WorldWideScience

Sample records for aerobiosis

  1. Comparative genomic analysis reveals 2-oxoacid dehydrogenase complex lipoylation correlation with aerobiosis in archaea.

    Directory of Open Access Journals (Sweden)

    Kirill Borziak

    Full Text Available Metagenomic analyses have advanced our understanding of ecological microbial diversity, but to what extent can metagenomic data be used to predict the metabolic capacity of difficult-to-study organisms and their abiotic environmental interactions? We tackle this question, using a comparative genomic approach, by considering the molecular basis of aerobiosis within archaea. Lipoylation, the covalent attachment of lipoic acid to 2-oxoacid dehydrogenase multienzyme complexes (OADHCs, is essential for metabolism in aerobic bacteria and eukarya. Lipoylation is catalysed either by lipoate protein ligase (LplA, which in archaea is typically encoded by two genes (LplA-N and LplA-C, or by a lipoyl(octanoyl transferase (LipB or LipM plus a lipoic acid synthetase (LipA. Does the genomic presence of lipoylation and OADHC genes across archaea from diverse habitats correlate with aerobiosis? First, analyses of 11,826 biotin protein ligase (BPL-LplA-LipB transferase family members and 147 archaeal genomes identified 85 species with lipoylation capabilities and provided support for multiple ancestral acquisitions of lipoylation pathways during archaeal evolution. Second, with the exception of the Sulfolobales order, the majority of species possessing lipoylation systems exclusively retain LplA, or either LipB or LipM, consistent with archaeal genome streamlining. Third, obligate anaerobic archaea display widespread loss of lipoylation and OADHC genes. Conversely, a high level of correspondence is observed between aerobiosis and the presence of LplA/LipB/LipM, LipA and OADHC E2, consistent with the role of lipoylation in aerobic metabolism. This correspondence between OADHC lipoylation capacity and aerobiosis indicates that genomic pathway profiling in archaea is informative and that well characterized pathways may be predictive in relation to abiotic conditions in difficult-to-study extremophiles. Given the highly variable retention of gene repertoires across

  2. Truce with oxygen - A naerobiosis outcompete aerobiosis in the Antarctic lacustrine bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Nair, S.; DeSouza, M.J.B.D.; Chandramohan, D.

    , a reductant i.e. Na2S at a final concentration of 0.0125% (125 ppm) was added before incubating the samples. These experiments were carried out in screw-capped tubes filled to the brim to minimize oxidation. As the tubes were incubated at low... counts (RAnVCs) were 4 orders less than the TDC and 2 orders higher than the retrievable aerobic viable counts (RAeVCs). While the retrieval of total anaerobic counts was about 0.01%, that of TDLO and FB were 0.003 and 0.001 of TDC, respectively, i.e...

  3. Transition of an Anaerobic Escherichia coli Culture to Aerobiosis: Balancing mRNA and Protein Levels in a Demand-Directed Dynamic Flux Balance Analysis.

    Directory of Open Access Journals (Sweden)

    Joachim von Wulffen

    Full Text Available The facultative anaerobic bacterium Escherichia coli is frequently forced to adapt to changing environmental conditions. One important determinant for metabolism is the availability of oxygen allowing a more efficient metabolism. Especially in large scale bioreactors, the distribution of oxygen is inhomogeneous and individual cells encounter frequent changes. This might contribute to observed yield losses during process upscaling. Short-term gene expression data exist of an anaerobic E. coli batch culture shifting to aerobic conditions. The data reveal temporary upregulation of genes that are less efficient in terms of energy conservation than the genes predicted by conventional flux balance analyses. In this study, we provide evidence for a positive correlation between metabolic fluxes and gene expression. We then hypothesize that the more efficient enzymes are limited by their low expression, restricting flux through their reactions. We define a demand that triggers expression of the demanded enzymes that we explicitly include in our model. With these features we propose a method, demand-directed dynamic flux balance analysis, dddFBA, bringing together elements of several previously published methods. The introduction of additional flux constraints proportional to gene expression provoke a temporary demand for less efficient enzymes, which is in agreement with the transient upregulation of these genes observed in the data. In the proposed approach, the applied objective function of growth rate maximization together with the introduced constraints triggers expression of metabolically less efficient genes. This finding is one possible explanation for the yield losses observed in large scale bacterial cultivations where steady oxygen supply cannot be warranted.

  4. Genes de Vibrio cholerae involucrados en la tolerancia al cobre

    Directory of Open Access Journals (Sweden)

    Karen Marrero

    2010-01-01

    sensibilidad a cobre en aerobiosis y anaerobiosis. El principal sistema de resistencia a cobre en V. cholerae está constituido por la ATPasa transportadora de cationes CopA, codificada por VC2215, que funciona en aerobiosis y anaerobiosis. La proteína hipotética conservada codificada por VC2216 no es significativa en la resistencia a cobre en aerobiosis, pero en anaerobiosis es importante si CopA es funcional. La proteína codificada por los genes VCA0261-0260, anotados previamente como independientes, es importante en aerobiosis y a una alta concentración de cobre, pero en anaerobiosis su participación en la resistencia a cobre es solo evidente si CopA no es funcional. De esta manera, los sistemas de tolerancia a cobre en V. cholerae incluyen el producto de los genes VC2215, VC2216 y VCA0261-0260, que desempeñan diferentes funciones en diversas condiciones de cultivo.

  5. Effect of the absence of the CcpA gene on growth, metabolic production, and stress tolerance in Lactobacillus delbrueckii ssp. bulgaricus.

    Science.gov (United States)

    Li, C; Sun, J W; Zhang, G F; Liu, L B

    2016-01-01

    The catabolite control protein A (CcpA) is a kind of multi-effect regulatory protein. In the study, the effect of the inactivation of CcpA and aerobic conditions on the growth, metabolic production, and stress tolerance to heat, oxidative, and cold stresses in Lactobacillus delbrueckii ssp. bulgaricus was investigated. Results showed that inactivation of CcpA distinctly hindered growth. Total lactic acid concentration was significantly lower in aerobiosis for both strains and was lower for the mutant strain than L. bulgaricus. Acetic acid production from the mutant strain was higher than L. bulgaricus in aerobiosis compared with anaerobiosis. Enzyme activities, lactate dehydrogenase (LDH), phosphate fructose kinase (PFK), pyruvate kinase (PK), and pyruvic dehydrogenase (PDH), were significantly lower in the mutant strain than L. bulgaricus. The diameters of inhibition zone were 13.59 ± 0.02 mm and 9.76 ± 0.02 mm for L. bulgaricus in anaerobiosis and aerobiosis, respectively; and 8.12 ± 0.02 mm and 7.38 ± 0.02 mm for the mutant in anaerobiosis and aerobiosis, respectively. For both strains, cells grown under aerobic environment possess more stress tolerance. This is the first study in which the CcpA-negative mutant of L. bulgaricus is constructed and the effect of aerobic growth on stress tolerance of L. bulgaricus is evaluated. Although aerobic cultivation does not significantly improve growth, it does improve stress tolerance.

  6. INDUCTION OF ANAEROBIC PROCESSES IN BAIKAL ENDEMICS EULIMNOGAMMARUS VITTATUS (DYB. AND E. VERRUCOSUS (DYB. (AMPHIPODA, CRUSTACEA

    Directory of Open Access Journals (Sweden)

    Timofeyev M.A.

    2006-03-01

    Full Text Available The data confirming the ability of Baikalian endemic species Eulimnogammarus vittatus (Dyb. and E. verrucosus (Dyb. to activate anaerobic glycolysis under hypoxia are presented. The differences in the degree and the rate of lactic acid accumulation and remetabolisation in returning to aerobiosis are noted in the species concerned. On the example of E. vittatus the ability of Baikalian endemics to activate anaerobic lipolysis and process of anaerobic formation of succinate is shown

  7. INDUCTION OF ANAEROBIC PROCESSES IN BAIKAL ENDEMICS EULIMNOGAMMARUS VITTATUS (DYB.) AND E. VERRUCOSUS (DYB.) (AMPHIPODA, CRUSTACEA)

    OpenAIRE

    Timofeyev M.A; Kirichenko K.A.; Rokhin A.V.; Bedulina D.S.; Chernyshova K.P.; Pobezhimova T.P.

