 10(exp 3)-10(exp 4), so that only a few fires are burning at once, giving rise to large luminosity flares. Nuclear burning is always time dependent for sub-Eddington local accretion rates: a local patch undergoes a recurrent cycle, accumulation fuel for hours until it becomes thermally unstable or is 'ignited' by a nearby burning region. The global pattern of burning and the resulting luminosity are thus very dependent on how fast nuclear fires spread around the star. The nuclear burning luminosity is not uniform over the stellar surface and so may provide a handle on measuring, or constraining, the spin periods of these neutron stars.

  10. A Hearing-Based, Frequency Domain Sound Quality Model for Combined Aerodynamic and Power Transmission Response with Application to Rotorcraft Interior Noise

    Science.gov (United States)

    Sondkar, Pravin B.

    The severity of combined aerodynamics and power transmission response in high-speed, high power density systems such as a rotorcraft is still a major cause of annoyance in spite of recent advancement in passive, semi-active and active control. With further increase in the capacity and power of this class of machinery systems, the acoustic noise levels are expected to increase even more. To achieve further improvements in sound quality, a more refined understanding of the factors and attributes controlling human perception is needed. In the case of rotorcraft systems, the perceived quality of the interior sound field is a major determining factor of passenger comfort. Traditionally, this sound quality factor is determined by measuring the response of a chosen set of juries who are asked to compare their qualitative reactions to two or more sounds based on their subjective impressions. This type of testing is very time-consuming, costly, often inconsistent, and not useful for practical design purposes. Furthermore, there is no known universal model for sound quality. The primary aim of this research is to achieve significant improvements in quantifying the sound quality of combined aerodynamic and power transmission response in high-speed, high power density machinery systems such as a rotorcraft by applying relevant objective measures related to the spectral characteristics of the sound field. Two models have been proposed in this dissertation research. First, a classical multivariate regression analysis model based on currently known sound quality metrics as well some new metrics derived in this study is presented. Even though the analysis resulted in the best possible multivariate model as a measure of the acoustic noise quality, it lacks incorporation of human judgment mechanism. The regression model can change depending on specific application, nature of the sounds and types of juries used in the study. Also, it predicts only the averaged preference scores and

  11. FIBER OPTICS, HOLOGRAPHY, AND OPTICAL DATA PROCESSING: Phase-conjugation suppression of the phase noise during propagation of giant laser pulses in an optical fiber

    Science.gov (United States)

    Belous, A. I.; Grigoruk, V. I.; Pasechnyĭ, V. A.; Strizhevskiĭ, V. L.; Chernyshov, V. A.

    1988-01-01

    An experimental study was made of the suppression of phase noise during propagation of giant ruby laser pulses in short (up to 0.1 m) multimode fiber waveguides. A segment of a fiber waveguide, in which stimulated Brillouin scattering took place, acted as a mirror performing phase conjugation. The dependences of the parameters of the corrected signal on the lengths of both waveguide segments were determined.

  12. Adaptive neuro-fuzzy methodology for noise assessment of wind turbine.

    Science.gov (United States)

    Shamshirband, Shahaboddin; Petković, Dalibor; Hashim, Roslan; Motamedi, Shervin

    2014-01-01

    Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD) could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.

  13. Adaptive neuro-fuzzy methodology for noise assessment of wind turbine.

    Directory of Open Access Journals (Sweden)

    Shahaboddin Shamshirband

    Full Text Available Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS. This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.

  14. Adaptive Neuro-Fuzzy Methodology for Noise Assessment of Wind Turbine

    Science.gov (United States)

    Shamshirband, Shahaboddin; Petković, Dalibor; Hashim, Roslan; Motamedi, Shervin

    2014-01-01

    Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD) could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method. PMID:25075621

  15. Potential of neuro-fuzzy methodology to estimate noise level of wind turbines

    Science.gov (United States)

    Nikolić, Vlastimir; Petković, Dalibor; Por, Lip Yee; Shamshirband, Shahaboddin; Zamani, Mazdak; Ćojbašić, Žarko; Motamedi, Shervin

    2016-01-01

    Wind turbines noise effect became large problem because of increasing of wind farms numbers since renewable energy becomes the most influential energy sources. However, wind turbine noise generation and propagation is not understandable in all aspects. Mechanical noise of wind turbines can be ignored since aerodynamic noise of wind turbine blades is the main source of the noise generation. Numerical simulations of the noise effects of the wind turbine can be very challenging task. Therefore in this article soft computing method is used to evaluate noise level of wind turbines. The main goal of the study is to estimate wind turbine noise in regard of wind speed at different heights and for different sound frequency. Adaptive neuro-fuzzy inference system (ANFIS) is used to estimate the wind turbine noise levels.

  16. Pavement noise measurements in Poland

    Science.gov (United States)

    Zofka, Ewa; Zofka, Adam; Mechowski, Tomasz

    2017-09-01

    The objective of this study is to investigate the feasibility of the On-Board Sound Intensity (OBSI) system to measure tire-pavement noise in Poland. In general, sources of noise emitted by the modern vehicles are the propulsion noise, aerodynamic resistance and noise generated at the tire-pavement interface. In order to capture tire-pavement noise, the OBSI system uses a noise intensity probe installed in the close proximity of that interface. In this study, OBSI measurements were performed at different types of pavement surfaces such as stone mastic asphalt (SMA), regular asphalt concrete (HMA) as well as Portland cement concrete (PCC). The influence of several necessary OBSI measurement conditions were recognized as: testing speed, air temperature, tire pressure and tire type. The results of this study demonstrate that the OBSI system is a viable and robust tool that can be used for the quality evaluation of newly built asphalt pavements in Poland. It can be also applied to generate reliable input parameters for the noise propagation models that are used to assess the environmental impact of new and existing highway corridors.

  17. Computational electromagnetic-aerodynamics

    CERN Document Server

    Shang, Joseph J S

    2016-01-01

    Presents numerical algorithms, procedures, and techniques required to solve engineering problems relating to the interactions between electromagnetic fields, fluid flow, and interdisciplinary technology for aerodynamics, electromagnetics, chemical-physics kinetics, and plasmadynamics This book addresses modeling and simulation science and technology for studying ionized gas phenomena in engineering applications. Computational Electromagnetic-Aerodynamics is organized into ten chapters. Chapter one to three introduce the fundamental concepts of plasmadynamics, chemical-physics of ionization, classical magnetohydrodynamics, and their extensions to plasma-based flow control actuators, high-speed flows of interplanetary re-entry, and ion thrusters in space exploration. Chapter four to six explain numerical algorithms and procedures for solving Maxwell’s equation in the time domain for computational electromagnetics, plasma wave propagation, and the time-dependent c mpressible Navier-Stokes equation for aerodyn...

  18. Sound quality prediction of vehicle interior noise and mathematical modeling using a back propagation neural network (BPNN) based on particle swarm optimization (PSO)

    Science.gov (United States)

    Zhang, Enlai; Hou, Liang; Shen, Chao; Shi, Yingliang; Zhang, Yaxiang

    2016-01-01

    To better solve the complex non-linear problem between the subjective sound quality evaluation results and objective psychoacoustics parameters, a method for the prediction of the sound quality is put forward by using a back propagation neural network (BPNN) based on particle swarm optimization (PSO), which is optimizing the initial weights and thresholds of BP network neurons through the PSO. In order to verify the effectiveness and accuracy of this approach, the noise signals of the B-Class vehicles from the idle speed to 120 km h-1 measured by the artificial head, are taken as a target. In addition, this paper describes a subjective evaluation experiment on the sound quality annoyance inside the vehicles through a grade evaluation method, by which the annoyance of each sample is obtained. With the use of Artemis software, the main objective psychoacoustic parameters of each noise sample are calculated. These parameters include loudness, sharpness, roughness, fluctuation, tonality, articulation index (AI) and A-weighted sound pressure level. Furthermore, three evaluation models with the same artificial neural network (ANN) structure are built: the standard BPNN model, the genetic algorithm-back-propagation neural network (GA-BPNN) model and the PSO-back-propagation neural network (PSO-BPNN) model. After the network training and the evaluation prediction on the three models’ network based on experimental data, it proves that the PSO-BPNN method can achieve convergence more quickly and improve the prediction accuracy of sound quality, which can further lay a foundation for the control of the sound quality inside vehicles.

  19. Source modelling of train noise - Literature review and some initial measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xuetao; Jonasson, Hans; Holmberg, Kjell

    2000-07-01

    A literature review of source modelling of railway noise is reported. Measurements on a special test rig at Surahammar and on the new railway line between Arlanda and Stockholm City are reported and analyzed. In the analysis the train is modelled as a number of point sources with or without directivity and each source is combined with analytical sound propagation theory to predict the sound propagation pattern best fitting the measured data. Wheel/rail rolling noise is considered to be the most important noise source. The rolling noise can be modelled as an array of moving point sources, which have a dipole-like horizontal directivity and some kind of vertical directivity. In general it is necessary to distribute the point sources on several heights. Based on our model analysis the source heights for the rolling noise should be below the wheel axles and the most important height is about a quarter of wheel diameter above the railheads. When train speeds are greater than 250 km/h aerodynamic noise will become important and even dominant. It may be important for low frequency components only if the train speed is less than 220 km/h. Little data are available for these cases. It is believed that aerodynamic noise has dipole-like directivity. Its spectrum depends on many factors: speed, railway system, type of train, bogies, wheels, pantograph, presence of barriers and even weather conditions. Other sources such as fans, engine, transmission and carriage bodies are at most second order noise sources, but for trains with a diesel locomotive engine the engine noise will be dominant if train speeds are less than about 100 km/h. The Nord 2000 comprehensive model for sound propagation outdoors, together with the source model that is based on the understandings above, can suitably handle the problems of railway noise propagation in one-third octave bands although there are still problems left to be solved.

  20. Numerical simulation of turbulent flows and noise generation. Results of the DFG/CNRS research groups FOR 507 and FOR 508

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Christophe [Grenoble Univ. (France). LEGI; Juve, Daniel [Ecole Centrale de Lyon, Ecully (France). Centre Acoustique; Manhart, Michael [Technische Univ. Muenchen (Germany). Fachgebiet fuer Hydromechanik; Munz, Claus-Dieter (eds.) [Stuttgart Univ. (Germany). Inst. fuer Aerodynamik und Gasdynamik

    2009-07-01

    Large Eddy Simulation (LES) is a high-fidelity approach to the numerical simulation of turbulent flows. Recent developments have shown LES to be able to predict aerodynamic noise generation and propagation as well as the turbulent flow, by means of either a hybrid or a direct approach. This book is based on the results of two French/German research groups working on LES simulations in complex geometries and noise generation in turbulent flows. The results provide insights into modern prediction approaches for turbulent flows and noise generation mechanisms as well as their use for novel noise reduction concepts. (orig.)

  1. Railway traffic noise pollution. Source, propagation and abatement systems; L'inquinamento acustico prodotto da traffico ferroviario. Origine, propagazione e sistemi di attenuazione. Progetto Apparati silenti

    Energy Technology Data Exchange (ETDEWEB)

    Lanchi, M.; Salernitano, E. [ENEA, Div. Nuovi Materiali, Centro Ricerche Casaccia, Rome (Italy)

    2001-07-01

    Noise pollution is one of the hardest environmental problems connected with railway transport system nowadays. The recent grow of the railways network has caused an increased attention to the acoustic levels along the rail tracks, especially in residential areas. This review aims to supply a synthesis of the issues related to railway noise pollution, including economical, social and medical aspects. Italian legislation about environmental noise and its effect on population is based on the law n. 447/1995 and establishes the fundamental principles on both outdoor and indoor environmental protection from acoustic pollution. Many norms followed this statutory law, trying to cover all areas of the noise related problems. A possible solution to the railway traffic noise mitigation should be based on the reduction of the noise produced by trains (active action on the noise sources) and on the use of acoustic barriers beside the track (passive systems). This work describes noise generation and propagation mechanisms as well as sound attenuation with natural and artificial obstacles. Many screening configurations are described and different materials are compared on the basis of technical (experimental measurements and analytical results), economical and feasibility considerations. [Italian] Il problema della rumorosita' connessa all'esercizio di veicoli ferroviari e' diventato di notevole importanza da quando, col diffondersi dei trasporti di mssa ad alta velocita', e' aumentata la sensibilita' della collettivita' al mantenimento di bassi livelli di inquinamento acustico, soprattutto in zone abitative e residenziali. Il presente lavoro si propone di fornire un quadro sintetico, ma esaustivo, delle problematiche connesse al rumore ferroviario, dalle implicazioni sociali, agli aspetti piu' prettamente tecnici. Viene innanzitutto affrontato il tema della normativa nel campo del fonoinquinamento prodotto da rotabili, con riferimento

  2. Natural aerodynamics

    CERN Document Server

    Scorer, R S

    1958-01-01

    Natural Aerodynamics focuses on the mathematics of any problem in air motion.This book discusses the general form of the law of fluid motion, relationship between pressure and wind, production of vortex filaments, and conduction of vorticity by viscosity. The flow at moderate Reynolds numbers, turbulence in a stably stratified fluid, natural exploitation of atmospheric thermals, and plumes in turbulent crosswinds are also elaborated. This text likewise considers the waves produced by thermals, transformation of thin layer clouds, method of small perturbations, and dangers of extra-polation.Thi

  3. An Image Based Mathematical Model for the Propagation of Fan Noise in a Plenum with Large Side Openings

    Directory of Open Access Journals (Sweden)

    Michael J. Panza

    2015-01-01

    Full Text Available This paper presents another application of an images group model for a special enclosure geometry and source orientation. A previous work outlined the concept via application to a special tight-fitting enclosure. Application of the concept to a fan plenum requires different mathematical descriptions for the image groups. This paper describes the sound reverberation inside a sound enclosure with mostly open sides where the primary noise sources are the air inlets and exhausts of axial type fans located at the top of the enclosure, the sound transmission through the air inlet openings, and the radiation to wayside positions. The main reverberation between the floor and ceiling is determined with an image based mathematical model. The model considers how the main reverberant part image group is amplified by its images from two parallel bulkheads and any side wall frame members. The method of images approach allows the hard surfaces of an untreated plenum to be represented by perfectly reflecting surfaces with zero sound absorption coefficients, thus not requiring any estimate or measurement for these surfaces. Numerical results show excellent comparison to experimental results for an actual plenum. The image model is also shown to be significantly more accurate than the standard large room diffuse field reverberant model.

  4. The Prediction and Analysis of Jet Flows and Scattered Turbulent Mixing Noise About Flight Vehicle Airframes

    Science.gov (United States)

    Miller, Steven A.

    2014-01-01

    Jet flows interacting with nearby surfaces exhibit a complex behavior in which acoustic and aerodynamic characteristics are altered. The physical understanding and prediction of these characteristics are essential to designing future low noise aircraft. A new approach is created for predicting scattered jet mixing noise that utilizes an acoustic analogy and steady Reynolds-averaged Navier-Stokes solutions. A tailored Green's function accounts for the propagation of mixing noise about the air-frame and is calculated numerically using a newly developed ray tracing method. The steady aerodynamic statistics, associated unsteady sound source, and acoustic intensity are examined as jet conditions are varied about a large at plate. A non-dimensional number is proposed to estimate the effect of the aerodynamic noise source relative to jet operating condition and airframe position. The steady Reynolds-averaged Navier-Stokes solutions, acoustic analogy, tailored Green's function, non- dimensional number, and predicted noise are validated with a wide variety of measurements. The combination of the developed theory, ray tracing method, and careful implementation in a stand-alone computer program result in an approach that is more first principles oriented than alternatives, computationally efficient, and captures the relevant physics of fluid-structure interaction.

  5. Aerodynamic Drag Scoping Work.

    Energy Technology Data Exchange (ETDEWEB)

    Voskuilen, Tyler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Erickson, Lindsay Crowl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knaus, Robert C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    This memo summarizes the aerodynamic drag scoping work done for Goodyear in early FY18. The work is to evaluate the feasibility of using Sierra/Low-Mach (Fuego) for drag predictions of rolling tires, particularly focused on the effects of tire features such as lettering, sidewall geometry, rim geometry, and interaction with the vehicle body. The work is broken into two parts. Part 1 consisted of investigation of a canonical validation problem (turbulent flow over a cylinder) using existing tools with different meshes and turbulence models. Part 2 involved calculating drag differences over plate geometries with simple features (ridges and grooves) defined by Goodyear of approximately the size of interest for a tire. The results of part 1 show the level of noise to be expected in a drag calculation and highlight the sensitivity of absolute predictions to model parameters such as mesh size and turbulence model. There is 20-30% noise in the experimental measurements on the canonical cylinder problem, and a similar level of variation between different meshes and turbulence models. Part 2 shows that there is a notable difference in the predicted drag on the sample plate geometries, however, the computational cost of extending the LES model to a full tire would be significant. This cost could be reduced by implementation of more sophisticated wall and turbulence models (e.g. detached eddy simulations - DES) and by focusing the mesh refinement on feature subsets with the goal of comparing configurations rather than absolute predictivity for the whole tire.

  6. Computational aerodynamics and aeroacoustics for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Shen, W.Z.

    2009-10-15

    was developed in [11], and in [12] tunnel wall corrections for wind tunnels with closed or open test sections were developed. The second part of the thesis deals with Computational Aero-Acoustics (CAA). With the spread of wind turbines near urban areas, there is an increasing need for accurate predictions of aerodynamically generated noise. Indeed, noise has become one of the most important issues for further development of wind power, and the iv Wen Zhong Shen ability of controlling and minimising noise emission may be advantageous when competing on the world energy market. To predict generation and propagation of aerodynamic noise, it is required to solve the compressible Navier-Stokes equations. As the scales of the flow and the acoustic waves are quite different (about 1/M, M=Mach number=Uinfinity/c), it is difficult to resolve them together at the same time. Hardin and Pope proposed a non-linear two-step (viscous incompressible flow and inviscid acoustic perturbation) splitting procedure for computational aero-acoustics that is suitable for both generation and propagation. The advantage of the splitting approach, as compared to the acoustic analogies, is that the source strength is obtained directly and that it accounts for sound radiation as well as scattering. In [13] and [14] an inconsistency in the original formulation of Hardin and Pope 1994 was analysed and a consistent formulation was proposed and applied to laminar flows. An aero-acoustic formulation for turbulent flows was in [15] developed for Large Eddy Simulation (LES), Unsteady Reynolds Averaged Navier-Stokes Simulation (URANS) and Detached Eddy Simulation (DES). In [16] a collocated grid / finite volume method for aero-acoustic computations was developed and implemented in the EllipSys2D/3D code. In [17] and [18] three dimensional flowacoustic computations were carried out. Finally, the aero-acoustic formulation using high order Finite Difference schemes (Dispersion Relation Preserving (DRP

  7. Drone noise

    Science.gov (United States)

    Tinney, Charles; Sirohi, Jayant; University of Texas at Austin Team

    2017-11-01

    A basic understanding of the noise produced by single and multirotor drones operating at static thrust conditions is presented. This work acts as an extension to previous efforts conducted at The University of Texas at Austin (Tinney et al. 2017, AHS Forum 73). Propeller diameters ranging from 8 inch to 12 inch are examined for configurations comprising an isolated rotor, a quadcopter configuration and a hexacopter configuration, and with a constant drone pitch of 2.25. An azimuthal array of half-inch microphones, placed between 2 and 3 hub-center diameters from the drone center, are used to assess the acoustic near-field. Thrust levels, acquired using a six degree-of-freedom load cell, are then used to correlate acoustic noise levels to aerodynamic performance for each drone configuration. The findings reveal a nearly logarithmic increase in noise with increasing thrust. However, for the same thrust condition, considerable noise reduction is achieved by increasing the number of propeller blades thereby reducing the blade passage frequency and both the thickness and loading noise sources that accompany it.

  8. Unsteady Aerodynamic Force Sensing from Measured Strain

    Science.gov (United States)

    Pak, Chan-Gi

    2016-01-01

    A simple approach for computing unsteady aerodynamic forces from simulated measured strain data is proposed in this study. First, the deflection and slope of the structure are computed from the unsteady strain using the two-step approach. Velocities and accelerations of the structure are computed using the autoregressive moving average model, on-line parameter estimator, low-pass filter, and a least-squares curve fitting method together with analytical derivatives with respect to time. Finally, aerodynamic forces over the wing are computed using modal aerodynamic influence coefficient matrices, a rational function approximation, and a time-marching algorithm. A cantilevered rectangular wing built and tested at the NASA Langley Research Center (Hampton, Virginia, USA) in 1959 is used to validate the simple approach. Unsteady aerodynamic forces as well as wing deflections, velocities, accelerations, and strains are computed using the CFL3D computational fluid dynamics (CFD) code and an MSC/NASTRAN code (MSC Software Corporation, Newport Beach, California, USA), and these CFL3D-based results are assumed as measured quantities. Based on the measured strains, wing deflections, velocities, accelerations, and aerodynamic forces are computed using the proposed approach. These computed deflections, velocities, accelerations, and unsteady aerodynamic forces are compared with the CFL3D/NASTRAN-based results. In general, computed aerodynamic forces based on the lifting surface theory in subsonic speeds are in good agreement with the target aerodynamic forces generated using CFL3D code with the Euler equation. Excellent aeroelastic responses are obtained even with unsteady strain data under the signal to noise ratio of -9.8dB. The deflections, velocities, and accelerations at each sensor location are independent of structural and aerodynamic models. Therefore, the distributed strain data together with the current proposed approaches can be used as distributed deflection

  9. Unsteady transonic aerodynamics

    International Nuclear Information System (INIS)

    Nixon, D.

    1989-01-01

    Various papers on unsteady transonic aerodynamics are presented. The topics addressed include: physical phenomena associated with unsteady transonic flows, basic equations for unsteady transonic flow, practical problems concerning aircraft, basic numerical methods, computational methods for unsteady transonic flows, application of transonic flow analysis to helicopter rotor problems, unsteady aerodynamics for turbomachinery aeroelastic applications, alternative methods for modeling unsteady transonic flows

  10. Aerodynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural...

  11. Advanced Topics in Aerodynamics

    DEFF Research Database (Denmark)

    Filippone, Antonino

    1999-01-01

    "Advanced Topics in Aerodynamics" is a comprehensive electronic guide to aerodynamics,computational fluid dynamics, aeronautics, aerospace propulsion systems, design and relatedtechnology. We report data, tables, graphics, sketches,examples, results, photos, technical andscientific literature......, for higher education, learning, reference, research and engineering services....

  12. INTEGRATED AERODYNAMIC MEASUREMENTS

    NARCIS (Netherlands)

    SCHUTTE, HK

    The myoelastic-aerodynamic model of phonation implies that aerodynamic factors are crucial to the evaluation of voice function, Subglottal pressure and mean flow rate represent the vocal power source. If they can be related to the magnitude of the radiated sound power, they may provide an index of

  13. Acoustic Emission Detection and Prediction of Fatigue Crack Propagation in Composite Patch Repairs Using Neural Networks

    International Nuclear Information System (INIS)

    Okafor, A. Chukwujekwu; Singh, Navdeep; Singh, Navrag

    2007-01-01

    An aircraft is subjected to severe structural and aerodynamic loads during its service life. These loads can cause damage or weakening of the structure especially for aging military and civilian aircraft, thereby affecting its load carrying capabilities. Hence composite patch repairs are increasingly used to repair damaged aircraft metallic structures to restore its structural efficiency. This paper presents the results of Acoustic Emission (AE) monitoring of crack propagation in 2024-T3 Clad aluminum panels repaired with adhesively bonded octagonal, single sided boron/epoxy composite patch under tension-tension fatigue loading. Crack propagation gages were used to monitor crack initiation. The identified AE sensor features were used to train neural networks for predicting crack length. The results show that AE events are correlated with crack propagation. AE system was able to detect crack propagation even at high noise condition of 10 Hz loading; that crack propagation signals can be differentiated from matrix cracking signals that take place due to fiber breakage in the composite patch. Three back-propagation cascade feed forward networks were trained to predict crack length based on the number of fatigue cycles, AE event number, and both the Fatigue Cycles and AE events, as inputs respectively. Network using both fatigue cycles and AE event number as inputs to predict crack length gave the best results, followed by Network with fatigue cycles as input, while network with just AE events as input had a greater error

  14. Uncertainty Quantification in Numerical Aerodynamics

    KAUST Repository

    Litvinenko, Alexander

    2017-05-16

    We consider uncertainty quantification problem in aerodynamic simulations. We identify input uncertainties, classify them, suggest an appropriate statistical model and, finally, estimate propagation of these uncertainties into the solution (pressure, velocity and density fields as well as the lift and drag coefficients). The deterministic problem under consideration is a compressible transonic Reynolds-averaged Navier-Strokes flow around an airfoil with random/uncertain data. Input uncertainties include: uncertain angle of attack, the Mach number, random perturbations in the airfoil geometry, mesh, shock location, turbulence model and parameters of this turbulence model. This problem requires efficient numerical/statistical methods since it is computationally expensive, especially for the uncertainties caused by random geometry variations which involve a large number of variables. In numerical section we compares five methods, including quasi-Monte Carlo quadrature, polynomial chaos with coefficients determined by sparse quadrature and gradient-enhanced version of Kriging, radial basis functions and point collocation polynomial chaos, in their efficiency in estimating statistics of aerodynamic performance upon random perturbation to the airfoil geometry [D.Liu et al \\'17]. For modeling we used the TAU code, developed in DLR, Germany.

  15. Overview of en route noise prediction using a integrated noise model

    Science.gov (United States)

    2010-04-20

    En route aircraft noise is often ignored in aircraft noise modeling because large amounts of noise attenuation due to long propagation distances between the aircraft and the receivers on the ground, reduced power in cruise flight compared to takeoff ...

  16. Numerical simulation of aerodynamic sound radiated from a two-dimensional airfoil

    OpenAIRE

    飯田, 明由; 大田黒, 俊夫; 加藤, 千幸; Akiyoshi, Iida; Toshio, Otaguro; Chisachi, Kato; 日立機研; 日立機研; 東大生研; Mechanical Engineering Research Laboratory, Hitachi Ltd.; Mechanical Engineering Research Laboratory, Hitachi Ltd.; University of Tokyo

    2000-01-01

    An aerodynamic sound radiated from a two-dimensional airfoil has been computed with the Lighthill-Curle's theory. The predicted sound pressure level is agreement with the measured one. Distribution of vortex sound sources is also estimated based on the correlation between the unsteady vorticity fluctuations and the aerodynamic sound. The distribution of vortex sound source reveals that separated shear layers generate aerodynamic sound. This result is help to understand noise reduction method....

  17. Aerodynamic Lifting Force.

    Science.gov (United States)

    Weltner, Klaus

    1990-01-01

    Describes some experiments showing both qualitatively and quantitatively that aerodynamic lift is a reaction force. Demonstrates reaction forces caused by the acceleration of an airstream and the deflection of an airstream. Provides pictures of demonstration apparatus and mathematical expressions. (YP)

  18. Aero-acoustic noise of wind turbines. Noise prediction models

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B. [ed.

    1997-12-31

    Semi-empirical and CAA (Computational AeroAcoustics) noise prediction techniques are the subject of this expert meeting. The meeting presents and discusses models and methods. The meeting may provide answers to the following questions: What Noise sources are the most important? How are the sources best modeled? What needs to be done to do better predictions? Does it boil down to correct prediction of the unsteady aerodynamics around the rotor? Or is the difficult part to convert the aerodynamics into acoustics? (LN)

  19. Transonic aerodynamic design experience

    Science.gov (United States)

    Bonner, E.

    1989-01-01

    Advancements have occurred in transonic numerical simulation that place aerodynamic performance design into a relatively well developed status. Efficient broad band operating characteristics can be reliably developed at the conceptual design level. Recent aeroelastic and separated flow simulation results indicate that systematic consideration of an increased range of design problems appears promising. This emerging capability addresses static and dynamic structural/aerodynamic coupling and nonlinearities associated with viscous dominated flows.

  20. Reinforced aerodynamic profile

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to the prevention of deformations in an aerodynamic profile caused by lack of resistance to the bending moment forces that are created when such a profile is loaded in operation. More specifically, the invention relates to a reinforcing element inside an aerodynamic...... profile and a method for the construction thereof. The profile is intended for, but not limited to, useas a wind turbine blade, an aerofoil device or as a wing profile used in the aeronautical industry....

  1. Noise from wind turbines

    International Nuclear Information System (INIS)

    Andersen, B.; Larsen, P.

    1993-01-01

    Denmark has 3200 wind turbines with an installed maximum capacity of 418MW. The most important Danish research projects into wind turbine noise and the main results are listed. These date from 1983. Two comprehensive studies are currently in progress. The first is an analytical and empirical investigation of aerodynamic noise from wind turbine rotors and has so far dealt mainly with tip noise. The measurement method, using a hard board mounted microphone on the ground near the turbine, is described. Four different tip designs have been tested. Some examples of reference sound power level spectra for three of the designs are presented. During the past two years a computerbased data acquisition system has been used for real-time determination of sound power levels. The second study, which has just commenced, is on annoyance from wind turbine noise. It will include noise measurements, masking calculations and a social survey on the perceived nuisance. (UK)

  2. Experimental characterization of airfoil boundary layers for improvement of aeroacoustic and aerodynamic modeling

    DEFF Research Database (Denmark)

    Fischer, Andreas

    2011-01-01

    The present work aims at the characterization of aerodynamic noise from wind turbines. There is a consensus among scientists that the dominant aerodynamic noise mechanism is turbulent boundary trailing edge noise. In almost all operational conditions the boundary layer flow over the wind turbine...... blades makes a transition from laminar to turbulent. In the turbulent boundary layer eddies are created which are a potential noise sources. They are ineffective as noise source on the airfoil surface or in free flow, but when convecting past the trailing edge of the airfoil their efficiency is much...... for aerodynamic wind tunnels with a hard wall test section. Acoustic far field sound measurements are not possible in this tunnel due to the high background noise. The second wind tunnel is owned by Virginia Tech University. The test section has Kevlar walls which are acoustically transparent and it is surrounded...

  3. Radiowave - Propagation

    Science.gov (United States)

    Hall, Martin P. M.; Barclay, Leslie W.

    The effects of the earth atmosphere on the radio-wave propagation (RWP) and their implications for telecommunication systems are discussed in reviews based on lectures presented at the Second IEE Vacation School on Radiowave Propagation, held at the University of Surrey in September 1986. A general overview of propagation phenomena is presented, and particular attention is given to the theory of EM wave propagation; radio system parameters; surface wave propagation; RWP in the ionosphere; VLF, LF, and MF applications and predictions; HF applications and predictions; clear-air aspects of the troposphere and their effects on RWP; and the nature of precipitation, clouds, and atmospheric gases and their effects on RWP. Also considered are terrestrial and earth-space propagation path predictions, the prediction of interference levels and coordination distances for frequencies above 1 GHz, propagation effects on VHF and UHF broadcasting, and propagation effects on mobile communication services.

  4. Noise suppression by noise

    OpenAIRE

    Vilar, J. M. G. (José M. G.), 1972-; Rubí Capaceti, José Miguel

    2001-01-01

    We have analyzed the interplay between an externally added noise and the intrinsic noise of systems that relax fast towards a stationary state, and found that increasing the intensity of the external noise can reduce the total noise of the system. We have established a general criterion for the appearance of this phenomenon and discussed two examples in detail.

  5. Aerodynamic and aeroacoustic performance of airfoils with morphing structures

    OpenAIRE

    Ai, Qing; Azarpeyvand, Mahdi; Lachenal, Xavier; Weaver, Paul M.

    2016-01-01

    Aerodynamic and aeroacoustic performance of airfoils fitted with morphing trailing edges are investigated using a coupled structure/fluid/noise model. The control of the flow over the surface of an airfoil using shape optimization techniques can significantly improve the load distribution along the chord and span lengths whilst minimising noise generation. In this study, a NACA 63-418 airfoil is fitted with a morphing flap and various morphing profiles are considered with two features that di...

  6. Mimicking the humpback whale: An aerodynamic perspective

    Science.gov (United States)

    Aftab, S. M. A.; Razak, N. A.; Mohd Rafie, A. S.; Ahmad, K. A.

    2016-07-01

    This comprehensive review aims to provide a critical overview of the work on tubercles in the past decade. The humpback whale is of interest to aerodynamic/hydrodynamic researchers, as it performs manoeuvres that baffle the imagination. Researchers have attributed these capabilities to the presence of lumps, known as tubercles, on the leading edge of the flipper. Tubercles generate a unique flow control mechanism, offering the humpback exceptional manoeuverability. Experimental and numerical studies have shown that the flow pattern over the tubercle wing is quite different from conventional wings. Research on the Tubercle Leading Edge (TLE) concept has helped to clarify aerodynamic issues such as flow separation, tonal noise and dynamic stall. TLE shows increased lift by delaying and restricting spanwise separation. A summary of studies on different airfoils and reported improvement in performance is outlined. The major contributions and limitations of previous work are also reported.

  7. Aerodynamic Characteristic of the Active Compliant Trailing Edge Concept

    Science.gov (United States)

    Nie, Rui; Qiu, Jinhao; Ji, Hongli; Li, Dawei

    2016-06-01

    This paper introduces a novel Morphing Wing structure known as the Active Compliant Trailing Edge (ACTE). ACTE structures are designed using the concept of “distributed compliance” and wing skins of ACTE are fabricated from high-strength fiberglass composites laminates. Through the relative sliding between upper and lower wing skins which are connected by a linear guide pairs, the wing is able to achieve a large continuous deformation. In order to present an investigation about aerodynamics and noise characteristics of ACTE, a series of 2D airfoil analyses are established. The aerodynamic characteristics between ACTE and conventional deflection airfoil are analyzed and compared, and the impacts of different ACTE structure design parameters on aerodynamic characteristics are discussed. The airfoils mentioned above include two types (NACA0012 and NACA64A005.92). The computing results demonstrate that: compared with the conventional plane flap airfoil, the morphing wing using ACTE structures has the capability to improve aerodynamic characteristic and flow separation characteristic. In order to study the noise level of ACTE, flow field analysis using LES model is done to provide noise source data, and then the FW-H method is used to get the far field noise levels. The simulation results show that: compared with the conventional flap/aileron airfoil, the ACTE configuration is better to suppress the flow separation and lower the overall sound pressure level.

  8. Aerodynamic sound from a sawtooth plate with different thickness ...

    African Journals Online (AJOL)

    Acoustic performance of an airfoil can be improved with the serrated leading or trailing edge. A sawtooth plate is one of the serration shapes. In this study, the effect of sawtooth plate thickness on the aerodynamically generated noise in wake-sawtooth plate interaction at a Reynolds number of 150 is numerically investigated ...

  9. Active Noise Control for Dishwasher noise

    Science.gov (United States)

    Lee, Nokhaeng; Park, Youngjin

    2016-09-01

    The dishwasher is a useful home appliance and continually used for automatically washing dishes. It's commonly placed in the kitchen with built-in style for practicality and better use of space. In this environment, people are easily exposed to dishwasher noise, so it is an important issue for the consumers, especially for the people living in open and narrow space. Recently, the sound power levels of the noise are about 40 - 50 dBA. It could be achieved by removal of noise sources and passive means of insulating acoustical path. For more reduction, such a quiet mode with the lower speed of cycle has been introduced, but this deteriorates the washing capacity. Under this background, we propose active noise control for dishwasher noise. It is observed that the noise is propagating mainly from the lower part of the front side. Control speakers are placed in the part for the collocation. Observation part of estimating sound field distribution and control part of generating the anti-noise are designed for active noise control. Simulation result shows proposed active noise control scheme could have a potential application for dishwasher noise reduction.

  10. Aerodynamically shaped vortex generators

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Velte, Clara Marika; Øye, Stig

    2016-01-01

    An aerodynamically shaped vortex generator has been proposed, manufactured and tested in a wind tunnel. The effect on the overall performance when applied on a thick airfoil is an increased lift to drag ratio compared with standard vortex generators. Copyright © 2015 John Wiley & Sons, Ltd....

  11. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...

  12. Aerodynamics of the Cyclogyro

    Science.gov (United States)

    Iosilevski, Gil; Levy, Yuval; Weihs, Daniel

    2001-11-01

    The Cyclogiro is the name given by NASA researchers in the '30s to an aerodynamic configuration of several large aspect ratio rectangular airfoils with horizontal span, placed on the circumference of a vertical circle of radius of the order of the airfoil chord, and rotating around the circle center at high speed, with periodically changing angle of attack. This configuration produces aerodynamic forces that can be applied to lift and thrust, depending on the phase angle between the instantaneous position and angle of attack. The original approach was to install such rotors instead of an aircraft wing, and thus combine the lift & thrust producing functions. As a result of the state of knowledge of unsteady aerodynamics at the time disparities between predictions and measured forces remained unexplained. This, combined with low efficiency resulted in the concept being abandoned. In the present study the concept is revisited, as a possible propulsor/lift generator for a hover-capable micro-UAV. Preliminary analysis showed that scaling down to rotor airfoil sizes of 10-15 cm span and 2 cm chord will reduce the centrifugal forces to manageable proportions while the aerodynamic forces would be comparable to those obtained by conventional rotors. A series of experiments was performed, showing disparities of up to 30theory. Visualization showed that this difference resulted mainly from interactions between single foil wakes with the following foils, and a numerical study confirmed the magnitude of the effects, in good agreement with the experiments.

  13. Aeroacoustic characteristics and noise reduction of a centrifugal fan for a vacuum cleaner

    International Nuclear Information System (INIS)

    Jeon, Wan Ho; Rew, Ho Seon; Kim, Chang Joon

    2004-01-01

    The aeroacoustic characteristics of a centrifugal fan for a vacuum cleaner and its noise reduction method are studied in this paper. The major noise source of a vacuum cleaner is the centrifugal fan. The impeller of the fan rotates at over 30000 rpm, and generates very high-level noise. It was revealed that the dominant noise source is the aerodynamic interaction between the rotating impeller and stationary diffuser. The directivity of acoustic pressure showed that most of the noise propagates backward direction of the fan-motor assembly. In order to reduce the high tonal sound generated from the aerodynamic interaction, unevenly pitched impeller and diffuser, and tapered impeller designs were proposed and experiments were performed. Uneven pitch design of the impeller changes the sound quality while the overall Sound Power Level (SPL) and the performance remains similar. The effect of the tapered design of impeller was evaluated. The trailing edge of the tapered fan is inclined. This reduces the flow interaction between the rotating impeller and the stationary diffuser because of some phase shifts. The static efficiency of the new impeller design is slightly lower than the previous design. However, the overall SPL is reduced by about 4 dB(A). The SPL of the fundamental Blade Passing Frequency (BPF) is reduced by about 6 dB(A) and the 2 nd BPF is reduced about 20 dB(A). The vacuum cleaner with the tapered impeller design produces lower noise level than the previous one, and the strong tonal sound was dramatically reduced

  14. Aerodynamic Leidenfrost effect

    Science.gov (United States)

    Gauthier, Anaïs; Bird, James C.; Clanet, Christophe; Quéré, David

    2016-12-01

    When deposited on a plate moving quickly enough, any liquid can levitate as it does when it is volatile on a very hot solid (Leidenfrost effect). In the aerodynamic Leidenfrost situation, air gets inserted between the liquid and the moving solid, a situation that we analyze. We observe two types of entrainment. (i) The thickness of the air gap is found to increase with the plate speed, which is interpreted in the Landau-Levich-Derjaguin frame: Air is dynamically dragged along the surface and its thickness results from a balance between capillary and viscous effects. (ii) Air set in motion by the plate exerts a force on the levitating liquid. We discuss the magnitude of this aerodynamic force and show that it can be exploited to control the liquid and even to drive it against gravity.

  15. Aerodynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural...... response of the wind turbine structure. Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element...... Momentum method is also covered, as are eigenmodes and the dynamic behavior of a turbine. The new material includes a description of the effects of the dynamics and how this can be modeled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Further...

  16. ISOLATED AERODYNAMIC SURFACE CALCULUS

    Directory of Open Access Journals (Sweden)

    ENUŞ Marilena

    2014-07-01

    Full Text Available The paper proposes to present a few steps for calculating the dynamics of flight. From an organizational perspective, the paper is structured in three parts. The first part provides essential information that needs to be taken into account when designing an aircraft wing. The second part presents the basic steps in the wing design procedure and finally, the third part contains the diagrams in which one can find the aerodynamic coefficient of a specifying wing.

  17. aerodynamics and heat transfer

    Directory of Open Access Journals (Sweden)

    J. N. Rajadas

    1998-01-01

    Full Text Available A multidisciplinary optimization procedure, with the integration of aerodynamic and heat transfer criteria, has been developed for the design of gas turbine blades. Two different optimization formulations have been used. In the first formulation, the maximum temperature in the blade section is chosen as the objective function to be minimized. An upper bound constraint is imposed on the blade average temperature and a lower bound constraint is imposed on the blade tangential force coefficient. In the second formulation, the blade average and maximum temperatures are chosen as objective functions. In both formulations, bounds are imposed on the velocity gradients at several points along the surface of the airfoil to eliminate leading edge velocity spikes which deteriorate aerodynamic performance. Shape optimization is performed using the blade external and coolant path geometric parameters as design variables. Aerodynamic analysis is performed using a panel code. Heat transfer analysis is performed using the finite element method. A gradient based procedure in conjunction with an approximate analysis technique is used for optimization. The results obtained using both optimization techniques are compared with a reference geometry. Both techniques yield significant improvements with the multiobjective formulation resulting in slightly superior design.

