Spatial Power Combining Amplifier for Ground and Flight Applications
Velazco, J. E.; Taylor, M.
2016-11-01
Vacuum-tube amplifiers such as klystrons and traveling-wave tubes are the workhorses of high-power microwave radiation generation. At JPL, vacuum tubes are extensively used in ground and flight missions for radar and communications. Vacuum tubes use electron beams as the source of energy to achieve microwave power amplification. Such electron beams operate at high kinetic energies and thus require high voltages to function. In addition, vacuum tubes use compact cavity and waveguide structures that hold very intense radio frequency (RF) fields inside. As the operational frequency is increased, the dimensions of these RF structures become increasingly smaller. As power levels and operational frequencies are increased, the highly intense RF fields inside of the tubes' structures tend to arc and create RF breakdown. In the case of very high-power klystrons, electron interception - also known as body current - can produce thermal runaway of the cavities that could lead to the destruction of the tube. The high voltages needed to power vacuum tubes tend to require complicated and cumbersome power supplies. Consequently, although vacuum tubes provide unmatched high-power microwaves, they tend to arc, suffer from thermal issues, and require failure-prone high-voltage power supplies. In this article, we present a new concept for generating high-power microwaves that we refer to as the Spatial Power Combining Amplifier (SPCA). The SPCA is very compact, requires simpler, lower-voltage power supplies, and uses a unique power-combining scheme wherein power from solid-state amplifiers is coherently combined. It is a two-port amplifier and can be used inline as any conventional two-port amplifier. It can deliver its output power to a coaxial line, a waveguide, a feed, or to any microwave load. A key feature of this new scheme is the use of higher-order-mode microwave structures to spatially divide and combine power. Such higher-order-mode structures have considerably larger cross
Fontaine, Emmanuelle; Coste, Sébastien; Poyat, Chrystelle; Klein, Céline; Lefort, Hugues; Leclerc, Thomas; Dubourdieu, Stéphane; Briche, Frédérique; Jost, Daniel; Maurin, Olga; Domanski, Laurent; Tourtier, Jean-Pierre
2014-01-01
The aim of this study was to evaluate the capacity of a traditional stethoscope versus an electronically amplified one (expected to reduce background and ambient noise) to assess heart and respiratory sounds during medical transport. It was a prospective, double-blinded, randomized performed study. One traditional stethoscope (Littmann Cardiology III; 3M, St Paul, MN) and 1 electronically amplified stethoscope (Littmann 3200, 3M) were used for our tests. Heart and lung auscultation during real medical evacuations aboard a medically configured Falcon 50 aircrafts were studied. The quality of auscultation was ranged using a numeric rating scale from 0 to 10 (0 corresponding to "I hear nothing" and 10 to "I hear perfectly"). Data collected were compared using a t-test for paired values. A total of 40 comparative evaluations were performed. For cardiac auscultation, the value of the rating scale was 4.53 ± 1.91 and 7.18 ± 1.88 for the traditional and amplified stethoscope, respectively (paired t-test: P auscultation was estimated at 3.1 ± 1.95 for a traditional stethoscope and 5.10 ± 2.13 for the amplified one (paired t-test: P < .0001). This study showed that practitioners would be better helped in hearing cardiac and respiratory sounds with an electronically amplified stethoscope than with a traditional one during air medical transport in a medically configured Falcon 50 aircraft. Copyright © 2014 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.
Anghinolfi, F; Krummenacher, F; Usenko, E; Williams, M C S
2004-01-01
An ultrafast front-end preamplifier-discriminator chip called NINO has been developed for use in the ALICE time-of-flight detector. The chip has eight channels. Each channel is designed with an amplifier with less than 1-ns peaking time, a discriminator with a minimum detection threshold of 10 fC and an output stage. The output pulse has minimum time jitter (less than 25 ps) on the front edge, and the pulsewidth is dependent of the input signal charge. Each channel consumes 27 mW, and the eight channels fit in a 2*4 mm/sup 2/ ASIC processed in IBM 0.25- mu m CMOS technology. (3 refs).
Anghinolfi, F; Krummenacher, F; Usenko, E; Williams, M C S
2004-01-01
An ultra fast front-end preamplifier-discriminator chip NINO has been developed for use in the ALICE Time-Of-Flight detector. The chip has 8 channels. Each channel is designed with an amplifier with less than 1 ns peaking time, a discriminator with a minimum detection threshold of 10fC and an output stage. The output pulse has minimum time jitter (less than 25ps) on the front edge, and the pulse width is dependent of the input signal charge. Each channel consumes 27mW, and the 8 channels fit in a 2*4mm/sup 2/ ASIC processed in IBM 0.2 mu m CMOS technology. (3 refs).
DEFF Research Database (Denmark)
Rottwitt, Karsten
2017-01-01
The chapter provides a discussion of optical fiber amplifiers and through three sections provides a detailed treatment of three types of optical fiber amplifiers, erbium doped fiber amplifiers (EDFA), Raman amplifiers, and parametric amplifiers. Each section comprises the fundamentals including...... the basic physics and relevant in-depth theoretical modeling, amplifiers characteristics and performance data as a function of specific operation parameters. Typical applications in fiber optic communication systems and the improvement achievable through the use of fiber amplifiers are illustrated....
Improved-Bandwidth Transimpedance Amplifier
Chapsky, Jacob
2009-01-01
The widest available operational amplifier, with the best voltage and current noise characteristics, is considered for transimpedance amplifier (TIA) applications where wide bandwidth is required to handle fast rising input signals (as for time-of-flight measurement cases). The added amplifier inside the TIA feedback loop can be configured to have slightly lower voltage gain than the bandwidth reduction factor.
Chaotic advection in the ocean
Energy Technology Data Exchange (ETDEWEB)
Koshel' , Konstantin V; Prants, Sergei V [V.I. Il' ichev Pacific Oceanological Institute, Far-Eastern Division of the Russian Academy of Sciences, Vladivostok (Russian Federation)
2006-11-30
The problem of chaotic advection of passive scalars in the ocean and its topological, dynamical, and fractal properties are considered from the standpoint of the theory of dynamical systems. Analytic and numerical results on Lagrangian transport and mixing in kinematic and dynamic chaotic advection models are described for meandering jet currents, topographical eddies in a barotropic ocean, and a two-layer baroclinic ocean. Laboratory experiments on hydrodynamic flows in rotating tanks as an imitation of geophysical chaotic advection are described. Perspectives of a dynamical system approach in physical oceanography are discussed. (reviews of topical problems)
A generalized advection dispersion equation
Indian Academy of Sciences (India)
This paper examines a possible effect of uncertainties, variability or heterogeneity of any dynamic system when being included in its evolution rule; the notion is illustrated with the advection dispersion equation, which describes the groundwater pollution model. An uncertain derivative is defined; some properties of.
Tetsuya, Saito; Nauta, Bram
2008-01-01
To provide an operation amplifier which improves power source voltage removal ratios while assuring phase compensation characteristics, and therefore can be realized with a small-scale circuit and low power consumption. SOLUTION: The operation amplifier comprises: a differential amplifier circuit 1;
Tetsuya, Saito; Nauta, Bram
2011-01-01
PROBLEM TO BE SOLVED: To provide an operation amplifier which improves power source voltage removal ratios while assuring phase compensation characteristics, and therefore can be realized with a small-scale circuit and low power consumption. SOLUTION: The operation amplifier comprises: a
Tetsuya, S.; Nauta, Bram
2007-01-01
PROBLEM TO BE SOLVED: To provide an operation amplifier which improves power source voltage removal ratios while assuring phase compensation characteristics, and therefore can be realized with a small-scale circuit and low power consumption. ; SOLUTION: The operation amplifier comprises: a
Dostal, Jiri
1993-01-01
This book provides the reader with the practical knowledge necessary to select and use operational amplifier devices. It presents an extensive treatment of applications and a practically oriented, unified theory of operational circuits.Provides the reader with practical knowledge necessary to select and use operational amplifier devices. Presents an extensive treatment of applications and a practically oriented, unified theory of operational circuits
Keeports, David
2006-12-01
By definition, a high fidelity amplifier's instantaneous output voltage is directly proportional to its instantaneous input voltage. While high fidelity is generally valued in the amplification of recorded music, nonlinearity, also known as distortion, is desirable in the amplification of some musical instruments. In particular, guitar amplifiers exploit nonlinearity to increase both the harmonic content and sustain of a guitar's sound. I will discuss how both modifications in sound result from saturation of triode tubes and transistors. Additionally, I will describe the difference in the symmetry of saturation curves for transistors and tubes and the reason why tube guitar amplifiers are generally considered to be superior to solid-state amplifiers. Finally, I will discuss attempts to use solid-state electronics to replicate the sound of tube amplifiers.
High-order finite volume advection
Shaw, James
2018-01-01
The cubicFit advection scheme is limited to second-order convergence because it uses a polynomial reconstruction fitted to point values at cell centres. The highOrderFit advection scheme achieves higher than second order by calculating high-order moments over the mesh geometry.
Prince, Katherine; Woempner, Carolyn
2010-01-01
This brief examines the policy implications of two drivers of change presented in the "2020 Forecast: Creating the Future of Learning"-- Pattern Recognition and Amplified Organization. These drivers point toward a series of cultural shifts and illuminate how we are developing new ways of organizing, constructing, and managing knowledge.…
Multidimensional flux-limited advection schemes
International Nuclear Information System (INIS)
Thuburn, J.
1996-01-01
A general method for building multidimensional shape preserving advection schemes using flux limiters is presented. The method works for advected passive scalars in either compressible or incompressible flow and on arbitrary grids. With a minor modification it can be applied to the equation for fluid density. Schemes using the simplest form of the flux limiter can cause distortion of the advected profile, particularly sideways spreading, depending on the orientation of the flow relative to the grid. This is partly because the simple limiter is too restrictive. However, some straightforward refinements lead to a shape-preserving scheme that gives satisfactory results, with negligible grid-flow angle-dependent distortion
Advection endash diffusion around a curved obstacle
International Nuclear Information System (INIS)
Ahluwalia, D.S.; Keller, J.B.; Knessl, C.
1998-01-01
Advection and diffusion of a substance around a curved obstacle is analyzed when the advection velocity is large compared to the diffusion velocity, i.e., when the Peclet number is large. Asymptotic expressions for the concentration are obtained by the use of boundary layer theory, matched asymptotic expansions, etc. The results supplement and extend previous ones for straight obstacles. They apply to electrophoresis, the flow of ground water, chromatography, sedimentation, etc. copyright 1998 American Institute of Physics
Orbital Advection with Magnetohydrodynamics and Vector Potential
International Nuclear Information System (INIS)
Lyra, Wladimir; McNally, Colin P.; Heinemann, Tobias; Masset, Frédéric
2017-01-01
Orbital advection is a significant bottleneck in disk simulations, and a particularly tricky one when used in connection with magnetohydrodynamics. We have developed an orbital advection algorithm suitable for the induction equation with magnetic potential. The electromotive force is split into advection and shear terms, and we find that we do not need an advective gauge since solving the orbital advection implicitly precludes the shear term from canceling the advection term. We prove and demonstrate the third order in time accuracy of the scheme. The algorithm is also suited to non-magnetic problems. Benchmarked results of (hydrodynamical) planet–disk interaction and of the magnetorotational instability are reproduced. We include detailed descriptions of the construction and selection of stabilizing dissipations (or high-frequency filters) needed to generate practical results. The scheme is self-consistent, accurate, and elegant in its simplicity, making it particularly efficient for straightforward finite-difference methods. As a result of the work, the algorithm is incorporated in the public version of the Pencil Code, where it can be used by the community.
Orbital Advection with Magnetohydrodynamics and Vector Potential
Energy Technology Data Exchange (ETDEWEB)
Lyra, Wladimir [Department of Physics and Astronomy, California State University Northrige, 18111 Nordhoff Street, Northridge CA 91130 (United States); McNally, Colin P. [Astronomy Unit, School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Heinemann, Tobias [Niels Bohr International Academy, The Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen Ø (Denmark); Masset, Frédéric, E-mail: wlyra@csun.edu [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, 62210 Cuernavaca, Mor. (Mexico)
2017-10-01
Orbital advection is a significant bottleneck in disk simulations, and a particularly tricky one when used in connection with magnetohydrodynamics. We have developed an orbital advection algorithm suitable for the induction equation with magnetic potential. The electromotive force is split into advection and shear terms, and we find that we do not need an advective gauge since solving the orbital advection implicitly precludes the shear term from canceling the advection term. We prove and demonstrate the third order in time accuracy of the scheme. The algorithm is also suited to non-magnetic problems. Benchmarked results of (hydrodynamical) planet–disk interaction and of the magnetorotational instability are reproduced. We include detailed descriptions of the construction and selection of stabilizing dissipations (or high-frequency filters) needed to generate practical results. The scheme is self-consistent, accurate, and elegant in its simplicity, making it particularly efficient for straightforward finite-difference methods. As a result of the work, the algorithm is incorporated in the public version of the Pencil Code, where it can be used by the community.
International Nuclear Information System (INIS)
Noohi, K.; Pedram, M.; Sahraian, F.; Kamali, G. A.
2007-01-01
Atmospheric Science and Meteorological Research Center (ASMERC)Dates of first fall and last spring frosts on the basis of minimum shelter temperature equal or less than 0°C were determined for 12 synoptic stations for period 1986-2000 in Azerbaijan region. The advection frost was determined based on using of synoptic maps and studying of meteorological elements in different hours. In this work, we found that series of first fall and last spring advection and radiation-advection frosts are random and normally distributed. This study shows that on the average advection frosts start from 6 to 40 days later than radiation-advection frosts in fall and ends 2 to 25 days earlier in spring. Potential growing season that is interval between last spring and first fall advection frost is found to be from 5 to 65 days longer than the growing season defined by the interval from last spring to first fall occurrences of minimum temperature equal or less than 0°C. Crop protection against radiation frosts can bring about too much benefit. To assess whether practical protection of some special crops against radiation frosts is done or not, the number of radiation frosts before first advection frost in fall and after last advection frost in spring, were determined
Statistics of an advected passive scalar
International Nuclear Information System (INIS)
Kimura, Y.; Kraichnan, R.H.
1993-01-01
An elementary argument shows that non-Gaussian fluctuations in the temperature at a point in space are induced by random advection of a passive temperature field that has a nonlinear mean gradient, whether or not there is molecular diffusion. This is corroborated by exact analysis for the nondiffusive case and by direct numerical simulation for diffusive cases. Eulerian mapping closure gives results close to the simulation data. Non-Gaussian fluctuations of temperature at a point also are induced by a more subtle mechanism that requires both advection and molecular diffusion and is effective even when the statistics are strictly homogeneous. It operates through selectively strong dissipation of regions where intense temperature gradients have been induced by advective straining. This phenomenon is demonstrated by simulations and explored by means of an idealized analytical model
Precipitation Sedimentation and Advection in GFS
Sun, R.; Tallapragada, V.
2016-12-01
Zhao and Carr microphysics scheme as implemented in the NCEP Global Forecasting System (GFS) predicts only the total cloud condensate (cloud water or ice). The precipitation generated in the column fall to the ground instantly. This mean precipitation sedimentation and advection are not considered. As resolution increases the lack of the two physical processes creates problems. The slowly falling precipitation (snow) falls to the wrong surface grid box, which may have led to the observed spotty-precipitation pattern. To solve the problem two prognositic variables, snow and rain, are added. Addition of the two precipitation variable allows their advection. The corresponding sedimentation process are also added. In this study we examine the effect of precipitation advection and sedimentation on the precipitation pattern, associated precipitation skills and clouds.
Analytical simulation of two dimensional advection dispersion ...
African Journals Online (AJOL)
The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would migrate ...
Advection models of longitudinal dispersion in rivers
Kranenburg, C.
1996-01-01
A derivation is presented of a general cross-section averaged model of longitudinal dispersion, which is based on the notion of the advection of tracer particles. Particle displacement length and particle travel time are conceived as stochastic variables, and a joint probability density function is
Analytical Simulation of Two Dimensional Advection Dispersion ...
African Journals Online (AJOL)
ADOWIE PERE
ABSTRACT: The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would ...
Fractional vector calculus for fractional advection dispersion
Meerschaert, Mark M.; Mortensen, Jeff; Wheatcraft, Stephen W.
2006-07-01
We develop the basic tools of fractional vector calculus including a fractional derivative version of the gradient, divergence, and curl, and a fractional divergence theorem and Stokes theorem. These basic tools are then applied to provide a physical explanation for the fractional advection-dispersion equation for flow in heterogeneous porous media.
A computational method for sharp interface advection
DEFF Research Database (Denmark)
Roenby, Johan; Bredmose, Henrik; Jasak, Hrvoje
2016-01-01
We devise a numerical method for passive advection of a surface, such as the interface between two incompressible fluids, across a computational mesh. The method is called isoAdvector, and is developed for general meshes consisting of arbitrary polyhedral cells. The algorithm is based on the volu...
Linking Chaotic Advection with Subsurface Biogeochemical Processes
Mays, D. C.; Freedman, V. L.; White, S. K.; Fang, Y.; Neupauer, R.
2017-12-01
This work investigates the extent to which groundwater flow kinematics drive subsurface biogeochemical processes. In terms of groundwater flow kinematics, we consider chaotic advection, whose essential ingredient is stretching and folding of plumes. Chaotic advection is appealing within the context of groundwater remediation because it has been shown to optimize plume spreading in the laminar flows characteristic of aquifers. In terms of subsurface biogeochemical processes, we consider an existing model for microbially-mediated reduction of relatively mobile uranium(VI) to relatively immobile uranium(IV) following injection of acetate into a floodplain aquifer beneath a former uranium mill in Rifle, Colorado. This model has been implemented in the reactive transport code eSTOMP, the massively parallel version of STOMP (Subsurface Transport Over Multiple Phases). This presentation will report preliminary numerical simulations in which the hydraulic boundary conditions in the eSTOMP model are manipulated to simulate chaotic advection resulting from engineered injection and extraction of water through a manifold of wells surrounding the plume of injected acetate. This approach provides an avenue to simulate the impact of chaotic advection within the existing framework of the eSTOMP code.
High Order Semi-Lagrangian Advection Scheme
Malaga, Carlos; Mandujano, Francisco; Becerra, Julian
2014-11-01
In most fluid phenomena, advection plays an important roll. A numerical scheme capable of making quantitative predictions and simulations must compute correctly the advection terms appearing in the equations governing fluid flow. Here we present a high order forward semi-Lagrangian numerical scheme specifically tailored to compute material derivatives. The scheme relies on the geometrical interpretation of material derivatives to compute the time evolution of fields on grids that deform with the material fluid domain, an interpolating procedure of arbitrary order that preserves the moments of the interpolated distributions, and a nonlinear mapping strategy to perform interpolations between undeformed and deformed grids. Additionally, a discontinuity criterion was implemented to deal with discontinuous fields and shocks. Tests of pure advection, shock formation and nonlinear phenomena are presented to show performance and convergence of the scheme. The high computational cost is considerably reduced when implemented on massively parallel architectures found in graphic cards. The authors acknowledge funding from Fondo Sectorial CONACYT-SENER Grant Number 42536 (DGAJ-SPI-34-170412-217).
A computational method for sharp interface advection
Bredmose, Henrik; Jasak, Hrvoje
2016-01-01
We devise a numerical method for passive advection of a surface, such as the interface between two incompressible fluids, across a computational mesh. The method is called isoAdvector, and is developed for general meshes consisting of arbitrary polyhedral cells. The algorithm is based on the volume of fluid (VOF) idea of calculating the volume of one of the fluids transported across the mesh faces during a time step. The novelty of the isoAdvector concept consists of two parts. First, we exploit an isosurface concept for modelling the interface inside cells in a geometric surface reconstruction step. Second, from the reconstructed surface, we model the motion of the face–interface intersection line for a general polygonal face to obtain the time evolution within a time step of the submerged face area. Integrating this submerged area over the time step leads to an accurate estimate for the total volume of fluid transported across the face. The method was tested on simple two-dimensional and three-dimensional interface advection problems on both structured and unstructured meshes. The results are very satisfactory in terms of volume conservation, boundedness, surface sharpness and efficiency. The isoAdvector method was implemented as an OpenFOAM® extension and is published as open source. PMID:28018619
A computational method for sharp interface advection.
Roenby, Johan; Bredmose, Henrik; Jasak, Hrvoje
2016-11-01
We devise a numerical method for passive advection of a surface, such as the interface between two incompressible fluids, across a computational mesh. The method is called isoAdvector, and is developed for general meshes consisting of arbitrary polyhedral cells. The algorithm is based on the volume of fluid (VOF) idea of calculating the volume of one of the fluids transported across the mesh faces during a time step. The novelty of the isoAdvector concept consists of two parts. First, we exploit an isosurface concept for modelling the interface inside cells in a geometric surface reconstruction step. Second, from the reconstructed surface, we model the motion of the face-interface intersection line for a general polygonal face to obtain the time evolution within a time step of the submerged face area. Integrating this submerged area over the time step leads to an accurate estimate for the total volume of fluid transported across the face. The method was tested on simple two-dimensional and three-dimensional interface advection problems on both structured and unstructured meshes. The results are very satisfactory in terms of volume conservation, boundedness, surface sharpness and efficiency. The isoAdvector method was implemented as an OpenFOAM ® extension and is published as open source.
Amplifier for nuclear spectrometry
International Nuclear Information System (INIS)
Suarez Canner, E.
1996-01-01
The spectroscopy amplifier model AE-020 is designed to adjust suitable the pulses coming from nuclear radiation detectors. Due to is capacity and specifications, the amplifier can be used together with high and medium resolution spectroscopy system
Portable musical instrument amplifier
Christian, David E.
1990-07-24
The present invention relates to a musical instrument amplifier which is particularly useful for electric guitars. The amplifier has a rigid body for housing both the electronic system for amplifying and processing signals from the guitar and the system's power supply. An input plug connected to and projecting from the body is electrically coupled to the signal amplifying and processing system. When the plug is inserted into an output jack for an electric guitar, the body is rigidly carried by the guitar, and the guitar is operatively connected to the electrical amplifying and signal processing system without use of a loose interconnection cable. The amplifier is provided with an output jack, into which headphones are plugged to receive amplified signals from the guitar. By eliminating the conventional interconnection cable, the amplifier of the present invention can be used by musicians with increased flexibility and greater freedom of movement.
