WorldWideScience

Sample records for advection amplifying flight

  1. The distribution of "time of flight" in 3D stationary chaotic advection

    CERN Document Server

    Raynal, Florence

    2014-01-01

    The distributions of "time of flight" (time spent by a single fluid particle between two crossings of the Poincar\\'e section) are investigated for five different 3D stationary chaotic mixers. Above all, we study the large tails of those distributions, and show that mainly two types of behaviors are encountered. In the case of slipping walls, as expected, we obtain an exponential decay, which, however, does not scale with the Lyapunov exponent. Using a simple model, we suggest that this decay is related to the negative eigenvalues of the fixed points of the flow. When no-slip walls are considered, as predicted by the model, the behavior is radically dfferent, with a very large tail following a power law with an exponent close to -3.

  2. Frontiers of chaotic advection

    CERN Document Server

    Aref, Hassan; Budišić, Marko; Cartwright, Julyan H E; Clercx, Herman J H; Feudel, Ulrike; Golestanian, Ramin; Gouillart, Emmanuelle; Guer, Yves Le; van Heijst, GertJan F; Krasnopolskaya, Tatyana S; MacKay, Robert S; Meleshko, Vyacheslav V; Metcalfe, Guy; Mezić, Igor; de Moura, Alessandro P S; Omari, Kamal El; Piro, Oreste; Speetjens, Michel F M; Sturman, Rob; Thiffeault, Jean-Luc; Tuval, Idan

    2014-01-01

    We review the present position of and survey future perspectives in the physics of chaotic advection; the field that emerged three decades ago at the intersection of fluid mechanics and nonlinear dynamics, which encompasses a range of applications with length scales ranging from micrometers to hundreds of kilometers, including systems as diverse as mixing and thermal processing of viscous fluids, micro-fluidics, biological flows, and large-scale dispersion of pollutants in oceanographic and atmospheric flows.

  3. A generalized advection dispersion equation

    Indian Academy of Sciences (India)

    Abdon Atangana

    2014-02-01

    This paper examines a possible effect of uncertainties, variability or heterogeneity of any dynamic system when being included in its evolution rule; the notion is illustrated with the advection dispersion equation, which describes the groundwater pollution model. An uncertain derivative is defined; some properties of the operator are presented. The operator is used to generalize the advection dispersion equation. The generalized equation differs from the standard equation in four properties. The generalized equation is solved via the variational iteration technique. Some illustrative figures are presented.

  4. Operational amplifiers

    CERN Document Server

    Dostal, Jiri

    1993-01-01

    This book provides the reader with the practical knowledge necessary to select and use operational amplifier devices. It presents an extensive treatment of applications and a practically oriented, unified theory of operational circuits.Provides the reader with practical knowledge necessary to select and use operational amplifier devices. Presents an extensive treatment of applications and a practically oriented, unified theory of operational circuits

  5. Instabilities of advection-dominated accretion flows

    CERN Document Server

    Chen, X

    1996-01-01

    Accretion disk instabilities are briefly reviewed. Some details are given to the short-wavelength thermal instabilities and the convective instabilities. Time-dependent calculations of two-dimensional advection-dominated accretion flows are presented.

  6. Turbulent dynamo with advective magnetic helicity flux

    CERN Document Server

    Del Sordo, Fabio; Brandenburg, Axel

    2012-01-01

    Many astrophysical bodies harbor magnetic fields that are thought to be sustained by dynamo processes. However, it has been argued that the production of large-scale magnetic fields by a mean-field dynamo is strongly suppressed at large magnetic Reynolds numbers owing to the conservation of magnetic helicity. This phenomenon is known as catastrophic quenching. Advection of magnetic field toward the outer boundaries and away from the dynamo is expected to alleviate such quenching. Examples are stellar and galactic winds. Such advection might be able to overcome the constraint imposed by the conservation of magnetic helicity, transporting a fraction of it outside the domain in which the dynamo operates. We study how the dynamo process is affected by advection. In particular, we study the relative roles played by advective and diffusive fluxes of magnetic helicity. We do this by performing direct numerical simulations of a turbulent dynamo of alpha^2 type driven by forced turbulence in a Cartesian domain in the ...

  7. Discrete Lie Advection of Differential Forms

    CERN Document Server

    Mullen, P; Pavlov, D; Durant, L; Tong, Y; Kanso, E; Marsden, J E; Desbrun, M

    2009-01-01

    In this paper, we present a numerical technique for performing Lie advection of arbitrary differential forms. Leveraging advances in high-resolution finite volume methods for scalar hyperbolic conservation laws, we first discretize the interior product (also called contraction) through integrals over Eulerian approximations of extrusions. This, along with Cartan's homotopy formula and a discrete exterior derivative, can then be used to derive a discrete Lie derivative. The usefulness of this operator is demonstrated through the numerical advection of scalar fields and 1-forms on regular grids.

  8. Optically-thick accretion discs with advection

    Institute of Scientific and Technical Information of China (English)

    陈林红; 吴枚; 尚仁成

    2002-01-01

    The structures of optically-thick accretion discs with radial advection have been investigated by the iteration and integration algorithms. The advective cooling term changes mostly the inner part of disc solution, and even results in an optically-thick advection-dominated accretion flow (ADAF). Three distinct branches-the outer Shakura-Sunyaev disc (SSD), the inner ADAF and the middle transition layer-are found for a super-Eddington disc. The SSD-ADAF transition radius can be estimated as 18(M/ME)RG where RG is the Schwarzschild radius, M is the mass accretion rate and ME is the Eddington accretion rate. SSD solutions calculated with the iteration and integration methods are identical, while ADAF solutions obtained by these two methods differ greatly. Detailed algorithms and their differences have been analysed. The iteration algorithm is not self-consistent, since it implies that the dimensionless advection factor ξ is invariant, but in the inner ADAF region the variation of ξ is not negligible. The integration algorithm is always effective for the whole region of an optically-thick disc if the accretion rate is no smaller than 10-4ME. For optically-thin discs, the validity of these two algorithms is different. We suggest that the integration method be employed to calculate the global solution of a disc model without assuming ξ to be a constant. We also discuss its application to the emergent continuum spectrum in order to explain observational facts.

  9. On the tensorial nature of advective porosity

    Science.gov (United States)

    Neuman, Shlomo P.

    2005-02-01

    Field tracer tests indicate that advective porosity, the quantity relating advective velocity to Darcy flux, may exhibit directional dependence. Hydraulic anisotropy explains some but not all of the reported directional results. The present paper shows mathematically that directional variations in advective porosity may arise simply from incomplete mixing of an inert tracer between directional flow channels within a sampling (or support) volume ω of soil or rock that may be hydraulically isotropic or anisotropic. In the traditional fully homogenized case, our theory yields trivially a scalar advective porosity equal to the interconnected porosity ϕ, thus explaining neither the observed directional effects nor the widely reported experimental finding that advective porosity is generally smaller than ϕ. We consider incomplete mixing under conditions in which the characteristic time tD of longitudinal diffusion along channels across ω is much shorter than the characteristic time tH required for homogenization through transverse diffusion between channels. This may happen where flow takes place preferentially through relatively conductive channels and/or fractures of variable orientation separated by material that forms a partial barrier to diffusive transport. Our solution is valid for arbitrary channel Peclet numbers on a correspondingly wide range of time scales tD ⩽ t ≪ tH. It shows that the tracer center of mass is advected at a macroscopic velocity which is generally not collinear with the macroscopic Darcy flux and exceeds it in magnitude. These two vectors are related through a second-rank symmetric advective dispersivity tensor Φ. If the permeability k of ω is a symmetric positive-definite tensor, so is Φ. However, the principal directions and values of these two tensors are generally not the same; whereas those of k are a fixed property of the medium and the length-scale of ω, those of Φ depend additionally on the direction and magnitude of the

  10. Asymmetric spreading in highly advective, disordered environments

    OpenAIRE

    Carpenter, John H.; Dahmen, Karin A.

    2005-01-01

    Spreading of bacteria in a highly advective, disordered environment is examined. Predictions of super-diffusive spreading for a simplified reaction-diffusion equation are tested. Concentration profiles display anomalous growth and super-diffusive spreading. A perturbation analysis yields a crossover time between diffusive and super-diffusive behavior. The time's dependence on the convection velocity and disorder is tested. Like the simplified equation, the full linear reaction-diffusion equat...

  11. Distributed Parallel Particle Advection using Work Requesting

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Cornelius; Camp, David; Hentschel, Bernd; Garth, Christoph

    2013-09-30

    Particle advection is an important vector field visualization technique that is difficult to apply to very large data sets in a distributed setting due to scalability limitations in existing algorithms. In this paper, we report on several experiments using work requesting dynamic scheduling which achieves balanced work distribution on arbitrary problems with minimal communication overhead. We present a corresponding prototype implementation, provide and analyze benchmark results, and compare our results to an existing algorithm.

  12. High Order Semi-Lagrangian Advection Scheme

    Science.gov (United States)

    Malaga, Carlos; Mandujano, Francisco; Becerra, Julian

    2014-11-01

    In most fluid phenomena, advection plays an important roll. A numerical scheme capable of making quantitative predictions and simulations must compute correctly the advection terms appearing in the equations governing fluid flow. Here we present a high order forward semi-Lagrangian numerical scheme specifically tailored to compute material derivatives. The scheme relies on the geometrical interpretation of material derivatives to compute the time evolution of fields on grids that deform with the material fluid domain, an interpolating procedure of arbitrary order that preserves the moments of the interpolated distributions, and a nonlinear mapping strategy to perform interpolations between undeformed and deformed grids. Additionally, a discontinuity criterion was implemented to deal with discontinuous fields and shocks. Tests of pure advection, shock formation and nonlinear phenomena are presented to show performance and convergence of the scheme. The high computational cost is considerably reduced when implemented on massively parallel architectures found in graphic cards. The authors acknowledge funding from Fondo Sectorial CONACYT-SENER Grant Number 42536 (DGAJ-SPI-34-170412-217).

  13. Vertical structure of Advection dominated Accretion Flows

    CERN Document Server

    Zeraatgari, Fateme Zahra

    2015-01-01

    We solve the set of hydrodynamic (HD) equations for optically thin Advection Dominated Accretion Flows (ADAFs) by assuming radially self-similar in spherical coordinate system $ (r, \\theta, \\phi) $. The disk is considered to be steady state and axi-symmetric. We define the boundary conditions at the pole and the equator of the disk and to avoid singularity at the rotation axis, the disk is taken to be symmetric with respect to this axis. Moreover, only the $ \\tau_{r \\phi} $ component of viscous stress tensor is assumed and we have set $ v_{\\theta} = 0 $. The main purpose of this study is to investigate the variation of dynamical quantities of the flow in the vertical direction by finding an analytical solution. As a consequence, we found that the advection parameter, $ f^{adv} $, varies along the $ \\theta $ direction and reaches to its maximum near the rotation axis. Our results also show that, in terms of no-outflow solution, thermal equilibrium still exists and consequently advection cooling can balance vis...

  14. An advection-diffusion model for cross-field runaway electron transport in perturbed magnetic fields

    CERN Document Server

    Särkimäki, Konsta; Decker, Joan; Varje, Jari; Kurki-Suonio, Taina

    2016-01-01

    Disruption-generated runaway electrons (RE) present an outstanding issue for ITER. The predictive computational studies of RE generation rely on orbit-averaged computations and, as such, they lack the effects from the magnetic field stochasticity. Since stochasiticity is naturally present in post-disruption plasma, and externally induced stochastization offers a prominent mechanism to mitigate RE avalanche, we present an advection-diffusion model that can be used to couple an orbit-following code to an orbit-averaged tool in order to capture the cross-field transport and to overcome the latter's limitation. The transport coefficients are evaluated via a Monte Carlo method. We show that the diffusion coefficient differs significantly from the well-known Rechester-Rosenbluth result. We also demonstrate the importance of including the advection: it has a two-fold role both in modelling transport barriers created by magnetic islands and in amplifying losses in regions where the islands are not present.

  15. Advective turbulent transport in the fluid plasma

    Science.gov (United States)

    Min, Byung-Hoon; An, Chan-Yong; Kim, Chang-Bae

    2013-10-01

    The Hasegawa-Wakatani model (HWM) has been employed in pedagogical analyses of the physics behind the behavior of the tokamak plasmas. In addition to the geometric simplicity HWM has an appealing feature of sustaining autonomous quasi-steady state, unstable modes providing the power that is being transported by the nonlinear interactions and is eventually dissipated by the collisional damping at small scales. Emergence of the zonal flow out of the turbulence is a main candidate to cause the transition from the low plasma confinement to the high mode. In the study of such LH transition with the HWM, the adiabaticity parameter has been shown to play an important role in forcing the zonal flow that results in the regulation of the drift-wave turbulence. Instead of concentrating on the physics of the feedback loop between the turbulence and the zonal flow the present study focuses on the presence of the advective transport of the energy. Numerical simulations of HWM are performed and the connections between the advective transport and the zonal flow will be presented. This work was supported by the Supercpmputing Center/Korea Institute of Science and Technology Information with supercomputing resources including technical support (KSC-2013-C1-009).

  16. A Computational Method for Sharp Interface Advection

    CERN Document Server

    Roenby, Johan; Jasak, Hrvoje

    2016-01-01

    We devise a numerical method for passive advection of a surface, such as the interface between two incompressible fluids, across a computational mesh. The method is called isoAdvector, and is developed for general meshes consisting of arbitrary polyhedral cells. The algorithm is based on the volume of fluid (VOF) idea of calculating the volume of one of the fluids transported across the mesh faces during a time step. The novelty of the isoAdvector concept consists in two parts: First, we exploit an isosurface concept for modelling the interface inside cells in a geometric surface reconstruction step. Second, from the reconstructed surface, we model the motion of the face-interface intersection line for a general polygonal face to obtain the time evolution within a time step of the submerged face area. Integrating this submerged area over the time step leads to an accurate estimate for the total volume of fluid transported across the face. The method was tested on simple 2D and 3D interface advection problems ...

  17. Gain ranging amplifier

    International Nuclear Information System (INIS)

    A gain ranging amplifier system is provided for use in the acquisition of data. Voltage offset compensation is utilized to correct errors in the gain ranging amplifier system caused by thermal drift and temperature dependent voltage offsets, both of which are associated with amplifiers in the gain ranging amplifier system

  18. Portable musical instrument amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Christian, David E. (Danbury, CT)

    1990-07-24

    The present invention relates to a musical instrument amplifier which is particularly useful for electric guitars. The amplifier has a rigid body for housing both the electronic system for amplifying and processing signals from the guitar and the system's power supply. An input plug connected to and projecting from the body is electrically coupled to the signal amplifying and processing system. When the plug is inserted into an output jack for an electric guitar, the body is rigidly carried by the guitar, and the guitar is operatively connected to the electrical amplifying and signal processing system without use of a loose interconnection cable. The amplifier is provided with an output jack, into which headphones are plugged to receive amplified signals from the guitar. By eliminating the conventional interconnection cable, the amplifier of the present invention can be used by musicians with increased flexibility and greater freedom of movement.

  19. Thermal instability of advection-dominated disks against local perturbations

    CERN Document Server

    Kato, S; Chen, X; Kato, Shoji; Abramowicz, Marek Artur; Chen, Xingming

    1995-01-01

    Thermal instability is examined for advection-dominated one-temperature accretion disks. We consider axisymmetric perturbations with short wavelength in the radial direction. The viscosity is assumed to be sufficiently small for the vertical hydrostatic balance to hold in perturbed states. The type of viscosity is given either by the \\alpha-viscosity or by a diffusion-type stress tensor. Optically thick disks are found to be in general more unstable than optically thin ones. When the thermal diffusion is present, the optically thin disks become stable, but the optically thick disks are still unstable. The instability of the advection-dominated disks is different from that of the geometrically thin disks without advection. In the case of no advection, the thermal mode behaves under no appreciable surface density change. In the case of advection-dominated disks, however, the thermal mode occurs with no appreciable pressure change (compared with the density change), when local perturbations are considered. The v...

  20. High voltage distributed amplifier

    Science.gov (United States)

    Willems, D.; Bahl, I.; Wirsing, K.

    1991-12-01

    A high-voltage distributed amplifier implemented in GaAs MMIC technology has demonstrated good circuit performance over at least two octave bandwidth. This technique allows for very broadband amplifier operation with good efficiency in satellite, active-aperture radar, and battery-powered systems. Also, by increasing the number of FETs, the amplifier can be designed to match different voltage rails. The circuit does require a small amount of additional chip size over conventional distributed amplifiers but does not require power dividers or additional matching networks. This circuit configuration should find great use in broadband power amplifier design.

  1. Predicting salt advection in groundwater from saline aquaculture ponds

    Science.gov (United States)

    Verrall, D. P.; Read, W. W.; Narayan, K. A.

    2009-01-01

    SummaryThis paper predicts saltwater advection in groundwater from leaky aquaculture ponds. A closed form solution for the potential function, stream function and velocity field is derived via the series solutions method. Numerically integrating along different streamlines gives the location (or advection front) of saltwater throughout the domain for any predefined upper time limit. Extending this process produces a function which predicts advection front location against time. The models considered in this paper are easily modified given knowledge of the required physical parameters.

  2. Contribution of Advective and Non-advective Heat Fluxes to the Heat Budget of a Shallow Lagoon

    Directory of Open Access Journals (Sweden)

    Rodríguez-Rodríguez Miguel

    2005-01-01

    Full Text Available The heat budget in a shallow lagoon has been established from field measurements at a bihourly scale. Information on the main advective and non-advective heat fluxes were collected during year 2003 at Nueva lagoon (Almería, Southern Spain. Heat storage data was obtained from a thermistor chain located in the deepest part of the lagoon and meteorological information was acquired using an automatic meteorological station placed near the lagoon's shore. In addition, estimation of evaporation was inferred from climatic approaches. Inputs of heat energy were dominated by radiative fluxes, with received net radiation accounting on average for around 95% of the non-advective total gains and radiation losses accounting for around 70% of the non-advective total losses. Sensible heat transfer from/to the atmosphere constituted the second energy input (4% and output (20%, although heat losses by evaporation were also significant. Conduction of heat into the sediments was a relatively constant form of energy loss but constitutes a minor contribution on the overall heat budget. Considerable variability was evident in non-advective heat fluxes at different time scales, from diel to seasonal. In relation to advective heat fluxes, groundwater and irrigation surpluses added to the heat storage of Nueva lagoon, whereas heat advected via precipitation was negligible.

  3. New complex variable meshless method for advection-diffusion problems

    Institute of Scientific and Technical Information of China (English)

    Wang Jian-Fei; Cheng Yu-Min

    2013-01-01

    In this paper,an improved complex variable meshless method (ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square (ICVMLS) approximation.The equivalent functional of two-dimensional advection-diffusion problems is formed,the variation method is used to obtain the equation system,and the penalty method is employed to impose the essential boundary conditions.The difference method for two-point boundary value problems is used to obtain the discrete equations.Then the corresponding formulas of the ICVMM for advection-diffusion problems are presented.Two numerical examples with different node distributions are used to validate and investigate the accuracy and efficiency of the new method in this paper.It is shown that ICVMM is very effective for advection-diffusion problems,and has a good convergent character,accuracy,and computational efficiency.

  4. Anomalous scaling of a scalar field advected by turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Kraichnan, R.H. [Robert H. Kraichnan, Inc., Santa Fe, NM (United States)

    1995-12-31

    Recent work leading to deduction of anomalous scaling exponents for the inertial range of an advected passive field from the equations of motion is reviewed. Implications for other turbulence problems are discussed.

  5. Oscillators and operational amplifiers

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2005-01-01

    A generalized approach to the design of oscillators using operational amplifiers as active elements is presented. A piecewise-linear model of the amplifier is used so that it make sense to investigate the eigenvalues of the Jacobian of the differential equations. The characteristic equation...... of the general circuit is derived. The dynamic nonlinear transfer characteristic of the amplifier is investigated. Examples of negative resistance oscillators are discussed....

  6. Advection around ventilated U-shaped burrows: A model study

    Science.gov (United States)

    Brand, Andreas; Lewandowski, JöRg; Hamann, Enrico; Nützmann, Gunnar

    2013-05-01

    Advective transport in the porous matrix of sediments surrounding burrows formed by fauna such as Chironomus plumosus has been generally neglected. A positron emission tomography study recently revealed that the pumping activity of the midge larvae can indeed induce fluid flow in the sediment. We present a numerical model study which explores the conditions at which advective transport in the sediment becomes relevant. A 0.15 m deep U-shaped burrow with a diameter of 0.002 m within the sediment was represented in a 3-D domain. Fluid flow in the burrow was calculated using the Navier-Stokes equation for incompressible laminar flow in the burrow, and flow in the sediment was described by Darcy's law. Nonreactive and reactive transport scenarios were simulated considering diffusion and advection. The pumping activity of the model larva results in considerable advective flow in the sediment at reasonable high permeabilities with flow velocities of up to 7.0 × 10-6 m s-1 close to the larva for a permeability of 3 × 10-12 m2. At permeabilities below 7 × 10-13 m2 advection is negligible compared to diffusion. Reactive transport simulations using first-order kinetics for oxygen revealed that advective flux into the sediment downstream of the pumping larva enhances sedimentary uptake, while the advective flux into the burrow upstream of the larvae inhibits diffusive sedimentary uptake. Despite the fact that both effects cancel each other with respect to total solute uptake, the advection-induced asymmetry in concentration distribution can lead to a heterogeneous solute and redox distribution in the sediment relevant to complex reaction networks.

  7. A spatial SIS model in advective heterogeneous environments

    Science.gov (United States)

    Cui, Renhao; Lou, Yuan

    2016-09-01

    We study the effects of diffusion and advection for a susceptible-infected-susceptible epidemic reaction-diffusion model in heterogeneous environments. The definition of the basic reproduction number R0 is given. If R0 globally asymptotically stable. Asymptotic behaviors of R0 for advection rate and mobility of the infected individuals (denoted by dI) are established, and the existence of the endemic equilibrium when R0 > 1 is studied. The effects of diffusion and advection rates on the stability of the DFE are further investigated. Among other things, we find that if the habitat is a low-risk domain, there may exist one critical value for the advection rate, under which the DFE changes its stability at least twice as dI varies from zero to infinity, while the DFE is unstable for any dI when the advection rate is larger than the critical value. These results are in strong contrast with the case of no advection, where the DFE changes its stability at most once as dI varies from zero to infinity.

  8. Energetics of lateral eddy diffusion/advection:Part III. Energetics of horizontal and isopycnal diffusion/advection

    Institute of Scientific and Technical Information of China (English)

    HUANG Rui Xin

    2014-01-01

    Gravitational Potential Energy (GPE) change due to horizontal/isopycnal eddy diffusion and advection is examined. Horizontal/isopycnal eddy diffusion is conceptually separated into two steps:stirring and sub-scale diffusion. GPE changes associated with these two steps are analyzed. In addition, GPE changes due to stirring and subscale diffusion associated with horizontal/isopycnal advection in the Eulerian coordinates are analyzed. These formulae are applied to the SODA data for the world oceans. Our analysis indicates that horizontal/isopycnal advection in Eulerian coordinates can introduce large artificial diffusion in the model. It is shown that GPE source/sink in isopycnal coordinates is closely linked to physical property distribution, such as temperature, salinity and velocity. In comparison with z-coordinates, GPE source/sink due to stir-ring/cabbeling associated with isopycnal diffusion/advection is much smaller. Although isopycnal coordi-nates may be a better choice in terms of handling lateral diffusion, advection terms in the traditional Eule-rian coordinates can produce artificial source of GPE due to cabbeling associated with advection. Reducing such numerical errors remains a grand challenge.

  9. Electrospun Amplified Fiber Optics

    OpenAIRE

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-01-01

    A lot of research is focused on all-optical signal processing, aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for an efficient signal transmission. However, the complex fabrication methods, involving high-temperature processes performed in highly pure environment, slow down the fabrication and make amplified components expensive with respect to an ideal, ...

  10. RF Power Amplifier Analysis

    Directory of Open Access Journals (Sweden)

    M. Lokay

    1993-04-01

    Full Text Available The special program is presented for the demonstration of RF power transistor amplifiers for the purposes of the high-school education in courses of radio transmitters. The program is written in Turbo Pascal 6. 0 and enables to study the waveforms in selected points of the amplifier and to draw the trajectories of the working point in a plot of output transistor characteristics.

  11. Noise in Optical Amplifiers

    DEFF Research Database (Denmark)

    Jeppesen, Palle

    1997-01-01

    Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived.......Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived....

  12. Features of a rare advection-radiation fog event

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To investigate effects of atmospheric pollutants on fog nature, a comprehensive in situ observation project was implemented in the northern suburb of Nanjing, in December of 2006. For December 24-27 there occurred a heavy fog lasting 4 d in succession. This event is of rare characteristics, namely long persistence, high concentration, tall fog top, acid fog water and explosive growth. Detailed analysis along with the causes of the fog was presented. The evidence suggests that the fog was generated by nighttime radiative cooling, maintained and developed under effects of warm, wet advection. As a result, it is an advection-radiation fog event.

  13. Fast multigrid solution of the advection problem with closed characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Yavneh, I. [Israel Inst. of Technology, Haifa (Israel); Venner, C.H. [Univ. of Twente, Enschede (Netherlands); Brandt, A. [Weizmann Inst. of Science, Rehovot (Israel)

    1996-12-31

    The numerical solution of the advection-diffusion problem in the inviscid limit with closed characteristics is studied as a prelude to an efficient high Reynolds-number flow solver. It is demonstrated by a heuristic analysis and numerical calculations that using upstream discretization with downstream relaxation-ordering and appropriate residual weighting in a simple multigrid V cycle produces an efficient solution process. We also derive upstream finite-difference approximations to the advection operator, whose truncation terms approximate {open_quotes}physical{close_quotes} (Laplacian) viscosity, thus avoiding spurious solutions to the homogeneous problem when the artificial diffusivity dominates the physical viscosity.

  14. Simulating magnetised plasma with the versatile advection code

    NARCIS (Netherlands)

    Keppens, R.; Toth, G.; Palma, J. M. L.; Dongarra, J.; Hernandez, V.

    1999-01-01

    Matter in the universe mainly consists of plasma. The dynamics of plasmas is controlled by magnetic fields. To simulate the evolution of magnetised plasma, we solve the equations of magnetohydrodynamics using the Versatile Advection Code (VAC). To demonstrate the versatility of VAC, we present calcu

  15. Theory of advection-driven long range biotic transport

    Science.gov (United States)

    We propose a simple mechanistic model to examine the effects of advective flow on the spread of fungal diseases spread by wind-blown spores. The model is defined by a set of two coupled non-linear partial differential equations for spore densities. One equation describes the long-distance advectiv...

  16. Consistency Problem with Tracer Advection in the Atmospheric Model GAMIL

    Institute of Scientific and Technical Information of China (English)

    ZHANG Kai; WAN Hui; WANG Bin; ZHANG Meigen

    2008-01-01

    The radon transport test,which is a widely used test case for atmospheric transport models,is carried out to evaluate the tracer advection schemes in the Grid-Point Atmospheric Model of IAP-LASG (GAMIL).TWO of the three available schemes in the model are found to be associated with significant biases in the polar regions and in the upper part of the atmosphere,which implies potentially large errors in the simulation of ozone-like tracers.Theoretical analyses show that inconsistency exists between the advection schemes and the discrete continuity equation in the dynamical core of GAMIL and consequently leads to spurious sources and sinks in the tracer transport equation.The impact of this type of inconsistency is demonstrated by idealized tests and identified as the cause of the aforementioned biases.Other potential effects of this inconsistency are also discussed.Results of this study provide some hints for choosing suitable advection schemes in the GAMIL model.At least for the polar-region-concentrated atmospheric components and the closely correlated chemical species,the Flux-Form Semi-Lagrangian advection scheme produces more reasonable simulations of the large-scale transport processes without significantly increasing the computational expense.

  17. Advective and diffusive cosmic ray transport in galactic haloes

    CERN Document Server

    Heesen, Volker; Krause, Marita; Beck, Rainer; Stein, Yelena

    2016-01-01

    We present 1D cosmic ray transport models, numerically solving equations of pure advection and diffusion for the electrons and calculating synchrotron emission spectra. We find that for exponential halo magnetic field distributions advection leads to approximately exponential radio continuum intensity profiles, whereas diffusion leads to profiles that can be better approximated by a Gaussian function. Accordingly, the vertical radio spectral profiles for advection are approximately linear, whereas for diffusion they are of `parabolic' shape. We compare our models with deep ATCA observations of two edge-on galaxies, NGC 7090 and 7462, at $\\lambda\\lambda$ 22 and 6 cm. Our result is that the cosmic ray transport in NGC 7090 is advection dominated with $V=150^{+80}_{-30}~\\rm km\\,s^{-1}$, and that the one in NGC 7462 is diffusion dominated with $D=3.0\\pm 1.0 \\times 10^{28}E_{\\rm GeV}^{0.5}~\\rm cm^2\\,s^{-1}$. NGC 7090 has both a thin and thick radio disc with respective magnetic field scale heights of $h_{\\rm B1}=0...

  18. Fractional gradient and its application to the fractional advection equation

    OpenAIRE

    D'Ovidio, M; Garra, R.

    2013-01-01

    In this paper we provide a definition of fractional gradient operators, related to directional derivatives. We develop a fractional vector calculus, providing a probabilistic interpretation and mathematical tools to treat multidimensional fractional differential equations. A first application is discussed in relation to the d-dimensional fractional advection-dispersion equation. We also study the connection with multidimensional L\\'evy processes.

  19. Electrospun amplified fiber optics.

    Science.gov (United States)

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  20. A micropower electrocardiogram amplifier.

    Science.gov (United States)

    Fay, L; Misra, V; Sarpeshkar, R

    2009-10-01

    We introduce an electrocardiogram (EKG) preamplifier with a power consumption of 2.8 muW, 8.1 muVrms input-referred noise, and a common-mode rejection ratio of 90 dB. Compared to previously reported work, this amplifier represents a significant reduction in power with little compromise in signal quality. The improvement in performance may be attributed to many optimizations throughout the design including the use of subthreshold transistor operation to improve noise efficiency, gain-setting capacitors versus resistors, half-rail operation wherever possible, optimal power allocations among amplifier blocks, and the sizing of devices to improve matching and reduce noise. We envision that the micropower amplifier can be used as part of a wireless EKG monitoring system powered by rectified radio-frequency energy or other forms of energy harvesting like body vibration and body heat. PMID:23853270

  1. A vircator amplifier

    International Nuclear Information System (INIS)

    A cavity vircator has demonstrated that formation of a virtual cathode in a cavity can improve microwave production efficiency and narrow the radiation bandwidth. When the virtual cathode radiates the microwave fields grow from noise. For each cavity, there is only one or a limited number of allowable modes for a given frequency. In this paper, a novel device - a vircator amplifier is described. The device consists of a relativistic magnetron and a cavity vircator with both devices powered by a 1 MeV, 3 Ω, 65 ns FWHM pulser. The idea is to inject a signal from the magnetron before and during virtual cathode formation in a cavity. The injected signal should lock the frequency and enhance electron bunching and therefore improve efficiency further. Experiments underway to evaluate the amplifier operating characteristics are discussed. The applicability of vircator amplifiers to the next generation of high-power microwave devices are addressed

  2. Energetics of lateral eddy diffusion/advection:Part IV. Energetics of diffusion/advection in sigma coordinates and other coordinates

    Institute of Scientific and Technical Information of China (English)

    HUANG Rui Xin

    2014-01-01

    Gravitational potential energy (GPE) source and sink due to stirring and cabbeling associated with sigma dif-fusion/advection is analyzed. It is shown that GPE source and sink is too big, and they are not closely linked to physical property distribution, such as temperature, salinity and velocity. Although the most frequently quoted advantage of sigma coordinate models are their capability of dealing with topography;the exces-sive amount of GPE source and sink due to stirring and cabbeling associated with sigma diffusion/advec-tion diagnosed from our analysis raises a very serious question whether the way lateral diffusion/advection simulated in the sigma coordinates model is physically acceptable. GPE source and sink in three coordinates is dramatically different in their magnitude and patterns. Overall, in terms of simulating lateral eddy diffu-sion and advection isopycnal coordinates is the best choice and sigma coordinates is the worst. The physical reason of the excessive GPE source and sink in sigma coordinates is further explored in details. However, even in the isopycnal coordinates, simulation based on the Eulerian coordinates can be contaminated by the numerical errors associated with the advection terms.

  3. Fourier plane image amplifier

    Science.gov (United States)

    Hackel, L.A.; Hermann, M.R.; Dane, C.B.; Tiszauer, D.H.

    1995-12-12

    A solid state laser is frequency tripled to 0.3 {micro}m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only about 1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power. 1 fig.

  4. Cellwise conservative unsplit advection for the volume of fluid method

    DEFF Research Database (Denmark)

    Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri

    2015-01-01

    We present a cellwise conservative unsplit (CCU) advection scheme for the volume of fluid method (VOF) in 2D. Contrary to other schemes based on explicit calculations of the flux balances, the CCU advection adopts a cellwise approach where the pre-images of the control volumes are traced...... improvements of the VOF method with the use of more precise interface representation techniques and the future extension of the CCU scheme to 3D are discussed. ©2014 Elsevier Inc. All rights reserved.......-order Runge–Kutta method, where intermediate velocities along pathlines are determined with quadratic temporal and bicubic spatial interpolations. The volumes of the donating regions are corrected in order to fulfill the discrete continuity of incompressible flows. Consequently, the calculation produces non...

  5. The multifractal structure of chaotically advected chemical fields

    CERN Document Server

    Neufeld, Z; Hernández-García, E; Tél, T; Neufeld, Zoltan; Lopez, Cristobal; Hernandez-Garcia, Emilio; Tel, Tamas

    1999-01-01

    The structure of the concentration field of a decaying substance produced by chemical sources and advected by a smooth incompressible two-dimensional flow is investigated. We focus our attention on the non-uniformities of the Hölder exponent of the resulting filamental chemical field. They appear most evidently in the case of open flows where irregularities of the field exhibit strong spatial intermittency as they are restricted to a fractal manifold. Non-uniformities of the Hölder exponent of the chemical field in closed flows appears as a consequence of the non-uniform stretching of the fluid elements. We study how this affects the scaling exponents of the structure functions, displaying anomalous scaling, and relate the scaling exponents to the distribution of finite-time Lyapunov exponents of the advection dynamics. Theoretical predictions are compared with numerical experiments.

  6. Advection equation analysed by two-timing method

    CERN Document Server

    Vladimirov, V A

    2016-01-01

    The aim of this paper is to study and classify the multiplicity of distinguished limits and asymptotic solutions for the advection equation with a general oscillating velocity field with the systematic use of the two-timing method. Our results are: (i) the dimensionless advection equation contains two independent small parameters, which represent the ratio of two characteristic time-scales and the spatial amplitudes of oscillations; the scaling of the variables and parameters contains Strouhal number; (ii) an infinite sequence of distinguished limits has been identified; this sequence corresponds to the successive degenerations of a drift velocity; (iii) we have derived the averaged and oscillatory equations for the first four distinguished limits; derivations are performed up to the forth orders in small parameters; (v) we have shown, that each distinguish limit solution generates an infinite number of parametric solutions; these solutions differ from each other by the slow time-scale and the amplitude of pr...

  7. Features of a rare advection-radiation event

    Institute of Scientific and Technical Information of China (English)

    PU MeiJuan; ZHANG GuoZheng; YAN WenLian; LI ZiHua

    2008-01-01

    To investigate effects of atmospheric pollutants on fog nature,a comprehensive in situ observation project was implemented in the northern suburb of Nanjing,in December of 2006. For December 24-27 there occurred a heavy fog lasting 4 d in succession. This event is of rare characteristics,namely long persistence,high concentration,tall fog top,acid fog water and explosive growth. Detailed analysis along with the causes of the fog was presented. The evidence suggests that the fog was generated by nighttime radiative cooling,maintained and developed under effects of warm,wet advection. As a result,it is an advection-radiation fog event.

  8. Oceanic heat advection to the Arctic in the last Millennium

    OpenAIRE

    Spielhagen, Robert F.; Werner, Kirstin; Aagaard-Sørensen, Steffen; Zamelczyk, Katarzyna; Kandiano, Evguenia; Budeus, Gereon; Husum, Katrine; Marchitto, Thomas M.; Hald, Morten

    2011-01-01

    EGU2011-8738 At present, the Arctic is responding faster to global warming than most other areas on earth, as indicated by rising air temperatures, melting glaciers and ice sheets and a decline of the sea ice cover. As part of the meridional overturning circulation which connects all ocean basins and influences global climate, northward flowing Atlantic Water is the major means of heat and salt advection towards the Arctic where it strongly affects the sea ice distribution. Records of its ...

  9. Lattice Boltzmann method for the fractional advection-diffusion equation.

    Science.gov (United States)

    Zhou, J G; Haygarth, P M; Withers, P J A; Macleod, C J A; Falloon, P D; Beven, K J; Ockenden, M C; Forber, K J; Hollaway, M J; Evans, R; Collins, A L; Hiscock, K M; Wearing, C; Kahana, R; Villamizar Velez, M L

    2016-04-01

    Mass transport, such as movement of phosphorus in soils and solutes in rivers, is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or superdiffusion, and it is well described using a fractional advection-diffusion equation (FADE). The FADE finds a wide range of applications in various areas with great potential for studying complex mass transport in real hydrological systems. However, solution to the FADE is difficult, and the existing numerical methods are complicated and inefficient. In this study, a fresh lattice Boltzmann method is developed for solving the fractional advection-diffusion equation (LabFADE). The FADE is transformed into an equation similar to an advection-diffusion equation and solved using the lattice Boltzmann method. The LabFADE has all the advantages of the conventional lattice Boltzmann method and avoids a complex solution procedure, unlike other existing numerical methods. The method has been validated through simulations of several benchmark tests: a point-source diffusion, a boundary-value problem of steady diffusion, and an initial-boundary-value problem of unsteady diffusion with the coexistence of source and sink terms. In addition, by including the effects of the skewness β, the fractional order α, and the single relaxation time τ, the accuracy and convergence of the method have been assessed. The numerical predictions are compared with the analytical solutions, and they indicate that the method is second-order accurate. The method presented will allow the FADE to be more widely applied to complex mass transport problems in science and engineering.

  10. NUMERICAL SIMULATIONS OF SEA ICE WITH DIFFERENT ADVECTION SCHEMES

    Institute of Scientific and Technical Information of China (English)

    LIU Xi-ying

    2011-01-01

    Numerical simulations are carried out for sea ice with four different advection schemes to study their effects on the simulation results.The sea ice model employed here is the Sea Ice Simulator (SIS) of the Geophysical Fluid Dynamics Laboratory (GFDL) Modular Ocean Model version 4b (MOM4b) and the four advection schemes are, the upwind scheme originally used in the SIS, the Multi-Dimensional Positive Advection (MDPA) scheme, the Incremental Remapping Scheme (IRS) and the Two Step Shape Preserving (TSSP) scheme.The latter three schemes are newly introduced.To consider the interactions between sea ice and ocean, a mixed layer ocean model is introduced and coupled to the SIS.The coupled model uses a tri-polar coordinate with 120×65 grids,covering the whole earth globe, in the horizontal plane.Simulation results in the northern high latitudes are analyzed.In all simulations, the model reproduces the seasonal variation of sea ice in the northern high latitudes well.Compared with the results from the observation, the sea ice model produces some extra sea ice coverage in the Greenland Sea and Barents Sea in winter due to the exclusion of ocean current effects and the smaller simulated sea ice thickness in the Arctic basin.There are similar features among the results obtained with the introduced three advection schemes.The simulated sea ice thickness with the three newly introduced schemes are all smaller than that of the upwind scheme and the simulated sea ice velocities of movement are all smaller than that of the upwind scheme.There are more similarities shared in the results obtained with the MPDA and TSSP schemes.

  11. Cellwise conservative unsplit advection for the volume of fluid method

    Science.gov (United States)

    Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri

    2015-02-01

    We present a cellwise conservative unsplit (CCU) advection scheme for the volume of fluid method (VOF) in 2D. Contrary to other schemes based on explicit calculations of the flux balances, the CCU advection adopts a cellwise approach where the pre-images of the control volumes are traced backwards through the flow map. The donating regions of the fluxes are calculated via the streaklines of the grid intersections, represented as polygonal chains whose vertices are determined by backward tracing of particles injected in the flow at different times. High order accuracy is obtained from the fourth-order Runge-Kutta method, where intermediate velocities along pathlines are determined with quadratic temporal and bicubic spatial interpolations. The volumes of the donating regions are corrected in order to fulfill the discrete continuity of incompressible flows. Consequently, the calculation produces non-overlapping donating regions and pre-images with conforming edges to their neighbors, resulting in the conservativeness and the boundedness (liquid volume fraction inside the interval [ 0 , 1 ]) of the CCU advection scheme. Finally, the update of the liquid volume fractions is computed from the intersections of the pre-image polygons with the reconstructed interfaces. The CCU scheme is tested on several benchmark tests for the VOF advection, together with the standard piecewise linear interface calculation (PLIC). The geometrical errors of the CCU compare favorably with other unsplit VOF-PLIC schemes. Finally, potential improvements of the VOF method with the use of more precise interface representation techniques and the future extension of the CCU scheme to 3D are discussed.

  12. Oscillatory convection in binary mixtures: thermodiffusion, solutal buoyancy, and advection

    OpenAIRE

    Jung, D.; Matura, P.; Luecke, M.

    2005-01-01

    The role of thermodiffusive generation of concentration fluctuations via the Soret effect, their contribution to the buoyancy forces that drive convection, the advective mixing effect of the latter, and the diffusive homogenisation are compared and elucidated for oscillatory convection. Numerically obtained solutions of the field equations in the form of spatially extended relaxed traveling waves, of standing waves, and of the transient growth of standing waves and their transition to traveli...

  13. Lattice Boltzmann method for the fractional advection-diffusion equation

    Science.gov (United States)

    Zhou, J. G.; Haygarth, P. M.; Withers, P. J. A.; Macleod, C. J. A.; Falloon, P. D.; Beven, K. J.; Ockenden, M. C.; Forber, K. J.; Hollaway, M. J.; Evans, R.; Collins, A. L.; Hiscock, K. M.; Wearing, C.; Kahana, R.; Villamizar Velez, M. L.

    2016-04-01

    Mass transport, such as movement of phosphorus in soils and solutes in rivers, is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or superdiffusion, and it is well described using a fractional advection-diffusion equation (FADE). The FADE finds a wide range of applications in various areas with great potential for studying complex mass transport in real hydrological systems. However, solution to the FADE is difficult, and the existing numerical methods are complicated and inefficient. In this study, a fresh lattice Boltzmann method is developed for solving the fractional advection-diffusion equation (LabFADE). The FADE is transformed into an equation similar to an advection-diffusion equation and solved using the lattice Boltzmann method. The LabFADE has all the advantages of the conventional lattice Boltzmann method and avoids a complex solution procedure, unlike other existing numerical methods. The method has been validated through simulations of several benchmark tests: a point-source diffusion, a boundary-value problem of steady diffusion, and an initial-boundary-value problem of unsteady diffusion with the coexistence of source and sink terms. In addition, by including the effects of the skewness β , the fractional order α , and the single relaxation time τ , the accuracy and convergence of the method have been assessed. The numerical predictions are compared with the analytical solutions, and they indicate that the method is second-order accurate. The method presented will allow the FADE to be more widely applied to complex mass transport problems in science and engineering.

  14. A 3-D tomographic retrieval approach with advection compensation for the air-borne limb-imager GLORIA

    Directory of Open Access Journals (Sweden)

    J. Ungermann

    2011-11-01

    Full Text Available Infrared limb sounding from aircraft can provide 2-D curtains of multiple trace gas species. However, conventional limb sounders view perpendicular to the aircraft axis and are unable to resolve the observed airmass along their line-of-sight. GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere is a new remote sensing instrument that is able to adjust its horizontal view angle with respect to the aircraft flight direction from 45° to 135°. This will allow for tomographic measurements of mesoscale structures for a wide variety of atmospheric constituents.

    Many flights of the GLORIA instrument will not follow closed curves that allow measuring an airmass from all directions. Consequently, it is examined by means of simulations, what spatial resolution can be expected under ideal conditions from tomographic evaluation of measurements made during a straight flight. It is demonstrated that the achievable horizontal resolution in the line-of-sight direction could be reduced from over 200 km to around 70 km compared to conventional retrievals and that the tomographic retrieval is also more robust against horizontal gradients in retrieved quantities in this direction. In a second step, it is shown that the incorporation of channels exhibiting different optical depth can further enhance the spatial resolution of 3-D retrievals enabling the exploitation of spectral samples usually not used for limb sounding due to their opacity.

    A second problem for tomographic retrievals is that advection, which can be neglected for conventional retrievals, plays an important role for the time-scales involved in a tomographic measurement flight. This paper presents a method to diagnose the effect of a time-varying atmosphere on a 3-D retrieval and demonstrates an effective way to compensate for effects of advection by incorporating wind-fields from meteorological datasets as a priori information.

  15. Non-linear thermal engineering, chaotic advection and mixing; Thermique non-lineaire, melange et advection chaotique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This conference day was jointly organized by the `university group of thermal engineering (GUT)` and the French association of thermal engineers. This book of proceedings contains 7 papers entitled: `energy spectra of a passive scalar undergoing advection by a chaotic flow`; `analysis of chaotic behaviours: from topological characterization to modeling`; `temperature homogeneity by Lagrangian chaos in a direct current flow heat exchanger: numerical approach`; ` thermal instabilities in a mixed convection phenomenon: nonlinear dynamics`; `experimental characterization study of the 3-D Lagrangian chaos by thermal analogy`; `influence of coherent structures on the mixing of a passive scalar`; `evaluation of the performance index of a chaotic advection effect heat exchanger for a wide range of Reynolds numbers`. (J.S.)

  16. Helical Fiber Amplifier

    Science.gov (United States)

    Koplow, Jeffrey P.; Kliner, Dahy; Goldberg, Lew

    2002-12-17

    A multi-mode gain fiber is provided which affords substantial improvements in the maximum pulse energy, peak power handling capabilities, average output power, and/or pumping efficiency of fiber amplifier and laser sources while maintaining good beam quality (comparable to that of a conventional single-mode fiber source). These benefits are realized by coiling the multimode gain fiber to induce significant bend loss for all but the lowest-order mode(s).

  17. The nature and role of advection in advection-diffusion equations used for modelling bed load transport

    Science.gov (United States)

    Ancey, Christophe; Bohorquez, Patricio; Heyman, Joris

    2016-04-01

    The advection-diffusion equation arises quite often in the context of sediment transport, e.g., for describing time and space variations in the particle activity (the solid volume of particles in motion per unit streambed area). Stochastic models can also be used to derive this equation, with the significant advantage that they provide information on the statistical properties of particle activity. Stochastic models are quite useful when sediment transport exhibits large fluctuations (typically at low transport rates), making the measurement of mean values difficult. We develop an approach based on birth-death Markov processes, which involves monitoring the evolution of the number of particles moving within an array of cells of finite length. While the topic has been explored in detail for diffusion-reaction systems, the treatment of advection has received little attention. We show that particle advection produces nonlocal effects, which are more or less significant depending on the cell size and particle velocity. Albeit nonlocal, these effects look like (local) diffusion and add to the intrinsic particle diffusion (dispersal due to velocity fluctuations), with the important consequence that local measurements depend on both the intrinsic properties of particle displacement and the dimensions of the measurement system.

  18. Electronic amplifiers for automatic compensators

    CERN Document Server

    Polonnikov, D Ye

    1965-01-01

    Electronic Amplifiers for Automatic Compensators presents the design and operation of electronic amplifiers for use in automatic control and measuring systems. This book is composed of eight chapters that consider the problems of constructing input and output circuits of amplifiers, suppression of interference and ensuring high sensitivity.This work begins with a survey of the operating principles of electronic amplifiers in automatic compensator systems. The succeeding chapters deal with circuit selection and the calculation and determination of the principal characteristics of amplifiers, as

  19. Simplified design of IC amplifiers

    CERN Document Server

    Lenk, John

    1996-01-01

    Simplified Design of IC Amplifiers has something for everyone involved in electronics. No matter what skill level, this book shows how to design and experiment with IC amplifiers. For experimenters, students, and serious hobbyists, this book provides sufficient information to design and build IC amplifier circuits from 'scratch'. For working engineers who design amplifier circuits or select IC amplifiers, the book provides a variety of circuit configurations to make designing easier.Provides basics for all phases of practical design.Covers the most popular forms for amplif

  20. Subsurface barrier design alternatives for confinement and controlled advection flow

    International Nuclear Information System (INIS)

    Various technologies and designs are being considered to serve as subsurface barriers to confine or control contaminant migration from underground waste storage or disposal structures containing radioactive and hazardous wastes. Alternatives including direct-coupled flood and controlled advection designs are described as preconceptual examples. Prototype geotechnical equipment for testing and demonstration of these alternative designs tested at the Hanford Geotechnical Development and Test Facility and the Hanford Small-Tube Lysimeter Facility include mobile high-pressure injectors and pumps, mobile transport and pumping units, vibratory and impact pile drivers, and mobile batching systems. Preliminary laboratory testing of barrier materials and additive sequestering agents have been completed and are described

  1. Waste dissolution with chemical reaction, diffusion and advection

    International Nuclear Information System (INIS)

    This paper extends the mass-transfer analysis to include the effect of advective transport in predicting the steady-state dissolution rate, with a chemical-reaction-rate boundary condition at the surface of a waste form of arbitrary shape. This new theory provides an analytic means of predicting the ground-water velocities at which dissolution rate in a geologic environment will be governed entirely to the chemical reaction rate. As an illustration, we consider the steady-state potential flow of ground water in porous rock surrounding a spherical waste solid. 3 refs., 2 figs

  2. Wideband amplifier design

    CERN Document Server

    Hollister, Allen L

    2007-01-01

    In this book, the theory needed to understand wideband amplifier design using the simplest models possible will be developed. This theory will be used to develop algebraic equations that describe particular circuits used in high frequency design so that the reader develops a ""gut level"" understanding of the process and circuit. SPICE and Genesys simulations will be performed to show the accuracy of the algebraic models. By looking at differences between the algebraic equations and the simulations, new algebraic models will be developed that include parameters originally left out of the model

  3. Building valve amplifiers

    CERN Document Server

    Jones, Morgan

    2013-01-01

    Building Valve Amplifiers is a unique hands-on guide for anyone working with tube audio equipment--as an electronics hobbyist, audiophile or audio engineer. This 2nd Edition builds on the success of the first with technology and technique revisions throughout and, significantly, a major new self-build project, worked through step-by-step, which puts into practice the principles and techniques introduced throughout the book. Particular attention has been paid to answering questions commonly asked by newcomers to the world of the valve, whether audio enthusiasts tackling their first build or

  4. Universal Signal Conditioning Amplifier

    Science.gov (United States)

    Kinney, Frank

    1997-01-01

    The Technological Research and Development Authority (TRDA) and NASA-KSC entered into a cooperative agreement in March of 1994 to achieve the utilization and commercialization of a technology development for benefiting both the Space Program and U.S. industry on a "dual-use basis". The technology involved in this transfer is a new, unique Universal Conditioning Amplifier (USCA) used in connection with various types of transducers. The project was initiated in partnership with I-Net Corporation, Lockheed Martin Telemetry & Instrumentation (formerly Loral Test and Information Systems) and Brevard Community College. The project consists of designing, miniaturizing, manufacturing, and testing an existing prototype of USCA that was developed for NASA-KSC by the I-Net Corporation. The USCA is a rugged and field-installable self (or remotely)- programmable amplifier that works in combination with a tag random access memory (RAM) attached to various types of transducers. This summary report comprises performance evaluations, TRDA partnership tasks, a project summary, project milestones and results.

  5. DIAMOND AMPLIFIED PHOTOCATHODES.

    Energy Technology Data Exchange (ETDEWEB)

    SMEDLEY,J.; BEN-ZVI, I.; BOHON, J.; CHANG, X.; GROVER, R.; ISAKOVIC, A.; RAO, T.; WU, Q.

    2007-11-26

    High-average-current linear electron accelerators require photoinjectors capable of delivering tens to hundreds of mA average current, with peak currents of hundreds of amps. Standard photocathodes face significant challenges in meeting these requirements, and often have short operational lifetimes in an accelerator environment. We report on recent progress toward development of secondary emission amplifiers for photocathodes, which are intended to increase the achievable average current while protecting the cathode from the accelerator. The amplifier is a thin diamond wafer which converts energetic (few keV) primary electrons into hundreds of electron-hole pairs via secondary electron emission. The electrons drift through the diamond under an external bias and are emitted into vacuum via a hydrogen-terminated surface with negative electron affinity (NEA). Secondary emission gain of over 200 has been achieved. Two methods of patterning diamond, laser ablation and reactive-ion etching (RIE), are being developed to produce the required geometry. A variety of diagnostic techniques, including FTIR, SEM and AFM, have been used to characterize the diamonds.

  6. Chaotic advection in 2D anisotropic porous media

    Science.gov (United States)

    Varghese, Stephen; Speetjens, Michel; Trieling, Ruben; Toschi, Federico

    2015-11-01

    Traditional methods for heat recovery from underground geothermal reservoirs employ a static system of injector-producer wells. Recent studies in literature have shown that using a well-devised pumping scheme, through actuation of multiple injector-producer wells, can dramatically enhance production rates due to the increased scalar / heat transport by means of chaotic advection. However the effect of reservoir anisotropy on kinematic mixing and heat transport is unknown and has to be incorporated and studied for practical deployment in the field. As a first step, we numerically investigate the effect of anisotropy (both magnitude and direction) on (chaotic) advection of passive tracers in a time-periodic Darcy flow within a 2D circular domain driven by periodically reoriented diametrically opposite source-sink pairs. Preliminary results indicate that anisotropy has a significant impact on the location, shape and size of coherent structures in the Poincare sections. This implies that the optimal operating parameters (well spacing, time period of well actuation) may vary strongly and must be carefully chosen so as to enhance subsurface transport. This work is part of the research program of the Foundation for Fundamental Research on Matter (FOM), which is part of Netherlands Organisation for Scientific Research (NWO). This research program is co-financed by Shell Global Solutions International B.V.

