WorldWideScience

Sample records for aerial monitoring

  1. Precision wildlife monitoring using unmanned aerial vehicles

    OpenAIRE

    Jarrod C. Hodgson; Shane M. Baylis; Rowan Mott; Ashley Herrod; Rohan H Clarke

    2016-01-01

    Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count pre...

  2. Mask degradation monitoring with aerial mask inspector

    Science.gov (United States)

    Tseng, Wen-Jui; Fu, Yung-Ying; Lu, Shih-Ping; Jiang, Ming-Sian; Lin, Jeffrey; Wu, Clare; Lifschitz, Sivan; Tam, Aviram

    2013-06-01

    As design rule continues to shrink, microlithography is becoming more challenging and the photomasks need to comply with high scanner laser energy, low CDU, and ever more aggressive RETs. This give rise to numerous challenges in the semiconductor wafer fabrication plants. Some of these challenges being contamination (mainly haze and particles), mask pattern degradation (MoSi oxidation, chrome migration, etc.) and pellicle degradation. Fabs are constantly working to establish an efficient methodology to manage these challenges mainly using mask inspection, wafer inspection, SEM review and CD SEMs. Aerial technology offers a unique opportunity to address the above mask related challenges using one tool. The Applied Materials Aera3TM system has the inherent ability to inspect for defects (haze, particles, etc.), and track mask degradation (e.g. CDU). This paper focuses on haze monitoring, which is still a significant challenge in semiconductor manufacturing, and mask degradation effects that are starting to emerge as the next challenge for high volume semiconductor manufacturers. The paper describes Aerial inspector (Aera3) early haze methodology and mask degradation tracking related to high volume manufacturing. These will be demonstrated on memory products. At the end of the paper we take a brief look on subsequent work currently conducted on the more general issue of photo mask degradation monitoring by means of an Aerial inspector.

  3. Precision wildlife monitoring using unmanned aerial vehicles.

    Science.gov (United States)

    Hodgson, Jarrod C; Baylis, Shane M; Mott, Rowan; Herrod, Ashley; Clarke, Rohan H

    2016-03-17

    Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility.

  4. Surfzone monitoring using rotary wing unmanned aerial vehicles

    NARCIS (Netherlands)

    Brouwer, R.L.; De Schipper, M.A.; Rynne, P.F.; Graham, F.J.; Reniers, A.J.H.M.; Macmahan, J.H.

    2015-01-01

    This study investigates the potential of rotary wing unmanned aerial vehicles (UAVs) to monitor the surfzone. This paper shows that these UAVs are extremely flexible surveying platforms that can gather nearcontinuous moderate spatial resolution and high temporal resolution imagery from a fixed posit

  5. Aerial monitoring in active mud volcano by UAV technique

    Science.gov (United States)

    Pisciotta, Antonino; Capasso, Giorgio; Madonia, Paolo

    2016-04-01

    UAV photogrammetry opens various new applications in the close range domain, combining aerial and terrestrial photogrammetry, but also introduces low-cost alternatives to the classical manned aerial photogrammetry. Between 2014 and 2015 tree aerial surveys have been carried out. Using a quadrotor drone, equipped with a compact camera, it was possible to generate high resolution elevation models and orthoimages of The "Salinelle", an active mud volcanoes area, located in territory of Paternò (South Italy). The main risks are related to the damages produced by paroxysmal events. Mud volcanoes show different cyclic phases of activity, including catastrophic events and periods of relative quiescence characterized by moderate activity. Ejected materials often are a mud slurry of fine solids suspended in liquids which may include water and hydrocarbon fluids, the bulk of released gases are carbon dioxide, with some methane and nitrogen, usually pond-shaped of variable dimension (from centimeters to meters in diameter). The scope of the presented work is the performance evaluation of a UAV system that was built to rapidly and autonomously acquire mobile three-dimensional (3D) mapping data in a volcanic monitoring scenario.

  6. Aerial monitoring and environmental protection: aerial photography as an instrument for checking landscape damage

    Science.gov (United States)

    Tartara, Patrizia

    2009-09-01

    C.N.R. and University of Salento have realized a Geographical Information System for heritage management of the national territory (landscape) and historical urban settlements. Informations come from bibliography, archives, direct and systematic field survey, different kind of aerial photographs analysis, with the primary aim of knowledge for the establishment of an in existence Cultural Heritage Cadastre, focused to legal protection and exploitation of the sites, not last the correct territory planning.

  7. Aerial photography interpreted for contingency planning, spill prevention, compliance monitoring and spill surveillance

    International Nuclear Information System (INIS)

    The EPA's Environmental Monitoring and Support Laboratory in Las Vegas is producing photo interpretation keys which are aerial photographic examples of hazardous substance spills and potential spill conditions within typical chemical processing and storage facilities. Color aerial photography, acquired over a variety of chemical processing facilities along the Lower Delaware River estuary and the Baltimore Harbor area, provides the primary source of data for the keys

  8. Beach monitoring using Unmanned Aerial Vehicles: results of a multi-temporal study

    Science.gov (United States)

    Casella, Elisa; Rovere, Alessio; Casella, Marco; Pedroncini, Andrea; Ferrari, Marco; Vacchi, Matteo; Firpo, Marco

    2015-04-01

    The application of Unmanned Aerial Vehicles and photogrammetry techniques in earth sciences is flourishing. In this study, we show how we applied small Unmanned Aerial Vehicles to the study of topographic changes of a beach in Italy, NW Mediterranean Sea. We surveyed the same stretch of coastline three times in 5 months, obtaining ortophotos and digital elevation models of the beach using a structure from motion approach. We then calculated the difference in beach topography between each time step, and we related topography changes to both human and natural modifications of the beach morphology that can be inferred from aerial photos or wave data. We conclude that small drones have the potential to open new possibilities for beach monitoring studies, and can be successfully employed for multi-temporal monitoring studies at relatively low cost.

  9. Crop Status Monitoring using Multispectral and Thermal Imaging systems for Accessible Aerial Platforms

    Science.gov (United States)

    Agricultural aircraft and unmanned aerial systems (UAS) are easily scheduled and accessible remote sensing platforms. Canopy temperature data were taken with an Electrophysics PV-320T thermal imaging camera mounted in agricultural aircraft. Weather data and soil water potential were monitored and th...

  10. Acquisition, orthorectification, and object-based classification of unmanned aerial vehicle (UAV) imagery for rangeland monitoring

    Science.gov (United States)

    In this paper, we examine the potential of using a small unmanned aerial vehicle (UAV) for rangeland inventory, assessment and monitoring. Imagery with 8-cm resolution was acquired over 290 ha in southwestern Idaho. We developed a semi-automated orthorectification procedure suitable for handling lar...

  11. Monitoring Seabirds and Marine Mammals by Georeferenced Aerial Photography

    Science.gov (United States)

    Kemper, G.; Weidauer, A.; Coppack, T.

    2016-06-01

    The assessment of anthropogenic impacts on the marine environment is challenged by the accessibility, accuracy and validity of biogeographical information. Offshore wind farm projects require large-scale ecological surveys before, during and after construction, in order to assess potential effects on the distribution and abundance of protected species. The robustness of site-specific population estimates depends largely on the extent and design of spatial coverage and the accuracy of the applied census technique. Standard environmental assessment studies in Germany have so far included aerial visual surveys to evaluate potential impacts of offshore wind farms on seabirds and marine mammals. However, low flight altitudes, necessary for the visual classification of species, disturb sensitive bird species and also hold significant safety risks for the observers. Thus, aerial surveys based on high-resolution digital imagery, which can be carried out at higher (safer) flight altitudes (beyond the rotor-swept zone of the wind turbines) have become a mandatory requirement, technically solving the problem of distant-related observation bias. A purpose-assembled imagery system including medium-format cameras in conjunction with a dedicated geo-positioning platform delivers series of orthogonal digital images that meet the current technical requirements of authorities for surveying marine wildlife at a comparatively low cost. At a flight altitude of 425 m, a focal length of 110 mm, implemented forward motion compensation (FMC) and exposure times ranging between 1/1600 and 1/1000 s, the twin-camera system generates high quality 16 bit RGB images with a ground sampling distance (GSD) of 2 cm and an image footprint of 155 x 410 m. The image files are readily transferrable to a GIS environment for further editing, taking overlapping image areas and areas affected by glare into account. The imagery can be routinely screened by the human eye guided by purpose-programmed software

  12. Spatially explicit rangeland erosion monitoring using high-resolution digital aerial imagery

    Science.gov (United States)

    Gillan, Jeffrey K.; Karl, Jason W.; Barger, Nichole N.; Elaksher, Ahmed; Duniway, Michael C.

    2016-01-01

    Nearly all of the ecosystem services supported by rangelands, including production of livestock forage, carbon sequestration, and provisioning of clean water, are negatively impacted by soil erosion. Accordingly, monitoring the severity, spatial extent, and rate of soil erosion is essential for long-term sustainable management. Traditional field-based methods of monitoring erosion (sediment traps, erosion pins, and bridges) can be labor intensive and therefore are generally limited in spatial intensity and/or extent. There is a growing effort to monitor natural resources at broad scales, which is driving the need for new soil erosion monitoring tools. One remote-sensing technique that can be used to monitor soil movement is a time series of digital elevation models (DEMs) created using aerial photogrammetry methods. By geographically coregistering the DEMs and subtracting one surface from the other, an estimate of soil elevation change can be created. Such analysis enables spatially explicit quantification and visualization of net soil movement including erosion, deposition, and redistribution. We constructed DEMs (12-cm ground sampling distance) on the basis of aerial photography immediately before and 1 year after a vegetation removal treatment on a 31-ha Piñon-Juniper woodland in southeastern Utah to evaluate the use of aerial photography in detecting soil surface change. On average, we were able to detect surface elevation change of ± 8−9cm and greater, which was sufficient for the large amount of soil movement exhibited on the study area. Detecting more subtle soil erosion could be achieved using the same technique with higher-resolution imagery from lower-flying aircraft such as unmanned aerial vehicles. DEM differencing and process-focused field methods provided complementary information and a more complete assessment of soil loss and movement than any single technique alone. Photogrammetric DEM differencing could be used as a technique to

  13. Unmanned Aerial Vehicles for Alien Plant Species Detection and Monitoring

    Science.gov (United States)

    Dvořák, P.; Müllerová, J.; Bartaloš, T.; Brůna, J.

    2015-08-01

    Invasive species spread rapidly and their eradication is difficult. New methods enabling fast and efficient monitoring are urgently needed for their successful control. Remote sensing can improve early detection of invading plants and make their management more efficient and less expensive. In an ongoing project in the Czech Republic, we aim at developing innovative methods of mapping invasive plant species (semi-automatic detection algorithms) by using purposely designed unmanned aircraft (UAV). We examine possibilities for detection of two tree and two herb invasive species. Our aim is to establish fast, repeatable and efficient computer-assisted method of timely monitoring, reducing the costs of extensive field campaigns. For finding the best detection algorithm we test various classification approaches (object-, pixel-based and hybrid). Thanks to its flexibility and low cost, UAV enables assessing the effect of phenological stage and spatial resolution, and is most suitable for monitoring the efficiency of eradication efforts. However, several challenges exist in UAV application, such as geometrical and radiometric distortions, high amount of data to be processed and legal constrains for the UAV flight missions over urban areas (often highly invaded). The newly proposed UAV approach shall serve invasive species researchers, management practitioners and policy makers.

  14. UNMANNED AERIAL VEHICLES FOR ALIEN PLANT SPECIES DETECTION AND MONITORING

    Directory of Open Access Journals (Sweden)

    P. Dvořák

    2015-08-01

    Full Text Available Invasive species spread rapidly and their eradication is difficult. New methods enabling fast and efficient monitoring are urgently needed for their successful control. Remote sensing can improve early detection of invading plants and make their management more efficient and less expensive. In an ongoing project in the Czech Republic, we aim at developing innovative methods of mapping invasive plant species (semi-automatic detection algorithms by using purposely designed unmanned aircraft (UAV. We examine possibilities for detection of two tree and two herb invasive species. Our aim is to establish fast, repeatable and efficient computer-assisted method of timely monitoring, reducing the costs of extensive field campaigns. For finding the best detection algorithm we test various classification approaches (object-, pixel-based and hybrid. Thanks to its flexibility and low cost, UAV enables assessing the effect of phenological stage and spatial resolution, and is most suitable for monitoring the efficiency of eradication efforts. However, several challenges exist in UAV application, such as geometrical and radiometric distortions, high amount of data to be processed and legal constrains for the UAV flight missions over urban areas (often highly invaded. The newly proposed UAV approach shall serve invasive species researchers, management practitioners and policy makers.

  15. Monitoring Active Volcanos Using Aerial Images and the Orthoview Tool

    Directory of Open Access Journals (Sweden)

    Maria Marsella

    2014-12-01

    Full Text Available In volcanic areas, where it can be difficult to perform direct surveys, digital photogrammetry techniques are rarely adopted for routine volcano monitoring. Nevertheless, they have remarkable potentialities for observing active volcanic features (e.g., fissures, lava flows and the connected deformation processes. The ability to obtain accurate quantitative data of definite accuracy in short time spans makes digital photogrammetry a suitable method for controlling the evolution of rapidly changing large-area volcanic phenomena. The systematic acquisition of airborne photogrammetric datasets can be adopted for implementing a more effective procedure aimed at long-term volcano monitoring and hazard assessment. In addition, during the volcanic crisis, the frequent acquisition of oblique digital images from helicopter allows for quasi-real-time monitoring to support mitigation actions by civil protection. These images are commonly used to update existing maps through a photo-interpretation approach that provide data of unknown accuracy. This work presents a scientific tool (Orthoview that implements a straightforward photogrammetric approach to generate digital orthophotos from single-view oblique images provided that at least four Ground Control Points (GCP and current Digital Elevation Models (DEM are available. The influence of the view geometry, of sparse and not-signalized GCP and DEM inaccuracies is analyzed for evaluating the performance of the developed tool in comparison with other remote sensing techniques. Results obtained with datasets from Etna and Stromboli volcanoes demonstrate that 2D features measured on the produced orthophotos can reach sub-meter-level accuracy.

  16. Scientific and Cost Effective Monitoring: The Case of an Aerial Insectivore, the Chimney Swift

    Directory of Open Access Journals (Sweden)

    Sébastien Rioux

    2010-12-01

    Full Text Available The increased pace of species listing worldwide, coupled with the scarcity of conservation funding, promote the use of targeted monitoring. We applied the recommendations of Nichols and Williams (Trends in Ecology and Evolution 2006 24:668-673 to optimize the Québec Chimney Swift Monitoring Program, an ongoing volunteer-based monitoring initiative launched in 1998. Past objectives of the program were to fill knowledge gaps about occupancy patterns at roosts sites, determine spatial and temporal distribution of Chimney Swifts (Chaetura pelagica across the province, locate active nest sites, and monitor temporal fluctuations of the population. By applying an adaptive management framework, we modified the current monitoring scheme into a more focused initiative testing newly developed hypotheses about the state of the system. This new approach yielded significant scientific gains as well as annual savings of 19.6%. It may prove pertinent to current and future swift monitoring initiatives and to other aerial insectivore species.

  17. High-resolution EUV imaging tools for resist exposure and aerial image monitoring

    Science.gov (United States)

    Booth, M.; Brisco, O.; Brunton, A.; Cashmore, J.; Elbourn, P.; Elliner, G.; Gower, M.; Greuters, J.; Grunewald, P.; Gutierrez, R.; Hill, T.; Hirsch, J.; Kling, L.; McEntee, N.; Mundair, S.; Richards, P.; Truffert, V.; Wallhead, I.; Whitfield, M.; Hudyma, R.

    2005-05-01

    Key features are presented of two high-resolution EUV imaging tools: the MS-13 Microstepper wafer exposure and the RIM-13 reticle imaging microscope. The MS-13 has been developed for EUV resist testing and technology evaluation at the 32nm node and beyond, while the RIM-13 is designed for actinic aerial image monitoring of blank and patterned EUV reticles. Details of the design architecture, module layout, major subsystems and performance are presented for both tools.

  18. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligence Revolutionizing Wildlife Monitoring and Conservation

    OpenAIRE

    Gonzalez, Luis F.; Montes, Glen A.; Eduard Puig; Sandra Johnson; Kerrie Mengersen; Gaston, Kevin J

    2016-01-01

    Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV), artificial intelligence and miniaturized therm...

  19. Load tracking and structural health monitoring of unmanned aerial vehicles using optical fiber sensors

    Science.gov (United States)

    Handelman, A.; Botsev, Y.; Balter, J.; Gud's, P.; Kressel, I.; Tur, M.; Gali, S.; Pillai, A. C. R.; Hari Prasad, M.; Yadav, A. Kumar; Gupta, Nitesh; Sathya, Sakthi; Sundaram, Ramesh

    2011-08-01

    An airborne, high resolution, load tracking and structural health monitoring system for unmanned aerial vehicles is presented. The system is based on embedded optical fiber Bragg sensors interrogated in real time during flight at 2.5 kHz. By analyzing the recorded vibration signature it is now possible to identify and trace the dynamic response of an airborne structure and track its loads.

  20. Yellow River Icicle Hazard Dynamic Monitoring Using UAV Aerial Remote Sensing Technology

    International Nuclear Information System (INIS)

    Monitoring the response of Yellow River icicle hazard change requires accurate and repeatable topographic surveys. A new method based on unmanned aerial vehicle (UAV) aerial remote sensing technology is proposed for real-time data processing in Yellow River icicle hazard dynamic monitoring. The monitoring area is located in the Yellow River ice intensive care area in southern BaoTou of Inner Mongolia autonomous region. Monitoring time is from the 20th February to 30th March in 2013. Using the proposed video data processing method, automatic extraction covering area of 7.8 km2 of video key frame image 1832 frames took 34.786 seconds. The stitching and correcting time was 122.34 seconds and the accuracy was better than 0.5 m. Through the comparison of precise processing of sequence video stitching image, the method determines the change of the Yellow River ice and locates accurate positioning of ice bar, improving the traditional visual method by more than 100 times. The results provide accurate aid decision information for the Yellow River ice prevention headquarters. Finally, the effect of dam break is repeatedly monitored and ice break five meter accuracy is calculated through accurate monitoring and evaluation analysis

  1. Yellow River Icicle Hazard Dynamic Monitoring Using UAV Aerial Remote Sensing Technology

    Science.gov (United States)

    Wang, H. B.; Wang, G. H.; Tang, X. M.; Li, C. H.

    2014-02-01

    Monitoring the response of Yellow River icicle hazard change requires accurate and repeatable topographic surveys. A new method based on unmanned aerial vehicle (UAV) aerial remote sensing technology is proposed for real-time data processing in Yellow River icicle hazard dynamic monitoring. The monitoring area is located in the Yellow River ice intensive care area in southern BaoTou of Inner Mongolia autonomous region. Monitoring time is from the 20th February to 30th March in 2013. Using the proposed video data processing method, automatic extraction covering area of 7.8 km2 of video key frame image 1832 frames took 34.786 seconds. The stitching and correcting time was 122.34 seconds and the accuracy was better than 0.5 m. Through the comparison of precise processing of sequence video stitching image, the method determines the change of the Yellow River ice and locates accurate positioning of ice bar, improving the traditional visual method by more than 100 times. The results provide accurate aid decision information for the Yellow River ice prevention headquarters. Finally, the effect of dam break is repeatedly monitored and ice break five meter accuracy is calculated through accurate monitoring and evaluation analysis.

  2. Unmanned Aerial Vehicle (UAV for Monitoring Soil Erosion in Morocco

    Directory of Open Access Journals (Sweden)

    Johannes B. Ries

    2012-11-01

    Full Text Available This article presents an environmental remote sensing application using a UAV that is specifically aimed at reducing the data gap between field scale and satellite scale in soil erosion monitoring in Morocco. A fixed-wing aircraft type Sirius I (MAVinci, Germany equipped with a digital system camera (Panasonic is employed. UAV surveys are conducted over different study sites with varying extents and flying heights in order to provide both very high resolution site-specific data and lower-resolution overviews, thus fully exploiting the large potential of the chosen UAV for multi-scale mapping purposes. Depending on the scale and area coverage, two different approaches for georeferencing are used, based on high-precision GCPs or the UAV’s log file with exterior orientation values respectively. The photogrammetric image processing enables the creation of Digital Terrain Models (DTMs and ortho-image mosaics with very high resolution on a sub-decimetre level. The created data products were used for quantifying gully and badland erosion in 2D and 3D as well as for the analysis of the surrounding areas and landscape development for larger extents.

  3. Design and test of a situation-augmented display for an unmanned aerial vehicle monitoring task.

    Science.gov (United States)

    Lu, Jen-Li; Horng, Ruey-Yun; Chao, Chin-Jung

    2013-08-01

    In this study, a situation-augmented display for unmanned aerial vehicle (UAV) monitoring was designed, and its effects on operator performance and mental workload were examined. The display design was augmented with the knowledge that there is an invariant flight trajectory (formed by the relationship between altitude and velocity) for every flight, from takeoff to landing. 56 participants were randomly assigned to the situation-augmented display or a conventional display condition to work on 4 (number of abnormalities) x 2 (noise level) UAV monitoring tasks three times. Results showed that the effects of situation-augmented display on flight completion time and time to detect abnormalities were robust under various workload conditions, but error rate and perceived mental workload were unaffected by the display type. Results suggest that the UAV monitoring task is extremely difficult, and that display devices providing high-level situation-awareness may improve operator monitoring performance.

  4. R2U2: Monitoring and Diagnosis of Security Threats for Unmanned Aerial Systems

    Science.gov (United States)

    Schumann, Johann; Moosbruger, Patrick; Rozier, Kristin Y.

    2015-01-01

    We present R2U2, a novel framework for runtime monitoring of security properties and diagnosing of security threats on-board Unmanned Aerial Systems (UAS). R2U2, implemented in FPGA hardware, is a real-time, REALIZABLE, RESPONSIVE, UNOBTRUSIVE Unit for security threat detection. R2U2 is designed to continuously monitor inputs from the GPS and the ground control station, sensor readings, actuator outputs, and flight software status. By simultaneously monitoring and performing statistical reasoning, attack patterns and post-attack discrepancies in the UAS behavior can be detected. R2U2 uses runtime observer pairs for linear and metric temporal logics for property monitoring and Bayesian networks for diagnosis of security threats. We discuss the design and implementation that now enables R2U2 to handle security threats and present simulation results of several attack scenarios on the NASA DragonEye UAS.

  5. Monitoring beach evolution using low-altitude aerial photogrammetry and UAV drones

    Science.gov (United States)

    Rovere, Alessio; Casella, Elisa; Vacchi, Matteo; Mucerino, Luigi; Pedroncini, Andrea; Ferrari, Marco; Firpo, Marco

    2014-05-01

    Beach monitoring is essential in order to understand the mechanisms of evolution of soft coasts, and the rates of erosion. Traditional beach monitoring techniques involve topographic and bathymetric surveys of the beach, and/or aerial photos repeated in time and compared through geographical information systems. A major problem of this kind of approach is the high economic cost. This often leads to increase the time lag between successive monitoring campaigns to reduce survey costs, with the consequence of fragmenting the information available for coastal zone management. MIRAMar is a project funded by Regione Liguria through the PO CRO European Social Fund, and has two main objectives: i) to study and develop an innovative technique, relatively low-cost, to monitor the evolution of the shoreline using low-altitude Unmanned Aerial Vehicle (UAV) photogrammetry; ii) to study the impact of different type of storm events on a vulnerable coastal tract subject to coastal erosion using also the data collected by the UAV instrument. To achieve these aims we use a drone with its hardware and software suit, traditional survey techniques (bathymetric surveys, topographic GPS surveys and GIS techniques) and we implement a numerical modeling chain (coupling hydrodynamic, wave and sand transport modules) in order to study the impact of different type of storm events on a vulnerable coastal tract subject to coastal erosion.

  6. Analysis of Unmanned Aerial Vehicle (UAV) hyperspectral remote sensing monitoring key technology in coastal wetland

    Science.gov (United States)

    Ma, Yi; Zhang, Jie; Zhang, Jingyu

    2016-01-01

    The coastal wetland, a transitional zone between terrestrial ecosystems and marine ecosystems, is the type of great value to ecosystem services. For the recent 3 decades, area of the coastal wetland is decreasing and the ecological function is gradually degraded with the rapid development of economy, which restricts the sustainable development of economy and society in the coastal areas of China in turn. It is a major demand of the national reality to carry out the monitoring of coastal wetlands, to master the distribution and dynamic change. UAV, namely unmanned aerial vehicle, is a new platform for remote sensing. Compared with the traditional satellite and manned aerial remote sensing, it has the advantage of flexible implementation, no cloud cover, strong initiative and low cost. Image-spectrum merging is one character of high spectral remote sensing. At the same time of imaging, the spectral curve of each pixel is obtained, which is suitable for quantitative remote sensing, fine classification and target detection. Aimed at the frontier and hotspot of remote sensing monitoring technology, and faced the demand of the coastal wetland monitoring, this paper used UAV and the new remote sensor of high spectral imaging instrument to carry out the analysis of the key technologies of monitoring coastal wetlands by UAV on the basis of the current situation in overseas and domestic and the analysis of developing trend. According to the characteristic of airborne hyperspectral data on UAV, that is "three high and one many", the key technology research that should develop are promoted as follows: 1) the atmosphere correction of the UAV hyperspectral in coastal wetlands under the circumstance of complex underlying surface and variable geometry, 2) the best observation scale and scale transformation method of the UAV platform while monitoring the coastal wetland features, 3) the classification and detection method of typical features with high precision from multi scale

  7. A UAV BASED CLOSE-RANGE RAPID AERIAL MONITORING SYSTEM FOR EMERGENCY RESPONSES

    Directory of Open Access Journals (Sweden)

    K. Choi

    2012-09-01

    Full Text Available As the occurrences and scales of disasters and accidents have been increased due to the global warming, the terrorists' attacks, and many other reasons, the demand for rapid responses for the emergent situations also has been thus ever-increasing. These emergency responses are required to be customized to each individual site for more effective management of the emergent situations. These requirements can be satisfied with the decisions based on the spatial changes on the target area, which should be detected immediately or in real-time. Aerial monitoring without human operators is an appropriate means because the emergency areas are usually inaccessible. Therefore, a UAV is a strong candidate as the platform for the aerial monitoring. In addition, the sensory data from the UAV system usually have higher resolution than other system because the system can operate at a lower altitude. If the transmission and processing of the data could be performed in real-time, the spatial changes of the target area can be detected with high spatial and temporal resolution by the UAV rapid mapping systems. As a result, we aim to develop a rapid aerial mapping system based on a UAV, whose key features are the effective acquisition of the sensory data, real-time transmission and processing of the data. In this paper, we will introduce the general concept of our system, including the main features, intermediate results, and explain our real-time sensory data georeferencing algorithm which is a core for prompt generation of the spatial information from the sensory data.

  8. An autonomous unmanned aerial vehicle sensing system for structural health monitoring of bridges

    Science.gov (United States)

    Reagan, Daniel; Sabato, Alessandro; Niezrecki, Christopher; Yu, Tzuyang; Wilson, Richard

    2016-04-01

    As civil infrastructure (i.e. bridges, railways, and tunnels) continues to age; the frequency and need to perform inspection more quickly on a broader scale increases. Traditional inspection and monitoring techniques (e.g., visual inspection, mechanical sounding, rebound hammer, cover meter, electrical potential measurements, ultrasound, and ground penetrating radar) may produce inconsistent results, require lane closure, are labor intensive and time-consuming. Therefore, new structural health monitoring systems must be developed that are automated, highly accurate, minimally invasive, and cost effective. Three-dimensional (3D) digital image correlation (DIC) systems have the merits of extracting full-field strain, deformation, and geometry profiles. These profiles can then be stitched together to generate a complete integrity map of the area of interest. Concurrently, unmanned aerial vehicles (UAVs) have emerged as valuable resources for positioning sensing equipment where it is either difficult to measure or poses a risk to human safety. UAVs have the capability to expedite the optical-based measurement process, offer increased accessibility, and reduce interference with local traffic. Within this work, an autonomous unmanned aerial vehicle in conjunction with 3D DIC was developed for monitoring bridges. The capabilities of the proposed system are demonstrated in both laboratory measurements and data collected from bridges currently in service. Potential measurement influences from platform instability, rotor vibration and positioning inaccuracy are also studied in a controlled environment. The results of these experiments show that the combination of autonomous flight with 3D DIC and other non-contact measurement systems provides a valuable and effective civil inspection platform.

  9. Development of a Fixed Wing Unmanned Aerial Vehicle (UAV for Disaster Area Monitoring and Mapping

    Directory of Open Access Journals (Sweden)

    Gesang Nugroho

    2015-12-01

    Full Text Available The development of remote sensing technology offers the ability to perform real-time delivery of aerial video and images. A precise disaster map allows a disaster management to be done quickly and accurately. This paper discusses how a fixed wing UAV can perform aerial monitoring and mapping of disaster area to produce a disaster map. This research was conducted using a flying wing, autopilot, digital camera, and data processing software. The research starts with determining the airframe and the avionic system then determine waypoints. The UAV flies according to the given waypoints while taking video and photo. The video is transmitted to the Ground Control Station (GCS so that an operator in the ground can monitor the area condition in real time. After obtaining data, then it is processed to obtain a disaster map. The results of this research are: a fixed wing UAV that can monitor disaster area and send real-time video and photos, a GCS equipped with image processing software, and a mosaic map. This UAV used a flying wing that has 3 kg empty weight, 2.2 m wingspan, and can fly for 12-15 minutes. This UAV was also used for a mission at Parangtritis coast in the southern part of Yogyakarta with flight altitude of 150 m, average speed of 15 m/s, and length of way point of around 5 km in around 6 minutes. A mosaic map with area of around 300 m x 1500 m was also obtained. Interpretation of the mosaic led to some conclusions including: lack of evacuation routes, residential area which faces high risk of tsunami, and lack of green zone around the shore line.

  10. Mathematical model of unmanned aerial vehicle used for endurance autonomous monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Chelaru, Teodor-Viorel, E-mail: teodor.chelaru@upb.ro [University POLITEHNICA of Bucharest - Research Center for Aeronautics and Space, Str. Gheorghe Polizu, no. 1, PC 011061, Sector 1, Bucharest (Romania); Chelaru, Adrian, E-mail: achelaru@incas.ro [INCAS -National Institute for Aerospace Research Elie Carafoli, B-dul Iuliu Maniu 220, 061126, Sector 6, Bucharest (Romania)

    2014-12-10

    The paper purpose is to present some aspects regarding the control system of unmanned aerial vehicle - UAV, used to local observations, surveillance and monitoring interest area. The calculus methodology allows a numerical simulation of UAV evolution in bad atmospheric conditions by using nonlinear model, as well as a linear one for obtaining guidance command. The UAV model which will be presented has six DOF (degrees of freedom), and autonomous control system. This theoretical development allows us to build stability matrix, command matrix and control matrix and finally to analyse the stability of autonomous UAV flight. A robust guidance system, based on uncoupled state will be evaluated for different fly conditions and the results will be presented. The flight parameters and guidance will be analysed.

  11. Mathematical model of unmanned aerial vehicle used for endurance autonomous monitoring

    International Nuclear Information System (INIS)

    The paper purpose is to present some aspects regarding the control system of unmanned aerial vehicle - UAV, used to local observations, surveillance and monitoring interest area. The calculus methodology allows a numerical simulation of UAV evolution in bad atmospheric conditions by using nonlinear model, as well as a linear one for obtaining guidance command. The UAV model which will be presented has six DOF (degrees of freedom), and autonomous control system. This theoretical development allows us to build stability matrix, command matrix and control matrix and finally to analyse the stability of autonomous UAV flight. A robust guidance system, based on uncoupled state will be evaluated for different fly conditions and the results will be presented. The flight parameters and guidance will be analysed

  12. Possibilities for Using LIDAR and Photogrammetric Data Obtained with AN Unmanned Aerial Vehicle for Levee Monitoring

    Science.gov (United States)

    Bakuła, K.; Ostrowski, W.; Szender, M.; Plutecki, W.; Salach, A.; Górski, K.

    2016-06-01

    This paper presents the possibilities for using an unmanned aerial system for evaluation of the condition of levees. The unmanned aerial system is equipped with two types of sensor. One is an ultra-light laser scanner, integrated with a GNSS receiver and an INS system; the other sensor is a digital camera that acquires data with stereoscopic coverage. Sensors have been mounted on the multirotor, unmanned platform the Hawk Moth, constructed by MSP company. LiDAR data and images of levees the length of several hundred metres were acquired during testing of the platform. Flights were performed in several variants. Control points measured with the use of the GNSS technique were considered as reference data. The obtained results are presented in this paper; the methodology of processing the acquired LiDAR data, which increase in accuracy when low accuracy of the navigation systems occurs as a result of systematic errors, is also discussed. The Iterative Closest Point (ICP) algorithm, as well as measurements of control points, were used to georeference the LiDAR data. Final accuracy in the order of centimetres was obtained for generation of the digital terrain model. The final products of the proposed UAV data processing are digital elevation models, an orthophotomap and colour point clouds. The authors conclude that such a platform offers wide possibilities for low-budget flights to deliver the data, which may compete with typical direct surveying measurements performed during monitoring of such objects. However, the biggest advantage is the density and continuity of data, which allows for detection of changes in objects being monitored.

  13. AMRMS Aerial survey database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — An aerial monitoring program was conducted during the period 1962 - 2003 in cooperation with aerial spotters working for the commercial purse seine fleet. Flights...

  14. An application of aerial remote sensing to monitor salinization at Xinding Basin

    Science.gov (United States)

    Qiao, Yu-Liang

    In this paper, a method to interpret the high, mid, low salinized ploughland and the salinized wasteland using comprehensive aerophoto interpretation principles will be described for Xinding Basin, Shanxi Province. The dynamic change of salinized soil during 7 years from 1980 to 1987 will be compared with the typical Dingxiang County. The map and data obtained, with an accuracy of more than 90%, are provided to the local government as the scientific grounds to instruct agricultural productivity. Soil salinization is a worldwide problem. With the sharp increase in world population and modern industrialisation development, the natural resource consumption is increasing day and day, and bringing about a lack of land resource worldwide. As a kind of back-up land resource, salinized land has not only attracted the concern and study of the agricultural scientists in all countries, but also by the whole society. Shanxi is such a province in China where more than 1/3 of its total area of irrigation land is salinized. The statistics used to monitor this salinized area lack objectivity and accuracy. In 1987, the government of Shanxi Province began to investigate the salinized area of the whole province, using remote sensing technology. We selected the Xinding Basin in central Shanxi as the test district to perform the aerial remote sensing investigation, and, at the same time, studied the salinization dynamic change on the Dingxiang County used as the typical district.

  15. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligence Revolutionizing Wildlife Monitoring and Conservation.

    Science.gov (United States)

    Gonzalez, Luis F; Montes, Glen A; Puig, Eduard; Johnson, Sandra; Mengersen, Kerrie; Gaston, Kevin J

    2016-01-14

    Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV), artificial intelligence and miniaturized thermal imaging systems represent a new opportunity for wildlife experts to inexpensively survey relatively large areas. The system presented in this paper includes thermal image acquisition as well as a video processing pipeline to perform object detection, classification and tracking of wildlife in forest or open areas. The system is tested on thermal video data from ground based and test flight footage, and is found to be able to detect all the target wildlife located in the surveyed area. The system is flexible in that the user can readily define the types of objects to classify and the object characteristics that should be considered during classification.

  16. Unmanned Aerial Vehicles (UAVs and Artificial Intelligence Revolutionizing Wildlife Monitoring and Conservation

    Directory of Open Access Journals (Sweden)

    Luis F. Gonzalez

    2016-01-01

    Full Text Available Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV, artificial intelligence and miniaturized thermal imaging systems represent a new opportunity for wildlife experts to inexpensively survey relatively large areas. The system presented in this paper includes thermal image acquisition as well as a video processing pipeline to perform object detection, classification and tracking of wildlife in forest or open areas. The system is tested on thermal video data from ground based and test flight footage, and is found to be able to detect all the target wildlife located in the surveyed area. The system is flexible in that the user can readily define the types of objects to classify and the object characteristics that should be considered during classification.

  17. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligence Revolutionizing Wildlife Monitoring and Conservation

    Science.gov (United States)

    Gonzalez, Luis F.; Montes, Glen A.; Puig, Eduard; Johnson, Sandra; Mengersen, Kerrie; Gaston, Kevin J.

    2016-01-01

    Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV), artificial intelligence and miniaturized thermal imaging systems represent a new opportunity for wildlife experts to inexpensively survey relatively large areas. The system presented in this paper includes thermal image acquisition as well as a video processing pipeline to perform object detection, classification and tracking of wildlife in forest or open areas. The system is tested on thermal video data from ground based and test flight footage, and is found to be able to detect all the target wildlife located in the surveyed area. The system is flexible in that the user can readily define the types of objects to classify and the object characteristics that should be considered during classification. PMID:26784196

  18. REAL-TIME MONITORING SYSTEM USING UNMANNED AERIAL VEHICLE INTEGRATED WITH SENSOR OBSERVATION SERVICE

    Directory of Open Access Journals (Sweden)

    A. Witayangkurn

    2012-09-01

    Full Text Available The Unmanned Aerial Vehicle (UAV is an emerging technology being adapted for a wide range of applications. Real-time monitoring is essential to enhance the effectiveness of UAV applications. Sensor networks are networks constructed from various sensor nodes. International standard such as OGC's SOS (Sensor Observation Service makes it possible to share sensor data with other systems as well as to provide accessibility to globally distributed users. In this paper, we propose a system combining UAV technology and sensor network technology to use an UAV as a mobile node of sensor network so that the sensor data from UAV is published and shared real-time. A UAV can extend the observation range of a sensor network to remote areas where it is usually difficult to access such as disaster area. We constructed a UAV system using remote-controlled helicopter and various sensors such as GPS, gyrocompass, laser range finder, Digital camera and Thermometer. Furthermore, we extended the Sensor Observation Service (SOS and Sensor Service Grid (SSG to support mobile sensor nodes. Then, we conducted experiments of flying the helicopter over an area of the interest. During the flight, the system measured environmental data using its sensors and captured images of the ground. The data was sent to a SOS node as the ground station via Wi-Fi which was published using SSG to give real- time access to globally distributed users.

  19. Real-Time Monitoring System Using Unmanned Aerial Vehicle Integrated with Sensor Observation Service

    Science.gov (United States)

    Witayangkurn, A.; Nagai, M.; Honda, K.; Dailey, M.; Shibasaki, R.

    2011-09-01

    The Unmanned Aerial Vehicle (UAV) is an emerging technology being adapted for a wide range of applications. Real-time monitoring is essential to enhance the effectiveness of UAV applications. Sensor networks are networks constructed from various sensor nodes. International standard such as OGC's SOS (Sensor Observation Service) makes it possible to share sensor data with other systems as well as to provide accessibility to globally distributed users. In this paper, we propose a system combining UAV technology and sensor network technology to use an UAV as a mobile node of sensor network so that the sensor data from UAV is published and shared real-time. A UAV can extend the observation range of a sensor network to remote areas where it is usually difficult to access such as disaster area. We constructed a UAV system using remote-controlled helicopter and various sensors such as GPS, gyrocompass, laser range finder, Digital camera and Thermometer. Furthermore, we extended the Sensor Observation Service (SOS) and Sensor Service Grid (SSG) to support mobile sensor nodes. Then, we conducted experiments of flying the helicopter over an area of the interest. During the flight, the system measured environmental data using its sensors and captured images of the ground. The data was sent to a SOS node as the ground station via Wi-Fi which was published using SSG to give real- time access to globally distributed users.

  20. The sky is the limit? 20 years of small-format aerial photography taken from UAS for monitoring geomorphological processes

    Science.gov (United States)

    Marzolff, Irene

    2014-05-01

    One hundred years after the first publication on aerial photography taken from unmanned aerial platforms (Arthur Batut 1890), small-format aerial photography (SFAP) became a distinct niche within remote sensing during the 1990s. Geographers, plant biologists, archaeologists and other researchers with geospatial interests re-discovered the usefulness of unmanned platforms for taking high-resolution, low-altitude photographs that could then be digitized and analysed with geographical information systems, (softcopy) photogrammetry and image processing techniques originally developed for digital satellite imagery. Even before the ubiquity of digital consumer-grade cameras and 3D analysis software accessible to the photogrammetric layperson, do-it-yourself remote sensing using kites, blimps, drones and micro air vehicles literally enabled the questing researcher to get their own pictures of the world. As a flexible, cost-effective method, SFAP offered images with high spatial and temporal resolutions that could be ideally adapted to the scales of landscapes, forms and distribution patterns to be monitored. During the last five years, this development has been significantly accelerated by the rapid technological advancements of GPS navigation, autopiloting and revolutionary softcopy-photogrammetry techniques. State-of-the-art unmanned aerial systems (UAS) now allow automatic flight planning, autopilot-controlled aerial surveys, ground control-free direct georeferencing and DEM plus orthophoto generation with centimeter accuracy, all within the space of one day. The ease of use of current UAS and processing software for the generation of high-resolution topographic datasets and spectacular visualizations is tempting and has spurred the number of publications on these issues - but which advancements in our knowledge and understanding of geomorphological processes have we seen and can we expect in the future? This presentation traces the development of the last two decades

  1. Long-term monitoring of a large landslide by using an Unmanned Aerial Vehicle (UAV)

    Science.gov (United States)

    Lindner, Gerald; Schraml, Klaus; Mansberger, Reinfried; Hübl, Johannes

    2015-04-01

    Currently UAVs become more and more important in various scientific areas, including forestry, precision farming, archaeology and hydrology. Using these drones in natural hazards research enables a completely new level of data acquisition being flexible of site, invariant in time, cost-efficient and enabling arbitrary spatial resolution. In this study, a rotary-wing Mini-UAV carrying a DSLR camera was used to acquire time series of overlapping aerial images. These photographs were taken as input to extract Digital Surface Models (DSM) as well as orthophotos in the area of interest. The "Pechgraben" area in Upper Austria has a catchment area of approximately 2 km². Geology is mainly dominated by limestone and sandstone. Caused by heavy rainfalls in the late spring of 2013, an area of about 70 ha began to move towards the village in the valley. In addition to the urgent measures, the slow-moving landslide was monitored approximately every month over a time period of more than 18 months. A detailed documentation of the change process was the result. Moving velocities and height differences were quantified and validated using a dense network of Ground Control Points (GCP). For further analysis, 14 image flights with a total amount of 10.000 photographs were performed to create multi-temporal geodata in in sub-decimeter-resolution for two depicted areas of the landslide. Using a UAV for this application proved to be an excellent choice, as it allows short repetition times, low flying heights and high spatial resolution. Furthermore, the UAV acts almost weather independently as well as highly autonomously. High-quality results can be expected within a few hours after the photo flight. The UAV system performs very well in an alpine environment. Time series of the assessed geodata detect changes in topography and provide a long-term documentation of the measures taken in order to stop the landslide and to prevent infrastructure from damage.