  18. Aerodynamic data of space vehicles

    CERN Document Server

    Weiland, Claus

    2014-01-01

    The capacity and quality of the atmospheric flight performance of space flight vehicles is characterized by their aerodynamic data bases. A complete aerodynamic data base would encompass the coefficients of the static longitudinal and lateral motions and the related dynamic coefficients. In this book the aerodynamics of 27 vehicles are considered. Only a few of them did really fly. Therefore the aerodynamic data bases are often not complete, in particular when the projects or programs were more or less abruptly stopped, often due to political decisions. Configurational design studies or the development of demonstrators usually happen with reduced or incomplete aerodynamic data sets. Therefore some data sets base just on the application of one of the following tools: semi-empirical design methods, wind tunnel tests, numerical simulations. In so far a high percentage of the data presented is incomplete and would have to be verified. Flight mechanics needs the aerodynamic coefficients as function of a lot of var...

  19. Noise from wind power plants

    International Nuclear Information System (INIS)

    Ljunggren, S.

    2001-12-01

    First, the generation of noise at wind power plants and the character of the sound is described. The propagation of the sound and its dependence on the structure of the ground and on wind and temperature is treated next. Models for calculation of the noise emission are reviewed and examples of applications are given. Different means for reducing the disturbances are described

  20. Combustion Noise in Modern Aero-Engines

    OpenAIRE

    Duran, I.; Moreau, S.; Nicoud, F.; T., Livebardon; Bouty, E.; Poinsot, T.

    2014-01-01

    International audience; Combustion noise has recently been the subject of attention of both the aeroacoustic and the combustion research communities. Over the last decades, engine manufacturershave made important efforts to significantly reduce fan and jet noise, which increased the relative importance of combustion noise. Two main mechanisms of combustion-noise generation have been identified: direct combustion noise, generated by acoustic waves propagating to the outlet, and indirect combus...

  1. Aerodynamics of wind turbines

    CERN Document Server

    Hansen, Martin O L

    2015-01-01

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis W

  2. Plasma Aerodynamic Control Effectors for Improved Wind Turbine Performance

    Energy Technology Data Exchange (ETDEWEB)

    Mehul P. Patel; Srikanth Vasudevan; Robert C. Nelson; Thomas C. Corke

    2008-08-01

    Orbital Research Inc is developing an innovative Plasma Aerodynamic Control Effectors (PACE) technology for improved performance of wind turbines. The PACE system is aimed towards the design of "smart" rotor blades to enhance energy capture and reduce aerodynamic loading and noise using flow-control. The PACE system will provide ability to change aerodynamic loads and pitch distribution across the wind turbine blade without any moving surfaces. Additional benefits of the PACE system include reduced blade structure weight and complexity that should translate into a substantially reduced initial cost. During the Phase I program, the ORI-UND Team demonstrated (proof-of-concept) performance improvements on select rotor blade designs using PACE concepts. Control of both 2-D and 3-D flows were demonstrated. An analytical study was conducted to estimate control requirements for the PACE system to maintain control during wind gusts. Finally, independent laboratory experiments were conducted to identify promising dielectric materials for the plasma actuator, and to examine environmental effects (water and dust) on the plasma actuator operation. The proposed PACE system will be capable of capturing additional energy, and reducing aerodynamic loading and noise on wind turbines. Supplementary benefits from the PACE system include reduced blade structure weight and complexity that translates into reduced initial capital costs.

  3. Aerodynamics of a Party Balloon

    Science.gov (United States)

    Cross, Rod

    2007-01-01

    It is well-known that a party balloon can be made to fly erratically across a room, but it can also be used for quantitative measurements of other aspects of aerodynamics. Since a balloon is light and has a large surface area, even relatively weak aerodynamic forces can be readily demonstrated or measured in the classroom. Accurate measurements…

  4. On Wings: Aerodynamics of Eagles.

    Science.gov (United States)

    Millson, David

    2000-01-01

    The Aerodynamics Wing Curriculum is a high school program that combines basic physics, aerodynamics, pre-engineering, 3D visualization, computer-assisted drafting, computer-assisted manufacturing, production, reengineering, and success in a 15-hour, 3-week classroom module. (JOW)

  5. Aerodynamic challenges of ALT

    Science.gov (United States)

    Hooks, I.; Homan, D.; Romere, P. O.

    1985-01-01

    The approach and landing test (ALT) of the Space Shuttle Orbiter presented a number of unique challenges in the area of aerodynamics. The purpose of the ALT program was both to confirm the use of the Boeing 747 as a transport vehicle for ferrying the Orbiter across the country and to demonstrate the flight characteristics of the Orbiter in its approach and landing phase. Concerns for structural fatigue and performance dictated a tailcone be attached to the Orbiter for ferry and for the initial landing tests. The Orbiter with a tailcone attached presented additional challenges to the normal aft sting concept of wind tunnel testing. The landing tests required that the Orbiter be separated from the 747 at approximately 20,000 feet using aerodynamic forces to fly the vehicles apart. The concept required a complex test program to determine the relative effects of the two vehicles on each other. Also of concern, and tested, was the vortex wake created by the 747 and the means for the Orbiter to avoid it following separation.

  6. Discrete vortex method simulations of aerodynamic admittance in bridge aerodynamics

    DEFF Research Database (Denmark)

    Rasmussen, Johannes Tophøj; Hejlesen, Mads Mølholm; Larsen, Allan

    , and to determine aerodynamic forces and the corresponding flutter limit. A simulation of the three-dimensional bridge responseto turbulent wind is carried out by quasi steady theory by modelling the bridge girder as a line like structure [2], applying the aerodynamic load coefficients found from the current version...... of DVMFLOW in a strip wise fashion. Neglecting the aerodynamic admittance, i.e. the correlation of the instantaneous lift force to the turbulent fluctuations in the vertical velocities, leads to higher response to high frequency atmospheric turbulence than would be obtained from wind tunnel tests....

  7. Noise in miniature microphones.

    Science.gov (United States)

    Thompson, Stephen C; LoPresti, Janice L; Ring, Eugene M; Nepomuceno, Henry G; Beard, John J; Ballad, William J; Carlson, Elmer V

    2002-02-01

    The internal noise spectrum in miniature electret microphones of the type used in the manufacture of hearing aids is measured. An analogous circuit model of the microphone is empirically fit to the measured data and used to determine the important sources of noise within the microphone. The dominant noise source is found to depend on the frequency. Below 40 Hz and above 9 kHz, the dominant source is electrical noise from the amplifier circuit needed to buffer the electrical signal from the microphone diaphragm. Between approximately 40 Hz and 1 kHz, the dominant source is thermal noise originating in the acoustic flow resistance of the small hole pierced in the diaphragm to equalize barometric pressure. Between approximately 1 kHz and 9 kHz, the noise originates in the acoustic flow resistances of sound entering the microphone and propagating to the diaphragm. To further reduce the microphone internal noise in the audio band requires attacking these sources. A prototype microphone having reduced acoustical noise is measured and discussed.

  8. Cable Aerodynamic Control

    DEFF Research Database (Denmark)

    Kleissl, Kenneth

    of reducing the intensity of the axial flow and disrupting the near wake flow structures. Similar studies during wet conditions with artificial simulation of light rain in the wind tunnel showed that the plain cable suffered from severe rain-wind induced vibrations. But despite the presence of both upper......This dissertation investigates the possibility of preventing wind-induced cable vibrations on cable-stayed bridges using passive aerodynamic means in the form of cable surface modifications. Especially the phenomenon of rainwind induced vibrations, which is known as the most common type...... of these vibrations and capable of inducing severe vibrations. The recent increase in the number of cable stayed bridges continuously becoming longer and lighter have resulted in a high number of observations of cable vibrations. A detailed literature review of the various types of passive means led...

  9. Introduction to transonic aerodynamics

    CERN Document Server

    Vos, Roelof

    2015-01-01

    Written to teach students the nature of transonic flow and its mathematical foundation, this book offers a much-needed introduction to transonic aerodynamics. The authors present a quantitative and qualitative assessment of subsonic, supersonic, and transonic flow around bodies in two and three dimensions. The book reviews the governing equations and explores their applications and limitations as employed in modeling and computational fluid dynamics.  Some concepts, such as shock and expansion theory, are examined from a numerical perspective. Others, including shock-boundary-layer interaction, are discussed from a qualitative point of view. The book includes 60 examples and more than 200 practice problems. The authors also offer analytical methods such as Method of Characteristics (MOC) that allow readers to practice with the subject matter.  The result is a wealth of insight into transonic flow phenomena and their impact on aircraft design, including compressibility effects, shock and expansion waves, sho...

  10. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis Wind...... Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method...

  11. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  12. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method...... is also covered, as are eigenmodes and the dynamic behaviour of a turbine. The book describes the effects of the dynamics and how this can be modelled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Furthermore, it examines how to calculate...

  13. Wave Propagation

    CERN Document Server

    Ferrarese, Giorgio

    2011-01-01

    Lectures: A. Jeffrey: Lectures on nonlinear wave propagation.- Y. Choquet-Bruhat: Ondes asymptotiques.- G. Boillat: Urti.- Seminars: D. Graffi: Sulla teoria dell'ottica non-lineare.- G. Grioli: Sulla propagazione del calore nei mezzi continui.- T. Manacorda: Onde nei solidi con vincoli interni.- T. Ruggeri: "Entropy principle" and main field for a non linear covariant system.- B. Straughan: Singular surfaces in dipolar materials and possible consequences for continuum mechanics

  14. Noise Pollution

    Science.gov (United States)

    ... Us Share Clean Air Act Title IV - Noise Pollution The 1990 Clean Air Act Amendments added a ... abatement 7642 Authorization of appropriations What is Noise Pollution? The traditional definition of noise is “unwanted or ...

  15. Investigation of aerodynamic braking devices for wind turbine applications

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, D.A. [R. Lynette & amp; Associates, Seattle, WA (United States)

    1997-04-01

    This report documents the selection and preliminary design of a new aerodynamic braking system for use on the stall-regulated AWT-26/27 wind turbines. The goal was to identify and design a configuration that offered improvements over the existing tip brake used by Advanced Wind Turbines, Inc. (AWT). Although the design objectives and approach of this report are specific to aerodynamic braking of AWT-26/27 turbines, many of the issues addressed in this work are applicable to a wider class of turbines. The performance trends and design choices presented in this report should be of general use to wind turbine designers who are considering alternative aerodynamic braking methods. A literature search was combined with preliminary work on device sizing, loads and mechanical design. Candidate configurations were assessed on their potential for benefits in the areas of cost, weight, aerodynamic noise, reliability and performance under icing conditions. As a result, two configurations were identified for further study: the {open_quotes}spoiler-flap{close_quotes} and the {open_quotes}flip-tip.{close_quotes} Wind tunnel experiments were conducted at Wichita State University to evaluate the performance of the candidate aerodynamic brakes on an airfoil section representative of the AWT-26/27 blades. The wind tunnel data were used to predict the braking effectiveness and deployment characteristics of the candidate devices for a wide range of design parameters. The evaluation was iterative, with mechanical design and structural analysis being conducted in parallel with the braking performance studies. The preliminary estimate of the spoiler-flap system cost was $150 less than the production AWT-26/27 tip vanes. This represents a reduction of approximately 5 % in the cost of the aerodynamic braking system. In view of the preliminary nature of the design, it would be prudent to plan for contingencies in both cost and weight.

  16. Fundamentals of modern unsteady aerodynamics

    CERN Document Server

    Gülçat, Ülgen

    2010-01-01

    This introduction to the principles of unsteady aerodynamics covers all the core concepts, provides readers with a review of the fundamental physics, terminology and basic equations, and covers hot new topics such as the use of flapping wings for propulsion.

  17. Naval Aerodynamics Test Facility (NATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The NATF specializes in Aerodynamics testing of scaled and fullsized Naval models, research into flow physics found on US Navy planes and ships, aerosol testing and...

  18. Hypersonic Inflatable Aerodynamic Decelerator (HIAD)

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an entry and descent technology to enhance and enable robotic and scientific missions to destinations with atmospheres.The Hypersonic Inflatable Aerodynamic...

  19. Computational aerodynamics and artificial intelligence

    Science.gov (United States)

    Kutler, P.; Mehta, U. B.

    1984-01-01

    Some aspects of artificial intelligence are considered and questions are speculated on, including how knowledge-based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use 'expert' systems and how expert systems may speed the design and development process. The anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements are examined for using artificial intelligence in computational fluid dynamics and aerodynamics. Considering two of the essentials of computational aerodynamics - reasoniing and calculating - it is believed that a substantial part of the reasoning can be achieved with artificial intelligence, with computers being used as reasoning machines to set the stage for calculating. Expert systems will probably be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.

  20. 11th International Workshop on Railway Noise

    CERN Document Server

    Anderson, David; Gautier, Pierre-Etienne; Iida, Masanobu; Nelson, James; Thompson, David; Tielkes, Thorsten; Towers, David; Vos, Paul

    2015-01-01

    The book reports on the 11th International Workshop on Railway Noise, held on 9 – 13 September, 2013, in Uddevalla, Sweden. The event, which was jointly organized by the Competence Centre Chalmers Railway Mechanics (CHARMEC) and the Departments of Applied Mechanics and Applied Acoustics at Chalmers University of Technology in Gothenburg, Sweden, covered a broad range of topics in the field of railway noise and vibration, including: prospects, legal regulations and perceptions; wheel and rail noise; prediction, measurements and monitoring; ground-borne vibration; squeal noise and structure-borne noise; and aerodynamic noise generated by high-speed trains. Further topics included: resilient track forms; grinding, corrugation and roughness; and interior noise and sound barriers. This book, which consists of a collection of peer-reviewed papers originally submitted to the workshop, not only provides readers with an overview of the latest developments in the field, but also offers scientists and engineers essent...

  1. Dynamic soaring: aerodynamics for albatrosses

    International Nuclear Information System (INIS)

    Denny, Mark

    2009-01-01

    Albatrosses have evolved to soar and glide efficiently. By maximizing their lift-to-drag ratio L/D, albatrosses can gain energy from the wind and can travel long distances with little effort. We simplify the difficult aerodynamic equations of motion by assuming that albatrosses maintain a constant L/D. Analytic solutions to the simplified equations provide an instructive and appealing example of fixed-wing aerodynamics suitable for undergraduate demonstration

  2. Aerodynamical calculation of turbomachinery bladings

    International Nuclear Information System (INIS)

    Fruehauf, H.H.

    1978-01-01

    Various flow models are presented in comparison to one another, these flow models being obtained from the basic equations of turbomachinery aerodynamics by means of a series of simplifying assumptions on the spatial distribution of the flow quantities. The simplifying assumptions are analysed precisely. With their knowledge it is possible to construct more accurate simplified flow models, which are necessary for the efficient aerodynamical development of highperformance turbomachinery bladings by means of numerical methods. (orig.) 891 HP [de

  3. Introduction to wind turbine aerodynamics

    CERN Document Server

    Schaffarczyk, Alois Peter

    2014-01-01

    Wind-Turbine Aerodynamics is a self-contained textbook which shows how to come from the basics of fluid mechanics to modern wind turbine blade design. It presents a fundamentals of fluid dynamics and inflow conditions, and gives a extensive introduction into theories describing the aerodynamics of wind turbines. After introducing experiments the book applies the knowledge to explore the impact on blade design.The book is an introduction for professionals and students of very varying levels.

  4. Aerodynamics of bird flight

    Directory of Open Access Journals (Sweden)

    Dvořák Rudolf

    2016-01-01

    Full Text Available Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird. Only such wings can produce both lift and thrust – two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc., and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.

  5. Introduction. Computational aerodynamics.

    Science.gov (United States)

    Tucker, Paul G

    2007-10-15

    The wide range of uses of computational fluid dynamics (CFD) for aircraft design is discussed along with its role in dealing with the environmental impact of flight. Enabling technologies, such as grid generation and turbulence models, are also considered along with flow/turbulence control. The large eddy simulation, Reynolds-averaged Navier-Stokes and hybrid turbulence modelling approaches are contrasted. The CFD prediction of numerous jet configurations occurring in aerospace are discussed along with aeroelasticity for aeroengine and external aerodynamics, design optimization, unsteady flow modelling and aeroengine internal and external flows. It is concluded that there is a lack of detailed measurements (for both canonical and complex geometry flows) to provide validation and even, in some cases, basic understanding of flow physics. Not surprisingly, turbulence modelling is still the weak link along with, as ever, a pressing need for improved (in terms of robustness, speed and accuracy) solver technology, grid generation and geometry handling. Hence, CFD, as a truly predictive and creative design tool, seems a long way off. Meanwhile, extreme practitioner expertise is still required and the triad of computation, measurement and analytic solution must be judiciously used.

  6. Airfoil Trailing Edge Noise Generation and Its Surface Pressure Fluctuation

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong

    2015-01-01

    where the time history pressure data are recorded by the surface pressure microphones. After the flow-field is stabilized, the generated noise from the airfoil Trailing Edge (TE) is predicted using the acoustic analogy solver, where the results from LES are the input. It is found that there is a strong......In the present work, Large Eddy Simulation (LES) of turbulent flows over a NACA 0015 airfoil is performed. The purpose of such numerical study is to relate the aerodynamic surface pressure with the noise generation. The results from LES are validated against detailed surface pressure measurements...... relation between TE noise and the aerodynamic pressure. The results of power spectrum density show that the fluctuation of aerodynamic pressure is responsible for noise generation....

  7. Combustion noise

    Science.gov (United States)

    Strahle, W. C.

    1977-01-01

    A review of the subject of combustion generated noise is presented. Combustion noise is an important noise source in industrial furnaces and process heaters, turbopropulsion and gas turbine systems, flaring operations, Diesel engines, and rocket engines. The state-of-the-art in combustion noise importance, understanding, prediction and scaling is presented for these systems. The fundamentals and available theories of combustion noise are given. Controversies in the field are discussed and recommendations for future research are made.

  8. Propagation engineering in radio links design

    CERN Document Server

    Ghasemi, Abdollah; Ghasemi, Farshid

    2013-01-01

    Propagation Engineering in Radio Link Design covers the basic principles of radiowaves propagation in a practical manner.  This fundamental understanding enables the readers to design radio links efficiently. This book elaborates on new achievements as well as recently developed propagation models.  This is in addition to a comprehensive overview of fundamentals of propagation in various scenarios. It examines theoretical calculations, approaches and applied procedures needed for radio links design. The authors study and analysis of the main propagation phenomena and its mechanisms based on the recommendations of International Telecommunications Union, (ITU). The book has been organized in 9 chapters and examines the role of antennas and passive reflectors in radio services, propagation mechanisms related to radar, satellite, short distance, broadcasting and trans-horizon radio links, with two chapters devoted to radio noise and main  parameters of radio link design. The book presents some 278 illustration...

  9. Aircraft Aerodynamic Parameter Detection Using Micro Hot-Film Flow Sensor Array and BP Neural Network Identification

    Directory of Open Access Journals (Sweden)

    Ruiyi Que

    2012-08-01

    Full Text Available Air speed, angle of sideslip and angle of attack are fundamental aerodynamic parameters for controlling most aircraft. For small aircraft for which conventional detecting devices are too bulky and heavy to be utilized, a novel and practical methodology by which the aerodynamic parameters are inferred using a micro hot-film flow sensor array mounted on the surface of the wing is proposed. A back-propagation neural network is used to model the coupling relationship between readings of the sensor array and aerodynamic parameters. Two different sensor arrangements are tested in wind tunnel experiments and dependence of the system performance on the sensor arrangement is analyzed.

  10. Aircraft aerodynamic parameter detection using micro hot-film flow sensor array and BP neural network identification.

    Science.gov (United States)

    Que, Ruiyi; Zhu, Rong

    2012-01-01

    Air speed, angle of sideslip and angle of attack are fundamental aerodynamic parameters for controlling most aircraft. For small aircraft for which conventional detecting devices are too bulky and heavy to be utilized, a novel and practical methodology by which the aerodynamic parameters are inferred using a micro hot-film flow sensor array mounted on the surface of the wing is proposed. A back-propagation neural network is used to model the coupling relationship between readings of the sensor array and aerodynamic parameters. Two different sensor arrangements are tested in wind tunnel experiments and dependence of the system performance on the sensor arrangement is analyzed.

  11. Noise immission from wind turbines

    International Nuclear Information System (INIS)

    1999-01-01

    The project has dealt with practical ways to reduce the influence of background noise caused by wind acting on the measuring microphones. The uncertainty of measured noise emission (source strength) has been investigated. The main activity was a Round Robin Test involving measurements by five laboratories at the same wind turbine. Each laboratory brought its own instrumentation and performed the measurements and analyses according to their interpretation. The tonality of wind turbine noise is an essential component of the noise impact on the environment. In the present project the uncertainty in the newest existing methods for assessing tonality was investigated. The project included noise propagation measurements in different weather conditions around wind turbines situated in different types of terrain. The results were used to validate a noise propagation model developed in the project. Finally, the project also included a study with listeners evaluating recordings of wind turbine noise. The results are intended as guidance for wind turbine manufacturers in identifying the aspects of wind turbine noise most important to annoyance. (author)

  12. Fundamentals of modern unsteady aerodynamics

    CERN Document Server

    Gülçat, Ülgen

    2016-01-01

    In this book, the author introduces the concept of unsteady aerodynamics and its underlying principles. He provides the readers with a comprehensive review of the fundamental physics of free and forced unsteadiness, the terminology and basic equations of aerodynamics ranging from incompressible flow to hypersonics. The book also covers modern topics related to the developments made in recent years, especially in relation to wing flapping for propulsion. The book is written for graduate and senior year undergraduate students in aerodynamics and also serves as a reference for experienced researchers. Each chapter includes ample examples, questions, problems and relevant references.   The treatment of these modern topics has been completely revised end expanded for the new edition. It now includes new numerical examples, a section on the ground effect, and state-space representation.

  13. Recent advances in computational aerodynamics

    Science.gov (United States)

    Agarwal, Ramesh K.; Desse, Jerry E.

    1991-04-01

    The current state of the art in computational aerodynamics is described. Recent advances in the discretization of surface geometry, grid generation, and flow simulation algorithms have led to flowfield predictions for increasingly complex and realistic configurations. As a result, computational aerodynamics is emerging as a crucial enabling technology for the development and design of flight vehicles. Examples illustrating the current capability for the prediction of aircraft, launch vehicle and helicopter flowfields are presented. Unfortunately, accurate modeling of turbulence remains a major difficulty in the analysis of viscosity-dominated flows. In the future inverse design methods, multidisciplinary design optimization methods, artificial intelligence technology and massively parallel computer technology will be incorporated into computational aerodynamics, opening up greater opportunities for improved product design at substantially reduced costs.

  14. Engineering models in wind energy aerodynamics : Development, implementation and analysis using dedicated aerodynamic measurements

    NARCIS (Netherlands)

    Schepers, J.G.

    2012-01-01

    The subject of aerodynamics is of major importance for the successful deployment of wind energy. As a matter of fact there are two aerodynamic areas in the wind energy technology: Rotor aerodynamics and wind farm aerodynamics. The first subject considers the flow around the rotor and the second

  15. Aerodynamics Research Revolutionizes Truck Design

    Science.gov (United States)

    2008-01-01

    During the 1970s and 1980s, researchers at Dryden Flight Research Center conducted numerous tests to refine the shape of trucks to reduce aerodynamic drag and improved efficiency. During the 1980s and 1990s, a team based at Langley Research Center explored controlling drag and the flow of air around a moving body. Aeroserve Technologies Ltd., of Ottawa, Canada, with its subsidiary, Airtab LLC, in Loveland, Colorado, applied the research from Dryden and Langley to the development of the Airtab vortex generator. Airtabs create two counter-rotating vortices to reduce wind resistance and aerodynamic drag of trucks, trailers, recreational vehicles, and many other vehicles.

  16. The aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming; Troldborg, Niels

    2013-01-01

    In the paper we present state-of-the-art of research in wind turbine aerodynamics. We start be giving a brief historical review and a survey over aerodynamic research in wind energy. Next, we focus on some recent research results obtained by our wind energy group at Department of Mechanical...... Engineering at DTU. In particular, we show some new results on the classical problem of the ideal rotor and present a series of new results from an on-going research project dealing with the modelling and simulation of turbulent flow structures in the wake behind wind turbines....

  17. Tandem Cylinder Noise Predictions

    Science.gov (United States)

    Lockard, David P.; Khorrami, Mehdi R.; CHoudhari, Meelan M.; Hutcheson, Florence V.; Brooks, Thomas F.; Stead, Daniel J.

    2007-01-01

    In an effort to better understand landing-gear noise sources, we have been examining a simplified configuration that still maintains some of the salient features of landing-gear flow fields. In particular, tandem cylinders have been studied because they model a variety of component level interactions. The present effort is directed at the case of two identical cylinders spatially separated in the streamwise direction by 3.7 diameters. Experimental measurements from the Basic Aerodynamic Research Tunnel (BART) and Quiet Flow Facility (QFF) at NASA Langley Research Center (LaRC) have provided steady surface pressures, detailed off-surface measurements of the flow field using Particle Image Velocimetry (PIV), hot-wire measurements in the wake of the rear cylinder, unsteady surface pressure data, and the radiated noise. The experiments were conducted at a Reynolds number of 166 105 based on the cylinder diameter. A trip was used on the upstream cylinder to insure a fully turbulent shedding process and simulate the effects of a high Reynolds number flow. The parallel computational effort uses the three-dimensional Navier-Stokes solver CFL3D with a hybrid, zonal turbulence model that turns off the turbulence production term everywhere except in a narrow ring surrounding solid surfaces. The current calculations further explore the influence of the grid resolution and spanwise extent on the flow and associated radiated noise. Extensive comparisons with the experimental data are used to assess the ability of the computations to simulate the details of the flow. The results show that the pressure fluctuations on the upstream cylinder, caused by vortex shedding, are smaller than those generated on the downstream cylinder by wake interaction. Consequently, the downstream cylinder dominates the noise radiation, producing an overall directivity pattern that is similar to that of an isolated cylinder. Only calculations based on the full length of the model span were able to

  18. Discrete vortex method simulations of aerodynamic admittance in bridge aerodynamics

    DEFF Research Database (Denmark)

    Rasmussen, Johannes Tophøj; Hejlesen, Mads Mølholm; Larsen, Allan

    of DVMFLOW in a strip wise fashion. Neglecting the aerodynamic admittance, i.e. the correlation of the instantaneous lift force to the turbulent fluctuations in the vertical velocities, leads to higher response to high frequency atmospheric turbulence than would be obtained from wind tunnel tests....

  19. Wind Turbine Aerodynamics from an Aerospace Perspective

    NARCIS (Netherlands)

    van Garrel, Arne; ten Pas, Sebastiaan; Venner, Cornelis H.; van Muijden, Jaap

    2018-01-01

    The current challenges in wind turbine aerodynamics simulations share a number of similarities with the challenges that the aerospace industry has faced in the past. Some of the current challenges in the aerospace aerodynamics community are also relevant for today’s wind turbine aerodynamics

  20. Advanced Noise Abatement Procedures for a Supersonic Business Jet

    Science.gov (United States)

    Berton, Jeffrey J.; Jones, Scott M.; Seidel, Jonathan A.; Huff, Dennis L.

    2017-01-01

    Supersonic civil aircraft present a unique noise certification challenge. High specific thrust required for supersonic cruise results in high engine exhaust velocity and high levels of jet noise during takeoff. Aerodynamics of thin, low-aspect-ratio wings equipped with relatively simple flap systems deepen the challenge. Advanced noise abatement procedures have been proposed for supersonic aircraft. These procedures promise to reduce airport noise, but they may require departures from normal reference procedures defined in noise regulations. The subject of this report is a takeoff performance and noise assessment of a notional supersonic business jet. Analytical models of an airframe and a supersonic engine derived from a contemporary subsonic turbofan core are developed. These models are used to predict takeoff trajectories and noise. Results indicate advanced noise abatement takeoff procedures are helpful in reducing noise along lateral sidelines.

  1. Dynamic Soaring: Aerodynamics for Albatrosses

    Science.gov (United States)

    Denny, Mark

    2009-01-01

    Albatrosses have evolved to soar and glide efficiently. By maximizing their lift-to-drag ratio "L/D", albatrosses can gain energy from the wind and can travel long distances with little effort. We simplify the difficult aerodynamic equations of motion by assuming that albatrosses maintain a constant "L/D". Analytic solutions to the simplified…

  2. POEMS in Newton's Aerodynamic Frustum

    Science.gov (United States)

    Sampedro, Jaime Cruz; Tetlalmatzi-Montiel, Margarita

    2010-01-01

    The golden mean is often naively seen as a sign of optimal beauty but rarely does it arise as the solution of a true optimization problem. In this article we present such a problem, demonstrating a close relationship between the golden mean and a special case of Newton's aerodynamical problem for the frustum of a cone. Then, we exhibit a parallel…

  3. The aerodynamics of sailing apparel

    NARCIS (Netherlands)

    Jansen, A.J.; Van Deursen, B.; Howe, C.

    2012-01-01

    The paper presents the effect of changes in sailing apparel on aerodynamic drag, starting from the assumption that drag reduction of sailing apparel will increase the speed of an Olympic class sailing boat (in this case the Laser, a single-handed Olympic dinghy), mainly on upwind courses. Due to the

  4. Aerodynamics and Control of Quadrotors

    Science.gov (United States)

    Bangura, Moses

    Quadrotors are aerial vehicles with a four motor-rotor assembly for generating lift and controllability. Their light weight, ease of design and simple dynamics have increased their use in aerial robotics research. There are many quadrotors that are commercially available or under development. Commercial off-the-shelf quadrotors usually lack the ability to be reprogrammed and are unsuitable for use as research platforms. The open-source code developed in this thesis differs from other open-source systems by focusing on the key performance road blocks in implementing high performance experimental quadrotor platforms for research: motor-rotor control for thrust regulation, velocity and attitude estimation, and control for position regulation and trajectory tracking. In all three of these fundamental subsystems, code sub modules for implementation on commonly available hardware are provided. In addition, the thesis provides guidance on scoping and commissioning open-source hardware components to build a custom quadrotor. A key contribution of the thesis is then a design methodology for the development of experimental quadrotor platforms from open-source or commercial off-the-shelf software and hardware components that have active community support. Quadrotors built following the methodology allows the user access to the operation of the subsystems and, in particular, the user can tune the gains of the observers and controllers in order to push the overall system to its performance limits. This enables the quadrotor framework to be used for a variety of applications such as heavy lifting and high performance aggressive manoeuvres by both the hobby and academic communities. To address the question of thrust control, momentum and blade element theories are used to develop aerodynamic models for rotor blades specific to quadrotors. With the aerodynamic models, a novel thrust estimation and control scheme that improves on existing RPM (revolutions per minute) control of

  5. Measurement of noise and its correlation to performance and geometry of small aircraft propellers

    Directory of Open Access Journals (Sweden)

    Štorch Vít

    2016-01-01

    Full Text Available A set of small model and UAV propellers is measured both in terms of aerodynamic performance and acoustic noise under static conditions. Apart from obvious correlation of noise to tip speed and propeller diameter the influence of blade pitch, blade pitch distribution, efficiency and shape of the blade is sought. Using the measured performance data a computational model for calculation of aerodynamic noise of propellers will be validated. The range of selected propellers include both propellers designed for nearly static conditions and propellers that are running at highly offdesign conditions, which allows to investigate i.e. the effect of blade stall on both noise level and performance results.

  6. Measurement of noise and its correlation to performance and geometry of small aircraft propellers

    Science.gov (United States)

    Štorch, Vít; Nožička, Jiří; Brada, Martin; Gemperle, Jiří; Suchý, Jakub

    2016-03-01

    A set of small model and UAV propellers is measured both in terms of aerodynamic performance and acoustic noise under static conditions. Apart from obvious correlation of noise to tip speed and propeller diameter the influence of blade pitch, blade pitch distribution, efficiency and shape of the blade is sought. Using the measured performance data a computational model for calculation of aerodynamic noise of propellers will be validated. The range of selected propellers include both propellers designed for nearly static conditions and propellers that are running at highly offdesign conditions, which allows to investigate i.e. the effect of blade stall on both noise level and performance results.

  7. Adjusting phenotypes by noise control.

    Directory of Open Access Journals (Sweden)

    Kyung H Kim

    2012-01-01

    Full Text Available Genetically identical cells can show phenotypic variability. This is often caused by stochastic events that originate from randomness in biochemical processes involving in gene expression and other extrinsic cellular processes. From an engineering perspective, there have been efforts focused on theory and experiments to control noise levels by perturbing and replacing gene network components. However, systematic methods for noise control are lacking mainly due to the intractable mathematical structure of noise propagation through reaction networks. Here, we provide a numerical analysis method by quantifying the parametric sensitivity of noise characteristics at the level of the linear noise approximation. Our analysis is readily applicable to various types of noise control and to different types of system; for example, we can orthogonally control the mean and noise levels and can control system dynamics such as noisy oscillations. As an illustration we applied our method to HIV and yeast gene expression systems and metabolic networks. The oscillatory signal control was applied to p53 oscillations from DNA damage. Furthermore, we showed that the efficiency of orthogonal control can be enhanced by applying extrinsic noise and feedback. Our noise control analysis can be applied to any stochastic model belonging to continuous time Markovian systems such as biological and chemical reaction systems, and even computer and social networks. We anticipate the proposed analysis to be a useful tool for designing and controlling synthetic gene networks.

  8. Propagation behaviour of overhead transmission lines

    African Journals Online (AJOL)

    2004-02-27

    Feb 27, 2004 ... leading to low Signal to Noise Ratios (SNR) and consequent reduced propagation conditions require specific transmission and reception conditions over .... the ambient temperature and wind velocity, intensity of solar radiation, conditions of conductor surface and the conductor resistance. This temperature ...

  9. Acoustic and aerodynamic measures of the voice during pregnancy.

    Science.gov (United States)

    Hancock, Adrienne B; Gross, Heather E

    2015-01-01

    Known influences of sex hormones on the voice would suggest pregnancy hormones could have an effect, yet studies using acoustic measures have not indicated changes. Additionally, no examination of the voice before the third trimester has been reported. Effect of pregnancy on the voice is relatively unexplored yet could be quite relevant to female speakers and singers. It is possible that spectral and aerodynamic measures would be more sensitive to tissue-level changes caused by pregnancy hormones. In this first longitudinal study of a 32-year-old woman's pregnancy, weekly voice samples were analyzed for acoustic (fundamental frequency, perturbation ratios of shimmer and jitter, Harmonic-to-Noise Ratio, spectral measures, and maximum phonation time) and aerodynamic (average airflow, peak flow, AC/DC ratio, open quotient, and speed quotient) parameters. All measures appeared generally stable during weeks 11-39 of pregnancy compared with 21 weeks postpartum. Slight decrease in minimum airflow and open speed quotient may reflect suspected vocal fold tissue changes. It is recommended that future studies monitor and test correlations among hormone levels, visual analyses of vocal fold mucosa, aerodynamic function, and glottal efficiency. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  10. Preliminary Aerodynamic Investigation of Fan Rotor Blade Morphing

    Science.gov (United States)

    Tweedt, Daniel L.

    2012-01-01

    Various new technologies currently under development may enable controlled blade shape variability, or so-called blade morphing, to be practically employed in aircraft engine fans and compressors in the foreseeable future. The current study is a relatively brief, preliminary computational fluid dynamics investigation aimed at partially demonstrating and quantifying the aerodynamic potential of fan rotor blade morphing. The investigation is intended to provide information useful for near-term planning, as well as aerodynamic solution data sets that can be subsequently analyzed using advanced acoustic diagnostic tools, for the purpose of making fan noise comparisons. Two existing fan system models serve as baselines for the investigation: the Advanced Ducted Propulsor fan with a design tip speed of 806 ft/sec and a pressure ratio of 1.294, and the Source Diagnostic Test fan with a design tip speed of 1215 ft/sec and a pressure ratio of 1.470. Both are 22-in. sub-scale, low-noise research fan/nacelle models that have undergone extensive experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. The study, restricted to fan rotor blade morphing only, involves a fairly simple blade morphing technique. Specifically, spanwise-linear variations in rotor blade-section setting angle are applied to alter the blade shape; that is, the blade is linearly retwisted from hub to tip. Aerodynamic performance comparisons are made between morphed-blade and corresponding baseline configurations on the basis of equal fan system thrust, where rotor rotational speed for the morphed-blade fan is varied to change the thrust level for that configuration. The results of the investigation confirm that rotor blade morphing could be a useful technology, with the potential to enable significant improvements in fan aerodynamic performance. Even though the study is very limited in scope and confined to simple geometric perturbations of two existing fan

  11. Noise Protection

    Science.gov (United States)

    1980-01-01

    Environmental Health Systems puts forth an increasing effort in the U.S. to develop ways of controlling noise, particularly in industrial environments due to Federal and State laws, labor union insistence and new findings relative to noise pollution impact on human health. NASA's Apollo guidance control system aided in the development of a noise protection product, SMART. The basis of all SMART products is SMART compound a liquid plastic mixture with exceptional energy/sound absorbing qualities. The basic compound was later refined for noise protection use.

  12. Acceleration effects on missile aerodynamics

    CSIR Research Space (South Africa)

    Gledhill, Irvy MA

    2010-09-01

    Full Text Available on the typical length scale L of the aerodynamic object under study: aeroelastic deflections [4][5], control surface deflections [6], dynamic wedges in wind tunnels [7], and the release of stores from aircraft [8] 2. calculation of dynamic derivatives using c... of the program required for absolute velocities were also found to be minor. Validation test cases have included a spinning plate, constant velocity airfoil, and oscillating airfoil [1]. Test case: rapidly accelerating missile We consider a simple...

  13. Phonatory aerodynamics in connected speech.

    Science.gov (United States)

    Gartner-Schmidt, Jackie L; Hirai, Ryoji; Dastolfo, Christina; Rosen, Clark A; Yu, Lan; Gillespie, Amanda I

    2015-12-01

    1) Present phonatory aerodynamic data for healthy controls (HCs) in connected speech; 2) contrast these findings between HCs and patients with nontreated unilateral vocal fold paralysis (UVFP); 3) present pre- and post-vocal fold augmentation outcomes for patients with UVFP; 4) contrast data from patients with post-operative laryngeal augmentation to HCs. Retrospective, single-blinded. For phase I, 20 HC participants were recruited. For phase II, 20 patients with UVFP were age- and gender-matched to the 20 HC participants used in phase I. For phase III, 20 patients with UVFP represented a pre- and posttreatment cohort. For phase IV, 20 of the HC participants from phase I and 20 of the postoperative UVFP patients from phase III were used for direct comparison. Aerodynamic measures captured from a sample of the Rainbow Passage included: number of breaths, mean phonatory airflow rate, total duration of passage, inspiratory airflow duration, and expiratory airflow duration. The VHI-10 was also obtained pre- and postoperative laryngeal augmentation. All phonatory aerodynamic measures were significantly increased in patients with preoperative UVFP than the HC group. Patients with laryngeal augmentation took significantly less breaths, had less mean phonatory airflow rate during voicing, and had shorter inspiratory airflow duration than the preoperative UVFP group. None of the postoperative measures returned to HC values. Significant improvement in the Voice Handicap Index-10 scores postlaryngeal augmentation was also found. Methodology described in this study improves upon existing aerodynamic voice assessment by capturing characteristics germane to UVFP patient complaints and measuring change before and after laryngeal augmentation in connected speech. 4. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  14. Part two: Error propagation

    International Nuclear Information System (INIS)

    Picard, R.R.

    1989-01-01

    Topics covered in this chapter include a discussion of exact results as related to nuclear materials management and accounting in nuclear facilities; propagation of error for a single measured value; propagation of error for several measured values; error propagation for materials balances; and an application of error propagation to an example of uranium hexafluoride conversion process

  15. 14 CFR 25.445 - Auxiliary aerodynamic surfaces.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Auxiliary aerodynamic surfaces. 25.445... § 25.445 Auxiliary aerodynamic surfaces. (a) When significant, the aerodynamic influence between auxiliary aerodynamic surfaces, such as outboard fins and winglets, and their supporting aerodynamic...

  16. Environmental Noise

    Science.gov (United States)

    Rumberg, Martin

    Environmental noise may be defined as unwanted sound that is caused by emissions from traffic (roads, air traffic corridors, and railways), industrial sites and recreational infrastructures, which may cause both annoyance and damage to health. Noise in the environment or community seriously affects people, interfering with daily activities at school, work and home and during leisure time.

  17. Wind Tunnel for Aerodynamic Development Testing

    OpenAIRE

    E. T. L. Cöuras Ford; V. A. C. Vale; J. U. L. Mendes; F. A. Ribeiro

    2015-01-01

    The study of the aerodynamics related to the improvement in the acting of airplanes and automobiles with the objective of being reduced the effect of the attrition of the air on structures, providing larger speeds and smaller consumption of fuel. The application of the knowledge of the aerodynamics not more limits to the aeronautical and automobile industries. Therefore, this research aims to design and construction of a wind tunnel to perform aerodynamic analysis in bodi...

  18. Assessment and prediction of wind turbine noise

    International Nuclear Information System (INIS)

    Lowson, M.V.

    1993-01-01

    The significance of basic aerodynamic noise sources for wind turbine noise are assessed, using information on the aero-acoustic mechanisms of other rotors, which have been studied in depth for many years. From the analysis, areas of potential improvement in wind turbine noise prediction are defined. Suggestions are made for approaches to wind turbine noise control which separate the noise problems at cut-in from those at rated power. Some of these offer the possibility of noise reduction without unfavourable effects on performance. Based on this analysis, a new model for prediction of wind turbine noise is presented and comparisons made between prediction and experiment. The model is based on well established aeroacoustic theory and published laboratory data for the two principal sources, inflow turbulence and boundary layer trailing edge interaction. The new method gives good agreement with experiment with the case studied so far. Parametric trends and sensitivities for the model are presented. Comparisons with previous prediction methods are also given. A consequence of the new model is to put more emphasis on boundary layer trailing edge interaction as a noise source. There are prospects for reducing noise from this source detail changes to the wind turbine design. (author)

  19. Aerodynamic Aspects of Wind Energy Conversion

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær

    2011-01-01

    This article reviews the most important aerodynamic research topics in the field of wind energy. Wind turbine aerodynamics concerns the modeling and prediction of aerodynamic forces, such as performance predictions of wind farms, and the design of specific parts of wind turbines, such as rotor......-blade geometry. The basics of the blade-element momentum theory are presented along with guidelines for the construction of airfoil data. Various theories for aerodynamically optimum rotors are discussed, and recent results on classical models are presented. State-of-the-art advanced numerical simulation tools...