    2006-01-01

    The data confirming the ability of Baikalian endemic species Eulimnogammarus vittatus (Dyb.) and E. verrucosus (Dyb.) to activate anaerobic glycolysis under hypoxia are presented. The differences in the degree and the rate of lactic acid accumulation and remetabolisation in returning to aerobiosis are noted in the species concerned. On the example of E. vittatus the ability of Baikalian endemics to activate anaerobic lipolysis and process of anaerobic formation of succinate is shown

  8. Manganese Oxidation by Bacteria: Biogeochemical Aspects

    Digital Repository Service at National Institute of Oceanography (India)

    Sujith, P.P.; LokaBharathi, P.A.

    and protection against oxidative stress in bacteria (Christianson 1997 and Spiro et al. 2010). It is important for general metabolism, carbohydrate metabolism and for both anabolic and catabolic functions in anaerobiosis and aerobiosis (Crowley et al. 2000... in biochemical processes in rivers must be great but require further investigations to know about their nutritional needs, metabolism and enzymatic systems. Knowing the importance of Mn 2+ oxidation by bacteria Johnson and Stokes (1966) readily stated...

  9. SUT1 suppresses sec14-1 through upregulation of CSR1 in Saccharomyces cerevisiae.

    Science.gov (United States)

    Régnacq, Matthieu; Ferreira, Thierry; Puard, Julien; Bergès, Thierry

    2002-11-01

    SUT1 constitutive expression in aerobiosis suppressed the ts phenotype of the sec14-1 mutation, restored growth of the sec14-null mutant and corrected the translocation defect of the vacuolar carboxypeptidase Y. Therefore SUT1 was shown to be a novel potent sec14-1 suppressor. Further, the hypoxic gene CSR1 (YLR380W), a Sec14 homolog, was upregulated upon SUT1 constitutive expression. In addition, SUT1 effects on both sec14-1 suppression and on free sterol composition were abolished in a csr1-null background, showing that this gene acts downstream of SUT1. PMID:12435498

  10. Iron is required to relieve inhibitory effects on NifL on transcriptional activation by NifA in Klebsiella pneumoniae.

    OpenAIRE

    Schmitz, R. A.; He, L.; Kustu, S

    1996-01-01

    In Klebsiella pneumoniae, products of the nitrogen fixation nifLA operon regulate transcription of the other nif operons. NifA activates transcription by sigma54-holoenzyme. In vivo, NifL antagonizes the action of NifA under aerobic conditions or in the presence of combined nitrogen. In contrast to a previous report, we show that depletion of iron (Fe) from the growth medium with the chelating agent o-phenanthroline (20 microM) mimics aerobiosis or combined nitrogen in giving rise to inhibiti...

  11. Survival rate of campylobacter coli strains in sterile buffalo and bovine milk Tasas de sobrevida de Campylobacter coli en leche de búfalo y de bovino

    OpenAIRE

    A. TRESIERRA-AYALA; Guzmán, A.; H Fernández

    2001-01-01

    The survival rate of five Campylobacter coli strains, isolated from bovine faeces (3) and from buffalo faeces (2), was studied in sterile buffalo and bovine milk kept at 4°C under aerobic conditions. All strains lost their viability substantially more rapidly in buffalo milk than in bovine milkSe determinó, en leche de bovino y de búfalo autoclavadas y mantenidas a 4ºC bajo condiciones de aerobiosis, la sobrevida de cinco cepas de Campylobacter coli aisladas de fecas de bovino (3) y ...

  12. Time dynamics of the Bacillus cereus exoproteome are shaped by cellular oxidation.

    Science.gov (United States)

    Madeira, Jean-Paul; Alpha-Bazin, Béatrice; Armengaud, Jean; Duport, Catherine

    2015-01-01

    At low density, Bacillus cereus cells release a large variety of proteins into the extracellular medium when cultivated in pH-regulated, glucose-containing minimal medium, either in the presence or absence of oxygen. The majority of these exoproteins are putative virulence factors, including toxin-related proteins. Here, B. cereus exoproteome time courses were monitored by nanoLC-MS/MS under low-oxidoreduction potential (ORP) anaerobiosis, high-ORP anaerobiosis, and aerobiosis, with a specific focus on oxidative-induced post-translational modifications of methionine residues. Principal component analysis (PCA) of the exoproteome dynamics indicated that toxin-related proteins were the most representative of the exoproteome changes, both in terms of protein abundance and their methionine sulfoxide (Met(O)) content. PCA also revealed an interesting interconnection between toxin-, metabolism-, and oxidative stress-related proteins, suggesting that the abundance level of toxin-related proteins, and their Met(O) content in the B. cereus exoproteome, reflected the cellular oxidation under both aerobiosis and anaerobiosis.

  13. Time dynamics of the Bacillus cereus exoproteome are shaped by cellular oxidation

    Directory of Open Access Journals (Sweden)

    Jean-Paul eMadeira

    2015-04-01

    Full Text Available At low density, Bacillus cereus cells release a large variety of proteins into the extracellular medium when cultivated in pH-regulated, glucose-containing minimal medium, either in the presence or absence of oxygen. The majority of these exoproteins are putative virulence factors, including toxin-related proteins. Here, B. cereus exoproteome time courses were monitored by nanoLC-MS/MS under low-oxidoreduction potential (ORP anaerobiosis, high-ORP anaerobiosis, and aerobiosis, with a specific focus on oxidative-induced post-translational modifications of methionine residues. Principal component analysis (PCA of the exoproteome dynamics indicated that toxin-related proteins were the most representative of the exoproteome changes, both in terms of protein abundance and their methionine sulfoxide (Met(O content. PCA also revealed an interesting interconnection between toxin-, metabolism-, and oxidative stress–related proteins, suggesting that the abundance level of toxin-related proteins, and their Met(O content in the B. cereus exoproteome, reflected the cellular oxidation under both aerobiosis and anaerobiosis.

  14. Effect of olive storage conditions on Chemlali olive oil quality and the effective role of fatty acids alkyl esters in checking olive oils authenticity.

    Science.gov (United States)

    Jabeur, Hazem; Zribi, Akram; Abdelhedi, Ridha; Bouaziz, Mohamed

    2015-02-15

    The present paper accounts for the study of the storage of Chemlali olive fruits at two conditions of limited aerobiosis: in closed plastic bags and in open perforated plastic boxes for different periods before oil extraction. The ultimate objective is to investigate the effect of the container type of the postharvest fruit storage on the deterioration of the olive oil quality. The results have shown that the oil quality of Chemlali olives deteriorated more rapidly during fruit storage in closed plastic bags than in perforated plastic boxes. Therefore, the use of perforated plastic boxes is recommended for keeping the olives for longer periods of storage. The repeated measures analysis of variance of all parameters analyzed indicated that the olive oil quality is mainly affected by the olives storage conditions (containers type and storage periods). Finally, blends of extra-virgin olive oil and mildly deodorized low-quality olive oils can be detected by their alkyl esters concentrations.

  15. Effect of environmental conditions on production of toxic shock syndrome toxin 1 by Staphylococcus aureus.

    Science.gov (United States)

    Wong, A C; Bergdoll, M S

    1990-01-01

    The kinetics of toxic shock syndrome toxin 1 (TSST-1) production by Staphylococcus aureus was studied in a fermentor in which aeration rate, atmospheric composition, pH, and temperature were controlled. The toxin was synthesized at a maximal rate during the exponential phase. High bacterial populations were not necessarily accompanied by high TSST-1 yields. Aerobiosis increased TSST-1 production, but excessive aeration had an adverse effect. Addition of CO2 enhanced TSST-1 yield by increasing toxin production rate and efficiency. Cultures with no pH control made more TSST-1 than those maintained at pH 5.5 to 7.5. Maximum TSST-1 yields were obtained when cultures were supplied with air (20 cm3/min) and CO2 (5 cm3/min) via a sintered glass sparger. PMID:2108084

  16. Growth kinetic study of Tetratrichomonas didelphidis isolated from opossum Lutreolina crassicaudata and interaction with a prokaryotic cell.

    Science.gov (United States)

    Tasca, T; DeCarli, G A

    2001-08-01

    Tetratrichomonas didelphidis is a flagellate protozoan found in the intestine, cecum and colon of opossums, Didelphis marsupialis. This work reports the occurrence of T. didelphidis in another opossum species, Lutreolina crassicaudata. The strain was cultivated in monoxenic culture with Escherichia coli in Diamond (TYM) medium without maltose and with starch solution (trypticase-yeast extract-starch), pH 7.5 at 28 degrees C. The growth kinetic study of T. didelphidis showed a longer time of growth and a higher number of trophozoites when inoculated with E. coli than in axenic cultures, in aerobiosis as well as under anaerobic conditions. Scanning electron microscopy showed that the bacteria adhered throughout the protozoan body and probably evoked endocytic channels, strongly suggesting the existence of endocytosis of rods by T. didelphidis. Our preliminary results suggest that the in vitro culture of T. didelphidis depends on E. coli as a growth-promoting partner, and requires monoxenic cultivation. PMID:11510998

  17. Biodegradación de compuestos fenólicos del alpechín con Aspergillus terreus

    Directory of Open Access Journals (Sweden)

    García Paeja, María P.