Concentration polarization, surface currents, and bulk advection in a microchannel
DEFF Research Database (Denmark)
Nielsen, Christoffer Peder; Bruus, Henrik
2014-01-01
. A remarkable outcome of the investigations is the discovery of strong couplings between bulk advection and the surface current; without a surface current, bulk advection is strongly suppressed. The numerical simulations are supplemented by analytical models valid in the long channel limit as well...... as in the limit of negligible surface charge. By including the effects of diffusion and advection in the diffuse part of the electric double layers, we extend a recently published analytical model of overlimiting current due to surface conduction....
Research on dynamic characteristics of new chaotic-advection fins
International Nuclear Information System (INIS)
Kong Songtao; Dong Qiwu; Liu Minshan; Zhu Qing
2007-01-01
Analysis and the numerical simulation has confirmed that the flow is of the chaotic advection in the flow channel of the new fin. The chaotic advection results in stronger mixing under low Re, and thus enhances the heat transfer and anti-scaling ability. The new fin provides the beneficial exploration to the concept of chaotic advection which applies to the plate-fin heat exchanger. (authors)
Low-wave-number statistics of randomly advected passive scalars
International Nuclear Information System (INIS)
Kerstein, A.R.; McMurtry, P.A.
1994-01-01
A heuristic analysis of the decay of a passive scalar field subject to statistically steady random advection, predicts two low-wave-number spectral scaling regimes analogous to the similarity states previously identified by Chasnov [Phys. Fluids 6, 1036 (1994)]. Consequences of their predicted coexistence in a single flow are examined. The analysis is limited to the idealized case of narrow band advection. To complement the analysis, and to extend the predictions to physically more realistic advection processes, advection diffusion is simulated using a one-dimensional stochastic model. An experimental test of the predictions is proposed
Implementation of two-component advective flow solution in XSPEC
Debnath, Dipak; Chakrabarti, Sandip K.; Mondal, Santanu
2014-05-01
Spectral and temporal properties of black hole candidates can be explained reasonably well using Chakrabarti-Titarchuk solution of two-component advective flow (TCAF). This model requires two accretion rates, namely the Keplerian disc accretion rate and the halo accretion rate, the latter being composed of a sub-Keplerian, low-angular-momentum flow which may or may not develop a shock. In this solution, the relevant parameter is the relative importance of the halo (which creates the Compton cloud region) rate with respect to the Keplerian disc rate (soft photon source). Though this model has been used earlier to manually fit data of several black hole candidates quite satisfactorily, for the first time, we made it user friendly by implementing it into XSPEC software of Goddard Space Flight Center (GSFC)/NASA. This enables any user to extract physical parameters of the accretion flows, such as two accretion rates, the shock location, the shock strength, etc., for any black hole candidate. We provide some examples of fitting a few cases using this model. Most importantly, unlike any other model, we show that TCAF is capable of predicting timing properties from the spectral fits, since in TCAF, a shock is responsible for deciding spectral slopes as well as quasi-periodic oscillation frequencies. L86
Amplification factor variable amplifier
Akitsugu, Oshita; Nauta, Bram
2007-01-01
PROBLEM TO BE SOLVED: To provide an amplification factor variable amplifier capable of achieving temperature compensation of an amplification factor over a wide variable amplification factor range. ; SOLUTION: A Gilbert type amplification factor variable amplifier 11 amplifies an input signal and
Amplification factor variable amplifier
Akitsugu, Oshita; Nauta, Bram
2010-01-01
PROBLEM TO BE SOLVED: To provide an amplification factor variable amplifier capable of achieving temperature compensation of an amplification factor over a wide variable amplification factor range. ;SOLUTION: A Gilbert type amplification factor variable amplifier 11 amplifies an input signal and can
Wang, F.; Vavrus, S. J.
2017-12-01
Horizontal temperature advection plays an especially prominent role in affecting winter climate over continental interiors, where both climatological conditions and extreme weather are strongly regulated by transport of remote air masses. Central North America is one such region, and it experienced a major cold-air outbreak (CAO) a few years ago that some have related to amplified Arctic warming. Despite the known importance of dynamics in shaping the winter climate of this sector and the potential for climate change to modify heat transport, limited attention has been paid to the regional impact of thermal advection. Here, we use a reanalysis product and output from the Community Earth System Model's Large Ensemble to quantify the roles of zonal and meridional temperature advection over the central U. S. during winter, both in the late 20th and 21st centuries. We frame our findings as a "tug of war" between opposing influences of the two advection components and between these dynamical forcings vs. thermodynamic changes under greenhouse warming. For example, Arctic amplification leads to much warmer polar air masses, causing a moderation of cold-air advection into the central U. S., yet the model also simulates a wavier mean circulation and stronger northerly flow during CAOs, favoring lower regional temperatures. We also compare the predominant warming effect of zonal advection and overall cooling effect of meridional temperature advection as an additional tug of war. During both historical and future periods, zonal temperature advection is stronger than meridional advection over the Central U. S. The model simulates a future weakening of both zonal and meridional temperature advection, such that westerly flow provides less warming and northerly flow less cooling. On the most extreme warm days in the past and future, both zonal and meridional temperature advection have positive (warming) contributions. On the most extreme cold days, meridional cold air advection
Advection and dispersion of bed load tracers
Lajeunesse, Eric; Devauchelle, Olivier; James, François
2018-05-01
We use the erosion-deposition model introduced by Charru et al. (2004) to numerically simulate the evolution of a plume of bed load tracers entrained by a steady flow. In this model, the propagation of the plume results from the stochastic exchange of particles between the bed and the bed load layer. We find a transition between two asymptotic regimes. The tracers, initially at rest, are gradually set into motion by the flow. During this entrainment regime, the plume is strongly skewed in the direction of propagation and continuously accelerates while spreading nonlinearly. With time, the skewness of the plume eventually reaches a maximum value before decreasing. This marks the transition to an advection-diffusion regime in which the plume becomes increasingly symmetrical, spreads linearly, and advances at constant velocity. We analytically derive the expressions of the position, the variance, and the skewness of the plume and investigate their asymptotic regimes. Our model assumes steady state. In the field, however, bed load transport is intermittent. We show that the asymptotic regimes become insensitive to this intermittency when expressed in terms of the distance traveled by the plume. If this finding applies to the field, it might provide an estimate for the average bed load transport rate.
Oscillators and operational amplifiers
Lindberg, Erik
2005-01-01
A generalized approach to the design of oscillators using operational amplifiers as active elements is presented. A piecewise-linear model of the amplifier is used so that it make sense to investigate the eigenvalues of the Jacobian of the differential equations. The characteristic equation of the general circuit is derived. The dynamic nonlinear transfer characteristic of the amplifier is investigated. Examples of negative resistance oscillators are discussed.
Two-level schemes for the advection equation
Vabishchevich, Petr N.
2018-06-01
The advection equation is the basis for mathematical models of continuum mechanics. In the approximate solution of nonstationary problems it is necessary to inherit main properties of the conservatism and monotonicity of the solution. In this paper, the advection equation is written in the symmetric form, where the advection operator is the half-sum of advection operators in conservative (divergent) and non-conservative (characteristic) forms. The advection operator is skew-symmetric. Standard finite element approximations in space are used. The standard explicit two-level scheme for the advection equation is absolutely unstable. New conditionally stable regularized schemes are constructed, on the basis of the general theory of stability (well-posedness) of operator-difference schemes, the stability conditions of the explicit Lax-Wendroff scheme are established. Unconditionally stable and conservative schemes are implicit schemes of the second (Crank-Nicolson scheme) and fourth order. The conditionally stable implicit Lax-Wendroff scheme is constructed. The accuracy of the investigated explicit and implicit two-level schemes for an approximate solution of the advection equation is illustrated by the numerical results of a model two-dimensional problem.
New advection schemes for free surface flows
International Nuclear Information System (INIS)
Pavan, Sara
2016-01-01
The purpose of this thesis is to build higher order and less diffusive schemes for pollutant transport in shallow water flows or 3D free surface flows. We want robust schemes which respect the main mathematical properties of the advection equation with relatively low numerical diffusion and apply them to environmental industrial applications. Two techniques are tested in this work: a classical finite volume method and a residual distribution technique combined with a finite element method. For both methods we propose a decoupled approach since it is the most advantageous in terms of accuracy and CPU time. Concerning the first technique, a vertex-centred finite volume method is used to solve the augmented shallow water system where the numerical flux is computed through an Harten-Lax-Van Leer-Contact Riemann solver. Starting from this solution, a decoupled approach is formulated and is preferred since it allows to compute with a larger time step the advection of a tracer. This idea was inspired by Audusse, E. and Bristeau, M.O. [13]. The Monotonic Upwind Scheme for Conservation Law, combined with the decoupled approach, is then used for the second order extension in space. The wetting and drying problem is also analysed and a possible solution is presented. In the second case, the shallow water system is entirely solved using the finite element technique and the residual distribution method is applied to the solution of the tracer equation, focusing on the case of time-dependent problems. However, for consistency reasons the resolution of the continuity equation must be considered in the numerical discretization of the tracer. In order to get second order schemes for unsteady cases a predictor-corrector scheme is used in this work. A first order but less diffusive version of the predictor-corrector scheme is also introduced. Moreover, we also present a new locally semi-implicit version of the residual distribution method which, in addition to good properties in
Enhanced separation of diffusing particles by chaotic advection
International Nuclear Information System (INIS)
Aref, H.; Jones, S.W.
1989-01-01
Combining the reversibility of advection by a Stokes flow with the irreversibility of diffusion leads to a separation strategy for diffusing substances. This basic idea goes back to Taylor and Heller. It is shown here that the sensitivity of the method can be greatly enhanced by making the advection chaotic. The separation is particularly efficient when the thinnest structures resulting from advection are made comparable in size to a diffusion length. Simple heuristic estimates based on an understanding of chaotic motion and diffusion lead to a certain scaling that is seen in numerical experiments on this separation method
RKC time-stepping for advection-diffusion-reaction problems
International Nuclear Information System (INIS)
Verwer, J.G.; Sommeijer, B.P.; Hundsdorfer, W.
2004-01-01
The original explicit Runge-Kutta-Chebyshev (RKC) method is a stabilized second-order integration method for pure diffusion problems. Recently, it has been extended in an implicit-explicit manner to also incorporate highly stiff reaction terms. This implicit-explicit RKC method thus treats diffusion terms explicitly and the highly stiff reaction terms implicitly. The current paper deals with the incorporation of advection terms for the explicit method, thus aiming at the implicit-explicit RKC integration of advection-diffusion-reaction equations in a manner that advection and diffusion terms are treated simultaneously and explicitly and the highly stiff reaction terms implicitly
Chaotic advection, diffusion, and reactions in open flows
International Nuclear Information System (INIS)
Tel, Tamas; Karolyi, Gyoergy; Pentek, Aron; Scheuring, Istvan; Toroczkai, Zoltan; Grebogi, Celso; Kadtke, James
2000-01-01
We review and generalize recent results on advection of particles in open time-periodic hydrodynamical flows. First, the problem of passive advection is considered, and its fractal and chaotic nature is pointed out. Next, we study the effect of weak molecular diffusion or randomness of the flow. Finally, we investigate the influence of passive advection on chemical or biological activity superimposed on open flows. The nondiffusive approach is shown to carry some features of a weak diffusion, due to the finiteness of the reaction range or reaction velocity. (c) 2000 American Institute of Physics
Predicting salt advection in groundwater from saline aquaculture ponds
Verrall, D. P.; Read, W. W.; Narayan, K. A.
2009-01-01
SummaryThis paper predicts saltwater advection in groundwater from leaky aquaculture ponds. A closed form solution for the potential function, stream function and velocity field is derived via the series solutions method. Numerically integrating along different streamlines gives the location (or advection front) of saltwater throughout the domain for any predefined upper time limit. Extending this process produces a function which predicts advection front location against time. The models considered in this paper are easily modified given knowledge of the required physical parameters.
Several fluidic tuned AC Amplifiers were designed and tested. Interstage tuning and feedback designs are considered. Good results were obtained...corresponding Q’s as high as 12. Element designs and test results of one, two, and three stage amplifiers are presented. AC Modulated Carrier Systems
International Nuclear Information System (INIS)
Stine, R.D.; Ross, G.F.; Silvernail, C.
1979-01-01
The overall design of the Antares laser power amplifier is discussed. The power amplifier is the last stage of amplification in the 100-kJ Antares laser. In the power amplifier a single, cylindrical, grid-controlle, cold-cathode electron gun is surrounded by 12 large-aperture CO 2 electron-beam sustained laser discharge sectors. Each power amplifier will deliver 18 kJ and the six modules used in Antares will produce the required 100 kJ for delivery to the target. A large-scale interaction between optical, mechanical, and electrical disciplines is required to meet the design objectives. Significant component advances required by the power amplifier design are discussed
Cellwise conservative unsplit advection for the volume of fluid method
DEFF Research Database (Denmark)
Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri
2015-01-01
We present a cellwise conservative unsplit (CCU) advection scheme for the volume of fluid method (VOF) in 2D. Contrary to other schemes based on explicit calculations of the flux balances, the CCU advection adopts a cellwise approach where the pre-images of the control volumes are traced......-overlapping donating regions and pre-images with conforming edges to their neighbors, resulting in the conservativeness and the boundedness (liquid volume fraction inside the interval [0, 1]) of the CCU advection scheme. Finally, the update of the liquid volume fractions is computed from the intersections of the pre......-image polygons with the reconstructed interfaces. The CCU scheme is tested on several benchmark tests for the VOF advection, together with the standard piecewise linear interface calculation (PLIC). The geometrical errors of the CCU compare favorably with other unsplit VOF-PLIC schemes. Finally, potential...
Some numerical studies of interface advection properties of level set ...
Indian Academy of Sciences (India)
explicit computational elements moving through an Eulerian grid. ... location. The interface is implicitly defined (captured) as the location of the discontinuity in the ... This level set function is advected with the background flow field and thus ...
Anomalous scaling of a scalar field advected by turbulence
Energy Technology Data Exchange (ETDEWEB)
Kraichnan, R.H. [Robert H. Kraichnan, Inc., Santa Fe, NM (United States)
1995-12-31
Recent work leading to deduction of anomalous scaling exponents for the inertial range of an advected passive field from the equations of motion is reviewed. Implications for other turbulence problems are discussed.
Auto-Zero Differential Amplifier
Quilligan, Gerard T. (Inventor); Aslam, Shahid (Inventor)
2017-01-01
An autozero amplifier may include a window comparator network to monitor an output offset of a differential amplifier. The autozero amplifier may also include an integrator to receive a signal from a latched window comparator network, and send an adjustment signal back to the differential amplifier to reduce an offset of the differential amplifier.
Advection endash diffusion past a strip. II. Oblique incidence
International Nuclear Information System (INIS)
Knessl, C.; Keller, J.B.
1997-01-01
Advection and diffusion of particles past an impenetrable strip is considered when the strip is oblique to the advection or drift velocity. The particle concentration p(x,y) is determined asymptotically for large values of vL/D, where v is the drift velocity, D is the diffusion coefficient, and 2L is the width of the strip. The results complement those of Part I, which treated a strip normal to the drift velocity. copyright 1997 American Institute of Physics
DEFF Research Database (Denmark)
Jeppesen, Palle
1997-01-01
Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived.......Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived....
The Dirichlet problem of a conformable advection-diffusion equation
Directory of Open Access Journals (Sweden)
Avci Derya
2017-01-01
Full Text Available The fractional advection-diffusion equations are obtained from a fractional power law for the matter flux. Diffusion processes in special types of porous media which has fractal geometry can be modelled accurately by using these equations. However, the existing nonlocal fractional derivatives seem complicated and also lose some basic properties satisfied by usual derivatives. For these reasons, local fractional calculus has recently been emerged to simplify the complexities of fractional models defined by nonlocal fractional operators. In this work, the conformable, a local, well-behaved and limit-based definition, is used to obtain a local generalized form of advection-diffusion equation. In addition, this study is devoted to give a local generalized description to the combination of diffusive flux governed by Fick’s law and the advection flux associated with the velocity field. As a result, the constitutive conformable advection-diffusion equation can be easily achieved. A Dirichlet problem for conformable advection-diffusion equation is derived by applying fractional Laplace transform with respect to time t and finite sin-Fourier transform with respect to spatial coordinate x. Two illustrative examples are presented to show the behaviours of this new local generalized model. The dependence of the solution on the fractional order of conformable derivative and the changing values of problem parameters are validated using graphics held by MATLcodes.
Electrospun amplified fiber optics.
Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario
2015-03-11
All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.
Advecting Procedural Textures for 2D Flow Animation
Kao, David; Pang, Alex; Moran, Pat (Technical Monitor)
2001-01-01
This paper proposes the use of specially generated 3D procedural textures for visualizing steady state 2D flow fields. We use the flow field to advect and animate the texture over time. However, using standard texture advection techniques and arbitrary textures will introduce some undesirable effects such as: (a) expanding texture from a critical source point, (b) streaking pattern from the boundary of the flowfield, (c) crowding of advected textures near an attracting spiral or sink, and (d) absent or lack of textures in some regions of the flow. This paper proposes a number of strategies to solve these problems. We demonstrate how the technique works using both synthetic data and computational fluid dynamics data.
International Nuclear Information System (INIS)
Lepetit, J.; Poussier, E.
1984-01-01
This amplifier comprises an inverter transformer, the primary circuit of which receives a pulse and the secondary circuit of which is connected to several amplifying elements in parallel. The inverter transformer is made of coaxial cable segments winded around a magnetic torus; the cable cores connected in series constitute the primary circuit and the braiding of cables, connected in parallel, are the secondary circuit. The transformer comprises, besides, delay lines in series with each braiding of the secondary circuit, these ones are such that pulses issued from each braiding arrive together to the secondary circuit connectors. This invention applies, noticeably in the case of a high voltage amplifier, to the control of deflection blocks of particles used in medicine or in particle accelerators [fr
Fast multigrid solution of the advection problem with closed characteristics
Energy Technology Data Exchange (ETDEWEB)
Yavneh, I. [Israel Inst. of Technology, Haifa (Israel); Venner, C.H. [Univ. of Twente, Enschede (Netherlands); Brandt, A. [Weizmann Inst. of Science, Rehovot (Israel)
1996-12-31
The numerical solution of the advection-diffusion problem in the inviscid limit with closed characteristics is studied as a prelude to an efficient high Reynolds-number flow solver. It is demonstrated by a heuristic analysis and numerical calculations that using upstream discretization with downstream relaxation-ordering and appropriate residual weighting in a simple multigrid V cycle produces an efficient solution process. We also derive upstream finite-difference approximations to the advection operator, whose truncation terms approximate {open_quotes}physical{close_quotes} (Laplacian) viscosity, thus avoiding spurious solutions to the homogeneous problem when the artificial diffusivity dominates the physical viscosity.
International Nuclear Information System (INIS)
Tai, I.; Hasegawa, K.
1975-01-01
This paper reports on the improvement of frequency characteristics of a logarithmic amplifier with a Paterson transdiode connection. The improvement of the response speed has been achieved by using a phase compensation technique. Small signal response analyses of the logging circuit revealed the effects of a series resistor Rsub(p) and a parallel capacitance Csub(p) on the response of the circuit. The improvement of the frequency characteristics are remarkable at higher current levels. These facts were proved by the practical logarithmic amplifier. (auth.)
Self-Similar Solutions for Viscous and Resistive Advection ...
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... In this paper, self-similar solutions of resistive advection dominated accretion flows (ADAF) in the presence of a pure azimuthal magnetic field are investigated. The mechanism of energy dissipation is assumed to be the viscosity and the magnetic diffusivity due to turbulence in the accretion flow.
Measuring Advection and Diffusion of Colloids in Shear Flow
Duits, Michael H.G.; Ghosh, Somnath; Mugele, Friedrich Gunther
2015-01-01
An analysis of the dynamics of colloids in shear flow can be challenging because of the superposition of diffusion and advection. We present a method that separates the two motions, starting from the time-dependent particle coordinates. The restriction of the tracking to flow lanes and the
Fractional gradient and its application to the fractional advection equation
D'Ovidio, M.; Garra, R.
2013-01-01
In this paper we provide a definition of fractional gradient operators, related to directional derivatives. We develop a fractional vector calculus, providing a probabilistic interpretation and mathematical tools to treat multidimensional fractional differential equations. A first application is discussed in relation to the d-dimensional fractional advection-dispersion equation. We also study the connection with multidimensional L\\'evy processes.
Measuring groundwater transport through lake sediments by advection and diffusion
International Nuclear Information System (INIS)
Cornett, R.J.; Risto, B.A.; Lee, D.R.
1989-08-01
A method for estimating low rates of groundwater inflow and outflow through the bottom sediments of surface waters was developed and tested. A one-dimensional advection-diffusion model was fitted to measured pore water profiles of two nonreactive solutes, tritiated water and chloride, and the advection rate was calculated by a nonlinear least squares technique. Using 3 H profiles measured 0-0.5 m below the sediment-water interface, rates of groundwater advection into a lake through interbedded sands and gyttja were estimated to be about 1.0 m/year. In midlake locations underlain by soft organic gyttja, rates of advection were much lower (<0.1 m/year). Knowledge of the rate and direction of groundwater flow substantially altered the interpretation of pore water profiles within the sediments and the fluxes of solutes. This technique can be used to estimate flow rates less than 2 m/annum with minimal disturbance, without enclosing the sediments in a container, in a diversity of systems. (author)
Theory of advection-driven long range biotic transport
We propose a simple mechanistic model to examine the effects of advective flow on the spread of fungal diseases spread by wind-blown spores. The model is defined by a set of two coupled non-linear partial differential equations for spore densities. One equation describes the long-distance advectiv...
Advective isotope transport by mixing cell and particle tracking algorithms
International Nuclear Information System (INIS)
Tezcan, L.; Meric, T.
1999-01-01
The 'mixing cell' algorithm of the environmental isotope data evaluation is integrated with the three dimensional finite difference ground water flow model (MODFLOW) to simulate the advective isotope transport and the approach is compared with the 'particle tracking' algorithm of the MOC3D, that simulates three-dimensional solute transport with the method of characteristics technique
Mixing enhancement and transport reduction in chaotic advection
Benzekri , Tounsia; Chandre , Cristel; Leoncini , Xavier; Lima , Ricardo; Vittot , Michel
2005-01-01
We present a method for reducing chaotic transport in a model of chaotic advection due to time-periodic forcing of an oscillating vortex chain. We show that by a suitable modification of this forcing, the modified model combines two effects: enhancement of mixing within the rolls and suppression of chaotic transport along the channel.
Amplifying genetic logic gates.