  20. Removing Background Noise with Phased Array Signal Processing

    Science.gov (United States)

    Podboy, Gary; Stephens, David

    2015-01-01

    Preliminary results are presented from a test conducted to determine how well microphone phased array processing software could pull an acoustic signal out of background noise. The array consisted of 24 microphones in an aerodynamic fairing designed to be mounted in-flow. The processing was conducted using Functional Beam forming software developed by Optinav combined with cross spectral matrix subtraction. The test was conducted in the free-jet of the Nozzle Acoustic Test Rig at NASA GRC. The background noise was produced by the interaction of the free-jet flow with the solid surfaces in the flow. The acoustic signals were produced by acoustic drivers. The results show that the phased array processing was able to pull the acoustic signal out of the background noise provided the signal was no more than 20 dB below the background noise level measured using a conventional single microphone equipped with an aerodynamic forebody.

  1. Research on Rotorcraft Aerodynamics and Aeroacoustics at DLR

    OpenAIRE

    Schwarz, Thorsten

    2017-01-01

    Presentation of the research activities by the Department Helicopters of the Institute of Aerodynamics and Flow Technology. The presentation coveres aerodynamics and aeroacoustics of helicopters as well as aerodynamics of wind turbines..

  2. Fan interaction noise reduction using a wake generator: experiments and computational aeroacoustics

    Science.gov (United States)

    Polacsek, C.; Desbois-Lavergne, F.

    2003-08-01

    A control grid (wake generator) aimed at reducing rotor-stator interaction modes in fan engines when mounted upstream of the rotor has been studied here. This device complements other active noise control systems currently proposed. The compressor model of the instrumented ONERA CERF-rig is used to simulate suitable conditions. The design of the grid is drafted out using semi-empirical models for wake and potential flow, and experimentally achieved. Cylindrical rods are able to generate a spinning mode of the same order and similar level as the interaction mode. Mounting the rods on a rotating ring allows for adjusting the phase of the control mode so that an 8 dB sound pressure level (SPL) reduction at the blade passing frequency is achieved when the two modes are out of phase. Experimental results are assessed by a numerical approach using computational fluid dynamics (CFD). A Reynolds averaged Navier-Stokes 2-D solver, developed at ONERA, is used to provide the unsteady force components on blades and vanes required for acoustics. The loading noise source term of the Ffowcs Williams and Hawkings equation is used to model the interaction noise between the sources, and an original coupling to a boundary element method (BEM) code is realized to take account of the inlet geometry effects on acoustic in-duct propagation. Calculations using the classical analytical the Green function of an infinite annular duct are also addressed. Simple formulations written in the frequency domain and expanded into modes are addressed and used to compute an in-duct interaction mode and to compare with the noise reduction obtained during the tests. A fairly good agreement between predicted and measured SPL is found when the inlet geometry effects are part of the solution (by coupling with the BEM). Furthermore, computed aerodynamic penalties due to the rods are found to be negligible. These results partly validate the computation chain and highlight the potential of the wake generator

  3. Laser assisted aerodynamic isotope separation

    International Nuclear Information System (INIS)

    Berg, H. van den

    1985-01-01

    It is shown that the efficiency of conventional aerodynamic isotope seperation can be improved by two orders of magnitude with the aid of a relatively weak cw infrared laser which is used to induce isotopically selective condensation. Overall isotope enrichment factors in excess of 2 are obtained as compared to about 1.02 in the conventional seperation. Sulphur isotopes in SF 6 as well as Silicon isotopes in SiF 4 and Bromine isotopes in CF 3 Br are seperated on a laboratory scale. Infrared vibrational predissociation by itself and in combination with isotopically selective condensation are also shown to be effective new ways of isotope separation. (orig.) [de

  4. The basic aerodynamics of floatation

    Energy Technology Data Exchange (ETDEWEB)

    Davies, M.J.; Wood, D.H.

    1983-09-01

    The original derivation of the basic theory governing the aerodynamics of both hovercraft and modern floatation ovens, requires the validity of some extremely crude assumptions. However, the basic theory is surprisingly accurate. It is shown that this accuracy occurs because the final expression of the basic theory can be derived by approximating the full Navier-Stokes equations in a manner that clearly shows the limitations of the theory. These limitations are used in discussing the relatively small discrepancies between the theory and experiment, which may not be significant for practical purposes.

  5. Noise and Vibration Mitigation for Rail Transportation Systems : Proceedings of the 10th International Workshop on RailwayNoise

    CERN Document Server

    Gautier, Pierre-Etienne; Hanson, Carl; Hemsworth, Brian; Nelson, James; Schulte-Werning, Burkhard; Thompson, David; Vos, Paul

    2012-01-01

    This volume contains the contributions to the 10th International Workshop on Railway Noise, held October 18–22, 2010, in Nagahama, Japan, organized by the Railway Technical Research Institute (RTRI), Japan. With 11 sessions and 3 poster sessions, the workshop featured presentations by international leaders in the field of railway noise and vibration. All subjects relating to 1. prospects, legal regulation, and perception; 2. wheel and rail noise; 3. structure-borne noise and squeal noise; 4. ground-borne vibration; 5. aerodynamic noise and micro-pressure waves from tunnel portals; 6. interior noise and sound barriers; and 7. prediction, measurements, and monitoring are addressed here. This book is a useful “state-of-the-art” reference for scientists and engineers involved in solving environmental problems of railways.

  6. Effect of non-uniform mean flow field on acoustic propagation problems in computational aeroacoustics

    DEFF Research Database (Denmark)

    Si, Haiqing; Shen, Wen Zhong; Zhu, Wei Jun

    2013-01-01

    Acoustic propagation in the presence of a non-uniform mean flow is studied numerically by using two different acoustic propagating models, which solve linearized Euler equations (LEE) and acoustic perturbation equations (APE). As noise induced by turbulent flows often propagates from near field t...

  7. Design and analysis of aerodynamic force platforms for free flight studies.

    Science.gov (United States)

    Hightower, Ben J; Ingersoll, Rivers; Chin, Diana D; Lawhon, Carl; Haselsteiner, Andreas F; Lentink, David

    2017-10-16

    We describe and explain new advancements in the design of the aerodynamic force platform, a novel instrument that can directly measure the aerodynamic forces generated by freely flying animals and robots. Such in vivo recordings are essential to better understand the precise aerodynamic function of flapping wings in nature, which can critically inform the design of new bioinspired robots. By designing the aerodynamic force platform to be stiff yet lightweight, the natural frequencies of all structural components can be made over five times greater than the frequencies of interest. The associated high-frequency noise can then be filtered out during post-processing to obtain accurate and precise force recordings. We illustrate these abilities by measuring the aerodynamic forces generated by a freely flying bird. The design principles can also be translated to other fluid media. This offers an opportunity to perform high-throughput, real-time, non-intrusive, and in vivo comparative biomechanical measurements of force generation by locomoting animals and robots. These recordings can include complex bimodal terrestrial, aquatic, and aerial behaviors, which will help advance the fields of experimental biology and bioinspired design.

  8. Aerodynamics of wind turbines emerging topics

    CERN Document Server

    Amano, R S

    2014-01-01

    Focusing on Aerodynamics of Wind Turbines with topics ranging from Fundamental to Application of horizontal axis wind turbines, this book presents advanced topics including: Basic Theory for Wind turbine Blade Aerodynamics, Computational Methods, and Special Structural Reinforcement Technique for Wind Turbine Blades.

  9. Migration on Wings Aerodynamics and Energetics

    CERN Document Server

    Kantha, Lakshmi

    2012-01-01

    This book is an effort to explore the technical aspects associated with bird flight and migration on wings. After a short introduction on the birds migration, the book reviews the aerodynamics and Energetics of Flight and presents the calculation of the Migration Range. In addition, the authors explains aerodynamics of the formation flight and finally introduces great flight diagrams.

  10. Distributed Aerodynamic Sensing and Processing Toolbox

    Science.gov (United States)

    Brenner, Martin; Jutte, Christine; Mangalam, Arun

    2011-01-01

    A Distributed Aerodynamic Sensing and Processing (DASP) toolbox was designed and fabricated for flight test applications with an Aerostructures Test Wing (ATW) mounted under the fuselage of an F-15B on the Flight Test Fixture (FTF). DASP monitors and processes the aerodynamics with the structural dynamics using nonintrusive, surface-mounted, hot-film sensing. This aerodynamic measurement tool benefits programs devoted to static/dynamic load alleviation, body freedom flutter suppression, buffet control, improvement of aerodynamic efficiency through cruise control, supersonic wave drag reduction through shock control, etc. This DASP toolbox measures local and global unsteady aerodynamic load distribution with distributed sensing. It determines correlation between aerodynamic observables (aero forces) and structural dynamics, and allows control authority increase through aeroelastic shaping and active flow control. It offers improvements in flutter suppression and, in particular, body freedom flutter suppression, as well as aerodynamic performance of wings for increased range/endurance of manned/ unmanned flight vehicles. Other improvements include inlet performance with closed-loop active flow control, and development and validation of advanced analytical and computational tools for unsteady aerodynamics.

  11. Aerodynamic seal assemblies for turbo-machinery

    Science.gov (United States)

    Bidkar, Rahul Anil; Wolfe, Christopher; Fang, Biao

    2015-09-29

    The present application provides an aerodynamic seal assembly for use with a turbo-machine. The aerodynamic seal assembly may include a number of springs, a shoe connected to the springs, and a secondary seal positioned about the springs and the shoe.

  12. Review paper on wind turbine aerodynamics

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Aagaard Madsen, Helge

    2011-01-01

    The paper describes the development and description of the aerodynamic models used to estimate the aerodynamic loads on wind turbine constructions. This includes a status of the capabilities of computation fluid dynamics and the need for reliable airfoil data for the simpler engineering models....... © 2011 American Society of Mechanical Engineers....

  13. Leading Edge Device Aerodynamic Optimization

    Directory of Open Access Journals (Sweden)

    Marius Gabriel COJOCARU

    2015-12-01

    Full Text Available Leading edge devices are conventionally used as aerodynamic devices that enhance performances during landing and in some cases during takeoff. The need to increase the efficiency of the aircrafts has brought the idea of maintaining as much as possible a laminar flow over the wings. This is possible only when the leading edge of the wings is free from contamination, therefore using the leading edge devices with the additional role of shielding during takeoff. Such a device based on the Krueger flap design is aerodynamically analyzed and optimized. The optimization comprises three steps: first, the positioning of the flap such that the shielding criterion is kept, second, the analysis of the flap size and third, the optimization of the flap shape. The first step is subject of a gradient based optimization process of the position described by two parameters, the position along the line and the deflection angle. For the third step the Adjoint method is used to gain insight on the shape of the Krueger flap that will extend the most the stall limit. All these steps have been numerically performed using Ansys Fluent and the results are presented for the optimized shape in comparison with the baseline configuration.

  14. Development of an Unsteady Aerodynamic Model for Upstream Miniature Trailing-Edge Effectors

    OpenAIRE

    Vieira, Bernardo; Coder, James; Maughmer, Mark

    2017-01-01

    The development and validation of an aerodynamic model for predicting the unsteady lift response of upstream miniature trailing-edge effectors (MiTEs) is detailed. MiTEs are active Gurney flaps that show potential for use in rotorcraft performance enhancement, vibration control, and noise control if they can be stored within the blade itself. This usually requires the MiTEs to be placed upstream of the blade trailing edge. OVERFLOW 2.1 predictions demonstrate the formation and convection o...

  15. Aerodynamic Shape Optimization Using A Real-Number-Encoded Genetic Algorithm

    Science.gov (United States)

    Holst, Terry L.; Pulliam, Thomas H.

    2001-01-01

    A new method for aerodynamic shape optimization using a genetic algorithm with real number encoding is presented. The algorithm is used to optimize three different problems, a simple hill climbing problem, a quasi-one-dimensional nozzle problem using an Euler equation solver and a three-dimensional transonic wing problem using a nonlinear potential solver. Results indicate that the genetic algorithm is easy to implement and extremely reliable, being relatively insensitive to design space noise.

  16. Aerodynamic effects of flexibility in flapping wings

    Science.gov (United States)

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P.

    2010-01-01

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re ≈ 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small robotic

  17. Aerodynamic effects of flexibility in flapping wings.

    Science.gov (United States)

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P

    2010-03-06

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re approximately 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small

  18. Aerodynamics of saccate pollen and its implications for wind pollination.

    Science.gov (United States)

    Schwendemann, Andrew B; Wang, George; Mertz, Meredith L; McWilliams, Ryan T; Thatcher, Scott L; Osborn, Jeffrey M

    2007-08-01

    Pollen grains of many wind-pollinated plants contain 1-3 air-filled bladders, or sacci. Sacci are thought to help orient the pollen grain in the pollination droplet. Sacci also increase surface area of the pollen grain, yet add minimal mass, thereby increasing dispersal distance; however, this aerodynamic hypothesis has not been tested in a published study. Using scanning electron and transmission electron microscopy, mathematical modeling, and the saccate pollen of three extant conifers with structurally different pollen grains (Pinus, Falcatifolium, Dacrydium), we developed a computational model to investigate pollen flight. The model calculates terminal settling velocity based on structural characters of the pollen grain, including lengths, widths, and depths of the main body and sacci; angle of saccus rotation; and thicknesses of the saccus wall, endoreticulations, intine, and exine. The settling speeds predicted by the model were empirically validated by stroboscopic photography. This study is the first to quantitatively demonstrate the adaptive significance of sacci for the aerodynamics of wind pollination. Modeling pollen both with and without sacci indicated that sacci can reduce pollen settling speeds, thereby increasing dispersal distance, with the exception of pollen grains having robust endoreticulations and those with thick saccus walls. Furthermore, because the mathematical model is based on structural characters and error propagation methods show that the model yields valid results when sample sizes are small, the flight dynamics of fossil pollen can be investigated. Several fossils were studied, including bisaccate (Pinus, Pteruchus, Caytonanthus), monosaccate (Gothania), and nonsaccate (Monoletes) pollen types.

  19. The Effects of Crosswind Flight on Rotor Harmonic Noise Radiation

    Science.gov (United States)

    Greenwood, Eric; Sim, Ben W.

    2013-01-01

    In order to develop recommendations for procedures for helicopter source noise characterization, the effects of crosswinds on main rotor harmonic noise radiation are assessed using a model of the Bell 430 helicopter. Crosswinds are found to have a significant effect on Blade-Vortex Interaction (BVI) noise radiation when the helicopter is trimmed with the fuselage oriented along the inertial flight path. However, the magnitude of BVI noise remains unchanged when the pilot orients the fuselage along the aerodynamic velocity vector, crabbing for zero aerodynamic sideslip. The effects of wind gradients on BVI noise are also investigated and found to be smaller in the crosswind direction than in the headwind direction. The effects of crosswinds on lower harmonic noise sources at higher flight speeds are also assessed. In all cases, the directivity of radiated noise is somewhat changed by the crosswind. The model predictions agree well with flight test data for the Bell 430 helicopter captured under various wind conditions. The results of this investigation would suggest that flight paths for future acoustic flight testing are best aligned across the prevailing wind direction to minimize the effects of winds on noise measurements when wind cannot otherwise be avoided.

  20. STUDY NOISE POLLUTION TYUMEN USING GIS

    Directory of Open Access Journals (Sweden)

    V. A. Dobryakova

    2016-01-01

    Full Text Available One of the most harmful factors of environment of the city is the noise, and its weight among the factors adversely affecting the life and health of the population has been increasing steadily [Sheina and etc., 2007; Polovinkina and etc., 2012]. Today, most major cities of the Russian Federation (70% have a high noise pollution problem. The system of support for the monitoring and control of acoustic situation in the city can be considered noise pollution electronic cards made using geographic information systems (GIS. There are two fundamentally different approaches to the selection of software for creation of noise maps. According to the first of them, use universal multifunctional complexes GIS (ArcGIS, MapInfo. According to the distribution of data points on the noise characteristics is created TIN model. A second approach to create noise maps using highly specialized software (MapNoise, SoundPLAN, Mitha, Cadna, ExNOISE et al.. To calculate noise propagation area is divided on the grid with a certain step, the most relevant mapping purposes. Calculation of noise levels is carried out in a grid cell by measurements based on diffraction and reflection of sound barriers and absorbing underlying surface. Noise pollution is also displayed using contour lines.

  1. The Aerodynamics of Frisbee Flight

    Directory of Open Access Journals (Sweden)

    Kathleen Baumback

    2010-01-01

    Full Text Available This project will describe the physics of a common Frisbee in flight. The aerodynamic forces acting on the Frisbee are lift and drag, with lift being explained by Bernoulli‘s equation and drag by the Prandtl relationship. Using V. R. Morrison‘s model for the 2-dimensional trajectory of a Frisbee, equations for the x- and y- components of the Frisbee‘s motion were written in Microsoft Excel and the path of the Frisbee was illustrated. Variables such as angle of attack, area, and attack velocity were altered to see their effect on the Frisbee‘s path and to speculate on ways to achieve maximum distance and height.

  2. Aerodynamic seals for rotary machine

    Science.gov (United States)

    Bidkar, Rahul Anil; Cirri, Massimiliano; Thatte, Azam Mihir; Williams, John Robert

    2016-02-09

    An aerodynamic seal assembly for a rotary machine includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward-shoe section and an aft-shoe section having multiple labyrinth teeth therebetween facing the rotor. The sealing device segment also includes multiple flexures connected to the shoe plate and to a top interface element, wherein the multiple flexures are configured to allow the high pressure fluid to occupy a forward cavity and the low pressure fluid to occupy an aft cavity. Further, the sealing device segments include a secondary seal attached to the top interface element at one first end and positioned about the flexures and the shoe plate at one second end.

  3. On cup anemometer rotor aerodynamics.

    Science.gov (United States)

    Pindado, Santiago; Pérez, Javier; Avila-Sanchez, Sergio

    2012-01-01

    The influence of anemometer rotor shape parameters, such as the cups' front area or their center rotation radius on the anemometer's performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups' center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor's cup.

  4. Aerodynamic study of a small horizontal-axis wind turbine

    Directory of Open Access Journals (Sweden)

    Cornelia NITA

    2012-06-01

    Full Text Available The wind energy is deemed as one of the most durable energetic variants of the future because the wind resources are immense. Furthermore, one predicts that the small wind turbine will play a vital role in the urban environment. Unfortunately, nowadays, the noise emissions from wind turbines represent one of the main obstacles to widespread the use in populated zones. Moreover, the energetic efficiency of these wind turbines has to be high even at low and medium wind velocities because, usually the cities are not windy places. The numerical results clearly show that the wakes after the trailing edge are the main noise sources. In order to decrease the power of these noise sources, we should try to decrease the intensity of wakes after the trailing edge, i.e. the aerodynamic fields from pressure and suction sides would have to be almost the same near trailing edge. Furthermore, one observes a strong link between transport (circumferential velocity and acoustic power level, i.e. if the transport velocity increases, the acoustic power level also augments.

  5. Three-Dimensional Ocean Noise Modeling

    Science.gov (United States)

    2015-03-01

    realistic and complex three-dimensional bathymetry. This is achieved by using a parabolic equation [PE) propagation model and the reciprocity principle...explain the horizontal noise directionality observed in the Tonga Trench [Barclay, 2014], which was found not to be a 3D effect, but rather due to...modeled noise arriving on the axis of the canyon has significantly perturbed zero-crossings when compared to the equivalent Nx2D result. Theoretical

  6. The steady aerodynamics of aerofoils with porosity gradients.

    Science.gov (United States)

    Hajian, Rozhin; Jaworski, Justin W

    2017-09-01

    This theoretical study determines the aerodynamic loads on an aerofoil with a prescribed porosity distribution in a steady incompressible flow. A Darcy porosity condition on the aerofoil surface furnishes a Fredholm integral equation for the pressure distribution, which is solved exactly and generally as a Riemann-Hilbert problem provided that the porosity distribution is Hölder-continuous. The Hölder condition includes as a subset any continuously differentiable porosity distributions that may be of practical interest. This formal restriction on the analysis is examined by a class of differentiable porosity distributions that approach a piecewise, discontinuous function in a certain parametric limit. The Hölder-continuous solution is verified in this limit against analytical results for partially porous aerofoils in the literature. Finally, a comparison made between the new theoretical predictions and experimental measurements of SD7003 aerofoils presented in the literature. Results from this analysis may be integrated into a theoretical framework to optimize turbulence noise suppression with minimal impact to aerodynamic performance.

  7. Optical propagation in linear media atmospheric gases and particles, solid-state components, and water

    CERN Document Server

    Thomas, Michael E

    2006-01-01

    PART I: Background Theory and Measurement. 1. Optical Electromagnetics I. 2. Optical Electromagnetics II. 3. Spectroscopy of Matter. 4. Electrodynamics I: Macroscopic Interaction of Light and Matter. 5. Electrodynamics II: Microscopic Interaction of Light and Matter. 6. Experimental Techniques. PART II: Practical Models for Various Media. 7. Optical Propagation in Gases and the Atmosphere of the Earth. 8. Optical Propagation in Solids. 9. Optical Propagation in Liquids. 10. Particle Absorption and Scatter. 11. Propagation Background and Noise

  8. Effects of perforation number of blade on aerodynamic performance of dual-rotor small axial flow fans

    Science.gov (United States)

    Hu, Yongjun; Wang, Yanping; Li, Guoqi; Jin, Yingzi; Setoguchi, Toshiaki; Kim, Heuy Dong

    2015-04-01

    Compared with single rotor small axial flow fans, dual-rotor small axial flow fans is better regarding the static characteristics. But the aerodynamic noise of dual-rotor small axial flow fans is worse than that of single rotor small axial flow fans. In order to improve aerodynamic noise of dual-rotor small axial flow fans, the pre-stage blades with different perforation numbers are designed in this research. The RANS equations and the standard k-ɛ turbulence model as well as the FW-H noise model are used to simulate the flow field within the fan. Then, the aerodynamic performance of the fans with different perforation number is compared and analyzed. The results show that: (1) Compared to the prototype fan, the noise of fans with perforation blades is reduced. Additionally, the noise of the fans decreases with the increase of the number of perforations. (2) The vorticity value in the trailing edge of the pre-stage blades of perforated fans is reduced. It is found that the vorticity value in the trailing edge of the pre-stage blades decreases with the increase of the number of perforations. (3) Compared to the prototype fan, the total pressure rising and efficiency of the fans with perforation blades drop slightly.

  9. A numerical study of the effects of design parameters on the acoustics noise of a high efficiency propeller

    Science.gov (United States)

    Yang, Liu; Huang, Jun; Yi, Mingxu; Zhang, Chaopu; Xiao, Qian

    2017-11-01

    A numerical study of a high efficiency propeller in the aerodynamic noise generation is carried out. Based on RANS, three-dimensional numerical simulation is performed to obtain the aerodynamic performance of the propeller. The result of the aerodynamic analysis is given as input of the acoustic calculation. The sound is calculated using the Farassat 1A, which is derived from Ffowcs Williams-Hawkings equation, and compared with the data of wind tunnel. The propeller is modified for noise reduction by changing its geometrical parameters such as diameter, chord width and pitch angle. The trend of variation between aerodynamic analysis data and acoustic calculation result are compared and discussed for different modification tasks. Meaningful conclusions are drawn on the noise reduction of propeller.

  10. Error propagation analysis for a sensor system

    International Nuclear Information System (INIS)

    Yeater, M.L.; Hockenbury, R.W.; Hawkins, J.; Wilkinson, J.

    1976-01-01

    As part of a program to develop reliability methods for operational use with reactor sensors and protective systems, error propagation analyses are being made for each model. An example is a sensor system computer simulation model, in which the sensor system signature is convoluted with a reactor signature to show the effect of each in revealing or obscuring information contained in the other. The error propagation analysis models the system and signature uncertainties and sensitivities, whereas the simulation models the signatures and by extensive repetitions reveals the effect of errors in various reactor input or sensor response data. In the approach for the example presented, the errors accumulated by the signature (set of ''noise'' frequencies) are successively calculated as it is propagated stepwise through a system comprised of sensor and signal processing components. Additional modeling steps include a Fourier transform calculation to produce the usual power spectral density representation of the product signature, and some form of pattern recognition algorithm

  11. Trailing Edge Noise Model Validation and Application to Airfoil Optimization

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Aagaard Madsen, Helge; Bak, Christian

    2010-01-01

    The aim of this article is twofold. First, an existing trailing edge noise model is validated by comparing with airfoil surface pressure fluctuations and far field sound pressure levels measured in three different experiments. The agreement is satisfactory in one case but poor in two other cases...... noise emission, trying at the same time to preserve some of its aerodynamic and geometric characteristics. The new designs are characterized by less cambered airfoils and flatter suction sides. The resulting noise reductions seem to be mainly achieved by a reduction in the turbulent kinetic energy...

  12. Theoretical and Experimental studies of aerodynamic interference effects. [aerodynamic forces on winglets and on wing nacelle configurations for the YC-14 and KC-135 aircraft

    Science.gov (United States)

    Rettie, I. H.

    1980-01-01

    Theoretical studies of aerodynamic forces on winglets shed considerable light on the mechanism by which these devices can reduce drag at constant total lift and on the necessity for proper alignment and cambering to achieve optimum favorable interference. Results of engineering studies, wind tunnel tests and performance predictions are reviewed for installations proposed for the AMST YC-14 and the KC-135 airplanes. The other major area of aerodynamic interference discussed is that of engine nacelle installations. Slipper and overwing nacelles have received much attention because of their potential for noise reduction, propulsive lift and improved ground clearance. A major challenge is the integration of such nacelles with the supercritical flow on the upper surface of a swept wing in cruise at high subsonic speeds.

  13. Estimation of morphing airfoil shapes and aerodynamic loads using artificial hair sensors

    Science.gov (United States)

    Butler, Nathan Scott

    An active area of research in adaptive structures focuses on the use of continuous wing shape changing methods as a means of replacing conventional discrete control surfaces and increasing aerodynamic efficiency. Although many shape-changing methods have been used since the beginning of heavier-than-air flight, the concept of performing camber actuation on a fully-deformable airfoil has not been widely applied. A fundamental problem of applying this concept to real-world scenarios is the fact that camber actuation is a continuous, time-dependent process. Therefore, if camber actuation is to be used in a closed-loop feedback system, one must be able to determine the instantaneous airfoil shape, as well as the aerodynamic loads, in real time. One approach is to utilize a new type of artificial hair sensors (AHS) developed at the Air Force Research Laboratory (AFRL) to determine the flow conditions surrounding deformable airfoils. In this study, AHS measurement data will be simulated by using the flow solver XFoil, with the assumption that perfect data with no noise can be collected from the AHS measurements. Such measurements will then be used in an artificial neural network (ANN) based process to approximate the instantaneous airfoil camber shape, lift coefficient, and moment coefficient at a given angle of attack. Additionally, an aerodynamic formulation based on the finite-state inflow theory has been developed to calculate the aerodynamic loads on thin airfoils with arbitrary camber deformations. Various aerodynamic properties approximated from the AHS/ANN system will be compared with the results of the finite-state inflow aerodynamic formulation in order to validate the approximation approach.

  14. Prediction of Unsteady Transonic Aerodynamics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An accurate prediction of aero-elastic effects depends on an accurate prediction of the unsteady aerodynamic forces. Perhaps the most difficult speed regime is...

  15. Switchable and Tunable Aerodynamic Drag on Cylinders

    Science.gov (United States)

    Guttag, Mark; Lopéz Jiménez, Francisco; Upadhyaya, Priyank; Kumar, Shanmugam; Reis, Pedro

    We report results on the performance of Smart Morphable Surfaces (Smporhs) that can be mounted onto cylindrical structures to actively reduce their aerodynamic drag. Our system comprises of an elastomeric thin shell with a series of carefully designed subsurface cavities that, once depressurized, lead to a dramatic deformation of the surface topography, on demand. Our design is inspired by the morphology of the giant cactus (Carnegiea gigantea) which possesses an array of axial grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. We perform systematic wind tunnel tests on cylinders covered with our Smorphs and characterize their aerodynamic performance. The switchable and tunable nature of our system offers substantial advantages for aerodynamic performance when compared to static topographies, due to their operation over a wider range of flow conditions.

  16. Experimental study of canard UAV aerodynamics

    Directory of Open Access Journals (Sweden)

    Panayotov Hristian

    2017-01-01

    Full Text Available The present paper presents the aerodynamic characteristics of a canard fixed-wing unmanned aircraft TERES-02. A wind tunnel experiment is conducted using a specially designed model of the aircraft. The model is produced through the methods of rapid prototyping using a FDM 3D printer. Aerodynamic corrections are made and thorough analysis and discussion of the results is carried out. The obtained results can be used to determine the accuracy of numerical methods for analysis of aircraft performance.

  17. Fluidic Actuation and Control of Munition Aerodynamics

    Science.gov (United States)

    2009-08-31

    RESULTS II. TECHNICAL BACKGOUND II.1 Aerodynamic Flow Control Active aerodynamic flow control techniques in recent years have primarily focused on... techniques used in previous studies have steady and unsteady blowing (Hsaio et. al., 1990), vibrating ribbons or flaps (Huang et. al., 1987), and usage...along the tunnel length. Modified violin string keys are attached to the outside surface of the frame and are used to control the wire

  18. Propagation considerations for satellite broadcasting at frequencies above 10 GHz

    Science.gov (United States)

    Rogers, D. V.

    1985-01-01

    At frequencies above 10 GHz, tropospheric propagation effects can significantly alter signal transmission performance. Important phenomena on earth-satellite (slant) paths include attenuation and sky noise increases resulting from atmospheric gases, clouds, and precipitation, depolarization by raindrops and ice crystals, and refractive effects, particularly at low path elevation angles. Various practical aspects of propagation phenomena for satellite broadcasting at frequencies above 10 GHz are reviewed in this paper, with emphasis on the near-term implementation of services at Ku-band.

  19. Reducing the Effect of Transducer Mount Induced Noise (XMIN) on Aeroacoustic Wind Tunnel Testing Data with a New Transducer Mount Design

    Science.gov (United States)

    Herron, Andrew J.; Reed, Darren K.; Nance, Donald K.

    2015-01-01

    Characterization of flight vehicle unsteady aerodynamics is often studied via large scale wind tunnel testing. Boundary layer noise is measured by miniature pressure transducers installed in a model. Noise levels (2-5 dB ref. 20 µPa) can be induced when transducer is mounted out of flush with model outer surface. This effect must be minimized to accurately determine aerodynamically induced acoustic environments.

  20. Aerodynamic Analysis of Morphing Blades

    Science.gov (United States)

    Harris, Caleb; Macphee, David; Carlisle, Madeline

    2016-11-01

    Interest in morphing blades has grown with applications for wind turbines and other aerodynamic blades. This passive control method has advantages over active control methods such as lower manufacturing and upkeep costs. This study has investigated the lift and drag forces on individual blades with experimental and computational analysis. The goal has been to show that these blades delay stall and provide larger lift-to-drag ratios at various angles of attack. Rigid and flexible airfoils were cast from polyurethane and silicone respectively, then lift and drag forces were collected from a load cell during 2-D testing in a wind tunnel. Experimental data was used to validate computational models in OpenFOAM. A finite volume fluid-structure-interaction solver was used to model the flexible blade in fluid flow. Preliminary results indicate delay in stall and larger lift-to-drag ratios by maintaining more optimal angles of attack when flexing. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  1. Skylon Aerodynamics and SABRE Plumes

    Science.gov (United States)

    Mehta, Unmeel; Afosmis, Michael; Bowles, Jeffrey; Pandya, Shishir

    2015-01-01

    An independent partial assessment is provided of the technical viability of the Skylon aerospace plane concept, developed by Reaction Engines Limited (REL). The objectives are to verify REL's engineering estimates of airframe aerodynamics during powered flight and to assess the impact of Synergetic Air-Breathing Rocket Engine (SABRE) plumes on the aft fuselage. Pressure lift and drag coefficients derived from simulations conducted with Euler equations for unpowered flight compare very well with those REL computed with engineering methods. The REL coefficients for powered flight are increasingly less acceptable as the freestream Mach number is increased beyond 8.5, because the engineering estimates did not account for the increasing favorable (in terms of drag and lift coefficients) effect of underexpanded rocket engine plumes on the aft fuselage. At Mach numbers greater than 8.5, the thermal environment around the aft fuselage is a known unknown-a potential design and/or performance risk issue. The adverse effects of shock waves on the aft fuselage and plumeinduced flow separation are other potential risks. The development of an operational reusable launcher from the Skylon concept necessitates the judicious use of a combination of engineering methods, advanced methods based on required physics or analytical fidelity, test data, and independent assessments.

  2. The Aerodynamics of Bird Flight

    Science.gov (United States)

    Spedding, Geoffrey

    2002-11-01

    The manifest success of birds in flight over small and large distances, in confined quarters and also in gusty conditions has inspired admiration, investigation and sometimes imitation from the earthbound human. Birds occupy a range of scales (2 g - 12 kg in mass, and 0.05 - 3 m in wingspan) that overlaps certain micro air vehicle (MAV) designs and there is interest in whether some bird-like properties (flapping wings, deformable feathers, movable tails) might be useful or even necessary for successful MAVs. A bird with 5 cm mean chord flying at 8 m/s has a nominal Reynolds number of 2 - 3 x 10^4. This is an extremely inconvenient range for design, operation and analysis of lifting surfaces, even in steady motion, because their properties are very sensitive to boundary layer separation. The moderate- to high-amplitude flapping motions, together with the complex surface geometry and mechanical properties of the wings themselves lead to yet further challenges. This talk will review some of the theoretical and practical approaches towards understanding and analyzing the aerodynamics of various types of bird flight, including some recent research results that suggest that this effort is far from complete.

  3. Prediction of Aerodynamic Coefficient using Genetic Algorithm Optimized Neural Network for Sparse Data

    Science.gov (United States)

    Rajkumar, T.; Bardina, Jorge; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Wind tunnels use scale models to characterize aerodynamic coefficients, Wind tunnel testing can be slow and costly due to high personnel overhead and intensive power utilization. Although manual curve fitting can be done, it is highly efficient to use a neural network to define the complex relationship between variables. Numerical simulation of complex vehicles on the wide range of conditions required for flight simulation requires static and dynamic data. Static data at low Mach numbers and angles of attack may be obtained with simpler Euler codes. Static data of stalled vehicles where zones of flow separation are usually present at higher angles of attack require Navier-Stokes simulations which are costly due to the large processing time required to attain convergence. Preliminary dynamic data may be obtained with simpler methods based on correlations and vortex methods; however, accurate prediction of the dynamic coefficients requires complex and costly numerical simulations. A reliable and fast method of predicting complex aerodynamic coefficients for flight simulation I'S presented using a neural network. The training data for the neural network are derived from numerical simulations and wind-tunnel experiments. The aerodynamic coefficients are modeled as functions of the flow characteristics and the control surfaces of the vehicle. The basic coefficients of lift, drag and pitching moment are expressed as functions of angles of attack and Mach number. The modeled and training aerodynamic coefficients show good agreement. This method shows excellent potential for rapid development of aerodynamic models for flight simulation. Genetic Algorithms (GA) are used to optimize a previously built Artificial Neural Network (ANN) that reliably predicts aerodynamic coefficients. Results indicate that the GA provided an efficient method of optimizing the ANN model to predict aerodynamic coefficients. The reliability of the ANN using the GA includes prediction of aerodynamic

  4. Sound propagation in cities

    NARCIS (Netherlands)

    Salomons, E.; Polinder, H.; Lohman, W.; Zhou, H.; Borst, H.

    2009-01-01

    A new engineering model for sound propagation in cities is presented. The model is based on numerical and experimental studies of sound propagation between street canyons. Multiple reflections in the source canyon and the receiver canyon are taken into account in an efficient way, while weak

  5. Modelling the gluon propagator

    Energy Technology Data Exchange (ETDEWEB)

    Leinweber, D.B.; Parrinello, C.; Skullerud, J.I.; Williams, A.G

    1999-03-01

    Scaling of the Landau gauge gluon propagator calculated at {beta} = 6.0 and at {beta} = 6.2 is demonstrated. A variety of functional forms for the gluon propagator calculated on a large (32{sup 3} x 64) lattice at {beta} = 6.0 are investigated.

  6. Occupational Noise Exposure

    Science.gov (United States)

    ... Safety and Health Topics / Occupational Noise Exposure Occupational Noise Exposure This page requires that javascript be enabled ... interprets the signal as sound. x What is noise? Noise and vibration are both fluctuations in the ...

  7. Noise storm coordinated observations

    International Nuclear Information System (INIS)

    Elgaroey, Oe.; Tlamicha, A.

    1983-01-01

    The usually accepted bipolar model of noise storm centers is irrelevant for the present observations. An alternative model has been proposed in which the different sources of a noise storm center are located in different flux tubes connecting active regions with their surroundings. Radio emission is observed from the wide, descending branch of the flux tubes, opposite to the flaring site. The relation between the sense of circular polarization of the radio emission and the magnetic polarity, has been more precisely defined. The radiation is in the ordinary mode with respect to the underlying large scale photospheric magnetic polarity. Thus the ''irregular'' polarity of noice storm center ''B'' is explained. As regards center ''C'', one should note that although the observed radio emission is polarized in the ordinary mode with respect to the leading spot of region HR 17653, center ''C'' is not situated in flux tubes originating from the leading part of this region according to the proposed model. Rather, the radio sources are located in the wide and descending part of flux tubes connecting a large, quiet area of south magnetic polarity with the following part of the region HR 17653 (of north magnetic polarity). Thus it is the polarity of the extended area which determines the polarization of the radio emission. The observed polarization should result rather from the emission process than from complicated conditions of propagation for the radio waves

  8. Measured Noise from Small Unmanned Aerial Vehicles

    Science.gov (United States)

    Cabell, Randolph; McSwain, Robert; Grosveld, Ferdinand

    2016-01-01

    Proposed uses of small unmanned aerial vehicles (UAVs), including home package delivery, have the potential to expose large portions of communities to a new noise source. This paper discusses results of flyover noise measurements of four small UAVs, including an internal combustion-powered model airplane and three battery-powered multicopters. Basic noise characteristics of these vehicles are discussed, including spectral properties and sound level metrics such as sound pressure level, effective perceived noise level, and sound exposure level. The size and aerodynamic characteristics of the multicopters in particular make their flight path susceptible to atmospheric disturbances such as wind gusts. These gusts, coupled with a flight control system that varies rotor speed to maintain vehicle stability, create an unsteady acoustic signature. The spectral variations resulting from this unsteadiness are explored, in both hover and flyover conditions for the multicopters. The time varying noise, which differs from the relatively steady noise generated by large transport aircraft, may complicate the prediction of human annoyance using conventional sound level metrics.

  9. Compressor noise control begins with design--Part 1

    International Nuclear Information System (INIS)

    Frank, L.

    1993-01-01

    This paper describes the typical methods used by oil and gas pipeline companies to reduce the noise level associated with their pump and compressor stations. The common method is for the design engineer to specify an acceptable noise level at a specified distance. Unfortunately, the results by this method are rarely acceptable because vendors have not considered the effects of sound propagation outside the station, the owners have not considered the cumulative effect of various machinery, and there is little methodology available to distinguish the individual components which might be contributing the acoustically unacceptable noise levels in a multi-component system. This article stresses balanced noise control designs using noise control engineering

  10. Noise in Optical Amplifiers

    DEFF Research Database (Denmark)

    Jeppesen, Palle

    1997-01-01

    Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived.......Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived....

  11. Design of low noise wind turbine blades using Betz and Joukowski concepts

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Hrgovan, Iva; Okulov, Valery

    2014-01-01

    /reference turbine rotor with a diameter of 80 m. To reduce the noise emission from the baseline rotor, the rotor is reconstructed with the low noise CQU-DTU-LN1 series of airfoils which has been tested in the acoustic wind tunnel located at Virginia Tech. Finally, 3MW low noise turbine rotors are designed using......This paper presents the aerodynamic design of low noise wind turbine blades using Betz and Joukowski concepts. The aerodynamic model is based on Blade Element Momentum theory whereas the aeroacoustic prediction model is based on the BPM model. The investigation is started with a 3MW baseline...... the concepts of Betz and Joukowski, and the CQU-DTU-LN1 series of airfoils. Performance analysis shows that the newly designed turbine rotors can achieve an overall noise reduction of 6 dB and 1.5 dB(A) with a similar power output as compared to the reference rotor....

  12. Discrete vortex method simulations of the aerodynamic admittance in bridge aerodynamics

    DEFF Research Database (Denmark)

    Rasmussen, Johannes Tophøj; Hejlesen, Mads Mølholm; Larsen, Allan

    2010-01-01

    We present a novel method for the simulation of the aerodynamic admittance in bluff body aerodynamics. The method introduces a model for describing oncoming turbulence in two-dimensional discrete vortex method simulations by seeding the upstream flow with vortex particles. The turbulence...

  13. On Noise Assessment for Blended Wing Body Aircraft

    Science.gov (United States)

    Guo, Yueping; Burley, Casey L; Thomas, Russell H.

    2014-01-01

    system noise studies, which include aerodynamic performance, propulsion efficiency, flight profile limitation and many other factors. For a future aircraft concept to achieve the NASA N+2 noise goal it will require a range of fully successful noise reduction technology developments.

  14. Yesterday's noise - today's signal

    International Nuclear Information System (INIS)

    Serdula, K.J.