  2. Monitoring Geologic Hazards and Vegetation Recovery in the Wenchuan Earthquake Region Using Aerial Photography

    Directory of Open Access Journals (Sweden)

    Zhenwang Li

    2014-03-01

    Full Text Available On 12 May 2008, the 8.0-magnitude Wenchuan earthquake occurred in Sichuan Province, China, triggering thousands of landslides, debris flows, and barrier lakes, leading to a substantial loss of life and damage to the local environment and infrastructure. This study aimed to monitor the status of geologic hazards and vegetation recovery in a post-earthquake disaster area using high-resolution aerial photography from 2008 to 2011, acquired from the Center for Earth Observation and Digital Earth (CEODE, Chinese Academy of Sciences. The distribution and range of hazards were identified in 15 large, representative geologic hazard areas triggered by the Wenchuan earthquake. After conducting an overlay analysis, the variations of these hazards between successive years were analyzed to reflect the geologic hazard development and vegetation recovery. The results showed that in the first year after the Wenchuan earthquake, debris flows occurred frequently with high intensity. Resultantly, with the source material becoming less available and the slope structure stabilizing, the intensity and frequency of debris flows gradually decreased with time. The development rate of debris flows between 2008 and 2011 was 3% per year. The lithology played a dominant role in the formation of debris flows, and the topography and hazard size in the earthquake affected area also had an influence on the debris flow development process. Meanwhile, the overall geologic hazard area decreased at 12% per year, and the vegetation recovery on the landslide mass was 15% to 20% per year between 2008 and 2011. The outcomes of this study provide supporting data for ecological recovery as well as debris flow control and prevention projects in hazard-prone areas.

  3. Drones at the Beach - Surf Zone Monitoring Using Rotary Wing Unmanned Aerial Vehicles

    Science.gov (United States)

    Rynne, P.; Brouwer, R.; de Schipper, M. A.; Graham, F.; Reniers, A.; MacMahan, J. H.

    2014-12-01

    We investigate the potential of rotary wing Unmanned Aerial Vehicles (UAVs) to monitor the surf zone. In recent years, the arrival of lightweight, high-capacity batteries, low-power electronics and compact high-definition cameras has driven the development of commercially available UAVs for hobbyists. Moreover, the low operation costs have increased their potential for scientific research as these UAVs are extremely flexible surveying platforms. The UAVs can fly for ~12 min with a mean loiter radius of 1 - 3.5 m and a mean loiter error of 0.75 - 4.5 m, depending on the environmental conditions, flying style, battery type and vehicle type. Our experiments using multiple, alternating UAVs show that it is possible to have near continuous imagery data with similar Fields Of View. The images obtained from the UAVs (Fig. 1a), and in combination with surveyed Ground Control Points (GCPs) (Fig. 1b, red squares and white circles), can be geo-rectified (Fig. 1c) to pixel resolution between 0.01 - 1 m and a reprojection error, i.e. the difference between the surveyed GPS location of a GCP and the location of the GCP obtained from the geo-rectified image, of O(1 m). These geo-rectified images provide data on a variety of coastal aspects, such as beach width (Wb(x,t)), surf zone width (Wsf(x,t)), wave breaking location (rectangle B), beach usage (circle C) and location of dune vegegation (rectangle D), amongst others. Additionally, the possibility to have consecutive, high frequency (up to 2 Hz) rectified images makes the UAVs a great data instrument for spatially and temporally variable systems, such as the surf zone. Our first observations with the UAVs reveal the potential to quickly obtain surf zone and beach characteristics in response to storms or for day to day beach information, as well as the scientific pursuits of surf zone kinematics on different spatial and temporal scales, and dispersion and advection estimates of pollutants/dye. A selection of findings from

  4. Improving Rangeland Monitoring and Assessment: Integrating Remote Sensing, GIS, and Unmanned Aerial Vehicle Systems

    Energy Technology Data Exchange (ETDEWEB)

    Robert Paul Breckenridge

    2007-05-01

    Creeping environmental changes are impacting some of the largest remaining intact parcels of sagebrush steppe ecosystems in the western United States, creating major problems for land managers. The Idaho National Laboratory (INL), located in southeastern Idaho, is part of the sagebrush steppe ecosystem, one of the largest ecosystems on the continent. Scientists at the INL and the University of Idaho have integrated existing field and remotely sensed data with geographic information systems technology to analyze how recent fires on the INL have influenced the current distribution of terrestrial vegetation. Three vegetation mapping and classification systems were used to evaluate the changes in vegetation caused by fires between 1994 and 2003. Approximately 24% of the sagebrush steppe community on the INL was altered by fire, mostly over a 5-year period. There were notable differences between methods, especially for juniper woodland and grasslands. The Anderson system (Anderson et al. 1996) was superior for representing the landscape because it includes playa/bare ground/disturbed area and sagebrush steppe on lava as vegetation categories. This study found that assessing existing data sets is useful for quantifying fire impacts and should be helpful in future fire and land use planning. The evaluation identified that data from remote sensing technologies is not currently of sufficient quality to assess the percentage of cover. To fill this need, an approach was designed using both helicopter and fixed wing unmanned aerial vehicles (UAVs) and image processing software to evaluate six cover types on field plots located on the INL. The helicopter UAV provided the best system compared against field sampling, but is more dangerous and has spatial coverage limitations. It was reasonably accurate for dead shrubs and was very good in assessing percentage of bare ground, litter and grasses; accuracy for litter and shrubs is questionable. The fixed wing system proved to be

  5. Development and Integration of a Solar Powered Unmanned Aerial Vehicle and a Wireless Sensor Network to Monitor Greenhouse Gases

    Directory of Open Access Journals (Sweden)

    Alexander Malaver

    2015-02-01

    Full Text Available Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs and Unmanned Aerial Vehicles (UAVs currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology.

  6. Development and integration of a solar powered unmanned aerial vehicle and a wireless sensor network to monitor greenhouse gases.

    Science.gov (United States)

    Malaver, Alexander; Motta, Nunzio; Corke, Peter; Gonzalez, Felipe

    2015-01-01

    Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX) and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology. PMID:25679312

  7. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring.

    Science.gov (United States)

    Gillan, Jeffrey K; Karl, Jason W; Duniway, Michael; Elaksher, Ahmed

    2014-11-01

    Vertical vegetation structure in rangeland ecosystems can be a valuable indicator for assessing rangeland health and monitoring riparian areas, post-fire recovery, available forage for livestock, and wildlife habitat. Federal land management agencies are directed to monitor and manage rangelands at landscapes scales, but traditional field methods for measuring vegetation heights are often too costly and time consuming to apply at these broad scales. Most emerging remote sensing techniques capable of measuring surface and vegetation height (e.g., LiDAR or synthetic aperture radar) are often too expensive, and require specialized sensors. An alternative remote sensing approach that is potentially more practical for managers is to measure vegetation heights from digital stereo aerial photographs. As aerial photography is already commonly used for rangeland monitoring, acquiring it in stereo enables three-dimensional modeling and estimation of vegetation height. The purpose of this study was to test the feasibility and accuracy of estimating shrub heights from high-resolution (HR, 3-cm ground sampling distance) digital stereo-pair aerial images. Overlapping HR imagery was taken in March 2009 near Lake Mead, Nevada and 5-cm resolution digital surface models (DSMs) were created by photogrammetric methods (aerial triangulation, digital image matching) for twenty-six test plots. We compared the heights of individual shrubs and plot averages derived from the DSMs to field measurements. We found strong positive correlations between field and image measurements for several metrics. Individual shrub heights tended to be underestimated in the imagery, however, accuracy was higher for dense, compact shrubs compared with shrubs with thin branches. Plot averages of shrub height from DSMs were also strongly correlated to field measurements but consistently underestimated. Grasses and forbs were generally too small to be detected with the resolution of the DSMs. Estimates of

  8. Behaviour recognition of ground vehicle using airborne monitoring of unmanned aerial vehicles

    Science.gov (United States)

    Oh, Hyondong; Kim, Seungkeun; Shin, Hyo-Sang; Tsourdos, Antonios; White, Brian A.

    2014-12-01

    This paper proposes a behaviour recognition methodology for ground vehicles moving within road traffic using unmanned aerial vehicles in order to identify suspicious or abnormal behaviour. With the target information acquired by unmanned aerial vehicles and estimated by filtering techniques, ground vehicle behaviour is first classified into representative driving modes, and then a string pattern matching theory is applied to detect suspicious behaviours in the driving mode history. Furthermore, a fuzzy decision-making process is developed to systematically exploit all available information obtained from a complex environment and confirm the characteristic of behaviour, while considering spatiotemporal environment factors as well as several aspects of behaviours. To verify the feasibility and benefits of the proposed approach, numerical simulations on moving ground vehicles are performed using realistic car trajectory data from an off-the-shelf traffic simulation software.

  9. Utilization of Unmanned Aerial Vehicles for Rangeland Resources Monitoring in a Changing Regulatory Environment (Invited)

    Science.gov (United States)

    Rango, A.; Vivoni, E. R.; Browning, D. M.; Anderson, C.; Laliberte, A. S.

    2013-12-01

    It is taking longer than expected to realize the immense potential of Unmanned Aerial Vehicles (UAVs)for civil applications due to the complexity of regulations being developed by the Federal Aviation Authority (FAA) that can be applied to both manned and unmanned flight in the National Airspace System (NAS). As a result, FAA has required that for all UAV flights in the NAS, an external pilot must maintain line-of-sight contact with the UAV. Properly trained observers must also be present to assist the external pilot in collision avoidance. Additionally, in order to fly in the NAS, formal approval must be requested from FAA through application for a Certificate of Authorization (COA for government applicants or a Special Airworthiness Certificate (SAC) in the experimental category for non-government applicants. Flight crews of UAVs must pass exams also required for manned airplane pilots. Although flight crews for UAVs are not required to become manned airplane pilots, UAV flight missions are much more efficient if one or two of the UAV flight crew are also manned aircraft pilots so they can serve as the UAV mission commander. Our group has performed numerous UAV flights within the Jornada Experimental Range in southern New Mexico. Two developments with Jornada UAVs can be recommended to other UAV operators that would increase flight time experience and study areas covered by UAV images. First, do not overlook the possibility of obtaining permission to fly in Restricted Military Airspace (RMA). At the Jornada, our airspace is approximately 50% NAS and 50% RMA. With experiments ongoing in both types of airspace, we can fly in both areas and continue to increase UAV flights. Second, we have developed an air- and-ground vehicle approach for long distance, continuous pilot transport that always maintains line-of-sight requirements. This allows flying several target areas on a single mission and increasing the number of acquired UAV images - over 90,000 UAV images have

  10. Aracnocóptero: An Unmanned Aerial VTOL Multi-rotor for Remote Monitoring and Surveillance

    OpenAIRE

    Bernabéu, Carlos; Corchado Rodríguez, Juan Manuel; Rodríguez, Sara; Pablo CHAMOSO

    2011-01-01

    [ES] El Aracnocóptero es una plataforma aérea diseñada para capturar fotografías e imágenes en varios formatos, y para llevar a los sensores y los equipos de medición científico-técnico. Es un muti-rotor plegable, ligero, se trata de un UAV de despegue (Unmanned Aerial Vehicle) para aeronaves, hecho de materiales aeroespaciales con la máxima resistencia. Incluye un centro de comunicación y una estación base, todos los cuales son transportables por su peso ligero y compacto. El Software de c...

  11. Monitoring winter and summer abundance of cetaceans in the Pelagos Sanctuary (northwestern Mediterranean Sea through aerial surveys.

    Directory of Open Access Journals (Sweden)

    Simone Panigada

    Full Text Available Systematic long-term monitoring of abundance is essential to inform conservation measures and evaluate their effectiveness. To instigate such work in the Pelagos Sanctuary in the Mediterranean, two aerial surveys were conducted in winter and summer 2009. A total of 467 (131 in winter, 336 in summer sightings of 7 species was made. Sample sizes were sufficient to estimate abundance of fin whales in summer (148; 95% CI = 87-254 and striped dolphins in winter (19,462; 95% CI = 12 939-29 273 and in summer (38 488; 95% CI = 27 447-53 968. Numbers of animals within the Sanctuary are significantly higher in summer, when human activities and thus potential population level impacts are highest. Comparisons with data from past shipboard surveys suggest an appreciable decrease in fin whales within the Sanctuary area and an appreciable increase in striped dolphins. Aerial surveys proved to be more efficient than ship surveys, allowing more robust estimates, with smaller CIs and CVs. These results provide essential baseline data for this marine protected area and continued regular surveys will allow the effectiveness of the MPA in terms of cetacean conservation to be evaluated and inform future management measures. The collected data may also be crucial in assessing whether ship strikes, one of the main causes of death for fin whales in the Mediterranean, are affecting the Mediterranean population.

  12. Monitoring winter and summer abundance of cetaceans in the Pelagos Sanctuary (northwestern Mediterranean Sea) through aerial surveys.

    Science.gov (United States)

    Panigada, Simone; Lauriano, Giancarlo; Burt, Louise; Pierantonio, Nino; Donovan, Greg

    2011-01-01

    Systematic long-term monitoring of abundance is essential to inform conservation measures and evaluate their effectiveness. To instigate such work in the Pelagos Sanctuary in the Mediterranean, two aerial surveys were conducted in winter and summer 2009. A total of 467 (131 in winter, 336 in summer) sightings of 7 species was made. Sample sizes were sufficient to estimate abundance of fin whales in summer (148; 95% CI = 87-254) and striped dolphins in winter (19,462; 95% CI = 12 939-29 273) and in summer (38 488; 95% CI = 27 447-53 968). Numbers of animals within the Sanctuary are significantly higher in summer, when human activities and thus potential population level impacts are highest. Comparisons with data from past shipboard surveys suggest an appreciable decrease in fin whales within the Sanctuary area and an appreciable increase in striped dolphins. Aerial surveys proved to be more efficient than ship surveys, allowing more robust estimates, with smaller CIs and CVs. These results provide essential baseline data for this marine protected area and continued regular surveys will allow the effectiveness of the MPA in terms of cetacean conservation to be evaluated and inform future management measures. The collected data may also be crucial in assessing whether ship strikes, one of the main causes of death for fin whales in the Mediterranean, are affecting the Mediterranean population. PMID:21829544

  13. A Chernobyl lesson for aerial monitoring: integration of passive measurements with active sampling in the emergency early phase

    International Nuclear Information System (INIS)

    In our experience, the first quantitative measurement of a contamination parameter has been only possible after many days from the beginning of the accident. Indeed with aerial monitoring systems in use, the quantification of the source activity, or the ground contamination, through the analysis of the gamma ray spectra measured, is only possible with the assumption of a source pattern (localized for a point-like source, diffused for ground surface contamination). In case of a more complex situation, there is not a suitable knowledge to model the radiation source; therefore the measurements can only supply qualitative information. This is the case, both in near and far field, when the radioactive plume released by an accident is passing over the country. The lack of quantitative measurements and the derived uncertainty in forecasting the propagation of the radioactive contamination, does not help the emergency management in the most critical phase, i.e. when countermeasures have to be decided in a preventive way and some risk of negative effects is inevitably linked to their enforcement. A different tool for the emergency management should be provided. An aerial platform instrumented for in-plume measurements, aiming to characterize the extension, composition and concentration of the radioactive mixture in the plume, as well as to measure in situ meteorological parameters could be of invaluable help in the emergency early phase. During last years research and manufacturing activities have been developed to reach these goals. (authors)

  14. A Space-Time Network-Based Modeling Framework for Dynamic Unmanned Aerial Vehicle Routing in Traffic Incident Monitoring Applications

    Directory of Open Access Journals (Sweden)

    Jisheng Zhang

    2015-06-01

    Full Text Available It is essential for transportation management centers to equip and manage a network of fixed and mobile sensors in order to quickly detect traffic incidents and further monitor the related impact areas, especially for high-impact accidents with dramatic traffic congestion propagation. As emerging small Unmanned Aerial Vehicles (UAVs start to have a more flexible regulation environment, it is critically important to fully explore the potential for of using UAVs for monitoring recurring and non-recurring traffic conditions and special events on transportation networks. This paper presents a space-time network- based modeling framework for integrated fixed and mobile sensor networks, in order to provide a rapid and systematic road traffic monitoring mechanism. By constructing a discretized space-time network to characterize not only the speed for UAVs but also the time-sensitive impact areas of traffic congestion, we formulate the problem as a linear integer programming model to minimize the detection delay cost and operational cost, subject to feasible flying route constraints. A Lagrangian relaxation solution framework is developed to decompose the original complex problem into a series of computationally efficient time-dependent and least cost path finding sub-problems. Several examples are used to demonstrate the results of proposed models in UAVs’ route planning for small and medium-scale networks.

  15. A Space-Time Network-Based Modeling Framework for Dynamic Unmanned Aerial Vehicle Routing in Traffic Incident Monitoring Applications

    Science.gov (United States)

    Zhang, Jisheng; Jia, Limin; Niu, Shuyun; Zhang, Fan; Tong, Lu; Zhou, Xuesong

    2015-01-01

    It is essential for transportation management centers to equip and manage a network of fixed and mobile sensors in order to quickly detect traffic incidents and further monitor the related impact areas, especially for high-impact accidents with dramatic traffic congestion propagation. As emerging small Unmanned Aerial Vehicles (UAVs) start to have a more flexible regulation environment, it is critically important to fully explore the potential for of using UAVs for monitoring recurring and non-recurring traffic conditions and special events on transportation networks. This paper presents a space-time network- based modeling framework for integrated fixed and mobile sensor networks, in order to provide a rapid and systematic road traffic monitoring mechanism. By constructing a discretized space-time network to characterize not only the speed for UAVs but also the time-sensitive impact areas of traffic congestion, we formulate the problem as a linear integer programming model to minimize the detection delay cost and operational cost, subject to feasible flying route constraints. A Lagrangian relaxation solution framework is developed to decompose the original complex problem into a series of computationally efficient time-dependent and least cost path finding sub-problems. Several examples are used to demonstrate the results of proposed models in UAVs’ route planning for small and medium-scale networks. PMID:26076404

  16. Scientific and Cost Effective Monitoring: The Case of an Aerial Insectivore, the Chimney Swift

    OpenAIRE

    Sébastien Rioux; Savard, Jean-Pierre L.; François Shaffer

    2010-01-01

    The increased pace of species listing worldwide, coupled with the scarcity of conservation funding, promote the use of targeted monitoring. We applied the recommendations of Nichols and Williams (Trends in Ecology and Evolution 2006 24:668-673) to optimize the Québec Chimney Swift Monitoring Program, an ongoing volunteer-based monitoring initiative launched in 1998. Past objectives of the program were to fill knowledge gaps about occupancy patterns at roosts sites, determine spatial and tempo...

  17. Determination of Exterior Orientation Parameters Through Direct Geo-Referencing in a Real-Time Aerial Monitoring System

    Science.gov (United States)

    Kim, H.; Lee, J.; Choi, K.; Lee, I.

    2012-07-01

    Rapid responses for emergency situations such as natural disasters or accidents often require geo-spatial information describing the on-going status of the affected area. Such geo-spatial information can be promptly acquired by a manned or unmanned aerial vehicle based multi-sensor system that can monitor the emergent situations in near real-time from the air using several kinds of sensors. Thus, we are in progress of developing such a real-time aerial monitoring system (RAMS) consisting of both aerial and ground segments. The aerial segment acquires the sensory data about the target areas by a low-altitude helicopter system equipped with sensors such as a digital camera and a GPS/IMU system and transmits them to the ground segment through a RF link in real-time. The ground segment, which is a deployable ground station installed on a truck, receives the sensory data and rapidly processes them to generate ortho-images, DEMs, etc. In order to generate geo-spatial information, in this system, exterior orientation parameters (EOP) of the acquired images are obtained through direct geo-referencing because it is difficult to acquire coordinates of ground points in disaster area. The main process, since the data acquisition stage until the measurement of EOP, is discussed as follows. First, at the time of data acquisition, image acquisition time synchronized by GPS time is recorded as part of image file name. Second, the acquired data are then transmitted to the ground segment in real-time. Third, by processing software for ground segment, positions/attitudes of acquired images are calculated through a linear interpolation using the GPS time of the received position/attitude data and images. Finally, the EOPs of images are obtained from position/attitude data by deriving the relationships between a camera coordinate system and a GPS/IMU coordinate system. In this study, we evaluated the accuracy of the EOP decided by direct geo-referencing in our system. To perform this

  18. Lightweight aerial vehicles for monitoring, assessment and mapping of radiation anomalies

    International Nuclear Information System (INIS)

    The Fukushima Daiichi nuclear power plant (FDNPP) incident released a significant mass of radioactive material into the atmosphere. An estimated 22% of this material fell out over land following the incident. Immediately following the disaster, there was a severe lack of information not only pertaining to the identity of the radioactive material released, but also its distribution as fallout in the surrounding regions. Indeed, emergency aid groups including the UN did not have sufficient location specific radiation data to accurately assign exclusion and evacuation zones surrounding the plant in the days and weeks following the incident. A newly developed instrument to provide rapid and high spatial resolution assessment of radionuclide contamination in the environment is presented. The device consists of a low cost, lightweight, unmanned aerial platform with a microcontroller and integrated gamma spectrometer, GPS and LIDAR. We demonstrate that with this instrument it is possible to rapidly and remotely detect ground-based radiation anomalies with a high spatial resolution (<1 m). Critically, as the device is remotely operated, the user is removed from any unnecessary or unforeseen exposure to elevated levels of radiation. - Highlights: • We present a new instrument for the remote detection of radiation in the environment. • The integration of sensors payload and UAV vehicle is shown. • The device is demonstrated to detect a single radiation anomalies remotely. • The device is demonstrated to map two radiation anomalies remotely and with a high spatial resolution

  19. On Collaborative Aerial and Surface Robots for Environmental Monitoring of Water Bodies

    OpenAIRE

    Pinto, Eduardo; Santana, Pedro; Barata, José

    2013-01-01

    Part 8: Robotics and Manufacturing International audience Remote monitoring is an essential task to help maintaining Earth ecosystems. A notorious example is the monitoring of riverine environments. The solution purposed in this paper is to use an electric boat (ASV - Autonomous Surface Vehicle) operating in symbiosis with a quadrotor (UAV – Unmanned Air Vehicle). We present the architecture and solutions adopted and at the same time compare it with other examples of collaborative robot...

  20. On Collaborative Aerial and Surface Robots for Environmental Monitoring of Water Bodies

    OpenAIRE

    Pinto, Eduardo; Santana, Pedro; Barata, José

    2013-01-01

    Part 8: Robotics and Manufacturing; International audience; Remote monitoring is an essential task to help maintaining Earth ecosystems. A notorious example is the monitoring of riverine environments. The solution purposed in this paper is to use an electric boat (ASV - Autonomous Surface Vehicle) operating in symbiosis with a quadrotor (UAV – Unmanned Air Vehicle). We present the architecture and solutions adopted and at the same time compare it with other examples of collaborative robotics ...

  1. High-Resolution Monitoring of Coastal Dune Erosion and Growth Using an Unmanned Aerial Vehicle

    Science.gov (United States)

    Ruessink, G.; Markies, H.; Van Maarseveen, M.

    2014-12-01

    Coastal foredunes lose and gain sand through marine and aeolian processes, but coastal-evolution models that can accurately predict both wave-driven dune erosion and wind-blown dune growth are non-existing. This is, together with a limited understanding of coastal aeolian process dynamics, due to the lack of adequate field data sets from which erosion and supply volumes can be studied simultaneously. Here, we quantify coastal foredune dynamics using nine topographic surveys performed near Egmond aan Zee, The Netherlands, between September 2011 and March 2014 using an unmanned aerial vehicle (UAV). The approximately 0.75-km long study site comprises a 30-100 m wide sandy beach and a 20-25 m high foredune, of which the higher parts are densely vegetated with European marram grass. Using a structure-from-motion workflow, the 200-500 photographs taken during each UAV flight were processed into a point cloud, from which a geo-referenced digital surface model with a 0.25 x 0.25 m resolution was subsequently computed. Our data set contains two dune-erosion events, including that due to storm Xaver (December 2013), which caused one of the highest surge levels in the southern North Sea region for the last decades. Dune erosion during both events varied alongshore from the destruction of embryonic dunes on the upper beach to the slumping of the entire dune face. During the first storm (January 2012), erosion volumes ranged from 5 m3/m in the (former) embryonic dune field to over 40 m3/m elsewhere. During the subsequent 11 (spring - autumn) months, the foredune accreted by (on average) 8 m3/m, again with substantial alongshore variability (0 - 20 m3/m). Intriguingly, volume changes during the 2012-2013 winter were minimal. We will compare the observed aeolian supply rates with model predictions and discuss reasons for their temporal variability. Funded by the Dutch Organisation for Scientific Research NWO.

  2. Technical Note: Advances in flash flood monitoring using unmanned aerial vehicles (UAVs)

    Science.gov (United States)

    Perks, Matthew T.; Russell, Andrew J.; Large, Andrew R. G.

    2016-10-01

    Unmanned aerial vehicles (UAVs) have the potential to capture information about the earth's surface in dangerous and previously inaccessible locations. Through image acquisition of flash flood events and subsequent object-based analysis, highly dynamic and oft-immeasurable hydraulic phenomena may be quantified at previously unattainable spatial and temporal resolutions. The potential for this approach to provide valuable information about the hydraulic conditions present during dynamic, high-energy flash floods has until now not been explored. In this paper we adopt a novel approach, utilizing the Kande-Lucas-Tomasi (KLT) algorithm to track features present on the water surface which are related to the free-surface velocity. Following the successful tracking of features, a method analogous to the vector correction method has enabled accurate geometric rectification of velocity vectors. Uncertainties associated with the rectification process induced by unsteady camera movements are subsequently explored. Geo-registration errors are relatively stable and occur as a result of persistent residual distortion effects following image correction. The apparent ground movement of immobile control points between measurement intervals ranges from 0.05 to 0.13 m. The application of this approach to assess the hydraulic conditions present in the Alyth Burn, Scotland, during a 1 : 200 year flash flood resulted in the generation of an average 4.2 at a rate of 508 measurements s-1. Analysis of these vectors provides a rare insight into the complexity of channel-overbank interactions during flash floods. The uncertainty attached to the calculated velocities is relatively low, with a spatial average across the area of ±0.15 m s-1. Little difference is observed in the uncertainty attached to out-of-bank velocities (±0.15 m s-1), and within-channel velocities (±0.16 m s-1), illustrating the consistency of the approach.

  3. Unmanned aerial monitoring of fluvial changes in the vicinity of selected gauges of the Local System for Flood Monitoring in Klodzko County, SW Poland

    Science.gov (United States)

    Jeziorska, Justyna; Witek, Matylda; Niedzielski, Tomasz

    2013-04-01

    Only high resolution spatial data enable precise measurements of various morphometric characteristics of river channels and ensure meaningful effects of research into fluvial changes. Using ground-based measurement tools is time-consuming and expensive. Traditional photogrammetry often does not reach a desired resolution, and the technology is cost effective only for the large-area coverage. The present research introduces potentials of UAV (Unmanned Aerial Vehicle) for monitoring fluvial changes. Observations were carried out with the ultralight UAV swinglet CAM produced by senseFly. This lightweight (0,5 kg), small (wingspan: 80 cm) aircraft allowed frequent (with approximately monthly sampling resolution) and low-cost missions. Three hydrologic gauges, the surroundings of which were the target of series of photos taken by camera placed in airplane frame, belong to the Local System for Flood Monitoring in Kłodzko County (SW Poland). The only way of obtaining reliable results is an appropriate image rectification, in order to measure morphometric characteristics of terrain, free of geometrical deformations induced by the topographical relief, the tilt of the camera axis and the distortion of the optics. Commercially available software for the production of digital orthophotos and digital surface models (DSMs) from a range of uncalibrated oblique and vertical aerial images was successfully used to achieve this aim. As a result of completing the above procedure 9 orthophotos were generated (one for each of 3 study areas during 3 missions). For extraction of terrain parameters, a DSM was produced as a result of bundle block adjustment. Both products reached ultra-high resolution of 4cm/px. Various fluvial forms were classified and recognized, and a few time series of maps from each study area were compared in order to detect potential changes within the fluvial system. We inferred on the origins of the short-term responses of fluvial systems, and such an inference

  4. Automated DEM extraction in digital aerial photogrammetry: precisions and validation for mass movement monitoring

    Directory of Open Access Journals (Sweden)

    A. Pesci

    2005-06-01

    Full Text Available Automated procedures for photogrammetric image processing and Digital Elevation Models (DEM extraction yield high precision terrain models in a short time, reducing manual editing; their accuracy is strictly related to image quality and terrain features. After an analysis of the performance of the Digital Photogrammetric Workstation (DPW 770 Helava, the paper compares DEMs derived from different surveys and registered in the same reference system. In the case of stable area, the distribution of height residuals, their mean and standard deviation values, indicate that the theoretical accuracy is achievable automatically when terrain is characterized by regular morphology. Steep slopes, corrugated surfaces, vegetation and shadows can degrade results even if manual editing procedures are applied. The comparison of multi-temporal DEMs on unstable areas allows the monitoring of surface deformation and morphological changes.

  5. Using Unmanned Aerial Vehicle (UAV) for spatio-temporal monitoring of soil erosion and roughness in Chania, Crete, Greece

    Science.gov (United States)

    Alexakis, Dimitrios; Seiradakis, Kostas; Tsanis, Ioannis

    2016-04-01

    This article presents a remote sensing approach for spatio-temporal monitoring of both soil erosion and roughness using an Unmanned Aerial Vehicle (UAV). Soil erosion by water is commonly known as one of the main reasons for land degradation. Gully erosion causes considerable soil loss and soil degradation. Furthermore, quantification of soil roughness (irregularities of the soil surface due to soil texture) is important and affects surface storage and infiltration. Soil roughness is one of the most susceptible to variation in time and space characteristics and depends on different parameters such as cultivation practices and soil aggregation. A UAV equipped with a digital camera was employed to monitor soil in terms of erosion and roughness in two different study areas in Chania, Crete, Greece. The UAV followed predicted flight paths computed by the relevant flight planning software. The photogrammetric image processing enabled the development of sophisticated Digital Terrain Models (DTMs) and ortho-image mosaics with very high resolution on a sub-decimeter level. The DTMs were developed using photogrammetric processing of more than 500 images acquired with the UAV from different heights above the ground level. As the geomorphic formations can be observed from above using UAVs, shadowing effects do not generally occur and the generated point clouds have very homogeneous and high point densities. The DTMs generated from UAV were compared in terms of vertical absolute accuracies with a Global Navigation Satellite System (GNSS) survey. The developed data products were used for quantifying gully erosion and soil roughness in 3D as well as for the analysis of the surrounding areas. The significant elevation changes from multi-temporal UAV elevation data were used for estimating diachronically soil loss and sediment delivery without installing sediment traps. Concerning roughness, statistical indicators of surface elevation point measurements were estimated and various

  6. Use of a digital camera onboard an unmanned aerial vehicle to monitor spring phenology at individual tree level

    Science.gov (United States)

    Berra, Elias; Gaulton, Rachel; Barr, Stuart

    2016-04-01

    The monitoring of forest phenology, in a cost-effective manner, at a fine spatial scale and over relatively large areas remains a significant challenge. To address this issue, unmanned aerial vehicles (UAVs) appear as a potential new option for forest phenology monitoring. The aim of this study is to assess the potential of imagery acquired from a UAV to track seasonal changes in leaf canopy at individual tree level. UAV flights, deploying consumer-grade standard and near-infrared modified cameras, were carried out over a deciduous woodland during the spring season of 2015, from which a temporal series of calibrated and georeferenced 5 cm spatial resolution orthophotos was generated. Initial results from a subset of trees are presented in this paper. Four trees with different observed Start of Season (SOS) dates were selected to monitor UAV-derived Green Chromatic Coordinate (GCC), as a measure of canopy greenness. Mean GCC values were extracted from within the four individual tree crowns and were plotted against the day of year (DOY) when the data were acquired. The temporal GCC trajectory of each tree was associated with the visual observations of leaf canopy phenology (SOS) and also with the development of understory vegetation. The chronological order when sudden increases of GCC values occurred matched with the chronological order of observed SOS: the first sudden increase in GCC was detected in the tree which first reached SOS; 18.5 days later (on average) the last sudden increase of GCC was detected in the tree which last reached SOS (18 days later than the first one). Trees with later observed SOS presented GCC values increasing slowly over time, which were associated with development of understory vegetation. Ongoing work is dealing with: 1) testing different indices; 2) radiometric calibration (retrieving of spectral reflectance); 3) expanding the analysis to more tree individuals, more tree species and over larger forest areas, and; 4) deriving

  7. Fiber Bragg Grating Sensor/Systems for In-Flight Wing Shape Monitoring of Unmanned Aerial Vehicles (UAVs)

    Science.gov (United States)

    Parker, Allen; Richards, Lance; Ko, William; Piazza, Anthony; Tran, Van

    2006-01-01

    A viewgraph presentation describing an in-flight wing shape measurement system based on fiber bragg grating sensors for use in Unmanned Aerial Vehicles (UAV) is shown. The topics include: 1) MOtivation; 2) Objective; 3) Background; 4) System Design; 5) Ground Testing; 6) Future Work; and 7) Conclusions

  8. 无人机遥感在红树林资源调查中的应用%Application of Unmanned Aerial Vehicles to Mangrove Resources Monitoring

    Institute of Scientific and Technical Information of China (English)

    冯家莉; 刘凯; 朱远辉; 李勇; 柳林; 蒙琳

    2015-01-01

    The emerging unmanned aerial vehicle (UAV) remote sensing is an important supplement to traditional aerial and satellite remote sensing due to its flexible, fast and cost-effective capability for acquiring very high spatial resolution imagery. In this study, we explored the application of UAV to monitoring mangrove forests. The study area is located in the Yingluo Bay, on the borders between Guangdong and Guangxi Provinces. Using the UAV, we collected aerial photos of the coastal zones of Yingluo Bay, covering an area of 25.29 km2 with three flight missions totaling 2.5 hours. The high-resolution aerial images were first mosaicked and then used for interpretation and classification of mangrove forests. A typical sample plot of the study area was selected to conduct classification of mangrove species using object-oriented classification method with the nearest neighbor classifier. The classification accuracy of visual interpretation of mangrove forests extraction and that of object-oriented nearest neighbor analysis for mangrove species classification were both higher than 90%. We also compared our approach to conventional technology of aerial and satellite remote sensing for monitoring mangrove wetlands. Results suggested that UAV would be a good choice for mangrove research. It is promised that UAV would become a popular and useful tool for researchers and government agencies to contribute to mangrove reservation and management.%低空无人机(UAV,Unmanned Aerial Vehicles)遥感系统具有数据采集灵活、低成本且可快速获取超高分辨率影像的特色,是传统航空遥感和卫星遥感的重要补充。以广东省和广西壮族自治区交界处的英罗港港湾两侧为研究区域,将无人机遥感系统用于红树林资源的遥感调查,通过无人机航拍获取高分辨率影像,并且使用拼接的影像和目视解译方法提取红树林空间分布信息,进一步选择典型研究样地,

  9. Chemiluminescent methods and instruments for monitoring of the atmosphere and satellite validation on board of research aircrafts and unmanned aerial vehicles

    Science.gov (United States)

    Sitnikov, Nikolay; Borisov, Yuriy; Akmulin, Dimitry; Chekulaev, Igor; Sitnikova, Vera; Ulanovsky, Alexey; Sokolov, Alexey

    The results of development of instruments based on heterophase chemiluminescence for measurements of space distribution of ozone and nitrogen oxides concentrations on board of research aircrafts and unmanned aerial vehicles carried out in Central Aerological Observatory are presented. Some results of atmospheric investigations on board of research aircrafts M55 “Geophysica” (Russia) and “Falcon” (Germany) carried out using developed instruments in frame of international projects are demonstrated. Small and low power instruments based on chemiluminescent principle for UAV are developed. The results of measurements on board of UAV are shown. The development can be used for satellite data validation, as well as operative environmental monitoring of contaminated areas in particular, chemical plants, natural and industrial disasters territories, areas and facilities for space purposes etc.

  10. Applications of unmanned aerial vehicle images on agricultural remote sensing monitoring%基于无人机影像的农情遥感监测应用

    Institute of Scientific and Technical Information of China (English)

    王利民; 刘佳; 杨玲波; 陈仲新; 王小龙; 欧阳斌

    2013-01-01

    By taking Agricultural High-tech Industrial Park of Chinese Academy of Agricultural Sciences (Wan Zhuang) and its peripheral regions with a total area of 4.2 × 3.1 km as the study area, this paper carried out an aerial photogrammetry experiment by using the RICOH GXR A12 camera carried on an unmanned aerial vehicle (UAV), and the experiment mainly tested the precisions of planar positioning under a POS (positioning and orientation system) supported bundle block adjustment method and of area measurement, as well as the precision of the crop area identification of an UAV orthophoto map obtained from an aerial triangulation correction. We use an unmanned aerial vehicle (UAV) to obtain 690 images which covered the whole study area. After a series of processes such as image screen, POS-supported aerial triangulation correction, digital elevation model making, image fusion, and digital differential rectification, we have obtained the ortho-photo map of the whole study area. Since the deployment of high precision ground control point wastes time and energy, POS-supported aerial triangulation employs a non-control point model. Therefore, its absolute positioning precision may be affected by the error of the GPS carried on an UAV. In order to eliminate this error, the project team used a high precision wordview image to rectify the ortho-photo map. In this way, we could improve the image positioning precision, and meanwhile unify the study sample areas with the overall larger scope image coordinate system, so as to provide high precision samples for large-scale agriculture remote sensing statistics and monitoring. The result shows that, under the condition of no control point and after direct POS data bundle block adjustment, the mean square error of plane positioning precision of the X axis direction is 2.29 m, Y direction is 2.78 m, and overall plane error is 3.61 m. If a three order general polynomial model is adopted to conduct a geometric precision correction, then

  11. Rapid, Repeat-sample Monitoring of Crustal Deformations and Environmental Phenomena with the Uninhabited Aerial Vehicle Synthetic Aperture Radar

    Science.gov (United States)

    Smith, Robert C.

    2006-01-01

    The Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is a precision repeat-pass Interferometric Synthetic Aperture Radar (InSAR) mission being developed by the Jet Propulsion Laboratory and the Dryden Flight Research Center in support of NASA s Science Mission Directorate. UAVSAR's unique ability to fly a repeatable flight path, along with an electronically steerable array, allows interferometric data to be obtained with accuracies measured in millimeters. Deploying the radar on an airborne platform will also allow for radar images to be collected and compared with images from the same area taken hours or even years later - providing for long-term trending and near real-time notification of changes and deformations. UAVSAR s data processing algorithms will provide for near-real time data reduction providing disaster planning and response teams with highly accurate data to aid in the prediction of, and response to, natural phenomena. UAVSAR data can be applied to increasing our understanding of the processes behind solid earth, cryosphere, carbon cycle and other areas of interest in earth science. Technologies developed for UAVSAR may also be applicable to a future earth-orbiting InSAR mission and possibly for missions to the Moon or Mars. The UAVSAR is expected to fly on a Gulfstream III aircraft this winter, followed by a flight test program lasting until the second half of 2007. Following radar calibration and data reduction activities, the platform will be ready for science users in the summer of 2008.

  12. Monitoring the invasion of Spartina alterniflora using very high resolution unmanned aerial vehicle imagery in Beihai, Guangxi (China).

    Science.gov (United States)

    Wan, Huawei; Wang, Qiao; Jiang, Dong; Fu, Jingying; Yang, Yipeng; Liu, Xiaoman

    2014-01-01

    Spartina alterniflora was introduced to Beihai, Guangxi (China), for ecological engineering purposes in 1979. However, the exceptional adaptability and reproductive ability of this species have led to its extensive dispersal into other habitats, where it has had a negative impact on native species and threatens the local mangrove and mudflat ecosystems. To obtain the distribution and spread of Spartina alterniflora, we collected HJ-1 CCD imagery from 2009 and 2011 and very high resolution (VHR) imagery from the unmanned aerial vehicle (UAV). The invasion area of Spartina alterniflora was 357.2 ha in 2011, which increased by 19.07% compared with the area in 2009. A field survey was conducted for verification and the total accuracy was 94.0%. The results of this paper show that VHR imagery can provide details on distribution, progress, and early detection of Spartina alterniflora invasion. OBIA, object based image analysis for remote sensing (RS) detection method, can enable control measures to be more effective, accurate, and less expensive than a field survey of the invasive population.

  13. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology.

    Science.gov (United States)

    Torres-Sánchez, Jorge; López-Granados, Francisca; Serrano, Nicolás; Arquero, Octavio; Peña, José M

    2015-01-01

    The geometric features of agricultural trees such as canopy area, tree height and crown volume provide useful information about plantation status and crop production. However, these variables are mostly estimated after a time-consuming and hard field work and applying equations that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this work presents an innovative procedure for computing the 3-dimensional geometric features of individual trees and tree-rows by applying two consecutive phases: 1) generation of Digital Surface Models with Unmanned Aerial Vehicle (UAV) technology and 2) use of object-based image analysis techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-row plantations, reporting up to 97% accuracy on area quantification and minimal deviations compared to in-field estimations of tree heights and crown volumes. The maps generated could be used to understand the linkages between tree grown and field-related factors or to optimize crop management operations in the context of precision agriculture with relevant agro-environmental implications.

  14. Analysis of Unmanned Aerial System-Based CIR Images in Forestry—A New Perspective to Monitor Pest Infestation Levels

    Directory of Open Access Journals (Sweden)

    Jan Rudolf Karl Lehmann

    2015-03-01

    Full Text Available The detection of pest infestation is an important aspect of forest management. In the case of the oak splendour beetle (Agrilus biguttatus infestation, the affected oaks (Quercus sp. show high levels of defoliation and altered canopy reflection signature. These critical features can be identified in high-resolution colour infrared (CIR images of the tree crown and branches level captured by Unmanned Aerial Systems (UAS. In this study, we used a small UAS equipped with a compact digital camera which has been calibrated and modified to record not only the visual but also the near infrared reflection (NIR of possibly infested oaks. The flight campaigns were realized in August 2013, covering two study sites which are located in a rural area in western Germany. Both locations represent small-scale, privately managed commercial forests in which oaks are economically valuable species. Our workflow includes the CIR/NIR image acquisition, mosaicking, georeferencing and pixel-based image enhancement followed by object-based image classification techniques. A modified Normalized Difference Vegetation Index (NDVImod derived classification was used to distinguish between five vegetation health classes, i.e., infested, healthy or dead branches, other vegetation and canopy gaps. We achieved an overall Kappa Index of Agreement (KIA   of 0.81 and 0.77 for each study site, respectively. This approach offers a low-cost alternative to private forest owners who pursue a sustainable management strategy.