    1992-04-01

    Full Text Available Olive mill wastewater degradation by Aspergillus terreus and under aerobic conditions at 28°C, was measured by the parameter of phenol content. We have explored the effect of different concentrations of olive mill wastewater upon the activity of Aspergillus terreus. Through HPLC, 10 phenol compounds (90% of the total phenolic content of the olive mill wastewater were identified.Se estudia la degradación de alpechines con Aspergillus terreus en condiciones de aerobiosis y temperatura de 28°C, utilizando como parámetro el contenido fenólico. Se analiza el efecto de la concentración de alpechín con Aspergillus terreus utilizando el mismo parámetro. Se han identificado por cromatografía líquida de alta eficacia (CLAE 10 compuestos fenólicos que suponen el 90% del total del alpechín.

  18. Survival rate of campylobacter coli strains in sterile buffalo and bovine milk Tasas de sobrevida de Campylobacter coli en leche de búfalo y de bovino

    Directory of Open Access Journals (Sweden)

    A. TRESIERRA-AYALA

    2001-01-01

    Full Text Available The survival rate of five Campylobacter coli strains, isolated from bovine faeces (3 and from buffalo faeces (2, was studied in sterile buffalo and bovine milk kept at 4°C under aerobic conditions. All strains lost their viability substantially more rapidly in buffalo milk than in bovine milkSe determinó, en leche de bovino y de búfalo autoclavadas y mantenidas a 4ºC bajo condiciones de aerobiosis, la sobrevida de cinco cepas de Campylobacter coli aisladas de fecas de bovino (3 y de búfalo (2. Todas las cepas perdieron su viabilidad más rápidamente en leche de búfalo que en leche bovina

  19. Earth's earliest biosphere: Its origin and evolution

    International Nuclear Information System (INIS)

    Some of the subjects discussed are related to the early biogeologic history, the nature of the earth prior to the oldest known rock record, the early earth and the Archean rock record, the prebiotic organic syntheses and the origin of life, Precambrian organic geochemistry, the biochemical evolution of anaerobic energy conversion, the isotopic inferences of ancient biochemistries, Archean stromatolites providing evidence of the earth's earliest benthos, Archean microfossils, the geologic evolution of the Archean-Early Proterozoic earth, and the environmental evolution of the Archean-Early Proterozoic earth. Other topics examined are concerned with geochemical evidence bearing on the origin of aerobiosis, biological and biochemical effects of the development of an aerobic environment, Early Proterozoic microfossils, the evolution of earth's earliest ecosystems, and geographic and geologic data for processed rock samples. Attention is given to a processing procedure for abiotic samples and calculation of model atmospheric compositions, and procedures of organic geochemical analysis

  20. MÉTODO EFECTIVO PARA LA DESINFECCIÓN TOTAL DE ESPORAS DE HONGOS MICORRIZÓGENOS ARBUSCULARES (HMA: AISLAMIENTO Y CARACTERIZACIÓN DE BACTERIAS ENDOSPÓRICAS EN Glomus clarum

    Directory of Open Access Journals (Sweden)

    Lorelí Mirabal

    2002-01-01

    Full Text Available Los hongos micorrizógenos arbusculares (HMA son endosimbiontes obligados, presentes en muchos ecosistemas naturales y agrícolas, con gran responsabilidad en la integridad fisiológica de la planta. Esta investigación se basa en la realización de diferentes aislamientos de Glomus clarum, proveniente de cultivos puros del cepario del INCA. Se aislaron y purificaron 25 cepas bacterianas endospóricas, a las cuales se les realizaron varias pruebas morfológicas y bioquímicas, siendo muy interesantes la aerobiosis y la capacidad nitrofijadora. Tres cepas bacterianas aisladas tienen características coincidentes con el endófito diazótrofo Gluconoacetobacter diazotrophicus. Además, se estableció un método efectivo para la desinfección total de la pared externa de las esporas de HMA.

  1. Combined effect of anaerobiosis, low pH and cold temperatures on the growth capacities of psychrotrophic Bacillus cereus.

    Science.gov (United States)

    Guérin, Alizée; Dargaignaratz, Claire; Broussolle, Véronique; Clavel, Thierry; Nguyen-The, Christophe

    2016-10-01

    Psychrotrophic strains of the foodborne pathogen Bacillus cereus can multiply during the refrigerated storage of food products. The aim of this study was to determine the impact of anaerobiosis on the growth of two psychrotrophic B. cereus strains exposed to acidic pH at a cold temperature in a laboratory medium. At 10 °C, growth occurred at pH values equal to or higher than 5.7 during anaerobiosis, whereas aerobic growth was observed from pH 5.4. Growth rates during aerobiosis were similar at pH 5.4 and pH 7. No growth was observed for the two tested strains at 8 °C without oxygen regardless of the pH; however, both strains grew at this temperature from pH 5.4 in the presence of oxygen. These pH growth limits in aerobiosis are consistent with those reported for different strains and different foods or media, but no other studies have described anaerobic growth at acidic pH values. The maximal B. cereus concentration was approximately 6.0 log10 CFU/ml for cultures in the absence of oxygen and approximately 8.0 log10 CFU/ml for cultures in the presence of oxygen. In conclusion, we found that the combination of anaerobiosis, pH < 5.7 at 10 °C, or anaerobiosis and temperatures ≤8 °C prevent psychrotrophic B. cereus growth. PMID:27375252

  2. Comparison of Proteomics Profiles of Campylobacter jejuni Strain Bf under Microaerobic and Aerobic Conditions

    Science.gov (United States)

    Rodrigues, Ramila C.; Haddad, Nabila; Chevret, Didier; Cappelier, Jean-Michel; Tresse, Odile

    2016-01-01

    Campylobacter jejuni accounts for one of the leading causes of foodborne bacterial enteritis in humans. Despite being considered an obligate microaerobic microorganism, C. jejuni is regularly exposed to oxidative stress. However, its adaptive strategies to survive the atmospheric oxygen level during transmission to humans remain unclear. Recently, the clinical C. jejuni strain Bf was singled out for its unexpected ability to grow under ambient atmosphere. Here, we aimed to understand better the biological mechanisms underlying its atypical aerotolerance trait using two-dimensional protein electrophoresis, gene expression, and enzymatic activities. Forty-seven proteins were identified with a significantly different abundance between cultivation under microaerobic and aerobic conditions. The over-expressed proteins in aerobiosis belonged mainly to the oxidative stress response, enzymes of the tricarboxylic acid cycle, iron uptake, and regulation, and amino acid uptake when compared to microaerobic conditions. The higher abundance of proteins related to oxidative stress was correlated to dramatically higher transcript levels of the corresponding encoding genes in aerobic conditions compared to microaerobic conditions. In addition, a higher catalase-equivalent activity in strain Bf was observed. Despite the restricted catabolic capacities of C. jejuni, this study reveals that strain Bf is equipped to withstand oxidative stress. This ability could contribute to emergence and persistence of particular strains of C. jejuni throughout food processing or macrophage attack during human infection.

  3. Cadmium removal by Euglena gracilis is enhanced under anaerobic growth conditions.

    Science.gov (United States)

    Santiago-Martínez, M Geovanni; Lira-Silva, Elizabeth; Encalada, Rusely; Pineda, Erika; Gallardo-Pérez, Juan Carlos; Zepeda-Rodriguez, Armando; Moreno-Sánchez, Rafael; Saavedra, Emma; Jasso-Chávez, Ricardo

    2015-05-15

    The facultative protist Euglena gracilis, a heavy metal hyper-accumulator, was grown under photo-heterotrophic and extreme conditions (acidic pH, anaerobiosis and with Cd(2+)) and biochemically characterized. High biomass (8.5×10(6)cellsmL(-1)) was reached after 10 days of culture. Under anaerobiosis, photosynthetic activity built up a microaerophilic environment of 0.7% O₂, which was sufficient to allow mitochondrial respiratory activity: glutamate and malate were fully consumed, whereas 25-33% of the added glucose was consumed. In anaerobic cells, photosynthesis but not respiration was activated by Cd(2+) which induced higher oxidative stress. Malondialdehyde (MDA) levels were 20 times lower in control cells under anaerobiosis than in aerobiosis, although Cd(2+) induced a higher MDA production. Cd(2+) stress induced increased contents of chelating thiols (cysteine, glutathione and phytochelatins) and polyphosphate. Biosorption (90%) and intracellular accumulation (30%) were the mechanisms by which anaerobic cells removed Cd(2+) from medium, which was 36% higher versus aerobic cells. The present study indicated that E. gracilis has the ability to remove Cd(2+) under anaerobic conditions, which might be advantageous for metal removal in sediments from polluted water bodies or bioreactors, where the O₂ concentration is particularly low. PMID:25698571

  4. Staphylococcus epidermidis: metabolic adaptation and biofilm formation in response to different oxygen concentrations.