    1978-01-01

    Plant performance can be improved by noise analysis. This paper describes noise characteristics, imposed noise and response functions, a case history of cost benefits derived from application of noise analysis techniques, areas for application of noise analysis techniques with special reference to the Gentilly-1 nuclear generating station, and the validity of noise measurement results. (E.C.B.)

  15. QUIESST, toward a better knowledge and understanding of how efficient noise barriers could actually be: noise in the built environment

    NARCIS (Netherlands)

    Clairbois, J.-P.; Roo, F. de; Garai, M.; Conter, M.; Defrance, J.; Oltean-Dumbrava, C.; Fusco, I.

    2010-01-01

    Since the early 80's, one models noise propagation, in the early 90's one started to standardize how to measure the intrinsic characteristics of manufactured noise barriers: in 1997, the EU funded ADRIENNE research ([1] and [2]) was a first step, but many problems still remained. Since years, all

  16. The noise generated by wind turbines

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    Sound propagation damps down with distance and varies according to different parameters like wind direction and temperature. This article begins by recalling the basic physics of sound wave propagation and gives a list of common noises and corresponding decibels. The habitual noise of wind turbines 500 m away is 35 decibels which ranks it between a quiet bedroom (30 decibels) and a calm office (40 decibels). The question about whether wind turbines are a noise nuisance is all the more difficult as the feeling of a nuisance is so objective and personal. Any project of wind turbines requires a thorough study of its estimated acoustic impact. This study is a 3 step approach: first the initial noise environment is measured, secondly the propagation of the sound generated by the wind turbine farm is modelled and adequate mitigation measures are proposed to comply the law. The law stipulates that the increase of noise must be less than 5 db during daylight and less than 3 db during night. (A.C.)

  17. Hybrid Analysis of Engine Core Noise

    Science.gov (United States)

    O'Brien, Jeffrey; Kim, Jeonglae; Ihme, Matthias

    2015-11-01

    Core noise, or the noise generated within an aircraft engine, is becoming an increasing concern for the aviation industry as other noise sources are progressively reduced. The prediction of core noise generation and propagation is especially challenging for computationalists since it involves extensive multiphysics including chemical reaction and moving blades in addition to the aerothermochemical effects of heated jets. In this work, a representative engine flow path is constructed using experimentally verified geometries to simulate the physics of core noise. A combustor, single-stage turbine, nozzle and jet are modeled in separate calculations using appropriate high fidelity techniques including LES, actuator disk theory and Ffowcs-Williams Hawkings surfaces. A one way coupling procedure is developed for passing fluctuations downstream through the flowpath. This method effectively isolates the core noise from other acoustic sources, enables straightforward study of the interaction between core noise and jet exhaust, and allows for simple distinction between direct and indirect noise. The impact of core noise on the farfield jet acoustics is studied extensively and the relative efficiency of different disturbance types and shapes is examined in detail.

  18. Noise Abatement

    Science.gov (United States)

    1983-01-01

    SMART, Sound Modification and Regulated Temperature compound, is a liquid plastic mixture with exceptional energy and sound absorbing qualities. It is derived from a very elastic plastic which was an effective noise abatement material in the Apollo Guidance System. Discovered by a NASA employee, it is marketed by Environmental Health Systems, Inc. (EHS). The product has been successfully employed by a diaper company with noisy dryers and a sugar company with noisy blowers. The company also manufactures an audiometric test booth and acoustical office partitions.

  19. A Review: Characteristics of Noise Absorption Material

    Science.gov (United States)

    Amares, S.; Sujatmika, E.; Hong, T. W.; Durairaj, R.; Hamid, H. S. H. B.

    2017-10-01

    Noise is always treated as a nuisance to human and even noise pollution appears in the environmental causing discomfort. This also concerns the engineering design that tends to cultivate this noise propagation. Solution such as using material to absorb the sound have been widely used. The fundamental of the sound absorbing propagation, sound absorbing characteristics and its factors are minimally debated. Furthermore, the method in order to pertain sound absorbing related to the sound absorption coefficient is also limited, as many studies only contributes in result basis and very little in literature aspect. This paper revolves in providing better insight on the importance of sound absorption and the materials factors in obtaining the sound absorption coefficient.

  20. Control of maglev vehicles with aerodynamic and guideway disturbances

    Science.gov (United States)

    Flueckiger, Karl; Mark, Steve; Caswell, Ruth; McCallum, Duncan

    1994-05-01

    A modeling, analysis, and control design methodology is presented for maglev vehicle ride quality performance improvement as measured by the Pepler Index. Ride quality enhancement is considered through active control of secondary suspension elements and active aerodynamic surfaces mounted on the train. To analyze and quantify the benefits of active control, the authors have developed a five degree-of-freedom lumped parameter model suitable for describing a large class of maglev vehicles, including both channel and box-beam guideway configurations. Elements of this modeling capability have been recently employed in studies sponsored by the U.S. Department of Transportation (DOT). A perturbation analysis about an operating point, defined by vehicle and average crosswind velocities, yields a suitable linearized state space model for multivariable control system analysis and synthesis. Neglecting passenger compartment noise, the ride quality as quantified by the Pepler Index is readily computed from the system states. A statistical analysis is performed by modeling the crosswind disturbances and guideway variations as filtered white noise, whereby the Pepler Index is established in closed form through the solution to a matrix Lyapunov equation. Data is presented which indicates the anticipated ride quality achieved through various closed-loop control arrangements.

  1. Take-off aerodynamics in ski jumping.

    Science.gov (United States)

    Virmavirta, M; Kivekäs, J; Komi, P V

    2001-04-01

    The effect of aerodynamic forces on the force-time characteristics of the simulated ski jumping take-off was examined in a wind tunnel. Vertical and horizontal ground reaction forces were recorded with a force plate installed under the wind tunnel floor. The jumpers performed take-offs in non-wind conditions and in various wind conditions (21-33 m s(-1)). EMGs of the important take-off muscles were recorded from one jumper. The dramatic decrease in take-off time found in all jumpers can be considered as the result of the influence of aerodynamic lift. The loss in impulse due to the shorter force production time with the same take-off force is compensated with the increase in lift force, resulting in a higher vertical velocity (V(v)) than is expected from the conventional calculation of V(v) from the force impulse. The wind conditions emphasized the explosiveness of the ski jumping take-off. The aerodynamic lift and drag forces which characterize the aerodynamic quality of the initial take-off position (static in-run position) varied widely even between the examined elite ski jumpers. According to the computer simulation these differences can decisively affect jumping distance. The proper utilization of the prevailing aerodynamic forces before and during take-off is a very important prerequisite for achieving a good flight position.

  2. Bat flight: aerodynamics, kinematics and flight morphology.

    Science.gov (United States)

    Hedenström, Anders; Johansson, L Christoffer

    2015-03-01

    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace. © 2015. Published by The Company of Biologists Ltd.

  3. Quantum Noise

    International Nuclear Information System (INIS)

    Beenakker, C W J

    2005-01-01

    Quantum Noise is advertised as a handbook, and this is indeed how it functions for me these days: it is a book that I keep within hand's reach, ready to be consulted on the proper use of quantum stochastic methods in the course of my research on quantum dots. I should point out that quantum optics, the target field for this book, is not my field by training. So I have much to learn, and find this handbook to be a reliable and helpful guide. Crispin Gardiner previously wrote the Handbook of Stochastic Methods (also published by Springer), which provides an overview of methods in classical statistical physics. Quantum Noise, written jointly with Peter Zoller, is the counterpart for quantum statistical physics, and indeed the two books rely on each other by frequent cross referencing. The fundamental problem addressed by Quantum Noise is how the quantum dynamics of an open system can be described statistically by treating the environment as a source of noise. This is a general problem in condensed matter physics (in particular in the context of Josephson junctions) and in quantum optics. The emphasis in this book in on the optical applications (for condensed matter applications one could consult Quantum Dissipative Systems by Ulrich Weiss, published by World Scientific). The optical applications centre around the interaction of light with atoms, where the atoms represent the open system and the light is the noisy environment. A complete description of the production and detection of non-classical states of radiation (such as squeezed states) can be obtained using one of the equivalent quantum stochastic formulations: the quantum Langevin equation for the field operators (in either the Ito or the Stratonovich form), the Master equation for the density matrix, or the stochastic Schroedinger equation for the wave functions. Each formulation is fully developed here (as one would expect from a handbook), with detailed instructions on how to go from one to the other. The

  4. Wave propagation in the magnetosphere of Jupiter

    Science.gov (United States)

    Liemohn, H. B.

    1972-01-01

    A systematic procedure is developed for identifying the spatial regimes of various modes of wave propagation in the Jupiter magnetosphere that may be encountered by flyby missions. The Clemmow-Mullaly-Allis (CMA) diagram of plasma physics is utilized to identify the frequency regimes in which different modes of propagation occur in the magnetoplasma. The Gledhill model and the Ioannidis and Brice model of the magnetoplasma are summarized, and configuration-space CMA diagrams are constructed for each model for frequencies from 10 Hz to 1 MHz. The distinctive propagation features, the radio noise regimes, and the wave-particle interactions are discussed. It is concluded that the concentration of plasma in the equatorial plane makes this region of vital importance for radio observations with flyby missions. Local radio noise around the electron cyclotron frequency will probably differ appreciably from its terrestrial counterpart due to the lack of field-line guidance. Hydromagnetic wave properties at frequencies near the ion cyclotron frequency and below will probably be similar to the terrestrial case.

  5. Experimental and analytical separation of hydrodynamic, entropy and combustion noise in a gas turbine combustor

    Science.gov (United States)

    Muthukrishnan, M.; Strahle, W. C.; Neale, D. H.

    1977-01-01

    This paper deals with noise sources which are central to the problem of core engine noise in turbopropulsion systems. The sources dealt with are entropy noise and direct combustion noise, as well as a non-propagating psuedosound which is hydrodynamic noise. It is shown analytically and experimentally that a transition can occur from a combustion noise dominant situation to an entropy noise dominant case if the contraction of a terminating nozzle to the combustor is high enough. In the combustor tested, entropy noise is the dominant source for propagational noise if the combustor is choked at the exit. Analysis techniques include spectral, cross spectral, cross correlation, and ordinary and partial coherence analysis. Measurements include exterior and interior fluctuating and mean pressures and temperatures.

  6. Group-velocity dispersion effects on quantum noise of a fiber optical soliton in phase space

    International Nuclear Information System (INIS)

    Ju, Heongkyu; Lee, Euncheol

    2010-01-01

    Group-velocity dispersion (GVD) effects on quantum noise of ultrashort pulsed light are theoretically investigated at the soliton energy level, using Gaussian-weighted pseudo-random distribution of phasors in phase space for the modeling of quantum noise properties including phase noise, photon number noise, and quantum noise shape in phase space. We present the effects of GVD that mixes the different spectral components in time, on the self-phase modulation(SPM)-induced quantum noise properties in phase space such as quadrature squeezing, photon-number noise, and tilting/distortion of quantum noise shape in phase space, for the soliton that propagates a distance of the nonlinear length η NL = 1/( γP 0 ) (P 0 is the pulse peak power and γ is the SPM parameter). The propagation dependence of phase space quantum noise properties for an optical soliton is also provided.

  7. Audible Noise Measurement and Analysis of the Main Power Apparatus in UHV GIS Substations

    Directory of Open Access Journals (Sweden)

    Zhou Nian Guang

    2016-01-01

    Full Text Available Investigation of audible noise characteristics of the main power apparatus in UHV GIS substations provides essential statistics for the noise prediction and control. Noise pressure level, spectrum and attenuation characteristics of the main transformers and high voltage (HV reactors are measured and analyzed in this paper. The result shows that the main transformer and HV reactor have identical A-weighted equivalent sound pressure level. The medium- and low-frequency noises are the primary components in the spectral. More attention should be paid to the low-frequency bands in the noise control process. The noise of cooling fan has a large influence on that of the main transformer. Without the consideration of corona noise, the average A-weighted sound pressure level shows an overall decreasing trend with the increase of the propagation distance. Obvious interference phenomenon of the noises at 100 and 200Hz exists in the noise propagation process.

  8. Aerodynamics of magnetic levitation (MAGLEV) trains

    Science.gov (United States)

    Schetz, Joseph A.; Marchman, James F., III

    1996-01-01

    High-speed (500 kph) trains using magnetic forces for levitation, propulsion and control offer many advantages for the nation and a good opportunity for the aerospace community to apply 'high tech' methods to the domestic sector. One area of many that will need advanced research is the aerodynamics of such MAGLEV (Magnetic Levitation) vehicles. There are important issues with regard to wind tunnel testing and the application of CFD to these devices. This talk will deal with the aerodynamic design of MAGLEV vehicles with emphasis on wind tunnel testing. The moving track facility designed and constructed in the 6 ft. Stability Wind Tunnel at Virginia Tech will be described. Test results for a variety of MAGLEV vehicle configurations will be presented. The last topic to be discussed is a Multi-disciplinary Design approach that is being applied to MAGLEV vehicle configuration design including aerodynamics, structures, manufacturability and life-cycle cost.

  9. Photogrammetry of a Hypersonic Inflatable Aerodynamic Decelerator

    Science.gov (United States)

    Kushner, Laura Kathryn; Littell, Justin D.; Cassell, Alan M.

    2013-01-01

    In 2012, two large-scale models of a Hypersonic Inflatable Aerodynamic decelerator were tested in the National Full-Scale Aerodynamic Complex at NASA Ames Research Center. One of the objectives of this test was to measure model deflections under aerodynamic loading that approximated expected flight conditions. The measurements were acquired using stereo photogrammetry. Four pairs of stereo cameras were mounted inside the NFAC test section, each imaging a particular section of the HIAD. The views were then stitched together post-test to create a surface deformation profile. The data from the photogram- metry system will largely be used for comparisons to and refinement of Fluid Structure Interaction models. This paper describes how a commercial photogrammetry system was adapted to make the measurements and presents some preliminary results.

  10. Miniature Trailing Edge Effector for Aerodynamic Control

    Science.gov (United States)

    Lee, Hak-Tae (Inventor); Bieniawski, Stefan R. (Inventor); Kroo, Ilan M. (Inventor)

    2008-01-01

    Improved miniature trailing edge effectors for aerodynamic control are provided. Three types of devices having aerodynamic housings integrated to the trailing edge of an aerodynamic shape are presented, which vary in details of how the control surface can move. A bucket type device has a control surface which is the back part of a C-shaped member having two arms connected by the back section. The C-shaped section is attached to a housing at the ends of the arms, and is rotatable about an axis parallel to the wing trailing edge to provide up, down and neutral states. A flip-up type device has a control surface which rotates about an axis parallel to the wing trailing edge to provide up, down, neutral and brake states. A rotating type device has a control surface which rotates about an axis parallel to the chord line to provide up, down and neutral states.

  11. Status of Nozzle Aerodynamic Technology at MSFC

    Science.gov (United States)

    Ruf, Joseph H.; McDaniels, David M.; Smith, Bud; Owens, Zachary

    2002-01-01

    This viewgraph presentation provides information on the status of nozzle aerodynamic technology at MSFC (Marshall Space Flight Center). The objectives of this presentation were to provide insight into MSFC in-house nozzle aerodynamic technology, design, analysis, and testing. Under CDDF (Center Director's Discretionary Fund), 'Altitude Compensating Nozzle Technology', are the following tasks: Development of in-house ACN (Altitude Compensating Nozzle) aerodynamic design capability; Building in-house experience for all aspects of ACN via End-to-End Nozzle Test Program; Obtaining Experimental Data for Annular Aerospike: Thrust eta, TVC (thrust vector control) capability and surface pressures. To support selection/optimization of future Launch Vehicle propulsion we needed a parametric design and performance tool for ACN. We chose to start with the ACN Aerospike Nozzles.

  12. Computational Aerodynamics and Aeroacoustics for Wind Turbines

    DEFF Research Database (Denmark)

    Shen, Wen Zhong

    To analyse the aerodynamic performance of wind turbine rotors, the main tool in use today is the 1D-Blade Element Momentum (BEM) technique combined with 2D airfoil data. Because of its simplicity, the BEM technique is employed by industry when designing new wind turbine blades. However, in order...... to obtain more detailed information of the flow structures and to determine more accurately loads and power yield of wind turbines or cluster of wind turbines, it is required to resort to more sophisticated techniques, such as Computational Fluid Dynamics (CFD). As computer resources keep on improving year...... by year (about ten times every five years from statistics over the last twenty years), CFD has now become a popular tool for studying the aerodynamics of wind turbines. The present thesis consists of 19 selected papers dealing with the development and use of CFD methods for studying the aerodynamics...

  13. Noise thermometer

    International Nuclear Information System (INIS)

    Von Brixy, H.; Kakuta, Tsunemi.

    1996-03-01

    The noise thermometry (NT) is a temperature measuring method by which the absolute temperature measurement can be performed with a very high accuracy and without any influence of ambient environments and of the thermal history of its NT sensor (electric resistor). Hence it is quite suitable for application as a standard thermometry to the in-situ temperature calibration of incore thermocouples. The KFA Juelich had played a pioneering role in the development of NT and applied the results successfully to the AVR for testing its feasibility. In this report, all about the NT including its principle, sensor elements and system configurations are presented together with the experiences in the AVR and the results of investigation to apply it to high temperature measurement. The NT can be adopted as a standard method for incore temperature measurement and in situ temperature calibration in the HTTR. (author). 85 refs

  14. Noise thermometer

    Energy Technology Data Exchange (ETDEWEB)

    Von Brixy, H. [Forschungszentrum Juelich GmbH (Germany); Kakuta, Tsunemi

    1996-03-01

    The noise thermometry (NT) is a temperature measuring method by which the absolute temperature measurement can be performed with a very high accuracy and without any influence of ambient environments and of the thermal history of its NT sensor (electric resistor). Hence it is quite suitable for application as a standard thermometry to the in-situ temperature calibration of incore thermocouples. The KFA Juelich had played a pioneering role in the development of NT and applied the results successfully to the AVR for testing its feasibility. In this report, all about the NT including its principle, sensor elements and system configurations are presented together with the experiences in the AVR and the results of investigation to apply it to high temperature measurement. The NT can be adopted as a standard method for incore temperature measurement and in situ temperature calibration in the HTTR. (author). 85 refs.

  15. Mitigation and propagation of sound generated by heavy weapons

    NARCIS (Netherlands)

    Berg, F. van den; Eerden, F.J.M. van der

    2011-01-01

    Much environmental research is performed on predicting the noise impact of heavy weapons or explosives, as the shock waves can propagate over large distances. In the densely populated area of the Netherlands this is of particular interest for the Ministry of Defense. In one research program the

  16. Aerodynamic window for a laser fusion device

    International Nuclear Information System (INIS)

    Masuda, Wataru

    1983-01-01

    Since the window of a laser system absorbs a part of the laser energy, the output power is determined by the characteristics of the window. The use of an aerodynamic window has been studied. The required characteristics are to keep the large pressure difference. An equation of motion of a vortex was presented and analyzed. The operation power of the system was studied. A multi-stage aerodynamic window was proposed to reduce the power. When the jet flow of 0.3 of the Mach number is used, the operation power will be several Megawatt, and the length of an optical path will be about 100 m. (Kato, T.)

  17. An implementation of an aeroacoustic prediction model for broadband noise from a vertical axis wind turbine using a CFD informed methodology

    Science.gov (United States)

    Botha, J. D. M.; Shahroki, A.; Rice, H.

    2017-12-01

    This paper presents an enhanced method for predicting aerodynamically generated broadband noise produced by a Vertical Axis Wind Turbine (VAWT). The method improves on existing work for VAWT noise prediction and incorporates recently developed airfoil noise prediction models. Inflow-turbulence and airfoil self-noise mechanisms are both considered. Airfoil noise predictions are dependent on aerodynamic input data and time dependent Computational Fluid Dynamics (CFD) calculations are carried out to solve for the aerodynamic solution. Analytical flow methods are also benchmarked against the CFD informed noise prediction results to quantify errors in the former approach. Comparisons to experimental noise measurements for an existing turbine are encouraging. A parameter study is performed and shows the sensitivity of overall noise levels to changes in inflow velocity and inflow turbulence. Noise sources are characterised and the location and mechanism of the primary sources is determined, inflow-turbulence noise is seen to be the dominant source. The use of CFD calculations is seen to improve the accuracy of noise predictions when compared to the analytic flow solution as well as showing that, for inflow-turbulence noise sources, blade generated turbulence dominates the atmospheric inflow turbulence.

  18. Psychoacoustic Analysis of Synthesized Jet Noise

    Science.gov (United States)

    Okcu, Selen; Rathsam, Jonathan; Rizzi, Stephen A.

    2013-01-01

    An aircraft noise synthesis capability is being developed so the annoyance caused by proposed aircraft can be assessed during the design stage. To make synthesized signals as realistic as possible, high fidelity simulation is required for source (e.g., engine noise, airframe noise), propagation and receiver effects. This psychoacoustic study tests whether the jet noise component of synthesized aircraft engine noise can be made more realistic using a low frequency oscillator (LFO) technique to simulate fluctuations in level observed in recordings. Jet noise predictions are commonly made in the frequency domain based on models of time-averaged empirical data. The synthesis process involves conversion of the frequency domain prediction into an audible pressure time history. However, because the predictions are time-invariant, the synthesized sound lacks fluctuations observed in recordings. Such fluctuations are hypothesized to be perceptually important. To introduce time-varying characteristics into jet noise synthesis, a method has been developed that modulates measured or predicted 1/3-octave band levels with a (<20Hz) LFO. The LFO characteristics are determined through analysis of laboratory jet noise recordings. For the aft emission angle, results indicate that signals synthesized using a generic LFO are perceived as more similar to recordings than those using no LFO, and signals synthesized with an angle-specific LFO are more similar to recordings than those synthesized with a generic LFO.

  19. Airfoil Self-Noise - Investigation with Particle Image Velocimetry

    OpenAIRE

    Pröbsting, S.

    2015-01-01

    Noise generated aerodynamically by the airflow over a lifting surface is often of concern for applications as diverse as air and ground transportation, heating, ventilation, air-conditioning systems, and wind turbines. The thesis describes the application of advanced optical flow measurements techniques for the visualization and description of the sources of sound on airfoils. These measurement techniques include high-speed stereoscopic and tomographic Particle Image Velocimetry (PIV) togethe...

  20. 14 CFR 23.371 - Gyroscopic and aerodynamic loads.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Gyroscopic and aerodynamic loads. 23.371... Flight Loads § 23.371 Gyroscopic and aerodynamic loads. (a) Each engine mount and its supporting structure must be designed for the gyroscopic, inertial, and aerodynamic loads that result, with the engine...

  1. Noise performance of frequency modulation Kelvin force microscopy.

    Science.gov (United States)

    Diesinger, Heinrich; Deresmes, Dominique; Mélin, Thierry

    2014-01-02

    Noise performance of a phase-locked loop (PLL) based frequency modulation Kelvin force microscope (FM-KFM) is assessed. Noise propagation is modeled step by step throughout the setup using both exact closed loop noise gains and an approximation known as "noise gain" from operational amplifier (OpAmp) design that offers the advantage of decoupling the noise performance study from considerations of stability and ideal loop response. The bandwidth can be chosen depending on how much noise is acceptable and it is shown that stability is not an issue up to a limit that will be discussed. With thermal and detector noise as the only sources, both approaches yield PLL frequency noise expressions equal to the theoretical value for self-oscillating circuits and in agreement with measurement, demonstrating that the PLL components neither modify nor contribute noise. Kelvin output noise is then investigated by modeling the surrounding bias feedback loop. A design rule is proposed that allows choosing the AC modulation frequency for optimized sharing of the PLL bandwidth between Kelvin and topography loops. A crossover criterion determines as a function of bandwidth, temperature and probe parameters whether thermal or detector noise is the dominating noise source. Probe merit factors for both cases are then established, suggesting how to tackle noise performance by probe design. Typical merit factors of common probe types are compared. This comprehensive study is an encouraging step toward a more integral performance assessment and a remedy against focusing on single aspects and optimizing around randomly chosen key values.

  2. Electron Beam Propagation in a Plasma

    Directory of Open Access Journals (Sweden)

    Kyoung W. Min

    1988-06-01

    Full Text Available Electron beam propagation in a fully ionized plasma has been studied using a one-dimensional particle simulation model. We compare the results of electrostatic simulations to those of electromagnetic simulations. The electrostatic results show the essential features of beam-plasma instability which accelerates ambient plasmas. The results also show the heating of ambient plasmas and the trapping of plasmas due to the locally generated electric field. The level of the radiation generated by the same non-relativistic beam is slightly higher than the noise level. We discuss the results in context of the heating of coronal plasma during solar flares.

  3. DROMO Propagator Revisited

    Science.gov (United States)

    Urrutxua, H.; Sanjurjo-Rivo, M.; Peláez, J.

    2013-12-01

    In year 2000 a house-made orbital propagator was developed by the SDGUPM (former Grupo de Dinámica de Tethers) based in a set of redundant variables including Euler parameters. This propagator was called DROMO. and it was mainly used in numerical simulations of electrodynamic tethers. It was presented for the first time in the international meeting V Jornadas de Trabajo en Mecánica Celeste, held in Albarracín, Spain, in 2002 (see reference 1). The special perturbation method associated with DROMO can be consulted in the paper.2 In year 1975, Andre Deprit in reference 3 proposes a propagation scheme very similar to the one in which DROMO is based, by using the ideal frame concept of Hansen. The different approaches used in references 3 and 2 gave rise to a small controversy. In this paper we carried out a different deduction of the DROMO propagator, underlining its close relation with the Hansen ideal frame concept, and also the similarities and the differences with the theory carried out by Deprit in 3. Simultaneously we introduce some improvements in the formulation that leads to a more synthetic propagator.

  4. Comparison of Theodorsen's Unsteady Aerodynamic Forces with Doublet Lattice Generalized Aerodynamic Forces

    Science.gov (United States)

    Perry, Boyd, III

    2017-01-01

    This paper identifies the unsteady aerodynamic forces and moments for a typical section contained in the NACA Report No. 496, "General Theory of Aerodynamic Instability and the Mechanism of Flutter," by Theodore Theodorsen. These quantities are named Theodorsen's aerodynamic forces (TAFs). The TAFs are compared to the generalized aerodynamic forces (GAFs) for a very high aspect ratio wing (AR = 20) at zero Mach number computed by the doublet lattice method. Agreement between TAFs and GAFs is very-good-to-excellent. The paper also reveals that simple proportionality relationships that are known to exist between the real parts of some GAFs and the imaginary parts of others also hold for the real and imaginary parts of the corresponding TAFs.

  5. Flow and Noise Characteristics of Centrifugal Fan under Different Stall Conditions

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2014-01-01

    Full Text Available An implicit, time-accurate 3D Reynolds-averaged Navier-Stokes (RANS solver is used to simulate the rotating stall phenomenon in a centrifugal fan. The goal of the present work is to shed light on the flow field and particularly the aerodynamic noise at different stall conditions. Aerodynamic characteristics, frequency domain characteristics, and the contours of sound power level under two different stall conditions are discussed in this paper. The results show that, with the decrease of valve opening, the amplitude of full pressure and flow fluctuations tends to be larger and the stall frequency remains the same. The flow field analysis indicates that the area occupied by stall cells expands with the decrease of flow rate. The noise calculation based on the simulation underlines the role of vortex noise after the occurrence of rotating stall, showing that the high noise area rotates along with the stall cell in the circumferential direction.

  6. Simulation-Based Prediction of Equivalent Continuous Noises during Construction Processes.

    Science.gov (United States)

    Zhang, Hong; Pei, Yun

    2016-08-12

    Quantitative prediction of construction noise is crucial to evaluate construction plans to help make decisions to address noise levels. Considering limitations of existing methods for measuring or predicting the construction noise and particularly the equivalent continuous noise level over a period of time, this paper presents a discrete-event simulation method for predicting the construction noise in terms of equivalent continuous level. The noise-calculating models regarding synchronization, propagation and equivalent continuous level are presented. The simulation framework for modeling the noise-affected factors and calculating the equivalent continuous noise by incorporating the noise-calculating models into simulation strategy is proposed. An application study is presented to demonstrate and justify the proposed simulation method in predicting the equivalent continuous noise during construction. The study contributes to provision of a simulation methodology to quantitatively predict the equivalent continuous noise of construction by considering the relevant uncertainties, dynamics and interactions.

  7. IEA joint action. Aerodynamics of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B. [ed.

    1997-12-31

    In the period 1992-1997 the IEA Annex XIV `Field Rotor Aerodynamics` was carried out. Within its framework 5 institutes from 4 different countries participated in performing detailed aerodynamic measurements on full-scale wind turbines. The Annex was successfully completed and resulted in a unique database of aerodynamic measurements. The database is stored on an ECN disc (available through ftp) and on a CD-ROM. It is expected that this base will be used extensively in the development and validation of new aerodynamic models. Nevertheless at the end of IEA Annex XIV, it was recommended to perform a new IEA Annex due to the following reasons: In Annex XIV several data exchange rounds appeared to be necessary before a satisfactory result was achieved. This is due to the huge amount of data which had to be supplied, by which a thorough inspection of all data is very difficult and very time consuming; Most experimental facilities are still operational and new, very useful, measurements are expected in the near future; The definition of angle of attack and dynamic pressure in the rotating environment is less straightforward than in the wind tunnel. The conclusion from Annex XIV was that the uncertainty which results from these different definitions is still too large and more investigation in this field is required. (EG)

  8. Aerodynamics and flow characterisation of multistage rockets

    Science.gov (United States)

    Srinivas, G.; Prakash, M. V. S.

    2017-05-01

    The main objective of this paper is to conduct a systematic flow analysis on single, double and multistage rockets using ANSYS software. Today non-air breathing propulsion is increasing dramatically for the enhancement of space exploration. The rocket propulsion is playing vital role in carrying the payload to the destination. Day to day rocket aerodynamic performance and flow characterization analysis has becoming challenging task to the researchers. Taking this task as motivation a systematic literature is conducted to achieve better aerodynamic and flow characterization on various rocket models. The analyses on rocket models are very little especially in numerical side and experimental area. Each rocket stage analysis conducted for different Mach numbers and having different flow varying angle of attacks for finding the critical efficiency performance parameters like pressure, density and velocity. After successful completion of the analysis the research reveals that flow around the rocket body for Mach number 4 and 5 best suitable for designed payload. Another major objective of this paper is to bring best aerodynamics flow characterizations in both aero and mechanical features. This paper also brings feature prospectus of rocket stage technology in the field of aerodynamic design.

  9. Examination of aerodynamic parameters of fluid controlled ...

    African Journals Online (AJOL)

    The aerodynamic parameters of fluid controlled mechanical thrust vectoring nozzle have been computed to establish the relationships for improving the nozzle design. While a nozzle with exit Mach number (M) of 3 was used as case study, other values of exit M were also considered for comparison. The maximum deflector ...

  10. Aerodynamic Benchmarking of the Deepwind Design

    DEFF Research Database (Denmark)

    Bedona, Gabriele; Schmidt Paulsen, Uwe; Aagaard Madsen, Helge

    2015-01-01

    The aerodynamic benchmarking for the DeepWind rotor is conducted comparing different rotor geometries and solutions and keeping the comparison as fair as possible. The objective for the benchmarking is to find the most suitable configuration in order to maximize the power production and minimize...

  11. Prediction of aerodynamic performance for MEXICO rotor

    DEFF Research Database (Denmark)

    Hong, Zedong; Yang, Hua; Xu, Haoran

    2013-01-01

    The aerodynamic performance of the MEXICO (Model EXperiments In Controlled cOnditions) rotor at five tunnel wind speeds is predicted by making use of BEM and CFD methods, respectively, using commercial MATLAB and CFD software. Due to the pressure differences on both sides of the blade, the tip-fl...

  12. An aerodynamic load criterion for airships

    Science.gov (United States)

    Woodward, D. E.

    1975-01-01

    A simple aerodynamic bending moment envelope is derived for conventionally shaped airships. This criterion is intended to be used, much like the Naval Architect's standard wave, for preliminary estimates of longitudinal strength requirements. It should be useful in tradeoff studies between speed, fineness ratio, block coefficient, structure weight, and other such general parameters of airship design.

  13. Noise and Hearing Protection

    Science.gov (United States)

    ... ENTCareers Marketplace Find an ENT Doctor Near You Noise and Hearing Protection Noise and Hearing Protection Patient ... it is. How can I tell if a noise is dangerous? People differ in their sensitivity to ...

  14. Inhibitory noise

    Directory of Open Access Journals (Sweden)

    Alain Destexhe

    2010-03-01

    Full Text Available Cortical neurons in vivo may operate in high-conductance states, in which the major part of the neuron's input conductance is due to synaptic activity, sometimes several-fold larger than the resting conductance. We examine here the contribution of inhibition in such high-conductance states. At the level of the absolute conductance values, several studies have shown that cortical neurons in vivo are characterized by strong inhibitory conductances. However, conductances are balanced and spiking activity is mostly determined by fluctuations, but not much is known about excitatory and inhibitory contributions to these fluctuations. Models and dynamic-clamp experiments show that, during high-conductance states, spikes are mainly determined by fluctuations of inhibition, or by inhibitory noise. This stands in contrast to low-conductance states, in which excitatory conductances determine spiking activity. To determine these contributions from experimental data, maximum likelihood methods can be designed and applied to intracellular recordings in vivo. Such methods indicate that action potentials are indeed mostly correlated with inhibitory fluctuations in awake animals. These results argue for a determinant role for inhibitory fluctuations in evoking spikes, and do not support feed-forward modes of processing, for which opposite patterns are predicted.

  15. Ambient Noise in an Urbanized Tidal Channel

    Science.gov (United States)

    Bassett, Christopher

    levels that shows good agreement with 85% of the temporal data. Bed stresses associated with currents can produce propagating ambient noise by mobilizing sediments. The strength of the tidal currents in northern Admiralty Inlet produces bed stresses in excess of 20 Pa. Significant increases in noise levels at frequencies from 4-30 kHz, with more modest increases noted from 1-4 kHz, are attributed to mobilized sediments. Sediment-generated noise during strong currents masks background noise from other sources, including vessel traffic. Inversions of the acoustic spectra for equivalent grain sizes are consistent with qualitative observations of the seabed composition. Bed stress calculations using log layer, Reynolds stress, and inertial dissipation techniques generally agree well and are used to estimate the shear stresses at which noise levels increase for different grain sizes. Ambient noise levels in one-third octave bands with center frequencies from 1 kHz to 25 kHz are dominated by sediment-generated noise and can be accurately predicted using the near-bed current velocity above a critical threshold. When turbulence is advected over a pressure sensitive transducer, the turbulent pressure fluctuations can be measured as noise, though these pressure fluctuations are not propagating sound and should not be interpreted as ambient noise. Based on measurements in both Admiralty Inlet, Puget Sound and the Chacao Channel, Chile, two models are developed for flow-noise. The first model combined measurements of mean current velocities and turbulence and agrees well with data from both sites. The second model uses scaling arguments to model the flow-noise based solely on the mean current velocity. This model agrees well with the data from the Chacao Channel but performs poorly in Admiralty Inlet, a difference attributed to differences turbulence production mechanisms. At both sites, the spectral slope of flow noise follows a f-3.2 dependence, suggesting partial cancellation of

  16. Noise-Measuring Method

    DEFF Research Database (Denmark)

    Diamond, J. M.

    1965-01-01

    A noise-measuring method based on the use of a calibrated noise generator and an output meter with a special scale is described. The method eliminates the effect of noise contributions occurring in the circuits following the device under test.......A noise-measuring method based on the use of a calibrated noise generator and an output meter with a special scale is described. The method eliminates the effect of noise contributions occurring in the circuits following the device under test....

  17. In vivo recording of aerodynamic force with an aerodynamic force platform: from drones to birds.

    Science.gov (United States)

    Lentink, David; Haselsteiner, Andreas F; Ingersoll, Rivers

    2015-03-06

    Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on experiments with tethered robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here, we demonstrate a new aerodynamic force platform (AFP) for non-intrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier-Stokes equation, we verified that the method is accurate. We subsequently validated the method with a quadcopter that is suspended in the AFP and generates unsteady thrust profiles. These independent measurements confirm that the AFP is indeed accurate. We demonstrate the effectiveness of the AFP by studying aerodynamic weight support of a freely flying bird in vivo. These measurements confirm earlier findings based on kinematics and flow measurements, which suggest that the avian downstroke, not the upstroke, is primarily responsible for body weight support during take-off and landing.

  18. Propagation of waves

    CERN Document Server

    David, P

    2013-01-01

    Propagation of Waves focuses on the wave propagation around the earth, which is influenced by its curvature, surface irregularities, and by passage through atmospheric layers that may be refracting, absorbing, or ionized. This book begins by outlining the behavior of waves in the various media and at their interfaces, which simplifies the basic phenomena, such as absorption, refraction, reflection, and interference. Applications to the case of the terrestrial sphere are also discussed as a natural generalization. Following the deliberation on the diffraction of the "ground? wave around the ear

  19. The Spread of a Noise Field in a Dispersive Medium

    Directory of Open Access Journals (Sweden)

    Cohen Leon

    2010-01-01

    Full Text Available We discuss the production of induced noise by a pulse and the propagation of the noise in a dispersive medium. We present a simple model where the noise is the sum of pulses and where the mean of each pulse is random. We obtain explicit expressions for the standard deviation of the spatial noise as a function of time. We also formulate the problem in terms of a time-frequency phase space approach and in particular we use the Wigner distribution to define the spatial/spatial-frequency distribution.

  20. Measurements and predictions of hooded crow (Corvus corone cornix) call propagation over open field habitats

    DEFF Research Database (Denmark)

    Jensen, Kenneth Kragh; Larsen, Ole Næsbye; Attenborough, Keith

    2008-01-01

    In a study of hooded crow communication over open fields an excellent correspondence is found between the attenuation spectra predicted by a "turbulence-modified ground effect plus atmospheric absorption" model, and crow call attenuation data. Sound propagation predictions and background noise me...... that the propagation modeling of the sort introduced here could be used for assessing the impact of human noise on animal communication.......In a study of hooded crow communication over open fields an excellent correspondence is found between the attenuation spectra predicted by a "turbulence-modified ground effect plus atmospheric absorption" model, and crow call attenuation data. Sound propagation predictions and background noise...

  1. Ambient noise analysis of deep ocean measurements

    Science.gov (United States)

    Gaul, Roy D.; Knobles, David P.; Wittenborn, A. F.

    2004-05-01

    In October 1975 a measurement exercise designated CHURCH OPAL was done in the northeast Pacific Ocean to assess undersea acoustic noise and propagation phenomena. In 2003 the 10 days of deep ocean multiple hydrophone recordings during CHURCH OPAL were recovered and digitized. This paper presents results previously reported but unavailable for general distribution. The earlier work is augmented with more complete and detailed analyses using modern analytical techniques. Particular attention is given to statistical characterization of ambient noise within and beneath the deep sound channel in relation to distant shipping and local wind speed. [Work supported by ONR.

  2. Tropical Cyclone Propagation

    National Research Council Canada - National Science Library

    Gray, William

    1994-01-01

    This paper discusses the question of tropical cyclone propagation or why the average tropical cyclone moves 1-2 m/s faster and usually 10-20 deg to the left of its surrounding (or 5-7 deg radius) deep layer (850-300 mb) steering current...

  3. Flood Wave Propagation

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 5. Flood Wave Propagation-The Saint Venant Equations. P P Mujumdar. General Article Volume 6 Issue 5 May 2001 pp 66-73. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/006/05/0066-0073 ...

  4. PIV uncertainty propagation

    NARCIS (Netherlands)

    Sciacchitano, A.; Wieneke, Bernhard

    2016-01-01

    This paper discusses the propagation of the instantaneous uncertainty of PIV measurements to statistical and instantaneous quantities of interest derived from the velocity field. The expression of the uncertainty of vorticity, velocity divergence, mean value and Reynolds stresses is derived. It

  5. UWB Propagation through Walls

    Czech Academy of Sciences Publication Activity Database

    Schejbal, V.; Bezoušek, P.; Čermák, D.; NĚMEC, Z.; Fišer, Ondřej; Hájek, M.

    2006-01-01

    Roč. 15, č. 1 (2006), s. 17-24 ISSN 1210-2512 R&D Projects: GA MPO(CZ) FT-TA2/030 Institutional research plan: CEZ:AV0Z30420517 Keywords : Ultra wide band * UWB antenna s * UWB propagation * multipath effects Subject RIV: JB - Sensors, Measurment, Regulation

  6. Atmospheric and laser propagation

    NARCIS (Netherlands)

    Eijk, A.M.J. van; Stein, K.

    2017-01-01

    This paper reviews three phenomena that affect the propagation of electro-optical radiation through the atmosphere: absorption and scattering, refraction and turbulence. The net effect on imaging or laser systems is a net reduction of the effective range, or a degradation of the information

  7. Flood Wave Propagation

    Indian Academy of Sciences (India)

    I available for forecasting the propagation of the flood wave. Introduction. Among all natural disasters, floods are the most frequently occurring phenomena that affect a large section of population all over the world, every year. Throughout the last century, flood- ing has been one of the most devastating disasters both in terms.

  8. Enhanced wind turbine noise prediction tool SILANT

    International Nuclear Information System (INIS)

    Boorsma, K.; Schepers, J.G.