  15. Monitoring the Invasion of Spartina alterniflora Using Very High Resolution Unmanned Aerial Vehicle Imagery in Beihai, Guangxi (China

    Directory of Open Access Journals (Sweden)

    Huawei Wan

    2014-01-01

    Full Text Available Spartina alterniflora was introduced to Beihai, Guangxi (China, for ecological engineering purposes in 1979. However, the exceptional adaptability and reproductive ability of this species have led to its extensive dispersal into other habitats, where it has had a negative impact on native species and threatens the local mangrove and mudflat ecosystems. To obtain the distribution and spread of Spartina alterniflora, we collected HJ-1 CCD imagery from 2009 and 2011 and very high resolution (VHR imagery from the unmanned aerial vehicle (UAV. The invasion area of Spartina alterniflora was 357.2 ha in 2011, which increased by 19.07% compared with the area in 2009. A field survey was conducted for verification and the total accuracy was 94.0%. The results of this paper show that VHR imagery can provide details on distribution, progress, and early detection of Spartina alterniflora invasion. OBIA, object based image analysis for remote sensing (RS detection method, can enable control measures to be more effective, accurate, and less expensive than a field survey of the invasive population.

  16. Monitoring the invasion of Spartina alterniflora using very high resolution unmanned aerial vehicle imagery in Beihai, Guangxi (China).

    Science.gov (United States)

    Wan, Huawei; Wang, Qiao; Jiang, Dong; Fu, Jingying; Yang, Yipeng; Liu, Xiaoman

    2014-01-01

    Spartina alterniflora was introduced to Beihai, Guangxi (China), for ecological engineering purposes in 1979. However, the exceptional adaptability and reproductive ability of this species have led to its extensive dispersal into other habitats, where it has had a negative impact on native species and threatens the local mangrove and mudflat ecosystems. To obtain the distribution and spread of Spartina alterniflora, we collected HJ-1 CCD imagery from 2009 and 2011 and very high resolution (VHR) imagery from the unmanned aerial vehicle (UAV). The invasion area of Spartina alterniflora was 357.2 ha in 2011, which increased by 19.07% compared with the area in 2009. A field survey was conducted for verification and the total accuracy was 94.0%. The results of this paper show that VHR imagery can provide details on distribution, progress, and early detection of Spartina alterniflora invasion. OBIA, object based image analysis for remote sensing (RS) detection method, can enable control measures to be more effective, accurate, and less expensive than a field survey of the invasive population. PMID:24892066

  17. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV Technology.

    Directory of Open Access Journals (Sweden)

    Jorge Torres-Sánchez

    Full Text Available The geometric features of agricultural trees such as canopy area, tree height and crown volume provide useful information about plantation status and crop production. However, these variables are mostly estimated after a time-consuming and hard field work and applying equations that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this work presents an innovative procedure for computing the 3-dimensional geometric features of individual trees and tree-rows by applying two consecutive phases: 1 generation of Digital Surface Models with Unmanned Aerial Vehicle (UAV technology and 2 use of object-based image analysis techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-row plantations, reporting up to 97% accuracy on area quantification and minimal deviations compared to in-field estimations of tree heights and crown volumes. The maps generated could be used to understand the linkages between tree grown and field-related factors or to optimize crop management operations in the context of precision agriculture with relevant agro-environmental implications.

  18. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology.

    Science.gov (United States)

    Torres-Sánchez, Jorge; López-Granados, Francisca; Serrano, Nicolás; Arquero, Octavio; Peña, José M

    2015-01-01

    The geometric features of agricultural trees such as canopy area, tree height and crown volume provide useful information about plantation status and crop production. However, these variables are mostly estimated after a time-consuming and hard field work and applying equations that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this work presents an innovative procedure for computing the 3-dimensional geometric features of individual trees and tree-rows by applying two consecutive phases: 1) generation of Digital Surface Models with Unmanned Aerial Vehicle (UAV) technology and 2) use of object-based image analysis techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-row plantations, reporting up to 97% accuracy on area quantification and minimal deviations compared to in-field estimations of tree heights and crown volumes. The maps generated could be used to understand the linkages between tree grown and field-related factors or to optimize crop management operations in the context of precision agriculture with relevant agro-environmental implications. PMID:26107174

  19. Erosion on tropical rain-forest terrain: a re-evaluation in the light of long-term monitoring, aerial photographic evidence and sediment fingerprinting in Borneo

    Science.gov (United States)

    Walsh, Rory; Bidin, Kawi; Blake, William; Clarke, Michelle; Sayer, Aimee; Ghazali, Rosmadi; Annammala, Kogila; Chappell, Nick; Douglas, Ian

    2010-05-01

    Rain-forest vegetation is generally considered to be highly protective against erosion, but with disturbance via logging leading to major, but relatively short-lived increases in erosion for a 2-year period until rapid revegetation of slopes has occurred. This paper questions and re-assesses these views using a combination of long-term monitoring, GIS-assisted aerial photograph analysis and multi-proxy sediment fingerprinting in primary rainforest and adjacent terrain that was selectively logged either in 1988-89 or in 1992-93 within the Segama catchment in eastern Sabah, Malaysian Borneo. In primary forest areas, repeat measurements using the erosion bridge technique over the 20-year period 1990-2010 demonstrate how slopewash rates are significant, but concentrated in extreme events and increasing sharply with slope angle. Continuous monitoring of suspended sediment, coupled with repeat erosion bridge measurement, however, demonstrate that pipe erosion is at least as important even on moderate terrain and landsliding is an important process on steep terrain. In the selectively logged Baru catchment, a combination of long-term monitoring of suspended sediment and repeat measurements at an erosion bridge network has demonstrated that the erosional impact of logging is longer-term than formerly thought, with a major secondary peak in erosion 5-10 years after logging due to road-linked landslides and the decay of logs in debris dams; analysis of current bed-sediment and floodplain cores using a multi-proxy sediment fingerprinting approach demonstrates that sources of sediment are still different to those in primary forest over 20 years after logging ceased. Sediment fingerprinting at the large catchment scale (focussing on the analysis of lateral bench and floodplain sediment cores compared with upstream tributary sediment inputs), together with GIS-assisted analysis of aerial photographic evidence of spatial differences in landslide occurrence, demonstrates the key

  20. Monitoring Inflation and Emplacement During the 2014-2015 Kilauea Lava Flow With an Unmanned Aerial Vehicle

    Science.gov (United States)

    Perroy, R. L.; Turner, N.; Hon, K. A.; Rasgado, V.

    2015-12-01

    Unmanned aerial vehicles (UAVs) provide a powerful new tool for collecting high resolution on-demand spatial data over volcanic eruptions and other active geomorphic processes. These data can be used to improve hazard forecasts and emergency response efforts, and also allow users to economically and safely observe and quantify lava flow inflation and emplacement on spatially and temporally useful scales. We used a small fixed-wing UAV with a modified point-and-shoot camera to repeatedly map the active front of the 2014-2015 Kīlauea lava flow over a one-month period in late 2014, at times with a two-hour repeat interval. An additional subsequent flight was added in July, 2015. We used the imagery from these flights to generate a time-series of 5-cm resolution RGB and near-infrared orthoimagery mosaics and associated digital surface models using structure from motion. Survey-grade positional control was provided by ground control points with differential GPS. Two topographic transects were repeatedly surveyed across the flow surface, contemporaneously with UAV flights, to independently confirm topographic changes observed in the UAV-derived surface models. Vertical errors were generally 10 cm. Inside our 50 hectare study site, the flow advanced at a rate of 0.47 hectares/day during the first three weeks of observations before abruptly stalling out 4 m. New outbreak areas, both on the existing flow surface and along the flow margins, were readily mapped across the study area. We detected sinuous growing inflation ridges within the flow surface that correlated with subsequent outbreaks of new lava, suggesting that repeat UAV flights can provide a means of better predicting pahoehoe lava flow behavior over flat or uneven topography. Our results show that UAVs can generate accurate and digital surface models quickly and inexpensively over rapidly changing active pahoehoe lava flows.

  1. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring

    Science.gov (United States)

    Vertical vegetation structure in rangeland ecosystems can be a valuable indicator for monitoring rangeland health or progress toward management objectives because of its importance for assessing riparian areas, post-fire recovery, wind erosion, and wildlife habitat. Federal land management agencies ...

  2. Aerial Robotics: a Bird's-Eye View

    OpenAIRE

    Morin, P.; Morin, Pascal; Bidaud, P.

    2014-01-01

    International audience A fter manufacturing, ground transportation and medicine, robotics has now made an incursion in the field of aerial applications. Several domains, such as mapping, shooting, monitoring of indoor and outdoor 3D environments, agriculture and traffic monitoring, surveillance of sensitive areas, structure inspection, handling and carrying of heavy loads, and physical interventions now seek to exploit what are commonly called "drones". While these unmanned aerial vehicles...

  3. Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) from an Unmanned Aerial Vehicle (UAV): Results from the 2014 AROMAT campaign

    Science.gov (United States)

    Merlaud, Alexis; Tack, Frederik; Constantin, Daniel; Fayt, Caroline; Maes, Jeroen; Mingireanu, Florin; Mocanu, Ionut; Georgescu, Lucian; Van Roozendael, Michel

    2015-04-01

    The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) is an instrument dedicated to atmospheric trace gas retrieval from an Unmanned Aerial Vehicle (UAV). The payload is based on a compact visible spectrometer and a scanning mirror to collect scattered sunlight. Its weight, size, and power consumption are respectively 920 g, 27x12x12 cm3, and 6 W. The custom-built 2.5 m flying wing UAV is electrically powered, has a typical airspeed of 100 km/h, and can operate at a maximum altitude of 3 km. Both the payload and the UAV were developed in the framework of a collaboration between the Belgian Institute for Space Aeronomy (BIRA-IASB) and the Dunarea de Jos University of Galati, Romania. We present here SWING-UAV test flights dedicated to NO2 measurements and performed in Romania on 10 and 11 September 2014, during the Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign. The UAV performed 5 flights in the vicinity of the large thermal power station of Turceni (44.67° N, 23.4° E). The UAV was operated in visual range during the campaign, up to 900 m AGL , downwind of the plant and crossing its exhaust plume. The spectra recorded on flight are analyzed with the Differential Optical Absorption Spectroscopy (DOAS) method. The retrieved NO2 Differential Slant Column Densities (DSCDs) are up to 1.5e17 molec/cm2 and reveal the horizontal gradients around the plant. The DSCDs are converted to vertical columns and compared with coincident car-based DOAS measurements. We also present the near-future perspective of the SWING-UAV observation system, which includes flights in 2015 above the Black Sea to quantify ship emissions, the addition of SO2 as a target species, and autopilot flights at higher altitudes to cover a typical satellite pixel extent (10x10 km2).

  4. Multi-temporal monitoring of crack formation on a mountain col with low-cost unmanned aerial systems - a case study in Austria

    Science.gov (United States)

    Stary, Ulrike; Adams, Marc

    2016-04-01

    In the Tuxer Alps of Western Austria, crack formation was observed on a col at approximately 2,500 m a.s.l., in close proximity to a highly frequented hiking trail. On an area of 0.2 ha, three several meter deep cracks were identified. Here we present the results of a 3-year monitoring of this area with low-cost, unmanned aerial systems (UAS) and photogrammetric techniques. In 2013 and 2014, a custom-built fixed-wing UAS (Multiplex Mentor, wingspan 1.6 m, gross take-off weight 2.5 kg), equipped with a Sony NEX5 (16 mm prime lens, 14 MP sensor resolution) was used to map the study site. In 2015 we employed a helicopter (Thundertiger Raptor, 0.55 m blade length, gross take-off weight 2.8 kg), fitted with a GoPro2 (60° prime lens, 5 MP sensor resolution). In all three cases we recorded 1,200-2,000 images in 10-30 minutes. To georeference the images, 8-10 ground control points (GCP) were placed at the study site and measured with a Trimble GeoXT GPS device (expected accuracy 0.15 m, precision 0.3 m). Using AgiSoft's PhotoScan (v.1.1.6), Orthophotos (OP) and digital surface models (DSM) were calculated with 5 and 20 cm ground sampling distance, respectively. The visual interpretation of the OPs gave some indication, that the size of the cracks was increasing by 0.1-0.5 m (A-axis) or 0.2-0.8 m² per year. An interpretation of the DSMs was inconclusive with regard to the depth of the cracks due to shadows in the imagery and vertical or overhanging sidewalls of the cracks. Additionally the accuracy of the GCP-measurements was found to lie below the rate of change of the cracks, thus not permitting a direct calculation of difference DSM. From an operational point-of-view, the study site proved very challenging because of its exposed, high-alpine location, with high wind speeds, gusts and poor visibility hampering the UAS-missions. The monitoring campaign will continue in 2016, where the collection of additional ground-based reference data is planned (e.g. terrestrial

  5. 园地植被覆盖度的无人机遥感监测研究%Study on Monitoring Fractional Vegetation Cover of Garden Plots by Unmanned Aerial Vehicles

    Institute of Scientific and Technical Information of China (English)

    刘峰; 刘素红; 向阳

    2014-01-01

    设计构建了基于无人直升机平台的遥感系统,以北京地区园地的板栗为研究对象,对其主要生育期进行监测.基于植被、土壤自身光谱特征差异,提出了一种无人机遥感影像植被覆盖度快速计算方法,利用多时相无人机遥感影像实现了板栗植被覆盖度年变化监测.采用计算机模拟的方式构建模拟场景,对板栗植被覆盖度统计尺度特征进行分析,进一步验证了无人机遥感影像植被覆盖度计算结果的有效性.%A remote sensing system based on the unmanned aerial vehicles (UAV) was designed and established.The garden plot in Beijing was selected as a research object and the major growing period of Chinese chestnut was monitored.Based on this system,the experiment monitoring for the major growing period of Chinese chestnut was achieved and a large number of high resolution images was obtained.The preprocessing including selecting,band separation and calibration and so on was made and finally three main band (red,green,near infrared) reflectance data of Chinese chestnut in the major growing period was generated.According to the analysis of difference for spectral signature between vegetation and soil in the band range of 400 ~ 1 200 nm,the ratio of total number of vegetation pixels was counted for the imaging range,that was fractional vegetation cover (FVC).The fractional vegetation cover of unmanned aerial vehicles images could be computed rapidly.The annual variation of fractional vegetation coverfor Chinese chestnut was monitored using multi-temporal unmanned aerial vehicles remote sensing images.The simulation scenes were formed by computer simulation method and the characteristic of statisticsscalefor Chinese chestnut fraction vegetation cover was analysed.The availability and effectiveness of the fractional vegetation cover computed from remote sensing images of unmanned aerial vehicles were validated.

  6. Aerial Orthophoto and Airborne Laser Scanning as Monitoring Tools for Land Cover Dynamics: A Case Study from the Milicz Forest District (Poland)

    Science.gov (United States)

    Szostak, Marta; Wezyk, Piotr; Tompalski, Piotr

    2014-06-01

    The paper presents the results from the study concerning the application of airborne laser scanning (ALS) data and derived raster products like the digital surface model (DSM) and the digital terrain model (DTM) for the assessment of the degree of change of the land use based on the forest succession example. Simultaneously, an automated method of ALS data processing was developed based on the normalized (nDSM) and cadastral GIS information. Besides delivering precise information on forest succession, ALS technology is an excellent tool for time-changes spatial analyses. Usage of the ALS data can support the image interpretation process decreasing the subjectivity of the operator. In parallel, a manual vectorization and object classification (object-based image analysis—OBIA) were performed; both based on aerial orthophoto and ALS data. By using integrated ALS point clouds and digital aerial images, one can obtain fast OBIA processing and the determination of areas where the land cover has changed. The Milicz District (central west part of Poland) was chosen as the test site where ALS was to be performed in 2007, together with the digital aerial photos (Vexcel camera; pixel 0.15 m; CIR). The aerial photos were then processed to a CIR orthophoto. The area of study consisted of 68 private parcels (some of them were abandoned; 68.57 ha; scanned cadastral maps from the local survey office; land use information) in the direct neighbourhood of the State Forest, on which a forest succession could often be observed. The operator vectorized forest (trees and shrubs) succession areas on the 2D CIR orthophoto. They were then compared with the results from the OBIA and GIS analysis, based on the normalized digital surface model. The results showed that areas with high vegetation cover were three times larger than the official land cover database (cadastral maps).

  7. Uso do levantamento aéreo expedito convencional e digital para o monitoramento da cobertura florestal no Paraná: estado da arte e potencialidades Conventional aerial sketchmapping and digital aerial sketchmapping development for forest monitoring in Paraná: state of art and potentialities

    Directory of Open Access Journals (Sweden)

    Fernando Luís Dlugosz

    2010-12-01

    Full Text Available

    O artigo apresenta uma abordagem sobre a técnica de Levantamento Aéreo Expedito no que diz respeito às suas características, aplicações e potencialidades para as condições brasileiras, principalmente no monitoramento das mudanças na cobertura florestal no Estado do Paraná. O método consiste na observação e anotação de feições ou fenômenos a partir de  sobrevoos na área de interesse, voando a baixas altitudes ao longo de uma rota pré-determinada. Também são apresentadas as vantagens da introdução da sistematização digital, que definiu a nova  denominação para a técnica como Levantamento Aéreo Expedito Digital. Neste caso, as anotações são realizadas digitalmente sobre tela sensível ao toque, de um computador portátil e não sobre mapa em papel, como na técnica convencional. O desenvolvimento de metodologias que demonstrem eficiência técnica e viabilidade econômica tem recebido maior ênfase em pesquisa, em função da necessidade da obtenção de informações confiáveis para subsidiar a tomada de decisões, em nível governamental, para um adequado processo de fiscalização e/ou de planejamento de uma determinada região. Considerando a dinâmica de uso da terra e a necessidade de se monitorar a cobertura vegetal,  pode-se afirmar que o Levantamento Aéreo Expedito apresenta elevado potencial de aplicação às condições brasileiras e ainda ótima relação custo-benefício.

    doi: 10.4336/2010.pfb.30.63.245

    This paper presents an approach to the technique of aerial sketchmapping in respect to its characteristics, applications and potential for use in Brazil, mainly to monitor changes in forest cover in Paraná state. The method consists of observation and annotation of features or phenomena from overflights in the area of interest flying at low altitudes along a predetermined route. It also presents the advantages obtained with the introduction of digital aerial sketchmapping, which

  8. Aerial infrared surveys in the investigation of geothermal and volcanic heat sources

    Science.gov (United States)

    ,

    1995-01-01

    This factsheet briefly summarizes and clarifies the application of aerial infrared surveys in geophysical exploration for geothermal energy sources and environmental monitoring for potential volcanic hazards.

  9. Unmanned Aerial Vehicle Instrumentation for Rapid Aerial Photo System

    CERN Document Server

    Adiprawita, Widyawardana; Semibiring, Jaka

    2008-01-01

    This research will proposed a new kind of relatively low cost autonomous UAV that will enable farmers to make just in time mosaics of aerial photo of their crop. These mosaics of aerial photo should be able to be produced with relatively low cost and within the 24 hours of acquisition constraint. The autonomous UAV will be equipped with payload management system specifically developed for rapid aerial mapping. As mentioned before turn around time is the key factor, so accuracy is not the main focus (not orthorectified aerial mapping). This system will also be equipped with special software to post process the aerial photos to produce the mosaic aerial photo map

  10. Fast Aerial Video Stitching

    Directory of Open Access Journals (Sweden)

    Jing Li

    2014-10-01

    Full Text Available The highly efficient and robust stitching of aerial video captured by unmanned aerial vehicles (UAVs is a challenging problem in the field of robot vision. Existing commercial image stitching systems have seen success with offline stitching tasks, but they cannot guarantee high-speed performance when dealing with online aerial video sequences.In this paper, we present a novel system which has an unique ability to stitch high-frame rate aerial video at a speed of 150 frames per second (FPS. In addition, rather than using a high-speed vision platform such as FPGA or CUDA, our system is running on a normal personal computer. To achieve this, after the careful comparison of the existing invariant features, we choose the FAST corner and binary descriptor for efficient feature extraction and representation, and present a spatial and temporal coherent filter to fuse the UAV motion information into the feature matching. The proposed filter can remove the majority of feature correspondence outliers and significantly increase the speed of robust feature matching by up to 20 times. To achieve a balance between robustness and efficiency, a dynamic key frame-based stitching framework is used to reduce the accumulation errors.Extensive experiments on challenging UAV datasets demonstrate that our approach can break through the speed limitation and generate an accurate stitching image for aerial video stitching tasks.

  11. A Critical Review on Unmanned Aerial Vehicle Remote Sensing Technology in the Field of Environmental Monitoring%基于无人机遥感技术的环境监测研究进展

    Institute of Scientific and Technical Information of China (English)

    谢涛; 刘锐; 胡秋红; 姚新

    2013-01-01

    As the third-generation of remote sensing technology after aviation remote sensing and space remote sensing,unmanned aerial vehicle remote sensing technology has become an emerging subject in the field of remote sensing because of its advantage of mobility,speediness,economy et al.Presented in this paper was a critical review on research and application of this technology especially in the field of environmental monitoring.Two threads were centered on,e.g.new development of unmanned aerial vehicle remote sensing technology and its application in the environmental monitoring.Technology includes sensor,image mosaicing and real-time data transmission technique.Their application includes in the field of water environment,atmospheric environment and ecological environment.In addition,some proposals were made with regard to direction of their development based on analysis of present situation.%无人机的遥感技术作为继传统航空、航天遥感之后的第3代遥感技术,以其机动、快速、经济等优势,成为国内外学者争相研究的热点课题.研究以围绕技术发展和环境应用2条主线,系统梳理多年来遥感传感器、航空图像拼接和数据传输3项无人机遥感关键技术及其在水环境、大气环境和生态环境等环境监测领域的应用进展,并结合技术应用现状及其需求状况,提出该技术的发展方向,为未来无人机遥感技术的发展提供一定的参考.

  12. Aerial radiation survey

    International Nuclear Information System (INIS)

    Aerial gamma spectrometry surveys are the most effective, comprehensive and preferred tool to delimit the large area surface contamination in a radiological emergency either due to a nuclear accident or following a nuclear strike. The airborne survey apart from providing rapid and economical evaluation of ground contamination over large areas due to larger ground clearance and higher speed, is the only technique to overcome difficulties posed by ground surveys of inaccessible region. The aerial survey technique can also be used for searching of lost radioactive sources, tracking of radioactive plume and generation of background data on the Emergency Planning Zone (EPZ) of nuclear installations

  13. 基于四旋翼无人机的人员体征监测系统%Vital Signs Monitoring System Based on Four Rotor Unmanned Aerial Vehicle

    Institute of Scientific and Technical Information of China (English)

    胡爱民; 汤爱武; 徐升

    2014-01-01

    This paper studies a new kind of vital signs monitoring system that provides fast rescue for field personnel, which integrates four rotor UAV, camera, wireless base station, monitoring and control station, monitoring terminal and vital signs detection equipment.By installing wireless base station on the four rotor UAV,the system realizes wireless monitoring of vital signs of all the mem-bers and site environment. Because the base station is installed on UAV and not affected by the topography, the limitation of ground mounted wireless base station can be overcome and the coverage of wireless signal can be improved.%研究了一种全新的生命体征监测系统,为野外活动人员提供快速的救援保障。系统整合四旋翼无人机、摄像头、无线基站、测控站、监控终端和生命体征检测设备,在四旋翼无人机上安装无线基站,实现无线监测所有队员的生命体征信息和现场情况。基站安装在无人机上,不受地形的影响,解决了传统地面安装基站的局限性,并提高了无线信号的覆盖范围。

  14. Aerial Perspective Artistry

    Science.gov (United States)

    Wolfe, Linda

    2010-01-01

    This article presents a lesson centering on aerial perspective artistry of students and offers suggestions on how art teachers should carry this project out. This project serves to develop students' visual perception by studying reproductions by famous artists. This lesson allows one to imagine being lured into a landscape capable of captivating…

  15. Persistent Aerial Tracking

    KAUST Repository

    Mueller, Matthias

    2016-04-13

    In this thesis, we propose a new aerial video dataset and benchmark for low altitude UAV target tracking, as well as, a photo-realistic UAV simulator that can be coupled with tracking methods. Our benchmark provides the rst evaluation of many state of-the-art and popular trackers on 123 new and fully annotated HD video sequences captured from a low-altitude aerial perspective. Among the compared trackers, we determine which ones are the most suitable for UAV tracking both in terms of tracking accuracy and run-time. We also present a simulator that can be used to evaluate tracking algorithms in real-time scenarios before they are deployed on a UAV "in the field", as well as, generate synthetic but photo-realistic tracking datasets with free ground truth annotations to easily extend existing real-world datasets. Both the benchmark and simulator will be made publicly available to the vision community to further research in the area of object tracking from UAVs. Additionally, we propose a persistent, robust and autonomous object tracking system for unmanned aerial vehicles (UAVs) called Persistent Aerial Tracking (PAT). A computer vision and control strategy is applied to a diverse set of moving objects (e.g. humans, animals, cars, boats, etc.) integrating multiple UAVs with a stabilized RGB camera. A novel strategy is employed to successfully track objects over a long period, by \\'handing over the camera\\' from one UAV to another. We integrate the complete system into an off-the-shelf UAV, and obtain promising results showing the robustness of our solution in real-world aerial scenarios.

  16. Evaluation of long-term mating disruption of Ephestia kuehniella and Plodia interpunctella (Lepidoptera: Pyralidae) in indoor storage facilities by pheromone traps and monitoring of relative aerial concentrations of pheromone.

    Science.gov (United States)

    Ryne, Camilla; Svensson, Glenn P; Anderbrant, Olle; Löfstedt, Christer

    2007-06-01

    The potential for pheromone-based mating disruption (MD) of Ephestia kuehniella (Walker) and Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) was investigated in two flour mills and a pet food distributor. Plastic sachets emitting 2-3 mg per d (Z,E)-9,12-tetradecadienyl acetate, the major pheromone component of both moth species, were used as MD dispensers, which were applied in grid systems resulting in one dispenser per 100 m(3) of air volume. Pheromone traps with sticky inserts were used to monitor moth population fluctuations. To monitor pheromone levels in the air before, during, and after the treatment, electroantennographic (EAG) measurements were performed using a portable device. All localities showed decreased trap catches after application of MD. In two localities with low initial population densities, trap catches were reduced immediately after application of MD and remained very low, even several months after the MD treatment was terminated. In contrast, in a locality with a higher initial population density the reduction in trap catches was slower, and trap catches increased again soon after the termination of the MD treatment. Electrophysiological data showed not only increased aerial levels of pheromone during the treatment period but also levels that were higher than during pretreatment, even 12 mo after removal of MD dispensers. The localities had good ventilation, and the memory effect observed indicates that the pheromone adhered to surfaces that subsequently functioned as secondary dispensers. Customer complaints registered by one of the mills were 49% less in 2004, after 2 yr of MD compared with 2002, the year before the treatments began.

  17. Strengthening Security during Sporting Events by Unmannde Aerial Vehicles

    NARCIS (Netherlands)

    Evers, L.

    2012-01-01

    This paper shows how Unmanned Aerial Vehicles (UAVs) can improve security in major sporting events. Given the increase in violence among sports fans it is important to timely monitor possible conflict locations. A UAV can patrol and remotely monitor the activity at these locations. Such a patrol tou

  18. AERIAL RADIOLOGICAL SURVEYS

    International Nuclear Information System (INIS)

    Measuring terrestrial gamma radiation from airborne platforms has proved to be a useful method for characterizing radiation levels over large areas. Over 300 aerial radiological surveys have been carried out over the past 25 years including U.S. Department of Energy (DOE) sites, commercial nuclear power plants, Formerly Utilized Sites Remedial Action Program/Uranium Mine Tailing Remedial Action Program (FUSRAP/UMTRAP) sites, nuclear weapons test sites, contaminated industrial areas, and nuclear accident sites. This paper describes the aerial measurement technology currently in use by the Remote Sensing Laboratory (RSL) for routine environmental surveys and emergency response activities. Equipment, data-collection and -analysis methods, and examples of survey results are described

  19. CERN: an aerial view

    CERN Multimedia

    2004-01-01

    On 30th January, when CERN still resembled a winter wonderland, a helicopter with a photographer on board took off on an aerial tour. One sunny morning at the end of January, when the area was waking up to an overnight snowfall, a helicopter took off from the Meyrin site with a CERN photographer on board. CERN has been the subject of aerial photographs ever since its creation. Although its appearance has changed over the years, the Laboratory has aged well. The aerial photographs taken during its fifty-year history bear witness to its expansion, showing how a handful of buildings and a first accelerator have blossomed into an entire machine complex. Let's take to the skies and have a look at some of the photos taken on this crisp January morning: a sight for sore eyes! In the foreground, Building 40 on the Meyrin site is recognisable from its magnet shape.On the right of the Route de Meyrin (crossing the photo diagonally), next to Point 1, the work on the Globe of Innovation, which got underway at the beg...

  20. Unmanned Aerial Vehicles (UAVs) for Surveying Marine Fauna: A Dugong Case Study

    OpenAIRE

    Amanda Hodgson; Natalie Kelly; David Peel

    2013-01-01

    Aerial surveys of marine mammals are routinely conducted to assess and monitor species' habitat use and population status. In Australia, dugongs (Dugong dugon) are regularly surveyed and long-term datasets have formed the basis for defining habitat of high conservation value and risk assessments of human impacts. Unmanned aerial vehicles (UAVs) may facilitate more accurate, human-risk free, and cheaper aerial surveys. We undertook the first Australian UAV survey trial in Shark Bay, western Au...

  1. A Review of the Characteristics of Modern Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Hristov Georgi Valentinov

    2016-06-01

    Full Text Available The main aim of this article is to present the modern unmanned aerial vehicles (UAVs and the possibilities for real-time remote monitoring of flight parameters and payload data. In the introduction section of the paper we briefly present the characteristics of the UAVs and which are their major application areas. Later, the main parameters and the various data types for remote control and monitoring of the unmanned aerial vehicles are presented and discussed. The paper continues with the methods and the technologies for transmission of these parameters and then presents a general hardware model for data transmission and a software model of a communication system suitable for UAVs.

  2. Infrared film for aerial photography

    Science.gov (United States)

    Anderson, William H.

    1979-01-01

    Considerable interest has developed recently in the use of aerial photographs for agricultural management. Even the simplest hand-held aerial photographs, especially those taken with color infrared film, often provide information not ordinarily available through routine ground observation. When fields are viewed from above, patterns and variations become more apparent, often allowing problems to be spotted which otherwise may go undetected.

  3. Ecological energetics of an abundant aerial insectivore, the Purple Martin.

    Directory of Open Access Journals (Sweden)

    Jeffrey F Kelly

    Full Text Available The atmospheric boundary layer and lower free atmosphere, or aerosphere, is increasingly important for human transportation, communication, environmental monitoring, and energy production. The impacts of anthropogenic encroachment into aerial habitats are not well understood. Insectivorous birds and bats are inherently valuable components of biodiversity and play an integral role in aerial trophic dynamics. Many of these insectivores are experiencing range-wide population declines. As a first step toward gaging the potential impacts of these declines on the aerosphere's trophic system, estimates of the biomass and energy consumed by aerial insectivores are needed. We developed a suite of energetics models for one of the largest and most common avian aerial insectivores in North America, the Purple Martin (Prognesubis. The base model estimated that Purple Martins consumed 412 (± 104 billion insects*y⁻¹ with a biomass of 115,860 (± 29,192 metric tonnes*y⁻¹. During the breeding season Purple Martins consume 10.3 (+ 3.0 kg of prey biomass per km³ of aerial habitat, equal to about 36,000 individual insects*km⁻³. Based on these calculations, the cumulative seasonal consumption of insects*km⁻³ is greater in North America during the breeding season than during other phases of the annual cycle, however the maximum daily insect consumption*km⁻³ occurs during fall migration. This analysis provides the first range-wide quantitative estimate of the magnitude of the trophic impact of this large and common aerial insectivore. Future studies could use a similar modeling approach to estimate impacts of the entire guild of aerial insectivores at a variety of temporal and spatial scales. These analyses would inform our understanding of the impact of population declines among aerial insectivores on the aerosphere's trophic dynamics.

  4. Morphing unmanned aerial vehicles

    International Nuclear Information System (INIS)

    Research on aircraft morphing has exploded in recent years. The motivation and driving force behind this has been to find new and novel ways to increase the capabilities of aircraft. Materials advancements have helped to increase possibilities with respect to actuation and, hence, a diversity of concepts and unimagined capabilities. The expanded role of unmanned aerial vehicles (UAVs) has provided an ideal platform for exploring these emergent morphing concepts since at this scale a greater amount of risk can be taken, as well as having more manageable fabrication and cost requirements. This review focuses on presenting the role UAVs have in morphing research by giving an overview of the UAV morphing concepts, designs, and technologies described in the literature. A presentation of quantitative information as well as a discussion of technical issues is given where possible to begin gaining some insight into the overall assessment and performance of these technologies. (topical review)

  5. Augmenting camera images for operators of Unmanned Aerial Vehicles

    NARCIS (Netherlands)

    Veltman, J.A.; Oving, A.B.

    2003-01-01

    The manual control of the camera of an unmanned aerial vehicle (UAV) can be difficult due to several factors such as 1) time delays between steering input and changes of the monitor content, 2) low update rates of the camera images and 3) lack of situation awareness due to the remote position of the

  6. AFSC/NMML: Beluga whale Counts from Aerial Surveys in Cook Inlet, Alaska, 1993-2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Marine Mammal Laboratory conducted aerial surveys to monitor the abundance and distribution of beluga whales in Cook Inlet, Alaska. This database...

  7. Aerospace toxicology overview: aerial application and cabin air quality.

    Science.gov (United States)

    Chaturvedi, Arvind K

    2011-01-01

    Aerospace toxicology is a rather recent development and is closely related to aerospace medicine. Aerospace toxicology can be defined as a field of study designed to address the adverse effects of medications, chemicals, and contaminants on humans who fly within or outside the atmosphere in aviation or on space flights. The environment extending above and beyond the surface of the Earth is referred to as aerospace. The term aviation is frequently used interchangeably with aerospace. The focus of the literature review performed to prepare this paper was on aerospace toxicology-related subject matters, aerial application and aircraft cabin air quality. Among the important topics addressed are the following: · Aerial applications of agricultural chemicals, pesticidal toxicity, and exposures to aerially applied mixtures of chemicals and their associated formulating solvents/surfactants The safety of aerially encountered chemicals and the bioanalytical methods used to monitor exposures to some of them · The presence of fumes and smoke, as well as other contaminants that may generally be present in aircraft/space vehicle cabin air · And importantly, the toxic effects of aerially encountered contaminants, with emphasis on the degradation products of oils, fluids, and lubricants used in aircraft, and finally · Analytical methods used for monitoring human exposure to CO and HCN are addressed in the review, as are the signs and symptoms associated with exposures to these combustion gases. Although many agricultural chemical monitoring studies have been published, few have dealt with the occurrence of such chemicals in aircraft cabin air. However, agricultural chemicals do appear in cabin air; indeed, attempts have been made to establish maximum allowable concentrations for several of the more potentially toxic ones that are found in aircraft cabin air. In this article, I emphasize the need for precautionary measures to be taken to minimize exposures to aerially

  8. Aerospace toxicology overview: aerial application and cabin air quality.

    Science.gov (United States)

    Chaturvedi, Arvind K

    2011-01-01

    Aerospace toxicology is a rather recent development and is closely related to aerospace medicine. Aerospace toxicology can be defined as a field of study designed to address the adverse effects of medications, chemicals, and contaminants on humans who fly within or outside the atmosphere in aviation or on space flights. The environment extending above and beyond the surface of the Earth is referred to as aerospace. The term aviation is frequently used interchangeably with aerospace. The focus of the literature review performed to prepare this paper was on aerospace toxicology-related subject matters, aerial application and aircraft cabin air quality. Among the important topics addressed are the following: · Aerial applications of agricultural chemicals, pesticidal toxicity, and exposures to aerially applied mixtures of chemicals and their associated formulating solvents/surfactants The safety of aerially encountered chemicals and the bioanalytical methods used to monitor exposures to some of them · The presence of fumes and smoke, as well as other contaminants that may generally be present in aircraft/space vehicle cabin air · And importantly, the toxic effects of aerially encountered contaminants, with emphasis on the degradation products of oils, fluids, and lubricants used in aircraft, and finally · Analytical methods used for monitoring human exposure to CO and HCN are addressed in the review, as are the signs and symptoms associated with exposures to these combustion gases. Although many agricultural chemical monitoring studies have been published, few have dealt with the occurrence of such chemicals in aircraft cabin air. However, agricultural chemicals do appear in cabin air; indeed, attempts have been made to establish maximum allowable concentrations for several of the more potentially toxic ones that are found in aircraft cabin air. In this article, I emphasize the need for precautionary measures to be taken to minimize exposures to aerially

  9. Laying hen and pig livestock contribution to aerial pollution in Slovenia

    OpenAIRE

    Dobeic M.; Pintarič Š.

    2011-01-01

    Livestock production is a significant contributor to global methane, nitrous oxide, carbon dioxide, and ammonia emissions. Poultry and pig farming in Slovenia needs to undertake a large survey on the emission of aerial pollutants, since monitoring on this field is incomplete. Despite this, measurements of aerial emissions such as ammonia (NH3), nitrous oxide (N2O) and carbon dioxide (CO2) were monitored from representative poultry laying hen, pig weaning an...

  10. Aerial measurements in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Winkelmann, I.; Thomas, M.; Buchroeder, H.; Brummer, C. [Federal Office for Radiation Protection, Berlin (Germany); Carloff, G. [German Federal Border Police, Grenzschutz-Fliegergruppe, Sankt Augustin (Germany)

    1997-12-31

    Aerial measurements were performed to determine the {sup 137}Cs soil contamination in a given region to detect unknown radiation sources and to assess their activity. For these measurements a computerized gamma ray spectrometer, equipped with a high purity Ge-semiconductor detector and a 12 l volume Nal(Tl)-detector was used. HPGe-detector measurements from different altitudes over area I were done to test and re-calibrate the aerial measuring system. The known {sup 137}Cs contamination of (50.7 {+-} 5.2) kBq m{sup -2} could be confirmed by the measured value of (57 {+-} 10) kBq m{sup -2}. the Nal(Tl)-detector was re-calibrated at that site for further {sup 137}Cs measurements over area II. The area II was surveyed from an altitude of about 70 m and at a parallel line distance of 150 m at an flying speed of 100 km h{sup -1} to determine the {sup 137}Cs soil contamination. The measuring time was two seconds for the Nal(Tl)-detector. For the spectra measured with the HPGe-detector, a measuring time of 30 s each was chosen. From the Nal(Tl)-measurements, a mean {sup 137}Cs value of (60 {+-} 20) kBq m{sup -2} was determined with a maximum value of 90 kBq m{sup -2}. The corresponding values measured by HPGe-detector were (70 {+-} 20) kBq m{sup -2} and 120 kBq m{sup -2}, respectively. For the evaluation of the HPGe-spectra a depth distribution parameter {alpha}/{rho} = (0.44 {+-} 0.21) cm{sup 2} g{sup -1} for {sup 137}Cs was used measured from soil samples. From data measured with the Nal(Tl)-detector during flights over area III, three{sup 60}Co-sources and one {sup 137}Cs source could be detected, localized and their activity assessed. By HPGe-detector measurements, only scattered {sup 192}lr radiation was registered. (au).

  11. Monitor

    Data.gov (United States)

    US Agency for International Development — A custom-built, dual-language (English and Spanish) system (http://www.monitor.net.co/) developed by DevTech that debuted in January 2011. It features a central PMP...

  12. Hybrid Control of Long-Endurance Aerial Robotic Vehicles for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Deok-Jin Lee

    2011-06-01

    Full Text Available This paper presents an effective hybrid control approach for building stable wireless sensor networks between heterogeneous unmanned vehicles using long‐ endurance aerial robotic vehicles. For optimal deployment of the aerial vehicles in communication networks, a gradient climbing based self‐estimating control algorithm is utilized to locate the aerial platforms to maintain maximum communication throughputs between distributed multiple nodes. The autonomous aerial robots, which function as communication relay nodes, extract and harvest thermal energy from the atmospheric environment to improve their flight endurance within specified communication coverage areas. The rapidly‐deployable sensor networks with the high‐endurance aerial vehicles can be used for various application areas including environment monitoring, surveillance, tracking, and decision‐making support. Flight test and simulation studies are conducted to evaluate the effectiveness of the proposed hybrid control technique for robust communication networks.

  13. First results for an image processing workflow for hyperspatial imagery acquired with a low-cost unmanned aerial vehicle (UAV).

    Science.gov (United States)

    Very high-resolution images from unmanned aerial vehicles (UAVs) have great potential for use in rangeland monitoring and assessment, because the imagery fills the gap between ground-based observations and remotely sensed imagery from aerial or satellite sensors. However, because UAV imagery is ofte...

  14. Dynamics of aerial target pursuit

    Science.gov (United States)

    Pal, S.

    2015-12-01

    During pursuit and predation, aerial species engage in multitasking behavior that involve simultaneous target detection, tracking, decision-making, approach and capture. The mobility of the pursuer and the target in a three dimensional environment during predation makes the capture task highly complex. Many researchers have studied and analyzed prey capture dynamics in different aerial species such as insects and bats. This article focuses on reviewing the capture strategies adopted by these species while relying on different sensory variables (vision and acoustics) for navigation. In conclusion, the neural basis of these capture strategies and some applications of these strategies in bio-inspired navigation and control of engineered systems are discussed.

  15. Monitoring

    Science.gov (United States)

    ... its main source of fuel. To keep your blood sugar level on target and avoid problems with your eyes, kidneys, heart and feet, you should eat right ... better. And monitoring doesn’t stop at measuring blood sugar levels. Because ... blood testing) Eye health (eye exams) Foot health (foot exams and ...

  16. 1939 Quay County CII Aerial Photo Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial photographs are retrievable on a frame by frame basis. The aerial photo inventory contains imagery from various sources that are now archived at the Earth...

  17. 1946 Eddy County DEO Aerial Photo Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial photographs are retrievable on a frame by frame basis. The aerial photo inventory contains imagery from various sources that are now archived at the Earth...

  18. 1947 Bernalillo County DFC Aerial Photo Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial photographs are retrievable on a frame by frame basis. The aerial photo inventory contains imagery from various sources that are now archived at the Earth...

  19. Officials: Aerial Spraying Working Against Miami Mosquitoes

    Science.gov (United States)

    ... 160274.html Officials: Aerial Spraying Working Against Miami Mosquitoes The insects are to blame for first cases ... 2016 (HealthDay News) -- Aerial spraying is killing many mosquitoes in a part of Miami where the insects ...

