WorldWideScience

Sample records for aero thermal parameters

  1. Aero-thermal optimization of film cooling flow parameters on the suction surface of a high pressure turbine blade

    Science.gov (United States)

    El Ayoubi, Carole; Hassan, Ibrahim; Ghaly, Wahid

    2012-11-01

    This paper aims to optimize film coolant flow parameters on the suction surface of a high-pressure gas turbine blade in order to obtain an optimum compromise between a superior cooling performance and a minimum aerodynamic penalty. An optimization algorithm coupled with three-dimensional Reynolds-averaged Navier Stokes analysis is used to determine the optimum film cooling configuration. The VKI blade with two staggered rows of axially oriented, conically flared, film cooling holes on its suction surface is considered. Two design variables are selected; the coolant to mainstream temperature ratio and total pressure ratio. The optimization objective consists of maximizing the spatially averaged film cooling effectiveness and minimizing the aerodynamic penalty produced by film cooling. The effect of varying the coolant flow parameters on the film cooling effectiveness and the aerodynamic loss is analyzed using an optimization method and three dimensional steady CFD simulations. The optimization process consists of a genetic algorithm and a response surface approximation of the artificial neural network type to provide low-fidelity predictions of the objective function. The CFD simulations are performed using the commercial software CFX. The numerical predictions of the aero-thermal performance is validated against a well-established experimental database.

  2. High-Temperature Adhesives for Thermally Stable Aero-Assist Technologies

    Science.gov (United States)

    Eberts, Kenneth; Ou, Runqing

    2013-01-01

    Aero-assist technologies are used to control the velocity of exploration vehicles (EVs) when entering Earth or other planetary atmospheres. Since entry of EVs in planetary atmospheres results in significant heating, thermally stable aero-assist technologies are required to avoid the high heating rates while maintaining low mass. Polymer adhesives are used in aero-assist structures because of the need for high flexibility and good bonding between layers of polymer films or fabrics. However, current polymer adhesives cannot withstand temperatures above 400 C. This innovation utilizes nanotechnology capabilities to address this need, leading to the development of high-temperature adhesives that exhibit high thermal conductivity in addition to increased thermal decomposition temperature. Enhanced thermal conductivity will help to dissipate heat quickly and effectively to avoid temperature rising to harmful levels. This, together with increased thermal decomposition temperature, will enable the adhesives to sustain transient high-temperature conditions.

  3. Theoretical and experimental study of heat transfers and pressure drops along surfaces fitted with herring-bone fins: correlation between geometric and aero thermal parameters; Etudes theorique et experimentale du transfert de chaleur et des pertes de charge de surfaces munies d'ailettes disposees en chevron - correlation entre parametres geometriques et aerothermiques

    Energy Technology Data Exchange (ETDEWEB)

    Pelce, J; Malherbe, J; Pierre, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    Principal results are given of experimental research which has been carried out on the flow of a fluid along a surface fitted with herringbone fins. Aero-thermal tests have been effected on a large number of these surfaces whose geometrical parameters have been made to vary systematically. In particular, work on a large scale model has made it possible to analyse the mechanisms of heat transfer and of pressure drops. On this basis a theoretical study has led to the establishment of a correlation between the geometric configuration and the aero-thermal performances of these surfaces. Experimental results are in good agreement with the theoretical relationships. An expression has thus been derived applicable to this type of herring-boned surface in a wide zone. (authors) [French] L'ecoulement d'un fluide au voisinage d'une surface munie d'ailettes disposees en chevron a fait l'objet de recherches experimentales dont on a rappele les principaux resultats. Des essais aerothermiques ont ete effectues sur un grand nombre de ces surfaces dont a fait varier les parametres geometriques de facon systematique. En particulier, des etudes sur une maquette a grande echelle ont permis d'analyser les mecanismes de transfert de chaleur et de perte de charge. Sur ces bases, une etude theorique a conduit a des correlations entre la geometrie et les performances aerothermiques de ces surfaces. Les resultats experimentaux sont en bon accord avec les relations theoriques. On possede ainsi une formulation pour ce type de surface ailettee valable dans un domaine etendu. (auteurs)

  4. The Chaotic Prediction for Aero-Engine Performance Parameters Based on Nonlinear PLS Regression

    Directory of Open Access Journals (Sweden)

    Chunxiao Zhang

    2012-01-01

    Full Text Available The prediction of the aero-engine performance parameters is very important for aero-engine condition monitoring and fault diagnosis. In this paper, the chaotic phase space of engine exhaust temperature (EGT time series which come from actual air-borne ACARS data is reconstructed through selecting some suitable nearby points. The partial least square (PLS based on the cubic spline function or the kernel function transformation is adopted to obtain chaotic predictive function of EGT series. The experiment results indicate that the proposed PLS chaotic prediction algorithm based on biweight kernel function transformation has significant advantage in overcoming multicollinearity of the independent variables and solve the stability of regression model. Our predictive NMSE is 16.5 percent less than that of the traditional linear least squares (OLS method and 10.38 percent less than that of the linear PLS approach. At the same time, the forecast error is less than that of nonlinear PLS algorithm through bootstrap test screening.

  5. The Role of Free-Stream Turbulence on High Pressure Turbine Aero-Thermal Stage Interaction

    Science.gov (United States)

    Kopriva, James Earl

    Turbulence plays an important role on the aero-thermal performance of modern aircraft engine High Pressure Turbines (HPT). The role of the vane wake and passage turbulence on the downstream blade flow field is an important consideration for both performance and durability. Obtaining measurements to fully characterize the flow field can be challenging and costly in an experimental facility. Advances in computational Fluid Dynamic (CFD) modeling and High Performance Computing (HPC) are providing opportunity to close these measurement gaps. In order for CFD to be adopted, methods need to be both accurate and efficient. Meshing approaches must also be able to resolve complex HPT geometry while maintaining quality adequate for scale-resolved simulations. Therefore, the accuracy of executing scale-resolved simulations with a second-order code on a mesh of prisms and tetrahedrals in Fluent is considered. Before execution of the HPT computational study, a building block approach is taken to gain quantified predictive performance in the modeling approach as well as understanding limitations in lower computational cost modeling approaches. The predictive capability for Reynolds Averaged Navier Stokes (RANS), Hybrid Large Eddy Simulation (LES), and wall-resolved LES turbulence modeling approaches are first assessed for a cylinder in cross-flow at a Reynolds number of 2580. The flow condition and simple geometry facilitate a quick turn-around for modeling assessment before moving the HPT vane study at high Reynolds and Mach number conditions. Modeling approaches are then assessed relative to the experimental measurements of Arts and Rouvroit (1992) on a pitch-line HPT uncooled vane at high Mach and Reynolds numbers conditions with low (0-6%) free-stream turbulence. The current unstructured second-order LES approach agrees with experimental data and is found to be within the equivalent experimental uncertainty when compared to the structured high-ordered solver FDL3DI. The

  6. New thermal energies in France. Solar, biomass, geothermal and aero-thermal: which perspectives by 2015?

    International Nuclear Information System (INIS)

    2012-01-01

    Whereas thermal renewable energies are to become inescapable, and notably 'green heat' which is acclaimed by real estate professionals as well as by industries, their market is foreseen to grow at a rate of 6 per cent a year until 2015. This high rate is notably due to the soaring price of conventional energies like electricity, gas or oil fuel, but also to environmental constraints related to the reduction of greenhouse gas emissions. A first part proposes an overview of the French market of new sources of thermal renewable energies for a domestic use in 2011, and discusses perspectives by 2015. A detailed analysis of the three main technologies (heat pumps, thermal solar devices, wood fuelled domestic heating devices) is proposed and challenges faced by involved enterprises and possible answers provided by professionals are also detailed. A second part gathers and comments data related to thermal energy production for industrial and collective use (in collective housing and office building): energy production level, legal and regulatory framework, evolution of demand, predictions for the different energy sources (wood energy, geothermal, waste energetic valorisation). It also proposes an analysis of stakes related to these applications. The third part proposes an assessment of the size of the different sectors by presenting key economic figures (turnover, staff, etc.). While the fourth part proposes an overview of leaders for each sector (thermal solar, biomass, and heat pump) and a more detailed presentation of 14 important actors, the fifth and last part proposes a large set of financial and economic indicators of 200 involved operators

  7. Electron-beam-welded segmental heat pipes of AlMgSi 1 for the thermal model of the satellite Aeros-A

    Energy Technology Data Exchange (ETDEWEB)

    Hoell, H.; Lasar, H.

    1974-07-01

    For the purposes of tests with the thermal model of the German aeronomy satellite Aeros-A, a heat pipe system of optimized weight was developed in order to transport thermal energy from the solar cells of the cylindrical satellite to the conical bottom. Because of stringent requirements on the fabrication process, electron beam welding is used for bonding. The welding process is described and preliminary test results are given. (LEW)

  8. Aero-thermal optimization of in-flight electro-thermal ice protection systems in transient de-icing mode

    International Nuclear Information System (INIS)

    Pourbagian, Mahdi; Habashi, Wagdi G.

    2015-01-01

    Highlights: • We introduce an efficient methodology for the optimization of a de-icing system. • We can replace the expensive CHT simulation by ROM without loosing much accuracy. • We propose different criteria affecting the energy usage and aerodynamic performance. • These criteria can significantly improve the performance of the de-icing system. - Abstract: Even if electro-thermal ice protection systems (IPS) consume less energy when operating in de-icing mode than in anti-icing mode, they still need to be optimized for energy usage. The optimization, however, should also take into account the effect of the de-icing system on the aerodynamic performance. The present work offers an optimization framework in which both thermal and aerodynamic viewpoints are taken into account in formulating various objective and constraint functions by considering the energy consumption, the thickness, the volume, the shape and the location of the accreted ice on the surface as the key parameters affecting the energy usage and the aerodynamic performance. The design variables include the power density and the activation time of the electric heating blankets. A derivative-free technique, called the mesh adaptive direct search (MADS) method, is used to carry out the optimization process, which would normally need a large number of unsteady conjugate heat transfer (CHT) calculations for the IPS simulation. To avoid such prohibitive computations, reduced-order modeling (ROM) is used to construct simplified low-dimensional CHT models. The approach is illustrated through several test cases, in which different combinations of objective and constraint functions, design variables and cycling sequence patterns are examined. In these test cases, the energy consumption is significantly reduced compared to the experiments by improving the spatial and temporal distribution of the thermal energy usage. The results show the benefits of the approach in bringing energy, safety and

  9. Measurements of thermal parameters of solar modules

    International Nuclear Information System (INIS)

    Górecki, K; Krac, E

    2016-01-01

    In the paper the methods of measuring thermal parameters of photovoltaic panels - transient thermal impedance and the absorption factor of light-radiation are presented. The manner of realising these methods is described and the results of measurements of the considered thermal parameters of selected photovoltaic panels are presented. The influence of such selected factors as a type of the investigated panel and its mounting manner on transient thermal impedance of the considered panels is also discussed. (paper)

  10. Parallelization of the unstructured Navier-stoke solver LILAC for the aero-thermal analysis of a gas-cooled reactor

    International Nuclear Information System (INIS)

    Kim, J. T.; Kim, S. B.; Lee, W. J.

    2004-01-01

    Currently lilac code is under development to analyse thermo-hydraulics of the gas-cooled reactor(GCR) especially high-temperature GCR which is one of the gen IV nuclear reactors. The lilac code was originally developed for the analysis of thermo-hydraulics in a molten pool. And now it is modified to resolve the compressible gas flows in the GCR. The more complexities in the internal flow geometries of the GCR reactor and aero-thermal flows, the number of computational cells are increased and finally exceeds the current computing powers of the desktop computers. To overcome the problem and well resolve the interesting physics in the GCR it is conducted to parallels the lilac code by the decomposition of a computational domain or grid. Some benchmark problems are solved with the parallelized lilac code and its speed-up characteristics by the parallel computation is evaluated and described in the article

  11. Thermal neutron diffusion parameters in homogeneous mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Drozdowicz, K.; Krynicka, E. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    A physical background is presented for a computer program which calculates the thermal neutron diffusion parameters for homogeneous mixtures of any compounds. The macroscopic absorption, scattering and transport cross section of the mixture are defined which are generally function of the incident neutron energy. The energy-averaged neutron parameters are available when these energy dependences and the thermal neutron energy distribution are assumed. Then the averaged diffusion coefficient and the pulsed thermal neutron parameters (the absorption rare and the diffusion constant) are also defined. The absorption cross section is described by the 1/v law and deviations from this behaviour are considered. The scattering cross section can be assumed as being almost constant in the thermal neutron region (which results from the free gas model). Serious deviations are observed for hydrogen atoms bound in molecules and a special study in the paper is devoted to this problem. A certain effective scattering cross section is found in this case on a base of individual exact data for a few hydrogenous media. Approximations assumed for the average cosine of the scattering angle are also discussed. The macroscopic parameters calculated are averaged over the Maxwellian energy distribution for the thermal neutron flux. An information on the input data for the computer program is included. (author). 10 refs, 4 figs, 5 tabs.

  12. Thermal neutron diffusion parameters in homogeneous mixtures

    International Nuclear Information System (INIS)

    Drozdowicz, K.; Krynicka, E.

    1995-01-01

    A physical background is presented for a computer program which calculates the thermal neutron diffusion parameters for homogeneous mixtures of any compounds. The macroscopic absorption, scattering and transport cross section of the mixture are defined which are generally function of the incident neutron energy. The energy-averaged neutron parameters are available when these energy dependences and the thermal neutron energy distribution are assumed. Then the averaged diffusion coefficient and the pulsed thermal neutron parameters (the absorption rare and the diffusion constant) are also defined. The absorption cross section is described by the 1/v law and deviations from this behaviour are considered. The scattering cross section can be assumed as being almost constant in the thermal neutron region (which results from the free gas model). Serious deviations are observed for hydrogen atoms bound in molecules and a special study in the paper is devoted to this problem. A certain effective scattering cross section is found in this case on a base of individual exact data for a few hydrogenous media. Approximations assumed for the average cosine of the scattering angle are also discussed. The macroscopic parameters calculated are averaged over the Maxwellian energy distribution for the thermal neutron flux. An information on the input data for the computer program is included. (author). 10 refs, 4 figs, 5 tabs

  13. Nonlinear Parameter-Varying AeroServoElastic Reduced Order Model for Aerostructural Sensing and Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of the project is to develop reliable reduced order modeling technologies to automatically generate nonlinear, parameter-varying (PV),...

  14. Parameter Uncertainty for Repository Thermal Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Greenberg, Harris [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dupont, Mark [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-01

    This report is one follow-on to a study of reference geologic disposal design concepts (Hardin et al. 2011a). Based on an analysis of maximum temperatures, that study concluded that certain disposal concepts would require extended decay storage prior to emplacement, or the use of small waste packages, or both. The study used nominal values for thermal properties of host geologic media and engineered materials, demonstrating the need for uncertainty analysis to support the conclusions. This report is a first step that identifies the input parameters of the maximum temperature calculation, surveys published data on measured values, uses an analytical approach to determine which parameters are most important, and performs an example sensitivity analysis. Using results from this first step, temperature calculations planned for FY12 can focus on only the important parameters, and can use the uncertainty ranges reported here. The survey of published information on thermal properties of geologic media and engineered materials, is intended to be sufficient for use in generic calculations to evaluate the feasibility of reference disposal concepts. A full compendium of literature data is beyond the scope of this report. The term “uncertainty” is used here to represent both measurement uncertainty and spatial variability, or variability across host geologic units. For the most important parameters (e.g., buffer thermal conductivity) the extent of literature data surveyed samples these different forms of uncertainty and variability. Finally, this report is intended to be one chapter or section of a larger FY12 deliverable summarizing all the work on design concepts and thermal load management for geologic disposal (M3FT-12SN0804032, due 15Aug2012).

  15. Nonlinear Parameter-Varying AeroServoElastic Reduced Order Model for Aerostructural Sensing and Control, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of the project is to develop reliable reduced order modeling technologies to automatically generate parameter-varying (PV), aeroservoelastic (ASE)...

  16. Building ceramics with improved thermal insulation parameters

    Directory of Open Access Journals (Sweden)

    Rzepa Karol

    2016-01-01

    Full Text Available One of the most important performance characteristics of masonry units is their high thermal insulation. There are many different ways to improve this parameter, however the most popular methods in case of ceramic masonry units are: addition of pore-creating raw materials and application of proper hole pattern. This study was an attempt to improve thermal insulation of ceramics by applying thermal insulation additives. Perlite dust created as a subgrain from expansion of perlite rock was used. Perlite subgrain is not very popular among consumers, that’s why it’s subjected to granulation to obtain coarse grain. The authors presented concept of direct application of perlite dust for the production of building ceramics with improved thermal insulation. Fineness of this additive is asset for molding of ceramic materials from plastic masses. Based on the results it was found that about 70% perlite by volume can be added to obtain material with a coefficient of heat conductivity of 0,37 W/mK. Higher content of this additive in ceramic mass causes deterioration of its rheological properties. Mass loses its plasticity, it tears up and formed green bodies are susceptible to deformation. During sintering perlite takes an active part in compaction process. Higher sintering dynamics is caused by: high content of alkali oxides in perlite and glass nature of perlite. Alkali oxides generate creation of liquid phase which intensifies mass compaction processes. Active role of perlite in sintering process causes good connection of its grains with clay groundwork which is important factor for mechanical parameters of ceramic materials. It was also noted that addition of perlite above 40% by volume of mass effectively neutralized negative effect of efflorescence in ceramic materials.

  17. Kinetic Parameters of Thermal Degradation of Polymers

    Institute of Scientific and Technical Information of China (English)

    朱新生; 程嘉祺

    2003-01-01

    The derivative expressions between activation energy (E) and the temperature at the maximum mass loss rate(Tmax) and between activation energy (E) and exponent (N) were deduced in the light of Arrhenius theory. It was found that the increase of activation energy results in the decrease of exponent and the increase of Tmax. The kinetic parameters were involved in the analysis of the thermal degradation of several polymers. The degradation kinetics of these polymers well complied with the prediction of the derivative expressions for the polymer degradation with single mechanism dominated.

  18. Aero thermal test results obtained on the n. C 5 EL 4 Cluster in the atmospheric pressure cell

    International Nuclear Information System (INIS)

    Gasc, B.

    1964-01-01

    In the framework of thermal studies on the EL-4 cluster, the full-scale tests at atmospheric pressure are designed to permit measurement of local values of the wall temperature, of the velocity and of the temperature in the fluid. The experimental results, obtained with the help of an original measuring apparatus, make it possible to follow the changes in these values along the cluster and to predict in much detail the in-pile thermal behaviour. In particular it is shown that changes in the wall temperature along the cluster are greatly influenced by disruption of the flow caused by grids and supports. (author) [fr

  19. Quenching parameter in a holographic thermal QCD

    Science.gov (United States)

    Patra, Binoy Krishna; Arya, Bhaskar

    2017-01-01

    We have calculated the quenching parameter, q ˆ in a model-independent way using the gauge-gravity duality. In earlier calculations, the geometry in the gravity side at finite temperature was usually taken as the pure AdS black hole metric for which the dual gauge theory becomes conformally invariant unlike QCD. Therefore we use a metric which incorporates the fundamental quarks by embedding the coincident D7 branes in the Klebanov-Tseytlin background and a finite temperature is switched on by inserting a black hole into the background, known as OKS-BH metric. Further inclusion of an additional UV cap to the metric prepares the dual gauge theory to run similar to thermal QCD. Moreover q ˆ is usually defined in the literature from the Glauber model perturbative QCD evaluation of the Wilson loop, which has no reasons to hold if the coupling is large and is thus against the main idea of gauge-gravity duality. Thus we use an appropriate definition of q ˆ : q ˆ L- = 1 /L2, where L is the separation for which the Wilson loop is equal to some specific value. The above two refinements cause q ˆ to vary with the temperature as T4 always and to depend linearly on the light-cone time L- with an additional (1 /L-) correction term in the short-distance limit whereas in the long-distance limit, q ˆ depends only linearly on L- with no correction term. These observations agree with other holographic calculations directly or indirectly.

  20. Quenching parameter in a holographic thermal QCD

    Directory of Open Access Journals (Sweden)

    Binoy Krishna Patra

    2017-01-01

    Full Text Available We have calculated the quenching parameter, qˆ in a model-independent way using the gauge–gravity duality. In earlier calculations, the geometry in the gravity side at finite temperature was usually taken as the pure AdS black hole metric for which the dual gauge theory becomes conformally invariant unlike QCD. Therefore we use a metric which incorporates the fundamental quarks by embedding the coincident D7 branes in the Klebanov–Tseytlin background and a finite temperature is switched on by inserting a black hole into the background, known as OKS-BH metric. Further inclusion of an additional UV cap to the metric prepares the dual gauge theory to run similar to thermal QCD. Moreover qˆ is usually defined in the literature from the Glauber model perturbative QCD evaluation of the Wilson loop, which has no reasons to hold if the coupling is large and is thus against the main idea of gauge–gravity duality. Thus we use an appropriate definition of qˆ: qˆL−=1/L2, where L is the separation for which the Wilson loop is equal to some specific value. The above two refinements cause qˆ to vary with the temperature as T4 always and to depend linearly on the light-cone time L− with an additional (1/L− correction term in the short-distance limit whereas in the long-distance limit, qˆ depends only linearly on L− with no correction term. These observations agree with other holographic calculations directly or indirectly.

  1. Basic Thermal Parameters of Selected Foods and Food Raw Materials

    OpenAIRE

    Monika Božiková; Ľubomír Híreš; Michal Valach; Martin Malínek; Jan Mareček

    2017-01-01

    In general, processing and manipulation with foods and food raw materials have significant influence on their physical properties. The article is focused on thermophysical parameters measurement of selected foods and food raw materials. There were examined thermal conductivity and thermal diffusivity of selected materials. For detection of thermal parameters was used instrument Isomet 2104, which principle of measurement is based on transient methods. In text are presented summary results of ...

  2. Calculation of the neutron parameters of fast thermal reactor

    International Nuclear Information System (INIS)

    Kukuleanu, V.; Mocioiu, D.; Drutse, E.; Konstantinesku, E.

    1975-01-01

    The system of neutron calculation for fast reactors is given. This system was used for estimation of physical parameters of fast thermal reactors investigated. The results obtained and different specific problems of the reactors of this type are described. (author)

  3. Basic Thermal Parameters of Selected Foods and Food Raw Materials

    Directory of Open Access Journals (Sweden)

    Monika Božiková

    2017-01-01

    Full Text Available In general, processing and manipulation with foods and food raw materials have significant influence on their physical properties. The article is focused on thermophysical parameters measurement of selected foods and food raw materials. There were examined thermal conductivity and thermal diffusivity of selected materials. For detection of thermal parameters was used instrument Isomet 2104, which principle of measurement is based on transient methods. In text are presented summary results of thermal parameters measurement for various foods and food raw materials as: granular materials – corn flour and wheat flour; fruits, vegetables and fruit products – grated apple, dried apple and apple juice; liquid materials – milk, beer etc. Measurements were performed in two temperature ranges according to the character of examined material. From graphical relations of thermophysical parameter is evident, that thermal conductivity and diffusivity increases with temperature and moisture content linearly, only for granular materials were obtained non‑linear dependencies. Results shows, that foods and food raw materials have different thermal properties, which are influenced by their type, structure, chemical and physical properties. From presented results is evident, that basic thermal parameters are important for material quality detection in food industry.

  4. Some implications of accurate thermal parameters for beryllium

    International Nuclear Information System (INIS)

    Collins, D.M.; Whitehurst, F.W.

    1981-01-01

    Authoritative values for the parameters of harmonic thermal motion have been used as criteria for various least-squares refinements of the structure model for beryllium metal. A change in the absolute scale of Brown [Philos. Mag. (1972), 26, 1377-1394] improves the correspondence of the associated data with the true thermal parameters. Contraction of the core-electron distribution upon bonding is a possible implication of the rescaled data. (Auth.)

  5. In-situ measurements of material thermal parameters for accurate LED lamp thermal modelling

    NARCIS (Netherlands)

    Vellvehi, M.; Perpina, X.; Jorda, X.; Werkhoven, R.J.; Kunen, J.M.G.; Jakovenko, J.; Bancken, P.; Bolt, P.J.

    2013-01-01

    This work deals with the extraction of key thermal parameters for accurate thermal modelling of LED lamps: air exchange coefficient around the lamp, emissivity and thermal conductivity of all lamp parts. As a case study, an 8W retrofit lamp is presented. To assess simulation results, temperature is

  6. Integral Parameters of the Thermal Neutron Scattering Law

    International Nuclear Information System (INIS)

    Purohit, S.N.

    1964-09-01

    Integral parameters of the thermal neutron scattering law - the thermalization binding parameter (M 2 ), the Placzek's moments of the generalized frequency spectrum of dynamical modes and the energy transfer moments of the scattering law - are theoretically discussed. A detailed study of the variation of M 2 , the thermalization time constant and the effective temperature of the vibrating atoms, with the relative weight between intra-molecular vibrations and hindered rotations for H 2 O, is presented. Theoretical results for different scattering models of H 2 O are compared with the measurements of integral experiments. A set of integral parameters for D 2 O, using Butler's model, have been obtained. Importance of the structure of hindered rotations of H 2 O and D 2 O in the study of integral parameters has also been discussed

  7. Integral Parameters of the Thermal Neutron Scattering Law

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, S N

    1964-09-15

    Integral parameters of the thermal neutron scattering law - the thermalization binding parameter (M{sub 2}), the Placzek's moments of the generalized frequency spectrum of dynamical modes and the energy transfer moments of the scattering law - are theoretically discussed. A detailed study of the variation of M{sub 2}, the thermalization time constant and the effective temperature of the vibrating atoms, with the relative weight between intra-molecular vibrations and hindered rotations for H{sub 2}O, is presented. Theoretical results for different scattering models of H{sub 2}O are compared with the measurements of integral experiments. A set of integral parameters for D{sub 2}O, using Butler's model, have been obtained. Importance of the structure of hindered rotations of H{sub 2}O and D{sub 2}O in the study of integral parameters has also been discussed.

  8. Buckling of thermally fluctuating spherical shells: Parameter renormalization and thermally activated barrier crossing

    Science.gov (United States)

    Baumgarten, Lorenz; Kierfeld, Jan

    2018-05-01

    We study the influence of thermal fluctuations on the buckling behavior of thin elastic capsules with spherical rest shape. Above a critical uniform pressure, an elastic capsule becomes mechanically unstable and spontaneously buckles into a shape with an axisymmetric dimple. Thermal fluctuations affect the buckling instability by two mechanisms. On the one hand, thermal fluctuations can renormalize the capsule's elastic properties and its pressure because of anharmonic couplings between normal displacement modes of different wavelengths. This effectively lowers its critical buckling pressure [Košmrlj and Nelson, Phys. Rev. X 7, 011002 (2017), 10.1103/PhysRevX.7.011002]. On the other hand, buckled shapes are energetically favorable already at pressures below the classical buckling pressure. At these pressures, however, buckling requires to overcome an energy barrier, which only vanishes at the critical buckling pressure. In the presence of thermal fluctuations, the capsule can spontaneously overcome an energy barrier of the order of the thermal energy by thermal activation already at pressures below the critical buckling pressure. We revisit parameter renormalization by thermal fluctuations and formulate a buckling criterion based on scale-dependent renormalized parameters to obtain a temperature-dependent critical buckling pressure. Then we quantify the pressure-dependent energy barrier for buckling below the critical buckling pressure using numerical energy minimization and analytical arguments. This allows us to obtain the temperature-dependent critical pressure for buckling by thermal activation over this energy barrier. Remarkably, both parameter renormalization and thermal activation lead to the same parameter dependence of the critical buckling pressure on temperature, capsule radius and thickness, and Young's modulus. Finally, we study the combined effect of parameter renormalization and thermal activation by using renormalized parameters for the energy

  9. ESTIMATION OF THERMAL PARAMETERS OF POWER BIPOLAR TRANSISTORS BY THE METHOD OF THERMAL RELAXATION DIFFERENTIAL SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    V. S. Niss

    2015-01-01

    Full Text Available Thermal performance of electronic devices determines the stability and reliability of the equipment. This leads to the need for a detailed thermal analysis of semiconductor devices. The goal of the work is evaluation of thermal parameters of high-power bipolar transistors in plastic packages TO-252 and TO-126 by a method of thermal relaxation differential spectrometry. Thermal constants of device elements and distribution structure of thermal resistance defined as discrete and continuous spectra using previously developed relaxation impedance spectrometer. Continuous spectrum, based on higher-order derivatives of the dynamic thermal impedance, follows the model of Foster, and discrete to model of Cauer. The structure of sample thermal resistance is presented in the form of siх-chain electro-thermal RC model. Analysis of the heat flow spreading in the studied structures is carried out on the basis of the concept of thermal diffusivity. For transistor structures the area and distribution of the heat flow cross-section are determined. On the basis of the measurements the thermal parameters of high-power bipolar transistors is evaluated, in particular, the structure of their thermal resistance. For all of the measured samples is obtained that the thermal resistance of the layer planting crystal makes a defining contribution to the internal thermal resistance of transistors. In the transition layer at the border of semiconductor-solder the thermal resistance increases due to changes in the mechanism of heat transfer. Defects in this area in the form of delamination of solder, voids and cracks lead to additional growth of thermal resistance caused by the reduction of the active square of the transition layer. Method of thermal relaxation differential spectrometry allows effectively control the distribution of heat flow in high-power semiconductor devices, which is important for improving the design, improve the quality of landing crystals of power

  10. Modeling, Analysis, and Control of a Hypersonic Vehicle with Significant Aero-Thermo-Elastic-Propulsion Interactions: Elastic, Thermal and Mass Uncertainty

    Science.gov (United States)

    Khatri, Jaidev

    This thesis examines themodeling, analysis, and control system design issues for scramjet powered hypersonic vehicles. A nonlinear three degrees of freedom longitudinal model which includes aero-propulsion-elasticity effects was used for all analyses. This model is based upon classical compressible flow and Euler-Bernouli structural concepts. Higher fidelity computational fluid dynamics and finite element methods are needed for more precise intermediate and final evaluations. The methods presented within this thesis were shown to be useful for guiding initial control relevant design. The model was used to examine the vehicle's static and dynamic characteristics over the vehicle's trimmable region. The vehicle has significant longitudinal coupling between the fuel equivalency ratio (FER) and the flight path angle (FPA). For control system design, a two-input two-output plant (FER - elevator to speed-FPA) with 11 states (including 3 flexible modes) was used. Velocity, FPA, and pitch were assumed to be available for feedback. Aerodynamic heat modeling and design for the assumed TPS was incorporated to original Bolender's model to study the change in static and dynamic properties. De-centralized control stability, feasibility and limitations issues were dealt with the change in TPS elasticity, mass and physical dimension. The impact of elasticity due to TPS mass, TPS physical dimension as well as prolonged heating was also analyzed to understand performance limitations of de-centralized control designed for nominal model.

  11. Thermal power blocks with ultra-super-critical steam parameters

    Directory of Open Access Journals (Sweden)

    Aličić Merim M.

    2016-01-01

    Full Text Available New generation of thermal power plants are required to have increased utilization rates, in addition to reduced emissions of pollutants, in order to reach optimal solutions, from both technical and economic point of view. One way to achieve greater utilization efficiency is operation of the plant at super critical (SC or ultra super critical steam parameters (USC. However, achieving high parameters depends on use of new materials, which have better properties at high temperatures and pressures, use of new welding technologies and by solving the problem of corrosion. The paper gives an overview of some of the plants with these parameters.

  12. Comparison of parameters of modern cooled and uncooled thermal cameras

    Science.gov (United States)

    Bareła, Jarosław; Kastek, Mariusz; Firmanty, Krzysztof; Krupiński, Michał

    2017-10-01

    During the design of a system employing thermal cameras one always faces a problem of choosing the camera types best suited for the task. In many cases such a choice is far from optimal one, and there are several reasons for that. System designers often favor tried and tested solution they are used to. They do not follow the latest developments in the field of infrared technology and sometimes their choices are based on prejudice and not on facts. The paper presents the results of measurements of basic parameters of MWIR and LWIR thermal cameras, carried out in a specialized testing laboratory. The measured parameters are decisive in terms of image quality generated by thermal cameras. All measurements were conducted according to current procedures and standards. However the camera settings were not optimized for a specific test conditions or parameter measurements. Instead the real settings used in normal camera operations were applied to obtain realistic camera performance figures. For example there were significant differences between measured values of noise parameters and catalogue data provided by manufacturers, due to the application of edge detection filters to increase detection and recognition ranges. The purpose of this paper is to provide help in choosing the optimal thermal camera for particular application, answering the question whether to opt for cheaper microbolometer device or apply slightly better (in terms of specifications) yet more expensive cooled unit. Measurements and analysis were performed by qualified personnel with several dozen years of experience in both designing and testing of thermal camera systems with both cooled and uncooled focal plane arrays. Cameras of similar array sizes and optics were compared, and for each tested group the best performing devices were selected.

  13. Lumped-parameter fuel rod model for rapid thermal transients

    International Nuclear Information System (INIS)

    Perkins, K.R.; Ramshaw, J.D.

    1975-07-01

    The thermal behavior of fuel rods during simulated accident conditions is extremely sensitive to the heat transfer coefficient which is, in turn, very sensitive to the cladding surface temperature and the fluid conditions. The development of a semianalytical, lumped-parameter fuel rod model which is intended to provide accurate calculations, in a minimum amount of computer time, of the thermal response of fuel rods during a simulated loss-of-coolant accident is described. The results show good agreement with calculations from a comprehensive fuel-rod code (FRAP-T) currently in use at Aerojet Nuclear Company

  14. Vibration modelling and verifications for whole aero-engine

    Science.gov (United States)

    Chen, G.

    2015-08-01

    In this study, a new rotor-ball-bearing-casing coupling dynamic model for a practical aero-engine is established. In the coupling system, the rotor and casing systems are modelled using the finite element method, support systems are modelled as lumped parameter models, nonlinear factors of ball bearings and faults are included, and four types of supports and connection models are defined to model the complex rotor-support-casing coupling system of the aero-engine. A new numerical integral method that combines the Newmark-β method and the improved Newmark-β method (Zhai method) is used to obtain the system responses. Finally, the new model is verified in three ways: (1) modal experiment based on rotor-ball bearing rig, (2) modal experiment based on rotor-ball-bearing-casing rig, and (3) fault simulations for a certain type of missile turbofan aero-engine vibration. The results show that the proposed model can not only simulate the natural vibration characteristics of the whole aero-engine but also effectively perform nonlinear dynamic simulations of a whole aero-engine with faults.

  15. Equipment for Aero-Optical Flow Imaging

    National Research Council Canada - National Science Library

    Catrakis, Haris

    2004-01-01

    The AFOSR/DURIP Grant has provided the funds to develop a new Aero-Optics Laboratory at UC Irvine, in order to do basic research on aero-optical laser beam propagation through high-speed turbulent flows...

  16. Laser Processing of Multilayered Thermal Spray Coatings: Optimal Processing Parameters

    Science.gov (United States)

    Tewolde, Mahder; Zhang, Tao; Lee, Hwasoo; Sampath, Sanjay; Hwang, David; Longtin, Jon

    2017-12-01

    Laser processing offers an innovative approach for the fabrication and transformation of a wide range of materials. As a rapid, non-contact, and precision material removal technology, lasers are natural tools to process thermal spray coatings. Recently, a thermoelectric generator (TEG) was fabricated using thermal spray and laser processing. The TEG device represents a multilayer, multimaterial functional thermal spray structure, with laser processing serving an essential role in its fabrication. Several unique challenges are presented when processing such multilayer coatings, and the focus of this work is on the selection of laser processing parameters for optimal feature quality and device performance. A parametric study is carried out using three short-pulse lasers, where laser power, repetition rate and processing speed are varied to determine the laser parameters that result in high-quality features. The resulting laser patterns are characterized using optical and scanning electron microscopy, energy-dispersive x-ray spectroscopy, and electrical isolation tests between patterned regions. The underlying laser interaction and material removal mechanisms that affect the feature quality are discussed. Feature quality was found to improve both by using a multiscanning approach and an optional assist gas of air or nitrogen. Electrically isolated regions were also patterned in a cylindrical test specimen.

  17. Performance analysis of pin fins with temperature dependent thermal parameters using the variation of parameters method

    Directory of Open Access Journals (Sweden)

    Cihat Arslantürk

    2016-08-01

    Full Text Available The performance of pin fins transferring heat by convection and radiation and having variable thermal conductivity, variable emissivity and variable heat transfer coefficient was investigated in the present paper. Nondimensionalizing the fin equation, the problem parameters which affect the fin performance were obtained. Dimensionless nonlinear fin equation was solved with the variation of parameters method, which is quite new in the solution of nonlinear heat transfer problems. The solution of variation of parameters method was compared with known analytical solutions and some numerical solution. The comparisons showed that the solutions are seen to be perfectly compatible. The effects of problem parameters were investigated on the heat transfer rate and fin efficiency and results were presented graphically.

  18. Thermophoresis and Its Thermal Parameters for Aerosol Collection

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z.; Apte, Michael; Gundel, Lara

    2007-08-01

    The particle collection efficiency of a prototype environmental tobacco smoke (ETS) sampler based on the use of thermophoresis is determined by optimizing the operational voltage that determines its thermal gradient. This sampler's heating element was made of three sets of thermophoretic (TP) wires 25mu m in diameter suspended across a channel cut in a printed circuit board and mounted with collection surfaces on both sides. The separation between the heating element and the room temperature collection surface was determined in a numerical simulation based on the Brock-Talbot model. Other thermal parameters of this TP ETS sampler were predicted by the Brock-Talbot model for TP deposition. From the normalized results the optimal collection ratio was expressed in terms of operational voltage and fi lter mass. Prior to the Brock-Talbot model simulation for this sampler, 1.0V was used arbitrarily. The operational voltage was raised to 3.0V, and the collection effi ciency was increased by a factor of fi ve for both theory and experiment.

  19. THERMOPHORESIS AND ITS THERMAL PARAMETERS FOR AEROSOL COLLECTION

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z.; Apte, M.; Gundel, L.

    2007-01-01

    The particle collection effi ciency of a prototype environmental tobacco smoke (ETS) sampler based on the use of thermophoresis is determined by optimizing the operational voltage that determines its thermal gradient. This sampler’s heating element was made of three sets of thermophoretic (TP) wires 25μm in diameter suspended across a channel cut in a printed circuit board and mounted with collection surfaces on both sides. The separation between the heating element and the room temperature collection surface was determined in a numerical simulation based on the Brock-Talbot model. Other thermal parameters of this TP ETS sampler were predicted by the Brock-Talbot model for TP deposition. From the normalized results the optimal collection ratio was expressed in terms of operational voltage and fi lter mass. Prior to the Brock-Talbot model simulation for this sampler, 1.0V was used arbitrarily. The operational voltage was raised to 3.0V, and the collection effi ciency was increased by a factor of fi ve for both theory and experiment.

  20. Characterization of Thermal Parameters for Improving Pyranometer and Pyrgeometer Measurements

    Science.gov (United States)

    Tsay, Si-Chee; Jhabvala, Murzy D.; Ji, Qiang; Rapshun, David; Shu, Peter K.

    2000-01-01

    Since the introduction of thermopile, pyranometers (solar, e.g., 0.3-3.0 micrometers) and pyrgeometers (terrestrial, e.g., 4-50 micrometers) have become instruments commonly used for measuring the broadband hemispherical irradiances at the surface in a long-term, monitoring mode for decades. These commercially available radiometers have been manufactured in several countries such as from the United States, Asia, and Europe, and are generally reliable and economical. These worldwide distributions of surface measurements become even more important in the era of Earth remote sensing in studying climate change. However, recent studies from field campaigns have pointed out that erroneous factors (e.g., temperature gradients between the filter dome and detector, emissivity of the thermopile) are responsible for the unacceptable level of uncertainty (e.g., 20 W m(exp -2)). Using a newly developed instrument of Quantum Well Infrared Photodetector (QWTP), we have characterized the brightness temperature fields of pyranometers and pyrgeometers under various sky conditions. The QWIP is based on the superlattice (GaAs/AlGaAs) technology and has a noise equivalent temperature (NEAT) less than 0.1 K. The quality of pyranometer and pyrgeometer measure- ments can be improved largely by applying proper knowledge of the thermal parameters affecting the operation of the thermopile systems. Data correction procedure and algorithm will be presented and discussed.

  1. Maintenance Decision Based on Data Fusion of Aero Engines

    Directory of Open Access Journals (Sweden)

    Huawei Wang

    2013-01-01

    Full Text Available Maintenance has gained a great importance as a support function for ensuring aero engine reliability and availability. Cost-effectiveness and risk control are two basic criteria for accurate maintenance. Given that aero engines have much condition monitoring data, this paper presents a new condition-based maintenance decision system that employs data fusion for improving accuracy of reliability evaluation. Bayesian linear model has been applied, so that the performance degradation evaluation of aero engines could be realized. A reliability evaluation model has been presented based on gamma process, which achieves the accurate evaluation by information fusion. In reliability evaluation model, the shape parameter is estimated by the performance degradation evaluation result, and the scale parameter is estimated by failure, inspection, and repair information. What is more, with such reliability evaluation as input variables and by using particle swarm optimization (PSO, a stochastic optimization of maintenance decision for aircraft engines has been presented, in which the effectiveness and the accuracy are demonstrated by a numerical example.

  2. Influence of Fabric Parameters on Thermal Comfort Performance of Double Layer Knitted Interlock Fabrics

    Directory of Open Access Journals (Sweden)

    Afzal Ali

    2017-03-01

    Full Text Available The aim of this study was to analyse the effects of various fabric parameters on the thermal resistance, thermal conductivity, thermal transmittance, thermal absorptivity and thermal insulation of polyester/cotton double layer knitted interlock fabrics. It was found that by increasing fibre content with higher specific heat increases the thermal insulation while decreases the thermal transmittance and absorptivity of the fabric. It was concluded that double layer knitted fabrics developed with higher specific heat fibres, coarser yarn linear densities, higher knitting loop length and fabric thickness could be adequately used for winter clothing purposes.

  3. Experimental and Numerical Investigation of Design Parameters for Hydronic Embedded Thermally Active Surfaces

    DEFF Research Database (Denmark)

    Marcos-Meson, Victor; Pomianowski, Michal Zbigniew; E. Poulsen, Søren

    2015-01-01

    This paper evaluates the principal design parameters affecting the thermal performance of embedded hydronic Thermally Active Surfaces (TAS), combining the Response Surface Method (RSM) with the Finite Elements Method (FEM). The study ranks the combined effects of the parameters on the heat flux i...

  4. Review of Parameter Determination for Thermal Modeling of Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Seyed Saeed Madani

    2018-04-01

    Full Text Available This paper reviews different methods for determination of thermal parameters of lithium ion batteries. Lithium ion batteries are extensively employed for various applications owing to their low memory effect, high specific energy, and power density. One of the problems in the expansion of hybrid and electric vehicle technology is the management and control of operation temperatures and heat generation. Successful battery thermal management designs can lead to better reliability and performance of hybrid and electric vehicles. Thermal cycling and temperature gradients could have a considerable impact on the lifetime of lithium ion battery cells. Thermal management is critical in electric vehicles (EVs and good thermal battery models are necessary to design proper heating and cooling systems. Consequently, it is necessary to determine thermal parameters of a single cell, such as internal resistance, specific heat capacity, entropic heat coefficient, and thermal conductivity in order to design suitable thermal management system.

  5. Integrated approach for stress based lifing of aero gas turbine blades

    Science.gov (United States)

    Abu, Abdullahi Obonyegba

    In order to analyse the turbine blade life, the damage due to the combined thermal and mechanical loads should be adequately accounted for. This is more challenging when detailed component geometry is limited. Therefore, a compromise between the level of geometric detail and the complexity of the lifing method to be implemented would be necessary. This research focuses on how the life assessment of aero engine turbine blades can be done, considering the balance between available design inputs and adequate level of fidelity. Accordingly, the thesis contributes to developing a generic turbine blade lifing method that is based on the engine thermodynamic cycle; as well as integrating critical design/technological factors and operational parameters that influence the aero engine blade life. To this end, thermo-mechanical fatigue was identified as the critical damage phenomenon driving the life of the turbine blade.. The developed approach integrates software tools and numerical models created using the minimum design information typically available at the early design stages. Using finite element analysis of an idealised blade geometry, the approach captures relevant impacts of thermal gradients and thermal stresses that contribute to the thermo-mechanical fatigue damage on the gas turbine blade. The blade life is evaluated using the Neu/Sehitoglu thermo-mechanical fatigue model that considers damage accumulation due to fatigue, oxidation, and creep. The leading edge is examined as a critical part of the blade to estimate the damage severity for different design factors and operational parameters. The outputs of the research can be used to better understand how the environment and the operating conditions of the aircraft affect the blade life consumption and therefore what is the impact on the maintenance cost and the availability of the propulsion system. This research also finds that the environmental (oxidation) effect drives the blade life and the blade coolant

  6. AeroMACS system characterization and demonstrations

    Science.gov (United States)

    Kerczewski, R. J.; Apaza, R. D.; Dimond, R. P.

    This The Aeronautical Mobile Airport Communications System (AeroMACS) is being developed to provide a new broadband wireless communications capability for safety critical communications in the airport surface domain, providing connectivity to aircraft and other ground vehicles as well as connections between other critical airport fixed assets. AeroMACS development has progressed from requirements definition through technology definition, prototype deployment and testing, and now into national and international standards development. The first prototype AeroMACS system has been deployed at the Cleveland Hopkins International Airport (CLE) and the adjacent NASA Glenn Research Center (GRC). During the past three years, extensive technical testing has taken place to characterize the performance of the AeroMACS prototype and provide technical support for the standards development process. The testing has characterized AeroMACS link and network performance over a variety of conditions for both fixed and mobile data transmission and has included basic system performance testing and fixed and mobile applications testing. This paper provides a summary of the AeroMACS performance testing and the status of standardization activities that the testing supports.

  7. Stochastic analysis of uncertain thermal parameters for random thermal regime of frozen soil around a single freezing pipe

    Science.gov (United States)

    Wang, Tao; Zhou, Guoqing; Wang, Jianzhou; Zhou, Lei

    2018-03-01

    The artificial ground freezing method (AGF) is widely used in civil and mining engineering, and the thermal regime of frozen soil around the freezing pipe affects the safety of design and construction. The thermal parameters can be truly random due to heterogeneity of the soil properties, which lead to the randomness of thermal regime of frozen soil around the freezing pipe. The purpose of this paper is to study the one-dimensional (1D) random thermal regime problem on the basis of a stochastic analysis model and the Monte Carlo (MC) method. Considering the uncertain thermal parameters of frozen soil as random variables, stochastic processes and random fields, the corresponding stochastic thermal regime of frozen soil around a single freezing pipe are obtained and analyzed. Taking the variability of each stochastic parameter into account individually, the influences of each stochastic thermal parameter on stochastic thermal regime are investigated. The results show that the mean temperatures of frozen soil around the single freezing pipe with three analogy method are the same while the standard deviations are different. The distributions of standard deviation have a great difference at different radial coordinate location and the larger standard deviations are mainly at the phase change area. The computed data with random variable method and stochastic process method have a great difference from the measured data while the computed data with random field method well agree with the measured data. Each uncertain thermal parameter has a different effect on the standard deviation of frozen soil temperature around the single freezing pipe. These results can provide a theoretical basis for the design and construction of AGF.

  8. Thermal-hydraulic Parameters of WWER-440 Fuel Performance

    International Nuclear Information System (INIS)

    Kacmar, M.

    1999-01-01

    In this lecture the thermodynamic characteristics of reactor core V230, V213 (design concept and the distribution of coolant flow inside the reactor vessel and basic T-H parameters), allowed reactor regimes and reactor core flow factor as well as thermodynamic parameters and impact to fuel leakage are presented

  9. An accurate method for the determination of unlike potential parameters from thermal diffusion data

    International Nuclear Information System (INIS)

    El-Geubeily, S.

    1997-01-01

    A new method is introduced by means of which the unlike intermolecular potential parameters can be determined from the experimental measurements of the thermal diffusion factor as a function of temperature. The method proved to be easy, accurate, and applicable two-, three-, and four-parameter potential functions whose collision integrals are available. The potential parameters computed by this method are found to provide a faith full representation of the thermal diffusion data under consideration. 3 figs., 4 tabs

  10. N3S-AERO: a multidimensional model for numerical simulation of all wet cooling tower systems

    International Nuclear Information System (INIS)

    Razafindrakoto, E.; Hofmann, F.

    1997-01-01

    3D model is more required to optimize the design of new cooling tower by way of parameters studies, to improve the performance of the existing ones from changes in fill zone or water distribution. Therefore, the Directions des Etudes et Recherches with collaboration of the Direction de l'Equipement of EDF, has developed a specific version of the finite element CFD code N3S, denoted N3S-AERO, for the simulation of natural or mechanical draught wet cooling towers. It solves mass, momentum, heat and humidity averaged Navier-Stokes equations including buoyancy terms with variable density for air flow in the whole domain mass, heat equations for water flow in exchange zones. With standard results of N3S as air velocity and scalar fields, N3S-AERO gives in return water temperature fields mean values of variables at inlet or outlet of each exchange zone and thermal performance of the tower. 2D axisymmetrical and 3D industrial cases have soon been done. Major flow phenomena are well predicted and averaged cold water values are in good agreement with ID-TEFERI code or measurements

  11. Computational parameters in thermal recovery of crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Kashai, L; Geineman, Z

    1965-12-01

    In this mathematical simulation of the in-situ combustion process, the effect is calculated of various parameters on the temperature distribution within the combustion zone. Among the parameters included in the mathematical analysis are (1) quantity of residual coke, oil, and oxidizer, (2) formation thickness, (3) heat conductivity and heat capacity of the formation, and (4) degree of rock heterogeneity. The problem is solved for the linear flow case with the use of a computer. Five temperatures profiles for various conditions are illustrated.

  12. Spatial-temporal-covariance-based modeling, analysis, and simulation of aero-optics wavefront aberrations.

    Science.gov (United States)

    Vogel, Curtis R; Tyler, Glenn A; Wittich, Donald J

    2014-07-01

    We introduce a framework for modeling, analysis, and simulation of aero-optics wavefront aberrations that is based on spatial-temporal covariance matrices extracted from wavefront sensor measurements. Within this framework, we present a quasi-homogeneous structure function to analyze nonhomogeneous, mildly anisotropic spatial random processes, and we use this structure function to show that phase aberrations arising in aero-optics are, for an important range of operating parameters, locally Kolmogorov. This strongly suggests that the d5/3 power law for adaptive optics (AO) deformable mirror fitting error, where d denotes actuator separation, holds for certain important aero-optics scenarios. This framework also allows us to compute bounds on AO servo lag error and predictive control error. In addition, it provides us with the means to accurately simulate AO systems for the mitigation of aero-effects, and it may provide insight into underlying physical processes associated with turbulent flow. The techniques introduced here are demonstrated using data obtained from the Airborne Aero-Optics Laboratory.

  13. Method of making an aero-derivative gas turbine engine

    Science.gov (United States)

    Wiebe, David J.

    2018-02-06

    A method of making an aero-derivative gas turbine engine (100) is provided. A combustor outer casing (68) is removed from an existing aero gas turbine engine (60). An annular combustor (84) is removed from the existing aero gas turbine engine. A first row of turbine vanes (38) is removed from the existing aero gas turbine engine. A can annular combustor assembly (122) is installed within the existing aero gas turbine engine. The can annular combustor assembly is configured to accelerate and orient combustion gasses directly onto a first row of turbine blades of the existing aero gas turbine engine. A can annular combustor assembly outer casing (108) is installed to produce the aero-derivative gas turbine engine (100). The can annular combustor assembly is installed within an axial span (85) of the existing aero gas turbine engine vacated by the annular combustor and the first row of turbine vanes.

  14. Aero-disaster in Port Harcourt, Nigeria: A case study

    African Journals Online (AJOL)

    Aero-disaster in Port Harcourt, Nigeria: A case study ... Aero-disaster in Nigeria is posing a serious problem to government, the public and relatives of victims, ..... which was recorded in one of our victim's relation, ... this communication.

  15. Review of Parameter Determination for Thermal Modeling of Lithium Ion Batteries

    DEFF Research Database (Denmark)

    Saeed Madani, Seyed; Schaltz, Erik; Kær, Søren Knudsen

    2018-01-01

    This paper reviews different methods for determination of thermal parameters of lithium ion batteries. Lithium ion batteries are extensively employed for various applications owing to their low memory effect, high specific energy, and power density. One of the problems in the expansion of hybrid...... on the lifetime of lithium ion battery cells. Thermal management is critical in electric vehicles (EVs) and good thermal battery models are necessary to design proper heating and cooling systems. Consequently, it is necessary to determine thermal parameters of a single cell, such as internal resistance, specific...... and electric vehicle technology is the management and control of operation temperatures and heat generation. Successful battery thermal management designs can lead to better reliability and performance of hybrid and electric vehicles. Thermal cycling and temperature gradients could have a considerable impact...

  16. Influence of buildings geometrical and physical parameters on thermal cooling load

    International Nuclear Information System (INIS)

    Melo, C.

    1980-09-01

    A more accurate method to evaluate the thermal cooling load in buildings and to analyze the influence of geometrical and physical parameters on air conditioning calculations is presented. The sensitivity of the cooling load, considering the thermal capacity of the materials, was simulated in a computer for several different situations. (Author) [pt

  17. House thermal model parameter estimation method for Model Predictive Control applications

    NARCIS (Netherlands)

    van Leeuwen, Richard Pieter; de Wit, J.B.; Fink, J.; Smit, Gerardus Johannes Maria

    In this paper we investigate thermal network models with different model orders applied to various Dutch low-energy house types with high and low interior thermal mass and containing floor heating. Parameter estimations are performed by using data from TRNSYS simulations. The paper discusses results

  18. Aero-acoustics noise assessment for Wind-Lens turbine

    International Nuclear Information System (INIS)

    Hashem, I.; Mohamed, M.H.; Hafiz, A.A.

    2017-01-01

    This paper introduces an aero-acoustic computational study that investigates the noise caused by one of the most promising wind energy conversion concepts, namely the 'Wind-Lens' technology. The hybrid method - where the flow field and acoustic field are solved separately, was deemed to be an appropriate tool to compute this study. The need to investigate this phenomenon increased gradually, since the feasibility of utilizing Wind-Lens turbine within densely populated cities and urban areas depends largely on their noise generation. Ffowcs Williams-Hawkings (FW-H) equation and its integral solution are used to predict the noise radiating to the farfield. CFD Simulations of transient three-dimensional flow field using (URANS) unsteady Reynolds-averaged Navier-Stokes equations are computed to acquire the acoustic sources location and sound intensity. Then, the noise propagates from the before-mentioned sources to pre-defined virtual microphones positioned in different locations. ANSYS-FLUENT is used to calculate the flow field on and around such turbines which is required for the FW-H code. Some effective parameters are investigated such as Wind-Lens shape, brim height and tip speed ratio. Comparison of the noise emitted from the bare wind turbine and different types of Wind-Lens turbine reveals that, the Wind-Lens generates higher noise intensity. - Highlights: • Aero-acoustic noise generated by wind turbines are one of the major challenges. • Noise from wind turbine equipped with a brimmed diffuser is investigated. • A computational aero-acoustic study using the hybrid method is introduced. • Effective parameters are studied such Wind-Lens shape, brim height and speed ratio. • The optimal shape has a moderate power coefficient and the less noise generation.

  19. Performance of small-scale aero-derivative industrial gas turbines derived from helicopter engines

    Directory of Open Access Journals (Sweden)

    Barinyima Nkoi

    2013-12-01

    Full Text Available This paper considers comparative assessment of simple and advanced cycle small-scale aero-derivative industrial gas turbines derived from helicopter engines. More particularly, investigation was made of technical performance of the small-scale aero-derivative engine cycles based on existing and projected cycles for applications in industrial power generation, combined heat and power concept, rotating equipment driving, and/or allied processes. The investigation was done by carrying out preliminary design and performance simulation of a simple cycle (baseline two-spool small-scale aero-derivative turboshaft engine model, and some advanced counterpart aero-derivative configurations. The advanced configurations consist of recuperated and intercooled/recuperated engine cycles of same nominal power rating of 1.567 MW. The baseline model was derived from the conversion of an existing helicopter engine model. In doing so, design point and off-design point performances of the engine models were established. In comparing their performances, it was observed that to a large extent, the advanced engine cycles showed superior performance in terms of thermal efficiency, and specific fuel consumption. In numerical terms, thermal efficiencies of recuperated engine cycle, and intercooled/recuperated engine cycles, over the simple cycle at DP increased by 13.5%, and 14.5% respectively, whereas specific fuel consumption of these cycles over simple cycle at DP decreased by 12.5%, and 13% respectively. This research relied on open access public literature for data.

  20. Evaluation of Perfusion and Thermal Parameters of Skin Tissue Using Cold Provocation and Thermographic Measurements

    Directory of Open Access Journals (Sweden)

    Strąkowska Maria

    2016-09-01

    Full Text Available Measurement of the perfusion coefficient and thermal parameters of skin tissue using dynamic thermography is presented in this paper. A novel approach based on cold provocation and thermal modelling of skin tissue is presented. The measurement was performed on a person’s forearm using a special cooling device equipped with the Peltier module. The proposed method first cools the skin, and then measures the changes of its temperature matching the measurement results with a heat transfer model to estimate the skin perfusion and other thermal parameters. In order to assess correctness of the proposed approach, the uncertainty analysis was performed.

  1. Parameters affecting mechanical and thermal responses in bone drilling: A review.

    Science.gov (United States)

    Lee, JuEun; Chavez, Craig L; Park, Joorok

    2018-04-11

    Surgical bone drilling is performed variously to correct bone fractures, install prosthetics, or for therapeutic treatment. The primary concern in bone drilling is to extract donor bone sections and create receiving holes without damaging the bone tissue either mechanically or thermally. We review current results from experimental and theoretical studies to investigate the parameters related to such effects. This leads to a comprehensive understanding of the mechanical and thermal aspects of bone drilling to reduce their unwanted complications. This review examines the important bone-drilling parameters of bone structure, drill-bit geometry, operating conditions, and material evacuation, and considers the current techniques used in bone drilling. We then analyze the associated mechanical and thermal effects and their contributions to bone-drilling performance. In this review, we identify a favorable range for each parameter to reduce unwanted complications due to mechanical or thermal effects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Effect of laser parameters on surface roughness of laser modified tool steel after thermal cyclic loading

    Science.gov (United States)

    Lau Sheng, Annie; Ismail, Izwan; Nur Aqida, Syarifah

    2018-03-01

    This study presents the effects of laser parameters on the surface roughness of laser modified tool steel after thermal cyclic loading. Pulse mode Nd:YAG laser was used to perform the laser surface modification process on AISI H13 tool steel samples. Samples were then treated with thermal cyclic loading experiments which involved alternate immersion in molten aluminium (800°C) and water (27°C) for 553 cycles. A full factorial design of experiment (DOE) was developed to perform the investigation. Factors for the DOE are the laser parameter namely overlap rate (η), pulse repetition frequency (f PRF) and peak power (Ppeak ) while the response is the surface roughness after thermal cyclic loading. Results indicate the surface roughness of the laser modified surface after thermal cyclic loading is significantly affected by laser parameter settings.

  3. Optimization of Heat Exchangers for Intercooled Recuperated Aero Engines

    Directory of Open Access Journals (Sweden)

    Dimitrios Misirlis

    2017-03-01

    Full Text Available In the framework of the European research project LEMCOTEC, a section was devoted to the further optimization of the recuperation system of the Intercooled Recuperated Aero engine (IRA engine concept, of MTU Aero Engines AG. This concept is based on an advanced thermodynamic cycle combining both intercooling and recuperation. The present work is focused only on the recuperation process. This is carried out through a system of heat exchangers mounted inside the hot-gas exhaust nozzle, providing fuel economy and reduced pollutant emissions. The optimization of the recuperation system was performed using computational fluid dynamics (CFD computations, experimental measurements and thermodynamic cycle analysis for a wide range of engine operating conditions. A customized numerical tool was developed based on an advanced porosity model approach. The heat exchangers were modeled as porous media of predefined heat transfer and pressure loss behaviour and could also incorporate major and critical heat exchanger design decisions in the CFD computations. The optimization resulted in two completely new innovative heat exchanger concepts, named as CORN (COnical Recuperative Nozzle and STARTREC (STraight AnnulaR Thermal RECuperator, which provided significant benefits in terms of fuel consumption, pollutants emission and weight reduction compared to more conventional heat exchanger designs, thus proving that further optimization potential for this technology exists.

  4. Guidelines for the Selection of Near-Earth Thermal Environment Parameters for Spacecraft Design

    Science.gov (United States)

    Anderson, B. J.; Justus, C. G.; Batts, G. W.

    2001-01-01

    Thermal analysis and design of Earth orbiting systems requires specification of three environmental thermal parameters: the direct solar irradiance, Earth's local albedo, and outgoing longwave radiance (OLR). In the early 1990s data sets from the Earth Radiation Budget Experiment were analyzed on behalf of the Space Station Program to provide an accurate description of these parameters as a function of averaging time along the orbital path. This information, documented in SSP 30425 and, in more generic form in NASA/TM-4527, enabled the specification of the proper thermal parameters for systems of various thermal response time constants. However, working with the engineering community and SSP-30425 and TM-4527 products over a number of years revealed difficulties in interpretation and application of this material. For this reason it was decided to develop this guidelines document to help resolve these issues of practical application. In the process, the data were extensively reprocessed and a new computer code, the Simple Thermal Environment Model (STEM) was developed to simplify the process of selecting the parameters for input into extreme hot and cold thermal analyses and design specifications. In the process, greatly improved values for the cold case OLR values for high inclination orbits were derived. Thermal parameters for satellites in low, medium, and high inclination low-Earth orbit and with various system thermal time constraints are recommended for analysis of extreme hot and cold conditions. Practical information as to the interpretation and application of the information and an introduction to the STEM are included. Complete documentation for STEM is found in the user's manual, in preparation.

  5. Determination of optimum thermal debinding and sintering process parameters using Taguchi Method

    CSIR Research Space (South Africa)

    Seerane, M

    2015-07-01

    Full Text Available powder and a wax-based binder. The binder’s backbone component is a low density polyethylene (LDPE). Careful selection of thermal debinding parameters was guided by thermo- gravimetric analysis (TGA) results. The Taguchi method was used to determine... International Light Metals Technology Conference (LMT 2015), Port Elizabeth, South Africa, July 27-29 Determination of Optimum Process for Thermal Debinding and Sintering using Taguchi Method SEERANE Mandya,*, CHIKWANDA Hildab, MACHAKA Ronaldc CSIR...

  6. The Thermal Conductivity of Earth's Core: A Key Geophysical Parameter's Constraints and Uncertainties

    Science.gov (United States)

    Williams, Q.

    2018-05-01

    The thermal conductivity of iron alloys at high pressures and temperatures is a critical parameter in governing ( a) the present-day heat flow out of Earth's core, ( b) the inferred age of Earth's inner core, and ( c) the thermal evolution of Earth's core and lowermost mantle. It is, however, one of the least well-constrained important geophysical parameters, with current estimates for end-member iron under core-mantle boundary conditions varying by about a factor of 6. Here, the current state of calculations, measurements, and inferences that constrain thermal conductivity at core conditions are reviewed. The applicability of the Wiedemann-Franz law, commonly used to convert electrical resistivity data to thermal conductivity data, is probed: Here, whether the constant of proportionality, the Lorenz number, is constant at extreme conditions is of vital importance. Electron-electron inelastic scattering and increases in Fermi-liquid-like behavior may cause uncertainties in thermal conductivities derived from both first-principles-associated calculations and electrical conductivity measurements. Additional uncertainties include the role of alloying constituents and local magnetic moments of iron in modulating the thermal conductivity. Thus, uncertainties in thermal conductivity remain pervasive, and hence a broad range of core heat flows and inner core ages appear to remain plausible.

  7. Estimation of apparent kinetic parameters of polymer pyrolysis with complex thermal degradation behavior

    International Nuclear Information System (INIS)

    Srimachai, Taranee; Anantawaraskul, Siripon

    2010-01-01

    Full text: Thermal degradation behavior during polymer pyrolysis can typically be described using three apparent kinetic parameters (i.e., pre-exponential factor, activation energy, and reaction order). Several efficient techniques have been developed to estimate these apparent kinetic parameters for simple thermal degradation behavior (i.e., single apparent pyrolysis reaction). Unfortunately, these techniques cannot be directly extended to the case of polymer pyrolysis with complex thermal degradation behavior (i.e., multiple concurrent reactions forming single or multiple DTG peaks). In this work, we proposed a deconvolution method to determine the number of apparent reactions and estimate three apparent kinetic parameters and contribution of each reaction for polymer pyrolysis with complex thermal degradation behavior. The proposed technique was validated with the model and experimental pyrolysis data of several polymer blends with known compositions. The results showed that (1) the number of reaction and (2) three apparent kinetic parameters and contribution of each reaction can be estimated reasonably. The simulated DTG curves with estimated parameters also agree well with experimental DTG curves. (author)

  8. Geostatistical characterisation of geothermal parameters for a thermal aquifer storage site in Germany

    Science.gov (United States)

    Rodrigo-Ilarri, J.; Li, T.; Grathwohl, P.; Blum, P.; Bayer, P.

    2009-04-01

    The design of geothermal systems such as aquifer thermal energy storage systems (ATES) must account for a comprehensive characterisation of all relevant parameters considered for the numerical design model. Hydraulic and thermal conductivities are the most relevant parameters and its distribution determines not only the technical design but also the economic viability of such systems. Hence, the knowledge of the spatial distribution of these parameters is essential for a successful design and operation of such systems. This work shows the first results obtained when applying geostatistical techniques to the characterisation of the Esseling Site in Germany. In this site a long-term thermal tracer test (> 1 year) was performed. On this open system the spatial temperature distribution inside the aquifer was observed over time in order to obtain as much information as possible that yield to a detailed characterisation both of the hydraulic and thermal relevant parameters. This poster shows the preliminary results obtained for the Esseling Site. It has been observed that the common homogeneous approach is not sufficient to explain the observations obtained from the TRT and that parameter heterogeneity must be taken into account.

  9. Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires

    International Nuclear Information System (INIS)

    Mamand, S.M.; Omar, M.S.; Muhammad, A.J.

    2012-01-01

    Graphical abstract: Temperature dependence of calculated lattice thermal conductivity of Wurtzite GaN nanowires. Highlights: ► A modified Callaway model is used to calculate lattice thermal conductivity of Wurtzite GaN nanowires. ► A direct method is used to calculate phonon group velocity for these nanowires. ► 3-Gruneisen parameter, surface roughness, and dislocations are successfully investigated. ► Dislocation densities are decreases with the decrease of wires diameter. -- Abstract: A detailed calculation of lattice thermal conductivity of freestanding Wurtzite GaN nanowires with diameter ranging from 97 to 160 nm in the temperature range 2–300 K, was performed using a modified Callaway model. Both longitudinal and transverse modes are taken into account explicitly in the model. A method is used to calculate the Debye and phonon group velocities for different nanowire diameters from their related melting points. Effect of Gruneisen parameter, surface roughness, and dislocations as structure dependent parameters are successfully used to correlate the calculated values of lattice thermal conductivity to that of the experimentally measured curves. It was observed that Gruneisen parameter will decrease with decreasing nanowire diameters. Scattering of phonons is assumed to be by nanowire boundaries, imperfections, dislocations, electrons, and other phonons via both normal and Umklapp processes. Phonon confinement and size effects as well as the role of dislocation in limiting thermal conductivity are investigated. At high temperatures and for dislocation densities greater than 10 14 m −2 the lattice thermal conductivity would be limited by dislocation density, but for dislocation densities less than 10 14 m −2 , lattice thermal conductivity would be independent of that.