    2012-02-01

    Wind turbine noise often is quantified in terms of time averaged overall sound power levels, whilst annoyance due to noise level fluctuations in mid- to high-range frequencies ('swish') are not taken into account. Recent experimental research on wind turbine noise has revealed the major causes of the swishing noise to be due to the directivity of the noise sources and convective amplification effects of the moving turbine blades. The findings have been incorporated in the noise prediction tool SILANT which in addition to sound power levels gives sound pressure level predictions for specified observer positions. The noise sources that are taken into account are trailing edge, inflow and tip noise, using the models of Brooks, Pope and Marcolini (BPM) and Amiet and Lowson. The blade is divided into a number of independent elements for which effective inflow velocity and angle of attack information is a necessary input. A distinction is made between the various profiles along the blade span by including their boundary layer displacement thicknesses at the trailing edge in a profile database. The propagation model includes directivity, convective amplification, Doppler shift and atmospheric absorption. The effect of the retarded time is taken into account individually for the separate elements along the blade span using the time dependent rotor azimuth position. A simple empirical model is applied to quantify meteorological effects influencing refraction and ground effects. Prediction results are compared to SIROCCO project measurements from microphones positioned in a circle around a turbine. The high spatial and temporal resolution of the SILANT simulations gives new insights in the variation of wind turbine inflow and trailing edge noise as a function of observer position, rotor azimuth angle and frequency band. The influence of directivity is illustrated for the dominant noise sources.

  9. A Cost-Effective Tracking Algorithm for Hypersonic Glide Vehicle Maneuver Based on Modified Aerodynamic Model

    Directory of Open Access Journals (Sweden)

    Yu Fan

    2016-10-01

    Full Text Available In order to defend the hypersonic glide vehicle (HGV, a cost-effective single-model tracking algorithm using Cubature Kalman filter (CKF is proposed in this paper based on modified aerodynamic model (MAM as process equation and radar measurement model as measurement equation. In the existing aerodynamic model, the two control variables attack angle and bank angle cannot be measured by the existing radar equipment and their control laws cannot be known by defenders. To establish the process equation, the MAM for HGV tracking is proposed by using additive white noise to model the rates of change of the two control variables. For the ease of comparison several multiple model algorithms based on CKF are presented, including interacting multiple model (IMM algorithm, adaptive grid interacting multiple model (AGIMM algorithm and hybrid grid multiple model (HGMM algorithm. The performances of these algorithms are compared and analyzed according to the simulation results. The simulation results indicate that the proposed tracking algorithm based on modified aerodynamic model has the best tracking performance with the best accuracy and least computational cost among all tracking algorithms in this paper. The proposed algorithm is cost-effective for HGV tracking.

  10. Estimation of morphing airfoil shape and aerodynamic load using artificial hair sensors

    Science.gov (United States)

    Butler, Nathan S.; Su, Weihua; Thapa Magar, Kaman S.; Reich, Gregory W.

    2016-04-01

    An active area of research in adaptive structures focuses on the use of continuous wing shape changing methods as a means of replacing conventional discrete control surfaces and increasing aerodynamic efficiency. Although many shape-changing methods have been used since the beginning of heavier-than-air flight, the concept of performing camber actuation on a fully-deformable airfoil has not been widely applied. A fundamental problem of applying this concept to real-world scenarios is the fact that camber actuation is a continuous, time-dependent process. Therefore, if camber actuation is to be used in a closed-loop feedback system, one must be able to determine the instantaneous airfoil shape as well as the aerodynamic loads at all times. One approach is to utilize a new type of artificial hair sensors developed at the Air Force Research Laboratory to determine the flow conditions surrounding deformable airfoils. In this work, the hair sensor measurement data will be simulated by using the flow solver XFoil, with the assumption that perfect data with no noise can be collected from the hair sensor measurements. Such measurements will then be used in an artificial neural network based process to approximate the instantaneous airfoil camber shape, lift coefficient, and moment coefficient at a given angle of attack. Various aerodynamic and geometrical properties approximated from the artificial hair sensor and artificial neural network system will be compared with the results of XFoil in order to validate the approximation approach.

  11. Aerodynamic Design of the Hybrid Wing Body Propulsion-Airframe Integration

    Science.gov (United States)

    Liou, May-Fun; Kim, Hyoungjin; Lee, ByungJoon; Liou, Meng-Sing

    2017-01-01

    A hybrid wingbody (HWB) concept is being considered by NASA as a potential subsonic transport aircraft that meets aerodynamic, fuel, emission, and noise goals in the time frame of the 2030s. While the concept promises advantages over conventional wing-and-tube aircraft, it poses unknowns and risks, thus requiring in-depth and broad assessments. Specifically, the configuration entails a tight integration of the airframe and propulsion geometries; the aerodynamic impact has to be carefully evaluated. With the propulsion nacelle installed on the (upper) body, the lift and drag are affected by the mutual interference effects between the airframe and nacelle. The static margin for longitudinal stability is also adversely changed. We develop a design approach in which the integrated geometry of airframe (HWB) and propulsion is accounted for simultaneously in a simple algebraic manner, via parameterization of the planform and airfoils at control sections of the wingbody. In this paper, we present the design of a 300-passenger transport that employs distributed electric fans for propulsion. The trim for stability is achieved through the use of the wingtip twist angle. The geometric shape variables are determined through the adjoint optimization method by minimizing the drag while subject to lift, pitch moment, and geometry constraints. The design results clearly show the influence on the aerodynamic characteristics of the installed nacelle and trimming for stability. A drag minimization with the trim constraint yields a reduction of 10 counts in the drag coefficient.

  12. Locating noise sources with a microphone array

    International Nuclear Information System (INIS)

    Bale, A.; Johnson, D.

    2010-01-01

    Noise pollution is one of the contributors to the public opposition of wind farms. Most of the noise produced by turbines is caused by the aerodynamic interactions between the turbine blades and the surrounding air. This poster presentation discussed a series of aeroacoustic tests conducted to account for the different in vortical structures caused by the rotation of the blades. Microphone arrays were used measure and locate the source of noise. A beam forming technique was used to measure the noise using an algorithm that identified a scanning grid on a plane where the source was thought to be located. It delayed each microphone's signal by the length of time required for the sound to travel from the scan position to each microphone, and accounted for the amplitudes according to the distance from the scan position to each microphone. Demonstration test cases were conducted using piezo buzzers attached to aluminum bars and mounted to the shaft of a DC motor that produced a rotational diameter of 0.95 meter. The buzzers were placed 1 meter from the array. Multiple sound sources at the same frequency were identified, and the moving sources were accurately measured and located. tabs., figs.

  13. Numerical study of the aerodynamics of sound sources in a bass-reflex port

    Directory of Open Access Journals (Sweden)

    V.M. Garcia-Alcaide

    2017-01-01

    Full Text Available The aim of this paper is to study the aerodynamics phenomena of a bass-reflex port that causes noise in the audible frequency range. After discarding structural and mechanical vibration issues, the hypothesis considered is that vortex shedding is the source of the noise. Experimental and numerical evidences of the vortex, an analysis of its noise and the similarities between real and simulated performance are presented. The numerically simulated cases with the original geometry are excited at different frequencies and with modifications of the port geometry. Likewise, the internal performance of an enclosure with a closed port was simulated. The simulations have been performed with axisymmetrical geometries using the open-source OpenFOAM® toolbox. Moreover, experimental measurements were carried out. First, acoustic signal experiments were done to analyse the response of the bass-reflex ports. Secondly, a structure vibration measurement was conducted in order to exclude the cabinet structure vibration as a source of the noise in question. A good agreement was found between numerical and experimental results, especially in the frequency band of the detected noise, i.e. the 1000–1500 Hz range. Despite no remarkable improvement being made with the geometry changes explored, the presented CFD approach has proved a useful and cost-effective tool to address this kind of phenomenon.

  14. Aerodynamic Simulation of Runback Ice Accretion

    Science.gov (United States)

    Broeren, Andy P.; Whalen, Edward A.; Busch, Greg T.; Bragg, Michael B.

    2010-01-01

    This report presents the results of recent investigations into the aerodynamics of simulated runback ice accretion on airfoils. Aerodynamic tests were performed on a full-scale model using a high-fidelity, ice-casting simulation at near-flight Reynolds (Re) number. The ice-casting simulation was attached to the leading edge of a 72-in. (1828.8-mm ) chord NACA 23012 airfoil model. Aerodynamic performance tests were conducted at the ONERA F1 pressurized wind tunnel over a Reynolds number range of 4.7?10(exp 6) to 16.0?10(exp 6) and a Mach (M) number ran ge of 0.10 to 0.28. For Re = 16.0?10(exp 6) and M = 0.20, the simulated runback ice accretion on the airfoil decreased the maximum lift coe fficient from 1.82 to 1.51 and decreased the stalling angle of attack from 18.1deg to 15.0deg. The pitching-moment slope was also increased and the drag coefficient was increased by more than a factor of two. In general, the performance effects were insensitive to Reynolds numb er and Mach number changes over the range tested. Follow-on, subscale aerodynamic tests were conducted on a quarter-scale NACA 23012 model (18-in. (457.2-mm) chord) at Re = 1.8?10(exp 6) and M = 0.18, using low-fidelity, geometrically scaled simulations of the full-scale castin g. It was found that simple, two-dimensional simulations of the upper- and lower-surface runback ridges provided the best representation of the full-scale, high Reynolds number iced-airfoil aerodynamics, whereas higher-fidelity simulations resulted in larger performance degrada tions. The experimental results were used to define a new subclassification of spanwise ridge ice that distinguishes between short and tall ridges. This subclassification is based upon the flow field and resulting aerodynamic characteristics, regardless of the physical size of the ridge and the ice-accretion mechanism.

  15. Effect of static shape deformation on aerodynamics and aerothermodynamics of hypersonic inflatable aerodynamic decelerator

    Science.gov (United States)

    Guo, Jinghui; Lin, Guiping; Bu, Xueqin; Fu, Shiming; Chao, Yanmeng

    2017-07-01

    The inflatable aerodynamic decelerator (IAD), which allows heavier and larger payloads and offers flexibility in landing site selection at higher altitudes, possesses potential superiority in next generation space transport system. However, due to the flexibilities of material and structure assembly, IAD inevitably experiences surface deformation during atmospheric entry, which in turn alters the flowfield around the vehicle and leads to the variations of aerodynamics and aerothermodynamics. In the current study, the effect of the static shape deformation on the hypersonic aerodynamics and aerothermodynamics of a stacked tori Hypersonic Inflatable Aerodynamic Decelerator (HIAD) is demonstrated and analyzed in detail by solving compressible Navier-Stokes equations with Menter's shear stress transport (SST) turbulence model. The deformed shape is obtained by structural modeling in the presence of maximum aerodynamic pressure during entry. The numerical results show that the undulating shape deformation makes significant difference to flow structure. In particular, the more curved outboard forebody surface results in local flow separations and reattachments in valleys, which consequently yields remarkable fluctuations of surface conditions with pressure rising in valleys yet dropping on crests while shear stress and heat flux falling in valleys yet rising on crests. Accordingly, compared with the initial (undeformed) shape, the corresponding differences of surface conditions get more striking outboard, with maximum augmentations of 379 pa, 2224 pa, and 19.0 W/cm2, i.e., 9.8%, 305.9%, and 101.6% for the pressure, shear stress and heat flux respectively. Moreover, it is found that, with the increase of angle of attack, the aerodynamic characters and surface heating vary and the aeroheating disparities are evident between the deformed and initial shape. For the deformable HIAD model investigated in this study, the more intense surface conditions and changed flight

  16. Front Propagation in Stochastic Neural Fields

    KAUST Repository

    Bressloff, Paul C.

    2012-01-01

    We analyze the effects of extrinsic multiplicative noise on front propagation in a scalar neural field with excitatory connections. Using a separation of time scales, we represent the fluctuating front in terms of a diffusive-like displacement (wandering) of the front from its uniformly translating position at long time scales, and fluctuations in the front profile around its instantaneous position at short time scales. One major result of our analysis is a comparison between freely propagating fronts and fronts locked to an externally moving stimulus. We show that the latter are much more robust to noise, since the stochastic wandering of the mean front profile is described by an Ornstein-Uhlenbeck process rather than a Wiener process, so that the variance in front position saturates in the long time limit rather than increasing linearly with time. Finally, we consider a stochastic neural field that supports a pulled front in the deterministic limit, and show that the wandering of such a front is now subdiffusive. © 2012 Society for Industrial and Applied Mathematics.

  17. Effects of Nose Radius and Aerodynamic Loading on Leading Edge Receptivity

    Science.gov (United States)

    Hammerton, P. W.; Kerschen, E. J.

    1998-01-01

    An analysis is presented of the effects of airfoil thickness and mean aerodynamic loading on boundary-layer receptivity in the leading-edge region. The case of acoustic free-stream disturbances, incident on a thin cambered airfoil with a parabolic leading edge in a low Mach number flow, is considered. An asymptotic analysis based on large Reynolds number is developed, supplemented by numerical results. The airfoil thickness distribution enters the theory through a Strouhal number based on the nose radius of the airfoil, S = (omega)tau(sub n)/U, where omega is the frequency of the acoustic wave and U is the mean flow speed. The influence of mean aerodynamic loading enters through an effective angle-of-attack parameter ti, related to flow around the leading edge from the lower surface to the upper. The variation of the receptivity level is analyzed as a function of S, mu, and characteristics of the free-stream acoustic wave. For an unloaded leading edge, a finite nose radius dramatically reduces the receptivity level compared to that for a flat plate, the amplitude of the instability waves in the boundary layer being decreased by an order of magnitude when S = 0.3. Modest levels of aerodynamic loading are found to further decrease the receptivity level for the upper surface of the airfoil, while an increase in receptivity level occurs for the lower surface. For larger angles of attack close to the critical angle for boundary layer separation, a local rise in the receptivity level occurs for the upper surface, while for the lower surface the receptivity decreases. The effects of aerodynamic loading are more pronounced at larger values of S. Oblique acoustic waves produce much higher receptivity levels than acoustic waves propagating downstream parallel to the airfoil chord.

  18. Linear phase formation by noise simulator

    International Nuclear Information System (INIS)

    Hazi, G.; Por, G.

    1998-01-01

    A new simulation technique is introduced to study noise propagation in nuclear power plants. Noise processes are considered as time functions, and the dynamic behaviour of the reactor core is modelled by ordinary and partial differential equations. The equations are solved by numerical methods and the results (time series) are considered as virtual measurements. The auto power spectral density and the cross power spectral density of these time series are calculated by traditional techniques. The spectrum obtained is compared with the analytical solution to validate the new simulation approach. After validation, the simulator is expanded to investigate some physical phenomena which are unmanageable by analytical calculations. Propagating disturbances are studied, and the effect of non-flat flux shape on phase curves is demonstrated. Numerical problems also are briefly discussed. (author)

  19. A New Formulation of the Filter-Error Method for Aerodynamic Parameter Estimation in Turbulence

    Science.gov (United States)

    Grauer, Jared A.; Morelli, Eugene A.

    2015-01-01

    A new formulation of the filter-error method for estimating aerodynamic parameters in nonlinear aircraft dynamic models during turbulence was developed and demonstrated. The approach uses an estimate of the measurement noise covariance to identify the model parameters, their uncertainties, and the process noise covariance, in a relaxation method analogous to the output-error method. Prior information on the model parameters and uncertainties can be supplied, and a post-estimation correction to the uncertainty was included to account for colored residuals not considered in the theory. No tuning parameters, needing adjustment by the analyst, are used in the estimation. The method was demonstrated in simulation using the NASA Generic Transport Model, then applied to the subscale T-2 jet-engine transport aircraft flight. Modeling results in different levels of turbulence were compared with results from time-domain output error and frequency- domain equation error methods to demonstrate the effectiveness of the approach.

  20. Non-Markovian noise

    International Nuclear Information System (INIS)

    Fulinski, A.

    1994-01-01

    The properties of non-Markovian noises with exponentially correlated memory are discussed. Considered are dichotomic noise, white shot noise, Gaussian white noise, and Gaussian colored noise. The stationary correlation functions of the non-Markovian versions of these noises are given by linear combinations of two or three exponential functions (colored noises) or of the δ function and exponential function (white noises). The non-Markovian white noises are well defined only when the kernel of the non-Markovian master equation contains a nonzero admixture of a Markovian term. Approximate equations governing the probability densities for processes driven by such non-Markovian noises are derived, including non-Markovian versions of the Fokker-Planck equation and the telegrapher's equation. As an example, it is shown how the non-Markovian nature changes the behavior of the driven linear process

  1. Influence of Icing on Bridge Cable Aerodynamics

    DEFF Research Database (Denmark)

    Koss, Holger; Frej Henningsen, Jesper; Olsen, Idar

    2013-01-01

    In recent years the relevance of ice accretion for wind-induced vibration of structural bridge cables has been recognised and became a subject of research in bridge engineering. Full-scale monitoring and observation indicate that light precipitation at moderate low temperatures between zero and -5......°C may lead to large amplitude vibrations of bridge cables under wind action. For the prediction of aerodynamic instability quasi-steady models have been developed estimating the cable response magnitude based on structural properties and aerodynamic force coefficients for drag, lift and torsion...... forces of different bridge cables types. The experiments were conducted in a wind tunnel facility capable amongst others to simulate incloud icing conditions....

  2. Flight Test Maneuvers for Efficient Aerodynamic Modeling

    Science.gov (United States)

    Morelli, Eugene A.

    2011-01-01

    Novel flight test maneuvers for efficient aerodynamic modeling were developed and demonstrated in flight. Orthogonal optimized multi-sine inputs were applied to aircraft control surfaces to excite aircraft dynamic response in all six degrees of freedom simultaneously while keeping the aircraft close to chosen reference flight conditions. Each maneuver was designed for a specific modeling task that cannot be adequately or efficiently accomplished using conventional flight test maneuvers. All of the new maneuvers were first described and explained, then demonstrated on a subscale jet transport aircraft in flight. Real-time and post-flight modeling results obtained using equation-error parameter estimation in the frequency domain were used to show the effectiveness and efficiency of the new maneuvers, as well as the quality of the aerodynamic models that can be identified from the resultant flight data.

  3. Aerodynamic Modelling and Optimization of Axial Fans

    DEFF Research Database (Denmark)

    Sørensen, Dan Nørtoft

    A numerically efficient mathematical model for the aerodynamics oflow speed axial fans of the arbitrary vortex flow type has been developed.The model is based on a blade-element principle, whereby therotor is divided into a number of annular streamtubes.For each of these streamtubes relations...... and integrated propertiesshow that the computed results agree well with the measurements.Integrating a rotor-only version of the aerodynamic modelwith an algorithm for numerical designoptimization, enables the finding of an optimum fan rotor.The angular velocity of the rotor, the hub radius and the spanwise...... of fan efficiency in a design interval of flow rates,thus designinga fan which operates well over a range of different flow conditions.The optimization scheme was used to investigate the dependence ofmaximum efficiency on1: the number of blades,2: the width of the design interval and3: the hub radius...

  4. Nash equilibrium and multi criterion aerodynamic optimization

    Science.gov (United States)

    Tang, Zhili; Zhang, Lianhe

    2016-06-01

    Game theory and its particular Nash Equilibrium (NE) are gaining importance in solving Multi Criterion Optimization (MCO) in engineering problems over the past decade. The solution of a MCO problem can be viewed as a NE under the concept of competitive games. This paper surveyed/proposed four efficient algorithms for calculating a NE of a MCO problem. Existence and equivalence of the solution are analyzed and proved in the paper based on fixed point theorem. Specific virtual symmetric Nash game is also presented to set up an optimization strategy for single objective optimization problems. Two numerical examples are presented to verify proposed algorithms. One is mathematical functions' optimization to illustrate detailed numerical procedures of algorithms, the other is aerodynamic drag reduction of civil transport wing fuselage configuration by using virtual game. The successful application validates efficiency of algorithms in solving complex aerodynamic optimization problem.

  5. Visualization of numerically simulated aerodynamic flow fields

    International Nuclear Information System (INIS)

    Hian, Q.L.; Damodaran, M.

    1991-01-01

    The focus of this paper is to describe the development and the application of an interactive integrated software to visualize numerically simulated aerodynamic flow fields so as to enable the practitioner of computational fluid dynamics to diagnose the numerical simulation and to elucidate essential flow physics from the simulation. The input to the software is the numerical database crunched by a supercomputer and typically consists of flow variables and computational grid geometry. This flow visualization system (FVS), written in C language is targetted at the Personal IRIS Workstations. In order to demonstrate the various visualization modules, the paper also describes the application of this software to visualize two- and three-dimensional flow fields past aerodynamic configurations which have been numerically simulated on the NEC-SXIA Supercomputer. 6 refs

  6. Specialized computer architectures for computational aerodynamics

    Science.gov (United States)

    Stevenson, D. K.

    1978-01-01

    In recent years, computational fluid dynamics has made significant progress in modelling aerodynamic phenomena. Currently, one of the major barriers to future development lies in the compute-intensive nature of the numerical formulations and the relative high cost of performing these computations on commercially available general purpose computers, a cost high with respect to dollar expenditure and/or elapsed time. Today's computing technology will support a program designed to create specialized computing facilities to be dedicated to the important problems of computational aerodynamics. One of the still unresolved questions is the organization of the computing components in such a facility. The characteristics of fluid dynamic problems which will have significant impact on the choice of computer architecture for a specialized facility are reviewed.

  7. Aerodynamic Design of a Tailless Aeroplan

    Directory of Open Access Journals (Sweden)

    J. Friedl

    2001-01-01

    Full Text Available The paper presents an aerodynamic analysis of a one-seat ultralight (UL tailless aeroplane named L2k, with a very complicated layout. In the first part, an autostable airfoil with a low moment coefficient was chosen as a base for this problem. This airfoil was refined and modified to satisfy the design requirements. The computed aerodynamic characteristics of the airfoils for different Reynolds numbers (Re were compared with available experimental data. XFOIL code was used to perform the computations. In the second part, a computation of wing characteristics was carried out. All calculated cases were chosen as points on the manoeuvring and gust envelope. The vortex lattice method was used with consideration of fuselage and winglets for very complicated wing geometry. The PMW computer program developed at IAE was used to perform the computations. The computed results were subsequently used for structural and strength analysis and design.

  8. Computational Aerodynamic Modeling of Small Quadcopter Vehicles

    Science.gov (United States)

    Yoon, Seokkwan; Ventura Diaz, Patricia; Boyd, D. Douglas; Chan, William M.; Theodore, Colin R.

    2017-01-01

    High-fidelity computational simulations have been performed which focus on rotor-fuselage and rotor-rotor aerodynamic interactions of small quad-rotor vehicle systems. The three-dimensional unsteady Navier-Stokes equations are solved on overset grids using high-order accurate schemes, dual-time stepping, low Mach number preconditioning, and hybrid turbulence modeling. Computational results for isolated rotors are shown to compare well with available experimental data. Computational results in hover reveal the differences between a conventional configuration where the rotors are mounted above the fuselage and an unconventional configuration where the rotors are mounted below the fuselage. Complex flow physics in forward flight is investigated. The goal of this work is to demonstrate that understanding of interactional aerodynamics can be an important factor in design decisions regarding rotor and fuselage placement for next-generation multi-rotor drones.

  9. Aerodynamic design of the National Rotor Testbed.

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Christopher Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    A new wind turbine blade has been designed for the National Rotor Testbed (NRT) project and for future experiments at the Scaled Wind Farm Technology (SWiFT) facility with a specific focus on scaled wakes. This report shows the aerodynamic design of new blades that can produce a wake that has similitude to utility scale blades despite the difference in size and location in the atmospheric boundary layer. Dimensionless quantities circulation, induction, thrust coefficient, and tip-speed-ratio were kept equal between rotor scales in region 2 of operation. The new NRT design matched the aerodynamic quantities of the most common wind turbine in the United States, the GE 1.5sle turbine with 37c model blades. The NRT blade design is presented along with its performance subject to the winds at SWiFT. The design requirements determined by the SWiFT experimental test campaign are shown to be met.

  10. Aerodynamic control with passively pitching wings

    Science.gov (United States)

    Gravish, Nick; Wood, Robert

    Flapping wings may pitch passively under aerodynamic and inertial loads. Such passive pitching is observed in flapping wing insect and robot flight. The effect of passive wing pitch on the control dynamics of flapping wing flight are unexplored. Here we demonstrate in simulation and experiment the critical role wing pitching plays in yaw control of a flapping wing robot. We study yaw torque generation by a flapping wing allowed to passively rotate in the pitch axis through a rotational spring. Yaw torque is generated through alternating fast and slow upstroke and and downstroke. Yaw torque sensitively depends on both the rotational spring force law and spring stiffness, and at a critical spring stiffness a bifurcation in the yaw torque control relationship occurs. Simulation and experiment reveal the dynamics of this bifurcation and demonstrate that anomalous yaw torque from passively pitching wings is the result of aerodynamic and inertial coupling between the pitching and stroke-plane dynamics.

  11. ANALYTICAL METHODS FOR CALCULATING FAN AERODYNAMICS

    Directory of Open Access Journals (Sweden)

    Jan Dostal

    2015-12-01

    Full Text Available This paper presents results obtained between 2010 and 2014 in the field of fan aerodynamics at the Department of Composite Technology at the VZLÚ aerospace research and experimental institute in Prague – Letnany. The need for rapid and accurate methods for the preliminary design of blade machinery led to the creation of a mathematical model based on the basic laws of turbomachine aerodynamics. The mathematical model, the derivation of which is briefly described below, has been encoded in a computer programme, which enables the theoretical characteristics of a fan of the designed geometry to be determined rapidly. The validity of the mathematical model is assessed continuously by measuring model fans in the measuring unit, which was developed and manufactured specifically for this purpose. The paper also presents a comparison between measured characteristics and characteristics determined by the mathematical model as the basis for a discussion on possible causes of measured deviations and calculation deviations.

  12. A review of noise data collection at the central and south west wind farm in Texas

    Energy Technology Data Exchange (ETDEWEB)

    Moroz, E. [Univ. of Texas, El Paso, TX (United States)

    1996-12-31

    Evaluation of data collected over a 1-year period from a 6 MW wind farm is presented in the paper. Noise propagation prediction methods are compared with each other and with field data. Three forms of regulating noise are also compared: minimum separation distance, absolute noise limit, and relative noise limit.Relative noise limits were found to offer the most comprehensive approach to regulating noise and to allow each location to be treated independently. A hemispherical spreading model appears to be a useful planning tool. 11 refs., 4 tabs.

  13. assessment of noise pollutio noise pollutio noise pollution

    African Journals Online (AJOL)

    eobe

    1DEPARTMENT OF WATER RESOURCES ... challenges. Symptoms of short or long periods exposure to noise include auditory effects such auditory fatigue and hearing loss, and indirect n auditory effects such as speech interfere .... ASSESSMENT OF NOISE POLLUTION FROM SAWMILL ACTIVITIES IN ILORIN, NIGERIA.

  14. assessment of noise pollutio noise pollutio noise pollution

    African Journals Online (AJOL)

    eobe

    This study examine. This study examined noise pollution pollution pollution from sawmillin from sawmillin using HD600 digital data l using HD600 digital data logging sound level me ogging sound level me designed to elicit noise related information. The res sawmills was 58.1 sawmills was 58.1-64.86 dB(A) while machine ...

  15. Variation in aerodynamic coefficients with altitude

    Directory of Open Access Journals (Sweden)

    Faiza Shahid

    Full Text Available Precise aerodynamics performance prediction plays key role for a flying vehicle to get its mission completed within desired accuracy. Aerodynamic coefficients for same Mach number can be different at different altitude due to difference in Reynolds number. Prediction of these aerodynamics coefficients can be made through experiments, analytical solution or Computational Fluid Dynamics (CFD. Advancements in computational power have generated the concept of using CFD as a virtual Wind Tunnel (WT, hence aerodynamic performance prediction in present study is based upon CFD (numerical test rig. Simulations at different altitudes for a range of Mach numbers with zero angle of attack are performed to predict axial force coefficient behavior with altitude (Reynolds number. Similar simulations for a fixed Mach number ‘3’ and a range of angle of attacks are also carried out to envisage the variation in normal force and pitching moment coefficients with altitude (Reynolds number. Results clearly depict that the axial force coefficient is a function of altitude (Reynolds number and increase as altitude increases, especially for subsonic region. Variation in axial force coefficient with altitude (Reynolds number slightly increases for larger values of angle of attacks. Normal force and pitching moment coefficients do not depend on altitude (Reynolds number at smaller values of angle of attacks but show slight decrease as altitude increases. Present study suggests that variation of normal force and pitching moment coefficients with altitude can be neglected but the variation of axial force coefficient with altitude should be considered for vehicle fly in dense atmosphere. It is recommended to continue this study to more complex configurations for various Mach numbers with side slip and real gas effects. Keywords: Mach number, Reynolds number, Blunt body, Altitude effect, Angle of attacks

  16. Variation in aerodynamic coefficients with altitude

    Science.gov (United States)

    Shahid, Faiza; Hussain, Mukkarum; Baig, Mirza Mehmood; Haq, Ihtram ul

    Precise aerodynamics performance prediction plays key role for a flying vehicle to get its mission completed within desired accuracy. Aerodynamic coefficients for same Mach number can be different at different altitude due to difference in Reynolds number. Prediction of these aerodynamics coefficients can be made through experiments, analytical solution or Computational Fluid Dynamics (CFD). Advancements in computational power have generated the concept of using CFD as a virtual Wind Tunnel (WT), hence aerodynamic performance prediction in present study is based upon CFD (numerical test rig). Simulations at different altitudes for a range of Mach numbers with zero angle of attack are performed to predict axial force coefficient behavior with altitude (Reynolds number). Similar simulations for a fixed Mach number '3' and a range of angle of attacks are also carried out to envisage the variation in normal force and pitching moment coefficients with altitude (Reynolds number). Results clearly depict that the axial force coefficient is a function of altitude (Reynolds number) and increase as altitude increases, especially for subsonic region. Variation in axial force coefficient with altitude (Reynolds number) slightly increases for larger values of angle of attacks. Normal force and pitching moment coefficients do not depend on altitude (Reynolds number) at smaller values of angle of attacks but show slight decrease as altitude increases. Present study suggests that variation of normal force and pitching moment coefficients with altitude can be neglected but the variation of axial force coefficient with altitude should be considered for vehicle fly in dense atmosphere. It is recommended to continue this study to more complex configurations for various Mach numbers with side slip and real gas effects.

  17. Active aerodynamic drag reduction on morphable cylinders

    Science.gov (United States)

    Guttag, M.; Reis, P. M.

    2017-12-01

    We study a mechanism for active aerodynamic drag reduction on morphable grooved cylinders, whose topography can be modified pneumatically. Our design is inspired by the morphology of the Saguaro cactus (Carnegiea gigantea), which possesses an array of axial grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. Our analog experimental samples comprise a spoked rigid skeleton with axial cavities, covered by a stretched elastomeric film. Decreasing the inner pressure of the sample produces axial grooves, whose depth can be accurately varied, on demand. First, we characterize the relation between groove depth and pneumatic loading through a combination of precision mechanical experiments and finite element simulations. Second, wind tunnel tests are used to measure the aerodynamic drag coefficient (as a function of Reynolds number) of the grooved samples, with different levels of periodicity and groove depths. We focus specifically on the drag crisis and systematically measure the associated minimum drag coefficient and the critical Reynolds number at which it occurs. The results are in agreement with the classic literature of rough cylinders, albeit with an unprecedented level of precision and resolution in varying topography using a single sample. Finally, we leverage the morphable nature of our system to dynamically reduce drag for varying aerodynamic loading conditions. We demonstrate that actively controlling the groove depth yields a drag coefficient that decreases monotonically with Reynolds number and is significantly lower than the fixed sample counterparts. These findings open the possibility for the drag reduction of grooved cylinders to be operated over a wide range of flow conditions.

  18. Compressor performance aerodynamics for the user

    CERN Document Server

    Gresh, Theodore

    2001-01-01

    Compressor Performance is a reference book and CD-ROM for compressor design engineers and compressor maintenance engineers, as well as engineering students. The book covers the full spectrum of information needed for an individual to select, operate, test and maintain axial or centrifugal compressors. It includes basic aerodynamic theory to provide the user with the ""how's"" and ""why's"" of compressor design. Maintenance engineers will especially appreciate the troubleshooting guidelines offered. Includes many example problems and reference data such as gas propert

  19. Chemical Kinetic and Aerodynamic Structures of Flames

    Science.gov (United States)

    1992-06-11

    and Aerodynamic PE - 61102F Structures of Flames PR - 2308 SA - BSG - 89-0293 C.K. Law 7. PWORPOG ORGANIZATION NAME(S) AND ADODRSS(ES) L PERFORMING...activation energy (E) for the equivalent one-step overall reaction. The results show that these values are far from being constants. Instead they vary...significantly not only with the equivalence ratio, but also with the system pressure. For example, the activation energy is 4 found to continuously increase

  20. Visual attitude propagation for small satellites

    Science.gov (United States)

    Rawashdeh, Samir A.

    As electronics become smaller and more capable, it has become possible to conduct meaningful and sophisticated satellite missions in a small form factor. However, the capability of small satellites and the range of possible applications are limited by the capabilities of several technologies, including attitude determination and control systems. This dissertation evaluates the use of image-based visual attitude propagation as a compliment or alternative to other attitude determination technologies that are suitable for miniature satellites. The concept lies in using miniature cameras to track image features across frames and extracting the underlying rotation. The problem of visual attitude propagation as a small satellite attitude determination system is addressed from several aspects: related work, algorithm design, hardware and performance evaluation, possible applications, and on-orbit experimentation. These areas of consideration reflect the organization of this dissertation. A "stellar gyroscope" is developed, which is a visual star-based attitude propagator that uses relative motion of stars in an imager's field of view to infer the attitude changes. The device generates spacecraft relative attitude estimates in three degrees of freedom. Algorithms to perform the star detection, correspondence, and attitude propagation are presented. The Random Sample Consensus (RANSAC) approach is applied to the correspondence problem to successfully pair stars across frames while mitigating falsepositive and false-negative star detections. This approach provides tolerance to the noise levels expected in using miniature optics and no baffling, and the noise caused by radiation dose on orbit. The hardware design and algorithms are validated using test images of the night sky. The application of the stellar gyroscope as part of a CubeSat attitude determination and control system is described. The stellar gyroscope is used to augment a MEMS gyroscope attitude propagation

  1. Aerodynamics of the pseudo-glottis.

    Science.gov (United States)

    Kotby, M N; Hegazi, M A; Kamal, I; Gamal El Dien, N; Nassar, J

    2009-01-01

    The aim of this work is to study the hitherto unclear aerodynamic parameters of the pseudo-glottis following total laryngectomy. These parameters include airflow rate, sub-pseudo-glottic pressure (SubPsG), efficiency and resistance, as well as sound pressure level (SPL). Eighteen male patients who have undergone total laryngectomy, with an age range from 54 to 72 years, were investigated in this study. All tested patients were fluent esophageal 'voice' speakers utilizing tracheo-esophageal prosthesis. The airflow rate, SubPsG and SPL were measured. The results showed that the mean value of the airflow rate was 53 ml/s, the SubPsG pressure was 13 cm H(2)O, while the SPL was 66 dB. The normative data obtained from the true glottis in healthy age-matched subjects are 89 ml/s, 7.9 cm H(2)O and 70 dB, respectively. Other aerodynamic indices were calculated and compared to the data obtained from the true glottis. Such a comparison of the pseudo-glottic aerodynamic data to the data of the true glottis gives an insight into the mechanism of action of the pseudo-glottis. The data obtained suggests possible clinical applications in pseudo-voice training. Copyright 2009 S. Karger AG, Basel.

  2. Flapping wing aerodynamics: from insects to vertebrates.

    Science.gov (United States)

    Chin, Diana D; Lentink, David

    2016-04-01

    More than a million insects and approximately 11,000 vertebrates utilize flapping wings to fly. However, flapping flight has only been studied in a few of these species, so many challenges remain in understanding this form of locomotion. Five key aerodynamic mechanisms have been identified for insect flight. Among these is the leading edge vortex, which is a convergent solution to avoid stall for insects, bats and birds. The roles of the other mechanisms - added mass, clap and fling, rotational circulation and wing-wake interactions - have not yet been thoroughly studied in the context of vertebrate flight. Further challenges to understanding bat and bird flight are posed by the complex, dynamic wing morphologies of these species and the more turbulent airflow generated by their wings compared with that observed during insect flight. Nevertheless, three dimensionless numbers that combine key flow, morphological and kinematic parameters - the Reynolds number, Rossby number and advance ratio - govern flapping wing aerodynamics for both insects and vertebrates. These numbers can thus be used to organize an integrative framework for studying and comparing animal flapping flight. Here, we provide a roadmap for developing such a framework, highlighting the aerodynamic mechanisms that remain to be quantified and compared across species. Ultimately, incorporating complex flight maneuvers, environmental effects and developmental stages into this framework will also be essential to advancing our understanding of the biomechanics, movement ecology and evolution of animal flight. © 2016. Published by The Company of Biologists Ltd.

  3. Aerodynamic and acoustic features of vocal effort.

    Science.gov (United States)

    Rosenthal, Allison L; Lowell, Soren Y; Colton, Raymond H

    2014-03-01

    The purpose of this study was to determine the aerodynamic and acoustic features of speech produced at comfortable, maximal and minimal levels of vocal effort. Prospective, quasi-experimental research design. Eighteen healthy participants with normal voice were included in this study. After task training, participants produced repeated syllable combinations at comfortable, maximal and minimal levels of vocal effort. A pneumotachometer and vented (Rothenberg) mask were used to record aerodynamic data, with simultaneous recording of the acoustic signal for subsequent analysis. Aerodynamic measures of subglottal pressure, translaryngeal airflow, maximum flow declination rate (MFDR), and laryngeal resistance were analyzed, along with acoustic measures of cepstral peak prominence (CPP) and its standard deviation (SD). Participants produced significantly greater subglottal pressure, translaryngeal airflow, and MFDR during maximal effort speech as compared with comfortable vocal effort. When producing speech at minimal vocal effort, participants lowered subglottal pressure, MFDR, and laryngeal resistance. Acoustic changes associated with changes in vocal effort included significantly higher CPP during maximal effort speech and significantly lower CPP SD during minimal effort speech, when each was compared with comfortable effort. For healthy speakers without voice disorders, subglottal pressure, translaryngeal airflow, and MFDR may be important factors that contribute to an increased sense of vocal effort. Changes in the cepstral signal also occur under conditions of increased or decreased vocal effort relative to comfortable effort. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  4. Error propagation analysis for a sensor system

    Energy Technology Data Exchange (ETDEWEB)

    Yeater, M.L.; Hockenbury, R.W.; Hawkins, J.; Wilkinson, J.

    1976-01-01

    As part of a program to develop reliability methods for operational use with reactor sensors and protective systems, error propagation analyses are being made for each model. An example is a sensor system computer simulation model, in which the sensor system signature is convoluted with a reactor signature to show the effect of each in revealing or obscuring information contained in the other. The error propagation analysis models the system and signature uncertainties and sensitivities, whereas the simulation models the signatures and by extensive repetitions reveals the effect of errors in various reactor input or sensor response data. In the approach for the example presented, the errors accumulated by the signature (set of ''noise'' frequencies) are successively calculated as it is propagated stepwise through a system comprised of sensor and signal processing components. Additional modeling steps include a Fourier transform calculation to produce the usual power spectral density representation of the product signature, and some form of pattern recognition algorithm.

  5. Gauge engineering and propagators

    Directory of Open Access Journals (Sweden)

    Maas Axel

    2017-01-01

    The dependence of the propagators on the choice of these complete gauge-fixings will then be investigated using lattice gauge theory for Yang-Mills theory. It is found that the implications for the infrared, and to some extent mid-momentum behavior, can be substantial. In going beyond the Yang-Mills case it turns out that the influence of matter can generally not be neglected. This will be briefly discussed for various types of matter.

  6. Shallow Water Propagation

    Science.gov (United States)

    2013-09-30

    ice terminates or regenerates along the propagation direction. (2) New capabilities for elastic and poro-elastic sediments • Range-dependent...standard Euler- Bernoulli bean theory can be applied in the x-z plane. The top right panel illustrates a side view of the subunit. A shearing force F...bottom panel is a table in which the second column has representative values for these three quantities, for the most common types of clay minerals in

  7. Experimental testing of the noise-canceling processor.

    Science.gov (United States)

    Collins, Michael D; Baer, Ralph N; Simpson, Harry J

    2011-09-01

    Signal-processing techniques for localizing an acoustic source buried in noise are tested in a tank experiment. Noise is generated using a discrete source, a bubble generator, and a sprinkler. The experiment has essential elements of a realistic scenario in matched-field processing, including complex source and noise time series in a waveguide with water, sediment, and multipath propagation. The noise-canceling processor is found to outperform the Bartlett processor and provide the correct source range for signal-to-noise ratios below -10 dB. The multivalued Bartlett processor is found to outperform the Bartlett processor but not the noise-canceling processor. © 2011 Acoustical Society of America

  8. Proceedings of a workshop on wind turbine noise

    International Nuclear Information System (INIS)

    Legerton, M.

    1993-08-01

    Noise generated by wind turbines is an environmental constraint on the exploitation of wind energy. It is a major consideration when seeking planning consent for the siting of machines due to the high population density in the UK and low levels of background noise in rural areas. There is, therefore, a need to identify the sources and characteristics of noise emitted by wind turbine generators, assess the influences on the propagation of noise through the atmosphere, and provide information to both wind farm developers and planning regulators on noise levels. A one day workshop was organised to provide an opportunity for experts in the field of wind turbine noise to present the current thoughts on the subject and so allow a wide ranging discussion of particular issues of interest. This volume contains the 10 papers presented at the workshop for each of which a separate abstract has been prepared. (author)

  9. Dynamic analysis of a stochastic rumor propagation model

    Science.gov (United States)

    Jia, Fangju; Lv, Guangying

    2018-01-01

    The rapid development of the Internet, especially the emergence of the social networks, leads rumor propagation into a new media era. In this paper, we are concerned with a stochastic rumor propagation model. Sufficient conditions for extinction and persistence in the mean of the rumor are established. The threshold between persistence in the mean and extinction of the rumor is obtained. Compared with the corresponding deterministic model, the threshold affected by the white noise is smaller than the basic reproduction number R0 of the deterministic system.