  7. Multiple anisotropic collisions for advection-diffusion Lattice Boltzmann schemes

    Science.gov (United States)

    Ginzburg, Irina

    2013-01-01

    This paper develops a symmetrized framework for the analysis of the anisotropic advection-diffusion Lattice Boltzmann schemes. Two main approaches build the anisotropic diffusion coefficients either from the anisotropic anti-symmetric collision matrix or from the anisotropic symmetric equilibrium distribution. We combine and extend existing approaches for all commonly used velocity sets, prescribe most general equilibrium and build the diffusion and numerical-diffusion forms, then derive and compare solvability conditions, examine available anisotropy and stable velocity magnitudes in the presence of advection. Besides the deterioration of accuracy, the numerical diffusion dictates the stable velocity range. Three techniques are proposed for its elimination: (i) velocity-dependent relaxation entries; (ii) their combination with the coordinate-link equilibrium correction; and (iii) equilibrium correction for all links. Two first techniques are also available for the minimal (coordinate) velocity sets. Even then, the two-relaxation-times model with the isotropic rates often gains in effective stability and accuracy. The key point is that the symmetric collision mode does not modify the modeled diffusion tensor but it controls the effective accuracy and stability, via eigenvalue combinations of the opposite parity eigenmodes. We propose to reduce the eigenvalue spectrum by properly combining different anisotropic collision elements. The stability role of the symmetric, multiple-relaxation-times component, is further investigated with the exact von Neumann stability analysis developed in diffusion-dominant limit.

  8. Toward enhanced subsurface intervention methods using chaotic advection.

    Science.gov (United States)

    Trefry, Michael G; Lester, Daniel R; Metcalfe, Guy; Ord, Alison; Regenauer-Lieb, Klaus

    2012-01-01

    Many intervention activities in the terrestrial subsurface involve the need to recover/emplace distributions of scalar quantities (e.g. dissolved phase concentrations or heat) from/in volumes of saturated porous media. These scalars can be targeted by pump-and-treat methods or by amendment technologies. Application examples include in-situ leaching for metals, recovery of dissolved contaminant plumes, or utilizing heat energy in geothermal reservoirs. While conventional pumping methods work reasonably well, costs associated with maintaining pumping schedules are high and improvements in efficiency would be welcome. In this paper we discuss how transient switching of the pressure at different wells can intimately control subsurface flow, generating a range of "programmed" flows with various beneficial characteristics. Some programs produce chaotic flows which accelerate mixing, while others create encapsulating flows which can isolate fluid zones for lengthy periods. In a simplified model of an aquifer subject to balanced pumping, chaotic flow topologies have been predicted theoretically and verified experimentally using Hele-Shaw cells. Here, a survey of the key characteristics of chaotic advection is presented. Mathematical methods are used to show how these characteristics may translate into practical situations involving regional flows and heterogeneity. The results are robust to perturbations, and withstand significant aquifer heterogeneity. It is proposed that chaotic advection may form the basis of new efficient technologies for groundwater interventions.

  9. A cryogenic circulating advective multi-pass absorption cell

    Science.gov (United States)

    Stockett, M. H.; Lawler, J. E.

    2012-03-01

    A novel absorption cell has been developed to enable a spectroscopic survey of a broad range of polycyclic aromatic hydrocarbons (PAH) under astrophysically relevant conditions and utilizing a synchrotron radiation continuum to test the still controversial hypothesis that these molecules or their ions could be carriers of the diffuse interstellar bands. The cryogenic circulating advective multi-pass absorption cell resembles a wind tunnel; molecules evaporated from a crucible or injected using a custom gas feedthrough are entrained in a laminar flow of cryogenically cooled buffer gas and advected into the path of the synchrotron beam. This system includes a multi-pass optical White cell enabling absorption path lengths of hundreds of meters and a detection sensitivity to molecular densities on the order of 107 cm-3. A capacitively coupled radio frequency dielectric barrier discharge provides ionized and metastable buffer gas atoms for ionizing the candidate molecules via charge exchange and the Penning effect. Stronger than expected clustering of PAH molecules has slowed efforts to record gas phase PAH spectra at cryogenic temperatures, though such clusters may play a role in other interstellar phenomena.

  10. Horizontal advection, diffusion and plankton spectra at the sea surface.

    Science.gov (United States)

    Bracco, A.; Clayton, S.; Pasquero, C.

    2009-04-01

    Plankton patchiness is ubiquitous in the oceans, and various physical and biological processes have been proposed as its generating mechanisms. However, a coherent statement on the problem is missing, due to both a small number of suitable observations and to an incomplete understanding of the properties of reactive tracers in turbulent media. Abraham (1998) suggested that horizontal advection may be the dominant process behind the observed distributions of phytoplankton and zooplankton, acting to mix tracers with longer reaction times (Rt) down to smaller scales. Conversely, Mahadevan and Campbell (2002) attributed the relative distributions of sea surface temperature and phytoplankton to small scale upwelling, where tracers with longer Rt are able to homogenize more than those with shorter reaction times. Neither of the above mechanisms can explain simultaneously the (relative) spectral slopes of temperature, phytoplankton and zooplankton. Here, with a simple advection model and a large suite of numerical experiments, we concentrate on some of the physical processes influencing the relative distributions of tracers at the ocean surface, and we investigate: 1) the impact of the spatial scale of tracer supply; 2) the role played by coherent eddies on the distribution of tracers with different Rt; 3) the role of diffusion (so far neglected). We show that diffusion determines the distribution of temperature, regardless of the nature of the forcing. We also find that coherent structures together with differential diffusion of tracers with different Rt impact the tracer distributions. This may help in understanding the highly variable nature of observed plankton spectra.

  11. OBSERVATION OF MAGNETIC RECONNECTION DRIVEN BY GRANULAR SCALE ADVECTION

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Zhicheng; Cao Wenda [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, NJ 07102 (United States); Ji Haisheng [Big Bear Solar Observatory, 40386 North Shore Lane, Big Bear City, CA 92314 (United States)

    2013-06-01

    We report the first evidence of magnetic reconnection driven by advection in a rapidly developing large granule using high spatial resolution observations of a small surge event (base size {approx} 4'' Multiplication-Sign 4'') with the 1.6 m aperture New Solar Telescope at the Big Bear Solar Observatory. The observations were carried out in narrowband (0.5 A) He I 10830 A and broadband (10 A) TiO 7057 A. Since He I 10830 A triplet has a very high excitation level and is optically thin, its filtergrams enable us to investigate the surge from the photosphere through the chromosphere into the lower corona. Simultaneous space data from the Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory were used in the analysis. It is shown that the surge is spatio-temporally associated with magnetic flux emergence in the rapidly developing large granule. During the development of the granule, its advecting flow ({approx}2 km s{sup -1}) squeezed the magnetic flux into an intergranular lane area, where a magnetic flux concentration was formed and the neighboring flux with opposite magnetic polarity was canceled. During the cancellation, the surge was produced as absorption in He I 10830 A filtergrams while simultaneous EUV brightening occurred at its base. The observations clearly indicate evidence of a finest-scale reconnection process driven by the granule's motion.

  12. Nanoscale electromechanical parametric amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, Benjamin Jose; Zettl, Alexander

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to a parametric amplifier. In one aspect, a device includes an electron source electrode, a counter electrode, and a pumping electrode. The electron source electrode may include a conductive base and a flexible conductor. The flexible conductor may have a first end and a second end, with the second end of the flexible conductor being coupled to the conductive base. A cross-sectional dimension of the flexible conductor may be less than about 100 nanometers. The counter electrode may be disposed proximate the first end of the flexible conductor and spaced a first distance from the first end of the flexible conductor. The pumping electrode may be disposed proximate a length of the flexible conductor and spaced a second distance from the flexible conductor.

  13. Understanding Flight

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, David

    2001-01-31

    Through the years the explanation of flight has become mired in misconceptions that have become dogma. Wolfgang Langewiesche, the author of 'Stick and Rudder' (1944) got it right when he wrote: 'Forget Bernoulli's Theorem'. A wing develops lift by diverting (from above) a lot of air. This is the same way that a propeller produces thrust and a helicopter produces lift. Newton's three laws and a phenomenon called the Coanda effect explain most of it. With an understanding of the real physics of flight, many things become clear. Inverted flight, symmetric wings, and the flight of insects are obvious. It is easy to understand the power curve, high-speed stalls, and the effect of load and altitude on the power requirements for lift. The contribution of wing aspect ratio on the efficiency of a wing, and the true explanation of ground effect will also be discussed.

  14. Miracle Flights

    Science.gov (United States)

    ... her future. Donate Now Make your donation today Saving Lives One Flight At A ... “To improve access to health care by providing financial assistance to low income children for commercial air ...

  15. Modeling of semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Mørk, Jesper; Bischoff, Svend; Berg, Tommy Winther;

    We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed.......We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed....

  16. Finite amplitude gravity waves: Harmonics, advective steepening, breaking and saturation

    Science.gov (United States)

    Weinstock, J.

    1985-01-01

    A simple theory is presented which determines details of the breaking and saturation of a gravity wave as it propagates upward in the atmosphere. Breaking and saturation are here due to nonlinear advection analogous to the breaching of a surface wave and to the breaking of a planetary wave. Much simplification is obtained by the assumption that in a wave packet consisting of a primary wave and its harmonics, the primary wave remains dominant. This assumption, referred to a quasi-monochromatic approximation, is suggested by observations. Determined by this approximate theory are: a detailed picture of the waveform as it steepens and breaks; harmonics of the wave; the turbulence generation; and an underlying relationship between superadiabatic lapse rate and saturation by wave-wave interactions.

  17. On the Structure of Advective Accretion Disks At High Luminosity

    CERN Document Server

    Artemova, I V; Igumenshchev, I V; Novikov, I D; Artemova, Ioulia V.; Bisnovatyi-Kogan, Gennadi S.; Igumenshchev, Igor V.; Novikov, Igor D.

    2001-01-01

    Global solutions of optically thick advective accretion disks around blackholes are constructed. The solutions are obtained by solving numerically a setof ordinary differential equations corresponding to a steady axisymmetricgeometrically thin disk. We pay special attention to consistently satisfy theregularity conditions at singular points of the equations. For this reason weanalytically expand a solution at the singular point, and use coefficients ofthe expansion in our iterative numerical procedure. We obtain consistenttransonic solutions in a wide range of values of the viscosity parameter alphaand mass acretion rate. We compare two different form of viscosity: one takesthe shear stress to be proportional to the pressure, while the other uses theangular velocity gradient-dependent stress. We find that there are two singular points in solutions corresponding to thepressure-proportional shear stress. The inner singular point locates close tothe last stable orbit around black hole. This point changes its typ...

  18. Advection of nematic liquid crystals by chaotic flow

    CERN Document Server

    O'Naraigh, Lennon

    2016-01-01

    Consideration is given to the effects of inhomogeneous shear flow (both regular and chaotic) on nematic liquid crystals in a planar two-dimensional geometry. The Landau-de Gennes equation coupled to an externally-prescribed flow field is the basis for the study: this is solved numerically in a periodic spatial domain. The focus is on a limiting case where the advection is passive, such that variations in the liquid-crystal properties do not feed back into the equation of motion for the uid velocity. The numerical simulations demonstrate that the coarsening of the liquid-crystal domains is arrested by the ow. The nature of the arrest is different depending on whether the flow is regular or chaotic. For the specific case where tumbling is important, the flow has a strong effect on the the liquid-crystal morphology: this provides a mechanism for controlling the shape of the liquid-crystal domains.

  19. Miracle Flights for Kids

    Science.gov (United States)

    ... today Saving Lives One Flight At A Time Miracle Flights provides free flights to distant specialized care and valuable second opinions. Miracle Flights Through June 2016 Flights Coordinated: 101,862 ...

  20. A high-order splitting scheme for the advection-diffusion equation of pollutants

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A high-order splitting scheme for the advection-diffusion equation of pollutants is proposed in this paper. The multidimensional advection-diffusion equation is splitted into several one-dimensional equations that are solved by the scheme. Only three spatial grid points are needed in each direction and the scheme has fourth-order spatial accuracy. Several typically pure advection and advection-diffusion problems are simulated. Numerical results show that the accuracy of the scheme is much higher than that of the classical schemes and the scheme can be efficiently solved with little programming effort.

  1. Algebraic dynamics solution to and algebraic dynamics algorithm for nonlinear advection equation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Algebraic dynamics approach and algebraic dynamics algorithm for the solution of nonlinear partial differential equations are applied to the nonlinear advection equa-tion. The results show that the approach is effective for the exact analytical solu-tion and the algorithm has higher precision than other existing algorithms in nu-merical computation for the nonlinear advection equation.

  2. Nucleosynthesis in Advective Accretion Disks Around Galactic and Extra-Galactic Black Holes

    CERN Document Server

    Mukhopadhyay, B

    1998-01-01

    We compute the nucleosynthesis of materials inside advective disks around black holes. We show that composition of incoming matter can change significantly depending on the accretion rate and accretion disks. These works are improvements on the earlier works in thick accretion disks of Chakrabarti, Jin & Arnett (1987) in presence of advection in the flow.

  3. Analytical solution for the advection-dispersion transport equation in layered media

    Science.gov (United States)

    The advection-dispersion transport equation with first-order decay was solved analytically for multi-layered media using the classic integral transform technique (CITT). The solution procedure used an associated non-self-adjoint advection-diffusion eigenvalue problem that had the same form and coef...

  4. International Standardization Activities for Optical Amplifiers

    Institute of Scientific and Technical Information of China (English)

    Haruo Okamura

    2003-01-01

    International standardization activities for Optical Amplifiers at IECTC86 and ITU-T SG15 are reviewed. Current discussions include Optical Amplifier safety guideline, Reliability standard, Rest methods of Noise and PMD, Definitions of Raman amplifier parameters and OA classification.

  5. Mass loss from advective accretion disc around rotating black holes

    CERN Document Server

    Aktar, Ramiz; Nandi, Anuj

    2015-01-01

    We examine the properties of the outflowing matter from an advective accretion disc around a spinning black hole. During accretion, rotating matter experiences centrifugal pressure supported shock transition that effectively produces a virtual barrier around the black hole in the form of post-shock corona (hereafter, PSC). Due to shock compression, PSC becomes hot and dense that eventually deflects a part of the inflowing matter as bipolar outflows because of the presence of extra thermal gradient force. In our approach, we study the outflow properties in terms of the inflow parameters, namely specific energy (${\\mathcal E}$) and specific angular momentum ($\\lambda$) considering the realistic outflow geometry around the rotating black holes. We find that spin of the black hole ($a_k$) plays an important role in deciding the outflow rate $R_{\\dot m}$ (ratio of mass flux of outflow and inflow), in particular, $R_{\\dot m}$ is directly correlated with $a_k$ for the same set of inflow parameters. It is found that ...

  6. Implementation of Two Component Advective Flow Solution in XSPEC

    CERN Document Server

    Debnath, Dipak; Mondal, Santanu

    2014-01-01

    Spectral and Temporal properties of black hole candidates can be explained reasonably well using Chakrabarti-Titarchuk solution of two component advective flow (TCAF). This model requires two accretion rates, namely, the Keplerian disk accretion rate and the halo accretion rate, the latter being composed of a sub-Keplerian, low angular momentum flow which may or may not develop a shock. In this solution, the relevant parameter is the relative importance of the halo (which creates the Compton cloud region) rate with respect to the Keplerian disk rate (soft photon source). Though this model has been used earlier to manually fit data of several black hole candidates quite satisfactorily, for the first time, we made it user friendly by implementing it into XSPEC software of GSFC/NASA. This enables any user to extract physical parameters of the accretion flows, such as two accretion rates, the shock location, the shock strength etc. for any black hole candidate. We provide some examples of fitting a few cases usin...

  7. Is the accretion flow in NGC 4258 advection-dominated?

    CERN Document Server

    Lasota, J P; Chen, X; Krolik, J H; Narayan, R; Yi, I

    1995-01-01

    The mass of the central black hole in the active galaxy NGC 4258 (M106) has been measured to be M=3.6\\times10^7\\Msun (Miyoshi et al. 1995). The Eddington luminosity corresponding to this mass is L_E=4.5\\times10^{45} erg s^{-1}. By contrast the X-ray luminosity of the nucleus of NGC 4258 between 2-10 keV is (4\\pm 1)\\times10^{40}~{\\rm erg\\,s^{-1}} while the optical/UV luminosity is less than 1.5\\times10^{42} ~{\\rm erg\\,s^{-1}}. The luminosity of NGC 4258 is therefore extremely sub-Eddington, L\\sim10^{-5}L_E in X-rays and L\\sim3\\times10^{-4} L_E even if we take the maximum optical/UV luminosity. Assuming the usual accretion efficiency of 0.1 would imply accretion rates orders of magnitude lower than in Seyfert galaxies and quasars. We show that the properties of the AGN in NGC 4258 can be explained by an accretion flow in the form of a very hot, optically-thin plasma which advects most of the viscously generated thermal energy into the central black hole and radiates only a small fraction of the energy. In this ...

  8. Standing Shock Instability in Advection-Dominated Accretion Flows

    CERN Document Server

    Le, Truong; Wolff, Michael T; Becker, Peter A; Putney, Joy

    2015-01-01

    Depending on the values of the energy and angular momentum per unit mass in the gas supplied at large radii, inviscid advection-dominated accretion flows can display velocity profiles with either pre-shock deceleration or pre-shock acceleration. Nakayama has shown that these two types of flow configurations are expected to have different stability properties. By employing the Chevalier & Imamura linearization method and the Nakayama instability boundary conditions, we discover that there are regions of parameters space where disk/shocks with outflows can be stable or unstable. In region of instability, we find that pre-shock deceleration is always unstable to the zeroth mode with zero frequency of oscillation, but is always stable to the fundamental and overtones. Furthermore, we also find that pre-shock acceleration is always unstable to the zeroth mode, and that the fundamental and overtones become increasingly less stable as the shock location moves away from the horizon when the disk half-height expan...

  9. New Packaging for Amplifier Slabs

    Energy Technology Data Exchange (ETDEWEB)

    Riley, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thorsness, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Suratwala, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Steele, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rogowski, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-03-18

    The following memo provides a discussion and detailed procedure for a new finished amplifier slab shipping and storage container. The new package is designed to maintain an environment of <5% RH to minimize weathering.

  10. TARC: Carlo Rubbia's Energy Amplifier

    CERN Multimedia

    Laurent Guiraud

    1997-01-01

    Transmutation by Adiabatic Resonance Crossing (TARC) is Carlo Rubbia's energy amplifier. This CERN experiment demonstrated that long-lived fission fragments, such as 99-TC, can be efficiently destroyed.

  11. A Transformer Class E Amplifier

    Directory of Open Access Journals (Sweden)

    Mikolajewski Miroslaw

    2014-12-01

    Full Text Available In a high-efficiency Class E ZVS resonant amplifier a matching and isolation transformer can replace some or even all inductive components of the amplifier thus simplifying the circuit and reducing its cost. In the paper a theoretical analysis, a design example and its experimental verification for a transformer Class E amplifier are presented. In the experimental amplifier with a transformer as the only inductive component in the circuit high efficiency ηMAX = 0.95 was achieved for supply voltage VI = 36 V, maximum output power POMAX = 100 W and the switching frequency f = 300 kHz. Measured parameters and waveforms showed a good agreement with theoretical predictions. Moreover, the relative bandwidth of the switching frequency was only 19% to obtain output power control from 4.8 W to POMAX with efficiency not less than 0.9 in the regulation range.

  12. A KIND OF NEW AMPLIFIER

    Institute of Scientific and Technical Information of China (English)

    YIN XUN-HE; FENG RU-PENG; REN YONG

    2000-01-01

    Chaotic characteristics in the iteration of logistic map (one-dimensional discrete dynamic system) are simulatedand analyzed. The circuit implementation of a kind of chaotic amplifier model is based on the chaotic characteristicsthat chaos is sensitively dependent on its initial conditions, and the circuit simulation result is given using simulationprogram with integrated circuit emphasis for personal computer (PSPICE), and is compared with linear amplifier.Advantages and disadvantages of such a model are indicated.

  13. FLIGHT INFORMATION

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Check in With Singapore Airlines, Check out With Paypal Singapore Airlines customers in the United States, Singapore and five other Asia Pacific countries and territories can now pay for their flights with PayPal on singaporeair.com. This facility will progressively be made available to the airline’s customers in up to 17 countries, making this the largest collaboration between PayPal and an Asian carrier to date.

  14. Round window membrane intracochlear drug delivery enhanced by induced advection.

    Science.gov (United States)

    Borkholder, David A; Zhu, Xiaoxia; Frisina, Robert D

    2014-01-28

    Delivery of therapeutic compounds to the inner ear via absorption through the round window membrane (RWM) has advantages over direct intracochlear infusions; specifically, minimizing impact upon functional hearing measures. However, previous reports show that significant basal-to-apical concentration gradients occur, with the potential to impact treatment efficacy. Here we present a new approach to inner ear drug delivery with induced advection aiding distribution of compounds throughout the inner ear in the murine cochlea. Polyimide microtubing was placed near the RWM niche through a bullaostomy into the middle ear cavity allowing directed delivery of compounds to the RWM. We hypothesized that a posterior semicircular canalostomy would induce apical flow from the patent cochlear aqueduct to the canalostomy due to influx of cerebral spinal fluid. To test this hypothesis, young adult CBA/CaJ mice were divided into two groups: bullaostomy approach only (BA) and bullaostomy+canalostomy (B+C). Cochlear function was evaluated by distortion product otoacoustic emission (DPOAE) and auditory brainstem response (ABR) thresholds during and after middle ear infusion of salicylate in artificial perilymph (AP), applied near the RWM. The mice recovered for 1week, and were re-tested. The results demonstrate there was no significant impact on auditory function utilizing the RWM surgical procedure with or without the canalostomy, and DPOAE thresholds were elevated reversibly during the salicylate infusion. Comparing the threshold shifts for both methods, the B+C approach had more of a physiological effect than the BA approach, including at lower frequencies representing more apical cochlear locations. Unlike mouse cochleostomies, there was no deleterious auditory functional impact after 1week recovery from surgery. The B+C approach had more drug efficacy at lower frequencies, underscoring potential benefits for more precise control of delivery of inner ear therapeutic compounds.

  15. Verification of Advective Bar Elements Implemented in the Aria Thermal Response Code.

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Brantley [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    A verification effort was undertaken to evaluate the implementation of the new advective bar capability in the Aria thermal response code. Several approaches to the verification process were taken : a mesh refinement study to demonstrate solution convergence in the fluid and the solid, visually examining the mapping of the advective bar element nodes to the surrounding surfaces, and a comparison of solutions produced using the advective bars for simple geometries with solutions from commercial CFD software . The mesh refinement study has shown solution convergence for simple pipe flow in both temperature and velocity . Guidelines were provided to achieve appropriate meshes between the advective bar elements and the surrounding volume. Simulations of pipe flow using advective bars elements in Aria have been compared to simulations using the commercial CFD software ANSYS Fluent (r) and provided comparable solutions in temperature and velocity supporting proper implementation of the new capability. Verification of Advective Bar Elements iv Acknowledgements A special thanks goes to Dean Dobranich for his guidance and expertise through all stages of this effort . His advice and feedback was instrumental to its completion. Thanks also goes to Sam Subia and Tolu Okusanya for helping to plan many of the verification activities performed in this document. Thank you to Sam, Justin Lamb and Victor Brunini for their assistance in resolving issues encountered with running the advective bar element model. Finally, thanks goes to Dean, Sam, and Adam Hetzler for reviewing the document and providing very valuable comments.

  16. A diffusive Fisher-KPP equation with free boundaries and time-periodic advections

    OpenAIRE

    Sun, Ningkui; Lou, Bendong; Zhou, Maolin

    2016-01-01

    We consider a reaction-diffusion-advection equation of the form: $u_t=u_{xx}-\\beta(t)u_x+f(t,u)$ for $x\\in (g(t),h(t))$, where $\\beta(t)$ is a $T$-periodic function representing the intensity of the advection, $f(t,u)$ is a Fisher-KPP type of nonlinearity, $T$-periodic in $t$, $g(t)$ and $h(t)$ are two free boundaries satisfying Stefan conditions. This equation can be used to describe the population dynamics in time-periodic environment with advection. Its homogeneous version (that is, both $...

  17. Advective and diffusive contributions to reactive gas transport during pyrite oxidation in the unsaturated zone

    DEFF Research Database (Denmark)

    Binning, Philip John; Postma, Diederik Jan; Russel, T.F.;

    2007-01-01

    at depth in the unsaturated zone, a pressure gradient is created between the reactive zone and the ground surface, causing a substantial advective air flow into the subsurface. To determine the balance between advective and diffusive transport, a one-dimensional multicomponent unsaturated zone gas...... flows at steady state. However, greater pressure gradients are found in low-permeability soils. In transient cases, advective fluxes depend on the initial conditions and can be far greater than diffusive fluxes. In contrast to steady state conditions the transient case is sensitive to other model...

  18. EMI-resilient amplifier circuits

    CERN Document Server

    van der Horst, Marcel J; Linnenbank, André C

    2014-01-01

    This book enables circuit designers to reduce the errors introduced by the fundamental limitations and electromagnetic interference (EMI) in negative-feedback amplifiers.  The authors describe a systematic design approach for application specific negative-feedback amplifiers, with specified signal-to-error ratio (SER).  This approach enables designers to calculate noise, bandwidth, EMI, and the required bias parameters of the transistors used in  application specific amplifiers in order to meet the SER requirements.   ·         Describes design methods that incorporate electromagnetic interference (EMI) in the design of application specific negative-feedback amplifiers; ·         Provides designers with a structured methodology to avoid the use of trial and error in meeting signal-to-error ratio (SER) requirements; ·         Equips designers to increase EMI immunity of the amplifier itself, thus avoiding filtering at the input, reducing the number of components and avoiding detr...

  19. Low-Noise Band-Pass Amplifier

    Science.gov (United States)

    Kleinberg, L.

    1982-01-01

    Circuit uses standard components to overcome common limitation of JFET amplifiers. Low-noise band-pass amplifier employs JFET and operational amplifier. High gain and band-pass characteristics are achieved with suitable choice of resistances and capacitances. Circuit should find use as low-noise amplifier, for example as first stage instrumentation systems.

  20. Boundary value problemfor multidimensional fractional advection-dispersion equation

    Directory of Open Access Journals (Sweden)

    Khasambiev Mokhammad Vakhaevich

    2015-05-01

    authors first considered the boundary value problem for stationary equation for mass transfer in super-diffusion conditions and abnormal advection. Then the solution of the problem is explicitly given. The solution is obtained by the Fourier’s method.The obtained results will be useful in liquid filtration theory in fractal medium and for modeling the temperature variations in the heated bar.

  1. A Method for Measuring Subcanopy CO2 Advection

    Science.gov (United States)

    Staebler, R. M.; Fitzjarrald, D. R.

    2004-12-01

    Underestimation of nocturnal CO2 respiration under calm conditions remains an unsolved problem at many forest flux stations, and several groups are currently investigating the direct measurement of horizontal advection of CO2. This presentation will describe a systematic, relatively low-cost methodology developed to determine whether horizontal mean transport of CO2 accounts for the missing CO2 at the Harvard Forest (Petersham, MA). This methodology includes the characterization of subcanopy motions, determining the appropriate size of the subcanopy network required to make the measurements, developing a method of integrating the measurements in the vertical, and determining the required averaging time. Measurements were conducted over 4 years and produced data for 310 nights covering all seasons. Subcanopy flows were decoupled from the flows aloft 75% of the time. Conditions conducive to the generation of negative buoyancy near the forest floor, necessary for drainage flows to develop, were given in 92% of all nights. The occurrence of nocturnal drainage flows correlated well with "missing flux" problems ("deficit nights"), prompting us to propose an improvement on the commonly used friction velocity criterion (which requires u* to be larger than some empirical cut-off for the eddy fluxes to be considered credible). The "negative buoyancy forcing fraction", i.e. negative buoyancy as a fraction of the sum of the dynamic driving forces, can be shown to predict deficit nights significantly better than the u* cut-off. The appropriate horizontal size of the network of wind and CO2 sensors at the Harvard Forest was shown to be on the order of 100 m, ensuring that sensors were generally observing coherent processes on this scale or larger and thus displaying some correlation. Horizontal transport of CO2 was found to be restricted to the bottom ~10 m of the forest, facilitating the development of a method of integrating the horizontal CO2 gradients in the vertical

  2. Clay with Desiccation Cracks is an Advection Dominated Environment

    Science.gov (United States)

    Baram, S.; Kurtzman, D.; Sher, Y.; Ronen, Z.; Dahan, O.

    2012-04-01

    , indicating deep soil evaporation. Daily fluctuation of the air temperature in the desiccation cracks supported thermally induced air convection within the cracks void and could explain the deep soil salinization process. Combination of all the abovementioned observations demonstrated that the formation of desiccation cracks network in dispersive clay sediments generates a bulk advection dominated environment for both air and water flow, and that the reference to clay sediments as "hydrologically safe" should to be reconsidered.

  3. Gaussian amplifier for nuclear spectrometry

    International Nuclear Information System (INIS)

    One of the major goals of nuclear spectrometry is the determination of the energy spectrum of a radioactive source. To measure this spectrum with electronic instrumentation one need to use a nuclear spectrometry chain of which the amplifier is part of, and whose filter shaping considerably influences the final energy resolution achieved. The amplifier released accomplishes a 7th order Gaussian filter shape with Taylor series approximation synthesized by the Shifted Companion Form and mounted using only electronic components availablein Brazil. The final version has been tested and the results showed a very good performance and the energy resolution achieved was equivalent to the imported models. (Author)

  4. Advective surface velocity in the north west Pacific derived from NOAA AVHRR images

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Akiyama, M.; Okada, Y.; Sugimori, Y.

    Using sequential AVHRR images in November 1983, nearsurface advective velocities are derived in the region Kuroshio south of Japan. For deriving the velocities two methods are used. One is the Method of Cross Correlation (MCC), using image pair...

  5. Rigorous upper bounds for fluid and plasma transport due to passive advection

    Energy Technology Data Exchange (ETDEWEB)

    Krommes, J.A.; Smith, R.A.; Kim, C.B.

    1987-07-01

    The formulation of variational principles for transport due to passive advection is described. A detailed account of the work has been published elsewhere. In the present paper, the motivations, philosophy, and implications of the method are briefly discussed. 15 refs.

  6. Computation of Mass-Outflow Rates From Advective Accretion Disks Around Black Holes

    CERN Document Server

    Das, T K

    1998-01-01

    We self-consistently compute the mass outflow rate from a mass inflow using the conditions in the centrifugal barrier of an advective flow. Our detailed result agrees with the theoretical estimates given in Chakrabarti (1997; astro-ph/9801079).

  7. Implicit and semi-implicit schemes in the Versatile Advection Code: numerical tests

    NARCIS (Netherlands)

    Toth, G.; Keppens, R.; Botchev, M. A.

    1998-01-01

    We describe and evaluate various implicit and semiimplicit time integration schemes applied to the numerical simulation of hydrodynamical and magnetohydrodynamical problems. The schemes were implemented recently in the software package Versatile Advection Code, which uses modern shock capturing meth

  8. Solving the Advection-Diffusion Equations in Biological Contexts using the Cellular Potts Model

    CERN Document Server

    Dan, D; Chen, K; Glazier, J A; Dan, Debasis; Mueller, Chris; Chen, Kun; Glazier, James A.

    2005-01-01

    The Cellular Potts Model (CPM) is a robust, cell-level methodology for simulation of biological tissues and morphogenesis. Both tissue physiology and morphogenesis depend on diffusion of chemical morphogens in the extra-cellular fluid or matrix (ECM). Standard diffusion solvers applied to the cellular potts model use finite difference methods on the underlying CPM lattice. However, these methods produce a diffusing field tied to the underlying lattice, which is inaccurate in many biological situations in which cell or ECM movement causes advection rapid compared to diffusion. Finite difference schemes suffer numerical instabilities solving the resulting advection-diffusion equations. To circumvent these problems we simulate advection-diffusion within the framework of the CPM using off-lattice finite-difference methods. We define a set of generalized fluid particles which detach advection and diffusion from the lattice. Diffusion occurs between neighboring fluid particles by local averaging rules which approxi...

  9. Wright functions governed by fractional directional derivatives and fractional advection diffusion equations

    CERN Document Server

    D'Ovidio, Mirko

    2012-01-01

    We consider fractional directional derivatives and establish some connection with stable densities. Solutions to advection equations involving fractional directional derivatives are presented and some properties investigated. In particular we obtain solutions written in terms of Wright functions by exploiting operational rules involving the shift operator. We also consider fractional advection diffusion equations involving fractional powers of the negative Laplace operator and directional derivatives of fractional order and discuss the probabilistic interpretations of solutions.

  10. Modifying SEBAL ET Algorithm to account for advection by using daily averages of weather data

    Science.gov (United States)

    Mkhwanazi, M. M.; Chavez, J. L.

    2013-12-01

    The use of Remote Sensing (RS) in crop evapotranspiration (ET) estimation is aimed at improving agricultural water management. The Surface Energy Balance Algorithm for Land (SEBAL) is one of several methods that have been developed for this purpose. This has been a preferred model as it requires minimal climate data. However, it has a noted downside of underestimating ET under advective conditions. This is primarily due to the use of evaporative fraction (EF) to extrapolate instantaneous ET to daily values, with the assumption that EF is constant throughout the day. A modified SEBAL model was used in this study, which requires daily averages of weather data to estimate advection which is then introduced into the 24-hour ET sub-model of SEBAL. The study was carried out in southeastern Colorado, a semi-arid area where afternoon advection is a common feature. ET estimated using the original and modified SEBAL was compared to the lysimeter-measured ET. Results showed that the modified SEBAL algorithm performed better in estimating daily ET in overall, but especially on days when there was advection. On non-advective days, the original SEBAL was more accurate. It is therefore recommended that the modified SEBAL be used only on advective days, and guidelines to help identify such days were proposed.

  11. Dielectric waveguide amplifiers and lasers

    NARCIS (Netherlands)

    Pollnau, M.

    2014-01-01

    The performance of semiconductor amplifiers and lasers has made them the preferred choice for optical gain on a micro-chip. In the past few years, we have demonstrated that also rare-earth-ion-doped dielectric waveguides show remarkable performance, ranging from a small-signal gain per unit length o

  12. Thermal recovery of NIF amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, S.; Marshall, C.; Petty, C.; Smith, L.; van Wonterghem, B.; Mills, S.

    1997-02-01

    The issue of thermal recovery of the NIF amplifiers has taken on increased emphasis as program goals move toward increasing the shot rate to once every four hours. This paper addresses the technical issues associated with achieving thermal recovery in the NIF amplifiers. We identify two temperature related thermal recovery quantities: (1) the difference between the average slab temperature and the temperature of other surfaces in the amplifier cavity, and (2) the temperature difference in the slab over the aperture. The first quantity relates to optical disturbances in the gas column in the system, while the second quantity is associated with optical aberrations in the laser media itself. Calculations and experiments are used to quantify recovery criteria, and develop cooling approaches. The cooling approaches discussed are (1) active cooling of the flashlamps with ambient gas and chilled gas, and (2) active cooling of the slab edge cladding. Calculations indicate that the NIF baseline cooling approach of 20 cfm per lamp ambient temperature gas flow in both the central and side flashlamp cassettes is capable of meeting thermal recovery requirements for an 8 hour shot period, while to achieve a 4 hour shot period requires use of chilled gas and edge cladding cooling. In addition, the effect of changing the amplifier cavity and beamtube fill gas from nitrogen to helium is addressed, showing that a factor of 8 reduction in the sensitivity to thermal disturbances is possible. 6 refs., 9 figs., 1 tab.

  13. A wideband dc-coupled amplifier

    International Nuclear Information System (INIS)

    A method is described whereby an ac-coupled high-frequency amplifier and a dc-coupled low-frequency amplifier are connected in parallel in order to obtain a dc-coupled wideband amplifier. By using an operational amplifier which compares the output voltage with the input voltage, the low-frequency amplifier contributes to the overall gain only when the gain of the ac-coupled amplifier droops at low frequencies. Thus, no frequency splitting networks are necessary and the excellent low-frequency features of an operational amplifier are added to those of the ac-coupled wideband amplifier. As an example, a low noise amplifier is described which exhibits a hundredfold gain, a bandwidth from dc to 550 MHz, an input bias current of less than 1 nA, and an output voltage range of ±1 V

  14. Single conversion stage amplifier - SICAM

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.

    2005-12-15

    This Ph.D. thesis presents a thorough analysis of the so called SICAM - SIngle Converter stage AMplifier approach to building direct energy conversion audio power amplifiers. The mainstream approach for building isolated audio power amplifiers today consists of isolated DC power supply and Class D amplifier, which essentially represents a two stage solution, where each of the components can be viewed as separate and independent part. The proposed SICAM solution strives for direct energy conversion from the mains to the audio output, by dedicating the operation of the components one to another and integrating their functions, so that the final audio power amplifier represents a single-stage topology with higher efficiency, lower volume, less board space, lower component count and subsequently lower cost. The SICAM approach is both applicable to non-isolated and isolated audio power amplifiers, but the problems encountered in these two cases are different. Non-isolated SICAM solutions are intended for both AC mains-connected and battery-powered devices. In non-isolated mains-connected SICAMs the main idea is to simplify the power supply or even provide integrated power factor correction (PFC) functions, while still maintaining low component stress and good audio performance by generally decreasing the input voltage level to the Class D audio power amplifier. On the other hand, non-isolated battery-powered SICAMs have to cope with the ever changing battery voltage and provide output voltage levels which are both lower and higher than the battery voltage, while still being simple and single-stage energy conversion solutions. In isolated SICAMs the isolation transformer adjusts the voltage level on the secondary side to the desired level, so the main challenges here are decreasing the size of the magnetic core and reducing the number and size of bulky reactive components as much as possible. The main focus of this thesis is directed towards the isolated SICAMs and

  15. Higher order mode optical fiber Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Friis, Søren Michael Mørk; Usuga Castaneda, Mario A.;

    2016-01-01

    We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations.......We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations....

  16. Analog circuit design designing high performance amplifiers

    CERN Document Server

    Feucht, Dennis

    2010-01-01

    The third volume Designing High Performance Amplifiers applies the concepts from the first two volumes. It is an advanced treatment of amplifier design/analysis emphasizing both wideband and precision amplification.

  17. Challenges in higher order mode Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Nielsen, Kristian; Friis, Søren Michael Mørk;

    2015-01-01

    A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed...

  18. Quantum Theory of Laser Amplifiers.

    Science.gov (United States)

    Mander, Gillian Linda

    Available from UMI in association with The British Library. Requires signed TDF. We calculate the input-output characteristics of a below threshold laser amplifier. Expressions are derived for the output second- and fourth-order spectral and temporal correlation functions in terms of the corresponding input quantities, and for the photocount first and second factorial moments for both homodyne and direct detection. The general results are applied to several cases of practical interest, including specific non-classical input states. We show that a maximum of twofold amplification is permitted if squeezing in the input is to survive at the output. Similarly, for preservation of photon antibunching in amplification we show that only very small gains are allowed. The model treated here provides a detailed example of the amplifier noise limitations imposed by quantum mechanics. In particular, we show that minimum noise occurs in a cavity that is asymmetric with respect to the mirror reflectivities. The latter part of this work treats the above threshold laser amplifier. The laser output is back-scattered from a moving target to provide a weak Doppler-shifted signal which re-enters the laser cavity and is amplified. We show that the three-level atomic lasing medium is equivalent to a two-level medium pumped by an inverted bath. We use the methods of quantum statistical analysis to obtain time -evolution equations for the c-number amplitudes of the laser and signal fields. We show that the results may be applied to the below threshold regime for appropriate values of the pump parameter. By considering the amplitude differential gain we show explicitly that the behaviour of the laser around threshold is characteristic of a second -order phase transition. We calculate the output intensity gain appropriate to a heterodyne detection process, and find good agreement between the predicted gain profiles and measured data for both carbon dioxide and argon-ion lasers.

  19. 338-GHz Semiconductor Amplifier Module

    Science.gov (United States)

    Samoska, Lorene A.; Gaier, Todd C.; Soria, Mary M.; Fung, King Man; Rasisic, Vesna; Deal, William; Leong, Kevin; Mei, Xiao Bing; Yoshida, Wayne; Liu, Po-Hsin; Uyeda, Jansen; Lai, Richard

    2010-01-01

    Research findings were reported from an investigation of new gallium nitride (GaN) monolithic millimeter-wave integrated circuit (MMIC) power amplifiers (PAs) targeting the highest output power and the highest efficiency for class-A operation in W-band (75-110 GHz). W-band PAs are a major component of many frequency multiplied submillimeter-wave LO signal sources. For spectrometer arrays, substantial W-band power is required due to the passive lossy frequency multipliers.

  20. High power regenerative laser amplifier

    Science.gov (United States)

    Miller, J.L.; Hackel, L.A.; Dane, C.B.; Zapata, L.E.

    1994-02-08

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse. 7 figures.

  1. SPS RF System Amplifier plant

    CERN Multimedia

    1977-01-01

    The picture shows a 2 MW, 200 MHz amplifier plant with feeder lines. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X.

  2. Diagnosis of a Moist Thermodynamic Advection Parameter in Heavy-Rainfall Events

    Institute of Scientific and Technical Information of China (English)

    WU Xiandu; RAN Lingkun; CHU Yanli

    2011-01-01

    A moist thermodynamic advection parameter, defined as an absolute value of the dot product of horizontal gradients of three-dimensional potential temperature advection and general potential temperature, is introduced to diagnose frontal heavy rainfall events in the north of China. It is shown that the parameter is closely related to observed 6-h accumulative surface rainfall and simulated cloud hydrometeors. Since the parameter is capable of describing the typical vertical structural characteristics of dynamic, thermodynamic and water vapor fields above a strong precipitation region near the front surface, it may serve as a physical tracker to detect precipitable weather systems near to a front.A tendency equation of the parameter was derived in Cartesian coordinates and calculated with the simulation output data of a heavy rainfall event. Results revealed that the advection of the parameter by the three-dimensional velocity vector, the covariance of potential temperature advection by local change of the velocity vector and general potential temperature, and the interaction between potential temperature advection and the source or sink of general potential temperature, accounted for local change in the parameter. This indicated that the parameter was determined by a combination of dynamic processes and cloud microphysical processes.

  3. Local and nonlocal advected invariants and helicities in magnetohydrodynamics and gas dynamics I: Lie dragging approach

    International Nuclear Information System (INIS)

    In this paper advected invariants and conservation laws in ideal magnetohydrodynamics (MHD) and gas dynamics are obtained using Lie dragging techniques. There are different classes of invariants that are advected or Lie dragged with the flow. Simple examples are the advection of the entropy S (a 0-form), and the conservation of magnetic flux (an invariant 2-form advected with the flow). The magnetic flux conservation law is equivalent to Faraday's equation. The gauge condition for the magnetic helicity to be advected with the flow is determined. Different variants of the helicity in ideal fluid dynamics and MHD including: fluid helicity, cross helicity and magnetic helicity are investigated. The fluid helicity conservation law and the cross-helicity conservation law in MHD are derived for the case of a barotropic gas. If the magnetic field lies in the constant entropy surface, then the gas pressure can depend on both the entropy and the density. In these cases the conservation laws are local conservation laws. For non-barotropic gases, we obtain nonlocal conservation laws for fluid helicity and cross helicity by using Clebsch variables. These nonlocal conservation laws are the main new results of the paper. Ertel's theorem and potential vorticity, the Hollman invariant, and the Godbillon–Vey invariant for special flows for which the magnetic helicity is zero are also discussed. (paper)

  4. Improved charge amplifier using hybrid hysteresis compensation

    Science.gov (United States)

    Amin-Shahidi, Darya; Trumper, David L.

    2013-08-01

    We present a novel charge amplifier, with a robust feedback circuit and a method for compensating piezoelectric actuator's hysteresis at low frequencies. The amplifier uses a modified feedback circuit which improves robustness to the addition of series load impedance such as in cabling. We also describe a hybrid hysteresis compensation method for enabling the charge amplifier to reduce hysteresis at low frequencies. Experimental results demonstrate the utility of the new amplifier design.

  5. Spontaneous emission from saturated parametric amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Ott, Johan Raunkjær; Steffensen, Henrik;

    2009-01-01

    Noise performance of parametric amplifiers is typically calculated assuming un-depleted operation. However, in many applications especially when applied as regenerative amplifiers in systems based on phase shift keyed modulation schemes, this assumption is not valid. Here we show the impact on ac...... on accumulated spontaneous emission for a parametric amplifier operated in saturation....

  6. European Research on THz Vacuum Amplifiers

    DEFF Research Database (Denmark)

    Brunetti, F.; Cojocarua, C.-S.; de Rossi, A.;

    2010-01-01

    The OPTHER (OPtically Driven TeraHertz AmplifiERs) project represents a considerable advancement in the field of high frequency amplification. The design and realization of a THz amplifier within this project is a consolidation of efforts at the international level from the main players of the Eu...

  7. A High-performance Small Signal Amplifier

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    According to questions in the design of high quality small signal amplifier, this paper gave a new-type high performance small signal amplifier. The paper selected the operational amplifier of ICL Company and designed a new-type circuit with simple, low cost and excellent performance.

  8. Radio frequency amplifier with effective decoupling

    NARCIS (Netherlands)

    Besling, W.F.A.; Bakker, T.W.; Lamy, Y.; Kochupurackal, J.; Roozeboom, F.

    2011-01-01

    A variety of circuits, methods and devices are implemented for radiofrequency amplifiers. According to one such implementation, a radiofrequency amplifier circuit is implemented in a SMD package. The circuit amplifies a radiofrequency signal having a base-band portion and a plurality of carrier sign

  9. low pump power photonic crystal fibre amplifiers

    DEFF Research Database (Denmark)

    Hougaard, Kristian G.; Broeng, Jes; Bjarklev, Anders Overgaard

    2003-01-01

    Designs of low pump power optical amplifiers, based on photonic crystal fibres are presented. The potential of these fibre amplifiers is investigated, and it is demonstrated that such amplifiers may deliver gains of more than 15 dB at 1550 nm with less than 1 mW of optical pump power....

  10. Metamorphism during temperature gradient with undersaturated advective airflow in a snow sample

    Science.gov (United States)

    Ebner, Pirmin Philipp; Schneebeli, Martin; Steinfeld, Aldo

    2016-04-01

    Snow at or close to the surface commonly undergoes temperature gradient metamorphism under advective flow, which alters its microstructure and physical properties. Time-lapse X-ray microtomography is applied to investigate the structural dynamics of temperature gradient snow metamorphism exposed to an advective airflow in controlled laboratory conditions. Cold saturated air at the inlet was blown into the snow samples and warmed up while flowing across the sample with a temperature gradient of around 50 K m-1. Changes of the porous ice structure were observed at mid-height of the snow sample. Sublimation occurred due to the slight undersaturation of the incoming air into the warmer ice matrix. Diffusion of water vapor opposite to the direction of the temperature gradient counteracted the mass transport of advection. Therefore, the total net ice change was negligible leading to a constant porosity profile. However, the strong recrystallization of water molecules in snow may impact its isotopic or chemical content.

  11. First-Order Hyperbolic System Method for Time-Dependent Advection-Diffusion Problems

    Science.gov (United States)

    Mazaheri, Alireza; Nishikawa, Hiroaki

    2014-01-01

    A time-dependent extension of the first-order hyperbolic system method for advection-diffusion problems is introduced. Diffusive/viscous terms are written and discretized as a hyperbolic system, which recovers the original equation in the steady state. The resulting scheme offers advantages over traditional schemes: a dramatic simplification in the discretization, high-order accuracy in the solution gradients, and orders-of-magnitude convergence acceleration. The hyperbolic advection-diffusion system is discretized by the second-order upwind residual-distribution scheme in a unified manner, and the system of implicit-residual-equations is solved by Newton's method over every physical time step. The numerical results are presented for linear and nonlinear advection-diffusion problems, demonstrating solutions and gradients produced to the same order of accuracy, with rapid convergence over each physical time step, typically less than five Newton iterations.

  12. Log amplifier with pole-zero compensation

    Science.gov (United States)

    Brookshier, William

    1987-01-01

    A logarithmic amplifier circuit provides pole-zero compensation for improved stability and response time over 6-8 decades of input signal frequency. The amplifier circuit includes a first operational amplifier with a first feedback loop which includes a second, inverting operational amplifier in a second feedback loop. The compensated output signal is provided by the second operational amplifier with the log elements, i.e., resistors, and the compensating capacitors in each of the feedback loops having equal values so that each break point or pole is offset by a compensating break point or zero.

  13. Semiconductor quantum-dot lasers and amplifiers

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Borri, Paola; Ledentsov, N. N.;

    2002-01-01

    -power surface emitting VCSELs. We investigated the ultrafast dynamics of quantum-dot semiconductor optical amplifiers. The dephasing time at room temperature of the ground-state transition in semiconductor quantum dots is around 250 fs in an unbiased amplifier, decreasing to below 50 fs when the amplifier...... is biased to positive net gain. We have further measured gain recovery times in quantum dot amplifiers that are significantly lower than in bulk and quantum-well semiconductor optical amplifiers. This is promising for future demonstration of quantum dot devices with high modulation bandwidth...

  14. Large-eddy Advection in Evapotranspiration Estimates from an Array of Eddy Covariance Towers

    Science.gov (United States)

    Lin, X.; Evett, S. R.; Gowda, P. H.; Colaizzi, P. D.; Aiken, R.

    2014-12-01

    Evapotranspiration was continuously measured by an array of eddy covariance systems and large weighting lysimeter in a sorghum in Bushland, Texas in 2014. The advective divergence from both horizontal and vertical directions were measured through profile measurements above canopy. All storage terms were integrated from the depth of soil heat flux plate to the height of eddy covariance measurement. Therefore, a comparison between the eddy covariance system and large weighing lysimeter was conducted on hourly and daily basis. The results for the discrepancy between eddy covariance towers and the lysimeter will be discussed in terms of advection and storage contributions in time domain and frequency domain.

  15. Semi-Lagrangian advection-propagation (SLAP) scheme for three-dimensional interface tracking

    Science.gov (United States)

    Aldredge, R. C.

    2010-06-01

    A fully three-dimensional semi-Lagrangian scheme is developed for computing the evolution of advected self-propagating surfaces (e.g., premixed flames) governed by a level-set advection-propagation equation. The scheme provides third-order spatial accuracy and shape preservation. Example numerical simulations of three-dimensional front propagation are presented to illustrate the capability of the scheme of capturing cusp formation and associated surface-area annihilation as well as the formation and consumption of detached closed-surface pockets behind fronts propagating in highly vortical flow.

  16. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS

    International Nuclear Information System (INIS)

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department

  17. High temperature charge amplifier for geothermal applications

    Science.gov (United States)

    Lindblom, Scott C.; Maldonado, Frank J.; Henfling, Joseph A.

    2015-12-08

    An amplifier circuit in a multi-chip module includes a charge to voltage converter circuit, a voltage amplifier a low pass filter and a voltage to current converter. The charge to voltage converter receives a signal representing an electrical charge and generates a voltage signal proportional to the input signal. The voltage amplifier receives the voltage signal from the charge to voltage converter, then amplifies the voltage signal by the gain factor to output an amplified voltage signal. The lowpass filter passes low frequency components of the amplified voltage signal and attenuates frequency components greater than a cutoff frequency. The voltage to current converter receives the output signal of the lowpass filter and converts the output signal to a current output signal; wherein an amplifier circuit output is selectable between the output signal of the lowpass filter and the current output signal.

  18. Audio power amplifier design handbook

    CERN Document Server

    Self, Douglas

    2013-01-01

    This book is essential for audio power amplifier designers and engineers for one simple reason...it enables you as a professional to develop reliable, high-performance circuits. The Author Douglas Self covers the major issues of distortion and linearity, power supplies, overload, DC-protection and reactive loading. He also tackles unusual forms of compensation and distortion produced by capacitors and fuses. This completely updated fifth edition includes four NEW chapters including one on The XD Principle, invented by the author, and used by Cambridge Audio. Cro

  19. Cathode-follower power amplifier

    International Nuclear Information System (INIS)

    In circular accelerators and particularly in storage rings it is essential that the total impedance, as seen by the beam, be kept below some critical value. A model of the accelerating system was built using a single-ended cathode-follower amplifier driving a ferrite-loaded cavity. The system operated at 234.5 kHz with a peak output voltage of +-10 kV on the gap. The dynamic output impedance, as measured on the gap, was < 15 ohms

  20. Satellite-advection based solar forecasting: lessons learned and progress towards probabalistic solar forecasting

    Science.gov (United States)

    Rogers, M. A.

    2015-12-01

    Using satellite observations from GOES-E and GOES-W platforms in concert with GFS-derived cloud-level winds and a standalone radiative transfer model, an advection-derived forecast for surface GHI over the continental United States, with intercomparison between forecasts for four zones over the CONUS and Central Pacific with SURFRAD results. Primary sources for error in advection-based forecasts, primarily driven by false- or mistimed ramp events are discussed, with identification of error sources quantified along with techniques used to improve advection-based forecasts to approximately 10% MAE for designated surface locations. Development of a blended steering wind product utilizing NWP output combined with satellite-derived winds from AMV techniques to improve 0-1 hour advection forecasts will be discussed. Additionally, the use of two years' of solar forecast observations in the development of a prototype probablistic forecast for ramp events will be shown, with the intent of increasing the use of satellite-derived forecasts for grid operators and optimizing integration of renewable resources into the power grid. Elements of the work were developed under the 'Public-Private-Academic Partnership to Advance Solar Power Forecasting' project spearheaded by the National Center for Atmospheric Research.

  1. Shell model for time-correlated random advection of passive scalars

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Muratore-Ginanneschi, P.

    1999-01-01

    We study a minimal shell model for the advection of a passive scalar by a Gaussian time-correlated velocity field. The anomalous scaling properties of the white noise limit are studied analytically. The effect of the time correlations are investigated using perturbation theory around the white...

  2. Large aperture scintillometer used over a homogeneous irrigated area, partly affected by regional advection

    NARCIS (Netherlands)

    Hoedjes, J.C.B.; Zuurbier, R.M.; Watts, J.C.

    2002-01-01

    Scintillometer measurements were collected over an irrigated wheat field in a semi-arid region in northwest Mexico. Conditions were unstable in the morning and stable during the afternoon, while latent heat fluxes remained high throughout the day. Regional advection was observed during near-neutral

  3. Influence of porewater advection on denitrification in carbonate sands: Evidence from repacked sediment column experiments

    DEFF Research Database (Denmark)

    Santos, Isaac R.; Eyre, Bradley D.; Glud, Ronnie N.

    2012-01-01

    Porewater flow enhances mineralization rates in organic-poor permeable sands. Here, a series of sediment column experiments were undertaken to assess the potential effect of advective porewater transport on denitrification in permeable carbonate sands collected from Heron Island (Great Barrier Reef...

  4. Development of Multigrid Methods for diffusion, Advection, and the incompressible Navier-Stokes Equations

    Energy Technology Data Exchange (ETDEWEB)

    Gjesdal, Thor

    1997-12-31

    This thesis discusses the development and application of efficient numerical methods for the simulation of fluid flows, in particular the flow of incompressible fluids. The emphasis is on practical aspects of algorithm development and on application of the methods either to linear scalar model equations or to the non-linear incompressible Navier-Stokes equations. The first part deals with cell centred multigrid methods and linear correction scheme and presents papers on (1) generalization of the method to arbitrary sized grids for diffusion problems, (2) low order method for advection-diffusion problems, (3) attempt to extend the basic method to advection-diffusion problems, (4) Fourier smoothing analysis of multicolour relaxation schemes, and (5) analysis of high-order discretizations for advection terms. The second part discusses a multigrid based on pressure correction methods, non-linear full approximation scheme, and papers on (1) systematic comparison of the performance of different pressure correction smoothers and some other algorithmic variants, low to moderate Reynolds numbers, and (2) systematic study of implementation strategies for high order advection schemes, high-Re flow. An appendix contains Fortran 90 data structures for multigrid development. 160 refs., 26 figs., 22 tabs.