    Science.gov (United States)

    Uribe-Alvarez, Cristina; Chiquete-Félix, Natalia; Contreras-Zentella, Martha; Guerrero-Castillo, Sergio; Peña, Antonio; Uribe-Carvajal, Salvador

    2016-02-01

    Staphylococcus epidermidis has become a major health hazard. It is necessary to study its metabolism and hopefully uncover therapeutic targets. Cultivating S. epidermidis at increasing oxygen concentration [O2] enhanced growth, while inhibiting biofilm formation. Respiratory oxidoreductases were differentially expressed, probably to prevent reactive oxygen species formation. Under aerobiosis, S. epidermidis expressed high oxidoreductase activities, including glycerol-3-phosphate dehydrogenase, pyruvate dehydrogenase, ethanol dehydrogenase and succinate dehydrogenase, as well as cytochromes bo and aa3; while little tendency to form biofilms was observed. Under microaerobiosis, pyruvate dehydrogenase and ethanol dehydrogenase decreased while glycerol-3-phosphate dehydrogenase and succinate dehydrogenase nearly disappeared; cytochrome bo was present; anaerobic nitrate reductase activity was observed; biofilm formation increased slightly. Under anaerobiosis, biofilms grew; low ethanol dehydrogenase, pyruvate dehydrogenase and cytochrome bo were still present; nitrate dehydrogenase was the main terminal electron acceptor. KCN inhibited the aerobic respiratory chain and increased biofilm formation. In contrast, methylamine inhibited both nitrate reductase and biofilm formation. The correlation between the expression and/or activity or redox enzymes and biofilm-formation activities suggests that these are possible therapeutic targets to erradicate S. epidermidis.

  5. Proteomic evidences for rex regulation of metabolism in toxin-producing Bacillus cereus ATCC 14579.

    Science.gov (United States)

    Laouami, Sabrina; Clair, Géremy; Armengaud, Jean; Duport, Catherine

    2014-01-01

    The facultative anaerobe, Bacillus cereus, causes diarrheal diseases in humans. Its ability to deal with oxygen availability is recognized to be critical for pathogenesis. The B. cereus genome comprises a gene encoding a protein with high similarities to the redox regulator, Rex, which is a central regulator of anaerobic metabolism in Bacillus subtilis and other Gram-positive bacteria. Here, we showed that B. cereus rex is monocistronic and down-regulated in the absence of oxygen. The protein encoded by rex is an authentic Rex transcriptional factor since its DNA binding activity depends on the NADH/NAD+ ratio. Rex deletion compromised the ability of B. cereus to cope with external oxidative stress under anaerobiosis while increasing B. cereus resistance against such stress under aerobiosis. The deletion of rex affects anaerobic fermentative and aerobic respiratory metabolism of B. cereus by decreasing and increasing, respectively, the carbon flux through the NADH-recycling lactate pathway. We compared both the cellular proteome and exoproteome of the wild-type and Δrex cells using a high throughput shotgun label-free quantitation approach and identified proteins that are under control of Rex-mediated regulation. Proteomics data have been deposited to the ProteomeXchange with identifier PXD000886. The data suggest that Rex regulates both the cross-talk between metabolic pathways that produce NADH and NADPH and toxinogenesis, especially in oxic conditions.

  6. Proteomic evidences for rex regulation of metabolism in toxin-producing Bacillus cereus ATCC 14579.

    Directory of Open Access Journals (Sweden)

    Sabrina Laouami

    Full Text Available The facultative anaerobe, Bacillus cereus, causes diarrheal diseases in humans. Its ability to deal with oxygen availability is recognized to be critical for pathogenesis. The B. cereus genome comprises a gene encoding a protein with high similarities to the redox regulator, Rex, which is a central regulator of anaerobic metabolism in Bacillus subtilis and other Gram-positive bacteria. Here, we showed that B. cereus rex is monocistronic and down-regulated in the absence of oxygen. The protein encoded by rex is an authentic Rex transcriptional factor since its DNA binding activity depends on the NADH/NAD+ ratio. Rex deletion compromised the ability of B. cereus to cope with external oxidative stress under anaerobiosis while increasing B. cereus resistance against such stress under aerobiosis. The deletion of rex affects anaerobic fermentative and aerobic respiratory metabolism of B. cereus by decreasing and increasing, respectively, the carbon flux through the NADH-recycling lactate pathway. We compared both the cellular proteome and exoproteome of the wild-type and Δrex cells using a high throughput shotgun label-free quantitation approach and identified proteins that are under control of Rex-mediated regulation. Proteomics data have been deposited to the ProteomeXchange with identifier PXD000886. The data suggest that Rex regulates both the cross-talk between metabolic pathways that produce NADH and NADPH and toxinogenesis, especially in oxic conditions.

  7. Microbiota associated with chronic osteomyelitis of the jaws

    Directory of Open Access Journals (Sweden)

    Elerson Gaetti-Jardim Júnior

    2010-12-01

    Full Text Available Chronic osteomyelitis of maxilla and mandible is rare in industrialized countries and its occurrence in developing countries is associated with trauma and surgery, and its microbial etiology has not been studied thoroughly. The aim of this investigation was to evaluate the microbiota associated with osteomyelitis of mandible or maxilla from some Brazilian patients. After clinical and radiographic evaluation, samples of bone sequestra, purulent secretion, and biopsies of granulomatous tissues from twenty-two patients with chronic osteomyelitis of mandible and maxilla were cultivated and submitted for pathogen detection by using a PCR method. Each patient harbored a single lesion. Bacterial isolation was performed on fastidious anaerobe agar supplemented with hemin, menadione and horse blood for anaerobes; and on tryptic soy agar supplemented with yeast extract and horse blood for facultative bacteria and aerobes. Plates were incubated in anaerobiosis and aerobiosis, at 37ºC for 14 and 3 days, respectively. Bacteria were cultivated from twelve patient samples; and genera Actinomyces, Fusobacterium, Parvimonas, and Staphylococcus were the most frequent. By PCR, bacterial DNA was detected from sixteen patient samples. The results suggest that cases of chronic osteomyelitis of the jaws are usually mixed anaerobic infections, reinforcing the concept that osteomyelitis of the jaws are mainly related to microorganisms from the oral environment, and periapical and periodontal infections may act as predisposing factors.

  8. Anaerobic side-stream reactor for excess sludge reduction: 5-year management of a full-scale plant.

    Science.gov (United States)

    Velho, V F; Foladori, P; Andreottola, G; Costa, R H R

    2016-07-15

    The long-term performances of a full-scale anaerobic side-stream reactor (ASSR) aimed at sludge reduction have been monitored for the first time, in comparison with a conventional activated sludge process (CAS). The plant was integrated with an ASSR treatment of 2293-3293 m(3). Operational parameters in the ASSR were: ORP -250 mV, interchange ratio of 7-10%, hydraulic retention time of 7 d. No worsening of effluent quality was observed in the ASSR configuration and removal efficiency of COD and NH4 was above 95%. A slight increase in the Sludge Volume Index did not cause worsening in effluent solids concentration. The observed sludge yield (Yobs) passed from 0.44 kgTSS/kgCOD in the CAS to 0.35 in the ASSR configuration. The reduction of Yobs by 20% is lower than expected from the literature where sythetic wastewater is used, indicating that sludge reduction efficiency is largely affected by inert mass fed with influent real wastewater. An increase by 45% of the ASSR volume did not promote a further reduction of Yobs, because sludge reduction is affected not solely by endogenous decay but also by other factors such as interchange ratio and aerobiosis/anaerobiosis alternation. PMID:27107390

  9. Microaerobic steroid biosynthesis and the molecular fossil record of Archean life

    Science.gov (United States)

    Waldbauer, Jacob R.; Newman, Dianne K.; Summons, Roger E.