Bonnet, Jerome; Yin, Peter; Ortiz, Monica E; Subsoontorn, Pakpoom; Endy, Drew
2013-05-03
Organisms must process information encoded via developmental and environmental signals to survive and reproduce. Researchers have also engineered synthetic genetic logic to realize simpler, independent control of biological processes. We developed a three-terminal device architecture, termed the transcriptor, that uses bacteriophage serine integrases to control the flow of RNA polymerase along DNA. Integrase-mediated inversion or deletion of DNA encoding transcription terminators or a promoter modulates transcription rates. We realized permanent amplifying AND, NAND, OR, XOR, NOR, and XNOR gates actuated across common control signal ranges and sequential logic supporting autonomous cell-cell communication of DNA encoding distinct logic-gate states. The single-layer digital logic architecture developed here enables engineering of amplifying logic gates to control transcription rates within and across diverse organisms.
Flashlamp excited fluid laser amplified
International Nuclear Information System (INIS)
1976-01-01
The patent describes a laser amplifier with chambers for containing and amplifying an intensifier medium. It serves the need for a large impulse repetition rate and high intensities as required e.g. for laser isotope separation
Chaotic advection and heat transfer enhancement in Stokes flows
International Nuclear Information System (INIS)
Lefevre, A.; Mota, J.P.B.; Rodrigo, A.J.S.; Saatdjian, E.
2003-01-01
The heat transfer rate from a solid boundary to a highly viscous fluid can be enhanced significantly by a phenomenon which is called chaotic advection or Lagrangian turbulence. Although the flow is laminar and dominated by viscous forces, some fluid particle trajectories are chaotic due either to a suitable boundary displacement protocol or to a change in geometry. As in turbulent flow, the heat transfer rate enhancement between the boundary and the fluid is intimately linked to the mixing of fluid in the system. Chaotic advection in real Stokes flows, i.e. flows governed by viscous forces and that can be constructed experimentally, is reviewed in this paper. An emphasis is made on recent new results on 3-D time-periodic open flows which are particularly important in industry
Diffusion of a passive scalar with random advection
International Nuclear Information System (INIS)
Molyneux, J.E.; Witten, A.J.
1980-01-01
To investigate the instantaneous release of a passive additive into a flow, we assume that the concentration of the additive is governed by the one-dimensional advective diffusion equation in which the advecting flow velocity is a given time-dependent stochastic process. We determine both the one- and two-space-time point probability distributions of the random concentration field. This problem, or more elaborate variations of it, is a rather idealized model for a variety of environmentally important flow situations, for example, the accidental or planned release of a contaminant into a river by a power station, and, as such, it has been investigated by a number of authors. Previous treatments, however, have concentrated on deriving information about the statistical moments of the concentration. Although such information is important, it may be inadequate for accessing the true effects of a flow additive on the environment. Our investigation demonstrates the possibility of obtaining a more complete statistical description
Anomalous transport regimes in a stochastic advection-diffusion model
International Nuclear Information System (INIS)
Dranikov, I.L.; Kondratenko, P.S.; Matveev, L.V.
2004-01-01
A general solution to the stochastic advection-diffusion problem is obtained for a fractal medium with long-range correlated spatial fluctuations. A particular transport regime is determined by two basic parameters: the exponent 2h of power-law decay of the two-point velocity correlation function and the mean advection velocity u. The values of these parameters corresponding to anomalous diffusion are determined, and anomalous behavior of the tracer distribution is analyzed for various combinations of u and h. The tracer concentration is shown to decrease exponentially at large distances, whereas power-law decay is predicted by fractional differential equations. Equations that describe the essential characteristics of the solution are written in terms of coupled space-time fractional differential operators. The analysis relies on a diagrammatic technique and makes use of scale-invariant properties of the medium
Advectional enhancement of eddy diffusivity under parametric disorder
International Nuclear Information System (INIS)
Goldobin, Denis S
2010-01-01
Frozen parametric disorder can lead to the appearance of sets of localized convective currents in an otherwise stable (quiescent) fluid layer heated from below. These currents significantly influence the transport of an admixture (or any other passive scalar) along the layer. When the molecular diffusivity of the admixture is small in comparison to the thermal one, which is quite typical in nature, disorder can enhance the effective (eddy) diffusivity by several orders of magnitude in comparison to the molecular diffusivity. In this paper, we study the effect of an imposed longitudinal advection on the delocalization of convective currents, both numerically and analytically, and report a subsequent drastic boost of the effective diffusivity for weak advection.
Advection and Taylor-Aris dispersion in rivulet flow
Al Mukahal, F. H. H.; Duffy, B. R.; Wilson, S. K.
2017-11-01
Motivated by the need for a better understanding of the transport of solutes in microfluidic flows with free surfaces, the advection and dispersion of a passive solute in steady unidirectional flow of a thin uniform rivulet on an inclined planar substrate driven by gravity and/or a uniform longitudinal surface shear stress are analysed. Firstly, we describe the short-time advection of both an initially semi-infinite and an initially finite slug of solute of uniform concentration. Secondly, we describe the long-time Taylor-Aris dispersion of an initially finite slug of solute. In particular, we obtain the general expression for the effective diffusivity for Taylor-Aris dispersion in such a rivulet, and discuss in detail its different interpretations in the special case of a rivulet on a vertical substrate.
Distinguishing advective and powered motion in self-propelled colloids
Byun, Young-Moo; Lammert, Paul E.; Hong, Yiying; Sen, Ayusman; Crespi, Vincent H.
2017-11-01
Self-powered motion in catalytic colloidal particles provides a compelling example of active matter, i.e. systems that engage in single-particle and collective behavior far from equilibrium. The long-time, long-distance behavior of such systems is of particular interest, since it connects their individual micro-scale behavior to macro-scale phenomena. In such analyses, it is important to distinguish motion due to subtle advective effects—which also has long time scales and length scales—from long-timescale phenomena that derive from intrinsically powered motion. Here, we develop a methodology to analyze the statistical properties of the translational and rotational motions of powered colloids to distinguish, for example, active chemotaxis from passive advection by bulk flow.
Modeling Effectivity of Atmospheric Advection-Diffusion Processes
International Nuclear Information System (INIS)
Brojewski, R.
1999-01-01
Some methods of solving the advection-diffusion problems useful in the field of atmospheric physics are presented and analyzed in the paper. The most effective one ( from the point of view of computer applications) was chosen. This is the method of problem decomposition with respect to the directions followed by secondary decomposition of the problem with respect to the physical phenomena. Introducing some corrections to the classical numerical methods of solving the problems, a hybrid composed of the finite element method for the advection problems and the implicit method with averaging for the diffusion processes was achieved. This hybrid method and application of the corrections produces a very effective means for solving the problems of substance transportation in atmosphere. (author)
Multiple Scale Reaction-Diffusion-Advection Problems with Moving Fronts
Nefedov, Nikolay
2016-06-01
In this work we discuss the further development of the general scheme of the asymptotic method of differential inequalities to investigate stability and motion of sharp internal layers (fronts) for nonlinear singularly perturbed parabolic equations, which are called in applications reaction-diffusion-advection equations. Our approach is illustrated for some new important cases of initial boundary value problems. We present results on stability and on the motion of the fronts.
Simplified design of IC amplifiers
Lenk, John
1996-01-01
Simplified Design of IC Amplifiers has something for everyone involved in electronics. No matter what skill level, this book shows how to design and experiment with IC amplifiers. For experimenters, students, and serious hobbyists, this book provides sufficient information to design and build IC amplifier circuits from 'scratch'. For working engineers who design amplifier circuits or select IC amplifiers, the book provides a variety of circuit configurations to make designing easier.Provides basics for all phases of practical design.Covers the most popular forms for amplif
Evolution of passive movement in advective environments: General boundary condition
Zhou, Peng; Zhao, Xiao-Qiang
2018-03-01
In a previous work [16], Lou et al. studied a Lotka-Volterra competition-diffusion-advection system, where two species are supposed to differ only in their advection rates and the environment is assumed to be spatially homogeneous and closed (no-flux boundary condition), and showed that weaker advective movements are more beneficial for species to win the competition. In this paper, we aim to extend this result to a more general situation, where the environmental heterogeneity is taken into account and the boundary condition at the downstream end becomes very flexible including the standard Dirichlet, Neumann and Robin type conditions as special cases. Our main approaches are to exclude the existence of co-existence (positive) steady state and to provide a clear picture on the stability of semi-trivial steady states, where we introduced new ideas and techniques to overcome the emerging difficulties. Based on these two aspects and the theory of abstract competitive systems, we achieve a complete understanding on the global dynamics.
... a Flight Get Involved Events Shop Miles Contact Miracle Flights Blog Giving Tuesday 800-359-1711 Thousands of children have been saved, but we still have miles to go. Request a Flight Click Here to Donate - Your ...
Hollister, Allen L
2007-01-01
In this book, the theory needed to understand wideband amplifier design using the simplest models possible will be developed. This theory will be used to develop algebraic equations that describe particular circuits used in high frequency design so that the reader develops a ""gut level"" understanding of the process and circuit. SPICE and Genesys simulations will be performed to show the accuracy of the algebraic models. By looking at differences between the algebraic equations and the simulations, new algebraic models will be developed that include parameters originally left out of the model
Jones, Morgan
2013-01-01
Building Valve Amplifiers is a unique hands-on guide for anyone working with tube audio equipment--as an electronics hobbyist, audiophile or audio engineer. This 2nd Edition builds on the success of the first with technology and technique revisions throughout and, significantly, a major new self-build project, worked through step-by-step, which puts into practice the principles and techniques introduced throughout the book. Particular attention has been paid to answering questions commonly asked by newcomers to the world of the valve, whether audio enthusiasts tackling their first build or
Energy Technology Data Exchange (ETDEWEB)
NONE
1999-12-31
This conference day was jointly organized by the `university group of thermal engineering (GUT)` and the French association of thermal engineers. This book of proceedings contains 7 papers entitled: `energy spectra of a passive scalar undergoing advection by a chaotic flow`; `analysis of chaotic behaviours: from topological characterization to modeling`; `temperature homogeneity by Lagrangian chaos in a direct current flow heat exchanger: numerical approach`; ` thermal instabilities in a mixed convection phenomenon: nonlinear dynamics`; `experimental characterization study of the 3-D Lagrangian chaos by thermal analogy`; `influence of coherent structures on the mixing of a passive scalar`; `evaluation of the performance index of a chaotic advection effect heat exchanger for a wide range of Reynolds numbers`. (J.S.)
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-12-31
This conference day was jointly organized by the `university group of thermal engineering (GUT)` and the French association of thermal engineers. This book of proceedings contains 7 papers entitled: `energy spectra of a passive scalar undergoing advection by a chaotic flow`; `analysis of chaotic behaviours: from topological characterization to modeling`; `temperature homogeneity by Lagrangian chaos in a direct current flow heat exchanger: numerical approach`; ` thermal instabilities in a mixed convection phenomenon: nonlinear dynamics`; `experimental characterization study of the 3-D Lagrangian chaos by thermal analogy`; `influence of coherent structures on the mixing of a passive scalar`; `evaluation of the performance index of a chaotic advection effect heat exchanger for a wide range of Reynolds numbers`. (J.S.)
Ancey, Christophe; Bohorquez, Patricio; Heyman, Joris
2016-04-01
The advection-diffusion equation arises quite often in the context of sediment transport, e.g., for describing time and space variations in the particle activity (the solid volume of particles in motion per unit streambed area). Stochastic models can also be used to derive this equation, with the significant advantage that they provide information on the statistical properties of particle activity. Stochastic models are quite useful when sediment transport exhibits large fluctuations (typically at low transport rates), making the measurement of mean values difficult. We develop an approach based on birth-death Markov processes, which involves monitoring the evolution of the number of particles moving within an array of cells of finite length. While the topic has been explored in detail for diffusion-reaction systems, the treatment of advection has received little attention. We show that particle advection produces nonlocal effects, which are more or less significant depending on the cell size and particle velocity. Albeit nonlocal, these effects look like (local) diffusion and add to the intrinsic particle diffusion (dispersal due to velocity fluctuations), with the important consequence that local measurements depend on both the intrinsic properties of particle displacement and the dimensions of the measurement system.
Superconducting digital logic amplifier
International Nuclear Information System (INIS)
Przybysz, J.X.
1989-01-01
This paper describes a superconducting digital logic amplifier for interfacing between a Josephson junction logic circuit having output current and a higher voltage semiconductor circuit input. The amplifier comprising: an input terminal for connection to a; an output terminal for connection to a semiconductor circuit input; an input, lower critical current, Josephson junction having first and second terminals; a first series string of at least three lower critical current Josephson junctions. The first series string being connected to the first terminal of the input Josephson junction such that the first series string is in series with the input Josephson junction to provide a series combination. The input terminal being connected to the first terminal of the input Josephson junction, and with the critical current of the lower critical current Josephson junctions of the input Josephson junction and the first series Josephson junctions being less than the output current of the low voltage Josephson junction circuit; a second series string of at least four higher critical current Josephson junctions. The second string being connected in parallel with the series combination to provide parallel strings having an upper common connection and a lower common connection. The lower common connection being connected to the second terminal of the input Josephson junction and the upper common connection being connected to the output terminal; and a pulsed DC current source connected the parallel strings at the upper common connection. The DC current source having a current at least equal to the critical current of the higher critical current Josephson junctions
International Nuclear Information System (INIS)
Barzilov, A.P.; Gulevich, A.V.; Kukharchuk, O.F.
2000-01-01
The technical problem of long-life fission product and minor actinide incineration and production of plutonium fuel in the prospective nuclear systems will arise at significant scales of nuclear power industry development. Subcritical nuclear reactors driven by extemal neutron sources (energy amplifiers) are considered as incinerators of toxicity of complete nuclear industry. In the frames of this concept, the subcritical reactor part consisting of two coupled blanket regions (inner fast neutron spectrum core and outer thermal core) driven by extemal neutron source is discussed. Two types of source are studied: spallation target and 14-MeV fusion bum of micropellets. Liquid metal Pb-Bi is considered as target material and coolant of inner fast core. Thermal core is a heavy-water subcritical reactor of the Candu-type. The fast core is protected from thermal neutrons influence with the boron shield. All reactor technologies used in this concept are tested during years of operation and commercially available. Thus, the cascade energy amplifiers have a set of advantages in comparison with traditional concepts: in energy production, in transmutation efficiency, and in economics. (authors)
Nanoscale electromechanical parametric amplifier
Aleman, Benjamin Jose; Zettl, Alexander
2016-09-20
This disclosure provides systems, methods, and apparatus related to a parametric amplifier. In one aspect, a device includes an electron source electrode, a counter electrode, and a pumping electrode. The electron source electrode may include a conductive base and a flexible conductor. The flexible conductor may have a first end and a second end, with the second end of the flexible conductor being coupled to the conductive base. A cross-sectional dimension of the flexible conductor may be less than about 100 nanometers. The counter electrode may be disposed proximate the first end of the flexible conductor and spaced a first distance from the first end of the flexible conductor. The pumping electrode may be disposed proximate a length of the flexible conductor and spaced a second distance from the flexible conductor.
International Nuclear Information System (INIS)
Tjutju, R.L.
1977-01-01
Pulse amplifier is standard significant part of spectrometer. Apart from other type of amplification, it's a combination of amplification and pulse shaping. Because of its special purpose the device should fulfill the following : High resolution is desired to gain a high yield comparable to its actual state of condition. High signal to noise is desired to nhν resolution. High linearity to facilitate calibration. A good overload recovery, in order to the device will capable of analizing a low energy radiation which appear joinly on the high energy fields. Other expections of the device are its economical and practical use its extentive application. For that reason it's built on a standard NIM principle. Taking also into account the above mentioned considerations. High quality component parts are used throughout, while its availability in the domestic market is secured. (author)
Chaotic advection near a three-vortex collapse
International Nuclear Information System (INIS)
Leoncini, X.; Kuznetsov, L.; Zaslavsky, G. M.
2001-01-01
Dynamical and statistical properties of tracer advection are studied in a family of flows produced by three point-vortices of different signs. Tracer dynamics is analyzed by numerical construction of Poincare sections, and is found to be strongly chaotic: advection pattern in the region around the center of vorticity is dominated by a well developed stochastic sea, which grows as the vortex system's initial conditions are set closer to those leading to the collapse of the vortices; at the same time, the islands of regular motion around vortices, known as vortex cores, shrink. An estimation of the core's radii from the minimum distance of vortex approach to each other is obtained. Tracer transport was found to be anomalous: for all of the three numerically investigated cases, the variance of the tracer distribution grows faster than a linear function of time, corresponding to a superdiffusive regime. The transport exponent varies with time decades, implying the presence of multi-fractal transport features. Yet, its value is never too far from 3/2, indicating some kind of universality. Statistics of Poincare recurrences is non-Poissonian: distributions have long power-law tails. The anomalous properties of tracer statistics are the result of the complex structure of the advection phase space, in particular, of strong stickiness on the boundaries between the regions of chaotic and regular motion. The role of the different phase space structures involved in this phenomenon is analyzed. Based on this analysis, a kinetic description is constructed, which takes into account different time and space scalings by using a fractional equation
Modeling of semiconductor optical amplifiers
DEFF Research Database (Denmark)
Mørk, Jesper; Bischoff, Svend; Berg, Tommy Winther
We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed.......We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed....
Visualizing Vector Fields Using Line Integral Convolution and Dye Advection
Shen, Han-Wei; Johnson, Christopher R.; Ma, Kwan-Liu
1996-01-01
We present local and global techniques to visualize three-dimensional vector field data. Using the Line Integral Convolution (LIC) method to image the global vector field, our new algorithm allows the user to introduce colored 'dye' into the vector field to highlight local flow features. A fast algorithm is proposed that quickly recomputes the dyed LIC images. In addition, we introduce volume rendering methods that can map the LIC texture on any contour surface and/or translucent region defined by additional scalar quantities, and can follow the advection of colored dye throughout the volume.
Subsurface barrier design alternatives for confinement and controlled advection flow
International Nuclear Information System (INIS)
Phillips, S.J.; Stewart, W.E.; Alexander, R.G.; Cantrell, K.J.; McLaughlin, T.J.
1994-02-01
Various technologies and designs are being considered to serve as subsurface barriers to confine or control contaminant migration from underground waste storage or disposal structures containing radioactive and hazardous wastes. Alternatives including direct-coupled flood and controlled advection designs are described as preconceptual examples. Prototype geotechnical equipment for testing and demonstration of these alternative designs tested at the Hanford Geotechnical Development and Test Facility and the Hanford Small-Tube Lysimeter Facility include mobile high-pressure injectors and pumps, mobile transport and pumping units, vibratory and impact pile drivers, and mobile batching systems. Preliminary laboratory testing of barrier materials and additive sequestering agents have been completed and are described
A rational function based scheme for solving advection equation
International Nuclear Information System (INIS)
Xiao, Feng; Yabe, Takashi.
1995-07-01
A numerical scheme for solving advection equations is presented. The scheme is derived from a rational interpolation function. Some properties of the scheme with respect to convex-concave preserving and monotone preserving are discussed. We find that the scheme is attractive in surpressinging overshoots and undershoots even in the vicinities of discontinuity. The scheme can also be easily swicthed as the CIP (Cubic interpolated Pseudo-Particle) method to get a third-order accuracy in smooth region. Numbers of numerical tests are carried out to show the non-oscillatory and less diffusive nature of the scheme. (author)
Dealing with the Quaternion Antipodal Problem for Advecting Fields
2017-12-01
gathering and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or...gradient tensor because nonlinear combinations of the 9 components correspond to physical quantities. For example, the determinant of the deformation...right stretch tensor . The focus of this technical brief is on advection of the rotation. Rotation of an object or a microstructure can be represented
Waste dissolution with chemical reaction, diffusion and advection
International Nuclear Information System (INIS)
Chambre, P.L.; Kang, C.H.; Lee, W.W.L.; Pigford, T.H.
1987-06-01
This paper extends the mass-transfer analysis to include the effect of advective transport in predicting the steady-state dissolution rate, with a chemical-reaction-rate boundary condition at the surface of a waste form of arbitrary shape. This new theory provides an analytic means of predicting the ground-water velocities at which dissolution rate in a geologic environment will be governed entirely to the chemical reaction rate. As an illustration, we consider the steady-state potential flow of ground water in porous rock surrounding a spherical waste solid. 3 refs., 2 figs
Dense-gas dispersion advection-diffusion model
International Nuclear Information System (INIS)
Ermak, D.L.
1992-07-01
A dense-gas version of the ADPIC particle-in-cell, advection- diffusion model was developed to simulate the atmospheric dispersion of denser-than-air releases. In developing the model, it was assumed that the dense-gas effects could be described in terms of the vertically-averaged thermodynamic properties and the local height of the cloud. The dense-gas effects were treated as a perturbation to the ambient thermodynamic properties (density and temperature), ground level heat flux, turbulence level (diffusivity), and windfield (gravity flow) within the local region of the dense-gas cloud. These perturbations were calculated from conservation of energy and conservation of momentum principles along with the ideal gas law equation of state for a mixture of gases. ADPIC, which is generally run in conjunction with a mass-conserving wind flow model to provide the advection field, contains all the dense-gas modifications within it. This feature provides the versatility of coupling the new dense-gas ADPIC with alternative wind flow models. The new dense-gas ADPIC has been used to simulate the atmospheric dispersion of ground-level, colder-than-ambient, denser-than-air releases and has compared favorably with the results of field-scale experiments
Emergent scar lines in chaotic advection of passive directors
Hejazi, Bardia; Mehlig, Bernhard; Voth, Greg A.
2017-12-01
We examine the spatial field of orientations of slender fibers that are advected by a two-dimensional fluid flow. The orientation field of these passive directors are important in a wide range of industrial and geophysical flows. We introduce emergent scar lines as the dominant coherent structures in the orientation field of passive directors in chaotic flows. Previous work has identified the existence of scar lines where the orientation rotates by π over short distances, but the lines that were identified disappeared as time progressed. As a result, earlier work focused on topological singularities in the orientation field, which we find to play a negligible role at long times. We use the standard map as a simple time-periodic two-dimensional flow that produces Lagrangian chaos. This class of flows produces persistent patterns in passive scalar advection and we find that a different kind of persistent pattern develops in the passive director orientation field. We identify the mechanism by which emergent scar lines grow to dominate these patterns at long times in complex flows. Emergent scar lines form where the recent stretching of the fluid element is perpendicular to earlier stretching. Thus these scar lines can be labeled by their age, defined as the time since their stretching reached a maximum.