  20. 1946 Macho Border DDO Aerial Photo Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial photographs are retrievable on a frame by frame basis. The aerial photo inventory contains imagery from various sources that are now archived at the Earth...

  1. 1955 Lea County DHO Aerial Photo Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial photographs are retrievable on a frame by frame basis. The aerial photo inventory contains imagery from various sources that are now archived at the Earth...

  2. 1936 Curry County AG Aerial Photo Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial photographs are retrievable on a frame by frame basis. The aerial photo inventory contains imagery from various sources that are now archived at the Earth...

  3. 1936 Harding County AG Aerial Photo Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial photographs are retrievable on a frame by frame basis. The aerial photo inventory contains imagery from various sources that are now archived at the Earth...

  4. 1949 Roosevelt County CIK Aerial Photo Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial photographs are retrievable on a frame by frame basis. The aerial photo inventory contains imagery from various sources that are now archived at the Earth...

  5. 47 CFR 32.2421 - Aerial cable.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Aerial cable. 32.2421 Section 32.2421... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2421 Aerial cable. (a) This account shall include the original cost of aerial cable and of drop and block wires served by...

  6. Use of Unmanned Aerial Systems in Civil Applications

    OpenAIRE

    Toma, Antonio

    2015-01-01

    Interest in drones has been exponentially growing in the last ten years and these machines are often presented as the optimal solution in a huge number of civil applications (monitoring, agriculture, emergency management etc). However the promises still do not match the data coming from the consumer market, suggesting that the only big field in which the use of small unmanned aerial vehicles is actually profitable is the video-makers' one. This may be explained partly with the strong limits i...

  7. U. S. Department of Energy Aerial Measuring Systems

    International Nuclear Information System (INIS)

    The Aerial Measuring Systems (AMS) is an aerial surveillance system. This system consists of remote sensing equipment to include radiation detectors; multispectral, thermal, radar, and laser scanners; precision cameras; and electronic imaging and still video systems. This equipment, in varying combinations, is mounted in an airplane or helicopter and flown at different heights in specific patterns to gather various types of data. This system is a key element in the US Department of Energy's (DOE) national emergency response assets. The mission of the AMS program is twofold--first, to respond to emergencies involving radioactive materials by conducting aerial surveys to rapidly track and map the contamination that may exist over a large ground area and second, to conduct routinely scheduled, aerial surveys for environmental monitoring and compliance purposes through the use of credible science and technology. The AMS program evolved from an early program, begun by a predecessor to the DOE--the Atomic Energy Commission--to map the radiation that may have existed within and around the terrestrial environments of DOE facilities, which produced, used, or stored radioactive materials

  8. Unmanned Aerial Vehicle Use for Wood Chips Pile Volume Estimation

    Science.gov (United States)

    Mokroš, M.; Tabačák, M.; Lieskovský, M.; Fabrika, M.

    2016-06-01

    The rapid development of unmanned aerial vehicles is a challenge for applied research. Many technologies are developed and then researcher are looking up for their application in different sectors. Therefore, we decided to verify the use of the unmanned aerial vehicle for wood chips pile monitoring. We compared the use of GNSS device and unmanned aerial vehicle for volume estimation of four wood chips piles. We used DJI Phantom 3 Professional with the built-in camera and GNSS device (geoexplorer 6000). We used Agisoft photoscan for processing photos and ArcGIS for processing points. Volumes calculated from pictures were not statistically significantly different from amounts calculated from GNSS data and high correlation between them was found (p = 0.9993). We conclude that the use of unmanned aerial vehicle instead of the GNSS device does not lead to significantly different results. Tthe data collection consumed from almost 12 to 20 times less time with the use of UAV. Additionally, UAV provides documentation trough orthomosaic.

  9. UNMANNED AERIAL VEHICLE USE FOR WOOD CHIPS PILE VOLUME ESTIMATION

    Directory of Open Access Journals (Sweden)

    M. Mokroš

    2016-06-01

    Full Text Available The rapid development of unmanned aerial vehicles is a challenge for applied research. Many technologies are developed and then researcher are looking up for their application in different sectors. Therefore, we decided to verify the use of the unmanned aerial vehicle for wood chips pile monitoring. We compared the use of GNSS device and unmanned aerial vehicle for volume estimation of four wood chips piles. We used DJI Phantom 3 Professional with the built-in camera and GNSS device (geoexplorer 6000. We used Agisoft photoscan for processing photos and ArcGIS for processing points. Volumes calculated from pictures were not statistically significantly different from amounts calculated from GNSS data and high correlation between them was found (p = 0.9993. We conclude that the use of unmanned aerial vehicle instead of the GNSS device does not lead to significantly different results. Tthe data collection consumed from almost 12 to 20 times less time with the use of UAV. Additionally, UAV provides documentation trough orthomosaic.

  10. U. S. Department of Energy Aerial Measuring Systems

    Energy Technology Data Exchange (ETDEWEB)

    J. J. Lease

    1998-10-01

    The Aerial Measuring Systems (AMS) is an aerial surveillance system. This system consists of remote sensing equipment to include radiation detectors; multispectral, thermal, radar, and laser scanners; precision cameras; and electronic imaging and still video systems. This equipment, in varying combinations, is mounted in an airplane or helicopter and flown at different heights in specific patterns to gather various types of data. This system is a key element in the US Department of Energy's (DOE) national emergency response assets. The mission of the AMS program is twofold--first, to respond to emergencies involving radioactive materials by conducting aerial surveys to rapidly track and map the contamination that may exist over a large ground area and second, to conduct routinely scheduled, aerial surveys for environmental monitoring and compliance purposes through the use of credible science and technology. The AMS program evolved from an early program, begun by a predecessor to the DOE--the Atomic Energy Commission--to map the radiation that may have existed within and around the terrestrial environments of DOE facilities, which produced, used, or stored radioactive materials.

  11. Aerial robotic data acquisition system

    International Nuclear Information System (INIS)

    A small unmanned aerial vehicle (UAV) equipped with sensors for physical and chemical measurements of remote environments, is described. A miniature helicopter airframe is used as a platform for sensor testing and development. The sensor output is integrated with the flight control system for real-time, interactive, data acquisition and analysis. Pre programmed flight missions will be flown with several sensors to demonstrate the cost-effective surveillance capabilities of this new technology. (author) 10 refs

  12. Aerial robotic data acquisition system

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, K.J.; Hayes, D.W.; Pendergast, M.M. [Westinghouse Savannah River Co., Aiken, SC (United States); Corban, J.E. [Guided Systems Technologies, Atlanta, GA (United States)

    1993-12-31

    A small, unmanned aerial vehicle (UAV), equipped with sensors for physical and chemical measurements of remote environments, is described. A miniature helicopter airframe is used as a platform for sensor testing and development. The sensor output is integrated with the flight control system for real-time, interactive, data acquisition and analysis. Pre-programmed flight missions will be flown with several sensors to demonstrate the cost-effective surveillance capabilities of this new technology.

  13. Observing snow cover using unmanned aerial vehicle

    Science.gov (United States)

    Spallek, Waldemar; Witek, Matylda; Niedzielski, Tomasz

    2016-04-01

    Snow cover is a key environmental variable that influences high flow events driven by snow-melt episodes. Estimates of snow extent (SE), snow depth (SD) and snow water equivalent (SWE) allow to approximate runoff caused by snow-melt episodes. These variables are purely spatial characteristics, and hence their pointwise measurements using terrestrial monitoring systems do not offer the comprehensive and fully-spatial information on water storage in snow. Existing satellite observations of snow reveal moderate spatial resolution which, not uncommonly, is not fine enough to estimate the above-mentioned snow-related variables for small catchments. High-resolution aerial photographs and the resulting orthophotomaps and digital surface models (DSMs), obtained using unmanned aerial vehicles (UAVs), may offer spatial resolution of 3 cm/px. The UAV-based observation of snow cover may be done using the near-infrared (NIR) cameras and visible-light cameras. Since the beginning of 2015, in frame of the research project no. LIDER/012/223/L-5/13/NCBR/2014 financed by the National Centre for Research and Development of Poland, we have performed a series of the UAV flights targeted at four sites in the Kwisa catchment in the Izerskie Mts. (part of the Sudetes, SW Poland). Observations are carried out with the ultralight UAV swinglet CAM (produced by senseFly, lightweight 0.5 kg, wingspan 80 cm) which enables on-demand sampling at low costs. The aim of the field work is to acquire aerial photographs taken using the visible-light and NIR cameras for a purpose of producing time series of DSMs and orthophotomaps with snow cover for all sites. The DSMs are used to calculate SD as difference between observational (with snow) and reference (without snow) models. In order to verify such an approach to compute SD we apply several procedures, one of which is the estimation of SE using the corresponding orthophotomaps generated on a basis of visual-light and NIR images. The objective of this

  14. Aerial Image Series Quality Assessment

    International Nuclear Information System (INIS)

    With the growing demand for geospatial data, the aerial imagery with high spatial, spectral, and temporal resolution achieves great development. It is imperative to evaluate whether the acquired images are qualified enough, since the further image mosaic asks for strict time consistency and a re-flight involves considerable resources. In this paper, we address the problem of quick aerial image series quality assessment. An image series quality analysis system is proposed, which includes single image quality assessment, image series quality assessment based on the image matching, and offering a visual matching result in real time for human validation when the computer achieves dubious results. For two images, the affine matrix is different for different parts of images, especially for images of wide field. Therefore we calculate transfer matrixes by using even-distributed control points from different image parts with the RANSAC technology, and use the image rotation angle for image mosaic for human validation. Extensive experiments conducted on aerial images show that the proposed method can obtain similar results with experts

  15. Automated recognition of forest patterns using aerial photographs

    Science.gov (United States)

    Barbezat, Vincent; Kreiss, Philippe; Sulzmann, Armin; Jacot, Jacques

    1996-12-01

    In Switzerland, aerial photos are indispensable tools for research into ecosystems and their management. Every six years since 1950, the whole of Switzerland has been systematically surveyed by aerial photos. In the forestry field, these documents not only provide invaluable information but also give support to field activities such as the drawing up of tree population maps, intervention planning, precise positioning of the upper forest limit, evaluation of forest damage and rates of tree growth. Up to now, the analysis of aerial photos has been carried out by specialists who painstakingly examine every photograph, which makes it a very long, exacting and expensive job. The IMT-DMT of the EPFL and Antenne romande of FNP, aware of the special interest involved and the necessity of automated classification of aerial photos, have pooled their resources to develop a software program capable of differentiating between single trees, copses and dense forests. The developed algorithms detect the crowns of the trees and the surface of the orthogonal projection. Form the shadow of each tree they calculate its height. They also determine the position of the tree in the Swiss national coordinate thanks to the implementation of a numeric altitude model. For the future, we have the prospect of many new and better uses of aerial photos being available to us, particularly where isolated stands are concerned and also when evolutions based on a diachronic series of photos have to be assessed: from timberline monitoring in the research on global change to the exploitation of wooded pastures on small surface areas.

  16. Vehicle detection from high-resolution aerial images based on superpixel and color name features

    Science.gov (United States)

    Chen, Ziyi; Cao, Liujuan; Yu, Zang; Chen, Yiping; Wang, Cheng; Li, Jonathan

    2016-03-01

    Automatic vehicle detection from aerial images is emerging due to the strong demand of large-area traffic monitoring. In this paper, we present a novel framework for automatic vehicle detection from the aerial images. Through superpixel segmentation, we first segment the aerial images into homogeneous patches, which consist of the basic units during the detection to improve efficiency. By introducing the sparse representation into our method, powerful classification ability is achieved after the dictionary training. To effectively describe a patch, the Histogram of Oriented Gradient (HOG) is used. We further propose to integrate color information to enrich the feature representation by using the color name feature. The final feature consists of both HOG and color name based histogram, by which we get a strong descriptor of a patch. Experimental results demonstrate the effectiveness and robust performance of the proposed algorithm for vehicle detection from aerial images.

  17. Aerial Photography and Imagery, Uncorrected, historic aerial imagery; 1931-1990, Published in 2006, Washoe County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Aerial Photography and Imagery, Uncorrected dataset, was produced all or in part from Hardcopy Maps information as of 2006. It is described as 'historic aerial...

  18. Dropsonde System for Unmanned Aerial Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Unmanned Aerial Vehicles (UAVs) are assuming more numerous and increasingly important roles in global environmental and atmospheric research. There is a...

  19. Automated Orientation of Aerial Images

    DEFF Research Database (Denmark)

    Høhle, Joachim

    2002-01-01

    Methods for automated orientation of aerial images are presented. They are based on the use of templates, which are derived from existing databases, and area-based matching. The characteristics of available database information and the accuracy requirements for map compilation and orthoimage...... production are discussed on the example of Denmark. Details on the developed methods for interior and exterior orientation are described. Practical examples like the measurement of réseau images, updating of topographic databases and renewal of orthoimages are used to prove the feasibility of the developed...

  20. BOREAS Level-0 ER-2 Aerial Photography

    Science.gov (United States)

    Newcomer, Jeffrey A.; Dominquez, Roseanne; Hall, Forrest G. (Editor)

    2000-01-01

    For BOReal Ecosystem-Atmosphere Study (BOREAS), the ER-2 and other aerial photography was collected to provide finely detailed and spatially extensive documentation of the condition of the primary study sites. The ER-2 aerial photography consists of color-IR transparencies collected during flights in 1994 and 1996 over the study areas.

  1. Aerial service robotics: the AIRobots perspective

    NARCIS (Netherlands)

    Marconi, L.; Basile, F.; Caprari, G.; Carloni, R.; Chiacchio, P.; Hurzeler, C.; Lippiello, V.; Naldi, R.; Siciliano, B.; Stramigioli, S.; Zwicker, E.

    2012-01-01

    This paper presents the main vision and research activities of the ongoing European project AIRobots (Innova- tive Aerial Service Robot for Remote Inspection by Contact, www.airobots.eu). The goal of AIRobots is to develop a new generation of aerial service robots capable of supporting human beings

  2. Automatic Sea Bird Detection from High Resolution Aerial Imagery

    Science.gov (United States)

    Mader, S.; Grenzdörffer, G. J.

    2016-06-01

    Great efforts are presently taken in the scientific community to develop computerized and (fully) automated image processing methods allowing for an efficient and automatic monitoring of sea birds and marine mammals in ever-growing amounts of aerial imagery. Currently the major part of the processing, however, is still conducted by especially trained professionals, visually examining the images and detecting and classifying the requested subjects. This is a very tedious task, particularly when the rate of void images regularly exceeds the mark of 90%. In the content of this contribution we will present our work aiming to support the processing of aerial images by modern methods from the field of image processing. We will especially focus on the combination of local, region-based feature detection and piecewise global image segmentation for automatic detection of different sea bird species. Large image dimensions resulting from the use of medium and large-format digital cameras in aerial surveys inhibit the applicability of image processing methods based on global operations. In order to efficiently handle those image sizes and to nevertheless take advantage of globally operating segmentation algorithms, we will describe the combined usage of a simple performant feature detector based on local operations on the original image with a complex global segmentation algorithm operating on extracted sub-images. The resulting exact segmentation of possible candidates then serves as a basis for the determination of feature vectors for subsequent elimination of false candidates and for classification tasks.

  3. APPLICABILITY EVALUATION OF OBJECT DETECTION METHOD TO SATELLITE AND AERIAL IMAGERIES

    Directory of Open Access Journals (Sweden)

    K. Kamiya

    2016-06-01

    Full Text Available Since satellite and aerial imageries are recently widely spread and frequently observed, combination of them are expected to complement spatial and temporal resolution each other. One of the prospective applications is traffic monitoring, where objects of interest, or vehicles, need to be recognized automatically. Techniques that employ object detection before object recognition can save a computational time and cost, and thus take a significant role. However, there is not enough knowledge whether object detection method can perform well on satellite and aerial imageries. In addition, it also has to be studied how characteristics of satellite and aerial imageries affect the object detection performance. This study employ binarized normed gradients (BING method that runs significantly fast and is robust to rotation and noise. For our experiments, 11-bits BGR-IR satellite imageries from WorldView-3, and BGR-color aerial imageries are used respectively, and we create thousands of ground truth samples. We conducted several experiments to compare the performances with different images, to verify whether combination of different resolution images improved the performance, and to analyze the applicability of mixing satellite and aerial imageries. The results showed that infrared band had little effect on the detection rate, that 11-bit images performed less than 8-bit images and that the better spatial resolution brought the better performance. Another result might imply that mixing higher and lower resolution images for training dataset could help detection performance. Furthermore, we found that aerial images improved the detection performance on satellite images.

  4. Applicability Evaluation of Object Detection Method to Satellite and Aerial Imageries

    Science.gov (United States)

    Kamiya, K.; Fuse, T.; Takahashi, M.

    2016-06-01

    Since satellite and aerial imageries are recently widely spread and frequently observed, combination of them are expected to complement spatial and temporal resolution each other. One of the prospective applications is traffic monitoring, where objects of interest, or vehicles, need to be recognized automatically. Techniques that employ object detection before object recognition can save a computational time and cost, and thus take a significant role. However, there is not enough knowledge whether object detection method can perform well on satellite and aerial imageries. In addition, it also has to be studied how characteristics of satellite and aerial imageries affect the object detection performance. This study employ binarized normed gradients (BING) method that runs significantly fast and is robust to rotation and noise. For our experiments, 11-bits BGR-IR satellite imageries from WorldView-3, and BGR-color aerial imageries are used respectively, and we create thousands of ground truth samples. We conducted several experiments to compare the performances with different images, to verify whether combination of different resolution images improved the performance, and to analyze the applicability of mixing satellite and aerial imageries. The results showed that infrared band had little effect on the detection rate, that 11-bit images performed less than 8-bit images and that the better spatial resolution brought the better performance. Another result might imply that mixing higher and lower resolution images for training dataset could help detection performance. Furthermore, we found that aerial images improved the detection performance on satellite images.

  5. COCOA: tracking in aerial imagery

    Science.gov (United States)

    Ali, Saad; Shah, Mubarak

    2006-05-01

    Unmanned Aerial Vehicles (UAVs) are becoming a core intelligence asset for reconnaissance, surveillance and target tracking in urban and battlefield settings. In order to achieve the goal of automated tracking of objects in UAV videos we have developed a system called COCOA. It processes the video stream through number of stages. At first stage platform motion compensation is performed. Moving object detection is performed to detect the regions of interest from which object contours are extracted by performing a level set based segmentation. Finally blob based tracking is performed for each detected object. Global tracks are generated which are used for higher level processing. COCOA is customizable to different sensor resolutions and is capable of tracking targets as small as 100 pixels. It works seamlessly for both visible and thermal imaging modes. The system is implemented in Matlab and works in a batch mode.

  6. Handbook of unmanned aerial vehicles

    CERN Document Server

    Vachtsevanos, George

    2015-01-01

    The Handbook of Unmanned Aerial Vehicles is a reference text for the academic and research communities, industry, manufacturers, users, practitioners, Federal Government, Federal and State Agencies, the private sector, as well as all organizations that are and will be using unmanned aircraft in a wide spectrum of applications. The Handbook covers all aspects of UAVs, from design to logistics and ethical issues. It is also targeting the young investigator, the future inventor and entrepreneur by providing an overview and detailed information of the state-of-the-art as well as useful new concepts that may lead to innovative research. The contents of the Handbook include material that addresses the needs and ‘know how’ of all of the above sectors targeting a very diverse audience. The Handbook offers a unique and comprehensive treatise of everything one needs to know about unmanned aircrafts, from conception to operation, from technologies to business activities, users, OEMs, reference sources, conferences, ...

  7. Sub-aerial tailings deposition

    International Nuclear Information System (INIS)

    The sub-aerial technique involves the systematic deposition of tailings in thin layers and allowing each layer to settle, drain and partially air dry prior to covering with a further layer. Underdrainage produces densities in excess of those achieved by sub-aqueous deposition and any air-drying serves to preconsolidate each layer with a resulting further increase in density. The low permeability of the tailings surface resulting from this deposition technique results in high runoff coefficients and, by decanting the runoff component of direct precipitation, a net evaporation condition can be achieved even in high rainfall areas. An underdrainage system prevents the build-up of excess pore-pressures within the tailings mass and at decommissioning the tailings are fully consolidated and drained thereby eliminating the possibility of any long term seepage. This paper presents a general description of these design concepts, and details of two projects where the concepts have been applied

  8. Texture and scale in object-based analysis of subdecimeter resolution unmanned aerial vehicle (UAV) imagery

    Science.gov (United States)

    Imagery acquired with unmanned aerial vehicles (UAVs) has great potential for incorporation into natural resource monitoring protocols due to their ability to be deployed quickly and repeatedly and to fly at low altitudes. While the imagery may have high spatial resolution, the spectral resolution i...

  9. Aerial Terrain Mapping Using Unmanned Aerial Vehicle Approach

    Science.gov (United States)

    Tahar, K. N.

    2012-08-01

    This paper looks into the latest achievement in the low-cost Unmanned Aerial Vehicle (UAV) technology in their capacity to map the semi-development areas. The objectives of this study are to establish a new methodology or a new algorithm in image registration during interior orientation process and to determine the accuracy of the photogrammetric products by using UAV images. Recently, UAV technology has been used in several applications such as mapping, agriculture and surveillance. The aim of this study is to scrutinize the usage of UAV to map the semi-development areas. The performance of the low cost UAV mapping study was established on a study area with two image processing methods so that the results could be comparable. A non-metric camera was attached at the bottom of UAV and it was used to capture images at both sites after it went through several calibration steps. Calibration processes were carried out to determine focal length, principal distance, radial lens distortion, tangential lens distortion and affinity. A new method in image registration for a non-metric camera is discussed in this paper as a part of new methodology of this study. This method used the UAV Global Positioning System (GPS) onboard to register the UAV image for interior orientation process. Check points were established randomly at both sites using rapid static Global Positioning System. Ground control points are used for exterior orientation process, and check point is used for accuracy assessment of photogrammetric product. All acquired images were processed in a photogrammetric software. Two methods of image registration were applied in this study, namely, GPS onboard registration and ground control point registration. Both registrations were processed by using photogrammetric software and the result is discussed. Two results were produced in this study, which are the digital orthophoto and the digital terrain model. These results were analyzed by using the root mean square

  10. 7 CFR 611.21 - Availability of aerial photography.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Availability of aerial photography. 611.21 Section 611... § 611.21 Availability of aerial photography. The National Cartography and Geospatial Center obtains necessary clearance for all aerial photography for NRCS. New aerial photography of designated areas in...

  11. Verification of Potency of Aerial Digital Oblique Cameras for Aerial Photogrammetry in Japan

    Science.gov (United States)

    Nakada, Ryuji; Takigawa, Masanori; Ohga, Tomowo; Fujii, Noritsuna

    2016-06-01

    Digital oblique aerial camera (hereinafter called "oblique cameras") is an assembly of medium format digital cameras capable of shooting digital aerial photographs in five directions i.e. nadir view and oblique views (forward and backward, left and right views) simultaneously and it is used for shooting digital aerial photographs efficiently for generating 3D models in a wide area. For aerial photogrammetry of public survey in Japan, it is required to use large format cameras, like DMC and UltraCam series, to ensure aerial photogrammetric accuracy. Although oblique cameras are intended to generate 3D models, digital aerial photographs in 5 directions taken with them should not be limited to 3D model production but they may also be allowed for digital mapping and photomaps of required public survey accuracy in Japan. In order to verify the potency of using oblique cameras for aerial photogrammetry (simultaneous adjustment, digital mapping and photomaps), (1) a viewer was developed to interpret digital aerial photographs taken with oblique cameras, (2) digital aerial photographs were shot with an oblique camera owned by us, a Penta DigiCAM of IGI mbH, and (3) accuracy of 3D measurements was verified.

  12. Atlantic Protected Species Assessment Aerial Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data sets include a compilation of aerial line-transect surveys conducted over continental shelf waters of the southeastern U.S. Surveys have been conducted...

  13. Douglas County Historical Rectified Aerial Photos 1954

    Data.gov (United States)

    Kansas Data Access and Support Center — This raster dataset consists of approximately 200 aerial photographs taken in 1954 in Douglas county, Kansas, United States. The Douglas County Public Works...

  14. Douglas County Historical Rectified Aerial Photos 1937

    Data.gov (United States)

    Kansas Data Access and Support Center — This raster dataset consists of approximately 200 aerial photographs taken in 1937 in Douglas county, Kansas, United States. The Douglas County Public Works...

  15. Dropsonde System for Unmanned Aerial Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A small, modular dropsonde launcher is being developed for Unmanned Aerial Vehicles (UAVs). Some critical measurement needs can only be satisfied by in-situ...

  16. Aerial Gamma-Ray Surveys in Alaska

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Data generated by aerial sensing of radiation emanating from the earth's surface in Alaska provides general estimates of the geographic distribution of Uranium,...

  17. Planning and decision making for aerial robots

    CERN Document Server

    Bestaoui Sebbane, Yasmina

    2014-01-01

    This book provides an introduction to the emerging field of planning and decision making for aerial robots. An aerial robot is the ultimate form of Unmanned Aerial Vehicle, an aircraft endowed with built-in intelligence, requiring no direct human control and able to perform a specific task. It must be able to fly within a partially structured environment, to react and adapt to changing environmental conditions and to accommodate for the uncertainty that exists in the physical world. An aerial robot can be termed as a physical agent that exists and flies in the real 3D world, can sense its environment and act on it to achieve specific goals. So throughout this book, an aerial robot will also be termed as an agent.   Fundamental problems in aerial robotics include the tasks of spatial motion, spatial sensing and spatial reasoning. Reasoning in complex environments represents a difficult problem. The issues specific to spatial reasoning are planning and decision making. Planning deals with the trajectory algori...

  18. Sediment Sampling in Estuarine Mudflats with an Aerial-Ground Robotic Team

    Science.gov (United States)

    Deusdado, Pedro; Guedes, Magno; Silva, André; Marques, Francisco; Pinto, Eduardo; Rodrigues, Paulo; Lourenço, André; Mendonça, Ricardo; Santana, Pedro; Corisco, José; Almeida, Susana Marta; Portugal, Luís; Caldeira, Raquel; Barata, José; Flores, Luis

    2016-01-01

    This paper presents a robotic team suited for bottom sediment sampling and retrieval in mudflats, targeting environmental monitoring tasks. The robotic team encompasses a four-wheel-steering ground vehicle, equipped with a drilling tool designed to be able to retain wet soil, and a multi-rotor aerial vehicle for dynamic aerial imagery acquisition. On-demand aerial imagery, properly fused on an aerial mosaic, is used by remote human operators for specifying the robotic mission and supervising its execution. This is crucial for the success of an environmental monitoring study, as often it depends on human expertise to ensure the statistical significance and accuracy of the sampling procedures. Although the literature is rich on environmental monitoring sampling procedures, in mudflats, there is a gap as regards including robotic elements. This paper closes this gap by also proposing a preliminary experimental protocol tailored to exploit the capabilities offered by the robotic system. Field trials in the south bank of the river Tagus’ estuary show the ability of the robotic system to successfully extract and transport bottom sediment samples for offline analysis. The results also show the efficiency of the extraction and the benefits when compared to (conventional) human-based sampling. PMID:27618060

  19. Sediment Sampling in Estuarine Mudflats with an Aerial-Ground Robotic Team.

    Science.gov (United States)

    Deusdado, Pedro; Guedes, Magno; Silva, André; Marques, Francisco; Pinto, Eduardo; Rodrigues, Paulo; Lourenço, André; Mendonça, Ricardo; Santana, Pedro; Corisco, José; Almeida, Susana Marta; Portugal, Luís; Caldeira, Raquel; Barata, José; Flores, Luis

    2016-09-09

    This paper presents a robotic team suited for bottom sediment sampling and retrieval in mudflats, targeting environmental monitoring tasks. The robotic team encompasses a four-wheel-steering ground vehicle, equipped with a drilling tool designed to be able to retain wet soil, and a multi-rotor aerial vehicle for dynamic aerial imagery acquisition. On-demand aerial imagery, properly fused on an aerial mosaic, is used by remote human operators for specifying the robotic mission and supervising its execution. This is crucial for the success of an environmental monitoring study, as often it depends on human expertise to ensure the statistical significance and accuracy of the sampling procedures. Although the literature is rich on environmental monitoring sampling procedures, in mudflats, there is a gap as regards including robotic elements. This paper closes this gap by also proposing a preliminary experimental protocol tailored to exploit the capabilities offered by the robotic system. Field trials in the south bank of the river Tagus' estuary show the ability of the robotic system to successfully extract and transport bottom sediment samples for offline analysis. The results also show the efficiency of the extraction and the benefits when compared to (conventional) human-based sampling.

  20. Sediment Sampling in Estuarine Mudflats with an Aerial-Ground Robotic Team

    Directory of Open Access Journals (Sweden)

    Pedro Deusdado

    2016-09-01

    Full Text Available This paper presents a robotic team suited for bottom sediment sampling and retrieval in mudflats, targeting environmental monitoring tasks. The robotic team encompasses a four-wheel-steering ground vehicle, equipped with a drilling tool designed to be able to retain wet soil, and a multi-rotor aerial vehicle for dynamic aerial imagery acquisition. On-demand aerial imagery, properly fused on an aerial mosaic, is used by remote human operators for specifying the robotic mission and supervising its execution. This is crucial for the success of an environmental monitoring study, as often it depends on human expertise to ensure the statistical significance and accuracy of the sampling procedures. Although the literature is rich on environmental monitoring sampling procedures, in mudflats, there is a gap as regards including robotic elements. This paper closes this gap by also proposing a preliminary experimental protocol tailored to exploit the capabilities offered by the robotic system. Field trials in the south bank of the river Tagus’ estuary show the ability of the robotic system to successfully extract and transport bottom sediment samples for offline analysis. The results also show the efficiency of the extraction and the benefits when compared to (conventional human-based sampling.

  1. Observing river stages using unmanned aerial vehicles

    Science.gov (United States)

    Niedzielski, Tomasz; Witek, Matylda; Spallek, Waldemar

    2016-08-01

    We elaborated a new method for observing water surface areas and river stages using unmanned aerial vehicles (UAVs). It is based on processing multitemporal five orthophotomaps produced from the UAV-taken visible light images of nine sites of the river, acquired with a sufficient overlap in each part. Water surface areas are calculated in the first place, and subsequently expressed as fractions of total areas of water-covered terrain at a given site of the river recorded on five dates. The logarithms of the fractions are later calculated, producing five samples, each consisted of nine elements. In order to detect statistically significant increments of water surface areas between two orthophotomaps, we apply the asymptotic and bootstrapped versions of the Student's t test, preceded by other tests that aim to check model assumptions. The procedure is applied to five orthophotomaps covering nine sites of the Ścinawka river (south-western (SW) Poland). The data have been acquired during the experimental campaign, at which flight settings were kept unchanged over nearly 3 years (2012-2014). We have found that it is possible to detect transitions between water surface areas associated with all characteristic water levels (low, mean, intermediate and high stages). In addition, we infer that the identified transitions hold for characteristic river stages as well. In the experiment we detected all increments of water level: (1) from low stages to mean, intermediate and high stages; (2) from mean stages to intermediate and high stages; and (3) from intermediate stages to high stages. Potential applications of the elaborated method include verification of hydrodynamic models and the associated predictions of high flows as well as monitoring water levels of rivers in ungauged basins.

  2. Analysis of cyberattacks on unmanned aerial systems

    Science.gov (United States)

    Shull, Andrew M.

    With the increasing power and convenience offered by the use of embedded systems in control applications, such systems will undoubtedly continue to be developed and deployed. Recently, however, a focus on data-centric systems and developing network-enabled control systems has emerged, allowing for greater performance, safety, and resource allocation in systems such as smart power grids and unmanned military aircraft. However, this increase in connectivity also introduces vulnerabilities into these systems, potentially providing access to malicious parties seeking to disrupt the operation of those systems or to cause damage. Given the high potential cost of a failure in these systems in terms of property, sensitive information, and human safety, steps need to be taken to secure these systems. In order to analyze the vulnerabilities of unmanned aerial systems (UASs) specifically, a simulation testbed is developed to perform high-fidelity simulations of UAS operations using both software models and the actual vehicle hardware. Then, potential attacks against the control system and their corresponding intents are identified and introduced into these simulations. Failure conditions are defined, and extensive simulation of attacks in different combinations and magnitudes are performed in both software and hardware in order to identify particularly successful attacks, including attacks that are difficult to detect. From these results, vulnerabilities of the system can be determined so that appropriate remedies can be designed. Additionally, stealthy false data injection attacks against linear feedback systems are considered. The identification of these attacks is formed as an optimization problem constrained by the ability of monitoring systems to detect the attack. The optimal attack input is then determined for an example application so that the worst case system performance can be identified and, if needed, improved.

  3. Can reliable sage-grouse lek counts be obtained using aerial infrared technology

    Science.gov (United States)

    Gillette, Gifford L.; Coates, Peter S.; Petersen, Steven; Romero, John P.

    2013-01-01

    More effective methods for counting greater sage-grouse (Centrocercus urophasianus) are needed to better assess population trends through enumeration or location of new leks. We describe an aerial infrared technique for conducting sage-grouse lek counts and compare this method with conventional ground-based lek count methods. During the breeding period in 2010 and 2011, we surveyed leks from fixed-winged aircraft using cryogenically cooled mid-wave infrared cameras and surveyed the same leks on the same day from the ground following a standard lek count protocol. We did not detect significant differences in lek counts between surveying techniques. These findings suggest that using a cryogenically cooled mid-wave infrared camera from an aerial platform to conduct lek surveys is an effective alternative technique to conventional ground-based methods, but further research is needed. We discuss multiple advantages to aerial infrared surveys, including counting in remote areas, representing greater spatial variation, and increasing the number of counted leks per season. Aerial infrared lek counts may be a valuable wildlife management tool that releases time and resources for other conservation efforts. Opportunities exist for wildlife professionals to refine and apply aerial infrared techniques to wildlife monitoring programs because of the increasing reliability and affordability of this technology.

  4. Research of Unmanned Aerial Vehicle Remote Sensing Technique Applied to Monitor Landslip and Barrier Lake Hazard in Chengkou County of Chongqing%低空无人飞行器遥感技术在重庆城口滑坡堰塞湖灾害监测中的应用研究

    Institute of Scientific and Technical Information of China (English)

    马泽忠; 王福海; 刘智华; 刘学

    2011-01-01

    In the paper, unmanned aerial vehicle (UAV) remote sensing technique was applied to monitor landslip geological hazard in Chengkou county of Chongqing by analyzing methods of low-altitude flying UAV remote sensing technique in complex terrain and weather conditions to access and process digital image data,and applications of low-altitude flying UAV remote sensing technique to landslip geological hazard assessment and hazard loss evaluation was explored. The distinct advantage of accomplishing remote sensing data acquirement, processing, 3-dimension modeling and application analysis was proved in the study. The conclusion could be derived that the accurate and excellent accounts basis information and data of statistical analysis could be provided to emergency rescues of geological hazard, disaster relief work, assessment of natural disaster and reconstruction by applying UAV remote sensing digital ortho-photo map and digital elevation model, and using low-altitude flying UAV remote sensing technique can be effective for the traditional remote sensing technology in geological hazard monitoring.%应用无人飞行器低空遥感技术对重庆城口滑坡地质灾害进行监测,分析了无人飞行器低空遥感技术在复杂地形及气象条件下数据获取与数据处理的技术流程和方法,并对无人飞行器低空遥感技术在滑坡地质灾害灾情评估和灾损评价中的应用上进行了探索.结果表明,无人飞行器低空遥感技术在困难地区完成遥感数据的获取与处理、三维建模和应用分析具有明显优势;无人飞行器低空遥感技术生成的数字正射影像图和数字高程模型数据可以为地质灾害发生后的抢险救灾、灾情评估和灾后重建提供准确、直观、翔实的基础数据和统计分析数据;采用无人飞行器低空遥感进行地质灾害监测可以有效弥补传统遥感技术的不足,为地质灾害遥感监测提供技术保障.

  5. Aerial Delivery Systems and Technologies (Review Paper

    Directory of Open Access Journals (Sweden)

    Balraj Gupta

    2010-03-01

    Full Text Available Aerial Delivery Research & Development Establishment (ADRDE was started at Kanpur during latter part of 1950's consisting of two Aerial Delivery Sections primarily for the indigenisation of Parachutes and related equipment for Para-dropping of men and materials. Today, the charter of ADRDE includes design & development of parachutes, Aerostat Systems, Aircraft Arrester Barrier Systems and Heavy-Drop Systems for both military and civilian applications. The technological competence built in Aeronautical, Textile, Mechanical and Electronics engineering has imparted ADRDE, a unique combination of know-how and capabilities to evolve new solutions in these fields, with emphasis on quality assurance. This paper highlights the design and development of technologies developed by ADRDE to stengthen the India's aerial delivery system and its future plans.Defence Science Journal, 2010, 60(2, pp.124-136, DOI:http://dx.doi.org/10.14429/dsj.60.326

  6. Resource understanding: a challenge to aerial methods

    Science.gov (United States)

    Udall, Stewart L.

    1965-01-01

    Aerial survey methods are speeding acquisition of survey data needed to provide and manage the nation's resources. These methods have been applied to topographic mapping for a number of years and the record clearly shows their advantages in terms of cost and speed in contrast to the ground methods that have been historically employed. Limited use is now being made of aerial methods to assist cadastral surveys, in location, acquisition and development of National Parks, in mapping the geology of the nation, in locating and developing water resources, and in surveys of the oceans. It is the purpose of this paper to call attention to these uses and to encourage the scientific community to further refine aerial methods so that their use may be increased and the veracity of data improved.

  7. MONITORING SEABIRDS AND MARINE MAMMALS BY GEOREFERENCED AERIAL PHOTOGRAPHY

    OpenAIRE

    G. Kemper; Weidauer, A.; Coppack, T.

    2016-01-01

    The assessment of anthropogenic impacts on the marine environment is challenged by the accessibility, accuracy and validity of biogeographical information. Offshore wind farm projects require large-scale ecological surveys before, during and after construction, in order to assess potential effects on the distribution and abundance of protected species. The robustness of site-specific population estimates depends largely on the extent and design of spatial coverage and the accuracy of...

  8. Ground cover estimated from aerial photographs

    Science.gov (United States)

    Gerbermann, A. H.; Cuellar, J. A.; Wiegand, C. L.

    1976-01-01

    Estimates of per cent ground cover made by ground observers were compared with independent estimates made on the basis of low-altitude (640-1219 m) aerial photographs of the same fields. Standard statistical simple correlation and linear regression analyses revealed a high correlation between the two estimation methods. In crops such as grain, sorghum, corn, and forage sorghum, in which the broadest part of the leaf canopy is near the top of the plant, there was a tendency to overestimate the per cent ground cover from aerial photographs.

  9. Advanced Image Processing of Aerial Imagery

    Science.gov (United States)

    Woodell, Glenn; Jobson, Daniel J.; Rahman, Zia-ur; Hines, Glenn

    2006-01-01

    Aerial imagery of the Earth is an invaluable tool for the assessment of ground features, especially during times of disaster. Researchers at the NASA Langley Research Center have developed techniques which have proven to be useful for such imagery. Aerial imagery from various sources, including Langley's Boeing 757 Aries aircraft, has been studied extensively. This paper discusses these studies and demonstrates that better-than-observer imagery can be obtained even when visibility is severely compromised. A real-time, multi-spectral experimental system will be described and numerous examples will be shown.

  10. Optimal Path Planning for Unmanned Aerial Systems

    OpenAIRE

    Forsmo, Erik Johannes

    2012-01-01

    This thesis is a contribution to the Unmanned Aerial Vehicle (UAV) project at the Department of Engineering Cybernetics, which is a project where contributions from master students and Phd students will result in an autonomous aerial vehicle. The unmanned vehicle laboratory has its own UAV, the Odin Recce D6 delta-wing aircraft which is to be considered in the overall project. When the UAV is in the air on a mission, one important thing is to ensure that the UAV detects obstacles, such as mou...

  11. Metrically preserving the USGS aerial film archive

    Science.gov (United States)

    Moe, Donald; Longhenry, Ryan

    2013-01-01

    Since 1972, the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center in Sioux Falls, South Dakota, has provided fi lm-based products to the public. EROS is home to an archive of 12 million frames of analog photography ranging from 1937 to the present. The archive contains collections from both aerial and satellite platforms including programs such as the National High Altitude Program (NHAP), National Aerial Photography Program (NAPP), U.S. Antarctic Resource Center (USARC), Declass 1(CORONA, ARGON, and LANYARD), Declass 2 (KH-7 and KH-9), and Landsat (1972 – 1992, Landsat 1–5).

  12. 1935 15' Quad #373 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  13. 1935 15' Quad #032 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  14. 1935 15' Quad #129 Aerial Photo Mosaic Index - NM

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  15. 1935 15' Quad #059 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  16. 1935 15' Quad #391 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  17. 1935 15' Quad #057 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  18. 1935 15' Quad #003 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  19. 1935 15' Quad #364 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  20. 1935 15' Quad #273 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  1. 1935 15' Quad #124 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  2. 1935 15' Quad #109 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  3. 1935 15' Quad #154 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  4. 1935 15' Quad #130 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  5. 1935 15' Quad #009 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  6. 1935 15' Quad #292 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  7. 1935 15' Quad #221 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  8. 1935 15' Quad #243 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  9. 1935 15' Quad #414 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  10. 1935 15' Quad #267 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  11. 1935 15' Quad #386 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  12. 1935 15' Quad #199 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  13. 1935 15' Quad #361 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  14. 1935 15' Quad #197 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  15. 1935 15' Quad #245 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  16. 1935 15' Quad #227 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  17. 1935 15' Quad #132 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  18. 1935 15' Quad #298 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  19. 1935 15' Quad #200 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  20. 1935 15' Quad #005 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  1. 1935 15' Quad #393 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  2. 1935 15' Quad #217 Aerial Photo Mosaic Index - AZ

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  3. 1935 15' Quad #195 Aerial Photo Mosaic Index - AZ

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  4. 1935 15' Quad #014 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  5. 1935 15' Quad #442 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  6. 1935 15' Quad #006 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  7. 1935 15' Quad #129 Aerial Photo Mosaic Index - AZ

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  8. 1935 15' Quad #031 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  9. 1935 15' Quad #394 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  10. 1935 15' Quad #060 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  11. 1935 15' Quad #002 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  12. 1935 15' Quad #297 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  13. 1935 15' Quad #004 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  14. 1935 15' Quad #223 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  15. 1935 15' Quad #362 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  16. 1935 15' Quad #056 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  17. 1935 15' Quad #368 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  18. 1935 15' Quad #074 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  19. 1935 15' Quad #075 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  20. 1935 15' Quad #073 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  1. 1935 15' Quad #375 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  2. 1935 15' Quad #363 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  3. 1935 15' Quad #153 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  4. 1935 15' Quad #270 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  5. Index for SCS 1934-1937 Aerial Photography

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial photographs are retrievable on a frame by frame basis. The aerial photo inventory contains imagery from various sources that are now archived at the Earth...