  10. Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Mamand, S.M., E-mail: soran.mamand@univsul.net [Department of Physics, College of Science, University of Sulaimani, Sulaimanyah, Iraqi Kurdistan (Iraq); Omar, M.S. [Department of Physics, College of Science, University of Salahaddin, Arbil, Iraqi Kurdistan (Iraq); Muhammad, A.J. [Department of Physics, College of Science, University of Kirkuk, Kirkuk (Iraq)

    2012-05-15

    Graphical abstract: Temperature dependence of calculated lattice thermal conductivity of Wurtzite GaN nanowires. Highlights: Black-Right-Pointing-Pointer A modified Callaway model is used to calculate lattice thermal conductivity of Wurtzite GaN nanowires. Black-Right-Pointing-Pointer A direct method is used to calculate phonon group velocity for these nanowires. Black-Right-Pointing-Pointer 3-Gruneisen parameter, surface roughness, and dislocations are successfully investigated. Black-Right-Pointing-Pointer Dislocation densities are decreases with the decrease of wires diameter. -- Abstract: A detailed calculation of lattice thermal conductivity of freestanding Wurtzite GaN nanowires with diameter ranging from 97 to 160 nm in the temperature range 2-300 K, was performed using a modified Callaway model. Both longitudinal and transverse modes are taken into account explicitly in the model. A method is used to calculate the Debye and phonon group velocities for different nanowire diameters from their related melting points. Effect of Gruneisen parameter, surface roughness, and dislocations as structure dependent parameters are successfully used to correlate the calculated values of lattice thermal conductivity to that of the experimentally measured curves. It was observed that Gruneisen parameter will decrease with decreasing nanowire diameters. Scattering of phonons is assumed to be by nanowire boundaries, imperfections, dislocations, electrons, and other phonons via both normal and Umklapp processes. Phonon confinement and size effects as well as the role of dislocation in limiting thermal conductivity are investigated. At high temperatures and for dislocation densities greater than 10{sup 14} m{sup -2} the lattice thermal conductivity would be limited by dislocation density, but for dislocation densities less than 10{sup 14} m{sup -2}, lattice thermal conductivity would be independent of that.

  11. Urban thermal environment and its biophysical parameters derived from satellite remote sensing imagery

    Science.gov (United States)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.; Tautan, Marina N.; Baschir, Laurentiu V.

    2013-10-01

    In frame of global warming, the field of urbanization and urban thermal environment are important issues among scientists all over the world. This paper investigated the influences of urbanization on urban thermal environment as well as the relationships of thermal characteristics to other biophysical variables in Bucharest metropolitan area of Romania based on satellite remote sensing imagery Landsat TM/ETM+, time series MODIS Terra/Aqua data and IKONOS acquired during 1990 - 2012 period. Vegetation abundances and percent impervious surfaces were derived by means of linear spectral mixture model, and a method for effectively enhancing impervious surface has been developed to accurately examine the urban growth. The land surface temperature (Ts), a key parameter for urban thermal characteristics analysis, was also retrieved from thermal infrared band of Landsat TM/ETM+, from MODIS Terra/Aqua datasets. Based on these parameters, the urban growth, urban heat island effect (UHI) and the relationships of Ts to other biophysical parameters have been analyzed. Results indicated that the metropolitan area ratio of impervious surface in Bucharest increased significantly during two decades investigated period, the intensity of urban heat island and heat wave events being most significant. The correlation analyses revealed that, at the pixel-scale, Ts possessed a strong positive correlation with percent impervious surfaces and negative correlation with vegetation abundances at the regional scale, respectively. This analysis provided an integrated research scheme and the findings can be very useful for urban ecosystem modeling.

  12. Dependence of AeroMACS Interference on Airport Radiation Pattern Characteristics

    Science.gov (United States)

    Wilson, Jeffrey D.

    2012-01-01

    AeroMACS (Aeronautical Mobile Airport Communications System), which is based upon the IEEE 802.16e mobile wireless standard, is expected to be implemented in the 5091 to 5150 MHz frequency band. As this band is also occupied by Mobile Satellite Service (MSS) feeder uplinks, AeroMACS must be designed to avoid interference with this incumbent service. The aspects of AeroMACS operation that present potential interference are under analysis in order to enable the definition of standards that assure that such interference will be avoided. In this study, the cumulative interference power distribution at low earth orbit from AeroMACS transmitters at the 497 major airports in the contiguous United States was simulated with the Visualyse Professional software. The dependence of the interference power on the number of antenna beams per airport, gain patterns, and beam direction orientations was simulated. As a function of these parameters, the simulation results are presented in terms of the limitations on transmitter power required to maintain the cumulative interference power under the established threshold.

  13. Thermal neutron diffusion parameters dependent on the flux energy distribution in finite hydrogenous media

    International Nuclear Information System (INIS)

    Drozdowicz, K.

    1999-01-01

    Macroscopic parameters for a description of the thermal neutron transport in finite volumes are considered. A very good correspondence between the theoretical and experimental parameters of hydrogenous media is attained. Thermal neutrons in the medium possess an energy distribution, which is dependent on the size (characterized by the geometric buckling) and on the neutron transport properties of the medium. In a hydrogenous material the thermal neutron transport is dominated by the scattering cross section which is strongly dependent on energy. A monoenergetic treatment of the thermal neutron group (admissible for other materials) leads in this case to a discrepancy between theoretical and experimental results. In the present paper the theoretical definitions of the pulsed thermal neutron parameters (the absorption rate, the diffusion coefficient, and the diffusion cooling coefficient) are based on Nelkin's analysis of the decay of a neutron pulse. Problems of the experimental determination of these parameters for a hydrogenous medium are discussed. A theoretical calculation of the pulsed parameters requires knowledge of the scattering kernel. For thermal neutrons it is individual for each hydrogenous material because neutron scattering on hydrogen nuclei bound in a molecule is affected by the molecular dynamics (characterized with internal energy modes which are comparable to the incident neutron energy). Granada's synthetic model for slow-neutron scattering is used. The complete up-dated formalism of calculation of the energy transfer scattering kernel after this model is presented in the paper. An influence of some minor variants within the model on the calculated differential and integral neutron parameters is shown. The theoretical energy-dependent scattering cross section (of Plexiglas) is compared to experimental results. A particular attention is paid to the calculation of the diffusion cooling coefficient. A solution of an equation, which determines the

  14. Surface modifications of aero-bearings

    International Nuclear Information System (INIS)

    Wang Yirong; Chen Jin; Nie Gao; Lu Haolin; Yang Qifa; Xu Qiu; Wang Peilu; Chen Yuanru; Liu Zhongyang

    1988-01-01

    Different ion beam techniques, i.e. ion beam mixing and ion implantation by either single or multi-element ions, were adopted to modify surface properties of aero-bearing samples that were made of GCr15 or Cr4Mo4V alloys, Results showed that corrosion behaviour and wear resistance of the samples treated with any of the techniques were improved significantly

  15. Lab determination of soil thermal Conductivity. Fundamentals, geothermal applications and relationship with other soil parameters

    International Nuclear Information System (INIS)

    Nope Gomez, F. I.; Santiago, C. de

    2014-01-01

    Shallow geothermal energy application in buildings and civil engineering works (tunnels, diaphragm walls, bridge decks, roads, and train/metro stations) are spreading rapidly all around the world. the dual role of these energy geostructures makes their design challenging and more complex with respect to conventional projects. Besides the geotechnical parameters, thermal behavior parameters are needed in the design and dimensioning to warrantee the thermo-mechanical stability of the geothermal structural element. As for obtaining any soil thermal parameter, both in situ and laboratory methods can be used. The present study focuses on a lab test known the need ke method to measure the thermal conductivity of soils (λ). Through this research work, different variables inherent to the test procedure, as well as external factors that may have an impact on thermal conductivity measurements were studied. Samples extracted from the cores obtained from a geothermal drilling conducted on the campus of the Polytechnic University of Valencia, showing different mineralogical and nature composition (granular and clayey) were studied different (moisture and density) compacting conditions. 550 thermal conductivity measurements were performed, from which the influence of factors such as the degree of saturation-moisture, dry density and type of material was verified. Finally, a stratigraphic profile with thermal conductivities ranges of each geologic level was drawn, considering the degree of saturation ranges evaluated in lab tests, in order to be compared and related to thermal response test, currently in progress. Finally, a test protocol is set and proposed, for both remolded and undisturbed samples, under different saturation conditions. Together with this test protocol, a set of recommendations regarding the configuration of the measuring equipment, treatment of samples and other variables, are posed in order to reduce errors in the final results. (Author)

  16. Thermal parameter identification for non-Fourier heat transfer from molecular dynamics

    Science.gov (United States)

    Singh, Amit; Tadmor, Ellad B.

    2015-10-01

    Fourier's law leads to a diffusive model of heat transfer in which a thermal signal propagates infinitely fast and the only material parameter is the thermal conductivity. In micro- and nano-scale systems, non-Fourier effects involving coupled diffusion and wavelike propagation of heat can become important. An extension of Fourier's law to account for such effects leads to a Jeffreys-type model for heat transfer with two relaxation times. We propose a new Thermal Parameter Identification (TPI) method for obtaining the Jeffreys-type thermal parameters from molecular dynamics simulations. The TPI method makes use of a nonlinear regression-based approach for obtaining the coefficients in analytical expressions for cosine and sine-weighted averages of temperature and heat flux over the length of the system. The method is applied to argon nanobeams over a range of temperature and system sizes. The results for thermal conductivity are found to be in good agreement with standard Green-Kubo and direct method calculations. The TPI method is more efficient for systems with high diffusivity and has the advantage, that unlike the direct method, it is free from the influence of thermostats. In addition, the method provides the thermal relaxation times for argon. Using the determined parameters, the Jeffreys-type model is able to reproduce the molecular dynamics results for a short-duration heat pulse where wavelike propagation of heat is observed thereby confirming the existence of second sound in argon. An implementation of the TPI method in MATLAB is available as part of the online supplementary material.

  17. Parameter analysis on the temperature and thermal stress of the cylindrical structure with multiple holes

    International Nuclear Information System (INIS)

    Kang, Y. H.; Lee, Y. S.; Choi, Y. J.

    2001-01-01

    During fuel irradiation tests in the in-core of HANARO, all components of the capsule with multiple holes act as heat sources due to high gamma and fission heat. In the design stage, a series of design parameter study were performed to confirm the thermal integrity of the capsule with multiple holes. The main parameter reviewed in this study are as follows: the position of the specimen, the thickness of the support tube and gap size. From the analysis performed by using of the FEM code ANSYS. it is confirmed that gap size effect on the capsule is one of the most important parameter of the capsule integrity. And the final thermal stress and displacement of the support tube with a increase of gap size are also under the allowable limits of ASME code

  18. Theoretical analysis for the specific heat and thermal parameters of solid C60

    Science.gov (United States)

    Soto, J. R.; Calles, A.; Castro, J. J.

    1997-08-01

    We present the results of a theoretical analysis for the thermal parameters and phonon contribution to the specific heat in solid C60. The phonon contribution to the specific heat is calculated through the solution of the corresponding dynamical matrix, for different points in the Brillouin zone, and the construccion of the partial and generalized phonon density of states. The force constants are obtained from a first principle calculation, using a SCF Hartree-Fock wave function from the Gaussian 92 program. The thermal parameters reported are the effective temperatures and vibrational amplitudes as a function of temperature. Using this model we present a parametization scheme in order to reproduce the general behaviour of the experimental specific heat for these materials.

  19. Thermal Hydraulic design parameters study for severe accidents using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Chang Hyun; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Chang, Keun Sun [Sunmoon University, Asan (Korea, Republic of)

    1997-12-31

    To provide the information on severe accident progression is very important for advanced or new type of nuclear power plant (NPP) design. A parametric study, therefore, was performed to investigate the effect of thermal hydraulic design parameters on severe accident progression of pressurized water reactors (PWRs). Nine parameters, which are considered important in NPP design or severe accident progression, were selected among the various thermal hydraulic design parameters. The backpropagation neural network (BPN) was used to determine parameters, which might more strongly affect the severe accident progression, among nine parameters. For training, different input patterns were generated by the latin hypercube sampling (LHS) technique and then different target patterns that contain core uncovery time and vessel failure time were obtained for Young Gwang Nuclear (YGN) Units 3 and 4 using modular accident analysis program (MAAP) 3.0B code. Three different severe accident scenarios, such as two loss of coolant accidents (LOCAs) and station blackout (SBO), were considered in this analysis. Results indicated that design parameters related to refueling water storage tank (RWST), accumulator and steam generator (S/G) have more dominant effects on the progression of severe accidents investigated, compared to the other six parameters. 9 refs., 5 tabs. (Author)

  20. Thermal Hydraulic design parameters study for severe accidents using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Chang Hyun; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Chang, Keun Sun [Sunmoon University, Asan (Korea, Republic of)

    1998-12-31

    To provide the information on severe accident progression is very important for advanced or new type of nuclear power plant (NPP) design. A parametric study, therefore, was performed to investigate the effect of thermal hydraulic design parameters on severe accident progression of pressurized water reactors (PWRs). Nine parameters, which are considered important in NPP design or severe accident progression, were selected among the various thermal hydraulic design parameters. The backpropagation neural network (BPN) was used to determine parameters, which might more strongly affect the severe accident progression, among nine parameters. For training, different input patterns were generated by the latin hypercube sampling (LHS) technique and then different target patterns that contain core uncovery time and vessel failure time were obtained for Young Gwang Nuclear (YGN) Units 3 and 4 using modular accident analysis program (MAAP) 3.0B code. Three different severe accident scenarios, such as two loss of coolant accidents (LOCAs) and station blackout (SBO), were considered in this analysis. Results indicated that design parameters related to refueling water storage tank (RWST), accumulator and steam generator (S/G) have more dominant effects on the progression of severe accidents investigated, compared to the other six parameters. 9 refs., 5 tabs. (Author)

  1. Evaluation of thermal-hydraulic parameter uncertainties in a TRIGA research reactor

    International Nuclear Information System (INIS)

    Mesquita, Amir Z.; Costa, Antonio C.L.; Ladeira, Luiz C.D.; Rezende, Hugo C.; Palma, Daniel A.P.

    2015-01-01

    Experimental studies had been performed in the TRIGA Research Nuclear Reactor of CDTN/CNEN to find out the its thermal hydraulic parameters. Fuel to coolant heat transfer patterns must be evaluated as function of the reactor power in order to assess the thermal hydraulic performance of the core. The heat generated by nuclear fission in the reactor core is transferred from fuel elements to the cooling system through the fuel-cladding (gap) and the cladding to coolant interfaces. As the reactor core power increases the heat transfer regime from the fuel cladding to the coolant changes from single-phase natural convection to subcooled nucleate boiling. This paper presents the uncertainty analysis in the results of the thermal hydraulics experiments performed. The methodology used to evaluate the propagation of uncertainty in the results was done based on the pioneering article of Kline and McClintock, with the propagation of uncertainties based on the specification of uncertainties in various primary measurements. The uncertainty analysis on thermal hydraulics parameters of the CDTN TRIGA fuel element is determined, basically, by the uncertainty of the reactor's thermal power. (author)

  2. Thermal performance parameters estimation of hot box type solar cooker by using artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Kurt, Hueseyin; Atik, Kemal; Oezkaymak, Mehmet; Recebli, Ziyaddin [Zonguldak Karaelmas University, Karabuk Technical Education Faculty, 78200 Karabuk (Turkey)

    2008-02-15

    Work to date has shown that Artificial Neural Network (ANN) has not been used for predicting thermal performance parameters of a solar cooker. The objective of this study is to predict thermal performance parameters such as absorber plate, enclosure air and pot water temperatures of the experimentally investigated box type solar cooker by using the ANN. Data set is obtained from the box type solar cooker which was tested under various experimental conditions. A feed-forward neural network based on back propagation algorithm was developed to predict the thermal performance of solar cooker with and without reflector. Mathematical formulations derived from the ANN model are presented for each predicting temperatures. The experimental data set consists of 126 values. These were divided into two groups, of which the 96 values were used for training/learning of the network and the rest of the data (30 values) for testing/validation of the network performance. The performance of the ANN predictions was evaluated by comparing the prediction results with the experimental results. The results showed a good regression analysis with the correlation coefficients in the range of 0.9950-0.9987 and mean relative errors (MREs) in the range of 3.925-7.040% for the test data set. The regression coefficients indicated that the ANN model can successfully be used for the prediction of the thermal performance parameters of a box type solar cooker with a high degree of accuracy. (author)

  3. Effects of two-temperature parameter and thermal nonlocal parameter on transient responses of a half-space subjected to ramp-type heating

    Science.gov (United States)

    Xue, Zhang-Na; Yu, Ya-Jun; Tian, Xiao-Geng

    2017-07-01

    Based upon the coupled thermoelasticity and Green and Lindsay theory, the new governing equations of two-temperature thermoelastic theory with thermal nonlocal parameter is formulated. To more realistically model thermal loading of a half-space surface, a linear temperature ramping function is adopted. Laplace transform techniques are used to get the general analytical solutions in Laplace domain, and the inverse Laplace transforms based on Fourier expansion techniques are numerically implemented to obtain the numerical solutions in time domain. Specific attention is paid to study the effect of thermal nonlocal parameter, ramping time, and two-temperature parameter on the distributions of temperature, displacement and stress distribution.

  4. Sensitivity of control times in function of core parameters and oscillations control in thermal nuclear systems

    International Nuclear Information System (INIS)

    Amorim, E.S. do; D'Oliveira, A.B.; Galvao, O.B.; Oyama, K.

    1981-03-01

    Sensitivity of control times to variation of a thermal reactor core parameters is defined by suitable changes in the power coefficient, core size and fuel enrichment. A control strategy is developed based on control theory concepts and on considerations of the physics of the problem. Digital diffusion theory simulation is described which tends to verify the control concepts considered, face dumped oscillations introduced in one thermal nuclear power system. The effectivity of the control actions, in terms of eliminating oscillations, provided guidelines for the working-group engaged in the analysis of the control rods and its optimal performance. (Author) [pt

  5. Influence of Feedstock Materials and Spray Parameters on Thermal Conductivity of Wire-Arc-Sprayed Coatings

    Science.gov (United States)

    Yao, H. H.; Zhou, Z.; Wang, G. H.; He, D. Y.; Bobzin, K.; Zhao, L.; Öte, M.; Königstein, T.

    2017-03-01

    To manufacture a protective coating with high thermal conductivity on drying cylinders in paper production machines, a FeCrB-cored wire was developed, and the spraying parameters for wire-arc spraying were optimized in this study. The conventional engineering materials FeCrAl and FeCrMo coatings were produced as the reference coatings under the same experimental condition. It has been shown that the oxide content in coating influences the thermal conductivity of coating significantly. The FeCrB coating exhibits a relative higher thermal conductivity due to the lower oxide content in comparison with conventional FeCrAl and FeCrMo coatings. Moreover, the oxidation of in-flight particles can be reduced by decreasing the standoff distance contributing to the increase in the thermal conductivity of coating. Total energy consumption of a papermaking machine can be significantly reduced if the coatings applied to dryer section exhibit high thermal conductivity. Therefore, the FeCrB coating developed in this study is a highly promising coating system for drying cylinders regarding the improved thermal conductivity and low operation costs in paper production industry.

  6. A method to measure the thermal-physical parameter of gas hydrate in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Diao, S.B.; Ye, Y.G.; Yue, Y.J.; Zhang, J.; Chen, Q.; Hu, G.W. [Qingdao Inst. of Marine Geology, Qingdao (China)

    2008-07-01

    It is important to explore and make good use of gas hydrates through the examination of the thermal-physical parameters of sediment. This paper presented a new type of simulation experiment using a device that was designed based on the theories of time domain reflection and transient hot wire method. A series of investigations were performed using this new device. The paper described the experiment, with reference to the experiment device and materials and method. It also presented the results of thermal physical properties; result of the thermal conductivity of water, dry sand and wet sand; and results of wet sand under various pressures. The time domain reflection (TDR) method was utilized to monitor the saturation of the hydrates. Both parallel hot-wire method and cross hot-wire method were utilized to measure the thermal conductivity of the gas hydrate in porous media. A TDR sensor which was equipped with both cross hot-wire probe and parallel hot-wire probe was developed in order to measure the cell temperature with these two methods at one time. It was concluded that the TDR probe could be taken as an online measurement skill in investigating the hydrate thermal physical property in porous media. The TDR sensor could monitor the hydrate formation process and the parallel hot-wire method and cross hot-wire method could effectively measure the thermal physical properties of the hydrates in porous media. 10 refs., 7 figs.

  7. Thermal Stress Analysis and Structure Parameter Selection for a Bi2Te3-Based Thermoelectric Module

    Science.gov (United States)

    Gao, Jun-Ling; Du, Qun-Gui; Zhang, Xiao-Dan; Jiang, Xin-Qiang

    2011-05-01

    The output power and conversion efficiency of thermoelectric modules (TEMs) are mainly determined by their material properties, i.e., Seebeck coefficient, electrical resistivity, and thermal conductivity. In practical applications, due to the influence of the harsh environment, the mechanical properties of TEMs should also be considered. Using the finite-element analysis (FEA) model in ANSYS software, we present the thermal stress distribution of a TEM based on the anisotropic mechanical properties and thermoelectric properties of hot-pressed materials. By analyzing the possibilities of damage along the cleavage plane of Bi2Te3-based thermoelectric materials and by optimizing the structure parameters, a TEM with better mechanical performance is obtained. Thus, a direction for improving the thermal stress resistance of TEMs is presented.

  8. Results of a WINGDES2/AERO2S Flap Optimization for the TCA

    Science.gov (United States)

    Yaros, Steven F.

    1999-01-01

    The codes WINGDES2 and AERO2S were easy to obtain, and technical help was readily available. The codes have a long, well-documented history of successful optimizations of various aircraft configurations. The codes were easy to use, although specification of input data was time-consuming. The Run times were short, allowing the many runs necessary for the Suction Parameter matrix to be accomplished within a day or two. The results of the optimization appear to be reasonable.

  9. Thermal study of bare tips with various system parameters and incision sizes.

    Science.gov (United States)

    Osher, Robert H; Injev, Valentine P

    2006-05-01

    To identify major and minor surgeon-controlled parameters that affect incision temperature when performing microincision lens removal using the Alcon Infiniti Vision System. In vitro research and development laboratory, Alcon Research, Irvine, California, USA. Phacoemulsification was performed in eye-bank cadaver eyes and the following parameters evaluated: incision, duty cycle, ultrasound (US) power, aspiration flow rate (AFR), vacuum, pulse, bottle height and balanced salt solution temperature, and tip design/size. Each parameter was varied while the others remained constant. The resulting temperature of the incision and US tip was measured using a thermal camera. Major contributors to elevated incision temperature included incision size, US power, duty cycle, AFR, vacuum setting, tip design, and presence of an ophthalmic viscosurgical device (OVD). Minor contributors included pulse frequency, bottle height, and temperature of the infusate. Microincision lens removal can be performed at safe temperatures with the knowledgeable selection of surgeon-controlled parameters.

  10. Parameter estimation of breast tumour using dynamic neural network from thermal pattern

    Directory of Open Access Journals (Sweden)

    Elham Saniei

    2016-11-01

    Full Text Available This article presents a new approach for estimating the depth, size, and metabolic heat generation rate of a tumour. For this purpose, the surface temperature distribution of a breast thermal image and the dynamic neural network was used. The research consisted of two steps: forward and inverse. For the forward section, a finite element model was created. The Pennes bio-heat equation was solved to find surface and depth temperature distributions. Data from the analysis, then, were used to train the dynamic neural network model (DNN. Results from the DNN training/testing confirmed those of the finite element model. For the inverse section, the trained neural network was applied to estimate the depth temperature distribution (tumour position from the surface temperature profile, extracted from the thermal image. Finally, tumour parameters were obtained from the depth temperature distribution. Experimental findings (20 patients were promising in terms of the model’s potential for retrieving tumour parameters.

  11. Influence of geometrical and thermal hydraulic parameters on the short term containment system response

    International Nuclear Information System (INIS)

    Krishna Chandran, R.; Ali, Seik Mansoor; Balasubramaniyan, V.

    2014-01-01

    This paper discusses the effect of a number of geometrical and thermal hydraulic parameters on the containment peak pressure following a simulated LOCA. The numerical studies are carried out using an inhouse containment thermal hydraulics program called 'THYCON' with focus only on the short term transient response. In order to highlight the effect of above variables, a geometrically scaled (1:270) model of a typical 220 MWe Indian PHWR containment is considered. The discussions in this paper are limited to explaining the influence of individual parameters by comparing with a base case value. It is essential to mention that the results presented here are not general and should be taken as indicative only. Nevertheless, these numerical studies give insight into short term containment response that would be useful to both the system designer as well as the regulator. (author)

  12. The effect of thermal and radiation accelerated ageing on the A. C. electric motor parameters

    International Nuclear Information System (INIS)

    Pica, I.; Segarceanu, D.

    2000-01-01

    The paper presents the main aspects concerning the electric parameters variation of triphase asynchronous motors operating under specific environmental conditions determined by temperature, humidity, radiation. The testing of electric motor capability to meet and exceed the required performances all along its operating life implies the performing of thermal and radiation ageing while the motor is brought, in a relatively short time, under conditions equivalent to those at the end of its service life. The paper describes ageing and measurement techniques and the analyses of electric parameter behavior in these environmental simulated conditions. (author)

  13. Performance Testing of Suspension Plasma Sprayed Thermal Barrier Coatings Produced with Varied Suspension Parameters

    Directory of Open Access Journals (Sweden)

    Nicholas Curry

    2015-07-01

    Full Text Available Suspension plasma spraying has become an emerging technology for the production of thermal barrier coatings for the gas turbine industry. Presently, though commercial systems for coating production are available, coatings remain in the development stage. Suitable suspension parameters for coating production remain an outstanding question and the influence of suspension properties on the final coatings is not well known. For this study, a number of suspensions were produced with varied solid loadings, powder size distributions and solvents. Suspensions were sprayed onto superalloy substrates coated with high velocity air fuel (HVAF -sprayed bond coats. Plasma spray parameters were selected to generate columnar structures based on previous experiments and were maintained at constant to discover the influence of the suspension behavior on coating microstructures. Testing of the produced thermal barrier coating (TBC systems has included thermal cyclic fatigue testing and thermal conductivity analysis. Pore size distribution has been characterized by mercury infiltration porosimetry. Results show a strong influence of suspension viscosity and surface tension on the microstructure of the produced coatings.

  14. Thermal-Hydraulic Sensitivity Study of Intermediate Loop Parameters for Nuclear Hydrogen Production System

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Hwa; Lee, Heung Nae; Park, Jea Ho [KONES Corp., Seoul (Korea, Republic of); Lee, Won Jae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Sang Il; Yoo, Yeon Jae [Hyundai Engineering Co., Seoul (Korea, Republic of)

    2016-10-15

    The heat generated from the VHTR is transferred to the intermediate loop through Intermediate Heat Exchanger (IHX). It is further passed on to the Sulfur-Iodine (SI) hydrogen production system (HPS) through Process Heat Exchanger (PHX). The IL provides the safety distance between the VHTR and HPS. Since the IL performance affects the overall nuclear HPS efficiency, it is required to optimize its design and operation parameters. In this study, the thermal-hydraulic sensitivity of IL parameters with various coolant options has been examined by using MARS-GCR code, which was already applied for the case of steam generator. Sensitivity study of the IL and PHX parameters has been carried out based on their thermal-hydraulic performance. Several parameters for design and operation, such as the pipe diameter, safety distance and surface area, are considered for different coolant options, He, CO{sub 2} and He-CO{sub 2} (2:8). It was found that the circulator work is the major factor affecting on the overall nuclear hydrogen production system efficiency. Circulator work increases with the safety distance, and decreases with the operation pressure and loop pipe diameter. Sensitivity results obtained from this study will contribute to the optimization of the IL design and operation parameters and the optimal coolant selection.

  15. Impact of Building Design Parameters on Thermal Energy Flexibility in a Low-Energy Building

    OpenAIRE

    Sarran, Lucile; Foteinaki, Kyriaki; Gianniou, Panagiota; Rode, Carsten

    2017-01-01

    This work focuses on demand-side management potential for the heating grid in residential buildings. The possibility to increase the flexibility provided to the heat network through specific building design is investigated. The role of different parts of the building structure on thermal flexibility is assessed through a parameter variation on a building model. Different building designs are subjected to heat cut-offs, and flexibility is evaluated with respect to comfort preservation and heat...

  16. Lumped parameter modeling of a two-phase thermal-hydraulic channel with interface tracking

    International Nuclear Information System (INIS)

    Jo, J.H.; Kaufman, J.M.; Ruger, C.J.; Stein, S.

    1978-01-01

    A nonhomogenous, thermal nonequilibrium model for one-dimensional two-phase flow in a heated channel has been formulated in lumped parameter form. The channel is divided into a variable number of flow regimes separated by moving interfaces. The model can be used to predict the behavior of a LWR core and both primary and secondary sides of a steam generator under transient conditions. (author)

  17. Common indoor and outdoor aero-allergens in South Africa

    African Journals Online (AJOL)

    Aero-allergens in South Africa that are also encountered around the world are listed in Table I. In addition to this wide range of common aero-allergens, South Africans are also exposed to a full range of food allergens, some of which, e.g. perlemoen (Haliotis midae) and other seafood allergens, are unique to this region.

  18. THE TREATMENT OF AERO-OTITIS MEDIA BY REDECOMPRESSION,

    Science.gov (United States)

    The precipitating event preceding the appearance of aero- otitis media is the development of a relative vacuum within the middle ear. The aim of...obtaining normal pressure relationships between the middle ear and the environment. In 27 of a group of 33 men with severe aero- otitis media , this

  19. Characterization of the thermalness of a fissile system with a two-group diffusion theory parameter

    International Nuclear Information System (INIS)

    Bredehoft, B.B.; Busch, R.D.

    1993-01-01

    In tabulating critical data, the hydrogen-to-fissile atom ratio (H/X) is commonly used to characterize the amount of moderation in a system. Though adequate in many cases, H/X does not account for the moderating contribution of other light nuclei contained in common uranium-moderator mixtures. This ratio also does not account for enrichment of the system, which affects the resonance absorption characteristics and, therefore, the moderating behavior of that system. To alleviate these problems, a two-energy-group diffusion theory analogy to the six-factor formula was applied to define a new parameter p/(η 2 · f 2 ), which describes the moderation characteristics or the 'thermalness' of a fissioning system and includes the effects of enrichment and the presence of moderators other than hydrogen. From an analysis of several low-enriched uranium systems with different moderators, it was found that the values of p/(η 2 · f 2 ) corresponding to minimum critical mass and volume tend to center in a narrower range than do the values of H/X for the same systems. Also, the thermalness parameter does not vary with the addition of a reflector and is applicable to systems with other than hydrogenous moderators. Based on these results, the thermalness parameter p/(η 2 · f 2 ) provides an effective means of characterizing moderated systems relative to optimum conditions

  20. A ductile fracture criterion with Zener-Hollomon parameter of pure molybdenum sheet in thermal forming

    Directory of Open Access Journals (Sweden)

    Wang Chu

    2015-01-01

    Full Text Available Formability of pure molybdenum in thermal forming process has been greatly improved, but it is still hard to avoid the generation of rupture and other quality defects. In this paper, a ductile fracture criterion of pure molybdenum sheet in thermal forming was established by considering the plastic deformation capacity of material and stress states, which can be used to describe fracture behaviour and critical rupture prediction of pure molybdenum sheet during hot forming process. Based on the isothermal uniaxial tensile tests which performed at 993 to 1143 K with strain rate range from 0.0005 to 0.2 s−1, the material parameters are calculated by the combination method of experiment with FEsimulation. Based on the observation, new fracture criteria can be expressed as a function of Zener-Hollomon parameter. The critical fracture value that calculated by Oyane-Sato criterion increases with increasing temperature and decreasing strain rate. The ductile fracture criterion with Zener-Hollomon parameter of pure molybdenum in thermal forming is proposed.

  1. Lattice parameters and thermal expansion of delta-VNsub(1-x) from 298-1000 K

    International Nuclear Information System (INIS)

    Lengauer, W.; Ettmayer, P.

    1986-01-01

    The thermal expansion of VNsub(1-x) was determined from measurements of the lattice parameters in the temperature range of 298-1000 K and in the composition range of VNsub(0.707) - VNsub(0.996). Within the accuracy of the results the expansion of the lattice parameter with temperature is not dependent on the composition. The lattice parameter as a function of composition ([N]/[V] = 0.707-0.996) and temperature (198-1000 K) is given by a([N]/[V], T) = 0.38872+0.02488 ([N]/[V]) - (1.083+-0.021) x 10 -4 Tsup(1/2) + (6.2+-0.1) x 10 - sup6T. The coefficient of linear thermal expansion as a function of temperature (in the same range) is given by α(T) = a([N]/[V], T) -1 [(-5.04+-0.01) x 10 -5 Tsup(1/2) + (6.2+-0.1) x 10 -6 ]. The average linear thermal expansion coefficient is αsub(av) = 9.70 +- 0.15 x 10 -6 K -1 (298-1000 K). The data are compared with those of several fcc transition metal nitrides collected and evaluated from the literature. (Author)

  2. A predictive thermal dynamic model for parameter generation in the laser assisted direct write process

    International Nuclear Information System (INIS)

    Shang Shuo; Fearon, Eamonn; Wellburn, Dan; Sato, Taku; Edwardson, Stuart; Dearden, G; Watkins, K G

    2011-01-01

    The laser assisted direct write (LADW) method can be used to generate electrical circuitry on a substrate by depositing metallic ink and curing the ink thermally by a laser. Laser curing has emerged over recent years as a novel yet efficient alternative to oven curing. This method can be used in situ, over complicated 3D contours of large parts (e.g. aircraft wings) and selectively cure over heat sensitive substrates, with little or no thermal damage. In previous studies, empirical methods have been used to generate processing windows for this technique, relating to the several interdependent processing parameters on which the curing quality and efficiency strongly depend. Incorrect parameters can result in a track that is cured in some areas and uncured in others, or in damaged substrates. This paper addresses the strong need for a quantitative model which can systematically output the processing conditions for a given combination of ink, substrate and laser source; transforming the LADW technique from a purely empirical approach, to a simple, repeatable, mathematically sound, efficient and predictable process. The method comprises a novel and generic finite element model (FEM) that for the first time predicts the evolution of the thermal profile of the ink track during laser curing and thus generates a parametric map which indicates the most suitable combination of parameters for process optimization. Experimental data are compared with simulation results to verify the accuracy of the model.

  3. CCP Sensitivity Analysis by Variation of Thermal-Hydraulic Parameters of Wolsong-3, 4

    Energy Technology Data Exchange (ETDEWEB)

    You, Sung Chang [KHNP, Daejeon (Korea, Republic of)

    2016-10-15

    The PHWRs are tendency that ROPT(Regional Overpower Protection Trip) setpoint is decreased with reduction of CCP(Critical Channel Power) due to aging effects. For this reason, Wolsong unit 3 and 4 has been operated less than 100% power due to the result of ROPT setpoint evaluation. Typically CCP for ROPT evaluation is derived at 100% PHTS(Primary Heat Transport System) boundary conditions - inlet header temperature, header to header different pressure and outlet header pressure. Therefore boundary conditions at 100% power were estimated to calculate the thermal-hydraulic model at 100% power condition. Actually thermal-hydraulic boundary condition data for Wolsong-3 and 4 cannot be taken at 100% power condition at aged reactor condition. Therefore, to create a single-phase thermal-hydraulic model with 80% data, the validity of the model was confirmed at 93.8%(W3), 94.2%(W4, in the two-phase). And thermal-hydraulic boundary conditions at 100% power were calculated to use this model. For this reason, the sensitivities by varying thermal-hydraulic parameters for CCP calculation were evaluated for Wolsong unit 3 and 4. For confirming the uncertainties by variation PHTS model, sensitivity calculations were performed by varying of pressure tube roughness, orifice degradation factor and SG fouling factor, etc. In conclusion, sensitivity calculation results were very similar and the linearity was constant.

  4. Advanced technology for aero gas turbine components

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-01

    The Symposium is aimed at highlighting the development of advanced components for new aero gas turbine propulsion systems in order to provide engineers and scientists with a forum to discuss recent progress in these technologies and to identify requirements for future research. Axial flow compressors, the operation of gas turbine engines in dust laden atmospheres, turbine engine design, blade cooling, unsteady gas flow through the stator and rotor of a turbomachine, gear systems for advanced turboprops, transonic blade design and the development of a plenum chamber burner system for an advanced VTOL engine are among the topics discussed.

  5. Sensitivity analysis of hydraulic and thermal parameters inducing anomalous heat flow in the Lower Yarmouk Gorge

    Science.gov (United States)

    Goretzki, Nora; Inbar, Nimrod; Kühn, Michael; Möller, Peter; Rosenthal, Eliyahu; Schneider, Michael; Siebert, Christian; Magri, Fabien

    2016-04-01

    The Lower Yarmouk Gorge, at the border between Israel and Jordan, is characterized by an anomalous temperature gradient of 46 °C/km. Numerical simulations of thermally-driven flow show that ascending thermal waters are the result of mixed convection, i.e. the interaction between the regional flow from the surrounding heights and buoyant flow within permeable faults [1]. Those models were calibrated against available temperature logs by running several forward problems (FP), with a classic "trial and error" method. In the present study, inverse problems (IP) are applied to find alternative parameter distributions that also lead to the observed thermal anomalies. The investigated physical parameters are hydraulic conductivity and thermal conductivity. To solve the IP, the PEST® code [2] is applied via the graphical interface FEPEST® in FEFLOW® [3]. The results show that both hydraulic and thermal conductivity are consistent with the values determined with the trial and error calibrations, which precede this study. However, the IP indicates that the hydraulic conductivity of the Senonian Paleocene aquitard can be 8.54*10-3 m/d, which is three times lower than the originally estimated value in [1]. Moreover, the IP suggests that the hydraulic conductivity in the faults can increase locally up to 0.17 m/d. These highly permeable areas can be interpreted as local damage zones at the faults/units intersections. They can act as lateral pathways in the deep aquifers that allow deep outflow of thermal water. This presentation provides an example about the application of FP and IP to infer a wide range of parameter values that reproduce observed environmental issues. [1] Magri F, Inbar N, Siebert C, Rosenthal E, Guttman J, Möller P (2015) Transient simulations of large-scale hydrogeological processes causing temperature and salinity anomalies in the Tiberias Basin. Journal of Hydrology, 520, 342-355 [2] Doherty J (2010) PEST: Model-Independent Parameter Estimation. user

  6. Blackness coefficients, effective diffusion parameters, and control rod worths for thermal reactors - Methods

    Energy Technology Data Exchange (ETDEWEB)

    Bretscher, M M [Argonne National Laboratory, Argonne, IL 60439 (United States)

    1985-07-01

    Simple diffusion theory cannot be used to evaluate control rod worths in thermal neutron reactors because of the strongly absorbing character of the control material. However, reliable control rod worths can be obtained within the framework of diffusion theory if the control material is characterized by a set of mesh-dependent effective diffusion parameters. For thin slab absorbers the effective diffusion parameters can be expressed as functions of a suitably-defined pair of 'blackness coefficients'. Methods for calculating these blackness coefficients in the P1, P3, and P5 approximations, with and without scattering, are presented. For control elements whose geometry does not permit a thin slab treatment, other methods are needed for determining the effective diffusion parameters. One such method, based on reaction rate ratios, is discussed. (author)

  7. Aero and vibroacoustics of automotive turbochargers

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen-Schaefer, Hung [Bosch Mahle Turbo Systems GmbH, Stuttgart (Germany)

    2013-02-01

    First book about the aeroacoustics of automotive turbochargers. Author of the book ''Rotordynamics of Automotive Turbochargers'', Springer, 2012. Written by an R and D expert in the turbocharger industry. Aero and Vibroacoustics of Automotive Turbochargers is a topic involving aspects from the working fields of thermodynamics of turbomachinery, aerodynamics, rotordynamics, and noise propagation computation. In this broadly interdisciplinary subject, thermodynamics of turbomachinery is used to design the turbocharger and to determine its operating conditions. Aerodynamics is needed to study the compressor flow dynamics and flow instabilities of rotating stall and surge, which can produce growling and whining-type noises. Rotordynamics is necessary to study rotor unbalance and self-excited oil-whirl instabilities, which lead to whistling and constant tone-type noises in rotating floating oil-film type bearings. For the special case of turbochargers using ball bearings, some high-order harmonic and wear noises also manifest in the rotor operating range. Lastly, noise propagation computation, based on Lighthill's analogy, is required to investigate airborne noises produced by turbochargers in passenger vehicles. The content of this book is intended for advanced undergraduates, graduates in mechanical engineering, research scientists and practicing engineers who want to better understand the interactions between these working fields and the resulting impact on the interesting topic of Aero and Vibroacoustics of Automotive Turbochargers.

  8. External Thermal Insulation Composite Systems: Critical Parameters for Surface Hygrothermal Behaviour

    Directory of Open Access Journals (Sweden)

    Eva Barreira

    2014-01-01

    Full Text Available External Thermal Insulation Composite Systems (ETICS are often used in Europe. Despite its thermal advantages, low cost, and ease of application, this system has serious problems of biological growth causing the cladding defacement. Recent studies pointed that biological growth is due to high values of surface moisture content, which mostly results from the combined effect of exterior surface condensation, wind-driven rain, and drying process. Based on numerical simulation, this paper points the most critical parameters involved in hygrothermal behaviour of ETICS, considering the influence of thermal and hygric properties of the external rendering, the effect of the characteristics of the façade, and the consequences of the exterior and interior climate on exterior surface condensation, wind-driven rain, and drying process. The model used was previously validated by comparison with the results of an “in situ” campaign. The results of the sensitivity analyses show that relative humidity and temperature of the exterior air, atmospheric radiation, and emissivity of the exterior rendering are the parameters that most influence exterior surface condensation. Wind-driven rain depends mostly on horizontal rain, building’s height, wind velocity, and orientation. The drying capacity is influenced by short-wave absorbance, incident solar radiation, and orientation.

  9. Performance of a Supercritical CO2 Bottoming Cycle for Aero Applications

    Directory of Open Access Journals (Sweden)

    Florian Jacob

    2017-03-01

    Full Text Available By 2050, the evolutionary approach to aero engine research may no longer provide meaningful returns on investment, whereas more radical approaches to improving thermal efficiency and reducing emissions might still prove cost effective. One such radical concept is the addition of a secondary power cycle that utilizes the otherwise largely wasted residual heat in the core engine’s exhaust gases. This could provide additional shaft power. Supercritical carbon dioxide closed-circuit power cycles are currently being investigated primarily for stationary power applications, but their high power density and efficiency, even for modest peak cycle temperatures, makes them credible bottoming cycle options for aero engine applications. Through individual geometric design and performance studies for each of the bottoming cycle’s major components, it was determined that a simple combined cycle aero engine could offer a 1.9% mission fuel burn benefit over a state-of-the-art geared turbofan for the year 2050. However, the even greater potential of more complex systems demands further investigation. For example, adding inter-turbine reheat (ITR to the combined cycle is predicted to significantly improve the fuel burn benefit.

  10. Reactor thermal behaviors under kinetics parameters variations in fast reactivity insertion

    Energy Technology Data Exchange (ETDEWEB)

    Abou-El-Maaty, Talal [Reactors Department, Atomic Energy Authority, Cairo 13759 (Egypt)], E-mail: talal22969@yahoo.com; Abdelhady, Amr [Reactors Department, Atomic Energy Authority, Cairo 13759 (Egypt)

    2009-03-15

    The influences of variations in some of the kinetics parameters affecting the reactivity insertion are considered in this study, it has been accomplished in order to acquire knowledge about the role that kinetic parameters play in prompt critical transients from the safety point of view. The kinetics parameters variations are limited to the effective delayed neutron fraction ({beta}{sub eff}) and the prompt neutron generation time ({lambda}). The reactor thermal behaviors under the variations in effective delayed neutron fraction and prompt neutron generation time included, the reactor power, maximum fuel temperature, maximum clad temperature, maximum coolant temperature and the mass flux variations at the hot channel. The analysis is done for a typical swimming pool, plate type research reactor with low enriched uranium. The scram system is disabled during the accidents simulations. Calculations were done using PARET code. As a result of simulations, it is concluded that, the reactor (ETRR2) thermal behavior is considerably more sensitive to the variation in the effective delayed neutron fraction than to the variation in prompt neutron generation time and the fast reactivity insertion in both cases causes a flow expansion and contraction at the hot channel exit. The amplitude of the oscillated flow is a qualitatively increases with the decrease in both {beta}{sub eff} and {lambda}.

  11. Effect on thermoluminescence parameters of biotite mineral due to thermal quenching

    International Nuclear Information System (INIS)

    Kalita, J.M.; Wary, G.

    2012-01-01

    The Thermally Stimulated Luminescence (TSL) at room temperature X-ray irradiated natural biotite in form of micro-grain powder was studied under various heating rates. TSL peaks showed at temperatures 393 K, 399.6 K, 403.5 K, 404.5 K, 406.9 K at their respective heating rates 2 K/s, 4 K/s, 6 K/s, 8 K/s and 10 K/s. The effect of thermal quenching on thermoluminescence parameters such as peak maximum temperature, peak area, FWHM, geometrical symmetry factor, the activation energy were investigated. From the symmetry factor it is clear that the TL glow curve follows the first order kinetics for the lowest heating rate, but as the heating rate increases it defers from the first order. The activation energies for each heating rates were calculated by using Chen peak shape methods for general order kinetics and found to be decreased for higher heating rates. When activation energy is calculated by variable heating rate method it is observed that the method overestimated the value of activation energy and pre-exponential frequency factor significantly due to thermal quenching. - Highlights: ► Biotite is a common mineral with chemical formula K(Mg,Fe) 3 AlSi 3 O 10 (F,OH) 2 . ► Structural, compositional and elemental analysis of biotite is carried out. ► TSL of X-ray irradiated natural biotite was studied under various heating rates. ► The effect of thermal quenching on TL parameters has been investigated.

  12. SU-E-J-161: Inverse Problems for Optical Parameters in Laser Induced Thermal Therapy

    International Nuclear Information System (INIS)

    Fahrenholtz, SJ; Stafford, RJ; Fuentes, DT

    2014-01-01

    Purpose: Magnetic resonance-guided laser-induced thermal therapy (MRgLITT) is investigated as a neurosurgical intervention for oncological applications throughout the body by active post market studies. Real-time MR temperature imaging is used to monitor ablative thermal delivery in the clinic. Additionally, brain MRgLITT could improve through effective planning for laser fiber's placement. Mathematical bioheat models have been extensively investigated but require reliable patient specific physical parameter data, e.g. optical parameters. This abstract applies an inverse problem algorithm to characterize optical parameter data obtained from previous MRgLITT interventions. Methods: The implemented inverse problem has three primary components: a parameter-space search algorithm, a physics model, and training data. First, the parameter-space search algorithm uses a gradient-based quasi-Newton method to optimize the effective optical attenuation coefficient, μ-eff. A parameter reduction reduces the amount of optical parameter-space the algorithm must search. Second, the physics model is a simplified bioheat model for homogeneous tissue where closed-form Green's functions represent the exact solution. Third, the training data was temperature imaging data from 23 MRgLITT oncological brain ablations (980 nm wavelength) from seven different patients. Results: To three significant figures, the descriptive statistics for μ-eff were 1470 m −1 mean, 1360 m −1 median, 369 m −1 standard deviation, 933 m −1 minimum and 2260 m −1 maximum. The standard deviation normalized by the mean was 25.0%. The inverse problem took <30 minutes to optimize all 23 datasets. Conclusion: As expected, the inferred average is biased by underlying physics model. However, the standard deviation normalized by the mean is smaller than literature values and indicates an increased precision in the characterization of the optical parameters needed to plan MRgLITT procedures. This investigation

  13. Verification of kinetic parameters of coupled fast-thermal core HERBE

    International Nuclear Information System (INIS)

    Pesic, M.; Marinkovic, P.; Milosevic, M.; Nikolic, D.; Zavaljevski, N.; Milovanovic, S.; Ljubenov, V.

    1997-03-01

    The HERBE system is a new coupled fast-thermal core constructed in 1989 at the RB critical heavy water assembly at the VINCA Institute. It was designed with the aim to improve experimental possibilities in fast neutron fields and for experimental verification of reactor design-oriented methods. This paper overviews experiments for kinetic parameters verification carried out at HERBE system. Their short description and comparison of experimental and calculation results are included. A brief introduction to the computer codes used in the calculations is presented too. (author)

  14. Aero-Assisted Pre-Stage for Ballistic and Aero-Assisted Launch Vehicles

    Science.gov (United States)

    Ustinov, Eugene A.

    2012-01-01

    A concept of an aero-assisted pre-stage is proposed, which enables launch of both ballistic and aero-assisted launch vehicles from conventional runways. The pre-stage can be implemented as a delta-wing with a suitable undercarriage, which is mated with the launch vehicle, so that their flight directions are coaligned. The ample wing area of the pre-stage combined with the thrust of the launch vehicle ensure prompt roll-out and take-off of the stack at airspeeds typical for a conventional jet airliner. The launch vehicle is separated from the pre-stage as soon as safe altitude is achieved, and the desired ascent trajectory is reached. Nominally, the pre-stage is non-powered. As an option, to save the propellant of the launch vehicle, the pre-stage may have its own short-burn propulsion system, whereas the propulsion system of the launch vehicle is activated at the separation point. A general non-dimensional analysis of performance of the pre-stage from roll-out to separation is carried out and applications to existing ballistic launch vehicle and hypothetical aero-assisted vehicles (spaceplanes) are considered.

  15. Determination of kinetic parameters during the thermal decomposition of epoxy/carbon fiber composite material

    International Nuclear Information System (INIS)

    Lee, Jae Hun; Kim, Kwang Seok; Kim, Hyo

    2013-01-01

    An in-depth study to determine the thermal decomposition kinetics parameters such as the activation energy E_a, the reaction order n, and the pre-exponential factor A of epoxy/carbon fiber composite material has been conducted. We employ not only the modified peak property method that is proposed here, but also the conventional method in analyzing the experimental data, and compare the results to show the performance of the proposed model. The pyrolysis tests for the epoxy/carbon fiber composite materials are conducted by using thermogravimetric analyser at various heating rates. As a result, the best prediction to the experimental data can be obtained by the modified peak property method. Besides, among the methods applied here, the modified peak property method provides most convenient way to recover the parameters: it does not require a curve fitting of the data nor a long iterative computation

  16. Emission parameters and thermal management of single high-power 980-nm laser diodes

    International Nuclear Information System (INIS)

    Bezotosnyi, V V; Krokhin, O N; Oleshchenko, V A; Pevtsov, V F; Popov, Yu M; Cheshev, E A

    2014-01-01

    We report emission parameters of high-power cw 980-nm laser diodes (LDs) with a stripe contact width of 100 μm. On copper heat sinks of the C-mount type, a reliable output power of 10 W is obtained at a pump current of 10 A. Using a heat flow model derived from analysis of calculated and measured overall efficiencies at pump currents up to 20 A, we examine the possibility of raising the reliable power limit of a modified high-power LD mounted on heat sinks of the F-mount type using submounts with optimised geometric parameters and high thermal conductivity. The possibility of increasing the maximum reliable cw output power to 20 W with the use of similar laser crystals is discussed. (lasers)

  17. Laser ablation characteristics of metallic materials: Role of Debye-Waller thermal parameter

    International Nuclear Information System (INIS)

    Butt, M Z

    2014-01-01

    The interaction of a high intensity laser pulse with a solid target results in the formation of a crater and a plasma plume. The characteristics of both depend on physical properties of target material, environmental conditions, and laser parameters (e.g. wavelength, pulse duration, energy, beam diameter) etc. It has been shown for numerous metals and their alloys that plasma threshold fluence, plasma threshold energy, ablation efficiency, ablation yield, angular distribution of laser produced plasma (LPP) ions, etc. are a unique function of the Debye-Waller thermal parameter B or the mean-square amplitude of atomic vibration of the target material for given experimental conditions. The FWHM of the angular distribution of LPP ions, ablation yield, and ablation efficiency increase whereas plasma threshold fluence and plasma threshold energy decrease as B-factor of the target material increases

  18. Thermal expansion and lattice parameters of shaped metal deposited Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Swarnakar, Akhilesh Kumar; Van der Biest, Omer [Katholieke Universiteit Leuven, MTM, Kasteelpark Arenberg 44, 3001 Leuven (Belgium); Baufeld, Bernd, E-mail: b.baufeld@sheffield.ac.uk [Katholieke Universiteit Leuven, MTM, Kasteelpark Arenberg 44, 3001 Leuven (Belgium)

    2011-02-10

    Research highlights: > Measurement of thermal expansion and of the lattice parameters of Ti-6Al-4V fabricated by shaped metal deposition up to 1100 {sup o}C. > The observation of alpha to beta transformation not reflected in the expansion but in the contraction curve is explained by non-equilibrium alpha phase of the SMD material. > Denuding of the {alpha} phase and enrichment of the {beta} phase of Vanadium due to high temperature experiments. > The unit cell volumes derived from lattice parameters measured by X-ray diffraction are at room temperature larger for the {alpha} than for the {beta} phase. With increasing temperature the unit cell volume of the {beta} phase increases stronger than the one of the {alpha} phase resulting in a similar unit cell volume at the {beta} transus temperature. - Abstract: Thermal expansion and lattice parameters are investigated up to 1100 deg. C for Ti-6Al-4V components, fabricated by shaped metal deposition. This is a novel additive layer manufacturing technique where near net-shape components are built by tungsten inert gas welding. The as-fabricated SMD Ti-6Al-4V components exhibit a constant coefficient of thermal expansion of 1.17 x 10{sup -5} K{sup -1} during heating up to 1100 {sup o}C, not reflecting the {alpha} to {beta} phase transformation. During cooling a stalling of the contraction is observed starting at the {beta} transus temperature. These high temperature experiments denude the {alpha} phase of V and enrich the {beta} phase. The development of the lattice parameters in dependence on temperature are observed with high temperature X-ray diffraction. The unit cell volumes derived from these parameters are at room temperature larger for the {alpha} than for the {beta} phase. With increasing temperature the unit cell volume of the {beta} phase increases stronger than the one of the {alpha} phase resulting in a similar unit cell volume at the {beta} transus temperature. These observations are interpreted as an

  19. Aero and vibroacoustics of automotive turbochargers

    CERN Document Server

    Nguyen-Schäfer, Hung

    2013-01-01

    Aero and Vibroacoustics of Automotive Turbochargers is a topic involving aspects from the working fields of thermodynamics of turbomachinery, aerodynamics, rotordynamics, and noise propagation computation.   In this broadly interdisciplinary subject, thermodynamics of turbomachinery is used to design the turbocharger and to determine its operating conditions.  Aerodynamics is needed to study the compressor flow dynamics and flow instabilities of rotating stall and surge, which can produce growling and whining-type noises. Rotordynamics is necessary to study rotor unbalance and self-excited oil-whirl instabilities, which lead to whistling and constant tone-type noises in rotating floating oil-film type bearings. For the special case of turbochargers using ball bearings, some high-order harmonic and wear noises also manifest in the rotor operating range. Lastly, noise propagation computation, based on Lighthill’s analogy, is required to investigate airborne noises produced by turbochargers in passenger vehi...

  20. Estimations of Kappa parameter using quasi-thermal noise spectroscopy: Applications on Wind spacecraft

    Science.gov (United States)

    Martinović, M.

    2017-12-01

    Quasi-thermal noise (QTN) spectroscopy is an accurate technique for in situ measurements of electron density and temperature in space plasmas. The QTN spectrum has a characteristic noise peak just above the plasma frequency produced by electron quasi-thermal fluctuations, which allows a very accurate measurement of the electron density. The size and shape of the peak are determined by suprathermal electrons. Since this nonthermal electron population is well described by a generalized Lorentzian - Kappa velocity distribution, it is possible to determinate the distribution properties in the solar wind from a measured spectrum. In this work, we discuss some basic properties of the QTN spectrum dependence of the Kappa distribution parameters - total electron density, temperature and the Kappa index, giving an overview on how instrument characteristics and environment conditions affect quality of the measurements. Further on, we aim to apply the method to Wind Thermal Noise Receiver (TNR) measurements. However, the spectra observed by this instrument usually contain contributions from nonthermal phenomena, like ion acoustic waves below, or galactic noise above the plasma frequency. This is why, besides comparison of the theory with observations, work with Wind data requires development of a sophisticated algorithm that distinguish parts of the spectra that are dominated by the QTN, and therefore can be used in our study. Postulates of this algorithm, as well as major results of its implementation, are also presented.

  1. Determination of Kinetic Parameters for the Thermal Decomposition of Parthenium hysterophorus

    Directory of Open Access Journals (Sweden)

    Dhaundiyal Alok

    2018-02-01

    Full Text Available A kinetic study of pyrolysis process of Parthenium hysterophorous is carried out by using thermogravimetric analysis (TGA equipment. The present study investigates the thermal degradation and determination of the kinetic parameters such as activation E and the frequency factor A using model-free methods given by Flynn Wall and Ozawa (FWO, Kissinger-Akahira-Sonuse (KAS and Kissinger, and model-fitting (Coats Redfern. The results derived from thermal decomposition process demarcate decomposition of Parthenium hysterophorous among the three main stages, such as dehydration, active and passive pyrolysis. It is shown through DTG thermograms that the increase in the heating rate caused temperature peaks at maximum weight loss rate to shift towards higher temperature regime. The results are compared with Coats Redfern (Integral method and experimental results have shown that values of kinetic parameters obtained from model-free methods are in good agreement. Whereas the results obtained through Coats Redfern model at different heating rates are not promising, however, the diffusion models provided the good fitting with the experimental data.

  2. Centrifugal compressor fault diagnosis based on qualitative simulation and thermal parameters

    Science.gov (United States)

    Lu, Yunsong; Wang, Fuli; Jia, Mingxing; Qi, Yuanchen

    2016-12-01

    This paper concerns fault diagnosis of centrifugal compressor based on thermal parameters. An improved qualitative simulation (QSIM) based fault diagnosis method is proposed to diagnose the faults of centrifugal compressor in a gas-steam combined-cycle power plant (CCPP). The qualitative models under normal and two faulty conditions have been built through the analysis of the principle of centrifugal compressor. To solve the problem of qualitative description of the observations of system variables, a qualitative trend extraction algorithm is applied to extract the trends of the observations. For qualitative states matching, a sliding window based matching strategy which consists of variables operating ranges constraints and qualitative constraints is proposed. The matching results are used to determine which QSIM model is more consistent with the running state of system. The correct diagnosis of two typical faults: seal leakage and valve stuck in the centrifugal compressor has validated the targeted performance of the proposed method, showing the advantages of fault roots containing in thermal parameters.

  3. Sensitivity analysis of efficiency thermal energy storage on selected rock mass and grout parameters using design of experiment method

    International Nuclear Information System (INIS)

    Wołoszyn, Jerzy; Gołaś, Andrzej

    2014-01-01

    Highlights: • Paper propose a new methodology to sensitivity study of underground thermal storage. • Using MDF model and DOE technique significantly shorter of calculations time. • Calculation of one time step was equal to approximately 57 s. • Sensitivity study cover five thermo-physical parameters. • Conductivity of rock mass and grout material have a significant impact on efficiency. - Abstract: The aim of this study was to investigate the influence of selected parameters on the efficiency of underground thermal energy storage. In this paper, besides thermal conductivity, the effect of such parameters as specific heat, density of the rock mass, thermal conductivity and specific heat of grout material was investigated. Implementation of this objective requires the use of an efficient computational method. The aim of the research was achieved by using a new numerical model, Multi Degree of Freedom (MDF), as developed by the authors and Design of Experiment (DoE) techniques with a response surface. The presented methodology can significantly reduce the time that is needed for research and to determine the effect of various parameters on the efficiency of underground thermal energy storage. Preliminary results of the research confirmed that thermal conductivity of the rock mass has the greatest impact on the efficiency of underground thermal energy storage, and that other parameters also play quite significant role

  4. MEMS and mil/aero: technology push and market pull

    Science.gov (United States)

    Clifford, Thomas H.

    2001-04-01

    MEMS offers attractive solutions to high-density fluidics, inertial, optical, switching and other demanding military/aerospace (mil/aero) challenges. However, full acceptance must confront the realities of production-scale producibility, verifiability, testability, survivability, as well as long-term reliability. Data on these `..ilities' are crucial, and are central in funding and deployment decisions. Similarly, mil/aero users must highlight specific missions, environmental exposures, and procurement issues, as well as the quirks of its designers. These issues are particularly challenging in MEMS, because of the laws of physics and business economics, as well as the risks of deploying leading-edge technology into no-fail applications. This paper highlights mil/aero requirements, and suggests reliability/qualification protocols, to guide development effort and to reassure mil/aero users that MEMS labs are mindful of the necessary realities.

  5. Generic methods for aero-engine exhaust emission prediction

    NARCIS (Netherlands)

    Shakariyants, S.A.

    2008-01-01

    In the thesis, generic methods have been developed for aero-engine combustor performance, combustion chemistry, as well as airplane aerodynamics, airplane and engine performance. These methods specifically aim to support diverse emission prediction studies coupled with airplane and engine

  6. Aeronautical Mobile Airport Communications System (AeroMACS)

    Science.gov (United States)

    Budinger, James M.; Hall, Edward

    2011-01-01

    To help increase the capacity and efficiency of the nation s airports, a secure wideband wireless communications system is proposed for use on the airport surface. This paper provides an overview of the research and development process for the Aeronautical Mobile Airport Communications System (AeroMACS). AeroMACS is based on a specific commercial profile of the Institute of Electrical and Electronics Engineers (IEEE) 802.16 standard known as Wireless Worldwide Interoperability for Microwave Access or WiMAX (WiMax Forum). The paper includes background on the need for global interoperability in air/ground data communications, describes potential AeroMACS applications, addresses allocated frequency spectrum constraints, summarizes the international standardization process, and provides findings and recommendations from the world s first AeroMACS prototype implemented in Cleveland, Ohio, USA.

  7. Recent trends in superalloys research for critical aero-engine components

    Energy Technology Data Exchange (ETDEWEB)

    Remy, Luc [Mine ParisTech, CNRS UMR 7633, 91 - Evry (France). Centre des Materiaux; Guedou, Jean-Yves [Snecma Safran Group, Moissy-Cramayel (France). Materials and Processes Dept.

    2010-07-01

    This paper is a brief survey of common research activity on superalloys for aero-engines between Snecma and Mines ParisTech Centre des Materiaux during recent years. First in disks applications, the development of new powder metallurgy superalloys is shown. Then grain boundary engineering is investigated in a wrought superalloy. Secondly, design oriented research on single crystals blades is shown: a damage model for low cycle fatigue is used for life prediction when cracks initiated at casting pores. The methodology developed for assessing coating life is illustrated for thermal barrier coating deposited on AMI single crystal superalloy. (orig.)

  8. Parameters measurement for the thermal neutron beam in the thermal column hole of Xi’an pulse reactor

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The distribution of the neutron spectra in the thermal column hole of Xi’an pulse reactor was measured with the time-of-flight method.Compared with the thermal Maxwellian theory neutron spectra,the thermal neutron spectra measured is a little softer,and the average neutron energy of the experimental spectra is about 0.042±0.01 eV.The thermal neutron fluence rate at the front end of thermal column hole,measured with gold foil activation techniques,is about 1.18×105 cm-2 s-1.The standard uncertainty of the measured thermal neutron fluence is about 3%.The spectra-averaged cross section of 197Au(n,γ) determined by the experimental thermal neutron spectra is(92.8±0.93) ×10-24 cm2.

  9. Validating carbonation parameters of alkaline solid wastes via integrated thermal analyses: Principles and applications

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Shu-Yuan [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 10673, Taiwan (China); Chang, E.-E. [Department of Biochemistry, Taipei Medical University, Taipei 110, Taiwan (China); Kim, Hyunook [Department of Environmental Engineering, University of Seoul, Seoul 130-743 (Korea, Republic of); Chen, Yi-Hung [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan (China); Chiang, Pen-Chi, E-mail: pcchiang@ntu.edu.tw [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 10673, Taiwan (China)

    2016-04-15

    Highlights: • Key carbonation parameters of wastes are determined by integrated thermal analyses. • A modified TG-DTG interpretation is proposed, and validated by the DSC technique. • The modified TG-DTG interpretation is further verified by DTA, TG-MS and TG-FTIR. • Kinetics and thermodynamics of CaCO{sub 3} decomposition in solid wastes are determined. • Implication to maximum carbonation conversion of various solid wastes is described. - Abstract: Accelerated carbonation of alkaline solid wastes is an attractive method for CO{sub 2} capture and utilization. However, the evaluation criteria of CaCO{sub 3} content in solid wastes and the way to interpret thermal analysis profiles were found to be quite different among the literature. In this investigation, an integrated thermal analyses for determining carbonation parameters in basic oxygen furnace slag (BOFS) were proposed based on thermogravimetric (TG), derivative thermogravimetric (DTG), and differential scanning calorimetry (DSC) analyses. A modified method of TG-DTG interpretation was proposed by considering the consecutive weight loss of sample with 200–900 °C because the decomposition of various hydrated compounds caused variances in estimates by using conventional methods of TG interpretation. Different quantities of reference CaCO{sub 3} standards, carbonated BOFS samples and synthetic CaCO{sub 3}/BOFS mixtures were prepared for evaluating the data quality of the modified TG-DTG interpretation, in terms of precision and accuracy. The quantitative results of the modified TG-DTG method were also validated by DSC analysis. In addition, to confirm the TG-DTG results, the evolved gas analysis was performed by mass spectrometer and Fourier transform infrared spectroscopy for detection of the gaseous compounds released during heating. Furthermore, the decomposition kinetics and thermodynamics of CaCO{sub 3} in BOFS was evaluated using Arrhenius equation and Kissinger equation. The proposed

  10. Validating carbonation parameters of alkaline solid wastes via integrated thermal analyses: Principles and applications

    International Nuclear Information System (INIS)

    Pan, Shu-Yuan; Chang, E.-E.; Kim, Hyunook; Chen, Yi-Hung; Chiang, Pen-Chi

    2016-01-01

    Highlights: • Key carbonation parameters of wastes are determined by integrated thermal analyses. • A modified TG-DTG interpretation is proposed, and validated by the DSC technique. • The modified TG-DTG interpretation is further verified by DTA, TG-MS and TG-FTIR. • Kinetics and thermodynamics of CaCO 3 decomposition in solid wastes are determined. • Implication to maximum carbonation conversion of various solid wastes is described. - Abstract: Accelerated carbonation of alkaline solid wastes is an attractive method for CO 2 capture and utilization. However, the evaluation criteria of CaCO 3 content in solid wastes and the way to interpret thermal analysis profiles were found to be quite different among the literature. In this investigation, an integrated thermal analyses for determining carbonation parameters in basic oxygen furnace slag (BOFS) were proposed based on thermogravimetric (TG), derivative thermogravimetric (DTG), and differential scanning calorimetry (DSC) analyses. A modified method of TG-DTG interpretation was proposed by considering the consecutive weight loss of sample with 200–900 °C because the decomposition of various hydrated compounds caused variances in estimates by using conventional methods of TG interpretation. Different quantities of reference CaCO 3 standards, carbonated BOFS samples and synthetic CaCO 3 /BOFS mixtures were prepared for evaluating the data quality of the modified TG-DTG interpretation, in terms of precision and accuracy. The quantitative results of the modified TG-DTG method were also validated by DSC analysis. In addition, to confirm the TG-DTG results, the evolved gas analysis was performed by mass spectrometer and Fourier transform infrared spectroscopy for detection of the gaseous compounds released during heating. Furthermore, the decomposition kinetics and thermodynamics of CaCO 3 in BOFS was evaluated using Arrhenius equation and Kissinger equation. The proposed integrated thermal analyses for

  11. On some mechanisms of the effect of thermal prehistory on the behavior of silicon parameters under irradiation

    International Nuclear Information System (INIS)

    Nejmash, V.B.; Sagan, T.R.; Tsmots', V.M.; Shakhovtsov, V.I.; Shindich, V.L.

    1991-01-01

    The effect of preliminary thermal treatment (TT) in 400-1200 degC temperature range on the behavior of Si monocrystal parameters under subsequent γ-, electron and neutron irradiation is investigated. Five mechanisms of Si thermal prehistory effect on its properties are proposed: 1) decomposition of solid solutions of impurities interacting with radiation defects (RD); 2) formation of electrically active thermal defects (TD) in concentrations wich are sufficient for a significant alteration of RD charged state; 3) origination of TD, which can efficiency as aresult of the redistribution of impurities under thermal treatment; 5) formation of clusters of electrically active TD, resulting in the disturbance of electric homogeneity of Si crystal

  12. Parameters of Models of Structural Transformations in Alloy Steel Under Welding Thermal Cycle

    Science.gov (United States)

    Kurkin, A. S.; Makarov, E. L.; Kurkin, A. B.; Rubtsov, D. E.; Rubtsov, M. E.

    2017-05-01

    A mathematical model of structural transformations in an alloy steel under the thermal cycle of multipass welding is suggested for computer implementation. The minimum necessary set of parameters for describing the transformations under heating and cooling is determined. Ferritic-pearlitic, bainitic and martensitic transformations under cooling of a steel are considered. A method for deriving the necessary temperature and time parameters of the model from the chemical composition of the steel is described. Published data are used to derive regression models of the temperature ranges and parameters of transformation kinetics in alloy steels. It is shown that the disadvantages of the active visual methods of analysis of the final phase composition of steels are responsible for inaccuracy and mismatch of published data. The hardness of a specimen, which correlates with some other mechanical properties of the material, is chosen as the most objective and reproducible criterion of the final phase composition. The models developed are checked by a comparative analysis of computational results and experimental data on the hardness of 140 alloy steels after cooling at various rates.