  5. Exact analytical solutions for contaminant transport in rivers 1. The equilibrium advection-dispersion equation

    Science.gov (United States)

    Analytical solutions of the advection-dispersion equation and related models are indispensable for predicting or analyzing contaminant transport processes in streams and rivers, as well as in other surface water bodies. Many useful analytical solutions originated in disciplines other than surface-w...

  6. Implicit and semi-implicit schemes in the Versatile Advection Code : numerical tests

    NARCIS (Netherlands)

    Tóth, G.; Keppens, R.; Botchev, M.A.

    1998-01-01

    We describe and evaluate various implicit and semi-implicit time integration schemes applied to the numerical simulation of hydrodynamical and magnetohydrodynamical problems. The schemes were implemented recently in the software package Versatile Advection Code, which uses modern shock capturing met

  7. Isoline retrieval: An optimal sounding method for validation of advected contours

    CERN Document Server

    Mills, Peter

    2012-01-01

    The study of chaotic mixing is important for its potential to improve our understanding of fluid systems. Contour advection simulations provide a good model of the phenomenon by tracking the evolution of one or more contours or isolines of a trace substance to a high level of precision. The most accurate method of validating an advected contour is to divide the tracer concentration into discrete ranges and perform a maximum likelihood classification, a method that we term, "isoline retrieval." Conditional probabilities generated as a result provide excellent error characterization. In this study, a water vapour isoline of 0.001 mass-mixing-ratio is advected over five days in the upper troposphere and compared with high-resolution AMSU (Advanced Microwave Sounding Unit) satellite retrievals. The goal is to find the same fine-scale, chaotic mixing in the isoline retrievals as seen in the advection simulations. Some of the filaments generated by the simulations show up in the conditional probabilities as areas o...

  8. An objective method for computing advective surface velocities from sequential infrared satellite images

    Science.gov (United States)

    Emery, W. J.; Thomas, A. C.; Collins, M. J.; Crawford, W. R.; Mackas, D. L.

    1986-11-01

    Using cross correlations between sequential infrared satellite images, an objective technique is developed to compute advective sea surface velocities. Cross correlations are computed in 32 × 32 pixel search (second image) and 22 × 22 template (first image) windows from gradients of sea surface temperature computed from the satellite images. Velocity vectors, computed from sequential images of the British Columbia coastal ocean, generally appear coherent and consistent with the seasonal surface current in the region. During periods of strong wind forcing, as indicated by maps of sea level pressure, the image advective velocities are stronger and more coherent spatially and appear to cross surface temperature gradients; when winds are weaker, the advective velocities correspond better with the infrared temperature patterns, suggesting the increased contribution of the geostrophic current to the surface flow. Velocities determined from coincident, near-surface drogued (5-10 m) buoys, positioned every half hour by internal LORAN-C units in mid-June, show excellent agreement with the image advective velocities. In addition, conductivity, temperature, and depth (CTD) measurements (taken during the buoy tracking) confirm the homogeneity of the upper 10 m, and CTD-derived geostrophic currents are consistent with both buoy and sequential image displacement velocities.

  9. Spectrum of Optically Thin Advection Dominated Accretion Flow around a Black Hole Application to Sgr A*

    CERN Document Server

    Manmoto, T; Kusunose, M

    1997-01-01

    The global structure of optically thin advection dominated accretion flows which are composed of two-temperature plasma around black holes is calculated. We adopt the full set of basic equations including the advective energy transport in the energy equation for the electrons. The spectra emitted by the optically thin accretion flows are also investigated. The radiation mechanisms which are taken into accout are bremsstrahlung, synchrotron emission, and Comptonization. The calculation of the spectra and that of the structure of the accretion flows are made to be completely consistent by calculating the radiative cooling rate at each radius. As a result of the advection domination for the ions, the heat transport from the ions to the electrons becomes practically zero and the radiative cooling balances with the advective heating in the energy equation of the electrons. Following up on the successful work of Narayan et al. (1995), we applied our model to the spectrum of Sgr A*. We find that the spectrum of Sgr ...

  10. Comparison of different computer platforms for running the Versatile Advection Code

    NARCIS (Netherlands)

    Toth, G.; Keppens, R.; Sloot, P.; Bubak, M.; Hertzberger, B.

    1998-01-01

    The Versatile Advection Code is a general tool for solving hydrodynamical and magnetohydrodynamical problems arising in astrophysics. We compare the performance of the code on different computer platforms, including work stations and vector and parallel supercomputers. Good parallel scaling can be a

  11. YANG-MILLS FIELD AMPLIFIER

    Directory of Open Access Journals (Sweden)

    Trunev A. P.

    2015-09-01

    Full Text Available The article presents a project of the Yang-Mills amplifier. Amplifier model is a multilayer spherical shell with increasing density towards the center. In the center of the amplifier is the core of high-density material. It is shown that in such a system, the amplitude of the Yang-Mills waves rises from the periphery to the center of several orders of magnitude. The role of the Yang-Mills field in the processes occurring in the nuclei of galaxies, stars and planets is discussed. The data modeling to strengthen the Yang-Mills field in the bowels of the planet, with an atomic explosion, and in some special devices such as the voltaic pile. To describe the mechanism of amplification chromodynamics field used as accurate results in Yang-Mills theory and numerical models developed based on an average and the exact equations as well. Among the exact solutions of the special role played by the centralsymmetric metric describing the contribution of the Yang-Mills field in the speed of recession of galaxies. Among the approximate numerical models can be noted the eight-scalar model we have developed for the simulation of non-linear color oscillations and chaos in the Yang-Mills theory. Earlier models were investigated spatio-temporal oscillations of the YangMills theory in the case of three and eight colors. The results of numerical simulation show that the nonlinear interaction does not lead to a spatial mixing of colors as it might be in the case of turbulent diffusion. Depending on the system parameters there is a suppression of the amplitude of the oscillations the first three by five colors or vice versa. The kinetic energy fluctuations or shared equally between the color components, or dominated by the kinetic energy of repressed groups of colors. In the present study, we found that amplification chromodynamic field leads to a sharp increase in the amplitude of the suppressed color, which can lead to an increase in entropy, excitation of nuclear

  12. Quantification of numerical diffusivity due to TVD schemes in the advection equation

    Science.gov (United States)

    Bidadi, Shreyas; Rani, Sarma L.

    2014-03-01

    In this study, the numerical diffusivity νnum inherent to the Roe-MUSCL scheme has been quantified for the scalar advection equation. The Roe-MUSCL scheme employed is a combination of: (1) the standard extension of the original Roe's formulation to the advection equation, and (2) van Leer's Monotone Upwind Scheme for Conservation Laws (MUSCL) technique that applies a linear variable reconstruction in a cell along with a scaled limiter function. An explicit expression is derived for the numerical diffusivity in terms of the limiter function, the distance between the cell centers on either side of a face, and the face-normal velocity. The numerical diffusivity formulation shows that a scaled limiter function is more appropriate for MUSCL in order to consistently recover the central-differenced flux at the maximum value of the limiter. The significance of the scaling factor is revealed when the Roe-MUSCL scheme, originally developed for 1-D scenarios, is applied to 2-D scalar advection problems. It is seen that without the scaling factor, the MUSCL scheme may not necessarily be monotonic in multi-dimensional scenarios. Numerical diffusivities of the minmod, superbee, van Leer and Barth-Jesperson TVD limiters were quantified for four problems: 1-D advection of a step function profile, and 2-D advection of step, sinusoidal, and double-step profiles. For all the cases, it is shown that the superbee scheme provides the lowest numerical diffusivity that is also most confined to the vicinity of the discontinuity. The minmod scheme is the most diffusive, as well as active in regions away from high gradients. As expected, the grid resolution study demonstrates that the magnitude and the spatial extent of the numerical diffusivity decrease with increasing resolution.

  13. Improving estimates of ecosystem metabolism by reducing effects of tidal advection on dissolved oxygen time series-Abstract

    Science.gov (United States)

    Continuous time series of dissolved oxygen (DO) have been used to compute estimates of metabolism in aquatic ecosystems. Central to this open water or "Odum" method is the assumption that the DO time is not strongly affected by advection and that effects due to advection or mixin...

  14. Analytical solutions of the one-dimensional advection-dispersion solute transport equation subject to time-dependent boundary conditions

    Science.gov (United States)

    Analytical solutions of the advection-dispersion solute transport equation remain useful for a large number of applications in science and engineering. In this paper we extend the Duhamel theorem, originally established for diffusion type problems, to the case of advective-dispersive transport subj...

  15. Transverse pumped laser amplifier architecture

    Science.gov (United States)

    Bayramian, Andrew James; Manes, Kenneth; Deri, Robert; Erlandson, Al; Caird, John; Spaeth, Mary

    2013-07-09

    An optical gain architecture includes a pump source and a pump aperture. The architecture also includes a gain region including a gain element operable to amplify light at a laser wavelength. The gain region is characterized by a first side intersecting an optical path, a second side opposing the first side, a third side adjacent the first and second sides, and a fourth side opposing the third side. The architecture further includes a dichroic section disposed between the pump aperture and the first side of the gain region. The dichroic section is characterized by low reflectance at a pump wavelength and high reflectance at the laser wavelength. The architecture additionally includes a first cladding section proximate to the third side of the gain region and a second cladding section proximate to the fourth side of the gain region.

  16. Locoregional MYCN-amplified neuroblastoma.

    Science.gov (United States)

    Morales La Madrid, Andres; Volchenboum, Samuel; Gastier-Foster, Julie M; Pyatt, Robert; Liu, Don; Pytel, Peter; Lavarino, Cinzia; Rodriguez, Eva; Cohn, Susan L

    2012-10-01

    MYCN-amplification is strongly associated with other high-risk prognostic factors and poor outcome in neuroblastoma. Infrequently, amplification of MYCN has been identified in localized tumors with favorable biologic features. Outcome for these children is difficult to predict and optimal treatment strategies remain unclear. We report a 5-month-old who presented with an MYCN-amplified INSS stage 3, pelvic neuroblastoma. The tumor had favorable histology, hyperdiploidy, and lacked 1p36 and 11q23 aberrations. Although the patient met the criteria for high-risk neuroblastoma, because of the discordant prognostic markers we elected to treat her according to an intermediate-risk protocol. She remains event-free more than 18 months.

  17. Linearisation of RF Power Amplifiers

    DEFF Research Database (Denmark)

    Nielsen, Per Asbeck

    2001-01-01

    This thesis deals with linearisation techniques of RF power amplifiers (PA), PA design techniques and integration of the necessary building blocks in a CMOS technology. The opening chapters introduces the theory of transmitter architectures, RF-signal representation and the principles of digital...... of linearisation systems with focus on polar modulation feedback, and a chip oriented part focusing on integrating of separate building blocks of the system on a chip. The system oriented part of this thesis deals with analog feedback linearisation systems. The Polar modulation feedback system is compared...... that utilize properties of the polar loop are presented. Analysis of the envelope feedback loop shows some fundamental limitations of the loop gain and the loop bandwidth due to the varying PA gain. Based on these observation a set of design guidelines for an envelope feedback loop is given. The guidelines...

  18. Optical latches using optical amplifiers

    Science.gov (United States)

    Li, Wenbo; Hu, Hongyu; Dutta, Niloy K.

    2013-05-01

    Optical latches are important for a wide range of applications including communication systems, optical logic systems, optical random access memory (RAM) and encryption. All optical logic operations using quantum dot (QD) based semiconductor optical amplifier (SOA) and Mach-Zehnder interferometer (MZI) have been studied. The building block of an optical latch such as NAND gate has been fabricated and their operation experimentally demonstrated at ~ 80 GHz. A rate equation model has been developed for the QD-SOA-MZI and it has been used to analyze the Boolean logic operation. The model has been used to analyze the Set-Reset (S-R) latch and the D-Flip-Flop (DFF) devices. The DFF is the basic device for building larger logic circuits. The results show that the latches would work to speeds of ~ 250 Gb/s.

  19. An Implantable CMOS Amplifier for Nerve Signals

    DEFF Research Database (Denmark)

    Nielsen, Jannik Hammel; Lehmann, Torsten

    2001-01-01

    on the amplifier input nodes. The method for signal recovery from noisy nerve signals is presented. A prototype amplifier is realized in a standard digital 0.5 μm CMOS single poly, n-well process. The prototype amplifier features a gain of 80 dB over a 3.6 kHz bandwidth, a CMRR of more than 87 dB and a PSRR...

  20. Enhanced Gain in Photonic Crystal Amplifiers

    DEFF Research Database (Denmark)

    Ek, Sara; Semenova, Elizaveta; Hansen, Per Lunnemann;

    2012-01-01

    study of a 1 QW photonic crystal amplifier. Net gain is achieved which enables laser oscillation in photonic crystal micro cavities. The ability to freely tailor the dispersion in a semiconductor optical amplifier makes it possible to raise the optical gain considerably over a certain bandwidth. These...... results are promising for short and efficient semiconductor optical amplifiers. This effect will also benefit other devices, such as mode locked lasers....

  1. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Flight Rules General § 91.109 Flight instruction; Simulated instrument flight...

  2. Reflection amplifiers in self-regulated learning

    NARCIS (Netherlands)

    Verpoorten, Dominique

    2012-01-01

    Verpoorten, D. (2012). Reflection amplifiers in self-regulated learning. Doctoral thesis. November, 9, 2012, Heerlen, The Netherlands: Open Universiteit (CELSTEC). Datawyse / Universitaire Pers Maastricht.

  3. Design of an 1800nm Raman amplifier

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Rottwitt, Karsten

    2013-01-01

    We present the experimental results for a Raman amplifier that operates at 1810 nm and is pumped by a Raman fiber laser at 1680 nm. Both the pump laser and the Raman amplifier is polarization maintaining. A challenge when scaling Raman amplifiers to longer wavelengths is the increase...... performance of the amplifier is also investigated for both configurations. Our results show an on/off gain exceeding 20 dB at 1810 nm for which the obtained effective noise figure is below 3 dB....

  4. Dynamics of Soliton Cascades in Fiber Amplifiers

    CERN Document Server

    Arteaga-Sierra, F R; Agrawal, Govind P

    2016-01-01

    We study numerically the formation of cascading solitons when femtosecond optical pulses are launched into a fiber amplifier with less energy than required to form a soliton of equal duration. As the pulse is amplified, cascaded fundamental solitons are created at different distances, without soliton fission, as each fundamental soliton moves outside the gain bandwidth through the Raman-induced spectral shifts. As a result, each input pulse creates multiple, temporally separated, ultrashort pulses of different wavelengths at the amplifier output. The number of pulses depends not only on the total gain of the amplifier but also on the width of input pulses.

  5. Manned Flight Simulator (MFS)

    Data.gov (United States)

    Federal Laboratory Consortium — The Aircraft Simulation Division, home to the Manned Flight Simulator (MFS), provides real-time, high fidelity, hardware-in-the-loop flight simulation capabilities...

  6. Particulate export vs lateral advection in the Antarctic Polar Front (Southern Pacific Ocean)

    Science.gov (United States)

    Tesi, T.; Langone, L.; Ravaioli, M.; Capotondi, L.; Giglio, F.

    2012-04-01

    The overarching goal of our study was to describe and quantify the influence of lateral advection relative to the vertical export in the Antarctic Polar Front (Southern Pacific Ocean). In areas where lateral advection of particulate material is significant, budgets of bioactive elements can be inaccurate if fluxes through the water column and to the seabed are exclusively interpreted as passive sinking of particles. However, detailed information on the influence of lateral advection in the water column in the southern ocean is lacking. With this in mind, our study focused between the twilight zone (i.e. mesopelagic) and the benthic nepheloid layer to understand the relative importance of lateral flux with increasing water depth. Measurements were performed south of the Antarctic Polar Front for 1 year (January 10th 1999-January 3rd 2000) at 900, 1300, 2400, and 3700 m from the sea surface. The study was carried out using a 3.5 km long mooring line instrumented with sediment traps, current meters and sensors of temperature and conductivity. Sediment trap samples were characterized via several parameters including total mass flux, elemental composition (organic carbon, total nitrogen, biogenic silica, and calcium carbonate), concentration of metals (aluminum, iron, barium, and manganese), 210Pb activity, and foraminifera taxonomy. High fluxes of biogenic particles were observed in both summer 1999 and 2000 as a result of seasonal algal blooms associated with sea ice retreat and water column stratification. During no-productive periods, several high energy events occurred and resulted in advecting resuspended biogenic particles from flat-topped summits of the Pacific Antarctic Ridge. Whereas the distance between seabed and uppermost sediment traps was sufficient to avoid lateral advection processes, resuspension was significant in the lowermost sediment traps accounting for ~60 and ~90% of the material caught at 2400 and 3700 m, respectively. Samples collected during

  7. White flight or flight from poverty?

    CERN Document Server

    Jego, C; Jego, Charles; Roehner, Bertrand M.

    2006-01-01

    The phenomenon of White flight is often illustrated by the case of Detroit whose population dropped from 1.80 million to 0.95 million between 1950 and 2000 while at the same time its Black and Hispanic component grew from 30 percent to 85 percent. But is this case really representative? The present paper shows that the phenomenon of White flight is in fact essentially a flight from poverty. As a confirmation, we show that the changes in White or Black populations are highly correlated which means that White flight is always paralleled by Black flight (and Hispanic flight as well). This broader interpretation of White flight accounts not only for the case of northern cities such as Cincinnati, Cleveland or Detroit, but for all population changes at county level, provided the population density is higher than a threshold of about 50 per square-kilometer which corresponds to moderately urbanized areas (as can be found in states like Indiana or Virginia for instance).

  8. Distributed feedback laser amplifiers combining the functions of amplifiers and channel filters

    DEFF Research Database (Denmark)

    Wang, Z.; Durhuus, T.; Mikkelsen, Benny;

    1994-01-01

    A dynamic model for distributed feedback amplifiers, including the mode coupled equations and the carrier rate equation, is established. The presented mode coupled equations have taken into account the interaction between fast changing optical signal and the waveguide with corrugations. By showin...... the possibility of amplifying 100 ps pulses without pulse broadening, we anticipate that a distributed feedback amplifier can be used as a combined amplifier and channel filter in high bit rate transmission systems....

  9. Amplified spontaneous emission and its restraint in a terawatt Ti:sapphire amplifier

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Amplified spontaneous emission (ASE) and its restraint in a femtosecond Ti: sapphire chirped_pulse amplifier were investigated. The noises arising from ASE were effectively filtered out in the spatial, temporal and spectral domain. Pulses as short as 38 fs were amplified to peak power of 1.4 TW. The power ratio between the amplified femtosecond pulse and the ASE was higher than 106:1.

  10. SEBAL-A: A Remote Sensing ET Algorithm that Accounts for Advection with Limited Data. Part I: Development and Validation

    Directory of Open Access Journals (Sweden)

    Mcebisi Mkhwanazi

    2015-11-01

    Full Text Available The Surface Energy Balance Algorithm for Land (SEBAL is one of the remote sensing (RS models that are increasingly being used to determine evapotranspiration (ET. SEBAL is a widely used model, mainly due to the fact that it requires minimum weather data, and also no prior knowledge of surface characteristics is needed. However, it has been observed that it underestimates ET under advective conditions due to its disregard of advection as another source of energy available for evaporation. A modified SEBAL model was therefore developed in this study. An advection component, which is absent in the original SEBAL, was introduced such that the energy available for evapotranspiration was a sum of net radiation and advected heat energy. The improved SEBAL model was termed SEBAL-Advection or SEBAL-A. An important aspect of the improved model is the estimation of advected energy using minimal weather data. While other RS models would require hourly weather data to be able to account for advection (e.g., METRIC, SEBAL-A only requires daily averages of limited weather data, making it appropriate even in areas where weather data at short time steps may not be available. In this study, firstly, the original SEBAL model was evaluated under advective and non-advective conditions near Rocky Ford in southeastern Colorado, a semi-arid area where afternoon advection is common occurrence. The SEBAL model was found to incur large errors when there was advection (which was indicated by higher wind speed and warm and dry air. SEBAL-A was then developed and validated in the same area under standard surface conditions, which were described as healthy alfalfa with height of 40–60 cm, without water-stress. ET values estimated using the original and modified SEBAL were compared to large weighing lysimeter-measured ET values. When the SEBAL ET was compared to SEBAL-A ET values, the latter showed improved performance, with the ET Mean Bias Error (MBE reduced from −17

  11. An Implantable CMOS Amplifier for Nerve Signals

    DEFF Research Database (Denmark)

    Nielsen, Jannik Hammel; Lehmann, Torsten

    2003-01-01

    . A continuous-time current-steering offset-compensation technique is utilized in order to minimize the noise contribution and to minimize dynamic impact on the amplifier input nodes. The method for signal recovery from noisy nerve signals is presented. A prototype amplifier is realized in a standard digital 0...

  12. Self-pulsation in Raman fiber amplifiers

    DEFF Research Database (Denmark)

    Pedersen, Martin Erland Vestergaard; Ott, Johan Raunkjær; Rottwitt, Karsten

    2009-01-01

    Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated.......Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated....

  13. Waveguide optical amplifier for telecom applications

    OpenAIRE

    Taccheo, Stefano; Zannin, Marcelo; Ennser, Karin; Careglio, Davide; Solé Pareta, Josep; Aracil Rico, Javier

    2009-01-01

    In this paper we review progress in optical gain clamped waveguide amplifiers for applications to optical communications. We demonstrate that compact waveguide devices may offer advantages compared to standard fiber amplifiers. In particular we focus on the application of gain clamping and optical burst switching networks where physical impairments may occur due to variation of the input power. Peer Reviewed

  14. BROADBAND TRAVELLING WAVE SEMICONDUCTOR OPTICAL AMPLIFIER

    DEFF Research Database (Denmark)

    2010-01-01

    Broadband travelling wave semiconductor optical amplifier (100, 200, 300, 400, 800) for amplification of light, wherein the amplifier (100, 200, 300, 400, 800) comprises a waveguide region (101, 201, 301, 401, 801) for providing confinement of the light in transverse directions and adapted...

  15. Design and performance of the beamlet amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Erlandson, A.C.; Rotter, M.D.; Frank, M.D.; McCracken, R.W.

    1996-06-01

    In future laser systems, such as the National Ignition Facility (NIF), multi-segment amplifiers (MSAs) will be used to amplify the laser beam to the required levels. As a prototype of such a laser architecture, the authors have designed, built, and tested flash-lamp-pumped, Nd:Glass, Brewster-angle slab MSAs for the Beamlet project. In this article, they review the fundamentals of Nd:Glass amplifiers, describe the MSA geometry, discuss parameters that are important in amplifier design, and present our results on the characterization of the Beamlet MSAs. In particular, gain and beam steering measurements show that the Beamlet amplifiers meet all optical performance specifications and perform close to model predictions.

  16. Qubit readout with a directional parametric amplifier

    Science.gov (United States)

    Sliwa, K. M.; Abdo, B.; Narla, A.; Shankar, S.; Hatridge, M.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.

    2014-03-01

    Josephson junction based quantum limited parametric amplifiers play an essential role in superconducting qubit measurements. These measurements necessitate circulators and isolators between the amplifier and qubit to add directionality and/or isolation. Unfortunately, this extra hardware limits both quantum measurement efficiency and experimental scalability. Here we present a quantum-limited Josephson-junction-based directional amplifier (JDA) based on a novel coupling between two nominally identical Josephson parametric converters (JPCs). The device achieves a forward gain of 11 dB with a 15 MHz dynamical bandwidth, but higher gains are possible at the expense of bandwidth. We also present measurements of a transmon qubit made with the JDA, and show minimal measurement back-action despite the absence of any isolator or circulator before the amplifier. These results provide a first step toward realizing on-chip integration of qubits and parametric amplifiers. Work supported by: IARPA, ARO, and NSF.

  17. Detection of Non-Amplified Genomic DNA

    CERN Document Server

    Corradini, Roberto

    2012-01-01

    This book offers a state-of-the-art overview on non amplified DNA detection methods and provides chemists, biochemists, biotechnologists and material scientists with an introduction to these methods. In fact all these fields have dedicated resources to the problem of nucleic acid detection, each contributing with their own specific methods and concepts. This book will explain the basic principles of the different non amplified DNA detection methods available, highlighting their respective advantages and limitations. The importance of non-amplified DNA sequencing technologies will be also discussed. Non-amplified DNA detection can be achieved by adopting different techniques. Such techniques have allowed the commercialization of innovative platforms for DNA detection that are expected to break into the DNA diagnostics market. The enhanced sensitivity required for the detection of non amplified genomic DNA has prompted new strategies that can achieve ultrasensitivity by combining specific materials with specifi...

  18. Analytical Solutions of the Space-Time Fractional Derivative of Advection Dispersion Equation

    Directory of Open Access Journals (Sweden)

    Abdon Atangana

    2013-01-01

    Full Text Available Fractional advection-dispersion equations are used in groundwater hydrology to model the transport of passive tracers carried by fluid flow in porous medium. A space-time fractional advection-dispersion equation (FADE is a generalization of the classical ADE in which the first-order space derivative is replaced with Caputo or Riemann-Liouville derivative of order , and the second-order space derivative is replaced with the Caputo or the Riemann-Liouville fractional derivative of order . We derive the solution of the new equation in terms of Mittag-Leffler functions using Laplace transfrom. Some examples are given. The results from comparison let no doubt that the FADE is better in prediction than ADE.

  19. Object-oriented implementations of the MPDATA advection equation solver in C++, Python and Fortran

    CERN Document Server

    Arabas, Sylwester; Jaruga, Anna; Fijałkowski, Maciej

    2013-01-01

    Three object-oriented implementations of a prototype solver of the advection equation are introduced. Presented programs are based on Blitz++ (C++), NumPy (Python), and Fortran's built-in array containers. The solvers include an implementation of the Multidimensional Positive-Definite Advective Transport Algorithm (MPDATA). The introduced codes exemplify how the application of object-oriented programming (OOP) techniques allows to reproduce the mathematical notation used in the literature within the program code. The introduced codes serve as a basis for discussion on the tradeoffs of the programming language choice. The main angles of comparison are code brevity and syntax clarity (and hence maintainability and auditability) as well as performance. In case of Python, a significant performance gain is observed when switching from the standard interpreter (CPython) to the PyPy implementation of Python. Entire source code of all three implementations is embedded in the text and is licensed under the terms of th...

  20. Perturbation analysis of steady and unsteady electrohydrodynamic chaotic advection inside translating drops

    Science.gov (United States)

    Wu, Fan; Vainchtein, Dmitri; Ward, Thomas

    2015-08-01

    A drop translating in the presence of an electric field is studied analytically. The flow is a combination of a Hadamard-Rybczynski and a Taylor circulation due to the translation and electric field, respectively. We consider chaotic advection that is generated by (1) tilting and (2) time-dependent modulation of the electric field. For the analysis we consider small perturbations in time and space to what is otherwise an integrable flow. By using a robust analytical technique we find an adiabatic invariant (AI) for the system by averaging the equations of motion. The chaotic advection is due to quasirandom jumps of the AI after crossing the separatrix of the unperturbed flow. We demonstrate that the asymptotic analysis leads to a set of criteria that can be used to optimize stirring in these systems.

  1. Estimation and correction of advection effects with single and multiple, conventional and Doppler radars

    Science.gov (United States)

    Gal-Chen, T.

    1981-01-01

    The laws of fluid motion are invariant under a Gallilean transformation. For a perfect observing system, the data analysis should, therefore, also be invariant under a Gallilean transformation. This invariance is often not preserved in practical observing systems. In this connection, it is often advisable to perform mesoscale analysis in a frame moving with respect to the earth's surface. In the present investigation the velocity of such a frame is referred to as an advection velocity. The investigation is concerned with remaining problems regarding the Gallilean transformation. The establishment of a frame of reference for the achievement of maximum coherence is considered, taking into account the case of given nonsimultaneous observations of scalars or Cartesian vectors. It is found that advection speed can be estimated objectively if a scalar or Cartesian vector can be observed directly and if, in addition, the time and position of each observation is approximately known.

  2. Advective-diffusive mass transfer in fractured porous media with variable rock matrix block size.

    Science.gov (United States)

    Sharifi Haddad, Amin; Hassanzadeh, Hassan; Abedi, Jalal

    2012-05-15

    Traditional dual porosity models do not take into account the effect of matrix block size distribution on the mass transfer between matrix and fracture. In this study, we introduce the matrix block size distributions into an advective-diffusive solute transport model of a divergent radial system to evaluate the mass transfer shape factor, which is considered as a first-order exchange coefficient between the fracture and matrix. The results obtained lead to a better understanding of the advective-diffusive mass transport in fractured porous media by identifying two early and late time periods of mass transfer. Results show that fractured rock matrix block size distribution has a great impact on mass transfer during early time period. In addition, two dimensionless shape factors are obtained for the late time, which depend on the injection flow rate and the distance of the rock matrix from the injection point.

  3. Numerical Solution of Advection-Diffusion Equation Using a Sixth-Order Compact Finite Difference Method

    Directory of Open Access Journals (Sweden)

    Gurhan Gurarslan

    2013-01-01

    Full Text Available This study aims to produce numerical solutions of one-dimensional advection-diffusion equation using a sixth-order compact difference scheme in space and a fourth-order Runge-Kutta scheme in time. The suggested scheme here has been seen to be very accurate and a relatively flexible solution approach in solving the contaminant transport equation for Pe≤5. For the solution of the present equation, the combined technique has been used instead of conventional solution techniques. The accuracy and validity of the numerical model are verified through the presented results and the literature. The computed results showed that the use of the current method in the simulation is very applicable for the solution of the advection-diffusion equation. The present technique is seen to be a very reliable alternative to existing techniques for these kinds of applications.

  4. Improvement of the One-dimensional Vertical Advection-diffusion Model in Seawater

    Institute of Scientific and Technical Information of China (English)

    王保栋; 单宝田; 战闰; 王修林

    2003-01-01

    The classical 1-D vertical advection-diffusion model was improved in this work. Themain advantages of the improved model over the previous one are: 1 ) The applicable condition ofthe 1-D model is made clear in the improved model, in that it is substantively applicable only to avertical domain on which two end-member water masses are mixing. 2) The substitution of parame-ter f(z) in the equation of the classical 1-D model with end-member fraction f1 makes the modelmore precisely and easily solved. 3 ) All the terms in the improved model equation have specificphysical meanings, which makes the model easily understood. Practical application of the improvedmodel to predict the vertical profiles of dissolved oxygen and micronutrients in abyssal ocean waterof the North Pacific proved that the improvement of the 1-D advection-diffusion model is successfuland practicable.

  5. A balancing domain decomposition method by constraints for advection-diffusion problems

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Xuemin; Li, Jing

    2008-12-10

    The balancing domain decomposition methods by constraints are extended to solving nonsymmetric, positive definite linear systems resulting from the finite element discretization of advection-diffusion equations. A pre-conditioned GMRES iteration is used to solve a Schur complement system of equations for the subdomain interface variables. In the preconditioning step of each iteration, a partially sub-assembled finite element problem is solved. A convergence rate estimate for the GMRES iteration is established, under the condition that the diameters of subdomains are small enough. It is independent of the number of subdomains and grows only slowly with the subdomain problem size. Numerical experiments for several two-dimensional advection-diffusion problems illustrate the fast convergence of the proposed algorithm.

  6. Ultrafast disk lasers and amplifiers

    Science.gov (United States)

    Sutter, Dirk H.; Kleinbauer, Jochen; Bauer, Dominik; Wolf, Martin; Tan, Chuong; Gebs, Raphael; Budnicki, Aleksander; Wagenblast, Philipp; Weiler, Sascha

    2012-03-01

    Disk lasers with multi-kW continuous wave (CW) output power are widely used in manufacturing, primarily for cutting and welding applications, notably in the automotive industry. The ytterbium disk technology combines high power (average and/or peak power), excellent beam quality, high efficiency, and high reliability with low investment and operating costs. Fundamental mode picosecond disk lasers are well established in micro machining at high throughput and perfect precision. Following the world's first market introduction of industrial grade 50 W picosecond lasers (TruMicro 5050) at the Photonics West 2008, the second generation of the TruMicro series 5000 now provides twice the average power (100 W at 1030 nm, or 60 W frequency doubled, green output) at a significantly reduced footprint. Mode-locked disk oscillators achieve by far the highest average power of any unamplified lasers, significantly exceeding the 100 W level in laboratory set-ups. With robust long resonators their multi-microjoule pulse energies begin to compete with typical ultrafast amplifiers. In addition, significant interest in disk technology has recently come from the extreme light laser community, aiming for ultra-high peak powers of petawatts and beyond.

  7. Approximate Solution of Time-Fractional Advection-Dispersion Equation via Fractional Variational Iteration Method

    Directory of Open Access Journals (Sweden)

    Birol İbiş

    2014-01-01

    Full Text Available This paper aims to obtain the approximate solution of time-fractional advection-dispersion equation (FADE involving Jumarie’s modification of Riemann-Liouville derivative by the fractional variational iteration method (FVIM. FVIM provides an analytical approximate solution in the form of a convergent series. Some examples are given and the results indicate that the FVIM is of high accuracy, more efficient, and more convenient for solving time FADEs.

  8. Numerical Solution of Advection-Diffusion Equation Using a Sixth-Order Compact Finite Difference Method

    OpenAIRE

    Gurhan Gurarslan; Halil Karahan; Devrim Alkaya; Murat Sari; Mutlu Yasar

    2013-01-01

    This study aims to produce numerical solutions of one-dimensional advection-diffusion equation using a sixth-order compact difference scheme in space and a fourth-order Runge-Kutta scheme in time. The suggested scheme here has been seen to be very accurate and a relatively flexible solution approach in solving the contaminant transport equation for Pe≤5. For the solution of the present equation, the combined technique has been used instead of conventional solution techniques. The accuracy and...

  9. A New Evapotranspiration Model Accounting for Advection and Its Validation during SMEX02

    OpenAIRE

    Yongmin Yang; Hongbo Su; Renhua Zhang; Jianjun Wu; Jianwei Qi

    2013-01-01

    Based on the crop water stress index (CWSI) concept, a new model was proposed to account for advection to estimate evapotranspiration. Both local scale evaluation with sites observations and regional scale evaluation with a remote dataset from Landsat 7 ETM+ were carried out to assess the performance of this model. Local scale evaluation indicates that this newly developed model can effectively characterize the daily variations of evapotranspiration and the predicted results show good agreeme...

  10. Modeling size segregation of bidisperse granular flow: the roles of segregation, advection, and diffusion

    OpenAIRE

    Fan, Yi; Schlick, Conor; Isner, Austin; Ottino, Julio; Umbanhowar, Paul; Richard, Lueptow

    2014-01-01

    Segregation of granular materials composed of different-sized particles has important repercussions in various industrial processes and natural phenomena, but predicting size segregation remains a challenging problem. To address this problem, we have developed a theoretical model that captures the interplay between advection, segregation, and diffusion in size bidisperse granular materials. The fluxes associated with these three driving factors depend on the underlying kinematics, whose chara...

  11. ADVECTION AND DIFFUSION OF POISONOUS GAS CONTAMINANT RELEASED FROM BOTTOM SLUDGE IN OPEN CHANNEL

    Institute of Scientific and Technical Information of China (English)

    WU Zhou-hu

    2004-01-01

    In some cases, poisonous contaminants may be released from bottom sludge in open channels. The equation of advection and diffusion for the related problem was analyzed in this paper. The conditions for the definite solution to the equation were given. The analytic solution of poisonous gas concentration distribution was worked out. The reasonableness of this solution was discussed. The result is also of significance for other similar problems.

  12. Carbon dioxide seasonality in dynamically ventilated caves: the role of advective fluxes

    Science.gov (United States)

    Lang, Marek; Faimon, Jiří; Godissart, Jean; Ek, Camille

    2016-07-01

    The seasonality in cave CO2 levels was studied based on (1) a new data set from the dynamically ventilated Comblain-au-Pont Cave (Dinant Karst Basin, Belgium), (2) archive data from Moravian Karst caves, and (3) published data from caves worldwide. A simplified dynamic model was proposed for testing the effect of all conceivable CO2 fluxes on cave CO2 levels. Considering generally accepted fluxes, i.e., the direct diffusive flux from soils/epikarst, the indirect flux derived from dripwater degassing, and the input/output fluxes linked to cave ventilation, gives the cave CO2 level maxima of 1.9 × 10-2 mol m-3 (i.e., ˜ 440 ppmv), which only slightly exceed external values. This indicates that an additional input CO2 flux is necessary for reaching usual cave CO2 level maxima. The modeling indicates that the additional flux could be a convective advective CO2 flux from soil/epikarst driven by airflow (cave ventilation) and enhanced soil/epikarstic CO2 concentrations. Such flux reaching up to 170 mol s-1 is capable of providing the cave CO2 level maxima up to 3 × 10-2 mol m-3 (70,000 ppmv). This value corresponds to the maxima known from caves worldwide. Based on cave geometry, three types of dynamic caves were distinguished: (1) the caves with the advective CO2 flux from soil/epikarst at downward airflow ventilation mode, (2) the caves with the advective soil/epikarstic flux at upward airflow ventilation mode, and (3) the caves without any soil/epikarstic advective flux. In addition to CO2 seasonality, the model explains both the short-term and seasonal variations in δ13C in cave air CO2.

  13. Advective loss of overwintering Calanus finmarchicus from the Faroe-Shetland Channel

    DEFF Research Database (Denmark)

    Rullyanto, Arief; Jonasdottir, Sigrun H.; Visser, Andre W.

    2015-01-01

    , a regionally important secondary producer. Using a high resolution hydrodynamic model, MIKE 3 FM, we simulate the overflow of deep water and estimate the associated loss rate of C. finmarchicus as a function of the water depth strata within which they reside. We estimate a net advective loss from the Norwegian...... is to be entrained into warmer waters of the North Atlantic Basin, a habitat that appears to be unsuitable for successful overwintering. (C) 2015 Elsevier Ltd. All rights reserved....

  14. Radiation Pressure-supported Accretion Disks: Vertical Structure, Energy Advection, and Convective Stability

    CERN Document Server

    Gu, Wei-Min

    2012-01-01

    By taking into account the local energy balance per unit volume between the viscous heating and the advective cooling plus the radiative cooling, we investigate the vertical structure of radiation pressure-supported accretion disks in spherical coordinates. Our solutions show that the photosphere of the disk is close to the polar axis and therefore the disk seems to be extremely thick. However, the profile of density implies that most of the accreted matter exists in a moderate range around the equatorial plane. We show that the well-known polytropic relation between the pressure and the density is unsuitable for describing the vertical structure of radiation pressure-supported disks. More importantly, we find that the energy advection is significant even for slightly sub-Eddington accretion disks. We argue that the non-negligible advection may help to understand why the standard thin disk model is likely to be inaccurate above \\sim 0.3 Eddington luminosity, which was found by some works on the black hole spi...

  15. A Comparative Study of Indoor Radon Contributed by Diffusive and Advective Transport through Intact Concrete

    Science.gov (United States)

    Chauhan, R. P.; Kumar, Amit

    The present work is aimed that out of diffusive and advective transport which is dominant process for indoor radon entry under normal room conditions. For this purpose the radon diffusion coefficient and permeability of concrete were measured by specially designed experimental set up. The radon diffusion coefficient of concrete was measured by continuous radon monitor. The measured value was (3.78 ± 0.39)×10-8 m2/s and found independent of the radon gas concentration in source chamber. The radon permeability of concrete varied between 1.85×10-17 to 1.36×10-15 m2 for the bulk pressure difference fewer than 20 Pa to 73.3 kPa. From the measured diffusion coefficient and absolute permeability, the radon flux from the concrete surface having concentrations gradient 12-40 kBq/m3 and typical floor thickness 0.1 m was calculated by the application of Fick and Darcy laws. Using the measured flux attributable to diffusive and advective transport, the indoor radon concentration for a typical Indian model room having dimension (5×6×7) m3 was calculated under average room ventilation (0.63 h-1). The results showed that the contribution of diffusive transport through intact concrete is dominant over the advective transport, as expected from the low values of concrete permeability.

  16. Advection-condensation of water vapor with coherent stirring: a stochastic approach

    Science.gov (United States)

    Tsang, Yue-Kin; Vanneste, Jacques; Vallis, Geoffrey

    2015-11-01

    The dynamics of atmospheric water is an essential ingredient of weather and climate. Water vapor, in particular, is an important greenhouse gas whose distribution has a strong impact on climate. To gain insight into the factors controlling the distribution of atmospheric moisture, we study an advection-condensation model in which water vapor is passively advected by a prescribed velocity and condensation acts as a sink that maintains the specific humidity below a prescribed, spatially dependent saturation value. The velocity consists of two parts: a single vortex representing large-scale coherent flow (e.g. the Hadley cell) and a white noise component mimicking small-scale turbulence. Steady-state is achieved in the presence of a moisture source at a boundary. We formulate this model as a set of stochastic differential equations. In the fast advection limit, analytical expression for the water vapor distribution is obtained by matched asymptotics. This allows us to make various predictions including the dependence of total precipitation on the vortex strength. These analytical results are verified by Monte Carlo simulations. This work is supported by the UK EPSRC Grant EP/I028072/1 and the Feasibility Fund from the UK EPSRC Network ReCoVER.

  17. Backward Calculation Based on the Advection and Diffusion of Oil Spills on the Sea Surface

    Institute of Scientific and Technical Information of China (English)

    LIU Hao; YIN Baoshu; LIN Jianguo

    2005-01-01

    In the light of the problem of oil pollution brought about by ships, in this paper we present the concept of backward tracing oil spills. In the course of backward calculation of the two-dimensional convection & diffusion equation, on the one hand,the advection term itself has the strong unilateral property, which means information in the upper reaches is transmitted downstream via the advection term; on the other hand,because of the opposite direction of calculation, it is essential for information to be conveyed upstream by means of the advection term. In addition, unlike that in the forward calculation, the diffusion term in the backward calculation is prone to accumulate errors, and thus renders the whole scheme unstable. Therefore, we adopt the central difference to deal with both the convectional term and the diffusion term. By examining two practical examples (1) under the unlimited boundary condition, and (2) under the limited boundary condition, it is proven that this method could achieve fundamentally satisfactory results not only in the open ocean but also in the closed or semi-closed bay.

  18. Parallel simulation of particle transport in an advection field applied to volcanic explosive eruptions

    Science.gov (United States)

    Künzli, Pierre; Tsunematsu, Kae; Albuquerque, Paul; Falcone, Jean-Luc; Chopard, Bastien; Bonadonna, Costanza

    2016-04-01

    Volcanic ash transport and dispersal models typically describe particle motion via a turbulent velocity field. Particles are advected inside this field from the moment they leave the vent of the volcano until they deposit on the ground. Several techniques exist to simulate particles in an advection field such as finite difference Eulerian, Lagrangian-puff or pure Lagrangian techniques. In this paper, we present a new flexible simulation tool called TETRAS (TEphra TRAnsport Simulator) based on a hybrid Eulerian-Lagrangian model. This scheme offers the advantages of being numerically stable with no numerical diffusion and easily parallelizable. It also allows us to output particle atmospheric concentration or ground mass load at any given time. The model is validated using the advection-diffusion analytical equation. We also obtained a good agreement with field observations of the tephra deposit associated with the 2450 BP Pululagua (Ecuador) and the 1996 Ruapehu (New Zealand) eruptions. As this kind of model can lead to computationally intensive simulations, a parallelization on a distributed memory architecture was developed. A related performance model, taking into account load imbalance, is proposed and its accuracy tested.

  19. Heat transfer enhancement utilizing chaotic advection in coiled tube heat exchangers

    International Nuclear Information System (INIS)

    The present study introduced a novel chaotic coil heat exchanger utilizing chaotic advection to enhance heat transfer at low Reynolds numbers. Using Lagrangian tracing of fluid particles and their sensitivity to the initial condition and fluid element calculations, it was shown that mixing was significantly increased due to the chaotic advection. Heat transfer performance in the coil and chaotic configuration was visualized by isotherms contours of temperature in different cross-sections. In order to evaluate the hydraulic-thermal performance of heat exchangers, Nusselt numbers and friction factor were calculated and comparison was made between the two configurations. Numerical calculations revealed that the chaotic coil configuration displayed heat transfer enhancement of 4–26% relative to the fully developed Nusselt numbers in the regular coil with only 5–8% change in the pressure drop. - Highlights: • A novel chaotic coil heat exchanger is introduced in this study. • It is shown that mixing is increased significantly due to the altered chaotic advection mechanism. • By increasing the Reynolds number, results show impressive enhancement in chaotic heat exchanger performance. • Reorientation in chaotic flow leads to higher pressure loss than that in the normal helical coil

  20. Vertical advection and nocturnal deposition of ozone over a boreal pine forest

    Directory of Open Access Journals (Sweden)

    Ü. Rannik

    2008-10-01

    Full Text Available Night-time ozone deposition for a Scots pine forest in Southern Finland was studied at the SMEAR II measurement station by evaluating the turbulent eddy covariance (EC, storage change and vertical advection fluxes. Similarly to night-time carbon dioxide flux, the eddy-covariance flux of ozone was decreasing with turbulence intensity (friction velocity, and storage change of the compound did not compensate the reduction (well-known night-time measurement problem. Accounting for vertical advection resulted in invariance of ozone deposition rate on turbulence intensity. This was also demonstrated for carbon dioxide, verified by independent measurements of NEE by chamber systems. The result highlights the importance of advection when considering the exchange measurements of any scalar. Analysis of aerodynamic and laminar boundary layer resistances by the model approach indicated that the surface resistance and/or chemical sink strength was limiting ozone deposition. The possible aerial ozone sink by known fast chemical reactions with sesquiterpenes and NO explain only a minor fraction of ozone sink. Thus the deposition is controlled either by stomatal uptake or surface reactions or both of them, the mechanisms not affected by turbulence intensity. Therefore invariance of deposition flux on turbulence intensity is expected also from resistance and chemical sink analysis.

  1. Some numerical studies of interface advection properties of level set method

    Indian Academy of Sciences (India)

    A Salih; S Ghosh Moulic

    2009-04-01

    In this paper, we discuss the results of a series of tests carried out to assess the level set methodology for capturing interfaces between two immiscible fluids. The tests are designed to investigate the accuracy of convection process, the preservation of interface shape, and the mass conservation properties of individual fluids. These test cases involve the advection of interfaces of different shapes exposed to translation, rotation, deformation, and shear flow. Prescribed solenoidal velocity fields are used and no attempt is made to couple the advection of the level set function with the momentum equations. For the solution of level set equation we have employed first-order upwind scheme, MacCormack method, second-order ENO scheme, and fifth-order WENO scheme. Our studies show that the level set method perform well when higher-order schemes are used for the solution of advection equation. However, for certain type of shearing and vortical velocity fields mass conservation is an issue on coarser meshes even with higher order schemes. Finer mesh must be used in such situations to reduce numerical diffusion.

  2. Modelling the observed vertical transport of {sup 7}Be in specific soils with advection dispersion model

    Energy Technology Data Exchange (ETDEWEB)

    Torres Astorga, Romina; Velasco, Hugo; Valladares, Diego L.; Lohaiza, Flavia; Ayub, Jimena Juri; Rizzotto, Marcos [Grupo de Estudios Ambientales. Instituto de Matematica Aplicada San Luis - Universidad Nacional de San Luis - CONICET, San Luis (Argentina)

    2014-07-01

    {sup 7}Be is a short-lived environmental radionuclide, produced in the upper atmosphere by spallation of nitrogen and oxygen by cosmic rays. After of the production by the nuclear reaction, {sup 7}Be diffuses through the atmosphere until it attaches to atmospheric aerosols. Subsequently, it is deposited on the earth surface mainly as wet fallout. The main physical processes which transport {sup 7}Be in soil are diffusion and advection by water. Migration parameters and measurements confirm that sorption is the main physical process, which confines {sup 7}Be concentration to soil surface. The literature data show that in soils, {sup 7}Be is concentrated near the surface (0-2 cm) as it is adsorbed onto clay minerals after its deposition on the soil surface and does not penetrate deeper into soils due to its short half-life. The maximum mass activity density of {sup 7}Be is found at the point of input of the radionuclide, i.e. at the surface of the soil column, showing a exponential distribution profile typical of a purely diffusive transport. Many studies applying the advection dispersion models have been reported in the literature in order to modelling the transport of {sup 137}Cs in soils. On them, the models are used to achieve information of the mechanisms that govern the transport, i. e. the model is used to explain the soil profile of radionuclide. The effective dispersion coefficient and the apparent advection velocity of radionuclide in soil are also obtained by fitting the analytical solution of the model equation to measured depth distributions of the radionuclide. In this work, the advective dispersive transport model with linear sorption is used to analyze the vertical migration process of {sup 7}Be in soils of undisturbed or reference sites. The deposition history is approximated by pulse-like input functions and time dependent analytical solution of equation model is obtained. The values of dispersion coefficient and apparent advection velocity obtained

  3. Effect of Soliton Propagation in Fiber Amplifiers

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The propagation of optical solitons in fiber amplifiers is discussed by considering a model that includes linear high order dispersion, two-photon absorption, nonlinear high-order dispersion, self-induced Ramam and five-order nonlinear effects. Based on travelling wave method, the solutions of the nonlinear Schrdinger equations, and the influence on soliton propagation as well as high-order effect in the fiber amplifier are discussed in detail. It is found that because of existing five-order nonlinear effect, the solution is not of secant hyperbola type, but shows high gain state of the fiber amplifier which is very favourable to the propagation of solitons.

  4. Quantum electronics maser amplifiers and oscillators

    CERN Document Server

    Fain, V M; Sanders, J H

    2013-01-01

    Quantum Electronics, Volume 2: Maser Amplifiers and Oscillators deals with the experimental and theoretical aspects of maser amplifiers and oscillators which are based on the principles of quantum electronics. It shows how the concepts and equations used in quantum electronics follow from the basic principles of theoretical physics.Comprised of three chapters, this volume begins with a discussion on the elements of the theory of quantum oscillators and amplifiers working in the microwave region, along with the practical achievements in this field. Attention is paid to two-level paramagnetic ma

  5. Laser Cooled High-Power Fiber Amplifier

    OpenAIRE

    Nemova, Galina

    2009-01-01

    A theoretical model for laser cooled continuous-wave fiber amplifier is presented. The amplification process takes place in the Tm3+-doped core of the fluoride ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) glass fiber. The cooling process takes place in the Yb3+:ZBLAN fiber cladding. It is shown that for each value of the pump power and the amplified signal there is a distribution of the concentration of the Tm3+ along the length of the fiber amplifier, which provides its athermal operation. The influence ...

  6. Fundamentals of RF and microwave transistor amplifiers

    CERN Document Server

    Bahl, Inder J

    2009-01-01

    A Comprehensive and Up-to-Date Treatment of RF and Microwave Transistor Amplifiers This book provides state-of-the-art coverage of RF and microwave transistor amplifiers, including low-noise, narrowband, broadband, linear, high-power, high-efficiency, and high-voltage. Topics covered include modeling, analysis, design, packaging, and thermal and fabrication considerations. Through a unique integration of theory and practice, readers will learn to solve amplifier-related design problems ranging from matching networks to biasing and stability. More than 240 problems are included to help read

  7. Flight Standards Automation System

    Data.gov (United States)

    Department of Transportation — FAVSIS supports Flight Standards Service (AFS) by maintaining their information on entities such as air carriers, air agencies, designated airmen, and check airmen....

  8. Ground and Airborne Methane Measurements using Optical Parametric Amplifiers

    Science.gov (United States)

    Riris, Haris; Numata, Kenji; Li, Steve; Wu, Stewart; Kawa, Stephan R.; Abshire, James; Dawsey, Martha; Ramanathan, Anand

    2012-01-01

    We report on an initial airborne demonstration of atmospheric methane column measurements at 1.65 micrometers using a widely tunable, seeded optical parametric amplifier (OPA) lidar and a photon counting detector. Methane is an important greenhouse gas and accurate knowledge of its sources and sinks is needed for climate modeling. Our lidar system uses 20 pulses at increasing wavelengths and integrated path differential absorption (IPDA) to map a methane line at 1650.9 nanometers. The wavelengths are generated by using a Nd:YAG pump laser at 1064.5 nanometers and distributed feedback diode laser at 1650.9 nanometers and a periodically-poled lithium niobate (PPLN) crystal. The pulse width was 3 nanoseconds and the pulse repetition rate was 6.28 KHz. The outgoing energy was approximately 13 microJoules/pulse. A commercial 20 nanometer diameter fiber-coupled telescope with a photon counting detector operated in analog mode with a 0.8 nanometer bandpass filter was used as the lidar receiver. The lidar system was integrated on NASA's DC-8 flying laboratory, based at Dryden Airborne operations Facility (DAOF) in Palmdale CA. Three flights were performed in the central valley of California. Each flight lasted about 2.5 hours and it consisted of several flight segments at constant altitudes at approximately 3, 4.5, 6, 7.6, 9.1, 10.6 km (l0, 15, 20, 25, 30, 35 kft). An in-situ cavity ring down spectrometer made by Picarro Inc. was flown along with the lidar instrument provided us with the "truth" i.e. the local CH4, CO2 and H2O concentrations at the constant flight altitude segments. Using the aircraft's altitude, GPS, and meteorological data we calculated the theoretical differential optical depth of the methane absorption at increasing altitudes. Our results showed good agreement between the experimentally derived optical depth measurements from the lidar instrument and theoretical calculations as the flight altitude was increased from 3 to 10.6 kilometers, assuming a

  9. Sensor/amplifier for weak light sources

    Science.gov (United States)

    Desmet, D. J.; Jason, A. J.; Parr, A. C.

    1980-01-01

    Light sensor/amplifier circuit detects weak light converts it into strong electrical signal in electrically noisy environment. Circuit is relatively simple and uses inexpensive, readily available components. Device is useful in such applications as fire detection and photographic processing.

  10. High Energy Single Frequency Resonant Amplifier Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy resonant amplifier for remote sensing. Current state-of-art technologies can not provide all...

  11. Effects of advection on the seasonal abundance patterns of three species of planktonic calanoid copepods in Dabob Bay, Washington

    Science.gov (United States)

    Osgood, Kenric E.; Frost, Bruce W.