Advection-dominated Inflow/Outflows from Evaporating Accretion Disks.
Turolla; Dullemond
2000-03-01
In this Letter we investigate the properties of advection-dominated accretion flows (ADAFs) fed by the evaporation of a Shakura-Sunyaev accretion disk (SSD). In our picture, the ADAF fills the central cavity evacuated by the SSD and extends beyond the transition radius into a coronal region. We find that, because of global angular momentum conservation, a significant fraction of the hot gas flows away from the black hole, forming a transsonic wind, unless the injection rate depends only weakly on radius (if r2sigma&d2;~r-xi, xiBernoulli number of the inflowing gas is negative if the transition radius is less, similar100 Schwarzschild radii, so matter falling into the hole is gravitationally bound. The ratio of inflowing to outflowing mass is approximately 1/2, so in these solutions the accretion rate is of the same order as in standard ADAFs and much larger than in advection-dominated inflow/outflow models. The possible relevance of evaporation-fed solutions to accretion flows in black hole X-ray binaries is briefly discussed.
OBSERVATION OF MAGNETIC RECONNECTION DRIVEN BY GRANULAR SCALE ADVECTION
Energy Technology Data Exchange (ETDEWEB)
Zeng Zhicheng; Cao Wenda [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, NJ 07102 (United States); Ji Haisheng [Big Bear Solar Observatory, 40386 North Shore Lane, Big Bear City, CA 92314 (United States)
2013-06-01
We report the first evidence of magnetic reconnection driven by advection in a rapidly developing large granule using high spatial resolution observations of a small surge event (base size {approx} 4'' Multiplication-Sign 4'') with the 1.6 m aperture New Solar Telescope at the Big Bear Solar Observatory. The observations were carried out in narrowband (0.5 A) He I 10830 A and broadband (10 A) TiO 7057 A. Since He I 10830 A triplet has a very high excitation level and is optically thin, its filtergrams enable us to investigate the surge from the photosphere through the chromosphere into the lower corona. Simultaneous space data from the Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory were used in the analysis. It is shown that the surge is spatio-temporally associated with magnetic flux emergence in the rapidly developing large granule. During the development of the granule, its advecting flow ({approx}2 km s{sup -1}) squeezed the magnetic flux into an intergranular lane area, where a magnetic flux concentration was formed and the neighboring flux with opposite magnetic polarity was canceled. During the cancellation, the surge was produced as absorption in He I 10830 A filtergrams while simultaneous EUV brightening occurred at its base. The observations clearly indicate evidence of a finest-scale reconnection process driven by the granule's motion.
OBSERVATION OF MAGNETIC RECONNECTION DRIVEN BY GRANULAR SCALE ADVECTION
International Nuclear Information System (INIS)
Zeng Zhicheng; Cao Wenda; Ji Haisheng
2013-01-01
We report the first evidence of magnetic reconnection driven by advection in a rapidly developing large granule using high spatial resolution observations of a small surge event (base size ∼ 4'' × 4'') with the 1.6 m aperture New Solar Telescope at the Big Bear Solar Observatory. The observations were carried out in narrowband (0.5 Å) He I 10830 Å and broadband (10 Å) TiO 7057 Å. Since He I 10830 Å triplet has a very high excitation level and is optically thin, its filtergrams enable us to investigate the surge from the photosphere through the chromosphere into the lower corona. Simultaneous space data from the Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory were used in the analysis. It is shown that the surge is spatio-temporally associated with magnetic flux emergence in the rapidly developing large granule. During the development of the granule, its advecting flow (∼2 km s –1 ) squeezed the magnetic flux into an intergranular lane area, where a magnetic flux concentration was formed and the neighboring flux with opposite magnetic polarity was canceled. During the cancellation, the surge was produced as absorption in He I 10830 Å filtergrams while simultaneous EUV brightening occurred at its base. The observations clearly indicate evidence of a finest-scale reconnection process driven by the granule's motion.
International Nuclear Information System (INIS)
Anon.
1995-01-01
Even under the heavy burden of responsibility as CERN's Director General from 1989-3 the fertile mind of Carlo Rubbia the scientist was never still. A long-time Rubbia 'hobby' has been the search for new sources of nuclear energy, exploiting knowledge and skills from high energy physics. An initial objective was to adopt heavy ion techniques to induce controlled thermonuclear fusion, but in 1994 this quest changed direction. Putting the problems of thermonuclear fusion aside, Rubbia began to explore an alternative route to energy production through controlled nuclear fission. The idea is to use a particle accelerator producing neutrons by spallation (interaction of particles with a target) to feed a fuel/moderator assembly where the neutrons multiply by fission chain reactions. If the energy liberated becomes substantially greater than that needed to drive the accelerator, the process has a net gain and becomes selfsupporting. Hence the name ''Energy Amplifier'' (EA). Similar systems for energy production or for nuclear waste incineration have been proposed at Los Alamos and in Japan and Russia, but appear to require the prior development of innovative linear accelerators. For Rubbia's Amplifier, the requisite accelerator is a reasonable extrapolation of an existing cyclotron such that at the Swiss Paul Scherrer Institute. Moreover, the EA would require fuel rods very similar to those of conventional reactors, rather than demand-ing new technology using liquid fuel loops (molten salts) with on-line separation of radioactive products. Unlike a reactor, the EA's fission reaction is not self-sustaining: it is sub-critical and needs a continuous supply of neutrons from the accelerator. This makes Chernobyl-type meltdowns unlikely: if the accelerator stops, the reaction stops too. Another major advantage is that the old dream of using thorium as a fuel is now made possible. Thorium is not itself fissile, but under neutron
Analysis of moisture advection during explosive cyclogenesis over North Atlantic Ocean
Ordóñez, Paulina; Liberato, Margarida L. R.; Pinto, Joaquim G.; Trigo, Ricardo M.
2013-04-01
The development of a mid-latitude cyclone may strongly be amplified by the presence of a very warm and moist air mass within its warm sector through enhanced latent heat release. In this work, a lagrangian approach is applied to examine the contribution of moisture advection to the deepening of cyclones over the North Atlantic Ocean. The warm sector is represented by a 5°x5° longitude/latitude moving box comprising the centre of the cyclone and its south-eastern area is defined for the tracks of different cyclones computed at 6-hourly intervals. Using the lagrangian particle model FLEXPART we evaluated the fresh water flux (E - P) along 2-days back-trajectories of the particles residing on the total column over the defined boxes for case studies occurring during winter months from 1980 to 2000. FLEXPART simulations were performed using one degree resolution and 60 model vertical levels available in ERA40 Reanalyses at 00, 06, 12, 18 UTC for each case. Sensitivity studies on the dimensions of the target area - chosen boxes representing the warm sector -, and on its relative position to the center, were performed. We have applied this methodology to several case studies of independent North Atlantic cyclones with notorious characteristics (e.g. deepening rate, wind speed, surface damages). Results indicate that the moisture transport is particularly relevant in what concerns the fast/explosive development stage of these extratropical cyclones. In particular, the advection of moist air from the subtropics towards the cyclone core is clearly associated with the warm conveyor belt of the cyclone. This methodology can be generalized to a much larger number of mid-latitude cyclones, providing a unique opportunity to analyze the moisture behavior associated with the explosive development. Acknowledgments: This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade
Millimeter-wave power amplifiers
du Preez, Jaco
2017-01-01
This book provides a detailed review of millimeter-wave power amplifiers, discussing design issues and performance limitations commonly encountered in light of the latest research. Power amplifiers, which are able to provide high levels of output power and linearity while being easily integrated with surrounding circuitry, are a crucial component in wireless microwave systems. The book is divided into three parts, the first of which introduces readers to mm-wave wireless systems and power amplifiers. In turn, the second focuses on design principles and EDA concepts, while the third discusses future trends in power amplifier research. The book provides essential information on mm-wave power amplifier theory, as well as the implementation options and technologies involved in their effective design, equipping researchers, circuit designers and practicing engineers to design, model, analyze, test and implement high-performance, spectrally clean and energy-efficient mm-wave systems.
The role of advection in a two-species competition model
Averill, Isabel; Lou, Yuan
2017-01-01
The effects of weak and strong advection on the dynamics of reaction-diffusion models have long been studied. In contrast, the role of intermediate advection remains poorly understood. For example, concentration phenomena can occur when advection is strong, providing a mechanism for the coexistence of multiple populations, in contrast with the situation of weak advection where coexistence may not be possible. The transition of the dynamics from weak to strong advection is generally difficult to determine. In this work the authors consider a mathematical model of two competing populations in a spatially varying but temporally constant environment, where both species have the same population dynamics but different dispersal strategies: one species adopts random dispersal, while the dispersal strategy for the other species is a combination of random dispersal and advection upward along the resource gradient. For any given diffusion rates the authors consider the bifurcation diagram of positive steady states by u...
A simple model for local scale sensible and latent heat advection contributions to snowmelt
Harder, Phillip; Pomeroy, John W.; Helgason, Warren D.
2018-01-01
Local-scale advection of energy from warm snow-free surfaces to cold snow-covered surfaces is an important component of the energy balance during snowcover depletion. Unfortunately, this process is difficult to quantify in one-dimensional snowmelt models. This manuscript proposes a simple sensible and latent heat advection model for snowmelt situations that can be readily coupled to one-dimensional energy balance snowmelt models. An existing advection parameterization was coupled to a concept...
Hopf bifurcation in a delayed reaction-diffusion-advection population model
Chen, Shanshan; Lou, Yuan; Wei, Junjie
2018-04-01
In this paper, we investigate a reaction-diffusion-advection model with time delay effect. The stability/instability of the spatially nonhomogeneous positive steady state and the associated Hopf bifurcation are investigated when the given parameter of the model is near the principle eigenvalue of an elliptic operator. Our results imply that time delay can make the spatially nonhomogeneous positive steady state unstable for a reaction-diffusion-advection model, and the model can exhibit oscillatory pattern through Hopf bifurcation. The effect of advection on Hopf bifurcation values is also considered, and our results suggest that Hopf bifurcation is more likely to occur when the advection rate increases.
Fast Advection of Magnetic Fields by Hot Electrons
International Nuclear Information System (INIS)
Willingale, L.; Thomas, A. G. R.; Krushelnick, K.; Nilson, P. M.; Kaluza, M. C.; Dangor, A. E.; Evans, R. G.; Fernandes, P.; Haines, M. G.; Kamperidis, C.; Kingham, R. J.; Ridgers, C. P.; Sherlock, M.; Wei, M. S.; Najmudin, Z.; Bandyopadhyay, S.; Notley, M.; Minardi, S.; Tatarakis, M.; Rozmus, W.
2010-01-01
Experiments where a laser-generated proton beam is used to probe the megagauss strength self-generated magnetic fields from a nanosecond laser interaction with an aluminum target are presented. At intensities of 10 15 W cm -2 and under conditions of significant fast electron production and strong heat fluxes, the electron mean-free-path is long compared with the temperature gradient scale length and hence nonlocal transport is important for the dynamics of the magnetic field in the plasma. The hot electron flux transports self-generated magnetic fields away from the focal region through the Nernst effect [A. Nishiguchi et al., Phys. Rev. Lett. 53, 262 (1984)] at significantly higher velocities than the fluid velocity. Two-dimensional implicit Vlasov-Fokker-Planck modeling shows that the Nernst effect allows advection and self-generation transports magnetic fields at significantly faster than the ion fluid velocity, v N /c s ≅10.
Small signal microwave amplifier design
Grosch, Theodore
2000-01-01
This book explains techniques and examples for designing stable amplifiers for high-frequency applications in which the signal is small and the amplifier circuit is linear. An in-depth discussion of linear network theory provides the foundation needed to develop actual designs. Examples throughout the book will show you how to apply the knowledge gained in each chapter leading to the complex design of low noise amplifiers. Many exercises at the end of each chapter will help students to practice their skills. The solutions to these design problems are available in an accompanying solutions book
Final amplifier design and mercury
International Nuclear Information System (INIS)
Rose, E.A.; Hanson, D.E.
1991-01-01
The final amplifier for the Mercury KrF excimer facility is being designed. The design exercise involves extensive modeling to predict amplifier performance. Models of the pulsed-power system, including a Child-Langmuir diode with closure, electron-beam energy deposition, KrF laser kinetics, amplified spontaneous emission (ASE), a time-dependent laser extraction in the presence of ASE are presented as a design package. The design exercise indicates that the energy objective of Phase I -- 100 joules -- will be met
New Packaging for Amplifier Slabs
Energy Technology Data Exchange (ETDEWEB)
Riley, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thorsness, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Suratwala, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Steele, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rogowski, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-03-18
The following memo provides a discussion and detailed procedure for a new finished amplifier slab shipping and storage container. The new package is designed to maintain an environment of <5% RH to minimize weathering.
Operational amplifiers theory and design
Huijsing, Johan
2017-01-01
This proven textbook guides readers to a thorough understanding of the theory and design of operational amplifiers (OpAmps). The core of the book presents systematically the design of operational amplifiers, classifying them into a periodic system of nine main overall configurations, ranging from one gain stage up to four or more stages. This division enables circuit designers to recognize quickly, understand, and choose optimal configurations. Characterization of operational amplifiers is given by macro models and error matrices, together with measurement techniques for their parameters. Definitions are given for four types of operational amplifiers depending on the grounding of their input and output ports. Many famous designs are evaluated in depth, using a carefully structured approach enhanced by numerous figures. In order to reinforce the concepts introduced and facilitate self-evaluation of design skills, the author includes problems with detailed solutions, as well as simulation exercises. Provides te...
TARC: Carlo Rubbia's Energy Amplifier
Laurent Guiraud
1997-01-01
Transmutation by Adiabatic Resonance Crossing (TARC) is Carlo Rubbia's energy amplifier. This CERN experiment demonstrated that long-lived fission fragments, such as 99-TC, can be efficiently destroyed.
Enhanced performance CCD output amplifier
Dunham, Mark E.; Morley, David W.
1996-01-01
A low-noise FET amplifier is connected to amplify output charge from a che coupled device (CCD). The FET has its gate connected to the CCD in common source configuration for receiving the output charge signal from the CCD and output an intermediate signal at a drain of the FET. An intermediate amplifier is connected to the drain of the FET for receiving the intermediate signal and outputting a low-noise signal functionally related to the output charge signal from the CCD. The amplifier is preferably connected as a virtual ground to the FET drain. The inherent shunt capacitance of the FET is selected to be at least equal to the sum of the remaining capacitances.
Advective energy occurring in edge environments may increase tree water use. In humid agricultural landscapes, advection-enhanced transpiration in riparian buffers may provide hydrologic regulation; however, research in humid environments is lacking. The objectives of this study were to determine ho...
Spectroscopic amplifier for pin diode
International Nuclear Information System (INIS)
Alonso M, M. S.; Hernandez D, V. M.; Vega C, H. R.
2014-10-01
The photodiode remains the basic choice for the photo-detection and is widely used in optical communications, medical diagnostics and field of corpuscular radiation. In detecting radiation it has been used for monitoring radon and its progeny and inexpensive spectrometric systems. The development of a spectroscopic amplifier for Pin diode is presented which has the following characteristics: canceler Pole-Zero (P/Z) with a time constant of 8 μs; constant gain of 57, suitable for the acquisition system; 4th integrator Gaussian order to waveform change of exponential input to semi-Gaussian output and finally a stage of baseline restorer which prevents Dc signal contribution to the next stage. The operational amplifier used is the TLE2074 of BiFET technology of Texas Instruments with 10 MHz bandwidth, 25 V/μs of slew rate and a noise floor of 17 nv/(Hz)1/2. The integrated circuit has 4 operational amplifiers and in is contained the total of spectroscopic amplifier that is the goal of electronic design. The results show like the exponential input signal is converted to semi-Gaussian, modifying only the amplitude according to the specifications in the design. The total system is formed by the detector, which is the Pin diode, a sensitive preamplifier to the load, the spectroscopic amplifier that is what is presented and finally a pulse height analyzer (Mca) which is where the spectrum is shown. (Author)
Memory effects in chaotic advection of inertial particles
International Nuclear Information System (INIS)
Daitche, Anton; Tél, Tamás
2014-01-01
A systematic investigation of the effect of the history force on particle advection is carried out for both heavy and light particles. General relations are given to identify parameter regions where the history force is expected to be comparable with the Stokes drag. As an illustrative example, a paradigmatic two-dimensional flow, the von Kármán flow is taken. For small (but not extremely small) particles all investigated dynamical properties turn out to heavily depend on the presence of memory when compared to the memoryless case: the history force generates a rather non-trivial dynamics that appears to weaken (but not to suppress) inertial effects, it enhances the overall contribution of viscosity. We explore the parameter space spanned by the particle size and the density ratio, and find a weaker tendency for accumulation in attractors and for caustics formation. The Lyapunov exponent of transients becomes larger with memory. Periodic attractors are found to have a very slow, t −1/2 type convergence towards the asymptotic form. We find that the concept of snapshot attractors is useful to understand this slow convergence: an ensemble of particles converges exponentially fast towards a snapshot attractor, which undergoes a slow shift for long times. (paper)
A stochastic solution of the advective transport equation with uncertainty
International Nuclear Information System (INIS)
Williams, M.M.R.
1991-01-01
A model has been developed for calculating the transport of water-borne radionuclides through layers of porous materials, such as rock or clay. The model is based upon a purely advective transport equation, in which the fluid velocity is a random variable, thereby simulating dispersion in a more realistic manner than the ad hoc introduction of a dispersivity. In addition to a random velocity field, which is an observable physical phenomenon, allowance is made for uncertainty in our knowledge of the parameters which enter the equation, e.g. the retardation coefficient. This too, is assumed to be a random variable and contributes to the stochasticity of the resulting partial differential equation of transport. The stochastic differential equation can be solved analytically and then ensemble averages taken over the associated probability distribution of velocity and retardation coefficient. A method based upon a novel form of the central limit theorem of statistics is employed to obtain tractable solutions of a system consisting of many serial legs of varying properties. One interesting conclusion is that the total flux out of a medium is significantly underestimated by using the deterministic solution with an average transit time compared with that from the stochastically averaged solution. The theory is illustrated numerically for a number of physically relevant cases. (author) 8 figs., 4 tabs., 7 refs
32 CFR 245.12 - Amplifying instructions.
2010-07-01
... flights, agricultural and forest fire flights, border patrol flights, and other essential civil air... Defense Sector (NEADS) Boston, Chicago, Cleveland, Minneapolis, New York, Indianapolis, Kansas City...
Verification of Advective Bar Elements Implemented in the Aria Thermal Response Code.
Energy Technology Data Exchange (ETDEWEB)
Mills, Brantley [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-01-01
A verification effort was undertaken to evaluate the implementation of the new advective bar capability in the Aria thermal response code. Several approaches to the verification process were taken : a mesh refinement study to demonstrate solution convergence in the fluid and the solid, visually examining the mapping of the advective bar element nodes to the surrounding surfaces, and a comparison of solutions produced using the advective bars for simple geometries with solutions from commercial CFD software . The mesh refinement study has shown solution convergence for simple pipe flow in both temperature and velocity . Guidelines were provided to achieve appropriate meshes between the advective bar elements and the surrounding volume. Simulations of pipe flow using advective bars elements in Aria have been compared to simulations using the commercial CFD software ANSYS Fluent (r) and provided comparable solutions in temperature and velocity supporting proper implementation of the new capability. Verification of Advective Bar Elements iv Acknowledgements A special thanks goes to Dean Dobranich for his guidance and expertise through all stages of this effort . His advice and feedback was instrumental to its completion. Thanks also goes to Sam Subia and Tolu Okusanya for helping to plan many of the verification activities performed in this document. Thank you to Sam, Justin Lamb and Victor Brunini for their assistance in resolving issues encountered with running the advective bar element model. Finally, thanks goes to Dean, Sam, and Adam Hetzler for reviewing the document and providing very valuable comments.
How Insect Flight Steering Muscles Work
Walker, Simon M.; Schwyn, Daniel A.; Mokso, Rajmund; Wicklein, Martina; Müller, Tonya; Doube, Michael; Stampanoni, Marco; Krapp, Holger G.; Taylor, Graham K.
2014-01-01
Dipteran flies are amongst the smallest and most agile of flying animals. Their wings are driven indirectly by large power muscles, which cause cyclical deformations of the thorax that are amplified through the intricate wing hinge. Asymmetric flight manoeuvres are controlled by 13 pairs of steering muscles acting directly on the wing articulations. Collectively the steering muscles account for
Comparing CO2 Storage and Advection Conditions at Night at Different Carboeuroflux Sites
Aubinet, M.; Berbigier, P.; Bernhofer, Ch.; et al.
Anemometer and CO2 concentration data from temporary campaigns performed at six CARBOEUROFLUX forest sites were used to estimate the importance of non-turbulent fluxes in nighttime conditions. While storage was observed to be significant only during periods of both low turbulence and low advection, the advective fluxes strongly influence the nocturnal CO2 balance, with the exception of almost flat and highly homogeneous sites. On the basis of the main factors determining the onset of advective fluxes, the ‘advection velocity’, which takes net radiation and local topography into account, was introduced as a criterion to characterise the conditions of storage enrichment/depletion. Comparative analyses of the six sites showed several common features of the advective fluxes but also some substantial differences. In particular, all sites where advection occurs show the onset of a boundary layer characterised by a downslope flow, negative vertical velocities and negative vertical CO2 concentration gradients during nighttime. As a consequence, vertical advection was observed to be positive at all sites, which corresponds to a removal of CO2 from the ecosystem. The main differences between sites are the distance from the ridge, which influences the boundary-layer depth, and the sign of the mean horizontal CO2 concentration gradients, which is probably determined by the source/sink distribution. As a consequence, both positive and negative horizontal advective fluxes (corresponding respectively to CO2 removal from the ecosystem and to CO2 supply to the ecosystem) were observed. Conclusive results on the importance of non-turbulent components in the mass balance require, however, further experimental investigations at sites with different topographies, slopes, different land covers, which would allow a more comprehensive analysis of the processes underlying the occurrence of advective fluxes. The quantification of these processes would help to better quantify nocturnal
Advective mixing in a nondivergent barotropic hurricane model
Directory of Open Access Journals (Sweden)
B. Rutherford
2010-01-01
Full Text Available This paper studies Lagrangian mixing in a two-dimensional barotropic model for hurricane-like vortices. Since such flows show high shearing in the radial direction, particle separation across shear-lines is diagnosed through a Lagrangian field, referred to as R-field, that measures trajectory separation orthogonal to the Lagrangian velocity. The shear-lines are identified with the level-contours of another Lagrangian field, referred to as S-field, that measures the average shear-strength along a trajectory. Other fields used for model diagnostics are the Lagrangian field of finite-time Lyapunov exponents (FTLE-field, the Eulerian Q-field, and the angular velocity field. Because of the high shearing, the FTLE-field is not a suitable indicator for advective mixing, and in particular does not exhibit ridges marking the location of finite-time stable and unstable manifolds. The FTLE-field is similar in structure to the radial derivative of the angular velocity. In contrast, persisting ridges and valleys can be clearly recognized in the R-field, and their propagation speed indicates that transport across shear-lines is caused by Rossby waves. A radial mixing rate derived from the R-field gives a time-dependent measure of flux across the shear-lines. On the other hand, a measured mixing rate across the shear-lines, which counts trajectory crossings, confirms the results from the R-field mixing rate, and shows high mixing in the eyewall region after the formation of a polygonal eyewall, which continues until the vortex breaks down. The location of the R-field ridges elucidates the role of radial mixing for the interaction and breakdown of the mesovortices shown by the model.