    2011-01-01

    The power of molecular oxygen to drive many crucial biogeochemical processes, from cellular respiration to rock weathering, makes reconstructing the history of its production and accumulation a first-order question for understanding Earth’s evolution. Among the various geochemical proxies for the presence of O2 in the environment, molecular fossils offer a unique record of O2 where it was first produced and consumed by biology: in sunlit aquatic habitats. As steroid biosynthesis requires molecular oxygen, fossil steranes have been used to draw inferences about aerobiosis in the early Precambrian. However, better quantitative constraints on the O2 requirement of this biochemistry would clarify the implications of these molecular fossils for environmental conditions at the time of their production. Here we demonstrate that steroid biosynthesis is a microaerobic process, enabled by dissolved O2 concentrations in the nanomolar range. We present evidence that microaerobic marine environments (where steroid biosynthesis was possible) could have been widespread and persistent for long periods of time prior to the earliest geologic and isotopic evidence for atmospheric O2. In the late Archean, molecular oxygen likely cycled as a biogenic trace gas, much as compounds such as dimethylsulfide do today. PMID:21825157

  10. Control of Hydrogen Photoproduction by the Proton Gradient Generated by Cyclic Electron Flow in Chlamydomonas reinhardtii[W

    Science.gov (United States)

    Tolleter, Dimitri; Ghysels, Bart; Alric, Jean; Petroutsos, Dimitris; Tolstygina, Irina; Krawietz, Danuta; Happe, Thomas; Auroy, Pascaline; Adriano, Jean-Marc; Beyly, Audrey; Cuiné, Stéphan; Plet, Julie; Reiter, Ilja M.; Genty, Bernard; Cournac, Laurent; Hippler, Michael; Peltier, Gilles

    2011-01-01

    Hydrogen photoproduction by eukaryotic microalgae results from a connection between the photosynthetic electron transport chain and a plastidial hydrogenase. Algal H2 production is a transitory phenomenon under most natural conditions, often viewed as a safety valve protecting the photosynthetic electron transport chain from overreduction. From the colony screening of an insertion mutant library of the unicellular green alga Chlamydomonas reinhardtii based on the analysis of dark-light chlorophyll fluorescence transients, we isolated a mutant impaired in cyclic electron flow around photosystem I (CEF) due to a defect in the Proton Gradient Regulation Like1 (PGRL1) protein. Under aerobiosis, nonphotochemical quenching of fluorescence (NPQ) is strongly decreased in pgrl1. Under anaerobiosis, H2 photoproduction is strongly enhanced in the pgrl1 mutant, both during short-term and long-term measurements (in conditions of sulfur deprivation). Based on the light dependence of NPQ and hydrogen production, as well as on the enhanced hydrogen production observed in the wild-type strain in the presence of the uncoupling agent carbonyl cyanide p-trifluoromethoxyphenylhydrazone, we conclude that the proton gradient generated by CEF provokes a strong inhibition of electron supply to the hydrogenase in the wild-type strain, which is released in the pgrl1 mutant. Regulation of the trans-thylakoidal proton gradient by monitoring pgrl1 expression opens new perspectives toward reprogramming the cellular metabolism of microalgae for enhanced H2 production. PMID:21764992

  11. Photooxidative stress stimulates illegitimate recombination and mutability in carotenoid-less mutants of Rubrivivax gelatinosus.

    Science.gov (United States)

    Ouchane, S; Picaud, M; Vernotte, C; Astier, C

    1997-08-01

    Carotenoids are essential to protection against photooxidative damage in photosynthetic and non-photosynthetic organisms. In a previous study, we reported the disruption of crtD and crtC carotenoid genes in the purple bacterium Rubrivivax gelatinosus, resulting in mutants that synthesized carotenoid intermediates. Here, carotenoid-less mutants have been constructed by disruption of the crtB gene. To study the biological role of carotenoids in photoprotection, the wild-type and the three carotenoid mutants were grown under different conditions. When exposed to photooxidative stress, only the carotenoid-less strains (crtB-) gave rise with a high frequency to four classes of mutants. In the first class, carotenoid biosynthesis was partially restored. The second class corresponded to photosynthetic-deficient mutants. The third class corresponded to mutants in which the LHI antenna level was decreased. In the fourth class, synthesis of the photosynthetic apparatus was inhibited only in aerobiosis. Molecular analyses indicated that the oxidative stress induced mutations and illegitimate recombination. Illegitimate recombination events produced either functional or non-functional chimeric genes. The R. gelatinosus crtB- strain could be very useful for studies of the SOS response and of illegitimate recombination induced by oxidants in bacteria.

  12. Dinámica microbial del suelo asociada a diferentes estrategias de manejo de Phytophthora cinnamomi Rands en aguacate

    Directory of Open Access Journals (Sweden)

    Joaquín Guillermo Ramírez Gil

    2013-12-01

    Full Text Available La marchitez del aguacate es la enfermedad más limitante de este cultivo, cuyo agente causal más relevante es el oomycete Phytophthora cinnamomi Rands. Es por esto que se han desarrollado diferentes estrategias para su manejo integrado, pero aún prevalece el uso de productos químicos, como única medida de manejo, generando impactos negativos en el ambiente y la salud. Uno de los efectos perjudiciales que se ocasiona es la alteración de las poblaciones microbianas en el suelo. Este trabajo estuvo encaminado a conocer la dinámica microbiana del suelo, bajo diferentes estrategias de manejo de esta enfermedad, para lo cual se midió su dinamismo mediante unidades formadoras de colonias (UFC, para hongos, bacterias y actinomicetos, a partir de muestras de suelo y rizósfera de la raíz, bajo incubación en condiciones de anaerobiosis y aerobiosis, además se midió la actividad microbiana total, en condiciones de laboratorio, como complemento se cuantificaron microorganismos como: Trichiderma spp, bacterias formadoras de endosporas (BAFE, celulolíticos, proteolíticos, amilolíticos, solubilizadores de fosfato, fijadores asimbióticos de nitrógeno y promotores del crecimiento, como Pseudomonas spp., fluorescentes. Los resultados encontrados en esta investigación, sugieren que el uso individual y combinado de mantillo orgánico, material compostado de estiércol bovino, enmienda mineral y cascarilla de arroz y la propuesta de integración; incrementan significativamente la población y actividad microbiana aerobia, en la cual se identificaron microorganismos antagonistas como, Trichiderma spp., celulolíticos, Pseudomonas spp. fluorescentes y BAFE.

  13. Screening of bacterial strains capable of converting biodiesel-derived raw glycerol into 1,3-propanediol, 2,3-butanediol and ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Metsoviti, Maria; Paramithiotis, Spiros; Drosinos, Eleftherios H.; Galiotou-Panayotou, Maria; Nychas, George-John E.; Papanikolaou, Seraphim [Department of Food Science and Technology, Agricultural University of Athens, Athens (Greece); Zeng, An-Ping [Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology (TUHH), Hamburg (Germany)

    2012-02-15

    The ability of bacterial strains to assimilate glycerol derived from biodiesel facilities to produce metabolic compounds of importance for the food, textile and chemical industry, such as 1,3-propanediol (PD), 2,3-butanediol (BD) and ethanol (EtOH), was assessed. The screening of 84 bacterial strains was performed using glycerol as carbon source. After initial trials, 12 strains were identified capable of consuming raw glycerol under anaerobic conditions, whereas 5 strains consumed glycerol under aerobiosis. A plethora of metabolic compounds was synthesized; in anaerobic batch-bioreactor cultures PD in quantities up to 11.3 g/L was produced by Clostridium butyricum NRRL B-23495, while the respective value was 10.1 g/L for a newly isolated Citrobacter freundii. Adaptation of Cl. butyricum at higher initial glycerol concentration resulted in a PD{sub max} concentration of {proportional_to}32 g/L. BD was produced by a new Enterobacter aerogenes isolate in shake-flask experiments, under fully aerobic conditions, with a maximum concentration of {proportional_to}22 g/L which was achieved at an initial glycerol quantity of 55 g/L. A new Klebsiella oxytoca isolate converted waste glycerol into mixtures of PD, BD and EtOH at various ratios. Finally, another new C. freundii isolate converted waste glycerol into EtOH in anaerobic batch-bioreactor cultures with constant pH, achieving a final EtOH concentration of 14.5 g/L, a conversion yield of 0.45 g/g and a volumetric productivity of {proportional_to}0.7 g/L/h. As a conclusion, the current study confirmed the utilization of biodiesel-derived raw glycerol as an appropriate substrate for the production of PD, BD and EtOH by several newly isolated bacterial strains under different experimental conditions. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. What It Takes to Be a Pseudomonas aeruginosa? The Core Genome of the Opportunistic Pathogen Updated.