    1996-08-01

    The copepodid stage abundances of Calanus marshallae, Calanus pacificus and Metridia pacifica in Dabob Bay, Washington were followed through two years. Based on the species' life histories, vertical distributions, abundances inside and outside the bay, and the hydrographic setting, times when advection was important were explored. During the first study-year, 1973, advection acted to keep the copepod concentrations inside and outside Dabob Bay similar through the early summer. During the summer, a period of very little advective exchange, the copepod concentrations diverged at the two stations. In the fall, when advection picked up again, the copepod concentrations at the two stations once again became similar. During the summer of the other study-year, 1982, flow of deep water into Dabob Bay occurred. This may have caused some of the differences observed in the abundances of the copepods during the summer of 1982 vs 1973. Due in part to the advective events, the seasonal abundance patterns of the copepods could not be predicted based upon their locally expressed life history patterns. The most striking example of this was C. pacificus. Its population decreased during the spring and increased during the fall, despite having its major reproductive peak in the spring. Advective effects clearly contributed to this.

  12. Multiple excitation regenerative amplifier inertial confinement system

    International Nuclear Information System (INIS)

    The invention relates to apparatus and methods for producing high intensity laser radiation generation which is achieved through an optical amplifier-storage ring design. One or two synchronized, counterpropagating laser pulses are injected into a regenerative amplifier cavity and amplified by gain media which are pumped repetitively by electrical or optical means. The gain media excitation pulses are tailored to efficiently amplify the laser pulses during each transit. After the laser pulses have been amplified to the desired intensity level, they are either switched out of the cavity by some switch means, as for example an electro-optical device, for any well known laser end uses, or a target means may be injected into the regenerative amplifier cavity in such a way as to intercept simultaneously the counterpropagating laser pulses. One such well known end uses to which this invention is intended is for production of high density and temperature plasmas suitable for generating neutrons, ions and x-rays and for studying matter heated by high intensity laser radiation

  13. Proposal of Switching Power Amplifier Using Small Capacity Linear Amplifier and LC Filter

    Science.gov (United States)

    Kamada, Jo; Funato, Hirohito; Ogasawara, Satoshi

    The higher efficiency and the low noise in output voltage and current has been required in some applications, i.e. audio-video equipment, medical equipment and so on. This paper proposes a power amplifier in which a PWM inverter is used as a main circuit. In the proposed power amplifier, a hybrid filter composed of a simple and general LC filter and a small capacity linear amplifier is connected to the output of the inverter. The linear amplifier is inserted in series to the filter capacitor to improve the filtering effect of the LC filter. Switching ripples and LC resonances are considerably suppressed by controlling the amplifier using the proposed method and a low distortion switching power amplifier is realized. The effects of the proposal circuit are verified by simulations and experiments. As a result, the proposed circuit achieves low noise about THD=0.68% in simulation and THD=1.7% in experiment.

  14. Numerical Modeling of Deep Mantle Convection: Advection and Diffusion Schemes for Marker Methods

    Science.gov (United States)

    Mulyukova, Elvira; Dabrowski, Marcin; Steinberger, Bernhard

    2013-04-01

    Thermal and chemical evolution of Earth's deep mantle can be studied by modeling vigorous convection in a chemically heterogeneous fluid. Numerical modeling of such a system poses several computational challenges. Dominance of heat advection over the diffusive heat transport, and a negligible amount of chemical diffusion results in sharp gradients of thermal and chemical fields. The exponential dependence of the viscosity of mantle materials on temperature also leads to high gradients of the velocity field. The accuracy of many numerical advection schemes degrades quickly with increasing gradient of the solution, while the computational effort, in terms of the scheme complexity and required resolution, grows. Additional numerical challenges arise due to a large range of length-scales characteristic of a thermochemical convection system with highly variable viscosity. To examplify, the thickness of the stem of a rising thermal plume may be a few percent of the mantle thickness. An even thinner filament of an anomalous material that is entrained by that plume may consitute less than a tenth of a percent of the mantle thickness. We have developed a two-dimensional FEM code to model thermochemical convection in a hollow cylinder domain, with a depth- and temperature-dependent viscosity representative of the mantle (Steinberger and Calderwood, 2006). We use marker-in-cell method for advection of chemical and thermal fields. The main advantage of perfoming advection using markers is absence of numerical diffusion during the advection step, as opposed to the more diffusive field-methods. However, in the common implementation of the marker-methods, the solution of the momentum and energy equations takes place on a computational grid, and nodes do not generally coincide with the positions of the markers. Transferring velocity-, temperature-, and chemistry- information between nodes and markers introduces errors inherent to inter- and extrapolation. In the numerical scheme

  15. A low jitter, low cost, time-of-flight circuit

    Energy Technology Data Exchange (ETDEWEB)

    Cable, M.D.; Derzon, M.S.; Vieira, R.G.; Spracklen, H.P.

    1987-10-01

    A low cost circuit has been developed for use in a neutron time-of-flight spectrometer at the Nova Laser Facility. Using a silicon charged-particle detector, amplifier and constant-fraction discriminator, timing resolution of better than 50 ps FWHM has been achieved. Using an array of many such detectors, very high data rates and precise spectra can be obtained. 3 refs., 2 figs.

  16. Phase mixing versus nonlinear advection in drift-kinetic plasma turbulence

    Science.gov (United States)

    Schekochihin, A. A.; Parker, J. T.; Highcock, E. G.; Dellar, P. J.; Dorland, W.; Hammett, G. W.

    2016-04-01

    > A scaling theory of long-wavelength electrostatic turbulence in a magnetised, weakly collisional plasma (e.g. drift-wave turbulence driven by ion temperature gradients) is proposed, with account taken both of the nonlinear advection of the perturbed particle distribution by fluctuating flows and of its phase mixing, which is caused by the streaming of the particles along the mean magnetic field and, in a linear problem, would lead to Landau damping. It is found that it is possible to construct a consistent theory in which very little free energy leaks into high velocity moments of the distribution function, rendering the turbulent cascade in the energetically relevant part of the wavenumber space essentially fluid-like. The velocity-space spectra of free energy expressed in terms of Hermite-moment orders are steep power laws and so the free-energy content of the phase space does not diverge at infinitesimal collisionality (while it does for a linear problem); collisional heating due to long-wavelength perturbations vanishes in this limit (also in contrast with the linear problem, in which it occurs at the finite rate equal to the Landau damping rate). The ability of the free energy to stay in the low velocity moments of the distribution function is facilitated by the `anti-phase-mixing' effect, whose presence in the nonlinear system is due to the stochastic version of the plasma echo (the advecting velocity couples the phase-mixing and anti-phase-mixing perturbations). The partitioning of the wavenumber space between the (energetically dominant) region where this is the case and the region where linear phase mixing wins its competition with nonlinear advection is governed by the `critical balance' between linear and nonlinear time scales (which for high Hermite moments splits into two thresholds, one demarcating the wavenumber region where phase mixing predominates, the other where plasma echo does).

  17. Java for flight software

    Science.gov (United States)

    Benowitz, E.; Niessner, A.

    2003-01-01

    This work involves developing representative mission-critical spacecraft software using the Real-Time Specification for Java (RTSJ). This work currently leverages actual flight software used in the design of actual flight software in the NASA's Deep Space 1 (DSI), which flew in 1998.

  18. Exploring flight crew behaviour

    Science.gov (United States)

    Helmreich, R. L.

    1987-01-01

    A programme of research into the determinants of flight crew performance in commercial and military aviation is described, along with limitations and advantages associated with the conduct of research in such settings. Preliminary results indicate significant relationships among personality factors, attitudes regarding flight operations, and crew performance. The potential theoretical and applied utility of the research and directions for further research are discussed.

  19. Performance Analysis of high-order remap-type advection scheme on icosahedral-hexagonal grid

    Science.gov (United States)

    Mittal, Rashmi; Dubey, Sarvesh; Saxena, Vaibhav; Meurdesoif, Yann

    2014-05-01

    A comparative performance analysis on computational cost of second order advection schemes FF-CSLAM (Flux form conservative semi-Lagrangian multi-tracer transport scheme) and it's two simplifications on Icosahedral grid has been presented. Tracer transport is one of the main building blocks in atmospheric models and hence their performance greatly determines the overall performance of the model. FF-CSLAM falls in the category of arbitrary Lagrangian Eulerian (ALE) scheme. It exploits the finite volume formulation and therefore it is inherently conservative. Flux-area through edges are approximated with great circle arcs in an upwind fashion. Bi-quadratic sub-grid scale reconstructions using weighted least-squares method is employed to approximate trace field. Area integrals on the overlapped region of flux-area and static Eulerian meshes are evaluated via line-integrals. A brief description of implementation of FF-CSLAM on icosahedral -hexagonal meshes along with and its numerical accuracy in terms of standard test cases will be presented. A comparative analysis of the computational overhead is necessary to assess the suitability of FF-CSLAM for massively parallel and multi-threading computer architectures in comparison to other advection schemes implemented on icosahedral grids. The main focus of this work is to present the implementation of the shared memory parallelization and to describe the memory access pattern of the numerical scheme. FF-CSLAM is a remap-type advection scheme, thus extra calculation are done in comparison to the other advection schemes. The additional computations are associated with the search required to find the overlap area between the area swept through the edge and the underlining grid. But the experiments shows that the associated computational overhead is minimal for multi-tracer transport. It will be shown that for the Courant Number less than one, FF-CSLAM, the computations are not expensive. Since the grid cells are arranged in

  20. Accuracy of spectral and finite difference schemes in 2D advection problems

    DEFF Research Database (Denmark)

    Naulin, V.; Nielsen, A.H.

    2003-01-01

    In this paper we investigate the accuracy of two numerical procedures commonly used to solve 2D advection problems: spectral and finite difference (FD) schemes. These schemes are widely used, simulating, e.g., neutral and plasma flows. FD schemes have long been considered fast, relatively easy...... that the accuracy of FD schemes can be significantly improved if one is careful in choosing an appropriate FD scheme that reflects conservation properties of the nonlinear terms and in setting up the grid in accordance with the problem....

  1. Really TVD advection schemes for the depth-integrated transport equation

    Science.gov (United States)

    Mercier, Ch.; Delhez, E. J. M.

    This paper explores the use of TVD advection schemes to solve the depth-integrated transport equation for tracers in finite volume marine models. Numerical experiments show that the blind application of the usual TVD schemes and associated flux limiters can lead to non-TVD solutions when applied in complex geometries. Spatial and/or temporal variations of the local bathymetry can indeed break the TVD property of the usual schemes. Really TVD schemes can be recovered by taking into account the local depth and its variations in the formulation of the flux limiters. Using this approach, a generalized superbee limiter is introduced and validated.

  2. Variational Integration for Ideal MHD with Built-in Advection Equations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yao [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Qin, Hong [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Burby, J. W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Bhattacharjee, A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2014-08-05

    Newcomb's Lagrangian for ideal MHD in Lagrangian labeling is discretized using discrete exterior calculus. Variational integrators for ideal MHD are derived thereafter. Besides being symplectic and momentum preserving, the schemes inherit built-in advection equations from Newcomb's formulation, and therefore avoid solving them and the accompanying error and dissipation. We implement the method in 2D and show that numerical reconnection does not take place when singular current sheets are present. We then apply it to studying the dynamics of the ideal coalescence instability with multiple islands. The relaxed equilibrium state with embedded current sheets is obtained numerically.

  3. Preconditioned iterative methods for space-time fractional advection-diffusion equations

    Science.gov (United States)

    Zhao, Zhi; Jin, Xiao-Qing; Lin, Matthew M.

    2016-08-01

    In this paper, we propose practical numerical methods for solving a class of initial-boundary value problems of space-time fractional advection-diffusion equations. First, we propose an implicit method based on two-sided Grünwald formulae and discuss its stability and consistency. Then, we develop the preconditioned generalized minimal residual (preconditioned GMRES) method and preconditioned conjugate gradient normal residual (preconditioned CGNR) method with easily constructed preconditioners. Importantly, because resulting systems are Toeplitz-like, fast Fourier transform can be applied to significantly reduce the computational cost. We perform numerical experiments to demonstrate the efficiency of our preconditioners, even in cases with variable coefficients.

  4. The determination of an unknown source for a space fractional advection dispersion equation

    KAUST Repository

    Aldoghaither, Abeer

    2014-09-01

    In this paper, we are interested in the estimation of the source term for a space fractional advection dispersion equation using concentration and flux measurements at final time. An example of application is the identification of contamination source in groundwater transport. We propose to use the socalled modulating functions method which has been introduced for parameters estimation. This method allows to transfer the estimation problem into solving a system of algebraic equations. Numerical examples are given to illustrate the effectiveness and the robustness of the proposed method. Finally, a comparison between a Tikhonov-based optimization method and the modulating functions approach is presented.

  5. 2.5-dimensional solution of the advective accretion disk:a self-similar approach

    Institute of Scientific and Technical Information of China (English)

    Shubhrangshu Ghosh; Banibrata Mukhopadhyay

    2009-01-01

    We provide a 2.5-dimensional solution to a complete set of viscous hydrodynamical equations describing accretion-induced outflows and plausible jets around black holes/compact objects. We prescribe a self-consistent advective disk-outflow coupling model, which explicitly includes the information of vertical flux. Inter-connecting dynamics of an inflow-outflow system essentially upholds the conservation laws. We provide a set of analytical family of solutions through a self-similar approach. The flow parameters of the disk-outflow system depend strongly on the viscosity parameter α and the cooling factor f.

  6. Identifying space-dependent coefficients and the order of fractionality in fractional advection diffusion equation

    CERN Document Server

    Maryshev, Boris; Latrille, Christelle; Néel, Marie-Christine

    2016-01-01

    Tracer tests in natural porous media sometimes show abnormalities that suggest considering a fractional variant of the Advection Diffusion Equation supplemented by a time derivative of non-integer order. We are describing an inverse method for this equation: it finds the order of the fractional derivative and the coefficients that achieve minimum discrepancy between solution and tracer data. Using an adjoint equation divides the computational effort by an amount proportional to the number of freedom degrees, which becomes large when some coefficients depend on space. Method accuracy is checked on synthetical data, and applicability to actual tracer test is demonstrated.

  7. Convergence to a propagating front in a degenerate Fisher-KPP equation with advection

    CERN Document Server

    Alfaro, Matthieu

    2011-01-01

    We consider a Fisher-KPP equation with density-dependent diffusion and advection, arising from a chemotaxis-growth model. We study its behavior as a small parameter, related to the thickness of a diffuse interface, tends to zero. We analyze, for small times, the emergence of transition layers induced by a balance between reaction and drift effects. Then we investigate the propagation of the layers. Convergence to a free-boundary limit problem is proved and a sharp estimate of the thickness of the layers is provided.

  8. Variational integration for ideal magnetohydrodynamics with built-in advection equations

    International Nuclear Information System (INIS)

    Newcomb's Lagrangian for ideal magnetohydrodynamics (MHD) in Lagrangian labeling is discretized using discrete exterior calculus. Variational integrators for ideal MHD are derived thereafter. Besides being symplectic and momentum-preserving, the schemes inherit built-in advection equations from Newcomb's formulation, and therefore avoid solving them and the accompanying error and dissipation. We implement the method in 2D and show that numerical reconnection does not take place when singular current sheets are present. We then apply it to studying the dynamics of the ideal coalescence instability with multiple islands. The relaxed equilibrium state with embedded current sheets is obtained numerically

  9. Chaotic advection at the pore scale: Mechanisms, upscaling and implications for macroscopic transport

    Science.gov (United States)

    Lester, D. R.; Trefry, M. G.; Metcalfe, G.

    2016-11-01

    The macroscopic spreading and mixing of solute plumes in saturated porous media is ultimately controlled by processes operating at the pore scale. Whilst the conventional picture of pore-scale mechanical dispersion and molecular diffusion leading to persistent hydrodynamic dispersion is well accepted, this paradigm is inherently two-dimensional (2D) in nature and neglects important three-dimensional (3D) phenomena. We discuss how the kinematics of steady 3D flow at the pore scale generate chaotic advection-involving exponential stretching and folding of fluid elements-the mechanisms by which it arises and implications of microscopic chaos for macroscopic dispersion and mixing. Prohibited in steady 2D flow due to topological constraints, these phenomena are ubiquitous due to the topological complexity inherent to all 3D porous media. Consequently 3D porous media flows generate profoundly different fluid deformation and mixing processes to those of 2D flow. The interplay of chaotic advection and broad transit time distributions can be incorporated into a continuous-time random walk (CTRW) framework to predict macroscopic solute mixing and spreading. We show how these results may be generalised to real porous architectures via a CTRW model of fluid deformation, leading to stochastic models of macroscopic dispersion and mixing which both honour the pore-scale kinematics and are directly conditioned on the pore-scale architecture.

  10. A high order characteristic discontinuous Galerkin scheme for advection on unstructured meshes

    Science.gov (United States)

    Lee, D.; Lowrie, R.; Petersen, M.; Ringler, T.; Hecht, M.

    2016-11-01

    A new characteristic discontinuous Galerkin (CDG) advection scheme is presented. In contrast to standard discontinuous Galerkin schemes, the test functions themselves follow characteristics in order to ensure conservation and the edges of each element are also traced backwards along characteristics in order to create a swept region, which is integrated in order to determine the mass flux across the edge. Both the accuracy and performance of the scheme are greatly improved by the use of large Courant-Friedrichs-Lewy numbers for a shear flow test case and the scheme is shown to scale sublinearly with the number of tracers being advected, outperforming a standard flux corrected transport scheme for 10 or more tracers with a linear basis. Moreover the CDG scheme may be run to arbitrarily high order spatial accuracy and on unstructured grids, and is shown to give the correct order of error convergence for piecewise linear and quadratic bases on regular quadrilateral and hexahedral planar grids. Using a modal Taylor series basis, the scheme may be made monotone while preserving conservation with the use of a standard slope limiter, although this reduces the formal accuracy of the scheme to first order. The second order scheme is roughly as accurate as the incremental remap scheme with nonlocal gradient reconstruction at half the horizontal resolution. The scheme is being developed for implementation within the Model for Prediction Across Scales (MPAS) Ocean model, an unstructured grid finite volume ocean model.

  11. Effect of advection on variations in zooplankton at a single location near Cabo Nazca, Peru

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S L; Brink, K H; Santander, H; Cowles, T J; Huyer, A

    1980-04-01

    Temporal variations in the biomass and species composition of zooplankton at a single midshelf station in an upwelling area off Peru can be explained to a large extent by onshore-offshore advection in the upper 20 m of the water column. During periods of strong or sustained near-surface onshore flow, peaks in biomass of zooplankton were observed at midshelf and typically oceanic species of copepod were collected. In periods of offshore flow at the surface, a copepod capable of migrating into oxygen-depleted layers deeper than 30 m was collected. A simple translocation model of advection applied to the cross-shelf distribution of Paracalanus parvus suggests that the fluctuations in P. pavus observed in the midshelf time-series were closely related to onshore-offshore flow in the upper 20 m. Fluctuations in abundance of the numerically dominant copepod, Acartia tonsa, were apparently affected by near surface flow also. The population age-structure suggests that A. tonsa was growing at maximal rates, due in part to its positive feeding response to the dinoflagellate/diatom assemblage of phytoplankton.

  12. Space-Time Fractional Diffusion-Advection Equation with Caputo Derivative

    Directory of Open Access Journals (Sweden)

    José Francisco Gómez Aguilar

    2014-01-01

    Full Text Available An alternative construction for the space-time fractional diffusion-advection equation for the sedimentation phenomena is presented. The order of the derivative is considered as 0<β, γ≤1 for the space and time domain, respectively. The fractional derivative of Caputo type is considered. In the spatial case we obtain the fractional solution for the underdamped, undamped, and overdamped case. In the temporal case we show that the concentration has amplitude which exhibits an algebraic decay at asymptotically large times and also shows numerical simulations where both derivatives are taken in simultaneous form. In order that the equation preserves the physical units of the system two auxiliary parameters σx and σt are introduced characterizing the existence of fractional space and time components, respectively. A physical relation between these parameters is reported and the solutions in space-time are given in terms of the Mittag-Leffler function depending on the parameters β and γ. The generalization of the fractional diffusion-advection equation in space-time exhibits anomalous behavior.

  13. An advective-spectral-mixed method for time-dependent many-body Wigner simulations

    CERN Document Server

    Xiong, Yunfeng; Shao, Sihong

    2016-01-01

    As a phase space language for quantum mechanics, the Wigner function approach bears a close analogy to classical mechanics and has been drawing growing attention, especially in simulating quantum many-body systems. However, deterministic numerical solutions have been almost exclusively confined to one-dimensional one-body systems and few results are reported even for one-dimensional two-body problems. This paper serves as the first attempt to solve the time-dependent many-body Wigner equation through a grid-based advective-spectral-mixed method. The main feature of the method is to resolve the linear advection in $(\\bm{x},t)$-space by an explicit three-step characteristic scheme coupled with the piecewise cubic spline interpolation, while the Chebyshev spectral element method in $\\bm k$-space is adopted for accurate calculation of the nonlocal pseudo-differential term. Not only the time step of the resulting method is not restricted by the usual CFL condition and thus a large time step is allowed, but also th...

  14. Modeling of advection-diffusion-reaction processes using transport dissipative particle dynamics

    Science.gov (United States)

    Li, Zhen; Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em

    2015-11-01

    We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. In particular, the transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of Lagrangian particles. To validate the proposed tDPD model and the boundary conditions, three benchmark simulations of one-dimensional diffusion with different boundary conditions are performed, and the results show excellent agreement with the theoretical solutions. Also, two-dimensional simulations of ADR systems are performed and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, an application of tDPD to the spatio-temporal dynamics of blood coagulation involving twenty-five reacting species is performed to demonstrate the promising biological applications of the tDPD model. Supported by the DOE Center on Mathematics for Mesoscopic Modeling of Materials (CM4) and an INCITE grant.

  15. Striped pattern selection by advective reaction-diffusion systems: resilience of banded vegetation on slopes.

    Science.gov (United States)

    Siero, E; Doelman, A; Eppinga, M B; Rademacher, J D M; Rietkerk, M; Siteur, K

    2015-03-01

    For water-limited arid ecosystems, where water distribution and infiltration play a vital role, various models have been set up to explain vegetation patterning. On sloped terrains, vegetation aligned in bands has been observed ubiquitously. In this paper, we consider the appearance, stability, and bifurcations of 2D striped or banded patterns in an arid ecosystem model. We numerically show that the resilience of the vegetation bands is larger on steeper slopes by computing the stability regions (Busse balloons) of striped patterns with respect to 1D and transverse 2D perturbations. This is corroborated by numerical simulations with a slowly decreasing water input parameter. Here, long wavelength striped patterns are unstable against transverse perturbations, which we also rigorously prove on flat ground through an Evans function approach. In addition, we prove a "Squire theorem" for a class of two-component reaction-advection-diffusion systems that includes our model, showing that the onset of pattern formation in 2D is due to 1D instabilities in the direction of advection, which naturally leads to striped patterns. PMID:25833449

  16. Energetics of lateral eddy diffusion/advection:Part I. Thermodynamics and energetics of vertical eddy diffusion

    Institute of Scientific and Technical Information of China (English)

    HUANG Rui Xin

    2014-01-01

    Two important nonlinear properties of seawater thermodynamics linked to changes of water density, cab-beling and elasticity (compressibility), are discussed. Eddy diffusion and advection lead to changes in den-sity;as a result, gravitational potential energy of the system is changed. Therefore, cabbeling and elasticity play key roles in the energetics of lateral eddy diffusion and advection. Vertical eddy diffusion is one of the key elements in the mechanical energy balance of the global oceans. Vertical eddy diffusion can be con-ceptually separated into two steps:stirring and subscale diffusion. Vertical eddy stirring pushes cold/dense water upward and warm/light water downward;thus, gravitational potential energy is increased. During the second steps, water masses from different places mix through subscale diffusion, and water density is increased due to cabbeling. Using WOA01 climatology and assuming the vertical eddy diffusivity is equal to a constant value of 2×103 Pa2/s, the total amount of gravitational potential energy increase due to vertical stirring in the world oceans is estimated at 263 GW. Cabbeling associated with vertical subscale diffusion is a sink of gravitational potential energy, and the total value of energy lost is estimated at 73 GW. Therefore, the net source of gravitational potential energy due to vertical eddy diffusion for the world oceans is estimated at 189 GW.

  17. Optimizing zonal advection of the Advanced Research WRF (ARW) dynamics for Intel MIC

    Science.gov (United States)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2014-10-01

    The Weather Research and Forecast (WRF) model is the most widely used community weather forecast and research model in the world. There are two distinct varieties of WRF. The Advanced Research WRF (ARW) is an experimental, advanced research version featuring very high resolution. The WRF Nonhydrostatic Mesoscale Model (WRF-NMM) has been designed for forecasting operations. WRF consists of dynamics code and several physics modules. The WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations. In the paper, we will use Intel Intel Many Integrated Core (MIC) architecture to substantially increase the performance of a zonal advection subroutine for optimization. It is of the most time consuming routines in the ARW dynamics core. Advection advances the explicit perturbation horizontal momentum equations by adding in the large-timestep tendency along with the small timestep pressure gradient tendency. We will describe the challenges we met during the development of a high-speed dynamics code subroutine for MIC architecture. Furthermore, lessons learned from the code optimization process will be discussed. The results show that the optimizations improved performance of the original code on Xeon Phi 5110P by a factor of 2.4x.

  18. Magnesium and Space Flight

    Science.gov (United States)

    Smith, Scott M.; Zwart, Sara R.

    2016-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in astronauts before, during, and after space missions, in 43 astronauts (34 male, 9 female) on 4-6 month space flight missions. We also studied individuals participating in a ground analog of space flight, (head-down tilt bed rest, n=27, 35 +/- 7 y). We evaluated serum concentration and 24-hour urinary excretion of magnesium along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-d space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4- to 6-month space missions.

  19. High power, high beam quality regenerative amplifier

    Science.gov (United States)

    Hackel, L.A.; Dane, C.B.

    1993-08-24

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  20. The OPTHER Project: Progress toward the THz Amplifier

    DEFF Research Database (Denmark)

    Paoloni, C; Brunetti, F; Di Carlo, A;

    2011-01-01

    This paper describes the status of the OPTHER (OPtically driven TeraHertz AmplifiERs) project and progress toward the THz amplifier realization. This project represents a considerable advancement in the field of high frequency amplification. The design and realization of a THz amplifier within th...

  1. Design Of A Doherty Power Amplifier For GSM Systems

    Directory of Open Access Journals (Sweden)

    Saad Wasmi Osman

    2013-04-01

    Full Text Available This paper presents the design and analysis of Doherty power amplifier. The Doherty amplifier is used in  a base station for mobile system because of its high efficiency. The class AB power amplifier used in the configuration of the main and auxiliary amplifier. The result obtained shows that the Doherty power amplifier can be used on a wide band spectrum, the amplifier works at 900MHz and has very good power added efficiency (PAE and gain. The amplifier can also work at 1800MHz at input power greater than 20dBm. 

  2. The Electron Beam Semiconductor (EBS) amplifier

    Science.gov (United States)

    True, R. M.; Baxendale, J. F.

    1980-07-01

    The Electron Beam Semiconductor (EBS) concept has existed for three decades; but only within the last decade has an active, well-defined program been underway to develop devices that can operate as high-power radio frequency(RF) amplifiers, fast risetime switches, and current and voltage pulse amplifiers. This report discusses the test procedures, data and results of reliability testing of RF and video pulse EBS amplifiers at Electronics Research and Development Command (ERADCOM), Fort Monmouth, New Jersey. Also, the experimental analysis of the series connected diode EBS device is described in detail. Finally, the report concludes with a discussion of the state-of-the-art of EBS and future trends of the technology.

  3. Wideband pulse amplifiers for the NECTAr chip

    Energy Technology Data Exchange (ETDEWEB)

    Sanuy, A., E-mail: asanuy@ecm.ub.es [Dept. AM i Dept. ECM, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); Delagnes, E. [IRFU/DSM/CEA, CE-Saclay, Bat. 141 SEN Saclay, F-91191, Gif-sur-Yvette (France); Gascon, D. [Dept. AM i Dept. ECM, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); Sieiro, X. [Departament d' Electronica, Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); Bolmont, J.; Corona, P. [LPNHE, Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Barre 12-22, 1er etage, 4 place Jussieu, 75252 Paris (France); Feinstein, F. [LUPM, Universite Montpellier II and IN2P3/CNRS, CC072, bat. 13, place Eugene Bataillon, 34095 Montpellier (France); Glicenstein, J-F. [IRFU/DSM/CEA, CE-Saclay, Bat. 141 SEN Saclay, F-91191, Gif-sur-Yvette (France); Naumann, C.L.; Nayman, P. [LPNHE, Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Barre 12-22, 1er etage, 4 place Jussieu, 75252 Paris (France); Ribo, M. [Dept. AM i Dept. ECM, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); and others

    2012-12-11

    The NECTAr collaboration's FE option for the camera of the CTA is a 16 bits and 1-3 GS/s sampling chip based on analog memories including most of the readout functions. This works describes the input amplifiers of the NECTAr ASIC. A fully differential wideband amplifier, with voltage gain up to 20 V/V and a BW of 400 MHz. As it is impossible to design a fully differential OpAmp with an 8 GHz GBW product in a 0.35 CMOS technology, an alternative implementation based on HF linearized transconductors is explored. The output buffer is a class AB miller operational amplifier, with special non-linear current boost.

  4. An automated test facility for neutronic amplifiers

    International Nuclear Information System (INIS)

    Neutronic amplifiers are used at the Chalk River Laboratory in applications such as neutron flux monitoring and reactor control systems. Routine preventive maintenance of control and safety systems included annual calibration and characterization of the neutronic amplifiers. An investigation into the traditional methods of annual routine maintenance of amplifiers concluded that frequency and phase response measurements in particular were labour intensive and subject to non-repeatable errors. A decision was made to upgrade testing methods and facilities by using programmable test equipment under the control of a computer. In order to verify the results of the routine measurements, expressions for the transfer functions were derived from the circuit diagrams. Frequency and phase responses were then calculated and plotted thus providing a bench-mark to which the test results can be compared. (author)

  5. Study of a model for correcting the effects of horizontal advection on surface fluxes measurement based on remote sensing

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    <正>As well known, the methods of remote sensing and Bowen Ratio for retrieving surface flux are based on energy balance closure; however, in most cases, surface energy observed in experiment is lack of closure. There are two main causes for this: one is from the errors of the observation devices and the differences of their observational scale; the other lies in the effect of horizontal advection on the surface flux measurement. Therefore, it is very important to estimate the effects of horizontal advection quantitatively. Based on the local advection theory and the surface experiment, a model has been proposed for correcting the effect of horizontal advection on surface flux measurement, in which the relationship between the fetch of the measurement and pixel size for remote sensed data was considered. By means of numerical simulations, the sensitivities of the main parameters in the model and the scaling problems of horizontal advection were analyzed. At last, by using the observational data acquired in agricultural field with relatively homogeneous surface, the model was validated.

  6. Linear Amplifier Model for Optomechanical Systems

    CERN Document Server

    Botter, Thierry; Brahms, Nathan; Schreppler, Sydney; Stamper-Kurn, Dan M

    2011-01-01

    We model optomechanical systems as linear optical amplifiers. This provides a unified treatment of diverse optomechanical phenomena. We emphasize, in particular, the relationship between ponderomotive squeezing and optomechanically induced transparency, two foci of current research. We characterize the amplifier response to quantum and deliberately applied fluctuations, both optical and mechanical. Further, we apply these results to establish quantum limits on external force sensing both on and off cavity resonance. We find that the maximum sensitivity attained on resonance constitutes an absolute upper limit, not surpassed when detuning off cavity resonance. The theory can be extended to a two-sided cavity with losses and limited detection efficiency.

  7. Operational amplifier circuits analysis and design

    CERN Document Server

    Nelson, J C C

    1995-01-01

    This book, a revised and updated version of the author's Basic Operational Amplifiers (Butterworths 1986), enables the non-specialist to make effective use of readily available integrated circuit operational amplifiers for a range of applications, including instrumentation, signal generation and processing.It is assumed the reader has a background in the basic techniques of circuit analysis, particularly the use of j notation for reactive circuits, with a corresponding level of mathematical ability. The underlying theory is explained with sufficient but not excessive, detail. A range of compu

  8. Predistortion of a Bidirectional Cuk Audio Amplifier

    DEFF Research Database (Denmark)

    Birch, Thomas Hagen; Nielsen, Dennis; Knott, Arnold;

    2014-01-01

    Some non-linear amplifier topologies are capable of providing a larger voltage gain than one from a DC source, which could make them suitable for various applications. However, the non-linearities introduce a significant amount of harmonic distortion (THD). Some of this distortion could be reduced...... using predistortion. This paper suggests linearizing a nonlinear bidirectional Cuk audio amplifier using an analog predistortion approach. A prototype power stage was built and results show that a voltage gain of up to 9 dB and reduction in THD from 6% down to 3% was obtainable using this approach....

  9. Beyond nonlinear saturation of backward Raman amplifiers

    Science.gov (United States)

    Barth, Ido; Toroker, Zeev; Balakin, Alexey A.; Fisch, Nathaniel J.

    2016-06-01

    Backward Raman amplification is limited by relativistic nonlinear dephasing resulting in saturation of the leading spike of the amplified pulse. Pump detuning is employed to mitigate the relativistic phase mismatch and to overcome the associated saturation. The amplified pulse can then be reshaped into a monospike pulse with little precursory power ahead of it, with the maximum intensity increasing by a factor of two. This detuning can be employed advantageously both in regimes where the group velocity dispersion is unimportant and where the dispersion is important but small.

  10. Optimization of Pr3+:ZBLAN fiber amplifiers

    DEFF Research Database (Denmark)

    Pedersen, B.; Miniscalco, J. W.; Quimby, R. S.

    1992-01-01

    Experimental parameters have been measured and used in a quantitative model of Pr3+-doped fluorozirconate fiber amplifiers. The optimum cutoff wavelength was determined to be 800 nm and the gain for 400 mW of pump was found to increase from 12 to 34 dB if the NA was increased from 0.15 to 0.......25. Lengthening the metastable state lifetime from 110 to 300 μs would significantly improve amplifier performance while concentration quenching can appreciably degrade it...

  11. Flight Systems Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project will develop the Flight System Monitor which will use non-intrusive electrical monitoring (NEMO). The electronic system health of...

  12. INSECT FLIGHT - BIOACOUSTICAL APPROACH

    OpenAIRE

    Gopala Krishna, G.; Krishna Shankar, B.; Ahmad, A.

    1990-01-01

    Insect aerodynamics is drawing the attention of a number of researchers belonging to different disciplines with a view to understand its aerodynamic capabilities so as to revolutionise the aircraft technology. It is possible to understand, to some extent, the insect aerodynamics by experimentally determining the frequency of wing beat in its fethered state of flight by using flight sound technique and computing rate of mass flow, velocity, acceleration and mass of air induced in downward dire...

  13. Flight Crew Scheduling

    OpenAIRE

    Graves, Glenn W.; Richard D. McBride; Ira Gershkoff; Diane Anderson; Deepa Mahidhara

    1993-01-01

    A new crew scheduling optimization system has been developed for United Airlines. The system was developed to permit quick response to schedule changes and to reduce crew scheduling costs. It was designed to work efficiently for both the medium sized problems (300 flights daily) and the very large problems (1,700 flights daily) that United must solve. The system has two main components, a generator and an optimizer. The generator creates pairings (candidate crew trips) which are fed as variab...

  14. Adaptive structures flight experiments

    Science.gov (United States)

    Martin, Maurice

    The topics are presented in viewgraph form and include the following: adaptive structures flight experiments; enhanced resolution using active vibration suppression; Advanced Controls Technology Experiment (ACTEX); ACTEX program status; ACTEX-2; ACTEX-2 program status; modular control patch; STRV-1b Cryocooler Vibration Suppression Experiment; STRV-1b program status; Precision Optical Bench Experiment (PROBE); Clementine Spacecraft Configuration; TECHSAT all-composite spacecraft; Inexpensive Structures and Materials Flight Experiment (INFLEX); and INFLEX program status.

  15. Differential patterns of divergence in ocean drifters: Implications for larval flatfish advection and recruitment

    Science.gov (United States)

    Wilderbuer, Thomas; Duffy-Anderson, Janet T.; Stabeno, Phyllis; Hermann, Albert

    2016-05-01

    In an effort to better understand the physics of the eastern Bering Sea shelf current as it relates to flatfish advection to favorable near-shore areas, sets of multiple, satellite-tracked, oceanic drifters were released in 2010, 2012 and 2013. The release sites and dates were chosen to coincide with known spawning locations for northern rock sole (Lepidopsetta polyxystra) and known time of larval emergence. The drifters were drogued 5-each at 20 and 40 m in 2010 and 2012, and 4 at 40 m and 2 at 20 m in 2013. The locations of drifters were used to calculate divergence over a 90-day period that corresponds to the larval pelagic duration of Bering Sea shelf northern rock sole. Results indicate that there are alternating periods of positive and negative divergence with an overall trend toward drifter separation after 90 days, roughly the end of the rock sole planktonic larval period. Examination of the drifter behavior at the hourly scale indicates that semi-daily tidal forcing is the primary mechanism of drifter divergence and convergence. Field observations of early-stage northern rock sole larval distributions over the same period indicate that predominant oceanographic advection is northerly over the continental shelf among preflexion stages, though juveniles are predominantly found in nursery areas located ~ 400 km eastward and inshore. Evidence from drifter deployments suggests that behavioral movements during the postflexion and early juvenile larval phases that optimize eastward periodicity of tidal cycles is a viable mechanism to enhance eastward movement of northern rock sole larvae to favorable nursery grounds. A regional ocean modeling system (ROMS) was implemented to track the different rates of dispersion in simulations both with and without tidal forcing, and was used to estimate effective horizontal eddy diffusion in the case of both isobaric (fixed-depth) and Lagrangian (neutrally buoyant) particles. The addition of tidal forcing had a pronounced

  16. Developing a modified SEBAL algorithm that is responsive to advection by using limited weather data

    Science.gov (United States)

    Mkhwanazi, Mcebisi

    The use of Remote Sensing ET algorithms in water management, especially for agricultural purposes is increasing, and there are more models being introduced. The Surface Energy Balance Algorithm for Land (SEBAL) and its variant, Mapping Evapotranspiration with Internalized Calibration (METRIC) are some of the models that are being widely used. While SEBAL has several advantages over other RS models, including that it does not require prior knowledge of soil, crop and other ground details, it has the downside of underestimating evapotranspiration (ET) on days when there is advection, which may be in most cases in arid and semi-arid areas. METRIC, however has been modified to be able to account for advection, but in doing so it requires hourly weather data. In most developing countries, while accurate estimates of ET are required, the weather data necessary to use METRIC may not be available. This research therefore was meant to develop a modified version of SEBAL that would require minimal weather data that may be available in these areas, and still estimate ET accurately. The data that were used to develop this model were minimum and maximum temperatures, wind data, preferably the run of wind in the afternoon, and wet bulb temperature. These were used to quantify the advected energy that would increase ET in the field. This was a two-step process; the first was developing the model for standard conditions, which was described as a healthy cover of alfalfa, 40-60 cm tall and not short of water. Under standard conditions, when estimated ET using modified SEBAL was compared with lysimeter-measured ET, the modified SEBAL model had a Mean Bias Error (MBE) of 2.2 % compared to -17.1 % from the original SEBAL. The Root Mean Square Error (RMSE) was lower for the modified SEBAL model at 10.9 % compared to 25.1 % for the original SEBAL. The modified SEBAL model, developed on an alfalfa field in Rocky Ford, was then tested on other crops; beans and wheat. It was also tested on

  17. Advection from the North Atlantic as the Forcing of Winter Greenhouse Effect Over Europe

    Science.gov (United States)

    Otterman, J.; Angell, J.; Atlas, R.; Bungato, D.; Shubert, S.; Starr, David OC.; Susskind, J.; Wu, M.-L. C.

    2002-01-01

    In winter, large interannual fluctuations in the surface temperature are observed over central Europe. Comparing warm February 1990 with cold February 1996, a satellite-retrieved surface (skin) temperature difference of 9.8 K is observed for the region 50-60 degrees N; 5-35 degrees E. Previous studies show that advection from the North Atlantic constitutes the forcing to such fluctuations. The advection is quantified by Index I(sub na), the average of the ocean-surface wind speed over the eastern North Atlantic when the direction is from the southwest (when the wind is from another direction, it counts as a zero speed to the average). Average I(sub na) for February 1990 was 10.6 m/s, but for February 1996 I(sub na) was only 2.4 m/s. A large value of I(sub na) means a strong southwesterly flow which brings warm and moist air into central Europe at low level, producing a steeper tropospheric lapse rate. Strong ascending motions at 700 mb are observed in association with the occurrence of enhanced warm, moist advection from the ocean in February 1990 producing clouds and precipitation. Total precipitable water and cloud-cover fraction have larger values in February 1990 than in 1996. The difference in the greenhouse effect between these two scenarios, this reduction in heat loss to space, can be translated into a virtual radiative heating of 2.6 W/square m above the February 1990 surface/atmosphere system, which contributes to a warming of the surface on the order of 2.6 K. Accepting this estimate as quantitatively meaningful, we evaluate the direct effect, the rise in the surface temperature in Europe as a result of maritime-air inflow, as 7.2 K (9.8 K-2.6 K). Thus, fractional reinforcement by the greenhouse effect is 2.6/7.2, or 36%, a substantial positive feedback.

  18. Magnesium and Space Flight.

    Science.gov (United States)

    Smith, Scott M; Zwart, Sara R

    2015-12-08

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4-6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4-6-month space missions.

  19. Interprofessional Flight Camp.

    Science.gov (United States)

    Alfes, Celeste M; Rowe, Amanda S

    2016-01-01

    The Dorothy Ebersbach Academic Center for Flight Nursing in Cleveland, OH, holds an annual flight camp designed for master's degree nursing students in the acute care nurse practitioner program, subspecializing in flight nursing at the Frances Payne Bolton School of Nursing at Case Western Reserve University. The weeklong interprofessional training is also open to any health care provider working in an acute care setting and focuses on critical care updates, trauma, and emergency care within the critical care transport environment. This year, 29 graduate nursing students enrolled in a master's degree program from Puerto Rico attended. Although the emergency department in Puerto Rico sees and cares for trauma patients, there is no formal trauma training program. Furthermore, the country only has 1 rotor wing air medical transport service located at the Puerto Rico Medical Center in San Juan. Flight faculty and graduate teaching assistants spent approximately 9 months planning for their participation in our 13th annual flight camp. Students from Puerto Rico were extremely pleased with the learning experiences at camp and expressed particular interest in having more training time within the helicopter flight simulator.

  20. Magnesium and Space Flight

    Directory of Open Access Journals (Sweden)

    Scott M. Smith

    2015-12-01

    Full Text Available Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female, 35 ± 7 years old. We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions.

  1. Study of Accretion processes Around Black Holes becomes Science: Tell Tale Observational Signatures of Two Component Advective Flows

    CERN Document Server

    Chakrabarti, Sandip K

    2016-01-01

    An accretion flow around a black hole has a saddle type sonic point just outside the event horizon to guarantee that the flow enters the black hole supersonically. This feature exclusively present in strong gravity limit makes its marks in every observation of black hole candidates. Another physical sonic point is present (as in a Bondi flow) even in weak gravity. Every aspect of spectral or temporal properties of every black hole can be understood using this transonic or advective flow having more than one saddle type points. This most well known and generalized solution with viscosity and radiative transfer has been verified by numerical simulations also. Spectra, computed for various combinations of the standard Keplerian, and advective sub-Keplerian components match accurately with those from satellite observations. Standing, oscillating and propagatory oscillating shocks are produced due to centrifugal barrier of the advective component. The post-shock region acts as the Compton cloud producing the power...

  2. Preconditioned time-difference methods for advection-diffusion-reaction equations

    Energy Technology Data Exchange (ETDEWEB)

    Aro, C.; Rodrigue, G. [Lawrence Livermore National Lab., CA (United States); Wolitzer, D. [California State Univ., Hayward, CA (United States)

    1994-12-31

    Explicit time differencing methods for solving differential equations are advantageous in that they are easy to implement on a computer and are intrinsically very parallel. The disadvantage of explicit methods is the severe restrictions placed on stepsize due to stability. Stability bounds for explicit time differencing methods on advection-diffusion-reaction problems are generally quite severe and implicit methods are used instead. The linear systems arising from these implicit methods are large and sparse so that iterative methods must be used to solve them. In this paper the authors develop a methodology for increasing the stability bounds of standard explicit finite differencing methods by combining explicit methods, implicit methods, and iterative methods in a novel way to generate new time-difference schemes, called preconditioned time-difference methods.

  3. Numerical Identification of Multiparameters in the Space Fractional Advection Dispersion Equation by Final Observations

    Directory of Open Access Journals (Sweden)

    Dali Zhang

    2012-01-01

    Full Text Available This paper deals with an inverse problem for identifying multiparameters in 1D space fractional advection dispersion equation (FADE on a finite domain with final observations. The parameters to be identified are the fractional order, the diffusion coefficient, and the average velocity in the FADE. The forward problem is solved by a finite difference scheme, and then an optimal perturbation regularization algorithm is introduced to determine the three parameters simultaneously. Numerical inversions are performed both with the accurate data and noisy data, and several factors having influences on realization of the algorithm are discussed. The inversion solutions are in good approximations to the exact solutions demonstrating the efficiency of the proposed algorithm.

  4. Advection and diffusion in random media implications for sea surface temperature anomalies

    CERN Document Server

    Piterbarg, Leonid I

    1997-01-01

    The book presents the foundations of the theory of turbulent transport within the context of stochastic partial differential equations. It serves to establish a firm connection between rigorous and non-rigorous results concerning turbulent diffusion. Mathematically all of the issues addressed in this book are concentrated around a single linear equation: stochastic advection-diffusion (transport) equation. There is no attempt made to derive universal statistics for turbulent flow. Instead emphasis is placed on a statistical description of a passive scalar (tracer) under given velocity statistics. An application concerning transport of sea surface temperature anomalies reconciles the developed theory and a highly practical issue of modern physical oceanography by using the newly designed inversion techniques which take advantage of powerful maximum likelihood and autoregressive estimators. Audience: Graduate students and researchers in mathematics, fluid dynamics, and physical oceanography.

  5. Analytical Solutions of a Fractional Diffusion-advection Equation for Solar Cosmic-Ray Transport

    Science.gov (United States)

    Litvinenko, Yuri E.; Effenberger, Frederic

    2014-12-01

    Motivated by recent applications of superdiffusive transport models to shock-accelerated particle distributions in the heliosphere, we analytically solve a one-dimensional fractional diffusion-advection equation for the particle density. We derive an exact Fourier transform solution, simplify it in a weak diffusion approximation, and compare the new solution with previously available analytical results and with a semi-numerical solution based on a Fourier series expansion. We apply the results to the problem of describing the transport of energetic particles, accelerated at a traveling heliospheric shock. Our analysis shows that significant errors may result from assuming an infinite initial distance between the shock and the observer. We argue that the shock travel time should be a parameter of a realistic superdiffusive transport model.

  6. Analytical solutions of a fractional diffusion-advection equation for solar cosmic-ray transport

    CERN Document Server

    Litvinenko, Yuri E

    2014-01-01

    Motivated by recent applications of superdiffusive transport models to shock-accelerated particle distributions in the heliosphere, we solve analytically a one-dimensional fractional diffusion-advection equation for the particle density. We derive an exact Fourier transform solution, simplify it in a weak diffusion approximation, and compare the new solution with previously available analytical results and with a semi-numerical solution based on a Fourier series expansion. We apply the results to the problem of describing the transport of energetic particles, accelerated at a traveling heliospheric shock. Our analysis shows that significant errors may result from assuming an infinite initial distance between the shock and the observer. We argue that the shock travel time should be a parameter of a realistic superdiffusive transport model.

  7. Advection of pollutants by internal solitary waves in oceanic and atmospheric stable stratifications

    Directory of Open Access Journals (Sweden)

    G. W. Haarlemmer

    1998-01-01

    Full Text Available When a pollutant is released into the ocean or atmosphere under turbulent conditions, even a steady release is captured by large eddies resulting in localized patches of high concentration of the pollutant. If such a cloud of pollutant subsequently enters a stable stratification-either a pycnocline or thermocline-then internal waves are excited. Since large solitary internal waves have a recirculating core, pollutants may be trapped in the sclitary wave, and advected large distances through the waveguide provided by the stratification. This paper addresses the mechanisms, through computer and physical simulation, by which a localized release of a dense pollutant results in solitary waves that trap the pollutant or disperse the pollutant faster than in the absence of the waves.

  8. A conservative orbital advection scheme for simulations of magnetized shear flows with the PLUTO code

    CERN Document Server

    Mignone, A; Stute, M; Kolb, S M; Muscianisi, G

    2012-01-01

    Explicit numerical computations of super-fast differentially rotating disks are subject to the time-step constraint imposed by the Courant condition. When the bulk orbital velocity largely exceeds any other wave speed the time step is considerably reduced and a large number of steps may be necessary to complete the computation. We present a robust numerical scheme to overcome the Courant limitation by extending the algorithm previously known as FARGO (Fast Advection in Rotating Gaseous Objects) to the equations of magnetohydrodynamics (MHD). The proposed scheme conserves total angular momentum and energy to machine precision and works in Cartesian, cylindrical, or spherical coordinates. The algorithm is implemented in the PLUTO code for astrophysical gasdynamics and is suitable for local or global simulations of accretion or proto-planetary disk models. By decomposing the total velocity into an average azimuthal contribution and a residual term, the algorithm solves the MHD equations through a linear transpor...

  9. Advection Dominated Accretion Flows in the Kerr Metric; 1, Basic Equations

    CERN Document Server

    Gammie, C F; Gammie, Charles F.; Popham, Robert

    1997-01-01

    We write down and solve equations describing steady state, optically thin, advection-dominated accretion onto a Kerr black hole. The mean flow, described by the relativistic fluid equations, is axisymmetric and vertically averaged. The effect of turbulence in the flow is represented by a viscous shear stress. Our treatment differs in several important ways from earlier work: we use a causal prescription for the shear stress, we do not assume the relativistic enthalpy is unity (this is important for rapidly rotating holes), and we use a relativistic equation of state. We present several representative solutions and use them to evaluate the importance of relativistic effects, to check our approximations, and to evaluate the robustness of the input physics. Detailed properties of the solutions are described in an accompanying paper.

  10. Moments Preserving and high-resolution Semi-Lagrangian Advection Scheme

    CERN Document Server

    Becerra-Sagredo, Julián; Mandujano, Francisco

    2014-01-01

    We present a forward semi-Lagrangian numerical method for systems of transport equations able to advect smooth and discontinuous fields with high-order accuracy. The numerical scheme is composed of an integration of the transport equations along the trajectory of material elements in a moving grid and a reconstruction of the fields in a reference regular mesh using a non-linear mapping and adaptive moment-preserving interpolations. The non-linear mapping allows for the arbitrary deformation of material elements. Additionally, interpolations can represent discontinuous fields using adaptive-order interpolation near jumps detected with a slope-limiter function. Due to the large number of operations during the interpolations, a serial implementation of this scheme is computationally expensive. The scheme has been accelerated in many-core parallel architectures using a thread per grid node and parallel data gathers. We present a series of tests that prove the scheme to be an attractive option for simulating advec...

  11. Temporal signatures of advective versus diffusive radon transport at a geothermal zone in Central Nepal

    Energy Technology Data Exchange (ETDEWEB)

    Richon, Patrick, E-mail: patrick.richon@cea.f [CEA, DAM, DIF, F-91297 Arpajon (France); Equipe Geologie des Systemes Volcaniques, Institut de Physique du Globe, 1 rue Jussieu, F-75238 Paris cedex 05 (France); Universite Paris Diderot, Sorbonne Paris Cite (France); Perrier, Frederic [Equipe de Geomagnetisme, Institut de Physique du Globe, 1 rue Jussieu, F-75238 Paris cedex 05 (France); Universite Paris Diderot, Sorbonne Paris Cite (France), CNRS (UMR 7154) (France); Koirala, Bharat Prasad [National Seismological Centre, Department of Mines and Geology, Lainchaur, Kathmandu (Nepal); Girault, Frederic [Equipe de Geomagnetisme, Institut de Physique du Globe, 1 rue Jussieu, F-75238 Paris cedex 05 (France); Universite Paris Diderot, Sorbonne Paris Cite (France), CNRS (UMR 7154) (France); Bhattarai, Mukunda; Sapkota, Soma Nath [National Seismological Centre, Department of Mines and Geology, Lainchaur, Kathmandu (Nepal)

    2011-02-15

    Temporal variation of radon-222 concentration was studied at the Syabru-Bensi hot springs, located on the Main Central Thrust zone in Central Nepal. This site is characterized by several carbon dioxide discharges having maximum fluxes larger than 10 kg m{sup -2} d{sup -1}. Radon concentration was monitored with autonomous Barasol{sup TM} probes between January 2008 and November 2009 in two small natural cavities with high CO{sub 2} concentration and at six locations in the soil: four points having a high flux, and two background reference points. At the reference points, dominated by radon diffusion, radon concentration was stable from January to May, with mean values of 22 {+-} 6.9 and 37 {+-} 5.5 kBq m{sup -3}, but was affected by a large increase, of about a factor of 2 and 1.6, respectively, during the monsoon season from June to September. At the points dominated by CO{sub 2} advection, by contrast, radon concentration showed higher mean values 39.0 {+-} 2.6 to 78 {+-} 1.4 kBq m{sup -3}, remarkably stable throughout the year with small long-term variation, including a possible modulation of period around 6 months. A significant difference between the diffusion dominated reference points and the advection-dominated points also emerged when studying the diurnal S{sub 1} and semi-diurnal S{sub 2} periodic components. At the advection-dominated points, radon concentration did not exhibit S{sub 1} or S{sub 2} components. At the reference points, however, the S{sub 2} component, associated with barometric tide, could be identified during the dry season, but only when the probe was installed at shallow depth. The S{sub 1} component, associated with thermal and possibly barometric diurnal forcing, was systematically observed, especially during monsoon season. The remarkable short-term and long-term temporal stability of the radon concentration at the advection-dominated points, which suggests a strong pressure source at depth, may be an important asset to detect

  12. Numerical calculation of tidal current with UTOPIA scheme for advection and application to Osaka Bay

    Science.gov (United States)

    Komoda, Jun; Matsuyama, Masaji

    UTOPIA scheme was applied to advection term for the numerical calculation of tide and tidal current to reproduce the strong tidal current realistically. Numerical model is constructed by boundary-fitted coordinate method vertically using Arakawa A grid in space. The new method is designed to suppress a numerical oscillation usually induced by Arakawa A grid. UTOPIA scheme was confirmed to be suitable to express a strong current around complicated topography. This model was applied to the tidal calculation for M2 constituent in Osaka Bay with two narrow straits, i.e., Akashi and Tomogashima straits. The tidal currents obtained in this model agree with them observed at monitoring stations, and the four eddies in the bay were also reproduced as the residual currents, i.e., tide induced transient eddy (TITE). The generation, growth and lifetime of the eddies also were investigated.