  6. 1935 15' Quad #049 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  7. 1935 15' Quad #371 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  8. 1935 15' Quad #087 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  9. 1935 15' Quad #100 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  10. 1935 15' Quad #172 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  11. 1935 15' Quad #244 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  12. 1935 15' Quad #392 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  13. 1935 15' Quad #259 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  14. 1935 15' Quad #173 Aerial Photo Mosaic Index - AZ

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  15. 1935 15' Quad #366 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  16. 1935 15' Quad #374 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  17. 1935 15' Quad #238 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  18. 1935 15' Quad #281 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  19. 1935 15' Quad #106 Aerial Photo Mosaic Index - AZ

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  20. 1935 15' Quad #033 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  1. 1935 15' Quad #151 Aerial Photo Mosaic Index - AZ

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  2. 1949-50 DIO USFS Aerial Photo Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial photographs are retrievable on a frame by frame basis. The aerial photo inventory contains imagery from various sources that are now archived at the Earth...

  3. 1935 15' Quad #157 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  4. 1935 15' Quad #265 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  5. 1935 15' Quad #345 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  6. 1935 15' Quad #319 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  7. 1935 15' Quad #082 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  8. 1935 15' Quad #105 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  9. 1935 15' Quad #176 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  10. 1935 15' Quad #034 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  11. US Forest Service Aerial Fire Retardant Hydrographic Avoidance Areas: Aquatic

    Data.gov (United States)

    US Forest Service, Department of Agriculture — A map services on the www depicting aerial retardant avoidance areas for hydrographic feature data. Aerial retardant avoidance area for hydrographic feature data...

  12. US Forest Service Aerial Fire Retardant Avoidance Areas: Terrestrial

    Data.gov (United States)

    US Forest Service, Department of Agriculture — A map service depicting aerial fire retardant avoidance areas delivered as part of the 2011 Nationwide Aerial Application of Fire Retardant on National Forest...

  13. 1935 15' Quad #246 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  14. 1935 15' Quad #202 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  15. 1936 Roosevelt County AG Index Aerial Photo Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial photographs are retrievable on a frame by frame basis. The aerial photo inventory contains imagery from various sources that are now archived at the Earth...

  16. 1935 15' Quad #274 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  17. 1935 15' Quad #466 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  18. 1935 15' Quad #272 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  19. 1935 15' Quad #106 Aerial Photo Mosaic Index - NM

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  20. 1935 15' Quad #152 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  1. 1935 15' Quad #226 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  2. Aerial surveys for beaver in Mackenzie District, Northwest Territories

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Report of the methods, results, and uses of aerial surveys for beaver in a wilderness area. The results of aerial surveys in 1949, 1951 and 1952 have been used to...

  3. 1935 15' Quad #250 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  4. 1935 15' Quad #337 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  5. 1935 15' Quad #007 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  6. 1935 15' Quad #122 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  7. 1935 15' Quad #457 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  8. 1935 15' Quad #344 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  9. 1935 15' Quad #370 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  10. Aerial Survey Units for Harbor Seals in Coastal Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aerial surveys of coastal Alaska are the primary method for estimating abundance of harbor seals. A particular challenge associated with aerial surveys of harbor...

  11. 1935 15' Quad #178 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  12. 1935 15' Quad #081 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  13. 1935 15' Quad #351 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  14. 1935 15' Quad #248 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  15. 1935 15' Quad #125 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  16. 1935 15' Quad #098 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  17. 1935 15' Quad #177 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  18. 1935 15' Quad #251 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  19. 1935 15' Quad #099 Aerial Photo Mosaic Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  20. Distribution of radionuclides in the surface sea water developed by aerial radiological survey

    Science.gov (United States)

    Inomata, Yayoi; Aoyama, Michio; Hirose, Katsumi; Sanada, Yukihisa; Torii, Tatsuo; Tsubono, Takaki; Tsumune, Daisuke; Yamada, Masatoshi

    2014-05-01

    This study provides new data analysis method of aerial radiological survey to monitor the distribution of anthropogenic radioactivity in surface seawaters as a first attempt. The aerial radiological survey was performed by the U.S. Department of Energy National Nuclear Security Administration (DOE/NNSA) within a 30 km radius of the Fukushima Daiichi Nuclear Power Plant (FNPP1) on 18 April 2011. We found good correlations between the observed concentrations of FNPP1 derived radionuclides (131I, 134Cs, 137Cs) in the surface seawater and gamma-ray dose rates by aerial radiological surveys (correlation coefficients for 131I, 0.89; 134Cs, 0.96;137Cs, 0.95). The detection limits of 131I, 134Cs, and 137Cs in surface seawaters for the aerial radiological survey are 25, 21, 24 Bq L-1, respectively. Based on these relations, we find that the area with high concentrations of the FNPP1 derived radionuclides spread south-southeast from the FNPP1. The maximum concentrations of 131I, 134Cs, and 137Cs reached 303, 456, and 528 Bq L-1, respectively. The131I/134Cs ratios in surface waters of the high activities area are about 0.6-0.7. Considering the radioactive decay of 131I (half-life: 8.021 d), we confirm that radionuclides in the surface seawater of this area are due to direct release from FNPP1 to the ocean. From these results, it is concluded that the aerial radiological survey is very effective to investigate the accurate distribution of anthropogenic radioactivity in the surface seawater. Furthermore, the model reproduced the distribution pattern of the FNPP1 derived radionuclides in surface seawater obtained by the aerial radiological survey, although simulated results by regional ocean model are underestimated.

  1. Dispersant field monitoring procedures

    Energy Technology Data Exchange (ETDEWEB)

    Hillman, S. O.; Hood, S. D. [Alyeska Pipeline Service Co. (United States); Bronson, M. T.; Shufelt, G. [EMCON, Alaska,Inc., Anchorage, AK (United States)

    1997-10-01

    Alyeska Pipeline Service Company`s (APSC) dispersant response capability in the Port of Valdez, Prince William Sound, and in the Gulf of Alaska was described. APSC provides dispersal equipment, aerial spray delivery systems, helibucket delivery systems, vessel delivery systems, along with a minimum of 600,000 gallon stockpile of the dispersant Corexit 9527. Effectiveness and effects are monitored by visual observation. In addition, fluorometer and water sample analysis are also used to provide field analytical data indicative of the environmental effects of dispersant applications. The field monitoring plan was field tested in December 1996. Details of the monitoring procedures are outlined in this paper. 18 refs., 5 tabs.

  2. 77 FR 36250 - Information Collection Request; Request for Aerial Photography

    Science.gov (United States)

    2012-06-18

    ...; ] DEPARTMENT OF AGRICULTURE Farm Service Agency Information Collection Request; Request for Aerial Photography... FSA Aerial Photography Program. The FSA Aerial Photography Field Office (APFO) uses the information from this form to collect the customer and photography information needed to produce and ship...

  3. 47 CFR 32.6421 - Aerial cable expense.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Aerial cable expense. 32.6421 Section 32.6421... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6421 Aerial cable expense. (a) This account shall include expenses associated with aerial cable. (b) Subsidiary record...

  4. Acoustic atmospheric tomography using multiple unmanned aerial vehicles

    Science.gov (United States)

    Finn, Anthony; Rogers, Kevin; Meade, Joshua; Franklin, Stephen

    2014-10-01

    This paper presents a method for tomographically reconstructing atmospheric temperature profiles and wind velocity fields based on acoustic travel time measurements between two or more Unmanned Aerial Vehicles (UAVs). The technique offers mobility and the capacity to monitor hazardous atmospheric environments, otherwise not justifiable on the basis of cost or risk. Simulations, in which the parametric fields of the atmosphere are modelled as a weighted sum of Radial Basis Functions, demonstrate the technique's potential performance envelope. The approach also allows local meteorological measurements made at the UAVs to supplement any time delay observations. This increases the accuracy of the technique, which has potential for practical applications in boundary layer meteorology, the theory of atmospheric turbulence, and wave propagation through a turbulent atmosphere.

  5. Exploring Security Vulnerabilities of Unmanned Aerial Vehicles

    NARCIS (Netherlands)

    Rodday, Nils Miro; O. Schmidt, de Ricardo; Pras, Aiko

    2016-01-01

    We are currently observing a significant increase in the popularity of Unmanned Aerial Vehicles (UAVs), popularly also known by their generic term drones. This is not only the case for recreational UAVs, that one can acquire for a few hundred dollars, but also for more sophisticated ones, namely pro

  6. 29 CFR 1926.453 - Aerial lifts.

    Science.gov (United States)

    2010-07-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the American National...) Belting off to an adjacent pole, structure, or equipment while working from an aerial lift shall not be... Qualification Procedure, AWS B3.0-41. (ii) Recommended Practices for Automotive Welding Design, AWS...

  7. Sea Ice Mapping using Unmanned Aerial Systems

    Science.gov (United States)

    Solbø, S.; Storvold, R.

    2011-12-01

    Mapping of sea ice extent and sea ice features is an important task in climate research. Since the arctic coastal and oceanic areas have a high probability of cloud coverage, aerial platforms are superior to satellite measurements for high-resolution optical measurements. However, routine observations of sea ice conditions present a variety of problems using conventional piloted aircrafts. Specially, the availability of suitable aircrafts for lease does not cover the demand in major parts of the arctic. With the recent advances in unmanned aerial systems (UAS), there is a high possibility of establishing routine, cost effective aerial observations of sea ice conditions in the near future. Unmanned aerial systems can carry a wide variety of sensors useful for characterizing sea-ice features. For instance, the CryoWing UAS, a system initially designed for measurements of the cryosphere, can be equipped with digital cameras, surface thermometers and laser altimeters for measuring freeboard of ice flows. In this work we will present results from recent CryoWing sea ice flights on Svalbard, Norway. The emphasis will be on data processing for stitching together images acquired with the non-stabilized camera payload, to form high-resolution mosaics covering large spatial areas. These data are being employed to map ice conditions; including ice and lead features and melt ponds. These high-resolution mosaics are also well suited for sea-ice mechanics, classification studies and for validation of satellite sea-ice products.

  8. Monitoring man's impact in the coastal zone

    International Nuclear Information System (INIS)

    The paper examines the monitoring of man's impact in the coastal zone. Color infrared photography shows destroyed or degraded wetlands or beaches, and makes possible relevant linear or aerial measurements with aerial photography. It can also categorize the environmental impacts which have accrued as the result of completion of water development projects. Aerial photography of the Texas coastal zone illustrates the nature and degree of damage likely to occur as a result of construction or maintenance projects. It is concluded that the method of assigning realistic values to unit areas of wetlands and beaches will make it feasible to incorporate the cost of estuarine damages into the cost estimates of water development schemes

  9. Autonomous aerial vehicles : guidance, control, signal and image processing platform

    International Nuclear Information System (INIS)

    The use of unmanned systems is gaining momentum in civil applications after successful use by the armed forces around the globe. Autonomous aerial vehicles are important for providing assistance in monitoring highways, power grid lines, borders, and surveillance of critical infrastructures. It is envisioned that cargo shipping will be completely handled by UAVs by the 2025. Civil use of unmanned autonomous systems brings serious challenges. The need for cost effectiveness, reliability, operation simplicity, safety, and cooperation with human and with other agents are among these challenges. Aerial vehicles operating in the civilian aerospace is the ultimate goal which requires these systems to achieve the reliability of manned aircraft while maintaining their cost effectiveness. In this presentation the development of an autonomous fixed and rotary wing aerial vehicle will be discussed. The architecture of the system from the mission requirements to low level auto pilot control laws will be discussed. Trajectory tracking and path following guidance and control algorithms commonly used and their implementation using of the shelf low cost components will be presented. Autonomous takeo? landing is a key feature that was implemented onboard the vehicle to complete its degree of autonomy. This is implemented based on accurate air-data system designed and fused with sonar measurements, INS/GPS measurements, and vector field method guidance laws. The outcomes of the proposed research is that the AUS-UAV platform named MAZARI is capable of autonomous takeoff and landing based on a pre scheduled flight path using way point navigation and sensor fusion of the inertial navigation system (INS) and global positioning system (GPS). Several technologies need to be mastered when developing a UAV. The navigation task and the need to fuse sensory information to estimate the location of the vehicle is critical to successful autonomous vehicle. Currently extended Kalman filtering is

  10. Aerial and satellite photography - A valuable tool for water quality investigations

    Science.gov (United States)

    Scherz, J. P.; Van Domelen, J. F.; Klooster, S. A.

    1973-01-01

    An investigation of surface, volume, and bottom effects in Lake Superior is conducted. The objective of the reported study is the development of a reliable technique for the monitoring and the quantification of the water quality parameters associated with volume reflectance. Basic relationships are discussed together with details concerning the equipment used in the studies, the water quality on the basis of aerial photos and satellite imagery, and the effects of oil on sky-light reflection.

  11. A comparison of Bayesian and evidence-based fusion methods for automated building detection in aerial data

    NARCIS (Netherlands)

    Khoshelham, K.; Nedkov, S.; Nardinocchi, C.

    2008-01-01

    Automated approaches to building detection are of great importance in a number of different applications including map updating and monitoring of informal settlements. With the availability of multi-source aerial data in recent years, data fusion approaches to automated building detection have becom

  12. Use of an unmanned aerial vehicle-mounted video camera to assess feeding behavior of Raramuri Criollo cows

    Science.gov (United States)

    We determined the feasibility of using unmanned aerial vehicle (UAV) video monitoring to predict intake of discrete food items of rangeland-raised Raramuri Criollo non-nursing beef cows. Thirty-five cows were released into a 405-m2 rectangular dry lot, either in pairs (pilot tests) or individually (...

  13. Environmental application of aerial reconnaissance to search for open dumps

    Science.gov (United States)

    Getz, Thomas J.; Randolph, J. C.; Echelberger, Wayne F.

    1983-11-01

    Three approaches to using aerial photography are evaluated for searching for open dumps in the state of Indiana. Photography with hand-held cameras from a small airplane proved more effective and flexible than either photo-interpretation of existing air photos or subcontracting to a federal agency for new aerial photography. The rationale for our choice of aerial reconnaissance, other uses of low-level aerial surveillance, the utility of small-format camera aerial photography for environmental analysis, and methods used for locating open dumps are discussed.

  14. Approximate dynamic programming and aerial refueling

    OpenAIRE

    Panos, Dennis C.

    2007-01-01

    Aerial refueling is an integral part of the United States military's ability to strike targets around the world with an overwhelming and continuous projection of force. However, with an aging fleet of refueling tankers and an indefinite replacement schedule the optimization of tanker usage is vital to national security. Optimizing tanker and receiver refueling operations is a complicated endeavor as it can involve over a thousand of missions during a 24 hour period, as in Operation Iraqi Free...

  15. Modeling of Sub-Mini Aerial Vehicles

    Institute of Scientific and Technical Information of China (English)

    刘亮; 邓寅喆; 翟宇毅; 龚振邦

    2004-01-01

    AbsProblems in modeling of sub-mini aerial vehicles(SMAV) are discussed in this paper. Contraposing properties of SMAV,various factors affecting dynamic performances and the airplane control are analyzed. Based on experiments, simulations, and computations, a corrected result for dynamic characteristics of fixed-wing SMAV and several instances of simulation are given, and the model of control and multi-stage PD control law are given too.

  16. Localization of aerial broadband noise by pinnipeds

    Science.gov (United States)

    Holt, Marla M.; Schusterman, Ronald J.; Southall, Brandon L.; Kastak, David

    2004-05-01

    Although many pinnipeds (seals, sea lions, and walruses) emit broadband calls on land as part of their communication system, few studies have addressed these animals' ability to localize aerial broadband sounds. In this study, the aerial sound localization acuities of a female northern elephant seal (Mirounga angustirostris), a male harbor seal (Phoca vitulina), and a female California sea lion (Zalophus californianus) were measured in the horizontal plane. The stimulus was broadband white noise that was band pass filtered between 1.2 and 15 kHz. Testing was conducted in a hemi-anechoic chamber using a left/right forced choice procedure to measure the minimum audible angle (MAA) for each subject. MAAs were defined as half the angular separation of two sound sources bisected by a subject's midline that corresponded to 75% correct discrimination. MAAs were 4.7°, 3.6°, and 4.2° for the northern elephant seal, harbor seal, and California sea lion, respectively. These results demonstrate that individuals of these pinniped species have sound localization abilities comparable to the domestic cat and rhesus macaque. The acuity differences between our subjects were small and not predicted by head size. These results likely reflect the relatively acute general abilities of pinnipeds to localize aerial broadband signals.

  17. Inertial instrument system for aerial surveying

    Science.gov (United States)

    Brown, R.H.; Chapman, W.H.; Hanna, W.F.; Mongan, C.E.; Hursh, J.W.

    1985-01-01

    An inertial guidance system for aerial surveying has been developed under contract to the U.S. Geological Survey. This prototype system, known as the aerial profiling of terrain (APT) system, is designed to determine continuously the positions of points along an aircraft flight path, or the underlying terrain profile, to an accuracy of + or - 0.5 ft (15 cm) vertically and + or - 2 ft (61 cm) horizontally. The system 's objective thus is to accomplish, from a fixed-wing aircraft, what would traditionally be accomplished from ground-based topographic surveys combined with aerial photography and photogrammetry. The two-part strategy for measuring the terrain profile entails: (1) use of an inertial navigator for continuous determination of the three-coordinate position of the aircraft, and (2) use of an eye-safe pulsed laser profiler for continuous measurement of the vertical distance from aircraft to land surface, so that the desired terrain profile can then be directly computed. The APT system, installed in a DeHavilland Twin Otter aircraft, is typically flown at a speed of 115 mph (105 knots) at an altitude of 2,000 ft (610 m) above the terrain. Performance-evaluation flights have shown that the vertical and horizontal accuracy specifications are met. (USGS)

  18. A temporal and ecological analysis of the Huntington Beach Wetlands through an unmanned aerial system remote sensing perspective

    Science.gov (United States)

    Rafiq, Talha

    Wetland monitoring and preservation efforts have the potential to be enhanced with advanced remote sensing acquisition and digital image analysis approaches. Progress in the development and utilization of Unmanned Aerial Systems (UAS) and Unmanned Aerial Vehicles (UAV) as remote sensing platforms has offered significant spatial and temporal advantages over traditional aerial and orbital remote sensing platforms. Photogrammetric approaches to generate high spatial resolution orthophotos of UAV acquired imagery along with the UAV's low-cost and temporally flexible characteristics are explored. A comparative analysis of different spectral based land cover maps derived from imagery captured using UAV, satellite, and airplane platforms provide an assessment of the Huntington Beach Wetlands. This research presents a UAS remote sensing methodology encompassing data collection, image processing, and analysis in constructing spectral based land cover maps to augment the efforts of the Huntington Beach Wetlands Conservancy by assessing ecological and temporal changes at the Huntington Beach Wetlands.

  19. Bears Show a Physiological but Limited Behavioral Response to Unmanned Aerial Vehicles.

    Science.gov (United States)

    Ditmer, Mark A; Vincent, John B; Werden, Leland K; Tanner, Jessie C; Laske, Timothy G; Iaizzo, Paul A; Garshelis, David L; Fieberg, John R

    2015-08-31

    Unmanned aerial vehicles (UAVs) have the potential to revolutionize the way research is conducted in many scientific fields. UAVs can access remote or difficult terrain, collect large amounts of data for lower cost than traditional aerial methods, and facilitate observations of species that are wary of human presence. Currently, despite large regulatory hurdles, UAVs are being deployed by researchers and conservationists to monitor threats to biodiversity, collect frequent aerial imagery, estimate population abundance, and deter poaching. Studies have examined the behavioral responses of wildlife to aircraft (including UAVs), but with the widespread increase in UAV flights, it is critical to understand whether UAVs act as stressors to wildlife and to quantify that impact. Biologger technology allows for the remote monitoring of stress responses in free-roaming individuals, and when linked to locational information, it can be used to determine events or components of an animal's environment that elicit a physiological response not apparent based on behavior alone. We assessed effects of UAV flights on movements and heart rate responses of free-roaming American black bears. We observed consistently strong physiological responses but infrequent behavioral changes. All bears, including an individual denned for hibernation, responded to UAV flights with elevated heart rates, rising as much as 123 beats per minute above the pre-flight baseline. It is important to consider the additional stress on wildlife from UAV flights when developing regulations and best scientific practices. PMID:26279232

  20. Summary of 1987 and 1988 manatee aerial surveys at Kennedy Space Center

    Science.gov (United States)

    Provancha, Jane A.; Provancha, Mark J.

    1989-01-01

    Aerial surveys of manatees conducted since 1977 at Kennedy Space Center (KSC) have provided a very useful and cost effective monitoring tool in the assessment of abundance and distribution of manatees in the northern Banana River. Data collected in the mid 1980's as part of the KSC Environmental Monitoring Program indicated that the numbers of manatees utilizing the northern Banana River had increased dramatically from earlier years and that the animals appeared to have changed their distribution patterns within the area as well (Provancha and Provancha 1988). United States Fish and Wildlife Service (USFWS) and Florida Department of Natural Resources (FLDNR) conducted bimonthly aerial surveys in 1986 for the entire Florida east coast. Their data clearly show that the Banana River has the highest concentration of manatees during the non-winter months when compared to all other segments of the east coast surveys (B. Wiegle/FLDNR, unpublished data). They further show that, in spring, an average of 71 percent of the manatees in Brevard county were located in the Banana River. During that period 85 percent of the animals were north of the NASA Causeway (State Road (SR) 402) in the KSC security zone. These data indicate the importance of the KSC waters to the Florida east coast manatee population. We reinitiated KSC surveys in 1987 to document distributions and numbers of manatees during the spring influx. Aerial censuses were continued throughout the year in 1988 and this report provides a summary of our findings for the two years.

  1. Direct Penguin Counting Using Unmanned Aerial Vehicle Image

    Science.gov (United States)

    Hyun, C. U.; Kim, H. C.; Kim, J. H.; Hong, S. G.

    2015-12-01

    This study presents an application of unmanned aerial vehicle (UAV) images to monitor penguin colony in Baton Peninsula, King George Island, Antarctica. The area around Narębski Point located on the southeast coast of Barton Peninsula was designated as Antarctic Specially Protected Area No. 171 (ASPA 171), and Chinstrap and Gentoo penguins inhabit in this area. The UAV images were acquired in a part of ASPA 171 from four flights in a single day, Jan 18, 2014. About 360 images were mosaicked as an image of about 3 cm spatial resolution and then a subset including representative penguin rookeries was selected. The subset image was segmented based on gradient map of pixel values, and spectral and spatial attributes were assigned to each segment. The object based image analysis (OBIA) was conducted with consideration of spectral attributes including mean and minimum values of each segment and various shape attributes such as area, length, compactness and roundness to detect individual penguin. The segments indicating individual penguin were effectively detected on rookeries with high contrasts in the spectral and shape attributes. The importance of periodic and precise monitoring of penguins has been recognized because variations of their populations reflect environmental changes and disturbance from human activities. Utilization of very high resolution imaging method shown in this study can be applied to other penguin habitats in Antarctica, and the results will be able to support establishing effective environmental management plans.

  2. Reducing Magnetic Noise of an Unmanned Aerial Vehicle for High-Quality Magnetic Surveys

    Directory of Open Access Journals (Sweden)

    Boris Sterligov

    2016-01-01

    Full Text Available The use of light and ultralight unmanned aerial vehicles (UAVs for magnetic data acquisition can be efficient for resolving multiple geological and engineering tasks including geological mapping, ore deposits’ prospecting, and pipelines’ monitoring. The accuracy of the aeromagnetic data acquired using UAV depends mainly on deviation noise of electric devices (engine, servos, etc.. The goal of this research is to develop a nonmagnetic unmanned aerial platform (NUAP for high-quality magnetic surveys. Considering parameters of regional and local magnetic survey, a fixed-wing UAV suits geological tasks better for plain area and copter type for hills and mountains. Analysis of the experimental magnetic anomalies produced by a serial light fixed-wing UAV and subsequent magnetic and aerodynamic modeling demonstrates a capacity of NUAP with internal combustion engine carrying an atomic magnetic sensor mounted on the UAV wings to facilitate a high-quality magnetic survey.

  3. Intelligent Autonomous Aerial Vehicles in the National Airspace Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Unmanned aerial systems (UAS) and, in particular, intelligent, autonomous aircraft operating in the National Airspace (NAS) have the potential to significantly...

  4. Unmanned Aerial Vehicle Integration into the NAS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Technological innovations have enabled a wide range of aerial vehicles that can be remotely operated. Viable applications include military missions, law...

  5. An aerial 3D printing test mission

    Science.gov (United States)

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy

    2016-05-01

    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  6. BOREAS Level-0 C-130 Aerial Photography

    Science.gov (United States)

    Newcomer, Jeffrey A.; Dominguez, Roseanne; Hall, Forrest G. (Editor)

    2000-01-01

    For BOReal Ecosystem-Atmosphere Study (BOREAS), C-130 and other aerial photography was collected to provide finely detailed and spatially extensive documentation of the condition of the primary study sites. The NASA C-130 Earth Resources aircraft can accommodate two mapping cameras during flight, each of which can be fitted with 6- or 12-inch focal-length lenses and black-and-white, natural-color, or color-IR film, depending upon requirements. Both cameras were often in operation simultaneously, although sometimes only the lower resolution camera was deployed. When both cameras were in operation, the higher resolution camera was often used in a more limited fashion. The acquired photography covers the period of April to September 1994. The aerial photography was delivered as rolls of large format (9 x 9 inch) color transparency prints, with imagery from multiple missions (hundreds of prints) often contained within a single roll. A total of 1533 frames were collected from the C-130 platform for BOREAS in 1994. Note that the level-0 C-130 transparencies are not contained on the BOREAS CD-ROM set. An inventory file is supplied on the CD-ROM to inform users of all the data that were collected. Some photographic prints were made from the transparencies. In addition, BORIS staff digitized a subset of the tranparencies and stored the images in JPEG format. The CD-ROM set contains a small subset of the collected aerial photography that were the digitally scanned and stored as JPEG files for most tower and auxiliary sites in the NSA and SSA. See Section 15 for information about how to acquire additional imagery.

  7. D Surface Generation from Aerial Thermal Imagery

    Science.gov (United States)

    Khodaei, B.; Samadzadegan, F.; Dadras Javan, F.; Hasani, H.

    2015-12-01

    Aerial thermal imagery has been recently applied to quantitative analysis of several scenes. For the mapping purpose based on aerial thermal imagery, high accuracy photogrammetric process is necessary. However, due to low geometric resolution and low contrast of thermal imaging sensors, there are some challenges in precise 3D measurement of objects. In this paper the potential of thermal video in 3D surface generation is evaluated. In the pre-processing step, thermal camera is geometrically calibrated using a calibration grid based on emissivity differences between the background and the targets. Then, Digital Surface Model (DSM) generation from thermal video imagery is performed in four steps. Initially, frames are extracted from video, then tie points are generated by Scale-Invariant Feature Transform (SIFT) algorithm. Bundle adjustment is then applied and the camera position and orientation parameters are determined. Finally, multi-resolution dense image matching algorithm is used to create 3D point cloud of the scene. Potential of the proposed method is evaluated based on thermal imaging cover an industrial area. The thermal camera has 640×480 Uncooled Focal Plane Array (UFPA) sensor, equipped with a 25 mm lens which mounted in the Unmanned Aerial Vehicle (UAV). The obtained results show the comparable accuracy of 3D model generated based on thermal images with respect to DSM generated from visible images, however thermal based DSM is somehow smoother with lower level of texture. Comparing the generated DSM with the 9 measured GCPs in the area shows the Root Mean Square Error (RMSE) value is smaller than 5 decimetres in both X and Y directions and 1.6 meters for the Z direction.

  8. Cooperative path planning of unmanned aerial vehicles

    CERN Document Server

    Tsourdos, Antonios; Shanmugavel, Madhavan

    2010-01-01

    An invaluable addition to the literature on UAV guidance and cooperative control, Cooperative Path Planning of Unmanned Aerial Vehicles is a dedicated, practical guide to computational path planning for UAVs. One of the key issues facing future development of UAVs is path planning: it is vital that swarm UAVs/ MAVs can cooperate together in a coordinated manner, obeying a pre-planned course but able to react to their environment by communicating and cooperating. An optimized path is necessary in order to ensure a UAV completes its mission efficiently, safely, and successfully.

  9. Aeolic vibration of aerial electricity transmission cables

    Science.gov (United States)

    Avila, A.; Rodriguez-Vera, Ramon; Rayas, Juan A.; Barrientos, Bernardino

    2005-02-01

    A feasibility study for amplitude and frequency vibration measurement in aerial electricity transmission cable has been made. This study was carried out incorporating a fringe projection method for the experimental part and horizontal taut string model for theoretical one. However, this kind of model ignores some inherent properties such as cable sag and cable inclination. Then, this work reports advances on aeolic vibration considering real cables. Catenary and sag are considered in our theoretical model in such a way that an optical theodolite for measuring has been used. Preliminary measurements of the catenary as well as numerical simulation of a sagged cable vibration are given.

  10. Delivery of Unmanned Aerial Vehicle Data

    Science.gov (United States)

    Ivancic, William D.; Sullivan, Donald V.

    2011-01-01

    To support much of NASA's Upper Atmosphere Research Program science, NASA has acquired two Global Hawk Unmanned Aerial Vehicles (UAVs). Two major missions are currently planned using the Global Hawk: the Global Hawk Pacific (GloPac) and the Genesis and Rapid Intensification Processes (GRIP) missions. This paper briefly describes GloPac and GRIP, the concept of operations and the resulting requirements and communication architectures. Also discussed are requirements for future missions that may use satellite systems and networks owned and operated by third parties.

  11. The remote characterization of vegetation using Unmanned Aerial Vehicle photography

    Science.gov (United States)

    Rango, A.; Laliberte, A.; Winters, C.; Maxwell, C.; Steele, C.

    2008-12-01

    Unmanned Aerial Vehicles (UAVs) can fly in place of piloted aircraft to gather remote sensing information on vegetation characteristics. The type of sensors flown depends on the instrument payload capacity available, so that, depending on the specific UAV, it is possible to obtain video, aerial photographic, multispectral and hyperspectral radiometric, LIDAR, and radar data. The characteristics of several small UAVs less than 55lbs (25kg)) along with some payload instruments will be reviewed. Common types of remote sensing coverage available from a small, limited-payload UAV are video and hyperspatial, digital photography. From evaluation of these simple types of remote sensing data, we conclude that UAVs can play an important role in measuring and monitoring vegetation health and structure of the vegetation/soil complex in rangelands. If we fly our MLB Bat-3 at an altitude of 700ft (213m), we can obtain a digital photographic resolution of 6cm. The digital images acquired cover an area of approximately 29,350sq m. Video imaging is usually only useful for monitoring the flight path of the UAV in real time. In our experiments with the 6cm resolution data, we have been able to measure vegetation patch size, crown width, gap sizes between vegetation, percent vegetation and bare soil cover, and type of vegetation. The UAV system is also being tested to acquire height of the vegetation canopy using shadow measurements and a digital elevation model obtained with stereo images. Evaluation of combining the UAV digital photography with LIDAR data of the Jornada Experimental Range in south central New Mexico is ongoing. The use of UAVs is increasing and is becoming a very promising tool for vegetation assessment and change, but there are several operational components to flying UAVs that users need to consider. These include cost, a whole set of, as yet, undefined regulations regarding flying in the National Air Space(NAS), procedures to gain approval for flying in the NAS

  12. Wageningen UR Unmanned Aerial Remote Sensing Facility - Overview of activities

    Science.gov (United States)

    Bartholomeus, Harm; Keesstra, Saskia; Kooistra, Lammert; Suomalainen, Juha; Mucher, Sander; Kramer, Henk; Franke, Jappe

    2016-04-01

    To support environmental management there is an increasing need for timely, accurate and detailed information on our land. Unmanned Aerial Systems (UAS) are increasingly used to monitor agricultural crop development, habitat quality or urban heat efficiency. An important reason is that UAS technology is maturing quickly while the flexible capabilities of UAS fill a gap between satellite based and ground based geo-sensing systems. In 2012, different groups within Wageningen University and Research Centre have established an Unmanned Airborne Remote Sensing Facility. The objective of this facility is threefold: a) To develop innovation in the field of remote sensing science by providing a platform for dedicated and high-quality experiments; b) To support high quality UAS services by providing calibration facilities and disseminating processing procedures to the UAS user community; and c) To promote and test the use of UAS in a broad range of application fields like habitat monitoring, precision agriculture and land degradation assessment. The facility is hosted by the Laboratory of Geo-Information Science and Remote Sensing (GRS) and the Department of Soil Physics and Land Management (SLM) of Wageningen University together with the team Earth Informatics (EI) of Alterra. The added value of the Unmanned Aerial Remote Sensing Facility is that compared to for example satellite based remote sensing more dedicated science experiments can be prepared. This includes for example higher frequent observations in time (e.g., diurnal observations), observations of an object under different observation angles for characterization of BRDF and flexibility in use of camera's and sensors types. In this way, laboratory type of set ups can be tested in a field situation and effects of up-scaling can be tested. In the last years we developed and implemented different camera systems (e.g. a hyperspectral pushbroom system, and multispectral frame cameras) which we operated in projects all

  13. Unmanned Aerial Vehicles unique cost estimating requirements

    Science.gov (United States)

    Malone, P.; Apgar, H.; Stukes, S.; Sterk, S.

    Unmanned Aerial Vehicles (UAVs), also referred to as drones, are aerial platforms that fly without a human pilot onboard. UAVs are controlled autonomously by a computer in the vehicle or under the remote control of a pilot stationed at a fixed ground location. There are a wide variety of drone shapes, sizes, configurations, complexities, and characteristics. Use of these devices by the Department of Defense (DoD), NASA, civil and commercial organizations continues to grow. UAVs are commonly used for intelligence, surveillance, reconnaissance (ISR). They are also use for combat operations, and civil applications, such as firefighting, non-military security work, surveillance of infrastructure (e.g. pipelines, power lines and country borders). UAVs are often preferred for missions that require sustained persistence (over 4 hours in duration), or are “ too dangerous, dull or dirty” for manned aircraft. Moreover, they can offer significant acquisition and operations cost savings over traditional manned aircraft. Because of these unique characteristics and missions, UAV estimates require some unique estimating methods. This paper describes a framework for estimating UAV systems total ownership cost including hardware components, software design, and operations. The challenge of collecting data, testing the sensitivities of cost drivers, and creating cost estimating relationships (CERs) for each key work breakdown structure (WBS) element is discussed. The autonomous operation of UAVs is especially challenging from a software perspective.

  14. Blending zone determination for aerial orthimage mosaicking

    Science.gov (United States)

    Lin, Chao-Hung; Chen, Bo-Heng; Lin, Bo-Yi; Chou, Han-Szu

    2016-09-01

    Creating a composed image from a set of aerial images is a fundamental step in orthomosaic generation. One of the processes involved in this technique is determining an optimal seamline in an overlapping region to stitch image patches seamlessly. Most previous studies have solved this optimization problem by searching for a one-pixel-wide seamline with an objective function. This strategy significantly reduced pixel mismatches on the seamline caused by geometric distortions of images but did not fully consider color discontinuity and mismatch problems that occur around the seamline, which sometimes cause mosaicking artifacts. This study proposes a blending zone determination scheme with a novel path finding algorithm to reduce the occurrence of unwanted artifacts. Instead of searching for a one-pixel-wide seamline, a blending zone, which is a k-pixel-wide seamline that passes through high-similarity pixels in the overlapping region, is determined using a hierarchical structure. This strategy allows for not only seamless stitching but also smooth color blending of neighboring image patches. Moreover, the proposed method searches for a blending zone without the pre-process of highly mismatched pixel removal and additional geographic data of road vectors and digital surface/elevation models, which increases the usability of the approach. Qualitative and quantitative analyses of aerial images demonstrate the superiority of the proposed method to related methods in terms of avoidance of passing highly mismatched pixels.

  15. Aerial survey estimates of fallow deer abundance

    Science.gov (United States)

    Gogan, Peter J.; Gates, Natalie B.; Lubow, Bruce C.; Pettit, Suzanne

    2012-01-01

    Reliable estimates of the distribution and abundance of an ungulate species is essential prior to establishing and implementing a management program. We used ground surveys to determine distribution and ground and aerial surveys and individually marked deer to estimate the abundance of fallow deer (Dama dama) in north-coastal California. Fallow deer had limited distribution and heterogeneous densities. Estimated post-rut densities across 4 annual surveys ranged from a low of 1.4 (SE=0.2) deer/km2 to a high of 3.3 (se=0.5) deer/km2 in a low density stratum and from 49.0 (SE=8.3) deer/km2 to 111.6 deer/km2 in a high density stratum. Sightability was positively influenced by the presence of white color-phase deer in a group and group size, and varied between airial and ground-based observers and by density strata. Our findings underscore the utility of double-observer surveys and aerial surveys with individually marked deer, both incorporating covariates to model sightability, to estimate deer abundance.

  16. On autonomous and teleoperated aerial service robots: theory and application

    NARCIS (Netherlands)

    Mersha, Abeye Yenehun

    2014-01-01

    Traditionally, aerial robots have been used in applications that do not require physical interaction with the environment. Recently, however, there is a growing interest in using aerial robots for applications that involve active but nondestructive interaction with the environment, especially in the

  17. Kite Aerial Photography (KAP) as a Tool for Field Teaching

    Science.gov (United States)

    Sander, Lasse

    2014-01-01

    Kite aerial photography (KAP) is proposed as a creative tool for geography field teaching and as a medium to approach the complexity of readily available geodata. The method can be integrated as field experiment, surveying technique or group activity. The acquired aerial images can instantaneously be integrated in geographic information systems…

  18. Kite aerial photography (KAP) as a tool for field teaching

    DEFF Research Database (Denmark)

    Sander, Lasse

    2014-01-01

    Kite aerial photography (KAP) is proposed as a creative tool for geography field teaching and as a medium to approach the complexity of readily available geodata. The method can be integrated as field experiment, surveying technique or group activity. The acquired aerial images can instantaneously...

  19. An algorithm for approximate rectification of digital aerial images

    Science.gov (United States)

    High-resolution aerial photography is one of the most valuable tools available for managing extensive landscapes. With recent advances in digital camera technology, computer hardware, and software, aerial photography is easier to collect, store, and transfer than ever before. Images can be automa...

  20. 76 FR 53165 - Certification Related to Aerial Eradication in Colombia

    Science.gov (United States)

    2011-08-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF STATE Certification Related to Aerial Eradication in Colombia Pursuant to the authority vested in the Secretary of... for aerial eradication of illicit crops in Colombia is being used in accordance with EPA...

  1. Effects of pesticides aerial applications on rice quality

    Science.gov (United States)

    Aerial application of pesticides has become an important research topic in recent years. This research investigated the effects of two types of commercial pesticides on the rice quality under low volume aerial application. It could provide guidance for the pesticide application and choose the right ...

  2. 6th Grades Student’s interpreting of Aerial Photographs

    Directory of Open Access Journals (Sweden)

    Adem ÖCAL

    2009-04-01

    Full Text Available Aerial photographs have started to be used as a teaching-training material parallel to the technological developments of our time. These materials are important to help students gain aerial perspective as a means to improve spatial cognition. In this study the skill of 6th grade students on interpreting aerial photographs have been focused on and examined how the students benefit from it. This study has been carried out with qualitative research techniques and 10 students have been used throughout the study. Aerial photographs of the places which students are familiar with have been utilized. Important outcomes were obtained on the use of aerial photographs in primary education. Findings can be guided for geography and social studies education in point of teaching spatial cognition skills.

  3. Automated Identification of River Hydromorphological Features Using UAV High Resolution Aerial Imagery

    Directory of Open Access Journals (Sweden)

    Monica Rivas Casado

    2015-11-01

    Full Text Available European legislation is driving the development of methods for river ecosystem protection in light of concerns over water quality and ecology. Key to their success is the accurate and rapid characterisation of physical features (i.e., hydromorphology along the river. Image pattern recognition techniques have been successfully used for this purpose. The reliability of the methodology depends on both the quality of the aerial imagery and the pattern recognition technique used. Recent studies have proved the potential of Unmanned Aerial Vehicles (UAVs to increase the quality of the imagery by capturing high resolution photography. Similarly, Artificial Neural Networks (ANN have been shown to be a high precision tool for automated recognition of environmental patterns. This paper presents a UAV based framework for the identification of hydromorphological features from high resolution RGB aerial imagery using a novel classification technique based on ANNs. The framework is developed for a 1.4 km river reach along the river Dee in Wales, United Kingdom. For this purpose, a Falcon 8 octocopter was used to gather 2.5 cm resolution imagery. The results show that the accuracy of the framework is above 81%, performing particularly well at recognising vegetation. These results leverage the use of UAVs for environmental policy implementation and demonstrate the potential of ANNs and RGB imagery for high precision river monitoring and river management.

  4. Unmanned aerial survey of fallen trees in a deciduous broadleaved forest in eastern Japan.

    Science.gov (United States)

    Inoue, Tomoharu; Nagai, Shin; Yamashita, Satoshi; Fadaei, Hadi; Ishii, Reiichiro; Okabe, Kimiko; Taki, Hisatomo; Honda, Yoshiaki; Kajiwara, Koji; Suzuki, Rikie

    2014-01-01

    Since fallen trees are a key factor in biodiversity and biogeochemical cycling, information about their spatial distribution is of use in determining species distribution and nutrient and carbon cycling in forest ecosystems. Ground-based surveys are both time consuming and labour intensive. Remote-sensing technology can reduce these costs. Here, we used high-spatial-resolution aerial photographs (0.5-1.0 cm per pixel) taken from an unmanned aerial vehicle (UAV) to survey fallen trees in a deciduous broadleaved forest in eastern Japan. In nine sub-plots we found a total of 44 fallen trees by ground survey. From the aerial photographs, we identified 80% to 90% of fallen trees that were >30 cm in diameter or >10 m in length, but missed many that were narrower or shorter. This failure may be due to the similarity of fallen trees to trunks and branches of standing trees or masking by standing trees. Views of the same point from different angles may improve the detection rate because they would provide more opportunity to detect fallen trees hidden by standing trees. Our results suggest that UAV surveys will make it possible to monitor the spatial and temporal variations in forest structure and function at lower cost.