  13. Stochastic estimation approach for the evaluation of thermal-hydraulic parameters in pressurized water reactors

    International Nuclear Information System (INIS)

    Shieh, D.J.; Upadhyaya, M.G.

    1986-01-01

    A method based on the extended Kalman filter is developed for the estimation of the core coolant mass flow rate in pressurized water reactors. The need for flow calibration can be avoided by a direct estimation of this parameter. A reduced-order neutronic and thermal-hydraulic model is developed for the Loss-of-Fluid Test (LOFT) reactor. The neutron detector and core-exit coolant temperature signals from the LOFT reactor are used as measurements in the parameter estimation algorithm. The estimation sensitivity to model uncertainties was evaluated using the ambiguity function analysis. This also provides a lower bound on the measurement sample size necessary to achieve a certain estimation accuracy. A sequential technique was developed to minimize the computational effort needed to discretize the continuous time equations, and thus achieve faster convergence to the true parameter value. The performance of the stochastic approximation method was first evaluated using simulated random data, and then applied to the estimation of coolant flow rate using the operational data from the LOFT reactor at 100 and 65% flow rate conditions

  14. Validating carbonation parameters of alkaline solid wastes via integrated thermal analyses: Principles and applications.

    Science.gov (United States)

    Pan, Shu-Yuan; Chang, E-E; Kim, Hyunook; Chen, Yi-Hung; Chiang, Pen-Chi

    2016-04-15

    Accelerated carbonation of alkaline solid wastes is an attractive method for CO2 capture and utilization. However, the evaluation criteria of CaCO3 content in solid wastes and the way to interpret thermal analysis profiles were found to be quite different among the literature. In this investigation, an integrated thermal analyses for determining carbonation parameters in basic oxygen furnace slag (BOFS) were proposed based on thermogravimetric (TG), derivative thermogravimetric (DTG), and differential scanning calorimetry (DSC) analyses. A modified method of TG-DTG interpretation was proposed by considering the consecutive weight loss of sample with 200-900°C because the decomposition of various hydrated compounds caused variances in estimates by using conventional methods of TG interpretation. Different quantities of reference CaCO3 standards, carbonated BOFS samples and synthetic CaCO3/BOFS mixtures were prepared for evaluating the data quality of the modified TG-DTG interpretation, in terms of precision and accuracy. The quantitative results of the modified TG-DTG method were also validated by DSC analysis. In addition, to confirm the TG-DTG results, the evolved gas analysis was performed by mass spectrometer and Fourier transform infrared spectroscopy for detection of the gaseous compounds released during heating. Furthermore, the decomposition kinetics and thermodynamics of CaCO3 in BOFS was evaluated using Arrhenius equation and Kissinger equation. The proposed integrated thermal analyses for determining CaCO3 content in alkaline wastes was precise and accurate, thereby enabling to effectively assess the CO2 capture capacity of alkaline wastes for mineral carbonation. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Fundamental approaches for analysis thermal hydraulic parameter for Puspati Research Reactor

    International Nuclear Information System (INIS)

    Hashim, Zaredah; Lanyau, Tonny Anak; Farid, Mohamad Fairus Abdul; Kassim, Mohammad Suhaimi; Azhar, Noraishah Syahirah

    2016-01-01

    The 1-MW PUSPATI Research Reactor (RTP) is the one and only nuclear pool type research reactor developed by General Atomic (GA) in Malaysia. It was installed at Malaysian Nuclear Agency and has reached the first criticality on 8 June 1982. Based on the initial core which comprised of 80 standard TRIGA fuel elements, the very fundamental thermal hydraulic model was investigated during steady state operation using the PARET-code. The main objective of this paper is to determine the variation of temperature profiles and Departure of Nucleate Boiling Ratio (DNBR) of RTP at full power operation. The second objective is to confirm that the values obtained from PARET-code are in agreement with Safety Analysis Report (SAR) for RTP. The code was employed for the hot and average channels in the core in order to calculate of fuel’s center and surface, cladding, coolant temperatures as well as DNBR’s values. In this study, it was found that the results obtained from the PARET-code showed that the thermal hydraulic parameters related to safety for initial core which was cooled by natural convection was in agreement with the designed values and safety limit in SAR

  16. Fundamental approaches for analysis thermal hydraulic parameter for Puspati Research Reactor

    Science.gov (United States)

    Hashim, Zaredah; Lanyau, Tonny Anak; Farid, Mohamad Fairus Abdul; Kassim, Mohammad Suhaimi; Azhar, Noraishah Syahirah

    2016-01-01

    The 1-MW PUSPATI Research Reactor (RTP) is the one and only nuclear pool type research reactor developed by General Atomic (GA) in Malaysia. It was installed at Malaysian Nuclear Agency and has reached the first criticality on 8 June 1982. Based on the initial core which comprised of 80 standard TRIGA fuel elements, the very fundamental thermal hydraulic model was investigated during steady state operation using the PARET-code. The main objective of this paper is to determine the variation of temperature profiles and Departure of Nucleate Boiling Ratio (DNBR) of RTP at full power operation. The second objective is to confirm that the values obtained from PARET-code are in agreement with Safety Analysis Report (SAR) for RTP. The code was employed for the hot and average channels in the core in order to calculate of fuel's center and surface, cladding, coolant temperatures as well as DNBR's values. In this study, it was found that the results obtained from the PARET-code showed that the thermal hydraulic parameters related to safety for initial core which was cooled by natural convection was in agreement with the designed values and safety limit in SAR.

  17. Neutronic and thermal hydraulic assessment of fast reactor cooling by water of super critical parameters

    International Nuclear Information System (INIS)

    Baranaev, Yu. D.; Glebov, A. P.; Ukraintsev, V. F.; Kolesov, V. V.

    2007-01-01

    Necessity of essential improvement of competitiveness for reactors on light water determines development of new generation power reactors on water of super critical parameters. The main objective of these projects is reaching of high efficiency coefficients while decreasing of investment to NPP and simplification of thermal scheme and high safety level. International programme of IV generation in which super critical reactors present is already started. In the frame of this concept specific Super Critical Fast Reactor with tight lattice of pitch is developing by collaboration of the FEI and IATE. In present article neutronic and thermal hydraulic assessment of fast reactor with plutonium MOX fuel and a core with a double-path of super critical water cooling is presented (SCFR-2X). The scheme of double path of coolant via the core in which the core is divided by radius on central and periphery parts with approximately equal number of fuel assemblies is suggested. Periferia part is cooling while down coming coolant movement. At the down part of core into the mix chamber flows from the periphery assemblies joining and come to the inlet of the central part which is cooling by upcoming flow. Eight zone of different content of MOX fuel are used (4 in down coming and 4 in upcoming) sub zones. Calculation of fuel burn-up and approximate scheme of refueling is evaluated. Calculation results are presented and discussed

  18. Investigation of thermodynamic parameters in the thermal decomposition of plastic waste-waste lube oil compounds.

    Science.gov (United States)

    Kim, Yong Sang; Kim, Young Seok; Kim, Sung Hyun

    2010-07-01

    Thermal decomposition properties of plastic waste-waste lube oil compounds were investigated under nonisothermal conditions. Polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET) were selected as representative household plastic wastes. A plastic waste mixture (PWM) and waste lube oil (WLO) were mixed with mixing ratios of 33, 50, and 67 (w/w) % on a PWM weight basis, and thermogravimetric (TG) experiments were performed from 25 to 600 degrees C. The Flynn-Wall method and the Ozawa-Flynn-Wall method were used for analyses of thermodynamic parameters. In this study, activation energies of PWM/WLO compounds ranged from 73.4 to 229.6 kJ/mol between 0.2 and 0.8 of normalized mass conversions, and the 50% PWM/WLO compound had lower activation energies and enthalpies among the PWM/WLO samples at each mass conversion. At the point of maximum differential mass conversion, the analyzed activation energies, enthalpies, entropies, and Gibbs free energies indicated that mixing PWM and WLO has advantages in reducing energy to decrease the degree of disorder. However, no difference in overall energy that would require overcoming both thermal decomposition reactions and degree of disorder was observed among PWM/WLO compounds under these experimental conditions.

  19. Fundamental approaches for analysis thermal hydraulic parameter for Puspati Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, Zaredah, E-mail: zaredah@nm.gov.my; Lanyau, Tonny Anak, E-mail: tonny@nm.gov.my; Farid, Mohamad Fairus Abdul; Kassim, Mohammad Suhaimi [Reactor Technology Centre, Technical Support Division, Malaysia Nuclear Agency, Ministry of Science, Technology and Innovation, Bangi, 43000, Kajang, Selangor Darul Ehsan (Malaysia); Azhar, Noraishah Syahirah [Universiti Teknologi Malaysia, 80350, Johor Bahru, Johor Darul Takzim (Malaysia)

    2016-01-22

    The 1-MW PUSPATI Research Reactor (RTP) is the one and only nuclear pool type research reactor developed by General Atomic (GA) in Malaysia. It was installed at Malaysian Nuclear Agency and has reached the first criticality on 8 June 1982. Based on the initial core which comprised of 80 standard TRIGA fuel elements, the very fundamental thermal hydraulic model was investigated during steady state operation using the PARET-code. The main objective of this paper is to determine the variation of temperature profiles and Departure of Nucleate Boiling Ratio (DNBR) of RTP at full power operation. The second objective is to confirm that the values obtained from PARET-code are in agreement with Safety Analysis Report (SAR) for RTP. The code was employed for the hot and average channels in the core in order to calculate of fuel’s center and surface, cladding, coolant temperatures as well as DNBR’s values. In this study, it was found that the results obtained from the PARET-code showed that the thermal hydraulic parameters related to safety for initial core which was cooled by natural convection was in agreement with the designed values and safety limit in SAR.

  20. DEVICE FOR MEASURING OF THERMAL LENS PARAMETERS IN LASER ACTIVE ELEMENTS WITH A PROBE BEAM METHOD

    Directory of Open Access Journals (Sweden)

    A. N. Zakharova

    2015-01-01

    Full Text Available We have developed a device for measuring of parameters of thermal lens (TL in laser active elements under longitudinal diode pumping. The measurements are based on the probe beam method. This device allows one to determine sign and optical power of the lens in the principal meridional planes, its sensitivity factor with respect to the absorbed pump power and astigmatism degree, fractional heat loading which make it possible to estimate integral impact of the photoelastic effect to the formation of TL in the laser element. The measurements are performed in a linearly polarized light at the wavelength of 532 nm. Pumping of the laser element is performed at 960 nm that makes it possible to study laser materials doped with Yb3+ and (Er3+, Yb3+ ions. The precision of measurements: for sensitivity factor of TL – 0,1 m-1/W, for astigmatism degree – 0,2 m-1/W, for fractional heat loading – 5 %, for the impact of the photoelastic effect – 0,5 × 10-6 K-1. This device is used for characterization of thermal lens in the laser active element from an yttrium vanadate crystal, Er3+,Yb3+:YVO .

  1. Parameter optimization of thermal-model-oriented control law for PEM fuel cell stack via novel genetic algorithm

    International Nuclear Information System (INIS)

    Li Xi; Deng Zhonghua; Wei Dong; Xu Chunshan; Cao Guangyi

    2011-01-01

    Highlights: →We build up the thermal expressions of PEMFC stack. → The expressions are converted into the affine state space control-oriented model for the VSC strategy. → The NGA is developed to optimize the parameter of thermal-model-oriented control law. → Numerical results demonstrate the effectiveness and rationality of the method proposed. - Abstract: It is critical to understand and manage the thermal effects in optimizing the performance and durability of proton exchange membrane fuel cell (PEMFC) stack. And building up the control-oriented thermal model of PEMFC stack is necessary. The thermal model, a set of differential equations, is established according to the conservation equations of mass and energy, which can be used to reflect truly the actual temperature response of PEMFC stack, however, the expressions of the model are too complicated to be used in the design of control. For this reason, the expressions are converted into the affine state space control-oriented model in detail for the variable structure control (VSC) strategy. Meanwhile, the accurate model must be established for the VSC and the parameters of VSC laws should be optimized. Consequently, a novel genetic algorithm (NGA) is developed to optimize the parameter of thermal-model-oriented control law for PEMFC stack. Finally, numerical test results demonstrate the effectiveness and rationality of the method proposed in this paper. It lays the foundation for the realization of online thermal management of PEMFC stack based on VSC.

  2. Multi-parameter fibre Bragg grating sensor-array for thermal vacuum cycling test

    Science.gov (United States)

    Cheng, L.; Ahlers, B.; Toet, P.; Casarosa, G.; Appolloni, M.

    2017-11-01

    Fibre Bragg Grating (FBG) sensor systems based on optical fibres are gaining interest in space applications. Studies on Structural Health Monitoring (SHM) of the reusable launchers using FBG sensors have been carried out in the Future European Space Transportation Investigations Programme (FESTIP). Increasing investment in the development on FBG sensor applications is foreseen for the Future Launchers Preparatory Programme (FLPP). TNO has performed different SHM measurements with FBGs including on the VEGA interstage [1, 2] in 2006. Within the current project, a multi-parameter FBG sensor array demonstrator system for temperature and strain measurements is designed, fabricated and tested under ambient as well as Thermal Vacuum (TV) conditions in a TV chamber of the European Space Agency (ESA), ESTEC site. The aim is the development of a multi-parameters measuring system based on FBG technology for space applications. During the TV tests of a Space Craft (S/C) or its subsystems, thermal measurements, as well as strain measurements are needed by the engineers in order to verify their prediction and to validate their models. Because of the dimensions of the test specimen and the accuracy requested to the measurement, a large number of observation/measuring points are needed. Conventional sensor systems require a complex routing of the cables connecting the sensors to their acquisition unit. This will add extra weight to the construction under test. FBG sensors are potentially light-weight and can easily be multiplexed in an array configuration. The different tasks comply of a demonstrator system design; its component selection, procurement, manufacturing and finally its assembly. The temperature FBG sensor is calibrated in a dedicated laboratory setup down to liquid nitrogen (LN2) temperature at TNO. A temperature-wavelength calibration curve is generated. After a test programme definition a setup in thermal vacuum is realised at ESA premises including a mechanical

  3. Training and two-way shape memory in NiTi alloys: influence on thermal parameters

    International Nuclear Information System (INIS)

    Lahoz, R.; Puertolas, J.A.

    2004-01-01

    The two-way shape memory effect (TWSME) was studied in a near equiatomic commercial alloy. A training procedure based on a constant load applied in the temperature range of the parent → martensite transformation was carried out on NiTi wires. The efficiency of the method was determined from deformation-temperature measurements by MTA at different training stress and number of cycles. A maximum of two shape memory strain was obtained for a stress training of 115 MPa, independently of number of training cycles. A correlation was established between the TWSME arisen and the permanent strain generated during the training. The A s and A f transitions present a positive shift and the M s and M f a negative one with increasing training stress. All the transitions temperatures decrease with the training cycling. In the trained material, the P→M and M→P temperatures and the latent heat of these conversions undergoes a strong decrease with increasing training stress, with a strong asymmetry between the forward and the reversed transitions. The changes of these thermal parameters as a function of the training parameters were studied on a thermodynamic frame

  4. Ground-based infrared surveys: imaging the thermal fields at volcanoes and revealing the controlling parameters.

    Science.gov (United States)

    Pantaleo, Michele; Walter, Thomas

    2013-04-01

    Temperature monitoring is a widespread procedure in the frame of volcano hazard monitoring. Indeed temperature changes are expected to reflect changes in volcanic activity. We propose a new approach, within the thermal monitoring, which is meant to shed light on the parameters controlling the fluid pathways and the fumarole sites by using infrared measurements. Ground-based infrared cameras allow one to remotely image the spatial distribution, geometric pattern and amplitude of fumarole fields on volcanoes at metre to centimetre resolution. Infrared mosaics and time series are generated and interpreted, by integrating geological field observations and modeling, to define the setting of the volcanic degassing system at shallow level. We present results for different volcano morphologies and show that lithology, structures and topography control the appearance of fumarole field by the creation of permeability contrasts. We also show that the relative importance of those parameters is site-dependent. Deciphering the setting of the degassing system is essential for hazard assessment studies because it would improve our understanding on how the system responds to endogenous or exogenous modification.

  5. Optics equations for aero-optical analysis

    Science.gov (United States)

    Sutton, George W.; Pond, John E.

    2011-05-01

    Aero-optical effects occur around moving air vehicles and impact passive imaging or active systems. The air flow around the vehicle is compressed, and often there is a turbulent shear and/or boundary layer both of which cause variations in the index of refraction. Examples of these are reconnaissance aircraft, the Stratospheric Observatory for Infrared Optics (SOFIA), and optically homing hypersonic interceptors. In other applications, a laser beam can be formed within the vehicle, and projected outward and focused on an object. These include the Airborne Laser Laboratory, Airborne Laser and the Airborne Tactical Laser. There are many compressible fluid mechanics computer programs that can predict the air density distribution of the surrounding flow field including density fluctuations in turbulent shear and/or boundary layers. It is necessary for the physical optics to be used to predict the properties of the ensuing image plane intensity distribution, whether passive or active. These include the time-averaged image blur circle and instantaneous realizations. (Ray tracing is a poor approximation that gives erroneous results for small aberrations.)

  6. Combined Aero and Underhood Thermal Analysis for Heavy Duty Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Vegendla, Prasad [Argonne National Lab. (ANL), Argonne, IL (United States); Sofu, Tanju [Argonne National Lab. (ANL), Argonne, IL (United States); Saha, Rohit [Cummins Inc., Columbus, IN (United States); Madurai Kumar, Mahesh [Cummins Inc., Columbus, IN (United States); Hwang, L. K [Cummins Inc., Columbus, IN (United States)

    2017-01-31

    Aerodynamic analysis of the medium-duty delivery truck was performed to achieve vehicle design optimization. Three dimensional CFD simulations were carried out for several improved designs, with a detailed external component analysis of wheel covers, side skirts, roof fairings, and rounded trailer corners. The overall averaged aerodynamics drag reduction through the design modifications were shown up to 22.3% through aerodynamic considerations alone, which is equivalent to 11.16% fuel savings. The main identified fuel efficiencies were based on second generation devices, including wheel covers, side skirts, roof fairings, and rounded trailer corners. The important findings of this work were; (i) the optimum curvature radius of the rounded trailer edges found to be 125 mm, with an arc length of 196.3 mm, (ii) aerodynamic drag reduction increases with dropping clearance of side skirts between wheels and ground, and (iii) aerodynamic drag reduction increases with an extension of front bumper towards the ground.

  7. Exploring the relationship between structurally defined geometrical parameters of reinforced concrete beams and the thermal comfort on indoor environment

    DEFF Research Database (Denmark)

    Lee, Daniel Sang-Hoon; Naboni, Emanuele

    2017-01-01

    mass effect (and the implication on thermal comfort) and the given geometrical parameters of exposed soffit reinforced concrete beams are explored. The geometrical parameters of the beams are initially defined in means of structural optimisation. The beams consist of flange and web in likeness of T...... the resultant heat exchange behaviour, and the implication on thermal comfort indoor environment. However, the current paper presents the thermal mass characteristics of one geometrical type. The study is based on results derived from computational fluid dynamics (CFD) analysis, where Rhino 3D is used......The paper presents a research exploring the thermal mass effect of reinforced concrete beams with structurally optimised geometrical forms. Fully exposed concrete soffits in architectural contexts create more than just visual impacts on the indoor climate through their possible interferences...

  8. Reconstruction of the aero-mixture channels of the pulverized coal plant of the 100MW power plant unit

    Directory of Open Access Journals (Sweden)

    Ivanovic Vladan B.

    2011-01-01

    Full Text Available After the last revitalization of thermal power block of 100 MW in TPP “Kostolac A”, made in the year 2004, during the operation of the plant, pulverized coal deposition often occurred in horizontal sections of the aero-mixture channels. Deposition phenomenon manifested itself in places ahead of spherical compensators in the direction of flow of pulverized coal to the burners, due to unfavorable configuration of these channels. Coal dust deposited in the channels dried and spontaneously combusted, causing numerous damage to channels and its isolation as well as the frequent stoppage of the operation for necessary interventions. The paper presents the original solution of reconstruction of aero-mixture channels which prevented deposition of coal dust and its eventual ignition. In this way the reliability of the mill plant is maximized and higher availability of boiler and block as a whole is achieved.

  9. The determination of kinetic parameters of LiF : Mg,Ti from thermal decaying curves of optical absorption bands

    CERN Document Server

    Yazici, A N

    2003-01-01

    In this paper, the thermal bleaching curves (TBCs) of specific optical absorption bands of LiF : Mg,Ti were measured as a function of temperature. The TBCs obtained were analysed to extract the kinetic parameters (the thermal activation energy (E) and the frequency factor (s)) of some TL glow peaks of LiF : Mg,Ti on the basis of the developed first-order kinetic model over a specified temperature region.

  10. Integrated Reconfigurable Aero and Propulsion Control for Improved Flight Safety of Commercial Aircraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The main objective of this project is to develop and test a novel innovative Integrated Reconfigurable Aero (i) Adaptive control design for the case of aero-only...

  11. Aero-Optic Evaluation Center (AOEC), Large Energy National Shock (LENS) Tunnels I & II

    Data.gov (United States)

    Federal Laboratory Consortium — The AOEC facility provides world class capability for aero-thermo-chemical, aerooptics and aero-propulsion testing in the Mach number range from 2.5 to 15 using the...

  12. Experimental Technique of Titanium Fire in Aero-engine

    Directory of Open Access Journals (Sweden)

    MI Guangbao

    2016-06-01

    Full Text Available Titanium fire is the typical catastrophic fault in the aero-engine. Aiming at the urgent demand for experimental technique of titanium fire from advanced high thrust-weight ratio aero-engine, the combustion technology and theory of titanium alloy based on friction oxygen concentration method (FOC were systematically studied. The evaluation method of fireproof property and the friction ignition model were built, and the fireproof mechanism was illustrated. By generalizing recent progress in experimental technique of titanium fire from three levels, including evolutionary rule, mechanism and prevention and control technology, the ideas and directions of experimental technique associated with the application research of titanium fire in the future were proposed, namely overall evaluation of fireproof property close to air flow environment of the aero-engine, prediction model of fireproof property and experimental verification of fireproof technique under the air flow environment of aero-engine. It is necessary to establish the prevention system of titanium fire in aero-engine, which contributes to the realization of "full titanium" in compressor and to the increase of high thrust-weight ratio.

  13. Modeling and Simulation of the Thermal Runaway Behavior of Cylindrical Li-Ion Cells—Computing of Critical Parameters

    Directory of Open Access Journals (Sweden)

    Andreas Melcher

    2016-04-01

    Full Text Available The thermal behavior of Li-ion cells is an important safety issue and has to be known under varying thermal conditions. The main objective of this work is to gain a better understanding of the temperature increase within the cell considering different heat sources under specified working conditions. With respect to the governing physical parameters, the major aim is to find out under which thermal conditions a so called Thermal Runaway occurs. Therefore, a mathematical electrochemical-thermal model based on the Newman model has been extended with a simple combustion model from reaction kinetics including various types of heat sources assumed to be based on an Arrhenius law. This model was realized in COMSOL Multiphysics modeling software. First simulations were performed for a cylindrical 18650 cell with a L i C o O 2 -cathode to calculate the temperature increase under two simple electric load profiles and to compute critical system parameters. It has been found that the critical cell temperature T crit , above which a thermal runaway may occur is approximately 400 K , which is near the starting temperature of the decomposition of the Solid-Electrolyte-Interface in the anode at 393 . 15 K . Furthermore, it has been found that a thermal runaway can be described in three main stages.

  14. Influence of the solid-gas interface on the effective thermal parameters of a two-layer structure in photoacoustic experiments

    International Nuclear Information System (INIS)

    Aguirre, N Munoz; Perez, L MartInez; Garibay-Febles, V; Lozada-Cassou, M

    2004-01-01

    From the theoretical point of view, the influence of the solid-gas interface on the effective thermal parameters in a two-layer structure of the photoacoustic technique is discussed. It is shown that the effective thermal parameters depend strongly upon the thermal resistance value associated with the solid-gas interface. New expressions for the effective thermal conductivity and thermal diffusivity in the low frequency limit are obtained. In the high frequency limit, the 'resonant' behaviour of the effective thermal diffusivity is maintained and a new complex dependence on frequency of the effective thermal conductivity is shown

  15. Sensitivity of reactor integral parameters to #betta##betta# parameter of resolved resonances of fertile isotopes and to the α values, in thermal and epithermal spectra

    International Nuclear Information System (INIS)

    Barroso, D.E.G.

    1982-01-01

    A sensitivity analysis of reactor integral parameter to more 10% variation in the resolved resonance parameters #betta##betta# of the fertile isotope and the variations of more 10% in the α values (#betta# sub(#betta#)/#betta# sub(f)) of fissile isotopes of PWR fuel elements, is done. The analysis is made with thermal and epithermal spectra, those last generated in a fuel cell with low V sub(M)/V sub(F). The HAMMER system, the interface programs HELP and LITHE and the HAMMER computer codes, were used as a base for this study. (E.G.) [pt

  16. SIERRA/Aero User Manual Version 4.44

    Energy Technology Data Exchange (ETDEWEB)

    Sierra Thermal/Fluid Team

    2017-04-01

    SIERRA/Aero is a compressible fluid dynamics program intended to solve a wide variety compressible fluid flows including transonic and hypersonic problems. This document describes the commands for assembling a fluid model for analysis with this module, henceforth referred to simply as Aero for brevity. Aero is an application developed using the SIERRA Toolkit (STK). The intent of STK is to provide a set of tools for handling common tasks that programmers encounter when developing a code for numerical simulation. For example, components of STK provide field allocation and management, and parallel input/output of field and mesh data. These services also allow the development of coupled mechanics analysis software for a massively parallel computing environment. In the definitions of the commands that follow, the term Real_Max denotes the largest floating point value that can be represented on a given computer. Int_Max is the largest such integer value.

  17. SIERRA/Aero User Manual Version 4.46.

    Energy Technology Data Exchange (ETDEWEB)

    Sierra Thermal/Fluid Team

    2017-09-01

    SIERRA/Aero is a compressible fluid dynamics program intended to solve a wide variety compressible fluid flows including transonic and hypersonic problems. This document describes the commands for assembling a fluid model for analysis with this module, henceforth referred to simply as Aero for brevity. Aero is an application developed using the SIERRA Toolkit (STK). The intent of STK is to provide a set of tools for handling common tasks that programmers encounter when developing a code for numerical simulation. For example, components of STK provide field allocation and management, and parallel input/output of field and mesh data. These services also allow the development of coupled mechanics analysis software for a massively parallel computing environment. In the definitions of the commands that follow, the term Real_Max denotes the largest floating point value that can be represented on a given computer. Int_Max is the largest such integer value.

  18. SIERRA/Aero Theory Manual Version 4.44

    Energy Technology Data Exchange (ETDEWEB)

    Sierra Thermal/Fluid Team

    2017-04-01

    SIERRA/Aero is a two and three dimensional, node-centered, edge-based finite volume code that approximates the compressible Navier-Stokes equations on unstructured meshes. It is applicable to inviscid and high Reynolds number laminar and turbulent flows. Currently, two classes of turbulence models are provided: Reynolds Averaged Navier-Stokes (RANS) and hybrid methods such as Detached Eddy Simulation (DES). Large Eddy Simulation (LES) models are currently under development. The gas may be modeled either as ideal, or as a non-equilibrium, chemically reacting mixture of ideal gases. This document describes the mathematical models contained in the code, as well as certain implementation details. First, the governing equations are presented, followed by a description of the spatial discretization. Next, the time discretization is described, and finally the boundary conditions. Throughout the document, SIERRA/ Aero is referred to simply as Aero for brevity.

  19. SIERRA/Aero Theory Manual Version 4.46.

    Energy Technology Data Exchange (ETDEWEB)

    Sierra Thermal/Fluid Team

    2017-09-01

    SIERRA/Aero is a two and three dimensional, node-centered, edge-based finite volume code that approximates the compressible Navier-Stokes equations on unstructured meshes. It is applicable to inviscid and high Reynolds number laminar and turbulent flows. Currently, two classes of turbulence models are provided: Reynolds Averaged Navier-Stokes (RANS) and hybrid methods such as Detached Eddy Simulation (DES). Large Eddy Simulation (LES) models are currently under development. The gas may be modeled either as ideal, or as a non-equilibrium, chemically reacting mixture of ideal gases. This document describes the mathematical models contained in the code, as well as certain implementation details. First, the governing equations are presented, followed by a description of the spatial discretization. Next, the time discretization is described, and finally the boundary conditions. Throughout the document, SIERRA/ Aero is referred to simply as Aero for brevity.

  20. Study of thermal and electrical parameters of workpieces during spray coating by electrolytic plasma jet

    International Nuclear Information System (INIS)

    Khafizov, A A; Shakirov, Yu I; Valiev, R A; Valiev, R I; Khafizova, G M

    2016-01-01

    In this paper the results are presented of thermal and electrical parameters of products in the system bottom layer - intermediate layer when applying protective coatings of ferromagnetic powder by plasma spray produced in an electric discharge with a liquid cathode, on steel samples. Temperature distribution and gradients in coating and intermediate coating were examined. Detailed descriptions of spray coating with ferromagnetic powder by plasma jet obtained in electrical discharge with liquid cathode and the apparatus for obtaining thereof is provided. Problem has been solved by using of Fourier analysis. Initial data for calculations is provided. Results of numerical analysis are provided as temporal functions of temperature in contiguity between coating and intermediate coating as well as temporal function of the value Q=q-φ; where q is density of heat current directed to the free surface of intermediate coating, φ is density of heat current in contiguity between coating and intermediate coating. The analysis of data given shows that in the systems of contact heat exchange bottom layer-intermediate layer with close values of the thermophysical characteristics of constituting materials is observed a slow increase of the temperature of the contact as a function of time. (paper)

  1. Vehicle Health Management Communications Requirements for AeroMACS

    Science.gov (United States)

    Kerczewski, Robert J.; Clements, Donna J.; Apaza, Rafael D.

    2012-01-01

    As the development of standards for the aeronautical mobile airport communications system (AeroMACS) progresses, the process of identifying and quantifying appropriate uses for the system is progressing. In addition to defining important elements of AeroMACS standards, indentifying the systems uses impacts AeroMACS bandwidth requirements. Although an initial 59 MHz spectrum allocation for AeroMACS was established in 2007, the allocation may be inadequate; studies have indicated that 100 MHz or more of spectrum may be required to support airport surface communications. Hence additional spectrum allocations have been proposed. Vehicle health management (VHM) systems, which can produce large volumes of vehicle health data, were not considered in the original bandwidth requirements analyses, and are therefore of interest in supporting proposals for additional AeroMACS spectrum. VHM systems are an emerging development in air vehicle safety, and preliminary estimates of the amount of data that will be produced and transmitted off an aircraft, both in flight and on the ground, have been prepared based on estimates of data produced by on-board vehicle health sensors and initial concepts of data processing approaches. This allowed an initial estimate of VHM data transmission requirements for the airport surface. More recently, vehicle-level systems designed to process and analyze VHM data and draw conclusions on the current state of vehicle health have been undergoing testing and evaluation. These systems make use of vehicle system data that is mostly different from VHM data considered previously for airport surface transmission, and produce processed system outputs that will be also need to be archived, thus generating additional data load for AeroMACS. This paper provides an analysis of airport surface data transmission requirements resulting from the vehicle level reasoning systems, within the context of overall VHM data requirements.

  2. An effect of heat insulation parameters on thermal losses of water-cooled roofs for secondary steelmaking electric arc furnaces

    Directory of Open Access Journals (Sweden)

    E. Mihailov

    2016-07-01

    Full Text Available The aim of this work is research in the insulation parameters effect on the thermal losses of watercooled roofs for secondary steelmaking electric arc furnaces. An analytical method has been used for the investigation in heat transfer conditions in the working area. The results of the research can be used to choose optimal cooling parameters and select a suitable kind of insulation for water-cooled surfaces.

  3. Chip-carrier thermal barrier and its impact on lateral thermal lens profile and beam parameter product in high power broad area lasers

    Science.gov (United States)

    Rieprich, J.; Winterfeldt, M.; Kernke, R.; Tomm, J. W.; Crump, P.

    2018-03-01

    High power broad area diode lasers with high optical power density in a small focus spot are in strong commercial demand. For this purpose, the beam quality, quantified via the beam parameter product (BPP), has to be improved. Previous studies have shown that the BPP is strongly affected by current-induced heating and the associated thermal lens formed within the laser stripe. However, the chip structure and module-assembly related factors that regulate the size and the shape of the thermal lens are not well known. An experimental infrared thermographic technique is used to quantify the thermal lens profile in diode lasers operating at an emission wavelength of 910 nm, and the results are compared with finite element method simulations. The analysis indicates that the measured thermal profiles can best be explained when a thermal barrier is introduced between the chip and the carrier, which is shown to have a substantial impact on the BPP and the thermal resistance. Comparable results are observed in further measurements of samples from multiple vendors, and the barrier is only observed for junction-down (p-down) mounting, consistent with the barrier being associated with the GaAs-metal transition.

  4. Phases, lattice parameters and thermal expansion of HoNi5-xAlx, 3≥x≥0

    International Nuclear Information System (INIS)

    Grzeta, B.; Sorgic, B.; Blazina, Z.

    1998-01-01

    The phases, lattice parameters and linear coefficient of thermal expansion were determined by X-ray powder diffraction between room temperature and 873 K for the system HoNi 5-x Al x (3 ≥ x ≥ 0). Alloys were hexagonal, in the space group P6/mmm; for 2 ≥ x ≥ 0 they were isostructural with CaCu 5 , and for 3 ≥ x ≥ 2 they were isostructural with YCo 3 Ga 2 . In both cases, the unit-cell parameters a and c increased as the Al content increased. The linear thermal expansion coefficient was composition dependent. Each of the investigated alloys exhibited an anisotropy in thermal expansion, the linear expansion coefficient along the a axis being larger than along the c axis. (orig.)

  5. Aero-servo-viscoelasticity theory: Lifting surfaces, plates, velocity transients, flutter, and instability

    Science.gov (United States)

    Merrett, Craig G.

    indicates that the flutter condition should be taken when simple harmonic motion occurs and certain additional velocity derivatives are satisfied. 3. The viscoelastic material behavior imposes a flutter time indicating that the presence of flutter should be verified for the entire life time of a flight vehicle. 4. An expanded definition for instability of a lifting surface or panel. Traditionally, instability is treated as a static phenomenon. The static case is only a limiting case of dynamic instability for a viscoelastic structure. Instability occurs when a particular combination of flight velocity and time are reached leading to growing displacements of the structure. 5. The inclusion of flight velocity transients that occur during maneuvers. Two- and three-dimensional unsteady incompressible and compressible aerodynamics were reformulated for a time dependent velocity. The inclusion of flight velocity transients does affect the flutter and instability conditions for a lifting surface and a panel. The applications of aero-servo-viscoelasticity are to aircraft design, wind turbine blades, submarine's stealth coatings and hulls, and land transportation to name a few examples. One caveat regarding this field of research is that general predictions for an application are not always possible as the stability of a structure depends on the phase relations between the various parameters such as mass, stiffness, damping, and the aerodynamic loads. The viscoelastic material parameters in particular alter the system parameters in directions that are difficult to predict. The inclusion of servo controls permits an additional design factor and can improve the performance of a structure beyond the native performance; however over-control is possible so a maximum limit to useful control does exist. Lastly, the number of material and control parameters present in aero-servo-viscoelasticity are amenable to optimization protocols to produce the optimal structure for a given mission.

  6. Numerical Investigation on Windback Seals Used in Aero Engines

    Directory of Open Access Journals (Sweden)

    Michael Flouros

    2018-01-01

    Full Text Available Seals are considered one of the most important flow elements in turbomachinery applications. The most traditional and widely known seal is the labyrinth seal but in recent years other types like the brush or carbon seals were introduced since they considerably reduce the sealing air consumption. When seals are used for sealing of aero engine bearing chambers they are subjected to high “bombardment” through oil particles which are present in the bearing chamber. These particles mainly result from the bearings as a consequence of the high rotational speeds. Particularly when carbon or brush seals are used, problems with carbon formation (coking may arise when oil gets trapped in the very tight gap of these seals. In order to prevent oil migration into the turbomachinery, particularly when the pressure difference over a seal is small or even negligible, significant improvement can be achieved through the introduction of so called windback seals. This seal has a row of static helical teeth (thread and below this thread a scalloped or smooth shaft section is rotating. Depending on the application, a windback seal can be used alone or as a combination with another seal (carbon, brush or labyrinth seal. A CFD analysis carried out with ANSYS CFX version 11 is presented in this paper with the aim to investigate this seal type. The simulations were performed by assuming a two-phase flow of air and oil in the bearing compartment. Design parameters like seal clearance, thread size, scallop width, were investigated at different operating conditions.

  7. Takagi-Sugeno fuzzy model identification for turbofan aero-engines with guaranteed stability

    Directory of Open Access Journals (Sweden)

    Ruichao LI

    2018-06-01

    Full Text Available This paper is concerned with identifying a Takagi-Sugeno (TS fuzzy model for turbofan aero-engines working under the maximum power status (non-afterburning. To establish the fuzzy system, theoretical contributions are made as follows. First, by fixing antecedent parameters, the estimation of consequent parameters in state-space representations is formulated as minimizing a quadratic cost function. Second, to avoid obtaining unstable identified models, a new theorem is proposed to transform the prior-knowledge of stability into constraints. Then based on the aforementioned work, the identification problem is synthesized as a constrained quadratic optimization. By solving the constrained optimization, a TS fuzzy system is identified with guaranteed stability. Finally, the proposed method is applied to the turbofan aero-engine using simulation data generated from an aerothermodynamics component-level model. Results show the identified fuzzy model achieves a high fitting accuracy while stabilities of the overall fuzzy system and all its local models are also guaranteed. Keywords: Constrained optimization, Fuzzy system, Stability, System identification, Turbofan engine

  8. Soil water content and evaporation determined by thermal parameters obtained from ground-based and remote measurements

    Science.gov (United States)

    Reginato, R. J.; Idso, S. B.; Jackson, R. D.; Vedder, J. F.; Blanchard, M. B.; Goettelman, R.

    1976-01-01

    Soil water contents from both smooth and rough bare soil were estimated from remotely sensed surface soil and air temperatures. An inverse relationship between two thermal parameters and gravimetric soil water content was found for Avondale loam when its water content was between air-dry and field capacity. These parameters, daily maximum minus minimum surface soil temperature and daily maximum soil minus air temperature, appear to describe the relationship reasonably well. These two parameters also describe relative soil water evaporation (actual/potential). Surface soil temperatures showed good agreement among three measurement techniques: in situ thermocouples, a ground-based infrared radiation thermometer, and the thermal infrared band of an airborne multispectral scanner.

  9. Employment of single-diode model to elucidate the variations in photovoltaic parameters under different electrical and thermal conditions.

    Directory of Open Access Journals (Sweden)

    Fahmi F Muhammad

    Full Text Available In this research work, numerical simulations are performed to correlate the photovoltaic parameters with various internal and external factors influencing the performance of solar cells. Single-diode modeling approach is utilized for this purpose and theoretical investigations are compared with the reported experimental evidences for organic and inorganic solar cells at various electrical and thermal conditions. Electrical parameters include parasitic resistances (Rs and Rp and ideality factor (n, while thermal parameters can be defined by the cells temperature (T. A comprehensive analysis concerning broad spectral variations in the short circuit current (Isc, open circuit voltage (Voc, fill factor (FF and efficiency (η is presented and discussed. It was generally concluded that there exists a good agreement between the simulated results and experimental findings. Nevertheless, the controversial consequence of temperature impact on the performance of organic solar cells necessitates the development of a complementary model which is capable of well simulating the temperature impact on these devices performance.

  10. Thermal hydraulic test of advanced fuel bundle with spectral shift rod (SSR) for BWR. Effect of thermal hydraulic parameters on steady state characteristics

    International Nuclear Information System (INIS)

    Kondo, Takao; Kitou, Kazuaki; Chaki, Masao; Ohga, Yukiharu; Makigami, Takeshi

    2011-01-01

    Japanese national project of next generation light water reactor (LWR) development started in 2008. Under this project, spectral shift rod (SSR) is being developed. SSR, which replaces conventional water rod (WR) of boiling water reactor (BWR) fuel bundle, was invented to enhance the BWR's merit, spectral shift effect for uranium saving. In SSR, water boils by neutron and gamma-ray direct heating and water level is formed as a boundary of the upper steam region and the lower water region. This SSR water level can be controlled by core flow rate, which amplifies the change of average core void fraction, resulting in the amplified spectral shift effect. This paper presents the steady state test results of the base geometry case in SSR thermal hydraulic test, which was conducted under the national project of next generation LWR. In the test, thermal hydraulic parameters, such as flow rate, pressure, inlet subcooling and heater rod power are changed to evaluate these effects on SSR water level and other SSR characteristics. In the test results, SSR water level rose as flow rate rose, which showed controllability of SSR water level by flow rate. The sensitivities of other thermal hydraulic parameters on SSR water level were also evaluated. The obtained data of parameter's sensitivities is various enough for the further analytical evaluation. The fluctuation of SSR water level was also measured to be small enough. As a result, it was confirmed that SSR's steady state performance was as planned and that SSR design concept is feasible. (author)

  11. Reliability Estimation of Aero-engine Based on Mixed Weibull Distribution Model

    Science.gov (United States)

    Yuan, Zhongda; Deng, Junxiang; Wang, Dawei

    2018-02-01

    Aero-engine is a complex mechanical electronic system, based on analysis of reliability of mechanical electronic system, Weibull distribution model has an irreplaceable role. Till now, only two-parameter Weibull distribution model and three-parameter Weibull distribution are widely used. Due to diversity of engine failure modes, there is a big error with single Weibull distribution model. By contrast, a variety of engine failure modes can be taken into account with mixed Weibull distribution model, so it is a good statistical analysis model. Except the concept of dynamic weight coefficient, in order to make reliability estimation result more accurately, three-parameter correlation coefficient optimization method is applied to enhance Weibull distribution model, thus precision of mixed distribution reliability model is improved greatly. All of these are advantageous to popularize Weibull distribution model in engineering applications.

  12. Non-local modelling of cyclic thermal shock damage including parameter estimation

    NARCIS (Netherlands)

    Damhof, F.; Brekelmans, W.A.M.; Geers, M.G.D.

    2011-01-01

    In this paper, rate dependent evolution laws are identified and characterized to model the mechanical (elasticity-based) and thermal damage occurring in coarse grain refractory material subject to cyclic thermal shock. The interacting mechanisms for elastic deformation driven damage induced by

  13. Overview of NASA Power Technologies for Space and Aero Applications

    Science.gov (United States)

    Beach, Raymond F.

    2014-01-01

    To achieve the ambitious goals that NASA has outlined for the next decades considerable development of power technology will be necessary. This presentation outlines the development objectives for both the space and aero applications. It further looks at the various power technologies that support these objectives and examines drivers that will be a driving force for future development.

  14. Assessment of Aero-radiometric Data of Southern Anambra Basin ...

    African Journals Online (AJOL)

    High-resolution aero-radiometric data from three radio-elements (Uranium, Potassium and Thorium) were used and processed independently to investigate the Southern Anambra basin for the prospect of producing radiogenic heat. The rock types in the study area were outlined while processing the elements in each rock ...

  15. Lattice-dynamical estimation of atomic thermal parameters for silicates: Forsterite. alpha. -Mg sub 2 SiO sub 4

    Energy Technology Data Exchange (ETDEWEB)

    Pilati, T.; Bianchi, R. (Consiglio Nazionale delle Ricerche, Milan (Italy). Centro per lo Studio delle Relazioni tra Struttura e Reattivita' Chimica); Gramaccioli, C.M. (Milan Univ. (Italy). Dipt. di Scienze della Terra)

    1990-06-01

    As an example of extending harmonic lattice-dynamical procedures to silicates, the atomic thermal parameters for forsterite Mg{sub 2}SiO{sub 4}, an important constituent of earth's crust, have been calculated on this basis. For this purpose, Iishi's rigid-ion model was used, with slight modifications. Although such potentials were derived exclusively from fitting IR and Raman-active frequencies, the reproduction of the phonon-dispersion curves is good, and the calculation of thermodynamic functions such as entropy provides values which are near to calorimetric estimates. The calculated atomic thermal parameters are in good agreement with the experimental values reported by most authors. The calculations at various temperatures show the effect of zero-point motion very clearly: its contribution to temperature factors is about half of the total at room temperature. Bond-length corrections for thermal libration can be applied using the general-case formula: these amount to 0.003 A for the Si-O bonds at room temperature. Although the thermal parameters in the SiO{sub 4} group fit a rigid-body model, the correction obtained using the Schomaker-Trueblood procedure gives a significantly different result: this is essentially due to the weak librational character of the motion of silicate groups in the structure. (orig.).

  16. Lattice-dynamical estimation of atomic thermal parameters for silicates: Forsterite α-Mg2SiO4

    International Nuclear Information System (INIS)

    Pilati, T.; Bianchi, R.; Gramaccioli, C.M.

    1990-01-01

    As an example of extending harmonic lattice-dynamical procedures to silicates, the atomic thermal parameters for forsterite Mg 2 SiO 4 , an important constituent of earth's crust, have been calculated on this basis. For this purpose, Iishi's rigid-ion model was used, with slight modifications. Although such potentials were derived exclusively from fitting IR and Raman-active frequencies, the reproduction of the phonon-dispersion curves is good, and the calculation of thermodynamic functions such as entropy provides values which are near to calorimetric estimates. The calculated atomic thermal parameters are in good agreement with the experimental values reported by most authors. The calculations at various temperatures show the effect of zero-point motion very clearly: its contribution to temperature factors is about half of the total at room temperature. Bond-length corrections for thermal libration can be applied using the general-case formula: these amount to 0.003 A for the Si-O bonds at room temperature. Although the thermal parameters in the SiO 4 group fit a rigid-body model, the correction obtained using the Schomaker-Trueblood procedure gives a significantly different result: this is essentially due to the weak librational character of the motion of silicate groups in the structure. (orig.)

  17. Design parameters of a non-air-conditioned cinema hall for thermal comfort under arid-zone climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, G.N. (Indian Inst. of Tech., New Delhi (India). Centre for Energy Studies); Lugani, N. (Indian Inst. of Tech., New Delhi (India). Centre for Energy Studies); Singh, A.K. (Indian Inst. of Tech., New Delhi (India). Centre for Energy Studies)

    1993-01-01

    In this communication, a design of a cinema hall suitable for climatic conditions in an arid zone has been presented. The various cooling techniques, namely evaporative cooling, wind tower, ventilation/infiltration and natural cooling, have been incorporated in the design to achieve thermal comfort during the period of operation. The design parameters have been optimized on the basis of numerical computations after establishing an energy balance for each component of a cinema hall. It is observed that cooling treatment, i.e., a wind tower with a cooling pool on the roof provides reasonable thermal comfort inside the enclosure. (orig.)

  18. Effect of powder sample granularity on fluorescent intensity and on thermal parameters in x-ray diffraction Rietveld analysis

    International Nuclear Information System (INIS)

    Sparks, C.J.; Specht, E.D.; Ice, G.E.; Kumar, R.; Zschack, P.; Shiraishi, T.; Hisatsune, K.

    1991-01-01

    The effect of sample granularity on diffracted x-ray intensity was evaluated by measuring the 2θ dependence of x-ray fluorescence from various samples. Measurements were made in the symmetric geometry on samples ranging from single crystals to highly absorbing coarse powders. A characteristic shape for the absorption correction was observed. A demonstration of the sensitivity of Rietveld refined site occupation parameters is made on CuAu and Cu 50 Au 44 Ni 6 alloys refined with and without granularity corrections. These alloys provide a good example of the effect of granularity due to their large linear x-ray absorption coefficients. Sample granularity and refined thermal parameters obtained from the Rietveld analysis were found to be correlated. Without a granularity correction, the refined thermal parameters are too low and can actually become negative in an attempt to compensate for granularity. A general shape for granularity correction can be included in refinement procedures. If no granularity correction is included, data should be restricted to above 30 degrees 2θ, and thermal parameters should be ignored unless extreme precautions are taken to produce >5 μm particles and high packing densities

  19. Integrated evaluation of the geology, aero gamma spectrometry and aero magnetometry of the Sul-Riograndense Shield, southernmost Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Leo A.; Savian, Jairo F., E-mail: leo.hartmann@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRS), Porto Alegre, RS (Brazil). Instituto de Geociencias; Lopes, William R. [Servico Geologico do Brasil (CPRM), Porto Alegre, RS (Brazil). Gerencia de Geologia e Mineracao

    2016-03-15

    An integrated evaluation of geology, aero gamma spectrometry and aero magnetometry of the Sul-Riograndense Shield is permitted by the advanced stage of understanding of the geology and geochronology of the southern Brazilian Shield and a 2010 airborne geophysical survey. Gamma rays are registered from the rocks near the surface and thus describe the distribution of major units in the shield, such as the Pelotas batholith, the juvenile São Gabriel terrane, the granulite-amphibolite facies Taquarembo terrane and the numerous granite intrusions in the foreland. Major structures are also observed, e.g., the Dorsal de Cangucu shear. Magnetic signals register near surface crustal compositions (analytic signal) and total crust composition (total magnetic signal), so their variation as measured indicates either shallow or whole crustal structures. The Cacapava shear is outstanding on the images as is the magnetic low along the N-S central portion of the shield. These integrated observations lead to the deepening of the understanding of the largest and even detailed structures of the Sul-Riograndense Shield, some to be correlated to field geology in future studies. Most significant is the presence of different provinces and their limits depending on the method used for data acquisition - geology, aero gamma spectrometry or aero magnetometry. (author)

  20. A Co-modeling Method Based on Component Features for Mechatronic Devices in Aero-engines

    Science.gov (United States)

    Wang, Bin; Zhao, Haocen; Ye, Zhifeng

    2017-08-01

    Data-fused and user-friendly design of aero-engine accessories is required because of their structural complexity and stringent reliability. This paper gives an overview of a typical aero-engine control system and the development process of key mechatronic devices used. Several essential aspects of modeling and simulation in the process are investigated. Considering the limitations of a single theoretic model, feature-based co-modeling methodology is suggested to satisfy the design requirements and compensate for diversity of component sub-models for these devices. As an example, a stepper motor controlled Fuel Metering Unit (FMU) is modeled in view of the component physical features using two different software tools. An interface is suggested to integrate the single discipline models into the synthesized one. Performance simulation of this device using the co-model and parameter optimization for its key components are discussed. Comparison between delivery testing and the simulation shows that the co-model for the FMU has a high accuracy and the absolute superiority over a single model. Together with its compatible interface with the engine mathematical model, the feature-based co-modeling methodology is proven to be an effective technical measure in the development process of the device.

  1. Multilayer insulation (MLI) in the Superconducting Super Collider: A practical engineering approach to physical parameters governing MLI thermal performance

    International Nuclear Information System (INIS)

    Gonczy, J.D.; Boroski, W.N.; Niemann, R.C.

    1989-03-01

    Multilayer insulation (MLI) is employed in cryogenic devices to control the heat load of those devices. The physics defining the thermal performance of an MLI system is extremely complex due to the thermal dynamics of numerous interdependent parameters which in themselves contribute differently depending on whether boundary conditions are transient or steady-state. The Multilayer Insulation system for the Superconducting Super Collider (SSC) consists of full cryostat length assemblies of aluminized polyester film, fabricated in the form of blankets, and installed as blankets to the 4.5K cold mass, and the 20K and 80K thermal radiation shields. Approximately 40,000 blankets will be required in the 10,000 cryogenic devices comprising the SSC accelerator. Each blanket will be nearly 56 feet long by 6 feet wide and will consist of as many as 32 reflective and 31 spacer layers of material. Discussed are MLI material choices, and the physical parameters which contribute to the operational performance of MLI systems. Disclosed is a method for fabricating MLI blankets by employing a large diameter winding mandrel having a circumference sufficient for the required blanket length. The blanket fabrication method assures consistency in mass produced MLI blankets by providing positive control of the dimensional parameters which contribute to the MLI blanket thermal performance. The fabrication method can be used to mass produce prefabricated MLI blankets that by virtue of the product have inherent features of dimensional stability, three-dimensional uniformity, controlled layer density, layer-to-layer registration, interlayer cleanliness, and interlayer material to accommodate thermal contraction differences. 9 refs., 4 figs., 2 tabs

  2. Parameters identification in strain-rate and thermal sensitive visco-plastic material model for an alumina dispersion strengthened copper

    CERN Document Server

    Scapin, M; Peroni, M

    2011-01-01

    The main objective of this paper is getting strain-hardening, thermal and strain-rate parameters for a material model in order to correctly reproduce the deformation process that occurs in high strain-rate scenario, in which the material reaches also high levels of plastic deformation and temperature. In particular, in this work the numerical inverse method is applied to extract material strength parameters from experimental data obtained via mechanical tests at different strain-rates (from quasi-static loading to high strain-rate) and temperatures (between 20 C and 1000 C) for an alumina dispersion strengthened copper material, which commercial name is GLIDCOP. Thanks to its properties GLIDCOP finds several applications in particle accelerator technologies, where problems of thermal management, combined with structural requirements, play a key role. Currently, it is used for the construction of structural and functional parts of the particle beam collimation system. Since the extreme condition in which the m...

  3. Evaluation of parameters effect on the maximum fuel temperature in the core thermal and hydraulic design of HTTR

    International Nuclear Information System (INIS)

    Fujimoto, Nozomu; Maruyama, Soh; Sudo, Yukio; Fujii, Sadao; Niguma, Yoshinori.

    1988-10-01

    This report presents the results of quantitative evaluation on the effects of the dominant parameters on the maximum fuel temperature in the core thermal hydraulic design of the High Temperature Engineering Test Reactor(HTTR) of 30 MW in thermal power, 950 deg C in reactor outlet coolant temperature and 40 kg/cm 2 G in coolant pressure. The dominant parameters investigated are 1) Gap conductance. 2) Effect of eccertricity of fuel compacts in graphite sleeve. 3) Effect of spacer ribs on heat transfer coefficients. 4) Contact probability of fuel compact and graphite sleeve. 5) Validity of uniform radial power density in the fuel compacts. 6) Effect of impurity gas on gap conductance. 7) Effect of FP gas on gap conductance. The effects of these items on the maximum fuel temperature were quantitalively identified as hot spot factors. A probability of the appearance of the maximum fuel temperature was also evaluated in this report. (author)

  4. Influence of Nd dopants on lattice parameters and thermal and elastic properties in YVO4 single crystals

    International Nuclear Information System (INIS)

    Kucytowski, J.; Wokulska, K.; Kazmierczak-Balata, A.; Bodzenta, J.; Lukasiewicz, T.; Hofman, B.; Pyka, M.

    2008-01-01

    The influence of neodymium doping on YVO 4 single crystals has been studied. The crystals were grown by the Czochralski method. One of them was pure YVO 4 and the others were doped with neodymium (YVO 4 :Nd) at various concentrations of Nd = 0.3-3.0 at.%. The changes of the lattice parameters were determined by the Bond's method [W.L. Bond, Acta Cryst. 13 (1960) 814]. The thermal diffusivity and the velocity of ultrasound using the photothermal method with mirage effect and the pulse echo method [J. Bodzenta, M. Pyka, J. Phys. IV France 137 (2006) 259] were measured. In the examined crystals, it was found that the lattice parameters increase while the thermal diffusivity decreases with increasing concentration of Nd atoms

  5. Measurements of some parameters of thermal sparks with respect to their ability to ignite aviation fuel/air mixtures

    Science.gov (United States)

    Haigh, S. J.; Hardwick, C. J.; Baldwin, R. E.

    1991-01-01

    A method used to generate thermal sparks for experimental purposes and methods by which parameters of the sparks, such as speed, size, and temperature, were measured are described. Values are given of the range of such parameters within these spark showers. Titanium sparks were used almost exclusively, since it is particles of this metal which are found to be ejected during simulation tests to carbon fiber composite (CFC) joints. Tests were then carried out in which titanium sparks and spark showers were injected into JP4/(AVTAG F40) mixtures with air. Single large sparks and dense showers of small sparks were found to be capable of causing ignition. Tests were then repeated using ethylene/air mixtures, which were found to be more easily ignited by thermal sparks than the JP4/ air mixtures.

  6. Reevaluation and Validation of the 241Pu Resonance Parameters in the Energy Range Thermal to 20 eV

    International Nuclear Information System (INIS)

    Derrien, H.; Leal, L.C.; Courcelle, A.; Santamarina, A.

    2005-01-01

    A new SAMMY analysis of the 241 Pu resonance parameters from thermal to 20 eV is presented. This evaluation takes into account the trends given by integral experiments [post-irradiation experiments performed in French pressurized water reactors (PWRs)]. Compared to the previous evaluations performed by Derrien and de Saussure, the capture cross section increases especially in the 0.26-eV resonance. It is shown that the new resonance parameters proposed in this work improve the prediction of the 242 Pu buildup in a PWR, which was significantly underestimated with the previous evaluations

  7. A 3D Dynamic Lumped Parameter Thermal Network of Air-Cooled YASA Axial Flux Permanent Magnet Synchronous Machine

    Directory of Open Access Journals (Sweden)

    Abdalla Hussein Mohamed

    2018-03-01

    Full Text Available To find the temperature rise for high power density yokeless and segmented armature (YASA axial flux permanent magnet synchronous (AFPMSM machines quickly and accurately, a 3D lumped parameter thermal model is developed and validated experimentally and by finite element (FE simulations on a 4 kW YASA machine. Additionally, to get insight in the thermal transient response of the machine, the model accounts for the thermal capacitance of different machine components. The model considers the stator, bearing, and windage losses, as well as eddy current losses in the magnets on the rotors. The new contribution of this work is that the thermal model takes cooling via air channels between the magnets on the rotor discs into account. The model is parametrized with respect to the permanent magnet (PM angle ratio, the PM thickness ratio, the air gap length, and the rotor speed. The effect of the channels is incorporated via convection equations based on many computational fluid dynamics (CFD computations. The model accuracy is validated at different values of parameters by FE simulations in both transient and steady state. The model takes less than 1 s to solve for the temperature distribution.

  8. Parameter Estimation of the Thermal Network Model of a Machine Tool Spindle by Self-made Bluetooth Temperature Sensor Module

    Directory of Open Access Journals (Sweden)

    Yuan-Chieh Lo

    2018-02-01

    Full Text Available Thermal characteristic analysis is essential for machine tool spindles because sudden failures may occur due to unexpected thermal issue. This article presents a lumped-parameter Thermal Network Model (TNM and its parameter estimation scheme, including hardware and software, in order to characterize both the steady-state and transient thermal behavior of machine tool spindles. For the hardware, the authors develop a Bluetooth Temperature Sensor Module (BTSM which accompanying with three types of temperature-sensing probes (magnetic, screw, and probe. Its specification, through experimental test, achieves to the precision ±(0.1 + 0.0029|t| °C, resolution 0.00489 °C, power consumption 7 mW, and size Ø40 mm × 27 mm. For the software, the heat transfer characteristics of the machine tool spindle correlative to rotating speed are derived based on the theory of heat transfer and empirical formula. The predictive TNM of spindles was developed by grey-box estimation and experimental results. Even under such complicated operating conditions as various speeds and different initial conditions, the experiments validate that the present modeling methodology provides a robust and reliable tool for the temperature prediction with normalized mean square error of 99.5% agreement, and the present approach is transferable to the other spindles with a similar structure. For realizing the edge computing in smart manufacturing, a reduced-order TNM is constructed by Model Order Reduction (MOR technique and implemented into the real-time embedded system.

  9. Variation of thermal parameters in two different color morphs of a diurnal poison toad, Melanophryniscus rubriventris (Anura: Bufonidae).

    Science.gov (United States)

    Sanabria, Eduardo A; Vaira, Marcos; Quiroga, Lorena B; Akmentins, Mauricio S; Pereyra, Laura C

    2014-04-01

    We study the variation in thermal parameters in two contrasting populations Yungas Redbelly Toads (Melanophryniscus rubriventris) with different discrete color phenotypes comparing field body temperatures, critical thermal maximum and heating rates. We found significant differences in field body temperatures of the different morphs. Temperatures were higher in toads with a high extent of dorsal melanization. No variation was registered in operative temperatures between the study locations at the moment of capture and processing. Critical thermal maximum of toads was positively related with the extent of dorsal melanization. Furthermore, we founded significant differences in heating rates between morphs, where individuals with a high extent of dorsal melanization showed greater heating rates than toads with lower dorsal melanization. The color pattern-thermal parameter relationship observed may influence the activity patterns and body size of individuals. Body temperature is a modulator of physiological and behavioral functions in amphibians, influencing daily and seasonal activity, locomotor performance, digestion rate and growth rate. It is possible that some growth constraints may arise due to the relationship of color pattern-metabolism allowing different morphs to attain similar sizes at different locations instead of body-size clines. Copyright © 2014. Published by Elsevier Ltd.

  10. Comparison of physico-chemical parameters of groundwater from shallow aquifers near 2 thermal power plants in Punjab

    International Nuclear Information System (INIS)

    Gill, S.K.; Sahota, S.K.; Sahota, G.P.S.; Sahota, B.K.; Sahota, H.S.

    1993-01-01

    Physico-chemical parameters of groundwater from shallow aquifers near thermal power plants at Bathinda and Ropar have been measured. Increase in metallic content of water is noted in both the cases due to deposition of coal fly ash from the power plants on the soil. High values of calcium chloride, calcium carbonate and total dissolved solids are observed in Bathinda groundwater while Ropar groundwater is rich in ferric, fluoride and nitrate contents. (author). 8 refs., 1 fig., 1 tab

  11. Methodologies for predicting the part-load performance of aero-derivative gas turbines

    DEFF Research Database (Denmark)

    Haglind, Fredrik; Elmegaard, Brian

    2009-01-01

    Prediction of the part-load performance of gas turbines is advantageous in various applications. Sometimes reasonable part-load performance is sufficient, while in other cases complete agreement with the performance of an existing machine is desirable. This paper is aimed at providing some guidance...... on methodologies for predicting part-load performance of aero-derivative gas turbines. Two different design models – one simple and one more complex – are created. Subsequently, for each of these models, the part-load performance is predicted using component maps and turbine constants, respectively. Comparisons...... with manufacturer data are made. With respect to the design models, the simple model, featuring a compressor, combustor and turbines, results in equally good performance prediction in terms of thermal efficiency and exhaust temperature as does a more complex model. As for part-load predictions, the results suggest...

  12. Electrothermal Impedance Spectroscopy as a Cost Efficient Method for Determining Thermal Parameters of Lithium Ion Batteries

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Loan; Stanciu, Tiberiu

    Current lithium-ion battery research aims in not only increasing their energy density but also power density. Emerging applications of lithium-ion batteries (HEV, PHEV, grid support) are becoming more and more power demanding. The increasing charging and discharging power capability rates...... of lithium-ion batteries raises safety concerns and requires thermal management of the entire battery system. Moreover, lithium-ion battery’s temperature influences both battery short term (capacity, efficiency, self-discharge) and long-term (lifetime) behaviour. Thus, thermal modelling of lithium-ion...... battery cells and battery packs is gaining importance. Equivalent thermal circuits’ models have proven to be relatively accurate with low computational burden for the price of low spatial resolution; nevertheless, they usually require expensive equipment for parametrization. Recent research initiated...

  13. Electrothermal impedance spectroscopy as a cost efficient method for determining thermal parameters of lithium ion batteries

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Loan; Stanciu, Tiberiu

    2017-01-01

    Current lithium-ion battery research aims in not only increasing their energy density but also power density. Emerging applications of lithium-ion batteries (hybrid electric vehicles, plug-in hybrid electric vehicles, grid support) are becoming more and more power demanding. The increasing charging...... and discharging power capability rates of lithium-ion batteries raises safety concerns and requires thermal management of the entire battery system. Moreover, lithium-ion battery's temperature influences both battery short term (capacity, efficiency, self-discharge) and long-term (lifetime) behaviour. Thus......, thermal modelling of lithium-ion battery cells and battery packs is gaining importance. Equivalent thermal circuits' models have proven to be relatively accurate with a low computational burden for the price of low spatial resolution; nevertheless, they usually require expensive equipment...

  14. Association of rectal toxicity with thermal dose parameters in treatment of locally advanced prostate cancer with radiation and hyperthermia

    International Nuclear Information System (INIS)

    Hurwitz, Mark D.; Kaplan, Irving D.; Hansen, Jorgen L.; Prokopios-Davos, Savina; Topulos, George P.; Wishnow, Kenneth; Manola, Judith; Bornstein, Bruce A.; Hynynen, Kullervo

    2002-01-01

    Purpose: Although hyperthermia has been used for more than two decades in the treatment of pelvic tumors, little is known about the potential impact of heat on rectal toxicity when combined with other treatment modalities. Because rectal toxicity is a concern with radiation and may be exacerbated by hyperthermia, definition of the association of thermal dose parameters with rectal toxicity is important. In this report, we correlate rectal toxicity with thermal dose parameters for patients treated with hyperthermia and radiation for prostate cancer. Methods and Materials: Thirty patients with T2b-T3b disease (1992 American Joint Committee On Cancer criteria) enrolled in a Phase II study of external beam radiation ± androgen-suppressive therapy with two transrectal ultrasound hyperthermia treatments were assessed for rectal toxicity. Prostatic and anterior rectal wall temperatures were monitored for all treatments. Rectal wall temperatures were limited to 40 deg. C in 19 patients, 41 deg. C in 3 patients, and 42 deg. C in 8 patients. Logistic regression was used to estimate the log hazard of developing National Cancer Institute Common Toxicity Criteria Grade 2 toxicity based on temperature parameters. The following were calculated: hazard ratios, 95% confidence intervals, p values for statistical significance of each parameter, and proportion of variability explained for each parameter. Results: Gastrointestinal toxicity was limited to Grade 2. The rate of acute Grade 2 proctitis was greater for patients with an allowable rectal wall temperature of >40 deg. C. In this group, 7 of 11 patients experienced acute Grade 2 proctitis, as opposed to 3 of 19 patients in the group with rectal wall temperatures limited to 40 deg. C (p=0.004). Preliminary assessment of long-term toxicity revealed no differences in toxicity. Hazard ratios for acute Grade 2 proctitis for allowable rectal wall temperature, average rectal wall Tmax, and average prostate Tmax were 9.33 (p=0.01), 3

  15. Thermal neutron pulsed parameters in non-hydrogenous systems. Experiment for lead grains

    International Nuclear Information System (INIS)

    Drozdowicz, K.; Gabanska, B.; Kosik, M.; Krynicka, E.; Woznicka, U.; Zaleski, T.

    1997-01-01

    In Czubek's method of measurement of the thermal neutron macroscopic absorption cross section a two-region geometry is applied where the investigated sample is surrounded by an external moderator. Both regions in the measurements made up till now were hydrogenous, which means the same type of the thermal neutron transport properties. In the paper a theoretical consideration to use non-hydrogenous materials as the samples is presented. Pulsed neutron measurements have been performed on homogeneous material in a geometry of the classic experiment with the variable geometric buckling. Two decay constants have been measured for different cylindrical samples of small lead grains (a lead shot). (author)

  16. Impact of Building Design Parameters on Thermal Energy Flexibility in a Low-Energy Building

    DEFF Research Database (Denmark)

    Sarran, Lucile; Foteinaki, Kyriaki; Gianniou, Panagiota

    This work focuses on demand-side management potential for the heating grid in residential buildings. The possibility to increase the flexibility provided to the heat network through specific building design is investigated. The role of different parts of the building structure on thermal flexibil...

  17. Kinetic parameters for the thermal decomposition reactions of mixed oxides of selenium and tellurium

    International Nuclear Information System (INIS)

    Jerez, A.; Castro, A.; Pico, C.; Veiga, M.L.

    1982-01-01

    A comparative study of the thermal decomposition processes of Te 3 SeO 8 and TeSeO 4 has been carried out based on the results obtained directly by a Mettler TA 3000 apparatus and from calculations using other differential and integral methods. (orig.)

  18. The thermal properties of the subsurface – key parameters for geothermal energy utilization

    DEFF Research Database (Denmark)

    Norden, Ben; Bording, Thue Sylvester; Balling, N.

    Often the investigation of petrophysical properties is far behind the capabilities of sophisticated modelling techniques applied in basin and geothermal modelling and for which these data serve as an input. Therefore, more in-depth investigations especially of thermal properties are requested. We...