    Directory of Open Access Journals (Sweden)

    Benoît Valot

    Full Text Available Pseudomonas aeruginosa is an opportunistic bacterial pathogen able to thrive in highly diverse ecological niches and to infect compromised patients. Its genome exhibits a mosaic structure composed of a core genome into which accessory genes are inserted en bloc at specific sites. The size and the content of the core genome are open for debate as their estimation depends on the set of genomes considered and the pipeline of gene detection and clustering. Here, we redefined the size and the content of the core genome of P. aeruginosa from fully re-analyzed genomes of 17 reference strains. After the optimization of gene detection and clustering parameters, the core genome was defined at 5,233 orthologs, which represented ~ 88% of the average genome. Extrapolation indicated that our panel was suitable to estimate the core genome that will remain constant even if new genomes are added. The core genome contained resistance determinants to the major antibiotic families as well as most metabolic, respiratory, and virulence genes. Although some virulence genes were accessory, they often related to conserved biological functions. Long-standing prophage elements were subjected to a genetic drift to eventually display a G+C content as higher as that of the core genome. This contrasts with the low G+C content of highly conserved ribosomal genes. The conservation of metabolic and respiratory genes could guarantee the ability of the species to thrive on a variety of carbon sources for energy in aerobiosis and anaerobiosis. Virtually all the strains, of environmental or clinical origin, have the complete toolkit to become resistant to the major antipseudomonal compounds and possess basic pathogenic mechanisms to infect humans. The knowledge of the genes shared by the majority of the P. aeruginosa isolates is a prerequisite for designing effective therapeutics to combat the wide variety of human infections.

  15. Cadmium removal by Euglena gracilis is enhanced under anaerobic growth conditions

    Energy Technology Data Exchange (ETDEWEB)

    Santiago-Martínez, M. Geovanni; Lira-Silva, Elizabeth; Encalada, Rusely; Pineda, Erika; Gallardo-Pérez, Juan Carlos [Departamento de Bioquímica, Instituto Nacional de Cardiología (Mexico); Zepeda-Rodriguez, Armando [Facultad de Medicina, UNAM, Mexico City (Mexico); Moreno-Sánchez, Rafael; Saavedra, Emma [Departamento de Bioquímica, Instituto Nacional de Cardiología (Mexico); Jasso-Chávez, Ricardo, E-mail: rjass_cardiol@yahoo.com.mx [Departamento de Bioquímica, Instituto Nacional de Cardiología (Mexico)

    2015-05-15

    Highlights: • The protist Euglena gracilis had the ability to grow and remove large amounts of Cd{sup 2+} under anaerobic conditions. • High biomass was attained by combination of glycolytic and mitochondrial carbon sources. • Routes of degradation of glucose, glutamate and malate under anaerobic conditions in E. gracilis are described. • Biosorption was the main mechanism of Cd{sup 2+} removal in anaerobiosis, whereas the Cd{sup 2+} intracellularly accumulated was inactivated by thiol-molecules and polyphosphate. - Abstract: The facultative protist Euglena gracilis, a heavy metal hyper-accumulator, was grown under photo-heterotrophic and extreme conditions (acidic pH, anaerobiosis and with Cd{sup 2+}) and biochemically characterized. High biomass (8.5 × 10{sup 6} cells mL{sup −1}) was reached after 10 days of culture. Under anaerobiosis, photosynthetic activity built up a microaerophilic environment of 0.7% O{sub 2}, which was sufficient to allow mitochondrial respiratory activity: glutamate and malate were fully consumed, whereas 25–33% of the added glucose was consumed. In anaerobic cells, photosynthesis but not respiration was activated by Cd{sup 2+} which induced higher oxidative stress. Malondialdehyde (MDA) levels were 20 times lower in control cells under anaerobiosis than in aerobiosis, although Cd{sup 2+} induced a higher MDA production. Cd{sup 2+} stress induced increased contents of chelating thiols (cysteine, glutathione and phytochelatins) and polyphosphate. Biosorption (90%) and intracellular accumulation (30%) were the mechanisms by which anaerobic cells removed Cd{sup 2+} from medium, which was 36% higher versus aerobic cells. The present study indicated that E. gracilis has the ability to remove Cd{sup 2+} under anaerobic conditions, which might be advantageous for metal removal in sediments from polluted water bodies or bioreactors, where the O{sub 2} concentration is particularly low.

  16. Analysis of Escherichia coli mutants with a linear respiratory chain.

    Science.gov (United States)

    Steinsiek, Sonja; Stagge, Stefan; Bettenbrock, Katja

    2014-01-01

    The respiratory chain of E. coli is branched to allow the cells' flexibility to deal with changing environmental conditions. It consists of the NADH:ubiquinone oxidoreductases NADH dehydrogenase I and II, as well as of three terminal oxidases. They differ with respect to energetic efficiency (proton translocation) and their affinity to the different quinone/quinol species and oxygen. In order to analyze the advantages of the branched electron transport chain over a linear one and to assess how usage of the different terminal oxidases determines growth behavior at varying oxygen concentrations, a set of isogenic mutant strains was created, which lack NADH dehydrogenase I as well as two of the terminal oxidases, resulting in strains with a linear respiratory chain. These strains were analyzed in glucose-limited chemostat experiments with defined oxygen supply, adjusting aerobic, anaerobic and different microaerobic conditions. In contrast to the wild-type strain MG1655, the mutant strains produced acetate even under aerobic conditions. Strain TBE032, lacking NADH dehydrogenase I and expressing cytochrome bd-II as sole terminal oxidase, showed the highest acetate formation rate under aerobic conditions. This supports the idea that cytochrome bd-II terminal oxidase is not able to catalyze the efficient oxidation of the quinol pool at higher oxygen conditions, but is functioning mainly under limiting oxygen conditions. Phosphorylation of ArcA, the regulator of the two-component system ArcBA, besides Fnr the main transcription factor for the response towards different oxygen concentrations, was studied. Its phosphorylation pattern was changed in the mutant strains. Dephosphorylation and therefore inactivation of ArcA started at lower aerobiosis levels than in the wild-type strain. Notably, not only the micro- and aerobic metabolism was affected by the mutations, but also the anaerobic metabolism, where the respiratory chain should not be important. PMID:24475268

  17. Adhesion, Biofilm Formation, and Genomic Features of Campylobacter jejuni Bf, an Atypical Strain Able to Grow under Aerobic Conditions.

    Science.gov (United States)

    Bronnec, Vicky; Turoňová, Hana; Bouju, Agnès; Cruveiller, Stéphane; Rodrigues, Ramila; Demnerova, Katerina; Tresse, Odile; Haddad, Nabila; Zagorec, Monique

    2016-01-01

    Campylobacter jejuni is the leading cause of bacterial enteritis in Europe. Human campylobacteriosis cases are frequently associated to the consumption of contaminated poultry meat. To survive under environmental conditions encountered along the food chain, i.e., from poultry digestive tract its natural reservoir to the consumer's plate, this pathogen has developed adaptation mechanisms. Among those, biofilm lifestyle has been suggested as a strategy to survive in the food environment and under atmospheric conditions. Recently, the clinical isolate C. jejuni Bf has been shown to survive and grow under aerobic conditions, a property that may help this strain to better survive along the food chain. The aim of this study was to evaluate the adhesion capacity of C. jejuni Bf and its ability to develop a biofilm. C. jejuni Bf can adhere to abiotic surfaces and to human epithelial cells, and can develop biofilm under both microaerobiosis and aerobiosis. These two conditions have no influence on this strain, unlike results obtained with the reference strain C. jejuni 81-176, which harbors only planktonic cells under aerobic conditions. Compared to 81-176, the biofilm of C. jejuni Bf is more homogenous and cell motility at the bottom of biofilm was not modified whatever the atmosphere used. C. jejuni Bf whole genome sequence did not reveal any gene unique to this strain, suggesting that its unusual property does not result from acquisition of new genetic material. Nevertheless some genetic particularities seem to be shared only between Bf and few others strains. Among the main features of C. jejuni Bf genome we noticed (i) a complete type VI secretion system important in pathogenicity and environmental adaptation; (ii) a mutation in the oorD gene involved in oxygen metabolism; and (iii) the presence of an uncommon insertion of a 72 amino acid coding sequence upstream from dnaK, which is involved in stress resistance. Therefore, the atypical behavior of this strain under

  18. The Cloud Paradigm: Geostable molecules as proxies for surface oxygenation

    Science.gov (United States)

    Summons, R. E.; Hallmann, C.

    2011-12-01

    before the great oxidation event. Science 317, 1903-1906. (2007). Bosak T. et al., Morphological record of oxygenic photosynthesis in conical stromatolites. Proc. Natl. Acad. Sci. USA 106:10939-10943 (2009). Kopp, R.E. et al.,The Paleoproterozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis. Proc. Natl. Acad. Sci. USA 102: 11131-11136 (2005). Waldbauer J.R. et al. Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis. Precambrian Research 169, 28-47 (2008).