  5. Automated Identification of River Hydromorphological Features Using UAV High Resolution Aerial Imagery.

    Science.gov (United States)

    Casado, Monica Rivas; Gonzalez, Rocio Ballesteros; Kriechbaumer, Thomas; Veal, Amanda

    2015-11-04

    European legislation is driving the development of methods for river ecosystem protection in light of concerns over water quality and ecology. Key to their success is the accurate and rapid characterisation of physical features (i.e., hydromorphology) along the river. Image pattern recognition techniques have been successfully used for this purpose. The reliability of the methodology depends on both the quality of the aerial imagery and the pattern recognition technique used. Recent studies have proved the potential of Unmanned Aerial Vehicles (UAVs) to increase the quality of the imagery by capturing high resolution photography. Similarly, Artificial Neural Networks (ANN) have been shown to be a high precision tool for automated recognition of environmental patterns. This paper presents a UAV based framework for the identification of hydromorphological features from high resolution RGB aerial imagery using a novel classification technique based on ANNs. The framework is developed for a 1.4 km river reach along the river Dee in Wales, United Kingdom. For this purpose, a Falcon 8 octocopter was used to gather 2.5 cm resolution imagery. The results show that the accuracy of the framework is above 81%, performing particularly well at recognising vegetation. These results leverage the use of UAVs for environmental policy implementation and demonstrate the potential of ANNs and RGB imagery for high precision river monitoring and river management.

  6. Properties and Performance of a New Compact HF Aerial Design for Multi-Band Operation

    Directory of Open Access Journals (Sweden)

    D. Telfer

    2005-01-01

    Full Text Available This work is an extension to that of Telfer and Austin [1] in that here a balanced feed embodiment of an inwardly-inclined folded dual monopole aerial is presented and discussed in terms of its improved performance over the original configuration. This includes greater control of the stability of the far-field (FF lobe pattern with operating frequency, and a considerably extended frequency range (3:1 ratio over which Near Vertical Incidence Skywave (NVIS propagation in the high frequency (HF bands can be exploited. Furthermore, the FF lobe patterns at frequencies >2× the fundamental design frequency are such that advantage can be taken of conventional non-NVIS horizontal propagation at those frequencies using the same aerial. At the fundamental frequency, compactness of design and robustness of its NVIS FF pattern to orientation make the novel balanced aerial design a convenient replacement for a full-length low dipole in cluttered environments. The paper also presents a vehicle-mounted version for medium range operation within HF skip distances. Applications highlighted include stations for remote monitoring of environmental measurements in difficult or hostile terrain. 

  7. Unmanned aerial vehicles (UAVs for surveying marine fauna: a dugong case study.

    Directory of Open Access Journals (Sweden)

    Amanda Hodgson

    Full Text Available Aerial surveys of marine mammals are routinely conducted to assess and monitor species' habitat use and population status. In Australia, dugongs (Dugong dugon are regularly surveyed and long-term datasets have formed the basis for defining habitat of high conservation value and risk assessments of human impacts. Unmanned aerial vehicles (UAVs may facilitate more accurate, human-risk free, and cheaper aerial surveys. We undertook the first Australian UAV survey trial in Shark Bay, western Australia. We conducted seven flights of the ScanEagle UAV, mounted with a digital SLR camera payload. During each flight, ten transects covering a 1.3 km(2 area frequently used by dugongs, were flown at 500, 750 and 1000 ft. Image (photograph capture was controlled via the Ground Control Station and the capture rate was scheduled to achieve a prescribed 10% overlap between images along transect lines. Images were manually reviewed post hoc for animals and scored according to sun glitter, Beaufort Sea state and turbidity. We captured 6243 images, 627 containing dugongs. We also identified whales, dolphins, turtles and a range of other fauna. Of all possible dugong sightings, 95% (CI = 90%, 98% were subjectively classed as 'certain' (unmistakably dugongs. Neither our dugong sighting rate, nor our ability to identify dugongs with certainty, were affected by UAV altitude. Turbidity was the only environmental variable significantly affecting the dugong sighting rate. Our results suggest that UAV systems may not be limited by sea state conditions in the same manner as sightings from manned surveys. The overlap between images proved valuable for detecting animals that were masked by sun glitter in the corners of images, and identifying animals initially captured at awkward body angles. This initial trial of a basic camera system has successfully demonstrated that the ScanEagle UAV has great potential as a tool for marine mammal aerial surveys.

  8. Unmanned aerial vehicles (UAVs) for surveying marine fauna: a dugong case study.

    Science.gov (United States)

    Hodgson, Amanda; Kelly, Natalie; Peel, David

    2013-01-01

    Aerial surveys of marine mammals are routinely conducted to assess and monitor species' habitat use and population status. In Australia, dugongs (Dugong dugon) are regularly surveyed and long-term datasets have formed the basis for defining habitat of high conservation value and risk assessments of human impacts. Unmanned aerial vehicles (UAVs) may facilitate more accurate, human-risk free, and cheaper aerial surveys. We undertook the first Australian UAV survey trial in Shark Bay, western Australia. We conducted seven flights of the ScanEagle UAV, mounted with a digital SLR camera payload. During each flight, ten transects covering a 1.3 km(2) area frequently used by dugongs, were flown at 500, 750 and 1000 ft. Image (photograph) capture was controlled via the Ground Control Station and the capture rate was scheduled to achieve a prescribed 10% overlap between images along transect lines. Images were manually reviewed post hoc for animals and scored according to sun glitter, Beaufort Sea state and turbidity. We captured 6243 images, 627 containing dugongs. We also identified whales, dolphins, turtles and a range of other fauna. Of all possible dugong sightings, 95% (CI = 90%, 98%) were subjectively classed as 'certain' (unmistakably dugongs). Neither our dugong sighting rate, nor our ability to identify dugongs with certainty, were affected by UAV altitude. Turbidity was the only environmental variable significantly affecting the dugong sighting rate. Our results suggest that UAV systems may not be limited by sea state conditions in the same manner as sightings from manned surveys. The overlap between images proved valuable for detecting animals that were masked by sun glitter in the corners of images, and identifying animals initially captured at awkward body angles. This initial trial of a basic camera system has successfully demonstrated that the ScanEagle UAV has great potential as a tool for marine mammal aerial surveys.

  9. Unmanned aerial vehicles (UAVs) for surveying marine fauna: a dugong case study.

    Science.gov (United States)

    Hodgson, Amanda; Kelly, Natalie; Peel, David

    2013-01-01

    Aerial surveys of marine mammals are routinely conducted to assess and monitor species' habitat use and population status. In Australia, dugongs (Dugong dugon) are regularly surveyed and long-term datasets have formed the basis for defining habitat of high conservation value and risk assessments of human impacts. Unmanned aerial vehicles (UAVs) may facilitate more accurate, human-risk free, and cheaper aerial surveys. We undertook the first Australian UAV survey trial in Shark Bay, western Australia. We conducted seven flights of the ScanEagle UAV, mounted with a digital SLR camera payload. During each flight, ten transects covering a 1.3 km(2) area frequently used by dugongs, were flown at 500, 750 and 1000 ft. Image (photograph) capture was controlled via the Ground Control Station and the capture rate was scheduled to achieve a prescribed 10% overlap between images along transect lines. Images were manually reviewed post hoc for animals and scored according to sun glitter, Beaufort Sea state and turbidity. We captured 6243 images, 627 containing dugongs. We also identified whales, dolphins, turtles and a range of other fauna. Of all possible dugong sightings, 95% (CI = 90%, 98%) were subjectively classed as 'certain' (unmistakably dugongs). Neither our dugong sighting rate, nor our ability to identify dugongs with certainty, were affected by UAV altitude. Turbidity was the only environmental variable significantly affecting the dugong sighting rate. Our results suggest that UAV systems may not be limited by sea state conditions in the same manner as sightings from manned surveys. The overlap between images proved valuable for detecting animals that were masked by sun glitter in the corners of images, and identifying animals initially captured at awkward body angles. This initial trial of a basic camera system has successfully demonstrated that the ScanEagle UAV has great potential as a tool for marine mammal aerial surveys. PMID:24223967

  10. The research of moving objects behavior detection and tracking algorithm in aerial video

    Science.gov (United States)

    Yang, Le-le; Li, Xin; Yang, Xiao-ping; Li, Dong-hui

    2015-12-01

    The article focuses on the research of moving target detection and tracking algorithm in Aerial monitoring. Study includes moving target detection, moving target behavioral analysis and Target Auto tracking. In moving target detection, the paper considering the characteristics of background subtraction and frame difference method, using background reconstruction method to accurately locate moving targets; in the analysis of the behavior of the moving object, using matlab technique shown in the binary image detection area, analyzing whether the moving objects invasion and invasion direction; In Auto Tracking moving target, A video tracking algorithm that used the prediction of object centroids based on Kalman filtering was proposed.

  11. Best practice for minimising unmanned aerial vehicle disturbance to wildlife in biological field research.

    Science.gov (United States)

    Hodgson, Jarrod C; Koh, Lian Pin

    2016-05-23

    The use of unmanned aerial vehicles (UAVs), colloquially referred to as 'drones', for biological field research is increasing [1-3]. Small, civilian UAVs are providing a viable, economical tool for ecology researchers and environmental managers. UAVs are particularly useful for wildlife observation and monitoring as they can produce systematic data of high spatial and temporal resolution [4]. However, this new technology could also have undesirable and unforeseen impacts on wildlife, the risks of which we currently have little understanding [5-7]. There is a need for a code of best practice in the use of UAVs to mitigate or alleviate these risks, which we begin to develop here.

  12. Best practice for minimising unmanned aerial vehicle disturbance to wildlife in biological field research.

    Science.gov (United States)

    Hodgson, Jarrod C; Koh, Lian Pin

    2016-05-23

    The use of unmanned aerial vehicles (UAVs), colloquially referred to as 'drones', for biological field research is increasing [1-3]. Small, civilian UAVs are providing a viable, economical tool for ecology researchers and environmental managers. UAVs are particularly useful for wildlife observation and monitoring as they can produce systematic data of high spatial and temporal resolution [4]. However, this new technology could also have undesirable and unforeseen impacts on wildlife, the risks of which we currently have little understanding [5-7]. There is a need for a code of best practice in the use of UAVs to mitigate or alleviate these risks, which we begin to develop here. PMID:27218843

  13. A Primer on Autonomous Aerial Vehicle Design

    Science.gov (United States)

    Coppejans, Hugo H. G.; Myburgh, Herman C.

    2015-01-01

    There is a large amount of research currently being done on autonomous micro-aerial vehicles (MAV), such as quadrotor helicopters or quadcopters. The ability to create a working autonomous MAV depends mainly on integrating a simultaneous localization and mapping (SLAM) solution with the rest of the system. This paper provides an introduction for creating an autonomous MAV for enclosed environments, aimed at students and professionals alike. The standard autonomous system and MAV automation are discussed, while we focus on the core concepts of SLAM systems and trajectory planning algorithms. The advantages and disadvantages of using remote processing are evaluated, and recommendations are made regarding the viability of on-board processing. Recommendations are made regarding best practices to serve as a guideline for aspirant MAV designers. PMID:26633410

  14. International Symposium on Unmanned Aerial Vehicles

    CERN Document Server

    Oh, Paul; Piegl, Les

    2009-01-01

    Unmanned Aircraft Systems (UAS) have seen unprecedented levels of growth during the last decade in both military and civilian domains. It is anticipated that civilian applications will be dominant in the future, although there are still barriers to be overcome and technical challenges to be met. Integrating UAS into, for example, civilian space, navigation, autonomy, see-detect-and-avoid systems, smart designs, system integration, vision-based navigation and training, to name but a few areas, will be of prime importance in the near future. This special volume is the outcome of research presented at the International Symposium on Unmanned Aerial Vehicles, held in Orlando, Florida, USA, from June 23-25, 2008, and presents state-of-the-art findings on topics such as: UAS operations and integration into the national airspace system; UAS navigation and control; micro-, mini-, small UAVs; UAS simulation testbeds and frameworks; UAS research platforms and applications; UAS applications. This book aims at serving as ...

  15. A Primer on Autonomous Aerial Vehicle Design.

    Science.gov (United States)

    Coppejans, Hugo H G; Myburgh, Herman C

    2015-01-01

    There is a large amount of research currently being done on autonomous micro-aerial vehicles (MAV), such as quadrotor helicopters or quadcopters. The ability to create a working autonomous MAV depends mainly on integrating a simultaneous localization and mapping (SLAM) solution with the rest of the system. This paper provides an introduction for creating an autonomous MAV for enclosed environments, aimed at students and professionals alike. The standard autonomous system and MAV automation are discussed, while we focus on the core concepts of SLAM systems and trajectory planning algorithms. The advantages and disadvantages of using remote processing are evaluated, and recommendations are made regarding the viability of on-board processing. Recommendations are made regarding best practices to serve as a guideline for aspirant MAV designers. PMID:26633410

  16. Autonomous Aerial Sensors for Wind Power Meteorology

    DEFF Research Database (Denmark)

    Giebel, Gregor; la Cour-Harbo, Anders; Bange, Jens

    2011-01-01

    of them are situated in quite homogeneous and gentle terrain. Here, automated Unmanned Aerial Vehicles (UAVs) could be used as either an extension of current masts or to build a network of very high 'masts' in a region of complex terrain or coastal flow conditions. In comparison to a multitude of masts......This paper describes a new approach for measurements in wind power meteorology using small unmanned flying platforms. Large-scale wind farms, especially offshore, need an optimisation between installed wind power density and the losses in the wind farm due to wake effects between the turbines. Good......, UAVs could be quite cost-effective. In order to test this assumption and to test the limits of UAVs for wind power meteorology, this project assembles four different UAVs from four participating groups. Risø has built a lighter-than-air kite with a long tether, Bergen University flies a derivative...

  17. Monocular Vision SLAM for Indoor Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Koray Çelik

    2013-01-01

    Full Text Available This paper presents a novel indoor navigation and ranging strategy via monocular camera. By exploiting the architectural orthogonality of the indoor environments, we introduce a new method to estimate range and vehicle states from a monocular camera for vision-based SLAM. The navigation strategy assumes an indoor or indoor-like manmade environment whose layout is previously unknown, GPS-denied, representable via energy based feature points, and straight architectural lines. We experimentally validate the proposed algorithms on a fully self-contained microaerial vehicle (MAV with sophisticated on-board image processing and SLAM capabilities. Building and enabling such a small aerial vehicle to fly in tight corridors is a significant technological challenge, especially in the absence of GPS signals and with limited sensing options. Experimental results show that the system is only limited by the capabilities of the camera and environmental entropy.

  18. Middleware requirements for collaborative unmanned aerial vehicles

    DEFF Research Database (Denmark)

    Mohamed, Nader; Al-Jaroodi, Jameela; Jawhar, Imad;

    2013-01-01

    With the recent advances in the aircraft technologies, software, sensors, and communications; unmanned aerial vehicles (UAVs) can offer a wide range of applications. Some of these applications may involve multiple UAVs that cooperate and collaborate to achieve a common goal. This kind...... of applications is termed collaborative UAVs applications. One of the main research topics for multiple UAVs is developing an effective framework to enable the development of software systems for collaborative UAVs operations. One possible approach is to rely on middleware technologies to simplify the development...... and operations of such applications. This paper discusses the challenges of developing collaborative UAVs applications and how middleware can help resolve some of these challenges. In addition, the paper studies the utilization of service-oriented middleware infrastructures for implementing and operating...

  19. Autonomous Aerial Sensors for Wind Power Meteorology

    DEFF Research Database (Denmark)

    Giebel, Gregor; la Cour-Harbo, Anders; Bange, Jens;

    2012-01-01

    measurements of the wake and wake structure are not easy to come by, especially offshore. Very few measurement masts exist to verify our knowledge of atmospheric physics, and most of them are situated in quite homogeneous and gentle terrain. Here, automated Unmanned Aerial Vehicles (UAVs) could be used......This paper describes a new approach for measurements in wind power meteorology using small unmanned flying platforms. Large-scale wind farms, especially offshore, need an optimisation between installed wind power density and the losses in the wind farm due to wake effects between the turbines. Good...... as either an extension of current masts or to build a network of very high 'masts' in a region of complex terrain or coastal flow conditions. In order to test the potential and limits of UAVs for wind power meteorology, this project assembles four different UAVs from four participating groups. Risø has...

  20. A Primer on Autonomous Aerial Vehicle Design

    Directory of Open Access Journals (Sweden)

    Hugo H. G. Coppejans

    2015-12-01

    Full Text Available There is a large amount of research currently being done on autonomous micro-aerial vehicles (MAV, such as quadrotor helicopters or quadcopters. The ability to create a working autonomous MAV depends mainly on integrating a simultaneous localization and mapping (SLAM solution with the rest of the system. This paper provides an introduction for creating an autonomous MAV for enclosed environments, aimed at students and professionals alike. The standard autonomous system and MAV automation are discussed, while we focus on the core concepts of SLAM systems and trajectory planning algorithms. The advantages and disadvantages of using remote processing are evaluated, and recommendations are made regarding the viability of on-board processing. Recommendations are made regarding best practices to serve as a guideline for aspirant MAV designers.

  1. Mathematical modelling of unmanned aerial vehicles

    International Nuclear Information System (INIS)

    UAVs (Unmanned Aerial Vehicles) UAVs are emerging as requirement of time and it is expected that in next five to ten years, complete air space will be flooded with UAVs, committed in varied assignments ranging from military, scientific and commercial usage. Non availability of human pilot inside UAV necessitates the requirement of an onboard auto pilot in order to maintain desired flight profile against any unexpected disturbance and/or parameter variations. Design of such an auto pilot requires an accurate mathematical model of UAV. The aim of this paper is to present a consolidated picture of UAV model. This paper first consolidates complete 6 DOF Degree of Freedom) equations of motion into a nonlinear mathematical model and its simulation using model parameters of a real UAV. Model is then linearized into longitudinal and lateral modes. State space models of linearized modes are simulated and analyzed for stability parameters. The developed model can be used to design auto pilot for UAV. (author)

  2. Weather effects on aerial snow measurement

    Energy Technology Data Exchange (ETDEWEB)

    Tollan, O.

    1979-01-01

    When aerial snow measurements are carried out, various weather phenomena have influence on the survey operations and the registered gamma radiation values. Among these phenomena are low visibility and wind causing problems to aircraft operations, and temperature inversions which may trap radioactive gases and particles in the air layer near the ground. The pressure and temperature of the air and its humidity influence the gamma radiation field above the ground, and this should be taken into consideration. As some types of weather may cause delays and errors in the snow measurement, it is important for the operators to have a reliable account of the weather situation prior to and during the survey flights. This will reduce the cost of the measurement operation and improve the quality of the collected data.

  3. Bioinspired optical sensors for unmanned aerial systems

    Science.gov (United States)

    Chahl, Javaan; Rosser, Kent; Mizutani, Akiko

    2011-04-01

    Insects are dependant on the spatial, spectral and temporal distributions of light in the environment for flight control and navigation. This paper reports on flight trials of implementations of insect inspired behaviors on unmanned aerial vehicles. Optical flow methods for maintaining a constant height above ground and a constant course have been demonstrated to provide navigation capabilities that are impossible using conventional avionics sensors. Precision control of height above ground and ground course were achieved over long distances. Other vision based techniques demonstrated include a biomimetic stabilization sensor that uses the ultraviolet and green bands of the spectrum, and a sky polarization compass. Both of these sensors were tested over long trajectories in different directions, in each case showing performance similar to low cost inertial heading and attitude systems. The behaviors demonstrate some of the core functionality found in the lower levels of the sensorimotor system of flying insects and shows promise for more integrated solutions in the future.

  4. LASER LOCATION AND DIGITAL AERIAL SURVEY AS A SUBSATELLITE COMPONENT IN THE SYSTEM OF INFORMATION SUPPORT OF INVENTORY, MONITORINAND CADASTRE OF FOREST LANDS

    OpenAIRE

    Danilin, I.; Danilin, A; Svischev, D.

    2010-01-01

    Approaches and solutions in the area of forest remote sensing methods for the purposes of information support of inventory, monitoring and cadastre of forest lands with the use of innovation methods and high-end technologies of laser location, digital aerial survey and global satellite positioning are considered in the paper.

  5. Large Aerial Bursts: An Important Class of Terrestrial Accretionary Events

    Science.gov (United States)

    Wasson, John T.

    2003-01-01

    Large aerial bursts similar to the 1908 Tunguska bolide but much larger in magnitude have surely been responsible for many catastrophic events in the history of the Earth. Because aerial bursts produce shallow (or even negligible) craters, their existence is difficult to document in the geological record. Even aerial bursts as small as Tunguska deposit enough energy to melt ~1mm of dry soil. Silica-rich glass formed in such melts has the potential to survive in the soil for many Ma, thus a potential indicator of large aerial bursts is glass that was formed as thick regions within silicate melt sheets. The layered tektites from Southeast Asia and the Libyan desert glass may have formed by a combination of sedimentation and downslope flow of silicate melt heated by radiation from large aerial bursts. The alternative, formation of layered tektites as crater ejecta, cannot account for observations such as uniformly high 10Be contents, the orientation of the magnetic remanence field, and the absence of splash-form (e.g., teardrop or dumbbell) tektites in regions where layered tektites are common. The largest asteroids or comets make craters no matter what their strength. Recent reviews suggest that, for events in the energy range up to 1019-1020 J (about two orders of magnitude larger than the Meteor Crater impact), aerial bursts are more likely than cratering events, and the layered tektites of Southeast Asia imply the existence of aerial bursts one to two orders of magnitude larger still.

  6. Concept options for the aerial survey of Titan

    Science.gov (United States)

    Dorrington, G. E.

    2011-01-01

    Various aerial platforms intended for long endurance survey of the Titan surface are presented. A few novel concepts are introduced, including a heated methane balloon and a balloon with a tethered wind turbine. All the concept options are predicted to have lower scientific payload fractions than the Huygens probe. It is concluded that the selection of the best aerial platform option depends on more accurate mass estimates and a clear decision on whether, or not, in situ surface composition measurements are required in conjunction with aerial remote sensing.

  7. Multidimensional analysis of autonomous aerial observation systems (AAOS) for scientific, civil, and defense applications

    Science.gov (United States)

    Hutchinson, Mark A.; Hamill, Doris L.; Harrison, F. W.; Yetter, Jeffrey A.; Lawrence, Roland W.; Healy, Edward A.; Wright, Henry S.

    2004-12-01

    Better knowledge of the atmosphere, ocean and land are needed by a wide range of users spanning the scientific, civil and defense communities. Observations to provide this knowledge will require aerial systems with greater operational flexibility and lower life-cycle costs than are currently available. Persistent monitoring of severe storms, sampling and measurements of the Earth"s carbon cycle, wildfire monitoring/management, crop assessments, ozone and polar ice changes, and natural disaster response (communications and surveillance) are but a few applications where autonomous aerial observations can effectively augment existing measurement systems. User driven capabilities include high altitude, long range, long-loiter (days/weeks), smaller deployable sensor-ships for in-situ sampling, and sensors providing data with spectral bandwidth and high temporal and three-dimensional spatial resolution. Starting with user needs and considering all elements and activities required to acquire the needed observations leads to the definition of autonomous aerial observation systems (AAOS) that can significantly complement and extend the current Earth observation capability. In this approach, UAVs are viewed as only one, albeit important, element in a mission system and overall cost and performance for the user are the critical success factors. To better understand and meet the challenges of developing such AAOSs, a systems oriented multi-dimensional analysis has been performed that illuminates the enabling and high payoff investments that best address the needs of scientific, civil, and defense users of Earth observations. The analysis further identifies technology gaps and serves to illustrate how investments in a range of mission subsystems together can enable a new class of Earth observations.

  8. Locating chimpanzee nests and identifying fruiting trees with an unmanned aerial vehicle.

    Science.gov (United States)

    van Andel, Alexander C; Wich, Serge A; Boesch, Christophe; Koh, Lian Pin; Robbins, Martha M; Kelly, Joseph; Kuehl, Hjalmar S

    2015-10-01

    Monitoring of animal populations is essential for conservation management. Various techniques are available to assess spatiotemporal patterns of species distribution and abundance. Nest surveys are often used for monitoring great apes. Quickly developing technologies, including unmanned aerial vehicles (UAVs) can be used to complement these ground-based surveys, especially for covering large areas rapidly. Aerial surveys have been used successfully to detect the nests of orang-utans. It is unknown if such an approach is practical for African apes, which usually build their nests at lower heights, where they might be obscured by forest canopy. In this 2-month study, UAV-derived aerial imagery was used for two distinct purposes: testing the detectability of chimpanzee nests and identifying fruiting trees used by chimpanzees in Loango National Park (Gabon). Chimpanzee nest data were collected through two approaches: we located nests on the ground and then tried to detect them in UAV photos and vice versa. Ground surveys were conducted using line transects, reconnaissance trails, and opportunistic sampling during which we detected 116 individual nests in 28 nest groups. In complementary UAV images we detected 48% of the individual nests (68% of nest groups) in open coastal forests and 8% of individual nests (33% of nest groups) in closed canopy inland forests. The key factor for nest detectability in UAV imagery was canopy openness. Data on fruiting trees were collected from five line transects. In 122 UAV images 14 species of trees (N = 433) were identified, alongside 37 tree species (N = 205) in complementary ground surveys. Relative abundance of common tree species correlated between ground and UAV surveys. We conclude that UAVs have great potential as a rapid assessment tool for detecting chimpanzee presence in forest with open canopy and assessing fruit tree availability. UAVs may have limited applicability for nest detection in closed canopy forest. PMID

  9. Locating chimpanzee nests and identifying fruiting trees with an unmanned aerial vehicle.

    Science.gov (United States)

    van Andel, Alexander C; Wich, Serge A; Boesch, Christophe; Koh, Lian Pin; Robbins, Martha M; Kelly, Joseph; Kuehl, Hjalmar S

    2015-10-01

    Monitoring of animal populations is essential for conservation management. Various techniques are available to assess spatiotemporal patterns of species distribution and abundance. Nest surveys are often used for monitoring great apes. Quickly developing technologies, including unmanned aerial vehicles (UAVs) can be used to complement these ground-based surveys, especially for covering large areas rapidly. Aerial surveys have been used successfully to detect the nests of orang-utans. It is unknown if such an approach is practical for African apes, which usually build their nests at lower heights, where they might be obscured by forest canopy. In this 2-month study, UAV-derived aerial imagery was used for two distinct purposes: testing the detectability of chimpanzee nests and identifying fruiting trees used by chimpanzees in Loango National Park (Gabon). Chimpanzee nest data were collected through two approaches: we located nests on the ground and then tried to detect them in UAV photos and vice versa. Ground surveys were conducted using line transects, reconnaissance trails, and opportunistic sampling during which we detected 116 individual nests in 28 nest groups. In complementary UAV images we detected 48% of the individual nests (68% of nest groups) in open coastal forests and 8% of individual nests (33% of nest groups) in closed canopy inland forests. The key factor for nest detectability in UAV imagery was canopy openness. Data on fruiting trees were collected from five line transects. In 122 UAV images 14 species of trees (N = 433) were identified, alongside 37 tree species (N = 205) in complementary ground surveys. Relative abundance of common tree species correlated between ground and UAV surveys. We conclude that UAVs have great potential as a rapid assessment tool for detecting chimpanzee presence in forest with open canopy and assessing fruit tree availability. UAVs may have limited applicability for nest detection in closed canopy forest.

  10. Image-based monitoring to measure ecological change in rangelands

    Science.gov (United States)

    High-resolution image-based methods can increase the speed and accuracy of ecological monitoring while reducing monitoring costs. We evaluated the efficacy of systematic aerial and ground sampling protocols to detect stocking-rate differences across 130 ha of shortgrass prairie. Manual and automated...

  11. MARKET ANALYSIS AND POTENTIAL OF UAV SYSTEMS FOR MONITORING &CARTOGRAPHY IN ECOLOGY, AGRICULTURE & FORESTRY

    OpenAIRE

    Mittal, Prakul; National Aerospace University “KhAI”; Muneshwar, Rajesh N.; National Aerospace University “KhAI”

    2013-01-01

    This paper describes recent research into Aerial Photography, Cartography and Monitoring Capa-bilities and Technologies of UAV products currently available into the market. It reviews advancement of small electric powered unmanned air vehicle (UAV) capabilities. Specifically, topics under consideration were Aerial photography and its two uses, Cartography and Monitoring within the context of proposed exploitation of UAV for Planning, control and management in Agriculture, Forestry and Ecology...

  12. 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Pool 16

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain...

  13. Aerial Photography and Imagery, Ortho-Corrected - FDOT 2003 Orthophotography

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — These aerials were flown by the Florida Department of Transportation from December 23, 2002 to February 13, 2003 NAD 83 Mosaic format Semi Orthorectified black and...

  14. Project Birdseye Aerial Photograph Collection: Digital and Analog Materials

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection consists of both analog and digital aerial photographs from Arctic areas in and around Baffin Bay, the Labrador Sea, the Arctic Ocean, the Beaufort...

  15. 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Pool 26

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain...

  16. 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Pool 8

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain...

  17. Aerial Triangulation Close-range Images with Dual Quaternion

    Directory of Open Access Journals (Sweden)

    SHENG Qinghong

    2015-05-01

    Full Text Available A new method for the aerial triangulation of close-range images based on dual quaternion is presented. Using dual quaternion to represent the spiral screw motion of the beam in the space, the real part of dual quaternion represents the angular elements of all the beams in the close-range area networks, the real part and the dual part of dual quaternion represents the line elements corporately. Finally, an aerial triangulation adjustment model based on dual quaternion is established, and the elements of interior orientation and exterior orientation and the object coordinates of the ground points are calculated. Real images and large attitude angle simulated images are selected to run the experiments of aerial triangulation. The experimental results show that the new method for the aerial triangulation of close-range images based on dual quaternion can obtain higher accuracy.

  18. Estimation and Prediction of Unmanned Aerial Vehicle Trajectories Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There is serious concern about the introduction of Unmanned Aerial Vehicles (UAV) in the National Air Space (NAS) because of their potential to increase the risk of...

  19. Unmanned Aerial Vehicle Diode Laser Sensor for Methane Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A compact, lightweight, and low power diode laser sensor will be developed for atmospheric methane detection on small unmanned aerial vehicles (UAVs). The physical...

  20. An analysis of aerial waterfowl production surveys in Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In 1961 an effort was launched to conduct a full scale operational aerial brood survey, previous experimental failures notwithstanding. The project was terminated...

  1. Mapping the Kathmandu Valley With Aerial Photographs by Erwin Schneider

    Directory of Open Access Journals (Sweden)

    Urmi Sengupta

    2015-11-01

    Full Text Available Reviewed: Mapping the Kathmandu Valley With Aerial Photographs by Erwin Schneider By Neils Gutschow and Hermann Kreutzmann. Kathmandu, Nepal: Himal Books, 2013. 216 pp. US $ 48.00. ISBN 978-9937-597-06-7.

  2. Geochemical prospect ion results of Mariscala aerial photo

    International Nuclear Information System (INIS)

    This report shows the geochemical prospect ion results carried out within the framework of the metalical mining prospect ion in Mariscala aerial photo. Lavalleja district belong to the Mining inventory programme of Uruguay.

  3. Mapping the Kathmandu Valley With Aerial Photographs by Erwin Schneider

    OpenAIRE

    Urmi Sengupta

    2015-01-01

    Reviewed: Mapping the Kathmandu Valley With Aerial Photographs by Erwin Schneider By Neils Gutschow and Hermann Kreutzmann. Kathmandu, Nepal: Himal Books, 2013. 216 pp. US $ 48.00. ISBN 978-9937-597-06-7.

  4. Unmanned Aerial Vehicle Systems for Disaster Relief: Tornado Alley

    Science.gov (United States)

    DeBusk, Wesley M.

    2009-01-01

    Unmanned aerial vehicle systems are currently in limited use for public service missions worldwide. Development of civil unmanned technology in the United States currently lags behind military unmanned technology development in part because of unresolved regulatory and technological issues. Civil unmanned aerial vehicle systems have potential to augment disaster relief and emergency response efforts. Optimal design of aerial systems for such applications will lead to unmanned vehicles which provide maximum potentiality for relief and emergency response while accounting for public safety concerns and regulatory requirements. A case study is presented that demonstrates application of a civil unmanned system to a disaster relief mission with the intent on saving lives. The concept utilizes unmanned aircraft to obtain advanced warning and damage assessments for tornados and severe thunderstorms. Overview of a tornado watch mission architecture as well as commentary on risk, cost, need for, and design tradeoffs for unmanned aerial systems are provided.

  5. Aerial Images of Alaska's Arctic Coastal Plain; 1974-1979

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset is comprised of 10 aerial images of three different study areas on Alaska's Arctic Coastal Plain flown by NASA in 1974, 1977, 1979 and obtained from...

  6. Diterpenoids from Roots and Aerial Parts of the Genus Stachys

    OpenAIRE

    Franco Piozzi; Maurizio Bruno

    2011-01-01

    The occurrence of diterpenoids from roots and aerial parts of the species of the genus Stachys (Lamiaceae, Labiatae) is reviewed. The presence of these diterpenoids in other taxa and their biological properties have been also reviewed.

  7. 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Pool 9

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain...

  8. 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Pool 2

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain...

  9. 2000 Aerial Photo Mosaics - Upper Mississippi River System -- St Croix

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain...

  10. 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Pool 15

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain...

  11. 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Pool 20

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain...

  12. 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Pool 12

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain...

  13. 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Pool 13

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain...

  14. 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Pool 10

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain...

  15. 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Pool 21

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain...

  16. 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Brandon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain...

  17. 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Pool 18

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain...

  18. 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Lockport

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain...

  19. 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Pool 24

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain...

  20. 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Alton

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain...

  1. 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Pool 5

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain...

  2. 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Pool 14

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain...

  3. 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Pool 7

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain...

  4. 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Pool 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain...

  5. 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Minnesota

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain...

  6. 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Pool 4

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain...

  7. 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Dresden

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain...

  8. 2000 Aerial Photo Mosaics - Upper Mississippi River System -- La Grange

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain...

  9. 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Pool 1

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain...

  10. 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Pool 19

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain...

  11. 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Pool 22

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain...

  12. 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Pool 3

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain...

  13. 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Pool 17

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain...

  14. 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Pool 25

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain...

  15. 2000 Aerial Photo Mosaics - Upper Mississippi River System -- Pool 11

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) collects aerial photography of the Upper Mississippi River System (UMRS) floodplain...

  16. Gulf of Mexico Protected Species Assessment Aerial Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data sets include a compilation of aerial line-transect surveys conducted over continental shelf waters of the Gulf of Mexico since 1992. The majority of...

  17. Ontogeny of aerial righting and wing flapping in juvenile birds

    CERN Document Server

    Evangelista, Dennis; Huynh, Tony; Krivitskiy, Igor; Dudley, Robert

    2014-01-01

    Mechanisms of aerial righting in juvenile Chukar Partridge (Alectoris chukar) were studied from hatching through 14 days post hatching (dph). Asymmetric movements of the wings were used from 1 to 8 dph to effect progressively more successful righting behaviour via body roll. Following 8 dph, wing motions transitioned to bilaterally symmetric flapping that yielded aerial righting via nose down pitch, along with substantial increases in vertical force production during descent. Ontogenetically, the use of such wing motions to effect aerial righting precedes both symmetric flapping and a previously documented behaviour in chukar (i.e., wing assisted incline running) hypothesized to be relevant to incipient flight evolution in birds. These findings highlight the importance of asymmetric wing activation and controlled aerial manoeuvres during bird development, and are potentially relevant to understanding the origins of avian flight.

  18. MONITORING OF HEAPS USING VARIOUS TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Helena Straková

    2015-07-01

    Full Text Available Coal heaps are frequently self-burning by definite environmental conditions, therefore thermal activity monitoring of these localities is important. For this purpose, data from terrestrial measurement or thermal infrared images are used. Subsurface coal fires monitored by terrestrial measurement by contact thermometers are time-consuming and dangerous because of landslides. That is a reason why coal fires are mostly monitored by thermal infrared images through remote sensing, i.e. satellite-borne or airborne data, which is much more suitable for thermal activity monitoring. The satellite data do not have sufficient geometric resolution (60 - 120m per pixel, aerial thermal data are accurate, but expensive. Unmanned aerial vehicles (UAV or better RPAS - remotely piloted aircraft systems can be solution – thermal images obtained by RPAS have good geometric resolution and can be used for small areas only and our case project areas are not so big. From economic point of view, low cost technology is preferred. The article describes opportunities of low-cost thermal infrared data, the use of RPAS (mapping by Microkopter system in thermal monitoring and photogrammetric tasks (coal heaps such as low cost aerial thermal mapping. The problems of planning and data acquisition are illustrated by creating an orthophoto. Theoretical preparation of data acquisition deals with RPAS Microkopter mission planning and operation. The obtained data are processed by several sets of software specially developed for close range aerial photogrammetry. The outputs are orthophoto images, digital elevation models and thermal map. As a bonus, low-cost aerial methods with small thermal camera are shown.

  19. Ontogeny of aerial righting and wing flapping in juvenile birds

    OpenAIRE

    Evangelista, Dennis; Cam, Sharlene; Huynh, Tony; Krivitskiy, Igor; Dudley, Robert

    2014-01-01

    Mechanisms of aerial righting in juvenile Chukar Partridge (Alectoris chukar) were studied from hatching through 14 days post hatching (dph). Asymmetric movements of the wings were used from 1 to 8 dph to effect progressively more successful righting behaviour via body roll. Following 8 dph, wing motions transitioned to bilaterally symmetric flapping that yielded aerial righting via nose down pitch, along with substantial increases in vertical force production during descent. Ontogenetically,...

  20. Rigorous LiDAR Strip Adjustment with Triangulated Aerial Imagery

    OpenAIRE

    Zhang, Y. J.; Xiong, X. D.; Hu, X Y

    2013-01-01

    This paper proposes a POS aided LiDAR strip adjustment method. Firstly, aero-triangulation of the simultaneously obtained aerial images is conducted with a few photogrammetry-specific ground control points. Secondly, LiDAR intensity images are generated from the reflectance signals of laser foot points, and conjugate points are automatically matched between the LiDAR intensity image and the aero-triangulated aerial image. Control points used in LiDAR strip adjustment are derived from...

  1. The Necessary Number of Elements in a Directional Ring Aerial

    DEFF Research Database (Denmark)

    Knudsen, Hans Lottrup

    1951-01-01

    An investigation is made concerning the dependence of the array characteristic of a directional ring aerial on its number of elements. It is shown that an odd number of elements is more favorable than an even number in approximating the array characteristic of a similar ring aerial with infinitely...... of the antenna array is horizontal; the theory for this case is illustrated by a numerical example. Journal of Applied Physics is copyrighted by The American Institute of Physics....

  2. The Aeronautics Education, Research, and Industry Alliance (AERIAL) 2002 Report

    Science.gov (United States)

    Bowen, Brent D.; Fink, Mary M.; Nickerson, Jocelyn S.

    2002-01-01

    This report presents and overview of the Aeronautics Education, Research, and Industry Alliance (AERIAL). It covers the University of Nebraska's areas of research, and its outreach to students at Native American schools as part of AERIAL. The report contains three papers: "Airborne Remote Sensing (ARS) for Agricultural Research and Commercialization Application" (White Paper), "Validated Numerical Models for the Convective Extinction of Fuel Droplets (CEFD)", and "The Small Aircraft Transportation System (SATS): Research Collaborations with the NASA Langley Research Center".

  3. Electrodynamic Stability Computations for Flexible Conductors of the Aerial Lines

    OpenAIRE

    I. I. Sergey; Y. G. Panamarenka; P. I. Klimkovich; A. P. Dolin; Y. V. Potachits

    2015-01-01

    In aerial transmission lines aluminium multiwire conductors are in use. Owing to their flexible design the electrodynamic effect of short circuit currents may lead to intolerable mutual rendezvous and even cross-whipping of the phase conductors. The increasing motion of the conductors caused by effect of the short-circuit electrodynamic force impulse is accompanied by the dynamic load impact affecting the conductors, insulating and supporting constructions of the aerial lines. Intensity of th...

  4. Optimization and application of Retinex algorithm in aerial image processing

    Science.gov (United States)

    Sun, Bo; He, Jun; Li, Hongyu

    2008-04-01

    In this paper, we provide a segmentation based Retinex for improving the visual quality of aerial images obtained under complex weather conditions. With the method, an aerial image will be segmented into different regions, and then an adaptive Gaussian based on the segmentations will be used to process it. The method addresses the problems existing in previously developed Retinex algorithms, such as halo artifacts and graying-out artifacts. The experimental result also shows evidence of its better effect.

  5. Short range reconnaissance unmanned aerial vehicle / S.J. Kersop.

    OpenAIRE

    Kersop, Stefanus Jacobus

    2009-01-01

    Unmanned aerial vehicles (UAVs) have been used increasingly over the past few years. Special Forces of various countries utilise these systems successfully in war zones such as Afghanistan. The biggest advantage is rapid information gathering without endangering human lives. The South African National Defence Force (SANDF) also identified the need for local short range aerial reconnaissance and information gathering. A detailed literature survey identified various international players inv...

  6. LOW COST SURVEYING USING AN UNMANNED AERIAL VEHICLE

    OpenAIRE

    M. Pérez; Agüera, F.; F. Carvajal

    2013-01-01

    Traditional manned airborne surveys are usually expensive and the resolution of the acquired images is often limited. The main advantage of Unmanned Aerial Vehicle (UAV) system acting as a photogrammetric sensor platform over more traditional manned airborne system is the high flexibility that allows image acquisition from unconventional viewpoints, the low cost in comparison with classical aerial photogrammetry and the high resolution images obtained. Nowadays there is a necessity f...

  7. Detection of Aspens Using High Resolution Aerial Laser Scanning Data and Digital Aerial Images

    Directory of Open Access Journals (Sweden)

    Kalle Eerikäinen

    2008-08-01

    Full Text Available The aim was to use high resolution Aerial Laser Scanning (ALS data and aerial images to detect European aspen (Populus tremula L. from among other deciduous trees. The field data consisted of 14 sample plots of 30 m × 30 m size located in the Koli National Park in the North Karelia, Eastern Finland. A Canopy Height Model (CHM was interpolated from the ALS data with a pulse density of 3.86/m2, low-pass filtered using Height-Based Filtering (HBF and binarized to create the mask needed to separate the ground pixels from the canopy pixels within individual areas. Watershed segmentation was applied to the low-pass filtered CHM in order to create preliminary canopy segments, from which the non-canopy elements were extracted to obtain the final canopy segmentation, i.e. the ground mask was analysed against the canopy mask. A manual classification of aerial images was employed to separate the canopy segments of deciduous trees from those of coniferous trees. Finally, linear discriminant analysis was applied to the correctly classified canopy segments of deciduous trees to classify them into segments belonging to aspen and those belonging to other deciduous trees. The independent variables used in the classification were obtained from the first pulse ALS point data. The accuracy of discrimination between aspen and other deciduous trees was 78.6%. The independent variables in the classification function were the proportion of vegetation hits, the standard deviation of in pulse heights, accumulated intensity at the 90th percentile and the proportion of laser points reflected at the 60th height percentile. The accuracy of classification corresponded to the validation results of earlier ALS-based studies on the classification of individual deciduous trees to tree species.