  13. Multiscale numerical methods for passive advection-diffusion in incompressible turbulent flow fields

    Science.gov (United States)

    Lee, Yoonsang; Engquist, Bjorn

    2016-07-01

    We propose a seamless multiscale method which approximates the macroscopic behavior of the passive advection-diffusion equations with steady incompressible velocity fields with multi-spatial scales. The method uses decompositions of the velocity fields in the Fourier space, which are similar to the decomposition in large eddy simulations. It also uses a hierarchy of local domains with different resolutions as in multigrid methods. The effective diffusivity from finer scale is used for the next coarser level computation and this process is repeated up to the coarsest scale of interest. The grids are only in local domains whose sizes decrease depending on the resolution level so that the overall computational complexity increases linearly as the number of different resolution grids increases. The method captures interactions between finer and coarser scales but has to sacrifice some of interactions between different scales. The proposed method is numerically tested with 2D examples including a successful approximation to a continuous spectrum flow.

  14. A self-organizing Lagrangian particle method for adaptive-resolution advection-diffusion simulations

    Science.gov (United States)

    Reboux, Sylvain; Schrader, Birte; Sbalzarini, Ivo F.

    2012-05-01

    We present a novel adaptive-resolution particle method for continuous parabolic problems. In this method, particles self-organize in order to adapt to local resolution requirements. This is achieved by pseudo forces that are designed so as to guarantee that the solution is always well sampled and that no holes or clusters develop in the particle distribution. The particle sizes are locally adapted to the length scale of the solution. Differential operators are consistently evaluated on the evolving set of irregularly distributed particles of varying sizes using discretization-corrected operators. The method does not rely on any global transforms or mapping functions. After presenting the method and its error analysis, we demonstrate its capabilities and limitations on a set of two- and three-dimensional benchmark problems. These include advection-diffusion, the Burgers equation, the Buckley-Leverett five-spot problem, and curvature-driven level-set surface refinement.

  15. Temporal signatures of advective versus diffusive radon transport at a geothermal zone in Central Nepal

    International Nuclear Information System (INIS)

    Temporal variation of radon-222 concentration was studied at the Syabru-Bensi hot springs, located on the Main Central Thrust zone in Central Nepal. This site is characterized by several carbon dioxide discharges having maximum fluxes larger than 10 kg m-2 d-1. Radon concentration was monitored with autonomous BarasolTM probes between January 2008 and November 2009 in two small natural cavities with high CO2 concentration and at six locations in the soil: four points having a high flux, and two background reference points. At the reference points, dominated by radon diffusion, radon concentration was stable from January to May, with mean values of 22 ± 6.9 and 37 ± 5.5 kBq m-3, but was affected by a large increase, of about a factor of 2 and 1.6, respectively, during the monsoon season from June to September. At the points dominated by CO2 advection, by contrast, radon concentration showed higher mean values 39.0 ± 2.6 to 78 ± 1.4 kBq m-3, remarkably stable throughout the year with small long-term variation, including a possible modulation of period around 6 months. A significant difference between the diffusion dominated reference points and the advection-dominated points also emerged when studying the diurnal S1 and semi-diurnal S2 periodic components. At the advection-dominated points, radon concentration did not exhibit S1 or S2 components. At the reference points, however, the S2 component, associated with barometric tide, could be identified during the dry season, but only when the probe was installed at shallow depth. The S1 component, associated with thermal and possibly barometric diurnal forcing, was systematically observed, especially during monsoon season. The remarkable short-term and long-term temporal stability of the radon concentration at the advection-dominated points, which suggests a strong pressure source at depth, may be an important asset to detect possible temporal variations associated with the seismic cycle. - Graphical abstract: Radon

  16. Bias adjustment and advection interpolation of long-term high resolution radar rainfall series

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Nielsen, Jesper Ellerbæk; Rasmussen, Michael R.

    2014-01-01

    known to depend on the changing drop size distribution of the specific rain. This creates a transient bias between the radar rainfall and the ground observations due to seasonal changes of the drop size distribution as well as other atmospheric effects and effects related to the radar observational...... technology. In this study different bias adjustment techniques is investigated, developing a complete 10-year dataset (2002–2012) of high spatio-temporal resolution radar rainfall based on a radar observations from a single C-band radar from Denmark. Results show that hourly adjustment mean field bias...... adjustment outperform daily mean field bias adjustment with regards to estimation of rainfall totals and peak rain rates. Furthermore, it is demonstrated that radar rainfall estimates can be improved significantly by implementation of a novel advection interpolation technique....

  17. Signature of Accretion Shocks in Emitted Radiation From a Two Temperature Advective Flows Around Black Holes

    CERN Document Server

    Mandal, S; Mandal, Samir; Chakrabarti, Sandip K.

    2005-01-01

    Centrifugal barrier supported boundary layer (CENBOL) of a black hole affects the spectrum exactly in the same way the boundary layer of a neutron star does. The CENBOL is produced due to standing or oscillating shock waves and these shocks accelerate electrons very efficiently and produce a power-law distribution. The accelerated particles in turn emit synchrotron radiation in presence of the magnetic field. We study the spectral properties of an accretion disk as a function of the shock strength, compression ratio, flow accretion rate and flow geometry. In the absence of a satisfactory description of magnetic fields inside the advective disk, we consider the presence of only stochastic fields and use the ratio of the field energy density to the gravitational energy density to be a parameter. Not surprisingly, stronger fields produce stronger humps due to synchrotron radiation. We not only include `conventional' synchrotron emission and Comptonization due to Maxwell-Bolzmann electrons in the gas, we also com...

  18. Correlation networks from flows. The case of forced and time-dependent advection-diffusion dynamics

    CERN Document Server

    Tupikina, Liubov; López, Cristóbal; Hernández-García, Emilio; Marwan, Norbert; Kurths, Jürgen

    2016-01-01

    Complex network theory provides an elegant and powerful framework to statistically investigate different types of systems such as society, brain or the structure of local and long-range dynamical interrelationships in the climate system. Network links in climate networks typically imply information, mass or energy exchange. However, the specific connection between oceanic or atmospheric flows and the climate network's structure is still unclear. We propose a theoretical approach for verifying relations between the correlation matrix and the climate network measures, generalizing previous studies and overcoming the restriction to stationary flows. Our methods are developed for correlations of a scalar quantity (temperature, for example) which satisfies an advection-diffusion dynamics in the presence of forcing and dissipation. Our approach reveals that correlation networks are not sensitive to steady sources and sinks and the profound impact of the signal decay rate on the network topology. We illustrate our r...

  19. Dynamics of Magnetic Flux Tubes in an Advective Flow around a Black Hole

    Science.gov (United States)

    Deb, Arnab; Chakrabarti, Sandip Kumar; Giri, Kinsuk

    2016-07-01

    Magnetic fields cannibalized by an accretion flow would very soon have a dominant toroidal component. Without changing the topology, we study the movements of these flux tubes inside a geometrically thick advective disk which undergo centrifugal pressure supported shocks. We also consider the effects of the flux tubes on the flow. We use a finite element method (Total Variation Diminishing) for this purpose and specifically focussed whether the flux tubes contribute to changes in outflow properties in terms of its collimation and outflow rates. It is seen that depending upon the cross sectional radius of the flux tubes (which control the drag force), these field lines may move towards the central object or oscillate vertically before eventually escaping out of the funnel wall (pressure zero surface). These interesting results obtained with and without flux tubes point to the role the flux tubes play in collimation of jets and outflows.

  20. Measurements on, and modelling of diffusive and advective radon transport in soil

    DEFF Research Database (Denmark)

    Graff, E.R. van der; Witteman, G.A.A.; Spoel, W.H. van der;

    1994-01-01

    Results are presented of measurements on radon transport in soil under controlled conditions with a laboratory facility consisting of a stainless steel vessel (height and diameter 2 m) filled with a uniform column of sand. At several depths under the sand surface, probes are radially inserted...... into the vessel to measure the radon concentration in the soil gas. To study advective radon transport a perforated circular box is placed in the sand close to the bottom of the vessel. By pressurising this box, an air flow through the sand column is induced. Radon concentration profiles were measured without...... an air flow as a function of time, and for several values of the air flow, equilibrium radon concentration profiles were measured....

  1. An advective diffusion process on hot wasted water discharged to a depression angle direction into water

    International Nuclear Information System (INIS)

    Effect of change in wasted water from nuclear or fossil fuel power plants discharging direction from horizontal one to depression angle one on an advective diffusion process of hot wasted water was investigated. As a result, it could be confirmed that an effect of depression angle jet discharge on water temperature reduction and so forth could be applied present experimental equation on horizontal discharging by a coordinate transformation of various factors with discharging water angle. And, a judgement equation to obtain a limiting area of hot wasted water affecting with bed surface was obtained by using distance from the lowest point of jet to the sea bed, inner diameter of discharging pipe, and field number for parameters, to elucidate its effectiveness. Furthermore, a diagram to estimate an effect of depression angle discharging water in the area on water temperature reduction and so forth was also proposed. (G.K.)

  2. Feedback analysis of transimpedance operational amplifier circuits

    DEFF Research Database (Denmark)

    Bruun, Erik

    1993-01-01

    The transimpedance or current feedback operational amplifier (CFB op-amp) is reviewed and compared to a conventional voltage mode op-amp using an analysis emphasizing the basic feedback characteristics of the circuit. With this approach the paradox of the constant bandwidth obtained from CFB op...

  3. Ultra-low Voltage CMOS Cascode Amplifier

    DEFF Research Database (Denmark)

    Lehmann, Torsten; Cassia, Marco

    2000-01-01

    In this paper, we design a folded cascode operational transconductance amplifier in a standard CMOS process, which has a measured 69 dB DC gain, a 2 MHz bandwidth and compatible input- and output voltage levels at a 1 V power supply. This is done by a novel Current Driven Bulk (CDB) technique, wh...

  4. Stereoscopy Amplifies Emotions Elicited by Facial Expressions.

    Science.gov (United States)

    Hakala, Jussi; Kätsyri, Jari; Häkkinen, Jukka

    2015-12-01

    Mediated facial expressions do not elicit emotions as strongly as real-life facial expressions, possibly due to the low fidelity of pictorial presentations in typical mediation technologies. In the present study, we investigated the extent to which stereoscopy amplifies emotions elicited by images of neutral, angry, and happy facial expressions. The emotional self-reports of positive and negative valence (which were evaluated separately) and arousal of 40 participants were recorded. The magnitude of perceived depth in the stereoscopic images was manipulated by varying the camera base at 15, 40, 65, 90, and 115 mm. The analyses controlled for participants' gender, gender match, emotional empathy, and trait alexithymia. The results indicated that stereoscopy significantly amplified the negative valence and arousal elicited by angry expressions at the most natural (65 mm) camera base, whereas stereoscopy amplified the positive valence elicited by happy expressions in both the narrowed and most natural (15-65 mm) base conditions. Overall, the results indicate that stereoscopy amplifies the emotions elicited by mediated emotional facial expressions when the depth geometry is close to natural. The findings highlight the sensitivity of the visual system to depth and its effect on emotions. PMID:27551358

  5. Post-Buckled Precompressed (PBP) piezoelectric actuators for UAV flight control

    NARCIS (Netherlands)

    Vos, R.; Barrett, R.; Krakers, L.; Van Tooren, M.

    2006-01-01

    This paper presents the use of a new class of flight control actuators employing Post-Buckled Precompressed (PBP) piezoelectric elements in morphing wing Uninhabited Aerial Vehicles (UAVs). The new actuator relieson axial compression to amplify deflections and control forces simultaneously. Two desi

  6. X-2 in flight

    Science.gov (United States)

    1956-01-01

    This inflight photograph of the X-2 (46-674) shows the twin set of shock-diamonds, characteristic of supersonic conditions in the exhaust plume from the two-chamber rocket engine. The Curtiss-Wright XLR-25 rocket engine caused one of several problems that delayed flight of the X-2. At one point, people in the project suggested its replacement. It was the first 'man-rated' (in the terminology of the day) rocket engine that was throttleable, and the technology was not yet mature. Other problems included the X-2's landing gear and the replacement of the planned electronic flight controls with a conventional hydromechanical system like that used in the F-86. The X-2 was a swept-wing, rocket-powered aircraft designed to fly faster than Mach 3 (three times the speed of sound). It was built for the U.S. Air Force by the Bell Aircraft Company, Buffalo, New York. The X-2 was flown to investigate the problems of aerodynamic heating as well as stability and control effectiveness at high altitudes and high speeds (in excess of Mach 3). Bell aircraft built two X-2 aircraft. These were constructed of K-monel (a copper and nickel alloy) for the fuselage and stainless steel for the swept wings and control surfaces. The aircraft had ejectable nose capsules instead of ejection seats because the development of ejection seats had not reached maturity at the time the X-2 was conceived. The X-2 ejection canopy was successfully tested using a German V-2 rocket. The X-2 used a skid-type landing gear to make room for more fuel. The airplane was air launched from a modified Boeing B-50 Superfortress Bomber. X-2 Number 1 made its first unpowered glide flight on Aug. 5, 1954, and made a total of 17 (4 glide and 13 powered) flights before it was lost Sept. 27, 1956. The pilot on Flight 17, Capt. Milburn Apt, had flown the aircraft to a record speed of Mach 3.2 (2,094 mph), thus becoming the first person to exceed Mach 3. During that last flight, inertial coupling occurred and the pilot was

  7. Smoothed particle hydrodynamics model for Landau-Lifshitz-Navier-Stokes and advection-diffusion equations

    Science.gov (United States)

    Kordilla, Jannes; Pan, Wenxiao; Tartakovsky, Alexandre

    2014-12-01

    We propose a novel smoothed particle hydrodynamics (SPH) discretization of the fully coupled Landau-Lifshitz-Navier-Stokes (LLNS) and stochastic advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and the self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations is found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study formation of the so-called "giant fluctuations" of the front between light and heavy fluids with and without gravity, where the light fluid lies on the top of the heavy fluid. We find that the power spectra of the simulated concentration field are in good agreement with the experiments and analytical solutions. In the absence of gravity, the power spectra decay as the power -4 of the wavenumber—except for small wavenumbers that diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations, resulting in much weaker dependence of the power spectra on the wavenumber. Finally, the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlaying a light fluid. The front dynamics is shown to agree well with the analytical solutions.

  8. Modeling contaminant transport in homogeneous porous media with fractional advection-dispersion equation

    Institute of Scientific and Technical Information of China (English)

    HUANG Guanhua; HUANG Quanzhong; ZHAN Hongbin; CHEN Jing; XIONG Yunwu; FENG Shaoyuan

    2005-01-01

    The newly developed Fractional Advection-Dispersion Equation (FADE), which is FADE was extended and used in this paper for modelling adsorbing contaminant transport by adding an adsorbing term. A parameter estimation method and its corresponding FORTRAN based program named FADEMain were developed on the basis of Nonlinear Least Square Algorithm and the analytical solution for one-dimensional FADE under the conditions of step input and steady state flow. Data sets of adsorbing contaminants Cd and NH4+-N transport in short homogeneous soil columns and conservative solute NaCI transport in a long homogeneous soil column, respectively were used to estimate the transport parameters both by FADEMain and the advection-dispersion equation (ADE) based program CXTFIT2.1. Results indicated that the concentration simulated by FADE agreed well with the measured data. Compared to the ADE model, FADE can provide better simulation for the concentration in the initial lower concentration part and the late higher concentration part of the breakthrough curves for both adsorbing contaminants. The dispersion coefficients for ADE were from 0.13 to 7.06 cm2/min, while the dispersion coefficients for FADE ranged from 0.119 to 3.05 cm1.856/min for NaCI transport in the long homogeneous soil column. We found that the dispersion coefficient of FADE increased with the transport distance, and the relationship between them can be quantified with an exponential function. Less scale-dependent was also found for the dispersion coefficient of FADE with respect to ADE.

  9. A mass-conserving advection scheme for offline simulation of scalar transport in coastal ocean models

    Science.gov (United States)

    Gillibrand, P. A.; Herzfeld, M.

    2016-05-01

    We present a flux-form semi-Lagrangian (FFSL) advection scheme designed for offline scalar transport simulation with coastal ocean models using curvilinear horizontal coordinates. The scheme conserves mass, overcoming problems of mass conservation typically experienced with offline transport models, and permits long time steps (relative to the Courant number) to be used by the offline model. These attributes make the method attractive for offline simulation of tracers in biogeochemical or sediment transport models using archived flow fields from hydrodynamic models. We describe the FFSL scheme, and test it on two idealised domains and one real domain, the Great Barrier Reef in Australia. For comparison, we also include simulations using a traditional semi-Lagrangian advection scheme for the offline simulations. We compare tracer distributions predicted by the offline FFSL transport scheme with those predicted by the original hydrodynamic model, assess the conservation of mass in all cases and contrast the computational efficiency of the schemes. We find that the FFSL scheme produced very good agreement with the distributions of tracer predicted by the hydrodynamic model, and conserved mass with an error of a fraction of one percent. In terms of computational speed, the FFSL scheme was comparable with the semi-Lagrangian method and an order of magnitude faster than the full hydrodynamic model, even when the latter ran in parallel on multiple cores. The FFSL scheme presented here therefore offers a viable mass-conserving and computationally-efficient alternative to traditional semi-Lagrangian schemes for offline scalar transport simulation in coastal models.

  10. Influences of tidal energy advection on the surface energy balance in a mangrove forest

    Directory of Open Access Journals (Sweden)

    J. G. Barr

    2012-08-01

    Full Text Available Mangrove forests are ecosystems susceptible to changing water levels and temperatures due to climate change as well as perturbations resulting from tropical storms. Numerical models can be used to project mangrove forest responses to regional and global environmental changes, and the reliability of these models depends on surface energy balance closure. However, for tidal ecosystems, the surface energy balance is complex because the energy transport associated with tidal activity remains poorly understood. This study aimed to quantify impacts of tidal flows on energy dynamics within a mangrove ecosystem. To address the research objective, an intensive study was conducted in a mangrove forest located along the Shark River in the Everglades National Park, FL. Forest-atmosphere energy exchanges were quantified with an eddy covariance system deployed on a flux tower. The lateral energy transport associated with tidal activity was calculated based on a coupled mass and energy balance approach. The mass balance included tidal flows and accumulation of water on the forest floor. The energy balance included temporal changes in enthalpy, resulting from tidal flows and temperature changes in the water column. By serving as a net sink or a source of available energy, tidal flows reduced the impact of high radiational loads on the mangrove forest. Including tidal energy advection in the surface energy balance improved the 30-min daytime energy closure from 73% to 82% over the study period. Also, the cumulative sum of energy output improved from 79% to 91% of energy input during the study period. Results indicated that tidal inundation provides an important mechanism for heat removal and that tidal exchange should be considered in surface energy budgets of coastal ecosystems. Results also demonstrated the importance of including tidal energy advection in mangrove biophysical models that are used for predicting ecosystem response to changing climate and

  11. Self-Similar Solutions for Viscous and Resistive Advection Dominated Accretion Flows

    Indian Academy of Sciences (India)

    Kazem Faghei

    2012-03-01

    In this paper, self-similar solutions of resistive advection dominated accretion flows (ADAF) in the presence of a pure azimuthal magnetic field are investigated. The mechanism of energy dissipation is assumed to be the viscosity and the magnetic diffusivity due to turbulence in the accretion flow. It is assumed that the magnetic diffusivity and the kinematic viscosity are not constant and vary by position and -prescription is used for them. In order to solve the integrated equations that govern the behavior of the accretion flow, a self-similar method is used. The solutions show that the structure of accretion flow depends on the magnetic field and the magnetic diffusivity. As the radial infall velocity and the temperature of the flow increase by magnetic diffusivity, the rotational velocity decreases. Also, the rotational velocity for all selected values of magnetic diffusivity and magnetic field is sub-Keplerian. The solutions show that there is a certain amount of magnetic field for which rotational velocity of the flow becomes zero. This amount of the magnetic field depends upon the gas properties of the disc, such as adiabatic index and viscosity, magnetic diffusivity, and advection parameters. The mass accretion rate increases by adding the magnetic diffusivity and the solutions show that in high magnetic pressure, the ratio of the mass accretion rate to the Bondi accretion rate is reduced with an increase in magnetic pressure. Also, the study of Lundquist and magnetic Reynolds numbers based on resistivity indicates that the linear growth of magnetorotational instability (MRI) of the flow reduces by resistivity. This property is qualitatively consistent with resistive magnetohydrodynamics (MHD) simulations.

  12. Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems

    Science.gov (United States)

    Li, Zhen; Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em

    2015-07-01

    We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic dissipative particle dynamics (DPD) framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of these Lagrangian particles. An analytical formula is proposed to relate the tDPD parameters to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the conventional DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers.

  13. Local- and field-scale stochastic-advective vertical solute transport in horizontally heterogeneous unsaturated soils

    Science.gov (United States)

    Ojha, Richa; Prakash, A.; Govindaraju, Rao S.

    2014-08-01

    Description of field-scale solute transport in unsaturated soils is essential for assessing the degree of contamination, estimating fluxes past a control plane and for designing remedial measures. The flow field is usually described by numerical solution of the Richards equation followed by numerical solution of the advection-dispersion equation to describe contaminant movement. These numerical solutions are highly complex, and do not provide the insights that are possible from simpler analytical representations. In this study, analytical solutions at the local scale are developed to describe purely advective vertical transport of a conservative solute along the principle characteristic of the flow field. Local-scale model development is simplified by using a sharp-front approximation for water movement. These local solutions are then upscaled to field-scale solute transport by adopting a lognormally distributed horizontal hydraulic conductivity field to represent the natural heterogeneity observed in field soils. Analytical expressions are developed for the mean behavior of solute transport at the field scale. Comparisons with experimental observations find that trends of field-scale solute behavior are reasonably reproduced by the model. The accuracy of the proposed solution improves with increasing spatial variability in the hydraulic conductivity as revealed by further comparisons with numerical results of the Richards equation-based field-scale solute movement. In some cases, the sharp-front approximation may lead to anomalous field-scale behavior depending on the role of pre and postponded conditions in the field, and this limitation is discussed. The proposed method shows promise for describing field-scale solute movement in loamy sand and sandy loam soils.

  14. Interpretation of Isopycnal Layer Thickness Advection in Terms of Eddy-Topography Interaction

    Science.gov (United States)

    Liu, Chuanyu; Koehl, Armin; Stammer, Detlef

    2013-04-01

    Spatially varying amplitude of the eddy isopycnal layer thickness diffusivity Kgm and the layer thickness advection Kgmskew of the modified Gent and McWilliams parameterization are estimated using two different approaches: the adjoint estimation from a global data assimilation system and the inversion calculation according to divergent buoyancy eddy flux-mean buoyancy gradient relation using results from idealized eddy resolving numerical models with various bottom topographies. This work focuses on the properties of Kgmskew. From the adjoint estimation, large Kgmskew values are found along meandering currents and predominantly positive (negative) over the deep ocean and negative (positive) over seamounts in the southern (northern) hemisphere, implying close relation to the 'Neptune effect" parameterization by Holloway in which the eddy induced mean velocity stream function is represented by -fHL, where H is the bottom depth, f the Coriolis parameter and L a length scale. In the inversion calculation, divergent buoyancy eddy fluxes are obtained by removing the rotational components from the total buoyancy eddy fluxes through Helmholtz-Hodge decomposition. Though subject to topographic length scale, the inversed Kgmskew reveals characteristics of both f and H, and interactions with the mean current, inter-confirming the adjoint estimation results. Applying this parameterization for Kgmskew in the general circulation model produces cold domes and anti-cyclonic circulations over seamounts, which reduces common model biases there. By construction, the original thickness advection Kgmskew redistributes potential energy and the original "Neptune effect" parameterization improves potential vorticity conservation, applying the latter into the former as suggested in the present study thus more correctly reproduces the potential vorticity structure over a sloping topography while conserving the total potential energy.

  15. Simulation of advective dominant transport in porous material by discontinuous finite elements methods

    International Nuclear Information System (INIS)

    When transport in porous media is advection-dominated, the classical convection-dispersion equation behaves like an hyperbolic partial differential equation. Special numerical methods are then necessary to reduce numerical dispersion and/or spurious oscillations. Discontinuous Galerkin finite element methods are good candidates to solve this problem. At the discontinuities between two adjacent elements, numerical advective fluxes are calculated using one-dimensional approximate Riemann solvers. The method is stabilized with a multidimensional slope limiter which introduces small amounts of numerical diffusion when sharp concentration fronts occur. For a 2-dimensional domain and quadrangular elements, two space approximations are compared: a linear approximation (P1) based on average concentration value and average gradients (i.e. 3 degrees of freedom) and a bilinear approximation (Q1) based on nodal values of the concentration (i.e. 4 degrees of freedom). Numerical experiments based on structured or unstructured meshes and unidirectional or rotating flow have been run. For the same number of unknowns we show that: 1) the P1 approximation provides more accurate results than the Q1 approximation in simple configuration (structured meshes and unidirectional flow); 2) both approximations provide the same results for not too complicated configurations like structured meshes and rotating flow; 3) Q1 approximation provides more accurate results in complex situations like rotating flow on a unstructured mesh. However, because the required CPU time for the P1 approximation is much less than for the Q1 approximation, the P1 approximation was always found to be more efficient (in terms of CPU time for a given error) compared to the Q1 approximation. (authors)

  16. Advection, dispersion, and filtration of fine particles within emergent vegetation of the Florida Everglades

    Science.gov (United States)

    Huang, Y.H.; Saiers, J.E.; Harvey, J.W.; Noe, G.B.; Mylon, S.

    2008-01-01

    The movement of particulate matter within wetland surface waters affects nutrient cycling, contaminant mobility, and the evolution of the wetland landscape. Despite the importance of particle transport in influencing wetland form and function, there are few data sets that illuminate, in a quantitative way, the transport behavior of particulate matter within surface waters containing emergent vegetation. We report observations from experiments on the transport of 1 ??m latex microspheres at a wetland field site located in Water Conservation Area 3A of the Florida Everglades. The experiments involved line source injections of particles inside two 4.8-m-long surface water flumes constructed within a transition zone between an Eleocharis slough and Cladium jamaicense ridge and within a Cladium jamaicense ridge. We compared the measurements of particle transport to calculations of two-dimensional advection-dispersion model that accounted for a linear increase in water velocities with elevation above the ground surface. The results of this analysis revealed that particle spreading by longitudinal and vertical dispersion was substantially greater in the ridge than within the transition zone and that particle capture by aquatic vegetation lowered surface water particle concentrations and, at least for the timescale of our experiments, could be represented as an irreversible, first-order kinetics process. We found generally good agreement between our field-based estimates of particle dispersion and water velocity and estimates determined from published theory, suggesting that the advective-dispersive transport of particulate matter within complex wetland environments can be approximated on the basis of measurable properties of the flow and aquatic vegetation. Copyright 2008 by the American Geophysical Union.

  17. Empirical modeling of single-wake advection and expansion using full-scale pulsed lidar-based measurements

    DEFF Research Database (Denmark)

    Machefaux, Ewan; Larsen, Gunner Chr.; Troldborg, Niels;

    2015-01-01

    In the present paper, single-wake dynamics have been studied both experimentally and numerically. The use of pulsed lidar measurements allows for validation of basic dynamic wake meandering modeling assumptions. Wake center tracking is used to estimate the wake advection velocity experimentally and...... expansion fairly well in the far wake but lacks accuracy in the outer region of the near wake. An empirical relationship, relating maximum wake induction and wake advection velocity, is derived and linked to the characteristics of a spherical vortex structure. Furthermore, a new empirical model for single...

  18. Arbitrary-order difference schemes for solving linear advection equations with constant coefficients by the Godunov method with antidiffusion

    Science.gov (United States)

    Moiseev, N. Ya.; Silant'eva, I. Yu.

    2008-07-01

    An approach to the construction of second-and higher order accurate difference schemes in time and space is described for solving the linear one-and multidimensional advection equations with constant coefficients by the Godunov method with antidiffusion. The differential approximations for schemes of up to the fifth order are constructed and written. For multidimensional advection equations with constant coefficients, it is shown that Godunov schemes with splitting over spatial variables are preferable, since they have a smaller truncation error than schemes without splitting. The high resolution and efficiency of the difference schemes are demonstrated using test computations.

  19. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight...

  20. Flight Planning in the Cloud

    Science.gov (United States)

    Flores, Sarah L.; Chapman, Bruce D.; Tung, Waye W.; Zheng, Yang

    2011-01-01

    This new interface will enable Principal Investigators (PIs), as well as UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) members to do their own flight planning and time estimation without having to request flight lines through the science coordinator. It uses an all-in-one Google Maps interface, a JPL hosted database, and PI flight requirements to design an airborne flight plan. The application will enable users to see their own flight plan being constructed interactively through a map interface, and then the flight planning software will generate all the files necessary for the flight. Afterward, the UAVSAR team can then complete the flight request, including calendaring and supplying requisite flight request files in the expected format for processing by NASA s airborne science program. Some of the main features of the interface include drawing flight lines on the map, nudging them, adding them to the current flight plan, and reordering them. The user can also search and select takeoff, landing, and intermediate airports. As the flight plan is constructed, all of its components are constantly being saved to the database, and the estimated flight times are updated. Another feature is the ability to import flight lines from previously saved flight plans. One of the main motivations was to make this Web application as simple and intuitive as possible, while also being dynamic and robust. This Web application can easily be extended to support other airborne instruments.

  1. Lessons from dragonfly flight

    Science.gov (United States)

    Wang, Z. Jane

    2005-11-01

    I will describe two lessons we learned from analyzing dragonfly flight using computers and table-top experiments. Part I: The role of drag in insect flight. Airplanes and helicopters are airborne via aerodynamic lift, not drag. However, it is not a priori clear that insects use only lift to fly. We find that dragonfly uses mainly drag to hover, which explains an anomalous factor of four in previous estimates of dragonfly lift coefficients, where drag was assumed to be negligible. Moreover, we show that the use of drag for flight is efficient at insect size. This suggests a re-consideration of the hovering efficiency of flapping flight, which is no longer described by the lift to drag ratio. Part II. Fore-hind wing interaction in dragonfly flight. A distinctive feature of dragonflies is their use of two pairs of wings which are driven by separate direct muscles. Dragonflies can actively modulate the phase delay between fore-hind wings during different maneuver. We compute the Navier-Stokes equation around two wings following the motion measured from our tethered dragonfly experiments, and find an explanation of the advantage of counter-stroking during hovering.

  2. Amplified spontaneous emission spectrum and gain characteristic of a two-electrode semiconductor optical amplifier*

    Institute of Scientific and Technical Information of China (English)

    Wang Hanchao; Huang Lirong; Shi Zhongwei

    2011-01-01

    A two-electrode multi-quantum-well semiconductor optical amplifier is designed and fabricated. The amplified spontaneous emission (ASE) spectrum and gain were measured and analyzed. It is shown that the ASE spectrum and gain characteristic are greatly influenced by the distribution of the injection current density. By changing the injection current density of two electrodes, the full width at half maximum, peak wavelength, peak power of the ASE spectrum and the gain characteristic can be easily controlled.

  3. Flight calls and orientation

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Andersen, Bent Bach; Kropp, Wibke;

    2008-01-01

      In a pilot experiment a European Robin, Erithacus rubecula, expressing migratory restlessness with a stable orientation, was video filmed in the dark with an infrared camera and its directional migratory activity was recorded. The flight overhead of migrating conspecifics uttering nocturnal...... flight calls was simulated by sequential computer controlled activation of five loudspeakers placed in a linear array perpendicular to the bird's migration course. The bird responded to this stimulation by changing its migratory course in the direction of that of the ‘flying conspecifics' but after about...... 30 minutes it drifted back to its original migration course. The results suggest that songbirds migrating alone at night can use the flight calls from conspecifics as additional cues for orientation and that they may compare this information with other cues to decide what course to keep....

  4. Radiation-Tolerant Vertical-Cavity Amplifying Detectors for Time-of-Flight Laser Rangefinders Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The harsh radiation environment anticipated during the Europa Jupiter System Mission (EJSM) presents a significant challenge to develop radiation-hardened notional...

  5. Technologies for hypersonic flight

    Science.gov (United States)

    Steinheil, Eckart; Uhse, Wolfgang

    An account is given of the technology readiness requirements of the West German Saenger II air-breathing first-stage, two-stage reusable launcher system. The present, five-year conceptual development phase will give attention to propulsion, aerothermodynamic, materials/structures, and flight guidance technology development requirements. The second, seven-year development phase will involve other West European design establishments and lead to the construction of a demonstration vehicle. Attention is presently given to the air-breathing propulsion system, and to flight-weight structural systems under consideration for both external heating and internal cryogenic tankage requirements.

  6. Benthic solute exchange and carbon mineralization in two shallow subtidal sandy sediments: Effect of advective pore-water exchange

    DEFF Research Database (Denmark)

    Cook, Perran L. M.; Wenzhofer, Frank; Glud, Ronnie N.;

    2007-01-01

    proceeded predominantly through sulfate reduction when benthic mineralization rates were high and advective pore-water flow low as a result of poorly developed topography. Previous studies of benthic mineralization in shallow sandy sediments have generally ignored these dynamics and, hence, have overlooked...

  7. Spectral analysis of large-eddy advection in ET from eddy covariance towers and a large weighting lysimeter

    Science.gov (United States)

    Evapotranspiration was continuously measured by an array of eddy covariance systems and large weighting lysimeter in a cotton field in Bushland, Texas. The advective divergence from both horizontal and vertical directions were measured through profile measurements above canopy. All storage terms wer...

  8. First lasing of the regenerative amplifier FEL

    International Nuclear Information System (INIS)

    The regenerative amplifier free-electron laser (RAFEL) is a high-gain RF-linac FEL capable of producing high optical power from a compact design. The combination of a high-gain and small optical feedback enables the FEL to reach saturation and produce a high optical power and high extraction efficiency without the risk of optical damage to the mirrors. This paper summarizes the first lasing of the regenerative amplifier FEL and describes recent experimental results. The highest optical energy achieved thus far at 16.3 μm is 1.7 J over a train of 900 micropulses. We infer pulse energy of 1.9 mJ in each 16 ps micropulse, corresponding to a peak power of 120 MW

  9. Behavioral modeling of Digitally Adjustable Current Amplifier

    Directory of Open Access Journals (Sweden)

    Josef Polak

    2015-03-01

    Full Text Available This article presents the digitally adjustable current amplifier (DACA and its analog behavioral model (ABM, which is suitable for both ideal and advanced analyses of the function block using DACA as active element. There are four levels of this model, each being suitable for simulation of a certain degree of electronic circuits design (e.g. filters, oscillators, generators. Each model is presented through a schematic wiring in the simulation program OrCAD, including a description of equations representing specific functions in the given level of the simulation model. The design of individual levels is always verified using PSpice simulations. The ABM model has been developed based on practically measured values of a number of DACA amplifier samples. The simulation results for proposed levels of the ABM model are shown and compared with the results of the real easurements of the active element DACA.

  10. High power single-frequency Innoslab amplifier.

    Science.gov (United States)

    Han, Ke-Zhen; Ning, Jian; Zhang, Bai-Tao; Wang, Yi-Ran; Zhang, Hai-Kun; Nie, Hong-Kun; Sun, Xiao-Li; He, Jing-Liang

    2016-07-10

    A laser diode array (LDA) end-pumped continuous-wave single-frequency Innoslab amplifier has been demonstrated. The Gaussian ray bundle method was used to model the light propagation in the Innoslab amplifier for the first time to the best of our knowledge. With discrete reflectors, the maximum output of 60 W with a linewidth of 44 MHz was achieved under the pump power of 245 W, corresponding to the optical-optical efficiency of 24.5%. The beam quality factor M2 at the output power of 51 W in the horizontal and vertical direction was measured to be 1.4 and 1.3, respectively. The long-term power instability in 2 h was less than 0.25%. PMID:27409308

  11. Fundamentals of fiber lasers and fiber amplifiers

    CERN Document Server

    Ter-Mikirtychev, Valerii (Vartan)

    2014-01-01

    This book covers the fundamental aspects of fiber lasers and fiber amplifiers, and includes a wide range of material from laser physics fundamentals to state-of-the-art topics in this rapidly growing field of quantum electronics. Emphasis is placed on the nonlinear processes taking place in fiber lasers and amplifiers, their similarities, differences to, and their advantages over other solid-state lasers. The reader will learn basic principles of solid-state physics and optical spectroscopy of laser active centers in fibers, main operational laser regimes, and practical recommendations and suggestions on fiber laser research, laser applications, and laser product development. The book will be useful for students, researchers, and professionals who work with lasers, in the optical communications, chemical and biological industries, etc.

  12. Linear control of oscillator and amplifier flows*

    Science.gov (United States)

    Schmid, Peter J.; Sipp, Denis

    2016-08-01

    Linear control applied to fluid systems near an equilibrium point has important applications for many flows of industrial or fundamental interest. In this article we give an exposition of tools and approaches for the design of control strategies for globally stable or unstable flows. For unstable oscillator flows a feedback configuration and a model-based approach is proposed, while for stable noise-amplifier flows a feedforward setup and an approach based on system identification is advocated. Model reduction and robustness issues are addressed for the oscillator case; statistical learning techniques are emphasized for the amplifier case. Effective suppression of global and convective instabilities could be demonstrated for either case, even though the system-identification approach results in a superior robustness to off-design conditions.

  13. Design of an 1800 nm Raman Amplifier

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Rottwitt, Karsten

    Different approaches are being explored to increase the capacity of communication systems [1,2], both long and short range systems. One approach is by exploiting new optical wavelength bands, outside the conventional communication window from 1530 nm to 1625 nm. Hollow core fibers have been...... in the pump power requirement and deteriorated noise properties. Here we demonstrate a Raman amplifier designed for signal wavelengths around 1800 nm. The amplification fiber is an OFS PM Raman fiber, and is pumped by a Raman fiber laser emitting at 1680 nm [4]. The amplifier was pumped co......-polarized and backward, with respect to the singal. In Fig. 2 a measured Raman on/off gain exceeding 9 dB for 285 mW of injected pump power is obtained in a 4.35 km long fiber. A broadband supercontinuum source was used as a signal from 1700 nm to 1900 nm....

  14. Noise Gain Features of Fiber Raman Amplifier

    Directory of Open Access Journals (Sweden)

    Georgii S. Felinskyi

    2016-01-01

    Full Text Available The formation dynamics of the optical noise in a silica single mode fiber (SMF as function of the pump power variation in the counter pumped fiber Raman amplifier (FRA is experimentally studied. The ratio between the power of amplified spontaneous emission and the power of incoherent optical noise is quantitatively determined by detailed analysis of experimental data in the pump powers range of 100–300 mW within the full band of Stokes frequencies, including FRA working wavelengths over the C + L transparency windows. It is found out the maximum of Raman gain coefficient for optical noise does not exceed ~60% of corresponding peak at the gain profile maximum of coherent signal. It is shown that the real FRA noise figure may be considerably less than 3 dB over a wide wavelength range (100 nm at a pump power of several hundreds of mW.

  15. Cryogenic cooling for high power laser amplifiers

    Directory of Open Access Journals (Sweden)

    Perin J.P.

    2013-11-01

    Full Text Available Using DPSSL (Diode Pumped Solid State Lasers as pumping technology, PW-class lasers with enhanced repetition rates are developed. Each of the Yb YAG amplifiers will be diode-pumped at a wavelength of 940 nm. This is a prerequisite for achieving high repetition rates (light amplification duration 1 millisecond and repetition rate 10 Hz. The efficiency of DPSSL is inversely proportional to the temperature, for this reason the slab amplifier have to be cooled at a temperature in the range of 100 K–170 K with a heat flux of 1 MW*m−2. This paper describes the thermo-mechanical analysis for the design of the amplification laser head, presents a preliminary proposal for the required cryogenic cooling system and finally outlines the gain of cryogenic operation for the efficiency of high pulsed laser.

  16. Wind-driven gas networks and star formation in galaxies: reaction-advection hydrodynamic simulations

    Science.gov (United States)

    Chappell, David; Scalo, John

    2001-07-01

    The effects of wind-driven star formation feedback on the spatio-temporal organization of stars and gas in galaxies is studied using two-dimensional intermediate-representational quasi-hydrodynamical simulations. The model retains only a reduced subset of the physics, including mass and momentum conservation, fully non-linear fluid advection, inelastic macroscopic interactions, threshold star formation, and momentum forcing by winds from young star clusters on the surrounding gas. Expanding shells of swept-up gas evolve through the action of fluid advection to form a `turbulent' network of interacting shell fragments which have the overall appearance of a web of filaments (in two dimensions). A new star cluster is formed whenever the column density through a filament exceeds a critical threshold based on the gravitational instability criterion for an expanding shell, which then generates a new expanding shell after some time delay. A filament-finding algorithm is developed to locate the potential sites of new star formation. The major result is the dominance of multiple interactions between advectively distorted shells in controlling the gas and star morphology, gas velocity distribution and mass spectrum of high mass density peaks, and the global star formation history. The gas morphology strongly resembles the model envisioned by Norman & Silk, and observations of gas in the Large Magellanic Cloud (LMC)Q1 and local molecular clouds. The dependence of the frequency distribution of present-to-past average global star formation rate on a number of parameters is investigated. Bursts of star formation only occur when the time-averaged star formation rate per unit area is low, or the system is small. Percolation does not play a role. The broad distribution observed in late-type galaxies can be understood as a result of either small size or small metallicity, resulting in larger shell column densities required for gravitational instability. The star formation rate

  17. Amplifying the Hawking Signal in BECs

    Directory of Open Access Journals (Sweden)

    Roberto Balbinot

    2014-01-01

    Full Text Available We consider simple models of Bose-Einstein condensates to study analog pair-creation effects, namely, the Hawking effect from acoustic black holes and the dynamical Casimir effect in rapidly time-dependent backgrounds. We also focus on a proposal by Cornell to amplify the Hawking signal in density-density correlators by reducing the atoms’ interactions shortly before measurements are made.

  18. Electrically Pumped Vertical-Cavity Amplifiers

    DEFF Research Database (Denmark)

    Greibe, Tine

    2007-01-01

    In this work, the design of electrically pumped vertical cavity semiconductor optical amplifiers (eVCAs) for use in a mode-locked external-cavity laser has been developed, investigated and analysed. Four different eVCAs, one top-emitting and three bottom emitting structures, have been designed...... and discussed. The thesis concludes with recommendations for further work towards the realisation of compact electrically pumped mode-locked vertical externalcavity surface emitting lasers....

  19. Quantum noise in ideal operational amplifiers

    OpenAIRE

    Courty, Jean-Michel; Grassia, Francesca; Reynaud, Serge

    1998-01-01

    We consider a model of quantum measurement built on an ideal operational amplifier operating in the limit of infinite gain, infinite input impedance and null output impedance and with a feddback loop. We evaluate the intensity and voltage noises which have to be added to the classical amplification equations in order to fulfill the requirements of quantum mechanics. We give a description of this measurement device as a quantum network scattering quantum fluctuations from input to output ports.

  20. Charge sensitive amplifies. The state of arts

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kunishiro [Clear Pulse Co., Tokyo (Japan)

    1996-07-01

    In the radiation detectors, signals are essentially brought with charges produced by radiation, then it is naturally the best way to use a charge sensitive amplifier (CSA) system to extract those signals. The CSA is thought to be the best amplifier suitable to almost all the radiation detectors, if neglecting economical points of view. The CSA has been only applied to special fields like radiation detection because the concept of `charges` is not so universal against the concepts of `voltage` and `current`. The CSA, however, is low in noise and a high speed amplifier and may be applicable not only to radiation measurement but also piezoelectric devices and also bolometers. In this article, noise in the CSA, basic circuit on the CSA, concepts of `equivalent noise charge` (ENC), a method for the ENC, and importance of the `open-loop gain` in the CSA to achieve better performance of it and how to realize in a practical CSA were described. And, characteristics on a counting rate of the CSA, various circuit used in the CSA, and CSAs which are commercially available at present and special purpose CSAs were also introduced. (G.K.)

  1. Microstrip SQUID amplifiers for quantum information science

    Science.gov (United States)

    Defeo, M. P.; Plourde, B. L. T.

    2012-02-01

    Recent progress in SQUID amplifiers suggests that these devices might approach quantum-limited sensitivity in the microwave range, thus making them a viable option for measurement of superconducting quantum systems. In the microstrip SQUID amplifier configuration, gains of around 20dB are possible at frequencies of several hundred MHz, and the gain is limited by the maximum voltage modulation available from the SQUID. One route for increasing the voltage modulation involves using larger resistive shunts, however maintaining non-hysteretic device operation requires smaller junction capacitances than is possible with conventional photolithographically patterned junctions. Operating at higher frequencies requires a shorter input coil which reduces mutual inductance between the coil and washer and therefore gain. We have fabricated microstrip SQUID amplifiers using submicron Al-AlOx-Al junctions and large shunts. The input coil and SQUID washer are optimized for producing high gain at frequencies in the gigahertz range. Recent measurements of gain and noise temperature will be discussed as well as demonstrations of these devices as a first stage of amplification for a superconducting system

  2. The development of DUV chemically amplified resists

    Energy Technology Data Exchange (ETDEWEB)

    Thackeray, J.W.; Fedynyshyn, T.H.; Small, R.D. [Shipley Co. Inc., Marlboro, MA (United States)

    1993-12-31

    The development of deep ultraviolet (DUV) resists has necessitated the introduction of new concepts in resist materials and chemistry. Successful DUV resist systems now employ the concept of chemical amplification. This catalytic reaction leads to a substantial enhancement in the imaging dose. Another benefit of chemical amplified resists is that they allow the design of materials which can be transparent to DUV exposure wavelengths, yet they can still have high sensitivity. Commercial and prototype positive- and negative-tone resists are now readily available and these resists have been used in pilot production to make the most advanced integrated circuits with {le}0.35 {mu}m design rules. At Shipley, we have undertaken to develop both negative- and positive-tone chemically amplified resists for DUV lithography. These resists are capable of high resolution (0.3 {mu}m), fast photospeed ({le}30 mJ/sq. cm), and excellent etch resistance. This presentation will discuss the chemical and lithographic properties of the Shipley negative- and positive-tone DUV chemically amplified resists. General discussion of the importance of activation energy for the catalytic process, catalytic chain length, and environmental stability will be given.

  3. Parallel reservoir computing using optical amplifiers.

    Science.gov (United States)

    Vandoorne, Kristof; Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Bienstman, Peter

    2011-09-01

    Reservoir computing (RC), a computational paradigm inspired on neural systems, has become increasingly popular in recent years for solving a variety of complex recognition and classification problems. Thus far, most implementations have been software-based, limiting their speed and power efficiency. Integrated photonics offers the potential for a fast, power efficient and massively parallel hardware implementation. We have previously proposed a network of coupled semiconductor optical amplifiers as an interesting test case for such a hardware implementation. In this paper, we investigate the important design parameters and the consequences of process variations through simulations. We use an isolated word recognition task with babble noise to evaluate the performance of the photonic reservoirs with respect to traditional software reservoir implementations, which are based on leaky hyperbolic tangent functions. Our results show that the use of coherent light in a well-tuned reservoir architecture offers significant performance benefits. The most important design parameters are the delay and the phase shift in the system's physical connections. With optimized values for these parameters, coherent semiconductor optical amplifier (SOA) reservoirs can achieve better results than traditional simulated reservoirs. We also show that process variations hardly degrade the performance, but amplifier noise can be detrimental. This effect must therefore be taken into account when designing SOA-based RC implementations.

  4. Advection of passive magnetic field by the Gaussian velocity field with finite correlations in time and spatial parity violation

    Science.gov (United States)

    Jurčišinová, E.; Jurčišin, M.

    2013-03-01

    Using the field theoretic renormalization group technique the model of passively advected weak magnetic field by an incompressible isotropic helical turbulent flow is investigated up to the second order of the perturbation theory (two-loop approximation) in the framework of an extended Kazantsev-Kraichnan model of kinematic magnetohydrodynamics. Statistical fluctuations of the velocity field are taken in the form of a Gaussian distribution with zero mean and defined noise with finite correlations in time. The two-loop analysis of all possible scaling regimes is done and the influence of helicity on the stability of scaling regimes is discussed and shown in the plane of exponents ɛ - η, where ɛ characterizes the energy spectrum of the velocity field in the inertial range E ∞ k 1 - 2ɛ, and η is related to the correlation time at the wave number k which is scaled as k -2 + η. It is shown that in non-helical case the scaling regimes of the present vector model are completely identical and have also the same properties as those obtained in the corresponding model of passively advected scalar field. Besides, it is also shown that when the turbulent environment under consideration is helical then the properties of the scaling regimes in models of passively advected scalar and vector (magnetic) fields are essentially different. The results demonstrate the importance of the presence of a symmetry breaking in a given turbulent environment for investigation of the influence of an internal tensor structure of the advected field on the inertial range scaling properties of the model under consideration and will be used in the analysis of the influence of helicity on the anomalous scaling of correlation functions of passively advected magnetic field.

  5. Groundwater flux characterization using distributed temperature sensing: Separating advection from thermal conduction

    Science.gov (United States)

    Liu, G.; Knobbe, S.; Butler, J. J., Jr.

    2015-12-01

    Direct measurement of groundwater flux is difficult to obtain in the field so hydrogeologists often use easily-detectable environmental tracers, such as heat or chemicals, as an indirect way to characterize flux. Previously, we developed a groundwater flux characterization (GFC) probe by using distributed temperature sensing (DTS) to monitor the temperature responses to active heating in a well. The temperature responses were consistent with the hydraulic conductivity profiles determined at the same location, and provided high-resolution information (approx. 1.5 cm) about vertical variations in horizontal flux through the screen. One of the key assumptions in the previous GFC approach was that the vertical variations in the thermal conductivity of the aquifer materials near the well are negligible, so that the temperature differences with depth are primarily a result of groundwater flux instead of thermal conduction. Although this assumption is likely valid for wells constructed with an artificial filter pack, it might become questionable for wells with natural filter packs (such as the wells constructed by direct push where the sediments are allowed to directly collapse onto the well screen). In this work, we develop a new procedure for separating advection from thermal conduction during GFC measurement. In addition to the normal open-screen GFC profiling, an impermeable sleeve was used so that heating tests could be performed without advective flow entering the well. The heating tests under sleeved conditions were primarily controlled by the thermal conduction around the well, and therefore could be used to remove the impact of thermal conduction from the normal GFC results obtained under open-screen conditions. This new procedure was tested in a laboratory sandbox, where a series of open-screen and sleeved GFC tests were performed under different flow rates. Results indicated that for the tested range of rates (Darcy velocity 0 - 0.78 m/d), the relation between

  6. Application module of universal amplifier in education process

    OpenAIRE

    CHALOUPEK, Pavel

    2013-01-01

    This thesis deals with the teaching and implementation module for teaching in secondary schools and their role in education. Following the theory being discussed in relation to a valid educational program. Learning amplifier module implemented by the assignment to DPS. The activity of the amplifier module to simulate in Multisim simulation program. Next is made circuitry design in discrete amplifier module. There evaluated the feasibility and simulation of realizations amplifier module in sec...

  7. Noise and saturation properties of semiconductor quantum dot optical amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2002-01-01

    We present a detailed theoretical analysis of quantum dot optical amplifiers. Due to the presence of a reservoir of wetting layer states, the saturation and noise properties differ markedly from bulk or QW amplifiers and may be significantly improved.......We present a detailed theoretical analysis of quantum dot optical amplifiers. Due to the presence of a reservoir of wetting layer states, the saturation and noise properties differ markedly from bulk or QW amplifiers and may be significantly improved....

  8. Efficiency of low power audio amplifiers and loudspeakers

    OpenAIRE

    Burrow, SG; Grant, Duncan A

    2001-01-01

    In this paper we look at the load presented to audio amplifiers by real transducers. We consider the power losses in Class-AB and Class-D amplifier topologies, and determine that in order to predict efficiency it is necessary to consider the amplifier/transducer combination. The ability of the class-D amplifier to recycle quadrature load current offers new ways to improve efficiency.

  9. Matched wideband low-noise amplifiers for radio astronomy.

    Science.gov (United States)

    Weinreb, S; Bardin, J; Mani, H; Jones, G

    2009-04-01

    Two packaged low noise amplifiers for the 0.3-4 GHz frequency range are described. The amplifiers can be operated at temperatures of 300-4 K and achieve noise temperatures in the 5 K range (radio astronomy systems or as i.f. amplifiers following superconducting mixers operating in the millimeter and submillimeter frequency range. PMID:19405681

  10. Digital system provides superregulation of nanosecond amplifier-discriminator circuit

    Science.gov (United States)

    Forges, K. G.

    1966-01-01

    Feedback system employing a digital logic comparator to detect and correct amplifier drift provides stable gain characteristics for nanosecond amplifiers used in counting applications. Additional anticoincidence logic enables application of the regulation circuit to the amplifier and discriminator while they are mounted in an operable circuit.

  11. The Dynamics of Semiconductor Optical Amplifiers – Modeling and Applications

    DEFF Research Database (Denmark)

    Mørk, Jesper; Nielsen, Mads Lønstrup; Berg, Tommy Winther

    2003-01-01

    The importance of semiconductor optical amplifiers is discussed. A semiconductor optical amplifier (SOA) is a semiconductor laser with anti-reflection coated facets that amplifies an injected light signal by means of stimulated emission. SOAs have a number of unique properties that open up...

  12. Fiber optical parametric amplifiers in optical communication systems

    DEFF Research Database (Denmark)

    Marhic, Michel E.; Andrekson, Peter A.; Petropoulos, Periklis;

    2015-01-01

    The prospects for using fiber optical parametric amplifiers (OPAs) in optical communication systems are reviewed. Phase-insensitive amplifiers (PIAs) and phase-sensitive amplifiers (PSAs) are considered. Low-penalty amplification at/or near 1 Tb/s has been achieved, for both wavelength- and time...

  13. Polarization of Tapered Semiconductor Travelling-Wave Amplifiers

    Institute of Scientific and Technical Information of China (English)

    焦明星; 张书练; 梁晋文

    2001-01-01

    The polarization of a tapered semi-conductor travelling-wave amplifier has been investigated with the transfer matrix method based on convective equation. It is shown that the apparent polarization mode competition exists, and polarization-independent tapered semiconductor travellingwave amplifiers can be obtained through the optimization of amplifier parameters.

  14. Boeing flight deck design philosophy

    Science.gov (United States)

    Stoll, Harty

    1990-01-01

    Information relative to Boeing flight deck design philosophy is given in viewgraph form. Flight deck design rules, design considerations, functions allocated to the crew, redundancy and automation concerns, and examples of accident data that were reviewed are listed.