  10. Post-Flight Aerodynamic and Aerothermal Model Validation of a Supersonic Inflatable Aerodynamic Decelerator

    Science.gov (United States)

    Tang, Chun; Muppidi, Suman; Bose, Deepak; Van Norman, John W.; Tanimoto, Rebekah; Clark, Ian

    2015-01-01

    NASA's Low Density Supersonic Decelerator Program is developing new technologies that will enable the landing of heavier payloads in low density environments, such as Mars. A recent flight experiment conducted high above the Hawaiian Islands has demonstrated the performance of several decelerator technologies. In particular, the deployment of the Robotic class Supersonic Inflatable Aerodynamic Decelerator (SIAD-R) was highly successful, and valuable data were collected during the test flight. This paper outlines the Computational Fluid Dynamics (CFD) analysis used to estimate the aerodynamic and aerothermal characteristics of the SIAD-R. Pre-flight and post-flight predictions are compared with the flight data, and a very good agreement in aerodynamic force and moment coefficients is observed between the CFD solutions and the reconstructed flight data.

  11. A large-scale computer facility for computational aerodynamics

    International Nuclear Information System (INIS)

    Bailey, F.R.; Balhaus, W.F.

    1985-01-01

    The combination of computer system technology and numerical modeling have advanced to the point that computational aerodynamics has emerged as an essential element in aerospace vehicle design methodology. To provide for further advances in modeling of aerodynamic flow fields, NASA has initiated at the Ames Research Center the Numerical Aerodynamic Simulation (NAS) Program. The objective of the Program is to develop a leading-edge, large-scale computer facility, and make it available to NASA, DoD, other Government agencies, industry and universities as a necessary element in ensuring continuing leadership in computational aerodynamics and related disciplines. The Program will establish an initial operational capability in 1986 and systematically enhance that capability by incorporating evolving improvements in state-of-the-art computer system technologies as required to maintain a leadership role. This paper briefly reviews the present and future requirements for computational aerodynamics and discusses the Numerical Aerodynamic Simulation Program objectives, computational goals, and implementation plans

  12. Aviation noise effects

    Science.gov (United States)

    Newman, J. S.; Beattie, K. R.

    1985-03-01

    This report summarizes the effects of aviation noise in many areas, ranging from human annoyance to impact on real estate values. It also synthesizes the findings of literature on several topics. Included in the literature were many original studies carried out under FAA and other Federal funding over the past two decades. Efforts have been made to present the critical findings and conclusions of pertinent research, providing, when possible, a bottom line conclusion, criterion or perspective. Issues related to aviation noise are highlighted, and current policy is presented. Specific topic addressed include: annoyance; Hearing and hearing loss; noise metrics; human response to noise; speech interference; sleep interference; non-auditory health effects of noise; effects of noise on wild and domesticated animals; low frequency acoustical energy; impulsive noise; time of day weightings; noise contours; land use compatibility; and real estate values. This document is designed for a variety of users, from the individual completely unfamiliar with aviation noise to experts in the field.

  13. NASA's Aeroacoustic Tools and Methods for Analysis of Aircraft Noise

    Science.gov (United States)

    Rizzi, Stephen A.; Lopes, Leonard V.; Burley, Casey L.

    2015-01-01

    Aircraft community noise is a significant concern due to continued growth in air traffic, increasingly stringent environmental goals, and operational limitations imposed by airport authorities. The ability to quantify aircraft noise at the source and ultimately at observers is required to develop low noise aircraft designs and flight procedures. Predicting noise at the source, accounting for scattering and propagation through the atmosphere to the observer, and assessing the perception and impact on a community requires physics-based aeroacoustics tools. Along with the analyses for aero-performance, weights and fuel burn, these tools can provide the acoustic component for aircraft MDAO (Multidisciplinary Design Analysis and Optimization). Over the last decade significant progress has been made in advancing the aeroacoustic tools such that acoustic analyses can now be performed during the design process. One major and enabling advance has been the development of the system noise framework known as Aircraft NOise Prediction Program2 (ANOPP2). ANOPP2 is NASA's aeroacoustic toolset and is designed to facilitate the combination of acoustic approaches of varying fidelity for the analysis of noise from conventional and unconventional aircraft. The toolset includes a framework that integrates noise prediction and propagation methods into a unified system for use within general aircraft analysis software. This includes acoustic analyses, signal processing and interfaces that allow for the assessment of perception of noise on a community. ANOPP2's capability to incorporate medium fidelity shielding predictions and wind tunnel experiments into a design environment is presented. An assessment of noise from a conventional and Hybrid Wing Body (HWB) aircraft using medium fidelity scattering methods combined with noise measurements from a model-scale HWB recently placed in NASA's 14x22 wind tunnel are presented. The results are in the form of community noise metrics and

  14. Underwater Noise Modelling of Wave Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Future large-scale implementation of wave energy converts (WECs) will introduce an anthropogenic activity in the ocean which may contribute to underwater noise. The Ocean houses several marine species with acoustic sensibility; consequently the potential impact of the underwater noise needs to be addressed. At present, there are no acoustic impact studies based on acquired data. The WEAM project (Wave Energy Acoustic Monitoring) aims at developing an underwater noise monitoring plan for WECs. The development of an acoustic monitoring plan must consider the sound propagation in the ocean, identify noise sources, understand the operational characteristics and select adequate instrumentation. Any monitoring strategy must involve in-situ measurements. However, the vast distances which sound travels within the ocean, can make in-situ measurements covering the entire area of interest, impracticable. This difficulty can be partially overcome through acoustic numerical modelling. This paper presents a synthetic study, on the application of acoustic forward modelling and the evaluation of the impact of noise produced by wave energy devices on marine mammals using criteria based on audiograms of dolphins, or other species. The idea is to illustrate the application of that methodology, and to show to what extent it allows for estimating distances of impacts due to acoustic noise.

  15. Owl-inspired leading-edge serrations play a crucial role in aerodynamic force production and sound suppression.

    Science.gov (United States)

    Rao, Chen; Ikeda, Teruaki; Nakata, Toshiyuki; Liu, Hao

    2017-07-04

    Owls are widely known for silent flight, achieving remarkably low noise gliding and flapping flights owing to their unique wing morphologies, which are normally characterized by leading-edge serrations, trailing-edge fringes and velvet-like surfaces. How these morphological features affect aerodynamic force production and sound suppression or noise reduction, however, is still not well known. Here we address an integrated study of owl-inspired single feather wing models with and without leading-edge serrations by combining large-eddy simulations (LES) with particle-image velocimetry (PIV) and force measurements in a low-speed wind tunnel. With velocity and pressure spectra analysis, we demonstrate that leading-edge serrations can passively control the laminar-turbulent transition over the upper wing surface, i.e. the suction surface at all angles of attack (0°  sound production. We find that there exists a tradeoff between force production and sound suppression: serrated leading-edges reduce aerodynamic performance at lower AoAs  reduction and aerodynamic performance at higher AoAs  >  15° where owl wings often reach in flight. Our results indicate that the owl-inspired leading-edge serrations may be a useful device for aero-acoustic control in biomimetic rotor designs for wind turbines, aircrafts, multi-rotor drones as well as other fluid machinery.

  16. Influence of Unsteady Aerodynamics on Driving Dynamics of Passenger Cars

    OpenAIRE

    Huemer, J.; Stickel, T.; Sagan, E.; Schwarz, M.; Wall, W.A.

    2015-01-01

    Recent approaches towards numerical investigations with CFD-Methods on unsteady aerodynamic loads of passenger cars identified major differences compared to steady state aerodynamic excitations. Furthermore innovative vehicle concepts like electric-vehicles or hybrid drives further challenge the basic layout of passenger cars. Therefore the relevance of unsteady aerodynamic loads on cross-wind stability of changing basic vehicle architectures should be analysed. In order to assure and improve...

  17. THE AERODYNAMIC ANALYSIS OF THE PROFILES FOR FLYING WINGS

    Directory of Open Access Journals (Sweden)

    Vasile PRISACARIU

    2013-01-01

    Full Text Available The possibility of using an un-piloted aerial vector is determined by the aerodynamic characteristics and performances. The design for a tailless unmanned aerial vehicles starts from defining the aerial vector mission and implies o series of geometrical and aerodynamic aspects for stability. This article proposes to remark the aerodynamic characteristics of three profiles used at flying wing airship through 2D software analysis.

  18. AERODYNAMIC BEHAVIOR AIRCRAFT CAUSED BY RESIDUAL STRAIN WINGS

    Directory of Open Access Journals (Sweden)

    Sergiy Ishchenko

    2011-03-01

    Full Text Available Abstract. The influence of residual strain on the airframe aerodynamic characteristics of aircraft wasconsidered. The possibility of estimation of changes in deformation of airframe using data of leveling wasshown. The method of estimating the change of aerodynamic characteristics caused by the influence ofresidual strain airframe was proposed. Technique can be used in the operation and overhaul of aircraft withlarge operating time.Keywords: aerodynamic characteristics, residual strain construction asymmetric moments, thedistribution of circulation, the scheme of leveling, trigonometric series.

  19. Parametric Investigation of the Effect of Hub Pitching Moment on Blade Vortex Interaction (BVI) Noise of an Isolated Rotor

    Science.gov (United States)

    Malpica, Carlos; Greenwood, Eric; Sim, Ben

    2016-01-01

    At the most fundamental level, main rotor loading noise is caused by the harmonically-varying aerodynamic loads (acoustic pressures) exerted by the rotating blades on the air. Rotorcraft main rotor noise is therefore, in principle, a function of rotor control inputs, and thus the forces and moments required to achieve steady, or "trim", flight equilibrium. In certain flight conditions, the ensuing aerodynamic loading on the rotor(s) can result in highly obtrusive harmonic noise. The effect of the propulsive force, or X-force, on Blade-Vortex Interaction (BVI) noise is well documented. This paper presents an acoustics parametric sensitivity analysis of the effect of varying rotor aerodynamic pitch hub trim moments on BVI noise radiated by an S-70 helicopter main rotor. Results show that changing the hub pitching moment for an isolated rotor, trimmed in nominal 80 knot, 6 and 12 deg descent, flight conditions, alters the miss distance between the blades and the vortex in ways that have varied and noticeable effects on the BVI radiated-noise directionality. Peak BVI noise level is however not significantly altered. The application of hub pitching moment allows the attitude of the fuselage to be controlled; for example, to compensate for the uncomfortable change in fuselage pitch attitude introduced by a fuselage-mounted X-force controller.

  20. Solar noise storms

    CERN Document Server

    Elgaroy, E O

    2013-01-01

    Solar Noise Storms examines the properties and features of solar noise storm phenomenon. The book also presents some theories that can be used to gain a better understanding of the phenomenon. The coverage of the text includes topics that cover the features and behavior of noise storms, such as the observable features of noise storms; the relationship between noise storms and the observable features on the sun; and ordered behavior of storm bursts in the time-frequency plane. The book also covers the spectrum, polarization, and directivity of noise storms. The text will be of great use to astr

  1. Wave propagation in elastic solids

    CERN Document Server

    Achenbach, Jan

    1984-01-01

    The propagation of mechanical disturbances in solids is of interest in many branches of the physical scienses and engineering. This book aims to present an account of the theory of wave propagation in elastic solids. The material is arranged to present an exposition of the basic concepts of mechanical wave propagation within a one-dimensional setting and a discussion of formal aspects of elastodynamic theory in three dimensions, followed by chapters expounding on typical wave propagation phenomena, such as radiation, reflection, refraction, propagation in waveguides, and diffraction. The treat

  2. Stochastic model in microwave propagation

    International Nuclear Information System (INIS)

    Ranfagni, A.; Mugnai, D.

    2011-01-01

    Further experimental results of delay time in microwave propagation are reported in the presence of a lossy medium (wood). The measurements show that the presence of a lossy medium makes the propagation slightly superluminal. The results are interpreted on the basis of a stochastic (or path integral) model, showing how this model is able to describe each kind of physical system in which multi-path trajectories are present. -- Highlights: ► We present new experimental results on electromagnetic “anomalous” propagation. ► We apply a path integral theoretical model to wave propagation. ► Stochastic processes and multi-path trajectories in propagation are considered.

  3. Optimization design of airfoil profiles based on the noise of wind turbines

    DEFF Research Database (Denmark)

    Cheng, Jiangtao; Chen, Jin; Cheng, Jiangtao

    2012-01-01

    Based on design theory of airfoil profiles and airfoil self-noise prediction model, a new method with the target of the airfoil average efficiency-noise ratio of design ranges for angle of attack had been developed for designing wind turbine airfoils. The airfoil design method was optimized...... for a relative thickness of 21% and a new airfoil was obtained. To illustrate the optimization method, the aerodynamic characteristics and noise of the optimized airfoil were calculated and analyzed. Through performance comparison of a DU93-W-210 airfoil and a FFA-W3-211 airfoil which are widely used in wind...

  4. Temporal scaling in information propagation

    Science.gov (United States)

    Huang, Junming; Li, Chao; Wang, Wen-Qiang; Shen, Hua-Wei; Li, Guojie; Cheng, Xue-Qi

    2014-06-01

    For the study of information propagation, one fundamental problem is uncovering universal laws governing the dynamics of information propagation. This problem, from the microscopic perspective, is formulated as estimating the propagation probability that a piece of information propagates from one individual to another. Such a propagation probability generally depends on two major classes of factors: the intrinsic attractiveness of information and the interactions between individuals. Despite the fact that the temporal effect of attractiveness is widely studied, temporal laws underlying individual interactions remain unclear, causing inaccurate prediction of information propagation on evolving social networks. In this report, we empirically study the dynamics of information propagation, using the dataset from a population-scale social media website. We discover a temporal scaling in information propagation: the probability a message propagates between two individuals decays with the length of time latency since their latest interaction, obeying a power-law rule. Leveraging the scaling law, we further propose a temporal model to estimate future propagation probabilities between individuals, reducing the error rate of information propagation prediction from 6.7% to 2.6% and improving viral marketing with 9.7% incremental customers.

  5. The radiated noise from isotropic turbulence and heated jets

    Science.gov (United States)

    Lilley, G. M.

    1995-01-01

    Our understanding of aerodynamic noise has its foundations in the work of Sir James Lighthill (1952), which was the first major advance in acoustics since the pioneering work of Lord Rayleigh in the last century. The combination of Lighthill's theory of aerodynamic noise as applied to turbulent flows and the experimental growing database from the early 1950's was quickly exploited by various jet propulsion engine designers in reducing the noise of jet engines at takeoff and landing to levels marginally acceptable to communities living in the neighborhoods of airports. The success in this noise containment led to the rapid growth of fast economical subsonic civil transport aircraft worldwide throughout the 1960's and has continued to the present day. One important factor in this success story has been the improvements in the engine cycle that have led to both reductions in specific fuel consumption and noise. The second is the introduction of Noise Certification, which specifies the maximum noise levels at takeoff and landing that all aircraft must meet before they can be entered on the Civil Aircraft Register. The growing interest in the development of a new supersonic civil transport to replace 'Concorde' in the early years of the next century has led to a resurgence of interest in the more challenging problem of predicting the noise of hot supersonic jets and developing means of aircraft noise reduction at takeoff and landing to meet the standards now accepted for subsonic Noise Certification. The prediction of aircraft noise to the accuracy required to meet Noise Certification requirements has necessitated reliance upon experimental measurements and empirically derived laws based on the available experimental data bases. These laws have their foundation in the results from Lighthill's theory, but in the case of jet noise, where the noise is generated in the turbulent mixing region with the external ambient fluid, the complexity of the turbulent motion has

  6. Helicopter Noise And Noise Abatement Procedures

    Directory of Open Access Journals (Sweden)

    Borivoj Galović

    2004-03-01

    Full Text Available The helicopter generated noise at and around the airports islower than the noise generated by aeroplanes, since their numberof operations, i. e. the number of takeoffs and landings ismuch lower than the takeoffs and landings of the aeroplanes.Out of some hundred operations a day, helicopters participatewith approximately 15%, but the very impact of noise is by nomeans negligible, since the number of helicopter flights aboveurban areas is constantly increasing.This paper attempts to analyse this phenomenon and thetype of helicopter generated noise, its negative impacts, to explainthe flight procedures and the operative procedures duringtakeoff, landing and overflight of helicopters in operations inthe vicinity and outside airports, as well as the methods of measuringand determining the limit of noise [eve~ and the resultingproblems.

  7. Wave propagation scattering theory

    CERN Document Server

    Birman, M Sh

    1993-01-01

    The papers in this collection were written primarily by members of the St. Petersburg seminar in mathematical physics. The seminar, now run by O. A. Ladyzhenskaya, was initiated in 1947 by V. I. Smirnov, to whose memory this volume is dedicated. The papers in the collection are devoted mainly to wave propagation processes, scattering theory, integrability of nonlinear equations, and related problems of spectral theory of differential and integral operators. The book is of interest to mathematicians working in mathematical physics and differential equations, as well as to physicists studying va

  8. Laser propagation code study

    OpenAIRE

    Rockower, Edward B.

    1985-01-01

    A number of laser propagation codes have been assessed as to their suitability for modeling Army High Energy Laser (HEL) weapons used in an anti- sensor mode. We identify a number of areas in which systems analysis HEL codes are deficient. Most notably, available HEL scaling law codes model the laser aperture as circular, possibly with a fixed (e.g. 10%) obscuration. However, most HELs have rectangular apertures with up to 30% obscuration. We present a beam-quality/aperture shape scaling rela...

  9. Noise Radar Technology Basics

    National Research Council Canada - National Science Library

    Thayaparan, T; Wernik, C

    2006-01-01

    .... In this report, the basic theory of noise radar design is treated. The theory supports the use of noise waveforms for radar detection and imaging in such applications as covert military surveillance and reconnaissance...

  10. NASA Jet Noise Research

    Science.gov (United States)

    Henderson, Brenda

    2016-01-01

    The presentation highlights NASA's jet noise research for 2016. Jet-noise modeling efforts, jet-surface interactions results, acoustic characteristics of multi-stream jets, and N+2 Supersonic Aircraft system studies are presented.

  11. Aerodynamic drag of modern soccer balls.

    Science.gov (United States)

    Asai, Takeshi; Seo, Kazuya

    2013-12-01

    Soccer balls such as the Adidas Roteiro that have been used in soccer tournaments thus far had 32 pentagonal and hexagonal panels. Recently, the Adidas Teamgeist II and Adidas Jabulani, respectively having 14 and 8 panels, have been used at tournaments; the aerodynamic characteristics of these balls have not yet been verified. Now, the Adidas Tango 12, having 32 panels, has been developed for use at tournaments; therefore, it is necessary to understand its aerodynamic characteristics. Through a wind tunnel test and ball trajectory simulations, this study shows that the aerodynamic resistance of the new 32-panel soccer ball is larger in the high-speed region and lower in the middle-speed region than that of the previous 14- and 8-panel balls. The critical Reynolds number of the Roteiro, Teamgeist II, Jabulani, and Tango 12 was ~2.2 × 10(5) (drag coefficient, C d  ≈ 0.12), ~2.8 × 10(5) (C d  ≈ 0.13), ~3.3 × 10(5) (C d  ≈ 0.13), and ~2.4 × 10(5) (C d  ≈ 0.15), respectively. The flight trajectory simulation suggested that the Tango 12, one of the newest soccer balls, has less air resistance in the medium-speed region than the Jabulani and can thus easily acquire large initial velocity in this region. It is considered that the critical Reynolds number of a soccer ball, as considered within the scope of this experiment, depends on the extended total distance of the panel bonds rather than the small designs on the panel surfaces.

  12. Noise Gating Solar Images

    Science.gov (United States)

    DeForest, Craig; Seaton, Daniel B.; Darnell, John A.

    2017-08-01

    I present and demonstrate a new, general purpose post-processing technique, "3D noise gating", that can reduce image noise by an order of magnitude or more without effective loss of spatial or temporal resolution in typical solar applications.Nearly all scientific images are, ultimately, limited by noise. Noise can be direct Poisson "shot noise" from photon counting effects, or introduced by other means such as detector read noise. Noise is typically represented as a random variable (perhaps with location- or image-dependent characteristics) that is sampled once per pixel or once per resolution element of an image sequence. Noise limits many aspects of image analysis, including photometry, spatiotemporal resolution, feature identification, morphology extraction, and background modeling and separation.Identifying and separating noise from image signal is difficult. The common practice of blurring in space and/or time works because most image "signal" is concentrated in the low Fourier components of an image, while noise is evenly distributed. Blurring in space and/or time attenuates the high spatial and temporal frequencies, reducing noise at the expense of also attenuating image detail. Noise-gating exploits the same property -- "coherence" -- that we use to identify features in images, to separate image features from noise.Processing image sequences through 3-D noise gating results in spectacular (more than 10x) improvements in signal-to-noise ratio, while not blurring bright, resolved features in either space or time. This improves most types of image analysis, including feature identification, time sequence extraction, absolute and relative photometry (including differential emission measure analysis), feature tracking, computer vision, correlation tracking, background modeling, cross-scale analysis, visual display/presentation, and image compression.I will introduce noise gating, describe the method, and show examples from several instruments (including SDO

  13. Noise Reduction Techniques

    Science.gov (United States)

    Hallas, Tony

    There are two distinct kinds of noise - structural and color. Each requires a specific method of attack to minimize. The great challenge is to reduce the noise without reducing the faint and delicate detail in the image. My most-used and favorite noise suppression is found in Photoshop CS 5 Camera Raw. If I cannot get the desired results with the first choice, I will use Noise Ninja, which has certain advantages in some situations that we will cover.

  14. Global-scale Full Waveform Ambient Noise Inversion

    Science.gov (United States)

    Sager, K.; Ermert, L. A.; Boehm, C.; Krischer, L.; Afanasiev, M.; Fichtner, A.

    2017-12-01

    In earthquake tomography, modern tomographic methods exploit waveforms for the benefit of improved resolution. However, these techniques cannot be applied to noise correlation functions without knowing the distribution of noise sources. To overcome this limitation, we develop a method - referred to as full waveform ambient noise inversion - that is valid for arbitrary noise source distributions in both space and frequency, accounts for 3D heterogeneous and attenuating media and the full seismic wave propagation physics. The fundamental idea is to drop the principle of Green function retrieval, which is the basis for current noise tomographic studies, and to establish correlation functions as self-consistent observables in seismology. Based on a synthetic study in 2D, investigating the prerequisites for a joint inversion for noise sources and Earth structure, we extend the open-source waveform modelling and inversion package Salvus (http://salvus.io). It allows us to compute correlation functions in 3D media with heterogeneous noise sources at the surface and the corresponding sensitivity kernels for the distribution of noise sources and Earth structure. We present sensitivity kernels for different cross-correlation time lags and various noise source distributions, and study the effect of 3D heterogeneous Earth structure. For a validation of full waveform ambient noise inversion, we apply it to a global dataset focusing on the Earth's hum period band.

  15. A climatology of formation conditions for aerodynamic contrails

    Directory of Open Access Journals (Sweden)

    K. Gierens

    2013-11-01

    Full Text Available Aircraft at cruise levels can cause two kinds of contrails, the well known exhaust contrails and the less well-known aerodynamic contrails. While the possible climate impact of exhaust contrails has been studied for many years, research on aerodynamic contrails began only a few years ago and nothing is known about a possible contribution of these ice clouds to climate impact. In order to make progress in this respect, we first need a climatology of their formation conditions and this is given in the present paper. Aerodynamic contrails are defined here as line shaped ice clouds caused by aerodynamically triggered cooling over the wings of an aircraft in cruise which become visible immediately at the trailing edge of the wing or close to it. Effects at low altitudes like condensation to liquid droplets and their potential heterogeneous freezing are excluded from our definition. We study atmospheric conditions that allow formation of aerodynamic contrails. These conditions are stated and then applied to atmospheric data: first to a special case where an aerodynamic contrail was actually observed and then to a full year of global reanalysis data. We show where, when (seasonal variation, and how frequently (probability aerodynamic contrails can form, and how this relates to actual patterns of air traffic. We study the formation of persistent aerodynamic contrails as well. Furthermore, we check whether aerodynamic and exhaust contrails can coexist in the atmosphere. We show that visible aerodynamic contrails are possible only in an altitude range between roughly 540 and 250 hPa, and that the ambient temperature is the most important parameter, not the relative humidity. Finally, we argue that currently aerodynamic contrails have a much smaller climate effect than exhaust contrails, which may however change in future with more air traffic in the tropics.

  16. Optimal impulsive manoeuvres and aerodynamic braking

    Science.gov (United States)

    Jezewski, D. J.

    1985-01-01

    A method developed for obtaining solutions to the aerodynamic braking problem, using impulses in the exoatmospheric phases is discussed. The solution combines primer vector theory and the results of a suboptimal atmospheric guidance program. For a specified initial and final orbit, the solution determines: (1) the minimum impulsive cost using a maximum of four impulses, (2) the optimal atmospheric entry and exit-state vectors subject to equality and inequality constraints, and (3) the optimal coast times. Numerical solutions which illustrate the characteristics of the solution are presented.

  17. Aerodynamics/ACEE: Aircraft energy efficiency

    Science.gov (United States)

    1981-01-01

    An overview is presented of a 10 year program managed by NASA which seeks to make possible the most efficient use of energy for aircraft propulsion and lift as well as provide a technology that can be used by U.S. manufacturers of air transports and engines. Supercritical wings, winglets, vortex drag reduction, high lift, active control, laminar flow control, and aerodynamics by computer are among the topics discussed. Wind tunnel models in flight verification of advanced technology, and the design, construction and testing of various aircraft structures are also described.

  18. Sensor Systems Collect Critical Aerodynamics Data

    Science.gov (United States)

    2010-01-01

    With the support of Small Business Innovation Research (SBIR) contracts with Dryden Flight Research Center, Tao of Systems Integration Inc. developed sensors and other components that will ultimately form a first-of-its-kind, closed-loop system for detecting, measuring, and controlling aerodynamic forces and moments in flight. The Hampton, Virginia-based company commercialized three of the four planned components, which provide sensing solutions for customers such as Boeing, General Electric, and BMW and are used for applications such as improving wind turbine operation and optimizing air flow from air conditioning systems. The completed system may one day enable flexible-wing aircraft with flight capabilities like those of birds.

  19. Variable volume combustor with aerodynamic support struts

    Science.gov (United States)

    Ostebee, Heath Michael; Johnson, Thomas Edward; Stewart, Jason Thurman; Keener, Christopher Paul

    2017-03-07

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and providing the flow of fuel therethrough. The support struts may include an aerodynamic contoured shape so as to distribute evenly a flow of air to the micro-mixer fuel nozzles.

  20. Aerodynamic Optimization of a Winglet Design

    Directory of Open Access Journals (Sweden)

    Yahiaoui T.

    2013-04-01

    Full Text Available In the present study, an experimental study is presented for a flow around an isolated wing equipped by a winglet and profiled with Naca 0012. Several cases of winglets were tested according to the angle ß: 0°, 55°, 65°and 75°. For all these cases at a velocity of 20, 30 and 40 meters per second, wind tunnel tests are performed and compared for different angles of incidence. It is observed that the aerodynamic performance of the winglet with β= 55° differ favorably for positive angle of incidence compared for other cases.

  1. Aerodynamics profile not in stationary flow

    Directory of Open Access Journals (Sweden)

    А.А. Загорулько

    2006-02-01

    Full Text Available  Consider the question about influence of unsteady flight on the size of drag and lift coefficients of theaerodynamic profile. Distinctive features of this investigation are obtaining data about aerodynamic drag chancing in process unsteady on high angle at attack and oscillation profile in subsonic and transonic flight. Given analysis of oscillation profile show, that dynamic loops accompany change of lift and dray force. The researches show that it is necessary to clarity the mathematic model of the airplane flight dynamics by introducing numbers, with take into account unsteady effects.

  2. Generic Wing-Body Aerodynamics Data Base

    Science.gov (United States)

    Holst, Terry L.; Olsen, Thomas H.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The wing-body aerodynamics data base consists of a series of CFD (Computational Fluid Dynamics) simulations about a generic wing body configuration consisting of a ogive-circular-cylinder fuselage and a simple symmetric wing mid-mounted on the fuselage. Solutions have been obtained for Nonlinear Potential (P), Euler (E) and Navier-Stokes (N) solvers over a range of subsonic and transonic Mach numbers and angles of attack. In addition, each solution has been computed on a series of grids, coarse, medium and fine to permit an assessment of grid refinement errors.

  3. Aerodynamics of High-Speed Trains

    Science.gov (United States)

    Schetz, Joseph A.

    This review highlights the differences between the aerodynamics of high-speed trains and other types of transportation vehicles. The emphasis is on modern, high-speed trains, including magnetic levitation (Maglev) trains. Some of the key differences are derived from the fact that trains operate near the ground or a track, have much greater length-to-diameter ratios than other vehicles, pass close to each other and to trackside structures, are more subject to crosswinds, and operate in tunnels with entry and exit events. The coverage includes experimental techniques and results and analytical and numerical methods, concentrating on the most recent information available.

  4. Equation for Combustion Noise

    Science.gov (United States)

    Liu, T. M.

    1982-01-01

    Mathematical relationship derived for interactions between turbulent flame and combustion noise. Relationship is rigorous theoretical correlation of combustion noise and combustion process. Establishes foundation for acoustic measurements as tool for investigating structure of turbulent flames. Mathematical relationship is expected to aid researchers in field of noise generated by combustion.

  5. Introductory guide to noise

    CSIR Research Space (South Africa)

    Ferreira, T.M

    1973-01-01

    Full Text Available The difference between sound and noise varies from one human being to another. Noise, then, is simply unwanted sound and to understand how it can be combatted we must know more about its nature. A guide of acceptable levels of noise are investigated....

  6. Noise at the Interface

    DEFF Research Database (Denmark)

    Prior, Andrew

    2011-01-01

    The notion of noise occupies a contested territory, in which it is framed as pollution and detritus even as it makes its opposite a possibility - noise is always defined in opposition to something else, even if this ‘other’ is not quite clear. This paper explores noise in the context of ‘the...

  7. An analysis of rumor propagation based on propagation force

    Science.gov (United States)

    Zhao, Zhen-jun; Liu, Yong-mei; Wang, Ke-xi

    2016-02-01

    A propagation force is introduced into the analysis of rumor propagation to address uncertainty in the process. The propagation force is portrayed as a fuzzy variable, and a category of new parameters with fuzzy variables is defined. The classic susceptible, infected, recovered (SIR) model is modified using these parameters, a fuzzy reproductive number is introduced into the modified model, and the rationality of the fuzzy reproductive number is illuminated through calculation and comparison. Rumor control strategies are also discussed.

  8. Improving ambient noise cross-correlations in the noisy ocean bottom environment of the Juan de Fuca plate

    Science.gov (United States)

    Tian, Ye; Ritzwoller, Michael H.

    2017-09-01

    Ambient noise tomography exploits seismic ground motions that propagate coherently over long interstation distances. Such ground motions provide information about the medium of propagation that is recoverable from interstation cross-correlations. Local noise sources, which are particularly strong in ocean bottom environments, corrupt ambient noise cross-correlations and compromise the effectiveness of ambient noise tomography. Based on 62 ocean bottom seismometers (OBSs) located on Juan de Fuca (JdF) plate from the Cascadia Initiative experiment and 40 continental stations near the coast of the western United States obtained in 2011 and 2012, we attempt to reduce the effects of local noise on vertical component seismic records across the plate and onto US continent. The goal is to provide better interstation cross-correlations for use in ambient noise tomography and the study of ambient noise directionality. As shown in previous studies, tilt and compliance noise are major sources of noise that contaminate the vertical channels of the OBSs and such noise can be greatly reduced by exploiting information on the horizontal components and the differential pressure gauge records, respectively. We find that ambient noise cross-correlations involving OBSs are of significantly higher signal-to-noise ratio at periods greater than 10 s after reducing these types of noise, particularly in shallow water environments where tilt and compliance noise are especially strong. The reduction of tilt and compliance noise promises to improve the accuracy and spatial extent of ambient noise tomography, allowing measurements based on coherently propagating ambient noise to be made at stations in the shallower parts of the JdF plate and at longer periods than in previous studies. In addition such local noise reduction produces better estimates of the azimuthal content of ambient noise.

  9. Active noise control in a duct to cancel broadband noise

    Science.gov (United States)

    Chen, Kuan-Chun; Chang, Cheng-Yuan; Kuo, Sen M.

    2017-09-01

    The paper presents cancelling duct noises by using the active noise control (ANC) techniques. We use the single channel feed forward algorithm with feedback neutralization to realize ANC. Several kinds of ducts noises including tonal noises, sweep tonal signals, and white noise had investigated. Experimental results show that the proposed ANC system can cancel these noises in a PVC duct very well. The noise reduction of white noise can be up to 20 dB.

  10. Classical noise, quantum noise and secure communication

    International Nuclear Information System (INIS)

    Tannous, C; Langlois, J

    2016-01-01

    Secure communication based on message encryption might be performed by combining the message with controlled noise (called pseudo-noise) as performed in spread-spectrum communication used presently in Wi-Fi and smartphone telecommunication systems. Quantum communication based on entanglement is another route for securing communications as demonstrated by several important experiments described in this work. The central role played by the photon in unifying the description of classical and quantum noise as major ingredients of secure communication systems is highlighted and described on the basis of the classical and quantum fluctuation dissipation theorems. (review)

  11. Influence of support viscoelastic properties on the structural wave propagation

    International Nuclear Information System (INIS)

    Park, Jun Hong

    2007-01-01

    The dissipation of the structural vibration energy at viscoelastic supports is an efficient method of reducing modal resonances and consequent noise and fatigue related problems. The support stiffness has significant impact on the modal characteristics. The dissipation capabilities of the viscoelastic support depend on its stiffness. Methods to optimally tune this support stiffness are proposed in this study. The characteristic mechanical impedance for structural vibration is obtained from wave propagation analysis and non-reflecting boundary conditions. The wave propagation is analyzed near the supports installed at edges, middle of a structure, and for the tuned vibration absorber. The dependence of the optimal stiffness on the location and mass of the supports is identified. A simple analytical solution for optimal support stiffness for maximum dissipation of propagating vibration energy at supports is presented

  12. Biomimetic Approach for Accurate, Real-Time Aerodynamic Coefficients, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerodynamic and structural reliability and efficiency depends critically on the ability to accurately assess the aerodynamic loads and moments for each lifting...

  13. State of the art in wind turbine aerodynamics and aeroelasticity

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Sørensen, Jens Nørkær; Voutsinas, S

    2006-01-01

    A comprehensive review of wind turbine aeroelasticity is given. The aerodynamic part starts with the simple aerodynamic Blade Element Momentum Method and ends with giving a review of the work done applying CFD on wind turbine rotors. In between is explained some methods of intermediate complexity...

  14. Advanced Aerodynamic Measurement Technology (Technologies avancees de mesure aerodynamique)

    Science.gov (United States)

    1998-05-01

    Norwegian Defence Research Establ. P.O. Box 25 N-2007 Kjeller - NORWAY Dr. Roque CORRAL Departemento de Mecanica de Fluidos Industria de ...CONFERENCE PROCEEDINGS 601 Advanced Aerodynamic Measurement Technology (Technologies avancees de mesure aerodynamique) Papers presented and discussions...CONFERENCE PROCEEDINGS 601 Advanced Aerodynamic Measurement Technology (Technologies avancees de mesure aerodynamique) Apprcvrc /oi ■■■■- M

  15. Reliability and Applicability of Aerodynamic Measures in Dysphonia Assessment

    Science.gov (United States)

    Yiu, Edwin M.-L.; Yuen, Yuet-Ming; Whitehill, Tara; Winkworth, Alison

    2004-01-01

    Aerodynamic measures are frequently used to analyse and document pathological voices. Some normative data are available for speakers from the English-speaking population. However, no data are available yet for Chinese speakers despite the fact that they are one of the largest populations in the world. The high variability of aerodynamic measures…

  16. Some Features of Aerodynamics of Cyclonic Chamber with Free Exit

    Directory of Open Access Journals (Sweden)

    A. N. Orekhov

    2007-01-01

    Full Text Available The paper cites results of an experimental research in aerodynamics of a cyclonic chamber with a free exit that has a large relative length. Distributions of aerodynamic stream characteristics depending on geometry of working volume of the cyclonic chamber are given in the paper. Calculative dependences are proposed in the paper.

  17. Aerodynamic heating of ballistic missile including the effects of gravity

    Indian Academy of Sciences (India)

    http://www.ias.ac.in/article/fulltext/sadh/025/05/0463-0473. Keywords. Aerodynamic heating; ballistic missile; gravity; flat-earth. Abstract. The aerodynamic heating of a ballistic missile due to only convection is analysed taking into consideration the effects of gravity. The amount of heat transferred to the wetted area and to the ...

  18. Exploring the Aerodynamic Drag of a Moving Cyclist

    Science.gov (United States)

    Theilmann, Florian; Reinhard, Christopher

    2016-01-01

    Although the physics of cycling itself is a complex mixture of aerodynamics, physiology, mechanics, and heuristics, using cycling as a context for teaching physics has a tradition of certainly more than 30 years. Here, a possible feature is the discussion of the noticeable resistant forces such as aerodynamic drag and the associated power…

  19. KNOW-BLADE Task-2 report: Aerodynamic accessories

    DEFF Research Database (Denmark)

    Johansen, J.; Sørensen, Niels N.; Zahle, Frederik

    2004-01-01

    In the EC project KNOW-BLADE a work package has been defined to investigate the possibility to numerically model aerodynamic accessories in existing Navier-Stokes solvers. Four different aerodynamic accessories have been investigated. Firstly, thepotential of applying active flow control by means...

  20. Direct-reading dial for noise temperature and noise resistance

    DEFF Research Database (Denmark)

    Diamond, J.M.

    1967-01-01

    An attenuator arrangement for a noise generator is described. The scheme permits direct reading of both noise resistance and noise temperature¿the latter with a choice of source resistance.......An attenuator arrangement for a noise generator is described. The scheme permits direct reading of both noise resistance and noise temperature¿the latter with a choice of source resistance....

  1. Optical Johnson noise thermometry

    Science.gov (United States)

    Shepard, R. L.; Blalock, T. V.; Maxey, L. C.; Roberts, M. J.; Simpson, M. L.

    1989-01-01

    A concept is being explored that an optical analog of the electrical Johnson noise may be used to measure temperature independently of emissivity. The concept is that a laser beam may be modulated on reflection from a hot surface by interaction of the laser photons with the thermally agitated conduction electrons or the lattice phonons, thereby adding noise to the reflected laser beam. If the reflectance noise can be detected and quantified in a background of other noise in the optical and signal processing systems, the reflectance noise may provide a noncontact measurement of the absolute surface temperature and may be independent of the surface's emissivity.

  2. Acoustic noise interferometry in a time-dependent coastal ocean.

    Science.gov (United States)

    Godin, Oleg A

    2018-02-01

    Interferometry of underwater noise provides a way to estimate physical parameters of the water column and the seafloor without employing any controlled sound sources. In applications of acoustic noise interferometry to coastal oceans, the propagation environment changes appreciably during the averaging times that are necessary for the Green's functions to emerge from noise cross-correlations. Here, a theory is developed to quantify the effects of nonstationarity of the propagation environment on two-point correlation functions of diffuse noise. It is shown that temporal variability of the ocean limits from above the frequency range, where noise cross-correlations approximate the Green's functions. The theoretical predictions are in quantitative agreement with results of the 2012 noise interferometry experiment in the Florida Straits. The loss of coherence at high frequencies constrains the passive acoustic remote sensing to exploiting a low-frequency part of measured noise cross-correlations, thus limiting the resolution of deterministic inversions. On the other hand, the passively measured coherence loss contains information about statistical characteristics of the ocean dynamics at unresolved spatial and temporal scales.

  3. Belief Propagation for Probabilistic Slow Feature Analysis

    Science.gov (United States)

    Omori, Toshiaki; Sekiguchi, Tomoki; Okada, Masato

    2017-08-01

    Slow feature analysis (SFA) is a time-series analysis method for extracting slowly-varying latent features from multi-dimensional data. A recent study proposed a probabilistic framework of SFA using the Bayesian statistical framework. However, the conventional probabilistic framework of SFA can not accurately extract the slow feature in noisy environments since its marginal likelihood function was approximately derived under the assumption that there exists no observation noise. In this paper, we propose a probabilistic framework of SFA with rigorously derived marginal likelihood function. Here, we rigorously derive the marginal likelihood function of the probabilistic framework of SFA by using belief propagation. We show using numerical data that the proposed probabilistic framework of SFA can accurately extract the slow feature and underlying parameters for the latent dynamics simultaneously even under noisy environments.

  4. Aerodynamic analysis of formula student car

    Science.gov (United States)

    Dharmawan, Mohammad Arief; Ubaidillah, Nugraha, Arga Ahmadi; Wijayanta, Agung Tri; Naufal, Brian Aqif

    2018-02-01

    Formula Society of Automotive Engineering (FSAE) is a contest between ungraduated students to create a high-performance formula student car that completes the regulation. Body and the other aerodynamic devices are significant because it affects the drag coefficient and the down force of the car. The drag coefficient is a measurement of the resistance of an object in a fluid environment, a lower the drag coefficient means it will have a less drag force. Down force is a force that pushes an object to the ground, in the car more down force means more grip. The objective of the research was to study the aerodynamic comparison between the race vehicle when attached to the wings and without it. These studies were done in three dimensional (3D) computational fluid dynamic (CFD) simulation method using the Autodesk Flow Design software. These simulations were done by conducted in 5 different velocities. The results of those simulations are by attaching wings on race vehicle has drag coefficient 0.728 and without wings has drag coefficient 0.56. Wings attachment will decrease the drag coefficient about 23 % and also the contour pressure and velocity were known at these simulations.