Spectra of turbulently advected scalars that have small Schmidt number
Hill, Reginald J.
2017-09-01
Exact statistical equations are derived for turbulent advection of a passive scalar having diffusivity much larger than the kinematic viscosity, i.e., small Schmidt number. The equations contain all terms needed for precise direct numerical simulation (DNS) quantification. In the appropriate limit, the equations reduce to the classical theory for which the scalar spectrum is proportional to the energy spectrum multiplied by k-4, which, in turn, results in the inertial-diffusive range power law, k-17 /3. The classical theory was derived for the case of isotropic velocity and scalar fields. The exact equations are simplified for less restrictive cases: (1) locally isotropic scalar fluctuations at dissipation scales with no restriction on symmetry of the velocity field, (2) isotropic velocity field with averaging over all wave-vector directions with no restriction on the symmetry of the scalar, motivated by that average being used for DNS, and (3) isotropic velocity field with axisymmetric scalar fluctuations, motivated by the mean-scalar-gradient-source case. The equations are applied to recently published DNSs of passive scalars for the cases of a freely decaying scalar and a mean-scalar-gradient source. New terms in the exact equations are estimated for those cases and are found to be significant; those terms cause the deviations from the classical theory found by the DNS studies. A new formula for the mean-scalar-gradient case explains the variation of the scalar spectra for the DNS of the smallest Schmidt-number cases. Expansion in Legendre polynomials reveals the effect of axisymmetry. Inertial-diffusive-range formulas for both the zero- and second-order Legendre contributions are given. Exact statistical equations reveal what must be quantified using DNS to determine what causes deviations from asymptotic relationships.
STANDING SHOCK INSTABILITY IN ADVECTION-DOMINATED ACCRETION FLOWS
Energy Technology Data Exchange (ETDEWEB)
Le, Truong [Department of Physics, Astronomy and Geology, Berry College, Mount Berry, GA 30149 (United States); Wood, Kent S.; Wolff, Michael T. [High Energy Space Environment Branch, Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Becker, Peter A. [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030 (United States); Putney, Joy, E-mail: tle@berry.edu [Department of Physics and Engineering, Washington and Lee University, Lexington, VA 24450 (United States)
2016-03-10
Depending on the values of the energy and angular momentum per unit mass in the gas supplied at large radii, inviscid advection-dominated accretion flows can display velocity profiles with either preshock deceleration or preshock acceleration. Nakayama has shown that these two types of flow configurations are expected to have different stability properties. By employing the Chevalier and Imamura linearization method and the Nakayama instability boundary conditions, we discover that there are regions of parameter space where disks/shocks with outflows can be stable or unstable. In regions of instability, we find that preshock deceleration is always unstable to the zeroth mode with zero frequency of oscillation, but is always stable to the fundamental mode and overtones. Furthermore, we also find that preshock acceleration is always unstable to the zeroth mode and that the fundamental mode and overtones become increasingly less stable as the shock location moves away from the horizon when the disk half-height expands above ∼12 gravitational radii at the shock radius. In regions of stability, we demonstrate the zeroth mode to be stable for the velocity profiles that exhibit preshock acceleration and deceleration. Moreover, for models that are linearly unstable, our model suggests the possible existence of quasi-periodic oscillations (QPOs) with ratios 2:3 and 3:5. These ratios are believed to occur in stellar and supermassive black hole candidates, for example, in GRS 1915+105 and Sgr A*, respectively. We expect that similar QPO ratios also exist in regions of stable shocks.
1991-01-01
Seagull Technology, Inc., Sunnyvale, CA, produced a computer program under a Langley Research Center Small Business Innovation Research (SBIR) grant called STAFPLAN (Seagull Technology Advanced Flight Plan) that plans optimal trajectory routes for small to medium sized airlines to minimize direct operating costs while complying with various airline operating constraints. STAFPLAN incorporates four input databases, weather, route data, aircraft performance, and flight-specific information (times, payload, crew, fuel cost) to provide the correct amount of fuel optimal cruise altitude, climb and descent points, optimal cruise speed, and flight path.
Dielectric waveguide amplifiers and lasers
Pollnau, Markus
The performance of semiconductor amplifiers and lasers has made them the preferred choice for optical gain on a micro-chip. In the past few years, we have demonstrated that also rare-earth-ion-doped dielectric waveguides show remarkable performance, ranging from a small-signal gain per unit length
CMOS Current-mode Operational Amplifier
DEFF Research Database (Denmark)
Kaulberg, Thomas
1992-01-01
current-mode feedback amplifier or a constant bandwidth in a transimpedance feedback amplifier. The amplifier is found to have a gain bandwidth product of 8 MHz, an offset current of 0.8 Â¿A (signal-range Â±700Â¿A) and a (theoretically) unlimited slew-rate. The amplifier is realized in a standard CMOS 2......A fully differential-input differential-output current-mode operational amplifier (COA) is described. The amplifier utilizes three second generation current-conveyors (CCII) as the basic building blocks. It can be configured to provide either a constant gain-bandwidth product in a fully balanced...
A CMOS current-mode operational amplifier
DEFF Research Database (Denmark)
Kaulberg, Thomas
1993-01-01
current-mode feedback amplifier or a constant bandwidth in a transimpedance feedback amplifier. The amplifier is found to have a gain-bandwidth product of 3 MHz, an offset current of 0.8 μA (signal range ±700 μA), and a (theoretically) unlimited slew rate. The amplifier is realized in a standard CMOS 2......A fully differential-input, differential-output, current-mode operational amplifier (COA) is described. The amplifier utilizes three second-generation current conveyors (CCIIs) as the basic building blocks. It can be configured to provide either a constant gain-bandwidth product in a fully balanced...
Amplified spontaneous emissions in a high-gain laser amplifier
International Nuclear Information System (INIS)
Osada, Hidenori; Gamo, Hideya.
1978-01-01
The gain and line-narrowing of the amplified spontaneous emissions(ASE) in a partially homogeneous high-gain Xe 3.51 μm laser amplifier were studied theoretically and experimentally with emphasis of saturation effect. The unidirectionally travelling ASE was generated by conveniently using optical isolators and used as a broadband radiation source. It has properties of 10 μW/mm 2 in intensity with fluctuation of less than 1% in 5 hours, 43.5 MHz of the linewidth and 1.0 x 10 -3 radians of beam divergence. The measured saturation intensity was 4.85 μW/mm 2 and a small signal gain was 0.1 cm -1 . The theoretical prediction of the line-narrowing shows reasonablly good agreement with the measured one. (author)
Implicit and semi-implicit schemes in the Versatile Advection Code : numerical tests
Tóth, G.; Keppens, R.; Bochev, Mikhail A.
1998-01-01
We describe and evaluate various implicit and semi-implicit time integration schemes applied to the numerical simulation of hydrodynamical and magnetohydrodynamical problems. The schemes were implemented recently in the software package Versatile Advection Code, which uses modern shock capturing
Emergent structures in reaction-advection-diffusion systems on a sphere
Krause, Andrew L.; Burton, Abigail M.; Fadai, Nabil T.; Van Gorder, Robert A.
2018-04-01
We demonstrate unusual effects due to the addition of advection into a two-species reaction-diffusion system on the sphere. We find that advection introduces emergent behavior due to an interplay of the traditional Turing patterning mechanisms with the compact geometry of the sphere. Unidirectional advection within the Turing space of the reaction-diffusion system causes patterns to be generated at one point of the sphere, and transported to the antipodal point where they are destroyed. We illustrate these effects numerically and deduce conditions for Turing instabilities on local projections to understand the mechanisms behind these behaviors. We compare this behavior to planar advection which is shown to only transport patterns across the domain. Analogous transport results seem to hold for the sphere under azimuthal transport or away from the antipodal points in unidirectional flow regimes.
Solutes and cells - aspects of advection-diffusion-reaction phenomena in biochips
DEFF Research Database (Denmark)
Vedel, Søren
2012-01-01
the dependencies on density. This shows that the varied single-cell behavior including the overall modulations imposed by density arise as a natural consequence of pseudopod-driven motility in a social context. The final subproject concerns the combined effects of advection, diffusion and reaction of several......Cell’), and the overall title of the project is Solutes and cells — aspects of advection-diffusion-reaction phenomena in biochips. The work has consisted of several projects focusing on theory, and to some extend analysis of experimental data, with advection-diffusion-reaction phenomena of solutes as the recurring theme...... quantitatively interpret the proximal concentration of specific solutes, and integrate this to achieve biological functions. In three specific examples, the author and co-workers have investigated different aspects of the influence of advection, diffusion and reaction on solute distributions, as well...
Rigorous upper bounds for fluid and plasma transport due to passive advection
International Nuclear Information System (INIS)
Krommes, J.A.; Smith, R.A.; Kim, C.B.
1987-07-01
The formulation of variational principles for transport due to passive advection is described. A detailed account of the work has been published elsewhere. In the present paper, the motivations, philosophy, and implications of the method are briefly discussed. 15 refs
Advective surface velocity in the north west Pacific derived from NOAA AVHRR images
Digital Repository Service at National Institute of Oceanography (India)
Pankajakshan, T.; Akiyama, M.; Okada, Y.; Sugimori, Y.
Using sequential AVHRR images in November 1983, nearsurface advective velocities are derived in the region Kuroshio south of Japan. For deriving the velocities two methods are used. One is the Method of Cross Correlation (MCC), using image pair...
Direct and inverse source problems for a space fractional advection dispersion equation
Aldoghaither, Abeer; Laleg-Kirati, Taous-Meriem; Liu, Da Yan
2016-01-01
In this paper, direct and inverse problems for a space fractional advection dispersion equation on a finite domain are studied. The inverse problem consists in determining the source term from final observations. We first derive the analytic
Universality in passively advected hydrodynamic fields : the case of a passive vector with pressure
Benzi, R.; Biferale, L.; Toschi, F.
2001-01-01
Universality of statistical properties of passive quantities advected by turbulent velocity fields at changing the passive forcing mechanism is discussed. In particular, we concentrate on the statistical properties of an hydrodynamic system with pressure. We present theoretical arguments and
AN EULERIAN-LAGRANGIAN LOCALIZED ADJOINT METHOD FOR THE ADVECTION-DIFFUSION EQUATION
Many numerical methods use characteristic analysis to accommodate the advective component of transport. Such characteristic methods include Eulerian-Lagrangian methods (ELM), modified method of characteristics (MMOC), and operator splitting methods. A generalization of characteri...
ICESat-2 laser Nd:YVO4 amplifier
Sawruk, Nicholas W.; Burns, Patrick M.; Edwards, Ryan E.; Litvinovitch, Viatcheslav; Martin, Nigel; Witt, Greg; Fakhoury, Elias; Iskander, John; Pronko, Mark S.; Troupaki, Elisavet; Bay, Michael M.; He, Charles C.; Wang, Liqin L.; Cavanaugh, John F.; Farrokh, Babak; Salem, Jonathan A.; Baker, Eric
2018-02-01
We report on the cause and corrective actions of three amplifier crystal fractures in the space-qualified laser systems used in NASA Goddard Space Flight Center's (GSFC) Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2). The ICESat-2 lasers each contain three end-pumped Nd:YVOO4 amplifier stages. The crystals are clamped between two gold plated copper heat spreaders with an indium foil thermal interface material, and the crystal fractures occurred after multiple years of storage and over a year of operational run-time. The primary contributors are high compressive loading of the NdYVO4 crystals at the beginning of life, a time dependent crystal stress caused by an intermetallic reaction of the gold plating and indium, and slow crack growth resulting in a reduction in crystal strength over time. An updated crystal mounting scheme was designed, analyzed, fabricated and tested. Thee fracture slab failure analysis, finite-element modeling and corrective actions are presented.
Clay with Desiccation Cracks is an Advection Dominated Environment
Baram, S.; Kurtzman, D.; Sher, Y.; Ronen, Z.; Dahan, O.
2012-04-01
, indicating deep soil evaporation. Daily fluctuation of the air temperature in the desiccation cracks supported thermally induced air convection within the cracks void and could explain the deep soil salinization process. Combination of all the abovementioned observations demonstrated that the formation of desiccation cracks network in dispersive clay sediments generates a bulk advection dominated environment for both air and water flow, and that the reference to clay sediments as "hydrologically safe" should to be reconsidered.
Boundary value problemfor multidimensional fractional advection-dispersion equation
Directory of Open Access Journals (Sweden)
Khasambiev Mokhammad Vakhaevich
2015-05-01
authors first considered the boundary value problem for stationary equation for mass transfer in super-diffusion conditions and abnormal advection. Then the solution of the problem is explicitly given. The solution is obtained by the Fourier’s method.The obtained results will be useful in liquid filtration theory in fractal medium and for modeling the temperature variations in the heated bar.
The effect of coherent stirring on the advection?condensation of water vapour
Tsang, Yue-Kin; Vanneste, Jacques
2017-01-01
Atmospheric water vapour is an essential ingredient of weather and climate. Key features of its distribution can be represented by kinematic models which treat it as a passive scalar advected by a prescribed flow and reacting through condensation. Condensation acts as a sink that maintains specific humidity below a prescribed, space-dependent saturation value. In order to investigate how the interplay between large-scale advection, small-scale turbulence and condensation controls the moisture...
First-Order Hyperbolic System Method for Time-Dependent Advection-Diffusion Problems
2014-03-01
accuracy, with rapid convergence over each physical time step, typically less than five Newton iter - ations. 1 Contents 1 Introduction 3 2 Hyperbolic...however, we employ the Gauss - Seidel (GS) relaxation, which is also an O(N) method for the discretization arising from hyperbolic advection-diffusion system...advection-diffusion scheme. The linear dependency of the iterations on Table 1: Boundary layer problem ( Convergence criteria: Residuals < 10−8.) log10Re
Diffusion-advection within dynamic biological gaps driven by structural motion
Asaro, Robert J.; Zhu, Qiang; Lin, Kuanpo
2018-04-01
To study the significance of advection in the transport of solutes, or particles, within thin biological gaps (channels), we examine theoretically the process driven by stochastic fluid flow caused by random thermal structural motion, and we compare it with transport via diffusion. The model geometry chosen resembles the synaptic cleft; this choice is motivated by the cleft's readily modeled structure, which allows for well-defined mechanical and physical features that control the advection process. Our analysis defines a Péclet-like number, AD, that quantifies the ratio of time scales of advection versus diffusion. Another parameter, AM, is also defined by the analysis that quantifies the full potential extent of advection in the absence of diffusion. These parameters provide a clear and compact description of the interplay among the well-defined structural, geometric, and physical properties vis-a ̀-vis the advection versus diffusion process. For example, it is found that AD˜1 /R2 , where R is the cleft diameter and hence diffusion distance. This curious, and perhaps unexpected, result follows from the dependence of structural motion that drives fluid flow on R . AM, on the other hand, is directly related (essentially proportional to) the energetic input into structural motion, and thereby to fluid flow, as well as to the mechanical stiffness of the cleftlike structure. Our model analysis thus provides unambiguous insight into the prospect of competition of advection versus diffusion within biological gaplike structures. The importance of the random, versus a regular, nature of structural motion and of the resulting transient nature of advection under random motion is made clear in our analysis. Further, by quantifying the effects of geometric and physical properties on the competition between advection and diffusion, our results clearly demonstrate the important role that metabolic energy (ATP) plays in this competitive process.
Single conversion stage amplifier - SICAM
Energy Technology Data Exchange (ETDEWEB)
Ljusev, P.
2005-12-15
This Ph.D. thesis presents a thorough analysis of the so called SICAM - SIngle Converter stage AMplifier approach to building direct energy conversion audio power amplifiers. The mainstream approach for building isolated audio power amplifiers today consists of isolated DC power supply and Class D amplifier, which essentially represents a two stage solution, where each of the components can be viewed as separate and independent part. The proposed SICAM solution strives for direct energy conversion from the mains to the audio output, by dedicating the operation of the components one to another and integrating their functions, so that the final audio power amplifier represents a single-stage topology with higher efficiency, lower volume, less board space, lower component count and subsequently lower cost. The SICAM approach is both applicable to non-isolated and isolated audio power amplifiers, but the problems encountered in these two cases are different. Non-isolated SICAM solutions are intended for both AC mains-connected and battery-powered devices. In non-isolated mains-connected SICAMs the main idea is to simplify the power supply or even provide integrated power factor correction (PFC) functions, while still maintaining low component stress and good audio performance by generally decreasing the input voltage level to the Class D audio power amplifier. On the other hand, non-isolated battery-powered SICAMs have to cope with the ever changing battery voltage and provide output voltage levels which are both lower and higher than the battery voltage, while still being simple and single-stage energy conversion solutions. In isolated SICAMs the isolation transformer adjusts the voltage level on the secondary side to the desired level, so the main challenges here are decreasing the size of the magnetic core and reducing the number and size of bulky reactive components as much as possible. The main focus of this thesis is directed towards the isolated SICAMs and
Analog circuit design designing high performance amplifiers
Feucht, Dennis
2010-01-01
The third volume Designing High Performance Amplifiers applies the concepts from the first two volumes. It is an advanced treatment of amplifier design/analysis emphasizing both wideband and precision amplification.
Higher order mode optical fiber Raman amplifiers
DEFF Research Database (Denmark)
Rottwitt, Karsten; Friis, Søren Michael Mørk; Usuga Castaneda, Mario A.
2016-01-01
We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations.......We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations....
1977-01-01
The picture shows a 2 MW, 200 MHz amplifier plant with feeder lines. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X.
Challenges in higher order mode Raman amplifiers
DEFF Research Database (Denmark)
Rottwitt, Karsten; Nielsen, Kristian; Friis, Søren Michael Mørk
2015-01-01
A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed......A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed...
European Research on THz Vacuum Amplifiers
DEFF Research Database (Denmark)
Brunetti, F.; Cojocarua, C.-S.; de Rossi, A.
2010-01-01
The OPTHER (OPtically Driven TeraHertz AmplifiERs) project represents a considerable advancement in the field of high frequency amplification. The design and realization of a THz amplifier within this project is a consolidation of efforts at the international level from the main players...... of the European research, academy and industry in vacuum electronics. This paper describes the status of the project and progress towards the THz amplifier realization....
Integrated amplifying circuit with MOS transistors
Energy Technology Data Exchange (ETDEWEB)
Baylac, B; Merckel, G; Meunier, P
1974-01-25
The invention relates to a feedback-pass-band amplifier with MOS-transistors. The differential stage of conventional amplifiers is changed into an adding state, whereas the differential amplification stages are changed into amplifier inverter stages. All MOS transistors used in that amplifier are of similar configuration and are interdigitized, whereby the operating speed dispersion is reduced. This can be applied to obtaining a measurement channel for proportional chambers.
NASA developments in solid state power amplifiers
Leonard, Regis F.
1990-01-01
Over the last ten years, NASA has undertaken an extensive program aimed at development of solid state power amplifiers for space applications. Historically, the program may be divided into three phases. The first efforts were carried out in support of the advanced communications technology satellite (ACTS) program, which is developing an experimental version of a Ka-band commercial communications system. These first amplifiers attempted to use hybrid technology. The second phase was still targeted at ACTS frequencies, but concentrated on monolithic implementations, while the current, third phase, is a monolithic effort that focusses on frequencies appropriate for other NASA programs and stresses amplifier efficiency. The topics covered include: (1) 20 GHz hybrid amplifiers; (2) 20 GHz monolithic MESFET power amplifiers; (3) Texas Instruments' (TI) 20 GHz variable power amplifier; (4) TI 20 GHz high power amplifier; (5) high efficiency monolithic power amplifiers; (6) GHz high efficiency variable power amplifier; (7) TI 32 GHz monolithic power amplifier performance; (8) design goals for Hughes' 32 GHz variable power amplifier; and (9) performance goals for Hughes' pseudomorphic 60 GHz power amplifier.
A pulse amplifier for nuclear instrumentation
International Nuclear Information System (INIS)
Martin, D.; Cliff, P.
1987-01-01
A Class-A 1 Watt amplifier has been designed and optimized for nanosecond pulses. Spanning .01MHz to 1300Mhz, signal gain is 26dB with gain flatness of 1dB. The amplifier drive +- 10 volts across 500 with 350ps risetime. Each amplifier is housed in a 2-wide NIM
Remote Acquisition Amplifier For 50-Ohm Cable
Amador, Jose J.
1995-01-01
Buffer-amplifier unit designed to drive 50-Ohm cables up to 100 ft. (30 m) long, compensating for attenuation in cables and enabling remote operation of oscilloscopes. Variable resistor provides for adjustment of gain of amplifier, such that overall gain from input terminals of amplifier to output end of cable set to unity.
An Implantable CMOS Amplifier for Nerve Signals
DEFF Research Database (Denmark)
Nielsen, Jannik Hammel; Lehmann, Torsten
2003-01-01
In this paper, a low noise high gain CMOS amplifier for minute nerve signals is presented. The amplifier is constructed in a fully differential topology to maximize noise rejection. By using a mixture of weak- and strong inversion transistors, optimal noise suppression in the amplifier is achieved....... A continuous-time current-steering offset-compensation technique is utilized in order to minimize the noise contribution and to minimize dynamic impact on the amplifier input nodes. The method for signal recovery from noisy nerve signals is presented. A prototype amplifier is realized in a standard digital 0...
Semiconductor quantum-dot lasers and amplifiers
DEFF Research Database (Denmark)
Hvam, Jørn Märcher; Borri, Paola; Ledentsov, N. N.