  19. APPLICATION OF ROUGH SET THEORY TO MAINTENANCE LEVEL DECISION-MAKING FOR AERO-ENGINE MODULES BASED ON INCREMENTAL KNOWLEDGE LEARNING

    Institute of Scientific and Technical Information of China (English)

    陆晓华; 左洪福; 蔡景

    2013-01-01

    The maintenance of an aero-engine usually includes three levels ,and the maintenance cost and period greatly differ depending on the different maintenance levels .To plan a reasonable maintenance budget program , airlines would like to predict the maintenance level of aero-engine before repairing in terms of performance parame-ters ,which can provide more economic benefits .The maintenance level decision rules are mined using the histori-cal maintenance data of a civil aero-engine based on the rough set theory ,and a variety of possible models of upda-ting rules produced by newly increased maintenance cases added to the historical maintenance case database are in-vestigated by the means of incremental machine learning .The continuously updated rules can provide reasonable guidance suggestions for engineers and decision support for planning a maintenance budget program before repai-ring .The results of an example show that the decision rules become more typical and robust ,and they are more accurate to predict the maintenance level of an aero-engine module as the maintenance data increase ,which illus-trates the feasibility of the represented method .

  20. Thermal effect on magnetic parameters of high-coercivity cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Chagas, E. F., E-mail: efchagas@fisica.ufmt.br; Ponce, A. S.; Prado, R. J.; Silva, G. M. [Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá-MT (Brazil); Bettini, J. [Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, 13083-970 Campinas (Brazil); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150 Urca. Rio de Janeiro (Brazil)

    2014-07-21

    We prepared very high-coercivity cobalt ferrite nanoparticles synthesized by a combustion method and using short-time high-energy mechanical milling to increase strain and the structural defects density. The coercivity (H{sub C}) of the milled sample reached 3.75 kOe—a value almost five times higher than that obtained for the non-milled material (0.76 kOe). To investigate the effect of the temperature on the magnetic behavior of the milled sample, we performed a thermal treatment on the milled sample at 300, 400, and 600 °C for 30 and 180 min. We analyzed the changes in the magnetic behavior of the nanoparticles due to the thermal treatment using the hysteresis curves, Williamson-Hall analysis, and transmission electron microscopy. The thermal treatment at 600 °C causes decreases in the microstructural strain and density of structural defects resulting in a significant decrease in H{sub C}. Furthermore, this thermal treatment increases the size of the nanoparticles and, as a consequence, there is a substantial increase in the saturation magnetization (M{sub S}). The H{sub C} of the samples treated at 600 °C for 30 and 180 min were 2.24 and 1.93 kOe, respectively, and the M{sub S} of these same samples increased from 57 emu/g to 66 and 70 emu/g, respectively. The H{sub C} and the M{sub S} are less affected by the thermal treatment at 300 and 400 °C.

  1. Aero-Acoustic Modelling using Large Eddy Simulation

    International Nuclear Information System (INIS)

    Shen, W Z; Soerensen, J N

    2007-01-01

    The splitting technique for aero-acoustic computations is extended to simulate three-dimensional flow and acoustic waves from airfoils. The aero-acoustic model is coupled to a sub-grid-scale turbulence model for Large-Eddy Simulations. In the first test case, the model is applied to compute laminar flow past a NACA 0015 airfoil at a Reynolds number of 800, a Mach number of 0.2 and an angle of attack of 20 deg. The model is then applied to compute turbulent flow past a NACA 0015 airfoil at a Reynolds number of 100 000, a Mach number of 0.2 and an angle of attack of 20 deg. The predicted noise spectrum is compared to experimental data

  2. Sensor fault diagnosis of aero-engine based on divided flight status.

    Science.gov (United States)

    Zhao, Zhen; Zhang, Jun; Sun, Yigang; Liu, Zhexu

    2017-11-01

    Fault diagnosis and safety analysis of an aero-engine have attracted more and more attention in modern society, whose safety directly affects the flight safety of an aircraft. In this paper, the problem concerning sensor fault diagnosis is investigated for an aero-engine during the whole flight process. Considering that the aero-engine is always working in different status through the whole flight process, a flight status division-based sensor fault diagnosis method is presented to improve fault diagnosis precision for the aero-engine. First, aero-engine status is partitioned according to normal sensor data during the whole flight process through the clustering algorithm. Based on that, a diagnosis model is built for each status using the principal component analysis algorithm. Finally, the sensors are monitored using the built diagnosis models by identifying the aero-engine status. The simulation result illustrates the effectiveness of the proposed method.

  3. Sensor fault diagnosis of aero-engine based on divided flight status

    Science.gov (United States)

    Zhao, Zhen; Zhang, Jun; Sun, Yigang; Liu, Zhexu

    2017-11-01

    Fault diagnosis and safety analysis of an aero-engine have attracted more and more attention in modern society, whose safety directly affects the flight safety of an aircraft. In this paper, the problem concerning sensor fault diagnosis is investigated for an aero-engine during the whole flight process. Considering that the aero-engine is always working in different status through the whole flight process, a flight status division-based sensor fault diagnosis method is presented to improve fault diagnosis precision for the aero-engine. First, aero-engine status is partitioned according to normal sensor data during the whole flight process through the clustering algorithm. Based on that, a diagnosis model is built for each status using the principal component analysis algorithm. Finally, the sensors are monitored using the built diagnosis models by identifying the aero-engine status. The simulation result illustrates the effectiveness of the proposed method.

  4. Evaluation of liquid fragility and thermal stability of Al-based metallic glasses by equivalent structure parameter

    International Nuclear Information System (INIS)

    Li Xuelian; Bian Xiufang; Hu Lina

    2010-01-01

    Based on extended Ideal-Atomic-Packing model, we propose an equivalent structure parameter '6x+11y' to evaluate fragility and thermal stability of Al-TM-RE metallic glasses, where x and y are composition concentrations of transition metal (TM) and rare earth (RE), respectively. Experimental results show that glass forming compositions with '6x+11y' near 100 have the smallest fragility parameter and best structure stability. In addition, '6x+11y' parameter has a positive relationship with onset-crystallization temperature, T x . Al-TM-RE glassy alloys with (6x+11y)≤100 undergo primary crystallization of fcc-Al nanocrystals, while alloys with (6x+11y)>100 exhibit nanoglassy or glassy crystallization behavior.

  5. 76 FR 77108 - Airworthiness Directives; International Aero Engines Turbofan Engines

    Science.gov (United States)

    2011-12-12

    ... Airworthiness Directives; International Aero Engines Turbofan Engines AGENCY: Federal Aviation Administration...-D5, V2530-A5, and V2533-A5 turbofan engines. This AD was prompted by three reports of high- pressure..., V2524-A5, V2525-D5, V2527-A5, V2527E-A5, V2527M-A5, V2528- D5, V2530-A5, and V2533-A5 turbofan engines...

  6. Increasing the Performance and Reliability of Power Boiler by Monitoring Thermal and Strength Parameters

    Directory of Open Access Journals (Sweden)

    Sobota Tomasz

    2017-01-01

    Full Text Available The paper presents a method for determination of thermo-flow parameters for steam boilers. This method allows to perform the calculations of the boiler furnace chamber and heat flow rates absorbed by superheater stages. These parameters are important for monitoring the performance of the power unit. Knowledge of these parameters allows determining the degree of the furnace chamber slagging. The calculation can be performed in online mode and use to monitoring of steam boiler. The presented method allows to the operation of steam boiler with high efficiency.

  7. Study of elastic and thermal parameters of a composite material fluoro-plastic - thermo-exfoliated graphite by photothermoacoustic method

    International Nuclear Information System (INIS)

    Kozachenko, V.V.; Kucherov, I.Ya.; Revo, S.L.

    2004-01-01

    Full text: The composite materials (CM) with success are widely used in a science and in an industry. From the practical point of view important for CM the mechanical and thermal properties are. Therefore, study of these properties for them is the important problem. At change of a temperature state of materials of their property in many cases are featured by combinations of elastic and thermal parameters E/1-σ=E n and χ/ρc=D T , where E, -σ, ρ and c are the Young's modulus, Poisson's ratio, thermal conductivity coefficient, density and specific heat of materials, respectively. Now for examination of substances in various aggregate states has received development a photothermoacoustic (PTA) method. As shown in this work, use a PTA method with piezoelectric detection of a PTA signal from a layered plate, under certain conditions, allows immediately determining the reduced Young's modulus E n and thermal diffusivity D T . Therefore, the purpose of this work was study the PTA effect with piezoelectric detection of an informative signal from CM. Were explored steel-copper CM such as 'sandwich' and fluoro plastic-thermo exfoliated graphite FP-TEG CM. Explored triplex structure as a plate made of a CM sample and a two-layer piezoelectric transducer. The surface of a CM is uniformly irradiated with a modulated light flux. The sample is heated and the thermal waves are generated. In the sample, the temperature field of thermal waves generates, due to the thermoelastic effect, acoustic vibration and waves that are registered by a piezoelectric. The rather low frequencies of modulation are considered, at which length of ultrasonic waves is much more than the reference sizes of structure (quasi-static approach). The amplitudes ratio and phase difference of voltages oscillations taken from separate layer of piezoelectric transducer, as functions of physical and geometrical parameters of structure and a frequency of a light flux modulation is found. Experimentally the

  8. EXTRACTING ROOF PARAMETERS AND HEAT BRIDGES OVER THE CITY OF OLDENBURG FROM HYPERSPECTRAL, THERMAL, AND AIRBORNE LASER SCANNING DATA

    Directory of Open Access Journals (Sweden)

    L. Bannehr

    2012-09-01

    Full Text Available Remote sensing methods are used to obtain different kinds of information about the state of the environment. Within the cooperative research project HiReSens, funded by the German BMBF, a hyperspectral scanner, an airborne laser scanner, a thermal camera, and a RGB-camera are employed on a small aircraft to determine roof material parameters and heat bridges of house tops over the city Oldenburg, Lower Saxony. HiReSens aims to combine various geometrical highly resolved data in order to achieve relevant evidence about the state of the city buildings. Thermal data are used to obtain the energy distribution of single buildings. The use of hyperspectral data yields information about material consistence of roofs. From airborne laser scanning data (ALS digital surface models are inferred. They build the basis to locate the best orientations for solar panels of the city buildings. The combination of the different data sets offers the opportunity to capitalize synergies between differently working systems. Central goals are the development of tools for the collection of heat bridges by means of thermal data, spectral collection of roofs parameters on basis of hyperspectral data as well as 3D-capture of buildings from airborne lasers scanner data. Collecting, analyzing and merging of the data are not trivial especially not when the resolution and accuracy is aimed in the domain of a few decimetre. The results achieved need to be regarded as preliminary. Further investigations are still required to prove the accuracy in detail.

  9. The thermal neutron absorption cross-sections, resonance integrals and resonance parameters of silicon and its stable isotopes

    International Nuclear Information System (INIS)

    Story, J.S.

    1969-09-01

    The data available up to the end of November 1968 on the thermal neutron absorption cross-sections, resonance absorption integrals, and resonance parameters of silicon and its stable isotopes are collected and discussed. Estimates are given of the mean spacing of the energy levels of the compound nuclei near the neutron binding energy. It is concluded that the thermal neutron absorption cross-section and resonance absorption integral of natural silicon are not well established. The data on these two parameters are somewhat correlated, and three different assessments of the resonance integral are presented which differ over-all by a factor of 230. Many resonances have been detected by charged particle reactions which have not yet been observed in neutron cross-section measurements. One of these resonances of Si 2 8, at E n = 4 ± 5 keV might account for the large resonance integral which is derived, very uncertainly, from integral data. The principal source of the measured resonance integral of Si 3 0 has not yet been located. The thermal neutron absorption cross-section of Si 2 8 appears to result mainly from a negative energy resonance, possibly the resonance at E n = - 59 ± 5 keV detected by the Si 2 8 (d,p) reaction. (author)

  10. Thermophysical parameters of coconut oil and its potential application as the thermal energy storage system in Indonesia

    Science.gov (United States)

    Putri, Widya A.; Fahmi, Zulfikar; Sutjahja, I. M.; Kurnia, D.; Wonorahardjo, S.

    2016-08-01

    The high consumption of electric energy for room air conditioning (AC) system in Indonesia has driven the research of potential thermal energy storage system as a passive temperature controller. The application of coconut oil (CO) as the potential candidate for this purpose has been motivated since its working temperature just around the human thermal comfort zone in the tropical area as Indonesia. In this research we report the time-dependent temperature data of CO, which is adopting the T-history method. The analysis of the data revealed a set of thermophysical parameters, consist of the mean specific heats of the solid and liquid, as well as the latent heat of fusion for the phase change transition. The performance of CO to decrease the air temperature was measured in the thermal chamber. From the results it is shown that the latent phase of CO related to the solid-liquid phase transition show the highest capability in heat absorption, directly showing the potential application of CO as thermal energy storage system in Indonesia.

  11. Modelling of the thermal parameters of high-power linear laser-diode arrays. Two-dimensional transient model

    International Nuclear Information System (INIS)

    Bezotosnyi, V V; Kumykov, Kh Kh

    1998-01-01

    A two-dimensional transient thermal model of an injection laser is developed. This model makes it possible to analyse the temperature profiles in pulsed and cw stripe lasers with an arbitrary width of the stripe contact, and also in linear laser-diode arrays. This can be done for any durations and repetition rates of the pump pulses. The model can also be applied to two-dimensional laser-diode arrays operating quasicontinuously. An analysis is reported of the influence of various structural parameters of a diode array on the thermal regime of a single laser. The temperature distributions along the cavity axis are investigated for different variants of mounting a crystal on a heat sink. It is found that the temperature drop along the cavity length in cw and quasi-cw laser diodes may exceed 20%. (lasers)

  12. Evaluation of neutron thermalization parameters and benchmark reactor calculations using a synthetic scattering function for molecular gases

    International Nuclear Information System (INIS)

    Gillete, V.H.; Patino, N.E.; Granada, J.E.; Mayer, R.E.

    1988-01-01

    Using a synthetic scattering function which describes the interaction of neutrons with molecular gases we provide analytical expressions for zero-and first-order scattering kernels, σ 0 (E 0 →E), σ 1 (E 0 →E), and total cross section σ 0 (E 0 ). Based on these quantities, we have performed calculations of thermalization parameters and transport coefficients for H 2 O, D 2 O, C 6 H 6 and (CH 2 ) n at room temperature. Comparasion of such values with available experimental data and other calculations is satisfactory. We also generated nuclear data libraries for H 2 O with 47 thermal groups at 300K and performed some benchmark calculations ( 235 U, 239 Pu, PWR cell and typical APWR cell); the resulting reactivities are compared with experimental data and ENDF/B-IV calculations. (author) [pt

  13. The effect of preparation parameters i thermal decomposition of ruthenium dioxide electrodes on chlorine elctro-catalytic activity

    International Nuclear Information System (INIS)

    Luu, Tran Le; Kim, Choon Soo; Kim, Ji Ye; Kim, Seong Hwan; Yoon, Je Yong

    2015-01-01

    When fabricating a RuO_2 electrode, the high electro-catalytic activity in chlorine evolution is considered as one of the most important factors. Thermal decomposition method carried out under various fabrication conditions including the types of solvents, precursors, and calcination times have led to the enhancement electro-catalytic activity of RuO_2 electrode in chlorine evolution. Nevertheless, it has not been fully investigated how these parameters directly affect to the chlorine evolution efficiency in the RuO_2 electrode. Therefore, the aim of this study was to investigate the effect on the chlorine evolution in RuO_2 electrodes, depending upon the preparation parameters including solvents, precursors, and calcination times. As major results, the chlorine evolution efficiency was dominantly affected by these three major preparation parameters. The RuO_2 electrode fabricated with ethanol as the solvent showed highest chlorine evolution efficiency. The choice of Ru(AcAc)_3 as precursor and the increase of the calcination time up to 3 h are also the good choices for increasing chlorine electrocatalytic activities. The chlorine evolution efficiency was not significantly related to the total voltammetric charge but to the outer voltammetric charge, which is affected by the morphology of the RuO_2 electrode surface. The size and number of cracks on the electrode surfaces or the outer voltammetric charges increased with easily evaporated solvents, decomposed precursors, and tensile stress from longer thermal treatments

  14. Optimization of Indoor Thermal Comfort Parameters with the Adaptive Network-Based Fuzzy Inference System and Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-01-01

    Full Text Available The goal of this study is to improve thermal comfort and indoor air quality with the adaptive network-based fuzzy inference system (ANFIS model and improved particle swarm optimization (PSO algorithm. A method to optimize air conditioning parameters and installation distance is proposed. The methodology is demonstrated through a prototype case, which corresponds to a typical laboratory in colleges and universities. A laboratory model is established, and simulated flow field information is obtained with the CFD software. Subsequently, the ANFIS model is employed instead of the CFD model to predict indoor flow parameters, and the CFD database is utilized to train ANN input-output “metamodels” for the subsequent optimization. With the improved PSO algorithm and the stratified sequence method, the objective functions are optimized. The functions comprise PMV, PPD, and mean age of air. The optimal installation distance is determined with the hemisphere model. Results show that most of the staff obtain a satisfactory degree of thermal comfort and that the proposed method can significantly reduce the cost of building an experimental device. The proposed methodology can be used to determine appropriate air supply parameters and air conditioner installation position for a pleasant and healthy indoor environment.

  15. Definition of thermal-hydraulics parameters of a naval PWR via energy balance of a Westinghouse PWR

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, Luiz C.; Curi, Marcos F., E-mail: marcos.curi@cefet-rj.br [Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET-RJ), Rio de Janeiro, RJ (Brazil). Department of Mechanical Engineering

    2017-07-01

    In this work, we used the operational parameters of the Angra 1 nuclear power plant, designed by Westinghouse, to estimate the thermal-hydraulic parameters for naval nuclear propulsion, focusing on the analysis of the reactor and steam generator. A thermodynamics analysis was made to reach the operational parameters of primary circuit such as pressure, temperature, power generated among others. Previous studies available in literature of 2-loop Westinghouse Nuclear Power Plants, which is based on a PWR and similar to Angra-1, support this analysis in the sense of a correct procedure to deal with many complex processes to energy generation from a nuclear source. Temperature profiles in reactor and steam generator were studied with concepts of heat transfer, fluid mechanics and also some concepts of nuclear systems, showing the behavior into them. In this simulation, the Angra 1 primary circuit was reduced on a scale of 1: 3.5 to fit in a Scorpène-class submarine. The reactor generates 85.7 MW of total thermal power. The maximum power and temperatures reached were lower than the operational safe limits established by Westinghouse. The number of tubes of the steam generator was determined in 990 U-tubes with 6.3 m of average length. (author)

  16. The effect of preparation parameters i thermal decomposition of ruthenium dioxide electrodes on chlorine elctro-catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Luu, Tran Le; Kim, Choon Soo; Kim, Ji Ye; Kim, Seong Hwan; Yoon, Je Yong [Dept. of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University,Seoul (Korea, Republic of)

    2015-05-15

    When fabricating a RuO{sub 2} electrode, the high electro-catalytic activity in chlorine evolution is considered as one of the most important factors. Thermal decomposition method carried out under various fabrication conditions including the types of solvents, precursors, and calcination times have led to the enhancement electro-catalytic activity of RuO{sub 2} electrode in chlorine evolution. Nevertheless, it has not been fully investigated how these parameters directly affect to the chlorine evolution efficiency in the RuO{sub 2} electrode. Therefore, the aim of this study was to investigate the effect on the chlorine evolution in RuO{sub 2} electrodes, depending upon the preparation parameters including solvents, precursors, and calcination times. As major results, the chlorine evolution efficiency was dominantly affected by these three major preparation parameters. The RuO{sub 2} electrode fabricated with ethanol as the solvent showed highest chlorine evolution efficiency. The choice of Ru(AcAc){sub 3} as precursor and the increase of the calcination time up to 3 h are also the good choices for increasing chlorine electrocatalytic activities. The chlorine evolution efficiency was not significantly related to the total voltammetric charge but to the outer voltammetric charge, which is affected by the morphology of the RuO{sub 2} electrode surface. The size and number of cracks on the electrode surfaces or the outer voltammetric charges increased with easily evaporated solvents, decomposed precursors, and tensile stress from longer thermal treatments.

  17. Switching LPV Control with Double-Layer LPV Model for Aero-Engines

    Science.gov (United States)

    Tang, Lili; Huang, Jinquan; Pan, Muxuan

    2017-11-01

    To cover the whole range of operating conditions of aero-engine, a double-layer LPV model is built so as to take into account of the variability due to the flight altitude, Mach number and the rotational speed. With this framework, the problem of designing LPV state-feedback robust controller that guarantees desired bounds on both H_∞ and H_2 performances is considered. Besides this, to reduce the conservativeness caused by a single LPV controller of the whole flight envelope and the common Lyapunov function method, a new method is proposed to design a family of LPV switching controllers. The switching LPV controllers can ensure that the closed-loop system remains stable in the sense of Lyapunov under arbitrary switching logic. Meanwhile, the switching LPV controllers can ensure the parameters change smoothly. The validity and performance of the theoretical results are demonstrated through a numerical example.

  18. EFFECT OF AERO-/ANAEROBIOSIS ON DECARBOXYLASE ACTIVITY OF SELECTED LACTIC ACID BACTERIA

    Directory of Open Access Journals (Sweden)

    Stanislav Kráčmar

    2010-05-01

    Full Text Available Biogenic amines are undesirable compounds produced in foods mainly through bacterial decarboxylase activity. The aim of this study was to investigate some environmental conditions (particularly aero/anaerobiosis, sodium chloride concentration (0–2% w/w, and amount of lactose (0–1% w/w on the activity of tyrosine decarboxylase enzymes of selected six technological important Lactococcus lactis strains. The levels of parameters tested were chosen according to real situation in fermented dairy products technology (especially cheese-making. Tyramine was determined by the ion-exchange chromatography with post-column ninhydrine derivatization and spectrophotometric detection. Tyrosine decarboxylation occurred during the active growth phase. Under the model conditions used, oxygen availability had influence on tyramine production, anaerobiosis seemed to favour the enzyme activity because all L. lactis strains produced higher tyramine amount. doi:10.5219/43

  19. Cooling thermal parameters and microstructure features of directionally solidified ternary Sn–Bi–(Cu,Ag) solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Bismarck L., E-mail: bismarck_luiz@yahoo.com.br [Department of Materials Engineering, Federal University of São Carlos, UFSCar, 13565-905 São Carlos, SP (Brazil); Garcia, Amauri [Department of Manufacturing and Materials Engineering, University of Campinas, UNICAMP, 13083-860 Campinas, SP (Brazil); Spinelli, José E. [Department of Materials Engineering, Federal University of São Carlos, UFSCar, 13565-905 São Carlos, SP (Brazil)

    2016-04-15

    Low temperature soldering technology encompasses Sn–Bi based alloys as reference materials for joints since such alloys may be molten at temperatures less than 180 °C. Despite the relatively high strength of these alloys, segregation problems and low ductility are recognized as potential disadvantages. Thus, for low-temperature applications, Bi–Sn eutectic or near-eutectic compositions with or without additions of alloying elements are considered interesting possibilities. In this context, additions of third elements such as Cu and Ag may be an alternative in order to reach sounder solder joints. The length scale of the phases and their proportions are known to be the most important factors affecting the final wear, mechanical and corrosions properties of ternary Sn–Bi–(Cu,Ag) alloys. In spite of this promising outlook, studies emphasizing interrelations of microstructure features and solidification thermal parameters regarding these multicomponent alloys are rare in the literature. In the present investigation Sn–Bi–(Cu,Ag) alloys were directionally solidified (DS) under transient heat flow conditions. A complete characterization is performed including experimental cooling thermal parameters, segregation (XRF), optical and scanning electron microscopies, X-ray diffraction (XRD) and length scale of the microstructural phases. Experimental growth laws relating dendritic spacings to solidification thermal parameters have been proposed with emphasis on the effects of Ag and Cu. The theoretical predictions of the Rappaz-Boettinger model are shown to be slightly above the experimental scatter of secondary dendritic arm spacings for both ternary Sn–Bi–Cu and Sn–Bi–Ag alloys examined. - Highlights: • Dendritic growth prevailed for the ternary Sn–Bi–Cu and Sn–Bi–Ag solder alloys. • Bi precipitates within Sn-rich dendrites were shown to be unevenly distributed. • Morphology and preferential region for the Ag{sub 3}Sn growth depend on Ag

  20. Estimation of fracture parameters in foam core materials using thermal techniques

    DEFF Research Database (Denmark)

    Dulieu-Barton, J. M.; Berggreen, Christian; Boyenval Langlois, C.

    2010-01-01

    is described. A mode I simulated crack in the form of a machined notch is used to establish the feasibility of the TSA approach to derive stress intensity factors for the foam material. The overall goal is to demonstrate that thermal techniques have the ability to provide deeper insight into the behaviour......The paper presents some initial work on establishing the stress state at a crack tip in PVC foam material using a non-contact infra-red technique known as thermoelastic stress analysis (TSA). A parametric study of the factors that may affect the thermoelastic response of the foam material...

  1. New test approach and evaluation of dynamic and thermal parameters of elastomers

    Czech Academy of Sciences Publication Activity Database

    Pešek, Luděk; Vaněk, František; Procházka, Pavel; Bula, Vítězslav; Cibulka, Jan

    2009-01-01

    Roč. 16, č. 3 (2009), s. 197-207 ISSN 1802-1484 R&D Projects: GA ČR GA101/09/1166 Institutional research plan: CEZ:AV0Z20760514 Keywords : rubber * thermo-mechanics parameters * fatigue Subject RIV: BI - Acoustics

  2. Thermal restoration of the lattice parameter of weakly irradiated UO2 (1962)

    International Nuclear Information System (INIS)

    Bloch, J.

    1962-01-01

    Weak irradiations of uranium dioxide lead to an expansion of the cristal lattice. We have studied the restoration of the lattice parameter after successive isochronous annealings. The process occurs in two main stages, one starting at 200 deg. C and the other at 500 deg. C. (author) [fr

  3. Efficacious of estimatives of thermal-hydraulic conditions of the PWR core by measured parameters

    International Nuclear Information System (INIS)

    Camargo, C.T.M.; Pontedeiro, A.C.

    1985-01-01

    Using ALMOD 3W2 and COBRA IIIP computer codes an evaluation of usual methods of estimatives of heat transfer conditions in the PWR core was made, using variables of the monitored processes. It was done a parametric study in conditions of the permanent regim to verify the influence of variables such as, pressure, temperature and power in the value of critical heat flux. Parameters to prevent the DNB phenomenon in KWU power plants and Westinghouse were calculated and implemented in the ALMOD 3W2 program to estimate the DNBR evolution. It was identified a common origin to both methods and comparing with detailed calculations of the COBRA IIIP code, it was settled limitations in the application of parameters. (M.C.K.) [pt

  4. Study of the thermal and kinetic parameters during directional solidification of zinc-aluminum eutectic alloys

    International Nuclear Information System (INIS)

    Gueijman, Sergio Fabian; Ares, Alicia Esther; Schvezov, Carlos Enrique

    2008-01-01

    Much work has been done recently on investigating zinc-based binary alloys, with different aluminum content, and modified or not with small amounts of other alloying elements. Some of these alloys have interesting properties, such as, the ZA alloys that have properties similar to some bronzes that are used in applications that require pieces with enough resistance to mechanical stresses. The longitudinal thermal gradients, the minimal gradients, the velocities of the liquid interphases, the velocities of the solid interphases and the accelerations of both interphases as a function of time and position were determined for each diluted alloy of the eutectic concentration considered (Zn-5%Al, % in weight), solidified horizontally with caloric extraction from both ends of the test pieces. The values obtained from the horizontal solidification with two directions of predominant caloric extraction are compared to previous values obtained for the same vertically solidified alloy system with a predominantly caloric extraction direction

  5. Physics parameter calculations for a Tandem Mirror Reactor with thermal barriers

    International Nuclear Information System (INIS)

    Boghosian, B.M.; Lappa, D.A.; Logan, B.G.

    1979-01-01

    Thermal barriers are localized reductions in potential between the plugs and the central cell, which effectively insulate trapped plug electrons from the central cell electrons. By then applying electron heating in the plug, it is possible to obtain trapped electron temperatures that are much greater than those of the central cell electrons. This, in turn, effects an increase in the plug potential and central cell confinement with a concomitant decrease in plug density and injection power. Ions trapped in the barrier by collisions are removed by the injection of neutral beams directed inside the barrier cell loss cone; these beam neutrals convert trapped barrier ions to neutrals by charge exchange permitting their escape. We describe a zero-dimensional physics model for this type of reactor, and present some preliminary results for Q

  6. Prediction of thermal hydraulic parameters in the loss of coolant accident by using artificial neural networks

    International Nuclear Information System (INIS)

    Vaziri, N.; Erfani, A.; Monsefi, M.; Hajabri, A.

    2008-01-01

    In a reactor accident like loss of coolant accident , one or more signals may not be monitored by control panel for some reasons such as interruptions and so on. Therefore a fast alternative method could guarantee the safe and reliable exploration of nuclear power planets. In this study, we used artificial neural network with Elman recurrent structure to predict six thermal hydraulic signals in a loss of coolant accident after upper plenum break. In the prediction procedure, a few previous samples are fed to the artificial neural network and the output value or next time step is estimated by the network output. The Elman recurrent network is trained with the data obtained from the benchmark simulation of loss of coolant accident in VVER. The results reveal that the predicted values follow the real trends well and artificial neural network can be used as a fast alternative prediction tool in loss of coolant accident

  7. Robust design for shape parameters of high pressure thermal vapor compressor by numerical analysis

    International Nuclear Information System (INIS)

    Park, Il Seouk

    2008-01-01

    A high motive pressure Thermal Vapor Compressor(TVC) for a commercial Multi-Effect Desalination(MED) plant is designed to have a high entraining performance and its robustness is also considered in the respect of operating stability at the abrupt change of the operating pressures like the motive and suction steam pressure which can be easily fluctuated by the external disturbance. The TVC having a good entraining performance of more than entrainment ratio 6.0 is designed through the iterative CFD analysis for the various primary nozzle diameter, mixing tube diameter and mixing tube length. And then for a couple of TVC having a similar entrainment ratio, the changes of the entrainment ratio are checked along the motive and suction pressure change. The system stability is diagnosed through the analyzing the changing pattern of the entrainment ratio

  8. Tuning a space-time scalable PI controller using thermal parameters

    Energy Technology Data Exchange (ETDEWEB)

    Riverol, C. [University of West Indies, Chemical Engineering Department, St. Augustine, Trinidad (Trinidad and Tobago); Pilipovik, M.V. [Armach Engineers, Urb. Los Palos Grandes, Project Engineering Department, Caracas (Venezuela)

    2005-03-01

    The paper outlines the successful empirical design and validation of a space-time PI controller based on study of the controlled variable output as function of time and space. The developed control was implemented on two heat exchanger systems (falling film evaporator and milk pasteurizer). The strategy required adding a new term over the classical PI controller, such that a new parameter should be tuned. Measurements made on commercial installations have confirmed the validity of the new controller. (orig.)

  9. Evaluation of the Effect of Operating Parameters on Thermal Performance of an Integrated Starter Generator in Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Moo-Yeon Lee

    2015-08-01

    Full Text Available The belt-driven-type integrated starter generator motor in a hybrid electric vehicle is vulnerable to thermal problems owing to its high output power and proximity to the engine. These problems may cause demagnetization and insulation breakdown, reducing the performance and durability of the motor. Hence, it is necessary to evaluate the thermal performance and enhance the cooling capacity of the belt-driven type Integrated Starter Generator. In this study, the internal temperature variations of the motor were investigated with respect to the operating parameters, particularly the rotation speed and environment temperature. At a maximum ambient temperature of 105 °C and rotation speed (motor design point of 4500 rpm, the coil of the motor was heated to approximately 189 °C in generating mode. The harsh conditions of the starting mode were analyzed by assuming that the motor operates during the start-up time at a maximum ambient temperature of 105 °C and rotation speed (motor design point of 800 rpm; the coil was heated to approximately 200 °C, which is close to the insulation temperature limit. The model for analyzing the thermal performance of the ISG was verified by comparing its results with those obtained through a generating-mode-based experiment

  10. Numerical study of geometric parameters effecting temperature and thermal efficiency in a premix multi-hole flat flame burner

    International Nuclear Information System (INIS)

    Saberi Moghaddam, Mohammad Hossein; Saei Moghaddam, Mojtaba; Khorramdel, Mohammad

    2017-01-01

    This paper investigates the geometric parameters related to thermal efficiency and pollution emission of a multi-hole flat flame burner. Recent experimental studies indicate that such burners are significantly influenced by both the use of distribution mesh and the size of the diameter of the main and retention holes. The present study numerically simulated methane-air premixed combustion using a two-step mechanism and constant mass diffusivity for all species. The results indicate that the addition of distribution mesh leads to uniform flow and maximum temperature that will reduce NOx emissions. An increase in the diameter of the main holes increased the mass flow which increased the temperature, thermal efficiency and NOx emissions. The size of the retention holes should be considered to decrease the total flow velocity and bring the flame closer to the burner surface, although a diameter change did not considerably improve temperature and thermal efficiency. Ultimately, under temperature and pollutant emission constraints, the optimum diameters of the main and retention holes were determined to be 5 and 1.25 mm, respectively. - Highlights: • Using distribution mesh led to uniform flow and reduced Nox pollutant by 53%. • 93% of total heat transfer occurred by radiation method in multi-hole burner. • Employing retention hole caused the flame become closer to the burner surface.

  11. Determining experimentally the parameters of the unsteady thermal behaviour of homogeneously layered walls by the reference plates method

    International Nuclear Information System (INIS)

    Beron, Rodolphe

    1988-01-01

    In this work, we introduce an experimental determination method of parameters which are characteristics of the transfer functions of walls in buildings by the use of an easy equipment which use needs no significant constraint. This method called 'reference plates method' is based on the working out of the thermo-grams which result from any thermal perturbation. The first part of our work deals with the theoretical development of the methods of working out the measures used for both single-Iayered and multi-layered walls. The second part discusses the applying of the method on single-Iayered sample. The values of thermophysical characteristics of the wall is based on the working out of the heat equation written in terms an integral transformation which we take as Laplace's transformation. The case of multi-Iayered wall which we discuss in the third part, lead to the determination of 'z transforms coefficients' of the transfer functions of the studied wall. In addition to the theoretical study, we analyse the results of prospective experiments in the fourth part of our work and show the usefulness of such a measurement method. The last part is devoted to the presentation of the application of our work to the determination of thermal parameters of more general wall's configurations. (author) [fr

  12. Effects of waterborne nickel on the physiological and immunological parameters of the Pacific abalone Haliotis discus hannai during thermal stress.

    Science.gov (United States)

    Min, Eun Young; Cha, Yong-Joo; Kang, Ju-Chan

    2015-09-01

    In this study, the 96-h LC50 at 22 and 26 °C values was 28.591 and 11.761 mg/L, respectively, for NiCl2 exposure in the abalone. The alteration of physiological and immune-toxicological parameters such as the total hemocyte count (THC), lysozyme, phenoloxidase (PO), and phagocytosis activity was measured in the abalone exposed to nickel (200 and 400 μg/L) under thermal stress for 96 h. In this study, Mg and THC decreased, while Ca, lysozyme, PO, and phagocytosis activity increased in the hemolymph of Pacific abalone exposed to NiCl2 when compared to a control at both 22 and 26 °C. However, these parameters were not affected by a rise in temperature from 22 to 26 °C in non-exposed groups. Our results showed that NiCl2 below 400 μg/L was able to stimulate immune responses in abalone. However, complex stressors, thermal changes, or NiCl2 can modify the immunological response and lead to changes in the physiology of host-pollutant interactions in the abalone.

  13. Calculation of physical and thermo hydro-dynamic parameters of a thermal research reactor; Prorachun fizichkih i toplotno hidro-dinamichkih parametara termichkog istrazhivachkog reaktora

    Energy Technology Data Exchange (ETDEWEB)

    Matausek, M; Spasojevic, D; Jovic, V; Marinkovic, N [Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia)

    1988-07-01

    The paper presents initial activities on creating a design concept of a new thermal research reactor, which should be built according to the research and development program in the field of nuclear fuel cycle technologies. For one possible type of such a reactor basic design parameters are specified and some preliminary results of nuclear, thermal and hydrodynamic design calculations are given. (author)

  14. 78 FR 22168 - Airworthiness Directives; International Aero Engines AG Turbofan Engines

    Science.gov (United States)

    2013-04-15

    ... Airworthiness Directives; International Aero Engines AG Turbofan Engines AGENCY: Federal Aviation Administration... International Aero Engines AG (IAE), V2525-D5 and V2528-D5 turbofan engines, with a certain No. 4 bearing... turbofan engines, serial numbers V20001 through V20285, with No. 4 bearing internal scavenge tube, part...

  15. 76 FR 60396 - Airworthiness Directives; Piaggio Aero Industries S.p.A. Airplanes

    Science.gov (United States)

    2011-09-29

    ...., Washington, DC 20590, between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. For service... on other P.180 aeroplanes, and Piaggio Aero Industries (PAI) had issued Service Bulletin (SB) No. 80... information by examining the MCAI in the AD docket. Relevant Service Information Piaggio Aero Industries S.p.A...

  16. 77 FR 35888 - Airworthiness Directives; PIAGGIO AERO INDUSTRIES S.p.A Airplanes

    Science.gov (United States)

    2012-06-15

    ...., Washington, DC 20590, between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. For service.... Relevant Service Information PIAGGIO AERO INDUSTRIES S.p.A. has issued Service Bulletin No. 80- 0318, dated... Instructions of Piaggio Aero Industries S.p.A. Mandatory Service Bulletin No. 80-0318, revision 2, dated March...

  17. 78 FR 36691 - Airworthiness Directives; Piaggio Aero Industries S.p.A Airplanes

    Science.gov (United States)

    2013-06-19

    ...., Washington, DC 20590, between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. For service... condition, Piaggio Aero Industries (PAI) issued Service Bulletin (SB) 80-0345 to provide instructions for... in the AD docket. Relevant Service Information Piaggio Aero Industries S.p.A. has issued Mandatory...

  18. 76 FR 27872 - Airworthiness Directives; PIAGGIO AERO INDUSTRIES S.p.A Model P-180 Airplanes

    Science.gov (United States)

    2011-05-13

    ... through Friday, except Federal holidays. For service information identified in this AD, contact Piaggio... accomplishment instructions of Piaggio Aero Industries Alert Service Bulletin ASB- 80-0324, step 5, this AD.... Relevant Service Information PIAGGIO AERO INDUSTRIES S.p.A has issued Service Bulletin (Mandatory) N.: 80...

  19. 78 FR 69600 - Airworthiness Directives; Piaggio Aero Industries S.p.A Airplanes

    Science.gov (United States)

    2013-11-20

    ... p.m., Monday through Friday, except Federal holidays. For service information identified in this.... To address this potential unsafe condition, Piaggio Aero Industries (PAI) issued Service [[Page 69601... Service Information Piaggio Aero Industries S.p.A. has issued Mandatory Service Bulletin No.: 80-0381, Rev...

  20. 76 FR 54403 - Airworthiness Directives; PIAGGIO AERO INDUSTRIES S.p.A Model PIAGGIO P-180 Airplanes

    Science.gov (United States)

    2011-09-01

    ... Federal holidays. For service information identified in this proposed AD, contact Piaggio Aero Industries... Service Information Piaggio Aero Industries S.p.A. has issued Mandatory Service Bulletin No. 80-0304... Accomplishment Instructions of Piaggio Aero Industries S.p.A. Mandatory Service Bulletin No. 80-0304, dated July...

  1. Thermal performance analysis and optimum design parameters of heat exchanger having perforated pin fins

    International Nuclear Information System (INIS)

    Sahin, Bayram; Demir, Alparslan

    2008-01-01

    This paper reports the heat transfer enhancement and corresponding pressure drop over a flat surface equipped with circular cross section perforated pin fins in a rectangular channel. The channel had a cross section area of 100-250 mm 2 . The experiments covered the following ranges: Reynolds number 13500-42,000, clearance ratio (C/H) 0, 0.33 and 1 and interfin spacing ratio (S y /D) 1.208, 1.524, 1.944 and 3.417. Correlation equations were developed for the heat transfer, friction factor and enhancement efficiency. The experimental results showed that the use of circular cross section pin fins may lead to heat transfer enhancement. Enhancement efficiencies varied between 1.4 and 2.6 depending on clearance ratio and interfin spacing ratio. Using a Taguchi experimental design method, optimum design parameters and their levels were investigated. Nusselt number and friction factor were considered as performance parameters. An L 9 (3 3 ) orthogonal array was selected as an experimental plan. First of all, each goal was optimized separately. Then, all the goals were optimized together, considering the priority of the goals, and the optimum results were found to be Reynolds number of 42,000, fin height of 50 mm and streamwise distance between fins of 51 mm

  2. Thermally induced changes of optical and vital parameters in human cancer cells

    Science.gov (United States)

    Dressler, C.; Schwandt, D.; Beuthan, J.; Mildaziene, V.; Zabarylo, U.; Minet, O.

    2010-11-01

    Minimally invasive laser-induced thermotherapy (LITT) presents an alternative method to conventional tumor therapeutically interventions, such as surgery, chemotherapy, radiotherapy or nuclear medicine. Optical tissue characteristics of tumor cells and their heat-induced changes are essential issues for controlling LITT progressions. Therefore, it is indispensable to exactly know the absorption coefficient μa, the scattering coefficient μs and the anisotropy factor g as well as their changes under rising temperatures in order to simulate the treatment parameters successfully. Optical parameters of two different cancer model tissues - breast cancer cells species MX1 and colon cancer cells species CX1 - were measured in the spectral range 400 - 1100 nm as well as in the temperature range 37 - 60°C. The absorption coefficient of both cell species was low throughout the spectral range analyzed, while μs of both species rose with increasing temperatures. The anisotropy factor g however dropped for both tissues with increasing temperatures. Light scatterings inside tissues proceeded continuously forward for all species tested. It was demonstrated that optical tissue properties undergo significant changes along with the vital status of the cells when the temperature increases.

  3. A Numerical Procedure to Obtain the Creep Parameters of the Thermal Barrier Coating

    Directory of Open Access Journals (Sweden)

    Shifeng Wen

    2014-05-01

    Full Text Available Three-point bending creep test was used to understand the creep behavior of typical thin film/substrate systems—thermal barrier coating (TBC systems. Firstly, a simplified model, which does not consider the local effect, has been set up to get an analytical relationship. The important result is that creep stress exponent of materials is equal to the creep load exponent of the steady-state deflection rate of BC specimens. Secondly, in order to consider the local effect of bending, the finite element method (FEM has been carried out. FEM calculation shows that there is a steady stage of the creep deflection under a constant applied load. And the exponent of the steady-state creep deflection rate to the applied load is found to be equal to the creep stress exponent of materials. The creep constant of the materials can be obtained by a set of trials with assumed creep constants of materials and can be finally determined by the best fit method. Finally, the finite element results show that the influences of the friction, the thickness of TBCs, and the modulus ratio of TBC to the substrate on stress distribution are important.

  4. Future NASA Power Technologies for Space and Aero Propulsion Applications

    Science.gov (United States)

    Soeder, James F.

    2015-01-01

    To achieve the ambitious goals that NASA has outlined for the next decades considerable development of power technology will be necessary. This presentation outlines the development objectives for both space and aero applications. It further looks at the various power technologies that support these objectives and examines drivers that will be a driving force for future development. Finally, the presentation examines what type of non-traditional learning areas should be emphasized in student curriculum so that the engineering needs of the third decade of the 21st Century are met.

  5. Aero-acoustic noise of wind turbines. Noise prediction models

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B. [ed.

    1997-12-31

    Semi-empirical and CAA (Computational AeroAcoustics) noise prediction techniques are the subject of this expert meeting. The meeting presents and discusses models and methods. The meeting may provide answers to the following questions: What Noise sources are the most important? How are the sources best modeled? What needs to be done to do better predictions? Does it boil down to correct prediction of the unsteady aerodynamics around the rotor? Or is the difficult part to convert the aerodynamics into acoustics? (LN)

  6. Optimization of Aero Engine Acceleration Control in Combat State Based on Genetic Algorithms

    Science.gov (United States)

    Li, Jie; Fan, Ding; Sreeram, Victor

    2012-03-01

    In order to drastically exploit the potential of the aero engine and improve acceleration performance in the combat state, an on-line optimized controller based on genetic algorithms is designed for an aero engine. For testing the validity of the presented control method, detailed joint simulation tests of the designed controller and the aero engine model are performed in the whole flight envelope. Simulation test results show that the presented control algorithm has characteristics of rapid convergence speed, high efficiency and can fully exploit the acceleration performance potential of the aero engine. Compared with the former controller, the designed on-line optimized controller (DOOC) can improve the security of the acceleration process and greatly enhance the aero engine thrust in the whole range of the flight envelope, the thrust increases an average of 8.1% in the randomly selected working states. The plane which adopts DOOC can acquire better fighting advantage in the combat state.

  7. Computation and analysis of backward ray-tracing in aero-optics flow fields.

    Science.gov (United States)

    Xu, Liang; Xue, Deting; Lv, Xiaoyi

    2018-01-08

    A backward ray-tracing method is proposed for aero-optics simulation. Different from forward tracing, the backward tracing direction is from the internal sensor to the distant target. Along this direction, the tracing in turn goes through the internal gas region, the aero-optics flow field, and the freestream. The coordinate value, the density, and the refractive index are calculated at each tracing step. A stopping criterion is developed to ensure the tracing stops at the outer edge of the aero-optics flow field. As a demonstration, the analysis is carried out for a typical blunt nosed vehicle. The backward tracing method and stopping criterion greatly simplify the ray-tracing computations in the aero-optics flow field, and they can be extended to our active laser illumination aero-optics study because of the reciprocity principle.

  8. Interference Analysis Status and Plans for Aeronautical Mobile Airport Communications System (AeroMACS)

    Science.gov (United States)

    Kerczewski, Robert J.; Wilson, Jeffrey D.

    2010-01-01

    Interference issues related to the operation of an aeronautical mobile airport communications system (AeroMACS) in the C-Band (specifically 5091-5150 MHz) is being investigated. The issue of primary interest is co-channel interference from AeroMACS into mobile-satellite system (MSS) feeder uplinks. The effort is focusing on establishing practical limits on AeroMACS transmissions from airports so that the threshold of interference into MSS is not exceeded. The analyses are being performed with the software package Visualyse Professional, developed by Transfinite Systems Limited. Results with omni-directional antennas and plans to extend the models to represent AeroMACS more accurately will be presented. These models should enable realistic analyses of emerging AeroMACS designs to be developed from NASA Test Bed, RTCA 223, and European results.

  9. Fluid Temperature of Aero Hydraulic Systems

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2016-01-01

    Full Text Available In modern supersonic aircrafts due to aerodynamic skin heating a temperature of hydraulics environment significantly exceeds that of permissible for fluids used. The same problem exists for subsonic passenger aircrafts, especially for Airbuses, which have hydraulics of high power where convective heat transfer with the environment is insufficient and there is no required temperature control of fluid. The most significant in terms of heat flow is the flow caused by the loss of power to the pump and when designing the hydraulic system (HS it is necessary to pay very serious attention to it. To use a constant capacity pump is absolutely unacceptable, since HS efficiency in this case is extremely low, and the most appropriate are variable-capacity pumps, cut-off pumps, dual-mode pumps. The HS fluid cooling system should provide high reliability, lightweight, simple design, and a specified heat transfer in all flight modes.A system cooling the fluid by the fuel of feeding lines of the aircraft engines is the most effective, and it is widely used in supersonic aircrafts, where power of cooling system is essential. Subsonic aircrafts widely use convective heat exchangers. In thermal design of the aircraft hydraulics, the focus is generally given to the maximum and minimum temperatures of the HS fluid, the choice of the type of heat exchanger (convective or flow-through, the place of its installation. In calculating the operating temperature of a hydraulic system and its cooling systems it is necessary to determine an increase of the working fluid temperature when throttling it. There are three possible formulas to calculate the fluid temperature in throttling, with the error of a calculated temperature drop from 30% to 4%.The article considers the HS stationary and noon-stationary operating conditions and their calculation, defines temperatures of fluid and methods to control its specified temperature. It also discusses various heat exchanger schemes

  10. The determination of parameters for thermal unit pricing and economic interchange

    International Nuclear Information System (INIS)

    Briggs, D.W.; Pickles, R.; McPhail, E.M.

    1988-01-01

    When an interchange of energy occurs between adjoining utilities which is not the subject of a predetermined fixed price agreement but is related to the immediate cost of generating and transmitting the power, the purchaser and seller need to know the cost of the power before agreeing to the interchange. A working party from three Maritime utilities was set up to reveiw areas of interchange energy pricing between them and in particular standardize the following aspects: test procedure for a unit heat rate over its load range; maintenance and operating costs; provision for contingency costs; start up costs of units; and a pricing formula considering the above items. The three utilities are Nova Scotia Power Corporation, Maritime Electric, and New Brunswick Power Commission. Details are presented of the three utility's methods of determining heat rate, operating factor, total fuel cost, transmission loss, operations and maintenance costs, gas turbine parameters, pricing formulae, and start up costs. 2 figs., 7 tabs

  11. Measuring opto-thermal parameters of basalt fibers using digital holographic microscopy.

    Science.gov (United States)

    Yassien, Khaled M; Agour, Mostafa

    2017-02-01

    A method for studying the effect of temperature on the optical properties of basalt fiber is presented. It is based on recording a set of phase-shifted digital holograms for the sample under the test. The holograms are obtained utilizing a system based on Mach-Zehnder interferometer, where the fiber sample inserted in an immersion liquid is placed within a temperature controlled chamber. From the recorded digital holograms the optical path differences which are used to calculate the refractive indices are determined. The accuracy in the measurement of refractive indices is in the range of 4 × 10 -4 . The influence of temperature on the dispersion parameters, polarizability per unit volume and dielectric susceptibility are also obtained. Moreover, the values of dispersion and oscillation energies and Cauchy's constants are provided at different temperatures. © 2016 Wiley Periodicals, Inc.

  12. On the treatment of plane fusion front in lumped parameter thermal models with convection

    International Nuclear Information System (INIS)

    Le Tellier, R.; Skrzypek, E.; Saas, L.

    2017-01-01

    Highlights: • Solid phase approximations for a two-phase Stefan fusion problem with convection are analyzed. • A reference solution combines integral conservation eqs and a FE solution of the 1D heat equation. • Numerical results are presented for a transient in light water reactor severe accident analysis. • The models performances are highlighted on fusion transients in terms of Biot and Stefan numbers. - Abstract: Within the framework of lumped parameter models for integral codes, this paper focuses on the modeling of a two-phase Stefan fusion problem with natural convection in the liquid phase. In particular, this specific Stefan problem is of interest when studying corium pool behavior in the framework of light water reactor severe accident analysis. The objective of this research is to analyze the applicability of different approximations related to the modeling of the solid phase in terms of boundary heat flux closure relations. Three different approximations are considered: a quadratic profile based model, a model where a parameter controls the power partitioning at the interface and the steady state conduction assumption. These models are compared with an accurate front-tracking solution of this plane fusion front problem. This “reference” is obtained by combining the same integral conservation equations as the approximate models with a mesh-based solution of the 1D heat equation. Numerical results are discussed for a typical configuration of interest for corium pool analysis. Different fusion transients (constructed from nondimensionalization considerations in terms of Biot and Stefan numbers) are used in order to highlight the potential and limitations of the different approximations.

  13. Determining Correlation between Shark Location and Atmospheric Wind and Thermal Parameters.

    Science.gov (United States)

    Merchant, J.

    2017-12-01

    Millions of people visit the nation's shorelines every summer. As recreational use of the ocean increases across the country, so too does the risk of shark attacks on people. According to George H. Burgess, curator for the International Shark Attack File and the Florida Program for Shark Research "The number of shark-human interactions occurring in a given year is directly correlated with the amount of time humans spend in the sea. As world population continues its upsurge and interest in aquatic recreation concurrently rises, we realistically should expect increases in the number of shark attacks and other aquatic recreation-related injuries". Burgess' analysis released in February of 2016, states "2015 yearly total of 98 unprovoked attacks (worldwide) was the highest on record" until 2016. Adding to the previous record number of global shark/human interactions in 2015 were 10 confirmed cases of people bitten by sharks off the shores of North Carolina and South Carolina over a five week period in June and July of 2015. The unusually high amount of attacks within close proximity over a short period of time garnered significant media attention nationwide. Preliminary data resulting from the analysis of these 2015 shark attacks and separate acoustic shark location data from Dr. Gregory Skomal's (Program Manager, Senior Marine Fisheries Biologist for the state of Massachusetts) ongoing research across Cape Code do indicate a correlation between environmental and biological factors leading up to human/shark interactions. Not only will these preliminary findings be presented, but a full description of how the use of higher resolution remote sensing and in-situ surface wind and thermal measurements would improve real time detection and prediction of these dangerous conditions, up to hours in advance, mitigating human risk and interaction with shark.

  14. Understanding Aero-Fractures using optics and acoustics

    Science.gov (United States)

    Turkaya, Semih; Toussaint, Renaud; Kvalheim Eriksen, Fredrik; Zecevic, Megan; Daniel, Guillaume; Grude Flekkøy, Eirik; Jørgen Måløy, Knut

    2016-04-01

    exponent p value around 0.5. An analytical model of overpressure diffusion predicting p = 0.5 and two other free parameters of the Omori Law (prefactor and origin time) is developed. The spatial density of the seismic events, and the time of end of formation of the channels can also be predicted using this developed model. Using direct simulations of acoustic emissions due to the air vibration in opening fractal cavities, the evolution in the power spectrum is investigated. 1. Turkaya S, Toussaint R, Eriksen FK, Zecevic M, Daniel G, Flekkøy EG, Måløy KJ. "Bridging aero-fracture evolution with the characteristics of the acoustic emissions in a porous medium." Front. Phys.3:70. 2015 doi: 10.3389/fphy.2015.00070

  15. Aero-acoustic performance of Fractal Spoilers

    Science.gov (United States)

    Nedic, J.; Ganapathisubramani, B.; Vassilicos, C.; Boree, J.; Brizzi, L.; Spohn, A.

    2010-11-01

    One of the major environmental problems facing the aviation industry is that of aircraft noise. The work presented in this paper, done as part of the OPENAIR Project, looks at reducing spoiler noise through means of large-scale fractal porosity. It is hypothesised that the highly turbulent flow generated by these grids, which have multi-length-scales, would remove the re-circulation region and with it, the low frequency noise it generates. In its place, a higher frequency noise is introduced which is susceptible to atmospheric attenuation, and would be deemed less offensive to the human ear. A total of nine laboratory scaled spoilers were looked at, seven of which had a fractal design, one conventionally porous and one solid for reference. All of the spoilers were mounted on a flat plate and inclined at 30^o to the horizontal. Far-field, microphone array and PIV measurements were taken in an anechoic chamber to determine the acoustic performance and to study the flow coming through the spoilers. A significant reduction in sound pressure level is recorded and is found to be very sensitive to small changes in fractal grid parameters. Wake and drag force measurements indicated that the spoilers increase the drag whilst having minimal effect on the lift.

  16. Optimization of the Deposition Parameters of HVOF FeMnCrSi+Ni+B Thermally Sprayed Coatings

    Directory of Open Access Journals (Sweden)

    Gustavo Bavaresco Sucharski

    2015-06-01

    Full Text Available AbstractHVOF thermal spray process produces coatings with low porosity and low oxide content, as well as high substrate adhesion. Small variations on the parameters of the HVOF process can generate coatings with different characteristics and properties, which also is chemical composition depended of the alloy. FeMnCrSi alloy is a cavitation resistant class of material with a great potential for HVOF deposition use. The main goal of this article is to study the influence of some HVOF parameters deposition, as standoff distance, powder feed rate and carrier gas pressure on three different alloys. FeMnCrSi experimental alloys with some variations in nickel and boron content were studied. Taguchi experimental design with L9 orthogonal array was used in this work. Porosity, oxide content, tensile adhesion strength and microhardness of the coatings were evaluated. The results indicated that all factors have significant influence on these properties. Chemical composition of the alloys was the most important factor, followed by the carrier gas pressure, standoff distance and powder feed rate. The addition of Ni, produces coatings with lower levels of oxide content and porosity. An experiment with improved parameters was conducted, and a great improvement on the coating properties was observed.

  17. Parameter optimization and evaluation of mechanical and thermal properties of nanographene reinforced Al 6060 surface composite using FSP

    Science.gov (United States)

    Kalyanamanohar, V.; Appalachari, D. Gireesh Chandra

    2018-04-01

    Friction stir processing (FSP) is emerging as a promising technique for making surface composites. FSP can improve surface properties such as hardness, strength, ductility, corrosion resistance, fatigue life and formability without affecting the bulk properties of the material. The literatures reported that FSP can produces very fine equiaxed and homogeneous grain structure for different Al alloys. Al 6060 is heat treatable alloy which has high thermal and electrical properties than remaining Al alloys. Al 6060 is being used where high rate of heat exchange is needed i.e. engine cylinders, heat exchangers etc. As derived from the carbon materials, like graphene and CNTs dissipates heat rapidly that improves the life of the engine cylinders and heat exchangers. In this work, nanographene is reinforced in the Al 6060 using friction stir processing at different rotational speeds, traverse speeds, and at constant load and tool tilt angle. After processed, the effect of process parameters on microstructure of the surface composite was investigated. The SEM studies shows that the FSP produces very fine and homogenous grain structure and it is observed that smaller grain size structure is obtained at lower traverse speed and higher rotational speeds. Significant improvement in ultimate tensile strength(22.9%) and hardness (22.44%) when compared friction stir processed plate at 1400 rotational speed and 20mm/min traverse speed with base Al 6060 plate. Coefficient of thermal expansion test of nanographene reinforced Al 6060 shows 7.33% decrease in its coefficient of thermal expansion as graphene has tendency to reduce the anisotropic nature.

  18. AeroVironment technician checks a Helios solar cell panel

    Science.gov (United States)

    2000-01-01

    A technician at AeroVironment's Design Development Center in Simi Valley, California, checks a panel of silicon solar cells for conductivity and voltage. The bi-facial cells, fabricated by SunPower, Inc., of Sunnyvale, California, are among 64,000 solar cells which have been installed on the Helios Prototype solar-powered aircraft to provide power to its 14 electric motors and operating systems. Developed by AeroVironment under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the Helios Prototype is the forerunner of a planned fleet of slow-flying, long duration, high-altitude aircraft which can perform atmospheric science missions and serve as telecommunications relay platforms in the stratosphere. Target goals set by NASA for the giant 246-foot span flying wing include reaching and sustaining subsonic horizontal flight at 100,000 feet altitude in 2001, and sustained continuous flight for at least four days and nights above 50,000 feet altitude with the aid of a regenerative fuel cell-based energy storage system now under development in 2003.

  19. Spectral Behavior of Weakly Compressible Aero-Optical Distortions

    Science.gov (United States)

    Mathews, Edwin; Wang, Kan; Wang, Meng; Jumper, Eric

    2016-11-01

    In classical theories of optical distortions by atmospheric turbulence, an appropriate and key assumption is that index-of-refraction variations are dominated by fluctuations in temperature and the effects of turbulent pressure fluctuations are negligible. This assumption is, however, not generally valid for aero-optical distortions caused by turbulent flow over an optical aperture, where both temperature and pressures fluctuations may contribute significantly to the index-of-refraction fluctuations. A general expression for weak fluctuations in refractive index is derived using the ideal gas law and Gladstone-Dale relation and applied to describe the spectral behavior of aero-optical distortions. Large-eddy simulations of weakly compressible, temporally evolving shear layers are then used to verify the theoretical results. Computational results support theoretical findings and confirm that if the log slope of the 1-D density spectrum in the inertial range is -mρ , the optical phase distortion spectral slope is given by - (mρ + 1) . The value of mρ is then shown to be dependent on the ratio of shear-layer free-stream densities and bounded by the spectral slopes of temperature and pressure fluctuations. Supported by HEL-JTO through AFOSR Grant FA9550-13-1-0001 and Blue Waters Graduate Fellowship Program.

  20. Effects of plasma jet parameters, ionization, thermal conduction, and radiation on stagnation conditions of an imploding plasma liner

    Science.gov (United States)

    Stanic, Milos

    The disciplines of High Energy Density Physics (HEDP) and Inertial Confinement Fusion (ICF) are characterized by hypervelocity implosions and strong shocks. The Plasma Liner Experiment (PLX) is focused on reaching HEDP and/or ICF relevant regimes in excess of 1 Mbar peak pressure by the merging and implosion of discrete plasma jets, as a potentially efficient path towards these extreme conditions in a laboratory. In this work we have presented the first 3D simulations of plasma liner, formation, and implosion by the merging of discrete plasma jets in which ionization, thermal conduction, and radiation are all included in the physics model. The study was conducted by utilizing a smoothed particle hydrodynamics code (SPHC) and was a part of the plasma liner experiment (PLX). The salient physics processes of liner formation and implosion are studied, namely vacuum propagation of plasma jets, merging of the jets (liner forming), implosion (liner collapsing), stagnation (peak pressure), and expansion (rarefaction wave disassembling the target). Radiative transport was found to significantly reduce the temperature of the liner during implosion, thus reducing the thermal expansion rates and leaving more pronounced gradients in the plasma liner during the implosion compared with ideal hydrodynamic simulations. These pronounced gradients lead to a greater sensitivity of initial jet geometry and symmetry on peak pressures obtained. Accounting for ionization and transport, many cases gave higher peak pressures than the ideal hydrodynamic simulations. Scaling laws were developed accordingly, creating a non-dimensional parameter space in which performance of an imploding plasma jet liner can be estimated. It is shown that HEDP regimes could be reached with ≈ 5 MJ of liner energy, which would translate to roughly 10 to 20 MJ of stored (capacitor) energy. This is a potentially significant improvement over the currently available means via ICF of achieving HEDP and nuclear

  1. Investigating Electrostatic Precipitator Design Parameters for Efficient Control of Particulate Matter in Thermal Power Plant: A Case Study

    Science.gov (United States)

    Rai, P.; Gautam, N.; Chandra, H.

    2018-02-01

    This work deals with the analysis and modification of operational parameters for meeting the emission standards, set by Central Pollution Control Board (CPCB)/State Pollution Control Board (SPCB) from time to time of electrostatic precipitator (ESP). The analysis is carried out by using standard chemical analysis supplemented by the relevant data collected from Korba East Phase (Ph)-III thermal power plant, under Chhattisgarh State Electricity Board (CSEB) operating at Korba, Chhattisgarh. Chemical analysis is used to predict the emission level for different parameters of ESP. The results reveal that for a constant outlet PM concentration and fly ash percentage, the total collection area decreases with the increase in migration velocity. For constant migration velocity and outlet PM concentration, the total collection area increases with the increase in the fly ash percent. For constant migration velocity and outlet e PM concentration, the total collection area increases with the ash content in the coal. i.e. from minimum ash to maximum ash. As far as the efficiency is concerned, it increases with the fly ash percent, ash content and the inlet dust concentration but decreases with the outlet PM concentration at constant migration velocity, fly ash and ash content.

  2. Investigating Electrostatic Precipitator Design Parameters for Efficient Control of Particulate Matter in Thermal Power Plant: A Case Study

    Science.gov (United States)

    Rai, P.; Gautam, N.; Chandra, H.

    2018-06-01

    This work deals with the analysis and modification of operational parameters for meeting the emission standards, set by Central Pollution Control Board (CPCB)/State Pollution Control Board (SPCB) from time to time of electrostatic precipitator (ESP). The analysis is carried out by using standard chemical analysis supplemented by the relevant data collected from Korba East Phase (Ph)-III thermal power plant, under Chhattisgarh State Electricity Board (CSEB) operating at Korba, Chhattisgarh. Chemical analysis is used to predict the emission level for different parameters of ESP. The results reveal that for a constant outlet PM concentration and fly ash percentage, the total collection area decreases with the increase in migration velocity. For constant migration velocity and outlet PM concentration, the total collection area increases with the increase in the fly ash percent. For constant migration velocity and outlet e PM concentration, the total collection area increases with the ash content in the coal. i.e. from minimum ash to maximum ash. As far as the efficiency is concerned, it increases with the fly ash percent, ash content and the inlet dust concentration but decreases with the outlet PM concentration at constant migration velocity, fly ash and ash content.

  3. Predictable anomalies of process parameters on failure mode of internal structures in RPV by transient thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Maki, Akira; Mori, Michitsugu; Kanemoto, Shigeru; Konishi, Hideo

    1997-01-01

    A study has been conducted to evaluate how process parameters will exhibit the change in the event of the troubles related to reactor internal by using transient thermal-hydraulic analysis codes (RETRAN3D-MOD002, etc.). In the present study, the following six events are analytically investigated: 1) a leak from the upper plenum; 2) a leak from the middle part of a shroud; 3) a leak from the lower plenum; 4) a leak from the riser pipe for the jet-pump; 5) the blockage of the jet-pump nozzle; and 6) a leak from the jet-pump diffuser. The results by analyses indicated that the leak from the upper plenum resulted in increasing in the inlet temperature of primary loop recirculation (PLR) and in the differential pressure at the core support plate, and decreasing in the neutron flux (reactor power). Similar analyses were made for the five other events to identify the pattern of relevant process parameter variation in each event. (author)

  4. Predicting Cavitation on Marine and Hydrokinetic Turbine Blades with AeroDyn V15.04

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Robynne [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-14

    Cavitation is an important consideration in the design of marine and hydrokinetic (MHK) turbines. The National Renewable Energy Laboratory's AeroDyn performance code was originally developed for horizontal-axis wind turbines and did not have the capability to predict cavitation inception. Therefore, AeroDyn has been updated to include the ability to predict cavitation on MHK turbines based on user-specified vapor pressure and submerged depth. This report outlines a verification of the AeroDyn V15.04 performance code for MHK turbines through a comparison to publicly available performance data.

  5. Junction temperature measurements via thermo-sensitive electrical parameters and their application to condition monitoring and active thermal control of power converters

    DEFF Research Database (Denmark)

    Baker, Nick; Liserre, Marco; Dupont, L.

    2013-01-01

    implementation of active thermal control to reduce losses and increase lifetime can be performed given an accurate knowledge of temperature. Temperature measurements via thermo-sensitive electrical parameters (TSEP) are one way to carry out immediate temperature readings on fully packaged devices. However...... scale implementation of these methods are discussed. Their potential use in the aforementioned goals in condition monitoring and active thermal control is also described....

  6. Impact of seasonal thermal stress on physiological and blood biochemical parameters in pigs under different dietary energy levels.

    Science.gov (United States)

    Pathak, P K; Roychoudhury, R; Saharia, J; Borah, M C; Dutta, D J; Bhuyan, R; Kalita, D

    2018-06-01

    The present study was formulated to find out the status of important season related thermal stress biomarkers of pure-bred (Hampshire) and crossbred (50% Hampshire × 50% local) pigs under the agro-climatic condition of Assam State, India. The experiment was also aimed to study the role of different level of energy ration (110, 100, and 90% energy of NRC feeding standard for pig) in variation of physiological and biochemical parameters in two genetic groups of pigs in different seasons. The metabolizable energy value were 3260, 2936.5, and 3585.8 kcal/kg in grower ration and 3260.2, 2936.6, and 3587 kcal/kg in finisher ration for normal energy (NE), low energy (LE) and high energy (HE), respectively. Both the genetic group of animals were housed separately under intensive system of management. Each pen was measuring 10' × 12' along with an outer enclosure. Six weaned piglets (almost similar body weight of average 10.55 kg) of each group were kept in a separate pen. However, after attainment of 35 kg body weight, the animals of a group were divided in two pens of three animals each. The present experiment indicated that average ambient temperature during summer months (27.33-29.51 °C) was above the comfort zone for pigs (22 °C). The significantly (P energy (HE) ration during summer season. Serum triiodothyronine (T 3 ) and thyroxine (T 4 ) concentrations were significantly (P energy level of the ration might be helpful to minimize the effects of thermal stress during summer.

  7. Surface integrity of GH4169 affected by cantilever finish grinding and the application in aero-engine blades

    Directory of Open Access Journals (Sweden)

    Li Xun

    2015-10-01

    Full Text Available GH4169 is the main material for aero-engine blades and integrated blisks. Because GH4169 has a poor milling performance, the profile precision and surface integrity of blades and integrated blisks are difficult to be met by utilizing the conventional milling process, which directly influence the global performance and reliability of aero-engines. Through grinding experiments on parameters and surface integrity optimization, the helical cantilever grinding process utilizing a 300# CBN RB wheel is presented and applied in finish machining of GH4169 blades. The profile errors of the blade surface are within ±0.01 mm, the roughness is less than 0.4 μm, the residual compressive stresses and the hardening rate are appropriate, there are no phenomena of burr and smearing with the grinding chips, and the leading/trailing edge can be smoothly connected with the suction/pressure surface. All the experimental results indicate that this grinding process is greatly suitable for the profile finish machining of GH4169 blades.

  8. Cancer chemotherapy of the upper aero digestive tract

    International Nuclear Information System (INIS)

    Vedrine, L.; Chargari, C.; Le Moulec, S.; Fayolle, M.; Ceccaldi, B.; Bauduceau, O.