  15. The role of a delay time on the spatial structure of chaotically advected reactive scalars

    CERN Document Server

    Tzella, Alexandra

    2009-01-01

    The stationary-state spatial structure of reacting scalar fields, chaotically advected by a two-dimensional large-scale flow, is examined for the case for which the reaction equations contain delay terms. Previous theoretical investigations have shown that, in the absence of delay terms and in a regime where diffusion can be neglected (large P\\'eclet number), the emergent spatial structures are filamental and characterized by a single scaling regime with a H\\"older exponent that depends on the rate of convergence of the reactive processes and the strength of the stirring measured by the average stretching rate. In the presence of delay terms, we show that for sufficiently small scales all interacting fields should share the same spatial structure, as found in the absence of delay terms. Depending on the strength of the stirring and the magnitude of the delay time, two further scaling regimes that are unique to the delay system may appear at intermediate length scales. An expression for the transition length s...

  16. Evaluating the advective Brewer-Dobson circulation in three reanalyses for the period 1979-2012

    Science.gov (United States)

    Abalos, Marta; Legras, Bernard; Ploeger, Felix; Randel, William J.

    2015-08-01

    Most chemistry-climate models show an intensification of the Brewer-Dobson circulation (BDC) in the stratosphere associated with increasing greenhouse gas emissions and ozone depletion in the last decades, but this trend remains to be confirmed in observational data. In this work the evolution of the advective BDC for the period 1979-2012 is evaluated and compared in three modern reanalyses (ERA-Interim, MERRA, and JRA-55). Three different estimates of the BDC are computed for each reanalysis, one based on the definition of the residual circulation and two indirect estimates derived from momentum and thermodynamic balances. The comparison among the nine estimates shows substantial uncertainty in the mean magnitude (˜40%) but significant common variability. The tropical upwelling series show variability linked to the stratospheric quasi-biennial oscillation and to El Niño-Southern Oscillation (ENSO) and also reflect extreme events such as major sudden stratospheric warmings and volcanic eruptions. The trend analysis suggests a strengthening of tropical upwelling of around 2-5%/decade throughout the layer 100-10 hPa. The global spatial structure of the BDC trends provides evidence of an overall acceleration of the circulation in both hemispheres, with qualitative agreement among the estimates. The global BDC trends are mainly linked to changes in the boreal winter season and can be tracked to long-term increases in the resolved wave drag in both hemispheres.

  17. The advective Brewer-Dobson circulation in three reanalyses (1979-2012)

    Science.gov (United States)

    Abalos, Marta; Legras, Bernard; Ploeger, Felix; Randel, William

    2015-04-01

    Most chemistry-climate models predict an intensification of the Brewer-Dobson circulation in the stratosphere in the last decades, but this trend remains to be confirmed in observational data. In this work the evolution of the advective BDC for the period 1979-2012 is evaluated and compared in three modern reanalyses (ERA-Interim, MERRA and JRA-55). Three different estimates of the BDC are computed for each reanalysis, one based on the definition of the residual circulation and two indirect estimates derived from momentum and thermodynamic balance. The comparison among the nine estimates shows substantial uncertainty in the mean magnitude but significant common variability. The trend analysis suggests an intensification in tropical upwelling throughout the layer 100-10 hPa. Globally, an acceleration of the circulation is observed in both hemispheres, with qualitative agreement among the estimates. The global BDC trends are mainly due to changes in the DJF circulation and can be tracked to changes in the resolved wave drag in both hemispheres, which are highly consistent in the three reanalyses.

  18. Correlation Networks from Flows. The Case of Forced and Time-Dependent Advection-Diffusion Dynamics.

    Directory of Open Access Journals (Sweden)

    Liubov Tupikina

    Full Text Available Complex network theory provides an elegant and powerful framework to statistically investigate different types of systems such as society, brain or the structure of local and long-range dynamical interrelationships in the climate system. Network links in climate networks typically imply information, mass or energy exchange. However, the specific connection between oceanic or atmospheric flows and the climate network's structure is still unclear. We propose a theoretical approach for verifying relations between the correlation matrix and the climate network measures, generalizing previous studies and overcoming the restriction to stationary flows. Our methods are developed for correlations of a scalar quantity (temperature, for example which satisfies an advection-diffusion dynamics in the presence of forcing and dissipation. Our approach reveals that correlation networks are not sensitive to steady sources and sinks and the profound impact of the signal decay rate on the network topology. We illustrate our results with calculations of degree and clustering for a meandering flow resembling a geophysical ocean jet.

  19. Correlation Networks from Flows. The Case of Forced and Time-Dependent Advection-Diffusion Dynamics.

    Science.gov (United States)

    Tupikina, Liubov; Molkenthin, Nora; López, Cristóbal; Hernández-García, Emilio; Marwan, Norbert; Kurths, Jürgen

    2016-01-01

    Complex network theory provides an elegant and powerful framework to statistically investigate different types of systems such as society, brain or the structure of local and long-range dynamical interrelationships in the climate system. Network links in climate networks typically imply information, mass or energy exchange. However, the specific connection between oceanic or atmospheric flows and the climate network's structure is still unclear. We propose a theoretical approach for verifying relations between the correlation matrix and the climate network measures, generalizing previous studies and overcoming the restriction to stationary flows. Our methods are developed for correlations of a scalar quantity (temperature, for example) which satisfies an advection-diffusion dynamics in the presence of forcing and dissipation. Our approach reveals that correlation networks are not sensitive to steady sources and sinks and the profound impact of the signal decay rate on the network topology. We illustrate our results with calculations of degree and clustering for a meandering flow resembling a geophysical ocean jet. PMID:27128846

  20. Volume of Fluid (VOF) type advection methods in two-phase flow: a comparative study

    CERN Document Server

    Aniszewski, Wojciech; Marek, Maciej

    2014-01-01

    In this paper, four distinct approaches to Volume of Fluid (VOF) computational method are compared. Two of the methods are the 'simplified' VOF formulations, in that they do not require geometrical interface reconstruction. The assessment is made possible by implementing all four approaches into the same code as a switchable options. This allows to rule out possible influence of other parts of numerical scheme, be it the discretisation of Navier-Stokes equations or chosen approximation of curvature, so that we are left with conclusive arguments because only one factor differs the compared methods. The comparison is done in the framework of CLSVOF (Coupled Level Set Volume of Fluid), so that all four methods are coupled with Level Set interface, which is used to compute pressure jump via the GFM (Ghost-Fluid Method). Results presented include static advections, full N-S solutions in laminar and turbulent flows. The paper is aimed at research groups who are implementing VOF methods in their computations or inte...

  1. Effect of Ionic Advection on Electroosmosis over Charge Surfaces: Beyond the Weak Field Limit

    CERN Document Server

    Ghosh, Uddipta

    2015-01-01

    The present study deals with the effect of ionic advection on electroosmotic flow over charge modulated surfaces in a generalized paradigm when the classically restrictive "weak field" limit may be relaxed. Going beyond the commonly portrayed weak field limit (i.e, the externally applied electric field is over-weighed by the surface-induced electrical potential, towards charge distribution in an electrified wall-adhering layer) for electroosmotic transport, we numerically solve the coupled full set of Poisson-Nernst-Planck (PNP) and Navier-Stokes equations, in a semi-infinite domain, bounded at the bottom by a charged wall. Further, in an effort to obtain deeper physical insight, we solve the simplified forms of the relevant governing equations for low surface potential in two separate asymptotic limits: (i) a regular perturbation solution for Low Ionic Peclet number (Pe), where Pe is employed as the gauge function and (ii) a matched asymptotic solution for O(1) Pe in the Thin Electric Double Layer (EDL) limi...

  2. Bound-Preserving Discontinuous Galerkin Methods for Conservative Phase Space Advection in Curvilinear Coordinates

    CERN Document Server

    Endeve, Eirik; Xing, Yulong; Mezzacappa, Anthony

    2014-01-01

    We extend the positivity-preserving method of Zhang & Shu (2010, JCP, 229, 3091-3120) to simulate the advection of neutral particles in phase space using curvilinear coordinates. The ability to utilize these coordinates is important for non-equilibrium transport problems in general relativity and also in science and engineering applications with specific geometries. The method achieves high-order accuracy using Discontinuous Galerkin (DG) discretization of phase space and strong stability-preserving, Runge-Kutta (SSP-RK) time integration. Special care in taken to ensure that the method preserves strict bounds for the phase space distribution function $f$; i.e., $f\\in[0,1]$. The combination of suitable CFL conditions and the use of the high-order limiter proposed in Zhang & Shu (2010) is sufficient to ensure positivity of the distribution function. However, to ensure that the distribution function satisfies the upper bound, the discretization must, in addition, preserve the divergence-free property of ...

  3. Experimental tsunami deposits: Linking hydrodynamics to sediment entrainment, advection lengths and downstream fining

    Science.gov (United States)

    Johnson, Joel P. L.; Delbecq, Katie; Kim, Wonsuck; Mohrig, David

    2016-01-01

    A goal of paleotsunami research is to quantitatively reconstruct wave hydraulics from sediment deposits in order to better understand coastal hazards. Simple models have been proposed to predict wave heights and velocities, based largely on deposit grain size distributions (GSDs). Although seemingly consistent with some recent tsunamis, little independent data exist to test these equations. We conducted laboratory experiments to evaluate inversion assumptions and uncertainties. A computer-controlled lift gate instantaneously released ~ 6.5 m3 of water into a 32 m flume with shallow ponded water, creating a hydraulic bore that transported sand from an upstream source dune. Differences in initial GSDs and ponded water depths influenced entrainment, transport, and deposition. While the source dune sand was fully suspendable based on size alone, experimental tsunamis produced deposits dominated by bed load sand transport in the upstream ~ 1/3 of the flume and suspension-dominated transport downstream. The suspension deposits exhibited downstream fining and thinning. At 95% confidence, a published advection-settling model predicts time-averaged flow depths to approximately a factor of two, and time-averaged downstream flow velocities to within a factor of 1.5. Finally, reasonable scaling is found between flume and field cases by comparing flow depths, inundation distances, Froude numbers, Rouse numbers and grain size trends in suspension-dominated tsunami deposits, justifying laboratory study of sediment transport and deposition by tsunamis.

  4. Far-from-equilibrium sheared colloidal liquids: Disentangling relaxation, advection, and shear-induced diffusion

    KAUST Repository

    Lin, Neil Y. C.

    2013-12-01

    Using high-speed confocal microscopy, we measure the particle positions in a colloidal suspension under large-amplitude oscillatory shear. Using the particle positions, we quantify the in situ anisotropy of the pair-correlation function, a measure of the Brownian stress. From these data we find two distinct types of responses as the system crosses over from equilibrium to far-from-equilibrium states. The first is a nonlinear amplitude saturation that arises from shear-induced advection, while the second is a linear frequency saturation due to competition between suspension relaxation and shear rate. In spite of their different underlying mechanisms, we show that all the data can be scaled onto a master curve that spans the equilibrium and far-from-equilibrium regimes, linking small-amplitude oscillatory to continuous shear. This observation illustrates a colloidal analog of the Cox-Merz rule and its microscopic underpinning. Brownian dynamics simulations show that interparticle interactions are sufficient for generating both experimentally observed saturations. © 2013 American Physical Society.

  5. Helical turbulent Prandtl number in the $A$ model of passive advection: Two loop approximation

    CERN Document Server

    Hnatič, Michal

    2016-01-01

    Using the field theoretic renormalization group technique in the two-loop approximation, turbulent Prandtl numbers are obtained in the general $A$ model of passive vector advected by fully developed turbulent velocity field with violation of spatial parity introduced via continuous parameter $\\rho$ ranging from $\\rho=0$ (no violation of spatial parity) to $|\\rho|=1$ (maximum violation of spatial parity). In non-helical environments, we demonstrate that $A$ is restricted to $-1.723 \\leq A \\leq 2.800$ (rounded on the last presented digit) due to the constraints of two-loop calculations. When $\\rho >0.749$ restrictions may be removed. Furthermore, three physically important cases $A \\in \\{-1, 0, 1\\}$ are shown to lie deep within the allowed interval of $A$ for all values of $\\rho$. For the model of linearized Navier-Stokes equations ($A = -1$) up to date unknown helical values of turbulent Prandtl number have been shown to equal $1$ regardless of parity violation. Furthermore, we have shown that interaction para...

  6. A New Evapotranspiration Model Accounting for Advection and Its Validation during SMEX02

    Directory of Open Access Journals (Sweden)

    Yongmin Yang

    2013-01-01

    Full Text Available Based on the crop water stress index (CWSI concept, a new model was proposed to account for advection to estimate evapotranspiration. Both local scale evaluation with sites observations and regional scale evaluation with a remote dataset from Landsat 7 ETM+ were carried out to assess the performance of this model. Local scale evaluation indicates that this newly developed model can effectively characterize the daily variations of evapotranspiration and the predicted results show good agreement with the site observations. For all the 6 corn sites, the coefficient of determination (R2 is 0.90 and the root mean square difference (RMSD is 58.52W/m2. For all the 6 soybean sites, the R2 and RMSD are 0.85 and 49.46W/m2, respectively. Regional scale evaluation shows that the model can capture the spatial variations of evapotranspiration at the Landsat-based scale. Clear spatial patterns were observed at the Landsat-based scale and are closely related to the dominant land covers, corn and soybean. Furthermore, the surface resistance derived from instantaneous CWSI was applied to the Penman-Monteith equation to estimate daily evapotranspiration. Overall, results indicate that this newly developed model is capable of estimating reliable surface heat fluxes using remotely sensed data.

  7. Transport dissipative particle dynamics model for mesoscopic advection- diffusion-reaction problems

    Energy Technology Data Exchange (ETDEWEB)

    Zhen, Li; Yazdani, Alireza; Tartakovsky, Alexandre M.; Karniadakis, George E.

    2015-07-07

    We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic DPD framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between particles, and an analytical formula is proposed to relate the mesoscopic concentration friction to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers.

  8. Existence of solutions to boundary value problems arising from the fractional advection dispersion equation

    Directory of Open Access Journals (Sweden)

    Lingju Kong

    2013-04-01

    Full Text Available We study the existence of multiple solutions to the boundary value problem $$displaylines{ frac{d}{dt}Big(frac12{}_0D_t^{-eta}(u'(t+frac12{}_tD_T^{-eta}(u'(t Big+lambda abla F(t,u(t=0,quad tin [0,T],cr u(0=u(T=0, }$$ where $T>0$, $lambda>0$ is a parameter, $0leqeta<1$, ${}_0D_t^{-eta}$ and ${}_tD_T^{-eta}$ are, respectively, the left and right Riemann-Liouville fractional integrals of order $eta$, $F: [0,T]imesmathbb{R}^Nomathbb{R}$ is a given function. Our interest in the above system arises from studying the steady fractional advection dispersion equation. By applying variational methods, we obtain sufficient conditions under which the above equation has at least three solutions. Our results are new even for the special case when $eta=0$. Examples are provided to illustrate the applicability of our results.

  9. The role of phase dynamics in a stochastic model of a passively advected scalar

    CERN Document Server

    Moradi, Sara

    2016-01-01

    Collective synchronous motion of the phases is introduced in a model for the stochastic passive advection-diffusion of a scalar with external forcing. The model for the phase coupling dynamics follows the well known Kuramoto model paradigm of limit-cycle oscillators. The natural frequencies in the Kuramoto model are assumed to obey a given scale dependence through a dispersion relation of the drift-wave form $-\\beta\\frac{k}{1+k^2}$, where $\\beta$ is a constant representing the typical strength of the gradient. The present aim is to study the importance of collective phase dynamics on the characteristic time evolution of the fluctuation energy and the formation of coherent structures. Our results show that the assumption of a fully stochastic phase state of turbulence is more relevant for high values of $\\beta$, where we find that the energy spectrum follows a $k^{-7/2}$ scaling. Whereas for lower $\\beta$ there is a significant difference between a-synchronised and synchronised phase states, and one could expe...

  10. The role of phase dynamics in a stochastic model of a passively advected scalar

    Science.gov (United States)

    Moradi, Sara; Anderson, Johan

    2016-05-01

    Collective synchronous motion of the phases is introduced in a model for the stochastic passive advection-diffusion of a scalar with external forcing. The model for the phase coupling dynamics follows the well known Kuramoto model paradigm of limit-cycle oscillators. The natural frequencies in the Kuramoto model are assumed to obey a given scale dependence through a dispersion relation of the drift-wave form -βk/1 +k2 , where β is a constant representing the typical strength of the gradient. The present aim is to study the importance of collective phase dynamics on the characteristic time evolution of the fluctuation energy and the formation of coherent structures. Our results show that the assumption of a fully stochastic phase state of turbulence is more relevant for high values of β, where we find that the energy spectrum follows a k-7 /2 scaling. Whereas for lower β there is a significant difference between a-synchronised and synchronised phase states, one could expect the formation of coherent modulations in the latter case.

  11. On the advection of tracer by eddies on the beta-plane: A numerical study

    Directory of Open Access Journals (Sweden)

    E. S. Benilov

    1999-01-01

    Full Text Available The evolution of tracer "injected" into an equivalent barotropic eddy on the beta-plane is examined numerically. The eddy is governed by the standard quasigeostrophic equation, and the concentration of tracer is governed by the advection equation with diffusion. At the initial moment of time, the streamfunction and distribution of tracer are both radially or elliptically symmetric. After the first 10-30 days, a spirallike strip, where the gradient of concentration is large, develops in the tracer field, whereas the eddy remains smooth for a relatively long time. To put this conclusion in quantitative terms, a "tracer variability indicator" is introduced and shown to grow much faster than a similar characteristic of the potential vorticity field (notwithstanding the fact that the tracer concentration and PV satisfy the same governing equation. A simple explanation as to why the tracer is more affected by filamentation than PV is provided for eddies with small Burger number. It is demonstrated that the high-gradient strip develops, unless stopped by turbulent diffusion, into an inversion (non-monotonicity of the tracer concentration field. Finally, the results of simulations are compared to the spiral patterns in the real-life eddies observed in the East Australian Current.

  12. Central Arctic Ocean freshwater during a period of anomalous melt and advection in 2015

    Science.gov (United States)

    Rabe, Benjamin; Korhonen, Meri; Hoppmann, Mario; Ricker, Robert; Hendricks, Stefan; Krumpen, Thomas; Beckers, Justin; Schauer, Ursula

    2016-04-01

    During the recent decade the Arctic Ocean has shown several years of very low sea-ice extent and an increase in liquid freshwater. Yet, the processes underlying the interannual variability are still not fully understood. Hydrographic observations by ship campaigns and autonomous platforms reveal that summer 2015 showed above average liquid freshwater in the upper ocean of the central Arctic. Surface temperatures and sea level pressure were also higher than the average of the preceeding two decades. From hydrographic observations and atmospheric reanalysis data we show that this liquid freshwater anomaly is associated with above average sea-ice melt and intensified northward Ekman transport. We, further, found significant amounts of Pacific Water in the upper water column, from the mixed-layer to the upper halocline. Our results suggest that the freshening was due to both advection of low-salinity water from the direction of the Siberian shelves, the Beaufort Gyre and the Bering Strait, and enhance sea-ice melt.

  13. Bad behavior of Godunov mixed methods for strongly anisotropic advection-dispersion equations

    Science.gov (United States)

    Mazzia, Annamaria; Manzini, Gianmarco; Putti, Mario

    2011-09-01

    We study the performance of Godunov mixed methods, which combine a mixed-hybrid finite element solver and a Godunov-like shock-capturing solver, for the numerical treatment of the advection-dispersion equation with strong anisotropic tensor coefficients. It turns out that a mesh locking phenomenon may cause ill-conditioning and reduce the accuracy of the numerical approximation especially on coarse meshes. This problem may be partially alleviated by substituting the mixed-hybrid finite element solver used in the discretization of the dispersive (diffusive) term with a linear Galerkin finite element solver, which does not display such a strong ill conditioning. To illustrate the different mechanisms that come into play, we investigate the spectral properties of such numerical discretizations when applied to a strongly anisotropic diffusive term on a small regular mesh. A thorough comparison of the stiffness matrix eigenvalues reveals that the accuracy loss of the Godunov mixed method is a structural feature of the mixed-hybrid method. In fact, the varied response of the two methods is due to the different way the smallest and largest eigenvalues of the dispersion (diffusion) tensor influence the diagonal and off-diagonal terms of the final stiffness matrix. One and two dimensional test cases support our findings.

  14. Phase mixing vs. nonlinear advection in drift-kinetic plasma turbulence

    CERN Document Server

    Schekochihin, A A; Highcock, E G; Dellar, P J; Dorland, W; Hammett, G W

    2015-01-01

    A scaling theory of long-wavelength electrostatic turbulence in a magnetised, weakly collisional plasma (e.g., drift-wave turbulence driven by temperature gradients) is proposed, with account taken both of the nonlinear advection of the perturbed particle distribution by fluctuating ExB flows and of its phase mixing, which is caused by the streaming of the particles along the mean magnetic field and, in a linear problem, would lead to Landau damping. A consistent theory is constructed in which very little free energy leaks into high velocity moments of the distribution, rendering the turbulent cascade in the energetically relevant part of the wave-number space essentially fluid-like. The velocity-space spectra of free energy expressed in terms of Hermite-moment orders are steep power laws and so the free-energy content of the phase space does not diverge at infinitesimal collisionality (while it does for a linear problem); collisional heating due to long-wavelength perturbations vanishes in this limit (also i...

  15. Correcting transport errors during advection of aerosol and cloud moment sequences in eulerian models

    Energy Technology Data Exchange (ETDEWEB)

    McGraw R.

    2012-03-01

    Moment methods are finding increasing usage for simulations of particle population balance in box models and in more complex flows including two-phase flows. These highly efficient methods have nevertheless had little impact to date for multi-moment representation of aerosols and clouds in atmospheric models. There are evidently two reasons for this: First, atmospheric models, especially if the goal is to simulate climate, tend to be extremely complex and take many man-years to develop. Thus there is considerable inertia to the implementation of novel approaches. Second, and more fundamental, the nonlinear transport algorithms designed to reduce numerical diffusion during advection of various species (tracers) from cell to cell, in the typically coarse grid arrays of these models, can and occasionally do fail to preserve correlations between the moments. Other correlated tracers such as isotopic abundances, composition of aerosol mixtures, hydrometeor phase, etc., are subject to this same fate. In the case of moments, this loss of correlation can and occasionally does give rise to unphysical moment sets. When this happens the simulation can come to a halt. Following a brief description and review of moment methods, the goal of this paper is to present two new approaches that both test moment sequences for validity and correct them when they fail. The new approaches work on individual grid cells without requiring stored information from previous time-steps or neighboring cells.

  16. Effect of organic compounds for the advection of actinide elements in the environments

    Energy Technology Data Exchange (ETDEWEB)

    Muraoka, Susumu; Nagao, Seiya; Tanaka, Tadao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Hiraki, Keizo; Nakaguchi, Yuzuru; Suzuki, Yasuhiro

    1998-01-01

    The aim of this studies is understood the effects of humic substances for the advection of actinide elements in the environments. These substances are a major role of dissolved organic matter in natural waters. In order to obtain the informations on the structure of metal-humic substances complexes, these substances were studied by fluorescence spectroscopy. Observation the spectrum forms, peak positions of maximum intensity are related to these informations on the chemical structures and functional groups in organic compounds. Using three-dimensional excitation emission matrix (3-D EEM) spectroscopy, the characteristics of metal-humic substances complexes were studied. Observation the wavelengths and fluorescence intensity of the peaks were varied between humic substances before the complex to the metal and these substances after ones. Understanding the fluorescence properties of metal-humic substances complexes, working program of the 3-D EEM spectroscopy was studied to obtaining detailed data collection. New program was applied to copper-humic acid complex, the peak positions which different with before the complex and after ones were recorded. This program is supported by the interpreation of fluorescence properties in the metal-humic substances by the 3-D EEM spectroscopy. (author)

  17. Personalized medicine in human space flight: using Omics based analyses to develop individualized countermeasures that enhance astronaut safety and performance

    OpenAIRE

    Schmidt, Michael A.; Goodwin, Thomas J.

    2013-01-01

    Space flight is one of the most extreme conditions encountered by humans. Advances in Omics methodologies (genomics, transcriptomics, proteomics, and metabolomics) have revealed that unique differences exist between individuals. These differences can be amplified in extreme conditions, such as space flight. A better understanding of individual differences may allow us to develop personalized countermeasure packages that optimize the safety and performance of each astronaut. In this review, we...

  18. Bisphosphonate ISS Flight Experiment

    Science.gov (United States)

    LeBlanc, Adrian; Matsumoto, Toshio; Jones, Jeffrey; Shapiro, Jay; Lang, Thomas; Shackleford, Linda; Smith, Scott M.; Evans, Harlan; Spector, Elizabeth; Ploutz-Snyder, Robert; Sibonga, Jean; Keyak, Joyce; Nakamura, Toshitaka; Kohri, Kenjiro; Ohshima, Hiroshi; Moralez, Gilbert

    2014-01-01

    The bisphosphonate study is a collaborative effort between the NASA and JAXA space agencies to investigate the potential for antiresorptive drugs to mitigate bone changes associated with long-duration spaceflight. Elevated bone resorption is a hallmark of human spaceflight and bed rest (common zero-G analog). We tested whether an antiresorptive drug in combination with in-flight exercise would ameliorate bone loss and hypercalcuria during longduration spaceflight. Measurements include DXA, QCT, pQCT, and urine and blood biomarkers. We have completed analysis of 7 crewmembers treated with alendronate during flight and the immediate postflight (R+<2 week) data collection in 5 of 10 controls without treatment. Both groups used the advanced resistive exercise device (ARED) during their missions. We previously reported the pre/postflight results of crew taking alendronate during flight (Osteoporosis Int. 24:2105-2114, 2013). The purpose of this report is to present the 12-month follow-up data in the treated astronauts and to compare these results with preliminary data from untreated crewmembers exercising with ARED (ARED control) or without ARED (Pre-ARED control). Results: the table presents DXA and QCT BMD expressed as percentage change from preflight in the control astronauts (18 Pre-ARED and the current 5 ARED-1-year data not yet available) and the 7 treated subjects. As shown previously the combination of exercise plus antiresorptive is effective in preventing bone loss during flight. Bone measures for treated subjects, 1 year after return from space remain at or near baseline values. Except in one region, the treated group maintained or gained bone 1 year after flight. Biomarker data are not currently available for either control group and therefore not presented. However, data from other studies with or without ARED show elevated bone resorption and urinary Ca excretion while bisphosphonate treated subjects show decreases during flight. Comparing the two control

  19. Analysis of multipass laser amplifier systems for storage laser media

    International Nuclear Information System (INIS)

    The performance characteristics of single pass and multipass storage laser amplifiers are presented and compared. The effects of the multipass amplifier parameters on the extraction characteristics are examined. For a wide range of conditions the multipass amplifier is found to provide high energy gain and high efficiency simultaneously. This is a significant advantage over the single pass laser amplifier. Finally, three specific storage laser amplifier systems, flashlamp pumped V:MgF2, XeF laser pumped Tm:Glass, and photolytically pumped Selenium, are examined. The performance characteristics for each of the three systems are calculated and compared

  20. Analysis of multipass laser amplifier systems for storage laser media

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, J.F.

    1980-03-25

    The performance characteristics of single pass and multipass storage laser amplifiers are presented and compared. The effects of the multipass amplifier parameters on the extraction characteristics are examined. For a wide range of conditions the multipass amplifier is found to provide high energy gain and high efficiency simultaneously. This is a significant advantage over the single pass laser amplifier. Finally, three specific storage laser amplifier systems, flashlamp pumped V:MgF/sub 2/, XeF laser pumped Tm:Glass, and photolytically pumped Selenium, are examined. The performance characteristics for each of the three systems are calculated and compared.

  1. Characterization of a Common-Gate Amplifier Using Ferroelectric Transistors

    Science.gov (United States)

    Hunt, Mitchell; Sayyah, Rana; MacLeod, Todd C.; Ho, Fat D.

    2011-01-01

    In this paper, the empirical data collected through experiments performed using a FeFET in the common-gate amplifier circuit is presented. The FeFET common-gate amplifier was characterized by varying all parameters in the circuit, such as load resistance, biasing of the transistor, and input voltages. Due to the polarization of the ferroelectric layer, the particular behavior of the FeFET common-gate amplifier presents interesting results. Furthermore, the differences between a FeFET common-gate amplifier and a MOSFET common-gate amplifier are examined.

  2. Characterization of a Common-Source Amplifier Using Ferroelectric Transistors

    Science.gov (United States)

    Hunt, Mitchell; Sayyah, Rana; MacLeond, Todd C.; Ho, Pat D.

    2010-01-01

    This paper presents empirical data that was collected through experiments using a FeFET in the established common-source amplifier circuit. The unique behavior of the FeFET lends itself to interesting and useful operation in this widely used common-source amplifier. The paper examines the effect of using a ferroelectric transistor for the amplifier. It also examines the effects of varying load resistance, biasing, and input voltages on the output signal and gives several examples of the output of the amplifier for a given input. The difference between a commonsource amplifier using a ferroelectric transistor and that using a MOSFET is addressed.

  3. The influence of advection on the short term CO2-budget in and above a forest canopy

    Science.gov (United States)

    Feigenwinter, C.; Vogt, R.; Bernhofer, C.

    2003-04-01

    The investigation of advective effects in complex terrain requires an experimental setup, which is capable to precisely measure the horizontal concentration gradients of a property (i.e. CO2). For this purpose, the CARBOEUROFLUX site in Tharandt (Germany) was completed with additional measurements to account for the entire mass balance of CO2 in a soil-vegetation-atmosphere volume during the AFO 2000 VERTIKO MORE 1 campaign (Sep/Oct 2001) in close cooperation with IHM TU Dresden. Net Ecosystem Exchange is calculated by the conservation equation, in which the horizontal advection term is undoubtedly the less known and less investigated term. The large scatter of horizontal and vertical advection during 13 consecutive days of available 30-min values is supposed to be mainly natural and not due to measurement errors. The latter were minimized by measuring the horizontal CO2 concentration differences at the three edges of a prism volume at two heights (2 m and 26 m a.g.l.) with the same IRGA gas analyser additionally to the single profile measurements at 7 levels at each edge point. Wind vectors were simultaneously measured at two levels (0.5 m and 2.5 m) in the trunk space with carefully calibrated sonics. From these measurements profiles of the horizontal CO2 gradient (amount and direction) and of the mean horizontal wind vector are constructed. These profiles are supposed to be representative for the closer surroundings of the site. The horizontal advection in a certain layer depends essentially on the horizontal wind vector and CO2 gradient (amount and direction). It is very sensitive to smallest changes in input variables and thus, their derivation from profile measurements is actually the crucial task. It is shown that the direction of the horizontal concentration gradient as well as the horizontal wind vector is often height dependent. A minimum and a maximum scenario for the horizontal advection term gives gain of 10..30 g CO2 m-2 d-1 compared to a mean loss of

  4. Early Holocene variability in the Arctic Gateway - High-resolution records reflecting Atlantic Water advection and ice coverage

    Science.gov (United States)

    Spielhagen, Robert F.; Bauch, Henning A.; Maudrich, Martin; Not, Christelle; Telesinski, Maciej M.; Werner, Kirstin

    2015-04-01

    The Arctic Gateway between Greenland and Svalbard is the main passage for the advection of Atlantic Water to the Arctic Ocean. Water temperature and intensity of this advection largely determine the degree of ice coverage which is fed by sea ice export from the north. Supported by a maximum in insolation, the Early Holocene was a period of extraordinarily strong advection and relatively high near-surface water temperatures in the eastern Nordic Seas (cf. Risebrobakken et al., 2011, Paleoceanography v. 26). Here we present a synthesis of radiocarbon-dated records from the northern and western part of this area, reaching from the SW Greenland Sea (73°N) to the Yermak Plateau (81°N) and revealing temporal and spatial differences in the development of the so-called Holocene Thermal Maximum (HTM). In the northern part of this region, the HTM started ca. 11-10.5 ka as indicated by rapidly increasing amounts of subpolar planktic foraminifers in the sediments. In the eastern Fram Strait and on the Yermak Plateau, our records of (sub)millennial scale resolution show that the maximum influx terminated already 2,000 years later (9-8 ka). Most likely, this development went along with a N-S relocation of the sea ice margin. According to the current stratigraphic model for a core with submillennial-scale resolution from Vesterisbanken seamount (73°N) in the Greenland Sea, the timing was different there. Increasing total amounts of planktic foraminifers in the sediment indicate an early (11-10 ka) reduction in sea ice coverage also in this region. However, evidence from subpolar planktic foraminifers for maximum Atlantic Water advection is younger (9-6 ka) than in the north. Apparently, the site in the SW Greenland Sea was affected by Atlantic Water in the Greenland Gyre that decoupled from the northward flowing Norwegian Atlantic Current/Westspitsbergen Current south of the Fram Strait. Thus, in a suite of events, strong Atlantic Water advection first affected the

  5. Dynamic flight stability of a bumblebee in forward flight

    Institute of Scientific and Technical Information of China (English)

    Yan Xiong; Mao Sun

    2008-01-01

    The longitudinal dynamic flight stability of a bumblebee in forward flight is studied.The method of computational fluid dynamics is used to compute the aerodynamic derivatives and the techniques of eigenvalue and eigenvector analysis are employed for solving the equations of motion.The primary findings are as the following.The forward flight of the bumblebee is not dynamically stable due to the existence of one(or two)unstable or approximately neutrally stable natural modes of motion.At hovering to medium flight speed[flight speed ue=(0-3.5)m s-1;advance ratio J=0-0.44],the flight is weakly unstable or approximately neutrally stable;at high speed(ue=4.5 m s-1;J=0.57),the flight becomes strongly unstable(initial disturbance double its value in only 3.5 wingbeats).

  6. Low power RF amplifier circuit for ion trap applications

    Science.gov (United States)

    Noriega, J. R.; García-Delgado, L. A.; Gómez-Fuentes, R.; García-Juárez, A.

    2016-09-01

    A low power RF amplifier circuit for ion trap applications is presented and described. The amplifier is based on a class-D half-bridge amplifier with a voltage mirror driver. The RF amplifier is composed of an RF class-D amplifier, an envelope modulator to ramp up the RF voltage during the ion analysis stage, a detector or amplitude demodulation circuit for sensing the output signal amplitude, and a feedback amplifier that linearizes the steady state output of the amplifier. The RF frequency is set by a crystal oscillator and the series resonant circuit is tuned to the oscillator frequency. The resonant circuit components have been chosen, in this case, to operate at 1 MHz. In testings, the class-D stage operated at a maximum of 78 mW at 1.1356 MHz producing 225 V peak.

  7. K-band FET amplifier for satellite downlink

    Science.gov (United States)

    Goel, J.; Cheung, R. P.

    1984-01-01

    State-of-the-art performance is demonstrated with solid-state amplifiers in K-band. The amplifier provides 8.2 watts of power with 39 dB gain over a frequency band of 1.4 GHz. Nonlinearity analyses of solid-state amplifiers suggest that system performance can be improved significantly by using an FET amplifier. Preliminary investigations reveal that the solid-state amplifiers can be space-qualified and can be expected to replace the TWTA in many communication links in the near future. It is pointed out that with improvements in device technology, the power, bandwidth and efficiency of solid-state amplifiers using FETs can be further improved. With FETs operating at a junction temperature of less than 125 C, solid-state amplifiers are inherently reliable, indicating a ten-year mean time to failure.

  8. Investigations of electronic amplifiers supplying a piezobimorph actuator

    Science.gov (United States)

    Milecki, Andrzej; Regulski, Roman

    2016-10-01

    Piezoelectric bending actuators, also known as bimorphs, are characterized by very good dynamic properties and by displacements in a range of a few millimeters. Therefore these actuators are used in a wide range of applications. However their usage is limited because they require supplying amplifiers with output voltage of about 200 V, which are rather expensive. This paper presents investigation results of such amplifiers with high voltage output. The model of a piezobending actuator is proposed and implemented in Matlab-Simulink software in order to simulate the behavior of the actuator supplied by the amplifiers. The simulation results are presented and compared with investigation results of high voltage amplifier used for supplying a piezoactuator. The influence of current limitation of operational amplifier on the actuator current is tested. Finally, a low cost audio power amplifier is proposed to control the piezobender actuator (as a cheaper alternative to the high-voltage amplifier) and its investigations results are presented in the paper.

  9. Time amplifying techniques towards atomic time resolution

    Institute of Scientific and Technical Information of China (English)

    LI JingZhen

    2009-01-01

    High speed imaging technology has opened applications in many fields,such as collision,detonating,high voltage discharge,disintegration and transfer of phonon and exciton in solid,photosynthesis primitive reaction,and electron dynamics inside atom shell.In principle,all of the transient processes need to be explained theoretically and,st the same time,the time amplifying technique is required for observations of these processes.The present review concerns the atomic time amplifying mechanism of optical information and the extremely-high speed imaging methods,which are expressed in terms of the short time amplifying techniques.It is well-known that for extremely-high speed imaging with the converter tube,the temporal resolution is in the order of sub-picosecond of the streak imaging,and the imaging frequency is 6×10~8-5×10~9 fps(frame per second)of the frame imaging.On the other hand,for the tubeless extremely-high speed imaging,the imaging frequency is 10~7-10~(14) fps,and its mechanism of forming high speed and framing could involve a lot of factors of the light under investigation,for instance,light speed,light parallelism,the parameters of light wave such as amplitude,phase,polarization and wavelength,and even quantum properties of photon.In the cascaded system of electromagnetic wave and particle wave,it is possible to simultaneously realize extremely-high resolution in time and space,which is higher than a kite resolution.Then it would be possible to break the limit of the Heisenberg uncertainty relation of the optical frequency band.

  10. Time amplifying techniques towards atomic time resolution

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    High speed imaging technology has opened applications in many fields,such as collision,detonating, high voltage discharge,disintegration and transfer of phonon and exciton in solid,photosynthesis primitive reaction,and electron dynamics inside atom shell.In principle,all of the transient processes need to be explained theoretically and,at the same time,the time amplifying technique is required for observations of these processes.The present review concerns the atomic time amplifying mechanism of optical information and the extremely-high speed imaging methods,which are expressed in terms of the short time amplifying techniques.It is well-known that for extremely-high speed imaging with the converter tube,the temporal resolution is in the order of sub-picosecond of the streak imaging,and the imaging frequency is 6×10 8 ―5×10 9 fps(frame per second)of the frame imaging.On the other hand,for the tubeless extremely-high speed imaging,the imaging frequency is 10 7 ―10 14 fps,and its mechanism of forming high speed and framing could involve a lot of factors of the light under investigation,for instance,light speed,light parallelism,the parameters of light wave such as amplitude,phase,polari- zation and wavelength,and even quantum properties of photon.In the cascaded system of electro- magnetic wave and particle wave,it is possible to simultaneously realize extremely-high resolution in time and space,which is higher than a kite resolution.Then it would be possible to break the limit of the Heisenberg uncertainty relation of the optical frequency band.

  11. High sensitivity amplifier/discriminator for PWC's

    International Nuclear Information System (INIS)

    The facility support group at Fermilab is designing and building a general purpose beam chamber for use in several locations at the laboratory. This pwc has 128 wires per plane spaced 1 mm apart. An initial production of 25 signal planes is anticipated. In proportional chambers, the size of the signal depends exponentially on the charge stored per unit of length along the anode wire. As the wire spacing decreases, the capacitance per unit length decreases, thereby requiring increased applied voltage to restore the necessary charge per unit length. In practical terms, this phenomenon is responsible for difficulties in constructing chambers with less than 2 mm wire spacing. 1 mm chambers, therefore, are frequently operated very near to their breakdown point and/or a high gain gas containing organic compounds such as magic gas is used. This argon/iso-butane mixture has three drawbacks: it is explosive when exposed to the air, it leaves a residue on the wires after extended use and is costly. An amplifier with higher sensitivity would reduce the problems associated with operating chambers with small wire spacings and allow them to be run a safe margin below their breakdown voltage even with an inorganic gas mixture such as argon/CO2, this eliminating the need to use magic gas. Described here is a low cost amplifier with a usable threshold of less than 0.5 μA. Data on the performance of this amplifier/discriminator in operation on a prototype beam chamber are given. This data shows the advantages of the high sensitivity of this design

  12. Undulations from amplified low frequency surface waves

    CERN Document Server

    Coutant, Antonin

    2012-01-01

    We study the scattering of gravity waves in longitudinal stationary flows. When the flow velocity becomes supercritical, counterflow propagating waves are amplified in such a way that, in the zero-frequency limit, the free surface develops an undu- lation, i.e., a zero-frequency wave of large amplitude with nodes located at specific places. From this, we show that the unperturbed flat surface is unstable against perturbations of arbitrary small amplitude. We then show that this instability also appears when treating low frequency waves by a stochastic ensemble. The relation between the generation of undulations and black hole radiation (the Hawking effect) is discussed.

  13. Envelope tracking power amplifiers for wireless communications

    CERN Document Server

    Wang, Zhancang

    2014-01-01

    Envelope tracking technology is seen as the most promising efficiency enhancement technology for RF power amplifiers for 4G and beyond wireless communications. More and more organizations are investing and researching on this topic with huge potential in academic and commercial areas.This is the first book on the market to offer complete introduction, theory, and design considerations on envelope tracking for wireless communications. This resource presents you with a full introduction to the subject and covers underlying theory and practical design considerations.

  14. Flight Software Math Library

    Science.gov (United States)

    McComas, David

    2013-01-01

    The flight software (FSW) math library is a collection of reusable math components that provides typical math utilities required by spacecraft flight software. These utilities are intended to increase flight software quality reusability and maintainability by providing a set of consistent, well-documented, and tested math utilities. This library only has dependencies on ANSI C, so it is easily ported. Prior to this library, each mission typically created its own math utilities using ideas/code from previous missions. Part of the reason for this is that math libraries can be written with different strategies in areas like error handling, parameters orders, naming conventions, etc. Changing the utilities for each mission introduces risks and costs. The obvious risks and costs are that the utilities must be coded and revalidated. The hidden risks and costs arise in miscommunication between engineers. These utilities must be understood by both the flight software engineers and other subsystem engineers (primarily guidance navigation and control). The FSW math library is part of a larger goal to produce a library of reusable Guidance Navigation and Control (GN&C) FSW components. A GN&C FSW library cannot be created unless a standardized math basis is created. This library solves the standardization problem by defining a common feature set and establishing policies for the library s design. This allows the libraries to be maintained with the same strategy used in its initial development, which supports a library of reusable GN&C FSW components. The FSW math library is written for an embedded software environment in C. This places restrictions on the language features that can be used by the library. Another advantage of the FSW math library is that it can be used in the FSW as well as other environments like the GN&C analyst s simulators. This helps communication between the teams because they can use the same utilities with the same feature set and syntax.

  15. Flight Crew Health Maintenance

    Science.gov (United States)

    Gullett, C. C.

    1970-01-01

    The health maintenance program for commercial flight crew personnel includes diet, weight control, and exercise to prevent heart disease development and disability grounding. The very high correlation between hypertension and overweight in cardiovascular diseases significantly influences the prognosis for a coronary prone individual and results in a high rejection rate of active military pilots applying for civilian jobs. In addition to physical fitness the major items stressed in pilot selection are: emotional maturity, glucose tolerance, and family health history.

  16. Ordos Takes Flight

    Institute of Scientific and Technical Information of China (English)

    YAN WEI

    2010-01-01

    @@ China's vast hinterland has long conjured up images of rugged mountains and countrysides dotted by villages all but untouched by the hands of time. But after a recent one-hour flight west from Beijing,Anna Chennault,Chair of the Council for International Cooperation (CIC),a Washington,D.C.-based non-profit organization that helps promote development in China,found something altogether different-a city called Ordos.

  17. Neural Flight Control System

    Science.gov (United States)

    Gundy-Burlet, Karen

    2003-01-01

    The Neural Flight Control System (NFCS) was developed to address the need for control systems that can be produced and tested at lower cost, easily adapted to prototype vehicles and for flight systems that can accommodate damaged control surfaces or changes to aircraft stability and control characteristics resulting from failures or accidents. NFCS utilizes on a neural network-based flight control algorithm which automatically compensates for a broad spectrum of unanticipated damage or failures of an aircraft in flight. Pilot stick and rudder pedal inputs are fed into a reference model which produces pitch, roll and yaw rate commands. The reference model frequencies and gains can be set to provide handling quality characteristics suitable for the aircraft of interest. The rate commands are used in conjunction with estimates of the aircraft s stability and control (S&C) derivatives by a simplified Dynamic Inverse controller to produce virtual elevator, aileron and rudder commands. These virtual surface deflection commands are optimally distributed across the aircraft s available control surfaces using linear programming theory. Sensor data is compared with the reference model rate commands to produce an error signal. A Proportional/Integral (PI) error controller "winds up" on the error signal and adds an augmented command to the reference model output with the effect of zeroing the error signal. In order to provide more consistent handling qualities for the pilot, neural networks learn the behavior of the error controller and add in the augmented command before the integrator winds up. In the case of damage sufficient to affect the handling qualities of the aircraft, an Adaptive Critic is utilized to reduce the reference model frequencies and gains to stay within a flyable envelope of the aircraft.

  18. MARS Flight Engineering Status

    Energy Technology Data Exchange (ETDEWEB)

    Fast, James E.; Dorow, Kevin E.; Morris, Scott J.; Thompson, Robert C.; Willett, Jesse A.

    2010-04-06

    The Multi-sensor Airborne Radiation Survey Flight Engineering project (MARS FE) has designed a high purity germanium (HPGe) crystal array for conducting a wide range of field measurements. In addition to the HPGe detector system, a platform-specific shock and vibration isolation system and environmental housing have been designed to support demonstration activities in a maritime environment on an Unmanned Surface Vehicle (USV). This report describes the status of the equipment as of the end of FY09.

  19. Characterization of the role of heterogeneous advection and diffusion on transport in weathered and fractured granite

    Science.gov (United States)

    Guihéneuf, N.; Boisson, A.; Bour, O.; Le Borgne, T.; Marechal, J.; Nigon, B.; Wajiddudin, M.; Ahmed, S.

    2013-12-01

    The prediction of transport in weathered and fractured rocks is critical as it represents the primary control of contaminant transfer from the subsurface in many parts of the world. This is the case in Southern India, where the subsurface is composed mainly of weathered and fractured granite and where the overexploitation of the groundwater resource since the 70's has led to high water table depletion and strong groundwater quality deterioration. One key issue for modelling transport in such systems is to quantify the respective role of advective heterogeneities and matrix diffusion, which can both lead to strongly non Fickian transport properties. We investigate this question by analysing tracer test experiments performed under different flow configurations at a fractured granite experimental site located in Andhra Pradesh (India). We performed both convergent and push-pull tracer tests within the same fracture and at different scales. Three convergent tracer tests were performed with a solution of fluorescein for different pumping rate and for different distances between injection and pumping boreholes: 6, 30 and 41 meters. To evaluate diffusive process, we performed two long-duration push-pull tests (push time of 3 hours) with a solution of two conservative tracers of different diffusion coefficient (fluorescein and sodium chloride). We performed also six others push-pull tests with only fluorescein but for a variable push times of 14 min and 55 min with or without resting time of about 60 min. The late-time behaviour on the breakthrough curves (BTCs) obtained for all convergent tracer tests showed a power-law slope of -2. Two of them showed an inflexion in the BTCs suggesting the existence of two independent flow paths and thus a highly channelized flow. The long-duration push-pull tests showed similar late-time behaviour with a power-law slope of -2.2 for both tracers. The six others push-pull tests showed a variation of power-law exponent from -3 to -2

  20. Advective transport observations with MODPATH-OBS--documentation of the MODPATH observation process

    Science.gov (United States)

    Hanson, R.T.; Kauffman, L.K.; Hill, M.C.; Dickinson, J.E.; Mehl, S.W.

    2013-01-01

    The MODPATH-OBS computer program described in this report is designed to calculate simulated equivalents for observations related to advective groundwater transport that can be represented in a quantitative way by using simulated particle-tracking data. The simulated equivalents supported by MODPATH-OBS are (1) distance from a source location at a defined time, or proximity to an observed location; (2) time of travel from an initial location to defined locations, areas, or volumes of the simulated system; (3) concentrations used to simulate groundwater age; and (4) percentages of water derived from contributing source areas. Although particle tracking only simulates the advective component of conservative transport, effects of non-conservative processes such as retardation can be approximated through manipulation of the effective-porosity value used to calculate velocity based on the properties of selected conservative tracers. This program can also account for simple decay or production, but it cannot account for diffusion. Dispersion can be represented through direct simulation of subsurface heterogeneity and the use of many particles. MODPATH-OBS acts as a postprocessor to MODPATH, so that the sequence of model runs generally required is MODFLOW, MODPATH, and MODPATH-OBS. The version of MODFLOW and MODPATH that support the version of MODPATH-OBS presented in this report are MODFLOW-2005 or MODFLOW-LGR, and MODPATH-LGR. MODFLOW-LGR is derived from MODFLOW-2005, MODPATH 5, and MODPATH 6 and supports local grid refinement. MODPATH-LGR is derived from MODPATH 5. It supports the forward and backward tracking of particles through locally refined grids and provides the output needed for MODPATH_OBS. For a single grid and no observations, MODPATH-LGR results are equivalent to MODPATH 5. MODPATH-LGR and MODPATH-OBS simulations can use nearly all of the capabilities of MODFLOW-2005 and MODFLOW-LGR; for example, simulations may be steady-state, transient, or a combination

  1. Horizontal Advection and Mixing of Pollutants in the Urban Atmospheric Environment

    Science.gov (United States)

    Magnusson, S. P.; Entekhabi, D.; Britter, R.; Norford, L.; Fernando, H. J.

    2013-12-01

    Although urban air quality and its impacts on the public health have long been studied, the increasing urbanization is raising concerns on how to better control and mitigate these health impacts. A necessary element in predicting exposure levels is fundamental understanding of flow and dispersion in urban canyons. The complex topology of building structures and roads requires the resolution of turbulence phenomena within urban canyons. The use of dense and low porosity construction material can lead to rapid heating in response to direct solar exposure due to large thermal mass. Hence thermal and buoyancy effects may be as important as mechanically-forced or shear-induced flows. In this study, the transport of pollutants within the urban environment, as well as the thermal and advection effects, are investigated. The focus is on the horizontal transport or the advection effects within the urban environment. With increased urbanization and larger and more spread cities, concern about how the upstream air quality situation can affect downstream areas. The study also examines the release and the dispersion of hazardous material. Due to the variety and complexity of urban areas around the world, the urban environment is simplified into adjacent two-dimensional urban street canyons. Pollutants are released inside each canyon. Computational Fluid Dynamics (CFD) simulations are applied to evaluate and quantify the flow rate out of each canyon and also the exchange of pollutants between the canyons. Imagine a row of ten adjacent urban street canyons of aspect ratio 1 with horizontal flow perpendicular to it as shown in the attached figure. C is the concentration of pollutants. The first digit indicates in what canyon the pollutant is released and the second digit indicates the location of that pollutant. For example, C3,4 is the concentration of pollutant released inside canyon 3 measured in canyon 4. The same amount of pollution is released inside the ten street canyons

  2. A modified TVD scheme for the advection of two or more variables with consideration for their sum

    Science.gov (United States)

    Mercier, Christophe Y. M.; Delhez, Eric J. M.

    2010-10-01

    Total variation diminishing (TVD) advection schemes are known to produce results that are free from some of the numerical artifacts (no overshooting, no spurious oscillation, small diffusion) that can spoil the physical significance of the results. When two or more tracers are advected separately using a TVD scheme, the sum of these variables can however exhibit some inappropriate behaviors. The total variation of the sum will not necessarily be non- increasing and local artificial oscillations and extrema can appear. We show that these can be avoided with only minor perturbations of the original solution by adjusting the slope limiters used for the different variables. If the sum of these variables has some physical significance, for instance as refinement of a larger model compartment, the correction procedure introduced in this paper should be used to ensure a physically meaningful solution.

  3. A study of a WENO-TVD finite volume scheme for the numerical simulation of atmospheric advective and convective phenomena

    CERN Document Server

    Kalise, Dante

    2011-01-01

    We present a WENO-TVD scheme for the simulation of atmospheric phenomena. The scheme considers a spatial discretization via a second-order TVD flux based upon a flux-centered limiter approach, which makes use of high-order accurate extrapolated values arising from a WENO reconstruction procedure. Time discretization is performed with a third order RK-TVD scheme, and splitting is used for the inclusion of source terms. We present a comprehensive performance study of the method in atmospheric applications involving advective and convective motion. We present a set of tests for space-dependent linear advection, where we assess convergence and robustness with respect to the parameters of the scheme. We apply the method to approximate the 2D Euler equations in a series of tests for atmospheric convection.

  4. Groundwater age, life expectancy and transit time distributions in advective-dispersive systems: 1. Generalized reservoir theory

    CERN Document Server

    Cornaton, F; 10.1016/j.advwatres.2005.10.009

    2011-01-01

    We present a methodology for determining reservoir groundwater age and transit time probability distributions in a deterministic manner, considering advective-dispersive transport in steady velocity fields. In a first step, we propose to model the statistical distribution of groundwater age at aquifer scale by means of the classical advection-dispersion equation for a conservative and nonreactive tracer, associated to proper boundary conditions. The evaluated function corresponds to the density of probability of the random variable age, age being defined as the time elapsed since the water particles entered the aquifer. An adjoint backward model is introduced to characterize the life expectancy distribution, life expectancy being the time remaining before leaving the aquifer. By convolution of these two distributions, groundwater transit time distributions, from inlet to outlet, are fully defined for the entire aquifer domain. In a second step, an accurate and efficient method is introduced to simulate the tr...

  5. Investigating redox processes under diffusive and advective flow conditions using a coupled omics and synchrotron approach

    Science.gov (United States)

    Kemner, K. M.; Boyanov, M.; Flynn, T. M.; O'Loughlin, E. J.; Antonopoulos, D. A.; Kelly, S.; Skinner, K.; Mishra, B.; Brooks, S. C.; Watson, D. B.; Wu, W. M.

    2015-12-01

    FeIII- and SO42--reducing microorganisms and the mineral phases they produce have profound implications for many processes in aquatic and terrestrial systems. In addition, many of these microbially-catalysed geochemical transformations are highly dependent upon introduction of reactants via advective and diffusive hydrological transport. We have characterized microbial communities from a set of static microcosms to test the effect of ethanol diffusion and sulfate concentration on UVI-contaminated sediment. The spatial distribution, valence states, and speciation of both U and Fe were monitored in situ throughout the experiment by synchrotron x-ray absorption spectroscopy, in parallel with solution measurements of pH and the concentrations of sulfate, ethanol, and organic acids. After reaction initiation, a ~1-cm thick layer of sediment near the sediment-water (S-W) interface became visibly dark. Fe XANES spectra of the layer were consistent with the formation of FeS. Over the 4 year duration of the experiment, U LIII-edge XANES indicated reduction of U, first in the dark layer and then throughout the sediment. Next, the microcosms were disassembled and samples were taken from the overlying water and different sediment regions. We extracted DNA and characterized the microbial community by sequencing 16S rRNA gene amplicons with the Illumina MiSeq platform and found that the community evolved from its originally homogeneous composition, becoming significantly spatially heterogeneous. We have also developed an x-ray accessible column to probe elemental transformations as they occur along the flow path in a porous medium with the purpose of refining reactive transport models (RTMs) that describe coupled physical and biogeochemical processes in environmental systems. The elemental distribution dynamics and the RTMs of the redox driven processes within them will be presented.