  5. Electro-aerodynamic field aided needleless electrospinning.

    Science.gov (United States)

    Yan, Guilong; Niu, Haitao; Zhou, Hua; Wang, Hongxia; Shao, Hao; Zhao, Xueting; Lin, Tong

    2018-06-08

    Auxiliary fields have been used to enhance the performance of needle electrospinning. However, much less has been reported on how auxiliary fields affect needleless electrospinning. Herein, we report a novel needleless electrospinning technique that consists of an aerodynamic field and a second electric field. The second electric field is generated by setting two grounded inductive electrodes near the spinneret. The two auxiliary fields have to be applied simultaneously to ensure working of the electrospinning process. A synergistic effect was observed between inductive electrode and airflow. The aerodynamic-electric auxiliary field was found to significantly increase fiber production rate (4.5 g h -1 ), by 350% in comparison to the setup without auxiliary field (1.0 g h -1 ), whereas it had little effect on fiber diameter. The auxiliary fields allow running needleless electrospinning at an applied voltage equivalent to that in needle electrospinning (e.g. 10-30 kV). The finite element analyses of electric field and airflow field verify that the inductive electrodes increase electric field strength near the spinneret, and the airflow assists in fiber deposition. This novel needleless electrospinning may be useful for development of high-efficiency, low energy-consumption nanofiber production systems.

  6. Cricket Ball Aerodynamics: Myth Versus Science

    Science.gov (United States)

    Mehta, Rabindra D.; Koga, Demmis J. (Technical Monitor)

    2000-01-01

    Aerodynamics plays a prominent role in the flight of a cricket ball released by a bowler. The main interest is in the fact that the ball can follow a curved flight path that is not always under the control of the bowler. ne basic aerodynamic principles responsible for the nonlinear flight or "swing" of a cricket ball were identified several years ago and many papers have been published on the subject. In the last 20 years or so, several experimental investigations have been conducted on cricket ball swing, which revealed the amount of attainable swing, and the parameters that affect it. A general overview of these findings is presented with emphasis on the concept of late swing and the effects of meteorological conditions on swing. In addition, the relatively new concept of "reverse" swing, how it can be achieved in practice and the role in it of ball "tampering", are discussed in detail. A discussion of the "white" cricket ball used in last year's World Cup, which supposedly possesses different swing properties compared to a conventional red ball, is also presented.

  7. Measurement of Cough Aerodynamics in Healthy Adults.

    Science.gov (United States)

    Feinstein, Aaron J; Zhang, Zhaoyan; Chhetri, Dinesh K; Long, Jennifer

    2017-05-01

    Cough is a critical human reflex and also among the most frequent symptoms in medicine. Despite the prevalence of disordered cough in laryngeal pathologies, comprehensive and quantitative evaluation of cough in these patients is lacking. Herein we seek to establish normative values for cough aerodynamics to provide a population standard for reference in future studies. Healthy subjects were recruited from an outpatient clinic to perform voluntary cough. Subjects were instructed on the technique for maximal voluntary cough production with measurements recorded on pneumotachograph. Fifty-two subjects were studied, including 29 women and 23 men with a mean age of 51.6 and 52.3 years, respectively. Main Outcomes and Measures: Cough peak airflow, peak pressure, and expiratory rise time. Results were stratified by age, gender, and height. Peak airflow demonstrated significant differences across age, gender, and height, with flow increasing according to increasing height. Peak cough pressure also increased with height and was significantly greater in males versus females. Expiratory rise time, the time from glottal opening to peak airflow, did not vary with age or height but was statistically significantly longer in women. Cough aerodynamics can be readily measured objectively in the outpatient setting. Expiratory rise time, peak flow, and peak pressure are important aspects of each cough epoch. Normative data provided herein can be used for future studies of patients with laryngotracheal disorders, and these cough parameters may prove to be simple, accessible, and repeatable outcome measures.

  8. [Aerodynamic focusing of particles and heavy molecules

    International Nuclear Information System (INIS)

    de la Mora, J.F.

    1990-01-01

    By accelerating a gas containing suspended particles or large molecules through a converging nozzle, the suspended species may be focused and therefore used to write fine lines on a surface. Our objective was to study the limits on how narrow this focal region could be as a function of particle size. We find that, for monodisperse particles with masses m p some 3.6 x 10 5 times larger than the molecular mass m of the carrier gas (diameters above some 100 angstrom), there is no fundamental obstacle to directly write submicron features. However, this conclusion has been verified experimentally only with particles larger than 0.1 μm. Experimental, theoretical and numerical studies on the defocusing role of Brownian motion for very small particles or heavy molecules have shown that high resolution (purely aerodynamic) focusing is impossible with volatile molecules whose masses are typically smaller than 1000 Dalton. For these, the minimal focal diameter after optimization appears to be 5√(m/m p ) times the nozzle diameter d n . But combinations of focused lasers and aerodynamic focusing appear as promising for direct writing with molecular precursors. Theoretical and numerical schemes capable of predicting the evolution of the focusing beam, including Brownian motion effects, have been developed, although further numerical work would be desirable. 11 refs

  9. Noise suppression in duct

    International Nuclear Information System (INIS)

    Ahmed, A.; Barfeh, M.A.G.

    2001-01-01

    In air-conditioning system the noise generated by supply fan is carried by conditioned air through the ductwork. The noise created in ductwork run may be transmission, regenerative and ductborne. Transmission noise is fan noise, regenerative noise is due to turbulence in flow and ductborne noise is the noise radiating from duct to surroundings. Some noise is attenuated in ducts also but if noise level is high then it needs to be attenuated. A simple mitre bend can attenuate-noise. This principle is extended to V and M-shape ducts with inside lining of fibreglass, which gave maximum attenuation of 77 dB and 62 dB respectively corresponding to 8 kHz frequency as compared to mitre, bend giving maximum 18 dB attenuation. Sound level meter measured sound levels with octave band filter and tests were conducted in anechoic room. A V-shape attenuator can be used at fan outlet and high frequency noise can be minimized greatly. (author)

  10. LF airport ground noise mitigation using scattering sections

    NARCIS (Netherlands)

    Bosschaart, C.; Eisses A.R.; Eerden, F.J.M. van der

    2012-01-01

    Ground noise due to aircraft starting from the Amsterdam airport runway ‘Polderbaan’ has been an issue since its construction in 2003. Take off operation in headwind conditions causes downwind sound propagation towards a residential area situated 2,5 km Southwest of the runway. Due to the large

  11. Propagation into an unstable state

    International Nuclear Information System (INIS)

    Dee, G.

    1985-01-01

    We describe propagating front solutions of the equations of motion of pattern-forming systems. We make a number of conjectures concerning the properties of such fronts in connection with pattern selection in these systems. We describe a calculation which can be used to calculate the velocity and state selected by certain types of propagating fronts. We investigate the propagating front solutions of the amplitude equation which provides a valid dynamical description of many pattern-forming systems near onset

  12. Investigation of Factors Affecting Aerodynamic Performance of Nebulized Nanoemulsion.

    Science.gov (United States)

    Kamali, Hosein; Abbasi, Shayan; Amini, Mohammad Ali; Amani, Amir

    2016-01-01

    This work aimed to prepare a nanoemulsion preparation containing budesonide and assess its aerodynamic behavior in comparison with suspension of budesonide. In-vitro aerodynamic performance of the corresponding micellar solution (ie. nanoemulsion preparation without oil) was investigated too. Nanoemulsions of almond oil containing budesonide, as a hydrophobic model drug molecule, were prepared and optimized. Then, the effect of variation of surfactant/co-surfactant concentration on the aerodynamic properties of the nebulized aerosol was studied. The results indicated that the most physically stable formulation makes the smallest aerodynamic size. The concentration of co-surfactant was also shown to be critical in determination of aerodynamic size. Furthermore, the optimized sample, with 3% w/w almond oil, 20% w/w Tween 80+Span 80 and 2% w/w ethanol showed a smaller MMAD in comparison with the commercially available suspension and the micellar solution.

  13. Broadband unidirectional ultrasound propagation

    Science.gov (United States)

    Sinha, Dipen N.; Pantea, Cristian

    2017-12-12

    A passive, linear arrangement of a sonic crystal-based apparatus and method including a 1D sonic crystal, a nonlinear medium, and an acoustic low-pass filter, for permitting unidirectional broadband ultrasound propagation as a collimated beam for underwater, air or other fluid communication, are described. The signal to be transmitted is first used to modulate a high-frequency ultrasonic carrier wave which is directed into the sonic crystal side of the apparatus. The apparatus processes the modulated signal, whereby the original low-frequency signal exits the apparatus as a collimated beam on the side of the apparatus opposite the sonic crystal. The sonic crystal provides a bandpass acoustic filter through which the modulated high-frequency ultrasonic signal passes, and the nonlinear medium demodulates the modulated signal and recovers the low-frequency sound beam. The low-pass filter removes remaining high-frequency components, and contributes to the unidirectional property of the apparatus.

  14. Precursors in Front Propagation

    International Nuclear Information System (INIS)

    Kessler, D.A

    1998-01-01

    We investigate the dynamical construction of the leading edge of propagating fronts. Whereas the steady-state front is typically an exponential, far ahead of the front, the front falls off much faster, in a fashion determined by the Green's function of tile problem. We show that there is a universal transition Tom the steady-state exponential front to a Gaussian falloff. The transition region is of width t 1/2 , and moves out ahead of the front at a constant velocity greater than the steady-state front speed. This Gaussian front then is in general modified even further ahead of the front to match onto the expected Green's function behavior. We demonstrate this in the case of the Ginzburg-Landau and Korteweg-De Vries equations. We also discuss the relevance of this mechanism for velocity selection in the Fisher equation

  15. Curvilinear crack layer propagation

    Science.gov (United States)

    Chudnovsky, Alexander; Chaoui, Kamel; Moet, Abdelsamie

    1987-01-01

    An account is given of an experiment designed to allow observation of the effect of damage orientation on the direction of crack growth in the case of crack layer propagation, using polystyrene as the model material. The direction of crack advance under a given loading condition is noted to be determined by a competition between the tendency of the crack to maintain its current direction and the tendency to follow the orientation of the crazes at its tip. The orientation of the crazes is, on the other hand, determined by the stress field due to the interaction of the crack, the crazes, and the hole. The changes in craze rotation relative to the crack define the active zone rotation.

  16. Atomistics of crack propagation

    International Nuclear Information System (INIS)

    Sieradzki, K.; Dienes, G.J.; Paskin, A.; Massoumzadeh, B.

    1988-01-01

    The molecular dynamic technique is used to investigate static and dynamic aspects of crack extension. The material chosen for this study was the 2D triangular solid with atoms interacting via the Johnson potential. The 2D Johnson solid was chosen for this study since a sharp crack in this material remains stable against dislocation emission up to the critical Griffith load. This behavior allows for a meaningful comparison between the simulation results and continuum energy theorems for crack extension by appropriately defining an effective modulus which accounts for sample size effects and the non-linear elastic behavior of the Johnson solid. Simulation results are presented for the stress fields of moving cracks and these dynamic results are discussed in terms of the dynamic crack propagation theories, of Mott, Eshelby, and Freund

  17. Active3 noise reduction

    International Nuclear Information System (INIS)

    Holzfuss, J.

    1996-01-01

    Noise reduction is a problem being encountered in a variety of applications, such as environmental noise cancellation, signal recovery and separation. Passive noise reduction is done with the help of absorbers. Active noise reduction includes the transmission of phase inverted signals for the cancellation. This paper is about a threefold active approach to noise reduction. It includes the separation of a combined source, which consists of both a noise and a signal part. With the help of interaction with the source by scanning it and recording its response, modeling as a nonlinear dynamical system is achieved. The analysis includes phase space analysis and global radial basis functions as tools for the prediction used in a subsequent cancellation procedure. Examples are given which include noise reduction of speech. copyright 1996 American Institute of Physics

  18. Active noise cancellation algorithms for impulsive noise.

    Science.gov (United States)

    Li, Peng; Yu, Xun

    2013-04-01

    Impulsive noise is an important challenge for the practical implementation of active noise control (ANC) systems. The advantages and disadvantages of popular filtered- X least mean square (FXLMS) ANC algorithm and nonlinear filtered-X least mean M-estimate (FXLMM) algorithm are discussed in this paper. A new modified FXLMM algorithm is also proposed to achieve better performance in controlling impulsive noise. Computer simulations and experiments are carried out for all three algorithms and the results are presented and analyzed. The results show that the FXLMM and modified FXLMM algorithms are more robust in suppressing the adverse effect of sudden large amplitude impulses than FXLMS algorithm, and in particular, the proposed modified FXLMM algorithm can achieve better stability without sacrificing the performance of residual noise when encountering impulses.

  19. Pulsar radiation as polarized shot noise

    International Nuclear Information System (INIS)

    Cordes, J.M.

    1976-01-01

    Pulsar radiation can be resonably modeled as amplitude-modulated shot noise for which the amplitude modulations correspond to the subpulses and micropulses that comprise the structure of single pulses. The shot noise fluctuates on nanosecond time scales and therefore has a bandwidth typical of pulsars, namely, 1-10 GHz. If curvature radiation from bunches of coherently radiating particles is the relevant radiation mechanism, then the radiation from a single bunch corresponds to a shot pulse; such a physical interpretation is not crucial to the validity of the shot noise model, however. We calculate some statistics of the corresponding signal in a narrow-band receiver system, an informative one being the intensity modulation index of the narrow-band noise from which it can be determined whether or not the noise has Gaussian statistics. Departures from Gaussian statistics can occur if intensity variations are due primarily to changes in the number of particles radiating coherently at any instant. If the temporal density of shot pulses is sufficiently high, however, only Gaussian statistics will be observed, meaning that extensive incoherent addition occurs in the generation and the propagation of the radiation.The first and second moments of the Stokes parameters of narrow-band signals are derived for both time-independent and time-variable polarization. It is shown how the polarization properties of short time scale structure can be determined from the autocorrelation functions of the Stokes parameters

  20. Near-field acoustical holography of military jet aircraft noise

    Science.gov (United States)

    Wall, Alan T.; Gee, Kent L.; Neilsen, Tracianne; Krueger, David W.; Sommerfeldt, Scott D.; James, Michael M.

    2010-10-01

    Noise radiated from high-performance military jet aircraft poses a hearing-loss risk to personnel. Accurate characterization of jet noise can assist in noise prediction and noise reduction techniques. In this work, sound pressure measurements were made in the near field of an F-22 Raptor. With more than 6000 measurement points, this is the most extensive near-field measurement of a high-performance jet to date. A technique called near-field acoustical holography has been used to propagate the complex pressure from a two- dimensional plane to a three-dimensional region in the jet vicinity. Results will be shown and what they reveal about jet noise characteristics will be discussed.

  1. Aerodynamic drag modeling of alpine skiers performing giant slalom turns.

    Science.gov (United States)

    Meyer, Frédéric; Le Pelley, David; Borrani, Fabio

    2012-06-01

    Aerodynamic drag plays an important role in performance for athletes practicing sports that involve high-velocity motions. In giant slalom, the skier is continuously changing his/her body posture, and this affects the energy dissipated in aerodynamic drag. It is therefore important to quantify this energy to understand the dynamic behavior of the skier. The aims of this study were to model the aerodynamic drag of alpine skiers in giant slalom simulated conditions and to apply these models in a field experiment to estimate energy dissipated through aerodynamic drag. The aerodynamic characteristics of 15 recreational male and female skiers were measured in a wind tunnel while holding nine different skiing-specific postures. The drag and the frontal area were recorded simultaneously for each posture. Four generalized and two individualized models of the drag coefficient were built, using different sets of parameters. These models were subsequently applied in a field study designed to compare the aerodynamic energy losses between a dynamic and a compact skiing technique. The generalized models estimated aerodynamic drag with an accuracy of between 11.00% and 14.28%, and the individualized models estimated aerodynamic drag with an accuracy between 4.52% and 5.30%. The individualized model used for the field study showed that using a dynamic technique led to 10% more aerodynamic drag energy loss than using a compact technique. The individualized models were capable of discriminating different techniques performed by advanced skiers and seemed more accurate than the generalized models. The models presented here offer a simple yet accurate method to estimate the aerodynamic drag acting upon alpine skiers while rapidly moving through the range of positions typical to turning technique.

  2. Noise performance of frequency modulation Kelvin force microscopy

    Directory of Open Access Journals (Sweden)

    Heinrich Diesinger

    2014-01-01

    Full Text Available Noise performance of a phase-locked loop (PLL based frequency modulation Kelvin force microscope (FM-KFM is assessed. Noise propagation is modeled step by step throughout the setup using both exact closed loop noise gains and an approximation known as “noise gain” from operational amplifier (OpAmp design that offers the advantage of decoupling the noise performance study from considerations of stability and ideal loop response. The bandwidth can be chosen depending on how much noise is acceptable and it is shown that stability is not an issue up to a limit that will be discussed. With thermal and detector noise as the only sources, both approaches yield PLL frequency noise expressions equal to the theoretical value for self-oscillating circuits and in agreement with measurement, demonstrating that the PLL components neither modify nor contribute noise. Kelvin output noise is then investigated by modeling the surrounding bias feedback loop. A design rule is proposed that allows choosing the AC modulation frequency for optimized sharing of the PLL bandwidth between Kelvin and topography loops. A crossover criterion determines as a function of bandwidth, temperature and probe parameters whether thermal or detector noise is the dominating noise source. Probe merit factors for both cases are then established, suggesting how to tackle noise performance by probe design. Typical merit factors of common probe types are compared. This comprehensive study is an encouraging step toward a more integral performance assessment and a remedy against focusing on single aspects and optimizing around randomly chosen key values.

  3. Joint influences of aerodynamic flow field and aerodynamic heating of the dome on imaging quality degradation of airborne optical systems.

    Science.gov (United States)

    Xiao, Haosu; Zuo, Baojun; Tian, Yi; Zhang, Wang; Hao, Chenglong; Liu, Chaofeng; Li, Qi; Li, Fan; Zhang, Li; Fan, Zhigang

    2012-12-20

    We investigated the joint influences exerted by the nonuniform aerodynamic flow field surrounding the optical dome and the aerodynamic heating of the dome on imaging quality degradation of an airborne optical system. The Spalart-Allmaras model provided by FLUENT was used for flow computations. The fourth-order Runge-Kutta algorithm based ray tracing program was used to simulate optical transmission through the aerodynamic flow field and the dome. Four kinds of imaging quality evaluation parameters were presented: wave aberration of the exit pupil, point spread function, encircled energy, and modulation transfer function. The results show that the aero-optical disturbance of the aerodynamic flow field and the aerodynamic heating of the dome significantly affect the imaging quality of an airborne optical system.

  4. Advanced Low-Noise Research Fan Stage Design

    Science.gov (United States)

    Neubert, Robert; Bock, Larry; Malmborg, Eric; Owen-Peer, William

    1997-01-01

    This report describes the design of the Advanced Low-Noise Research Fan stage. The fan is a variable pitch design, which is designed at the cruise pitch condition. Relative to the cruise setting, the blade is closed at takeoff and opened for reverse thrust operation. The fan stage is a split flow design with fan exit guide vanes (FEGVs) and core stators. The fan stage design is combined with a nacelle and engine core duct to form a powered fan/nacelle subscale model. This model is intended for use in combined aerodynamic, acoustic, and structural testing in a wind tunnel. The fan has an outer diameter of 22 in. and a hub-to-tip of 0.426 in., which allows the use of existing NASA fan and cowl force balance and rig drive systems. The design parameters were selected to permit valid acoustic and aerodynamic comparisons with the Pratt & Whitney (P&W) 17- and 22-in. rigs previously tested under NASA contract. The fan stage design is described in detail. The results of the design axisymmetric and Navier-Stokes aerodynamic analysis are presented at the critical design conditions. The structural analysis of the fan rotor and attachment is included. The blade and attachment are predicted to have adequate low-cycle fatigue life and an acceptable operating range without resonant stress or flutter. The stage was acoustically designed with airfoil counts in the FEGV and core stator to minimize noise. A fan/FEGV tone analysis developed separately under NASA contract was used to determine the optimum airfoil counts. The fan stage was matched to the existing nacelle, designed under the previous P&W low-noise contract, to form a fan/nacelle model for wind tunnel testing. It is an axisymmetric nacelle for convenience in testing and analysis. Previous testing confirmed that the nacelle performed as required at various aircraft operating conditions.

  5. Core Noise Diagnostics of Turbofan Engine Noise Using Correlation and Coherence Functions

    Science.gov (United States)

    Miles, Jeffrey H.

    2009-01-01

    Cross-correlation and coherence functions are used to look for periodic acoustic components in turbofan engine combustor time histories, to investigate direct and indirect combustion noise source separation based on signal propagation time delays, and to provide information on combustor acoustics. Using the cross-correlation function, time delays were identified in all cases, clearly indicating the combustor is the source of the noise. In addition, unfiltered and low-pass filtered at 400 Hz signals had a cross-correlation time delay near 90 ms, while the low-pass filtered at less than 400 Hz signals had a cross-correlation time delay longer than 90 ms. Low-pass filtering at frequencies less than 400 Hz partially removes the direct combustion noise signals. The remainder includes the indirect combustion noise signal, which travels more slowly because of the dependence on the entropy convection velocity in the combustor. Source separation of direct and indirect combustion noise is demonstrated by proper use of low-pass filters with the cross-correlation function for a range of operating conditions. The results may lead to a better idea about the acoustics in the combustor and may help develop and validate improved reduced-order physics-based methods for predicting direct and indirect combustion noise.

  6. Evaluating the catching performance of aerodynamic rain gauges through field comparisons and CFD modelling

    Science.gov (United States)

    Pollock, Michael; Colli, Matteo; Stagnaro, Mattia; Lanza, Luca; Quinn, Paul; Dutton, Mark; O'Donnell, Greg; Wilkinson, Mark; Black, Andrew; O'Connell, Enda

    2016-04-01

    Accurate rainfall measurement is a fundamental requirement in a broad range of applications including flood risk and water resource management. The most widely used method of measuring rainfall is the rain gauge, which is often also considered to be the most accurate. In the context of hydrological modelling, measurements from rain gauges are interpolated to produce an areal representation, which forms an important input to drive hydrological models and calibrate rainfall radars. In each stage of this process another layer of uncertainty is introduced. The initial measurement errors are propagated through the chain, compounding the overall uncertainty. This study looks at the fundamental source of error, in the rainfall measurement itself; and specifically addresses the largest of these, the systematic 'wind-induced' error. Snowfall is outside the scope. The shape of a precipitation gauge significantly affects its collection efficiency (CE), with respect to a reference measurement. This is due to the airflow around the gauge, which causes a deflection in the trajectories of the raindrops near the gauge orifice. Computational Fluid-Dynamic (CFD) simulations are used to evaluate the time-averaged airflows realized around the EML ARG100, EML SBS500 and EML Kalyx-RG rain gauges, when impacted by wind. These gauges have a similar aerodynamic profile - a shape comparable to that of a champagne flute - and they are used globally. The funnel diameter of each gauge, respectively, is 252mm, 254mm and 127mm. The SBS500 is used by the UK Met Office and the Scottish Environmental Protection Agency. Terms of comparison are provided by the results obtained for standard rain gauge shapes manufactured by Casella and OTT which, respectively, have a uniform and a tapered cylindrical shape. The simulations were executed for five different wind speeds; 2, 5, 7, 10 and 18 ms-1. Results indicate that aerodynamic gauges have a different impact on the time-averaged airflow patterns

  7. Data Assimilation by Conditioning of Driving Noise on Future Observations

    KAUST Repository

    Lee, Wonjung

    2014-08-01

    Conventional recursive filtering approaches, designed for quantifying the state of an evolving stochastic dynamical system with intermittent observations, use a sequence of i) an uncertainty propagation step followed by ii) a step where the associated data is assimilated using Bayes\\' rule. Alternatively, the order of the steps can be switched to i) one step ahead data assimilation followed by ii) uncertainty propagation. In this paper, we apply this smoothing-based sequential filter to systems driven by random noise, however with the conditioning on future observation not only to the system variable but to the driving noise. Our research reveals that, for the nonlinear filtering problem, the conditioned driving noise is biased by a nonzero mean and in turn pushes forward the filtering solution in time closer to the true state when it drives the system. As a result our proposed method can yield a more accurate approximate solution for the state estimation problem. © 1991-2012 IEEE.

  8. On the Determination of Effective Aerodynamic Roughness of Surfaces with Vegetation Patches

    Science.gov (United States)

    Lopes, A. Silva; Palma, J. M. L. M.; Piomelli, U.

    2015-07-01

    Large-eddy simulations of the flow over surfaces with alternating forest patches and clearings of different horizontal scale were performed, modelling the forest canopies as a horizontally homogeneous drag field. The objective was to extend previous works that studied the flow over sudden changes in aerodynamic roughness length occurring typically in the transition between small vegetation and forest but neglected the variations of displacement height. It was found that the internal boundary layers that formed in the transition between surface patches initially grew similarly for both the sudden changes of roughness and the alternating forest patches and clearings, but the turbulence produced at the tops of trees could break the regular growth, increasing the vertical propagation of surface heterogeneity and, consequently, the blending height. Also, the forest patches enhanced the Reynolds shear stress at the tree height over the clearings: when the energy extraction by the forest canopy ceased, the turbulent fluctuations increased and the turbulent shear production was kept high over much of the following clearing. Consequently, the Reynolds shear stress over the clearings decayed slowly, or not at all in the case of short patches. This resulted in higher average shear stress and effective aerodynamic roughness length than was the case when variations of displacement height were neglected.

  9. Propagation of Ion Acoustic Perturbations

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1975-01-01

    Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered.......Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered....

  10. Connection between Ocean Acidification and Sound Propagation

    Directory of Open Access Journals (Sweden)

    Cem Gazioğlu

    2015-08-01

    Full Text Available Ocean Ambient Noise (OAN results from both anthropogenic and natural sources. Varied noise sources are dominant in low (LFB: 10 to 500 Hz, medium (MFB: 500 Hz to 25 kHz and high (HFB:>25 kHz frequency bands. Mostly, LFB is dominated by anthropogenic sources. MFB that cannot spread over long ranges of sound sources contribute to the OAN. Ocean is an exceptionally noisy place. Ocean acidification (OAc from rising Carbon dioxide (CO2 levels will result in decreased sound absorption and therefore, amplified levels of OAN. Carbon dioxide spewed into the atmosphere by burned fossil-fuel which dissolves in the seawater causes more acidic condition in oceans which has strong connection between chemical oceanography and sound propagation. As the ocean becomes more acidic, sound absorption at LFB decreases and acidic oceans would result in significant decreases in ocean sound absorption. In the recent years, the acoustic environment of oceans has reacted to transformations in both natural and anthropogenic impacts. Greenhouse gases concentrations, especially CO2 , rises in atmosphere due to industrial revolution. CO2 dissolved in the seawaters deposited in two major forms (carbonate and bicarbonate, which both lead to decrease pH of surface waters. Over the last 400 million years, pH of oceans has been stable around 8.2 globally. Latest investigations suggest that global pH is around 8.1 globally and various general oceanic circulation models (GOCM calculate that, emissions could reduce ocean pH by a degree between 0.4 units (according to moderate approach and 0.7 units (according to an aggressive one by the end of this century. This article discusses the CO2 considerations both in the atmosphere and hydrosphere which are directly related with seawater pH and oceans noise levels.

  11. Propagation Engineering in Wireless Communications

    CERN Document Server

    Ghasemi, Abdollah; Ghasemi, Farshid

    2012-01-01

    Wireless communications has seen explosive growth in recent decades, in a realm that is both broad and rapidly expanding to include satellite services, navigational aids, remote sensing, telemetering, audio and video broadcasting, high-speed data communications, mobile radio systems and much more. Propagation Engineering in Wireless Communications deals with the basic principles of radiowaves propagation for frequency bands used in radio-communications, offering descriptions of new achievements and newly developed propagation models. The book bridges the gap between theoretical calculations and approaches, and applied procedures needed for advanced radio links design. The primary objective of this two-volume set is to demonstrate the fundamentals, and to introduce propagation phenomena and mechanisms that engineers are likely to encounter in the design and evaluation of radio links of a given type and operating frequency. Volume one covers basic principles, along with tropospheric and ionospheric propagation,...

  12. Adaptive noise cancellation

    International Nuclear Information System (INIS)

    Akram, N.

    1999-01-01

    In this report we describe the concept of adaptive noise canceling, an alternative method of estimating signals corrupted by additive noise of interference. The method uses 'primary' input containing the corrupted signal and a 'reference' input containing noise correlated in some unknown way with the primary noise, the reference input is adaptively filtered and subtracted from the primary input to obtain the signal estimate. Adaptive filtering before subtraction allows the treatment of inputs that are deterministic or stochastic, stationary or time variable. When the reference input is free of signal and certain other conditions are met then noise in the primary input can be essentially eliminated without signal distortion. It is further shown that the adaptive filter also acts as notch filter. Simulated results illustrate the usefulness of the adaptive noise canceling technique. (author)

  13. Active aerodynamic stabilisation of long suspension bridges

    DEFF Research Database (Denmark)

    Nissen, Henrik Ditlev; Sørensen, Paul Haase; Jannerup, Ole Erik

    2004-01-01

    The paper describes the addition of actively controlled appendages (flaps) attached along the length of the bridge deck to dampen wind-induced oscillations in long suppension bridges. A novel approach using control systems methods for the analysis of dynamic stability is presented. In order to make...... use of control analysis and design techniques, a linear model of the structural and aerodynamic motion around equilibriun is developed. The model is validated through comparison with finite element calculations and wind tunnel experimental data on the Great Belt East Bridge in Denmark. The developed...... active control scheme is local in that the flap control signal at a given longitudinal position along the bridge only depends on local motion measurements. The analysis makes use of the Nyquist stability criteria and an anlysis of the sensitivity function for stability analysis. The analysis shows...

  14. Fluidization technologies: Aerodynamic principles and process engineering.

    Science.gov (United States)

    Dixit, Rahul; Puthli, Shivanand

    2009-11-01

    The concept of fluidization has been adapted to different unit processes of pharmaceutical product development. Till date a lot of improvements have been made in the engineering design to achieve superior process performance. This review is focused on the fundamental principles of aerodynamics and hydrodynamics associated with the fluidization technologies. Fluid-bed coating, fluidized bed granulation, rotor processing, hot melt granulation, electrostatic coating, supercritical fluid based fluidized bed technology are highlighted. Developments in the design of processing equipments have been explicitly elucidated. This article also discusses processing problems from the operator's perspective along with latest developments in the application of these principles. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  15. Improving the efficiency of aerodynamic shape optimization

    Science.gov (United States)

    Burgreen, Greg W.; Baysal, Oktay; Eleshaky, Mohamed E.

    1994-01-01

    The computational efficiency of an aerodynamic shape optimization procedure that is based on discrete sensitivity analysis is increased through the implementation of two improvements. The first improvement involves replacing a grid-point-based approach for surface representation with a Bezier-Bernstein polynomial parameterization of the surface. Explicit analytical expressions for the grid sensitivity terms are developed for both approaches. The second improvement proposes the use of Newton's method in lieu of an alternating direction implicit methodology to calculate the highly converged flow solutions that are required to compute the sensitivity coefficients. The modified design procedure is demonstrated by optimizing the shape of an internal-external nozzle configuration. Practically identical optimization results are obtained that are independent of the method used to represent the surface. A substantial factor of 8 decrease in computational time for the optimization process is achieved by implementing both of the design procedure improvements.

  16. Aerodynamic and Aerothermal TPS Instrumentation Reference Guide

    Science.gov (United States)

    Woollard, Bryce A.; Braun, Robert D.; Bose, Deepack

    2016-01-01

    The hypersonic regime of planetary entry combines the most severe environments that an entry vehicle will encounter with the greatest amount of uncertainty as to the events unfolding during that time period. This combination generally leads to conservatism in the design of an entry vehicle, specifically that of the thermal protection system (TPS). Each planetary entry provides a valuable aerodynamic and aerothermal testing opportunity; the utilization of this opportunity is paramount in better understanding how a specific entry vehicle responds to the demands of the hypersonic entry environment. Previous efforts have been made to instrument entry vehicles in order to collect data during the entry period and reconstruct the corresponding vehicle response. The purpose of this paper is to cumulatively document past TPS instrumentation designs for applicable planetary missions, as well as to list pertinent results and any explainable shortcomings.

  17. Ares I Aerodynamic Testing at the Boeing Polysonic Wind Tunnel

    Science.gov (United States)

    Pinier, Jeremy T.; Niskey, Charles J.; Hanke, Jeremy L.; Tomek, William G.

    2011-01-01

    Throughout three full design analysis cycles, the Ares I project within the Constellation program has consistently relied on the Boeing Polysonic Wind Tunnel (PSWT) for aerodynamic testing of the subsonic, transonic and supersonic portions of the atmospheric flight envelope (Mach=0.5 to 4.5). Each design cycle required the development of aerodynamic databases for the 6 degree-of-freedom (DOF) forces and moments, as well as distributed line-loads databases covering the full range of Mach number, total angle-of-attack, and aerodynamic roll angle. The high fidelity data collected in this facility has been consistent with the data collected in NASA Langley s Unitary Plan Wind Tunnel (UPWT) at the overlapping condition ofMach=1.6. Much insight into the aerodynamic behavior of the launch vehicle during all phases of flight was gained through wind tunnel testing. Important knowledge pertaining to slender launch vehicle aerodynamics in particular was accumulated. In conducting these wind tunnel tests and developing experimental aerodynamic databases, some challenges were encountered and are reported as lessons learned in this paper for the benefit of future crew launch vehicle aerodynamic developments.

  18. Incremental Aerodynamic Coefficient Database for the USA2

    Science.gov (United States)

    Richardson, Annie Catherine

    2016-01-01

    In March through May of 2016, a wind tunnel test was conducted by the Aerosciences Branch (EV33) to visually study the unsteady aerodynamic behavior over multiple transition geometries for the Universal Stage Adapter 2 (USA2) in the MSFC Aerodynamic Research Facility's Trisonic Wind Tunnel (TWT). The purpose of the test was to make a qualitative comparison of the transonic flow field in order to provide a recommended minimum transition radius for manufacturing. Additionally, 6 Degree of Freedom force and moment data for each configuration tested was acquired in order to determine the geometric effects on the longitudinal aerodynamic coefficients (Normal Force, Axial Force, and Pitching Moment). In order to make a quantitative comparison of the aerodynamic effects of the USA2 transition geometry, the aerodynamic coefficient data collected during the test was parsed and incorporated into a database for each USA2 configuration tested. An incremental aerodynamic coefficient database was then developed using the generated databases for each USA2 geometry as a function of Mach number and angle of attack. The final USA2 coefficient increments will be applied to the aerodynamic coefficients of the baseline geometry to adjust the Space Launch System (SLS) integrated launch vehicle force and moment database based on the transition geometry of the USA2.

  19. Dressing the nucleon propagator

    International Nuclear Information System (INIS)

    Fishman, S.; Gersten, A.

    1976-01-01

    The nucleon propagator in the ''nested bubbles'' approximation is analyzed. The approximation is built from the minimal set of diagrams which is needed to maintain the unitarity condition under two-pion production threshold in the two-nucleon Bethe--Salpeter equation. Recursive formulas for subsets of ''nested bubbles'' diagrams calculated in the framework of the pseudoscalar interaction are obtained by the use of dispersion relations. We prove that the sum of all the ''nested bubbles'' diverges. Moreover, the successive iterations are plagued with ghost poles. We prove that the first approximation--which is the so-called chain approximation--has ghost poles for any nonvanishing coupling constant. In an earlier paper we have shown that ghost poles lead to ghost cuts. These cuts are present in the ''nested bubbles.'' Ghost elimination procedures are discussed. Modifications of the ''nested bubbles'' approximation are introduced in order to obtain convergence and in order to eliminate the ghost poles and ghost cuts. In a similar way as in the Lee model, cutoff functions are introduced in order to eliminate the ghost poles. The necessary and sufficient conditions for the absence of ghost poles are formulated and analyzed. The spectral functions of the modified ''nested bubbles'' are analyzed and computed. Finally, we present a theorem, similar in its form to Levinson's theorem in scattering theory, which enables one to compute in a simple way the number of ghost poles

  20. Transionospheric propagation predictions

    Science.gov (United States)

    Klobucher, J. A.; Basu, S.; Basu, S.; Bernhardt, P. A.; Davies, K.; Donatelli, D. E.; Fremouw, E. J.; Goodman, J. M.; Hartmann, G. K.; Leitinger, R.

    1979-01-01

    The current status and future prospects of the capability to make transionospheric propagation predictions are addressed, highlighting the effects of the ionized media, which dominate for frequencies below 1 to 3 GHz, depending upon the state of the ionosphere and the elevation angle through the Earth-space path. The primary concerns are the predictions of time delay of signal modulation (group path delay) and of radio wave scintillation. Progress in these areas is strongly tied to knowledge of variable structures in the ionosphere ranging from the large scale (thousands of kilometers in horizontal extent) to the fine scale (kilometer size). Ionospheric variability and the relative importance of various mechanisms responsible for the time histories observed in total electron content (TEC), proportional to signal group delay, and in irregularity formation are discussed in terms of capability to make both short and long term predictions. The data base upon which predictions are made is examined for its adequacy, and the prospects for prediction improvements by more theoretical studies as well as by increasing the available statistical data base are examined.

  1. Dynamic stability of an aerodynamically efficient motorcycle

    Science.gov (United States)

    Sharma, Amrit; Limebeer, David J. N.

    2012-08-01

    Motorcycles exhibit two potentially dangerous oscillatory modes known as 'wobble' and 'weave'. The former is reminiscent of supermarket castor shimmy, while the latter is a low frequency 'fish-tailing' motion that involves a combination of rolling, yawing, steering and side-slipping motions. These unwanted dynamic features, which can occur when two-wheeled vehicles are operated at speed, have been studied extensively. The aim of this paper is to use mathematical analysis to identify important stability trends in the on-going design of a novel aerodynamically efficient motorcycle known as the ECOSSE Spirit ES1. A mathematical model of the ES1 is developed using a multi-body dynamics software package called VehicleSim [Anon, VehicleSim Lisp Reference Manual Version 1.0, Mechanical Simulation Corporation, 2008. Available at http://www.carsim.com]. This high-fidelity motorcycle model includes realistic tyre-road contact geometry, a comprehensive tyre model, tyre relaxation and a flexible frame. A parameter set representative of a modern high-performance machine and rider is used. Local stability is investigated via the eigenvalues of the linearised models that are associated with equilibrium points of interest. A comprehensive study of the effects of frame flexibilities, acceleration, aerodynamics and tyre variations is presented, and an optimal passive steering compensator is derived. It is shown that the traditional steering damper cannot be used to stabilise the ES1 over its entire operating speed range. A simple passive compensator, involving an inerter is proposed. Flexibility can be introduced deliberately into various chassis components to change the stability characteristics of the vehicle; the implications of this idea are studied.

  2. Aerodynamics and pollen ultrastructure in Ephedra.

    Science.gov (United States)

    Bolinder, Kristina; Niklas, Karl J; Rydin, Catarina

    2015-03-01

    • Pollen dispersal is affected by the terminal settling velocity (Ut) of the grains, which is determined by their size, bulk density, and by atmospheric conditions. The likelihood that wind-dispersed pollen is captured by ovulate organs is influenced by the aerodynamic environment created around and by ovulate organs. We investigated pollen ultrastructure and Ut of Ephedra foeminea (purported to be entomophilous), and simulated the capture efficiency of its ovules. Results were compared with those from previously studied anemophilous Ephedra species.• Ut was determined using stroboscopic photography of pollen in free fall. The acceleration field around an "average" ovule was calculated, and inflight behavior of pollen grains was predicted using computer simulations. Pollen morphology and ultrastructure were investigated using SEM and STEM.• Pollen wall ultrastructure was correlated with Ut in Ephedra. The relative proportion and amount of granules in the infratectum determine pollen bulk densities, and (together with overall size) determine Ut and thus dispersal capability. Computer simulations failed to reveal any functional traits favoring anemophilous pollen capture in E. foeminea.• The fast Ut and dense ultrastructure of E. foeminea pollen are consistent with functional traits that distinguish entomophilous species from anemophilous species. In anemophilous Ephedra species, ovulate organs create an aerodynamic microenvironment that directs airborne pollen to the pollination drops. In E. foeminea, no such microenvironment is created. Ephedroid palynomorphs from the Cretaceous share the ultrastructural characteristics of E. foeminea, and at least some may, therefore, have been produced by insect-pollinated plants. © 2015 Botanical Society of America, Inc.

  3. Acceptable noise level

    DEFF Research Database (Denmark)

    Olsen, Steen Østergaard; Nielsen, Lars Holme; Lantz, Johannes

    2012-01-01

    The acceptable noise level (ANL) is used to quantify the amount of background noise that subjects can accept while listening to speech, and is suggested for prediction of individual hearing-aid use. The aim of this study was to assess the repeatability of the ANL measured in normal-hearing subjects...... using running Danish and non-semantic speech materials as stimuli and modulated speech-spectrum and multi-talker babble noises as competing stimuli....

  4. Landing gear noise attenuation

    Science.gov (United States)

    Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Kwan, Hwa-Wan (Inventor); Abeysinghe, Amal (Inventor)

    2011-01-01

    A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.