  19. Adhesion, Biofilm Formation, and Genomic Features of Campylobacter jejuni Bf, an Atypical Strain Able to Grow under Aerobic Conditions

    Science.gov (United States)

    Bronnec, Vicky; Turoňová, Hana; Bouju, Agnès; Cruveiller, Stéphane; Rodrigues, Ramila; Demnerova, Katerina; Tresse, Odile; Haddad, Nabila; Zagorec, Monique

    2016-01-01

    Campylobacter jejuni is the leading cause of bacterial enteritis in Europe. Human campylobacteriosis cases are frequently associated to the consumption of contaminated poultry meat. To survive under environmental conditions encountered along the food chain, i.e., from poultry digestive tract its natural reservoir to the consumer’s plate, this pathogen has developed adaptation mechanisms. Among those, biofilm lifestyle has been suggested as a strategy to survive in the food environment and under atmospheric conditions. Recently, the clinical isolate C. jejuni Bf has been shown to survive and grow under aerobic conditions, a property that may help this strain to better survive along the food chain. The aim of this study was to evaluate the adhesion capacity of C. jejuni Bf and its ability to develop a biofilm. C. jejuni Bf can adhere to abiotic surfaces and to human epithelial cells, and can develop biofilm under both microaerobiosis and aerobiosis. These two conditions have no influence on this strain, unlike results obtained with the reference strain C. jejuni 81-176, which harbors only planktonic cells under aerobic conditions. Compared to 81-176, the biofilm of C. jejuni Bf is more homogenous and cell motility at the bottom of biofilm was not modified whatever the atmosphere used. C. jejuni Bf whole genome sequence did not reveal any gene unique to this strain, suggesting that its unusual property does not result from acquisition of new genetic material. Nevertheless some genetic particularities seem to be shared only between Bf and few others strains. Among the main features of C. jejuni Bf genome we noticed (i) a complete type VI secretion system important in pathogenicity and environmental adaptation; (ii) a mutation in the oorD gene involved in oxygen metabolism; and (iii) the presence of an uncommon insertion of a 72 amino acid coding sequence upstream from dnaK, which is involved in stress resistance. Therefore, the atypical behavior of this strain under

  20. Biomarker evidence for Archean oxygen fluxes (Invited)

    Science.gov (United States)

    Hallmann, C.; Waldbauer, J.; Sherman, L. S.; Summons, R. E.

    2010-12-01

    biospheric oxygenation and atmospheric evolution. Science 317 (2007), 1900-1903. Waldbauer et al. Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis. Precambrian Research 169 (2008), 28-47.

  1. Iron is required to relieve inhibitory effects on NifL on transcriptional activation by NifA in Klebsiella pneumoniae.

    Science.gov (United States)

    Schmitz, R A; He, L; Kustu, S

    1996-08-01

    In Klebsiella pneumoniae, products of the nitrogen fixation nifLA operon regulate transcription of the other nif operons. NifA activates transcription by sigma54-holoenzyme. In vivo, NifL antagonizes the action of NifA under aerobic conditions or in the presence of combined nitrogen. In contrast to a previous report, we show that depletion of iron (Fe) from the growth medium with the chelating agent o-phenanthroline (20 microM) mimics aerobiosis or combined nitrogen in giving rise to inhibition of NifA activity even under anaerobic, nitrogen-limiting conditions. Adding back Fe in only twofold molar excess over phenanthroline restores NifA activity, whereas adding other metals fails to do so. By using strains that lack NifL, we showed that NifA activity itself does not require Fe and is not directly affected by phenanthroline. Hence, Fe is required to relieve the inhibition of NifA activity by NifL in vivo. Despite the Fe requirement in vivo, we have found no evidence that NifL contains Fe or an iron-sulfur (Fe-S) cluster. Determination of the molecular mass of an inhibitory form of NifL overproduced under aerobic conditions indicated that it was not posttranslationally modified. When NifL was synthesized in vitro, it inhibited transcriptional activation by NifA even when it was synthesized under anaerobic conditions in the presence of a high Fe concentration or of superoxide dismutase, which is known to protect some Fe-S clusters. Moreover, overproduction of superoxide dismutase in vivo did not relieve NifL, inhibition under aerobic conditions, and attempts to relieve NifL inhibition in vitro by reconstituting Fe-S clusters with the NifS enzyme (Azotobacter vinelandii) were unsuccessful. Since we obtained no evidence that Fe acts directly on NifL or NifA, we postulate that an additional Fe-containing protein, not yet identified, may be required to relieve NifL inhibition under anaerobic, nitrogen-limiting conditions. PMID:8755900

  2. CHARACTERIZATION OF ENDOPHYTIC MICROFLORA OF ROSA CANINA FRUITS

    Directory of Open Access Journals (Sweden)

    Katarína Rovná

    2015-02-01

    Full Text Available There aren’t a lot of studies about the bacterial communities associated with the Rosa canina and the aim of this study was to characterize endophytic bacteria from fruit of Rosa canina. The fruits of R. canina, which is growing wild in Slovakia, were collected in May 2013 from four locations: Nitra-Zobor, Vrbové-Baraní dvor, Rišňovce, Modra pažiť, Slovakia. Microbiological analyses were conducted by use of standard microbiological methods by spreading of fruits homogenates onto agar plate. Total viable count and mesophilic anaerobic sporulating bacteria were determined on Plate Count Agar after incubation for 2 days at 37 °C. Pseudomonas aeruginosa enumeration was carried out after incubation of Pseudomonas Isolation agar at 48 h at 35 °C. For members of the family Enterobacteriaceae (45 °C Violet Red Bile Glucose agar were used and incubation was carried out for 24 h at 37 °C. For determinations of fungal colonies Malt agar and Czapek-Dox agar were inoculated using the spread-plate technique and incubated at 25 °C for 5 days. The yeasts were grown in Glucose Yeast Peptone agar (aerobiosis at 25 °C during 72 hours. The total viable count of fruits ranged from 4.07 log cfu.g-1 in Rišňovce to 4.84 log cfu.g-1 in Vrbové Baraní dvor. Number of mesophilic anaerobic sporulating bacteria ranged from 4.09 in Vrbové Baraní dvor to 4.82 log cfu.g-1 in Modrá pažiť. Number of Pseudomonas aeruginosa count ranged from 2.00 in Nitra Zobor and Vrbové Baraní dvor to 3.94 log cfu.g-1 in Modrá pažiť. In our study the number of Enterobacteriaceae genera ranged from 3.38 in Nitra Zobor to 4.25 log cfu.g-1 in Vrbové Baraní dvor. Number of yeasts ranged from 3.36 in Vrbové Baraní dvor to 3.85 log cfu.g-1 in Modrá pažiť. Number of microscopic filamentous fungi ranged from 2.60 in Modrá Pažiť to 3.52 log cfu.g-1 in Nitra Zobor. Our findings indicate that Rose plant is naturally associated with a variety of endophytic microorganisms

  3. The Sinorhizobium meliloti RNA chaperone Hfq influences central carbon metabolism and the symbiotic interaction with alfalfa

    Directory of Open Access Journals (Sweden)

    Jiménez-Zurdo José I

    2010-03-01

    Full Text Available Abstract Background The bacterial Hfq protein is able to interact with diverse RNA molecules, including regulatory small non-coding RNAs (sRNAs, and thus it is recognized as a global post-transcriptional regulator of gene expression. Loss of Hfq has an extensive impact in bacterial physiology which in several animal pathogens influences virulence. Sinorhizobium meliloti is a model soil bacterium known for its ability to establish a beneficial nitrogen-fixing intracellular symbiosis with alfalfa. Despite the predicted general involvement of Hfq in the establishment of successful bacteria-eukaryote interactions, its function in S. meliloti has remained unexplored. Results Two independent S. meliloti mutants, 2011-3.4 and 1021Δhfq, were obtained by disruption and deletion of the hfq gene in the wild-type strains 2011 and 1021, respectively, both exhibiting similar growth defects as free-living bacteria. Transcriptomic profiling of 1021Δhfq revealed a general down-regulation of genes of sugar transporters and some enzymes of the central carbon metabolism, whereas transcripts specifying the uptake and metabolism of nitrogen sources (mainly amino acids were more abundant than in the wild-type strain. Proteomic analysis of the 2011-3.4 mutant independently confirmed these observations. Symbiotic tests showed that lack of Hfq led to a delayed nodulation, severely compromised bacterial competitiveness on alfalfa roots and impaired normal plant growth. Furthermore, a large proportion of nodules (55%-64% elicited by the 1021Δhfq mutant were non-fixing, with scarce content in bacteroids and signs of premature senescence of endosymbiotic bacteria. RT-PCR experiments on RNA from bacteria grown under aerobic and microoxic conditions revealed that Hfq contributes to regulation of nifA and fixK1/K2, the genes controlling nitrogen fixation, although the Hfq-mediated regulation of fixK is only aerobiosis dependent. Finally, we found that some of the recently

  4. Geostable molecules and the Late Archean 'Whiff of Oxygen'

    Science.gov (United States)

    Summons, R. E.; Illing, C. J.; Oduro, H. D.; French, K. L.; Ono, S.; Hallmann, C.; Strauss, H.