  6. Gamma irradiation test report of simulated grout specimens for gas generation/liquid advection

    International Nuclear Information System (INIS)

    This report presents the results from an irradiation test performed on four specimens of grout that were fabricated from synthetic Double Shell Slurry Feed (DSSF) liquid waste. The objective was to investigate the radiolytic generation of gases and the potential for advective rejection of waste liquids from the grout matrix and to provide experimental information for the validation of the C-Cubed calculated model. It has been demonstrated that a number of gases can be formed within the grout due to radiolytic decomposition of various chemical components that make up the grout. This observation leads to the conjecture that the potential exists for the rejection of a portion of the 60 vol% free liquid from the grout matrix driven by pressurization by these gases. It was found that, for the specimen geometries used in this test series, and for peak radiation dose accumulation rates on the order of 4 to 60 times of the initial rate expected in the grout vaults (300 Rads/hr), no liquid rejection was observed from 2% to 35% of the target exposure expected in the grout vaults (1E+08 Rads). When the irradiation rate exceeded the projected grout vault dose rate by a factor of 200 a small amount of liquid rejection was observed from one of two specimens that had received 20% more than the goal exposure. Because of the differences in the magnitudes of the relative radiation field strengths between this study and an actual grout vault, it is concluded that the potential for liquid rejection by internal gas pressurization from presently configured grout waste forms is very low for the expected conditions

  7. Advective heat transport in the upper carbonate aquifer beneath Winnipeg, Manitoba

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, G.A.G.; Woodbury, A.D. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Civil Engineering

    2003-07-01

    Air conditioning and industrial cooling in Winnipeg, Manitoba requires large volumes of groundwater, with the bulk of this water pumped from the Upper Carbonate Aquifer. Pumping takes place at the erosional surface of several dipping Paleozoic carbonate units beneath the city. To prevent excessive drawdown, wastewater from these processes is reinjected into the aquifer. Heat loading from the surface, combined with this practice, leads to the creation of areas of elevated temperature within the Upper Carbonate Aquifer. An industrial area located in eastern Winnipeg is the site of the largest of these anomalies, where the aquifer's permeability is enhanced by the presence of conduits and discrete fractures. The use of numerical modeling showed that the greatest temperature anomalies occur where there are very high permeabilities, especially in the form of conduits and discrete fractures. Groundwater velocities are increased by these factors, and could result in the creation of plumes of heated water. Plumes of heated water are less likely to occur where the aquifer is thicker and conduits are absent, due to advective heat transport becoming focused between the injection well and the production well in lower permeability situations. These areas also correspond to the areas of decreased transmissivity in several parts of the Upper Carbonate Aquifer, and may not be capable of producing the required volumes of groundwater for thermal applications. Taking into account these permeability features in planning and design of non-consumptive groundwater systems in the Upper Carbonate Aquifer helps to minimize both drawdown and changes in aquifer temperature. 8 refs., 2 figs.

  8. Abrupt cooling associated with the oceanic Rossby wave and lateral advection during CINDY2011

    Science.gov (United States)

    Seiki, Ayako; Katsumata, Masaki; Horii, Takanori; Hasegawa, Takuya; Richards, Kelvin J.; Yoneyama, Kunio; Shirooka, Ryuichi

    2013-10-01

    The cooperative Indian Ocean experiment on intraseasonal variability in the Year 2011 (CINDY2011) was conducted to capture atmospheric and oceanic characteristics of the Madden-Julian Oscillation (MJO) in the central Indian Ocean from late 2011 to early 2012. During CINDY2011, the research vessel (R/V) MIRAI stayed at 8°S, 80.5°E for two months during the special observing period (SOP). Intraseasonal convection associated with the MJO was organized in the central Indian Ocean in late October and late November during the SOP. In the middle of November, both sea surface temperature (SST) and mixed layer temperature decreased suddenly when cold low salinity water intruded into the upper layer around the R/V MIRAI. This intrusion was accompanied by a surface current change from southwestward to westward/west-northwestward associated with the passage of the annual oceanic downwelling Rossby wave. The mixed layer heat budget analysis shows that horizontal advection plays an important role in the abrupt cooling whereas the net surface heat flux cannot account for the cooling. This is an interesting result because the associated downwelling Rossby wave is usually considered to increase SST through a reduction of entrainment cooling. In addition, for the second MJO event convection was activated around 20 November over the central north and equatorial Indian Ocean but not in the south. It is suggested that the cooler surface waters (as seen at the location of the R/V MIRAI) tended to suppress the initial atmospheric convection, resulting in the lagged convective onset in the end of November over the central south Indian Ocean.

  9. Summertime influences of tidal energy advection on the surface energy balance in a mangrove forest

    Directory of Open Access Journals (Sweden)

    J. G. Barr

    2013-01-01

    Full Text Available Mangrove forests are ecosystems susceptible to changing water levels and temperatures due to climate change as well as perturbations resulting from tropical storms. Numerical models can be used to project mangrove forest responses to regional and global environmental changes, and the reliability of these models depends on surface energy balance closure. However, for tidal ecosystems, the surface energy balance is complex because the energy transport associated with tidal activity remains poorly understood. This study aimed to quantify impacts of tidal flows on energy dynamics within a mangrove ecosystem. To address the research objective, an intensive 10-day study was conducted in a mangrove forest located along the Shark River in the Everglades National Park, FL, USA. Forest–atmosphere turbulent exchanges of energy were quantified with an eddy covariance system installed on a 30-m-tall flux tower. Energy transport associated with tidal activity was calculated based on a coupled mass and energy balance approach. The mass balance included tidal flows and accumulation of water on the forest floor. The energy balance included temporal changes in enthalpy, resulting from tidal flows and temperature changes in the water column. By serving as a net sink or a source of available energy, flood waters reduced the impact of high radiational loads on the mangrove forest. Also, the regression slope of available energy versus sink terms increased from 0.730 to 0.754 and from 0.798 to 0.857, including total enthalpy change in the water column in the surface energy balance for 30-min periods and daily daytime sums, respectively. Results indicated that tidal inundation provides an important mechanism for heat removal and that tidal exchange should be considered in surface energy budgets of coastal ecosystems. Results also demonstrated the importance of including tidal energy advection in mangrove biophysical models that are used for predicting ecosystem

  10. Temporal Variability from the Two-Component Advective Flow Solution and Its Observational Evidence

    Science.gov (United States)

    Dutta, Broja G.; Chakrabarti, Sandip K.

    2016-09-01

    In the propagating oscillatory shock model, the oscillation of the post-shock region, i.e., the Compton cloud, causes the observed low-frequency quasi-periodic oscillations (QPOs). The evolution of QPO frequency is explained by the systematic variation of the Compton cloud size, i.e., the steady radial movement of the shock front, which is triggered by the cooling of the post-shock region. Thus, analysis of the energy-dependent temporal properties in different variability timescales can diagnose the dynamics and geometry of accretion flows around black holes. We study these properties for the high-inclination black hole source XTE J1550-564 during its 1998 outburst and the low-inclination black hole source GX 339-4 during its 2006-07 outburst using RXTE/PCA data, and we find that they can satisfactorily explain the time lags associated with the QPOs from these systems. We find a smooth decrease of the time lag as a function of time in the rising phase of both sources. In the declining phase, the time lag increases with time. We find a systematic evolution of QPO frequency and hard lags in these outbursts. In XTE J1550-564, the lag changes from hard to soft (i.e., from a positive to a negative value) at a crossing frequency (ν c) of ˜3.4 Hz. We present possible mechanisms to explain the lag behavior of high and low-inclination sources within the framework of a single two-component advective flow model.

  11. Chaotic Advection in Multi-component Melts for the Manufacture of Composite Materials

    Science.gov (United States)

    Zumbrunnen, David

    2011-10-01

    Several forces arise when different liquids are placed into contact. The relative importance of these forces depends on the sizes and shapes of liquid domains and also on molecular characteristics of the liquids. When the liquids are agitated and in the absence of interdiffusion, a composite structure results that is defined by the spatial extent and size of each liquid domain in the presence of the other. Shaking a bottle with about equal parts of water and oil gives a structure that resembles a household sponge, for example. If the oil volume is much smaller than the water volume, oil droplets result instead. In polymer blends and composites, the structure can have feature sizes at the micron scale or smaller. Little has been known about the variety of structural types that can be formed because current information is based on mixing machinery that intrinsically restricts structural outcomes. This shortcoming has important consequences because physical properties of composite materials obtained by solidifying the structured liquids depend appreciably on structure characteristics. A recent approach to overcome this shortcoming makes use of chaotic advection to establish conditions that organize liquid domains into numerous thin layers. A multi-layer construction undergoes morphological changes in situ. Progressive structure development arises, whereby a specific structure leads in sequence to a morphologically different structure. A new manufacturing technology has resulted which allows control of the internal structure in extruded plastic materials. Micro- and nanostructured materials have been obtained. On-line process control allows rapid optimization of physical properties. In this presentation, the underlying physics will be described, examples of novel materials and their applications will be shown, and research opportunities will be highlighted.

  12. Site use of advective flux probes for soil gas and soil analysis

    International Nuclear Information System (INIS)

    The success of soil vapor as a means of assessing subsurface conditions depends upon the volatility of the compounds and the ability of the vapor to migrate through soil pores. Normally, soil gas techniques are not considered valid for poorly volatile compounds or tight soils. Both of these factors can be overcome by a simultaneous application of heat and vacuum with heated gas streams or use of a liquid solution, combined with a means of creating an artificially porous substrate out of compacted poorly permeable soils. Special points and bits have been devised to fit on a miniature hollow stem shaft. The point receives a continuous flow of heated air or liquid which volatilises or dissolves organics from porous or pulverized soil as the point penetrates. The re-circulation of gas or fluid then transports the adsorbed organics to the surface for chromatographic analysis. A comparison of vapor pressures of different organics versus absolute temperatures can be used to extrapolate the extension of soil gas detection. Heavy oils, creosotes, naphthalenes, turpenes, and quinolines, all compounds whose boiling points exist in excess of 200 degrees C, can be analyzed by soil vapor techniques. Samples of the organic were obtained by either direct injection on to a heated GC column or by liquid chromatographic processing. The paper compares current vacuum procedures with those obtained from the advective flux procedure. The compounds are plotted on a grid of boiling point, vapor pressure, and aqueous solubility. A site containing soil contaminated with a mixture of light to heavy petroleum products was analyzed with enhanced hot gas and liquid flow. A comparison between the compounds analyzed is presented for both techniques

  13. Investigation of density-dependent gas advection of trichloroethylene: Experiment and a model validation exercise

    Science.gov (United States)

    Lenhard, R. J.; Oostrom, M.; Simmons, C. S.; White, M. D.

    1995-07-01

    An experiment was conducted to evaluate whether vapor-density effects are significant in transporting volatile organic compounds (VOC's) with high vapor pressure and molecular mass through the subsurface. Trichloroethylene (TCE) was chosen for the investigation because it is a common VOC contaminant with high vapor pressure and molecular mass. For the investigation, a 2-m-long by 1-m-high by 7.5-cm-thick flow cell was constructed with a network of sampling ports. The flow cell was packed with sand, and a water table was established near the lower boundary. Liquid TCE was placed near the upper boundary of the flow cell in a chamber from which vapors could enter and migrate through the sand. TCE concentrations in the gas phase were measured by extracting 25-μl gas samples with an air-tight syringe and analyzing them with a gas chromatograph. The evolution of the TCE gas plume in the sand was investigated by examining plots of TCE concentrations over the domain for specific times and for particular locations as a function of time. To help in this analysis, a numerical model was developed that can predict the simultaneous movements of a gas, a nonaqueous liquid and water in porous media. The model also considers interphase mass transfer by employing the phase equilibrium assumption. The model was tested with one- and two-dimensional analytical solutions of fluid flow before it was used to simulate the experiment. Comparisons between experimental data and simulation results when vapor-density effects are considered were very good. When vapor-density effects were ignored, agreement was poor. These analyses suggest that vapor-density effects should be considered and that density-driven vapor advection may be an important mechanism for moving VOC's with high vapor pressures and molecular mass through the subsurface.

  14. Characteristics of the surface layer above a row crop in the presence of local advection

    Energy Technology Data Exchange (ETDEWEB)

    Figuerola, P.I. [Universidad de Buenos Aires, Buenos Aires (Argentina)]. E-mail: figuerol@at.fcen.uba.ar; Berliner, P.R. [Blaustein Institute for Desert Research, Ben-Gurion University of the Negev (Israel)

    2006-04-15

    In some arid land, the irrigated fields are not contiguous and are surrounded by large patches of bare land. During the summer time and rainless season, the solar radiation flux is high and the surface temperature during daylight in the dry bare areas, is much higher than that of the air. The sensible heat generated over these areas may be advected to the irrigated fields. The crops are usually planted in rows and the irrigation systems used (trickle) do not wet the whole surface, the dry bare soil between the rows may develop high soil surface temperatures and lead to convective activity inside the canopy above the bare soil. Advection from the surrounding fields and convective activity inside the canopy affect the layer above the crop. We studied the surface layer above an irrigated tomato field planted in Israel's Negev desert. The crop was planted in rows, trickle irrigated and the distance between the outer edges of two adjacent rows was 0.36 m at the time of measurement. The gradients in temperature and water vapor pressure were obtained at various heights above the canopy using a Bowen ratio machine. The residual in the energy balance equation was used as a criterion to determine the equilibrium layer. During the morning, unstable conditions prevail, and the equilibrium layer was between Z/h {approx} 1.9 and 2.4. In some particular circumstances, in the late morning, the bare soil between the rows reached extremely high temperatures and during conditions with low wind speeds free convection was identified. During these hours the residuals of the energy budget to the heights Z/h = 1.5 and 2.4 were significantly different from zero and an extremely large variability was evident for the Z/h = 3.2 layer. Local advection took place during the afternoon resulting in an increase in the stability of the uppermost measured layer and propagated slowly downwards. The equilibrium layer was between Z/h {approx} 1.5 to 2.4. The residuals were significantly different

  15. Silicon on Insulator MESFETs for RF Amplifiers.

    Science.gov (United States)

    Wilk, Seth J; Balijepalli, Asha; Ervin, Joseph; Lepkowski, William; Thornton, Trevor J

    2010-03-01

    CMOS compatible, high voltage SOI MESFETs have been fabricated using a standard 3.3V CMOS process without any changes to the process flow. A 0.6μm gate length device operates with a cut-off frequency of 7.3GHz and a maximum oscillation frequency of 21GHz. There is no degradation in device performance up to its breakdown voltage, which greatly exceeds that of CMOS devices on the same process. Other figures of merit of relevance to RF front-end design are presented, including the maximum stable gain and noise figure. An accurate representation of the device in SPICE has been developed using the commercially available TOM3 model. Using the SOI MESFET model, a source degenerated low noise RF amplifier targeting operation near 1GHz has been designed. The amplifier was fabricated on a PCB board and operates at 940MHz with a minimum NF of 3.8dB and RF gain of 9.9dB while only consuming 5mW of DC power. PMID:20657816

  16. Design criteria for ultrafast optical parametric amplifiers

    Science.gov (United States)

    Manzoni, C.; Cerullo, G.

    2016-10-01

    Optical parametric amplifiers (OPAs) exploit second-order nonlinearity to transfer energy from a fixed frequency pump pulse to a variable frequency signal pulse, and represent an easy way of tuning over a broad range the frequency of an otherwise fixed femtosecond laser system. OPAs can also act as broadband amplifiers, transferring energy from a narrowband pump to a broadband signal and thus considerably shortening the duration of the pump pulse. Due to these unique properties, OPAs are nowadays ubiquitous in ultrafast laser laboratories, and are employed by many users, such as solid state physicists, atomic/molecular physicists, chemists and biologists, who are not experts in ultrafast optics. This tutorial paper aims at providing the non-specialist reader with a self-consistent guide to the physical foundations of OPAs, deriving the main equations describing their performance and discussing how they can be used to understand their most important working parameters (frequency tunability, bandwidth, pulse energy/repetition rate scalability, control over the carrier-envelope phase of the generated pulses). Based on this analysis, we derive practical design criteria for OPAs, showing how their performance depends on the type of the nonlinear interaction (crystal type, phase-matching configuration, crystal length), on the characteristics of the pump pulse (frequency, duration, energy, repetition rate) and on the OPA architecture.

  17. Ultrastable low-noise current amplifier

    CERN Document Server

    Drung, Dietmar; Becker, Ulrich; Scherer, Hansjörg; Ahlers, Franz Josef

    2014-01-01

    An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MOhm reference resistor or, optionally, an external standard resistor. The ULCA's transfer coefficient is extremely stable versus time, temperature and current amplitude within the full dynamic range of +/-5 nA. A low noise level of 2.4 fA/sqrt(Hz) helps to keep averaging times low at small input currents. A cryogenic current comparator is used to calibrate both input current gain and output transresistance, providing traceability to the quantum Hall effect. Typically, within one day after calibration, the uncertainty contribution from short-term fluctuations of the transresistance is below one part in 10^7. The long-term stability is expected to be better than one part in 10^5 over a year. A ...

  18. Late Glacial – Holocene climate variability and sedimentary environments on northern continental shelves Zonal and meridional Atlantic Water advection

    OpenAIRE

    Sørensen, Steffen Aagaard

    2011-01-01

    The overall objective for this PhD-study was to further advance the understanding of the oceanographic variability and development in the Nordic Seas during the Late Glacial and the Holocene and towards the present. The focus is specifically on the poleward Atlantic Water advection along the continental margins of Norway, into the SW Barents Sea and along the West Spitsbergen slope. Four high resolution sediment cores retrieved from northern continental shelve allowed examination of spatial a...

  19. The roles of vertical advection and eddy diffusion in the equatorial mesospheric semi-annual oscillation (MSAO

    Directory of Open Access Journals (Sweden)

    R. L. Gattinger

    2013-08-01

    Full Text Available Observations of the mesospheric semi-annual oscillation (MSAO in the equatorial region have been reported dating back several decades. Seasonal variations in both species densities and airglow emissions are well documented. The extensive observations available offer an excellent case study for comparison with model simulations. A broad range of MSAO measurements is summarised with emphasis on the 80–100 km region. The objective here is not to address directly the complicated driving forces of the MSAO, but rather to employ a combination of observations and model simulations to estimate the limits of some of the underlying dynamical processes. Photochemical model simulations are included for near-equinox and near-solstice conditions, the two times with notable differences in the observed MSAO parameters. Diurnal tides are incorporated in the model to facilitate comparisons of observations made at different local times. The roles of water vapour as the "driver" species and ozone as the "response" species are examined to test for consistency between the model results and observations. The simulations suggest the interactions between vertical eddy diffusion and background vertical advection play a significant role in the MSAO phenomenon. Further, the simulations imply there are rigid limits on vertical advection rates and eddy diffusion rates. For August at the Equator, 90 km altitude, the derived eddy diffusion rate is approximately 1 × 106 cm2 s−1 and the vertical advection is upwards at 0.8 cm s−1. For April the corresponding values are 4 × 105 cm2 s−1 and 0.1 cm s−1. These results from the current 1-D model simulations will need to be verified by a full 3-D simulation. Exactly how vertical advection and eddy diffusion are related to gravity wave momentum as discussed by Dunkerton (1982 three decades ago remains to be addressed.

  20. Single Wake Meandering, Advection and Expansion - An analysis using an adapted Pulsed Lidar and CFD LES-ACL simulations

    DEFF Research Database (Denmark)

    Machefaux, Ewan; Larsen, Gunner Chr.; Troldborg, Niels;

    2013-01-01

    In this paper, single wake characteristics have been studied both experimentally and numerically. Firstly, the wake is studied experimentally using full-scale measurements from an adapted focused pulsed lidar system, which potentially gives more insight into the wake dynamics as compared to class...... using the EllipSys3D flow solver using Large Eddy Simulation (LES) and Actuator Line Technique (ACL) to model the rotor. Discrepancies due to the uncertainties on the wake advection velocity are observed and discussed....

  1. Single Wake Meandering, Advection and Expansion - An analysis using an adapted Pulsed Lidar and CFD LES-ACL simulations

    DEFF Research Database (Denmark)

    In this paper, single wake characteristics have been studied both experimentally and numerically. Firstly, the wake is studied experimentally using full-scale measurements from an adapted focused pulsed lidar system, which potentially gives more insight into the wake dynamics as compared to class...... using the EllipSys3D flow solver using Large Eddy Simulation (LES) and Actuator Line Technique (ACL) to model the rotor. Discrepancies due to the uncertainties on the wake advection velocity are observed and discussed....

  2. Advective Heat Transport in an Unconfined Aquifer Induced by the Field Injection of an Open-Loop Groundwater Heat Pump

    OpenAIRE

    Stefano L. Russo; Glenda Taddia

    2010-01-01

    Problem statement: The increasing diffusion of low-enthalpy geothermal open-loop Groundwater Heat Pumps (GWHP) providing buildings air conditioning requires a careful assessment of the overall effects on groundwater system, especially in the urban areas. The impact on the groundwater temperature in the surrounding area of the re-injection well is directly linked to the aquifer properties. Physical processes affecting heat transport within an aquifer include advection (or convection) and hydro...

  3. Chaotic advection and heat transfer in two similar 2-D periodic flows and in their corresponding 3-D periodic flows

    Science.gov (United States)

    Vinsard, G.; Dufour, S.; Saatdjian, E.; Mota, J. P. B.

    2016-03-01

    Chaotic advection can effectively enhance the heat transfer rate between a boundary and fluids with high Prandtl number. These fluids are usually highly viscous and thus turbulent agitation is not a viable solution since the energy required to mix the fluid would be prohibitive. Here, we analyze previously obtained results on chaotic advection and heat transfer in two similar 2-D periodic flows and on their corresponding 3-D periodic flows when an axial velocity component is superposed. The two flows studied are the flow between eccentric rotating cylinders and the flow between confocal ellipses. For both of these flows the analysis is simplified because the Stokes equations can be solved analytically to obtain a closed form solution. For both 2-D periodic flows, we show that chaotic heat transfer is enhanced by the displacement of the saddle point location during one period. Furthermore, the enhancement by chaotic advection in the elliptical geometry is approximately double that obtained in the cylindrical geometry because there are two saddle points instead of one. We also explain why, for high eccentricity ratios, there is no heat transfer enhancement in the cylindrical geometry. When an axial velocity component is added to both of these flows so that they become 3-D, previous work has shown that there is an optimum modulation frequency for which chaotic advection and heat transfer enhancement is a maximum. Here we show that the optimum modulation frequency can be derived from results without an axial flow. We also explain by physical arguments other previously unanswered questions in the published data.

  4. Crouzeix-Raviart MsFEM with Bubble Functions for Diffusion and Advection-Diffusion in Perforated Media

    OpenAIRE

    Degond, Pierre; Lozinski, Alexei; Muljadi, Bagus Putra; Narski, Jacek

    2013-01-01

    The adaptation of Crouzeix - Raviart finite element in the context of multiscale finite element method (MsFEM) is studied and implemented on diffusion and advection-diffusion problems in perforated media. It is known that the approximation of boundary condition on coarse element edges when computing the multiscale basis functions critically influences the eventual accuracy of any MsFEM approaches. The weakly enforced continuity of Crouzeix - Raviart function space across element edges leads t...

  5. Stationary spots and stationary arcs induced by advection in a one-activator, two-inhibitor reactive system.

    Science.gov (United States)

    Berenstein, Igal; Bullara, Domenico; De Decker, Yannick

    2014-09-01

    This paper studies the spatiotemporal dynamics of a reaction-diffusion-advection system corresponding to an extension of the Oregonator model, which includes two inhibitors instead of one. We show that when the reaction-diffusion, two-dimensional problem displays stationary patterns the addition of a plug flow can induce the emergence of new types of stationary structures. These patterns take the form of spots or arcs, the size and the spacing of which can be controlled by the flow.

  6. Implementation of the Semi-Lagrangian Advection Scheme on a Quasi-Uniform Overset Grid on a Sphere

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The semi-Lagrangian advection scheme is implemented on a new quasi-uniform overset (Yin-Yang) grid on the sphere. The Yin-Yang grid is a newly developed grid system in spherical geometry with two perpendicularly-oriented latitude-longitude grid components (called Yin and Yang respectively) that overlapp each other, and this effectively avoids the coordinate singularity and the grid convergence near the poles. In this overset grid, the way of transferring data between the Yin and Yang components is the key to maintaining the accuracy and robustness in numerical solutions. A numerical interpolation for boundary data exchange, which maintains the accuracy of the original advection scheme and is computationally efficient, is given in this paper. A standard test of the solid-body advection proposed by Williamson is carried out on the Yin-Yang grid. Numerical results show that the quasi-uniform Yin-Yang grid can get around the problems near the poles, and the numerical accuracy in the original semi-Lagrangian scheme is effectively maintained in the Yin-Yang grid.

  7. In situ observations of dehydrated air parcels advected horizontally in the Tropical Tropopause Layer of the western Pacific

    Directory of Open Access Journals (Sweden)

    F. Hasebe

    2007-01-01

    Full Text Available Water vapor observations by chilled-mirror hygrometers were conducted at Bandung, Indonesia (6.90° S, 107.60° E and Tarawa, Kiribati (1.35° N, 172.91° E in December 2003 to examine the efficiency of dehydration during horizontal advection in the tropical tropopause layer (TTL. Trajectory analyses based on bundles of isentropic trajectories suggest that the modification of air parcels' identity due to irreversible mixing by the branching-out and merging-in of nearby trajectories is found to be an important factor, in addition to the routes air parcels follow, for interpreting the water vapor concentrations observed by chilled-mirror frostpoint hygrometers in the TTL. Clear correspondence between the observed water vapor concentration and the estimated temperature history of air parcels is found showing that drier air parcels were exposed to lower temperatures than were more humid ones during advection. Although the number of observations is quite limited, the water content in the observed air parcels on many occasions was more than that expected from the minimum saturation mixing ratio during horizontal advection prior to sonde observations.

  8. Advection and starvation cause krill (Euphausia pacifica) decreases in 2005 Northern California coastal populations: Implications from a model study

    Science.gov (United States)

    Dorman, Jeffrey G.; Powell, Thomas M.; Sydeman, William J.; Bograd, Steven J.

    2011-02-01

    A decrease in krill abundance during 2005 in regions of the California Current has been hypothesized to have had immediate (seabird) and long-term (salmon) negative impacts on upper trophic level predators. We use a suite of coupled models to examine the population biology and spatial and temporal distribution of the krill species Euphausia pacifica during the winter/spring of 2001, a “normal” year, and 2005, an “anomalous” year, to determine if this hypothesis is supported mechanistically. Ocean conditions were simulated using the Regional Ocean Modeling System (ROMS), which forced an individual-based model parameterized to simulate the population biology of E. pacifica. Poleward transport during winter 2005 advected particles north of Cape Mendocino, away from seabirds and salmon feeding in the Gulf of the Farallons region. Few of the particles that were advected north in 2005 returned to their region of release throughout the model run time (200 days). Moreover, the “condition” of those particles remaining within the domain was poor in 2005, with greater mortality from starvation and a decreased mean particle weight. Our results indicate that both physical processes (anomalous northern advection) and biological processes (greater starvation and less weight per individual) contributed to reduced krill availability to predators in the northern California region during 2005, and that the productivity and survival of seabirds and salmonids is dependent on krill during critical life history stages.

  9. Analytical solutions to the fractional advection-diffusion equation with time-dependent pulses on the boundary

    Science.gov (United States)

    Rubbab, Qammar; Mirza, Itrat Abbas; Qureshi, M. Zubair Akbar

    2016-07-01

    The time-fractional advection-diffusion equation with Caputo-Fabrizio fractional derivatives (fractional derivatives without singular kernel) is considered under the time-dependent emissions on the boundary and the first order chemical reaction. The non-dimensional problem is formulated by using suitable dimensionless variables and the fundamental solutions to the Dirichlet problem for the fractional advection-diffusion equation are determined using the integral transforms technique. The fundamental solutions for the ordinary advection-diffusion equation, fractional and ordinary diffusion equation are obtained as limiting cases of the previous model. Using Duhamel's principle, the analytical solutions to the Dirichlet problem with time-dependent boundary pulses have been obtained. The influence of the fractional parameter and of the drift parameter on the solute concentration in various spatial positions was analyzed by numerical calculations. It is found that the variation of the fractional parameter has a significant effect on the solute concentration, namely, the memory effects lead to the retardation of the mass transport.

  10. Investigation of the influence of groundwater advection on energy extraction rates for sustainable borehole heat exchanger operation

    Science.gov (United States)

    Schelenz, Sophie; Dietrich, Peter; Vienken, Thomas

    2016-04-01

    A sustainable thermal exploitation of the shallow subsurface requires a precise understanding of all relevant heat transport processes. Currently, planning practice of shallow geothermal systems (especially for systems neglected or strongly simplified. The presented study proves that those simplifications of complex geological and hydrogeological subsurface characteristics are insufficient for a precise evaluation of site-specific energy extraction rates. Based on synthetic model scenarios with varying subsurface conditions (groundwater flow velocity and aquifer thickness) the impact of advection on induced long term temperature changes in 5 and 10 m distance of the borehole heat exchanger is presented. Extending known investigations, this study enhances the evaluation of shallow geothermal energy extraction rates by considering conductive and advective heat transport under varying aquifer thicknesses. Further, it evaluates the impact of advection on installation lengths of the borehole heat exchanger to optimize the initial financial investment. Finally, an evaluation approach is presented that classifies relevant heat transport processes according to their Péclet number to enable a first quantitative assessment of the subsurface energy regime and recommend further investigation and planning procedures.

  11. The Impact of Airline Flight Schedules on Flight Delays

    OpenAIRE

    Vinayak Deshpande; Mazhar Arıkan

    2012-01-01

    Airline flight delays have come under increased scrutiny lately in the popular press, with the Federal Aviation Administration data revealing that airline on-time performance was at its worst level in 13 years in 2007. Flight delays have been attributed to several causes such as weather conditions, airport congestion, airspace congestion, use of smaller aircraft by airlines, etc. In this paper, we examine the impact of the scheduled block time allocated for a flight, a factor controlled by ai...

  12. Direct coupled amplifiers using field effect transistors

    International Nuclear Information System (INIS)

    The concept of the uni-polar field effect transistor (P.E.T.) was known before the invention of the bi-polar transistor but it is only recently that they have been made commercially. Being produced as yet only in small quantities, their price imposes a restriction on use to circuits where their peculiar properties can be exploited to the full. One such application is described here where the combination of low voltage drift and relatively low input leakage current are necessarily used together. One of the instruments used to control nuclear reactors has a logarithmic response to the mean output current from a polarised ionisation chamber. The logarithmic signal is then differentiated electrically, the result being displayed on a meter calibrated to show the reactor divergence or doubling time. If displayed in doubling time the scale is calibrated reciprocally. Because of the wide range obtained in the logarithmic section and the limited supply voltage, an output of 1 volt per decade change in ionisation current is used. Differentiating this gives a current of 1.5 x 10-8 A for p.s.D. (20 sec. doubling time) in the differentiating amplifier. To overcome some of the problems of noise due to statistical variations in input current, the circuit design necessitates a resistive path to ground at the amplifier input of 20 M.ohms. A schematic diagram is shown. 1. It is evident that a zero drift of 1% can be caused by a leakage current of 1.5 x 10-10 A or an offset voltage of 3 mV at the amplifier input. Although the presently used electrometer valve is satisfactory from the point of view of grid current, there have been sudden changes in grid to grid voltage (the valve is a double triode) of up to 10 m.V. It has been found that a pair of F.E.T's. can be used to replace the electrometer valve so long as care is taken in correct balance of the two devices. An investigation has been made into the characteristics of some fourteen devices to see whether those with very different

  13. 14 CFR 125.297 - Approval of flight simulators and flight training devices.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Approval of flight simulators and flight... Flight Crewmember Requirements § 125.297 Approval of flight simulators and flight training devices. (a) Flight simulators and flight training devices approved by the Administrator may be used in...

  14. Rocket Flight Path

    Directory of Open Access Journals (Sweden)

    Jamie Waters

    2014-09-01

    Full Text Available This project uses Newton’s Second Law of Motion, Euler’s method, basic physics, and basic calculus to model the flight path of a rocket. From this, one can find the height and velocity at any point from launch to the maximum altitude, or apogee. This can then be compared to the actual values to see if the method of estimation is a plausible. The rocket used for this project is modeled after Bullistic-1 which was launched by the Society of Aeronautics and Rocketry at the University of South Florida.

  15. Gender Differences on the Use of Amplifiers in Academic Writings

    Institute of Scientific and Technical Information of China (English)

    申利芬

    2012-01-01

      This study aims to investigate the use of amplifiers in term of gender and disciplinary groups in academic research arti⁃cles, which is based on the British Academic Written English Corpus (BAWE).18 amplifiers were examined across two dimen⁃sions:gender and disciplinary groups. The results show amplifiers are more common in males’ academic writings than in those of females in general, amplifiers are used more often in AH discipline. However, not all amplifiers show significant gender differ⁃ences between men and women. Six words show a significant difference between male and female writers:pretty, by far, perfect⁃ly, quite, a great deal, totally, which are used more often by males. However, the interesting is in LS discipline, most amplifiers are used more often by female than male writers and males tend to use by far more frequently than females.

  16. ANALYSIS OF INTERNALLY GENERATED NOISE OF BIOELECTRIC AMPLIFIERS

    Institute of Scientific and Technical Information of China (English)

    Mashhour Mustafa; Bani Amer

    2003-01-01

    This paper deals with internally generated noise of bioelectric amplifiers that are usually used for processing of bioelectric events. The main purpose of this paper is to present a procedure for analysis of the effects of internal noise generated by the active circuits and to evaluate the output noise of the author's new designed bioelectric amplifier that caused by internal effects to the amplifier circuit itself in order to compare it with the noise generated by conventional amplifiers. The obtained analysis results of internally generated noise showed that the total output noise of bioelectric active circuits does not increase when some of their resistors have a larger value. This behavior is caused by the different transfer functions for the signal and the respective noise sources associated with these resistors. Moreover, the new designed bioelectric amplifier has an output noise less than that for conventional amplifiers. The obtained analysis results were also experimentally verified and the final conclusions were drawn.

  17. Measurement of microdosimetric spectra using an amplifier with logarithmic response

    International Nuclear Information System (INIS)

    A 3-1/2 decade logarithmic pulse amplifier was developed for use in microdosimetry. A block diagram of the instrument is given. The input shaping amplifier is designed to accept output pulses from a charge sensitive preamplifier with a maximum full scale amplitude of 8 volts. Output of the shaping amplifier is a bipolar, positive lobe leading RC shaped pulse with a maximum linear range approximately 200 millivolts. Following the logarithmic converter is a voltage amplifier which is used to increase the signal level before it is applied through the linear gate to the output buffer-amplifier. The signal at the output connector is a positive pulse compatible with most conventional pulse height analyzers. The gain of the linear amplifier is adjustable over 10 to 1 range by means of front panel controls

  18. Josephson parametric amplifiers for the ADMX-HF experiment

    Science.gov (United States)

    Malnou, Maxime; Palken, Daniel; Hilton, Gene; Vale, Leila; Lehnert, Konrad

    2016-03-01

    Dark matter search in the ADMX-HF experiment aims at detecting power generated by the axion-photon conversion, of a few hundred of yoctowatts, in the 4 - 12 GHz band. The sensitivity of detection directly depends on the amplifier noise temperature, and therefore requires state of the art microwave amplifiers. In contrast to amplifiers with dissipation on-chip, superconducting Josephson parametric amplifiers (JPA) reach and even circumvent the quantum limit. Over the past years, we have developed JPAs fabricated with arrays of superconducting quantum interference devices. Their gain, bandwidth and tunability are particularly well suited for efficient amplification in the band of interest. In this talk we will present numerical modeling of the behavior of our amplifiers, along with the first results from new designs that cover the 4-12 GHz band. Finally, we will present the ongoing work to increase the gain-bandwidth product and gain stability of our amplifiers.

  19. Low-noise amplifiers for satellite communications

    Science.gov (United States)

    Whelehan, J.

    1984-02-01

    It is pointed out that over the past several years significant advances have been made in the overall capability of both microwave and mm-wave receivers. This is particularly apparent in the telecom market. Integral parts of advanced receiver technology are low-noise receivers. The advances currently being achieved in low-noise technology are partly based on developments in GaAs semiconductor technology. The development of high-cutoff-frequency beam lead mixer diodes has led to the development of mm-wave low-noise mixers with excellent low-noise capability. The advanced techniques are now being employed in field-deployable systems. Low noise is an important factor in satellite communications applications. Attention is given to C-band fixed satellite service, C-band parametric amplifiers, C-band FET, and X band, the Ku band, and the 30/20 GHz band.

  20. Gain Characteristics of Fiber Optical Parametric Amplifier

    Institute of Scientific and Technical Information of China (English)

    高明义; 姜淳; 胡卫生

    2004-01-01

    The theory model of fiber optical parametric amplifier (FOPA) was introduced, which is based on optical nonlinear effect. And then numerical simulation was done to analyze and discuss the gain spectral characteristics of one-pump and two-pump FOPA. The results show that for one-pump FOPA, when pump wavelength is near to fiber zero-dispersion wavelength(ZDW), the gain flatness is better, and with the increase of the pump power, fiber length and its nonlinear coefficient, the gain value will increase while the gain bandwidth will become narrow. For two-pump FOPA, when the pump central wavelength is near to fiber ZDW, the gain flatness is better. Moreover, by decreasing the space of two pumps wavelength, the gain flatness can be improved. Finally, some problems existing in FOPA were addressed.

  1. The spectacular human nose: An amplifier of individual quality?

    OpenAIRE

    Åse Kristine Rognmo Mikalsen; Ivar Folstad; Nigel Gilles Yoccoz; Bruno Laeng

    2014-01-01

    Amplifiers are signals that improve the perception of underlying differences in quality. They are cost free and advantageous to high quality individuals, but disadvantageous to low quality individuals, as poor quality is easier perceived because of the amplifier. For an amplifier to evolve, the average fitness benefit to the high quality individuals should be higher than the average cost for the low quality individuals. The human nose is, compared to the nose of most other primates, extraordi...

  2. Thermodynamic indistinguishability and field state fingerprint of quantum optical amplifiers

    OpenAIRE

    Perl, Yossi; Band, Yehuda B.; Boukobza, Erez

    2016-01-01

    Dissipation tends to wash out dynamical features observed at early evolution times. In this paper we analyze a resonant single--atom two--photon quantum optical amplifier both dynamically and thermodynamically. A detailed thermodynamic balance shows that the non--linear amplifier is thermodynamically equivalent to the linear amplifier discussed in (Phys. Rev. A, 74 (2006), 063822). However, by calculating the Wigner quasi--probability distribution for various initial field states, we show tha...

  3. Modeling and design techniques for RF power amplifiers

    CERN Document Server

    Raghavan, Arvind; Laskar, Joy

    2008-01-01

    The book covers RF power amplifier design, from device and modeling considerations to advanced circuit design architectures and techniques. It focuses on recent developments and advanced topics in this area, including numerous practical designs to back the theoretical considerations. It presents the challenges in designing power amplifiers in silicon and helps the reader improve the efficiency of linear power amplifiers, and design more accurate compact device models, with faster extraction routines, to create cost effective and reliable circuits.

  4. A high performance switching audio amplifier using sliding mode control

    OpenAIRE

    Pillonnet, Gael; Cellier, Rémy; Abouchi, Nacer; Chiollaz, Monique

    2008-01-01

    International audience The switching audio amplifiers are widely used in various portable and consumer electronics due to their high efficiency, but suffers from low audio performances due to inherent nonlinearity. This paper presents an integrated class D audio amplifier with low consumption and high audio performances. It includes a power stage and an efficient control based on sliding mode technique. This monolithic class D amplifier is capable of delivering up to 1W into 8Ω load at les...

  5. Methods and Algorithms for Solving Inverse Problems for Fractional Advection-Dispersion Equations

    KAUST Repository

    Aldoghaither, Abeer

    2015-11-12

    Fractional calculus has been introduced as an e cient tool for modeling physical phenomena, thanks to its memory and hereditary properties. For example, fractional models have been successfully used to describe anomalous di↵usion processes such as contaminant transport in soil, oil flow in porous media, and groundwater flow. These models capture important features of particle transport such as particles with velocity variations and long-rest periods. Mathematical modeling of physical phenomena requires the identification of pa- rameters and variables from available measurements. This is referred to as an inverse problem. In this work, we are interested in studying theoretically and numerically inverse problems for space Fractional Advection-Dispersion Equation (FADE), which is used to model solute transport in porous media. Identifying parameters for such an equa- tion is important to understand how chemical or biological contaminants are trans- ported throughout surface aquifer systems. For instance, an estimate of the di↵eren- tiation order in groundwater contaminant transport model can provide information about soil properties, such as the heterogeneity of the medium. Our main contribution is to propose a novel e cient algorithm based on modulat-ing functions to estimate the coe cients and the di↵erentiation order for space FADE, which can be extended to general fractional Partial Di↵erential Equation (PDE). We also show how the method can be applied to the source inverse problem. This work is divided into two parts: In part I, the proposed method is described and studied through an extensive numerical analysis. The local convergence of the proposed two-stage algorithm is proven for 1D space FADE. The properties of this method are studied along with its limitations. Then, the algorithm is generalized to the 2D FADE. In part II, we analyze direct and inverse source problems for a space FADE. The problem consists of recovering the source term using final

  6. Is the Coastal Ocean a Source of Mercury to Marine Advective Fog

    Science.gov (United States)

    Heim, W. A.; Weiss-Penzias, P. S.; Fernandez, D.; Byington, A.; Bonnema, A.; Beebe, C.; Chiswell, H.; Olson, A.; Coale, K. H.

    2014-12-01

    Marine advective fog is a common feature along the California coast during the summer season. This fog provides an important water source to many endemic fauna and flora. Studies are underway to better understand the chemical makeup of Pacific marine fog as it is an important input to the hydrologic cycle. We report results from our study focused on investigating the potential for coastal ocean upwelling to contribute volatile organic mercury to the overlying atmosphere where it could be incorporated into cloud droplets as monomethyl mercury (MMHg). Preliminary research by this group has indicated that fog water inputs to certain coastal locations may contribute up to 99% of the MMHg flux to land compared to the MMHg flux in rain. Mercury measurements, including total mercury (Hgt), MMHg, elemental mercury (Hg0), and dimethyl mercury (DMHg), were made to unfiltered water collected from depth profiles at 12 stations from Big Sur to Trinidad Head over the California shelf during summer 2014. Profiles of Hgt ranged from 0.3-2.4 pM and were similar to other reported measurements of Hgt for the North Pacific. A large range in concentration was observed for MMHg (10-540 fM) with elevated values generally occurring below the oxycline (>50m). Concentrations of Hg0 were 0.06 to 0.57 pM with elevated concentrations at depth relative to surface values. Depth profiles of DMHg were similar to MMHg and concentrations were measured from 10-295 fM with highest concentrations observed below the oxycline. Surface concentrations of DMHg averaged 40 ± 22 fM. Given the observed profiles for DMHg and the fact that it is sparingly soluble in water, a net flux of DMHg to the atmosphere is likely occurring. Based on these findings and the fact that MMHg and DMHg concentrations in the coastal ocean were highest in the low oxygen zone, we speculate that mercury is methylated in the water column and/or sediments as DMHg and that this water is upwelled seasonally in the coastal zones and

  7. Evaporative loss from irrigated interrows in a highly advective semi-arid agricultural area

    Science.gov (United States)

    Agam, Nurit; Evett, Steven R.; Tolk, Judy A.; Kustas, William P.; Colaizzi, Paul D.; Alfieri, Joseph G.; McKee, Lynn G.; Copeland, Karen S.; Howell, Terry A.; Chávez, Jose L.

    2012-12-01

    Agricultural productivity has increased in the Texas High Plains at the cost of declining water tables, putting at risk the sustainability of the Ogallala Aquifer as a principal source of water for irrigated agriculture. This has led area producers to seek alternative practices that can increase water use efficiency (WUE) through more careful management of water. One potential way of improving WUE is by reducing soil evaporation (E), thus reducing overall evapotranspiration (ET). Before searching for ways to reduce E, it is first important to quantify E and understand the factors that determine its magnitude. The objectives of this study were (1) to quantify E throughout part of the growing season for irrigated cotton in a strongly advective semi-arid region; (2) to study the effects of LAI, days after irrigation, and measurement location within the row on the E/ET fraction; and (3) to study the ability of microlysimeter (ML) measures of E combined with sap flow gage measures of transpiration (T) to accurately estimate ET when compared with weighing lysimeter ET data and to assess the E/T ratio. The research was conducted in an irrigated cotton field at the Conservation & Production Research Laboratory of the USDA-ARS, Bushland, TX. ET was measured by a large weighing lysimeter, and E was measured by 10 microlysimeters that were deployed in two sets of 5 across the interrow. In addition, 10 heat balance sap flow gages were used to determine T. A moderately good agreement was found between the sum E + T and ET (SE = 1 mm or ˜10% of ET). It was found that E may account for >50% of ET during early stages of the growing season (LAI < 0.2), significantly decreasing with increase in LAI to values near 20% at peak LAI of three. Measurement location within the north-south interrows had a distinct effect on the diurnal pattern of E, with a shift in time of peak E from west to east, a pattern that was governed by the solar radiation reaching the soil surface. However, total

  8. An Autonomous Flight Safety System

    Science.gov (United States)

    Bull, James B.; Lanzi, Raymond J.

    2007-01-01

    The Autonomous Flight Safety System (AFSS) being developed by NASA s Goddard Space Flight Center s Wallops Flight Facility and Kennedy Space Center has completed two successful developmental flights and is preparing for a third. AFSS has been demonstrated to be a viable architecture for implementation of a completely vehicle based system capable of protecting life and property in event of an errant vehicle by terminating the flight or initiating other actions. It is capable of replacing current human-in-the-loop systems or acting in parallel with them. AFSS is configured prior to flight in accordance with a specific rule set agreed upon by the range safety authority and the user to protect the public and assure mission success. This paper discusses the motivation for the project, describes the method of development, and presents an overview of the evolving architecture and the current status.

  9. Buffet induced structural/flight-control system interaction of the X-29A aircraft

    Science.gov (United States)

    Voracek, David F.; Clarke, Robert

    1991-01-01

    High angle-of-attack flight regime research is currently being conducted for modern fighter aircraft at the NASA Ames Research Center's Dryden Flight Research Facility. This flight regime provides enhanced maneuverability to fighter pilots in combat situations. Flight research data are being acquired to compare and validate advanced computational fluid dynamic solutions and wind-tunnel models. High angle-of-attack flight creates unique aerodynamic phenomena including wing rock and buffet on the airframe. These phenomena increase the level of excitation of the structural modes, especially on the vertical and horizontal stabilizers. With high gain digital flight-control systems, this structural response may result in an aeroservoelastic interaction. A structural interaction on the X-29A aircraft was observed during high angle-of-attack flight testing. The roll and yaw rate gyros sensed the aircraft's structural modes at 11, 13, and 16 Hz. The rate gyro output signals were then amplified through the flight-control laws and sent as commands to the flaperons and rudder. The flight data indicated that as the angle of attack increased, the amplitude of the buffet on the vertical stabilizer increased, which resulted in more excitation to the structural modes. The flight-control system sensors and command signals showed this increase in modal power at the structural frequencies up to a 30 degree angle-of-attack. Beyond a 30 degree angle-of-attack, the vertical stabilizer response, the feedback sensor amplitude, and control surface command signal amplitude remained relatively constant. Data are presented that show the increased modal power in the aircraft structural accelerometers, the feedback sensors, and the command signals as a function of angle of attack. This structural interaction is traced from the aerodynamic buffet to the flight-control surfaces.

  10. NASA - Human Space Flight

    Science.gov (United States)

    Davis, Jeffrey R.

    2006-01-01

    The presentation covers five main topical areas. The first is a description of how things work in the microgravity environment such as convection and sedimentation. The second part describes the effects of microgravity on human physiology. This is followed by a description of the hazards of space flight including the environment, the space craft, and the mission. An overview of biomedical research in space, both on shuttle and ISS is the fourth section of the presentation. The presentation concludes with a history of space flight from Ham to ISS. At CART students (11th and 12th graders from Fresno Unified and Clovis Unified) are actively involved in their education. They work in teams to research real world problems and discover original solutions. Students work on projects guided by academic instructors and business partners. They will have access to the latest technology and will be expected to expand their learning environment to include the community. They will focus their studies around a career area (Professional Sciences, Advanced Communications, Engineering and Product Development, or Global Issues).

  11. New Theory of Flight

    Science.gov (United States)

    Hoffman, Johan; Jansson, Johan; Johnson, Claes

    2016-06-01

    We present a new mathematical theory explaining the fluid mechanics of subsonic flight, which is fundamentally different from the existing boundary layer-circulation theory by Prandtl-Kutta-Zhukovsky formed 100 year ago. The new theory is based on our new resolution of d'Alembert's paradox showing that slightly viscous bluff body flow can be viewed as zero-drag/lift potential flow modified by 3d rotational slip separation arising from a specific separation instability of potential flow, into turbulent flow with nonzero drag/lift. For a wing this separation mechanism maintains the large lift of potential flow generated at the leading edge at the price of small drag, resulting in a lift to drag quotient of size 15-20 for a small propeller plane at cruising speed with Reynolds number {Re≈ 107} and a jumbojet at take-off and landing with {Re≈ 108} , which allows flight at affordable power. The new mathematical theory is supported by computed turbulent solutions of the Navier-Stokes equations with a slip boundary condition as a model of observed small skin friction of a turbulent boundary layer always arising for {Re > 106} , in close accordance with experimental observations over the entire range of angle of attacks including stall using a few millions of mesh points for a full wing-body configuration.

  12. Getting started with Twitter Flight

    CERN Document Server

    Hamshere, Tom

    2013-01-01

    Getting Started with Twitter Flight is written with the intention to educate the readers, helping them learn how to build modular powerful applications with Flight, Twitter's cutting-edge JavaScript framework.This book is for anyone with a foundation in JavaScript who wants to build web applications. Flight is quick and easy to learn, built on technologies you already understand such as the DOM, events, and jQuery.

  13. Saturation effects in degenerate phase sensitive fiber optic parametric amplifiers

    OpenAIRE

    Kakande J.; Parmigiani F.; Slavik R.; Gruner-Nielsen L.; Jakobsen D.; Herstrom S.; Petropoulos P.; Richardson D.J.

    2010-01-01

    We experimentally study saturation effects in degenerate phase sensitive amplifiers, revealing and explaining a gain regime suitable for all-optical signal processing functions such as phase regeneration.

  14. Parametric Amplifiers for Microwave Kinectic Inductance Detector (MKID) Readout Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Find numerical solutions to the non-linear partial differential equations describing our amplifier transmission lines. Optimize periodic choke structure to block...

  15. Dual Band High Efficiency Power Amplifier Based on CRLH Lines

    Directory of Open Access Journals (Sweden)

    D. Segovia-Vargas

    2009-12-01

    Full Text Available In this paper we propose the use of Composite Right/Left Hand (CRLH and Extended Composite Right/Left Hand (ECRLH transmission lines for the design of dual band high efficiency power amplifiers working in CE class. The harmonic termination can be synthesized using the meta-lines is particularly suitable for CE class amplifiers, which have a termination not as sensitive to the third harmonic as F class amplifier. This paper presents the design procedure and the design equations. The nonlinear phase response of a CRLH and ECRLH transmission line has been utilized to design arbitrary dual-band amplifiers.

  16. Nylon Sleeve for Cavity Amplifier Holds Tuning Despite Heat

    Science.gov (United States)

    Derr, Lloyd

    1964-01-01

    The problem: Detuning of cavity amplifiers with change in temperature. This results in deterioration of the performance of the amplifier at its design frequency. In cavity amplifiers and filters it is desirable that constant performance be maintained regardless of thermal changes. These changes often cause an "off resonance shift" in a cavity filter and a deterioration of performance in a cavity amplifier. The solution: Mount the tuning probe in a nylon sleeve. Thermal expansion and contraction of the nylon nullifies unwanted capacitive and inductive changes in the resonant elements.

  17. Compensation of pulse-distortion in saturated laser amplifiers.

    Science.gov (United States)

    Schimpf, Damian N; Ruchert, Clemens; Nodop, Dirk; Limpert, Jens; Tünnermann, Andreas; Salin, Francois

    2008-10-27

    We derive an expression describing pre-compensation of pulse-distortion due to saturation effects in short pulse laser-amplifiers. The analytical solution determines the optimum input pulse-shape required to obtain any arbitrary target pulse-shape at the output of the saturated laser-amplifier. The relation is experimentally verified using an all-fiber amplifier chain that is seeded by a directly modulated laser-diode. The method will prove useful in applications of high power, high energy laser-amplifier systems that need particular pulse-shapes to be efficient, e.g. micromachining and scientific laser-matter-interactions. PMID:18958044

  18. Shuttle Risk Progression by Flight

    Science.gov (United States)

    Hamlin, Teri; Kahn, Joe; Thigpen, Eric; Zhu, Tony; Lo, Yohon

    2011-01-01

    Understanding the early mission risk and progression of risk as a vehicle gains insights through flight is important: . a) To the Shuttle Program to understand the impact of re-designs and operational changes on risk. . b) To new programs to understand reliability growth and first flight risk. . Estimation of Shuttle Risk Progression by flight: . a) Uses Shuttle Probabilistic Risk Assessment (SPRA) and current knowledge to calculate early vehicle risk. . b) Shows impact of major Shuttle upgrades. . c) Can be used to understand first flight risk for new programs.

  19. Investigation of structure and properties of novel multi-layer clay nanocomposite films produced controllably by continuous chaotic advection blending

    Science.gov (United States)

    Mahesha, Chaitra

    A unique processing technique based on chaotic advection developed at Clemson University and shown to controllably produce structured materials in the past was employed to produce structured nanocomposites with a high degree of clay orientation as well as localization of platelets within layers of nanoscale thicknesses. Continuous lengths of nanocomposites with different clay contents were extruded in the form of films by feeding separately melts of virgin polyamide-6 polymer and polyamide 6-clay masterbatch into a continuous chaotic advection blender. A variety of composite structures were producible at fixed clay compositions. The internal structure was characterized by transmission electron microscopy (TEM), x-ray diffraction (XRD) and differential scanning calorimetry (DSC). Nanocomposites with novel in-situ multi-layered structures and a high degree of platelet orientation were formed by the recursive stretching and folding of the melt domains due to chaotic advection. Clay platelets were localized within discrete regions to form alternating virgin and platelet-rich layers leading to a hierarchical structure with multiple nano-scales. The thicknesses of the layers reduced with prolonged chaotic advection, eventually leading to nanocomposites in which the multi-layering was no longer discernible. The oriented platelets appeared to be homogenously dispersed through the bulk of the nanocomposite. Investigation of the morphology of the matrix by XRD showed that the homogeneity of the crystalline phase and the orientation of polymer chains parallel to the film surface increased with increased chaotic advection. Also, as the layer thickness reduced, the number of polymer chains restricted by clay platelets increased causing the gamma-crystalline fraction to increase. While XRD results suggested a change in total crystallinity with chaotic advection and clay content but without a specific trend, no change in crystallinity was measured by DSC. Such contradictions are

  20. Stirling to Flight Initiative

    Science.gov (United States)

    Hibbard, Kenneth E.; Mason, Lee S.; Ndu, Obi; Smith, Clayton; Withrow, James P.