    2008-01-01

    Tumours of the upper aero digestive tract represent the sixth most frequent kind of cancer in France and throughout the world. If the localised forms may be controlled in the long run in two thirds of cases by surgery or radiotherapy, only one third of locally advanced forms are accessible to a cure after association from radiotherapy and chemotherapy. Besides, with a median of survival less than six months, metastatic tumours present a catastrophic spontaneous prognosis among patients with a medical ground that is often heavily deteriorated by prolonged exposure to alcohol and tobacco. Thus, there is a necessity to implement adapted therapeutic strategies to each patient and based on satisfactory proof levels of effectiveness. Optimisation of existing chemotherapy protocols and development of new therapies, in particular of targeted therapies, remain an important objective in the hope to improve results of treatments in locally advanced and metastatic cancers of the oral cavity. (authors)

  9. Simulating Global AeroMACS Airport Ground Station Antenna Power Transmission Limits to Avoid Interference With Mobile Satellite Service Feeder Uplinks

    Science.gov (United States)

    Wilson, Jeffrey D.

    2013-01-01

    The Aeronautical Mobile Airport Communications System (AeroMACS), which is based upon the IEEE 802.16e mobile wireless standard, is expected to be implemented in the 5091 to 5150 MHz frequency band. As this band is also occupied by Mobile Satellite Service feeder uplinks, AeroMACS must be designed to avoid interference with this incumbent service. The aspects of AeroMACS operation that present potential interference are under analysis in order to enable the definition of standards that assure that such interference will be avoided. In this study, the cumulative interference power distribution at low Earth orbit from transmitters at global airports was simulated with the Visualyse Professional software. The dependence of the interference power on antenna distribution, gain patterns, duty cycle, and antenna tilt was simulated. As a function of these parameters, the simulation results are presented in terms of the limitations on transmitter power from global airports required to maintain the cumulative interference power under the established threshold.

  10. Uncertainty of measurement for large product verification: evaluation of large aero gas turbine engine datums

    International Nuclear Information System (INIS)

    Muelaner, J E; Wang, Z; Keogh, P S; Brownell, J; Fisher, D

    2016-01-01

    Understanding the uncertainty of dimensional measurements for large products such as aircraft, spacecraft and wind turbines is fundamental to improving efficiency in these products. Much work has been done to ascertain the uncertainty associated with the main types of instruments used, based on laser tracking and photogrammetry, and the propagation of this uncertainty through networked measurements. Unfortunately this is not sufficient to understand the combined uncertainty of industrial measurements, which include secondary tooling and datum structures used to locate the coordinate frame. This paper presents for the first time a complete evaluation of the uncertainty of large scale industrial measurement processes. Generic analysis and design rules are proven through uncertainty evaluation and optimization for the measurement of a large aero gas turbine engine. This shows how the instrument uncertainty can be considered to be negligible. Before optimization the dominant source of uncertainty was the tooling design, after optimization the dominant source was thermal expansion of the engine; meaning that no further improvement can be made without measurement in a temperature controlled environment. These results will have a significant impact on the ability of aircraft and wind turbines to improve efficiency and therefore reduce carbon emissions, as well as the improved reliability of these products. (paper)

  11. Implicit Treatment of Technical Specification and Thermal Hydraulic Parameter Uncertainties in Gaussian Process Model to Estimate Safety Margin

    Directory of Open Access Journals (Sweden)

    Douglas A. Fynan

    2016-06-01

    Full Text Available The Gaussian process model (GPM is a flexible surrogate model that can be used for nonparametric regression for multivariate problems. A unique feature of the GPM is that a prediction variance is automatically provided with the regression function. In this paper, we estimate the safety margin of a nuclear power plant by performing regression on the output of best-estimate simulations of a large-break loss-of-coolant accident with sampling of safety system configuration, sequence timing, technical specifications, and thermal hydraulic parameter uncertainties. The key aspect of our approach is that the GPM regression is only performed on the dominant input variables, the safety injection flow rate and the delay time for AC powered pumps to start representing sequence timing uncertainty, providing a predictive model for the peak clad temperature during a reflood phase. Other uncertainties are interpreted as contributors to the measurement noise of the code output and are implicitly treated in the GPM in the noise variance term, providing local uncertainty bounds for the peak clad temperature. We discuss the applicability of the foregoing method to reduce the use of conservative assumptions in best estimate plus uncertainty (BEPU and Level 1 probabilistic safety assessment (PSA success criteria definitions while dealing with a large number of uncertainties.

  12. Effect of substrate temperature on the optical parameters of thermally evaporated Ge-Se-Te thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Pankaj, E-mail: pks_phy@yahoo.co.i [Department of Physics, Jaypee University of Information Technology, Waknaghat, Solan, H.P. 173215 India (India); Katyal, S.C. [Department of Physics, Jaypee University of Information Technology, Waknaghat, Solan, H.P. 173215 India (India)

    2009-05-01

    Thin films of Ge{sub 10}Se{sub 90-x}Te{sub x} (x = 0, 10, 20, 30, 40, 50) glassy alloys were deposited at three substrate temperatures (303 K, 363 K and 423 K) using conventional thermal evaporation technique at base pressure of {approx} 10{sup -4} Pa. X-ray diffraction results show that films deposited at 303 K are of amorphous nature while films deposited at 363 K and 423 K are of polycrystalline nature. The optical parameters, refractive index and optical gap have been derived from the transmission spectra (using UV-Vis-NIR spectrophotometer) of the thin films in the spectral region 400-1500 nm. This has been observed that refractive index values remain almost constant while the optical gap is found to decrease considerably with the increase of substrate temperature. The decrease in optical gap is explained on the basis of change in nature of films, from amorphous to polycrystalline state, with the increase of substrate temperature. The optical gap has also been observed to decrease with the increase of Te content.

  13. Influence of compositions on thermal stability and thermodynamic parameter in Ca-Mg-Cu bulk metallic glasses

    Science.gov (United States)

    Deshmukh, A. A.; Khond, A. A.; Palikundwar, U. A.

    2018-05-01

    In the present manuscript, influence of compositions on thermal stability (ΔTx) and thermodynamic parameter PHSS of Ca-Mg-Cu bulk metallic glasses (BMGs) is evaluated. The statistical approach of regression analysis is adopted to investigate the compositional variation with ΔTx and PHSS. It is found that calcium (Ca) and copper (Cu) content has goodlinear relationship with ΔTx and PHSS. It is observed that with increase in Ca content, ΔTx and PHSS decreases. On the other hand, increase in Cu content, both ΔTx and PHSS increases. Correlation fit of magnesium (Mg) content with both ΔTx and PHSS is very poor. A graph is also plotted to understand the relationship between ΔTx and PHSS. Result of the relationship between ΔTx and PHSS reveals that the alloy composition having more negative value of PHSS will have more stability. Therefore, compositions with more negative value of PHSS will lead to ease of BMGs formation in Ca-Mg-Cu alloy system and hence more stable it will be. It is expected that these results will be supportive in identifying the compositions having these elements for making BMGs.

  14. Grüneisen Parameter and Thermal Expansion by the Self-Consistent Renormalization Theory of Spin Fluctuations

    Science.gov (United States)

    Watanabe, Shinji; Miyake, Kazumasa

    2018-03-01

    The thermal expansion coefficient α and the Grüneisen parameter Γ near the magnetic quantum critical point (QCP) are derived on the basis of the self-consistent renormalization (SCR) theory of spin fluctuations. From the SCR entropy, the specific heat CV, α, and Γ are shown to be expressed in a simple form as CV = Ca - Cb, α = αa + αb, and Γ = Γa + Γb, respectively, where Ci, αi, and Γi (i = a, b) are related with each other. As the temperature T decreases, Ca, αb, and Γb become dominant in CV, α, and Γ, respectively. The inverse susceptibility of spin fluctuation coupled to the volume V in Γb is found to give rise to the divergence of Γ at the QCP for each class of ferromagnetism and antiferromagnetism (AFM) in spatial dimensions d = 3 and 2. This V-dependent inverse susceptibility in αb and Γb contributes to the T dependences of α and Γ, and even affects their criticality in the case of the AFM QCP in d = 2. Γa is expressed as Γ a(T = 0) = - V/T0( {partial T0}/{partial V} )T = 0 with T0 being the characteristic temperature of spin fluctuation, which has an enhanced value in heavy electron systems.

  15. An increase of structural order parameter in Fe endash Co endash V soft magnetic alloy after thermal aging

    International Nuclear Information System (INIS)

    Zhu, Q.; Li, L.; Masteller, M.S.; Del Corso, G.J.

    1996-01-01

    Alloys of Fe 49 Co 49 V 2 (Hiperco Alloy 50) (Hiperco is a registered trademark of CRS Holdings, Inc.), both annealed and thermally aged, were studied using anomalous synchrotron x-ray and neutron powder diffraction. Rietveld and diffraction profile analysis indicated both an increase in the structural order parameter and a small lattice expansion (∼0.0004 A) after aging at 450 degree C for 200 h. In addition, a cubic minority phase (<0.3%) was identified in the open-quote open-quote annealed close-quote close-quote sample, which increased noticeably (0.3%→0.8%) as a result of aging. The presence of antiphase domain boundaries in the alloys was also revealed. These results directly correlate with the observed changes in the magnetization behavior and challenge the notion that a open-quote open-quote fully close-quote close-quote ordered Fe endash Co alloy demonstrates optimum soft magnetic properties. copyright 1996 American Institute of Physics

  16. Effect of high-pressure processing and thermal pasteurization on overall quality parameters of white grape juice.

    Science.gov (United States)

    Chang, Yin-Hsuan; Wu, Sz-Jie; Chen, Bang-Yuan; Huang, Hsiao-Wen; Wang, Chung-Yi

    2017-08-01

    The aim of this study was to investigate the microbial levels, physicochemical and antioxidant properties and polyphenol oxidase (PPO) and peroxidase (POD) activities as well as to conduct a sensory analysis of white grape juice treated with high-pressure processing (HPP) and thermal pasteurization (TP), over a period of 20 days of refrigerated storage. HPP treatment of 600 MPa and TP significantly reduced aerobic bacteria, coliform and yeast/mold counts. At day 20 of storage, HPP-600 juice displayed no significant differences compared with fresh juice in terms of physicochemical properties such as titratable acidity, pH and soluble solids, and retained less than 50% PPO and POD activities. Although significant differences were observed in the color, antioxidant contents and antioxidant capacity of HPP-treated juice, the extent of these differences was substantially lower than that in TP-treated juice, indicating that HPP treatment can better retain the quality of grape juice. Sensory testing showed no significant difference between HPP-treated juice and fresh juice, while TP reduced the acceptance of grape juice. This study shows that HPP treatment maintained the overall quality parameters of white grape juice, thus effectively extending the shelf life during refrigerated storage. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. Marketingový mix volejbalového klubu Aero Odolena Voda

    OpenAIRE

    Hons, Michal

    2013-01-01

    Title: Volleyball club Aero Odolena Voda marketing mix analysis Targets: To perform an overall evaluation of the current Aero Odolena Voda marketing mix, using SWOT analysis bring strenghts and weaknesses to light. Based on this analysis suggest possible modification that would lead to a better marketing mix. Methods: Using qualitative methods such as interview, alongside with quantitative methods such as questioning, SWOT analysis and using secundary dates. Results: The specific modification...

  18. A SERIES OF UNCOMMON FOREIGN BODIES PRESENTING IN THE AERO-DIGESTIVE TRACT

    Directory of Open Access Journals (Sweden)

    Jitendra Singh

    2016-02-01

    Full Text Available Foreign body impacted in the aero-digestive tract is one of the earliest reported problems. Coins, buttons, marbles, crayons, parts of toys etc. are the most commonly ingested foreign bodies in children. Fish, meat and chicken bones, dentures, nails etc.the most common foreign bodies ingested by adultsWe report a series of unusual foreign body ingestion in aero-digestive tract and their management by endoscopic retrieval.

  19. Thermal Orbital Environmental Parameter Study on the Propulsive Small Expendable Deployer System (ProSEDS) Using Earth Radiation Budget Experiment (ERBE) Data

    Science.gov (United States)

    Sharp, John R.; McConnaughey, Paul K. (Technical Monitor)

    2002-01-01

    The natural thermal environmental parameters used on the Space Station Program (SSP 30425) were generated by the Space Environmental Effects Branch at NASA's Marshall Space Flight Center (MSFC) utilizing extensive data from the Earth Radiation Budget Experiment (ERBE), a series of satellites which measured low earth orbit (LEO) albedo and outgoing long-wave radiation. Later, this temporal data was presented as a function of averaging times and orbital inclination for use by thermal engineers in NASA Technical Memorandum TM 4527. The data was not presented in a fashion readily usable by thermal engineering modeling tools and required knowledge of the thermal time constants and infrared versus solar spectrum sensitivity of the hardware being analyzed to be used properly. Another TM was recently issued as a guideline for utilizing these environments (NASA/TM-2001-211221) with more insight into the utilization by thermal analysts. This paper gives a top-level overview of the environmental parameters presented in the TM and a study of the effects of implementing these environments on an ongoing MSFC project, the Propulsive Small Expendable Deployer System (ProSEDS), compared to conventional orbital parameters that had been historically used.

  20. Effect of primary and secondary parameters on analytical estimation of effective thermal conductivity of two phase materials using unit cell approach

    Science.gov (United States)

    S, Chidambara Raja; P, Karthikeyan; Kumaraswamidhas, L. A.; M, Ramu

    2018-05-01

    Most of the thermal design systems involve two phase materials and analysis of such systems requires detailed understanding of the thermal characteristics of the two phase material. This article aimed to develop geometry dependent unit cell approach model by considering the effects of all primary parameters (conductivity ratio and concentration) and secondary parameters (geometry, contact resistance, natural convection, Knudsen and radiation) for the estimation of effective thermal conductivity of two-phase materials. The analytical equations have been formulated based on isotherm approach for 2-D and 3-D spatially periodic medium. The developed models are validated with standard models and suited for all kind of operating conditions. The results have shown substantial improvement compared to the existing models and are in good agreement with the experimental data.

  1. Study of the decomposition of phase stabilized ammonium nitrate (PSAN) by simultaneous thermal analysis: determination of kinetic parameters

    OpenAIRE

    Simões, P. N.; Pedroso, L. M.; Portugal, A. A.; Campos, J. L.

    1998-01-01

    Ammonium nitrate (AN) has been extensively used both in explosive and propellant formulations. Unlike AN, there is a lack of information about the thermal decomposition and related kinetic analysis of phase stabilized ammonium nitrate (PSAN). Simultaneous thermal analysis (DSC-TG) has been used in the thermal characterisation of a specific type of PSAN containing 1.0% of NiO (stabilizing agent) and 0.5% of Petro (anti-caking agent) as additives. Repeated runs covering the nominal heating rate...

  2. Development of neutronic models for the thermal hydraulics coupling of the MSFR and the calculation of effective kinetic parameters

    International Nuclear Information System (INIS)

    Laureau, Axel

    2015-01-01

    In this PhD thesis, we describe the development of innovative neutronic models for their coupling with thermal hydraulics such that they combine precision and reasonable computational times. One of the main cases where this method is applied is the Molten Salt Fast Reactor (MSFR) whose combines a fast neutron spectrum with a thorium cycle. In this fourth generation reactor, the motion of the delayed neutron precursors and the associated phenomena have to be taken into account due to the liquid fuel circulation. The starting point for these developments was the preliminary design of this type of system where a dedicated multi-physical representation was needed to study the reactor performance in steady and transient conditions. As a first step, a stationary coupling was developed. A neutronic model based on a stochastic approach was associated to a CFD (Computational Fluid Dynamics) code to solve the Navier Stokes equations for turbulent flows and the transport of the delayed neutron precursors. The impact of this precursor motion is taken into account by reconstructing the prompt shower that they generate. This approach, called by shower, views the critical reactor as a prompt subcritical reactor that amplifies a source of delayed neutrons. A second step consisted in developing a neutronic model based on a time dependent version of the fission matrices (Transient Fission Matrix or TFM) so as to enable reactor transient studies. With the TFM model, an initial computation of the matrices with a stochastic code (MCNP, SERPENT) allows the characterization of the global spatial and time dependent neutronic response of the reactor with a precision close to that of a Monte Carlo calculation. The information thus obtained is then used to calculate transients, while retaining the advantage of reduced computational time. The TFM model, which can be used for various system concepts, also allows the evaluation of effective kinetic parameters such as the effective fraction of

  3. Interconnection of thermal parameters, microstructure and mechanical properties in directionally solidified Sn–Sb lead-free solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Marcelino; Costa, Thiago [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil); Rocha, Otávio [Federal Institute of Education, Science and Technology of Pará — IFPA, 66093-020 Belém, PA (Brazil); Spinelli, José E. [Department of Materials Engineering, Federal University of São Carlos — UFSCar, 13565-905 São Carlos, SP (Brazil); Cheung, Noé, E-mail: cheung@fem.unicamp.br [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil); Garcia, Amauri [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil)

    2015-08-15

    Considerable effort is being made to develop lead-free solders for assembling in environmental-conscious electronics, due to the inherent toxicity of Pb. The search for substitute alloys of Pb–Sn solders has increased in order to comply with different soldering purposes. The solder must not only meet the expected levels of electrical performance but may also have appropriate mechanical strength, with the absence of cracks in the solder joints. The Sn–Sb alloy system has a range of compositions that can be potentially included in the class of high temperature solders. This study aims to establish interrelations of solidification thermal parameters, microstructure and mechanical properties of Sn–Sb alloys (2 wt.%Sb and 5.5 wt.%Sb) samples, which were directionally solidified under cooling rates similar to those of reflow procedures in industrial practice. A complete high-cooling rate cellular growth is shown to be associated with the Sn–2.0 wt.%Sb alloy and a reverse dendrite-to-cell transition is observed for the Sn–5.5 wt.%Sb alloy. Strength and ductility of the Sn–2.0 wt.%Sb alloy are shown not to be affected by the cellular spacing. On the other hand, a considerable variation in these properties is associated with the cellular region of the Sn–5.5 wt.%Sb alloy casting. - Graphical abstract: Display Omitted - Highlights: • The microstructure of the Sn–2 wt.%Sb alloy is characterized by high-cooling rates cells. • Reverse dendrite > cell transition occurs for Sn–5.5 wt.%Sb alloy: cells prevail for cooling rates > 1.2 K/s. • Sn–5.5 wt.%Sb alloy: the dendritic region occurs for cooling rates < 0.9 K/s. • Sn–5.5 wt.%Sb alloy: tensile properties are improved with decreasing cellular spacing.

  4. Pyrolysis characteristics and kinetic parameters determination of biomass fuel powders by differential thermal gravimetric analysis (TGA/DTG)

    International Nuclear Information System (INIS)

    El-Sayed, Saad A.; Mostafa, M.E.

    2014-01-01

    Highlights: • The sugarcane bagasse powder has better energy value compared to the cotton stalks. • Bagasse moisture is entrained in its cell walls and its evaporation needs more energy. • The cotton stalks is more reactive and readily combustible than the bagasse powders. • A lower E and A 0 has been found for bagasse compared with cotton stalks powders. • Calculated E of bagasse and cotton stalks by direct and integral methods are different. - Abstract: The kinetics of the thermal decomposition of the two biomass materials (sugarcane bagasse and cotton stalks powders) were evaluated using a differential thermo-gravimetric analyzer under a non-isothermal condition. Two distinct reaction zones were observed for the two biomasses. The direct Arrhenius plot method and the integral method were applied for determination of kinetic parameters: activation energy, pre-exponential factor, and order of reaction. The weight loss curve showed that pyrolysis of sugarcane bagasse and cotton stalks took place mainly in the range of 200–500 °C. The activation energy of the sugarcane bagasse powder obtained by the direct Arrhenius plot method ranged between 43 and 53.5 kJ/mol. On the other side, the integral method shows larger values of activation energy (77–87.7 kJ/mol). The activation energy of the cotton stalks powder obtained by the direct Arrhenius plot method was ranged between 98.5 and 100.2 kJ/mol, but the integral method shows larger values of activation energy (72.5–127.8 kJ/mol)

  5. Dynamic behavior of aero-engine rotor with fusing design suffering blade off

    Directory of Open Access Journals (Sweden)

    Cun WANG

    2017-06-01

    Full Text Available Fan blade off (FBO from a running turbofan rotor will introduce sudden unbalance into the dynamical system, which will lead to the rub-impact, the asymmetry of rotor and a series of interesting dynamic behavior. The paper first presents a theoretical study on the response excited by sudden unbalance. The results reveal that the reaction force of the bearing located near the fan could always reach a very high value which may lead to the crush of ball, journal sticking, high stress on the other components and some other failures to endanger the safety of engine in FBO event. Therefore, the dynamic influence of a safety design named “fusing” is investigated by mechanism analysis. Meantime, an explicit FBO model is established to simulate the FBO event, and evaluate the effectiveness and potential dynamic influence of fusing design. The results show that the fusing design could reduce the vibration amplitude of rotor, the reaction force on most bearings and loads on mounts, but the sudden change of support stiffness induced by fusing could produce an impact effect which will couple with the influence of sudden unbalance. Therefore, the implementation of the design should be considered carefully with optimized parameters in actual aero-engine.

  6. AEROS: a real-time emergency response system for atmospheric releases of toxic material

    International Nuclear Information System (INIS)

    Nasstrom, J.S.; Greenly, G.D.

    1986-01-01

    The Atmospheric Release Advisory Capability (ARAC) at the Lawrence Livermore National Laboratory has developed a sophisticated computer-based real-time emergency response system for radiotoxic releases into the atmosphere. The ARAC Emergency Response Operating System (AEROS) has a centralized computer facility linked to remote site computers, meteorological towers, and meteorological data sources. The system supports certain fixed sites, but has the ability to respond to accidents at arbitrary locations. Product quality and response time are optimized by using complex three-dimensional dispersion models; extensive on-line data bases; automated data processing; and an efficient user interface, employing graphical computer displays and computer-displayed forms. Upon notification, the system automatically initiates a response to an emergency and proceeds through preliminary calculations, automatically processing accident information, meteorological data, and model parameters. The model calculations incorporate mass-consistent three-dimensional wind fields, terrain effects, and particle-in-cell diffusion. Model products are color images of dose or deposition contours overlaid on a base map

  7. The DAN-AERO MW experiments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard Madsen, H.; Bak, C.; Schmidt Paulsen, U.; Gaunaa, M. (Risoe DTU, Roskilde (Denmark)); Fuglsang, P. (LM Glasfiber, Kolding (Denmark)); Romblad, J.; Olesen, N.A. (Vestas Wind Systems, Ringkoebing (Denmark)); Enevoldsen, P.; Laursen, J. (Siemens Wind Power, Ballerup (Denmark)); Jensen, Leo (DONG Energy, Fredericia (Denmark))

    2010-09-15

    This report describes the DAN-AERO MW experiments carried out within a collaborative, three years research project between Risoe DTU and the industrial partners LM Glasfiber, Siemens Wind Power, Vestas Wind Systems A/S and the utility company DONG Energy. The main objective of the project was to establish an experimental data base which can provide new insight into a number of fundamental aerodynamic and aero-acoustic issues, important for the design and operation of MW size turbines. The most important issue is the difference between airfoil characteristics measured under 2D, steady conditions in a wind tunnel and the unsteady 3D flow conditions on a rotor. The different transition characteristics might explain some of the differences between the 2D and 3D airfoil data and the experiments have been set up to provide data on this subject. The overall experimental approach has been to carry out a number of coordinated, innovative measurements on full scale MW size rotors as well as on airfoils for MW size turbines in wind tunnels. Shear and turbulence inflow characteristics were measured on a Siemens 3.6 MW turbine with a five hole pitot tube. Pressure and turbulent inflow characteristics were measured on a 2MW NM80 turbine with an 80 m rotor. One of the LM38.8 m blades on the rotor was replaced with a new LM38.8 m blade where instruments for surface pressure measurements at four radial sections were build into the blade during the blade production process. Additionally, the outmost section on the blade was further instrumented with around 50 microphones for high frequency surface pressure measurements. The surface pressure measurements have been correlated with inflow measurements from four five hole pitot tubes and two sensors for measuring the high frequency (50 Hz to10 kHz) contents of the inflow turbulence. In parallel, 2D wind tunnel measurements on common airfoils for wind turbine applications have been conducted in three different wind tunnels at Delft

  8. A contribution to the thermal and aero-dynamical modelling of the urban micro-climate. Analysis of the water and vegetation impact on the comfort conditions in outdoor spaces; Contribution a la modelisation thermo-aeraulique du microclimat urbain. Caracterisation de l'impact de l'eau et de la vegetation sur les conditions de confort en espaces exterieurs

    Energy Technology Data Exchange (ETDEWEB)

    Vinet, J.

    2000-11-01

    In summer, temperatures in cities may rise, thereby inducing the so-called 'urban heat island' and tremendous consequences on outdoor comfort, health risks, pollutant emission and energy consumption. Replacing vegetation and moist surfaces by concrete or asphalt may enhance these problems. Therefore, the aim of this thesis is to quantify the impact of vegetation and water on urban micro-climate and comfort through numerical modelling; In the first part, a scientific literature review considers various topics applied to our problem such as urban micro-climate, simulations, urbanism, urban forestry and outdoor thermal comfort. This information is relevant to define and interpret further numerical modelling. Numerical simulations based on the coupling of the SOLENE. thermal program and the N3S CFD code are proposed to model wind flow, air and surface temperatures. The theoretical principles, hypothesis and coupling methodology are presented here. This set of numerical tools is combined in order to help urban or landscape planners, architects and engineers, to analyse the impacts of different projects on micro-climate and on outdoor thermal comfort, under hot summer conditions. To illustrate this approach, an open space in Montpellier (southern France) called the 'Place du Millenaire' and designed by Ricardo Bofill is studied, considering various cases (no vegetation, actual vegetation and vegetation in 30 years). The comparative results demonstrate improvements of urban form, micro-climate and outdoor thermal comfort. (author)

  9. Resolving the influential parameters of thermal comfort perception amidst indoor-outdoor spatial transitions: Case study in a lecture room

    NARCIS (Netherlands)

    Derks, M.T.H.; Loomans, M.G.L.C.; Mishra, A.K.; Kort, H.S.M.

    2017-01-01

    Indoor to outdoor transitions have an undeniable impact on thermal perception of occupants and can impact their evaluation of a building. These aspects are often overlooked in thermal comfort standards. We address this gap using a mixed methods study, with students in undergraduate level classrooms

  10. Experimental investigation on aero-optics of supersonic turbulent boundary layers.

    Science.gov (United States)

    Ding, Haolin; Yi, Shihe; Zhu, Yangzhu; He, Lin

    2017-09-20

    Nanoparticle-based planar laser scattering was used to measure the density distribution of the supersonic (Ma=3.0) turbulent boundary layer and the optical path difference (OPD), which is quite crucial for aero-optics study. Results were obtained using ray tracing. The influences of different layers in the boundary layer, turbulence scales, and light incident angle on aero-optics were examined, and the underlying flow physics were analyzed. The inner layer plays a dominant role, followed by the outer layer. One hundred OPD rms of the outer layer at different times satisfy the normal distribution better than that of the inner layer. Aero-optics induced by the outer layer is sensitive to the filter scale. When induced by the inner layer, it is not sensitive to the filter scale. The vortices with scales less than the Kolmogorov scale (=46.0  μm) have little influence on the aero-optics and could be ignored; the validity of the smallest optically active scale (=88.1  μm) proposed by Mani is verified, and vortices with scales less than that are ignored, resulting in a 1.62% decay of aero-optics; the filter with a width of 16-grid spacing (=182.4  μm) decreases OPD rms by 7.04%. With the increase of the angle between the wall-normal direction and the light-incident direction, the aero-optics becomes more serious, and the difference between the distribution of the OPD rms and the normal distribution increases. The difficulty of aero-optics correction is increased. Light tilted toward downstream experiences more distortions than when tilted toward upstream at the same angle relative to the wall-normal direction.

  11. Using Satellite Observations to Evaluate the AeroCOM Volcanic Emissions Inventory and the Dispersal of Volcanic SO2 Clouds in MERRA

    Science.gov (United States)

    Hughes, Eric J.; Krotkov, Nickolay; da Silva, Arlindo; Colarco, Peter

    2015-01-01

    Simulation of volcanic emissions in climate models requires information that describes the eruption of the emissions into the atmosphere. While the total amount of gases and aerosols released from a volcanic eruption can be readily estimated from satellite observations, information about the source parameters, like injection altitude, eruption time and duration, is often not directly known. The AeroCOM volcanic emissions inventory provides estimates of eruption source parameters and has been used to initialize volcanic emissions in reanalysis projects, like MERRA. The AeroCOM volcanic emission inventory provides an eruptions daily SO2 flux and plume top altitude, yet an eruption can be very short lived, lasting only a few hours, and emit clouds at multiple altitudes. Case studies comparing the satellite observed dispersal of volcanic SO2 clouds to simulations in MERRA have shown mixed results. Some cases show good agreement with observations Okmok (2008), while for other eruptions the observed initial SO2 mass is half of that in the simulations, Sierra Negra (2005). In other cases, the initial SO2 amount agrees with the observations but shows very different dispersal rates, Soufriere Hills (2006). In the aviation hazards community, deriving accurate source terms is crucial for monitoring and short-term forecasting (24-h) of volcanic clouds. Back trajectory methods have been developed which use satellite observations and transport models to estimate the injection altitude, eruption time, and eruption duration of observed volcanic clouds. These methods can provide eruption timing estimates on a 2-hour temporal resolution and estimate the altitude and depth of a volcanic cloud. To better understand the differences between MERRA simulations and volcanic SO2 observations, back trajectory methods are used to estimate the source term parameters for a few volcanic eruptions and compared to their corresponding entry in the AeroCOM volcanic emission inventory. The nature of

  12. Aero-methods and engineering research and development

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, R K

    1979-01-01

    There is presently a sharp, ongoing increase in the volume of work being conducted throughout the country associated with the development of natural gas fields as well as the resulting accelerated development of major gas trunklines. Aero-methods have presently found wide application in the engineering and planning of equipment for such projects. Success has been obtained by the increased quantity and quality of the available engineering information: The ''Giprospetsgaz'' Institute is using aerial photography as the basis for selecting pipeline routes and to more accurately determine the equipment requirements along proposed trunklines such as for compressors, gas transfer stations, electrical power substations, worker settlements, water and transport infrastructure and communications. These requirements are the most important factors in reducing capital operating expenditures. The greatest savings, in economic terms, can be achieved by avoiding sparsely settled or uninhabited areas as much as possible. Similiarly, aerial photography coupled with computer application aids in the solution of engineering problems. Third-generation computers are recommended for this process.

  13. Neural network-based preprocessing to estimate the parameters of the X-ray emission of a single-temperature thermal plasma

    Science.gov (United States)

    Ichinohe, Y.; Yamada, S.; Miyazaki, N.; Saito, S.

    2018-04-01

    We present data preprocessing based on an artificial neural network to estimate the parameters of the X-ray emission spectra of a single-temperature thermal plasma. The method finds appropriate parameters close to the global optimum. The neural network is designed to learn the parameters of the thermal plasma (temperature, abundance, normalization and redshift) of the input spectra. After training using 9000 simulated X-ray spectra, the network has grown to predict all the unknown parameters with uncertainties of about a few per cent. The performance dependence on the network structure has been studied. We applied the neural network to an actual high-resolution spectrum obtained with Hitomi. The predicted plasma parameters agree with the known best-fitting parameters of the Perseus cluster within uncertainties of ≲10 per cent. The result shows that neural networks trained by simulated data might possibly be used to extract a feature built in the data. This would reduce human-intensive preprocessing costs before detailed spectral analysis, and would help us make the best use of the large quantities of spectral data that will be available in the coming decades.

  14. The determination of the space distribution, energy spectrum and dose parameters of thermal column beam resulting from swimming pool reactor

    International Nuclear Information System (INIS)

    Chen Changmao; Xie Jianlun; Leng Ruiping; Song Shushou; Su Jingling

    1991-01-01

    The axial and radial distribution, epithermal energy spectrum and dose equivalent rate of thermal column beam resulting from SPR have been determined in the Institute of Atomic Energy. The results show that the neutron fluence rate along the axial direction decreases as the distance increases outside the thermal column channel, and the trend of fluence rate attenuation follows approximately the inverse square law of a point source. When the reactor thermal power rate is 3 MW, at a distance of 50 cm to the channel, the thermal and epithermal neutron fluence rate are about 1.61 x 10 7 and 6.1 x 10 4 n/cm 2 · s respectively; dose equivalent rates are some 62 and 2.9 cSv/h respectively. At the end of the chennal, γ dose equivalent rate is 60 cSv/h or so

  15. Fault Diagnosis of Demountable Disk-Drum Aero-Engine Rotor Using Customized Multiwavelet Method

    Directory of Open Access Journals (Sweden)

    Jinglong Chen

    2015-10-01

    Full Text Available The demountable disk-drum aero-engine rotor is an important piece of equipment that greatly impacts the safe operation of aircraft. However, assembly looseness or crack fault has led to several unscheduled breakdowns and serious accidents. Thus, condition monitoring and fault diagnosis technique are required for identifying abnormal conditions. Customized ensemble multiwavelet method for aero-engine rotor condition identification, using measured vibration data, is developed in this paper. First, customized multiwavelet basis function with strong adaptivity is constructed via symmetric multiwavelet lifting scheme. Then vibration signal is processed by customized ensemble multiwavelet transform. Next, normalized information entropy of multiwavelet decomposition coefficients is computed to directly reflect and evaluate the condition. The proposed approach is first applied to fault detection of an experimental aero-engine rotor. Finally, the proposed approach is used in an engineering application, where it successfully identified the crack fault of a demountable disk-drum aero-engine rotor. The results show that the proposed method possesses excellent performance in fault detection of aero-engine rotor. Moreover, the robustness of the multiwavelet method against noise is also tested and verified by simulation and field experiments.

  16. Application of complex geometrical optics to determination of thermal, transport, and optical parameters of thin films by the photothermal beam deflection technique.

    Science.gov (United States)

    Korte, Dorota; Franko, Mladen

    2015-01-01

    In this work, complex geometrical optics is, for what we believe is the first time, applied instead of geometrical or wave optics to describe the probe beam interaction with the field of the thermal wave in photothermal beam deflection (photothermal deflection spectroscopy) experiments on thin films. On the basis of this approach the thermal (thermal diffusivity and conductivity), optical (energy band gap), and transport (carrier lifetime) parameters of the semiconductor thin films (pure TiO2, N- and C-doped TiO2, or TiO2/SiO2 composites deposited on a glass or aluminum support) were determined with better accuracy and simultaneously during one measurement. The results are in good agreement with results obtained by the use of other methods and reported in the literature.

  17. Environmental parameters of the Tennessee River in Alabama. 2: Physical, chemical, and biological parameters. [biological and chemical effects of thermal pollution from nuclear power plants on water quality

    Science.gov (United States)

    Rosing, L. M.

    1976-01-01

    Physical, chemical and biological water quality data from five sites in the Tennessee River, two in Guntersville Reservoir and three in Wheeler Reservoir were correlated with climatological data for three annual cycles. Two of the annual cycles are for the years prior to the Browns Ferry Nuclear Power Plant operations and one is for the first 14 months of Plant operations. A comparison of the results of the annual cycles indicates that two distinct physical conditions in the reservoirs occur, one during the warm months when the reservoirs are at capacity and one during the colder winter months when the reservoirs have been drawn-down for water storage during the rainy months and for weed control. The wide variations of physical and chemical parameters to which the biological organisms are subjected on an annual basis control the biological organisms and their population levels. A comparison of the parameters of the site below the Power plant indicates that the heated effluent from the plant operating with two of the three reactors has not had any effect on the organisms at this site. Recommendations given include the development of prediction mathematical models (statistical analysis) for the physical and chemical parameters under specific climatological conditions which affect biological organisms. Tabulated data of chemical analysis of water and organism populations studied is given.

  18. Statistical analysis of parameters of river waters of Tikara and Brahmani near the proposed super thermal power plant site at Talcher

    International Nuclear Information System (INIS)

    Chandrasekaran, G.E.; Muthu Kumar, M.

    1997-01-01

    A detailed study on water quality was conducted on rivers Tikara and Brahmani one of which (Brahmani) is the source of water for super thermal power plant in Talcher, Orissa. Four sites were selected for study, 2 in Tikara and the rest in Brahmani. Person's correlation coefficient was worked for all the water quality parameters. High correlations were observed between conductivity with TDS, calcium and chlorides. High correlations were also observed between hardness with chlorides and calcium, and it has been concluded that the result will help in the calculation of some of the parameters without experimental determination. The analyses, show that there is no appreciable pollution in these rivers. However, flyash and pollutants from thermal plant might pollute these rivers. Suggestions have been given to abate pollution. (author)

  19. Disequilibria in the disintegration series of U and Th and chemical parameters in thermal spring waters from the Tatun volcanic area (Taiwan)

    International Nuclear Information System (INIS)

    Lin Chunchih; Chu Tiehchi; Huang Yufen

    2003-01-01

    The activity concentrations of 238 U, 234 U, 230 Th, 226 Ra, 232 Th, and 228 Th in thermal spring waters in the Tatun volcanic area were determined. Parameters including acidity, Cl - and SO 4 2- concentrations in spring waters at the sampling sites have been investigated to allow interpretation of the migration of the radionuclides, and to elucidate the influence of these parameters on the variations of radionuclide contents. Radioactive disequilibria were found in uranium and thorium series in thermal spring waters. The contents of uranium and thorium decreased with increasing pH. The ratios of 230 Th/ 234 U, 226 Ra/ 230 Th and 228 Th/ 232 Th show significant disequilibria. The 226 Ra/ 230 Th ratio (0.60-34.8) decreased with the Cl - or SO 4 2- concentration. All 228 Th/ 232 Th ratios (1.01-9.49) deviated from unity due to the co-precipitation of 228 Ra with barium and lead sulfate. (orig.)

  20. Neutron importance calculation in an equivalent cell using the age approximation and differential thermalization models. Determination of the cross section sensitivity to the parameters of a differential model in the thermal range

    International Nuclear Information System (INIS)

    Sidorenko, V.D.

    1978-01-01

    The equations are discussed for calculating the importance of neutron function in heterogeneous media obtained with the integral transport theory method. The thermalization effect in the thermal range is described using the differential model. The account of neutron slowing-down in the epithermal range is accomplished in the age approximation. The fast range is described in the 3-group approximation. On the basis of the equations derived the share of delayed neutrons and lifetimes of prompt neutrons are calculated and compared with available experimental data. In the thermal range the sensitivity of cross sections to some parameters of the differential model is analyzed for reactor cells typical for WWER type reactor cores. The models and approximations used are found to be adequate for the calculations

  1. 75 FR 67639 - Airworthiness Directives; Piaggio Aero Industries S.p.A Model PIAGGIO P-180 Airplanes

    Science.gov (United States)

    2010-11-03

    ... Friday, except Federal holidays. For service information identified in this proposed AD, contact Piaggio... Piaggio Aero Industries have issued service information (referred to after this as ``the MCAI''), to... Information Piaggio Aero Industries S.p.A. has issued Service Bulletin (Mandatory) N.: SB 80-0275, Rev. N. 0...

  2. SFC Optimization for Aero Engine Based on Hybrid GA-SQP Method

    Science.gov (United States)

    Li, Jie; Fan, Ding; Sreeram, Victor

    2013-12-01

    This study focuses on on-line specific fuel consumption (SFC) optimization of aero engines. For solving this optimization problem, a nonlinear pneumatic and thermodynamics model of the aero engine is built and a hybrid optimization technique which is formed by combining the genetic algorithm (GA) and the sequential quadratic programming (SQP) is presented. The ability of standard GA and standard SQP in solving this type of problem is investigated. It has been found that, although the SQP is fast, very little SFC reductions can be obtained. The GA is able to solve the problem well but a lot of computational time is needed. The presented hybrid GA-SQP gives a good SFC optimization effect and saves 76.6% computational time when compared to the standard GA. It has been shown that the hybrid GA-SQP is a more effective and higher real-time method for SFC on-line optimization of the aero engine.

  3. Thermal comfort

    CSIR Research Space (South Africa)

    Osburn, L

    2010-01-01

    Full Text Available Thermal comfort is influenced by environmental parameters as well as other influences including asymmetric heating and cooling conditions. Additionally, some aspects of thermal comfort may be exploited so as to enable a building to operate within a...

  4. Infrared observations of eclipses of Io, its thermophysical parameters, and the thermal radiation of the Loki volcano and environs

    Science.gov (United States)

    Sinton, William M.; Kaminski, Charles

    1988-01-01

    Observations of Io during eclipses by Jupiter in 1981-1984 are reported. Data obtained at 3.45-30 microns using bolometer system No. 1 on the 3-m IRTF telescope at Mauna Kea are presented in extensive tables and graphs and analyzed by means of least-squares fitting of thermophysical models to the eclipse cooling and heating curves, thermal-radiation calculations for the Io volcanoes, and comparison with Voyager data. Best fits are obtained for a model comprising (1) a bright region with a vertically inhomogeneous surface and (2) a dark vertically homogeneous region with thermal inertia only about 0.1 times that of (1). Little evidence of volcanic-flux variability during the period is found, and the majority (but not all) of the excess thermal IR radiation in the sub-Jovian hemisphere is attributed to the Loki volcano and its lava lake.

  5. Photoacoustic Monitoring of Internal Plastification in Poly(3-hydroxybutyrate-co-3-hydroxyvalerate Copolymers: Measurements of Thermal Parameters

    Directory of Open Access Journals (Sweden)

    Sanchez Ruben R.

    1999-01-01

    Full Text Available Basic data on thermophysical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate copolymers poly(3HB-co-3HV were investigated with the aim of understanding the role of 3-hydroxyvalerate monomeric units (3HV incorporated during random copolymerization. The results show strong evidence that internal plastification is produced by the introduction of 3HV units in the copolymer. It was observed that copolymer thermal conductivity increased approximately linearly with the 3HV content. On the other hand, thermal diffusivity was very sensitive to the change in the copolymer composition showing a sudden rise that attained a saturation plateau. Amplitude-frequency plots indicate that a thermoelastic bending mechanism is operating. In this paper a new photoacoustic arrangement for the measurement of thermal effusivity is presented.

  6. Effect of Steel Framing for Securing Drywall Panels on Thermal and Humidity Parameters of the Outer Walls

    Science.gov (United States)

    Major, Maciej; Kosiń, Mariusz

    2017-12-01

    The paper analyses the effect of steel framing used to secure drywall panels on thermal and humidity properties of outer walls. In the practice of building a light structure, the most popular components are steel and wood studs. They are used to obtain framing for building a wall (an outer wall in this study). Analysis presented in this study concerned the corner of the outer wall build using the technology of light steel framing. Computer simulation was used to perform thermal and humidity analysis for the joint of the outer wall.

  7. Effect of Steel Framing for Securing Drywall Panels on Thermal and Humidity Parameters of the Outer Walls

    Directory of Open Access Journals (Sweden)

    Major Maciej

    2017-12-01

    Full Text Available The paper analyses the effect of steel framing used to secure drywall panels on thermal and humidity properties of outer walls. In the practice of building a light structure, the most popular components are steel and wood studs. They are used to obtain framing for building a wall (an outer wall in this study. Analysis presented in this study concerned the corner of the outer wall build using the technology of light steel framing. Computer simulation was used to perform thermal and humidity analysis for the joint of the outer wall.

  8. Problems of Aero-optics and Adaptive Optical Systems: Analytical Review

    Directory of Open Access Journals (Sweden)

    Yu. I. Shanin

    2017-01-01

    Full Text Available The analytical review gives the basic concepts of the aero-optics problem arising from the radiation propagation in the region of the boundary layers of a laser installation carrier aircraft. Estimates the radiation wave front distortions at its propagation in the near and far field. Presents main calculation approaches and methods to solve the gas-dynamic and optical problems in propagating laser radiation. Conducts a detailed analysis of the flows and their generating optical aberrations introduced by the aircraft turret (a projection platform of the on-board laser. Considers the effect of various factors (shock wave, difference in wall and flow temperatures on the flow pattern and the optical aberrations. Provides research data on the aero-optics obtained in the flying laboratory directly while in flight. Briefly considers the experimental research methods, diagnostic equipment, and synthesis of results while studying the aero-optics problem. Discusses some methods for mitigating the aerodynamic effects on the light propagation under flight conditions. Presents data about the passive, active, and hybrid effects on the flow in the boundary layers in order to reduce aberrations through improving the flow aerodynamics.The paper considers operation of adaptive optical systems under conditions of aero-optical distortions. Presents the study results concerning the reduction of the aero-optics effect on the characteristics of radiation in far field. Gives some research results regarding the effect on the efficiency of the adaptive system of a laser beam jitter and a time delay in the feedback signal transmission, which occur under application conditions. Provides data on adaptive correction of aero-optical wave fronts of radiation. Considers some application aspects in control systems of the on-board adaptive optics of adaptive filtration as a way to improve the efficiency of adaptive optical systems. The project in mind is to use obtained results

  9. Aero-MINE (Motionless INtegrated Energy) for Distributed Scalable Wind Power.

    Energy Technology Data Exchange (ETDEWEB)

    Houchens, Brent C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blaylock, Myra L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-06-01

    The proposed Aero-MINE technology will extract energy from wind without any exterior moving parts. Aero-MINEs can be integrated into buildings or function stand-alone, and are scalable. This gives them advantages similar to solar panels, but with the added benefit of operation in cloudy or dark conditions. Furthermore, compared to solar panels, Aero-MINEs can be manufactured at lower cost and with less environmental impact. Power generation is isolated internally by the pneumatic transmission of air and the outlet air-jet nozzles amplify the effectiveness. Multiple units can be connected to one centrally located electric generator. Aero-MINEs are ideal for the built-environment, with numerous possible configurations ranging from architectural integration to modular bolt-on products. Traditional wind turbines suffer from many fundamental challenges. The fast-moving blades produce significant aero-acoustic noise, visual disturbances, light-induced flickering and impose wildlife mortality risks. The conversion of massive mechanical torque to electricity is a challenge for gears, generators and power conversion electronics. In addition, the installation, operation and maintenance of wind turbines is required at significant height. Furthermore, wind farms are often in remote locations far from dense regions of electricity customers. These technical and logistical challenges add significantly to the cost of the electricity produced by utility-scale wind farms. In contrast, distributed wind energy eliminates many of the logistical challenges. However, solutions such as micro-turbines produce relatively small amounts of energy due to the reduction in swept area and still suffer from the motion-related disadvantages of utility-scale turbines. Aero-MINEs combine the best features of distributed generation, while eliminating the disadvantages.

  10. Concept of the aero-train and its aerodynamic stability nature

    OpenAIRE

    Kohama, Yasuaki P.; Watanabe, Hideo; Kikuchi, Satoshi; Ota, Fukuo; Ito, Takatoshi; 小濱 泰昭; 渡部 英夫; 菊池 聡; 太田 福雄; 伊藤 高敏

    2000-01-01

    Taking into account the serious greenhouse effect of the earth, drastic proposal which prevents the carbon dioxide emission from transportation system must be done. In Japan, over 20 percent of the carbon dioxide are emitted from transportation. Aero-train is the new zero-emission high speed vehicle, which is being proposed. Wing in ground effect is introduced to obtain highest lift to drag ratio and highest payload ratio. In order to compare the performance of the aero-train at 500 km/h, wit...

  11. Identified state-space prediction model for aero-optical wavefronts

    Science.gov (United States)

    Faghihi, Azin; Tesch, Jonathan; Gibson, Steve

    2013-07-01

    A state-space disturbance model and associated prediction filter for aero-optical wavefronts are described. The model is computed by system identification from a sequence of wavefronts measured in an airborne laboratory. Estimates of the statistics and flow velocity of the wavefront data are shown and can be computed from the matrices in the state-space model without returning to the original data. Numerical results compare velocity values and power spectra computed from the identified state-space model with those computed from the aero-optical data.

  12. Biological parameters and thermal requirements of the parasitoid Praon volucre (Hymenoptera: Braconidae) with Macrosiphum euphorbiae (Hemiptera: Aphididae) as host

    NARCIS (Netherlands)

    Conti, De B.F.; Bueno, V.H.P.; Sampaio, M.V.; Lenteren, van J.C.

    2011-01-01

    The effect of temperature on the biology of Praon volucre (Haliday, 1833) (Hymenoptera: Braconidae) in Macrosiphum euphorbiae (Thomas, 1878) (Hemiptera: Aphididae) hosts was studied and the thermal requirements of the parasitoid were determined. Experiments were carried out at 16, 19, 22, 25, and 28

  13. Influence of thermal performance on design parameters of a He/LiPb dual coolant DEMO concept blanket design

    Energy Technology Data Exchange (ETDEWEB)

    Mas de les Valls, E., E-mail: elisabet.masdelesvalls@gits.ws [Technical University of Catalonia (UPC), Jordi Girona 1-3, 08034 Barcelona (Spain); Technology for Fusion (T4F) Research Group, GREENER, Department of Heat Engines, Barcelona (Spain); Batet, L. [Technical University of Catalonia (UPC), Jordi Girona 1-3, 08034 Barcelona (Spain); Technology for Fusion (T4F) Research Group, GREENER, Department of Physics and Nuclear Engineering, Barcelona (Spain); Medina, V. de [Technical University of Catalonia (UPC), Jordi Girona 1-3, 08034 Barcelona (Spain); Sediment Transport Research Group, Department of Engineering Hydraulic, Marine and Environmental Engineering, Barcelona (Spain); Fradera, J. [Technical University of Catalonia (UPC), Jordi Girona 1-3, 08034 Barcelona (Spain); Technology for Fusion (T4F) Research Group, GREENER, Department of Physics and Nuclear Engineering, Barcelona (Spain); Sanmarti, M. [bFUS-IREC, Jardins de les Dones de Negre 1, 08930 Sant Adria del Besos (Spain); Sedano, L.A. [EURATOM-CIEMAT Association, 28040 Madrid (Spain)

    2012-08-15

    Spanish Breeding Blanket Technology Programme TECNO{sub F}US is exploring the technological capabilities of a Dual-Coolant He/Pb15.7Li breeding blanket for DEMO and studying new breeding blanket design specifications. The progress of the channel conceptual design is being conducted in parallel with the extension of MHD computational capabilities of CFD tools and the underlying physics of MHD models. A qualification of MHD effects under present blanket design specifications and some approaches to their modelling were proposed by the authors in . The analysis was accomplished with the 2D transient algorithm from Sommeria and Moreau and implemented in the OpenFOAM CFD toolbox . The thermal coupling was implemented by means of the Boussinesq hypothesis. Previous analyses showed the need of improvement of FCI thickness and thermal properties in order to obtain a desirable liquid metal temperature gain of 300 Degree-Sign C. In the present study, an assessment through sensitivity and parametric analyses of the required FCI thickness is performed. Numerical simulations have been carried out considering a Robin-type thermal boundary condition which assumes 1D steady state thermal balance across the solid FCI and Eurofer layers. Such boundary condition has been validated with a fluid-solid coupled domain analysis. Results for the studied flow conditions and channel dimensions show that, in order to obtain a liquid metal temperature gain of about 300 Degree-Sign C, the required FCI material should have a very small effective heat transfer coefficient ((k/{delta}) {<=} 1 W/m{sup 2}K) and fluid velocities should be about 0.2 m/s or less. Moreover, special attention has to be placed on the temperature difference across the FCI layer. However, for a maximised liquid metal thermal gain, higher velocities would be preferable, what would also imply a reduced temperature difference across the FCI layer.

  14. Aero-Heating of Shallow Cavities in Hypersonic Freestream Flow

    Science.gov (United States)

    Everhart, Joel L.; Berger, Karen T.; Merski, N. R., Jr.; Woods, William A.; Hollingsworth, Kevin E.; Hyatt, Andrew; Prabhu, Ramadas K.

    2010-01-01

    The purpose of these experiments and analysis was to augment the heating database and tools used for assessment of impact-induced shallow-cavity damage to the thermal protection system of the Space Shuttle Orbiter. The effect of length and depth on the local heating disturbance of rectangular cavities tested at hypersonic freestream conditions has been globally assessed using the two-color phosphor thermography method. These rapid-response experiments were conducted in the Langley 31-Inch Mach 10 Tunnel and were initiated immediately prior to the launch of STS-114, the initial flight in the Space Shuttle Return-To-Flight Program, and continued during the first week of the mission. Previously-designed and numerically-characterized blunted-nose baseline flat plates were used as the test surfaces. Three-dimensional computational predictions of the entire model geometry were used as a check on the design process and the two-dimensional flow assumptions used for the data analysis. The experimental boundary layer state conditions were inferred using the measured heating distributions on a no-cavity test article. Two test plates were developed, each containing 4 equally-spaced spanwise-distributed cavities. The first test plate contained cavities with a constant length-to-depth ratio of 8 with design point depth-to-boundary-layer-thickness ratios of 0.1, 0.2, 0.35, and 0.5. The second test plate contained cavities with a constant design point depth-to-boundary-layer-thickness ratio of 0.35 with length-to-depth ratios of 8, 12, 16, and 20. Cavity design parameters and the test condition matrix were established using the computational predictions. Preliminary results indicate that the floor-averaged Bump Factor (local heating rate nondimensionalized by upstream reference) at the tested conditions is approximately 0.3 with a standard deviation of 0.04 for laminar-in/laminar-out conditions when the cavity length-to-boundary-layer thickness is between 2.5 and 10 and for

  15. Evaluation of trapping parameters of thermally stimulated luminescence glow curves in Cu-doped Li2B4O7 phosphor

    International Nuclear Information System (INIS)

    Manam, J.; Sharma, S.K.

    2005-01-01

    Evaluation of trapping parameters, including order of kinetics, activation energy and frequency factor, is one of the most important aspect of studies in the field of thermally stimulated luminescence (TSL). A polycrystalline sample of Cu-doped Li 2 B 4 O 7 was prepared by the melting method. Formation of the doped compound was checked by use of Fourier-transform infrared (FTIR) spectroscopy. TSL studies of the Cu-doped lithium tetraborate sample shows three glow peaks, the maximum emission occurring, respectively, at a temperature of 175 deg. C, 290 deg. C and 350 deg. C, the intensity of the 175 deg. C-glow peak being the maximum. The trapping parameters associated with this prominent glow peak of Cu-doped lithium tetraborate are reported herein, using the isothermal luminescence decay and glow curve shape (Chen's) methods. Our results show very good agreement between the trapping parameters calculated by the two methods

  16. System Aero-Accelator for the purification of biodegradable effluents; Sistema aero-accelator para la depuracion de efluentes biodegradables (I)

    Energy Technology Data Exchange (ETDEWEB)

    Bosque Hernandez, J. L. del; Martin Sanchez, J. L. [Universidad de Salamanca (Spain)

    2000-07-01

    The contamination of the waters is one of the factors that contributes to the deterioration of our environment and since it is a very limited one its treatment descontaminant it is one of the politic's main objectives and environmental administration at all the levels, being spread to the total purification of the generated residual effluents. To reach this objective, big technological efforts are required that allow next to the creation of new processes, the adaptation of the processes existent depuratives, increasing the effectiveness of the same ones. One of the techniques of purification of possible recovery is the Compact System of active mires Aero-Accelator. Presently work is designed and it builds a plant pilot with Aero-Accelator geometry to study its behavior in the treatment of effluents of urban type with different loads pollutants. (Author) 16 refs.

  17. General catalogue of products and services - geology. AERO data base; 2. ed; Catalogo geral de produtos e servicos - geologia. Base de dados AERO

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The catalogue in the second edition aims at presenting to the user a general idea on the aerogeophysical projects of Brazil database (AERO) which belongs to SIGA (Brazilian geological information system). The 151 documents (projects) are listed as follows: 52 projects performed by CPRM/DNPM - Departamento Nacional de Producao Mineral; 33 projects performed by CNEN - Commissao Nacional de Energia Nuclear and NUCLEBRAS; 7 projects executed by State government and private companies; and 59 projects executed for PETROBRAS 159 figs., 5 tabs.

  18. General catalogue of products and services - geology. AERO data base; 2. ed; Catalogo geral de produtos e servicos - geologia. Base de dados AERO

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The catalogue in the second edition aims at presenting to the user a general idea on the aerogeophysical projects of Brazil database (AERO) which belongs to SIGA (Brazilian geological information system). The 151 documents (projects) are listed as follows: 52 projects performed by CPRM/DNPM - Departamento Nacional de Producao Mineral; 33 projects performed by CNEN - Commissao Nacional de Energia Nuclear and NUCLEBRAS; 7 projects executed by State government and private companies; and 59 projects executed for PETROBRAS 159 figs., 5 tabs.

  19. Parameter effect of a phase change thermal energy storage unit with one shell and one finned tube on its energy efficiency ratio and heat storage rate

    International Nuclear Information System (INIS)

    Wang, Wei-Wei; Wang, Liang-Bi; He, Ya-Ling

    2016-01-01

    Highlights: • The parameter effect on the performance of PCTES unit using fins is reported. • The configurations of PCTES unit using fins in optimum performance are suggested. • Two parameters to indicate the effects of PCM and tube material properties are found. • The working conditions of PCTES unit using fins in optimum performance are analyzed. - Abstract: The performance of a phase change thermal energy storage (PCTES) unit using circular finned tube is affected by many parameters. Thorough studies of the parameter effect on the performance of PCTES unit are strongly required in its optimum design process. Based on a reported energy efficiency ratio and a newly defined parameter named the heat storage rate, the parameter effect on the performance of PCTES unit using circular finned tube is numerically investigated. When the fin pitch is greater than 4 times of the inner radius of the tube, the fin height and the fin thickness have little effect on the energy efficiency ratio and the heat storage rate. When the fin pitch is small, the performance of PCTES unit becomes better using large fin height and width. The energy efficiency ratio and the heat storage rate are more sensitive to the outer tube diameter. The performance of PCTES unit using circular finned tube is best when water is used as the heat transfer fluid (HTF). When the fluid flow of HTF is in a laminar state, the energy efficiency ratio and the heat storage rate are larger than that in a turbulent state.

  20. A method to obtain the thermal parameters and the photothermal transduction efficiency in an optical hyperthermia device based on laser irradiation of gold nanoparticles.

    Science.gov (United States)

    Sánchez López de Pablo, Cristina; Olmedo, José Javier Serrano; Rosales, Alejandra Mina; Ramírez Hernández, Norma; Del Pozo Guerrero, Francisco

    2014-01-01

    Optical hyperthermia systems based on the laser irradiation of gold nanorods seem to be a promising tool in the development of therapies against cancer. After a proof of concept in which the authors demonstrated the efficiency of this kind of systems, a modeling process based on an equivalent thermal-electric circuit has been carried out to determine the thermal parameters of the system and an energy balance obtained from the time-dependent heating and cooling temperature curves of the irradiated samples in order to obtain the photothermal transduction efficiency. By knowing this parameter, it is possible to increase the effectiveness of the treatments, thanks to the possibility of predicting the response of the device depending on the working configuration. As an example, the thermal behavior of two different kinds of nanoparticles is compared. The results show that, under identical conditions, the use of PEGylated gold nanorods allows for a more efficient heating compared with bare nanorods, and therefore, it results in a more effective therapy.

  1. Mineralogy and characterization of deposited particles of the aero sediments collected in the vicinity of power plants and the open pit coal mine: Kolubara (Serbia).

    Science.gov (United States)

    Cvetković, Željko; Logar, Mihovil; Rosić, Aleksandra

    2013-05-01

    In this paper, particular attention was paid to the presence of aerosol solid particles, which occurred mainly as a result of exploitation and coal combustion in the thermal power plants of the Kolubara basin. Not all of the particles created by this type of anthropogenic pollution have an equal impact on human health, but it largely depends on their size and shape. The mineralogical composition and particle size distribution in the samples of aero sediments were defined. The samples were collected close to the power plant and open pit coal mine, in the winter and summer period during the year 2007. The sampling was performed by using precipitators placed in eight locations within the territory of the Lazarevac municipality. In order to characterize the sedimentary particles, several methods were applied: microscopy, SEM-EDX and X-ray powder diffraction. The concentration of aero sediments was also determined during the test period. Variety in the mineralogical composition and particle size depends on the position of the measuring sites, geology of the locations, the annual period of collecting as well as possible interactions. By applying the mentioned methods, the presence of inhalational and respiratory particles variously distributed in the winter and in the summer period was established. The most common minerals are quartz and feldspar. The presence of gypsum, clay minerals, calcite and dolomite as secondary minerals was determined, as well as the participation of organic and inorganic amorphic matter. The presence of quartz as a toxic mineral has a particular impact on human health.

  2. The secondary structure and the thermal unfolding parameters of the S-layer protein from Lactobacillus salivarius.

    Science.gov (United States)

    Lighezan, Liliana; Georgieva, Ralitsa; Neagu, Adrian

    2016-09-01

    Surface layer (S-layer) proteins have been identified in the cell envelope of many organisms, such as bacteria and archaea. They self-assemble, forming monomolecular crystalline arrays. Isolated S-layer proteins are able to recrystallize into regular lattices, which proved useful in biotechnology. Here we investigate the structure and thermal unfolding of the S-layer protein isolated from Lactobacillus salivarius 16 strain of human origin. Using circular dichroism (CD) spectroscopy, and the software CDSSTR from DICHROWEB, CONTINLL from CDPro, as well as CDNN, we assess the fractions of the protein's secondary structural elements at temperatures ranging between 10 and 90 °C, and predict the tertiary class of the protein. To study the thermal unfolding of the protein, we analyze the temperature dependence of the CD signal in the far- and near-UV domains. Fitting the experimental data by two- and three-state models of thermal unfolding, we infer the midpoint temperatures, the temperature dependence of the changes in Gibbs free energy, enthalpy, and entropy of the unfolding transitions in standard conditions, and the temperature dependence of the equilibrium constant. We also estimate the changes in heat capacity at constant pressure in standard conditions. The results indicate that the thermal unfolding of the S-layer protein from L. salivarius is highly cooperative, since changes in the secondary and tertiary structures occur simultaneously. The thermodynamic analysis predicts a "cold" transition, at about -3 °C, of both the secondary and tertiary structures. Our findings may be important for the use of S-layer proteins in biotechnology and in biomedical applications.

  3. Thermal Degradation and Kinetic Parameters of Polyester and Poly(Lactic Acid) Blends Used in Shopping Bags in Brazil

    OpenAIRE

    Araújo Junior, J.; Magalhães, D; Oliveira, N. A.; Wiebeck, Helio; Matos, J. R.

    2014-01-01

    In this work, synthetic polyester and poly(lactic acid) blends used as biodegradable shopping plastic bags were studied, together with control samples of polyethylene containing pro-oxidant catalysts (called “oxidegradable bags” in the market). Samples of these materials were weighed and buried in simulated soil for 3 months, and then studied by Thermal Analysis including a non-isothermal kinetic analysis. It was observed that although there was no significant mass loss in the period of the a...

  4. Measurement of macroscopic plasma parameters with a radio experiment: Interpretation of the quasi-thermal noise spectrum observed in the solar wind

    Science.gov (United States)

    Couturier, P.; Hoang, S.; Meyer-Vernet, N.; Steinberg, J. L.

    1983-01-01

    The ISEE-3 SBH radio receiver has provided the first systematic observations of the quasi-thermal (plasma waves) noise in the solar wind plasma. The theoretical interpretation of that noise involves the particle distribution function so that electric noise measurements with long antennas provide a fast and independent method of measuring plasma parameters: densities and temperatures of a two component (core and halo) electron distribution function have been obtained in that way. The polarization of that noise is frequency dependent and sensitive to the drift velocity of the electron population. Below the plasma frequency, there is evidence of a weak noise spectrum with spectral index -1 which is not yet accounted for by the theory. The theoretical treatment of the noise associated with the low energy (thermal) proton population shows that the moving electrical antenna radiates in the surrounding plasma by Carenkov emission which becomes predominant at the low frequencies, below about 0.1 F sub P.

  5. Validation of CENDL and JEFF evaluated nuclear data files for TRIGA calculations through the analysis of integral parameters of TRX and BAPL benchmark lattices of thermal reactors

    International Nuclear Information System (INIS)

    Uddin, M.N.; Sarker, M.M.; Khan, M.J.H.; Islam, S.M.A.

    2009-01-01

    The aim of this paper is to present the validation of evaluated nuclear data files CENDL-2.2 and JEFF-3.1.1 through the analysis of the integral parameters of TRX and BAPL benchmark lattices of thermal reactors for neutronics analysis of TRIGA Mark-II Research Reactor at AERE, Bangladesh. In this process, the 69-group cross-section library for lattice code WIMS was generated using the basic evaluated nuclear data files CENDL-2.2 and JEFF-3.1.1 with the help of nuclear data processing code NJOY99.0. Integral measurements on the thermal reactor lattices TRX-1, TRX-2, BAPL-UO 2 -1, BAPL-UO 2 -2 and BAPL-UO 2 -3 served as standard benchmarks for testing nuclear data files and have also been selected for this analysis. The integral parameters of the said lattices were calculated using the lattice transport code WIMSD-5B based on the generated 69-group cross-section library. The calculated integral parameters were compared to the measured values as well as the results of Monte Carlo Code MCNP. It was found that in most cases, the values of integral parameters show a good agreement with the experiment and MCNP results. Besides, the group constants in WIMS format for the isotopes U-235 and U-238 between two data files have been compared using WIMS library utility code WILLIE and it was found that the group constants are identical with very insignificant difference. Therefore, this analysis reflects the validation of evaluated nuclear data files CENDL-2.2 and JEFF-3.1.1 through benchmarking the integral parameters of TRX and BAPL lattices and can also be essential to implement further neutronic analysis of TRIGA Mark-II research reactor at AERE, Dhaka, Bangladesh.

  6. The Application of Advanced Technique of Fan Frame Unit on High Bypass Ratio Aero Engine

    Directory of Open Access Journals (Sweden)

    Hou Peng

    2017-01-01

    Full Text Available High bypass ratio aero-engine was widely used on military and civil aviation domain, as the power of larger aircraft. Fan frame unit was the main bearing frame of high bypass ratio aero-engine, which composed of strut, HUB MID BOX and external bypass parts. Resin/composite was used on external bypass parts(acoustic liner, containment ring, fan outlet guide vane and fan case skin fillets, which not only reduced the weight and manufacturing cost, but also improved the noise absorption, containment and anti-fatigue ability of engine. The design of composite was becoming a key technique for high bypass ratio aero-engine. In special test of the core engine, nitrogen cooling system was designed to cool the cavity of spool. The nitrogen pipeline passed through the inner cavity of fan frame, then inserted into NO. 3 bearing seal, so nitrogen gas was sent into the cavity of core engine spool. On high bypass ratio aero-engine, the external bypass and fan frame inner cavity were the design platform for advanced technique, such as composite and pipeline system, and also provided guarantee for reliable operation of engine.

  7. FJ44 Turbofan Engine Test at NASA Glenn Research Center's Aero-Acoustic Propulsion Laboratory

    Science.gov (United States)

    Lauer, Joel T.; McAllister, Joseph; Loew, Raymond A.; Sutliff, Daniel L.; Harley, Thomas C.

    2009-01-01

    A Williams International FJ44-3A 3000-lb thrust class turbofan engine was tested in the NASA Glenn Research Center s Aero-Acoustic Propulsion Laboratory. This report presents the test set-up and documents the test conditions. Farfield directivity, in-duct unsteady pressures, duct mode data, and phased-array data were taken and are reported separately.

  8. 78 FR 1776 - Airworthiness Directives; International Aero Engines AG Turbofan Engines

    Science.gov (United States)

    2013-01-09

    ... Engines AG Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... Aero Engines AG (IAE), V2525-D5 and V2528-D5 turbofan engines, with a certain number (No.) 4 bearing... proposed AD. Discussion We received a report of a fire warning on an IAE V2525 turbofan engine shortly...

  9. Aero-Hydro-Elastic Simulation Platform for Wave Energy Systems and floating Wind Turbines

    DEFF Research Database (Denmark)

    Kallesøe, Bjarne Skovmose

    This report present results from the PSO project 2008-1-10092 entitled Aero-Hydro-Elastic Simulation Platform for Wave Energy Systems and floating Wind Turbines that deals with measurements, modelling and simulations of the world’s first combined wave and wind energy platform. The floating energy...

  10. AERO: A Decision Support Tool for Wind Erosion Assessment in Rangelands and Croplands

    Science.gov (United States)

    Galloza, M.; Webb, N.; Herrick, J.