2002-01-01
-power surface emitting VCSELs. We investigated the ultrafast dynamics of quantum-dot semiconductor optical amplifiers. The dephasing time at room temperature of the ground-state transition in semiconductor quantum dots is around 250 fs in an unbiased amplifier, decreasing to below 50 fs when the amplifier...... is biased to positive net gain. We have further measured gain recovery times in quantum dot amplifiers that are significantly lower than in bulk and quantum-well semiconductor optical amplifiers. This is promising for future demonstration of quantum dot devices with high modulation bandwidth...
CMOS Current-mode Operational Amplifier
Kaulberg, Thomas
1992-01-01
A fully differential-input differential-output current-mode operational amplifier (COA) is described. The amplifier utilizes three second generation current-conveyors (CCII) as the basic building blocks. It can be configured to provide either a constant gain-bandwidth product in a fully balanced current-mode feedback amplifier or a constant bandwidth in a transimpedance feedback amplifier. The amplifier is found to have a gain bandwidth product of 8 MHz, an offset current of 0.8 Â¿A (signal-r...
NIF/LMJ prototype amplifier mechanical design
International Nuclear Information System (INIS)
Horvath, J.
1996-10-01
Amplifier prototypes for the National Ignition Facility and the Laser Megajoule will be tested at Lawrence Livermore National Laboratory. The prototype amplifier, which is an ensemble of modules from LLNL and Centre d'Etudes de Limeil-Valenton, is cassette-based with bottom access for maintenance. A sealed maintenance transfer vehicle which moves optical cassettes between the amplifier and the assembly cleanroom, and a vacuum gripper which holds laser slabs during cassette assembly will also be tested. The prototype amplifier will be used to verify amplifier optical performance, thermal recovery time, and cleanliness of mechanical operations
HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS
International Nuclear Information System (INIS)
2005-01-01
Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department
Audio power amplifier design handbook
Self, Douglas
2013-01-01
This book is essential for audio power amplifier designers and engineers for one simple reason...it enables you as a professional to develop reliable, high-performance circuits. The Author Douglas Self covers the major issues of distortion and linearity, power supplies, overload, DC-protection and reactive loading. He also tackles unusual forms of compensation and distortion produced by capacitors and fuses. This completely updated fifth edition includes four NEW chapters including one on The XD Principle, invented by the author, and used by Cambridge Audio. Cro
Cathode-follower power amplifier
International Nuclear Information System (INIS)
Giordano, S.; Puglisi, M.
1983-01-01
In circular accelerators and particularly in storage rings it is essential that the total impedance, as seen by the beam, be kept below some critical value. A model of the accelerating system was built using a single-ended cathode-follower amplifier driving a ferrite-loaded cavity. The system operated at 234.5 kHz with a peak output voltage of +-10 kV on the gap. The dynamic output impedance, as measured on the gap, was < 15 ohms
Revisiting the advection-dispersion model - Testing an alternative
International Nuclear Information System (INIS)
Neretnieks, I.
2001-01-01
Some of the basic assumptions of the Advection-Dispersion model, AD-model, are revisited. That model assumes a continuous mixing along the flowpath similar to Fickian diffusion. This implies that there is a constant dispersion length irrespective of observation distance. This is contrary to most field observations. The properties of an alternative model based on the assumption that individual water packages can retain their identity over long distances are investigated. The latter model is called the Multi-Channel model, MChM. Inherent in the latter model is that if the waters in the different pathways are collected and mixed, the 'dispersion length' is proportional to observation distance. Using diffusion theory it is investigated over which distances or contact times, adjacent water packages will keep their identity. It is found that for a contact time of 10 hours, two streams, each wider than 6 mm, that flow side by side, will not have lost their identity. For 1000 hours contact time the minimum width is 6 cm. The MChM and AD-models were found to have very similar Residence Time Distributions, RTD, for Peclet numbers larger than 3. A generalised relation between flowrate and residence time is developed, including the so-called cubic law and constant aperture assumptions. Using the generalised relation, surprisingly it is found that for a system that has the same average flow volume and average flowrate the form of the RTD curves are the same irrespective of the form of the relation. Both models are also compared for a system where there is strong interaction of the solute with the rock matrix. In this case it is assumed that the solute can diffuse into and out of the fracture walls and also to sorb on the micro-fractures of the matrix. The so-called Flow Wetted Surface, FWS, between the flowing water in the fracture and the rock is a key entity in such systems. It is found that the AD-model predicts much later arrivals and lower concentrations than does the MCh
A novel finite volume discretization method for advection-diffusion systems on stretched meshes
Merrick, D. G.; Malan, A. G.; van Rooyen, J. A.
2018-06-01
This work is concerned with spatial advection and diffusion discretization technology within the field of Computational Fluid Dynamics (CFD). In this context, a novel method is proposed, which is dubbed the Enhanced Taylor Advection-Diffusion (ETAD) scheme. The model equation employed for design of the scheme is the scalar advection-diffusion equation, the industrial application being incompressible laminar and turbulent flow. Developed to be implementable into finite volume codes, ETAD places specific emphasis on improving accuracy on stretched structured and unstructured meshes while considering both advection and diffusion aspects in a holistic manner. A vertex-centered structured and unstructured finite volume scheme is used, and only data available on either side of the volume face is employed. This includes the addition of a so-called mesh stretching metric. Additionally, non-linear blending with the existing NVSF scheme was performed in the interest of robustness and stability, particularly on equispaced meshes. The developed scheme is assessed in terms of accuracy - this is done analytically and numerically, via comparison to upwind methods which include the popular QUICK and CUI techniques. Numerical tests involved the 1D scalar advection-diffusion equation, a 2D lid driven cavity and turbulent flow case. Significant improvements in accuracy were achieved, with L2 error reductions of up to 75%.
International Nuclear Information System (INIS)
Webb, G M; Dasgupta, B; McKenzie, J F; Hu, Q; Zank, G P
2014-01-01
In this paper advected invariants and conservation laws in ideal magnetohydrodynamics (MHD) and gas dynamics are obtained using Lie dragging techniques. There are different classes of invariants that are advected or Lie dragged with the flow. Simple examples are the advection of the entropy S (a 0-form), and the conservation of magnetic flux (an invariant 2-form advected with the flow). The magnetic flux conservation law is equivalent to Faraday's equation. The gauge condition for the magnetic helicity to be advected with the flow is determined. Different variants of the helicity in ideal fluid dynamics and MHD including: fluid helicity, cross helicity and magnetic helicity are investigated. The fluid helicity conservation law and the cross-helicity conservation law in MHD are derived for the case of a barotropic gas. If the magnetic field lies in the constant entropy surface, then the gas pressure can depend on both the entropy and the density. In these cases the conservation laws are local conservation laws. For non-barotropic gases, we obtain nonlocal conservation laws for fluid helicity and cross helicity by using Clebsch variables. These nonlocal conservation laws are the main new results of the paper. Ertel's theorem and potential vorticity, the Hollman invariant, and the Godbillon–Vey invariant for special flows for which the magnetic helicity is zero are also discussed. (paper)
Study on the ELDRS of bipolar linear operational amplifier
International Nuclear Information System (INIS)
Yang Hui; Liu Yanfang; Chen Yu; Bai Hua; Zhang Dong
2011-01-01
Bipolar linear devices laboratory irradiation testing results are significantly different from the actual in flight exposure to the radiation. In this paper the total dose irradiation of operational amplifiers, and analysis upon the total dose response of these bipolar circuits under the different test conditions were investigated in the same experiment. Total dose tests of bipolar linear operational amplifiers show susceptible to dose rate, bias and room temperature annealing during exposure. The critical sensitive parameters of operational amplifier are input bias current, input offset current, input offset voltage, and open loop gain, which exhibits both bias and dose rate dependence. With calculating the change of each electrical parameter (Δpara) for each sample at 300 Gy radiation level, it has been found that ratio of the Δpara at low dose rate to the Δpara at high dose rate exceeds 2.46 times for any of the parameters. So these parts are considered to be ELDRS susceptible. After room temperature annealing, the main parameters have time dependence effect at low dose rate and without time dependent effect at high dose rate. (authors)
Probability and Cumulative Density Function Methods for the Stochastic Advection-Reaction Equation
Energy Technology Data Exchange (ETDEWEB)
Barajas-Solano, David A.; Tartakovsky, Alexandre M.
2018-01-01
We present a cumulative density function (CDF) method for the probabilistic analysis of $d$-dimensional advection-dominated reactive transport in heterogeneous media. We employ a probabilistic approach in which epistemic uncertainty on the spatial heterogeneity of Darcy-scale transport coefficients is modeled in terms of random fields with given correlation structures. Our proposed CDF method employs a modified Large-Eddy-Diffusivity (LED) approach to close and localize the nonlocal equations governing the one-point PDF and CDF of the concentration field, resulting in a $(d + 1)$ dimensional PDE. Compared to the classsical LED localization, the proposed modified LED localization explicitly accounts for the mean-field advective dynamics over the phase space of the PDF and CDF. To illustrate the accuracy of the proposed closure, we apply our CDF method to one-dimensional single-species reactive transport with uncertain, heterogeneous advection velocities and reaction rates modeled as random fields.
International Nuclear Information System (INIS)
Gong, Hong-Yu; Gu, Wei-Min
2017-01-01
In the classic picture of standard thin accretion disks, viscous heating is balanced by radiative cooling through the diffusion process, and the radiation-pressure-dominated inner disk suffers convective instability. However, recent simulations have shown that, owing to the magnetic buoyancy, the vertical advection process can significantly contribute to energy transport. In addition, in comparing the simulation results with the local convective stability criterion, no convective instability has been found. In this work, following on from simulations, we revisit the vertical structure of radiation-pressure-dominated thin disks and include the vertical advection process. Our study indicates a link between the additional energy transport and the convectively stable property. Thus, the vertical advection not only significantly contributes to the energy transport, but it also plays an important role in making the disk convectively stable. Our analyses may help to explain the discrepancy between classic theory and simulations on standard thin disks.
Anomalous scaling of a passive vector advected by the Navier-Stokes velocity field
International Nuclear Information System (INIS)
Jurcisinova, E; Jurcisin, M; Remecky, R
2009-01-01
Using the field theoretic renormalization group and the operator-product expansion, the model of a passive vector field (a weak magnetic field in the framework of the kinematic MHD) advected by the velocity field which is governed by the stochastic Navier-Stokes equation with the Gaussian random stirring force δ-correlated in time and with the correlator proportional to k 4-d-2ε is investigated to the first order in ε (one-loop approximation). It is shown that the single-time correlation functions of the advected vector field have anomalous scaling behavior and the corresponding exponents are calculated in the isotropic case, as well as in the case with the presence of large-scale anisotropy. The hierarchy of the anisotropic critical dimensions is briefly discussed and the persistence of the anisotropy inside the inertial range is demonstrated on the behavior of the skewness and hyperskewness (dimensionless ratios of correlation functions) as functions of the Reynolds number Re. It is shown that even though the present model of a passive vector field advected by the realistic velocity field is mathematically more complicated than, on one hand, the corresponding models of a passive vector field advected by 'synthetic' Gaussian velocity fields and, on the other hand, than the corresponding model of a passive scalar quantity advected by the velocity field driven by the stochastic Navier-Stokes equation, the final one-loop approximate asymptotic scaling behavior of the single-time correlation or structure functions of the advected fields of all models are defined by the same anomalous dimensions (up to normalization)
Spectral and evolutionary analysis of advection-diffusion equations and the shear flow paradigm
International Nuclear Information System (INIS)
Thyagaraja, A.; Loureiro, N.; Knight, P.J.
2002-01-01
Advection-diffusion equations occur in a wide variety of fields in many contexts of active and passive transport in fluids and plasmas. The effects of sheared advective flows in the presence of irreversible processes such as diffusion and viscosity are of considerable current interest in tokamak and astrophysical contexts, where they are thought to play a key role in both transport and the dynamical structures characteristic of electromagnetic plasma turbulence. In this paper we investigate the spectral and evolutionary properties of relatively simple, linear, advection-diffusion equations. We apply analytical approaches based on standard Green's function methods to obtain insight into the nature of the spectra when the advective and diffusive effects occur separately and in combination. In particular, the physically interesting limit of small (but finite) diffusion is studied in detail. The analytical work is extended and supplemented by numerical techniques involving a direct solution of the eigenvalue problem as well as evolutionary studies of the initial value problem using a parallel code, CADENCE. The three approaches are complementary and entirely consistent with each other when appropriate comparison is made. They reveal different aspects of the properties of the advection-diffusion equation, such as the ability of sheared flows to generate a direct cascade to high wave numbers transverse to the advection and the consequent enhancement of even small amounts of diffusivity. The invariance properties of the spectra in the low diffusivity limit and the ability of highly sheared, jet-like flows to 'confine' transport to low shear regions are demonstrated. The implications of these properties in a wider context are discussed and set in perspective. (author)
A volume of fluid method based on multidimensional advection and spline interface reconstruction
International Nuclear Information System (INIS)
Lopez, J.; Hernandez, J.; Gomez, P.; Faura, F.
2004-01-01
A new volume of fluid method for tracking two-dimensional interfaces is presented. The method involves a multidimensional advection algorithm based on the use of edge-matched flux polygons to integrate the volume fraction evolution equation, and a spline-based reconstruction algorithm. The accuracy and efficiency of the proposed method are analyzed using different tests, and the results are compared with those obtained recently by other authors. Despite its simplicity, the proposed method represents a significant improvement, and compares favorably with other volume of fluid methods as regards the accuracy and efficiency of both the advection and reconstruction steps
A Case Study of Offshore Advection of Boundary Layer Rolls over a Stably Stratified Sea Surface
DEFF Research Database (Denmark)
Svensson, Nina; Sahlée, Erik; Bergström, Hans
2017-01-01
originate from boundary layer rolls generated over the convective air above Swedish mainland, also supported by visual satellite images showing the typical signature cloud streets. The simulations indicate that the rolls are advected and maintained at least 30–80 km off the coast, in agreement...... considerably for long times and over large areas in coastal regions. Although boundary layer rolls are a well-studied feature, no previous study has presented results concerning their persistence during situations with advection to a strongly stratified boundary layer. Such conditions are commonly encountered...
A system for biasing a differential amplifier
International Nuclear Information System (INIS)
Barbier, Daniel; Ittel, J.M.; Poujois, Robert
1975-01-01
This invention concerns a system for biasing a differential amplifier. It particularly applies to the integrated differential amplifiers designed with MOS field effect transistors. Variations in the technological parameters may well cause the amplifying transistors to work outside their usual operational area, in other words outside the linear part of the transfer characteristic. To ensure that these transistors function correctly, it is necessary that the value of the voltage difference at the output be equally null. To do this and to centre on the so called 'rest' point of the amplifier transfer charateristic, the condition will be set that the output potentials of each amplifier transistor should have a zero value or a constant value as sum. With this in view, the bias on the source (generally a transistor powered by its grid bias voltage) supplying current to the two amplifying transistors fitted in parallel, is permanently adjusted in a suitable manner [fr
Enhanced Gain in Photonic Crystal Amplifiers
DEFF Research Database (Denmark)
Ek, Sara; Semenova, Elizaveta; Hansen, Per Lunnemann
2012-01-01
We experimentally demonstrate enhanced gain in the slow-light regime of quantum well photonic crystal amplifiers. A strong gain enhancement is observed with the increase of the group refractive index, due to light slow-down. The slow light enhancement is shown in a amplified spontaneous emission....... These results are promising for short and efficient semiconductor optical amplifiers. This effect will also benefit other devices, such as mode locked lasers....
Very broad bandwidth klystron amplifiers
Faillon, G.; Egloff, G.; Farvet, C.
Large surveillance radars use transmitters at peak power levels of around one MW and average levels of a few kW, and possibly several tens of kW, in S band, or even C band. In general, the amplification stage of these transmitters is a microwave power tube, frequently a klystron. Although designers often turn to klystrons because of their good peak and average power capabilities, they still see them as narrow band amplifiers, undoubtedly because of their resonant cavities which, at first sight, would seem highly selective. But, with the progress of recent years, it has now become quite feasible to use these tubes in installations requiring bandwidths in excess of 10 - 12 percent, and even 15 percent, at 1 MW peak for example, in S-band.
Hydraulically amplified PZT mems actuator
Miles, Robin R.
2004-11-02
A hydraulically amplified microelectromechanical systems actuator. A piece of piezoelectric material or stacked piezo bimorph is bonded or deposited as a thin film. The piece is operatively connected to a primary membrane. A reservoir is operatively connected to the primary membrane. The reservoir contains a fluid. A membrane is operatively connected to the reservoir. In operation, energizing the piezoelectric material causing the piezoelectric material to bow. Bowing of the piezoelectric material causes movement of the primary membrane. Movement of the primary membrane results in a force in being transmitted to the liquid in the reservoir. The force in the liquid causes movement of the membrane. Movement of the membrane results in an operating actuator.
Transverse pumped laser amplifier architecture
Bayramian, Andrew James; Manes, Kenneth; Deri, Robert; Erlandson, Al; Caird, John; Spaeth, Mary
2013-07-09
An optical gain architecture includes a pump source and a pump aperture. The architecture also includes a gain region including a gain element operable to amplify light at a laser wavelength. The gain region is characterized by a first side intersecting an optical path, a second side opposing the first side, a third side adjacent the first and second sides, and a fourth side opposing the third side. The architecture further includes a dichroic section disposed between the pump aperture and the first side of the gain region. The dichroic section is characterized by low reflectance at a pump wavelength and high reflectance at the laser wavelength. The architecture additionally includes a first cladding section proximate to the third side of the gain region and a second cladding section proximate to the fourth side of the gain region.
Design of an 1800nm Raman amplifier
DEFF Research Database (Denmark)
Svane, Ask Sebastian; Rottwitt, Karsten
2013-01-01
We present the experimental results for a Raman amplifier that operates at 1810 nm and is pumped by a Raman fiber laser at 1680 nm. Both the pump laser and the Raman amplifier is polarization maintaining. A challenge when scaling Raman amplifiers to longer wavelengths is the increase...... in transmission loss, but also the reduction in the Raman gain coefficient as the amplifier wavelength is increased. Both polarization components of the Raman gain is characterized, initially for linearly co-polarized signal and pump, subsequently linearly polarized orthogonal signal and pump. The noise...
Reflection amplifiers in self-regulated learning
Verpoorten, Dominique
2012-01-01
Verpoorten, D. (2012). Reflection amplifiers in self-regulated learning. Doctoral thesis. November, 9, 2012, Heerlen, The Netherlands: Open Universiteit (CELSTEC). Datawyse / Universitaire Pers Maastricht.
Distributed feedback laser amplifiers combining the functions of amplifiers and channel filters
DEFF Research Database (Denmark)
Wang, Z.; Durhuus, T.; Mikkelsen, Benny
1994-01-01
A dynamic model for distributed feedback amplifiers, including the mode coupled equations and the carrier rate equation, is established. The presented mode coupled equations have taken into account the interaction between fast changing optical signal and the waveguide with corrugations. By showin...... the possibility of amplifying 100 ps pulses without pulse broadening, we anticipate that a distributed feedback amplifier can be used as a combined amplifier and channel filter in high bit rate transmission systems....
A second order discontinuous Galerkin method for advection on unstructured triangular meshes
Geijselaers, Hubertus J.M.; Huetink, Han
2003-01-01
In this paper the advection of element data which are linearly distributed inside the elements is addressed. Across element boundaries the data are assumed discontinuous. The equations are discretized by the Discontinuous Galerkin method. For stability and accuracy at large step sizes (large values
Comparison of horizontal and vertical advective CO2 fluxes at three forest sites
Czech Academy of Sciences Publication Activity Database
Feigenwinter, C.; Bernhofer, C.; Eichelmann, U.; Heinesch, B.; Hertel, M.; Janouš, Dalibor; Kolle, O.; Lagergren, F.; Lindroth, A.; Minerbi, S.; Moderow, U.; Mölder, M.; Montagnani, L.; Queck, R.; Rebmann, C.; Vestin, P.; Yernaux, M.; Zeri, M.; Ziegler, W.; Aubinet, M.
2008-01-01
Roč. 148, č. 1 (2008), s. 12-24 ISSN 0168-1923 Grant - others:-(XE) GOCE-CT-2003-505572 Institutional research plan: CEZ:AV0Z60870520 Keywords : forest ecosystems * advection * net ecosystem exchange * carbon balance * ADVEX Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.668, year: 2008
Analysis of periods with strong and coherent CO2 advection over a forested hill
Czech Academy of Sciences Publication Activity Database
Zeri, M.; Rebmann, C.; Feigenwinter, Ch.; Sedlák, Pavel
2010-01-01
Roč. 150, č. 5 (2010), s. 674-683 ISSN 0168-1923 R&D Projects: GA AV ČR IAA300420803 Institutional research plan: CEZ:AV0Z30420517 Keywords : Forest ecosystems * Advection * Net ecosystem exchange * Carbon balance * ADVEX Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.228, year: 2010
Pino, D.; Kaikkonen, J.P.; Vilà-Guerau de Arellano, J.
2013-01-01
[1] We investigate the uncertainties in the carbon dioxide (CO2) mixing ratio and inferred surface flux associated with boundary layer processes and advection by using mixed-layer theory. By extending the previous analysis presented by Pino et al. (2012), new analytical expressions are derived to
Estimation of the advection effects induced by surface heterogeneities in the surface energy budget
Cuxart, J.; Wrenger, B.; Martinez-Villagrasa, D.; Reuder, J.; Jonassen, M.O.; Jimenez, M.A.; Lothon, M.; Hartogensis, O.K.; Dunnermann, J.; Conangla, L.; Garai, A.
2016-01-01
The effect of terrain heterogeneities in one-point
measurements is a continuous subject of discussion. Here
we focus on the order of magnitude of the advection term
in the equation of the evolution of temperature as generated
by documented terrain heterogeneities and we estimate
DEVELOPMENT AND DEMONSTRATION OF A BIDIRECTIONAL ADVECTIVE FLUX METER FOR SEDIMENT-WATER INTERFACE
A bidirectional advective flux meter for measuring water transport across the sediment-water interface has been successfully developed and field tested. The flow sensor employs a heat-pulse technique combined with a flow collection funnel for the flow measurement. Because the dir...