  5. Noise in biological circuits.

    Science.gov (United States)

    Simpson, Michael L; Cox, Chris D; Allen, Michael S; McCollum, James M; Dar, Roy D; Karig, David K; Cooke, John F

    2009-01-01

    Noise biology focuses on the sources, processing, and biological consequences of the inherent stochastic fluctuations in molecular transitions or interactions that control cellular behavior. These fluctuations are especially pronounced in small systems where the magnitudes of the fluctuations approach or exceed the mean value of the molecular population. Noise biology is an essential component of nanomedicine where the communication of information is across a boundary that separates small synthetic and biological systems that are bound by their size to reside in environments of large fluctuations. Here we review the fundamentals of the computational, analytical, and experimental approaches to noise biology. We review results that show that the competition between the benefits of low noise and those of low population has resulted in the evolution of genetic system architectures that produce an uneven distribution of stochasticity across the molecular components of cells and, in some cases, use noise to drive biological function. We review the exact and approximate approaches to gene circuit noise analysis and simulation, and review many of the key experimental results obtained using flow cytometry and time-lapse fluorescent microscopy. In addition, we consider the probative value of noise with a discussion of using measured noise properties to elucidate the structure and function of the underlying gene circuit. We conclude with a discussion of the frontiers of and significant future challenges for noise biology. (c) 2009 John Wiley & Sons, Inc.

  6. Noise upon the Sinusoids

    DEFF Research Database (Denmark)

    Jensen, Karl Kristoffer

    2005-01-01

    Sinusoids are used for making harmonic and other sounds. In order to having life in the sounds and adding a wide variety of noises, irregularities are inserted in the frequency and amplitudes. A simple and intuitive noise model is presented, consisting of a low-pass filtered noise, and having...... control for strength and bandwidth. The noise is added on the frequency and amplitudes of the sinusoids, and the resulting irregularity’s (jitter and shimmer) bandwidth is derived. This, together with an overview of investigation methods of the jitter and shimmer results in an analysis of the necessary...

  7. Identification of aerodynamic coefficients using computational neural networks

    Science.gov (United States)

    Linse, Dennis J.; Stengel, Robert F.

    1992-01-01

    Precise, smooth aerodynamic models are required for implementing adaptive, nonlinear control strategies. Accurate representations of aerodynamic coefficients can be generated for the complete flight envelope by combining computational neural network models with an Estimation-Before-Modeling paradigm for on-line training information. A novel method of incorporating first-partial-derivative information is employed to estimate the weights in individual feedforward neural networks for each aerodynamic coefficient. The method is demonstrated by generating a model of the normal force coefficient of a twin-jet transport aircraft from simulated flight data, and promising results are obtained.

  8. Center for Computational Wind Turbine Aerodynamics and Atmospheric Turbulence

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær

    2014-01-01

    In order to design and operate a wind farm optimally it is necessary to know in detail how the wind behaves and interacts with the turbines in a farm. This not only requires knowledge about meteorology, turbulence and aerodynamics, but it also requires access to powerful computers and efficient...... software. Center for Computational Wind Turbine Aerodynamics and Atmospheric Turbulence was established in 2010 in order to create a world-leading cross-disciplinary flow center that covers all relevant disciplines within wind farm meteorology and aerodynamics....

  9. Fourier analysis of the aerodynamic behavior of cup anemometers

    International Nuclear Information System (INIS)

    Pindado, Santiago; Pérez, Imanol; Aguado, Maite

    2013-01-01

    The calibration results (the transfer function) of an anemometer equipped with several cup rotors were analyzed and correlated with the aerodynamic forces measured on the isolated cups in a wind tunnel. The correlation was based on a Fourier analysis of the normal-to-the-cup aerodynamic force. Three different cup shapes were studied: typical conical cups, elliptical cups and porous cups (conical-truncated shape). Results indicated a good correlation between the anemometer factor, K, and the ratio between the first two coefficients in the Fourier series decomposition of the normal-to-the-cup aerodynamic force. (paper)

  10. Single particle aerodynamic relaxation time analyzer. [for aerosol pollutants

    Science.gov (United States)

    Mazumder, M. K.; Kirsch, K. J.

    1977-01-01

    An instrument employing a laser Doppler velocimeter and a microphone to measure the phase lag of the motion of aerosol particulates relative to the motion of the fluid medium within an acoustic field is described. The relaxation times and aerodynamic diameters of the particles or droplets are determined in real time from the measured values of phase lag; thus, the size analysis is independent of the electrostatic charges and refractive indices of the particulates. The instrument is suitable for analyzing the aerodynamic size spectrum of atmospheric particulate pollutants with aerodynamic diameters ranging from 0.1 to 10.0 microns.

  11. Road traffic noise: annoyance, sleep disturbance, and public health implications.

    Science.gov (United States)

    Kim, Minho; Chang, Seo I; Seong, Jeong C; Holt, James B; Park, Tae H; Ko, Joon H; Croft, Janet B

    2012-10-01

    The WHO has recognized environmental noise as harmful pollution that causes adverse psychosocial and physiologic effects (i.e., annoyance and sleep disturbance) on human health. In Europe, noise-related health studies have been actively conducted, but the U.S. has lagged behind in this research field. This research predicted ambient levels of road traffic noise for a highly urbanized area: Fulton County GA. Assessment was made of noise impacts on the population, focusing on annoyance and sleep disturbance. All the data sets were collected during 2009-2011, and data analysis was performed in 2010-2011. The study used a sound-propagation model for noise-level prediction and derived noise-impact indicators for annoyance and sleep disturbance from exposure-response models. Then, annoyed and sleep-disturbed populations were predicted with the use of each noise-impact indicator. It was predicted that 109,967 people would be at risk of being highly annoyed, with 19,621 people at risk for high sleep disturbance for Fulton County GA. Noise-impact indicators such as the percentage of those who were highly annoyed and who had high levels of sleep disturbance were expected to be valuable metrics to compare noise equity among urban communities. Many residents of the greater Atlanta area may be exposed to noise levels that put them at risk of being highly annoyed or having high levels of sleep disturbance. These results, if generalized to other urban areas with high levels of road traffic, indicate that it may be important for the public's health to update existing noise-related policies or develop new ones to control and abate noise concerns in urban communities. Published by Elsevier Inc.

  12. A Method for Simulation of Rotorcraft Fly-In Noise for Human Response Studies

    Science.gov (United States)

    Rizzi, Stephen A.; Christian, Andrew

    2015-01-01

    The low frequency content of rotorcraft noise allows it to be heard over great distances. This factor contributes to the disruption of natural quiet in national parks and wilderness areas, and can lead to annoyance in populated areas. Further, it can result in detection at greater distances compared to higher altitude fixed wing aircraft operations. Human response studies conducted in the field are made difficult since test conditions are difficult to control. Specifically, compared to fixed wing aircraft, the source noise itself may significantly vary over time even for nominally steady flight conditions, and the propagation of that noise is more variable due to low altitude meteorological conditions. However, it is possible to create the salient features of rotorcraft fly-in noise in a more controlled laboratory setting through recent advancements made in source noise synthesis, propagation modeling and reproduction. This paper concentrates on the first two of these. In particular, the rotorcraft source noise pressure time history is generated using single blade passage signatures from the main and tail rotors. These may be obtained from either acoustic source noise predictions or back-propagation of ground-based measurements. Propagation effects include atmospheric absorption, spreading loss, Doppler shift, and ground plane reflections.

  13. Sounds and Noises. A Position Paper on Noise Pollution.

    Science.gov (United States)

    Chapman, Thomas L.

    This position paper focuses on noise pollution and the problems and solutions associated with this form of pollution. The paper is divided into the following five sections: Noise and the Ear, Noise Measurement, III Effects of Noise, Acoustics and Action, and Programs and Activities. The first section identifies noise and sound, the beginnings of…

  14. Noise and Health: How does noise affect us?

    NARCIS (Netherlands)

    Miedema, H.M.E.

    2001-01-01

    Noise annoyance is a primary indication that noise is a problem, and by itself noise annoyance means that the quality of life is adversely affected. Results from noise annoyance research are presented that make possible a detailed evaluation of noise exposures with respect to the annoyance induced.

  15. Dike Propagation Near Drifts

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2002-03-04

    The purpose of this Analysis and Model Report (AMR) supporting the Site Recommendation/License Application (SR/LA) for the Yucca Mountain Project is the development of elementary analyses of the interactions of a hypothetical dike with a repository drift (i.e., tunnel) and with the drift contents at the potential Yucca Mountain repository. This effort is intended to support the analysis of disruptive events for Total System Performance Assessment (TSPA). This AMR supports the Process Model Report (PMR) on disruptive events (CRWMS M&O 2000a). This purpose is documented in the development plan (DP) ''Coordinate Modeling of Dike Propagation Near Drifts Consequences for TSPA-SR/LA'' (CRWMS M&O 2000b). Evaluation of that Development Plan and the work to be conducted to prepare Interim Change Notice (ICN) 1 of this report, which now includes the design option of ''Open'' drifts, indicated that no revision to that DP was needed. These analyses are intended to provide reasonable bounds for a number of expected effects: (1) Temperature changes to the waste package from exposure to magma; (2) The gas flow available to degrade waste containers during the intrusion; (3) Movement of the waste package as it is displaced by the gas, pyroclasts and magma from the intruding dike (the number of packages damaged); (4) Movement of the backfill (Backfill is treated here as a design option); (5) The nature of the mechanics of the dike/drift interaction. These analyses serve two objectives: to provide preliminary analyses needed to support evaluation of the consequences of an intrusive event and to provide a basis for addressing some of the concerns of the Nuclear Regulatory Commission (NRC) expressed in the Igneous Activity Issue Resolution Status Report.

  16. Dike Propagation Near Drifts

    International Nuclear Information System (INIS)

    2002-01-01

    The purpose of this Analysis and Model Report (AMR) supporting the Site Recommendation/License Application (SR/LA) for the Yucca Mountain Project is the development of elementary analyses of the interactions of a hypothetical dike with a repository drift (i.e., tunnel) and with the drift contents at the potential Yucca Mountain repository. This effort is intended to support the analysis of disruptive events for Total System Performance Assessment (TSPA). This AMR supports the Process Model Report (PMR) on disruptive events (CRWMS M and O 2000a). This purpose is documented in the development plan (DP) ''Coordinate Modeling of Dike Propagation Near Drifts Consequences for TSPA-SR/LA'' (CRWMS M and O 2000b). Evaluation of that Development Plan and the work to be conducted to prepare Interim Change Notice (ICN) 1 of this report, which now includes the design option of ''Open'' drifts, indicated that no revision to that DP was needed. These analyses are intended to provide reasonable bounds for a number of expected effects: (1) Temperature changes to the waste package from exposure to magma; (2) The gas flow available to degrade waste containers during the intrusion; (3) Movement of the waste package as it is displaced by the gas, pyroclasts and magma from the intruding dike (the number of packages damaged); (4) Movement of the backfill (Backfill is treated here as a design option); (5) The nature of the mechanics of the dike/drift interaction. These analyses serve two objectives: to provide preliminary analyses needed to support evaluation of the consequences of an intrusive event and to provide a basis for addressing some of the concerns of the Nuclear Regulatory Commission (NRC) expressed in the Igneous Activity Issue Resolution Status Report

  17. Unstructured, High-Order Scheme Module with Low Dissipation Flux Difference Splitting for Noise Prediction, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorough understanding of aircraft airframe and engine noise mechanisms and the subsequent acoustic propagation to the farfield is necessary to develop and evaluate...

  18. Laser beam propagation generation and propagation of customized light

    CERN Document Server

    Forbes, Andrew

    2014-01-01

    ""The text is easy to read and is accompanied by beautiful illustrations. It is an excellent book for anyone working in laser beam propagation and an asset for any library.""-Optics & Photonics News, July 2014

  19. Study of active noise control system for a commercial HVAC unit

    Science.gov (United States)

    Devineni, Naga

    Acoustic noise is a common problem in everyday life. If the appliances that are present in the work and living areas generate noise then it's a serious problem. One such appliance is the Heating, Ventilation and Air-conditioning system (HVAC) in which blower fan and compressor units are housed together. Operation of a HVAC system creates two kinds of noise. One is the noise due to the air flow and the other is the result of the compressor. Both of them exhibit different signal properties and need different strategies to control them. There has been previous efforts in designing noise control systems that can control noise from the HVAC system. These include passive methods which use sound absorption materials to attenuate noise and active methods which cancel noise by generating anti-noise. Passive methods are effective in limiting the high frequency noise, but are inefficient in controlling low frequency noise from the compressor. Compressor noise is one of the strong low frequency components that propagate through the walls, therefore there is need for deploying active signal processing methods that consider the signal properties into consideration to cancel the noise acoustically. The quasi periodic nature of the compressor noise is exploited in noise modeling which aids in implementing an adaptive linear prediction filter in estimating the anti noise [12]. In this thesis, a multi channel architecture has been studied for a specific HVAC system in order to improve noise cancellation by creating larger quiet zone. In addition to the multi-channel architecture, a real time narrow band Active Noise Control (ANC) was employed to cancel noise under practical conditions.

  20. Local excitation-inhibition ratio for synfire chain propagation in feed-forward neuronal networks

    Science.gov (United States)

    Guo, Xinmeng; Yu, Haitao; Wang, Jiang; Liu, Jing; Cao, Yibin; Deng, Bin

    2017-09-01

    A leading hypothesis holds that spiking activity propagates along neuronal sub-populations which are connected in a feed-forward manner, and the propagation efficiency would be affected by the dynamics of sub-populations. In this paper, how the interaction between local excitation and inhibition effects on synfire chain propagation in feed-forward network (FFN) is investigated. The simulation results show that there is an appropriate excitation-inhibition (EI) ratio maximizing the performance of synfire chain propagation. The optimal EI ratio can significantly enhance the selectivity of FFN to synchronous signals, which thereby increases the stability to background noise. Moreover, the effect of network topology on synfire chain propagation is also investigated. It is found that synfire chain propagation can be maximized by an optimal interlayer linking probability. We also find that external noise is detrimental to synchrony propagation by inducing spiking jitter. The results presented in this paper may provide insights into the effects of network dynamics on neuronal computations.

  1. Genetic noise control via protein oligomerization

    Energy Technology Data Exchange (ETDEWEB)

    Ghim, C; Almaas, E

    2008-06-12

    Gene expression in a cell entails random reaction events occurring over disparate time scales. Thus, molecular noise that often results in phenotypic and population-dynamic consequences sets a fundamental limit to biochemical signaling. While there have been numerous studies correlating the architecture of cellular reaction networks with noise tolerance, only a limited effort has been made to understand the dynamical role of protein-protein associations. We have developed a fully stochastic model for the positive feedback control of a single gene, as well as a pair of genes (toggle switch), integrating quantitative results from previous in vivo and in vitro studies. In particular, we explicitly account for the fast protein binding-unbinding kinetics, RNA polymerases, and the promoter/operator sequences of DNA. We find that the overall noise-level is reduced and the frequency content of the noise is dramatically shifted to the physiologically irrelevant high-frequency regime in the presence of protein dimerization. This is independent of the choice of monomer or dimer as transcription factor and persists throughout the multiple model topologies considered. For the toggle switch, we additionally find that the presence of a protein dimer, either homodimer or heterodimer, may significantly reduce its intrinsic switching rate. Hence, the dimer promotes the robust function of bistable switches by preventing the uninduced (induced) state from randomly being induced (uninduced). The specific binding between regulatory proteins provides a buffer that may prevent the propagation of fluctuations in genetic activity. The capacity of the buffer is a non-monotonic function of association-dissociation rates. Since the protein oligomerization per se does not require extra protein components to be expressed, it provides a basis for the rapid control of intrinsic or extrinsic noise. The stabilization of phenotypically important toggle switches, and nested positive feedback loops in

  2. Jet engine exhaust noise due to rough combustion and nonsteady aerodynamic sources

    Science.gov (United States)

    Plett, E. G.; Summerfield, M.

    1972-01-01

    Internal sources are accounted for in terms of fluctuations of mass and momentum at the nozzle exit plane. At low Mach numbers, mass flow fluctuations generated at the exit plane by acoustic resonant type fluctuations inside the engine are found to be dominant. In the subsonic Mach number range between 0.3 and 0.5, exit plane mass flow fluctuations at frequencies characteristic of turbulence become most dominant. Above Mach 0.5, the turbulent momentum fluctuations at the exit plane become dominant, and the jet contribution is not found significant at subsonic speeds.

  3. Effects of traffic noise

    Energy Technology Data Exchange (ETDEWEB)

    Gottlob, D.

    1986-02-01

    One of the main sources of noise is road traffic. In 1984 there were over 25 million cars, 1.2 million lorries, 1.3 million motor cycles and 1.6 million mopeds using our roads. Opinion polls showed that 21% of the population felt that they were affected by traffic noise as a nuisance factor. An outline of the effects of this noise on the affected population is given, illustrated by diagrams. Details about noise emissions (drive-past level) of the different types of vehicles in city traffic are stated and the effects of noise described. The author goes into the nuisance effect (noise is not a physical factor, but a psychosocial one), changes in behaviour (ways of speaking, reduction of stress on households in proportion to rising income and higher educational levels) and the consequences for health (the reaction of the body to noise is primarily a consequence of the psychosomatic organisation of ow bodies). In conclusion, the author deals with the subjective efficiency of noise protection measures. (HWJ).

  4. Mediality is Noise

    DEFF Research Database (Denmark)

    Prior, Andrew

    This PhD is concerned with the use of noise as a material within media arts practice, especially in ‘post-digital’ contexts such as glitch electronica, glitch art and uses of old media. It examines the relationship between informational culture and noise, exploring the ways in which the structuring...

  5. Acceptable noise level

    DEFF Research Database (Denmark)

    Olsen, Steen Østergaard; Nielsen, Lars Holme; Lantz, Johannes

    2012-01-01

    The acceptable noise level (ANL) is used to quantify the amount of background noise that subjects can accept while listening to speech, and is suggested for prediction of individual hearing-aid use. The aim of this study was to assess the repeatability of the ANL measured in normal-hearing subjects...

  6. Identification of the noise using mathematical modelling

    Directory of Open Access Journals (Sweden)

    Dobeš Josef

    2016-01-01

    Full Text Available In engineering applications the noisiness of a component or the whole device is a common problem. Currently, a lot of effort is put to eliminate noise of the already produced devices, to prevent generation of acoustic waves during the design of new components, or to specify the operating problems based on noisiness change. The experimental method and the mathematical modelling method belong to these identification methods. With the power of today’s computers the ability to identify the sources of the noise on the mathematical modelling level is a very appreciated tool for engineers. For example, the noise itself may be generated by the vibration of the solid object, combustion, shock, fluid flow around an object or cavitation at the fluid flow in an object. For the given task generating the noise using fluid flow on the selected geometry and propagation of the acoustic waves and their subsequent identification are solved and evaluated. In this paper the principle of measurement of variables describing the fluid flow field and acoustic field are described. For the solution of fluid flow a mathematical model implemented into the CFD code is used. The mathematical modelling evaluation of the flow field is compared to the experimental data.

  7. Natural and man-made terrestrial electromagnetic noise: an outlook

    Directory of Open Access Journals (Sweden)

    A. Meloni

    2007-06-01

    Full Text Available The terrestrial environment is continuously exposed to electromagnetic radiations which set up a «background» electromagnetic noise. Within the Non Ionizing Radiation band (NIR, i.e. for frequencies lower than 300 GHz, this background can have a natural or an artificial origin. Natural origins of electromagnetic radiations are generally atmospheric or cosmic while artificial origins are technological applications, power transmission, communications, etc. This paper briefly describes the natural and man-made electromagnetic noise in the NIR band. Natural noise comes from a large variety of sources involving different physical phenomena and covering a wide range of frequencies and showing various propagation characteristics with an extremely broad range of power levels. Due to technological growth man-made electromagnetic noise is nowadays superimposed on natural noise almost everywhere on Earth. In the last decades man-made noise has increased dramatically over and above the natural noise in residential and business areas. This increase has led some scientists to consider possible negative effects of electromagnetic waves on human life and living systems in general. Accurate measurements of natural and man-made electromagnetic noise are necessary to understand the relative power levels in the different bands and their influence on life.

  8. Instrument Variables for Reducing Noise in Parallel MRI Reconstruction

    Directory of Open Access Journals (Sweden)

    Yuchou Chang

    2017-01-01

    Full Text Available Generalized autocalibrating partially parallel acquisition (GRAPPA has been a widely used parallel MRI technique. However, noise deteriorates the reconstructed image when reduction factor increases or even at low reduction factor for some noisy datasets. Noise, initially generated from scanner, propagates noise-related errors during fitting and interpolation procedures of GRAPPA to distort the final reconstructed image quality. The basic idea we proposed to improve GRAPPA is to remove noise from a system identification perspective. In this paper, we first analyze the GRAPPA noise problem from a noisy input-output system perspective; then, a new framework based on errors-in-variables (EIV model is developed for analyzing noise generation mechanism in GRAPPA and designing a concrete method—instrument variables (IV GRAPPA to remove noise. The proposed EIV framework provides possibilities that noiseless GRAPPA reconstruction could be achieved by existing methods that solve EIV problem other than IV method. Experimental results show that the proposed reconstruction algorithm can better remove the noise compared to the conventional GRAPPA, as validated with both of phantom and in vivo brain data.

  9. Theoretical and applied aerodynamics and related numerical methods

    CERN Document Server

    Chattot, J J

    2015-01-01

    This book covers classical and modern aerodynamics, theories and related numerical methods, for senior and first-year graduate engineering students, including: -The classical potential (incompressible) flow theories for low speed aerodynamics of thin airfoils and high and low aspect ratio wings. - The linearized theories for compressible subsonic and supersonic aerodynamics. - The nonlinear transonic small disturbance potential flow theory, including supercritical wing sections, the extended transonic area rule with lift effect, transonic lifting line and swept or oblique wings to minimize wave drag. Unsteady flow is also briefly discussed. Numerical simulations based on relaxation mixed-finite difference methods are presented and explained. - Boundary layer theory for all Mach number regimes and viscous/inviscid interaction procedures used in practical aerodynamics calculations. There are also four chapters covering special topics, including wind turbines and propellers, airplane design, flow analogies and h...

  10. Aerodynamic Efficiency Enhancements for Air Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The need for aerodynamics-based efficiency enhancements for air vehicles is presented. Concepts are presented for morphing aircraft, to enable the aircraft to...

  11. Aerodynamic Efficiency Enhancements for Air Vehicles, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The need for aerodynamics-based efficiency enhancements for air vehicles is presented. The results of the Phase I investigation of concepts for morphing aircraft are...

  12. Influence of hinge point on flexible flap aerodynamic performance

    International Nuclear Information System (INIS)

    Zhao, H Y; Ye, Z; Wu, P; Li, C

    2013-01-01

    Large scale wind turbines lead to increasing blade lengths and weights, which presents new challenges for blade design. This paper selects NREL S809 airfoil, uses the parameterized technology to realize the flexible trailing edge deformation, researches the static aerodynamic characteristics of wind turbine blade airfoil with flexible deformation, and the dynamic aerodynamic characteristics in the process of continuous deformation, analyses the influence of hinge point position on flexible flap aerodynamic performance, in order to further realize the flexible wind turbine blade design and provides some references for the active control scheme. The results show that compared with the original airfoil, proper trailing edge deformation can improve the lift coefficient, reduce the drag coefficient, and thereby more efficiently realize flow field active control. With hinge point moving forward, total aerodynamic performance of flexible flap improves. Positive swing angle can push the transition point backward, thus postpones the occurrence of the transition phenomenon

  13. Innovative Aerodynamic Modeling for Aeroservoelastic Analysis and Design, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the development of a modern panel code for calculation of steady and unsteady aerodynamic loads needed for dynamic servoelastic (DSE) analysis of flight...

  14. The Aerodynamics of Heavy Vehicles III : Trucks, Buses and Trains

    CERN Document Server

    Orellano, Alexander

    2016-01-01

    This volume contains papers presented at the International conference “The Aerodynamics of Heavy Vehicles III: Trucks, Buses and Trains” held in Potsdam, Germany, September 12-17, 2010 by Engineering Conferences International (ECI). Leading scientists and engineers from industry, universities and research laboratories, including truck and high-speed train manufacturers and operators were brought together to discuss computer simulation and experimental techniques to be applied for the design of more efficient trucks, buses and high-speed trains in the future.   This conference was the third in the series after Monterey-Pacific Groove in 2002 and Lake Tahoe in 2007.  The presentations address different aspects of train aerodynamics (cross wind effects, underbody flow, tunnel aerodynamics and aeroacoustics, experimental techniques), truck aerodynamics (drag reduction, flow control, experimental and computational techniques) as well as computational fluid dynamics and bluff body, wake and jet flows.

  15. Simultaneous measurement of aerodynamic and heat transfer data ...

    Indian Academy of Sciences (India)

    entry, lack of precise information ... flight corridors since convective heating to the relatively sharp edges produces unacceptably high heating ..... problems and possible interaction of the tunnel wall boundary layer with the aerodynamic flow field of ...

  16. Advanced Aerodynamic Analysis For Propulsion Airframe Integration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Research in Flight is proposing to develop a fundamentally new, lower order, high fidelity solution approach for the aerodynamic analysis required for engine...

  17. High-Fidelity Aerodynamic Design with Transition Prediction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To enhance aerodynamic design capabilities, Desktop Aeronautics proposes to significantly improve upon the integration (performed in Phase 1) of a new sweep/taper...

  18. Aerodynamic characteristics and load of aerostats during flight

    Directory of Open Access Journals (Sweden)

    Janković Aleksandar M.

    2015-01-01

    Full Text Available Together with increased interest for aircraft type like aerostats, there is a specific need to study and describe the aerodynamics of the aerostat, experimentally as well as analytically and theoretically. Although aerostats fly relatively low speeds, flight dynamics can be extremely complex both in the form of movement and character of force generated. In addition to the vortex-nature loads and the stabilizing influence of the tail surfaces loads, flight regime of the aerostat is such that the inertial load cannot be neglected. This paper shows the basics of modern aerodynamics of aerostat, and aims to describe the aerodynamic characteristics and load of aerostat during flight, gives their physical interpretation and compares the experimental values and theoretical research, on the basis of modern aerodynamics and flight mechanics.

  19. High-Fidelity Aerodynamic Design with Transition Prediction, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — To enhance aerodynamic design capabilities, Desktop Aeronautics proposes to significantly improve upon the integration (performed in Phase 1) of a new sweep/taper...

  20. High-Fidelity Aerodynamic Design with Transition Prediction, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To enhance aerodynamic design capabilities, Desktop Aeronautics proposes to combine a new sweep/taper integrated-boundary-layer (IBL) code that includes transition...

  1. Learning Activities: Students and Recycling. [and] Automobile Aerodynamics.

    Science.gov (United States)

    McLaughlin, Charles H., Jr.; Schieber, Rich

    1994-01-01

    The first learning activity is intended to heighten students' awareness of the need for recycling, reuse, and reduction of materials; the second explores the aerodynamics of automobiles. Both include context, concept, objectives, procedure, and materials needed. (SK)

  2. The aerodynamics of running socks: Reality or rhetoric?

    Science.gov (United States)

    Ashford, Robert L; White, Peter; Indramohan, Vivek

    2011-12-01

    The primary objective of this study was to test the aerodynamic properties of a selection of running and general sports socks. Eleven pairs of socks were tested in a specially constructed rig which was inserted into a fully calibrated wind tunnel. Wind test speeds included 3, 4, 5, 6, 12 and 45m/s. There was no significant difference between any of the socks tested for their aerodynamic properties. The drag coefficients calculated for each sock varied proportionally with the Reynolds number. No particular sock was more aerodynamic than any of the socks tested. There is no evidence that a sock that is "aerodynamically designed" will help an athlete go faster. This may be more product rhetoric than reality, and further work is justified if such claims are being made. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Learn About SmartWay Verified Aerodynamic Devices

    Science.gov (United States)

    Installing EPA-verified aerodynamic technologies on your trailer can help fleet and truck owners save fuel. Options include gap reducers, skirts, or tails and can be installed individually or in combination.

  4. High-Fidelity Aerodynamic Design with Transition Prediction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To enhance aerodynamic design capabilities, Desktop Aeronautics proposes to combine a new sweep/taper integrated-boundary-layer (IBL) code that includes transition...

  5. Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft

    Science.gov (United States)

    1995-04-01

    This report describes the aerodynamics model used in a simulation model of : an advanced short takeoff and vertical landing lift-far fighter aircraft. The : simulation model was developed for use in piloted evaluations of transition and : hover fligh...

  6. Noise from wind turbines

    International Nuclear Information System (INIS)

    Andersen, B.; Jakobsen, J.

    1992-11-01

    Based on a previous project concerning the calculation of the amount of noise emanating from wind turbine arrays, this one examines the subject further by investigating whether there could be significant differences in the amount of noise made by individual wind turbines in an array, and whether the noise is transmitted in varying directions - so that when it is carried in the same direction as the wind blows it would appear to be louder. The aim was also to determine whether the previously used method of calculation lacked precision. It was found that differences in noise niveaux related to individual wind turbines were insignificant and that noise was not so loud when it was not borne in the direction of the wind. It was necessary to change the method of calculation as reckoning should include the influence of the terrain, wind velocity and distance. The measuring and calculation methods are exemplified and the resulting measurements are presented in detail. (AB)

  7. [Urban noise pollution].

    Science.gov (United States)

    Chouard, C H

    2001-07-01

    Noise is responsible for cochlear and general damages. Hearing loss and tinnitus greatly depend on sound intensity and duration. Short-duration sound of sufficient intensity (gunshot or explosion) will not be described because they are not currently encountered in our normal urban environment. Sound levels of less than 75 d (A) are unlikely to cause permanent hearing loss, while sound levels of about 85 d (A) with exposures of 8 h per day will produce permanent hearing loss after many years. Popular and largely amplified music is today one of the most dangerous causes of noise induced hearing loss. The intensity of noises (airport, highway) responsible for stress and general consequences (cardiovascular) is generally lower. Individual noise sensibility depends on several factors. Strategies to prevent damage from sound exposure should include the use of individual hearing protection devices, education programs beginning with school-age children, consumer guidance, increased product noise labelling, and hearing conservation programs for occupational settings.

  8. Noise Reduction Design of the Volute for a Centrifugal Compressor

    Science.gov (United States)

    Song, Zhen; Wen, Huabing; Hong, Liangxing; Jin, Yudong

    2017-08-01

    In order to effectively control the aerodynamic noise of a compressor, this paper takes into consideration a marine exhaust turbocharger compressor as a research object. According to the different design concept of volute section, tongue and exit cone, six different volute models were established. The finite volume method is used to calculate the flow field, whiles the finite element method is used for the acoustic calculation. Comparison and analysis of different structure designs from three aspects: noise level, isentropic efficiency and Static pressure recovery coefficient. The results showed that under the concept of volute section model 1 yielded the best result, under the concept of tongue analysis model 3 yielded the best result and finally under exit cone analysis model 6 yielded the best results.

  9. Test-retest reliability for aerodynamic measures of voice.

    Science.gov (United States)

    Awan, Shaheen N; Novaleski, Carolyn K; Yingling, Julie R

    2013-11-01

    The purpose of this study was to investigate the intrasubject reliability of aerodynamic characteristics of the voice within typical/normal speakers across testing sessions using the Phonatory Aerodynamic System (PAS 6600; KayPENTAX, Montvale, NJ). Participants were 60 healthy young adults (30 males and 30 females) between the ages 18 and 31 years with perceptually typical voice. Participants were tested using the PAS 6600 (Phonatory Aerodynamic System) on two separate days with approximately 1 week between each session at approximately the same time of day. Four PAS protocols were conducted (vital capacity, maximum sustained phonation, comfortable sustained phonation, and voicing efficiency) and measures of expiratory volume, maximum phonation time, mean expiratory airflow (during vowel production) and target airflow (obtained via syllable repetition), peak air pressure, aerodynamic power, aerodynamic resistance, and aerodynamic efficiency were obtained during each testing session. Associated acoustic measures of vocal intensity and frequency were also collected. All phonations were elicited at comfortable pitch and loudness. All aerodynamic and associated variables evaluated in this study showed useable test-retest reliability (ie, intraclass correlation coefficients [ICCs] ≥ 0.60). A high degree of mean test-retest reliability was found across all subjects for aerodynamic and associated acoustic measurements of vital capacity, maximum sustained phonation, glottal resistance, and vocal intensity (all with ICCs > 0.75). Although strong ICCs were observed for measures of glottal power and mean expiratory airflow in males, weaker overall results for these measures (ICC range: 0.60-0.67) were observed in females subjects and sizable coefficients of variation were observed for measures of power, resistance, and efficiency in both men and women. Differences in degree of reliability from measure to measure were revealed in greater detail using methods such as ICCs and

  10. Aerodynamics and Optimal Design of Biplane Wind Turbine Blades

    Science.gov (United States)

    Chiu, Phillip

    In order to improve energy capture and reduce the cost of wind energy, in the past few decades wind turbines have grown significantly larger. As their blades get longer, the design of the inboard region (near the blade root) becomes a trade-off between competing structural and aerodynamic requirements. State-of-the-art blades require thick airfoils near the root to efficiently support large loads inboard, but those thick airfoils have inherently poor aerodynamic performance. New designs are required to circumvent this design compromise. One such design is the "biplane blade", in which the thick airfoils in the inboard region are replaced with thinner airfoils in a biplane configuration. This design was shown previously to have significantly increased structural performance over conventional blades. In addition, the biplane airfoils can provide increased lift and aerodynamic efficiency compared to thick monoplane inboard airfoils, indicating a potential for increased power extraction. This work investigates the fundamental aerodynamic aspects, aerodynamic design and performance, and optimal structural design of the biplane blade. First, the two-dimensional aerodynamics of biplanes with relatively thick airfoils are investigated, showing unique phenomena which arise as a result of airfoil thickness. Next, the aerodynamic design of the full biplane blade is considered. Two biplane blades are designed for optimal aerodynamic loading, and their aerodynamic performance quantified. Considering blades with practical chord distributions and including the drag of the mid-blade joint, it is shown that biplane blades have comparable power output to conventional monoplane designs. The results of this analysis also show that the biplane blades can be designed with significantly less chord than conventional designs, a characteristic which enables larger blade designs. The aerodynamic loads on the biplane blades are shown to be increased in gust conditions and decreased under

  11. Aerodynamic models for high-amplitude, low reynolds flapping airfoils

    OpenAIRE

    Morales Tirado, Elisa

    2015-01-01

    In this thesis a new aerodynamic model of insect-like flapping flight for micro air vehicles has been developed. The New Predicted Aerodynamic Model (NPAM) was based on the model described by Weis-Fogh model in Energetics of Hovering Flight in Hummingbirds and Drosophila. In order to achieved the NPAM some variations were introduced regarding the geometry of the problem under study and also some improvements was done to the theory developed by Weis-Fogh. To have the required ...

  12. Estimation of aircraft aerodynamic derivatives using Extended Kalman Filter

    OpenAIRE

    Curvo, M.

    2000-01-01

    Design of flight control laws, verification of performance predictions, and the implementation of flight simulations are tasks that require a mathematical model of the aircraft dynamics. The dynamical models are characterized by coefficients (aerodynamic derivatives) whose values must be determined from flight tests. This work outlines the use of the Extended Kalman Filter (EKF) in obtaining the aerodynamic derivatives of an aircraft. The EKF shows several advantages over the more traditional...

  13. Adaptive Missile Flight Control for Complex Aerodynamic Phenomena

    Science.gov (United States)

    2017-08-09

    ARL-TR-8085 ● AUG 2017 US Army Research Laboratory Adaptive Missile Flight Control for Complex Aerodynamic Phenomena by Frank...Adaptive Missile Flight Control for Complex Aerodynamic Phenomena by Frank Fresconi and Jubaraj Sahu Weapons and Materials Research Directorate...currently valid OMB control number . PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) August 2017 2. REPORT TYPE

  14. Aerodynamic Design Optimisation for Utility Helicopter Drag Reduction

    OpenAIRE

    Grawunder, Moritz

    2017-01-01

    In order to reduce helicopter’s fuel flow requirements and emissions, the aerodynamic design of Twin-Engine-Light (TEL) class utility helicopter is revised. A viable approach for achieving efficiency gains is reducing the helicopter’s parasite drag. This is achieved by the development of aerodynamic fairings for the skid-landing-gear and passive flow control devices at the rear fuselage. On aggregate, a parasite drag benefit of 22% is achieved, which corresponds to about 10% fuel flow reducti...

  15. Unsteady Aerodynamic Modeling of A Maneuvering Aircraft Using Indicial Functions

    Science.gov (United States)

    2016-03-30

    Paper Undergraduate Student Paper Postgraduate Student Paper █ Unsteady Aerodynamic Modeling of A Maneuvering Aircraft Using Indicial Functions...this configuration exhibit strong pitch up behaviour at a relatively low angle of attack and lateral instability that can lead to serious aerodynamic...reduce flight speed, the reduced flight speed helps to have a smaller radius turn and total travelled time. Next, the airplane starts to roll as the

  16. Acoustic effects of oil-production activities on bowhead and white whales visible during spring migration near Pt. Barrow, Alaska-1990 phase: sound propagation and whale responses to playbacks of continuous drilling noise from an ice platform, as studied in pack ice conditions. Final report

    International Nuclear Information System (INIS)

    Richardson, W.J.; Greene, C.R.; Koski, W.R.; Smultea, M.A.; Cameron, G.

    1991-10-01

    The report concerns the effects of underwater noise from simulated oil production operations on the movements and behavior of bowhead and white whales migrating around northern Alaska in spring. An underwater sound projector suspended from pack ice was used to introduce recorded drilling noise and other test sounds into leads through the pack ice. These sounds were received and measured at various distances to determine the rate of sound attenuation with distance and frequency. The movements and behavior of bowhead and white whales approaching the operating projector were studied by aircraft- and ice-based observers. Some individuals of both species were observed to approach well within the ensonified area. However, behavioral changes and avoidance reactions were evident when the received sound level became sufficiently high. Reactions to aircraft are also discussed

  17. Propagation engineering in wireless communications

    CERN Document Server

    Ghasemi, Abdollah; Ghasemi, Farshid

    2016-01-01

    This book covers the basic principles for understanding radio wave propagation for common frequency bands used in radio-communications. This includes achievements and developments in propagation models for wireless communication. This book is intended to bridge the gap between the theoretical calculations and approaches to the applied procedures needed for radio links design in a proper manner. The authors emphasize propagation engineering by giving fundamental information and explain the use of basic principles together with technical achievements. This new edition includes additional information on radio wave propagation in guided media and technical issues for fiber optics cable networks with several examples and problems. This book also includes a solution manual - with 90 solved examples distributed throughout the chapters - and 158 problems including practical values and assumptions.

  18. Wave propagation in electromagnetic media

    CERN Document Server

    Davis, Julian L

    1990-01-01

    This is the second work of a set of two volumes on the phenomena of wave propagation in nonreacting and reacting media. The first, entitled Wave Propagation in Solids and Fluids (published by Springer-Verlag in 1988), deals with wave phenomena in nonreacting media (solids and fluids). This book is concerned with wave propagation in reacting media-specifically, in electro­ magnetic materials. Since these volumes were designed to be relatively self­ contained, we have taken the liberty of adapting some of the pertinent material, especially in the theory of hyperbolic partial differential equations (concerned with electromagnetic wave propagation), variational methods, and Hamilton-Jacobi theory, to the phenomena of electromagnetic waves. The purpose of this volume is similar to that of the first, except that here we are dealing with electromagnetic waves. We attempt to present a clear and systematic account of the mathematical methods of wave phenomena in electromagnetic materials that will be readily accessi...

  19. DOE Project on Heavy Vehicle Aerodynamic Drag

    Energy Technology Data Exchange (ETDEWEB)

    McCallen, R; Salari, K; Ortega, J; Castellucci, P; Pointer, D; Browand, F; Ross, J; Storms, B

    2007-01-04

    Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At highway speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; (2) Develop innovative drag reducing concepts that are operationally and economically sound; and (3) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices. The studies described herein provide a demonstration of the applicability of the experience developed in the analysis of the standard configuration of the Generic Conventional Model. The modeling practices and procedures developed in prior efforts have been applied directly to the assessment of new configurations including a variety of geometric modifications and add-on devices. Application to the low-drag 'GTS' configuration of the GCM has confirmed that the error in predicted drag coefficients increases as the relative contribution of the base drag resulting from the vehicle wake to the total drag increases and it is recommended that more advanced turbulence modeling strategies be applied under those circumstances. Application to a commercially-developed boat tail device has confirmed that this restriction does not apply to geometries where the relative contribution of the base drag to the total drag is reduced by modifying the geometry in that region. Application to a modified GCM geometry with an open grille and radiator has confirmed that the underbody flow, while important for underhood cooling, has little impact on the drag

  20. Mechanics and aerodynamics of insect flight control.

    Science.gov (United States)

    Taylor, G K

    2001-11-01

    Insects have evolved sophisticated fight control mechanisms permitting a remarkable range of manoeuvres. Here, I present a qualitative analysis of insect flight control from the perspective of flight mechanics, drawing upon both the neurophysiology and biomechanics literatures. The current literature does not permit a formal, quantitative analysis of flight control, because the aerodynamic force systems that biologists have measured have rarely been complete and the position of the centre of gravity has only been recorded in a few studies. Treating the two best-known insect orders (Diptera and Orthoptera) separately from other insects, I discuss the control mechanisms of different insects in detail. Recent experimental studies suggest that the helicopter model of flight control proposed for Drosophila spp. may be better thought of as a facultative strategy for flight control, rather than the fixed (albeit selected) constraint that it is usually interpreted to be. On the other hand, the so-called 'constant-lift reaction' of locusts appears not to be a reflex for maintaining constant lift at varying angles of attack, as is usually assumed, but rather a mechanism to restore the insect to pitch equilibrium following a disturbance. Differences in the kinematic control mechanisms used by the various insect orders are related to differences in the arrangement of the wings, the construction of the flight motor and the unsteady mechanisms of lift production that are used. Since the evolution of insect flight control is likely to have paralleled the evolutionary refinement of these unsteady aerodynamic mechanisms, taxonomic differences in the kinematics of control could provide an assay of the relative importance of different unsteady mechanisms. Although the control kinematics vary widely between orders, the number of degrees of freedom that different insects can control will always be limited by the number of independent control inputs that they use. Control of the moments