    2015-12-01

    Wind erosion is a key driver of global land degradation, with on- and off-site impacts on agricultural production, air quality, ecosystem services and climate. Measuring rates of wind erosion and dust emission across land use and land cover types is important for quantifying the impacts and identifying and testing practical management options. This process can be assisted by the application of predictive models, which can be a powerful tool for land management agencies. The Aeolian EROsion (AERO) model, a wind erosion and dust emission model interface provides access by non-expert land managers to a sophisticated wind erosion decision-support tool. AERO incorporates land surface processes and sediment transport equations from existing wind erosion models and was designed for application with available national long-term monitoring datasets (e.g. USDI BLM Assessment, Inventory and Monitoring, USDA NRCS Natural Resources Inventory) and monitoring protocols. Ongoing AERO model calibration and validation are supported by geographically diverse data on wind erosion rates and land surface conditions collected by the new National Wind Erosion Research Network. Here we present the new AERO interface, describe parameterization of the underpinning wind erosion model, and provide a summary of the model applications across agricultural lands and rangelands in the United States.

  11. Blades Forced Vibration Under Aero-Elastic Excitation Modeled by Van der Pol

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk

    2017-01-01

    Roč. 27, č. 11 (2017), č. článku 1750166. ISSN 0218-1274 R&D Projects: GA ČR GA16-04546S Institutional support: RVO:61388998 Keywords : ade vibration * aero-elastic force * self-excitation * van der Pol Subject RIV: BI - Acoustics OBOR OECD: Applied mechanics Impact factor: 1.329, year: 2016

  12. Improving Aerospace Engineering Students' Achievements by an Open Aero Control Experiment Apparatus

    Science.gov (United States)

    Zeng, QingHua; Zhang, WeiHua; Huang, ZheZhi; Dong, RongHua

    2014-01-01

    This paper describes the development of an aero control experiment apparatus (ACEA) for use in aerospace control practical courses. The ACEA incorporates a systematic multihierarchy learning and teaching method, and was designed to improve aerospace engineering students' understanding of unmanned aerial vehicle (UAV) control systems. It offers a…

  13. Spark Plasma Sintering constrained process parameters of sintered silver paste for connection in power electronic modules: Microstructure, mechanical and thermal properties

    Energy Technology Data Exchange (ETDEWEB)

    Alayli, N. [Université Paris 13, Sorbonne Paris Cité, Laboratoire des Sciences des Procédés et des Matériaux, Centre National de la Recherche Scientifique, Unité Propre de Recherche 3407, 99 avenue Jean Baptiste Clément, F-93430 Villetaneuse (France); Université de Versailles-Saint-Quentin-en-Yvelines, Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Centre National de la Recherche Scientifique/INSU, Laboratoire Atmosphères Milieux Observations Spatiales-IPSL, Quartier des Garennes, 11 Boulevard d' Alembert, F-78280 Guyancourt (France); Schoenstein, F., E-mail: frederic.schoenstein@univ-paris13.fr [Université Paris 13, Sorbonne Paris Cité, Laboratoire des Sciences des Procédés et des Matériaux, Centre National de la Recherche Scientifique, Unité Propre de Recherche 3407, 99 avenue Jean Baptiste Clément, F-93430 Villetaneuse (France); Girard, A. [Office National d' Étude et de Recherches Aérospatiales, Laboratoire d' Étude des Microstructures, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 104, 29 avenue de la Division Leclerc, F-92322 Châtillon (France); and others

    2014-11-14

    Processing parameters of Spark Plasma Sintering (SPS) technique were constrained to process nano sized silver particles bound in a paste for interconnection in power electronic devices. A novel strategy combining debinding step and consolidation processes (SPS) in order to elaborate nano-structured silver bulk material is investigated. Optimum parameters were sought for industrial power electronics packaging from the microstructural and morphological properties of the sintered material. The latter was studied by Scanning Electron Microscope (SEM) and X-Ray Diffraction (XRD) to determine the density and the grain size of crystallites. Two types of samples, termed S1 (bulk) and S2 (multilayer) were elaborated and characterized. They are homogeneous with a low degree of porosity and a good adhesion to the substrate and the process parameters are compatible with industrial constraints. As the experimental results show, the mean crystallite size is between 60 nm and 790 nm with a density between 50% and 92% resulting in mechanical and thermal properties that are better than that of lead free solder. The best SPS sintering parameters, the applied pressure, the temperature and the processing time were determined as being 3 MPa, 300 °C and 1 min respectively when the desizing time of the preprocessing step was kept below 5 min at 150 °C. Using these processing parameters, acceptable for automotive packaging industry, a semi-conductor power chip was successfully connected to a metalized substrate by sintered silver with thermal and electrical properties better than those of current solders and with thermomechanical properties allowing absorption of thermoplastic stresses. - Highlights: • The sintered silver joints have nanometric structure. • The grain growth was controlled by the SPS sintering parameters. • New connection material improve thermal and electrical properties of current solders. • Interconnection's plastic strain can absorb thermo

  14. A theoretical analysis of the impact of atmospheric parameters on the spectral, electrical and thermal performance of a concentrating III–V triple-junction solar cell

    International Nuclear Information System (INIS)

    Theristis, Marios; Fernández, Eduardo F.; Stark, Cameron; O’Donovan, Tadhg S.

    2016-01-01

    Highlights: • An integrated spectral dependent electrical–thermal model has been developed. • The effect of atmospheric parameters on system’s performance is evaluated. • The HCPV cooling requirements under “hot & dry” conditions are quantified. • Case studies show the impact of heat transfer coefficient on annual energy yield. • The integrated modelling allows the system’s optimisation. - Abstract: The spectral sensitivity of a concentrating triple-junction (3J) solar cell has been investigated. The atmospheric parameters such as the air mass (AM), aerosol optical depth (AOD) and precipitable water (PW) change the distribution of the solar spectrum in a way that the spectral, electrical and thermal performance of a 3J solar cell is affected. In this paper, the influence of the spectral changes on the performance of each subcell and whole cell has been analysed. It has been shown that increasing the AM and AOD have a negative impact on the spectral and electrical performance of 3J solar cells while increasing the PW has a positive effect, although, to a lesser degree. A three-dimensional finite element analysis model is used to quantify the effect of each atmospheric parameter on the thermal performance for a range of heat transfer coefficients from the back-plate to the ambient air and also ambient temperature. It is shown that a heat transfer coefficient greater than 1300 W/(m"2 K) is required to keep the solar cell under 100 °C at all times. In order to get a more realistic assessment and also to investigate the effect of heat transfer coefficient on the annual energy yield, the methodology is applied for four US locations using data from a typical meteorological year (TMY3).

  15. Kinetic parameters, collision rates, energy exchanges and transport coefficients of non-thermal electrons in premixed flames at sub-breakdown electric field strengths

    KAUST Repository

    Bisetti, Fabrizio

    2014-01-02

    The effects of an electric field on the collision rates, energy exchanges and transport properties of electrons in premixed flames are investigated via solutions to the Boltzmann kinetic equation. The case of high electric field strength, which results in high-energy, non-thermal electrons, is analysed in detail at sub-breakdown conditions. The rates of inelastic collisions and the energy exchange between electrons and neutrals in the reaction zone of the flame are characterised quantitatively. The analysis includes attachment, ionisation, impact dissociation, and vibrational and electronic excitation processes. Our results suggest that Townsend breakdown occurs for E/N = 140 Td. Vibrational excitation is the dominant process up to breakdown, despite important rates of electronic excitation of CO, CO2 and N2 as well as impact dissociation of O2 being apparent from 50 Td onwards. Ohmic heating in the reaction zone is found to be negligible (less than 2% of peak heat release rate) up to breakdown field strengths for realistic electron densities equal to 1010 cm-3. The observed trends are largely independent of equivalence ratio. In the non-thermal regime, electron transport coefficients are insensitive to mixture composition and approximately constant across the flame, but are highly dependent on the electric field strength. In the thermal limit, kinetic parameters and transport coefficients vary substantially across the flame due to the spatially inhomogeneous concentration of water vapour. A practical approach for identifying the plasma regime (thermal versus non-thermal) in studies of electric field effects on flames is proposed. © 2014 Taylor & Francis.

  16. Use of artificial neuronal networks for prediction of the control parameters in the process of anaerobic digestion with thermal pretreatment.

    Science.gov (United States)

    Flores-Asis, Rita; Méndez-Contreras, Juan M; Juárez-Martínez, Ulises; Alvarado-Lassman, Alejandro; Villanueva-Vásquez, Daniel; Aguilar-Lasserre, Alberto A

    2018-04-19

    This article focuses on the analysis of the behavior patterns of the variables involved in the anaerobic digestion process. The objective is to predict the impact factor and the behavior pattern of the variables, i.e., temperature, pH, volatile solids (VS), total solids, volumetric load, and hydraulic residence time, considering that these are the control variables for the conservation of the different groups of anaerobic microorganisms. To conduct the research, samples of physicochemical sludge were taken from a water treatment plant in a poultry processing factory, and, then, the substrate was characterized, and a thermal pretreatment was used to accelerate the hydrolysis process. The anaerobic digestion process was analyzed in order to obtain experimental data of the control variables and observe their impact on the production of biogas. The results showed that the thermal pre-hydrolysis applied at 90°C for 90 min accelerated the hydrolysis phase, allowing a significant 52% increase in the volume of methane produced. An artificial neural network was developed, and it was trained with the database obtained by monitoring the anaerobic digestion process. The results obtained from the artificial neural network showed that there is an adjustment between the real values and the prediction of validation based on 60 samples with a 96.4% coefficient of determination, and it was observed that the variables with the major impact on the process were the loading rate and VS, with impact factors of 36% and 23%, respectively.

  17. Determination of kinetic parameters in the pyrolysis operation and thermal behavior of Prosopis juliflora using thermogravimetric analysis.

    Science.gov (United States)

    Chandrasekaran, Arunkumar; Ramachandran, Sethumadhavan; Subbiah, Senthilmurugan

    2017-06-01

    This paper deals with the pyrolysis of Prosopis juliflora fuelwood using thermogravimetric analysis to determine the kinetic parameters at six different heating rates of 2, 5, 10, 15, 20 and 25°C/min. The activation energy of pyrolysis was calculated using different methods, namely Kissinger, Kissinger-Akahira-Sunose, Ozawa-Flynn-Wall and Friedman model and corresponding calculated activation energy were found to be 164.6, 204, 203.2, and 219.3kJ/mol, respectively for each method. The three-pseudo component model was applied to calculate the following three kinetic parameters: activation energy, pre-exponential factor and order of reaction. The experimental results were validated with model prediction for all the six heating rates. The three-pseudo component model is able to predict experimental results much accurately while considering variable order reaction model (n≠1). Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Effect of composting on the thermal decomposition behavior and kinetic parameters of pig manure-derived solid waste.

    Science.gov (United States)

    Dhyani, Vaibhav; Kumar Awasthi, Mukesh; Wang, Quan; Kumar, Jitendra; Ren, Xiuna; Zhao, Junchao; Chen, Hongyu; Wang, Meijing; Bhaskar, Thallada; Zhang, Zengqiang

    2018-03-01

    In this work, the influence of composting on the thermal decomposition behavior and decomposition kinetics of pig manure-derived solid wastes was analyzed using thermogravimetry. Wheat straw, biochar, zeolite, and wood vinegar were added to pig manure during composting. The composting was done in the 130 L PVC reactors with 100 L effective volume for 50 days. The activation energy of pyrolysis of samples before and after composting was calculated using Friedman's method, while the pre-exponential factor was calculated using Kissinger's equation. It was observed that composting decreased the volatile content of all the samples. The additives when added together in pig manure lead to a reduction in the activation energy of decomposition, advocating the presence of simpler compounds in the compost material in comparison with the complex feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Uncertainty and sensitivity analysis in the neutronic parameters generation for BWR and PWR coupled thermal-hydraulic–neutronic simulations

    International Nuclear Information System (INIS)

    Ánchel, F.; Barrachina, T.; Miró, R.; Verdú, G.; Juanas, J.; Macián-Juan, R.

    2012-01-01

    Highlights: ► Best-estimate codes are affected by the uncertainty in the methods and the models. ► Influence of the uncertainty in the macroscopic cross-sections in a BWR and PWR RIA accidents analysis. ► The fast diffusion coefficient, the scattering cross section and both fission cross sections are the most influential factors. ► The absorption cross sections very little influence. ► Using a normal pdf the results are more “conservative” comparing the power peak reached with uncertainty quantified with a uniform pdf. - Abstract: The Best Estimate analysis consists of a coupled thermal-hydraulic and neutronic description of the nuclear system's behavior; uncertainties from both aspects should be included and jointly propagated. This paper presents a study of the influence of the uncertainty in the macroscopic neutronic information that describes a three-dimensional core model on the most relevant results of the simulation of a Reactivity Induced Accident (RIA). The analyses of a BWR-RIA and a PWR-RIA have been carried out with a three-dimensional thermal-hydraulic and neutronic model for the coupled system TRACE-PARCS and RELAP-PARCS. The cross section information has been generated by the SIMTAB methodology based on the joint use of CASMO-SIMULATE. The statistically based methodology performs a Monte-Carlo kind of sampling of the uncertainty in the macroscopic cross sections. The size of the sampling is determined by the characteristics of the tolerance intervals by applying the Noether–Wilks formulas. A number of simulations equal to the sample size have been carried out in which the cross sections used by PARCS are directly modified with uncertainty, and non-parametric statistical methods are applied to the resulting sample of the values of the output variables to determine their intervals of tolerance.

  20. Laser thermal effect on silicon nitride ceramic based on thermo-chemical reaction with temperature-dependent thermo-physical parameters

    International Nuclear Information System (INIS)

    Pan, A.F.; Wang, W.J.; Mei, X.S.; Wang, K.D.; Zhao, W.Q.; Li, T.Q.

    2016-01-01

    Highlights: • A two-dimensional thermo-chemical reaction model is creatively built. • Thermal conductivity and heat capacity of β-Si_3N_4 are computed accurately. • The appropriate thermo-chemical reaction rate is fitted and reaction element length is set to assure the constringency. • The deepest ablated position was not the center of the ablated area due to plasma absorption. • The simulation results demonstrate the thermo-chemical process cant be simplified to be physical phase transition. - Abstract: In this study, a two-dimensional thermo-chemical reaction model with temperature-dependent thermo-physical parameters on Si_3N_4 with 10 ns laser was developed to investigate the ablated size, volume and surface morphology after single pulse. For model parameters, thermal conductivity and heat capacity of β-Si_3N_4 were obtained from first-principles calculations. Thermal-chemical reaction rate was fitted by collision theory, and then, reaction element length was deduced using the relationship between reaction rate and temperature distribution. Furthermore, plasma absorption related to energy loss was approximated as a function of electron concentration in Si_3N_4. It turned out that theoretical ablated volume and radius increased and then remained constant with increasing laser energy, and the maximum ablated depth was not in the center of the ablated zone. Moreover, the surface maximum temperature of Si_3N_4 was verified to be above 3000 K within pulse duration, and it was much higher than its thermal decomposition temperature of 1800 K, which indicated that Si_3N_4 was not ablated directly above the thermal decomposition temperature. Meanwhile, the single pulse ablation of Si_3N_4 was performed at different powers using a TEM_0_0 10 ns pulse Nd:YAG laser to validate the model. The model showed a satisfactory consistence between the experimental data and numerical predictions, presenting a new modeling technology that may significantly increase the

  1. Determination of the neutron resonance parameters for 206Pb and of the thermal neutron capture cross section for 206Pb and 209Bi

    International Nuclear Information System (INIS)

    Borella, A.

    2005-01-01

    response of the C6D6 detector. The analysis of the capture data allows the determination of the capture area of the resonances. In Chapter 4 we determine the thermal capture cross section for 206 Pb(n, γ) and 209 Bi(n, γ) from measurements at the cold neutron beam of the Budapest Neutron Centre. The thermal cross sections for neutron capture to the ground state 210g Bi(n, γ) and to the isomeric state 210m Bi(n, γ) have also been measured. These values complement the resonance parameters and produce a consistent description of the total and capture cross section at thermal energy and in the resolved resonance region. Chapter 5 contains the discussion of the results of this work. The statistical properties of the 206 Pb resonance parameters are described. The consistency of the resonance parameters and the thermal neutron capture cross section for 206 Pb and 209 Bi is discussed. The resulting MAC for 206 Pb is given and the impact on the termination of the s-process is described. Finally, general conclusions are presented

  2. Influence of etching process parameters on the antireflection property of Si SWSs by thermally dewetted Ag and Ag/SiO{sub 2} nanopatterns

    Energy Technology Data Exchange (ETDEWEB)

    Leem, Jung Woo; Yu, Jae Su [Department of Electronics and Radio Engineering, Kyung Hee University, 446-701 Yongin (Korea, Republic of); Song, Young Min; Lee, Yong Tak [Department of Information and Communications, Gwangju Institute of Science and Technology, 500-712 Gwangju (Korea, Republic of)

    2011-08-15

    The etching parameter dependent antireflection characteristics of disordered Si subwavelength structures (SWSs) by inductively coupled plasma (ICP) etching in a mixture gas of SiCl{sub 4}/Ar using thermally dewetted Ag and Ag/SiO{sub 2} nanopatterns are investigated. The average size and period of Si SWSs are closely correlated with thermal dewetting conditions. For desirable Ag nanoparticle patterns, the profile of Si SWSs is optimized by changing the ICP etching process parameters to obtain the lowest reflectance spectrum. The most tapered SWS with the highest height leads to a relatively low reflectance. The Ag nanopatterns result in more tapered and rough surface SWSs compared to the Ag/SiO{sub 2} nanopatterns, indicating a slightly reduced reflectance. The Si SWS etched using Ag nanopatterns by SiCl{sub 4}/Ar of 5 sccm/10 sccm at 50 W RF power, 200 W ICP power, and 10 mTorr process pressure exhibits a very low total reflectance of <{proportional_to}2.4% in the wavelength range of 400-1000 nm, maintaining a specular reflectance of <16% at 350-1100 nm up to the incident angle of {theta}{sub i} = 50 . (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Validation study of SRAC2006 code system based on evaluated nuclear data libraries for TRIGA calculations by benchmarking integral parameters of TRX and BAPL lattices of thermal reactors

    International Nuclear Information System (INIS)

    Khan, M.J.H.; Sarker, M.M.; Islam, S.M.A.

    2013-01-01

    Highlights: ► To validate the SRAC2006 code system for TRIGA neutronics calculations. ► TRX and BAPL lattices are treated as standard benchmarks for this purpose. ► To compare the calculated results with experiment as well as MCNP values in this study. ► The study demonstrates a good agreement with the experiment and the MCNP results. ► Thus, this analysis reflects the validation study of the SRAC2006 code system. - Abstract: The goal of this study is to present the validation study of the SRAC2006 code system based on evaluated nuclear data libraries ENDF/B-VII.0 and JENDL-3.3 for neutronics analysis of TRIGA Mark-II Research Reactor at AERE, Bangladesh. This study is achieved through the analysis of integral parameters of TRX and BAPL benchmark lattices of thermal reactors. In integral measurements, the thermal reactor lattices TRX-1, TRX-2, BAPL-UO 2 -1, BAPL-UO 2 -2 and BAPL-UO 2 -3 are treated as standard benchmarks for validating/testing the SRAC2006 code system as well as nuclear data libraries. The integral parameters of the said lattices are calculated using the collision probability transport code PIJ of the SRAC2006 code system at room temperature 20 °C based on the above libraries. The calculated integral parameters are compared to the measured values as well as the MCNP values based on the Chinese evaluated nuclear data library CENDL-3.0. It was found that in most cases, the values of integral parameters demonstrate a good agreement with the experiment and the MCNP results. In addition, the group constants in SRAC format for TRX and BAPL lattices in fast and thermal energy range respectively are compared between the above libraries and it was found that the group constants are identical with very insignificant difference. Therefore, this analysis reflects the validation study of the SRAC2006 code system based on evaluated nuclear data libraries JENDL-3.3 and ENDF/B-VII.0 and can also be essential to implement further neutronics calculations

  4. Smart Rotor Modeling: Aero-Servo-Elastic Modeling of a Smart Rotor with Adaptive Trailing Edge Flaps

    DEFF Research Database (Denmark)

    Bergami, Leonardo

    the trailing edge flap deflection to actively reduce the fatigue loads on the structure. The performance of the smart rotor configuration and its control algorithms are finally quantified by aero-servo-elastic simulations of the smart rotor turbine operating in a standard turbulent wind field.......This book presents the formulation of an aero-servo-elastic model for a wind turbine rotor equipped with Adaptive Trailing Edge Flaps (ATEF), a smart rotor configuration. As the name suggests, an aero-servo-elastic model consists of three main components: an aerodynamic model, a structural model......, and a control model. The book first presents an engineering type of aerodynamic model that accounts for the dynamic effects of flap deflection. The aerodynamic model is implemented in a Blade Element Momentum framework, and coupled with a multi-body structural model in the aero-servoelastic simulation code HAWC...

  5. Fusing Simulation Results From Multifidelity Aero-servo-elastic Simulators - Application To Extreme Loads On Wind Turbine

    DEFF Research Database (Denmark)

    Abdallah, Imad; Sudret, Bruno; Lataniotis, Christos

    2015-01-01

    Fusing predictions from multiple simulators in the early stages of the conceptual design of a wind turbine results in reduction in model uncertainty and risk mitigation. Aero-servo-elastic is a term that refers to the coupling of wind inflow, aerodynamics, structural dynamics and controls. Fusing...... the response data from multiple aero-servo-elastic simulators could provide better predictive ability than using any single simulator. The co-Kriging approach to fuse information from multifidelity aero-servo-elastic simulators is presented. We illustrate the co-Kriging approach to fuse the extreme flapwise...... bending moment at the blade root of a large wind turbine as a function of wind speed, turbulence and shear exponent in the presence of model uncertainty and non-stationary noise in the output. The extreme responses are obtained by two widely accepted numerical aero-servo-elastic simulators, FAST...

  6. Equivalent circuit model parameters of a high-power Li-ion battery: Thermal and state of charge effects

    Science.gov (United States)

    Gomez, Jamie; Nelson, Ruben; Kalu, Egwu E.; Weatherspoon, Mark H.; Zheng, Jim P.

    2011-05-01

    Equivalent circuit model (EMC) of a high-power Li-ion battery that accounts for both temperature and state of charge (SOC) effects known to influence battery performance is presented. Electrochemical impedance measurements of a commercial high power Li-ion battery obtained in the temperature range 20 to 50 °C at various SOC values was used to develop a simple EMC which was used in combination with a non-linear least squares fitting procedure that used thirteen parameters for the analysis of the Li-ion cell. The experimental results show that the solution and charge transfer resistances decreased with increase in cell operating temperature and decreasing SOC. On the other hand, the Warburg admittance increased with increasing temperature and decreasing SOC. The developed model correlations that are capable of being used in process control algorithms are presented for the observed impedance behavior with respect to temperature and SOC effects. The predicted model parameters for the impedance elements Rs, Rct and Y013 show low variance of 5% when compared to the experimental data and therefore indicates a good statistical agreement of correlation model to the actual experimental values.

  7. Preservation of Bioactive Compounds and Quality Parameters of Watermelon Juice Enriched with L-Citrulline through Short Thermal Treatment

    Directory of Open Access Journals (Sweden)

    Martha P. Tarazona-Díaz

    2017-01-01

    Full Text Available L-citrulline is a nonessential amino acid with demonstrated health benefits for humans, and watermelon is a fruit rich in this amino acid. The juice industry is developing functional beverages through the enrichment with external bioactive compounds; this kind of industry uses conventional pasteurization because of its efficiency and simplicity. In this experiment, the effects of pasteurization (80°C for 40 s or 90 s and storage (4°C for 30 days on different parameters were evaluated in a watermelon juice (3.68 g kg−1 of natural L-citrulline enriched with external L-citrulline (12 g kg−1. Enzymatic activity (peroxidase, pectin methyl esterase, and polygalacturonase was inactivated (74 to 89%, 89 to 90%, and 11 to 15%, resp. with the pasteurization treatment, obtaining the highest degradation with the longest heating time. According to the rheology study, the juice’s elasticity was mainly affected by type of heat treatment while its viscosity was more stable and affected by storage time. A reduction in bioactive compounds content, around 10–16% for lycopene and 19–20% for L-citrulline, was observed after the pasteurization treatments, with a higher decrease with increased treatment time. Storage time also induced a reduction in lycopene and L-citrulline. The shelf life was limited by sensorial parameters.

  8. Pyrolysis of Pinus pinaster in a two-stage gasifier: Influence of processing parameters and thermal cracking of tar

    Energy Technology Data Exchange (ETDEWEB)

    Fassinou, Wanignon Ferdinand; Toure, Siaka [Laboratoire d' Energie Solaire-UFR-S.S.M.T. Universite de Cocody, 22BP582 Abidjan 22 (Ivory Coast); Van de Steene, Laurent; Volle, Ghislaine; Girard, Philippe [CIRAD-Foret, TA 10/16, 73, avenue J.-F. Breton, 34398 Montpellier, Cedex 5 (France)

    2009-01-15

    A new two-stage gasifier with fixed-bed has recently been installed on CIRAD facilities in Montpellier. The pyrolysis and the gasifier units are removable. In order to characterise the pyrolysis products before their gasification, experiments were carried out, for the first time only with the pyrolysis unit and this paper deals with the results obtained. The biomass used is Pinus pinaster. The parameters investigated are: temperature, residence time and biomass flow rate. It has been found that increasing temperature and residence time improve the cracking of tars, gas production and char quality (fixed carbon rate more than 90%, volatile matter rate less than 4%). The increase of biomass flow rate leads to a bad char quality. The efficiency of tar cracking, the quality and the heating value of the charcoal and the gases, indicate that: temperature between 650 C and 750 C, residence time of 30 min, biomass flow rate between 10 and 15 kg/h should be the most convenient experimental conditions to get better results from the experimental device and from the biomass pyrolysis process. The kinetic study of charcoal generation shows that the pyrolysis process, in experimental conditions, is a first-order reaction. The kinetic parameters calculated are comparable with those found by other researchers. (author)

  9. Parameter estimation of brain tumors using intraoperative thermal imaging based on artificial tactile sensing in conjunction with artificial neural network

    International Nuclear Information System (INIS)

    Sadeghi-Goughari, M; Mojra, A; Sadeghi, S

    2016-01-01

    Intraoperative Thermal Imaging (ITI) is a new minimally invasive diagnosis technique that can potentially locate margins of brain tumor in order to achieve maximum tumor resection with least morbidity. This study introduces a new approach to ITI based on artificial tactile sensing (ATS) technology in conjunction with artificial neural networks (ANN) and feasibility and applicability of this method in diagnosis and localization of brain tumors is investigated. In order to analyze validity and reliability of the proposed method, two simulations were performed. (i) An in vitro experimental setup was designed and fabricated using a resistance heater embedded in agar tissue phantom in order to simulate heat generation by a tumor in the brain tissue; and (ii) A case report patient with parafalcine meningioma was presented to simulate ITI in the neurosurgical procedure. In the case report, both brain and tumor geometries were constructed from MRI data and tumor temperature and depth of location were estimated. For experimental tests, a novel assisted surgery robot was developed to palpate the tissue phantom surface to measure temperature variations and ANN was trained to estimate the simulated tumor’s power and depth. Results affirm that ITI based ATS is a non-invasive method which can be useful to detect, localize and characterize brain tumors. (paper)

  10. Influence of synthesis experimental parameters on the formation of nanoparticles of magnetite prepared by thermal decomposition method

    International Nuclear Information System (INIS)

    Vega, Jaime; Picasso, Gino; Lopez, Alcides; Aviles Felix, Luis

    2013-01-01

    In this work, nanoparticles based on magnetite have been synthesized by thermal decomposition via solvent-controlled synthesis in polyols, using triethylene glycol (TREG). The starting precursor were solutions of nitrate and acetylacetonate of Fe. The samples have been characterized by X-ray diffraction technique (XRD), adsorption-desorption of N 2 (BET equation model), scanning electronic microscopy (SEM), thermogravimetric analysis (TGA), vibration sample magnetometry (VSM) and Moessbauer spectroscopy. XRD diffractogram revealed the majority presence of spinel-like structural phases of magnetite in all samples. SEM micrographs showed morphological differences; the samples prepared from acetylacetonate presented good dispersion of particles whereas the ones prepared from nitrate-small agglomerations. BET isotherms of samples depicted a mesoporous profile which corresponded to IV type. TGA thermogram showed two defined regions which corresponded to vaporization of polyol light fractions and TREG. Zero coercivity on the magnetization curve of acetylacetonate precursor samples have been observed by VSM, which indicates superparamagnetic behavior. Moessbauer spectra of samples detected the presence of 4 doublet-like subspectra due to the presence of 4 sites occupied by Fe in paramagnetic or superparamagnetic state. (author)

  11. Response types and general stability conditions of linear aero-elastic system with two degrees-of-freedom

    Czech Academy of Sciences Publication Activity Database

    Náprstek, Jiří; Pospíšil, Stanislav

    2012-01-01

    Roč. 111, č. 1 (2012), s. 1-13 ISSN 0167-6105 R&D Projects: GA ČR(CZ) GA103/09/0094; GA AV ČR(CZ) IAA200710902 Institutional support: RVO:68378297 Keywords : aero-elastic system * self-excited vibration * instability * aero-elastic derivatives Subject RIV: JN - Civil Engineering Impact factor: 1.342, year: 2012

  12. Development of laser Raman and x-ray photoelectron spectroscopic parameters as an additional thermal maturity indicator to the conodont alteration index

    International Nuclear Information System (INIS)

    Marshall, C.P.; Wilson, M.A.

    1999-01-01

    Full text: Laser Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) was applied in an attempt to quantify and elucidate the chemical transformations of the conodont alteration index (CAI) in artificially matured conodonts. Coniform elements of the genus Drepanodus from the Ordovician Emanuel Formation and pectiniform elements of the genus Polygnathus from the Devonian Napier Formation, both from the Canning Basin were used in this investigation. Samples where specifically chosen to study the effects of genus, element morphology, geological age, lithology and depositional environment upon the CAI. The first order Raman spectra (900-1800 cm-1) of both sets of conodonts show three bands. These are assigned to apatite at 965 cm-1, D band (defects present in the structural units and disorder) at 1345 cm-1 and the G band (carbon-carbon in plane stretching vibration or structural ordered carbon) at 1600 cm-1. The Raman spectra recorded for both sample sets, CAI range of 1-7 are characteristic of poorly/ highly disordered carbon within the conodont organic matter. Further more, the D band becomes progressively narrower and more intense the higher the thermal treatment. The G band becomes narrower until CAI 4 and after that has no systematic change apart from the intensity decreasing with temperature. The most noteworthy spectral characteristic in relation to thermal maturity is the clearly defined linear trend of decreasing D band line-width with increasing rank. The carbon 1s photoelectron regions acquired from both sample sets contain three peaks. These peaks are assigned to carbon bonded to sp3 and sp2 hybridized carbon (284.7 eV), alcohol (287.2 eV) and carboxyl (288.3 eV) functional groups. With increasing thermal treatment all the carbon constituents show a linear decrease in abundance. The poorly/ highly disordered carbon shows no progressive ordering with increasing thermal treatment. This is also in agreement with the XPS results, in which the aliphatic

  13. On some mechanisms of the effect of thermal prehistory on the behavior of silicon parameters under irradiation. O nekotorykh mekhanizmakh vliyaniya teplovoj predystorii na povedenie parametrov kremniya pod oblucheniem

    Energy Technology Data Exchange (ETDEWEB)

    Nejmash, V B; Sagan, T R; Tsmots' , V M; Shakhovtsov, V I; Shindich, V L [AN Ukrainskoj SSR, Kiev (Ukraine). Inst. Fiziki

    1991-11-01

    The effect of preliminary thermal treatment (TT) in 400-1200 degC temperature range on the behavior of Si monocrystal parameters under subsequent [gamma]-, electron and neutron irradiation is investigated. Five mechanisms of Si thermal prehistory effect on its properties are proposed: (1) decomposition of solid solutions of impurities interacting with radiation defects (RD); (2) formation of electrically active thermal defects (TD) in concentrations wich are sufficient for a significant alteration of RD charged state; (3) origination of TD, which can efficiency as aresult of the redistribution of impurities under thermal treatment; (5) formation of clusters of electrically active TD, resulting in the disturbance of electric homogeneity of Si crystal.

  14. Gas mixing under the influence of thermal-dynamic parameters such as buoyancy, jet momentum and fan-induced convection

    International Nuclear Information System (INIS)

    Chan, C.K.; Jones, S.C.A.

    1994-01-01

    Various scaling parameters for simulating mixing under the influence of buoyancy, jet momentum, and fan-induced convection were examined. Their significance was assessed by comparing the mixing of helium (a simulant for hydrogen) with air in a large-scale enclosure (1.8 m x 1.8 m x 1.8 m) to the mixing of salt-water with fresh-water in a small-scale enclosure (1/6 the size). The advantage of using the salt-water/freshwater technique is that it allows the characteristic flow regime (either turbulent or laminar flow) in the full-scale containment to be maintained in the reduced scale containment. A smoke technique for flow visualization was used to examine the mixing of the helium with air. For the small-scale salt-water/fresh-water experiment, fluorescent dye was used to provide a means to visualize the mixing process. The mixing behaviour in both sets of experiments were analyzed based on video records and concentration measurements in ten locations. Measurements showed that depending on the recirculation and jet flow rates, the injected salt-water (in small-scale experiments) and helium (in large-scale experiments) can disperse sufficiently quickly to produce an essentially 'well mixed' condition rendering the concentration measurements insensitive to the variation in the Froude or the Grashof Numbers. (author)

  15. Global Mobile Satellite Service Interference Analysis for the AeroMACS

    Science.gov (United States)

    Wilson, Jeffrey D.; Apaza, Rafael D.; Hall, Ward; Phillips, Brent

    2013-01-01

    The AeroMACS (Aeronautical Mobile Airport Communications System), which is based on the IEEE 802.16-2009 mobile wireless standard, is envisioned as the wireless network which will cover all areas of airport surfaces for next generation air transportation. It is expected to be implemented in the 5091-5150 MHz frequency band which is also occupied by mobile satellite service uplinks. Thus the AeroMACS must be designed to avoid interference with this incumbent service. Simulations using Visualyse software were performed utilizing a global database of 6207 airports. Variations in base station and subscriber antenna distribution and gain pattern were examined. Based on these simulations, recommendations for global airport base station and subscriber antenna power transmission limitations are provided.

  16. Multimedia in physics education: teaching videos about aero and fluid dynamics

    International Nuclear Information System (INIS)

    Wagner, Andreas; Altherr, Stefan; Eckert, Bodo; Jodl, Hans Joerg

    2007-01-01

    In a series of letters, we present teaching videos on topics which are difficult to understand for students, or which are difficult to realize experimentally in school, if at all. These videos can be used for quantitative analysis or visualization of phenomena. Here we present videos on aero and fluid dynamics which deal with the Navier-Stokes equation, the continuity equation and Karman's vortex street. (letters and comments)

  17. Qualification of Indigenously Developed Special Coatings for Aero-Engine Components

    OpenAIRE

    V. Sambasiva Rao; T. Rangaraju; V. Unnikrishnan

    1999-01-01

    The demand for higher performance and reliability of aero-engiaes necessitates its components to worksatisfactorily under severe operating conditions. The durability of various components in these environmentis often enhanced by applying suitable coatings. The development of new materials/processing methods andalso various coatings to protect the components have been driven by the ever-increasing severity of theaero-engine internal environment. While the selection of a coating is dictated by ...

  18. 76 FR 82202 - Airworthiness Directives; International Aero Engines AG Turbofan Engines

    Science.gov (United States)

    2011-12-30

    ... Engines AG Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... International Aero Engines AG (IAE) V2500-A1, V2525-D5 and V2528-D5 turbofan engines, and certain serial numbers (S/Ns) of IAE V2522-A5, V2524-A5, V2527-A5, V2527E-A5, V2527M-A5, V2530-A5, and V2533-A5 turbofan...

  19. Aero-elastic stability of airfoil flow using 2-D CFD

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, J [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    A three degrees-of-freedom structural dynamics model has been coupled to a two-dimensional incompressible CFD code. The numerical investigation considers aero-elastic stability for two different airfoils; the NACA0012 and the LM 2 18 % airfoils. Stable and unstable configurations and limit cycle oscillations are predicted in accordance with literature for the first airfoil. An attempt to predict stall induced edge-wise vibrations on a wind turbine airfoil fails using this two-dimensional approach. (au)

  20. Role of offending out-door aero-allergen and CD14 C(-159)T ...

    African Journals Online (AJOL)

    Child- hood-onset and adult-onset of asthma showed significant difference in allergen sensitivity as well as genetic background with respect to CD14 polymorphism. Keywords: Asthma, aero-allergen, skin prick test, total IgE, CD14 gene polymorphism. DOI: https://dx.doi.org/10.4314/ahs.v17i4.18. Cite as: Dutta S, Mondal P, ...

  1. General catalogue of products and services - geology. AERO data base. 2. ed.

    International Nuclear Information System (INIS)

    1995-01-01

    The catalogue in the second edition aims at presenting to the user a general idea on the aerogeophysical projects of Brazil database (AERO) which belongs to SIGA (Brazilian geological information system). The 151 documents (projects) are listed as follows: 52 projects performed by CPRM/DNPM - Departamento Nacional de Producao Mineral; 33 projects performed by CNEN - Commissao Nacional de Energia Nuclear and NUCLEBRAS; 7 projects executed by State government and private companies; and 59 projects executed for PETROBRAS

  2. Improving the thermal stability and electrical parameters of a liquid crystalline material 4-n-(nonyloxy) benzoic acid by using Li ion beam irradiation

    Science.gov (United States)

    Kumar, Satendra; Verma, Rohit; Dwivedi, Aanchal; Dhar, R.; Tripathi, Ambuj

    2018-05-01

    Li ion beam irradiation studies on a liquid crystalline material 4-n-(nonyloxy) benzoic acid (NOBA) have been carried out. The material has phase sequence of I-N-SmC-Cr. Thermodynamic studies demonstrate that an irradiation fluence of 1×1013 ions-cm-2 results in the increased thermal stability of the smectic C (SmC) phase of the material. Dielectric measurements illustrate that the transverse component of the dielectric permittivity and hence the dielectric anisotropy of the material in the nematic (N) and SmC phases are increased as compared to those of the pure material due to irradiation. UV-Visible spectrum of the irradiated material shows an additional peak along with the peak of the pure material. The observed change in the thermodynamic and electrical parameters is attributed to the conversion of some of the dimers of NOBA to monomers of NOBA due to irradiation.

  3. Parameter identification of the glazed photovoltaic thermal system using Genetic Algorithm–Fuzzy System (GA–FS) approach and its comparative study

    International Nuclear Information System (INIS)

    Singh, Sonveer; Agrawal, Sanjay

    2015-01-01

    Highlights: • Optimization using Genetic Algorithm–Fuzzy System approach. • Overall exergy efficiency has been evaluated with different optimization tools. • Comparative analysis has been done. • GA–FS is very efficient and fast technique. • Overall exergy efficiency has been improved. - Abstract: In this paper, Genetic Algorithm–Fuzzy System (GA–FS) approach is used to identify the optimized parameters of the glazed photovoltaic thermal (PVT) system and to improve its overall exergy efficiency. The fuzzy knowledge base is used to improve the efficiency of Genetic Algorithm (GA). It is observed that three GA parameters, namely: (i) crossover probability (P cross ), (ii) mutation probability (P mut ) and (iii) population size are changing dynamically during the program, according to fuzzy knowledge base to maximize the efficiency of the GA. Here, overall exergy efficiency is considered as an objective function during the optimization process for GA–FS approach. The effort has been made to identify the different optimized parameters like; length and depth of the channel, velocity of flowing fluid, overall heat transfer coefficient from solar cell to ambient and flowing fluid and overall back loss heat transfer coefficient from flowing fluid to the ambient to maximize the overall exergy efficiency using GA–FS approach. Performance of glazed PVT using GA–FS approach has been compared with performance using GA approach and without GA. It has also been observed that the GA–FS approach is a better approach as compared to GA approach because it converges faster as compare to GA because the use of the fuzzy knowledge base with GA and take less time for identification of optimized system parameters.

  4. Numerical Study for Optimizing Parameters of High-Intensity Focused Ultrasound-Induced Thermal Field during Liver Tumor Ablation: HIFU Simulator

    Directory of Open Access Journals (Sweden)

    Somayeh gharloghi

    2017-03-01

    Full Text Available Introduction High intensity focused ultrasound (HIFU is considered a noninvasive and effective technique for tumor ablation. Frequency and acoustic power are the most effective parameters for temperature distribution and the extent of tissue damage. The aim of this study was to optimize the operating transducer parameters such as frequency and input power in order to acquire suitable temperature and thermal dose distribution in the course of a numerical assessment. Materials and Methods To model the sound propagation, the Khokhlov-Zabolotskava-Kuznetsov (KZK nonlinear wave equation was used and simulation was carried out using MATLAB HIFU toolbox. Bioheat equation was applied to calculate the transient temperature in the liver tissue. Frequency ranges of 2, 3, 4, and 5 MHz and power levels of 50 and 100 W were applied using an extracorporeal transducer. Results Using a frequency of 2 MHz, the maximum temperatures reached 53°C and 90°C in the focal point for power levels of 50 W and 100 W, respectively. With the same powers and using a frequency of 3 MHz, the temperature reached to 71°C and 170°C, respectively. In addition, for these power levels at the frequency of 4 MHz, the temperature reached to 72°C and 145°C, respectively. However, at the 5 MHz frequency, the temperature in the focal spot was either 57°C or 79°C. Conclusion Use of frequency of 2 MHz and power of 100 W led to higher thermal dose distribution, and subsequently, reduction of the treatment duration and complications at the same exposure time in ablation of large tumors.

  5. Practice in multi-disciplinary computing. Transonic aero-structural dynamics of semi-monocoque wing

    International Nuclear Information System (INIS)

    Onishi, Ryoichi; Guo, Zhihong; Kimura, Toshiya; Iwamiya, Toshiyuki

    2000-01-01

    Japan Atomic Energy Research Institute is currently involved in expanding the application areas of its distributed parallel computing facility. One of the most anticipated areas of applications is multi-disciplinary interaction problem. This paper introduces the status quo of the system for fluid-structural interaction analysis on the institute's parallel computers by exploring multi-disciplinary engineering methodology. Current application is focused on a transonic aero-elastic analysis of a three dimensional wing. The distinctive features of the system are: (1) Simultaneous executions of fluid and structural codes by exploiting distributed-and-parallel processing technologies. (2) Construction of a computational fluid (aero)-structural dynamics model which combines flow-field grid with a wing structure composed of the external surface and the internal reinforcements. The purpose of this paper is to summarize the basic concepts, analytical methods, and their implementations along with the computed aero-structural properties of a swept-back wing at March, 7 flow condition. (author)

  6. Numerical study of aero-excitation of steam-turbine rotor blade self-oscillations

    Science.gov (United States)

    Galaev, S. A.; Makhnov, V. Yu.; Ris, V. V.; Smirnov, E. M.

    2018-05-01

    Blade aero-excitation increment is evaluated by numerical solution of the full 3D unsteady Reynolds-averaged Navier-Stokes equations governing wet steam flow in a powerful steam-turbine last stage. The equilibrium wet steam model was adopted. Blade surfaces oscillations are defined by eigen-modes of a row of blades bounded by a shroud. Grid dependency study was performed with a reduced model being a set of blades multiple an eigen-mode nodal diameter. All other computations were carried out for the entire blade row. Two cases are considered, with an original-blade row and with a row of modified (reinforced) blades. Influence of eigen-mode nodal diameter and blade reinforcing on aero-excitation increment is analyzed. It has been established, in particular, that maximum value of the aero-excitation increment for the reinforced-blade row is two times less as compared with the original-blade row. Generally, results of the study point definitely to less probability of occurrence of blade self-oscillations in case of the reinforced blade-row.

  7. Mapped Chebyshev Pseudo-Spectral Method for Dynamic Aero-Elastic Problem of Limit Cycle Oscillation

    Science.gov (United States)

    Im, Dong Kyun; Kim, Hyun Soon; Choi, Seongim

    2018-05-01

    A mapped Chebyshev pseudo-spectral method is developed as one of the Fourier-spectral approaches and solves nonlinear PDE systems for unsteady flows and dynamic aero-elastic problem in a given time interval, where the flows or elastic motions can be periodic, nonperiodic, or periodic with an unknown frequency. The method uses the Chebyshev polynomials of the first kind for the basis function and redistributes the standard Chebyshev-Gauss-Lobatto collocation points more evenly by a conformal mapping function for improved numerical stability. Contributions of the method are several. It can be an order of magnitude more efficient than the conventional finite difference-based, time-accurate computation, depending on the complexity of solutions and the number of collocation points. The method reformulates the dynamic aero-elastic problem in spectral form for coupled analysis of aerodynamics and structures, which can be effective for design optimization of unsteady and dynamic problems. A limit cycle oscillation (LCO) is chosen for the validation and a new method to determine the LCO frequency is introduced based on the minimization of a second derivative of the aero-elastic formulation. Two examples of the limit cycle oscillation are tested: nonlinear, one degree-of-freedom mass-spring-damper system and two degrees-of-freedom oscillating airfoil under pitch and plunge motions. Results show good agreements with those of the conventional time-accurate simulations and wind tunnel experiments.

  8. The effect of harmonized emissions on aerosol properties in global models – an AeroCom experiment

    Directory of Open Access Journals (Sweden)

    C. Textor

    2007-08-01

    Full Text Available The effects of unified aerosol sources on global aerosol fields simulated by different models are examined in this paper. We compare results from two AeroCom experiments, one with different (ExpA and one with unified emissions, injection heights, and particle sizes at the source (ExpB. Surprisingly, harmonization of aerosol sources has only a small impact on the simulated inter-model diversity of the global aerosol burden, and consequently global optical properties, as the results are largely controlled by model-specific transport, removal, chemistry (leading to the formation of secondary aerosols and parameterizations of aerosol microphysics (e.g., the split between deposition pathways and to a lesser extent by the spatial and temporal distributions of the (precursor emissions.

    The burdens of black carbon and especially sea salt become more coherent in ExpB only, because the large ExpA diversities for these two species were caused by a few outliers. The experiment also showed that despite prescribing emission fluxes and size distributions, ambiguities in the implementation in individual models can lead to substantial differences.

    These results indicate the need for a better understanding of aerosol life cycles at process level (including spatial dispersal and interaction with meteorological parameters in order to obtain more reliable results from global aerosol simulations. This is particularly important as such model results are used to assess the consequences of specific air pollution abatement strategies.

  9. GEYSER/TONUS: a coupled multi-D lumped parameter code for reactor thermal hydraulics analysis in case of severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Petit, M.; Durin, M.; Gauvain, J.

    1995-12-31

    The safety requirements for future light water reactors include accounting for severe accidents in the design process. The design must now include mitigation features to limit pressure and temperature inside the building. Hydrogen concentration is also a major issue for severe accidents. Modelling the thermal hydraulics inside the containment requires the description of complex phenomena such as condensation, stratification, transport of gases and aerosols, heat transfers. The effect of mitigation systems will increase the heterogeneities in the building, and most of those phenomena can be coupled. The GEYSER/TONUS multi-dimensional computer code is under development at CEA Saclay to model this complex situation. It allow the coupling of parts of the containment described in a lumped parameter manner, together with meshed parts. Emphasis is put on the numerical methods used to solve the transient problem, and physical models of classical lumped parameters codes will be adapted for the spatially described zones. The code is developed in the environment of the CASTEM 2000/TRIO EF system which allows to construct sophisticated applications based upon it. (J.S.). 22 refs., 1 fig.

  10. GEYSER/TONUS: a coupled multi-D lumped parameter code for reactor thermal hydraulics analysis in case of severe accidents

    International Nuclear Information System (INIS)

    Petit, M.; Durin, M.; Gauvain, J.

    1995-01-01

    The safety requirements for future light water reactors include accounting for severe accidents in the design process. The design must now include mitigation features to limit pressure and temperature inside the building. Hydrogen concentration is also a major issue for severe accidents. Modelling the thermal hydraulics inside the containment requires the description of complex phenomena such as condensation, stratification, transport of gases and aerosols, heat transfers. The effect of mitigation systems will increase the heterogeneities in the building, and most of those phenomena can be coupled. The GEYSER/TONUS multi-dimensional computer code is under development at CEA Saclay to model this complex situation. It allow the coupling of parts of the containment described in a lumped parameter manner, together with meshed parts. Emphasis is put on the numerical methods used to solve the transient problem, and physical models of classical lumped parameters codes will be adapted for the spatially described zones. The code is developed in the environment of the CASTEM 2000/TRIO EF system which allows to construct sophisticated applications based upon it. (J.S.). 22 refs., 1 fig

  11. GEYSER/TONUS: A coupled multi-D lumped parameter code for reactor thermal hydraulics analysis in case of severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Petit, M.; Durin, M.; Gauvain, J. [Commissariat a l`Energie Atomique, Gif sur Yvette (France)

    1995-09-01

    In many countries, the safety requirements for future light water reactors include accounting for severe accidents in the design process. As far as the containment is concerned, the design must now include mitigation features to limit the pressure and temperature inside the building. Hydrogen concentration is also a major issue for severe accidents. In this context, new needs appear for the modeling of the thermal hydraulics inside the containment. It requires the description of complex phenomena such as condensation, stratification, transport of gases and aerosols, heat transfers. Moreover, the effect of mitigation systems will increase the heterogeneities in the building, and most of those phenomena can be coupled, as for example hydrogen stratification and condensation. To model such a complex situation, the use of multi-dimensional computer codes seems to be necessary in case of large volumes. The aim of the GEYSER/TONUS computer code is to fulfill this need. This code is currently under development at CEA in Saclay. It will allow the coupling of parts of the containment described in a lumped parameter manner, together with meshed parts. Emphasis is put on the numerical methods used to solve the transient problem, as the objective is to be able to treat complete scenarios. Physical models of classical lumped parameters codes will adapted for the spatially described zones. The code is developed in the environment of the CASTEM 2000/TRIO EF system which allows, thanks to its modular conception, to construct sophisticated applications based upon it.

  12. Solar Tower Experiments for Radiometric Calibration and Validation of Infrared Imaging Assets and Analysis Tools for Entry Aero-Heating Measurements

    Science.gov (United States)

    Splinter, Scott C.; Daryabeigi, Kamran; Horvath, Thomas J.; Mercer, David C.; Ghanbari, Cheryl M.; Ross, Martin N.; Tietjen, Alan; Schwartz, Richard J.

    2008-01-01

    The NASA Engineering and Safety Center sponsored Hypersonic Thermodynamic Infrared Measurements assessment team has a task to perform radiometric calibration and validation of land-based and airborne infrared imaging assets and tools for remote thermographic imaging. The IR assets and tools will be used for thermographic imaging of the Space Shuttle Orbiter during entry aero-heating to provide flight boundary layer transition thermography data that could be utilized for calibration and validation of empirical and theoretical aero-heating tools. A series of tests at the Sandia National Laboratories National Solar Thermal Test Facility were designed for this task where reflected solar radiation from a field of heliostats was used to heat a 4 foot by 4 foot test panel consisting of LI 900 ceramic tiles located on top of the 200 foot tall Solar Tower. The test panel provided an Orbiter-like entry temperature for the purposes of radiometric calibration and validation. The Solar Tower provided an ideal test bed for this series of radiometric calibration and validation tests because it had the potential to rapidly heat the large test panel to spatially uniform and non-uniform elevated temperatures. Also, the unsheltered-open-air environment of the Solar Tower was conducive to obtaining unobstructed radiometric data by land-based and airborne IR imaging assets. Various thermocouples installed on the test panel and an infrared imager located in close proximity to the test panel were used to obtain surface temperature measurements for evaluation and calibration of the radiometric data from the infrared imaging assets. The overall test environment, test article, test approach, and typical test results are discussed.

  13. A semi-quantitative risk assessment method for analyzing the level of risk associated with parameters in design of thermal heavy oil Steam Assisted Gravity Drainage (SAGD) pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Farrokhzad, M.A. [IMV Projects Inc., Alberta (Canada)

    2009-07-01

    During the design stage of a thermal heavy oil pipeline, the design engineer should include the consideration of more factors than what is normally used for the design of a conventional pipeline. In the Steam Assisted Gravity Drainage (SAGD) production, for the extraction of bitumen from oily soil, it is required that a stream of hot and pressurized steam (over 300 deg C) to be injected into the oil reservoir. The steam reaches the oily soil reservoir from a steam sour such as boilers by traveling through above-ground pipeline arrangements. As a result of the steam injection into the well site, bitumen oil is released from the oily soil. The produced bitumen also consists of high pressure and temperature (over 200 deg C) and requires a gathering pipeline arrangement for traveling to the processing plant. During the layout design, both steam injection and hot production lines are usually designed parallel with each other by using a series of anchor-loop-anchor supported by steel structures and pilings. The coexistence of two extremely hot pipelines (Injecting Steam and Production pipelines) on the aboveground pipe rack should be designed with extreme care. The higher than normal design temperature of these lines creates considerable lateral and longitudinal movements and heavy loads on the supporting structure and piling. In addition, since both lines contain high pressure mediums, the design engineer shall include a few more parameters than what is normally considered for conventional pipelines. These parameters include; sustain loads, slug forces, natural frequency, mechanical interactions, frictional forces on anchors and guides, and mechanical engagement of supporting components, as well as the effects of these loads on the steel structure-piling and their reaction with the surrounding soil. In addition the design engineer shall be aware of any potential failures associated with these physical and mechanical parameters, the impact and probability rationales and

  14. Determination of diffusion parameters of Thermal neutrons for non-moderator media by a pulsed method and a time independent method

    International Nuclear Information System (INIS)

    Boufraqech, A.

    1991-01-01

    Two methods for determining the diffusion parameters of thermal neutrons for non-moderator and non-multiplicator media have been developped: The first one, which is a pulsed method, is based on thermal neutrons relaxation coefficients measurement in a moderator, with and without the medium of interest that plays the role of reflector. For the experimental results interpretation using the diffusion theory, a corrective factor which takes into account the neutron cooling by diffusion has been introduced. Its dependence on the empirically obtained relaxation coefficients is in a good agreement with the calculations made in P3L2 approximation. The difference between linear extrapolation lengths of the moderator and the reflector has been taken into account, by developping the scalar fluxes in Bessel function series which automatically satisfy the boundary conditions at the extra-polated surfaces of the two media. The obtained results for Iron are in a good agreement with those in the literature. The second method is time independent, based on the 'flux albedo' measurements interpretation (Concept introduced by Amaldi and Fermi) by P3 approximation in the one group trans-port theory. The independent sources are introduced in the Marshak boundary conditions. An angular albedo matrix has been used to deal with multiple reflections and to take into account the distortion of the current vector when entring a medium, after being reflected by this latter. The results obtained by this method are slightly different from those given in the literature. The analysis of the possible sources causing this discrepancy, particulary the radial distribution of flux in cylindrical geometry and the flux depression at medium-black body interface, has shown that the origin of this discrepancy is the neutron heating by diffusion. 47 figs., 20 tabs., 39 refs. (author)

  15. Crystal spectroscopy of silicon aero-gel end-caps driven by a dynamic hohlraum on Z

    International Nuclear Information System (INIS)

    Nash, T.J.; Sanford, T.W.L.; Mock, R.C.; Leeper, R.J.; Chandler, G.A.; Bailey, J.E.; McKenney, J.L.; Mehlhorn, T.A.; Seaman, J.F.; McGurn, J.; Schroen, D.; Russell, C.; Lake, P.E.; Jobe, D.O.; Gilliland, T.; Nielsen, D.S.; Lucas, J.; Moore, T.; Torres, J.A.; MacFarlane, J.J.; Apruzese, J.P.; Chrien, R.; Idzorek, G.; Peterson, D.L.; Watt, R.

    2005-01-01

    We present results from crystal spectroscopic analysis of silicon aero-gel foams heated by dynamic hohlraums on Z. The dynamic hohlraum on Z creates a radiation source with a 230-eV average temperature over a 2.4-mm diameter. In these experiments silicon aero-gel foams with 10-mg/cm3 densities and 1.7-mm lengths were placed on both ends of the dynamic hohlraum. Several crystal spectrometers were placed both above and below the z-pinch to diagnose the temperature of the silicon aero-gel foam using the K-shell lines of silicon. The crystal spectrometers were (1) temporally integrated and spatially resolved, (2) temporally resolved and spatially integrated, and (3) both temporally and spatially resolved. The results indicate that the dynamic hohlraum heats the silicon aero-gel to approximately 150-eV at peak power. As the dynamic hohlraum source cools after peak power the silicon aero-gel continues to heat and jets axially at an average velocity of approximately 50-cm/μs. The spectroscopy has also shown that the reason for the up/down asymmetry in radiated power on Z is that tungsten enters the line-of-sight on the bottom of the machine much more than on the top

  16. Real-time analysis of ambient organic aerosols using aerosol flowing atmospheric-pressure afterglow mass spectrometry (AeroFAPA-MS)

    Science.gov (United States)

    Brüggemann, Martin; Karu, Einar; Stelzer, Torsten; Hoffmann, Thorsten

    2015-04-01

    Organic aerosol accounts for a major fraction of atmospheric aerosols and has implications on the earth's climate and human health. However, due to the chemical complexity its measurement remains a major challenge for analytical instrumentation.1 Here, we present the development, characterization and application of a new soft ionization technique that allows mass spectrometric real-time detection of organic compounds in ambient aerosols. The aerosol flowing atmospheric-pressure afterglow (AeroFAPA) ion source utilizes a helium glow discharge plasma to produce excited helium species and primary reagent ions. Ionization of the analytes occurs in the afterglow region after thermal desorption and results mainly in intact molecular ions, facilitating the interpretation of the acquired mass spectra. In the past, similar approaches were used to detect pesticides, explosives or illicit drugs on a variety of surfaces.2,3 In contrast, the AeroFAPA source operates 'online' and allows the detection of organic compounds in aerosols without a prior precipitation or sampling step. To our knowledge, this is the first application of an atmospheric-pressure glow discharge ionization technique to ambient aerosol samples. We illustrate that changes in aerosol composition and concentration are detected on the time scale of seconds and in the ng-m-3 range. Additionally, the successful application of AeroFAPA-MS during a field study in a mixed forest region in Central Europe is presented. Several oxidation products of monoterpenes were clearly identified using the possibility to perform tandem MS experiments. The acquired data are in agreement with previous studies and demonstrate that AeroFAPA-MS is a suitable tool for organic aerosol analysis. Furthermore, these results reveal the potential of this technique to enable new insights into aerosol formation, growth and transformation in the atmosphere. References: 1) IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The

  17. 75 FR 10694 - Airworthiness Directives; AeroSpace Technologies of Australia Pty Ltd Models N22B, N22S, and N24A...

    Science.gov (United States)

    2010-03-09

    ... Airworthiness Directives; AeroSpace Technologies of Australia Pty Ltd Models N22B, N22S, and N24A Airplanes... authority for Australia, has issued AD GAF-N22-52, Amendment 1, dated January 2010 (referred to after this... examining the MCAI in the AD docket. Relevant Service Information AeroSpace Technologies of Australia...

  18. Response Surface Methodology Approach on Effect of Cutting Parameter on Tool Wear during End Milling of High Thermal Conductivity Steel -150 (HTCS-150)

    International Nuclear Information System (INIS)

    Mohd Hadzley, A B; Wan Mohd Azahar, W M Y; Izamshah, R; Mohd Shahir, K; Mohd Amran, A; Anis Afuza, A

    2016-01-01

    This paper presents a study of development the tool life's mathematical model during the milling process on High Thermal Conductivity Steel 150 (HTCS-150) 56 HRC. Using response surface methodology, the mathematical models for tool life have been developed in terms of cutting speed, feed rate and depth of cut. Box-Behnken techniques is a part of Response Surface Methodology (RSM) has been used to carry out the work plan to predict, the tool wear and generate the numerical equation in relation to independent variable parameters by Design Expert software. Dry milling experiments were conducted by using two levels of cutting speed, feed rate and depth of cut. In this study, the variable for the cutting speed, feed rate and depth of cut were in the range of 484-553 m/min, 0.31-0.36 mm/tooth, and 0.1-0.5 mm, width of cut is constantly 0.01mm per passes. The tool wear was measured using tool maker microscope. The effect of input factors that on the responds were identified by using mean of ANOVA. The responds of tool wear then simultaneously optimized. The validation of the test reveals the model accuracy 5% and low tool wear under same experimental condition. (paper)

  19. Influence of Thermal Parameters, Microstructure, and Morphology of Si on Machinability of an Al–7.0 wt.% Si Alloy Directionally Solidified

    Directory of Open Access Journals (Sweden)

    Cássio A. P. Silva

    2018-01-01

    Full Text Available This study aims to correlate the influence of thermal and microstructural parameters such as growth rate and cooling rate (VL and TR and secondary dendrite spacing (λ2, respectively, in the machining cutting temperature and tool wear on the necking process of the Al–7 wt.% Si alloy solidified in a horizontal directional device using a high-speed steel with a tungsten tool. The dependence of λ2 on VL and TR and dependence of the maximum cutting temperature and maximum flank wear on λ2 were determined by power experimental laws given by λ2 = constant (VL and TRn and TMAX, VBMAX = constant (λ2n, respectively. The maximum cutting temperature increased with increasing of λ2. The opposite occurred with the maximum flank wear. The role of Si alloying element on the aforementioned results has also been analyzed. A morphological change of Si along the solidified ingot length has been observed, that is, the morphology of Si in the eutectic matrix has indicated a transition from particles to fibers along the casting together with an increase of the particle diameters with the position from the metal/mold interface.

  20. Response Surface Methodology Approach on Effect of Cutting Parameter on Tool Wear during End Milling of High Thermal Conductivity Steel -150 (HTCS-150)

    Science.gov (United States)

    Mohd Hadzley, A. B.; Mohd Azahar, W. M. Y. Wan; Izamshah, R.; Mohd Shahir, K.; Mohd Amran, A.; Anis Afuza, A.

    2016-02-01

    This paper presents a study of development the tool life's mathematical model during the milling process on High Thermal Conductivity Steel 150 (HTCS-150) 56 HRC. Using response surface methodology, the mathematical models for tool life have been developed in terms of cutting speed, feed rate and depth of cut. Box-Behnken techniques is a part of Response Surface Methodology (RSM) has been used to carry out the work plan to predict, the tool wear and generate the numerical equation in relation to independent variable parameters by Design Expert software. Dry milling experiments were conducted by using two levels of cutting speed, feed rate and depth of cut. In this study, the variable for the cutting speed, feed rate and depth of cut were in the range of 484-553 m/min, 0.31-0.36 mm/tooth, and 0.1-0.5 mm, width of cut is constantly 0.01mm per passes. The tool wear was measured using tool maker microscope. The effect of input factors that on the responds were identified by using mean of ANOVA. The responds of tool wear then simultaneously optimized. The validation of the test reveals the model accuracy 5% and low tool wear under same experimental condition.

  1. Machining the Integral Impeller and Blisk of Aero-Engines: A Review of Surface Finishing and Strengthening Technologies

    Science.gov (United States)

    Fu, Youzhi; Gao, Hang; Wang, Xuanping; Guo, Dongming

    2017-05-01

    The integral impeller and blisk of an aero-engine are high performance parts with complex structure and made of difficult-to-cut materials. The blade surfaces of the integral impeller and blisk are functional surfaces for power transmission, and their surface integrity has significant effects on the aerodynamic efficiency and service life of an aero-engine. Thus, it is indispensable to finish and strengthen the blades before use. This paper presents a comprehensive literature review of studies on finishing and strengthening technologies for the impeller and blisk of aero-engines. The review includes independent and integrated finishing and strengthening technologies and discusses advanced rotational abrasive flow machining with back-pressure used for finishing the integral impeller and blisk. A brief assessment of future research problems and directions is also presented.

  2. Development and Validation of a New Blade Element Momentum Skewed-Wake Model within AeroDyn: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ning, S. A.; Hayman, G.; Damiani, R.; Jonkman, J.

    2014-12-01

    Blade element momentum methods, though conceptually simple, are highly useful for analyzing wind turbines aerodynamics and are widely used in many design and analysis applications. A new version of AeroDyn is being developed to take advantage of new robust solution methodologies, conform to a new modularization framework for National Renewable Energy Laboratory's FAST, utilize advanced skewed-wake analysis methods, fix limitations with previous implementations, and to enable modeling of highly flexible and nonstraight blades. This paper reviews blade element momentum theory and several of the options available for analyzing skewed inflow. AeroDyn implementation details are described for the benefit of users and developers. These new options are compared to solutions from the previous version of AeroDyn and to experimental data. Finally, recommendations are given on how one might select from the various available solution approaches.

  3. Aero-medical evacuation from the second Israel-Lebanon war: a descriptive study.

    Science.gov (United States)

    Schwartz, Dagan; Resheff, Avram; Geftler, Alex; Weiss, Aviram; Birenbaum, Erez; Lavon, Ophir

    2009-05-01

    The second Lebanon war started as a limited operation and progressed to a large-scale campaign. Most of the fighting took place in mountainous villages and small towns inhabited with civilians. The Israeli Defense Forces (IDF) Airborne rescue and evacuation unit is charged with air evacuation of soldiers and civilians in times of peace, limited conflict, and war. We describe this unit's activities in the second Lebanon war, analyzing injury, treatment, and evacuation characteristics Data were collected from flight medical reports, debriefings of aero-medical team members (usually immediately upon return from mission), ground units medical reports and debriefings, and hospital records. 725 IDF soldiers were injured and 117 killed either in Lebanon or near the Israeli-Lebanese border during the war. A total of 338 (46%) were evacuated in 95 airlifts (averaging 4.5 evacuees per airlift) from the fighting zones or the border. Air evacuation used dedicated helicopters with advanced care capacities, and most victims were evacuated straight from the battlefield, as the fighting was ensuing. Many wounded first received advanced medical care upon the arrival of the aero-medical teams. In military operations within civilian populated areas with threats to ground transport, air evacuation can sometimes be the only readily available option. Providing timely ground advanced medical care proved difficult in many instances. Thus, for many, the rescue helicopter was the first point of access to such care. Aero-medical aircrafts and personnel faced threats from gunfire and missiles, causing both delays in evacuation and a high average number of evacuees per airlift. This article proposes ways of coping with situations in which similar rescue and evacuation problems are likely.

  4. The spectral analysis of an aero-engine assembly incorporating a squeeze-film damper

    Science.gov (United States)

    Holmes, R.; Dede, M. M.

    1989-01-01

    Aero-engine structures have very low inherent damping and so artificial damping is often introduced by pumping oil into annular gaps between the casings and the outer races of some or all of the rolling-element bearings supporting the rotors. The thin oil films so formed are called squeeze film dampers and they can be beneficial in reducing rotor vibration due to unbalance and keeping to reasonable limits the forces transmitted to the engine casing. However, squeeze-film dampers are notoriously non-linear and as a result can introduce into the assembly such phenomena as subharmonic oscillations, jumps and combination frequencies. The purpose of the research is to investigate such phenomena both theoretically and experimentally on a test facility reproducing the essential features of a medium-size aero engine. The forerunner of this work was published. It was concerned with the examination of a squeeze-film damper in series with housing flexibility when supporting a rotor. The structure represented to a limited extent the essentials of the projected Rolls Royce RB401 engine. That research demonstrated the ability to calculate the oil-film forces arising from the squeeze film from known motions of the bearing components and showed that the dynamics of a shaft fitted with a squeeze film bearing can be predicted reasonably accurately. An aero-engine will normally have at least two shafts and so in addition to the excitation forces which are synchronous with the rotation of one shaft, there will also be forces at other frequencies from other shafts operating on the squeeze-film damper. Theoretical and experimental work to consider severe loading of squeeze-film dampers and to include these additional effects are examined.

  5. Statistical learning methods for aero-optic wavefront prediction and adaptive-optic latency compensation

    Science.gov (United States)

    Burns, W. Robert

    Since the early 1970's research in airborne laser systems has been the subject of continued interest. Airborne laser applications depend on being able to propagate a near diffraction-limited laser beam from an airborne platform. Turbulent air flowing over the aircraft produces density fluctuations through which the beam must propagate. Because the index of refraction of the air is directly related to the density, the turbulent flow imposes aberrations on the beam passing through it. This problem is referred to as Aero-Optics. Aero-Optics is recognized as a major technical issue that needs to be solved before airborne optical systems can become routinely fielded. This dissertation research specifically addresses an approach to mitigating the deleterious effects imposed on an airborne optical system by aero-optics. A promising technology is adaptive optics: a feedback control method that measures optical aberrations and imprints the conjugate aberrations onto an outgoing beam. The challenge is that it is a computationally-difficult problem, since aero-optic disturbances are on the order of kilohertz for practical applications. High control loop frequencies and high disturbance frequencies mean that adaptive-optic systems are sensitive to latency in sensors, mirrors, amplifiers, and computation. These latencies build up to result in a dramatic reduction in the system's effective bandwidth. This work presents two variations of an algorithm that uses model reduction and data-driven predictors to estimate the evolution of measured wavefronts over a short temporal horizon and thus compensate for feedback latency. The efficacy of the two methods are compared in this research, and evaluated against similar algorithms that have been previously developed. The best version achieved over 75% disturbance rejection in simulation in the most optically active flow region in the wake of a turret, considerably outperforming conventional approaches. The algorithm is shown to be

  6. AeroPropulsoServoElasticity: Dynamic Modeling of the Variable Cycle Propulsion System

    Science.gov (United States)

    Kopasakis, George

    2012-01-01

    This presentation was made at the 2012 Fundamental Aeronautics Program Technical Conference and it covers research work for the Dynamic Modeling of the Variable cycle Propulsion System that was done under the Supersonics Project, in the area of AeroPropulsoServoElasticity. The presentation covers the objective for the propulsion system dynamic modeling work, followed by the work that has been done so far to model the variable Cycle Engine, modeling of the inlet, the nozzle, the modeling that has been done to model the affects of flow distortion, and finally presenting some concluding remarks and future plans.