Comparing CO2 storage and advection conditions at night at different carboeuroflux sites
Czech Academy of Sciences Publication Activity Database
Aubinet, M.; Berbigier, P.; Bernhofer, Ch.; Cescatti, A.; Feigenwinter, C.; Granier, A.; Grunwald, TH; Havránková, Kateřina; Heinesch, B.; Longdoz, B.; Marcolla, B.; Montagnani, L.; Sedlák, Pavel
2005-01-01
Roč. 116, č. 1 (2005), s. 63-94 ISSN 0006-8314 Institutional research plan: CEZ:AV0Z60870520 Keywords : advection * CO2 storage * forest ecosystems Subject RIV: GK - Forestry Impact factor: 1.414, year: 2005
Advective loss of overwintering Calanus finmarchicus from the Faroe-Shetland Channel
DEFF Research Database (Denmark)
Rullyanto, Arief; Jonasdottir, Sigrun H.; Visser, Andre W.
2015-01-01
, a regionally important secondary producer. Using a high resolution hydrodynamic model, MIKE 3 FM, we simulate the overflow of deep water and estimate the associated loss rate of C. finmarchicus as a function of the water depth strata within which they reside. We estimate a net advective loss from the Norwegian...
Michael T. Hobbins; Jorge A. Ramirez; Thomas C. Brown
2001-01-01
Long-term monthly evapotranspiration estimates from Brutsaert and Strickerâs Advection-Aridity model were compared with independent estimates of evapotranspiration derived from long-term water balances for 139 undisturbed basins across the conterminous United States. On an average annual basis for the period 1962-1988 the original model, which uses a Penman wind...
A model for the calculation of dispersion, advection and deposition of polluants in the atmosphere
International Nuclear Information System (INIS)
Doron, E.
1981-08-01
A numerical model for the prediction of atmospheric pollutants concentrations as a function of time and location is described. The model includes effects of dispersion, advection and deposition of the pollutant. Topographic influences are included through the introduction of a terrain following vertical coordinate. The wind field, needed for the calculation of the advection, is obtained from a time series of objective analysis of actual wind measurements. A unique feature of the model is the use of the logarithm of the concentration as the predicted variable. For a concentration distribution close to Gaussian, the distribution of this variable is close to parabolic. Thus, a polynomial of low order can be fitted to the distribution and then used for the calculation of derivatives of the advection and diffusion terms with great accuracy. The fitting method used was the cubic splines method. Initial experiments with the method included tests of the interpolation methods, which were found to be very accurate, and a few dispersion and advection experiments designed for an initial check of the influence of vertical wind shear, topography and changes of wind speed and direction with time. The results of these experiments show that the model has a marked advantage over the Gaussian model but its use requires more advanced computing facilities. (author)
Pal, van der M.; Graaf, van der E.R.; Meijer, de R.J.; Wit, de M.H.; Hendriks, N.A.
2000-01-01
This study describes an approach for measuring and modelling diffusive and advective transport of radon through building materials. The goal of these measurements and model calculations is to improve our understanding concerning the factors influencing the transport of radon through building
Assessment of the numerical diffusion effect in the advection of a passive tracer in BOLCHEM
International Nuclear Information System (INIS)
D'Isidoro, M.; Tiesi, A.
2005-01-01
The effects of the numerical scheme implemented in the advection equation of BOLCHEM have been quantified with reference to the diffusion of a passive tracer. An equivalent horizontal diffusion coefficient has been measured and is found to be dependent on wind field and resolution
Energy Technology Data Exchange (ETDEWEB)
Gjesdal, Thor
1997-12-31
This thesis discusses the development and application of efficient numerical methods for the simulation of fluid flows, in particular the flow of incompressible fluids. The emphasis is on practical aspects of algorithm development and on application of the methods either to linear scalar model equations or to the non-linear incompressible Navier-Stokes equations. The first part deals with cell centred multigrid methods and linear correction scheme and presents papers on (1) generalization of the method to arbitrary sized grids for diffusion problems, (2) low order method for advection-diffusion problems, (3) attempt to extend the basic method to advection-diffusion problems, (4) Fourier smoothing analysis of multicolour relaxation schemes, and (5) analysis of high-order discretizations for advection terms. The second part discusses a multigrid based on pressure correction methods, non-linear full approximation scheme, and papers on (1) systematic comparison of the performance of different pressure correction smoothers and some other algorithmic variants, low to moderate Reynolds numbers, and (2) systematic study of implementation strategies for high order advection schemes, high-Re flow. An appendix contains Fortran 90 data structures for multigrid development. 160 refs., 26 figs., 22 tabs.
International Nuclear Information System (INIS)
Suarez Antola R.; Bernasconi, G.; Bertolotti, Angel
1995-01-01
A multicomponent solution is considered in advective diffusion chambers between two half-permeable barriers. A mathematical model is developed to calculate the concentration fields in the chamber. A new enrichment process is proposed and assessed using a digital simulation of space-time dynamics, based on the analytical solution of the model
Digital simulation of an enrichment process for solutions by means of an advection-diffusion chamber
International Nuclear Information System (INIS)
Artucio, G.; Suarez, R.; Uruguay Catholic University)
1995-01-01
An ab-initio digital simulation of the space-time dynamics of the concentration field of a solute in an advection-diffusion chamber is done. Some questions related to the digital simulation of the concentration field using the analytical solution obtained in a previous paper are discussed
From the advective-acoustic instability to the asymmetric explosions of Core Collapse Supernovae
International Nuclear Information System (INIS)
Galletti, Pascal
2005-01-01
The advective-acoustic cycle is a hydrodynamical mechanism fed by the coupling between advected waves (entropy, vorticity) and an acoustic feedback. Already studied in physics (rumble instability in ramjet, whistling tea kettle), it was introduced in astrophysics in the frame of the instability of the Bondi-Hoyle-Lyttleton accretion flow. In this thesis, we propose this cycle as an explanation for the asymmetry of the explosion of Core Collapse Supernovae. The evaluation of Eigenmodes for the classical accretion above a solid surface (white dwarfs, neutron stars) and the use of a toy-model reveal the importance of the advective-acoustic cycle in such an instable accretion flow. Following these results and the comparison with numerical simulations, a modelization of the flow when the shock stalls during a Core Collapse Supernova, shows that the advective-acoustic cycle is a natural mechanism to explain the non-spherical instability of the shock. The domination of l = 1 modes may be responsible for the observed pulsar kicks. (author) [fr
DEFF Research Database (Denmark)
Santos, Isaac R.; Eyre, Bradley D.; Glud, Ronnie N.
2012-01-01
Porewater flow enhances mineralization rates in organic-poor permeable sands. Here, a series of sediment column experiments were undertaken to assess the potential effect of advective porewater transport on denitrification in permeable carbonate sands collected from Heron Island (Great Barrier Re...
Self-pulsation in Raman fiber amplifiers
DEFF Research Database (Denmark)
Pedersen, Martin Erland Vestergaard; Ott, Johan Raunkjær; Rottwitt, Karsten
2009-01-01
Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated.......Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated....
Pulse amplifier with high 'common mode rejection'
International Nuclear Information System (INIS)
Ijlst, P.
1987-01-01
The input signal of a pulse amplifier contains large 'common-mode' signals which have to be suppressed. A transformer, especially constructed for this purpose, is described. It has been tried to optimize the signal to noise ratio of the pulse amplifier by means of noise analysis. (Auth.)
BROADBAND TRAVELLING WAVE SEMICONDUCTOR OPTICAL AMPLIFIER
DEFF Research Database (Denmark)
2010-01-01
Broadband travelling wave semiconductor optical amplifier (100, 200, 300, 400, 800) for amplification of light, wherein the amplifier (100, 200, 300, 400, 800) comprises a waveguide region (101, 201, 301, 401, 801) for providing confinement of the light in transverse directions and adapted...
Bevalac injector final stage RF amplifier upgrades
International Nuclear Information System (INIS)
Howard, D.; Calvert, J.; Dwinell, R.; Lax, J.; Lindner, A.; Richter, R.; Ridgeway, W.
1991-01-01
With the assistance of the DOE In-house Energy Management Program, the Bevalac injector final stage RF amplifier systems have been successfully upgraded to reduce energy consumption and operating costs. This recently completed project removed the energy-inefficient plate voltage modulator circuits that were used in conjunction with the final stage RF amplifiers. Construction, design, and operating parameters are described in detail
Method for reducing snap in magnetic amplifiers
Fischer, R. L. E.; Word, J. L.
1968-01-01
Method of reducing snap in magnetic amplifiers uses a degenerative feedback circuit consisting of a resistor and a separate winding on a magnetic core. The feedback circuit extends amplifier range by allowing it to be used at lower values of output current.
A fluidic/pneumatic interface amplifier
Limbert, D. E.; Kegel, T. M.
The development of a low cost, reliable, linear pressure amplifier to interface Laminar Proportional Amplifiers (LPA) to pneumatic controllers is presented. The amplifier consists of an LPA input stage and an output stage consisting of a venturi in series with a bellows nozzle valve. The LPA output drives the bellows nozzle valve thereby altering the flowrate through the venturi. The pressure within the venturi throat region, which is the amplifier output, changes with the flowrate. Non-linear characteristics, due to supersonic flow within the venturi, are altered through the use of feedback to the LPA input. A computer based model, to aid in optimizing the amplifier design, is developed. This model incorporates the effects of shock waves and boundary layers within the venturi. Good correspondence between the model and an experimental prototype is shown.
Amplified OTDR Systems for Multipoint Corrosion Monitoring
Nascimento, Jehan F.; Silva, Marcionilo J.; Coêlho, Isnaldo J. S.; Cipriano, Eliel; Martins-Filho, Joaquim F.
2012-01-01
We present two configurations of an amplified fiber-optic-based corrosion sensor using the optical time domain reflectometry (OTDR) technique as the interrogation method. The sensor system is multipoint, self-referenced, has no moving parts and can measure the corrosion rate several kilometers away from the OTDR equipment. The first OTDR monitoring system employs a remotely pumped in-line EDFA and it is used to evaluate the increase in system reach compared to a non-amplified configuration. The other amplified monitoring system uses an EDFA in booster configuration and we perform corrosion measurements and evaluations of system sensitivity to amplifier gain variations. Our experimental results obtained under controlled laboratory conditions show the advantages of the amplified system in terms of longer system reach with better spatial resolution, and also that the corrosion measurements obtained from our system are not sensitive to 3 dB gain variations. PMID:22737017
An Implantable CMOS Amplifier for Nerve Signals
DEFF Research Database (Denmark)
Nielsen, Jannik Hammel; Lehmann, Torsten
2001-01-01
In this paper, a low noise high gain CMOS amplifier for minute nerve signals is presented. By using a mixture of weak- and strong inversion transistors, optimal noise suppression in the amplifier is achieved. A continuous-time offset-compensation technique is utilized in order to minimize impact...... on the amplifier input nodes. The method for signal recovery from noisy nerve signals is presented. A prototype amplifier is realized in a standard digital 0.5 μm CMOS single poly, n-well process. The prototype amplifier features a gain of 80 dB over a 3.6 kHz bandwidth, a CMRR of more than 87 dB and a PSRR...
Bandwidth tunable amplifier for recording biopotential signals.
Hwang, Sungkil; Aninakwa, Kofi; Sonkusale, Sameer
2010-01-01
This paper presents a low noise, low power, bandwidth tunable amplifier for bio-potential signal recording applications. By employing depletion-mode pMOS transistor in diode configuration as a tunable sub pA current source to adjust the resistivity of MOS-Bipolar pseudo-resistor, the bandwidth is adjusted without any need for a separate band-pass filter stage. For high CMRR, PSRR and dynamic range, a fully differential structure is used in the design of the amplifier. The amplifier achieves a midband gain of 39.8dB with a tunable high-pass cutoff frequency ranging from 0.1Hz to 300Hz. The amplifier is fabricated in 0.18εm CMOS process and occupies 0.14mm(2) of chip area. A three electrode ECG measurement is performed using the proposed amplifier to show its feasibility for low power, compact wearable ECG monitoring application.
Dual-range linearized transimpedance amplifier system
Wessendorf, Kurt O.
2010-11-02
A transimpedance amplifier system is disclosed which simultaneously generates a low-gain output signal and a high-gain output signal from an input current signal using a single transimpedance amplifier having two different feedback loops with different amplification factors to generate two different output voltage signals. One of the feedback loops includes a resistor, and the other feedback loop includes another resistor in series with one or more diodes. The transimpedance amplifier system includes a signal linearizer to linearize one or both of the low- and high-gain output signals by scaling and adding the two output voltage signals from the transimpedance amplifier. The signal linearizer can be formed either as an analog device using one or two summing amplifiers, or alternately can be formed as a digital device using two analog-to-digital converters and a digital signal processor (e.g. a microprocessor or a computer).
Detection of Non-Amplified Genomic DNA
Corradini, Roberto
2012-01-01
This book offers a state-of-the-art overview on non amplified DNA detection methods and provides chemists, biochemists, biotechnologists and material scientists with an introduction to these methods. In fact all these fields have dedicated resources to the problem of nucleic acid detection, each contributing with their own specific methods and concepts. This book will explain the basic principles of the different non amplified DNA detection methods available, highlighting their respective advantages and limitations. The importance of non-amplified DNA sequencing technologies will be also discussed. Non-amplified DNA detection can be achieved by adopting different techniques. Such techniques have allowed the commercialization of innovative platforms for DNA detection that are expected to break into the DNA diagnostics market. The enhanced sensitivity required for the detection of non amplified genomic DNA has prompted new strategies that can achieve ultrasensitivity by combining specific materials with specifi...
Ultrafast disk lasers and amplifiers
Sutter, Dirk H.; Kleinbauer, Jochen; Bauer, Dominik; Wolf, Martin; Tan, Chuong; Gebs, Raphael; Budnicki, Aleksander; Wagenblast, Philipp; Weiler, Sascha
2012-03-01
Disk lasers with multi-kW continuous wave (CW) output power are widely used in manufacturing, primarily for cutting and welding applications, notably in the automotive industry. The ytterbium disk technology combines high power (average and/or peak power), excellent beam quality, high efficiency, and high reliability with low investment and operating costs. Fundamental mode picosecond disk lasers are well established in micro machining at high throughput and perfect precision. Following the world's first market introduction of industrial grade 50 W picosecond lasers (TruMicro 5050) at the Photonics West 2008, the second generation of the TruMicro series 5000 now provides twice the average power (100 W at 1030 nm, or 60 W frequency doubled, green output) at a significantly reduced footprint. Mode-locked disk oscillators achieve by far the highest average power of any unamplified lasers, significantly exceeding the 100 W level in laboratory set-ups. With robust long resonators their multi-microjoule pulse energies begin to compete with typical ultrafast amplifiers. In addition, significant interest in disk technology has recently come from the extreme light laser community, aiming for ultra-high peak powers of petawatts and beyond.
International Nuclear Information System (INIS)
Shashkov, Alexander; Higuchi, Kaz; Chan, Douglas
2007-01-01
During the period of July 8-13, 2002, we collected vertical profiles by aircraft of meteorological variables and atmospheric CO 2 over the OBS (old black spruce) site located in Boreal Ecosystem Research and Monitoring Sites in Northern Saskatchewan, Canada. We have used the data from the morning and afternoon flights to calculate the regional daily afternoon CO 2 flux for the days July 8-11. These daily fluxes were then compared to those obtained by the boundary layer budget method and by the eddy covariance measurements on the tower at the OBS site. We identified the importance of changes in the CO 2 concentration by advection to the flux estimates. In addition, we provide arguments to suggest that subseasonal temporal averaging might not, at least in some cases, eliminate advective bias contribution to the flux estimates. Because the advective influence is large and highly directional, even on seasonal and interannual timescales, it is advisable that flux estimates based on CO 2 concentration change at a site contain dynamic description of an air parcel transport history
Conservative and bounded volume-of-fluid advection on unstructured grids
Ivey, Christopher B.; Moin, Parviz
2017-12-01
This paper presents a novel Eulerian-Lagrangian piecewise-linear interface calculation (PLIC) volume-of-fluid (VOF) advection method, which is three-dimensional, unsplit, and discretely conservative and bounded. The approach is developed with reference to a collocated node-based finite-volume two-phase flow solver that utilizes the median-dual mesh constructed from non-convex polyhedra. The proposed advection algorithm satisfies conservation and boundedness of the liquid volume fraction irrespective of the underlying flux polyhedron geometry, which differs from contemporary unsplit VOF schemes that prescribe topologically complicated flux polyhedron geometries in efforts to satisfy conservation. Instead of prescribing complicated flux-polyhedron geometries, which are prone to topological failures, our VOF advection scheme, the non-intersecting flux polyhedron advection (NIFPA) method, builds the flux polyhedron iteratively such that its intersection with neighboring flux polyhedra, and any other unavailable volume, is empty and its total volume matches the calculated flux volume. During each iteration, a candidate nominal flux polyhedron is extruded using an iteration dependent scalar. The candidate is subsequently intersected with the volume guaranteed available to it at the time of the flux calculation to generate the candidate flux polyhedron. The difference in the volume of the candidate flux polyhedron and the actual flux volume is used to calculate extrusion during the next iteration. The choice in nominal flux polyhedron impacts the cost and accuracy of the scheme; however, it does not impact the methods underlying conservation and boundedness. As such, various robust nominal flux polyhedron are proposed and tested using canonical periodic kinematic test cases: Zalesak's disk and two- and three-dimensional deformation. The tests are conducted on the median duals of a quadrilateral and triangular primal mesh, in two-dimensions, and on the median duals of a
Directory of Open Access Journals (Sweden)
Mcebisi Mkhwanazi
2015-11-01
Full Text Available The Surface Energy Balance Algorithm for Land (SEBAL is one of the remote sensing (RS models that are increasingly being used to determine evapotranspiration (ET. SEBAL is a widely used model, mainly due to the fact that it requires minimum weather data, and also no prior knowledge of surface characteristics is needed. However, it has been observed that it underestimates ET under advective conditions due to its disregard of advection as another source of energy available for evaporation. A modified SEBAL model was therefore developed in this study. An advection component, which is absent in the original SEBAL, was introduced such that the energy available for evapotranspiration was a sum of net radiation and advected heat energy. The improved SEBAL model was termed SEBAL-Advection or SEBAL-A. An important aspect of the improved model is the estimation of advected energy using minimal weather data. While other RS models would require hourly weather data to be able to account for advection (e.g., METRIC, SEBAL-A only requires daily averages of limited weather data, making it appropriate even in areas where weather data at short time steps may not be available. In this study, firstly, the original SEBAL model was evaluated under advective and non-advective conditions near Rocky Ford in southeastern Colorado, a semi-arid area where afternoon advection is common occurrence. The SEBAL model was found to incur large errors when there was advection (which was indicated by higher wind speed and warm and dry air. SEBAL-A was then developed and validated in the same area under standard surface conditions, which were described as healthy alfalfa with height of 40–60 cm, without water-stress. ET values estimated using the original and modified SEBAL were compared to large weighing lysimeter-measured ET values. When the SEBAL ET was compared to SEBAL-A ET values, the latter showed improved performance, with the ET Mean Bias Error (MBE reduced from −17
Phase noise in RF and microwave amplifiers.
Boudot, Rodolphe; Rubiola, Enrico
2012-12-01
Understanding amplifier phase noise is a critical issue in many fields of engineering and physics, such as oscillators, frequency synthesis, telecommunication, radar, and spectroscopy; in the emerging domain of microwave photonics; and in exotic fields, such as radio astronomy, particle accelerators, etc. Focusing on the two main types of base noise in amplifiers, white and flicker, the power spectral density of the random phase φ(t) is Sφ(f) = b(0) + b(-1)/f. White phase noise results from adding white noise to the RF spectrum in the carrier region. For a given RF noise level, b(0) is proportional to the reciprocal of the carrier power P(0). By contrast, flicker results from a near-dc 1/f noise-present in all electronic devices-which modulates the carrier through some parametric effect in the semiconductor. Thus, b(-1) is a parameter of the amplifier, constant in a wide range of P(0). The consequences are the following: Connecting m equal amplifiers in parallel, b(-1) is 1/m times that of one device. Cascading m equal amplifiers, b(-1) is m times that of one amplifier. Recirculating the signal in an amplifier so that the gain increases by a power of m (a factor of m in decibels) as a result of positive feedback (regeneration), we find that b(-1) is m(2) times that of the amplifier alone. The feedforward amplifier exhibits extremely low b(-1) because the carrier is ideally nulled at the input of its internal error amplifier. Starting with an extensive review of the literature, this article introduces a system-oriented model which describes the phase flickering. Several amplifier architectures (cascaded, parallel, etc.) are analyzed systematically, deriving the phase noise from the general model. There follow numerous measurements of amplifiers using different technologies, including some old samples, and in a wide frequency range (HF to microwaves), which validate the theory. In turn, theory and results provide design guidelines and give suggestions for CAD and
Simulations of longitudinally pumped dye laser amplifier
International Nuclear Information System (INIS)
Takehisa, Kiwamu; Takemori, Satoshi
1995-01-01
Simulations of a copper laser pumped dye laser amplifier and new designs of the longitudinally pumped dye laser amplifier are presented. The simulations take the consideration of the amplified spontaneous emission (ASE). The new designs utilize a center-hole reflector instead of a dichroic mirror. The simulation results indicate that the poor spatial overlap between the pump beam and the dye beam in the transverse pumping not only reduces the laser output power, but also generates ASE strongly. The results also indicate that the longitudinal pumping is as efficient as the transverse pumping. (author)
A parallel input composite transimpedance amplifier
Kim, D. J.; Kim, C.
2018-01-01
A new approach to high performance current to voltage preamplifier design is presented. The design using multiple operational amplifiers (op-amps) has a parasitic capacitance compensation network and a composite amplifier topology for fast, precision, and low noise performance. The input stage consisting of a parallel linked JFET op-amps and a high-speed bipolar junction transistor (BJT) gain stage driving the output in the composite amplifier topology, cooperating with the capacitance compensation feedback network, ensures wide bandwidth stability in the presence of input capacitance above 40 nF. The design is ideal for any two-probe measurement, including high impedance transport and scanning tunneling microscopy measurements.