    2012-12-01

    exhibits a 'MIF' signal that is significantly amplified compared to co-occurring pyrite sulfur. Limited isotopic exchange between the organic and inorganic sulfur pools suggests Archean origin of these organic sulfur compounds. We also report new results from the 2012 Agouron Pilbara drilling project. Anbar A.D. et al. A whiff of oxygen before the great oxidation event. Science 317, 1903-1906. (2007). Bosak T. et al., Morphological record of oxygenic photosynthesis in conical stromatolites. Proc. Natl. Acad. Sci. USA 106:10939-10943 (2009). Kopp, R.E. et al.,The Paleoproterozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis. Proc. Natl. Acad. Sci. USA 102: 11131-11136 (2005). Waldbauer J.R. et al., Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis. Precambrian Research 169, 28-47 (2008). Waldbauer J.R. et al., 2011. Microaerobic steroid biosynthesis and the molecular fossil record of Archean life. Proceedings of the National Academy of Sciences (USA) 108, 13409-13414

  5. Antimicrobial activity of Lactobacillus and Bifidobacterium strains against pathogenic microorganisms “in vitro”Atividade antimicrobiana de Lactobacillus e Bifodobacterium frente a microrganismos patogênicos “in vitro”

    Directory of Open Access Journals (Sweden)

    Giselle Nobre Costa

    2012-10-01

    Full Text Available Lactobacilli and bifidobacteria have a long history of safe use in foods. These bacteria have biotechnological characteristics of interest such as the inhibition of pathogens. In this work, two lactobacilli strain and a bifidobacterium strain isolated from human gut were evaluated concerning to their ability to inhibit pathogenic microorganisms in foods by diffusion agar tests. Moreover, we assessed the metabolites produced in culture broth under static and shaking growth to simulate anaerobiosis and aerobiosis conditions, respectively. L. acidophilus LA5, L. plantarum DCTA 8420 and B. lactis DCTA 8724 showed ability to inhibit S. aureus FRI 196, strains producer toxins A and D, as well as B. cereus ATCC 25923, E. coli ATCC 25922 and S. Enteritidis, whose inhibition halos reached, on average, 24 mm in diameter. In the agar diffusion method with concentrated culture medium, it was possible to observe the effect of oxygen on the production of toxic substances. This result showed that cultivation of Lactobacillus under aerobic conditions seems to exert greater inhibitory effect, whereas for Bifidobacterium strain the effect was the opposite.Lactobacilos e bifidobactérias apresentam um longo histórico de uso seguro em alimentos, além de apresentarem características de interesse biotecnológico como a inibição de patógenos. Neste trabalho duas linhagens de lactobacilos e uma de bifidobactéria, isoladas do intestino humano, foram avaliadas em testes de difusão em ágar, quanto à capacidade de inibição de microrganismos patogênicos de ocorrência comuns em toxinfecções alimentares. Adicionalmente, foram avaliados os metabólitos produzidos em caldo de cultivo estático e em agitação para simular condições de anaerobiose a aerobiose, respectivamente. As três bactérias, L. acidophilus LA5, L. plantarum DCTA 8420 e B. lactis DCTA 8724 apresentaram capacidade de inibição para S. aureus FRI 196 linhagem produtora de toxinas A e D

  6. In situ carbon isotope analysis of Archean organic matter with SIMS

    Science.gov (United States)

    Williford, K. H.; Ushikubo, T.; Lepot, K.; Hallmann, C.; Spicuzza, M. J.; Eigenbrode, J. L.; Summons, R. E.; Valley, J. W.

    2011-12-01

    rates as low as 10% relative to anthracite. Samples from the ABDP-9 (n=3; Mount McRae Shale, ~2.5 Ga), RHDH2a (n=2; Carrawine Dolomite and Jeerinah Fm, ~2.6 Ga), WRL1 (n=3; Wittenoom Fm, Marra Mamba Iron Formation, and Jeerinah Fm, ~2.6 Ga), and SV1 (n=1; Tumbiana Fm, ~2.7 Ga) drill cores, each previously analyzed for bulk organic carbon isotope composition, yielded 100 new, in situ data from Neoarchean sedimentary OM. In these samples, δ13C varies between -53.1 and -28.3% and offsets between in situ and bulk compositions range from -8.3 to 18.8%. In some cases, isotopic composition and mode of occurrence (e.g. morphology and mineral associations) are statistically correlated, enabling the identification of distinct reservoirs of OM. Our results support previous evidence for aerobiosis and depth gradients of oxidation in Neoarchean environments driven by photosynthesis and methane metabolism. The relevance of these findings to questions of bio- and syngenicity as well as the alteration history of this OM and similar, previously reported Archean OM will be discussed.

  7. Aerobic stability of triticale silage in single culture or in mixtures with oat and/or legumes Estabilidade aeróbia de silagens de triticale em cultivo exclusivo ou em misturas com aveia e/ou leguminosas

    Directory of Open Access Journals (Sweden)

    Valter Harry Bumbieris Junior

    2010-11-01

    Full Text Available The objective of the present study was to evaluate the aerobic stability and losses during the fermentation process of triticale silages in single crop or in mixtures with oats and/or legumes. The following crops were used for silage production: triticale (X. Triticosecale Wittimack, triticale intercropped with forage pea (Pisum arvense and triticale intercropped with oats (Avena strigosa Schreb, forage pea and vetch (Vicia sativa. The dry matter content and its recovery did not differ among the silages. Buffer capacity was higher for tricale silage intercropped with oats, forage pea and vetch(88.67 m eq. NaOH/100 g DM followed by triticale intercropped with forage pea (80.80 m eq. NaOH/100 g DM. Electric conductivity values were higher in the intercropped triticale silages. Triticale silage presented the lowest temperatures observed in the silos, and the silages of intercropped triticale silages presented higher heat retention and higher pH values. Silage of triticale intercropped with oats and legumes presented lower aerobic stability but it did not reduce the aerobic stability of the total feed. Dry matter recovery during storage and in stability evaluations in aerobiosis is similar among the silages.O objetivo neste trabalho foi avaliar a estabilidade aeróbia e as perdas durante o processo de fermentação de silagens de triticale em cultivo exclusivo ou em misturas com aveia e/ou leguminosas. As culturas utilizadas para produção das silagens foram: triticale (X. Triticosecale Wittimack; triticale em consórcio com ervilha-forrageira (Pisum arvense; e triticale em consórcio com aveia (Avena strigosa Schreb, ervilha-forrageira e ervilhaca (Vicia sativa. O teor de matéria seca e a recuperação de matéria seca não diferiram entre as silagens. A capacidade tampão foi maior para a silagem de triticale cultivado em consórcio com aveia, ervilha-forrageira e ervilhaca (88,67 m eq. NaOH/100 g de MS, seguida da silagem de triticale cultivado

  8. Viability of autogenous bone grafts obtained by using bone collectors: histological and microbiological study Viabilidade dos enxertos autógenos obtidos com a utilização de coletores para osso: estudo histológico e microbiológico

    Directory of Open Access Journals (Sweden)

    Alberto Blay

    2003-09-01

    Full Text Available The use of autogenous bone grafts is considered to be the best choice for reconstructive surgery. In the periodontal literature, the utilization of osseous coagulum was suggested by the end of the sixties. The purpose of this study is to consider the use of bone collectors (bone traps as an alternative method for obtaining material to fill small bone imperfections, such as fenestrations and dehiscences. Thirty samples were obtained from bone drilling during fixture installation in patients (13 men and 17 women, with an average age of 54 years requiring treatment at the Department of Periodontology and Implant Dentistry, University of Santo Amaro. These samples were fixed in 10% neutral formaldehyde for 24 hours and subjected to histological preparation, in order to evaluate the presence of viable osteoblasts. In addition, the material was placed in a fluid thioglycolate medium and incubated for 24 hours at 36 ± 1°C in aerobiosis and anaerobiosis. Bacterial growth evaluation was made by using six different culture media (MacConkey agar, blood agar base, mannitol salt agar, Anaerokit LTD medium, Anaerokit LTD - bile medium, Anaerinsol. The results show that, if proper care is taken to prevent saliva contamination during the surgical procedure, this method of collecting autogenous bone may be useful in situations where small amounts of bone are required.A utilização de enxertos autógenos é considerada a melhor opção nos tratamentos cirúrgicos de reconstrução óssea. Na literatura periodontal, a utilização de coágulo ósseo foi sugerida no final da década de 60. O objetivo deste estudo é considerar a utilização de coletores para osso como um método alternativo de se obter osso autógeno para preenchimento de defeitos ósseos como fenestrações e deiscências. Trinta amostras foram obtidas no processo de perfuração do tecido ósseo, durante a instalação de implantes em pacientes (13 homens e 17 mulheres, com média etária de