  8. New aerial survey and hierarchical model to estimate manatee abundance

    Science.gov (United States)

    Langimm, Cahterine A.; Dorazio, Robert M.; Stith, Bradley M.; Doyle, Terry J.

    2011-01-01

    Monitoring the response of endangered and protected species to hydrological restoration is a major component of the adaptive management framework of the Comprehensive Everglades Restoration Plan. The endangered Florida manatee (Trichechus manatus latirostris) lives at the marine-freshwater interface in southwest Florida and is likely to be affected by hydrologic restoration. To provide managers with prerestoration information on distribution and abundance for postrestoration comparison, we developed and implemented a new aerial survey design and hierarchical statistical model to estimate and map abundance of manatees as a function of patch-specific habitat characteristics, indicative of manatee requirements for offshore forage (seagrass), inland fresh drinking water, and warm-water winter refuge. We estimated the number of groups of manatees from dual-observer counts and estimated the number of individuals within groups by removal sampling. Our model is unique in that we jointly analyzed group and individual counts using assumptions that allow probabilities of group detection to depend on group size. Ours is the first analysis of manatee aerial surveys to model spatial and temporal abundance of manatees in association with habitat type while accounting for imperfect detection. We conducted the study in the Ten Thousand Islands area of southwestern Florida, USA, which was expected to be affected by the Picayune Strand Restoration Project to restore hydrology altered for a failed real-estate development. We conducted 11 surveys in 2006, spanning the cold, dry season and warm, wet season. To examine short-term and seasonal changes in distribution we flew paired surveys 1–2 days apart within a given month during the year. Manatees were sparsely distributed across the landscape in small groups. Probability of detection of a group increased with group size; the magnitude of the relationship between group size and detection probability varied among surveys. Probability

  9. A Vision Based Aerial Robot solution for the Mission 7 of the International Aerial Robotics Competition

    OpenAIRE

    Sánchez López, José Luis; Pestana Puerta, Jesús; Collumeau, Jean-Françoise; Suárez Fernández, Ramón; Campoy Cervera, Pascual; Molina, Martin

    2015-01-01

    The International Aerial Robotics Competition (IARC) aims at pulling forward the state of the art in UAV. The Mission's 7 challenge deals mainly with GPS/Laser denied navigation, Robot-Robot interaction and obstacle avoidance in the setting of a ground robot herding problem. We present in this paper our UAV which took part in the 2014 competition, in the China venue. This year, the mission was not completed by any participant but our team at Technical University of Madrid (UPM) were awarded w...

  10. Aerial Photography and Imagery, Ortho-Corrected, Aerial Photography and Imagery, Ortho-Corrected -, Published in unknown, Not Applicable scale, FREAC.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Aerial Photography and Imagery, Ortho-Corrected dataset, published at Not Applicable scale as of unknown. It is described as 'Aerial Photography and Imagery,...

  11. Unmanned Aerial Vehicle Domain: Areas of Research

    Directory of Open Access Journals (Sweden)

    Kadir Alpaslan Demir

    2015-07-01

    Full Text Available Unmanned aerial vehicles (UAVs domain has seen rapid developments in recent years. As the number of UAVs increases and as the missions involving UAVs vary, new research issues surface. An overview of the existing research areas in the UAV domain has been presented including the nature of the work categorised under different groups. These research areas are divided into two main streams: Technological and operational research areas. The research areas in technology are divided into onboard and ground technologies. The research areas in operations are divided into organization level, brigade level, user level, standards and certifications, regulations and legal, moral, and ethical issues. This overview is intended to serve as a starting point for fellow researchers new to the domain, to help researchers in positioning their research, identifying related research areas, and focusing on the right issues.Defence Science Journal, Vol. 65, No. 4, July 2015, pp. 319-329, DOI: http://dx.doi.org/10.14429/dsj.65.8631

  12. UNMANNED AERIAL VEHICLE IN CADASTRAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    M. Manyoky

    2012-09-01

    Full Text Available This paper presents the investigation of UAVs (Unmanned Aerial Vehicles for use in cadastral surveying. Within the scope of a pilot study UAVs were tested for capturing geodata and compared with conventional data acquisition methods for cadastral surveying. Two study sites were therefore surveyed with a tachymeter-GNSS combination as well as a UAV system. The workflows of both methods were investigated and the resulting data were compared with the requirements of Swiss cadastral surveying. Concerning data acquisition and evaluation, the two systems are found to be comparable in terms of time expenditure, accuracy, and completeness. In conclusion, the UAV image orientation proved to be the limiting factor for the obtained accuracy due to the low- cost camera including camera calibration, image quality, and definition of the ground control points (natural or artificial. However, the required level of accuracy for cadastral surveying was reached. The advantage of UAV systems lies in their high flexibility and efficiency in capturing the surface of an area from a low flight altitude. In addition, further information such as orthoimages, elevation models and 3D objects can easily be gained from UAV images. Altogether, this project endorses the benefit of using UAVs in cadastral applications and the new opportunities they provide for cadastral surveying.

  13. The design of aerial camera focusing mechanism

    Science.gov (United States)

    Hu, Changchang; Yang, Hongtao; Niu, Haijun

    2015-10-01

    In order to ensure the imaging resolution of aerial camera and compensating defocusing caused by the changing of atmospheric temperature, pressure, oblique photographing distance and other environmental factor [1,2], and to meeting the overall design requirements of the camera for the lower mass and smaller size , the linear focusing mechanism is designed. Through the target surface support, the target surface component is connected with focusing driving mechanism. Make use of precision ball screws, focusing mechanism transforms the input rotary motion of motor into linear motion of the focal plane assembly. Then combined with the form of linear guide restraint movement, the magnetic encoder is adopted to detect the response of displacement. And the closed loop control is adopted to realize accurate focusing. This paper illustrated the design scheme for a focusing mechanism and analyzed its error sources. It has the advantages of light friction and simple transmission chain and reducing the transmission error effectively. And this paper also analyses the target surface by finite element analysis and lightweight design. Proving that the precision of focusing mechanism can achieve higher than 3um, and the focusing range is +/-2mm.

  14. Community aerial mosquito control and naled exposure.

    Science.gov (United States)

    Duprey, Zandra; Rivers, Samantha; Luber, George; Becker, Alan; Blackmore, Carina; Barr, Dana; Weerasekera, Gayanga; Kieszak, Stephanie; Flanders, W Dana; Rubin, Carol

    2008-03-01

    In October 2004, the Florida Department of Health (FLDOH) and the Centers for Disease Control and Prevention (CDC) assessed human exposure to ultra-low volume (ULV) aerial application of naled. Teams administered activity questionnaires regarding pesticide exposure and obtained baseline urine samples to quantify prespray naled metabolite levels. Following the spray event, participants were asked to collect postspray urine specimens within 12 h of the spray event and at 8-h intervals for up to 40 h. Upon completion, a postspray activity questionnaire was administered to study participants. Two hundred five (87%) participants completed the study. The urine analysis showed that although 67% of prespray urine samples had detectable levels of a naled metabolite, the majority of postspray samples were below the limit of detection ( 40 h) following exposure, the number of samples with detectable levels exceeded 50%. There was a significant decrease in naled metabolites from prespray to postspray (= .02), perhaps associated with a significant reduction (naled does not result in increased levels of naled in humans, provided the naled is used according to label instructions. PMID:18437813

  15. Measured Noise from Small Unmanned Aerial Vehicles

    Science.gov (United States)

    Cabell, Randolph; McSwain, Robert; Grosveld, Ferdinand

    2016-01-01

    Proposed uses of small unmanned aerial vehicles (UAVs), including home package delivery, have the potential to expose large portions of communities to a new noise source. This paper discusses results of flyover noise measurements of four small UAVs, including an internal combustion-powered model airplane and three battery-powered multicopters. Basic noise characteristics of these vehicles are discussed, including spectral properties and sound level metrics such as sound pressure level, effective perceived noise level, and sound exposure level. The size and aerodynamic characteristics of the multicopters in particular make their flight path susceptible to atmospheric disturbances such as wind gusts. These gusts, coupled with a flight control system that varies rotor speed to maintain vehicle stability, create an unsteady acoustic signature. The spectral variations resulting from this unsteadiness are explored, in both hover and flyover conditions for the multicopters. The time varying noise, which differs from the relatively steady noise generated by large transport aircraft, may complicate the prediction of human annoyance using conventional sound level metrics.

  16. [Death by explosion of an aerial mine].

    Science.gov (United States)

    Stockhausen, Sarah; Wöllner, Kirsten; Madea, Burkhard; Doberentz, Elke

    2014-01-01

    Civilians are rarely killed by military weapons except in times of war. In early 2014, a 50-year-old man died in an explosion of an aerial mine from the Second World War when he was crushing concrete chunks with an excavator at a recycling plant. In the burned operator's cab, the remains of a body were found on the driver's seat. The thorax and the head were missing. Still sticking in the shoe, the right foot severed at the ankle was found about 7 m from the excavator together with numerous small to tiny body parts. At autopsy, the completely disrupted, strongly charred lower torso of a male connected to the left extremities as well as a large number of small tissue fragments and calcined bones were found. According to calculations performed by the seismographical station on the basis of seismic data, only about 45-60 percent of the charge had detonated. The autopsy results illustrate all the more the massive impact of such an explosion. PMID:26548019

  17. Unmanned Aerial Vehicle to Estimate Nitrogen Status of Turfgrasses.

    Science.gov (United States)

    Caturegli, Lisa; Corniglia, Matteo; Gaetani, Monica; Grossi, Nicola; Magni, Simone; Migliazzi, Mauro; Angelini, Luciana; Mazzoncini, Marco; Silvestri, Nicola; Fontanelli, Marco; Raffaelli, Michele; Peruzzi, Andrea; Volterrani, Marco

    2016-01-01

    Spectral reflectance data originating from Unmanned Aerial Vehicle (UAV) imagery is a valuable tool to monitor plant nutrition, reduce nitrogen (N) application to real needs, thus producing both economic and environmental benefits. The objectives of the trial were i) to compare the spectral reflectance of 3 turfgrasses acquired via UAV and by a ground-based instrument; ii) to test the sensitivity of the 2 data acquisition sources in detecting induced variation in N levels. N application gradients from 0 to 250 kg ha-1 were created on 3 different turfgrass species: Cynodon dactylon x transvaalensis (Cdxt) 'Patriot', Zoysia matrella (Zm) 'Zeon' and Paspalum vaginatum (Pv) 'Salam'. Proximity and remote-sensed reflectance measurements were acquired using a GreenSeeker handheld crop sensor and a UAV with onboard a multispectral sensor, to determine Normalized Difference Vegetation Index (NDVI). Proximity-sensed NDVI is highly correlated with data acquired from UAV with r values ranging from 0.83 (Zm) to 0.97 (Cdxt). Relating NDVI-UAV with clippings N, the highest r is for Cdxt (0.95). The most reactive species to N fertilization is Cdxt with a clippings N% ranging from 1.2% to 4.1%. UAV imagery can adequately assess the N status of turfgrasses and its spatial variability within a species, so for large areas, such as golf courses, sod farms or race courses, UAV acquired data can optimize turf management. For relatively small green areas, a hand-held crop sensor can be a less expensive and more practical option.

  18. Unmanned Aerial Vehicle to Estimate Nitrogen Status of Turfgrasses.

    Science.gov (United States)

    Caturegli, Lisa; Corniglia, Matteo; Gaetani, Monica; Grossi, Nicola; Magni, Simone; Migliazzi, Mauro; Angelini, Luciana; Mazzoncini, Marco; Silvestri, Nicola; Fontanelli, Marco; Raffaelli, Michele; Peruzzi, Andrea; Volterrani, Marco

    2016-01-01

    Spectral reflectance data originating from Unmanned Aerial Vehicle (UAV) imagery is a valuable tool to monitor plant nutrition, reduce nitrogen (N) application to real needs, thus producing both economic and environmental benefits. The objectives of the trial were i) to compare the spectral reflectance of 3 turfgrasses acquired via UAV and by a ground-based instrument; ii) to test the sensitivity of the 2 data acquisition sources in detecting induced variation in N levels. N application gradients from 0 to 250 kg ha-1 were created on 3 different turfgrass species: Cynodon dactylon x transvaalensis (Cdxt) 'Patriot', Zoysia matrella (Zm) 'Zeon' and Paspalum vaginatum (Pv) 'Salam'. Proximity and remote-sensed reflectance measurements were acquired using a GreenSeeker handheld crop sensor and a UAV with onboard a multispectral sensor, to determine Normalized Difference Vegetation Index (NDVI). Proximity-sensed NDVI is highly correlated with data acquired from UAV with r values ranging from 0.83 (Zm) to 0.97 (Cdxt). Relating NDVI-UAV with clippings N, the highest r is for Cdxt (0.95). The most reactive species to N fertilization is Cdxt with a clippings N% ranging from 1.2% to 4.1%. UAV imagery can adequately assess the N status of turfgrasses and its spatial variability within a species, so for large areas, such as golf courses, sod farms or race courses, UAV acquired data can optimize turf management. For relatively small green areas, a hand-held crop sensor can be a less expensive and more practical option. PMID:27341674

  19. Unmanned Aerial Vehicle to Estimate Nitrogen Status of Turfgrasses.

    Directory of Open Access Journals (Sweden)

    Lisa Caturegli

    Full Text Available Spectral reflectance data originating from Unmanned Aerial Vehicle (UAV imagery is a valuable tool to monitor plant nutrition, reduce nitrogen (N application to real needs, thus producing both economic and environmental benefits. The objectives of the trial were i to compare the spectral reflectance of 3 turfgrasses acquired via UAV and by a ground-based instrument; ii to test the sensitivity of the 2 data acquisition sources in detecting induced variation in N levels. N application gradients from 0 to 250 kg ha-1 were created on 3 different turfgrass species: Cynodon dactylon x transvaalensis (Cdxt 'Patriot', Zoysia matrella (Zm 'Zeon' and Paspalum vaginatum (Pv 'Salam'. Proximity and remote-sensed reflectance measurements were acquired using a GreenSeeker handheld crop sensor and a UAV with onboard a multispectral sensor, to determine Normalized Difference Vegetation Index (NDVI. Proximity-sensed NDVI is highly correlated with data acquired from UAV with r values ranging from 0.83 (Zm to 0.97 (Cdxt. Relating NDVI-UAV with clippings N, the highest r is for Cdxt (0.95. The most reactive species to N fertilization is Cdxt with a clippings N% ranging from 1.2% to 4.1%. UAV imagery can adequately assess the N status of turfgrasses and its spatial variability within a species, so for large areas, such as golf courses, sod farms or race courses, UAV acquired data can optimize turf management. For relatively small green areas, a hand-held crop sensor can be a less expensive and more practical option.

  20. Unmanned Aerial Vehicle to Estimate Nitrogen Status of Turfgrasses

    Science.gov (United States)

    Corniglia, Matteo; Gaetani, Monica; Grossi, Nicola; Magni, Simone; Migliazzi, Mauro; Angelini, Luciana; Mazzoncini, Marco; Silvestri, Nicola; Fontanelli, Marco; Raffaelli, Michele; Peruzzi, Andrea; Volterrani, Marco

    2016-01-01

    Spectral reflectance data originating from Unmanned Aerial Vehicle (UAV) imagery is a valuable tool to monitor plant nutrition, reduce nitrogen (N) application to real needs, thus producing both economic and environmental benefits. The objectives of the trial were i) to compare the spectral reflectance of 3 turfgrasses acquired via UAV and by a ground-based instrument; ii) to test the sensitivity of the 2 data acquisition sources in detecting induced variation in N levels. N application gradients from 0 to 250 kg ha-1 were created on 3 different turfgrass species: Cynodon dactylon x transvaalensis (Cdxt) ‘Patriot’, Zoysia matrella (Zm) ‘Zeon’ and Paspalum vaginatum (Pv) ‘Salam’. Proximity and remote-sensed reflectance measurements were acquired using a GreenSeeker handheld crop sensor and a UAV with onboard a multispectral sensor, to determine Normalized Difference Vegetation Index (NDVI). Proximity-sensed NDVI is highly correlated with data acquired from UAV with r values ranging from 0.83 (Zm) to 0.97 (Cdxt). Relating NDVI-UAV with clippings N, the highest r is for Cdxt (0.95). The most reactive species to N fertilization is Cdxt with a clippings N% ranging from 1.2% to 4.1%. UAV imagery can adequately assess the N status of turfgrasses and its spatial variability within a species, so for large areas, such as golf courses, sod farms or race courses, UAV acquired data can optimize turf management. For relatively small green areas, a hand-held crop sensor can be a less expensive and more practical option. PMID:27341674

  1. An optical water vapor sensor for unmanned aerial vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Timothy A. Berkoff; Paul L. Kebabian; Robert A. McClatchy; Charles E. Kolb; Andrew Freedman

    1998-12-01

    The water vapor sensor developed by Aerodyne Research, based on the optical absorption of light at {approximately}935 nm, has been successfully demonstrated on board the Pacific Northwest National Laboratory's Gulfstream-1 research aircraft during the Department of Energy's ARM Intensive Operations Period in August 1998. Data taken during this field campaign show excellent agreement with a chilled mirror and Lyman-alpha hygrometers and measurements confirm the ability to measure rapid, absolute water vapor fluctuations with a high degree of instrument stability and accuracy, with a noise level as low 10 ppmv (1 Hz measurement bandwidth). The construction of this small, lightweight sensor contains several unique elements which result in several significant advantages when compared to other techniques. First, the low power consumption Argon discharge lamp provides an optical beam at a fixed wavelength without a need for temperature or precision current control. The multi-pass absorption cell developed for this instrument provides a compact, low cost method that can survive deployment in the field. Fiber-optic cables, which are used to convey to light between the absorption cell, light source, and detection modules enable remote placement of the absorption cell from the opto-electronics module. Finally, the sensor does not use any moving parts which removes a significant source of potential malfunction. The result is an instrument which maintained its calibration throughout the field measurement campaign, and was not affected by high vibration and large uncontrolled temperature excursions. We believe that the development of an accurate, fast response water vapor monitor described in this report will open up new avenues of aerial-vehicle-based atmospheric research which have been relatively unexplored due to the lack of suitable low-cost, light-weight instrumentation.

  2. Evaluation of Bare Ground on Rangelands using Unmanned Aerial Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Robert P. Breckenridge; Maxine Dakins

    2011-01-01

    Attention is currently being given to methods that assess the ecological condition of rangelands throughout the United States. There are a number of different indicators that assess ecological condition of rangelands. Bare Ground is being considered by a number of agencies and resource specialists as a lead indicator that can be evaluated over a broad area. Traditional methods of measuring bare ground rely on field technicians collecting data along a line transect or from a plot. Unmanned aerial vehicles (UAVs) provide an alternative to collecting field data, can monitor a large area in a relative short period of time, and in many cases can enhance safety and time required to collect data. In this study, both fixed wing and helicopter UAVs were used to measure bare ground in a sagebrush steppe ecosystem. The data were collected with digital imagery and read using the image analysis software SamplePoint. The approach was tested over seven different plots and compared against traditional field methods to evaluate accuracy for assessing bare ground. The field plots were located on the Idaho National Laboratory (INL) site west of Idaho Falls, Idaho in locations where there is very little disturbance by humans and the area is grazed only by wildlife. The comparison of fixed-wing and helicopter UAV technology against field estimates shows good agreement for the measurement of bare ground. This study shows that if a high degree of detail and data accuracy is desired, then a helicopter UAV may be a good platform. If the data collection objective is to assess broad-scale landscape level changes, then the collection of imagery with a fixed-wing system is probably more appropriate.

  3. Mapping Rural Areas with Widespread Plastic Covered Vineyards Using True Color Aerial Data

    Directory of Open Access Journals (Sweden)

    Eufemia Tarantino

    2012-06-01

    Full Text Available Plastic covering is used worldwide to protect crops against damaging growing conditions. This agricultural practice raises some controversial issues. While it significantly impacts on local economic vitality, plasticulture also shows several environmental affects. In the Apulia Region (Italy the wide-spreading of artificial plastic coverings for vineyard protection has showed negative consequences on the hydrogeological balance of soils as well as on the visual quality of rural landscape. In order to monitor and manage this phenomenon, a detailed site mapping has become essential. In this study an efficient object-based classification procedure from Very High Spatial Resolution (VHSR true color aerial data was developed on eight test areas located in the Ionian area of the Apulia Region in order to support the updating of the existing land use database aimed at plastic covered vineyard monitoring.

  4. Aerial and tidal transport of mosquito control pesticides into the Florida Keys National Marine Sanctuary

    International Nuclear Information System (INIS)

    This project was undertaken as the initial monitoring program to determine if mosquito adulticides applied along the Florida Keys cause adverse ecological effects in the Florida Keys National Marine Sanctuary (FKNMS). The study monitored the distribution and persistente of two mosquito adulticides, permethrin and dibrom (naled), during three separate routine applications by the Florida Keys Mosquito Control District. The approach was to determine if toxic concentrations of the pesticides entered the FKNMS by aerial drift or tidal transport. The amount of pesticide entering the FKNMS by way of aerial drift was monitored by collection on glass fiber filter pads, set on floats in a grid pattern on either side of the FKNMS. Permethrin was recovered from filter pads on the leeward side for each of the three applications, ranging from 0.5 to 50.1 μg/m2 throughout the study. Tidal current transport was monitored by collection of surface and subsurface water samples at each grid site. Tidal transport of naled and dichlorvos (naled degradation product) was apparent in the adjacent waters of the FKNMS. These compounds were detected in subsurface, offshore water at 0.1 to 0.6 gg/l, 14 hr after application. Permethrin was not detected in offshore water samples; however, concentrations ranging from 5.1 to 9.4 μg/1 were found in surface water from the canal system adjacent to the application route. Comparison of the observed environmental concentrations with toxicity data (permethrin LC-50, 96 hr for Mysidopsis bahia = 0.02 μg/1) indicated a potential hazard to marine invertebrates in the canals with possible tidal transport to other areas

  5. Aerial and tidal transport of mosquito control pesticides into the Florida Keys National Marine Sanctuary.

    Science.gov (United States)

    Pierce, R H; Henry, M S; Blum, T C; Mueller, E M

    2005-05-01

    This project was undertaken as the initial monitoring program to determine if mosquito adulticides applied along the Florida Keys cause adverse ecological effects in the Florida Keys National Marine Sanctuary (FKNMS). The study monitored the distribution and persistence of two mosquito adulticides, permethrin and dibrom (naled), during three separate routine applications by the Florida Keys Mosquito Control District. The approach was to determine if toxic concentrations of the pesticides entered the FKNMS by aerial drift or tidal transport. The amount of pesticide entering the FKNMS by way of aerial drift was monitored by collection on glass fiber filter pads, set on floats in a grid pattern on either side of the FKNMS. Permethrin was recovered from filter pads on the leeward side for each of the three applications, ranging from 0.5 to 50.1 microg/m(2) throughout the study. Tidal current transport was monitored by collection of surface and subsurface water samples at each grid site. Tidal transport of naled and dichlorvos (naled degradation product) was apparent in the adjacent waters of the FKNMS. These compounds were detected in subsurface, offshore water at 0.1 to 0.6 microg/1, 14 hr after application. Permethrin was not detected in offshore water samples; however, concentrations ranging from 5.1 to 9.4 microg/l were found in surface water from the canal system adjacent to the application route. Comparison of the observed environmental concentrations with toxicity data (permethrin LC-50, 96 hr for Mysidopsis bahia = 0.02 microg/l) indicated a potential hazard to marine invertebrates in the canals with possible tidal transport to other areas. PMID:17465151

  6. Unmanned Aerial Systems for scientific research

    Science.gov (United States)

    Stefanutti, Leopoldo; MacKenzie, A. Robert; di Donfrancesco, Guido; Amici, Stefania

    2010-05-01

    In the last decade a very wide spectrum of Unmanned Aerial Systems (UAS) has been developed, essentially for military purposes. They range from very small aircraft, weighing a few kg, to stratospheric aeroplanes with total weight of many tonnes. Endurance also varies very markedly, from a few hours to ≤ 60 hours, and possibly more in the next future. Environmental Research and Services (ERS) Srl., Florence, has carried out a scoping study for the UK Natural Environmental Research Council, to identify key Earth and Environmental Science issues which can best be tackled by means of unmanned aerial platforms. The study focused on issues which could not easily be solved using other platforms, as manned aircraft, airships and satellites. Topics included: · glaciology (including both continental ice-sheets and sea-ice) · volcanology · coastal and ocean observation · Exchange processes between sea and atmosphere · atmospheric turbulence, transport, and chemistry in the planetary boundary layer, in the free troposphere and in the upper troposphere - lower stratosphere (UTLS). Different platforms are best suited to each of these tasks. Platforms range from mini UAS, to Middle Altitude and Long Endurance (MALE) and High Altitude and Long Endurance (HALE) platforms, from electric aircraft to diesel-turbocharged platforms, from solar to turbofan aircraft. Generally long endurance and the capability to fly beyond line of sight are required for most scientific missions. An example is the application of UAS to the measurement of the extension and depth of sea and continental ice. Such measurements are of primary importance in the evaluation of climatic change. While with satellites it is possible to measure the extent of ice, measuring the depth can only be accomplished by using radar operating at relatively low altitudes. A tactical or a MALE UAS could be equipped with VHL radar which can penetrate ice and hence used to measure the depth of ice sheets. A platform which

  7. Aerodynamic Optimization of Micro Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Siew Ping Yeong

    2016-01-01

    Full Text Available Computational fluid dynamics (CFD study was done on the propeller design of a micro aerial vehicle (quadrotor-typed to optimize its aerodynamic performance via Shear Stress Transport K-Omega (SST k-ω turbulence model. The quadrotor model used was WL-V303 Seeker. The design process started with airfoils selection and followed by the evaluation of drone model in hovering and cruising conditions. To sustain a 400g payload, by Momentum Theory an ideal thrust of 5.4 N should be generated by each rotor of the quadrotor and this resulted in an induced velocity of 7.4 m/s on the propeller during hovering phase, equivalent to Reynolds number of 10403 at 75% of the propeller blade radius. There were 6 propellers investigated at this Reynolds number. Sokolov airfoil which produced the largest lift-to-drag ratio was selected for full drone installation to be compared with the original model (benchmark. The CFD results showed that the Sokolov propeller generated 0.76 N of thrust more than the benchmark propeller at 7750 rpm. Despite generating higher thrust, higher drag was also experienced by the drone installed with Sokolov propellers. This resulted in lower lift-to-drag ratio than the benchmark propellers. It was also discovered that the aerodynamic performance of the drone could be further improved by changing the rotating direction of each rotor. Without making changes on the structural design, the drone performance increased by 39.58% in terms of lift-to-drag ratio by using this method.

  8. Radiation surveillance using an unmanned aerial vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Poellaenen, Roy [STUK-Radiation and Nuclear Safety Authority, P.O. Box 14, FI-00881 (Finland)], E-mail: roy.pollanen@stuk.fi; Toivonen, Harri; Peraejaervi, Kari; Karhunen, Tero; Ilander, Tarja [STUK-Radiation and Nuclear Safety Authority, P.O. Box 14, FI-00881 (Finland); Lehtinen, Jukka [Senya Ltd. Rekitie 7A, 00950 Helsinki (Finland); Rintala, Kimmo; Katajainen, Tuure; Niemelae, Jarkko; Juusela, Marko [Patria Systems Oy, Naulakatu 3, FI-33100 (Finland)

    2009-02-15

    Radiation surveillance equipment was mounted in a small unmanned aerial vehicle. The equipment consists of a commercial CsI detector for count rate measurement and a specially designed sampling unit for airborne radioactive particles. Field and flight tests were performed for the CsI detector in the area where {sup 137}Cs fallout from the Chernobyl accident is 23-45 kBq m{sup -2}. A 3-GBq {sup 137}Cs point source could be detected at the altitude of 50 m using a flight speed of 70 km h{sup -1} and data acquisition interval of 1 s. Respective response for {sup 192}Ir point source is 1 GBq. During the flight, the detector reacts fast to ambient external dose rate rise of 0.1 {mu}Sv h{sup -1}, which gives for the activity concentration of {sup 131}I less than 1 kBq m{sup -3}. Operation of the sampler equipped with different type of filters was investigated using wind-tunnel experiments and field tests with the aid of radon progeny. Air flow rate through the sampler is 0.2-0.7 m{sup 3} h{sup -1} at a flight speed of 70 km h{sup -1} depending on the filter type in question. The tests showed that the sampler is able to collect airborne radioactive particles. Minimum detectable concentration for transuranium nuclides, such as {sup 239}Pu, is of the order of 0.2 Bq m{sup -3} or less when alpha spectrometry with no radiochemical sample processing is used for activity determination immediately after the flight. When a gamma-ray spectrometer is used, minimum detectable concentrations for several fission products such as {sup 137}Cs and {sup 131}I are of the order of 1 Bq m{sup -3}.

  9. Radiation surveillance using an unmanned aerial vehicle.

    Science.gov (United States)

    Pöllänen, Roy; Toivonen, Harri; Peräjärvi, Kari; Karhunen, Tero; Ilander, Tarja; Lehtinen, Jukka; Rintala, Kimmo; Katajainen, Tuure; Niemelä, Jarkko; Juusela, Marko

    2009-02-01

    Radiation surveillance equipment was mounted in a small unmanned aerial vehicle. The equipment consists of a commercial CsI detector for count rate measurement and a specially designed sampling unit for airborne radioactive particles. Field and flight tests were performed for the CsI detector in the area where (137)Cs fallout from the Chernobyl accident is 23-45 kBq m(-2). A 3-GBq (137)Cs point source could be detected at the altitude of 50 m using a flight speed of 70 km h(-1) and data acquisition interval of 1s. Respective response for (192)Ir point source is 1 GBq. During the flight, the detector reacts fast to ambient external dose rate rise of 0.1 microSv h(-1), which gives for the activity concentration of (131)I less than 1 kB qm(-3). Operation of the sampler equipped with different type of filters was investigated using wind-tunnel experiments and field tests with the aid of radon progeny. Air flow rate through the sampler is 0.2-0.7 m(3)h(-1) at a flight speed of 70 km h(-1) depending on the filter type in question. The tests showed that the sampler is able to collect airborne radioactive particles. Minimum detectable concentration for transuranium nuclides, such as (239)Pu, is of the order of 0.2 Bq m(-3) or less when alpha spectrometry with no radiochemical sample processing is used for activity determination immediately after the flight. When a gamma-ray spectrometer is used, minimum detectable concentrations for several fission products such as (137)Cs and (131)I are of the order of 1 Bq m(-3). PMID:19046635

  10. Evaluation of Different Irrigation Methods for an Apple Orchard Using an Aerial Imaging System

    Directory of Open Access Journals (Sweden)

    Duke M. Bulanon

    2016-06-01

    Full Text Available Regular monitoring and assessment of crops is one of the keys to optimal crop production. This research presents the development of a monitoring system called the Crop Monitoring and Assessment Platform (C-MAP. The C-MAP is composed of an image acquisition unit which is an off-the-shelf unmanned aerial vehicle (UAV equipped with a multispectral camera (near-infrared, green, blue, and an image processing and analysis component. The experimental apple orchard at the Parma Research and Extension Center of the University of Idaho was used as the target for monitoring and evaluation. Five experimental rows of the orchard were randomly treated with five different irrigation methods. An image processing algorithm to detect individual trees was developed to facilitate the analysis of the rows and it was able to detect over 90% of the trees. The image analysis of the experimental rows was based on vegetation indices and results showed that there was a significant difference in the Enhanced Normalized Difference Vegetation Index (ENDVI among the five different irrigation methods. This demonstrates that the C-MAP has very good potential as a monitoring tool for orchard management.

  11. International-Aerial Measuring System (I-AMS) Training Program

    Energy Technology Data Exchange (ETDEWEB)

    Wasiolek, Piotre T. [National Security Technologies, LLC; Malchor, Russell L. [National Security Technologies, LLC; Maurer, Richard J. [National Security Technologies, LLC; Adams, Henry L. [National Security Technologies, LLC

    2015-10-01

    Since the Fukushima reactor accident in 2011, there has been an increased interest worldwide in developing national capabilities to rapidly map and assess ground contamination resulting from nuclear reactor accidents. The capability to rapidly measure the size of the contaminated area, determine the activity level, and identify the radionuclides can aid emergency managers and decision makers in providing timely protective action recommendations to the public and first responders. The development of an aerial detection capability requires interagency coordination to assemble the radiation experts, detection system operators, and aviation aircrews to conduct the aerial measurements, analyze and interpret the data, and provide technical assessments. The Office of International Emergency Management and Cooperation (IEMC) at the U.S. Department of Energy, National Nuclear Security Administration (DOE/NNSA) sponsors an International - Aerial Measuring System (I-AMS) training program for partner nations to develop and enhance their response to radiological emergencies. An initial series of courses can be conducted in the host country to assist in developing an aerial detection capability. As the capability develops and expands, additional experience can be gained through advanced courses with the opportunity to conduct aerial missions over a broad range of radiation environments.

  12. Aerial Observation Needs Workshop, May 13-14

    Energy Technology Data Exchange (ETDEWEB)

    Nasiri, Shaima [Brookhaven National Lab. (BNL), Upton, NY (United States); Serbin, Shawn [Brookhaven National Lab. (BNL), Upton, NY (United States); Lesmes, David [Brookhaven National Lab. (BNL), Upton, NY (United States); Petty, Rick [Brookhaven National Lab. (BNL), Upton, NY (United States); Schmid, Beat [Brookhaven National Lab. (BNL), Upton, NY (United States); Vogelmann, Andrew [Brookhaven National Lab. (BNL), Upton, NY (United States); de Boer, Gijs [Brookhaven National Lab. (BNL), Upton, NY (United States); Dafflon, Baptiste [Brookhaven National Lab. (BNL), Upton, NY (United States); Guenther, Alex [Brookhaven National Lab. (BNL), Upton, NY (United States); Moore, David [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-10-01

    The mission of the Climate and Environmental Sciences Division (CESD) of the Office of Biological and Environmental Research (BER) within the U.S. Department of Energy's (DOE) Office of Science is "to advance a robust, predictive understanding of Earth's climate and environmental systems and to inform the development of sustainable solutions to the nation's energy and environmental challenges." Accomplishing this mission requires aerial observations of the atmospheric and terrestrial components of the climate system. CESD is assessing its current and future aerial observation needs to develop a strategy and roadmap of capability requirements for the next decade. To facilitate this process, a workshop was convened that consisted of invited experts in the atmospheric and terrestrial sciences, airborne observations, and modeling. This workshop report summarizes the community input prior to and during the workshop on research challenges and opportunities, as well as specific science questions and observational needs that require aerial observations to address.

  13. Aerial Observation Needs Workshop, May 13-14, 2015

    Energy Technology Data Exchange (ETDEWEB)

    Nasiri, Shaima [Brookhaven National Lab. (BNL), Upton, NY (United States); Serbin, Shawn [Brookhaven National Lab. (BNL), Upton, NY (United States); Lesmes, David [Brookhaven National Lab. (BNL), Upton, NY (United States); Petty, Rick [Brookhaven National Lab. (BNL), Upton, NY (United States); Schmid, Beat [Brookhaven National Lab. (BNL), Upton, NY (United States); Vogelmann, Andrew [Brookhaven National Lab. (BNL), Upton, NY (United States); de Boer, Gijs [Brookhaven National Lab. (BNL), Upton, NY (United States); Dafflon, Baptiste [Brookhaven National Lab. (BNL), Upton, NY (United States); Guenther, Alex [Brookhaven National Lab. (BNL), Upton, NY (United States); Moore, David [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-10-01

    The mission of the Climate and Environmental Sciences Division (CESD) of the Office of Biological and Environmental Research (BER) within the U.S. Department of Energy's (DOE) Office of Science is "to advance a robust, predictive understanding of Earth's climate and environmental systems and to inform the development of sustainable solutions to the nation's energy and environmental challenges." Accomplishing this mission requires aerial observations of the atmospheric and terrestrial components of the climate system. CESD is assessing its current and future aerial observation needs to develop a strategy and roadmap of capability requirements for the next decade. To facilitate this process, a workshop was convened that consisted of invited experts in the atmospheric and terrestrial sciences, airborne observations, and modeling. This workshop report summarizes the community input prior to and during the workshop on research challenges and opportunities, as well as specific science questions and observational needs that require aerial observations to address.

  14. Wafer weak point detection based on aerial images or WLCD

    Science.gov (United States)

    Ning, Guoxiang; Philipp, Peter; Litt, Lloyd C.; Ackmann, Paul; Crell, Christian; Chen, Norman

    2015-10-01

    Aerial image measurement is a key technique for model based optical proximity correction (OPC) verification. Actual aerial images obtained by AIMS (aerial image measurement system) or WLCD (wafer level critical dimension) can detect printed wafer weak point structures in advance of wafer exposure and defect inspection. Normally, the potential wafer weak points are determined based on optical rule check (ORC) simulation in advance. However, the correlation to real wafer weak points is often not perfect due to the contribution of mask three dimension (M3D) effects, actual mask errors, and scanner lens effects. If the design weak points can accurately be detected in advance, it will reduce the wafer fab cost and improve cycle time. WLCD or AIMS tools are able to measure the aerial images CD and bossung curve through focus window. However, it is difficult to detect the wafer weak point in advance without defining selection criteria. In this study, wafer weak points sensitive to mask mean-to-nominal values are characterized for a process with very high MEEF (normally more than 4). Aerial image CD uses fixed threshold to detect the wafer weak points. By using WLCD through threshold and focus window, the efficiency of wafer weak point detection is also demonstrated. A novel method using contrast range evaluation is shown in the paper. Use of the slope of aerial images for more accurate detection of the wafer weak points using WLCD is also discussed. The contrast range can also be used to detect the wafer weak points in advance. Further, since the mean to nominal of the reticle contributes to the effective contrast range in a high MEEF area this work shows that control of the mask error is critical for high MEEF layers such as poly, active and metal layers. Wafer process based weak points that cannot be detected by wafer lithography CD or WLCD will be discussed.

  15. Application possibilities of aerial and terrain data evaluation in particulate pollution effects

    Science.gov (United States)

    Kozma-Bognar, V.; Berke, J.; Martin, G.

    2012-04-01

    Recently, remote sensing has become a widely used technology in order to acquire information about our environment. Data collected using remote sensing technology indispensible criteria to recognise and monitor environmental problems caused by contamination from various human activities. According to great technological change and development in the previous decade high spectral and geometric resolution sensors are more often used. The higher resolution technology allows getting more accurate and reliable results in the research processes of the environmental pollution impacts. At University of Pannonia, Georgikon Faculty (Hungary) plant-soil-atmosphere system analyses are carried out for detecting the potential harmful effects of heavy metal pollution originated from vehicle industry. Related to this research at the Department of Meteorology and Water Management, black carbon and cadmium pollution effects are being analysed on maize crops. Testing area is situated at Agro-meteorological Research Station in Keszthely, where the first time in 2011 aerial imaging technology was used in parallel with field analyses. The experiment aims to analyses correlation of the field data with aerial data. During aerial photography were taken in different spectral bands (Visible, Near Infrared, Far Infrared). High intensity, spectral and spatial resolution data was an important part of the multitemporal imagine sensing and evaluating technology, therefore original technical solutions were applied. These resolutions served accurate plot-level evaluation. Fractal structure and intensity measurement evaluation methods were applied to examine black carbon and cadmium polluted and control maize canopy after data pre-processing. Research also focused on the examination of potential negative or positive effects of irrigation so that differences between irrigated and non-irrigated maize was investigated. For the period of growing season of 2011 time-series analyses were carried out in

  16. Towards aerial natural gas leak detection system based on TDLAS

    Science.gov (United States)

    Liu, Shuyang; Zhou, Tao; Jia, Xiaodong

    2014-11-01

    Pipeline leakage is a complex scenario for sensing system due to the traditional high cost, low efficient and labor intensive detection scheme. TDLAS has been widely accepted as industrial trace gas detection method and, thanks to its high accuracy and reasonable size, it has the potential to meet pipeline gas leakage detection requirements if it combines with the aerial platform. Based on literature study, this paper discussed the possibility of applying aerial TDLAS principle in pipeline gas leak detection and the key technical foundation of implementing it. Such system is able to result in a high efficiency and accuracy measurement which will provide sufficient data in time for the pipeline leakage detection.

  17. A Multi-objective Optimization Model for Planning Unmanned Aerial Vehicle Cruise Route

    Directory of Open Access Journals (Sweden)

    Xiaofeng Liu

    2016-06-01

    Full Text Available The use of unmanned aerial vehicles (UAVs was introduced to monitor a traffic situation and the respective cruise route optimization problem was given. Firstly, a multi-objective optimization model was proposed, which considered two scenarios: the first scenario was that there were enough UAVs to monitor all the targets, while the second scenario was that only some targets could be monitored due to a lack of UAVs. A multi-objective evolutionary algorithm was subsequently proposed to plan the UAV cruise route. Next, a route planning experiment, using the Microdrones md4-1000 UAV, was conducted and a UAV route planning case was studied. The experiment showed that the UAV actual flight route was almost consistent with the planned route. The case study showed that, compared with the initial optimal solutions, the optimal total UAV cruise distance and the number of UAVs used in scenario 1 decreased by 41.65% and 40.00%, respectively. Meanwhile, the total UAV cruise distance and the number of targets monitored in scenario 2 reduced by 15.75% and increased by 27.27%, respectively. In addition, a comparison study with other algorithms was conducted, while the optimization results were also improved. This demonstrated that the proposed UAV cruise route planning model was effective.

  18. The Role of Unmanned Aerial Systems-Sensors in Air Quality Research

    Science.gov (United States)

    The use of unmanned aerial systems (UASs) and miniaturized sensors for a variety of scientific and security purposes has rapidly increased. UASs include aerostats (tethered balloons) and remotely controlled, unmanned aerial vehicles (UAVs) including lighter-than-air vessels, fix...

  19. Aerial Photo Mosaics = Photo Indexes and Map-Line Plots: Pre 1990

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — USGS and Non USGS Agencies Aerial Photo Reference Mosaics inventory contains indexes to aerial photographs. The inventory contains imagery from various government...

  20. Mississippi National River and Recreation Area, 2012 True Color Aerial Mosaic

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Digital aerial imagery provides baseline data for mapping vegetation types and other land cover features. Vertical photographs (photographs taken with the aerial...