    2016-01-01

    Flight (S2F) initiative with the objective of developing a 100-500 We Stirling generator system. Additionally, a different approach is being devised for this initiative to avoid pitfalls of the past, and apply lessons learned from the recent ASRG experience. Two key aspects of this initiative are a Stirling System Technology Maturation Effort, and a Surrogate Mission Team (SMT) intended to provide clear mission pull and requirements context. The S2F project seeks to lead directly into a DOE flight system development of a new SRG. This paper will detail the proposed S2F initiative, and provide specifics on the key efforts designed to pave a forward path for bringing Stirling technology to flight.

  1. Cibola flight experiment satellite

    Science.gov (United States)

    Davies, P.; Liddle, Doug; Paffett, John; Sweeting, Martin; Curiel, A.; Sun, Wei; Eves, Stuart

    2004-11-01

    In order to achieve an "economy of scale" with respect to payload capacity the major trend in telecommunications satellites is for larger and larger platforms. With these large platforms the level of integration between platform and payload is increasing leading to longer delivery schedules. The typical lifecycle for procurement of these large telecommunications satellites is now 3-6 years depending on the level of non-recurring engineering needed. Surrey Satellite Technology Ltd (SSTL) has designed a low-cost platform aimed at telecommunications and navigation applications. SSTL's Geostationary Minisatellite Platform (GMP) is a new entrant addressing the lower end of the market with payloads up to 250kg requiring less than 1.5 kW power. The British National Space Centre through the MOSAIC Small Satellite Initiative supported the development of GMP. The main design goals for GMP are low-cost for the complete mission including launch and operations and a platform allowing flexible payload accommodation. GMP is specifically designed to allow rapid development and deployment with schedules typically between 1 and 2 years from contract signature to flight readiness. GMP achieves these aims by a modular design where the level of integration between the platform and payload is low. The modular design decomposes the satellite into three major components - the propulsion bay, the avionics bay and the payload module. Both the propulsion and avionics bays are reusable, largely unchanged, and independent of the payload configuration. Such a design means that SSTL or a 3rd party manufacturer can manufacture the payload in parallel to the platform with integration taking place quite late in the schedule. In July 2003 SSTL signed a contract for ESA's first Galileo navigation satellite known as GSTBV2/A. The satellite is based on GMP and ESA plan to launch it into a MEO orbit late in 2005. The second flight of GMP is likely to be in 2006 carrying a geostationary payload

  2. X-Band, 17-Watt Solid-State Power Amplifier

    Science.gov (United States)

    Mittskus, Anthony; Stone, Ernest; Boger, William; Burgess, David; Honda, Richard; Nuckolls, Carl

    2005-01-01

    An advanced solid-state power amplifier that can generate an output power of as much as 17 W at a design operating frequency of 8.4 GHz has been designed and constructed as a smaller, lighter, less expensive alternative to traveling-wave-tube X-band amplifiers and to prior solid-state X-band power amplifiers of equivalent output power. This amplifier comprises a monolithic microwave integrated circuit (MMIC) amplifier module and a power-converter module integrated into a compact package (see Figure 1). The amplifier module contains an input variable-gain amplifier (VGA), an intermediate driver stage, a final power stage, and input and output power monitors (see Figure 2). The VGA and the driver amplifier are 0.5-m GaAs-based metal semiconductor field-effect transistors (MESFETs). The final power stage contains four parallel high-efficiency, GaAs-based pseudomorphic high-electron-mobility transistors (PHEMTs). The gain of the VGA is voltage-variable over a range of 10 to 24 dB. To provide for temperature compensation of the overall amplifier gain, the gain-control voltage is generated by an operational-amplifier circuit that includes a resistor/thermistor temperature-sensing network. The driver amplifier provides a gain of 14 dB to an output power of 27 dBm to drive the four parallel output PHEMTs, each of which is nominally capable of putting out as much as 5 W. The driver output is sent to the input terminals of the four parallel PHEMTs through microstrip power dividers; the outputs of these PHEMTs are combined by microstrip power combiners (which are similar to the microstrip power dividers) to obtain the final output power of 17 W.

  3. Do birds sleep in flight?

    Science.gov (United States)

    Rattenborg, Niels C.

    2006-09-01

    The following review examines the evidence for sleep in flying birds. The daily need to sleep in most animals has led to the common belief that birds, such as the common swift ( Apus apus), which spend the night on the wing, sleep in flight. The electroencephalogram (EEG) recordings required to detect sleep in flight have not been performed, however, rendering the evidence for sleep in flight circumstantial. The neurophysiology of sleep and flight suggests that some types of sleep might be compatible with flight. As in mammals, birds exhibit two types of sleep, slow-wave sleep (SWS) and rapid eye-movement (REM) sleep. Whereas, SWS can occur in one or both brain hemispheres at a time, REM sleep only occurs bihemispherically. During unihemispheric SWS, the eye connected to the awake hemisphere remains open, a state that may allow birds to visually navigate during sleep in flight. Bihemispheric SWS may also be possible during flight when constant visual monitoring of the environment is unnecessary. Nevertheless, the reduction in muscle tone that usually accompanies REM sleep makes it unlikely that birds enter this state in flight. Upon landing, birds may need to recover the components of sleep that are incompatible with flight. Periods of undisturbed postflight recovery sleep may be essential for maintaining adaptive brain function during wakefulness. The recent miniaturization of EEG recording devices now makes it possible to measure brain activity in flight. Determining if and how birds sleep in flight will contribute to our understanding of a largely unexplored aspect of avian behavior and may also provide insight into the function of sleep.

  4. The Cibola flight experiment

    Energy Technology Data Exchange (ETDEWEB)

    Caffrey, Michael Paul [Los Alamos National Laboratory; Nelson, Anthony [Los Alamos National Laboratory; Salazar, Anthony [Los Alamos National Laboratory; Roussel - Dupre, Diane [Los Alamos National Laboratory; Katko, Kim [Los Alamos National Laboratory; Palmer, Joseph [ISE-3; Robinson, Scott [Los Alamos National Laboratory; Wirthlin, Michael [BRIGHAM YOUNG UNIV; Howes, William [BRIGHAM YOUNG UNIV; Richins, Daniel [BRIGHAM YOUNG UNIV

    2009-01-01

    The Cibola Flight Experiment (CFE) is an experimental small satellite carrying a reconfigurable processing instrument developed at the Los Alamos National Laboratory that demonstrates the feasibility of using FPGA-based high-performance computing for sensor processing in the space environment. The CFE satellite was launched on March 8, 2007 in low-earth orbit and has operated extremely well since its deployment. The nine Xilinx Virtex FPGAs used in the payload have been used for several high-throughput sensor processing applications and for single-event upset (SEU) monitoring and mitigation. This paper will describe the CFE system and summarize its operational results. In addition, this paper will describe the results from several SEU detection circuits that were performed on the spacecraft.

  5. Flight plan optimization

    Science.gov (United States)

    Dharmaseelan, Anoop; Adistambha, Keyne D.

    2015-05-01

    Fuel cost accounts for 40 percent of the operating cost of an airline. Fuel cost can be minimized by planning a flight on optimized routes. The routes can be optimized by searching best connections based on the cost function defined by the airline. The most common algorithm that used to optimize route search is Dijkstra's. Dijkstra's algorithm produces a static result and the time taken for the search is relatively long. This paper experiments a new algorithm to optimize route search which combines the principle of simulated annealing and genetic algorithm. The experimental results of route search, presented are shown to be computationally fast and accurate compared with timings from generic algorithm. The new algorithm is optimal for random routing feature that is highly sought by many regional operators.

  6. ER-2 in flight

    Science.gov (United States)

    1996-01-01

    In this film clip, we see an ER-2 on its take off roll and climb as it departs from runway 22 at Edwards AFB, California. In 1981, NASA acquired its first ER-2 aircraft. The agency obtained a second ER-2 in 1989. These airplanes replaced two Lockheed U-2 aircraft, which NASA had used to collect scientific data since 1971. The U-2, and later the ER-2, were based at the Ames Research Center, Moffett Field, California, until 1997. In 1997, the ER-2 aircraft and their operations moved to NASA Dryden Flight Research Center, Edwards, California. Since the inaugural flight for this program, August 31, 1971, NASA U-2 and ER-2 aircraft have flown more than 4,000 data missions and test flights in support of scientific research conducted by scientists from NASA, other federal agencies, states, universities, and the private sector. NASA is currently using two ER-2 Airborne Science aircraft as flying laboratories. The aircraft, based at NASA Dryden, collect information about our surroundings, including Earth resources, celestial observations, atmospheric chemistry and dynamics, and oceanic processes. The aircraft also are used for electronic sensor research and development, satellite calibration, and satellite data validation. The ER-2 is a versatile aircraft well-suited to perform multiple mission tasks. It is 30 percent larger than the U-2 with a 20 feet longer wingspan and a considerably increased payload over the older airframe. The aircraft has four large pressurized experiment compartments and a high-capacity AC/DC electrical system, permitting it to carry a variety of payloads on a single mission. The modular design of the aircraft permits rapid installation or removal of payloads to meet changing mission requirements. The ER-2 has a range beyond 3,000 miles (4800 kilometers); is capable of long flight duration and can operate at altitudes up to 70,000 feet (21.3 kilometers) if required. Operating at an altitude of 65,000 feet (19.8 kilometers) the ER-2 acquires data

  7. Differentiating transpiration from evaporation in seasonal agricultural wetlands and the link to advective fluxes in the root zone

    Science.gov (United States)

    Bachand, P.A.M.; S. Bachand,; Fleck, Jacob A.; Anderson, Frank E.; Windham-Myers, Lisamarie

    2014-01-01

    The current state of science and engineering related to analyzing wetlands overlooks the importance of transpiration and risks data misinterpretation. In response, we developed hydrologic and mass budgets for agricultural wetlands using electrical conductivity (EC) as a natural conservative tracer. We developed simple differential equations that quantify evaporation and transpiration rates using flowrates and tracer concentrations atwetland inflows and outflows. We used two ideal reactormodel solutions, a continuous flowstirred tank reactor (CFSTR) and a plug flow reactor (PFR), to bracket real non-ideal systems. From those models, estimated transpiration ranged from 55% (CFSTR) to 74% (PFR) of total evapotranspiration (ET) rates, consistent with published values using standard methods and direct measurements. The PFR model more appropriately represents these nonideal agricultural wetlands in which check ponds are in series. Using a fluxmodel, we also developed an equation delineating the root zone depth at which diffusive dominated fluxes transition to advective dominated fluxes. This relationship is similar to the Peclet number that identifies the dominance of advective or diffusive fluxes in surface and groundwater transport. Using diffusion coefficients for inorganic mercury (Hg) and methylmercury (MeHg) we calculated that during high ET periods typical of summer, advective fluxes dominate root zone transport except in the top millimeters below the sediment–water interface. The transition depth has diel and seasonal trends, tracking those of ET. Neglecting this pathway has profound implications: misallocating loads along different hydrologic pathways; misinterpreting seasonal and diel water quality trends; confounding Fick's First Law calculations when determining diffusion fluxes using pore water concentration data; and misinterpreting biogeochemicalmechanisms affecting dissolved constituent cycling in the root zone. In addition,our understanding of internal

  8. Heat advection processes leading to El Niño events as depicted by an ensemble of ocean assimilation products

    Science.gov (United States)

    Ballester, Joan; Bordoni, Simona; Petrova, Desislava; Rodó, Xavier

    2016-06-01

    The oscillatory nature of El Niño-Southern Oscillation results from an intricate superposition of near-equilibrium balances and out-of-phase disequilibrium processes between the ocean and the atmosphere. The main objective of the present work is to perform an exhaustive spatiotemporal analysis of the upper ocean heat budget in an ensemble of state-of-the-art ocean assimilation products. We put specific emphasis on the ocean heat advection mechanisms, and their representation in individual ensemble members and in the different stages of the ENSO oscillation leading to EN events. Our analyses consistently show that the initial subsurface warming in the western equatorial Pacific is advected to the central Pacific by the equatorial undercurrent, which, together with the equatorward advection associated with anomalies in both the meridional temperature gradient and circulation at the level of the thermocline, explains the heat buildup in the central Pacific during the recharge phase. We also find that the recharge phase is characterized by an increase of meridional tilting of the thermocline, as well as a southward upper-ocean cross-equatorial mass transport resulting from Ekman-induced anomalous vertical motion in the off-equatorial regions. Although differences between data sets are generally small, and anomalies tend to have the same sign, the differences in the magnitude of the meridional term are seen to be key for explaining the different propagation speed of the subsurface warming tendency along the thermocline. The only exception is GECCO, which does not produce the patterns of meridional surface Ekman divergence (subsurface Sverdrup convergence) in the western and central equatorial Pacific.

  9. A POSTERIORI ENERGY-NORM ERROR ESTIMATES FOR ADVECTION-DIFFUSION EQUATIONS APPROXIMATED BY WEIGHTED INTERIOR PENALTY METHODS

    Institute of Scientific and Technical Information of China (English)

    Alexandre Ern; Annette F.Stephansen

    2008-01-01

    We propose and analyze a posteriori energy-norm error estimates for weighted interior penalty discontinuous Galerkin approximations of advection-diffusion-reaction equations with heterogeneous and anisotropic diffusion.The weights,which play a key role in the analysis.depend on the diffusion tensor and are used to formulate the consistency terms in the discontinuous Galerkin method.The error upper bounds,in which all the constants are specified.consist of three terms:a residual estimator which depends only on the elementwise fluctuation of the discrete solution residual,a diffusive flux estimator where the weights used in the method enter explicitly,and a non-conforming estimator which is nonzero because of the use of discontinuous finite element spaces.The three estimators can be bounded locally by the approximation error.A particular attention is given to the dependency on problem parameters of the constants in the local lower error bounds,For moderate advection.it.is shown that full robustness with respect to diffusion heterogeneities is achieved owing to the specific design of the weights in the discontinuous Galerkin method,while diffusion anisotropies remain purely local and impact the constants through the square root of the condition number of the diffusion tensor.For dominant advection,the local lower error bounds can be written with constants involving a cut-off for the ratio of local mesh size to the reciprocal of the square root of the lowest local eignevalue of the diffusion tensor.

  10. In-flight Medical Emergencies

    Directory of Open Access Journals (Sweden)

    Amit Chandra

    2013-09-01

    Full Text Available Introduction: Research and data regarding in-flight medical emergencies during commercial air travel are lacking. Although volunteer medical professionals are often called upon to assist, there are no guidelines or best practices to guide their actions. This paper reviews the literature quantifying and categorizing in-flight medical incidents, discusses the unique challenges posed by the in-flight environment, evaluates the legal aspects of volunteering to provide care, and suggests an approach to managing specific conditions at 30,000 feet.Methods: We conducted a MEDLINE search using search terms relevant to aviation medical emergencies and flight physiology. The reference lists of selected articles were reviewed to identify additional studies.Results: While incidence studies were limited by data availability, syncope, gastrointestinal upset, and respiratory complaints were among the most common medical events reported. Chest pain and cardiovascular events were commonly associated with flight diversion.Conclusion: When in-flight medical emergencies occur, volunteer physicians should have knowledge about the most common in-flight medical incidents, know what is available in on-board emergency medical kits, coordinate their therapy with the flight crew and remote resources, and provide care within their scope of practice. [West J Emerg Med. 2013;14(5:499–504.

  11. JACEE long duration balloon flights

    International Nuclear Information System (INIS)

    JACEE balloon-borne emulsion chamber detectors are used to observe the spectra and interactions of cosmic ray protons and nuclei in the energy range 1-100A TeV. Experience with long duration mid-latitude balloon flights and characteristics of the detector system that make it ideal for planned Antarctic balloon flights are discussed. 5 refs., 2 figs

  12. Ferroelectric Field-Effect Transistor Differential Amplifier Circuit Analysis

    Science.gov (United States)

    Phillips, Thomas A.; MacLeod, Todd C.; Ho, Fat D.

    2008-01-01

    There has been considerable research investigating the Ferroelectric Field-Effect Transistor (FeFET) in memory circuits. However, very little research has been performed in applying the FeFET to analog circuits. This paper investigates the use of FeFETs in a common analog circuit, the differential amplifier. The two input Metal-Oxide-Semiconductor (MOS) transistors in a general MOS differential amplifier circuit are replaced with FeFETs. Resistors are used in place of the other three MOS transistors. The FeFET model used in the analysis has been previously reported and was based on experimental device data. Because of the FeFET hysteresis, the FeFET differential amplifier has four different operating modes depending on whether the FeFETs are positively or negatively polarized. The FeFET differential amplifier operation in the different modes was analyzed by calculating the amplifier voltage transfer and gain characteristics shown in figures 2 through 5. Comparisons were made between the FeFET differential amplifier and the standard MOS differential amplifier. Possible applications and benefits of the FeFET differential amplifier are discussed.

  13. Phase Sensitive Amplifier Based on Ultrashort Pump Pulses

    CERN Document Server

    Gershikov, Alexander

    2016-01-01

    We demonstrate a narrow band phase sensitive amplifier in the pump degenerate configuration which employs ps pump pulses. Control of the amplifier bandwidth is achieved via changes of the pump spectral width. A phase sensitive gain between -6 and 6 decibels, with an overall system gain of 28dB was demonstrated.

  14. Externally pumped millimeter-wave Josephson-junction parametric amplifier

    DEFF Research Database (Denmark)

    Levinsen, M.T; Pedersen, Niels Falsig; Sørensen, Ole;

    1980-01-01

    A unified theory of the singly and doubly degenerate Josephson-junction parametric amplifier is presented. Experiments with single junctions on both amplifier modes at frequencies 10, 35, and 70 GHz are discussed. Low-noise temperature (∼100 K, single sideband (SSB)) and reasonable gain (∼8 dB) w...

  15. Efficient performance simulation of class D amplifier output stages

    DEFF Research Database (Denmark)

    Nyboe, Flemming; Risbo, Lars; Andreani, Pietro

    2005-01-01

    Straightforward simulation of amplifier distortion involves transient simulation of operation on a sine wave input signal, and a subsequent FFT of the output voltage. This approach is very slow on class D amplifiers, since the switching behavior forces simulation time steps that are many orders...

  16. Saturation and noise properties of quantum-dot optical amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2004-01-01

    Based on extensive numerical calculations, quantum-dot (QD) amplifiers are predicted to offer higher output power and lower noise figure compared to bulk as well as quantum well amplifiers. The underlying physical mechanisms are analyzed in detail, leading to the identification of a few key requi...

  17. Subjective test of class D amplifiers without output filter

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.; Fenger, Lars M.

    2004-01-01

    This paper presents the results of subjective listening tests designed to determine whether the output filter on class D amplifiers used in active loudspeakers can be omitted without audible errors occurring. The frequency range of the amplifiers was limited to 0-3 kHz corresponding to a woofer...

  18. External Peltier Cooler For Low-Noise Amplifier

    Science.gov (United States)

    Soper, Terry A.

    1990-01-01

    Inexpensive Peltier-effect cooling module made of few commercially available parts used to reduce thermal noise in microwave amplifier. Retrofitted to almost any microwave low-noise amplifier or receiver preamplifier used in communication, telemetry, or radar. Includes copper or aluminum cold plate held tightly against unit to be cooled by strap-type worm-gear clamps.

  19. Design and Analysis of Hybrid CMOS SRAM Sense Amplifier

    Directory of Open Access Journals (Sweden)

    Karishma Bajaj

    2012-03-01

    Full Text Available Sense amplifiers are one of the very important peripheral components of CMOS memories. In a Hybrid Sense amplifier both current and voltage sensing techniques are used which makes it a better selection than a conventional current or voltage sense amplifiers. The hybrid sense amplifier works in three phases-Offset cancellation (200ps, Access phase (500ps and Evaluation phase. The offset cancellation is done simultaneously with word line decoding, so as to speed up the process. The sensing range of the hybrid sense amplifier is improved from 1.18mV to 92mV. Also hybrid sense amplifier consumes very low energy of about 6.84fj. This sense amplifier is analyzed with a column of 512 SRAM cells at 180nm technology node and compared to CMOS conventional voltage sense amplifier. The circuit consumes an average power of 1.57 µW with a negligible offset of 149.3µV.

  20. Gain characteristics of a saturated fiber optic parametric amplifier

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Lorenzen, Michael Rodas; Noordegraaf, Danny;

    2008-01-01

    In this work we discuss saturation performance of a fiber optic parametric amplifier. A simple numerical model is described and applied to specific cases. A system experiment using a saturated amplifier illustrates a 4 dB improvement in required signal to noise ratio for a fixed bit error ratio....

  1. Power Amplifier Design for E-band Wireless System Communications

    DEFF Research Database (Denmark)

    Hadziabdic, Dzenan; Krozer, Viktor; Johansen, Tom Keinicke

    2008-01-01

    a power amplifier design satisfying the E-band system specifications. The designed power amplifier achieves a maximum output power of ges 20 dBm with a state-of-the-art power-added efficiency of 15%. The power is realized using InP DHBT technology. To the best of our knowledge it is the highest output...

  2. Series-Tuned High Efficiency RF-Power Amplifiers

    DEFF Research Database (Denmark)

    Vidkjær, Jens

    2008-01-01

    An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits.......An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits....

  3. Optically amplifying planar glass waveguides: Laser on a chip

    DEFF Research Database (Denmark)

    Guldberg-Kjær, Søren Andreas

    The objective of this work was to devlop optically amplifying planar wavguides, using erbium-doped germano-silicate glass films deposited by PECVD (Plasma Enhanced Chemical Vapour Deposition). The waveguides should exhibit enough gain to be useful as optical amplifiers in integrated planar lightw...

  4. Implantable neurotechnologies: a review of integrated circuit neural amplifiers.

    Science.gov (United States)

    Ng, Kian Ann; Greenwald, Elliot; Xu, Yong Ping; Thakor, Nitish V

    2016-01-01

    Neural signal recording is critical in modern day neuroscience research and emerging neural prosthesis programs. Neural recording requires the use of precise, low-noise amplifier systems to acquire and condition the weak neural signals that are transduced through electrode interfaces. Neural amplifiers and amplifier-based systems are available commercially or can be designed in-house and fabricated using integrated circuit (IC) technologies, resulting in very large-scale integration or application-specific integrated circuit solutions. IC-based neural amplifiers are now used to acquire untethered/portable neural recordings, as they meet the requirements of a miniaturized form factor, light weight and low power consumption. Furthermore, such miniaturized and low-power IC neural amplifiers are now being used in emerging implantable neural prosthesis technologies. This review focuses on neural amplifier-based devices and is presented in two interrelated parts. First, neural signal recording is reviewed, and practical challenges are highlighted. Current amplifier designs with increased functionality and performance and without penalties in chip size and power are featured. Second, applications of IC-based neural amplifiers in basic science experiments (e.g., cortical studies using animal models), neural prostheses (e.g., brain/nerve machine interfaces) and treatment of neuronal diseases (e.g., DBS for treatment of epilepsy) are highlighted. The review concludes with future outlooks of this technology and important challenges with regard to neural signal amplification.

  5. Frequency-Offset Cartesian Feedback Based on Polyphase Difference Amplifiers

    OpenAIRE

    Zanchi, Marta G.; Pauly, John M.; Scott, Greig C

    2010-01-01

    A modified Cartesian feedback method called “frequency-offset Cartesian feedback” and based on polyphase difference amplifiers is described that significantly reduces the problems associated with quadrature errors and DC-offsets in classic Cartesian feedback power amplifier control systems.

  6. Switching-mode Audio Power Amplifiers with Direct Energy Conversion

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    This paper presents a new class of switching-mode audio power amplifiers, which are capable of direct energy conversion from the AC mains to the audio output. They represent an ultimate integration of a switching-mode power supply and a Class D audio power amplifier, where the intermediate DC bus...

  7. Ultrafast Dynamics of Quantum-Dot Semiconductor Optical Amplifiers

    DEFF Research Database (Denmark)

    Poel, Mike van der; Hvam, Jørn Märcher

    2007-01-01

    We report on a series of experiments on the dynamical properties of quantum-dot semiconductor optical amplifiers. We show how the amplifier responds to one or several ultrafast (170 fs) pulses in rapid succession and our results demonstrate applicability and ultimate limitations to application...

  8. Variable-Voltage Class-E Power Amplifiers

    NARCIS (Netherlands)

    Acar, Mustafa; Annema, Anne Johan; Nauta, Bram

    2007-01-01

    The Class-E power amplifier is widely used due to its high efficiency, resulting from switching at zero voltage and zero slope of the switch voltage. In this paper, we extend general analytical solutions for the Class-E power amplifier to the ideal single-ended Variable-Voltage Class-E (Class-EVV) p

  9. Optimisation of High-Power Amplifiers using non linear models

    NARCIS (Netherlands)

    Hek, A.P. de; Bogaart, F.L.M. van den

    1999-01-01

    This paper identifies the areas where the use of non-linear simulations for the design of high-power amplifiers is useful. The identified areas are: operating class selection, determination source and load impedance for matching network design, overall amplifier simulations and stability analysis un

  10. A Power Efficient Audio Amplifier Combining Switching and Linear Techniques

    NARCIS (Netherlands)

    Zee, van der R.A.R.; Tuijl, van A.J.M.

    1998-01-01

    Integrated Class D audio amplifiers are very power efficient, but require an external filter which prevents further integration. Also due to this filter, large feedback factors are hard to realise, so that the load influences the distortion- and transfer characteristics. The amplifier presented in t

  11. An RF Power Amplifier in a Digital CMOS Process

    DEFF Research Database (Denmark)

    Nielsen, Per Asbeck; Fallesen, Carsten

    2002-01-01

    A two stage class B power amplifier for 1.9 GHz is presented. The amplifier is fabricated in a standard digital EPI-CMOS process with low resistivity substrate. The measured output power is 29 dBm in a 50 Omega load. A design method to find the large signal parameters of the output transistor...

  12. Models of reduced-noise, probabilistic linear amplifiers

    Science.gov (United States)

    Combes, Joshua; Walk, Nathan; Lund, A. P.; Ralph, T. C.; Caves, Carlton M.

    2016-05-01

    We construct an amplifier that interpolates between a nondeterministic, immaculate linear amplifier and a deterministic, ideal linear amplifier and beyond to nonideal linear amplifiers. The construction involves cascading an immaculate linear amplifier that has amplitude gain g1 with a (possibly) nonideal linear amplifier that has gain g2. With respect to normally ordered moments, the device has output noise μ2(G2-1 ) where G =g1g2 is the overall amplitude gain and μ2 is a noise parameter. When μ2≥1 , our devices realize ideal (μ2=1 ) and nonideal (μ2>1 ) linear amplifiers. When 0 ≤μ2devices work effectively only over a restricted region of phase space and with some subunity success probability p✓. We investigate the performance of our μ2 amplifiers in terms of a gain-corrected probability-fidelity product and the ratio of input to output signal-to-noise ratios corrected for success probability.

  13. Advances in Solid Core Photonic Bandgap Fiber Amplifiers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Laurila, Marko; Petersen, Sidsel Rübner;

    2012-01-01

    We present recent development of photonic crystal fiber amplifiers containing photonic bandgap structures for enhanced spectral and modal filtering functionality.......We present recent development of photonic crystal fiber amplifiers containing photonic bandgap structures for enhanced spectral and modal filtering functionality....

  14. Amplifying Islam : Pluralism, Secularism, and Religious Sounds in The Netherlands

    NARCIS (Netherlands)

    Tamimi Arab, P.

    2015-01-01

    This dissertation is an ethnographic study of the amplified azan, the Islamic call to prayer, in the Netherlands, adding a sonic dimension to analyses of the politics of Islamic aesthetics in the western world. Often rejected by opponents as noise pollution, facilitating the amplified azan is an exa

  15. PHEMT Distributed Power Amplifier Adopting Broadband Impedance Transformer

    DEFF Research Database (Denmark)

    Narendra, K.; Limiti, E.; Paoloni, C.;

    2013-01-01

    A non-uniform drain line distributed power amplifier (DPA) employing a broadband impedance transformer is presented. The DPA is based on GaAs PHEMT technology. The impedance transformer employs asymmetric coupled lines and transforms a low output impedance of the amplifier to a standard 50 Ω...

  16. Computation of diffusion coefficients for waters of Gauthami Godavari estuary using one-dimensional advection-diffusion model

    Digital Repository Service at National Institute of Oceanography (India)

    Jyothi, D.; Murty, T.V.R.; Sarma, V.V.; Rao, D.P.

    of Marine Sciences Vol. 29, June 2000, pp. 185-187 Short Communication Computation of diffusion coefficients for waters of Gauthami Godavari estuary using one-dimensional advection-diffusion model D Jyothi, T V Ramana Murty, V V Sarma & D P Rao National.... - Jan.) Y2(x) = 8.55283 x + 17.5469 (Jan. - April) These equations would be more useful to get diffusion coefficients for any point along the channel axis, which in turn, helps to compute the concentration of pollutant along the axis of estuary. Thus...

  17. Advective Heat Transport in an Unconfined Aquifer Induced by the Field Injection of an Open-Loop Groundwater Heat Pump

    Directory of Open Access Journals (Sweden)

    Stefano L. Russo

    2010-01-01

    Full Text Available Problem statement: The increasing diffusion of low-enthalpy geothermal open-loop Groundwater Heat Pumps (GWHP providing buildings air conditioning requires a careful assessment of the overall effects on groundwater system, especially in the urban areas. The impact on the groundwater temperature in the surrounding area of the re-injection well is directly linked to the aquifer properties. Physical processes affecting heat transport within an aquifer include advection (or convection and hydrodynamic thermodispersion (diffusion and mechanical dispersion. If the groundwater flows, the advective components tend to dominate the heat transfer process within the aquifer and the diffusion can be considered negligible. This study illustrates the experimental results derived from the groundwater monitoring in the surrounding area of an injection well connected to an open-loop GWHP plant which has been installed in the "Politecnico di Torino" (NW Italy for cooling some of the university buildings. Groundwater pumping and injection interfere only with the upper unconfined aquifer. Approach: After the description of the hydrogeological setting the authors examined the data deriving from multiparameter probes installed inside the pumping well (P2, the injection well (P4 and a downgradient piezometer (S2. Data refers to the summer 2009. To control the aquifer thermal stratification some multi-temporal temperature logs have been performed in the S2. Results: After the injection of warm water in P4 the plume arrived after 30 days in the S2. That delay is compatible with the calculated plume migration velocity (1.27 m d-1 and their respective distance (35 m. The natural temperature in the aquifer due to the switching-off of the GWHP plant has been reached after two month. The Electrical Conductivity (EC values tend to vary out of phase with the temperature. The temperature logs in the S2 highlighted a thermal stratification in the aquifer due to a low vertical

  18. ADVECTION-DIFFUSION NUMERICAL MODEL OF AN AIR POLLUTANT EMITTED FROM AN AREA SOURCE OF PRIMARY POLLUTANT WITH WET DEPOSITION

    Directory of Open Access Journals (Sweden)

    C M SURESHA

    2012-01-01

    Full Text Available A two dimensional advection-diffusion numerical model of air pollutant emitted from an area source of primary pollutant with wet deposition is presented. We study the effect of removal mechanism i.e. wet deposition on primary pollutant with respect to distance and height for stable and neutral cases. The numerical model has been solved by using Crank-Nicolson implicit finite difference technique. Concentration contours are plotted and results are analysed for primary pollutant in stable and neutral atmospheric situations for various meteorological parameters.

  19. Differentiating transpiration from evaporation in seasonal agricultural wetlands and the link to advective fluxes in the root zone

    Energy Technology Data Exchange (ETDEWEB)

    Bachand, P.A.M., E-mail: Philip.Bachand@Tetratech.com [Tetra Tech, Davis, CA (United States); Bachand, S. [Tetra Tech, Davis, CA (United States); Fleck, J.; Anderson, F. [U.S. Geological Survey, California Water Science Center, Sacramento, CA (United States); Windham-Myers, L. [U.S. Geological Survey, National Research Program, Menlo Park, CA (United States)

    2014-06-01

    The current state of science and engineering related to analyzing wetlands overlooks the importance of transpiration and risks data misinterpretation. In response, we developed hydrologic and mass budgets for agricultural wetlands using electrical conductivity (EC) as a natural conservative tracer. We developed simple differential equations that quantify evaporation and transpiration rates using flow rates and tracer concentrations at wetland inflows and outflows. We used two ideal reactor model solutions, a continuous flow stirred tank reactor (CFSTR) and a plug flow reactor (PFR), to bracket real non-ideal systems. From those models, estimated transpiration ranged from 55% (CFSTR) to 74% (PFR) of total evapotranspiration (ET) rates, consistent with published values using standard methods and direct measurements. The PFR model more appropriately represents these non-ideal agricultural wetlands in which check ponds are in series. Using a flux model, we also developed an equation delineating the root zone depth at which diffusive dominated fluxes transition to advective dominated fluxes. This relationship is similar to the Peclet number that identifies the dominance of advective or diffusive fluxes in surface and groundwater transport. Using diffusion coefficients for inorganic mercury (Hg) and methylmercury (MeHg) we calculated that during high ET periods typical of summer, advective fluxes dominate root zone transport except in the top millimeters below the sediment–water interface. The transition depth has diel and seasonal trends, tracking those of ET. Neglecting this pathway has profound implications: misallocating loads along different hydrologic pathways; misinterpreting seasonal and diel water quality trends; confounding Fick's First Law calculations when determining diffusion fluxes using pore water concentration data; and misinterpreting biogeochemical mechanisms affecting dissolved constituent cycling in the root zone. In addition, our

  20. Pulse laser imaging amplifier for advanced ladar systems

    Science.gov (United States)

    Khizhnyak, Anatoliy; Markov, Vladimir; Tomov, Ivan; Murrell, David

    2016-05-01

    Security measures sometimes require persistent surveillance of government, military and public areas Borders, bridges, sport arenas, airports and others are often surveilled with low-cost cameras. Their low-light performance can be enhanced with laser illuminators; however various operational scenarios may require a low-intensity laser illumination with the object-scattered light intensity lower than the sensitivity of the Ladar image detector. This paper discusses a novel type of high-gain optical image amplifier. The approach enables time-synchronization of the incoming and amplifying signals with accuracy <= 1 ns. The technique allows the incoming signal to be amplified without the need to match the input spectrum to the cavity modes. Instead, the incoming signal is accepted within the spectral band of the amplifier. We have gauged experimentally the performance of the amplifier with a 40 dB gain and an angle of view 20 mrad.

  1. A Review of High Voltage Drive Amplifiers for Capacitive Actuators

    DEFF Research Database (Denmark)

    Huang, Lina; Zhang, Zhe; Andersen, Michael A. E.

    2012-01-01

    This paper gives an overview of the high voltage amplifiers, which are used to drive capacitive actuators. The amplifiers for both piezoelectric and DEAP (dielectric electroactive polymer) actuator are discussed. The suitable topologies for driving capacitive actuators are illustrated in detail, ......, including linear as well as switched mode amplifiers. In the past much attention has been paid on the driver for piezoelectric actuator. As DEAP is a type of new material, there is not much literature reference for it.......This paper gives an overview of the high voltage amplifiers, which are used to drive capacitive actuators. The amplifiers for both piezoelectric and DEAP (dielectric electroactive polymer) actuator are discussed. The suitable topologies for driving capacitive actuators are illustrated in detail...

  2. New design of sense amplifier for EEPROM memory

    Institute of Scientific and Technical Information of China (English)

    Dong-sheng LIU; Xue-cheng ZOU; Qiong YU; Fan ZHANG

    2009-01-01

    We present a new sense amplifier circuit for EEPROM memory. The topology of the sense amplifier uses a voltage sensing method, having low cost and low power consumption as well as high reliability. The sense amplifier was implemented in an EEPROM realized with an SMIC 0.35-μm 2P3M CMOS embedded EEPROM process. Under the condition that the power supply is 3.3 V, simulation results showed that the charge time is 35 ns in the proposed sense amplifier, and that the maximum average current consumption during the read period is 40 μA. The novel topology allows the circuit to function with power sup-plies as low as 1.4 V. The sense amplifier has been implemented in 2-kb EEPROM memory for RFID tag IC applications, and has a silicon area of only 240 μm2.

  3. Highly Stable,Diode-Pumped Nd:YLF Regenerative Amplifier

    Institute of Scientific and Technical Information of China (English)

    WANG Jiang-Feng; LI Xue-Chun; WEI Hui; ZHU Jian-Qiang

    2008-01-01

    We present the design and experimental results for a diode pumped Nd:YLF regenerative amplifier applied to amplify a nanosecond laser pulse.Numerical simulation shows that the maximum output energy and the best stability can be obtained when the regenerative amplifier operates in a saturated mode for all pulse duration and temporal profiles.Using extra post-pulse is a good method to decrease the square-pulse distortion caused by gain saturation effect.The amplifier shows output energy of 4.2mJ with a total energy gain of more than 107 and output energy stability of better than 1% rms.When extra post-pulse is added,square-pulse distortion is decreased from 1.33 to 1.17 for the amplifier that is seeded with an optical pulse of 3 ns.

  4. Coupled Lines Filters for Broadband Impedance Matching of Microwave Amplifiers

    Directory of Open Access Journals (Sweden)

    Mohammed Lahsaini

    2014-08-01

    Full Text Available In this paper we present a broadband matching technique for the design of low noise amplifiers. This technique is based on the use of coupled lines filters and quarter wave transformers for the adaptation and stabilization of these amplifiers, presenting the theory and the design process of these circuits. The type of transistors used for modeling this amplifier is the HEMT of Alpha Industries®. The results we found show that this amplifier is unconditionally stable with a satisfactory gain of about 20 dB and good impedance matching across the band of interest [10-12] GHz. The amplifier modeled in this work can be integrated in satellite receiving systems and radar systems.

  5. Digital Lock-in Amplifier Based on Microcontroller

    Institute of Scientific and Technical Information of China (English)

    An-li TAO; Guo-dong XU; Ke-xue LUO; Gang-ling ZHANG

    2010-01-01

    A method of implementing high cost-effective and highly integrated digital lock-in amplifier with microcontroller is discussed. And the digital lock-in amplifier is more suitable for measuring low-frequency weak signal.Digital signal sequence is obtained through sampling signal measured over an integer number of signal periods, but digital reference sequence is acquired through mathematical operation, then digital phase sensitive detection can be implemented by calculating the cross-correlation function of digital signal sequence and digital reference sequence.In addition, the frequency response and phase character of the digital lock-in amplifier is analyzed. Finally, the designed digital lock-in amplifier is achieved. Experimental results show that the digital lock-in amplifier can be used for measuring weak signal with low ignal-to-noise ratio.

  6. Quantum Dot Semiconductor Optical Amplifiers - Physics and Applications

    DEFF Research Database (Denmark)

    Berg, Tommy Winther

    2004-01-01

    This thesis describes the physics and applications of quantum dot semiconductor optical amplifiers based on numerical simulations. These devices possess a number of unique properties compared with other types of semiconductor amplifiers, which should allow enhanced performance of semiconductor...... respects is comparable to those of fiber amplifiers. The possibility of inverting the optically active states to a large degree is essential in order to achieve this performance. Optical signal processing through cross gain modulation and four wave mixing is modeled and described. For both approaches...... and QW devices and to experiments on quantum dot amplifiers. These comparisons outline the qualitative differences between the different types of amplifiers. In all cases focus is put on the physical processes responsible the differences....

  7. Single Ion Quantum Lock-In Amplifier

    CERN Document Server

    Kotler, Shlomi; Glickman, Yinnon; Keselman, Anna; Ozeri, Roee

    2011-01-01

    We report on the implementation of a quantum analog to the classical lock-in amplifier. All the lock-in operations: modulation, detection and mixing, are performed via the application of non-commuting quantum operators on the electronic spin state of a single trapped Sr+ ion. We significantly increase its sensitivity to external fields while extending phase coherence by three orders of magnitude, to more than one second. With this technique we measure magnetic fields with sensitivity of 25 pT/sqrt(Hz) and light shifts with an uncertainty below 140 mHz after 1320 seconds of averaging. These sensitivities are limited by quantum projection noise and, to our knowledge, are more than two orders of magnitude better than with other single-spin probe technologies. In fact, our reported sensitivity is sufficient for the measurement of parity non-conservation, as well as the detection of the magnetic field of a single electronic-spin one micrometer from an ion-detector with nanometer resolution. As a first application ...

  8. Efficient and Compact Optical Amplifier Using EYDF

    Directory of Open Access Journals (Sweden)

    Sulaiman Wadi Harun

    2010-09-01

    Full Text Available An efficient Erbium/Ytterbium doped fiber amplifier (EYDFA is demonstrated using a 1058nm pumping wavelength, where the amplification is assisted by energy transfer between Yb and Er ions. The energy transfer increases the limit of erbium doping concentration that is imposed by concentration quenching in Erbium-doped fiber (EDF. Therefore, the gain and noise figure are severely degraded with 1480 nm pumping, where the energy transfer cannot be achieved. The use of optical isolator improves the small signal gain and noise figure by about 4.8 dB and 1.6 dB, respectively. By employing a double-pass configuration, a higher gain can be obtained with an expense of a noise figure penalty. The gain improvement of 17.0 dB is obtained at 20 mW and -50 dBm of pump and input signal powers. This shows that the double-pass configuration is an important aspect to consider when designing an efficient EYDFA.

  9. Status Report on the Energy Amplifier

    CERN Document Server

    Rubbia, Carlo

    1994-01-01

    0ne year after its first presentation,the Energy Amplifier (EA) Project holds its promises for a environmentally acceptable form of energy extraction from nuclei, namely to eliminate or at least greatly reduce(i) the environmental impact of the long-lived highly radioactive waste;(ii) the possibility of diversions toward military applications;(iii) the risks of an accidental divergence related to the critical operation of the chain reaction and (iv) make a more efficient use of a fuel which is less radio-toxic to extract and more abundant on Earth than Uranium. In these respects the EA (or equivalent scenarios from Los Alamos and elsewhere) is comparable in performance to Thermonuclear Fusion. Bot h approches offer pratically unl;imited fuel resources: the energetic content of Lithium on the Earth's crust needed by Fusion is estimated to be seven times the one of Thorium and they are both adequate for millions of years of very intensived utilisation.However the EA can be built economically,in a variety of siz...

  10. Gold Nanoparticle Labels Amplify Ellipsometric Signals

    Science.gov (United States)

    Venkatasubbarao, Srivatsa

    2008-01-01

    The ellipsometric method reported in the immediately preceding article was developed in conjunction with a method of using gold nanoparticles as labels on biomolecules that one seeks to detect. The purpose of the labeling is to exploit the optical properties of the gold nanoparticles in order to amplify the measurable ellipsometric effects and thereby to enable ultrasensitive detection of the labeled biomolecules without need to develop more-complex ellipsometric instrumentation. The colorimetric, polarization, light-scattering, and other optical properties of nanoparticles depend on their sizes and shapes. In the present method, these size-and-shape-dependent properties are used to magnify the polarization of scattered light and the diattenuation and retardance of signals derived from ellipsometry. The size-and-shape-dependent optical properties of the nanoparticles make it possible to interrogate the nanoparticles by use of light of various wavelengths, as appropriate, to optimally detect particles of a specific type at high sensitivity. Hence, by incorporating gold nanoparticles bound to biomolecules as primary or secondary labels, the performance of ellipsometry as a means of detecting the biomolecules can be improved. The use of gold nanoparticles as labels in ellipsometry has been found to afford sensitivity that equals or exceeds the sensitivity achieved by use of fluorescence-based methods. Potential applications for ellipsometric detection of gold nanoparticle-labeled biomolecules include monitoring molecules of interest in biological samples, in-vitro diagnostics, process monitoring, general environmental monitoring, and detection of biohazards.

  11. Fishing amplifies forage fish population collapses

    Science.gov (United States)

    Essington, Timothy E.; Moriarty, Pamela E.; Froehlich, Halley E.; Hodgson, Emma E.; Koehn, Laura E.; Oken, Kiva L.; Siple, Margaret C.; Stawitz, Christine C.

    2015-01-01

    Forage fish support the largest fisheries in the world but also play key roles in marine food webs by transferring energy from plankton to upper trophic-level predators, such as large fish, seabirds, and marine mammals. Fishing can, thereby, have far reaching consequences on marine food webs unless safeguards are in place to avoid depleting forage fish to dangerously low levels, where dependent predators are most vulnerable. However, disentangling the contributions of fishing vs. natural processes on population dynamics has been difficult because of the sensitivity of these stocks to environmental conditions. Here, we overcome this difficulty by collating population time series for forage fish populations that account for nearly two-thirds of global catch of forage fish to identify the fingerprint of fisheries on their population dynamics. Forage fish population collapses shared a set of common and unique characteristics: high fishing pressure for several years before collapse, a sharp drop in natural population productivity, and a lagged response to reduce fishing pressure. Lagged response to natural productivity declines can sharply amplify the magnitude of naturally occurring population fluctuations. Finally, we show that the magnitude and frequency of collapses are greater than expected from natural productivity characteristics and therefore, likely attributed to fishing. The durations of collapses, however, were not different from those expected based on natural productivity shifts. A risk-based management scheme that reduces fishing when populations become scarce would protect forage fish and their predators from collapse with little effect on long-term average catches. PMID:25848018

  12. Implementation of envelope tracking for RF solid state amplifiers

    Science.gov (United States)

    Larter, Thomas Leigh

    The Facility for Rare Isotope Beams (FRIB) is currently in its development stages at Michigan State University. The facility uses a large linear accelerator system to accelerate ionized particles which are then collided with other particles in the hopes of finding rare isotopes of elements. This accelerating action depends on several systems to function, with one of the major systems being superconducting cavity structures. These cavities are driven by high-power RF amplifiers which account for a large portion of the accelerator's power consumption. It is important to maximize the efficiency of these amplifiers in order to keep energy costs for the facility low. One of the ways to increase efficiency is to choose an amplifier topology that is highly efficient. A study was done for FRIB testing the prospect of using amplifiers with the envelope tracking (ET) topology. An amplifier's efficiency relies on its output power and the power supplied to it, which are in turn directly related to the output signal voltage and supply rail voltage. In an ET RF amplifier, the supply voltage is made to closely follow the envelope of the output signal voltage. This tracking action allows the RF amplifier to operate with much improved efficiency at low power levels and nearly constant efficiency at high power levels. The ET tests performed for FRIB attempted to verify the validity of ET efficiency gains for RF amplifiers. These tests included the characterization of an RF amplifier, development and verification of an ET control algorithm, and implementation of an ET test bench using FRIB equipment. These tests should attest to the purported increase in efficiency possible with ET and prove that the power consumption budget for the FRIB will benefit from the use of such amplifiers.

  13. 14 CFR 141.41 - Flight simulators, flight training devices, and training aids.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight simulators, flight training devices..., Aircraft, and Facilities Requirements § 141.41 Flight simulators, flight training devices, and training... that its flight simulators, flight training devices, training aids, and equipment meet the...

  14. IVGEN Post Flight Analysis

    Science.gov (United States)

    Mcquillen, John; Brown, Dan; Hussey, Sam; Zoldak, John

    2014-01-01

    The Intravenous Fluid Generation (IVGEN) Experiment was a technology demonstration experiment that purified ISS potable water, mixed it with salt, and transferred it through a sterilizing filter. On-orbit performance was verified as appropriate and two 1.5 l bags of normal saline solution were returned to earth for post-flight testing by a FDA certified laboratory for compliance with United States Pharmacopiea (USP) standards. Salt concentration deviated from required values and an analysis identified probable causes. Current efforts are focused on Total Organic Content (TOC) testing, and shelf life.The Intravenous Fluid Generation (IVGEN) Experiment demonstrated the purification of ISS potable water, the mixing of the purified water with sodium chloride, and sterilization of the solution via membrane filtration. On-orbit performance was monitored where feasible and two 1.5-liter bags of normal saline solution were returned to earth for post-flight testing by a FDA-registered laboratory for compliance with United States Pharmacopeia (USP)standards [1]. Current efforts have been focused on challenge testing with identified [2] impurities (total organic-carbon), and shelf life testing. The challenge testing flowed known concentrations of contaminants through the IVGEN deionizing cartridge and membrane filters to test their effectiveness. One finding was that the filters and DI-resin themselves contribute to the contaminant load during initial startup, suggesting that the first 100 ml of fluid be discarded. Shelf life testing is ongoing and involves periodic testing of stored DI cartridges and membrane filters that are capped and sealed in hermetic packages. The testing is conducted at six month intervals measuring conductivity and endotoxins in the effluent. Currently, the packaging technique has been successfully demonstrated for one year of storage testing. The USP standards specifies that the TOC be conducted at point of generation as opposed to point of

  15. Laser Amplifier Development for the Remote Sensing of CO2 from Space

    Science.gov (United States)

    Yu, Anthony W.; Abshire, James B.; Storm, Mark; Betin, Alexander

    2015-01-01

    Accurate global measurements of tropospheric CO2 mixing ratios are needed to study CO2 emissions and CO2 exchange with the land and oceans. NASA Goddard Space Flight Center (GSFC) is developing a pulsed lidar approach for an integrated path differential absorption (IPDA) lidar to allow global measurements of atmospheric CO2 column densities from space. Our group has developed, and successfully flown, an airborne pulsed lidar instrument that uses two tunable pulsed laser transmitters allowing simultaneous measurement of a single CO2 absorption line in the 1570 nm band, absorption of an O2 line pair in the oxygen A-band (765 nm), range, and atmospheric backscatter profiles in the same path. Both lasers are pulsed at 10 kHz, and the two absorption line regions are sampled at typically a 300 Hz rate. A space-based version of this lidar must have a much larger lidar power-area product due to the approximately x40 longer range and faster along track velocity compared to airborne instrument. Initial link budget analysis indicated that for a 400 km orbit, a 1.5 m diameter telescope and a 10 second integration time, a approximately 2 mJ laser energy is required to attain the precision needed for each measurement. To meet this energy requirement, we have pursued parallel power scaling efforts to enable space-based lidar measurement of CO2 concentrations. These included a multiple aperture approach consists of multi-element large mode area fiber amplifiers and a single-aperture approach consists of a multi-pass Er:Yb:Phosphate glass based planar waveguide amplifier (PWA). In this paper we will present our laser amplifier design approaches and preliminary results.

  16. In-Flight Suppression of an Unstable F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    Science.gov (United States)

    VanZwieten, Tannen S.; Gilligan, Eric T.; Wall, John H.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.

    2015-01-01

    NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off-nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using post-flight frequency-domain reconstruction, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system.

  17. In-Flight Suppression of a Destabilized F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    Science.gov (United States)

    Wall, John H.; VanZwieten, Tannen S.; Gilligan, Eric T.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.

    2015-01-01

    NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using frequency-domain reconstruction of flight data, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system.

  18. Solution of the advection-dispersion equation by a finite-volume eulerian-lagrangian local adjoint method

    Science.gov (United States)

    Healy, R.W.; Russell, T.F.

    1992-01-01

    A finite-volume Eulerian-Lagrangian local adjoint method for solution of the advection-dispersion equation is developed and discussed. The method is mass conservative and can solve advection-dominated ground-water solute-transport problems accurately and efficiently. An integrated finite-difference approach is used in the method. A key component of the method is that the integral representing the mass-storage term is evaluated numerically at the current time level. Integration points, and the mass associated with these points, are then forward tracked up to the next time level. The number of integration points required to reach a specified level of accuracy is problem dependent and increases as the sharpness of the simulated solute front increases. Integration points are generally equally spaced within each grid cell. For problems involving variable coefficients it has been found to be advantageous to include additional integration points at strategic locations in each well. These locations are determined by backtracking. Forward tracking of boundary fluxes by the method alleviates problems that are encountered in the backtracking approaches of most characteristic methods. A test problem is used to illustrate that the new method offers substantial advantages over other numerical methods for a wide range of problems.

  19. Passive advection of a vector field: Anisotropy, finite correlation time, exact solution, and logarithmic corrections to ordinary scaling.

    Science.gov (United States)

    Antonov, N V; Gulitskiy, N M

    2015-10-01

    In this work we study the generalization of the problem considered in [Phys. Rev. E 91, 013002 (2015)] to the case of finite correlation time of the environment (velocity) field. The model describes a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow. Inertial-range asymptotic behavior is studied by means of the field theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, with finite correlation time and preassigned pair correlation function. Due to the presence of distinguished direction n, all the multiloop diagrams in this model vanish, so that the results obtained are exact. The inertial-range behavior of the model is described by two regimes (the limits of vanishing or infinite correlation time) that correspond to the two nontrivial fixed points of the RG equations. Their stability depends on the relation between the exponents in the energy spectrum E∝k(⊥)(1-ξ) and the dispersion law ω∝k(⊥)(2-η). In contrast to the well-known isotropic Kraichnan's model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the corrections to ordinary scaling are polynomials of logarithms of the integral turbulence scale L. PMID:26565343

  20. Direct solar-pumped iodine laser amplifier

    Science.gov (United States)

    Han, Kwang S.; Hwang, In Heon; Kim, Khong Hon; Stock, Larry V.

    1988-01-01

    A XeCl laser pumped iodine laser oscillator was developed which will be incorporated into the Master Oscillator Power Amplifier (MOPA) system. The developed XeCl laser produces output energy of about 60 mJ per pulse. The pulse duration was about 10 nsec. The kinetic model for the solar-pumped laser was refined and the algorithm for the calculation of a set of rate equations was improved to increase the accuracy and the efficiency of the calculation. The improved algorithm was applied to explain the existing experimental data taken from a flashlamp pumped iodine laser for three kinds of lasants, i-C3F7I, n-C4F9I, and t-C4F9I. Various solid laser materials were evaluated for solar-pumping. The materials studied were Nd:YAG, Nd:YLF, and Cr:Nd:GSGG crystals. The slope efficiency of 0.17 percent was measured for the Nd:YLF near the threshold pump intensity which was 211 solar constants (29W/sq cm). The threshold pump intensity of the Nd:YAG was measured to be 236 solar constants (32W/sq cm) and the near-threshold slope efficiency was 0.12 percent. True CW laser operation of Cr:Nd:GSGG was possible only at pump intensities less than or equal to 1,500 solar constants (203 W/sq cm). This fact was attributed to the high thermal focusing effect of the Cr:Nd:GSGG rod.