  7. Applications of aero-acoustic analysis to wind turbine noise control

    International Nuclear Information System (INIS)

    Lowson, M.V.

    1992-01-01

    Wind turbine noise generation mechanisms are essentially equivalent to the aero-acoustic mechanisms of other rotors, which have been studied in depth for many years. Basic sources for the wind turbine noise radiation process are defined, and their significance assessed. From the analysis, areas of potential improvement in wind turbine noise prediction are defined. Suggestions are made for approaches to wind turbine noise control which separate the noise problems at cut-in from those at rated power. Some of these offer the possibility of noise reduction without unfavourable effects on performance. (author)

  8. Applications of aero-acoustic analysis to wind turbine noise control

    International Nuclear Information System (INIS)

    Lowson, M.

    1993-01-01

    Wind turbine noise generation mechanisms are essentially equivalent to the aero-acoustic mechanisms of other rotors, which have been studied in depth for many years. Basic sources for the wind turbine noise radiation process are defined, and their significance assessed. From the analysis, areas of potential improvement in wind turbine noise prediction are defined. Suggestions are made for approaches to wind turbine noise control which separate the noise problems at cut-in from those at rated power. Some of these offer the possibility of noise reduction without unfavourable effects on performance. (author)

  9. Comparison of caffeine disposition following administration by oral solution (energy drink) and inspired powder (AeroShot) in human subjects.

    Science.gov (United States)

    Laizure, S Casey; Meibohm, Bernd; Nelson, Kembral; Chen, Feng; Hu, Zhe-Yi; Parker, Robert B

    2017-12-01

    To determine the disposition and effects of caffeine after administration using a new dosage form (AeroShot) that delivers caffeine by inspiration of a fine powder into the oral cavity and compare it to an equivalent dose of an oral solution (energy drink) as the reference standard. Healthy human subjects (n = 17) inspired a 100 mg caffeine dose using the AeroShot device or consumed an energy drink on separate study days. Heart rate, blood pressure and subject assessments of effects were measured over an 8-h period. Plasma concentrations of caffeine and its major metabolites were determined by liquid chromatography-mass spectrometry. Pharmacokinetic, cardiovascular and perceived stimulant effects were compared between AeroShot and energy drink phases using a paired t test and standard bioequivalency analysis. Caffeine disposition was similar after caffeine administration by the AeroShot device and energy drink: peak plasma concentration 1790 and 1939 ng ml -1 , and area under the concentration-time curve (AUC) 15 579 and 17 569 ng ml -1 × h, respectively, but they were not bioequivalent: AeroShot AUC of 80.3% (confidence interval 71.2-104.7%) and peak plasma concentration of 86.3% (confidence interval 62.8-102.8%) compared to the energy drink. Female subjects did have a significantly larger AUC compared to males after consumption of the energy drink. The heart rate and blood pressure were not significantly affected by the 100 mg caffeine dose, and there were no consistently perceived stimulant effects by the subjects using visual analogue scales. Inspiration of caffeine as a fine powder using the AeroShot device produces a similar caffeine profile and effects compared to administration of an oral solution (energy drink). © 2017 The British Pharmacological Society.

  10. Lab determination of soil thermal Conductivity. Fundamentals, geothermal applications and relationship with other soil parameters; Medida de la conductividad termica del suelo en laboratorio. Fundamentos fisicos, aplicaciones geotermicas y relaciones con otros parametros del suelo

    Energy Technology Data Exchange (ETDEWEB)

    Nope Gomez, F. I.; Santiago, C. de

    2014-07-01

    Shallow geothermal energy application in buildings and civil engineering works (tunnels, diaphragm walls, bridge decks, roads, and train/metro stations) are spreading rapidly all around the world. the dual role of these energy geostructures makes their design challenging and more complex with respect to conventional projects. Besides the geotechnical parameters, thermal behavior parameters are needed in the design and dimensioning to warrantee the thermo-mechanical stability of the geothermal structural element. As for obtaining any soil thermal parameter, both in situ and laboratory methods can be used. The present study focuses on a lab test known the need ke method to measure the thermal conductivity of soils (λ). Through this research work, different variables inherent to the test procedure, as well as external factors that may have an impact on thermal conductivity measurements were studied. Samples extracted from the cores obtained from a geothermal drilling conducted on the campus of the Polytechnic University of Valencia, showing different mineralogical and nature composition (granular and clayey) were studied different (moisture and density) compacting conditions. 550 thermal conductivity measurements were performed, from which the influence of factors such as the degree of saturation-moisture, dry density and type of material was verified. Finally, a stratigraphic profile with thermal conductivities ranges of each geologic level was drawn, considering the degree of saturation ranges evaluated in lab tests, in order to be compared and related to thermal response test, currently in progress. Finally, a test protocol is set and proposed, for both remolded and undisturbed samples, under different saturation conditions. Together with this test protocol, a set of recommendations regarding the configuration of the measuring equipment, treatment of samples and other variables, are posed in order to reduce errors in the final results. (Author)

  11. Research and Development of Some Advanced High Temperature Titanium Alloys for Aero-engine

    Directory of Open Access Journals (Sweden)

    CAI Jian-ming

    2016-08-01

    Full Text Available Some advanced high temperature titanium alloys are usually selected to be manufactured into blade, disc, case, blisk and bling under high temperature environment in compressor and turbine system of a new generation high thrust-mass ratio aero-engine. The latest research progress of 600℃ high temperature titanium alloy, fireproof titanium alloy, TiAl alloy, continuous SiC fiber reinforced titanium matrix composite and their application technology in recent years in China were reviewed in this paper. The key technologies need to be broken through in design, processing and application of new material and component are put forward, including industrial ingot composition of high purified and homogeneous control technology, preparation technology of the large size bar and special forgings, machining technology of blisk and bling parts, material property evaluation and application design technique. The future with the continuous application of advanced high temperature titanium alloys, will be a strong impetus to the development of China's aero-engine technology.

  12. The Design and Semi-Physical Simulation Test of Fault-Tolerant Controller for Aero Engine

    Science.gov (United States)

    Liu, Yuan; Zhang, Xin; Zhang, Tianhong

    2017-11-01

    A new fault-tolerant control method for aero engine is proposed, which can accurately diagnose the sensor fault by Kalman filter banks and reconstruct the signal by real-time on-board adaptive model combing with a simplified real-time model and an improved Kalman filter. In order to verify the feasibility of the method proposed, a semi-physical simulation experiment has been carried out. Besides the real I/O interfaces, controller hardware and the virtual plant model, semi-physical simulation system also contains real fuel system. Compared with the hardware-in-the-loop (HIL) simulation, semi-physical simulation system has a higher degree of confidence. In order to meet the needs of semi-physical simulation, a rapid prototyping controller with fault-tolerant control ability based on NI CompactRIO platform is designed and verified on the semi-physical simulation test platform. The result shows that the controller can realize the aero engine control safely and reliably with little influence on controller performance in the event of fault on sensor.

  13. Aero-Propulsion Technology (APT) Task V Low Noise ADP Engine Definition Study

    Science.gov (United States)

    Holcombe, V.

    2003-01-01

    A study was conducted to identify and evaluate noise reduction technologies for advanced ducted prop propulsion systems that would allow increased capacity operation and result in an economically competitive commercial transport. The study investigated the aero/acoustic/structural advancements in fan and nacelle technology required to match or exceed the fuel burned and economic benefits of a constrained diameter large Advanced Ducted Propeller (ADP) compared to an unconstrained ADP propulsion system with a noise goal of 5 to 10 EPNDB reduction relative to FAR 36 Stage 3 at each of the three measuring stations namely, takeoff (cutback), approach and sideline. A second generation ADP was selected to operate within the maximum nacelle diameter constrain of 160 deg to allow installation under the wing. The impact of fan and nacelle technologies of the second generation ADP on fuel burn and direct operating costs for a typical 3000 nm mission was evaluated through use of a large, twin engine commercial airplane simulation model. The major emphasis of this study focused on fan blade aero/acoustic and structural technology evaluations and advanced nacelle designs. Results of this study have identified the testing required to verify the interactive performance of these components, along with noise characteristics, by wind tunnel testing utilizing and advanced interaction rig.

  14. Aftereffect of radiotherapy of upper aero-digestive tracts in odontological care

    International Nuclear Information System (INIS)

    Schiochet, Luc

    2010-01-01

    In its first part, this thesis proposes a detailed presentation of the upper aero-digestive tract cancer. The author defines the cancerous process, describes anatomic aspects, and discusses epidemiological aspects (occurrence, mortality, survival, and epidemiological data in different countries). In the second part, the author discusses the role of radiotherapy and of dental surgery in taking a cancerous patient into care (general principles of radiotherapy, therapeutic options and choices, association of radiotherapy, chemotherapy and surgery). Principles of radiotherapy are then more precisely addressed: physical principles (X rays, gamma rays, electrons, neutrons, and protons), radioactivity doses, radiotherapy effect, main equipment, radiotherapy techniques (conformational or intensity-modulated radiotherapy, computed tomography, Cyberknife, external radiotherapy, brachytherapy). The third part addresses early oral-facial complications induced by radiotherapy: factors favouring these complications, nervous effects, effects on the blood system and on the skin, hyposialia and xerostomia, radio-induced mucositis of upper aero-digestive tracts. The next part addresses late effects: late cutaneous after-effects, late radio-mucositis, limitation of mouth opening, tooth decays, osteoradionecrosis. The last part addresses the role of the dental surgeon in taking into care a patient whose head and neck have been irradiated: role before irradiation, during irradiation, and after irradiation [fr

  15. Fuselage boundary-layer refraction of fan tones radiated from an installed turbofan aero-engine.

    Science.gov (United States)

    Gaffney, James; McAlpine, Alan; Kingan, Michael J

    2017-03-01

    A distributed source model to predict fan tone noise levels of an installed turbofan aero-engine is extended to include the refraction effects caused by the fuselage boundary layer. The model is a simple representation of an installed turbofan, where fan tones are represented in terms of spinning modes radiated from a semi-infinite circular duct, and the aircraft's fuselage is represented by an infinitely long, rigid cylinder. The distributed source is a disk, formed by integrating infinitesimal volume sources located on the intake duct termination. The cylinder is located adjacent to the disk. There is uniform axial flow, aligned with the axis of the cylinder, everywhere except close to the cylinder where there is a constant thickness boundary layer. The aim is to predict the near-field acoustic pressure, and in particular, to predict the pressure on the cylindrical fuselage which is relevant to assess cabin noise. Thus no far-field approximations are included in the modelling. The effect of the boundary layer is quantified by calculating the area-averaged mean square pressure over the cylinder's surface with and without the boundary layer included in the prediction model. The sound propagation through the boundary layer is calculated by solving the Pridmore-Brown equation. Results from the theoretical method show that the boundary layer has a significant effect on the predicted sound pressure levels on the cylindrical fuselage, owing to sound radiation of fan tones from an installed turbofan aero-engine.

  16. Performance Degradation of Thermal Parameters during Cycle Ageing of High Energy Density Ni-Mn-Co based Lithium-Ion Battery Cells

    DEFF Research Database (Denmark)

    Stanciu, Tiberiu; Stroe, Daniel Loan; Swierczynski, Maciej Jozef

    2016-01-01

    The accelerated demand for electrifying the transportation sector, coupled with the continuous improvement of rechargeable batteries’ characteristics, have made modern high-energy Lithium-ion (Li-ion) batteries the standard choice for hybrid and electric vehicles (EVs). Consequently, Li......-ion batteries’ electrochemical and thermal characteristics are very important topics, putting them at the forefront of the research. Along with the electrical performance of Li-ion battery cells, their thermal behavior needs to be accurately predicted during operation and over the lifespan of the application...... as well, since the thermal management of the battery is crucial for the safety of the EV driver. Moreover, the thermal management system can significantly lower the degradation rate of the battery pack and thus reduce costs. In this paper, the thermal characterization of a commercially available Nickel...

  17. Study on aero-dynamic characteristics of the sloop rig (continued); Sloop ring no kuriki tokusei no ichikaiseki (zoku)

    Energy Technology Data Exchange (ETDEWEB)

    Shinkai, A.; Iyoda, H. [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1997-09-04

    A numerical simulation method was formerly provided for analyzing aero-dynamic characteristics of sloop rig by the vortex distribution method. For this method, aero-dynamic characteristics of the sloop rib were formulated by treating air flow around sail as a two-dimensional problem and by assuming sail as a membrane. The sloop rig is a yacht for more than two persons, which is the most popular form of rig. A main sail and a jib sheet are fixed on a mast. In this study, the method developed based on the panel method was introduced for analyzing the effects of jib sheet which can control the jib trim angle. Generality of the present aero-dynamic characteristics was enhanced, and problems of the analysis method were extracted through the numerical simulation of a yacht with sloop rig. Influence of the position of fairleader on the aero-dynamic characteristics was qualitatively grasped by considering the effects of jib sheet and by trimming the elevation into ideal one. 6 refs., 11 figs.

  18. 75 FR 22512 - Airworthiness Directives; Piaggio Aero Industries S.p.A. Model PIAGGIO P-180 Airplanes

    Science.gov (United States)

    2010-04-29

    ... Airworthiness Directives; Piaggio Aero Industries S.p.A. Model PIAGGIO P-180 Airplanes AGENCY: Federal Aviation... presence of potential ignition sources such as electrical equipment and connectors. As a consequence, this..., agree with their substance. But we might have found it necessary to use different words from those in...

  19. A study on optimal control of the aero-propulsion system acceleration process under the supersonic state

    Directory of Open Access Journals (Sweden)

    Fengyong Sun

    2017-04-01

    Full Text Available In order to solve the aero-propulsion system acceleration optimal problem, the necessity of inlet control is discussed, and a fully new aero-propulsion system acceleration process control design including the inlet, engine, and nozzle is proposed in this paper. In the proposed propulsion system control scheme, the inlet, engine, and nozzle are simultaneously adjusted through the FSQP method. In order to implement the control scheme design, an aero-propulsion system component-level model is built to simulate the inlet working performance and the matching problems between the inlet and engine. Meanwhile, a stabilizing inlet control scheme is designed to solve the inlet control problems. In optimal control of the aero-propulsion system acceleration process, the inlet is an emphasized control unit in the optimal acceleration control system. Two inlet control patterns are discussed in the simulation. The simulation results prove that by taking the inlet ramp angle as an active control variable instead of being modulated passively, acceleration performance could be obviously enhanced. Acceleration objectives could be obtained with a faster acceleration time by 5%.

  20. 76 FR 7694 - Airworthiness Directives; PIAGGIO AERO INDUSTRIES S.p.A Model PIAGGIO P-180 Airplanes

    Science.gov (United States)

    2011-02-11

    ... Airworthiness Directives; PIAGGIO AERO INDUSTRIES S.p.A Model PIAGGIO P-180 Airplanes AGENCY: Federal Aviation... Piaggio service bulletin number specified in the Alternative Methods of Compliance (AMOCs) section is..., except Federal holidays. The AD docket contains this AD, the regulatory evaluation, any comments received...

  1. 76 FR 4056 - Airworthiness Directives; PIAGGIO AERO INDUSTRIES S.p.A Model PIAGGIO P-180 Airplanes

    Science.gov (United States)

    2011-01-24

    ..., is considered the State of Design for PIAGGIO AERO INDUSTRIES S.p.A Model PIAGGIO P- 180 airplanes. A... ensuring that the drain lines of the environmental unit condenser are not clogged. Since AD 2007-24-15... condition described previously is likely to exist or develop in other products of the same type design. AD...

  2. Aerosols at the poles: an AeroCom Phase II multi-model evaluation

    Directory of Open Access Journals (Sweden)

    M. Sand

    2017-10-01

    Full Text Available Atmospheric aerosols from anthropogenic and natural sources reach the polar regions through long-range transport and affect the local radiation balance. Such transport is, however, poorly constrained in present-day global climate models, and few multi-model evaluations of polar anthropogenic aerosol radiative forcing exist. Here we compare the aerosol optical depth (AOD at 550 nm from simulations with 16 global aerosol models from the AeroCom Phase II model intercomparison project with available observations at both poles. We show that the annual mean multi-model median is representative of the observations in Arctic, but that the intermodel spread is large. We also document the geographical distribution and seasonal cycle of the AOD for the individual aerosol species: black carbon (BC from fossil fuel and biomass burning, sulfate, organic aerosols (OAs, dust, and sea-salt. For a subset of models that represent nitrate and secondary organic aerosols (SOAs, we document the role of these aerosols at high latitudes.The seasonal dependence of natural and anthropogenic aerosols differs with natural aerosols peaking in winter (sea-salt and spring (dust, whereas AOD from anthropogenic aerosols peaks in late spring and summer. The models produce a median annual mean AOD of 0.07 in the Arctic (defined here as north of 60° N. The models also predict a noteworthy aerosol transport to the Antarctic (south of 70° S with a resulting AOD varying between 0.01 and 0.02. The models have estimated the shortwave anthropogenic radiative forcing contributions to the direct aerosol effect (DAE associated with BC and OA from fossil fuel and biofuel (FF, sulfate, SOAs, nitrate, and biomass burning from BC and OA emissions combined. The Arctic modelled annual mean DAE is slightly negative (−0.12 W m−2, dominated by a positive BC FF DAE in spring and a negative sulfate DAE in summer. The Antarctic DAE is governed by BC FF. We perform sensitivity

  3. Relationships between thermal dose parameters and the efficacy of definitive chemoradiotherapy plus regional hyperthermia in the treatment of locally advanced cervical cancer: data from a multicentre randomised clinical trial.

    Science.gov (United States)

    Ohguri, Takayuki; Harima, Yoko; Imada, Hajime; Sakurai, Hideyuki; Ohno, Tatsuya; Hiraki, Yoshiyuki; Tuji, Koh; Tanaka, Masahiro; Terashima, Hiromi

    2018-06-01

    To evaluate the contribution of the thermal dose parameters during regional hyperthermia (HT) treatment to the clinical outcomes in patients with cervical carcinoma (CC) who received chemoradiotherapy (CRT) plus HT. Data from a multicentre randomised clinical trial of concurrent CRT + HT vs. CRT alone were used to evaluate the efficacy and safety of this combination therapy in the CC patients. The intrarectal temperatures of patients undergoing HT were recorded. The complete thermal data of 47 (92%) of the 51 patients in the CRT + HT group were available for the thermal analysis. Thus, 47 patients who received CRT + HT were included in the present study. Among the patients who received CRT + HT, a higher CEM43T90 (≥1 min) value (a thermal dose parameter) was significantly associated with better local relapse-free survival in both univariate (p = 0.024) and multivariate (p = 0.0097) analyses. The disease-free survival of the patients with higher CEM43T90 (≥1 min) values tended to be better in comparison to patients with lower CEM43T90 (<1 min) value (p = 0.071). A complete response tended to be associated with the CEM43T90 (p = 0.056). Disease-free survival, local relapse-free survival and complete response rate for patients with higher CEM43T90 (≥1) were significantly better than those for patients with CRT alone (p = 0.036, p = 0.036 and p = 0.048). Dose-effect relationships between thermal dose parameters and clinical outcomes were confirmed in the CC patients treated with a combination of CRT + HT. This study also confirmed that HT with lower CEM43T90 is insufficient to achieve a significant hyperthermic sensitisation to CRT.

  4. Propulsion System Dynamic Modeling of the NASA Supersonic Concept Vehicle for AeroPropulsoServoElasticity

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph W.; Seiel, Jonathan

    2016-01-01

    A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report

  5. OC3—Benchmark Exercise of Aero-elastic Offshore Wind Turbine Codes

    Science.gov (United States)

    Passon, P.; Kühn, M.; Butterfield, S.; Jonkman, J.; Camp, T.; Larsen, T. J.

    2007-07-01

    This paper introduces the work content and status of the first international investigation and verification of aero-elastic codes for offshore wind turbines as performed by the "Offshore Code Comparison Collaboration"(OC3) within the "IEA Wind Annex XXIII - Subtask 2". An overview is given on the state-of-the-art of the concerned offshore wind turbine simulation codes. Exemplary results of benchmark simulations from the first phase of the project are presented and discussed while subsequent phases are introduced. Furthermore, the paper discusses areas where differences between the codes have been identified and the sources of those differences, such as the differing theories implemented into the individual codes. Finally, further research and code development needs are presented based on the latest findings from the current state of the project.

  6. A Modular Aero-Propulsion System Simulation of a Large Commercial Aircraft Engine

    Science.gov (United States)

    DeCastro, Jonathan A.; Litt, Jonathan S.; Frederick, Dean K.

    2008-01-01

    A simulation of a commercial engine has been developed in a graphical environment to meet the increasing need across the controls and health management community for a common research and development platform. This paper describes the Commercial Modular Aero Propulsion System Simulation (C-MAPSS), which is representative of a 90,000-lb thrust class two spool, high bypass ratio commercial turbofan engine. A control law resembling the state-of-the-art on board modern aircraft engines is included, consisting of a fan-speed control loop supplemented by relevant engine limit protection regulator loops. The objective of this paper is to provide a top-down overview of the complete engine simulation package.

  7. Presentations from the Aeroelastic Workshop - latest results from AeroOpt

    Energy Technology Data Exchange (ETDEWEB)

    Hartvig Hansen, M. (ed.)

    2011-10-15

    This report contains the slides of the presentations at the Aeroelastic Workshop held at Risoe-DTU for the wind energy industry in Denmark on October 27, 2011. The scientific part of the agenda at this workshop was 1) Detailed and reduced models of dynamic mooring system (Anders M. Hansen). 2) Bend-twist coupling investigation in HAWC2 (Taeseong Kim). 3) Q3UIC - A new aerodynamic airfoil tool including rotational effects (Nestor R. Garcia). 4) Influence of up-scaling on loads, control and aerodynamic modeling (Helge Aa. Madsen). 5) Aerodynamic damping of lateral tower vibrations (Bjarne S. Kallesoee). 6) Open- and closed-loop aeroservoelastic analysis with HAWCStab2 (Morten H. Hansen). 7) Design and test of a thick, flatback, high-lift multielement airfoil (Frederik Zahle). The presented results are mainly obtained in the EUDP project ''Aeroelastic Optimization of MW Wind Turbines (AeroOpt)''. (Author)

  8. An AeroCom Assessment of Black Carbon in Arctic Snow and Sea Ice

    Science.gov (United States)

    Jiao, C.; Flanner, M. G.; Balkanski, Y.; Bauer, S. E.; Bellouin, N.; Bernsten, T. K.; Bian, H.; Carslaw, K. S.; Chin, M.; DeLuca, N.; hide

    2014-01-01

    Though many global aerosols models prognose surface deposition, only a few models have been used to directly simulate the radiative effect from black carbon (BC) deposition to snow and sea ice. Here, we apply aerosol deposition fields from 25 models contributing to two phases of the Aerosol Comparisons between Observations and Models (AeroCom) project to simulate and evaluate within-snow BC concentrations and radiative effect in the Arctic. We accomplish this by driving the offline land and sea ice components of the Community Earth System Model with different deposition fields and meteorological conditions from 2004 to 2009, during which an extensive field campaign of BC measurements in Arctic snow occurred. We find that models generally underestimate BC concentrations in snow in northern Russia and Norway, while overestimating BC amounts elsewhere in the Arctic. Although simulated BC distributions in snow are poorly correlated with measurements, mean values are reasonable. The multi-model mean (range) bias in BC concentrations, sampled over the same grid cells, snow depths, and months of measurements, are -4.4 (-13.2 to +10.7) ng/g for an earlier phase of AeroCom models (phase I), and +4.1 (-13.0 to +21.4) ng/g for a more recent phase of AeroCom models (phase II), compared to the observational mean of 19.2 ng/g. Factors determining model BC concentrations in Arctic snow include Arctic BC emissions, transport of extra-Arctic aerosols, precipitation, deposition efficiency of aerosols within the Arctic, and meltwater removal of particles in snow. Sensitivity studies show that the model-measurement evaluation is only weakly affected by meltwater scavenging efficiency because most measurements were conducted in non-melting snow. The Arctic (60-90degN) atmospheric residence time for BC in phase II models ranges from 3.7 to 23.2 days, implying large inter-model variation in local BC deposition efficiency. Combined with the fact that most Arctic BC deposition originates

  9. An AeroCom assessment of black carbon in Arctic snow and sea ice

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, C.; Flanner, M. G.; Balkanski, Y.; Bauer, S. E.; Bellouin, N.; Berntsen, T. K.; Bian, H.; Carslaw, K. S.; Chin, M.; De Luca, N.; Diehl, T.; Ghan, S. J.; Iversen, T.; Kirkevåg, A.; Koch, D.; Liu, X.; Mann, G. W.; Penner, J. E.; Pitari, G.; Schulz, M.; Seland, Ø.; Skeie, R. B.; Steenrod, S. D.; Stier, P.; Takemura, T.; Tsigaridis, K.; van Noije, T.; Yun, Y.; Zhang, K.

    2014-01-01

    Though many global aerosols models prognose surface deposition, only a few models have been used to directly simulate the radiative effect from black carbon (BC) deposition to snow and sea ice. In this paper, we apply aerosol deposition fields from 25 models contributing to two phases of the Aerosol Comparisons between Observations and Models (AeroCom) project to simulate and evaluate within-snow BC concentrations and radiative effect in the Arctic. We accomplish this by driving the offline land and sea ice components of the Community Earth System Model with different deposition fields and meteorological conditions from 2004 to 2009, during which an extensive field campaign of BC measurements in Arctic snow occurred. We find that models generally underestimate BC concentrations in snow in northern Russia and Norway, while overestimating BC amounts elsewhere in the Arctic. Although simulated BC distributions in snow are poorly correlated with measurements, mean values are reasonable. The multi-model mean (range) bias in BC concentrations, sampled over the same grid cells, snow depths, and months of measurements, are -4.4 (-13.2 to +10.7) ng g-1 for an earlier phase of AeroCom models (phase I), and +4.1 (-13.0 to +21.4) ng g-1 for a more recent phase of AeroCom models (phase II), compared to the observational mean of 19.2 ng g-1. Factors determining model BC concentrations in Arctic snow include Arctic BC emissions, transport of extra-Arctic aerosols, precipitation, deposition efficiency of aerosols within the Arctic, and meltwater removal of particles in snow. Sensitivity studies show that the model–measurement evaluation is only weakly affected by meltwater scavenging efficiency because most measurements were conducted in non-melting snow. The Arctic (60–90° N) atmospheric residence time for BC in phase II models ranges from 3.7 to 23.2 days, implying large inter-model variation in local BC deposition efficiency. Combined with

  10. Investigation on flow oscillation modes and aero-acoustics generation mechanism in cavity

    Science.gov (United States)

    Yang, Dang-Guo; Lu, Bo; Cai, Jin-Sheng; Wu, Jun-Qiang; Qu, Kun; Liu, Jun

    2018-05-01

    Unsteady flow and multi-scale vortex transformation inside a cavity of L/D = 6 (ratio of length to depth) at Ma = 0.9 and 1.5 were studied using the numerical simulation method of modified delayed detached eddy simulation (DDES) in this paper. Aero-acoustic characteristics for the cavity at same flow conditions were obtained by the numerical method and 0.6 m by 0.6 m transonic and supersonic wind-tunnel experiments. The analysis on the computational and experimental results indicates that some vortex generates from flow separation in shear-layer over the cavity, and the vortex moves from forward to downward of the cavity at some velocity, and impingement of the vortex and the rear-wall of the cavity occurs. Some sound waves spread abroad to the cavity fore-wall, which induces some new vortex generation, and the vortex sheds, moves and impinges on the cavity rear-wall. New sound waves occur. The research results indicate that sound wave feedback created by the impingement of the shedding-vortices and rear cavity face leads to flow oscillations and noise generation inside the cavity. Analysis on aero-acoustic characteristics inside the cavity is feasible. The simulated self-sustained flow-oscillation modes and peak sound pressure on typical frequencies inside the cavity agree well with Rossiter’s and Heller’s predicated results. Moreover, the peak sound pressure occurs in the first and second flow-oscillation modes and most of sound energy focuses on the low-frequency region. Compared with subsonic speed (Ma = 0.9), aerodynamic noise is more intense at Ma = 1.5, which is induced by compression wave or shock wave in near region of fore and rear cavity face.

  11. Advanced Engineering Methods for Assessing Welding Distortion in Aero-Engine Assemblies

    International Nuclear Information System (INIS)

    Jackson, Kathryn; Darlington, Roger

    2011-01-01

    Welding remains an attractive fabrication method for aero-engine assemblies, offering high production rates and reduced total cost, particularly for large complex assemblies. However, distortion generated during the welding process continues to provide a major challenge in terms of the control of geometric tolerances and residual stress. The welding distortion is influenced by the sequence and position of joints, the clamping configuration and the design of the assembly. For large complex assemblies the range of these options may be large. Hence the use of numerical simulation at an early stage of the product development process is valuable to enable a wide range of these factors to be explored with the aim of minimising welding distortions before production commences, and thereby reducing the product development time. In this paper, a new technique for simulation of welding distortions based on a shrinkage analysis is evaluated for an aero-engine assembly. The shrinkage simulations were built and solved using the ESI Group software Weld Planner. The rapid simulation speed enabled a wide range of welding plans to be explored, leading to recommendations for the fabrication process. The sensitivity of the model to mesh size and material properties is reported. The results of the shrinkage analysis were found to be similar to those of a transient analysis generated using ESI Group software SysWeld. The solution times were found to be significantly lower for the shrinkage analysis than the transient analysis. Hence it has been demonstrated that shrinkage analysis is a valuable tool for exploring the fabrication process of a welded assembly at an early stage of the product development process.

  12. Forecasting olive crop yields based on long-term aero biological data series and bio climatic conditions for the southern Iberian Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera, F.; Ruiz-Valenzuela, L.

    2014-06-01

    In the present study, bio-meteorological models for predicting olive-crop production in the southern Iberian Peninsula were developed. These covered a 16-year period: 1994-2009. The forecasting models were constructed using the partial least-squares regression method, taking the annual olive yield as the dependent variable, and both aero biological and meteorological parameters as the independent variables. Two regression models were built for the prediction of crop production prior to the final harvest at two different times of the year: July and November. The percentage variance explained by the models was between 83% and 93%. Through these forecasting models, the main factors that influence olive-crop yield were identified. Pollen index and accumulated precipitation, especially as rain recorded during the pre-flowering months, were the most important parameters for providing an explanation of fluctuations in fruit production. The temperature recorded during the two months preceding budburst was another important variable, which showed positive effects on the final yield. The July model that provides accurate predictions of fruit production eight months prior to the final harvest is proposed as an optimal model to forecast fruit produced by olive trees in western Mediterranean areas. (Author)

  13. Optimization of process parameters for WEDM of Inconel 825 using grey relational analysis

    Directory of Open Access Journals (Sweden)

    Pawan Kuma

    2018-09-01

    Full Text Available Inconel 825 is high nickel-chromium-based superalloy which retains its mechanical properties and exhibits good corrosion and oxidation resistance at elevated temperature. Inconel 825 is extensively used for making aircraft engine parts like combustor casing and turbine blades in aero space industry. This research proposed the Response Surface Methodology with GRA to optimize multiple responses during Wire-cut EDM of Inconel 825. At optimum combination of input parameters i.e. A4B1C1D5E4F2, increase in MRR from 36.13 mm2/min to 41.822 mm2/min, decrease in SR from 2.842μm to 2.445μm and decrease in WWR from 0.01832 to 0.01758 was obtained. Experimental results showed that pulse-on time, wire feed, pulse-off time, and peak current significantly affected the MRR, and surface integrity of specimen and electrode with the formation of craters, pockmarks, debris, micro cracks, and recast layer. The optimal parametric combination obtained from the present study will be advantageous for working on high strength; high thermal conductivity and low melting point materials like nickel alloys.

  14. C-Band Airport Surface Communications System Standards Development. Phase II Final Report. Volume 2: Test Bed Performance Evaluation and Final AeroMACS Recommendations

    Science.gov (United States)

    Hall, Edward; Magner, James

    2011-01-01

    This report is provided as part of ITT s NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: New ATM Requirements-Future Communications, C-Band and L-Band Communications Standard Development and was based on direction provided by FAA project-level agreements for New ATM Requirements-Future Communications. Task 7 included two subtasks. Subtask 7-1 addressed C-band (5091- to 5150-MHz) airport surface data communications standards development, systems engineering, test bed and prototype development, and tests and demonstrations to establish operational capability for the Aeronautical Mobile Airport Communications System (AeroMACS). Subtask 7-2 focused on systems engineering and development support of the L-band digital aeronautical communications system (L-DACS). Subtask 7-1 consisted of two phases. Phase I included development of AeroMACS concepts of use, requirements, architecture, and initial high-level safety risk assessment. Phase II builds on Phase I results and is presented in two volumes. Volume I is devoted to concepts of use, system requirements, and architecture, including AeroMACS design considerations. Volume II (this document) describes an AeroMACS prototype evaluation and presents final AeroMACS recommendations. This report also describes airport categorization and channelization methodologies. The purposes of the airport categorization task were (1) to facilitate initial AeroMACS architecture designs and enable budgetary projections by creating a set of airport categories based on common airport characteristics and design objectives, and (2) to offer high-level guidance to potential AeroMACS technology and policy development sponsors and service providers. A channelization plan methodology was developed because a common global methodology is needed to assure seamless interoperability among diverse AeroMACS services potentially supplied by multiple service providers.

  15. C-Band Airport Surface Communications System Standards Development. Phase II Final Report. Volume 1: Concepts of Use, Initial System Requirements, Architecture, and AeroMACS Design Considerations

    Science.gov (United States)

    Hall, Edward; Isaacs, James; Henriksen, Steve; Zelkin, Natalie

    2011-01-01

    This report is provided as part of ITT s NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: New ATM Requirements-Future Communications, C-Band and L-Band Communications Standard Development and was based on direction provided by FAA project-level agreements for New ATM Requirements-Future Communications. Task 7 included two subtasks. Subtask 7-1 addressed C-band (5091- to 5150-MHz) airport surface data communications standards development, systems engineering, test bed and prototype development, and tests and demonstrations to establish operational capability for the Aeronautical Mobile Airport Communications System (AeroMACS). Subtask 7-2 focused on systems engineering and development support of the L-band digital aeronautical communications system (L-DACS). Subtask 7-1 consisted of two phases. Phase I included development of AeroMACS concepts of use, requirements, architecture, and initial high-level safety risk assessment. Phase II builds on Phase I results and is presented in two volumes. Volume I (this document) is devoted to concepts of use, system requirements, and architecture, including AeroMACS design considerations. Volume II describes an AeroMACS prototype evaluation and presents final AeroMACS recommendations. This report also describes airport categorization and channelization methodologies. The purposes of the airport categorization task were (1) to facilitate initial AeroMACS architecture designs and enable budgetary projections by creating a set of airport categories based on common airport characteristics and design objectives, and (2) to offer high-level guidance to potential AeroMACS technology and policy development sponsors and service providers. A channelization plan methodology was developed because a common global methodology is needed to assure seamless interoperability among diverse AeroMACS services potentially supplied by multiple service providers.

  16. Lumped-parameter Model of a Bucket Foundation

    DEFF Research Database (Denmark)

    Andersen, Lars; Ibsen, Lars Bo; Liingaard, Morten

    2009-01-01

    efficient model that can be applied in aero-elastic codes for fast evaluation of the dynamic structural response of wind turbines. The target solutions, utilised for calibration of the lumped-parameter models, are obtained by a coupled finite-element/boundaryelement scheme in the frequency domain......, and the quality of the models are tested in the time and frequency domains. It is found that precise results are achieved by lumped-parameter models with two to four internal degrees of freedom per displacement or rotation of the foundation. Further, coupling between the horizontal sliding and rocking cannot...

  17. The DELILAH correlation code for adjusting the parameters of the one-group diffusion equations to give best estimate power distributions for thermal reactor systems

    International Nuclear Information System (INIS)

    Buckler, A.N.

    1978-10-01

    Details of the coding techniques, with flow diagrams are given for the correlation code DELILAH which is a replacement for the SAMSON code for SGHW and other thermal systems. An improved method of rejecting inaccurate channel power measurements is described in detail. A list of the input data requirements for the code will be published separately. (author)

  18. Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice: Part II: Impact on specific chemical and biochemical quality parameters

    NARCIS (Netherlands)

    Vervoort, L.; Plancken, van der I.; Grauwet, T.; Timmermans, R.A.H.; Mastwijk, H.C.; Matser, A.M.; Hendrickx, M.E.; Loey, van A.

    2011-01-01

    The impact of thermal, high pressure (HP) and pulsed electric field (PEF) processing for mild pasteurization of orange juice was compared on a fair basis, using processing conditions leading to an equivalent degree of microbial inactivation. Examining the effect on specific chemical and biochemical

  19. Aero-structural optimization of wind turbine blades using a reduced set of design load cases including turbulence

    DEFF Research Database (Denmark)

    Sessarego, Matias; Shen, Wen Zhong

    2018-01-01

    Modern wind turbine aero-structural blade design codes generally use a smaller fraction of the full design load base (DLB) or neglect turbulent inflow as defined by the International Electrotechnical Commission standards. The current article describes an automated blade design optimization method...... based on surrogate modeling that includes a very large number of design load cases (DLCs) including turbulence. In the present work, 325 DLCs representative of the full DLB are selected based on the message-passing-interface (MPI) limitations in Matlab. Other methods are currently being investigated, e.......g. a Python MPI implementation, to overcome the limitations in Matlab MPI and ultimately achieve a full DLB optimization framework. The reduced DLB and the annual energy production are computed using the state-of-the-art aero-servo-elastic tool HAWC2. Furthermore, some of the interior dimensions of the blade...

  20. Improvement on Main/backup Controller Switching Device of the Nozzle Throat Area Control System for a Turbofan Aero Engine

    Science.gov (United States)

    Li, Jie; Duan, Minghu; Yan, Maode; Li, Gang; Li, Xiaohui

    2014-06-01

    A full authority digital electronic controller (FADEC) equipped with a full authority hydro-mechanical backup controller (FAHMBC) is adopted as the nozzle throat area control system (NTACS) of a turbofan aero engine. In order to ensure the switching reliability of the main/backup controller, the nozzle throat area control switching valve was improved from three-way convex desktop slide valve to six-way convex desktop slide valve. Simulation results show that, if malfunctions of FAEDC occur and abnormal signals are outputted from FADEC, NTACS will be seriously influenced by the main/backup controller switching in several working states, while NTACS will not be influenced by using the improved nozzle throat area control switching valve, thus the controller switching process will become safer and smoother and the working reliability of this turbofan aero engine is improved by the controller switching device improvement.

  1. CONSIDERATIONS ON ANATOMY AND PHYSIOLOGY OF LYMPH VESSELS OF UPPER AERO DIGESTIVE ORGANS AND CERVICAL SATELLITE LYMPH NODE GROUP.

    Science.gov (United States)

    Ciupilan, Corina; Stan, C I

    2016-01-01

    The almost constant local regional development of the cancers of upper aero digestive organs requires the same special attention to cervical lymph node metastases, as well as to the primary neoplastic burning point. The surgical therapy alone or associated has a mutilating, damaging character, resulting in loss of an organ and function, most of the times with social implications, involving physical distortions with aesthetic consequences, which make the reintegration of the individual into society questionable. The problem of cervical lymph node metastases is vast and complex, reason why we approached several anatomical and physiological aspects of lymph vessels of the aero digestive organs. Among the available elements during treatment, the headquarters of the tumour, its histologic degree, and its infiltrative nature, each of them significantly influences the possibility of developing metastases.

  2. Emergency airway management in critically injured patients: a survey of U.S. aero-medical transport programs.

    Science.gov (United States)

    James, Dorsha N; Voskresensky, Igor V; Jack, Meg; Cotton, Bryan A

    2009-06-01

    Pre-hospital airway management represents the intervention most likely to impact outcomes in critically injured patients. As such, airway management issues dominate quality improvement (QI) reviews of aero-medical programs. The purpose of this study was to evaluate current practice patterns of airway management in trauma among U.S. aero-medical service (AMS) programs. The Association of Air Medical Services (AAMS) Resource Guide from 2005 to 2006 was utilized to identify the e-mail addresses of all directors of U.S. aero-medical transport programs. Program directors from 182 U.S. aero-medical programs were asked to participate in an anonymous, web-based survey of emergency airway management protocols and practices. Non-responders to the initial request were contacted a second time by e-mail. 89 programs responded. 98.9% have rapid sequence intubation (RSI) protocols. 90% use succinylcholine, 70% use long-acting neuromuscular blockers (NMB) within their RSI protocol. 77% have protocols for mandatory in-flight sedation but only 13% have similar protocols for maintenance paralytics. 60% administer long-acting NMB immediately after RSI, 13% after confirmation of neurological activity. Given clinical scenarios, however, 97% administer long-acting NMB to patients with scene and in-flight Glasgow Coma Scale (GCS) of 3, even for brief transport times. The majority of AMS programs have well defined RSI and in-flight sedation protocols, while protocols for in-flight NMB are uncommon. Despite this, nearly all programs administer long-acting NMB following RSI, irrespective of GCS or flight time. Given the impact of in-flight NMB on initial assessment, early intervention, and injury severity scoring, a critical appraisal of current AMS airway management practices appears warranted.

  3. The summer thermal behaviour of 'skin' materials for vertical surfaces in Athens, Greece, as a decisive parameter for their selection

    Energy Technology Data Exchange (ETDEWEB)

    Bougiatioti, F.; Evangelinos, E.; Poulakos, G.; Zacharopoulos, E. [National Technical University of Athens, School of Architecture, Department of Architectural Technology, 42, Patission Street, 10682 Athens (Greece)

    2009-04-15

    This paper analyses the thermal behaviour of the materials, which are widely used on the vertical surfaces of Greek cities. This analysis is based on surface temperatures measurements, which were carried out both in situ in various buildings of Athens, Greece and experimentally on samples of building materials exposed to solar radiation on a building's flat roof. The study includes surfacing materials, which are usually applied on building facades around Greece. The study leads to a number of conclusions concerning the effect of colour and orientation on the summer surface temperatures of materials, used on vertical city surfaces. These conclusions indicate how surfacing materials should be chosen in order to help mitigate the urban heat island and improve thermal comfort conditions in the outdoor spaces of Greek cities during the overheated summer period. (author)

  4. Turbofan Volume Dynamics Model for Investigations of Aero-Propulso-Servo-Elastic Effects in a Supersonic Commercial Transport

    Science.gov (United States)

    Connolly, Joseph W.; Kopasakis, George; Lemon, Kimberly A.

    2010-01-01

    A turbofan simulation has been developed for use in aero-propulso-servo-elastic coupling studies, on supersonic vehicles. A one-dimensional lumped volume approach is used whereby each component (fan, high-pressure compressor, combustor, etc.) is represented as a single volume using characteristic performance maps and conservation equations for continuity, momentum and energy. The simulation is developed in the MATLAB/SIMULINK (The MathWorks, Inc.) environment in order to facilitate controls development, and ease of integration with a future aero-servo-elastic vehicle model being developed at NASA Langley. The complete simulation demonstrated steady state results that closely match a proposed engine suitable for a supersonic business jet at the cruise condition. Preliminary investigation of the transient simulation revealed expected trends for fuel flow disturbances as well as upstream pressure disturbances. A framework for system identification enables development of linear models for controller design. Utilizing this framework, a transfer function modeling an upstream pressure disturbance s impacts on the engine speed is developed as an illustrative case of the system identification. This work will eventually enable an overall vehicle aero-propulso-servo-elastic model

  5. A compilation of correlation parameters for predicting the enthalpy and thermal conductivity of solid foods within the temperature range of -40 C to +40 C

    Energy Technology Data Exchange (ETDEWEB)

    Amos, N.D. [Comvita New Zealand Limited, Private Bag 1, Te Puke 3153 (New Zealand); Willix, J.; North, M.F. [AgResearch Limited, MIRINZ Centre, Ruakura Campus, East Street, Private Bag 3123, Hamilton (New Zealand); Chadderton, T. [Crop and Food Research Ltd, PO Box 5114, Nelson (New Zealand)

    2008-11-15

    This paper presents thermal conductivity data for 40 foods, enthalpy data for 58 foods and density data for nine foods, along with the compositions of the foods. Measurements cover a range of solid food types (including meats, fats, offal, fish, dairy products and horticultural products). Some measurements reported are for foods that have never before been studied, others have been published elsewhere, but are included here for convenience. Thermal conductivity was measured using a guarded hot-plate apparatus, enthalpy using an adiabatic calorimeter and density using a water displacement meter. Thermal conductivity and enthalpy values were measured within the temperature range of -40 C to +40 C. (author) [French] Cette publication presente des donnes sur la conductivite thermique, l'enthalpie et la densite respectivement de 40, 58 et 9 produits alimentaires, ainsi que leurs compositions. Les mesures couvrent une variete de types de produits alimentaires (viande, matieres grasses, abats, poisson, produits laitiers, produits horticoles). Certaines sont rapportees pour des produits qui n 'ant jamais ete etudie auparavant, d'autres ant ete publie ailleurs mais sont aussi inclues pour plus de commodite. La conductivite thermique a ete mesure avec un appareil a plaque electrique protegee, l'enthalpie avec un calorimetre adiabatique et la densite avec un appareil mesurant Ie deplacement d'eau. La conductivite thermique et l'enthalpie ont ete toutes les mesures pour une fourchette de temperatures allant de -40 C a 40 C. (orig.)

  6. Critical parameters for electron beam curing of cationic epoxies and property comparison of electron beam cured cationic epoxies versus thermal cured resins and composites

    International Nuclear Information System (INIS)

    Janke, C.J.; Norris, R.E.; Yarborough, K.; Lopata, V.J.

    1997-01-01

    Electron beam curing of composites is a nonthermal, nonautoclave curing process offering the following advantages compared to conventional thermal curing: substantially reduced manufacturing costs and curing times; improvements in part quality and performance; reduced environmental and health concerns; and improvements in material handling. In 1994 a Cooperative Research and Development Agreement (CRADA), sponsored by the Department of Energy Defense Programs and 10 industrial partners, was established to advance electron beam curing of composites. The CRADA has successfully developed hundreds of new toughened and untoughened resins, offering unlimited formulation and processing flexibility. Several patent applications have been filed for this work. Composites made from these easily processable, low shrinkage material match the performance of thermal cured composites and exhibit: low void contents comparable to autoclave cured composites (less than 1%); superb low water absorption values in the same range as cyanate esters (less than 1%); glass transition temperatures rivaling those of polyimides (greater than 390 C); mechanical properties comparable to high performance, autoclave cured composites; and excellent property retention after cryogenic and thermal cycling. These materials have been used to manufacture many composite parts using various fabrication processes including hand lay-up, tow placement, filament winding, resin transfer molding and vacuum assisted resin transfer molding

  7. Discrimination of thermal diffusivity

    NARCIS (Netherlands)

    Bergmann Tiest, W.M.; Kappers, A.M.L.

    2009-01-01

    Materials such as wood or metal which are at equal temperatures are perceived to be of different ‘coldness’ due to differences in thermal properties, such as the thermal diffusivity. The thermal diffusivity of a material is a parameter that controls the rate with which heat is extracted from the

  8. Review of modern low emissions combustion technologies for aero gas turbine engines

    Science.gov (United States)

    Liu, Yize; Sun, Xiaoxiao; Sethi, Vishal; Nalianda, Devaiah; Li, Yi-Guang; Wang, Lu

    2017-10-01

    Pollutant emissions from aircraft in the vicinity of airports and at altitude are of great public concern due to their impact on environment and human health. The legislations aimed at limiting aircraft emissions have become more stringent over the past few decades. This has resulted in an urgent need to develop low emissions combustors in order to meet legislative requirements and reduce the impact of civil aviation on the environment. This article provides a comprehensive review of low emissions combustion technologies for modern aero gas turbines. The review considers current high Technologies Readiness Level (TRL) technologies including Rich-Burn Quick-quench Lean-burn (RQL), Double Annular Combustor (DAC), Twin Annular Premixing Swirler combustors (TAPS), Lean Direct Injection (LDI). It further reviews some of the advanced technologies at lower TRL. These include NASA multi-point LDI, Lean Premixed Prevaporised (LPP), Axially Staged Combustors (ASC) and Variable Geometry Combustors (VGC). The focus of the review is placed on working principles, a review of the key technologies (includes the key technology features, methods of realising the technology, associated technology advantages and design challenges, progress in development), technology application and emissions mitigation potential. The article concludes the technology review by providing a technology evaluation matrix based on a number of combustion performance criteria including altitude relight auto-ignition flashback, combustion stability, combustion efficiency, pressure loss, size and weight, liner life and exit temperature distribution.

  9. Propulsion System Dynamic Modeling for the NASA Supersonic Concept Vehicle: AeroPropulsoServoElasticity

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph; Seidel, Jonathan

    2014-01-01

    A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural-aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report.propulsion system dynamics, the structural dynamics, and aerodynamics.

  10. A novel full scale experimental characterization of wind turbine aero-acoustic noise sources - preliminary results

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Bertagnolio, Franck; Fischer, Andreas

    2016-01-01

    of the blade and the noise on the ground in a distance of about one rotor diameter. In total six surface microphones were used to measure the SP at the leading edge (LE) and trailing edge (TE) of the blade. In parallel noise was measured by eight microphones placed on plates on the ground around the turbine......The paper describes a novel full scale experiment on a 500 kW wind turbine with the main objective to characterize the aero-acoustic noise sources. The idea behind the instrumentation is to study the link and correlation between the surface pressure (SP) fluctuations in the boundary layer...... in equidistant angles on a circle with a radius of about one rotor diameter. The data were analyzed in segments of 2.2 s which is the time for one rotor revolution. The spectra for the TE microphones on the suction side of the blade show a characteristic roll-off pattern around a frequency of 600-700 Hz...

  11. New design of a compact aero-robotic drilling end effector: An experimental analysis

    Directory of Open Access Journals (Sweden)

    Shi Zhenyun

    2016-08-01

    Full Text Available This paper presents the development of a normal adjustment cell (NAC in aero-robotic drilling to improve the quality of vertical drilling, by using an intelligent double-eccentric disk normal adjustment mechanism (2-EDNA, a spherical plain bearing and a floating compress module with sensors. After the surface normal vector is calculated based on the laser sensors’ feedback, the 2-EDNA concept is conceived specifically to address the deviation of the spindle from the surface normal at the drilling point. Following the angle calculation, depending on the actual initial position, two precise eccentric disks (PEDs with an identical eccentric radius are used to rotate with the appropriate angles using two high-resolution DC servomotors. The two PEDs will carry the spindle to coincide with the surface normal, keeping the vertex of the drill bit still to avoid repeated adjustment and position compensation. A series of experiments was conducted on an aeronautical drilling robot platform with a precise NAC. The effect of normal adjustment on bore diameter, drilling force, burr size, drilling heat, and tool wear was analyzed. The results validate that using the NAC in robotic drilling results in greatly improved vertical drilling quality and is attainable in terms of intelligence and accuracy.

  12. Unusual structure in forsterite glass synthesized by an aero-acoustic levitation technique

    International Nuclear Information System (INIS)

    Kohara, Shinji; Suzuya, Kentaro; Takeuchi, Ken

    2005-01-01

    Forsterite Mg 2 SiO 4 exhibits an orthorhombic structure consisted of two kinds of MgO 6 octahedra. One of them forms edge-sharing ribbons along the [001] direction which are linked by the other kind of edge-sharing MgO 6 octahedra, resulting in a three-dimensional framework. Given only 33.3 mol% of SiO 2 in the material, the SiO 4 tetrahedra are isolated within the framework, sharing the O-O bonds with the common edges of the MgO 6 octahedra. If forsterite can be vitrified, an interesting question concerning the glass structure arises because there is insufficient glass forming SiO 2 to establish the corner-sharing SiO 4 tetrahedral net-work needed in conventional silicate glasses. A bulk Mg 2 SiO 4 glass was synthesized using an aero-acoustic levitation technique and to visualize the short-to intermediate-range structure by a combined high-energy synchrotron x-ray and neutron diffraction and reverse Monte Carlo computer simulation. We found that the role of network former is largely taken on by corner-and edge-sharing ionic magnesium species that adopt 4-, 5- and 6-coordination with oxygen. (author)

  13. Towards an Aero-Propulso-Servo-Elasticity Analysis of a Commercial Supersonic Transport

    Science.gov (United States)

    Connolly, Joseph W.; Kopasakis, George; Chwalowski, Pawel; Sanetrik, Mark D.; Carlson, Jan-Renee; Silva, Walt A.; McNamara, Jack

    2016-01-01

    This paper covers the development of an aero-propulso-servo-elastic (APSE) model using computational fluid dynamics (CFD) and linear structural deformations. The APSE model provides the integration of the following two previously developed nonlinear dynamic simulations: a variable cycle turbofan engine and an elastic supersonic commercial transport vehicle. The primary focus of this study is to provide a means to include relevant dynamics of a turbomachinery propulsion system into the aeroelastic studies conducted during a vehicle design, which have historically neglected propulsion effects. A high fidelity CFD tool is used here for the integration platform. The elastic vehicle neglecting the propulsion system serves as a comparison of traditional approaches to the APSE results. An overview of the methodology is presented for integrating the propulsion system and elastic vehicle. Static aeroelastic analysis comparisons between the traditional and developed APSE models for a wing tip detection indicate that the propulsion system impact on the vehicle elastic response could increase the detection by approximately ten percent.

  14. Aero-hydro-elastic simulation platform for wave energy systems and floating wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Kallesoee, B.S.

    2011-01-15

    This report present results from the PSO project 2008-1-10092 entitled Aero-Hydro-Elastic Simulation Platform for Wave Energy Systems and floating Wind Turbines that deals with measurements, modelling and simulations of the world's first combined wave and wind energy platform. The floating energy conversion platform, Poseidon, is owned and operated by Floating Power Plant A/S. The platform has been operating for two test periods; one period where it was operating as a wave energy conversion platform only and one period where the three turbines was mounted and the platform operated as a combined wind and wave energy platform. The PSO project has equipped the platform with comprehensive measurements equipment for measuring platform motion, wave and wind conditions and turbine loads. Data from the first test period has been used for determine if the turbine could be mounted on the platform. Preliminary analysis of data from the second test period indicates that the platform is suitable as wind turbine foundation and that the turbines reduce the platform motion. (Author)

  15. Aero Engine Component Fault Diagnosis Using Multi-Hidden-Layer Extreme Learning Machine with Optimized Structure

    Directory of Open Access Journals (Sweden)

    Shan Pang

    2016-01-01

    Full Text Available A new aero gas turbine engine gas path component fault diagnosis method based on multi-hidden-layer extreme learning machine with optimized structure (OM-ELM was proposed. OM-ELM employs quantum-behaved particle swarm optimization to automatically obtain the optimal network structure according to both the root mean square error on training data set and the norm of output weights. The proposed method is applied to handwritten recognition data set and a gas turbine engine diagnostic application and is compared with basic ELM, multi-hidden-layer ELM, and two state-of-the-art deep learning algorithms: deep belief network and the stacked denoising autoencoder. Results show that, with optimized network structure, OM-ELM obtains better test accuracy in both applications and is more robust to sensor noise. Meanwhile it controls the model complexity and needs far less hidden nodes than multi-hidden-layer ELM, thus saving computer memory and making it more efficient to implement. All these advantages make our method an effective and reliable tool for engine component fault diagnosis tool.

  16. Some properties of explosive mixtures containing peroxides Part II. Relationships between detonation parameters and thermal reactivity of the mixtures with triacetone triperoxide.

    Science.gov (United States)

    Zeman, Svatopluk; Bartei, Cécile

    2008-06-15

    This study concerns mixtures of triacetone triperoxide (3,3,6,6,9,9-hexamethyl-1,2,4,5,7,8-hexoxonane, TATP) and ammonium nitrate (AN) with added water (W), as the case may be, and two dry mixtures of TATP with urea nitrate (UN). Relative performances (RP) of the mixtures and their individual components, relative to TNT, were determined by means of ballistic mortar. Thermal reactivity of these mixtures was examined by means of differential thermal analysis and the data were analyzed according to the modified Kissinger method (the peak temperature was replaced by the temperature of decomposition onset in this case). The reactivity, expressed as the EaR(-1) slopes of the Kissinger relationship, correlates with the squares of the calculated detonation velocities for the charge density of 1000 kg m(-3) of the studied energetic materials. Similarly, the relationships between the EaR(-1) values and RP have been found. While the first mentioned correlation (modified Evans-Polanyi-Semenov equation) is connected with the primary chemical micro-mechanism of the mixtures detonation, the relationships in the second case should be connected with the thermochemical aspects of this detonation.

  17. On observation of the downconversion mechanism in Er{sup 3+}/Yb{sup 3+} co-doped tellurite glass using thermal and optical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, M.S.; Santos, F.A. [Universidade Federal da Grande Dourados, Faculdade de Ciências Exatas e Tecnologias, Dourados, MS (Brazil); Yukimitu, K.; Moraes, J.C.S. [Universidade Estadual Paulista, UNESP, Departamento de Física e Química, Av. Brasil, 56, 15385-000 Ilha Solteira, SP (Brazil); Nunes, L.A.O. [Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos, SP (Brazil); Andrade, L.H.C. [Grupo de Espectroscopia Óptica e Fototérmica, Universidade Estadual de Mato Grosso do Sul, Cidade Universitária de Dourados, CP 351, Dourados, MS (Brazil); Lima, S.M., E-mail: smlima@uems.br [Grupo de Espectroscopia Óptica e Fototérmica, Universidade Estadual de Mato Grosso do Sul, Cidade Universitária de Dourados, CP 351, Dourados, MS (Brazil)

    2015-01-15

    In this work we report the observed downconversion (DC) mechanism in Er{sup 3+}/Yb{sup 3+}-codoped tellurite glasses (in mol%, 80TeO{sub 2}–10Li{sub 2}O–10TiO{sub 2}). The samples were synthesized by the conventional melt-quenching method and then studied using optical spectroscopy and thermal lens spectroscopy (TLS). These characterizations enabled investigation of the radiative and nonradiative processes involved in energy transfer from erbium to ytterbium. The visible Er{sup 3+} fluorescence intensities decreased as a function of the Yb{sup 3+} concentration, and there was a corresponding increase in the ytterbium emission at around 980 nm. Simultaneously, there was a reduction in the heat-generated due nonradiative decays (∼21%) when ytterbium was added. This temperature change was measured by TLS measurements and the results corroborate with the indicated by spectroscopic interpretation. - Highlights: • Energy transfer from erbium to ytterbium in tellurite glass. • ∼56% of cross-relaxation efficiency from Er{sup 3+} to Yb{sup 3+}. • Downconversion effect in tellurite glasses. • Downconversion effect observation by thermal lens spectroscopy.

  18. Thermal resistance parameters of acid-adapted and unadapted Escherichia coli O157:H7 in apple-carrot juice blends: effect of organic acids and pH.

    Science.gov (United States)

    Usaga, Jessie; Worobo, Randy W; Padilla-Zakour, Olga I

    2014-04-01

    Numerous outbreaks involving fresh juices contaminated with Escherichia coli O157:H7 have occurred in the United States and around the world, raising concern for the safety of these products. Until now, only a few studies regarding the thermal tolerance of this pathogen in acidic juices over a wide range of pH values have been published. Therefore, the effect of varying the pH with different organic acids on the thermal inactivation of non-acid-adapted and acid-adapted E. coli O157:H7 (strain C7927) was determined. The decimal reduction times (D-values) and the change in temperature required for the thermal destruction curve to traverse 1 log cycle (z-values) were calculated for non-acid-adapted E. coli in an apple-carrot juice blend (80:20) adjusted to three pH values (3.3, 3.5, and 3.7) by the addition of lactic, malic, or acetic acid and at a pH of 4.5 adjusted with NaOH. Thermal parameters were also determined for acid-adapted cells in juices acidified with malic acid. The effect of the soluble solids content on the thermal tolerance was studied in samples with a pH of 3.7 at 9.4 to 11.5 °Brix. The D-values were determined at 54, 56, and 58 °C, and trials were conducted in triplicate. Non-acid-adapted E. coli exhibited the highest thermal tolerance at pH 4.5 (D-value at 54 °C [D54 °C] of 20 ± 4 min and z-value of 6.2 °C), although on average, the D-values increased significantly (P 0.01). The data from this study will be useful for establishing critical limits for safe thermal processing of pH-controlled juices and similar products.

  19. Thermal comfort

    DEFF Research Database (Denmark)

    d’Ambrosio Alfano, Francesca Romana; Olesen, Bjarne W.; Palella, Boris Igor

    2014-01-01

    Thermal comfort is one of the most important aspects of the indoor environmental quality due to its effects on well-being, people's performance and building energy requirements. Its attainment is not an easy task requiring advanced design and operation of building and HVAC systems, taking...... into account all parameters involved. Even though thermal comfort fundamentals are consolidated topics for more than forty years, often designers seem to ignore or apply them in a wrong way. Design input values from standards are often considered as universal values rather than recommended values to be used...... under specific conditions. At operation level, only few variables are taken into account with unpredictable effects on the assessment of comfort indices. In this paper, the main criteria for the design and assessment of thermal comfort are discussed in order to help building and HVAC systems designers...

  20. Distribution of two-phase flow thermal and hydraulic parameters over the cross-section of channels with a rod bundle

    International Nuclear Information System (INIS)

    Mironov, Yu.V.; Shpanskij, S.V.

    1975-01-01

    The paper describes PUCHOK-2, a program for thermohydraulic calculation of a channel with a bundle of smooth fuel elements. The pro.gram takes into consideration the non-uniformity of flow parameter distributions over the channel cross-section. The channel cross-section was divided into elementary cells, within which changes in flow parameters (mass velocity, heat- and steam content) were disregarded. The bundle was considered to be a system of parallel interconnected channels. Accounting for equal pressure drops in all the cells, the above model led to a system of non-linear algebraic equations. The system of equations was solved by the method of successive approximations. Theoretical results were compared with experimental data

  1. PARAMETER KINETIKA INAKTIVASI TERMAL DAN ISOLASI Staphylococcus aureus PADA MINUMAN DARI GEL CINCAU HIJAU DAN ROSELA [Thermal Inactivation Kinetics Parameter and Isolation of Staphylococcus aureus on Drink from Green Grass Jelly and Roselle

    Directory of Open Access Journals (Sweden)

    Eko Hari Purnomo

    2015-07-01

    Full Text Available Information about heat resistance (D and z values of target bacteria is needed for the thermal process design on drink from Green Grass Jelly (Premna oblongifolia Merr. and Roselle (Hibiscus sabdariffa L., so it can guarantee quality and safety of the product. The objectives of this research were to isolate Staphylococcus aureus from commercial green grass jelly and to determine the D and z values of Staphylococcus aureus (from commercial product and standard clinical isolate ATCC 25923 on heating menstruum of green grass jelly and roselle. Isolation of S. aureus was done by inoculation in selective medium, D and z values of Staphylococcus aureus were assessed by heating at constant temperatures of 57, 53, 49, and 45°C during the time interval 2.5, 5, 10, and 15 minutes. The results showed that one isolate (Isolate A gave positive response of Staphylococcus aureus in isolation tests and had similar percentage with the reference culture of 41.8% using the API Staph Kit. Heat resistance of Staphylococcus aureus (represented as D value isolated from green grass jelly at constant heating temperature of D45, D49, D53 and D57 were 32.3, 17.9, 4.6, and 1.5 minutes. On the other hand, D value of isolates ATCC 25923 (standard clinical isolate at constant heating temperature of D45, D49, D53 and D57 were 18.5, 6.8, 2.9, and 1.4 minutes. The z value of isolates A and ATCC 25923 were 8.8°C and 10.8°C. Smaller z value of isolate A showed that pasteurization process can be accelerated and optimized with increasing the temperature slightly but has the same lethality effect.

  2. Cooperating to Compete in the Global Air Cargo Industry: The Case of the DHL Express and Lufthansa Cargo A.G. Joint Venture Airline ‘AeroLogic’

    Directory of Open Access Journals (Sweden)

    Glenn Baxter

    2018-03-01

    Full Text Available This paper presents a case study of the DHL Express and Lufthansa Cargo strategic joint venture cargo airline ‘AeroLogic’, the global air cargo industry’s largest operative joint venture between an airline and a leading international express and logistics provider. The study used a qualitative research approach. The data gathered for the study was examined by document analysis. The strategic analysis of the AeroLogic joint venture was based on the use of Porter’s Five Forces framework. The study found that the AeroLogic joint venture airline has provided synergistic benefits to both partners and has allowed the partners to access new markets and to participate in the evolution of the air cargo industry. The new venture has also enabled both joint venture partners to enhance their competitive position in the global air cargo industry through strengthened service offerings and has provided the partners with increased cargo capacities, a larger route network, and greater frequencies within their own route networks. The study also found that the AeroLogic business model is unique in the air cargo industry. A limitation of the study was that AeroLogic’s annual revenue or freight traffic data was not available. It was, therefore, not possible to analyse the business performance of the joint venture.

  3. Optimal parameters for the FFA-Beddoes dynamic stall model

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, A; Mert, M [FFA, The Aeronautical Research Institute of Sweden, Bromma (Sweden); Madsen, H A [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    Unsteady aerodynamic effects, like dynamic stall, must be considered in calculation of dynamic forces for wind turbines. Models incorporated in aero-elastic programs are of semi-empirical nature. Resulting aerodynamic forces therefore depend on values used for the semi-empiricial parameters. In this paper a study of finding appropriate parameters to use with the Beddoes-Leishman model is discussed. Minimisation of the `tracking error` between results from 2D wind tunnel tests and simulation with the model is used to find optimum values for the parameters. The resulting optimum parameters show a large variation from case to case. Using these different sets of optimum parameters in the calculation of blade vibrations, give rise to quite different predictions of aerodynamic damping which is discussed. (au)

  4. Thermal restoration of the lattice parameter of weakly irradiated UO{sub 2} (1962); Restauration thermique de parametre du l'UO{sub 2} faiblement irradie (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Bloch, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    Weak irradiations of uranium dioxide lead to an expansion of the cristal lattice. We have studied the restoration of the lattice parameter after successive isochronous annealings. The process occurs in two main stages, one starting at 200 deg. C and the other at 500 deg. C. (author) [French] De faibles irradiations du bioxyde d'uranium produisent une dilatation de la maille cristalline. Nous avons etudie la restauration du parametre apres des recuits isochrones successifs. Elle se fait en deux stades principaux: l'un a partir de 200 deg. C, l'autre a partir de 500 deg. C. (auteur)

  5. Re-evaluation of {sup 58}Ni and {sup 60}Ni resonance parameters in the neutron energy range thermal to 800 keV

    Energy Technology Data Exchange (ETDEWEB)

    Derrien, H.; Leal, L.C.; Guber, K.H.; Wiarda, D.; Arbanas, G. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2009-07-01

    The previous {sup 58}Ni and {sup 60}Ni set of resonance parameters (Endf/B7.O, Jeff-3, etc.) was based on the SAMMY analysis of Oak Ridge National Laboratory neutron transmission, scattering cross section and capture cross section measurements by C.M. Perey et al. The present results were obtained by adding to the SAMMY experimental database the capture cross sections measured recently at the Oak Ridge Linear Electron Accelerator by Guber et al. and the Geel Electron Linear Accelerator and very high-resolution neutron transmission measurements performed by Brusegan et al. A complete resonance parameter covariance matrix (RPCM) was obtained from the SAMMY analysis of the experimental database. The data sets were made consistent, when needed, by adjusting the neutron energy scales, the normalization coefficients, and the background corrections. The RPCM allows the calculation of the cross section uncertainties due mainly to statistical errors in the experimental data. The systematic uncertainties of the experimental data, estimated from the preliminary analyses of the experimental database, were taken into account in the cross section covariance matrix (CSCM) for total, scattering, and capture cross sections. The diagonal elements of the CSCM were obtained by quadratic combination of the different components of the uncertainties. Because of a lack of experimental information, the energy correlations were not obtained, and a value of 0.5 was arbitrarily taken for all the CSCM nondiagonal elements. The average capture cross-sections are significantly smaller than those calculated form Endf/B7.0

  6. Feasibility investigation of coupling a desalination prototype functioning by Aero-Evapo-Condensation with solar units

    International Nuclear Information System (INIS)

    Bourouni, K.; Bouden, C.; Chaibi, M.