  1. 1935 15' Quad #193 Aerial Photo Mosaic Index - 2 of 2

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  2. 1935 15' Quad #103 Aerial Photo Mosaic Index - 1 of 2

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  3. 1935 15' Quad #193 Aerial Photo Mosaic Index - 1 of 2

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  4. 1935 15' Quad #103 Aerial Photo Mosaic Index - 2 of 2

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  5. NAPP = National Aerial Photography Program 1:40,000 Scale: 1987 - 2007

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The National Aerial Photography Program (NAPP) was coordinated by the USGS as an interagency project to acquire cloud-free aerial photographs at an altitude of...

  6. 1935 15' Quad #169 Aerial Photo Mosaic Index - 1 of 2

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Aerial Photo Reference Mosaics contain aerial photographs that are retrievable on a frame by frame basis. The inventory contains imagery from various sources that...

  7. Aerial Photomosaic August for Effigy Mounds National Monument Vegetation Mapping Project

    Data.gov (United States)

    National Park Service, Department of the Interior — Color infrared (CIR) aerial photographs were acquired to compliment another set of aerial photos used to produce vegetation spatial database coverages of Effigy...

  8. Building Change Detection from Historical Aerial Photographs Using Dense Image Matching and Object-Based Image Analysis

    Directory of Open Access Journals (Sweden)

    Stephan Nebiker

    2014-09-01

    Full Text Available A successful application of dense image matching algorithms to historical aerial photographs would offer a great potential for detailed reconstructions of historical landscapes in three dimensions, allowing for the efficient monitoring of various landscape changes over the last 50+ years. In this paper we propose the combination of image-based dense DSM (digital surface model reconstruction from historical aerial imagery with object-based image analysis for the detection of individual buildings and the subsequent analysis of settlement change. Our proposed methodology is evaluated using historical greyscale and color aerial photographs and numerous reference data sets of Andermatt, a historical town and tourism destination in the Swiss Alps. In our paper, we first investigate the DSM generation performance of different sparse and dense image matching algorithms. They demonstrate the superiority of dense matching algorithms and of the resulting historical DSMs with root mean square error values of 1–1.5 GSD (ground sampling distance and yield point densities comparable to those of recent airborne LiDAR DSMs. In the second part, we present an object-based building detection workflow mainly based on the historical DSMs and the historical imagery itself. Additional inputs are a current digital terrain model and a cadastral building database. For the case of densely matched DSMs, the evaluation yields building detection rates of 92% for grayscale and 94% for color imagery.

  9. Combining Human Computing and Machine Learning to Make Sense of Big (Aerial) Data for Disaster Response

    OpenAIRE

    Ofli, Ferda; Meier, Patrick; Imran, Muhammad; Castillo, Carlos; Tuia, Devis; Rey, Nicolas; Briant, Julien; Millet, Pauline; Reinhard, Friedrich; Parkan, Matthew Josef; Joost, Stéphane

    2016-01-01

    Aerial imagery captured via unmanned aerial vehicles (UAVs) is playing an increasingly important role in disaster response. Unlike satellite imagery, aerial imagery can be captured and processed within hours rather than days. In addition, the spatial resolution of aerial imagery is an order of magnitude higher than the imagery produced by the most sophisticated commercial satellites today. Both the United States Federal Emergency Management Agency (FEMA) and the European Commission’s Joint...

  10. Assessing crop injury caused by aerially applied glyphosate drift using spray sampling

    Science.gov (United States)

    Crop injury caused by off-target drift of aerially applied glyphosate is of great concern to farmers and aerial applicators. An experiment was conducted in 2009 to determine the extent of injury due to near-field glyphosate drift from aerial application to glyphosate-sensitive cotton, corn and soybe...

  11. Ground-based spectral reflectance measurements for efficacy evaluation of aerially applied glyphosate treatments

    Science.gov (United States)

    Aerial application of herbicides is a common tool in agricultural field management. The objective of this study was to evaluate the efficacy of glyphosate herbicide applied aerially with both conventional and emerging aerial nozzle technologies. A Texas A&M University Plantation weed field was set u...

  12. Off-the-Wall Project Brings Aerial Mapping down to Earth

    Science.gov (United States)

    Davidhazy, Andrew

    2008-01-01

    The technology of aerial photography, photogrametry, has widespread applications in mapping and aerial surveying. A multi-billion-dollar industry, aerial surveying and mapping is "big business" in both civilian and military sectors. While the industry has grown increasingly automated, employment opportunities still exist for people with a basic…

  13. Unmanned Aerial Vehicle and Geospatial Technology Pushing the Limits of Development

    Directory of Open Access Journals (Sweden)

    Anuj Tiwari

    2015-01-01

    Full Text Available Often referred to as unmanned aerial vehicles, or UAVs, drones were most commonly associated with military or police operations but with advancement in information technology in last two decades, cheaper and smaller sensors, better integration and ease-of-use options this tool is start revolutionizing the way geospatial data is collected in many countries, monitoring large, rugged areas, tracking down criminals, observing forest fires and disaster areas. Beyond just viewing the result, with the use of photogrammetry, image processing and ground control points, the captured imagery could provide a base for collecting all the 2D and 3D features that are the last-mile problem in modeling and visualizing the whole world. The research aims to understand various characteristics of this emerging technology that makes it the most promising geospatial and attribute data collection tool in GIS community. Second aim of this paper is to explore the possible applications of UAV in the developing country like India.

  14. Research on the processing technology of low-altitude unmanned aerial vehicle images

    Science.gov (United States)

    Tang, Shihua; Liu, Yintao; Li, Feida; Zhou, Conglin; Huang, Qing; Xu, Hongwei

    2015-12-01

    The UAV system acts as one of the infrastructure of earth observation, with its mobility, high speed, flexibility, economy and other remarkable technical advantages, has been widely used in various fields of the national economic construction, such as agricultural monitoring, resource development, disaster emergency treatment. Taking an actual engineering as a case study in this paper, the method and the skill of making digital orthophoto map was stated by using the UASMaster, the professional UAV data processing software, based on the eBee unmanned aerial vehicle. Finally, the precision of the DOM was analyzed in detail through two methods, overlapping the DOM with the existing DLG of the region and contrasting the points of the existing DLG of 1:1000 scale with the corresponding checkpoints of the stereomodel.

  15. Control and Optimization of UAV Trajectory for Aerial Coverage in Photogrammetry Applications

    Directory of Open Access Journals (Sweden)

    POPESCU, D.

    2016-08-01

    Full Text Available Photogrammetry is a well-studied and much-used analysis tool. Typical use cases include area surveillance, flood monitoring and related tasks. Usually, an Unmanned Aerial System (UAS is used as support for image acquisition from an a priori delimited region in a semi-automated manner (via a mix of ground control and autonomous trajectory tracking. This in turn has led to various algorithms which handle path trajectory generation under realistic constraints but still many avenues remain open. In this paper, we consider typical costs and constraints (UAS dynamics, total-path length, line inter-distance, turn points, etc. in order to obtain, via optimization procedures, an optimal trajectory. To this end we make use of polyhedral set operations, flat trajectory generation and other similar tools. Additional work includes the study of non-convex regions and estimation of the number of photographs taken via Ehrhart polynomial computations.

  16. Autonomous Aerial Ice Observation for Ice Defense

    Directory of Open Access Journals (Sweden)

    Joakim Haugen

    2014-10-01

    Full Text Available One of the tasks in ice defense is to gather information about the surrounding ice environment using various sensor platforms. In this manuscript we identify two monitoring tasks known in literature, namely dynamic coverage and target tracking, and motivate how these tasks are relevant in ice defense using RPAS. An optimization-based path planning concept is outlined for solving these tasks. A path planner for the target tracking problem is elaborated in more detail and a hybrid experiment, which consists of both a real fixed-wing aircraft and simulated objects, is included to show the applicability of the proposed framework.

  17. Aerial Images from AN Uav System: 3d Modeling and Tree Species Classification in a Park Area

    Science.gov (United States)

    Gini, R.; Passoni, D.; Pinto, L.; Sona, G.

    2012-07-01

    The use of aerial imagery acquired by Unmanned Aerial Vehicles (UAVs) is scheduled within the FoGLIE project (Fruition of Goods Landscape in Interactive Environment): it starts from the need to enhance the natural, artistic and cultural heritage, to produce a better usability of it by employing audiovisual movable systems of 3D reconstruction and to improve monitoring procedures, by using new media for integrating the fruition phase with the preservation ones. The pilot project focus on a test area, Parco Adda Nord, which encloses various goods' types (small buildings, agricultural fields and different tree species and bushes). Multispectral high resolution images were taken by two digital compact cameras: a Pentax Optio A40 for RGB photos and a Sigma DP1 modified to acquire the NIR band. Then, some tests were performed in order to analyze the UAV images' quality with both photogrammetric and photo-interpretation purposes, to validate the vector-sensor system, the image block geometry and to study the feasibility of tree species classification. Many pre-signalized Control Points were surveyed through GPS to allow accuracy analysis. Aerial Triangulations (ATs) were carried out with photogrammetric commercial software, Leica Photogrammetry Suite (LPS) and PhotoModeler, with manual or automatic selection of Tie Points, to pick out pros and cons of each package in managing non conventional aerial imagery as well as the differences in the modeling approach. Further analysis were done on the differences between the EO parameters and the corresponding data coming from the on board UAV navigation system.

  18. A new chalcone from the aerial roots of Ficus microcarpa

    Institute of Scientific and Technical Information of China (English)

    Hui Xu; Xiang Min Wang; Xing Wei; Jing Yuan Li; Ke Liu

    2009-01-01

    A new flavonoid with chalcone skeleton was isolated from the dried aerial roots of Ficus microcarpa.The structure of the compound was elucidated on the basis of spectral methods including ID and 2D NMR.The new compound showed weak inhibitory effect on nitric oxide production and cytotoxicity against K562 and PC3 ceils.

  19. Biological response of soybean and cotton to aerial glyphosate drift

    Science.gov (United States)

    An aerial application drift study was conducted in 2009 to determine biological effects of glyphosate on cotton (Gossypium hirsutum L.) and soybean [Glycine max (L.) Merr.]. Glyphosate at 866 g ae/ha was applied using an Air Tractor 402B agricultural aircraft in an 18.3 m spray swath to crops at the...

  20. Aerial Images of Alaska's Arctic Coastal Plain; 1948, 1949

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset is comprised of 36 black and white 9x9 inch aerial images of four different study areas on Alaska's Arctic Coastal Plain taken between 1948-1949 and...

  1. Expansion of the USDA ARS Aerial Application spray atomization models

    Science.gov (United States)

    An effort is underway to update the USDA ARS aerial spray nozzle models using new droplet sizing instrumen-tation and measurement techniques. As part of this effort, the applicable maximum airspeed is being increased from 72 to 80 m/s to provide guidance to applicators when using new high speed air...

  2. A Spreadsheet-based GIS tool for planning aerial photography

    Science.gov (United States)

    The U.S.EPA's Pacific Coastal Ecology Branch has developed a tool which facilitates planning aerial photography missions. This tool is an Excel spreadsheet which accepts various input parameters such as desired photo-scale and boundary coordinates of the study area and compiles ...

  3. Volatile Constituents of the Aerial Parts of Salvia apiana Jepson

    Science.gov (United States)

    Volatile constituents of the aerial parts of fresh white sage (Salvia apiana) were isolated by extraction with diethyl ether followed by high vacuum distillation with a solvent assisted flavor evaporation (SAFE) apparatus. The isolated volatiles were analyzed by GC and GC/MS. A total of 84 constit...

  4. Data Collection using Miniature Aerial Vehicles in Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Mathur, Prateek; Nielsen, Rasmus Hjorth; Prasad, Neeli R.;

    2016-01-01

    of mobile nodes capable of relocating within the network has been widely explored for energy saving. In this paper, we propose a novel method for using miniature aerial vehicles (MAVs) for data collection instead of actively sensing from a deployed network. The proposed mechanism is referred as Data...

  5. Diagnosis of airspeed measurement faults for unmanned aerial vehicles

    DEFF Research Database (Denmark)

    Hansen, Søren; Blanke, Mogens

    2014-01-01

    Airspeed sensor faults are common causes for incidents with unmanned aerial vehicles with pitot tube clogging or icing being the most common causes. Timely diagnosis of such faults or other artifacts in signals from airspeed sensing systems could potentially prevent crashes. This paper employs...

  6. Robot vision: obstacle-avoidance techniques for unmanned aerial vehicles

    NARCIS (Netherlands)

    Carloni, Raffaella; Lippiello, Vincenzo; D'auria, Massimo; Fumagalli, Matteo; Mersha, Abeje Y.; Stramigioli, Stefano; Sicilano, Bruno

    2013-01-01

    In this article, a vision-based technique for obstacle avoidance and target identification is combined with haptic feedback to develop a new teleoperated navigation system for underactuated aerial vehicles in unknown environments. A three-dimensional (3-D) map of the surrounding environment is built

  7. Flexible vision-based navigation system for unmanned aerial vehicles

    Science.gov (United States)

    Blasch, Erik P.

    1995-01-01

    A critical component of unmanned aerial vehicles in the navigation system which provides position and velocity feedback for autonomous control. The Georgia Tech Aerial Robotics navigational system (NavSys) consists of four DVTStinger70C Integrated Vision Units (IVUs) with CCD-based panning platforms, software, and a fiducial onboard the vehicle. The IVUs independently scan for the retro-reflective bar-code fiducial while the NavSys image processing software performs a gradient threshold followed by a image search localization of three vertical bar-code lines. Using the (x,y) image coordinate and CCD angle, the NavSys triangulates the fiducial's (x,y) position, differentiates for velocity, and relays the information to the helicopter controller, which independently determines the z direction with an onboard altimeter. System flexibility is demonstrated by recognition of different fiducial shapes, night and day time operation, and is being extended to on-board and off-board navigation of aerial and ground vehicles. The navigation design provides a real-time, inexpensive, and effective system for determining the (x,y) position of the aerial vehicle with updates generated every 51 ms (19.6 Hz) at an accuracy of approximately +/- 2.8 in.

  8. CMOS Imaging Sensor Technology for Aerial Mapping Cameras

    Science.gov (United States)

    Neumann, Klaus; Welzenbach, Martin; Timm, Martin

    2016-06-01

    In June 2015 Leica Geosystems launched the first large format aerial mapping camera using CMOS sensor technology, the Leica DMC III. This paper describes the motivation to change from CCD sensor technology to CMOS for the development of this new aerial mapping camera. In 2002 the DMC first generation was developed by Z/I Imaging. It was the first large format digital frame sensor designed for mapping applications. In 2009 Z/I Imaging designed the DMC II which was the first digital aerial mapping camera using a single ultra large CCD sensor to avoid stitching of smaller CCDs. The DMC III is now the third generation of large format frame sensor developed by Z/I Imaging and Leica Geosystems for the DMC camera family. It is an evolution of the DMC II using the same system design with one large monolithic PAN sensor and four multi spectral camera heads for R,G, B and NIR. For the first time a 391 Megapixel large CMOS sensor had been used as PAN chromatic sensor, which is an industry record. Along with CMOS technology goes a range of technical benefits. The dynamic range of the CMOS sensor is approx. twice the range of a comparable CCD sensor and the signal to noise ratio is significantly better than with CCDs. Finally results from the first DMC III customer installations and test flights will be presented and compared with other CCD based aerial sensors.

  9. An aerial radiological survey of Maralinga and EMU, South Australia

    International Nuclear Information System (INIS)

    An aerial radiological survey was conducted over the former British nuclear test ranges at Maralinga and Emu in South Australia from May through July 1987. The survey covered an area of approximately 1,550 square kilometers which included the nine major trial sites, where a nuclear yield occurred, and all the minor trial sites, where physics experiments were conducted. Flight lines were flown at an altitude of 30 meters with line spacings of 50, 100, and 200 meters depending on the area and whether man-made contamination was present. Results of the aerial survey were processed for americium-241 (used to determine plutonium contamination), cesium-137, cobalt-60, and uranium-238. The aerial survey also detected the presence of europium-152, a soil activation product, in the immediate vicinity of the major trial ground zeros. Ground measurements were also made at approximately 120 locations using a high-resolution germanium detector to provide supplemental data for the aerial survey. This survey was conducted as part of a series of studies being conducted over a two to three-year timeframe to obtain information from which options and associated costs can be formulated about the decontamination and possible rehabilitation of the former nuclear test sites

  10. An aerial radiological survey of Maralinga and EMU, South Australia

    Energy Technology Data Exchange (ETDEWEB)

    Tipton, W J; Berry, H A; Fritzsche, A E

    1988-10-01

    An aerial radiological survey was conducted over the former British nuclear test ranges at Maralinga and Emu in South Australia from May through July 1987. The survey covered an area of approximately 1,550 square kilometers which included the nine major trial sites, where a nuclear yield occurred, and all the minor trial sites, where physics experiments were conducted. Flight lines were flown at an altitude of 30 meters with line spacings of 50, 100, and 200 meters depending on the area and whether man-made contamination was present. Results of the aerial survey were processed for americium-241 (used to determine plutonium contamination), cesium-137, cobalt-60, and uranium-238. The aerial survey also detected the presence of europium-152, a soil activation product, in the immediate vicinity of the major trial ground zeros. Ground measurements were also made at approximately 120 locations using a high-resolution germanium detector to provide supplemental data for the aerial survey. This survey was conducted as part of a series of studies being conducted over a two to three-year timeframe to obtain information from which options and associated costs can be formulated about the decontamination and possible rehabilitation of the former nuclear test sites.

  11. Apply Pesticides Correctly, A Guide for Commercial Applicators: Aerial Application.

    Science.gov (United States)

    Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.

    This guide contains basic information to meet specific standards for pesticide applicators. The text is concerned with the calibration of dry and liquid pesticide systems for aerial application. Additionally, dispersal equipment is discussed with considerations for environmental and safety factors. (CS)

  12. New clerodane diterpenoids from the aerial parts of Pulicaria wightiana.

    Science.gov (United States)

    Das, Biswanath; Ramu, Ravirala; Venkateswarlu, Katta; Rao, Yerra Koteswara; Reddy, Majjigapu Ravinder; Ramakrishna, Kallaganti Venkata Siva; Harakishore, Kankipati; Murty, Upadhayula Suryanarayana

    2006-02-01

    Two new ent-clerodane-type diterpenoids, compounds 1 and 2, were isolated from the aerial parts of Pulicaria wightiana, together with three known constituents. Their structures were established based on spectroscopic data, and their antibacterial activities were evaluated (Table 2).

  13. AIRobots: Innovative aerial service robots for remote inspection by contact

    NARCIS (Netherlands)

    Huerzeler, Christoph; Naldi, Roberto; Lippiello, Vincenzo; Carloni, Raffaella; Nikolic, Janosch; Alexis, Kostas; Marconi, Lorenzo; Siegwart, Ronald

    2013-01-01

    This video presents experiments conducted within the final review meeting demonstration session of the AIRobots project. AIRobots started at 2010 and the final review meeting took place on 22 of March, 2013. The presented experiments cover a wide area of the challenges related with aerial industrial

  14. Aerial Image of Alaska's Arctic Coastal Plain; 1955

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset is comprised of a single aerial image of a single area on Alaska's Arctic Coastal Plain taken on 21 June 1955 by the U.S. Air Force and obtained from...

  15. Structural proteins involved in emergence of microbial aerial hyphae

    NARCIS (Netherlands)

    Wosten, HAB; Willey, JM

    1999-01-01

    Filamentous fungi and filamentous bacteria (i.e., the streptomycetes) belong to different kingdoms that diverged early in evolution, Yet, they adopted similar lifestyles, After a submerged feeding mycelium has been established, hyphae grow into the air and form aerial structures from which (a)sexual

  16. Predator foraging altitudes reveal the structure of aerial insect communities.

    Science.gov (United States)

    Helms, Jackson A; Godfrey, Aaron P; Ames, Tayna; Bridge, Eli S

    2016-01-01

    The atmosphere is populated by a diverse array of dispersing insects and their predators. We studied aerial insect communities by tracking the foraging altitudes of an avian insectivore, the Purple Martin (Progne subis). By attaching altitude loggers to nesting Purple Martins and collecting prey delivered to their nestlings, we determined the flight altitudes of ants and other insects. We then tested hypotheses relating ant body size and reproductive ecology to flight altitude. Purple Martins flew up to 1,889 meters above ground, and nestling provisioning trips ranged up to 922 meters. Insect communities were structured by body size such that species of all sizes flew near the ground but only light insects flew to the highest altitudes. Ant maximum flight altitudes decreased by 60% from the lightest to the heaviest species. Winged sexuals of social insects (ants, honey bees, and termites) dominated the Purple Martin diet, making up 88% of prey individuals and 45% of prey biomass. By transferring energy from terrestrial to aerial food webs, mating swarms of social insects play a substantial role in aerial ecosystems. Although we focus on Purple Martins and ants, our combined logger and diet method could be applied to a range of aerial organisms. PMID:27352817

  17. High throughput phenotyping using an unmanned aerial vehicle

    Science.gov (United States)

    Field trials are expensive and labor-intensive to carry out. Strategies to maximize data collection from these trials will improve research efficiencies. We have purchased a small unmanned aerial vehicle (AEV) to collect digital images from field plots. The AEV is remote-controlled and can be guided...

  18. 3-Dimensional Building Details from Aerial Photography for Internet Maps

    Directory of Open Access Journals (Sweden)

    Philipp Meixner

    2011-04-01

    Full Text Available This paper introduces the automated characterization of real estate (real property for Internet mapping. It proposes a processing framework to achieve this task from vertical aerial photography and associated property information. A demonstration of the feasibility of an automated solution builds on test data from the Austrian City of Graz. Information is extracted from vertical aerial photography and various data products derived from that photography in the form of a true orthophoto, a dense digital surface model and digital terrain model, and a classification of land cover. Maps of cadastral property boundaries aid in defining real properties. Our goal is to develop a table for each property with descriptive numbers about the buildings, their dimensions, number of floors, number of windows, roof shapes, impervious surfaces, garages, sheds, vegetation, presence of a basement floor, and other descriptors of interest for each and every property of a city. From aerial sources, at a pixel size of 10 cm, we show that we have obtained positional accuracies in the range of a single pixel, an accuracy of areas in the 10% range, floor counts at an accuracy of 93% and window counts at 86% accuracy. We also introduce 3D point clouds of facades and their creation from vertical aerial photography, and how these point clouds can support the definition of complex facades.

  19. Publishing WWII aerial photographs in geographical and library information systems

    NARCIS (Netherlands)

    Verhelst, E.C.H.; Missel, L.; Vanmeulebrouk, B.; Rip, F.I.

    2012-01-01

    The Library of the Dutch Wageningen University and Research centre houses a collection of aerial photographs taken by the Allied Air Forces. The collection is part of a project that aims to publish these images in a user friendly way so that they are accessible to a wide audience. This paper describ

  20. Risk and safety analysis for Florida commercial aerial application operations

    Science.gov (United States)

    Robbins, John Michael

    The purpose of this study was to determine self-reported perceptions in the areas of agroterrorism, bioterrorism, chemical exposure and Federal Aviation Administration (FAA) oversight. The aerial application industry has been in existence since the 1920's with a gamut of issues ranging from pesticide drift to counterterrorism. The attacks of September 11th, 2001, caused a paradigm shift in the way the United States views security and, more importantly, the prevention of malicious activity. Through the proper implementation and dissemination of educational materials dealing with industry specific concerns, it is imperative that everyone has the proper level of resources and training to effectively manage terrorist threats. This research study was designed to interpret how aerial applicators view these topics of concern and how they perceive the current threat level of terrorism in the industry. Research results were consistent, indicating that a high number of aerial applicators in the state of Florida are concerned with these topics. As a result, modifications need to be made with respect to certain variables. The aerial application industry works day in and day out to provide a professional service that helps maintain the integrity of the food and commodities that we need to survive. They are a small percentage of the aviation community that we all owe a great deal for the vital and necessary services they provide.

  1. Combining Constraint Types From Public Data in Aerial Image Segmentation

    DEFF Research Database (Denmark)

    Jacobsen, Thomas Stig; Jensen, Jacob Jon; Jensen, Daniel Rune;

    2013-01-01

    We introduce a method for image segmentation that constraints the clustering with map and point data. The method is showcased by applying the spectral clustering algorithm on aerial images for building detection with constraints built from a height map and address point data. We automatically det...

  2. A Texture Thesaurus for Browsing Large Aerial Photographs.

    Science.gov (United States)

    Ma, Wei-Ying; Manjunath, B. S.

    1998-01-01

    Presents a texture-based image-retrieval system for browsing large-scale aerial photographs. System components include texture-feature extraction, image segmentation and grouping, learning-similarity measure, and a texture-thesaurus model for fast search and indexing. Testing has demonstrated the system's effectiveness in searching and selecting…

  3. Challenges of Integrating Unmanned Aerial Vehicles In Civil Application

    International Nuclear Information System (INIS)

    Unmanned Aerial Vehicle (UAV) has evolved rapidly over the past decade. There have been an increased number of studies aiming at improving UAV and in its use for different civil applications. This paper highlights the fundamentals of UAV system and examines the challenges related with the major components such as motors, drives, power systems, communication systems and image processing tools and equipment

  4. Using Unmanned Aerial Vehicles (UAV to Quantify Spatial Gap Patterns in Forests

    Directory of Open Access Journals (Sweden)

    Stephan Getzin

    2014-07-01

    Full Text Available Gap distributions in forests reflect the spatial impact of man-made tree harvesting or naturally-induced patterns of tree death being caused by windthrow, inter-tree competition, disease or senescence. Gap sizes can vary from large (>100 m2 to small (<10 m2, and they may have contrasting spatial patterns, such as being aggregated or regularly distributed. However, very small gaps cannot easily be recorded with conventional aerial or satellite images, which calls for new and cost-effective methodologies of forest monitoring. Here, we used an unmanned aerial vehicle (UAV and very high-resolution images to record the gaps in 10 temperate managed and unmanaged forests in two regions of Germany. All gaps were extracted for 1-ha study plots and subsequently analyzed with spatially-explicit statistics, such as the conventional pair correlation function (PCF, the polygon-based PCF and the mark correlation function. Gap-size frequency was dominated by small gaps of an area <5 m2, which were particularly frequent in unmanaged forests. We found that gap distances showed a variety of patterns. However, the polygon-based PCF was a better descriptor of patterns than the conventional PCF, because it showed randomness or aggregation for cases when the conventional PCF showed small-scale regularity; albeit, the latter was only a mathematical artifact. The mark correlation function revealed that gap areas were in half of the cases negatively correlated and in the other half independent. Negative size correlations may likely be the result of single-tree harvesting or of repeated gap formation, which both lead to nearby small gaps. Here, we emphasize the usefulness of UAV to record forest gaps of a very small size. These small gaps may originate from repeated gap-creating disturbances, and their spatial patterns should be monitored with spatially-explicit statistics at recurring intervals in order to further insights into forest dynamics.

  5. An aerial radiological survey of the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, T J; Riedhauser, S R

    1999-12-01

    A team from the Remote Sensing Laboratory conducted an aerial radiological survey of the US Department of Energy's Nevada Test Site including three neighboring areas during August and September 1994. The survey team measured the terrestrial gamma radiation at the Nevada Test Site to determine the levels of natural and man-made radiation. This survey included the areas covered by previous surveys conducted from 1962 through 1993. The results of the aerial survey showed a terrestrial background exposure rate that varied from less than 6 microroentgens per hour (mR/h) to 50 mR/h plus a cosmic-ray contribution that varied from 4.5 mR/h at an elevation of 900 meters (3,000 feet) to 8.5 mR/h at 2,400 meters (8,000 feet). In addition to the principal gamma-emitting, naturally occurring isotopes (potassium-40, thallium-208, bismuth-214, and actinium-228), the man-made radioactive isotopes found in this survey were cobalt-60, cesium-137, europium-152, protactinium-234m an indicator of depleted uranium, and americium-241, which are due to human actions in the survey area. Individual, site-wide plots of gross terrestrial exposure rate, man-made exposure rate, and americium-241 activity (approximating the distribution of all transuranic material) are presented. In addition, expanded plots of individual areas exhibiting these man-made contaminations are given. A comparison is made between the data from this survey and previous aerial radiological surveys of the Nevada Test Site. Some previous ground-based measurements are discussed and related to the aerial data. In regions away from man-made activity, the exposure rates inferred from the gamma-ray measurements collected during this survey agreed very well with the exposure rates inferred from previous aerial surveys.

  6. An aerial radiological survey of the Nevada Test Site

    International Nuclear Information System (INIS)

    A team from the Remote Sensing Laboratory conducted an aerial radiological survey of the US Department of Energy's Nevada Test Site including three neighboring areas during August and September 1994. The survey team measured the terrestrial gamma radiation at the Nevada Test Site to determine the levels of natural and man-made radiation. This survey included the areas covered by previous surveys conducted from 1962 through 1993. The results of the aerial survey showed a terrestrial background exposure rate that varied from less than 6 microroentgens per hour (mR/h) to 50 mR/h plus a cosmic-ray contribution that varied from 4.5 mR/h at an elevation of 900 meters (3,000 feet) to 8.5 mR/h at 2,400 meters (8,000 feet). In addition to the principal gamma-emitting, naturally occurring isotopes (potassium-40, thallium-208, bismuth-214, and actinium-228), the man-made radioactive isotopes found in this survey were cobalt-60, cesium-137, europium-152, protactinium-234m an indicator of depleted uranium, and americium-241, which are due to human actions in the survey area. Individual, site-wide plots of gross terrestrial exposure rate, man-made exposure rate, and americium-241 activity (approximating the distribution of all transuranic material) are presented. In addition, expanded plots of individual areas exhibiting these man-made contaminations are given. A comparison is made between the data from this survey and previous aerial radiological surveys of the Nevada Test Site. Some previous ground-based measurements are discussed and related to the aerial data. In regions away from man-made activity, the exposure rates inferred from the gamma-ray measurements collected during this survey agreed very well with the exposure rates inferred from previous aerial surveys

  7. PLANT INCORPORATED PROTECTANT CROP MONITORING USING REMOTE SENSING

    Science.gov (United States)

    The extent of past and anticipated plantings of transgenic corn in the United States requires a new approach to monitor this important crop for the development of pest resistance. Remote sensing by aerial and/or satellite images may provide a method of identifying transgenic pest...

  8. A NEW APPROACH TO PIP CROP MONITORING USING REMOTE SENSING

    Science.gov (United States)

    Current plantings of 25+ million acres of transgenic corn in the United States require a new approach to monitor this important crop for the development of pest resistance. Remote sensing by aerial or satellite images may provide a method of identifying transgenic pesticidal cro...

  9. An Overview of Small Unmanned Aerial Vehicles for Air Quality Measurements: Present Applications and Future Prospectives.

    Science.gov (United States)

    Villa, Tommaso Francesco; Gonzalez, Felipe; Miljievic, Branka; Ristovski, Zoran D; Morawska, Lidia

    2016-01-01

    Assessment of air quality has been traditionally conducted by ground based monitoring, and more recently by manned aircrafts and satellites. However, performing fast, comprehensive data collection near pollution sources is not always feasible due to the complexity of sites, moving sources or physical barriers. Small Unmanned Aerial Vehicles (UAVs) equipped with different sensors have been introduced for in-situ air quality monitoring, as they can offer new approaches and research opportunities in air pollution and emission monitoring, as well as for studying atmospheric trends, such as climate change, while ensuring urban and industrial air safety. The aims of this review were to: (1) compile information on the use of UAVs for air quality studies; and (2) assess their benefits and range of applications. An extensive literature review was conducted using three bibliographic databases (Scopus, Web of Knowledge, Google Scholar) and a total of 60 papers was found. This relatively small number of papers implies that the field is still in its early stages of development. We concluded that, while the potential of UAVs for air quality research has been established, several challenges still need to be addressed, including: the flight endurance, payload capacity, sensor dimensions/accuracy, and sensitivity. However, the challenges are not simply technological, in fact, policy and regulations, which differ between countries, represent the greatest challenge to facilitating the wider use of UAVs in atmospheric research. PMID:27420065

  10. An Overview of Small Unmanned Aerial Vehicles for Air Quality Measurements: Present Applications and Future Prospectives

    Science.gov (United States)

    Villa, Tommaso Francesco; Gonzalez, Felipe; Miljievic, Branka; Ristovski, Zoran D.; Morawska, Lidia

    2016-01-01

    Assessment of air quality has been traditionally conducted by ground based monitoring, and more recently by manned aircrafts and satellites. However, performing fast, comprehensive data collection near pollution sources is not always feasible due to the complexity of sites, moving sources or physical barriers. Small Unmanned Aerial Vehicles (UAVs) equipped with different sensors have been introduced for in-situ air quality monitoring, as they can offer new approaches and research opportunities in air pollution and emission monitoring, as well as for studying atmospheric trends, such as climate change, while ensuring urban and industrial air safety. The aims of this review were to: (1) compile information on the use of UAVs for air quality studies; and (2) assess their benefits and range of applications. An extensive literature review was conducted using three bibliographic databases (Scopus, Web of Knowledge, Google Scholar) and a total of 60 papers was found. This relatively small number of papers implies that the field is still in its early stages of development. We concluded that, while the potential of UAVs for air quality research has been established, several challenges still need to be addressed, including: the flight endurance, payload capacity, sensor dimensions/accuracy, and sensitivity. However, the challenges are not simply technological, in fact, policy and regulations, which differ between countries, represent the greatest challenge to facilitating the wider use of UAVs in atmospheric research. PMID:27420065

  11. An Overview of Small Unmanned Aerial Vehicles for Air Quality Measurements: Present Applications and Future Prospectives.

    Science.gov (United States)

    Villa, Tommaso Francesco; Gonzalez, Felipe; Miljievic, Branka; Ristovski, Zoran D; Morawska, Lidia

    2016-01-01

    Assessment of air quality has been traditionally conducted by ground based monitoring, and more recently by manned aircrafts and satellites. However, performing fast, comprehensive data collection near pollution sources is not always feasible due to the complexity of sites, moving sources or physical barriers. Small Unmanned Aerial Vehicles (UAVs) equipped with different sensors have been introduced for in-situ air quality monitoring, as they can offer new approaches and research opportunities in air pollution and emission monitoring, as well as for studying atmospheric trends, such as climate change, while ensuring urban and industrial air safety. The aims of this review were to: (1) compile information on the use of UAVs for air quality studies; and (2) assess their benefits and range of applications. An extensive literature review was conducted using three bibliographic databases (Scopus, Web of Knowledge, Google Scholar) and a total of 60 papers was found. This relatively small number of papers implies that the field is still in its early stages of development. We concluded that, while the potential of UAVs for air quality research has been established, several challenges still need to be addressed, including: the flight endurance, payload capacity, sensor dimensions/accuracy, and sensitivity. However, the challenges are not simply technological, in fact, policy and regulations, which differ between countries, represent the greatest challenge to facilitating the wider use of UAVs in atmospheric research.

  12. Optical transfer function measurment facility for aerial survey cameras.

    Science.gov (United States)

    Bewsher, A; Powell, I

    1994-10-01

    The optical transfer function measurement facility developed at the National Research Council of Canada primarily for testing aerial survey cameras has been upgraded to perform the task in an appreciably more convenient manner. Modifications made to the facility, which is based on the line spread function technique, include the replacement of the cumbersome physical scanning mechanism and detector unit with a detector assembly comprising a relay lens and a linear photodiode array. While eliminating the need for physically scanning the line spread function, it did require a change of light source, a daylight filter, and a new computer software package. The new setup is described in this paper. Several aerial survey cameras have been evaluated with the system, and results are given for a fairly standard Zeiss camera. PMID:20941194

  13. Evaluation of foam-skin cables for aerial applications

    Science.gov (United States)

    Samuelson, G. R.

    Since the introduction of foam-skin filled cables, there has been considerable discussion within the Industry, both pro and con, regarding the acceptability of foam-skin filled cables for aerial application. This paper reports on results obtained from a study undertaken to evaluate the changes in transmission properties of such cables in a simulated aerial environment. Cable samples produced by six cable manufacturers using conventional, high-temperature drip-resistant filling compounds with a petrolatum base were subjected to temperature cycling from -40 F to 140 F. Transmission parameters were measured at 1, 150 and 772 kHz and compared to initial values. A solid polypropylene insulated filled cable was included for reference. The results show that foam-skin petrolatum based filled cables exhibit stable electrical characteristics when exposed to cycled temperature extremes.

  14. Pharmacognostic Standardization Parameters of Roylea elegans Wall (Aerial Parts

    Directory of Open Access Journals (Sweden)

    Neeru

    2016-05-01

    Full Text Available To evaluate the pharmacognostical study of Roylea elegans (aerial parts. The qualitative and quantitative microscopy, physicochemical evaluation, phytochemical screening and fluorescence analysis of the plant were done by the standard procedure recommended in the WHO guidelines. Macroscopic study shows that leaves were dark green with lemon like odor and bitter taste, 2-8 cm length and 1-8 cm wide, shape: ovate, hairy upper and lower surface, apex: acute and having reticulate veination, Stems: were light green Microscopic evaluation of the leaves powder shows the presence of trichomes (unicellular covering and glandular, upper epidermis, vessels, xylem fibres, wavy trichomes. The transverse section of the leaf shows the presence of epidermis layer followed by cuticle layer, lignified vascular bundles, trichomes, collenchyma, and palisade cells. Various pharmacognostical parameters help to evaluate the identification and standardization of Roylea elegans (aerial part.

  15. Texture mapping based on multiple aerial imageries in urban areas

    Science.gov (United States)

    Zhou, Guoqing; Ye, Siqi; Wang, Yuefeng; Han, Caiyun; Wang, Chenxi

    2015-12-01

    In the realistic 3D model reconstruction, the requirement of the texture is very high. Texture is one of the key factors that affecting realistic of the model and using texture mapping technology to realize. In this paper we present a practical approach of texture mapping based on photogrammetry theory from multiple aerial imageries in urban areas. By collinearity equation to matching the model and imageries, and in order to improving the quality of texture, we describe an automatic approach for select the optimal texture to realized 3D building from the aerial imageries of many strip. The texture of buildings can be automatically matching by the algorithm. The experimental results show that the platform of texture mapping process has a high degree of automation and improve the efficiency of the 3D modeling reconstruction.

  16. Fixed-Wing Micro Aerial Vehicle for Accurate Corridor Mapping

    Science.gov (United States)

    Rehak, M.; Skaloud, J.

    2015-08-01

    In this study we present a Micro Aerial Vehicle (MAV) equipped with precise position and attitude sensors that together with a pre-calibrated camera enables accurate corridor mapping. The design of the platform is based on widely available model components to which we integrate an open-source autopilot, customized mass-market camera and navigation sensors. We adapt the concepts of system calibration from larger mapping platforms to MAV and evaluate them practically for their achievable accuracy. We present case studies for accurate mapping without ground control points: first for a block configuration, later for a narrow corridor. We evaluate the mapping accuracy with respect to checkpoints and digital terrain model. We show that while it is possible to achieve pixel (3-5 cm) mapping accuracy in both cases, precise aerial position control is sufficient for block configuration, the precise position and attitude control is required for corridor mapping.

  17. Bio-inspired computation in unmanned aerial vehicles

    CERN Document Server

    Duan, Haibin

    2014-01-01

    Bio-inspired Computation in Unmanned Aerial Vehicles focuses on the aspects of path planning, formation control, heterogeneous cooperative control and vision-based surveillance and navigation in Unmanned Aerial Vehicles (UAVs) from the perspective of bio-inspired computation. It helps readers to gain a comprehensive understanding of control-related problems in UAVs, presenting the latest advances in bio-inspired computation. By combining bio-inspired computation and UAV control problems, key questions are explored in depth, and each piece is content-rich while remaining accessible. With abundant illustrations of simulation work, this book links theory, algorithms and implementation procedures, demonstrating the simulation results with graphics that are intuitive without sacrificing academic rigor. Further, it pays due attention to both the conceptual framework and the implementation procedures. The book offers a valuable resource for scientists, researchers and graduate students in the field of Control, Aeros...

  18. Orientation-selective building detection in aerial images

    Science.gov (United States)

    Manno-Kovacs, Andrea; Sziranyi, Tamas

    2015-10-01

    This paper introduces a novel aerial building detection method based on region orientation as a new feature, which is used in various steps throughout the presented framework. As building objects are expected to be connected with each other on a regional level, exploiting the main orientation obtained from the local gradient analysis provides further information for detection purposes. The orientation information is applied for an improved edge map design, which is integrated with classical features like shadow and color. Moreover, an orthogonality check is introduced for finding building candidates, and their final shapes defined by the Chan-Vese active contour algorithm are refined based on the orientation information, resulting in smooth and accurate building outlines. The proposed framework is evaluated on multiple data sets, including aerial and high resolution optical satellite images, and compared to six state-of-the-art methods in both object and pixel level evaluation, proving the algorithm's efficiency.

  19. An Air-Ground Wireless Sensor Network for Crop Monitoring

    Directory of Open Access Journals (Sweden)

    Claudio Rossi

    2011-06-01

    Full Text Available This paper presents a collaborative system made up of a Wireless Sensor Network (WSN and an aerial robot, which is applied to real-time frost monitoring in vineyards. The core feature of our system is a dynamic mobile node carried by an aerial robot, which ensures communication between sparse clusters located at fragmented parcels and a base station. This system overcomes some limitations of the wireless networks in areas with such characteristics. The use of a dedicated communication channel enables data routing to/from unlimited distances.

  20. Assessing the Accuracy of Georeferenced Point Clouds Produced via Multi-View Stereopsis from Unmanned Aerial Vehicle (UAV Imagery

    Directory of Open Access Journals (Sweden)

    Arko Lucieer

    2012-05-01

    Full Text Available Sensor miniaturisation, improved battery technology and the availability of low-cost yet advanced Unmanned Aerial Vehicles (UAV have provided new opportunities for environmental remote sensing. The UAV provides a platform for close-range aerial photography. Detailed imagery captured from micro-UAV can produce dense point clouds using multi-view stereopsis (MVS techniques combining photogrammetry and computer vision. This study applies MVS techniques to imagery acquired from a multi-rotor micro-UAV of a natural coastal site in southeastern Tasmania, Australia. A very dense point cloud ( < 1–3 cm point spacing is produced in an arbitrary coordinate system using full resolution imagery, whereas other studies usually downsample the original imagery. The point cloud is sparse in areas of complex vegetation and where surfaces have a homogeneous texture. Ground control points collected with Differential Global Positioning System (DGPS are identified and used for georeferencing via a Helmert transformation. This study compared georeferenced point clouds to a Total Station survey in order to assess and quantify their geometric accuracy. The results indicate that a georeferenced point cloud accurate to 25–40 mm can be obtained from imagery acquired from 50 m. UAV-based image capture provides the spatial and temporal resolution required to map and monitor natural landscapes. This paper assesses the accuracy of the generated point clouds based on field survey points. Based on our key findings we conclude that sub-decimetre terrain change (in this case coastal erosion can be monitored.