    2003-01-01

    The rural regions of south Mediterranean countries suffer from problems of drinking water supply. However, the majority of these regions have important resources of brackish salt water. Thus, brackish water desalination on a small scale presents a potential solution to this problem. For this reason, a number of small desalination prototypes are being developed worldwide. Bourouni et al. have developed a water desalination unit functioning by the Aero-Evapo-Condensation-Process (AECP) in order to satisfy this kind of water demand. One of the advantages of this prototype is that it allows the use of low temperature energy such as geothermal and solar energies abundant in these countries. An initial experiment was carried on an AECP prototype coupled to a geothermal spring in the south of Tunisia. The results relative to the technical and economic performances of the unit have shown that this kind of coupling is promising. On the other hand, the brackish water springs in these countries are often non-geothermal. In this case, the use of solar energy can be considered. Thus, we develop, in the present article, a feasibility investigation on the coupling of the AECP prototype with solar units. In fact, we analyse, in the first part of this article, the possibilities of this coupling in a manner that the functioning mode of the solar units will be compatible with that of the AECP prototype. To attempt this objective, two kinds of solar installation scenarios are considered and modelled to obtain their energetic contribution. Hence, the elaborated models are coupled to the one developed by Bourouni et al. for the AECP prototype to determine the technical and economic performances of the whole installation. In the last part of this article, a solar unit dimensioning is performed in order to minimise the total cost of the distilled water. (author)

  7. Dynamic modeling and vibration characteristics analysis of the aero-engine dual-rotor system with Fan blade out

    Science.gov (United States)

    Yu, Pingchao; Zhang, Dayi; Ma, Yanhong; Hong, Jie

    2018-06-01

    Fan Blade Out (FBO) from a running rotor of the turbofan engine will not only introduce the sudden unbalance and inertia asymmetry into the rotor, but also apply large impact load and induce rotor-to-stator rubbing on the rotor, which makes the mass, gyroscopic and stiffness matrixes of the dynamic equation become time-varying and highly nonlinear, consequently leads to the system's complicated vibration. The dynamic analysis of the aero-engine rotor system is one essential requirement of the authorities and is vital to the aero-engine's safety. The paper aims at studying the dynamic responses of the complicated dual-rotor systems at instantaneous and windmilling statuses when FBO event occurs. The physical process and mechanical characteristics of the FBO event are described qualitatively, based on which the dynamic modeling for an aero-engine dual-rotor system is carried out considering several excitations caused by FBO. Meanwhile the transient response during the instantaneous status and steady-state response at the windmilling status are obtained. The results reveal that the sudden unbalance can induce impact load to the rotor, and lead to the sharp increase of the vibration amplitude and reaction force. The rub-impact will apply constraint effects on the rotor and restrict the transient vibration amplitude, while the inertia asymmetry has little influence on the transient response. When the rotor with huge unbalance operates at windmilling status, the rub-impact turns to be the main factor determining the rotor's dynamic behavior, and several potential motion states, such as instable dry whip, intermittent rubbing and synchronous full annular rubbing would happen on certain conditions.

  8. Coupled thermal, structural and vibrational analysis of a hypersonic engine for flight test

    Energy Technology Data Exchange (ETDEWEB)

    Sook-Ying, Ho [Defence Science and Technology Organisation, SA (Australia); Paull, A. [Queensland Univ., Dept. of Mechanical Engineering (Australia)

    2006-07-15

    This paper describes a relatively simple and quick method for implementing aerodynamic heating models into a finite element code for non-linear transient thermal-structural and thermal-structural-vibrational analyses of a Mach 10 generic HyShot scram-jet engine. The thermal-structural-vibrational response of the engine was studied for the descent trajectory from 60 to 26 km. Aerodynamic heating fluxes, as a function of spatial position and time for varying trajectory points, were implemented in the transient heat analysis. Additionally, the combined effect of varying dynamic pressure and thermal loads with altitude was considered. This aero-thermal-structural analysis capability was used to assess the temperature distribution, engine geometry distortion and yielding of the structural material due to aerodynamic heating during the descent trajectory, and for optimising the wall thickness, nose radius of leading edge, etc. of the engine intake. A structural vibration analysis was also performed following the aero-thermal-structural analysis to determine the changes in natural frequencies of the structural vibration modes that occur at the various temperatures associated with the descent trajectory. This analysis provides a unique and relatively simple design strategy for predicting and mitigating the thermal-structural-vibrational response of hypersonic engines. (authors)

  9. Small wind turbine performance evaluation using field test data and a coupled aero-electro-mechanical model

    Science.gov (United States)

    Wallace, Brian D.

    A series of field tests and theoretical analyses were performed on various wind turbine rotor designs at two Penn State residential-scale wind-electric facilities. This work involved the prediction and experimental measurement of the electrical and aerodynamic performance of three wind turbines; a 3 kW rated Whisper 175, 2.4 kW rated Skystream 3.7, and the Penn State designed Carolus wind turbine. Both the Skystream and Whisper 175 wind turbines are OEM blades which were originally installed at the facilities. The Carolus rotor is a carbon-fiber composite 2-bladed machine, designed and assembled at Penn State, with the intent of replacing the Whisper 175 rotor at the off-grid system. Rotor aerodynamic performance is modeled using WT_Perf, a National Renewable Energy Laboratory developed Blade Element Momentum theory based performance prediction code. Steady-state power curves are predicted by coupling experimentally determined electrical characteristics with the aerodynamic performance of the rotor simulated with WT_Perf. A dynamometer test stand is used to establish the electromechanical efficiencies of the wind-electric system generator. Through the coupling of WT_Perf and dynamometer test results, an aero-electro-mechanical analysis procedure is developed and provides accurate predictions of wind system performance. The analysis of three different wind turbines gives a comprehensive assessment of the capability of the field test facilities and the accuracy of aero-electro-mechanical analysis procedures. Results from this study show that the Carolus and Whisper 175 rotors are running at higher tip-speed ratios than are optimum for power production. The aero-electro-mechanical analysis predicted the high operating tip-speed ratios of the rotors and was accurate at predicting output power for the systems. It is shown that the wind turbines operate at high tip-speeds because of a miss-match between the aerodynamic drive torque and the operating torque of the wind

  10. PREFACE: The 2nd International Conference on Geological, Geographical, Aerospace and Earth Sciences 2014 (AeroEarth 2014)

    Science.gov (United States)

    Lumban Gaol, Ford; Soewito, Benfano

    2015-01-01

    The 2nd International Conference on Geological, Geographical, Aerospace and Earth Sciences 2014 (AeroEarth 2014), was held at Discovery Kartika Plaza Hotel, Kuta, Bali, Indonesia during 11 - 12 October 2014. The AeroEarth 2014 conference aims to bring together researchers and engineers from around the world. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. Earth provides resources and the exact conditions to make life possible. However, with the advent of technology and industrialization, the Earth's resources are being pushed to the brink of depletion. Non-sustainable industrial practices are not only endangering the supply of the Earth's natural resources, but are also putting burden on life itself by bringing about pollution and climate change. A major role of earth science scholars is to examine the delicate balance between the Earth's resources and the growing demands of industrialization. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 98 papers and after rigorous review, 17 papers were accepted. The participants come from eight countries. There are four Parallel Sessions and two invited Speakers. It is an honour to present this volume of IOP Conference Series: Earth and Environmental Science (EES) and we deeply thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee

  11. Smart rotor modeling aero-servo-elastic modeling of a smart rotor with adaptive trailing edge flaps

    CERN Document Server

    Bergami, Leonardo

    2014-01-01

    A smart rotor is a wind turbine rotor that, through a combination of sensors, control units and actuators actively reduces the variation of the aerodynamic loads it has to withstand. Smart rotors feature?promising load alleviation potential and might provide the technological breakthrough required by the next generation of large wind turbine rotors.The book presents the aero-servo-elastic model of a smart rotor with Adaptive Trailing Edge Flaps for active load alleviation and provides an insight on the rotor aerodynamic, structural and control modeling. A novel model for the unsteady aerodynam

  12. Laboratory stand for examination of the operational thermal parameters of polyvalent system for heating, cooling and domestic hot water supply using renewable energy sources

    International Nuclear Information System (INIS)

    Zlateva, Merima

    2014-01-01

    The report presents the structure of an universal laboratory stand for determine the operating parameters of a polyvalent system for utilization of renewable energy sources. The system is a combination of three modules using different technologies for renewable sources – solar energy, atmospheric air and biomass, incorporated in a common heat accumulator. The structural scheme permits the possibility to use the stand in different operating modes, to demonstrate the feasibility of using any one of the renewable energy sources both individually and in various combinations. The author express gratitude to the partners of the companies Robert Bosch Bulgaria Ltd, Ahi Carrier Bulgaria and Eratermtotal, with whose generous support is build the stand. Key words: Renewable energy sources (RES), Heating with RES, Biomass, Air to Water Heat pumps

  13. Assessing the Thermal Conductivity of Cu2-xSe Alloys Undergoing a Phase Transition via the Simultaneous Measurement of Thermoelectric Parameters by a Harman-Based Setup

    Science.gov (United States)

    Vasilevskiy, D.; Keshavarz, M. K.; Simard, J.-M.; Masut, R. A.; Turenne, S.; Snyder, G. J.

    2018-01-01

    Some materials such as Cu2-xSe, Cu1.97Ag0.03Se, and SnSe have attracted attention by demonstrating a significant enhancement of their thermoelectric performance, which is associated with a phase transition. This phenomenon, observed in a limited temperature (T) interval, results in sharp changes of the Seebeck coefficient (S), the electrical resistivity (ρ), and the thermal conductivity (κ), which may render the correct evaluation of the dimensionless figure of merit (ZT) difficult. We report the thermoelectric properties of a polycrystalline Cu2-xSe sample which is known to undergo a phase transition near 410 K, containing a mixture of α- and β-phases at room temperature, as determined by x-ray diffraction measurements. We have used a Harman-based setup (TEMTE Inc.), which assures the direct measurement of ZT at all temperatures, including the phase transition region. This approach ensures that κ(T) is determined under steady-state conditions at any given temperature, including points arbitrarily close to the transition temperature which cannot be guaranteed by previously used techniques such as laser flash. We have observed a sharp maximum for κ(T) near 410 K, similar to the reported specific heat variation, with a ZT peak value of 0.2 at 400 K. The expected gain in ZT related to the phase transition is reduced because the increase in S is counterbalanced by the increase in κ(T). Thus, our detailed assessment of the temperature variation of the individual thermoelectric properties accurately evaluates the performance enhancement associated to a structural phase transition and helps to elucidate this complex phenomenon.

  14. Assessing the Thermal Conductivity of Cu2-xSe Alloys Undergoing a Phase Transition via the Simultaneous Measurement of Thermoelectric Parameters by a Harman-Based Setup

    Science.gov (United States)

    Vasilevskiy, D.; Keshavarz, M. K.; Simard, J.-M.; Masut, R. A.; Turenne, S.; Snyder, G. J.

    2018-06-01

    Some materials such as Cu2-xSe, Cu1.97Ag0.03Se, and SnSe have attracted attention by demonstrating a significant enhancement of their thermoelectric performance, which is associated with a phase transition. This phenomenon, observed in a limited temperature ( T) interval, results in sharp changes of the Seebeck coefficient ( S), the electrical resistivity ( ρ), and the thermal conductivity ( κ), which may render the correct evaluation of the dimensionless figure of merit (ZT) difficult. We report the thermoelectric properties of a polycrystalline Cu2-xSe sample which is known to undergo a phase transition near 410 K, containing a mixture of α- and β-phases at room temperature, as determined by x-ray diffraction measurements. We have used a Harman-based setup (TEMTE Inc.), which assures the direct measurement of ZT at all temperatures, including the phase transition region. This approach ensures that κ( T) is determined under steady-state conditions at any given temperature, including points arbitrarily close to the transition temperature which cannot be guaranteed by previously used techniques such as laser flash. We have observed a sharp maximum for κ( T) near 410 K, similar to the reported specific heat variation, with a ZT peak value of 0.2 at 400 K. The expected gain in ZT related to the phase transition is reduced because the increase in S is counterbalanced by the increase in κ( T). Thus, our detailed assessment of the temperature variation of the individual thermoelectric properties accurately evaluates the performance enhancement associated to a structural phase transition and helps to elucidate this complex phenomenon.

  15. One Generation of New Material, One Generation of New Type Engine:Development Trend of Aero-engine and Its Requirements for Materials

    Directory of Open Access Journals (Sweden)

    LIU Da-xiang

    2017-10-01

    Full Text Available Based on the brief review of accelerated developing status of aircraft power technology in the world, the present status and developing trend of key materials technology for aero-engine were analyzed. In accordance with the idea of "one generation of new material, one generation of new type engine", development requirements for the materials technology of the system and main parts of aero-engine were proposed. Suggestions for improving development and application level of the materials technology in China were presented from aspects of quality stability and technical maturity, investigation and verification for engineering, materials system and data, composite materials, airworthiness certificate,etc.

  16. Modeling C-Band Co-Channel Interference From AeroMACS Omni-Directional Antennas to Mobile Satellite Service Feeder Uplinks

    Science.gov (United States)

    Wilson, Jeffrey D.

    2011-01-01

    A new C-band (5091 to 5150 MHz) airport communications system designated as Aeronautical Mobile Airport Communications System (AeroMACS) is being planned under the Federal Aviation Administration s NextGen program. An interference analysis software program, Visualyse Professional (Transfinite Systems Ltd), is being utilized to provide guidelines on limitations for AeroMACS transmitters to avoid interference with other systems. A scenario consisting of a single omni-directional transmitting antenna at each of the major contiguous United States airports is modeled and the steps required to build the model are reported. The results are shown to agree very well with a previous study.

  17. Thermophysical Parameters of Organic PCM Coconut Oil from T-History Method and Its Potential as Thermal Energy Storage in Indonesia

    Science.gov (United States)

    Silalahi, Alfriska O.; Sukmawati, Nissa; Sutjahja, I. M.; Kurnia, D.; Wonorahardjo, S.

    2017-07-01

    The thermophysical parameters of organic phase change material (PCM) of coconut oil (co_oil) have been studied by analyzing the temperature vs time data during liquid-solid phase transition (solidification process) based on T-history method, adopting the original version and its modified form to extract the values of mean specific heats of the solid and liquid co_oil and the heat of fusion related to phase transition of co_oil. We found that the liquid-solid phase transition occurs rather gradually, which might be due to the fact that co_oil consists of many kinds of fatty acids with the largest amount of lauric acid (about 50%), with relatively small supercooling degree. For this reason, the end of phase transition region become smeared out, although the inflection point in the temperature derivative is clearly observed signifying the drastic temperature variation between the phase transition and solid phase periods. The data have led to the values of mean specific heat of the solid and liquid co_oil that are comparable to the pure lauric acid, while the value for heat of fusion is resemble to those of the DSC result, both from references data. The advantage of co_oil as the potential sensible and latent TES for room-temperature conditioning application in Indonesia is discussed in terms of its rather broad working temperature range due to its mixture composition characteristic.

  18. Studies on dielectric properties, opto-electrical parameters and electronic polarizability of thermally evaporated amorphous Cd{sub 50}S{sub 50−x}Se{sub x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hassanien, Ahmed Saeed, E-mail: a.s.hassanien@gmail.com [Engineering Mathematics and Physics Department, Faculty of Engineering (Shoubra), Benha University (Egypt); Physics Department, Faculty of Science and Humanities in Ad-Dawadmi, Shaqra University, 11911 (Saudi Arabia)

    2016-06-25

    The objective of this work is to study the influence of the addition of more Se on dielectric properties, opto-electrical parameters and electronic polarizability of amorphous chalcogenide Cd{sub 50}S{sub 50−x}Se{sub x} thin films (30 ≤ x ≤ 50 at%). Thin films of thickness 200 nm were synthesized by vacuum deposition at ≈8.2 × 10{sup −4} Pa. Both refractive index and extinction coefficient were used to obtain all the studied parameters. The high frequency dielectric constant, real and imaginary parts of dielectric constant were discussed. Drude theory was applied to investigate opto-electrical parameters, like optical carrier concentration, optical mobility and optical resistivity. Moreover, other parameters were investigated and studied, e.g. Drude parameters, volume and surface energy loss functions, dielectric loss factor, dielectric relaxation time, complex optical conductivity and electronic polarizability as well as optical electronegativity and third-order nonlinear optical susceptibility. Values of electronic polarizability and nonlinear optical susceptibility were found to be decreased while optical electronegativity increased as Se-content was increased. Increment of Se-content in amorphous Cd{sub 50}S{sub 50−x}Se{sub x} thin films has also led to minimize the energy losses when electromagnetic waves propagate through films as well as optical conductivity and the speed of light increased. The other studied properties and parameters of Cd{sub 50}S{sub 50−x}Se{sub x} films were found to be strongly dependent upon Se-content. - Highlights: • Thermally evaporated amorphous Cd{sub 50}S{sub 50−x}Se{sub x} (30 ≤ x ≤ 50) thin films were deposited. • Refractive index and absorption index were used to determine almost all properties. • Dielectric properties, Drude parameters and electronic polarizability were studied. • Addition of more Se to CdSSe matrix led to improve the opto-electrical properties. • New data were obtained and

  19. Impact of thermal loading and other water quality parameters on the epizootiology of red-sore disease in centrarchids. Progress report, December 1, 1977--November 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Esch, G.W.; Hazen, T.C.

    1978-07-01

    The implications from these studies are varied, sometimes clear and sometimes less so, for many of the results have raised new and even more critical questions. Thus, our data clearly show that Aeromonas hydrophila is the etiological agent for red-sore disease. Furthermore, they suggest that the effects of temperature are twofold, first in increasing the density of the pathogen in the water column and then in affecting the physiology of the host organism to such an extent as to increase the probability of acquiring the pathogen. On the other hand, organic loading, suggested by other investigators as being important in red-sore disease, was not identified as being significant in the present study. However, if organic loading, or any of its consequences, can be shown to induce stress, then it may be as important in other systems as temperature is in Par Pond. Thus it is quite conceivable that it (organic loading), or some other water quality parameter, may create conditions conducive to increasing densities of A. hydrophila while simultaneously producing water quality characteristics which would lead to stress in fish, and then to increasing the probability of fish acquiring red-sore disease. An enigmatic observation (see Hazen, 1978, for details) is that A. hydrophila has been recovered from a variety of habitats throughout the U.S., yet red-sore disease is known to occur only in the southeast. This peculiar distribution pattern raises several important questions regarding the epizootiology of red-sore, not the least of which is the possibility of there existing differentially virulent strains of A. hydrophila and/or more or less susceptible populations of potential hosts in various parts of the country. Other significant questions are related to the variability in amplitude of red-sore disease from one year to the next among bass in Par Pond, the mode of entry of the pathogen into largemouth bass, and the basic, cellular mechanisms of stress in largemouth bass.

  20. Impact of thermal loading and other water quality parameters on the epizootiology of red-sore disease in centrarchids. Progress report, December 1, 1977--November 30, 1978

    International Nuclear Information System (INIS)

    Esch, G.W.; Hazen, T.C.

    1978-07-01

    The implications from these studies are varied, sometimes clear and sometimes less so, for many of the results have raised new and even more critical questions. Thus, our data clearly show that Aeromonas hydrophila is the etiological agent for red-sore disease. Furthermore, they suggest that the effects of temperature are twofold, first in increasing the density of the pathogen in the water column and then in affecting the physiology of the host organism to such an extent as to increase the probability of acquiring the pathogen. On the other hand, organic loading, suggested by other investigators as being important in red-sore disease, was not identified as being significant in the present study. However, if organic loading, or any of its consequences, can be shown to induce stress, then it may be as important in other systems as temperature is in Par Pond. Thus it is quite conceivable that it (organic loading), or some other water quality parameter, may create conditions conducive to increasing densities of A. hydrophila while simultaneously producing water quality characteristics which would lead to stress in fish, and then to increasing the probability of fish acquiring red-sore disease. An enigmatic observation (see Hazen, 1978, for details) is that A. hydrophila has been recovered from a variety of habitats throughout the U.S., yet red-sore disease is known to occur only in the southeast. This peculiar distribution pattern raises several important questions regarding the epizootiology of red-sore, not the least of which is the possibility of there existing differentially virulent strains of A. hydrophila and/or more or less susceptible populations of potential hosts in various parts of the country. Other significant questions are related to the variability in amplitude of red-sore disease from one year to the next among bass in Par Pond, the mode of entry of the pathogen into largemouth bass, and the basic, cellular mechanisms of stress in largemouth bass

  1. Influence of process parameters on the cavitation resistance of arc thermally sprayed cobalt stainless steel; Influencia dos parametros de processo na resistencia a cavitacao de uma liga inoxidavel com cobalto aspergido a arco

    Energy Technology Data Exchange (ETDEWEB)

    Pukasiewicz, A. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Capra, A.R.; Chandelier, J. da L. [Instituto de Tecnologia para o Desenvolvimento (LACTEC), Curitiba, PR (Brazil)], e-mail: anderson.geraldo@lactec.org.br; Paredes, R.S.C. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica

    2006-07-01

    In this work the influence of the arc thermal spraying process on the microstructure, oxide volumetric fraction, porosity and cavitation resistance was studied. The characterization was performed by optical and electrical microscopy, microhardness and ultrasonic cavitation test, ASTM G32-96 in AS895HY cobalt stainless steel. The increase in air pressure, 280 to 410 kPa, modified the oxide fraction from 17,2 +- 3,6% to 10,9 +-1,8%, in the samples without pre-heating treatment. With 120 deg C pre-heating treatment the oxide fraction increase from 24,1 +- 2,8% to 12,8 +- 1,9% when the air pressure was modified from 280 to 550 kPa. The mass loss in vibration-induced cavitation were 1,55 and 1,42 mg/h for 410 kPa AS895HY samples, with and without pre heating treatment, and 2,12 mg/h for 280 kPa samples without pre heating treatment. The results showed that the process parameters modified the microstructure and the cavitation resistance of the arc thermal spraying coatings. (author)

  2. The AERO system: a 3D-like approach for recording gene expression patterns in the whole mouse embryo.

    Directory of Open Access Journals (Sweden)

    Hirohito Shimizu

    Full Text Available We have recently constructed a web-based database of gene expression in the mouse whole embryo, EMBRYS (http://embrys.jp/embrys/html/MainMenu.html. To allow examination of gene expression patterns to the fullest extent possible, this database provides both photo images and annotation data. However, since embryos develop via an intricate process of morphogenesis, it would be of great value to track embryonic gene expression from a three dimensional perspective. In fact, several methods have been developed to achieve this goal, but highly laborious procedures and specific operational skills are generally required. We utilized a novel microscopic technique that enables the easy capture of rotational, 3D-like images of the whole embryo. In this method, a rotary head equipped with two mirrors that are designed to obtain an image tilted at 45 degrees to the microscope stage captures serial images at 2-degree intervals. By a simple operation, 180 images are automatically collected. These 2D images obtained at multiple angles are then used to reconstruct 3D-like images, termed AERO images. By means of this system, over 800 AERO images of 191 gene expression patterns were captured. These images can be easily rotated on the computer screen using the EMBRYS database so that researchers can view an entire embryo by a virtual viewing on a computer screen in an unbiased or non-predetermined manner. The advantages afforded by this approach make it especially useful for generating data viewed in public databases.

  3. Polypyrrole/silver coaxial nanowire aero-sponges for temperature-independent stress sensing and stress-triggered Joule heating.

    Science.gov (United States)

    He, Weina; Li, Guangyong; Zhang, Shangquan; Wei, Yong; Wang, Jin; Li, Qingwen; Zhang, Xuetong

    2015-04-28

    To obtain ideal sensing materials with nearly zero temperature coefficient resistance (TCR) for self-temperature-compensated pressure sensors, we proposed an Incipient Network Conformal Growth (INCG) technology to prepare hybrid and elastic porous materials: the nanoparticles (NPs) are first dispersed in solvent to form an incipient network, another component is then introduced to coat the incipient network conformally via wet chemical route. The conformal coatings not only endow NPs with high stability but also offer them additional structural elasticity, meeting requirements for future generations of portable, compressive and flexible devices. The resultant polypyrrole/silver coaxial nanowire hybrid aero-sponges prepared via INCG technology have been processed into a piezoresistive sensor with highly sensing stability (low TCR 0.86 × 10(-3)/°C), sensitivity (0.33 kPa(-1)), short response time (1 ms), minimum detectable pressure (4.93 Pa) after suffering repeated stimuli, temperature change and electric heating. Moreover, a stress-triggered Joule heater can be also fabricated mainly by the PPy-Ag NW hybrid aero-sponges with nearly zero temperature coefficient.

  4. Emerging and established global life-style risk factors for cancer of the upper aero-digestive tract.

    Science.gov (United States)

    Gupta, Bhawna; Johnson, Newell W

    2014-01-01

    Upper aero-digestive tract cancer is a multidimensional problem, international trends showing complex rises and falls in incidence and mortality across the globe, with variation across different cultural and socio-economic groups. This paper seeks some explanations and identifies some research and policy needs. The literature illustrates the multifactorial nature of carcinogenesis. At the cellular level, it is viewed as a multistep process involving multiple mutations and selection for cells with progressively increasing capacity for proliferation, survival, invasion, and metastasis. Established and emerging risk factors, in addition to changes in incidence and prevalence of cancers of the upper aero-digestive tract, were identified. Exposure to tobacco and alcohol, as well as diets inadequate in fresh fruits and vegetables, remain the major risk factors, with persistent infection by particular so-called "high risk" genotypes of human papillomavirus increasingly recognised as also playing an important role in a subset of cases, particularly for the oropharynx. Chronic trauma to oral mucosa from poor restorations and prostheses, in addition to poor oral hygiene with a consequent heavy microbial load in the mouth, are also emerging as significant risk factors. Understanding and quantifying the impact of individual risk factors for these cancers is vital for health decision-making, planning and prevention. National policies and programmes should be designed and implemented to control exposure to environmental risks, by legislation if necessary, and to raise awareness so that people are provided with the information and support they need to adopt healthy lifestyles.

  5. Effective L/D: A Theoretical Approach to the Measurement of Aero-Structural Efficiency in Aircraft Design

    Science.gov (United States)

    Guynn, Mark D.

    2015-01-01

    There are many trade-offs in aircraft design that ultimately impact the overall performance and characteristics of the final design. One well recognized and well understood trade-off is that of wing weight and aerodynamic efficiency. Higher aerodynamic efficiency can be obtained by increasing wing span, usually at the expense of higher wing weight. The proper balance of these two competing factors depends on the objectives of the design. For example, aerodynamic efficiency is preeminent for sailplanes and long slender wings result. Although the wing weight-drag trade is universally recognized, aerodynamic efficiency and structural efficiency are not usually considered in combination. This paper discusses the concept of "aero-structural efficiency," which combines weight and drag characteristics. A metric to quantify aero-structural efficiency, termed effective L/D, is then derived and tested with various scenarios. Effective L/D is found to be a practical and robust means to simultaneously characterize aerodynamic and structural efficiency in the context of aircraft design. The primary value of the effective L/D metric is as a means to better communicate the combined system level impacts of drag and structural weight.

  6. Nonlinear Dynamic Modeling of a Supersonic Commercial Transport Turbo-Machinery Propulsion System for Aero-Propulso-Servo-Elasticity Research

    Science.gov (United States)

    Connolly, Joe; Carlson, Jan-Renee; Kopasakis, George; Woolwine, Kyle

    2015-01-01

    This paper covers the development of an integrated nonlinear dynamic model for a variable cycle turbofan engine, supersonic inlet, and convergent-divergent nozzle that can be integrated with an aeroelastic vehicle model to create an overall Aero-Propulso-Servo-Elastic (APSE) modeling tool. The primary focus of this study is to provide a means to capture relevant thrust dynamics of a full supersonic propulsion system by using relatively simple quasi-one dimensional computational fluid dynamics (CFD) methods that will allow for accurate control algorithm development and capture the key aspects of the thrust to feed into an APSE model. Previously, propulsion system component models have been developed and are used for this study of the fully integrated propulsion system. An overview of the methodology is presented for the modeling of each propulsion component, with a focus on its associated coupling for the overall model. To conduct APSE studies the described dynamic propulsion system model is integrated into a high fidelity CFD model of the full vehicle capable of conducting aero-elastic studies. Dynamic thrust analysis for the quasi-one dimensional dynamic propulsion system model is presented along with an initial three dimensional flow field model of the engine integrated into a supersonic commercial transport.

  7. Assessment of organic compound exposures, thermal comfort parameters, and HVAC system-driven air exchange rates in public school portable classrooms in California

    Energy Technology Data Exchange (ETDEWEB)

    Shendell, Derek Garth [Univ. of California, Los Angeles, CA (United States)

    2003-01-01

    indoor air guideline ''target level'', and concentrations of most target VOCs were low. O and M questionnaire results suggested insufficient training and communication between custodians and SD offices concerning HVAC systems. Future studies should attempt larger sample sizes and cover larger geographical areas but continue to assess multiple IEQ parameters during occupied hours. Teachers, custodians, and SD staff must be educated on the importance of adequate ventilation with filtered outdoor air.

  8. Rare earth oxide aero- and xerogels. Tuning porosity and catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Bjoern

    2013-11-15

    , katalytisch vielversprechende Seltenerdoxide im Hinblick auf Porositaet und Zusammensetzung so zu veraendern, dass sie fuer Oxidationsreaktionen und die oxidative Kupplung von Methan gute Ergebnisse aufweisen. Dabei lag einerseits ein grosser Schwerpunkt auf Sol-gel-chemischen Methoden und hier besonders auf der sog. ''Epoxide Addition Method''. Neben Aero- und Xerogelen der reinen Seltenerdoxide wurden auch Hybridsysteme aus den Seltenerdoxiden und Aluminiumoxid praepariert, umfangreich charakterisiert und katalytisch getestet. Des Weiteren wurden duenne Xerogel Filme und makroporoese Monolithe, letztere mittels einer direkten Schaeumungsmethode, hergestellt. Die Ergebnisse der Arbeit belegen das grosse Potential v.a. der Sol-Gel-Chemie, poroese Materialien mit variabler und kontrollierbarer Porositaet und Zusammensetzung fuer die heterogene Katalyse verfuegbar zu machen und dabei leistungsfaehigere Katalysatoren zu erhalten.

  9. Investigation of global particulate nitrate from the AeroCom phase III experiment

    Directory of Open Access Journals (Sweden)

    H. Bian

    2017-11-01

    Full Text Available An assessment of global particulate nitrate and ammonium aerosol based on simulations from nine models participating in the Aerosol Comparisons between Observations and Models (AeroCom phase III study is presented. A budget analysis was conducted to understand the typical magnitude, distribution, and diversity of the aerosols and their precursors among the models. To gain confidence regarding model performance, the model results were evaluated with various observations globally, including ground station measurements over North America, Europe, and east Asia for tracer concentrations and dry and wet depositions, as well as with aircraft measurements in the Northern Hemisphere mid-to-high latitudes for tracer vertical distributions. Given the unique chemical and physical features of the nitrate occurrence, we further investigated the similarity and differentiation among the models by examining (1 the pH-dependent NH3 wet deposition; (2 the nitrate formation via heterogeneous chemistry on the surface of dust and sea salt particles or thermodynamic equilibrium calculation including dust and sea salt ions; and (3 the nitrate coarse-mode fraction (i.e., coarse/total. It is found that HNO3, which is simulated explicitly based on full O3-HOx-NOx-aerosol chemistry by all models, differs by up to a factor of 9 among the models in its global tropospheric burden. This partially contributes to a large difference in NO3−, whose atmospheric burden differs by up to a factor of 13. The atmospheric burdens of NH3 and NH4+ differ by 17 and 4, respectively. Analyses at the process level show that the large diversity in atmospheric burdens of NO3−, NH3, and NH4+ is also related to deposition processes. Wet deposition seems to be the dominant process in determining the diversity in NH3 and NH4+ lifetimes. It is critical to correctly account for contributions of heterogeneous chemical production of nitrate on dust and sea salt, because this process

  10. Procedimiento para el cálculo de los parámetros de un modelo térmico simplificado del motor asincrónico Parameter estimation procedure for an asynchronous motor simplified thermal model

    Directory of Open Access Journals (Sweden)

    Julio R Gómez Sarduy

    2011-06-01

    Full Text Available En este trabajo se presenta un método para estimar las conductancias y capacitancias de un modelo térmico simplificado del motor asincrónico, utilizando una técnica de baja invasividad. El procedimiento permite predecir el incremento de temperatura del estator del motor asincrónico, tanto para régimen dinámico como en condiciones de estabilidad térmica. Se basa en la estimación paramétrica mediante un modelo de referencia, utilizando como optimizador un algoritmo genético (AG. Se logra en definitiva obtener los parámetros del modelo térmico con un ensayo más sencillo que lo requerido por otros métodos experimentales complejos o cálculos analíticos basados en datos de diseño. El procedimiento propuesto se puede llevar a cabo en condiciones propias de la industria y resulta atractivo su empleo en el análisis de calentamiento de estas máquinas. El método se valida a partir de un estudio de caso reportado en la literatura y se aplica a un caso real en la industria, lográndose una buena precisión.In this paper, an asynchronous motor simplified thermal model method for conductances and capacitances estimation is presented. A low invasive technique is used. The developed procedure allows the stator temperature rise prediction, not only for dynamic regimes, but also in case of thermal stability. A parametric estimation is done through a reference model, using a genetic algorithm (GA as optimizing method. The thermal model parameters are finally obtained with an easer experimental work, than the required by other complex experimental methods or by analytical calculations based on design data. The proposed procedure can be carry out in the particular conditions of industrial environment. Its application is specially useful for asynchronous machine thermal analysis. Using the data of a study case reported in literature, the method validation is done, and is applied in an industrial real case, with good precision resulted from it.

  11. Preparation, spectroscopic, thermal, antihepatotoxicity, hematological parameters and liver antioxidant capacity characterizations of Cd(II), Hg(II), and Pb(II) mononuclear complexes of paracetamol anti-inflammatory drug

    Science.gov (United States)

    El-Megharbel, Samy M.; Hamza, Reham Z.; Refat, Moamen S.

    2014-10-01

    Keeping in view that some metal complexes are found to be more potent than their parent drugs, therefore, our present paper aimed to synthesized Cd(II), Hg(II) and Pb(II) complexes of paracetamol (Para) anti-inflammatory drug. Paracetamol complexes with general formula [M(Para)2(H2O)2]·nH2O have been synthesized and characterized on the basis of elemental analysis, conductivity, IR and thermal (TG/DTG), 1H NMR, electronic spectral studies. The conductivity data of these complexes have non-electrolytic nature. Comparative antimicrobial (bacteria and fungi) behaviors and molecular weights of paracetamol with their complexes have been studied. In vivo the antihepatotoxicity effect and some liver function parameters levels (serum total protein, ALT, AST, and LDH) were measured. Hematological parameters and liver antioxidant capacities of both Para and their complexes were performed. The Cd2+ + Para complex was recorded amelioration of antioxidant capacities in liver homogenates compared to other Para complexes treated groups.

  12. On the aero-elastic design of the DTU 10MW wind turbine blade for the LIFES50+ wind tunnel scale model

    DEFF Research Database (Denmark)

    Bayati, I.; Belloli, M.; Bernini, L.

    2016-01-01

    and for different angles of attack. The aero-elastic design algorithm was set to define the optimal spanwise thickness over chord ratio (t/c), the chord length and the twist to match the first flapwise scaled natural frequency. An aluminium mould for the carbon fibre was CNC manufactured based on B-Splines CAD...

  13. Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study

    Directory of Open Access Journals (Sweden)

    P. Stier

    2013-03-01

    Full Text Available Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as a measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in twelve participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is −4.47 Wm−2 and the inter-model standard deviation is 0.55 Wm−2, corresponding to a relative standard deviation of 12%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.04 Wm−2, and the standard deviation increases to 1.01 W−2, corresponding to a significant relative standard deviation of 97%. However, the top-of-atmosphere forcing variability owing to absorption (subtracting the scattering case from the case with scattering and absorption is low, with absolute (relative standard deviations of 0.45 Wm−2 (8% clear-sky and 0.62 Wm−2 (11% all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the AeroCom Direct Effect experiment demonstrates that host model uncertainties could explain about 36% of the overall sulfate forcing diversity of 0.11 Wm−2 in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model

  14. 3D quantitative interpretation of archaeo-magnetic data: Adaptation of aero-magnetic interpretation techniques for archaeological purposes

    Science.gov (United States)

    Cheyney, S.; Hill, I. A.; Linford, N.; Fishwick, S.; Leech, C.

    2011-12-01

    High-resolution total-field magnetic data can be collected rapidly and relatively cheaply over large archaeological sites due to recent advances in data collection. However, interpretation of these datasets still generally comprises a sequence of data correction and filtering operations prior to a 2D visual interpretation based on pattern recognition. In contrast, current developments in aero-magnetic interpretation have led to several tools for identifying location, shape and depth information of anomalous sources. These methods often fail when directly applied to archaeo-magnetic data, due to the particular noise content typical in very near-surface surveys. Here techniques are explored that allow these aero-magnetic interpretation tools to be applied to archaeological problems, without the need for extensive, often biased user input. It is shown that full 3D quantitative interpretation of the subsurface is possible from just the magnetic data alone. Inversion of magnetic data is increasingly being applied to aero-magnetic surveys to produce 3D models of the subsurface magnetisation. Typically, an objective function is minimised in order to create a smooth distribution of magnetisation away from a reference model (or halfspace if no a-priori information is available). Often, although a good fit to the observed values may be obtained, the final model will be non-unique and biased by the reference model. Testing of synthetic data shows that when archaeo-magnetic datasets are inverted without applying a-priori information, large discrepancies between the true and modelled depths can occur. Where no a-priori information is available, information regarding the horizontal location of sources can be obtained from derivative-based methods such as the absolute horizontal gradient, tilt-angle and theta-map. Using pseudogravity data with these techniques, overcomes the problem of noise amplification that has previously hampered archaeological uses of these techniques. Depth

  15. Aero-Propulsive Model Design from a Commercial Aircraft in Climb and Cruise Regime using Performance Data =

    Science.gov (United States)

    Tudor, Magdalena

    IATA has estimated, in 2012, at about 2% of global carbon dioxide emissions, the environmental impact of the air transport, as a consequence caused by the rapidly growing of global movement demand of people and goods, and which was effectively taken into account in the development of the aviation industry. The historic achievements of scientific and technical progress in the field of commercial aviation were contributed to this estimate, and even today the research continues to make progress to help to reduce the emissions of greenhouse gases. Advances in commercial aircraft, and its engine design technology had the aim to improve flight performance. These improvements have enhanced the global flight planning of these types of aircrafts. Almost all of these advances rely on generated performance data as reference sources, the most of which are classified as "confidential" by the aircraft manufacturers. There are very few aero-propulsive models conceived for the climb regime in the literature, but none of them was designed without access to an engine database, and/or to performance data in climb and in cruise regimes with direct applicability for flight optimization. In this thesis, aero-propulsive models methodologies are proposed for climb and cruise regimes, using system identification and validation methods, through which airplane performance can be computed and stored in the most compact and easily accessible format for this kind of performance data. The acquiring of performance data in this format makes it possible to optimize flight profiles, used by on-board Flight Management Systems. The aero-propulsive models developed here were investigated on two aircrafts belonging to commercial class, and both of them had offered very good accuracy. One of their advantages is that they can be adapted to any other aircraft of the same class, even if there is no access to their corresponding engine flight data. In addition, these models could save airlines a considerable

  16. Dynamic thermal environment and thermal comfort.

    Science.gov (United States)

    Zhu, Y; Ouyang, Q; Cao, B; Zhou, X; Yu, J

    2016-02-01

    Research has shown that a stable thermal environment with tight temperature control cannot bring occupants more thermal comfort. Instead, such an environment will incur higher energy costs and produce greater CO2 emissions. Furthermore, this may lead to the degeneration of occupants' inherent ability to combat thermal stress, thereby weakening thermal adaptability. Measured data from many field investigations have shown that the human body has a higher acceptance to the thermal environment in free-running buildings than to that in air-conditioned buildings with similar average parameters. In naturally ventilated environments, occupants have reported superior thermal comfort votes and much greater thermal comfort temperature ranges compared to air-conditioned environments. This phenomenon is an integral part of the adaptive thermal comfort model. In addition, climate chamber experiments have proven that people prefer natural wind to mechanical wind in warm conditions; in other words, dynamic airflow can provide a superior cooling effect. However, these findings also indicate that significant questions related to thermal comfort remain unanswered. For example, what is the cause of these phenomena? How we can build a comfortable and healthy indoor environment for human beings? This article summarizes a series of research achievements in recent decades, tries to address some of these unanswered questions, and attempts to summarize certain problems for future research. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. HAWC2 and BeamDyn: Comparison Between Beam Structural Models for Aero-Servo-Elastic Frameworks: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Pavese, Christian; Kim, Taeseong; Wang, Qi; Jonkman, Jason; Sprague, Michael A.

    2016-08-01

    This work presents a comparison of two beam codes for aero-servo-elastic frameworks: a new structural model for the aeroelastic code HAWC2 and a new nonlinear beam model, BeamDyn, for the aeroelastic modularization framework FAST v8. The main goal is to establish the suitability of the two approaches to model the structural behaviour of modern wind turbine blades in operation. Through a series of benchmarking structural cases of increasing complexity, the capability of the two codes to simulate highly nonlinear effects is investigated and analyzed. Results show that even though the geometrically exact beam theory can better model effects such as very large deflections, rotations, and structural couplings, an approach based on a multi-body formulation assembled through linear elements is capable of computing accurate solutions for typical nonlinear beam theory benchmarking cases.

  18. Initial comments on the aero geophysical information present at the B and C areas of the Itatira (Brazil) project

    International Nuclear Information System (INIS)

    Castro, Neivaldo Araujo de; Castelo Branco, Raimundo Mariano Gomes

    1999-01-01

    The aero geophysical project called Itatira,, accomplished by LASA Engenharia e Prospeccoes S.A., Between September and November/1977 through contract with NUCLEBRAS, corresponds to one of the first project of this gender accomplished in national territory. In this project were flight more than 80 000 km of linear lines, which covered approximately 38 000 km 2 on the precambrian terrains of the Ceara State, NE Brazil. For several reasons, the total area of the project was subdivided in three sub-areas (A, B and C), each one covered by a different airship (LAS, 1977). This paper presents the geophysical information and preliminary interpretations of the areas B and C that were obtained through the integrated use of the soft wares AUTOCAD r. 14, OASIS MONTAJ r.4.2 and ERMAPPER r.5.5. (author)

  19. Experimental and Numerical Investigation of the Outer Ring Cooling Concept in a Hybrid and in an All-Steel Ball Bearing Used in Aero-Engines by the Introduction of a Helical Duct

    Directory of Open Access Journals (Sweden)

    Michael Flouros

    2018-02-01

    Full Text Available Rolling element bearings for aero engine applications have to withstand very challenging operating conditions because of the high thermal impact due to elevated rotational speeds and loads. The high rate of heat generation in the bearing has to be sustained by the materials, and in the absence of lubrication these will fail within seconds. For this reason, aero engine bearings have to be lubricated and cooled by a continuous oil stream. When the oil has reached the outer ring it has already been heated up, thus its capability to remove extra heat from the outer ring is considerably reduced. Increasing the mass flow of oil to the bearing is not a solution since excess oil quantity would cause high parasitic losses (churning in the bearing chamber and also increase the demands in the oil system for oil storage, scavenging, cooling, hardware weight, etc. A method has been developed for actively cooling the outer ring of the bearing. The idea behind the outer ring cooling concept was adopted from fins that are used for cooling electronic devices. A spiral groove engraved in the outer ring material of the bearing would function as a fin body with oil instead of air as the cooling medium. The method was first evaluated in an all steel ball bearing and the results were a 50% reduction in the lubricating oil flow with an additional reduction in heat generation by more than 25%. It was then applied on a Hybrid ball bearing of the same size and the former results were reconfirmed. Hybrid bearings are a combination of steel made parts, like the outer ring, the inner ring, and the cage and of ceramic rolling elements. This paper describes the work done to-date as a follow up of the work described in, and demonstrates the potential of the outer ring cooling for a bearing. Friction loss coefficient, Nusselt number, and efficiency correlations have been developed on the basis of the test results and have been compared to correlations from other authors

  20. Parameter Estimation

    DEFF Research Database (Denmark)

    Sales-Cruz, Mauricio; Heitzig, Martina; Cameron, Ian

    2011-01-01

    of optimisation techniques coupled with dynamic solution of the underlying model. Linear and nonlinear approaches to parameter estimation are investigated. There is also the application of maximum likelihood principles in the estimation of parameters, as well as the use of orthogonal collocation to generate a set......In this chapter the importance of parameter estimation in model development is illustrated through various applications related to reaction systems. In particular, rate constants in a reaction system are obtained through parameter estimation methods. These approaches often require the application...... of algebraic equations as the basis for parameter estimation.These approaches are illustrated using estimations of kinetic constants from reaction system models....

  1. Temperature studies of optical parameters of (Ag3AsS3)0.6(As2S3)0.4 thin films prepared by rapid thermal evaporation and pulse laser deposition

    Science.gov (United States)

    Studenyak, I. P.; Kutsyk, M. M.; Buchuk, M. Yu.; Rati, Y. Y.; Neimet, Yu. Yu.; Izai, V. Yu.; Kökényesi, S.; Nemec, P.

    2016-02-01

    (Ag3AsS3)0.6(As2S3)0.4 thin films were deposited using rapid thermal evaporation (RTE) and pulse laser deposition (PLD) techniques. Ag-enriched micrometre-sized cones (RTE) and bubbles (PLD) were observed on the thin film surface. Optical transmission spectra of the thin films were studied in the temperature range 77-300 K. The Urbach behaviour of the optical absorption edge in the thin films due to strong electron-phonon interaction was observed, the main parameters of the Urbach absorption edge were determined. Temperature dependences of the energy position of the exponential absorption edge and the Urbach energy are well described in the Einstein model. Dispersion and temperature dependences of refractive indices were analysed; a non-linear increase of the refractive indices with temperature was revealed. Disordering processes in the thin films were studied and compared with bulk composites, the differences between the thin films prepared by RTE and PLD were analysed.

  2. Re-irradiation associated to cetuximab and paclitaxel in the recurrences in irradiated field of upper aero-digestive ducts tumors resistant to platina salts; Re-irradiation associee au cetuximab et au paclitaxel dans les recidives en territoire irradie des tumeurs des voies aero-digestives superieures resistantes aux sels de platine

    Energy Technology Data Exchange (ETDEWEB)

    Martin, L.M. [Centre Guillaume-Le-Conquerant, 76 - Le Havre (France); Moran, A.R.; Pavlovitch, J.M. [Clinique du Petit-Colmoulin, 76 - Harfleur (France); El Amarti, R. [Hopital Monod, 76 - Montivilliers (France); Damour, M. [CMC Ormeaux-Vauban, 76 - Le Havre (France)

    2007-11-15

    The objective of this study is to present the preliminary results of the toxicity and efficiency evaluation of the association 're-irradiation-cetuximab-paclitaxel' in the recurrences of upper aero-digestive ducts tumors in irradiated field resistant to platinum salts. (N.C.)

  3. Influence of bondcoat composition and manufacturing parameters on the lifetime of thermal barrier coatings under cyclic temperature loading; Einfluss der Bondcoatzusammensetzung und Herstellungsparameter auf die Lebensdauer von Waermedaemmschichten bei zyklischer Temperaturbelastung

    Energy Technology Data Exchange (ETDEWEB)

    Subanovic, Marko

    2008-08-21

    In the present study the influence of the bond coat composition on the lifetime of thermal barrier coatings during thermal cycling was investigated. The knowledge, that the reactive elements (RE), which are essential for the improvement of the oxide scale adhesion, are ''lost'', during the bond coat processing, made it necessary to investigate systematically the influence of the different manufacturing stages on the RE distribution. After VPS (vacuum plasma spraying) with a high oxygen partial pressure in the spraying chamber, the reactive elements in the NiCoCrAl-coating were tied up in oxide precipitates, and thus their beneficial effect on the scale adhesion was inhibited. Another important observation is that the RE's are depleted during the bondcoat vacuum heat-treatment. The degree of Y-depletion depends not only on the Y-reservoir in the coating (Y-content and thickness) but also on the heat-treatment parameters, such as vacuum quality and temperature. A thin, dense alumina oxide scale with a smooth interface between bond coat and TGO doesn't necessary lead to a lifetime extension of the EB-PVD TBC's. TBC's with such oxide morphology typically failed due to crack formation and propagation along the interface between the TGO and the bondcoat. By addition of zirconium it was possible to shift the failure initiation from the interface TGO/bondcoat to the interface TBC/TGO, which can apparently accommodate more thermal strain energy before failure. The shift of the failure location was achieved by a change of the oxide morphology, which mainly relies on adjusting a non-even wavy interface between the TGO and the bond coat and formation of defected oxide layers. In contrast, a defected oxide scale with a high growth rate shortened the life time of APSTBC's. Porosity and spinel formation weakened the mechanical integrity of the oxide scale, and facilitated the crack formation and propagation of the already existing

  4. THE APPLICATION OF REMOTE SENSING AND AERO-GEOPHYSICS DATA FUSION ON METALLOGENIC PROGNOSIS IN QIMANTAGE OF EAST KUNLUN MONTAIN AREA

    OpenAIRE

    Jia, W.; Zhang, H.; Lin, J.; Zhao, H.

    2013-01-01

    Based on west of Qimantage of East Kunlun mountain area, takes advantage of ASTER data, according to the altered mineral spectral characteristics, remote sensing alteration information is extracted. Incorporation the anomaly extraction results with high-precision aero geophysical data processing results, a multiple resource information fusion model is proposed. The fusion model of two totally different type of data which is a special attention in geospatial academia now, which can im...

  5. Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd{sub 50}S{sub 50−x}Se{sub x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hassanien, A.S., E-mail: a.s.hassanien@gmail.com [Engineering Mathematics and Physics Dept., Faculty of Engineering (Shoubra), Benha University (Egypt); Physics Department, Faculty of Science and Humanities in Ad-Dawadmi, Shaqra University, 11911 (Saudi Arabia); Akl, Alaa A. [Physics Department, Faculty of Science and Humanities in Ad-Dawadmi, Shaqra University, 11911 (Saudi Arabia)

    2015-11-05

    Non-crystalline thin films of chalcogenide Cd{sub 50}S{sub 50−x}Se{sub x} system (30 ≤ x ≤ 50) were obtained by thermal evaporation technique onto a pre-cleaned glass substrate at a vacuum of 8.2 × 10{sup −4} Pa. The deposition rate and film thickness were kept constant at about 8 nm/s and 200 nm, respectively. Amorphous/crystalline nature and chemical composition of films have been checked using X-ray diffraction and energy dispersive X-ray spectroscopy (EDX). Optical properties of thin films were investigated and studied using the corrected transmittance, T(λ) and corrected reflectance, R(λ) measurements. Obtained data reveal that, the indirect optical energy gap (E{sub g}) was decreased from 2.21 to 1.57 eV. On the contrary, Urbach energy (band tail width), E{sub U} was found to be increased from 0.29 to 0.45 eV. This behavior is believed to be associated with the increase of Se-content instead of S-content in the thin films of Cd{sub 50}S{sub 50−x}Se{sub x} system. Chemical bond approach model, CBA was used to analyze the obtained values of E{sub g} and E{sub U}. Optical density, skin depth, extinction coefficient, refractive index and optical conductivity of chalcogenide CdSSe thin films were discussed as functions of Se-content. Using Wemple-DiDomenico single oscillator model, the refractive index dispersion and energy parameters and their dependence on Se content were studied. - Highlights: • Amorphous thin films of thickness 200 nm of Cd{sub 50}S{sub 50−x}Se{sub x} (30 ≤ x ≤ 50) have prepared. • Optical properties, indirect optical energy gap and band tail width were studied. • Chemical bond approach, CBA was used to analyze the obtained values of E{sub g} and E{sub U}. • New data of dispersion refractive index parameters were investigated and discussed.

  6. An integrated algorithm for hypersonic fluid-thermal-structural numerical simulation

    Science.gov (United States)

    Li, Jia-Wei; Wang, Jiang-Feng

    2018-05-01

    In this paper, a fluid-structural-thermal integrated method is presented based on finite volume method. A unified integral equations system is developed as the control equations for physical process of aero-heating and structural heat transfer. The whole physical field is discretized by using an up-wind finite volume method. To demonstrate its capability, the numerical simulation of Mach 6.47 flow over stainless steel cylinder shows a good agreement with measured values, and this method dynamically simulates the objective physical processes. Thus, the integrated algorithm proves to be efficient and reliable.

  7. Sprayable Phase Change Coating Thermal Protection Material

    Science.gov (United States)

    Richardson, Rod W.; Hayes, Paul W.; Kaul, Raj

    2005-01-01

    NASA has expressed a need for reusable, environmentally friendly, phase change coating that is capable of withstanding the heat loads that have historically required an ablative thermal insulation. The Space Shuttle Program currently relies on ablative materials for thermal protection. The problem with an ablative insulation is that, by design, the material ablates away, in fulfilling its function of cooling the underlying substrate, thus preventing the insulation from being reused from flight to flight. The present generation of environmentally friendly, sprayable, ablative thermal insulation (MCC-l); currently use on the Space Shuttle SRBs, is very close to being a reusable insulation system. In actual flight conditions, as confirmed by the post-flight inspections of the SRBs, very little of the material ablates. Multi-flight thermal insulation use has not been qualified for the Space Shuttle. The gap that would have to be overcome in order to implement a reusable Phase Change Coating (PCC) is not unmanageable. PCC could be applied robotically with a spray process utilizing phase change material as filler to yield material of even higher strength and reliability as compared to MCC-1. The PCC filled coatings have also demonstrated potential as cryogenic thermal coatings. In experimental thermal tests, a thin application of PCC has provided the same thermal protection as a much thicker and heavier application of a traditional ablative thermal insulation. In addition, tests have shown that the structural integrity of the coating has been maintained and phase change performance after several aero-thermal cycles was not affected. Experimental tests have also shown that, unlike traditional ablative thermal insulations, PCC would not require an environmental seal coat, which has historically been required to prevent moisture absorption by the thermal insulation, prevent environmental degradation, and to improve the optical and aerodynamic properties. In order to reduce

  8. Inventory parameters

    CERN Document Server

    Sharma, Sanjay

    2017-01-01

    This book provides a detailed overview of various parameters/factors involved in inventory analysis. It especially focuses on the assessment and modeling of basic inventory parameters, namely demand, procurement cost, cycle time, ordering cost, inventory carrying cost, inventory stock, stock out level, and stock out cost. In the context of economic lot size, it provides equations related to the optimum values. It also discusses why the optimum lot size and optimum total relevant cost are considered to be key decision variables, and uses numerous examples to explain each of these inventory parameters separately. Lastly, it provides detailed information on parameter estimation for different sectors/products. Written in a simple and lucid style, it offers a valuable resource for a broad readership, especially Master of Business Administration (MBA) students.

  9. Aerosol Vacuum-Assisted Plasma Ionization (Aero-VaPI) Coupled to Ion Mobility-Mass Spectrometry

    Science.gov (United States)

    Blair, Sandra L.; Ng, Nga L.; Zambrzycki, Stephen C.; Li, Anyin; Fernández, Facundo M.

    2018-02-01

    In this communication, we report on the real-time analysis of organic aerosol particles by Vacuum-assisted Plasma Ionization-Mass Spectrometry (Aero-VaPI-MS) using a home-built VaPI ion source coupled to a Synapt G2-S HDMS ion mobility-mass spectrometry (IM-MS) system. Standards of organic molecules of interest in prebiotic chemistry were used to generate aerosols. Monocaprin and decanoic acid aerosol particles were successfully detected in both the positive and negative ion modes, respectively. A complex aerosol mixture of different sizes of polymers of L-malic acid was also examined through ion mobility (IM) separations, resulting in the detection of polymers of up to eight monomeric units. This noncommercial plasma ion source is proposed as a low cost alternative to other plasma ionization platforms used for aerosol analysis, and a higher-performance alternative to more traditional aerosol mass spectrometers. VaPI provides robust online ionization of organics in aerosols without extensive ion activation, with the coupling to IM-MS providing higher peak capacity and excellent mass accuracy. [Figure not available: see fulltext.

  10. A Mission Concept: Re-Entry Hopper-Aero-Space-Craft System on-Mars (REARM-Mars)

    Science.gov (United States)

    Davoodi, Faranak

    2013-01-01

    Future missions to Mars that would need a sophisticated lander, hopper, or rover could benefit from the REARM Architecture. The mission concept REARM Architecture is designed to provide unprecedented capabilities for future Mars exploration missions, including human exploration and possible sample-return missions, as a reusable lander, ascend/descend vehicle, refuelable hopper, multiple-location sample-return collector, laboratory, and a cargo system for assets and humans. These could all be possible by adding just a single customized Re-Entry-Hopper-Aero-Space-Craft System, called REARM-spacecraft, and a docking station at the Martian orbit, called REARM-dock. REARM could dramatically decrease the time and the expense required to launch new exploratory missions on Mars by making them less dependent on Earth and by reusing the assets already designed, built, and sent to Mars. REARM would introduce a new class of Mars exploration missions, which could explore much larger expanses of Mars in a much faster fashion and with much more sophisticated lab instruments. The proposed REARM architecture consists of the following subsystems: REARM-dock, REARM-spacecraft, sky-crane, secure-attached-compartment, sample-return container, agile rover, scalable orbital lab, and on-the-road robotic handymen.

  11. Aero-Thermo-Structural Analysis of Inlet for Rocket Based Combined Cycle Engines

    Science.gov (United States)

    Shivakumar, K. N.; Challa, Preeti; Sree, Dave; Reddy, Dhanireddy R. (Technical Monitor)

    2000-01-01

    NASA has been developing advanced space transportation concepts and technologies to make access to space less costly. One such concept is the reusable vehicles with short turn-around times. The NASA Glenn Research Center's concept vehicle is the Trailblazer powered by a rocket-based combined cycle (RBCC) engine. Inlet is one of the most important components of the RBCC engine. This paper presents fluid flow, thermal, and structural analysis of the inlet for Mach 6 free stream velocity for fully supersonic and supercritical with backpressure conditions. The results concluded that the fully supersonic condition was the most severe case and the largest stresses occur in the ceramic matrix composite layer of the inlet cowl. The maximum tensile and the compressive stresses were at least 3.8 and 3.4, respectively, times less than the associated material strength.

  12. Integrated Aero-Servo-Thermo-Propulso-Elasticity (ASTPE) for Hypersonic Scramjet Vehicle Design/Analysis

    Science.gov (United States)

    2009-12-04

    flattening parameter of 0.0033528. In UPTOP, the vehicle’s geocentric latitude, geodetic latitude and longitude (both over an inertial and rotating planet...5sin2 A) (l-5sin2^) 3-3 where J2 = 1.08263x10°, re is the equatorial radius of the Earth, and X is the geocentric latitude. UPTOP incorporates two...computational cost associated with this effectiveness. 3.3.2 Objective Function Calculation Objective and constraint function calculations depend on

  13. Outdoor thermal comfort.

    Science.gov (United States)

    Nikolopoulou, Marialena

    2011-06-01

    A review of the various approaches in understanding outdoor thermal comfort is presented. The emphasis on field surveys from around the world, particularly across Europe, enables us to understand thermal perception and evaluate outdoor thermal comfort conditions. The consistent low correlations between objective microclimatic variables, subjective thermal sensation and comfort outdoors, internationally, suggest that thermophysiology alone does not adequate describe these relationships. Focusing on the concept of adaptation, it tries to explain how this influences outdoor comfort, enabling us to inhabit and get satisfaction from outdoor spaces throughout the year. Beyond acclimatization and behavioral adaptation, through adjustments in clothing and changes to the metabolic heat, psychological adaptation plays a critical role to ensure thermal comfort and satisfaction with the outdoor environment. Such parameters include recent experiences and expectations; personal choice and perceived control, more important than whether that control is actually exercised; and the need for positive environmental stimulation suggesting that thermal neutrality is not a pre-requisite for thermal comfort. Ultimately, enhancing environmental diversity can influence thermal perception and experience of open spaces.

  14. Novel thermally stable poly(vinyl chloride) composites for sulfate removal

    Energy Technology Data Exchange (ETDEWEB)

    Nadagouda, Mallikarjuna N., E-mail: Nadagouda.mallikarjuna@epa.gov [Water Supply and Water Resources Division, National Risk Management Research Laboratory U.S. Environmental Protection Agency, 26 W. Martin Luther King Drive Cincinnati, Ohio 45268 (United States); Pressman, Jonathan; White, Colin; Speth, Thomas F.; McCurry, Daniel L. [Water Supply and Water Resources Division, National Risk Management Research Laboratory U.S. Environmental Protection Agency, 26 W. Martin Luther King Drive Cincinnati, Ohio 45268 (United States)

    2011-04-15

    Graphical abstract: Barium carbonate and/or barium carbonate-loaded silica aero-gels dispersed polyvinyl chloride (PVC) composites were prepared by dissolving PVC in tetrahydrofuran (THF), dispersing BaCO{sub 3} and/or BaCO{sub 3}-loaded silica aero-gels, re-precipitating the PVC with water at room temperature. The PVC composites were then characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray mapping, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and inductively coupled plasma mass spectrometry (ICP-MS) analysis. The obtained composites had better thermal properties than the control PVC. The composites were tested for sulfate removal and found to significantly reduce sulfate when compared with control PVC. - Abstract: BaCO{sub 3} dispersed PVC composites were prepared through a polymer re-precipitation method. The composites were tested for sulfate removal using rapid small scale column test (RSSCT) and found to significantly reduce sulfate concentration. The method was extended to synthesize barium carbonate-loaded silica aero-gels-polyvinyl chloride (PVC) polymer composites. The PVC composites were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray mapping, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and inductively coupled plasma mass spectrometry (ICP-MS) analysis. The method has advantages over conventional sulfate precipitation (sulfate removal process) using BaCO{sub 3} wherein clogging of the filter can be avoided. The method is environmentally friendly and does not interfere with natural organic matter as the conventional resin does. Some of the composites were thermally more stable as compared with the pure PVC discussed in the literature.

  15. Novel thermally stable poly(vinyl chloride) composites for sulfate removal

    International Nuclear Information System (INIS)

    Nadagouda, Mallikarjuna N.; Pressman, Jonathan; White, Colin; Speth, Thomas F.; McCurry, Daniel L.

    2011-01-01

    Graphical abstract: Barium carbonate and/or barium carbonate-loaded silica aero-gels dispersed polyvinyl chloride (PVC) composites were prepared by dissolving PVC in tetrahydrofuran (THF), dispersing BaCO 3 and/or BaCO 3 -loaded silica aero-gels, re-precipitating the PVC with water at room temperature. The PVC composites were then characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray mapping, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and inductively coupled plasma mass spectrometry (ICP-MS) analysis. The obtained composites had better thermal properties than the control PVC. The composites were tested for sulfate removal and found to significantly reduce sulfate when compared with control PVC. - Abstract: BaCO 3 dispersed PVC composites were prepared through a polymer re-precipitation method. The composites were tested for sulfate removal using rapid small scale column test (RSSCT) and found to significantly reduce sulfate concentration. The method was extended to synthesize barium carbonate-loaded silica aero-gels-polyvinyl chloride (PVC) polymer composites. The PVC composites were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray mapping, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and inductively coupled plasma mass spectrometry (ICP-MS) analysis. The method has advantages over conventional sulfate precipitation (sulfate removal process) using BaCO 3 wherein clogging of the filter can be avoided. The method is environmentally friendly and does not interfere with natural organic matter as the conventional resin does. Some of the composites were thermally more stable as compared with the pure PVC discussed in the literature.

  16. Methodology used for the determination of physical and mechanical properties of crushed coal and new criteria for the selection of calculating parameters according to which coal bins in thermal power plants are dimensioned

    Energy Technology Data Exchange (ETDEWEB)

    Obradovic, R. [Mining Institute Belgrade, Belgrade (Yugoslavia)

    1997-07-01

    In order to acquire the data necessary for design engineering of coal bins in thermal power plants (TPP), an enhanced research method has been adopted, along with new criteria for the interpretation of the results obtained in the course of crushed coal testing, considering the shearing strength values and the expected elastic deformations of bin walls. The investigations presented in this paper have been carried out in the Thermal Power Plant - Nikola Tesla-B, (TPPNT) in Obrenovac, Yugoslavia. 6 refs., 1 tab.

  17. A chromia forming thermal barrier coating system

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, M.P.; Evans, H.E. [Metallurgy and Materials, The University of Birmingham, Birmingham, B15 2TT (United Kingdom); Gray, S.; Nicholls, J.R. [Surface Science and Engineering Centre, Cranfield University, Cranfield, MK43 0AL (United Kingdom)

    2011-07-15

    Conventional thermal barrier coating (TBC) systems consist of an insulating ceramic topcoat, a bond coat for oxidation protection and the underlying superalloy designed to combat the oxidising conditions in aero- and land-based gas turbines. Under high-temperature oxidation, the use of an alumina forming bond coat is warranted, thus all current TBC systems are optimised for the early formation of a dense, protective thermally grown oxide (TGO) of alumina. This also offers protection against Type I hot corrosion but a chromia layer gives better protection against Type II corrosion and intermediate temperatures, the conditions found in land-based gas turbines. In this paper the authors present the first known results for a chromia forming TBC system. Tests have been performed under oxidising conditions, up to 1000 h, at temperatures between 750 C and 900 C, and under Type I (900 C) and Type II (700 C) hot corrosion conditions up to 500 h. Under all these conditions no cracking, spallation or degradation was observed. Examination showed the formation of an adherent, dense chromia TGO at the bond coat / topcoat interface. These initial results are very encouraging and the TGO thicknesses agree well with comparable results reported in the literature. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Micro channels in macro thermal management solutions

    Directory of Open Access Journals (Sweden)

    Kosoy Boris V.

    2006-01-01

    Full Text Available Modern progress in electronics is associated with increase in computing ability and processing speed, as well as decrease in size. Future applications of electronic devices in aviation, aero space and high performance consumer products’ industry demand on very stringent specifications concerning miniaturization, component density, power density and reliability. Excess heat produces stresses on internal components inside the electronic device, thus creating reliability problems. Thus, a problem of heat generation and its efficient removal arises and it has led to the development of advanced thermal control systems. Present research analyses a thermodynamic feasibility of micro capillary heat pumped net works in thermal management of electronic systems, considers basic technological constrains and de sign availability, and identifies perspective directions for the further studies. Computer Fluid Dynamics studies have been per formed on the laminar convective heat transfer and pressure drop of working fluid in silicon micro channels. Surface roughness is simulated via regular constructal, and stochastic models. Three-dimensional numerical solution shows significant effects of surface roughness in terms of the rough element geometry such as height, size, spacing and the channel height on the velocity and pressure fields.

  19. Adjustable thermal resistor by reversibly folding a graphene sheet.

    Science.gov (United States)

    Song, Qichen; An, Meng; Chen, Xiandong; Peng, Zhan; Zang, Jianfeng; Yang, Nuo

    2016-08-11

    Phononic (thermal) devices such as thermal diodes, thermal transistors, thermal logic gates, and thermal memories have been studied intensively. However, tunable thermal resistors have not been demonstrated yet. Here, we propose an instantaneously adjustable thermal resistor based on folded graphene. Through theoretical analysis and molecular dynamics simulations, we study the phonon-folding scattering effect and the dependence of thermal resistivity on the length between two folds and the overall length. Furthermore, we discuss the possibility of realizing instantaneously adjustable thermal resistors in experiment. Our studies bring new insights into designing thermal resistors and understanding the thermal modulation of 2D materials by adjusting basic structure parameters.

  20. Bomb parameters

    International Nuclear Information System (INIS)

    Kerr, George D.; Young, Rebert W.; Cullings, Harry M.; Christry, Robert F.

    2005-01-01

    The reconstruction of neutron and gamma-ray doses at Hiroshima and Nagasaki begins with a determination of the parameters describing the explosion. The calculations of the air transported radiation fields and survivor doses from the Hiroshima and Nagasaki bombs require knowledge of a variety of parameters related to the explosions. These various parameters include the heading of the bomber when the bomb was released, the epicenters of the explosions, the bomb yields, and the tilt of the bombs at time of explosion. The epicenter of a bomb is the explosion point in air that is specified in terms of a burst height and a hypocenter (or the point on the ground directly below the epicenter of the explosion). The current reassessment refines the energy yield and burst height for the Hiroshima bomb, as well as the locations of the Hiroshima and Nagasaki hypocenters on the modern city maps used in the analysis of the activation data for neutrons and TLD data for gamma rays. (J.P.N.)