Fundamentals of RF and microwave transistor amplifiers
Bahl, Inder J
2009-01-01
A Comprehensive and Up-to-Date Treatment of RF and Microwave Transistor Amplifiers This book provides state-of-the-art coverage of RF and microwave transistor amplifiers, including low-noise, narrowband, broadband, linear, high-power, high-efficiency, and high-voltage. Topics covered include modeling, analysis, design, packaging, and thermal and fabrication considerations. Through a unique integration of theory and practice, readers will learn to solve amplifier-related design problems ranging from matching networks to biasing and stability. More than 240 problems are included to help read
Quantum electronics maser amplifiers and oscillators
Fain, V M; Sanders, J H
2013-01-01
Quantum Electronics, Volume 2: Maser Amplifiers and Oscillators deals with the experimental and theoretical aspects of maser amplifiers and oscillators which are based on the principles of quantum electronics. It shows how the concepts and equations used in quantum electronics follow from the basic principles of theoretical physics.Comprised of three chapters, this volume begins with a discussion on the elements of the theory of quantum oscillators and amplifiers working in the microwave region, along with the practical achievements in this field. Attention is paid to two-level paramagnetic ma
Unconditionally stable microwave Si-IMPATT amplifiers
International Nuclear Information System (INIS)
Seddik, M.M.
1986-07-01
The purpose of this investigation has been the development of an improved understanding of the design and analysis of microwave reflection amplifiers employing the negative resistance property of the IMPATT devices. Unconditionally stable amplifier circuit using a Silicon IMPATT diode is designed. The problems associated with the design procedures and the stability criterion are discussed. A computer program is developed to perform the computations. The stable characteristics of a reflection-type Si-IMPATT amplifier, such as gain, frequency and bandwidth are examined. It was found that at large signal drive levels, 7 dB gain with bandwidth of 800 MHz at 22,5 mA was obtained. (author)
Ulfah, S.; Awalludin, S. A.; Wahidin
2018-01-01
Advection-diffusion model is one of the mathematical models, which can be used to understand the distribution of air pollutant in the atmosphere. It uses the 2D advection-diffusion model with time-dependent to simulate air pollution distribution in order to find out whether the pollutants are more concentrated at ground level or near the source of emission under particular atmospheric conditions such as stable, unstable, and neutral conditions. Wind profile, eddy diffusivity, and temperature are considered in the model as parameters. The model is solved by using explicit finite difference method, which is then visualized by a computer program developed using Lazarus programming software. The results show that the atmospheric conditions alone influencing the level of concentration of pollutants is not conclusive as the parameters in the model have their own effect on each atmospheric condition.
Directory of Open Access Journals (Sweden)
Carlos Humberto Galeano Urueña
2009-05-01
Full Text Available This article describes the streamline upwind Petrov-Galerkin (SUPG method as being a stabilisation technique for resolving the diffusion-advection-reaction equation by finite elements. The first part of this article has a short analysis of the importance of this type of differential equation in modelling physical phenomena in multiple fields. A one-dimensional description of the SUPG me- thod is then given to extend this basis to two and three dimensions. The outcome of a strongly advective and a high numerical complexity experiment is presented. The results show how the version of the implemented SUPG technique allowed stabilised approaches in space, even for high Peclet numbers. Additional graphs of the numerical experiments presented here can be downloaded from www.gnum.unal.edu.co.
DEFF Research Database (Denmark)
Binning, Philip John; Postma, Diederik Jan; Russel, T.F.
2007-01-01
Pyrite oxidation in unsaturated mine waste rock dumps and soils is limited by the supply of oxygen from the atmosphere. In models, oxygen transport through the subsurface is often assumed to be driven by diffusion. However, oxygen comprises 23.2% by mass of dry air, and when oxygen is consumed at...... parameters; for example, the time to approach steady state depends exponentially on the distance between the soil surface and the subsurface reactive zone. Copyright 2007 by the American Geophysical Union....... at depth in the unsaturated zone, a pressure gradient is created between the reactive zone and the ground surface, causing a substantial advective air flow into the subsurface. To determine the balance between advective and diffusive transport, a one-dimensional multicomponent unsaturated zone gas...
A condensed-mass advection based model for the simulation of liquid polar stratospheric clouds
Directory of Open Access Journals (Sweden)
D. Lowe
2003-01-01
Full Text Available We present a condensed-mass advection based model (MADVEC designed to simulate the condensation/evaporation of liquid polar stratospheric cloud (PSC particles. A (Eulerian-in-radius discretization scheme is used, making the model suitable for use in global or mesoscale chemistry and transport models (CTMs. The mass advection equations are solved using an adaption of the weighted average flux (WAF scheme. We validate the numerical scheme using an analytical solution for multicomponent aerosols. The physics of the model are tested using a test case designed by Meilinger et al. (1995. The results from this test corroborate the composition gradients across the size distribution under rapid cooling conditions that were reported in earlier studies.
Klotz, L.; Lemoult, G.; Frontczak, I.; Tuckerman, L. S.; Wesfreid, J. E.
2017-04-01
We present an experimental setup that creates a shear flow with zero mean advection velocity achieved by counterbalancing the nonzero streamwise pressure gradient by moving boundaries, which generates plane Couette-Poiseuille flow. We obtain experimental results in the transitional regime for this flow. Using flow visualization, we characterize the subcritical transition to turbulence in Couette-Poiseuille flow and show the existence of turbulent spots generated by a permanent perturbation. Due to the zero mean advection velocity of the base profile, these turbulent structures are nearly stationary. We distinguish two regions of the turbulent spot: the active turbulent core, which is characterized by waviness of the streaks similar to traveling waves, and the surrounding region, which includes in addition the weak undisturbed streaks and oblique waves at the laminar-turbulent interface. We also study the dependence of the size of these two regions on Reynolds number. Finally, we show that the traveling waves move in the downstream (Poiseuille) direction.
A balancing domain decomposition method by constraints for advection-diffusion problems
Energy Technology Data Exchange (ETDEWEB)
Tu, Xuemin; Li, Jing
2008-12-10
The balancing domain decomposition methods by constraints are extended to solving nonsymmetric, positive definite linear systems resulting from the finite element discretization of advection-diffusion equations. A pre-conditioned GMRES iteration is used to solve a Schur complement system of equations for the subdomain interface variables. In the preconditioning step of each iteration, a partially sub-assembled finite element problem is solved. A convergence rate estimate for the GMRES iteration is established, under the condition that the diameters of subdomains are small enough. It is independent of the number of subdomains and grows only slowly with the subdomain problem size. Numerical experiments for several two-dimensional advection-diffusion problems illustrate the fast convergence of the proposed algorithm.
Comparing CO2 Storage and Advection Conditions at Night at Different Carboeuroflux Sites
Czech Academy of Sciences Publication Activity Database
Aubinet, M.; Berbigier, P.; Bernhofer, C.; Cescatti, A.; Feigenwinter, C.; Granier, A.; Grünwald, T.; Havránková, Kateřina; Heinesch, B.; Longdoz, B.; Marcolla, B.; Montagnani, L.; Sedlák, Pavel
2005-01-01
Roč. 116, - (2005), s. 63-94 ISSN 0006-8314 R&D Projects: GA AV ČR(CZ) KJB3087301 Grant - others:Carboeuroflux(XE) EVK-2-CT-1999-00032 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z6087904 Keywords : Advection * CO2 storage * Forest ecosystems Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.414, year: 2005
Salt dynamics in well-mixed estuaries: importance of advection by tides
Wei, X.; Schramkowski, G.P.; Schuttelaars, H.M.
2016-01-01
Understanding salt dynamics is important to adequately model salt intrusion, baroclinic forcing, and sediment transport. In this paper, the importance of the residual salt transport due to tidal advection in well-mixed tidal estuaries is studied. The water motion is resolved in a consistent way with a width-averaged analytical model, coupled to an advection–diffusion equation describing the salt dynamics. The residual salt balance obtained from the coupled model shows that the seaward salt tr...
Direct and inverse source problems for a space fractional advection dispersion equation
Aldoghaither, Abeer
2016-05-15
In this paper, direct and inverse problems for a space fractional advection dispersion equation on a finite domain are studied. The inverse problem consists in determining the source term from final observations. We first derive the analytic solution to the direct problem which we use to prove the uniqueness and the unstability of the inverse source problem using final measurements. Finally, we illustrate the results with a numerical example.
Shell model for time-correlated random advection of passive scalars
DEFF Research Database (Denmark)
Andersen, Ken Haste; Muratore-Ginanneschi, P.
1999-01-01
We study a minimal shell model for the advection of a passive scalar by a Gaussian time-correlated velocity field. The anomalous scaling properties of the white noise limit are studied analytically. The effect of the time correlations are investigated using perturbation theory around the white...... noise limit and nonperturbatively by numerical integration. The time correlation of the velocity field is seen to enhance the intermittency of the passive scalar. [S1063-651X(99)07711-9]....
A conservative scheme for 2D and 3D adaptive semi-Lagrangian advection
Behrens, Jörn; Mentrup, Lars
2005-01-01
This article describes a 2D and 3D adaptive and mass conservingsemi-Lagrangian advection scheme for atmospheric transport problems. Fromthe integral form of the conservation law we derive a semi-Lagrangian schemebased on conservation of mass along trajectories. The mapping of mass fromthe old (adaptively refined and possibly different) grid to the upstream controlvolume is performed by a mass packet based scheme, essentially consistingof a sub-grid discretization. We validate the new adaptive...
Estimating Advective Near-surface Currents from Ocean Color Satellite Images
2015-01-01
on the SuomiNational Polar-Orbiting Partner- ship (S- NPP ) satellite. The GOCI is the world’s first geostationary orbit satellite sensor over the...radiance Lwn at several wave - lengths. These spectral Lwn channels are used to derive several in- water bio-optical properties (Lee, Carder, & Arnone...the same surface flow, it is the inter-product similarities, instead of the differences, that are more likely to stand for the surface advection. If
International Nuclear Information System (INIS)
Thomas, G.F.
1994-01-01
This note shows how uncertainties in nearfield and farfield ground water velocities affect the inventory that migrates from a geologic nuclear waste repository within the classical advection-dispersion approach and manifest themselves through both the finite variances and covariances in the activities of transported nuclides and in the apparent scale dependence of the host rock's dispersivity. Included is a demonstration of these effects for an actinide chain released from used CANDU fuel buried in a hypothetical repository. (Author)
An advection-based model to increase the temporal resolution of PIV time series.
Scarano, Fulvio; Moore, Peter
A numerical implementation of the advection equation is proposed to increase the temporal resolution of PIV time series. The method is based on the principle that velocity fluctuations are transported passively, similar to Taylor's hypothesis of frozen turbulence . In the present work, the advection model is extended to unsteady three-dimensional flows. The main objective of the method is that of lowering the requirement on the PIV repetition rate from the Eulerian frequency toward the Lagrangian one. The local trajectory of the fluid parcel is obtained by forward projection of the instantaneous velocity at the preceding time instant and backward projection from the subsequent time step. The trajectories are approximated by the instantaneous streamlines, which yields accurate results when the amplitude of velocity fluctuations is small with respect to the convective motion. The verification is performed with two experiments conducted at temporal resolutions significantly higher than that dictated by Nyquist criterion. The flow past the trailing edge of a NACA0012 airfoil closely approximates frozen turbulence , where the largest ratio between the Lagrangian and Eulerian temporal scales is expected. An order of magnitude reduction of the needed acquisition frequency is demonstrated by the velocity spectra of super-sampled series. The application to three-dimensional data is made with time-resolved tomographic PIV measurements of a transitional jet. Here, the 3D advection equation is implemented to estimate the fluid trajectories. The reduction in the minimum sampling rate by the use of super-sampling in this case is less, due to the fact that vortices occurring in the jet shear layer are not well approximated by sole advection at large time separation. Both cases reveal that the current requirements for time-resolved PIV experiments can be revised when information is poured from space to time . An additional favorable effect is observed by the analysis in the
Automatic error compensation in dc amplifiers
International Nuclear Information System (INIS)
Longden, L.L.
1976-01-01
When operational amplifiers are exposed to high levels of neutron fluence or total ionizing dose, significant changes may be observed in input voltages and currents. These changes may produce large errors at the output of direct-coupled amplifier stages. Therefore, the need exists for automatic compensation techniques. However, previously introduced techniques compensate only for errors in the main amplifier and neglect the errors induced by the compensating circuitry. In this paper, the techniques introduced compensate not only for errors in the main operational amplifier, but also for errors induced by the compensation circuitry. Included in the paper is a theoretical analysis of each compensation technique, along with advantages and disadvantages of each. Important design criteria and information necessary for proper selection of semiconductor switches will also be included. Introduced in this paper will be compensation circuitry for both resistive and capacitive feedback networks
Stimulated Brillouin scattering threshold in fiber amplifiers
International Nuclear Information System (INIS)
Liang Liping; Chang Liping
2011-01-01
Based on the wave coupling theory and the evolution model of the critical pump power (or Brillouin threshold) for stimulated Brillouin scattering (SBS) in double-clad fiber amplifiers, the influence of signal bandwidth, fiber-core diameter and amplifier gain on SBS threshold is simulated theoretically. And experimental measurements of SBS are presented in ytterbium-doped double-clad fiber amplifiers with single-frequency hundred nanosecond pulse amplification. Under different input signal pulses, the forward amplified pulse distortion is observed when the pulse energy is up to 660 nJ and the peak power is up to 3.3 W in the pulse amplification with pulse duration of 200 ns and repetition rate of 1 Hz. And the backward SBS narrow pulse appears. The pulse peak power equals to SBS threshold. Good agreement is shown between the modeled and experimental data. (authors)
Complementary DNA-amplified fragment length polymorphism ...
African Journals Online (AJOL)
Complementary DNA-amplified fragment length polymorphism (AFLP-cDNA) analysis of differential gene expression from the xerophyte Ammopiptanthus mongolicus in response to cold, drought and cold together with drought.
Behavior of MOSFET Amplifier in Radiation Fields
International Nuclear Information System (INIS)
Sharshar, K.A.A.; Ashry, M.
2000-01-01
MOSFET type 2 N 3823 characteristics and its application as an amplifier are analyzed including the effects of gamma, electron beam 1.5 MeV 25 m A and neutron flux. The 1-V characteristics, transfer curve, and the frequency response of the amplifier, and the amplification factor(A v 0 are discussed with MOSFET circuit parameters. The drain current and the amplitude of the output signal decrease as the absorbed dose increases. The measured values of the amplified signal are attenuated by 30% and 6% after exposing the MOSFET to gamma radiation and electron beam at the same dose respectively. Also for exposure to 4x10 13 N/cm 3 neutrons decreased the measured value of the amplified signal by 73% of the initial values. The decrease in the gain of the MOSFET is due to the degradation of the transconductance. It is also noticed that percentage of the decrease depends on the type of radiation
Quantum-Limited Directional Amplifiers with Optomechanics
Malz, Daniel; Tóth, László D.; Bernier, Nathan R.; Feofanov, Alexey K.; Kippenberg, Tobias J.; Nunnenkamp, Andreas
2018-01-01
Directional amplifiers are an important resource in quantum-information processing, as they protect sensitive quantum systems from excess noise. Here, we propose an implementation of phase-preserving and phase-sensitive directional amplifiers for microwave signals in an electromechanical setup comprising two microwave cavities and two mechanical resonators. We show that both can reach their respective quantum limits on added noise. In the reverse direction, they emit thermal noise stemming from the mechanical resonators; we discuss how this noise can be suppressed, a crucial aspect for technological applications. The isolation bandwidth in both is of the order of the mechanical linewidth divided by the amplitude gain. We derive the bandwidth and gain-bandwidth product for both and find that the phase-sensitive amplifier has an unlimited gain-bandwidth product. Our study represents an important step toward flexible, on-chip integrated nonreciprocal amplifiers of microwave signals.
A filtering technique for solving the advection equation in two-phase flow problems
International Nuclear Information System (INIS)
Devals, C.; Heniche, M.; Bertrand, F.; Tanguy, P.A.; Hayes, R.E.
2004-01-01
The aim of this work is to develop a numerical strategy for the simulation of two-phase flow in the context of chemical engineering applications. The finite element method has been chosen because of its flexibility to deal with complex geometries. One of the key points of two-phase flow simulation is to determine precisely the position of the interface between the two phases, which is an unknown of the problem. In this case, the interface can be tracked by the advection of the so-called color function. It is well known that the solution of the advection equation by most numerical schemes, including the Streamline Upwind Petrov-Galerkin (SUPG) method, may exhibit spurious oscillations. This work proposes an approach to filter out these oscillations by means of a change of variable that is efficient for both steady state and transient cases. First, the filtering technique will be presented in detail. Then, it will be applied to two-dimensional benchmark problems, namely, the advection skew to the mesh and the Zalesak's problems. (author)
International Nuclear Information System (INIS)
Gu Weimin
2012-01-01
By taking into account the local energy balance per unit volume between the viscous heating and the advective cooling plus the radiative cooling, we investigate the vertical structure of radiation pressure-supported accretion disks in spherical coordinates. Our solutions show that the photosphere of the disk is close to the polar axis and therefore the disk seems to be extremely thick. However, the density profile implies that most of the accreted matter exists in a moderate range around the equatorial plane. We show that the well-known polytropic relation between the pressure and the density is unsuitable for describing the vertical structure of radiation pressure-supported disks. More importantly, we find that the energy advection is significant even for slightly sub-Eddington accretion disks. We argue that the non-negligible advection may help us understand why the standard thin disk model is likely to be inaccurate above ∼0.3 Eddington luminosity, which was found by some works on black hole spin measurement. Furthermore, the solutions satisfy the Solberg-Høiland conditions, which indicate the disk to be convectively stable. In addition, we discuss the possible link between our disk model and ultraluminous X-ray sources.
International Nuclear Information System (INIS)
Antonov, N V
2006-01-01
Recent progress on the anomalous scaling in models of turbulent heat and mass transport is reviewed with the emphasis on the approach based on the field-theoretic renormalization group (RG) and operator product expansion (OPE). In that approach, the anomalous scaling is established as a consequence of the existence in the corresponding field-theoretic models of an infinite number of 'dangerous' composite fields (operators) with negative critical dimensions, which are identified with the anomalous exponents. This allows one to calculate the exponents in a systematic perturbation expansion, similar to the ε expansion in the theory of critical phenomena. The RG and OPE approach is presented in a self-contained way for the example of a passive scalar field (temperature, concentration of an impurity, etc) advected by a self-similar Gaussian velocity ensemble with vanishing correlation time, the so-called Kraichnan's rapid-change model, where the anomalous exponents are known up to order O(ε 3 ). Effects of anisotropy, compressibility and the correlation time of the velocity field are discussed. Passive advection by non-Gaussian velocity field governed by the stochastic Navier-Stokes equation and passively advected vector (e.g. magnetic) fields are considered
A SIMPLE TOY MODEL OF THE ADVECTIVE-ACOUSTIC INSTABILITY. I. PERTURBATIVE APPROACH
International Nuclear Information System (INIS)
Foglizzo, T.
2009-01-01
Some general properties of the advective-acoustic instability are described and understood using a toy model, which is simple enough to allow for analytical estimates of the eigenfrequencies. The essential ingredients of this model, in the unperturbed regime, are a stationary shock and a subsonic region of deceleration. For the sake of analytical simplicity, the two-dimensional unperturbed flow is parallel and the deceleration is produced adiabatically by an external potential. The instability mechanism is determined unambiguously as the consequence of a cycle between advected and acoustic perturbations. The purely acoustic cycle, considered alone, is proven to be stable in this flow. Its contribution to the instability can be either constructive or destructive. A frequency cutoff is associated with the advection time through the region of deceleration. This cutoff frequency explains why the instability favors eigenmodes with a low frequency and a large horizontal wavelength. The relation between the instability occurring in this highly simplified toy model and the properties of standing accretion shock instability observed in the numerical simulations of stellar core collapse is discussed. This simple setup is proposed as a benchmark test to evaluate the accuracy, in the linear regime, of numerical simulations involving this instability. We illustrate such benchmark simulations in a companion paper.
Chakraverty, S; Sahoo, B K; Rao, T D; Karunakar, P; Sapra, B K
2018-02-01
Modelling radon transport in the earth crust is a useful tool to investigate the changes in the geo-physical processes prior to earthquake event. Radon transport is modeled generally through the deterministic advection-diffusion equation. However, in order to determine the magnitudes of parameters governing these processes from experimental measurements, it is necessary to investigate the role of uncertainties in these parameters. Present paper investigates this aspect by combining the concept of interval uncertainties in transport parameters such as soil diffusivity, advection velocity etc, occurring in the radon transport equation as applied to soil matrix. The predictions made with interval arithmetic have been compared and discussed with the results of classical deterministic model. The practical applicability of the model is demonstrated through a case study involving radon flux measurements at the soil surface with an accumulator deployed in steady-state mode. It is possible to detect the presence of very low levels of advection processes by applying uncertainty bounds on the variations in the observed concentration data in the accumulator. The results are further discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Case Study of Offshore Advection of Boundary Layer Rolls over a Stably Stratified Sea Surface
Directory of Open Access Journals (Sweden)
Nina Svensson
2017-01-01
Full Text Available Streaky structures of narrow (8-9 km high wind belts have been observed from SAR images above the Baltic Sea during stably stratified conditions with offshore winds from the southern parts of Sweden. Case studies using the WRF model and in situ aircraft observations indicate that the streaks originate from boundary layer rolls generated over the convective air above Swedish mainland, also supported by visual satellite images showing the typical signature cloud streets. The simulations indicate that the rolls are advected and maintained at least 30–80 km off the coast, in agreement with the streaks observed by the SAR images. During evening when the convective conditions over land diminish, the streaky structures over the sea are still seen in the horizontal wind field; however, the vertical component is close to zero. Thus advected feature from a land surface can affect the wind field considerably for long times and over large areas in coastal regions. Although boundary layer rolls are a well-studied feature, no previous study has presented results concerning their persistence during situations with advection to a strongly stratified boundary layer. Such conditions are commonly encountered during spring in coastal regions at high latitudes.
Downwind evolution of transpiration by two irrigated crops under conditions of local advection
McAneney, K. J.; Brunet, Y.; Itier, B.
1994-09-01
Previous measurements of water loss from small-dish evaporimeters mounted at the height of irrigated crops grown under conditions of extreme local advection in the Sudan are reexamined. From these evaporimeter measurements, it is possible to calculate fractional changes in the saturation deficit. Relationships between canopy conductance and saturation deficit are briefly reviewed and introduced into the Penman-Monteith equation to calculate transpiration rates as a function of distance downwind of the boundary between the upwind desert and the irrigated crop. In contradiction to most theoretical predictions, these new calculations show rates of transpiration to undergo only modest changes with increasing fetch. This occurs because of the feedback interaction between saturation deficit and stomatal conductance. This result is in good accord with a recent study suggesting that a dry-moist boundary transition may be best modelled as a simple step change in surface fluxes and further that the advective enhancement of evaporation may have been overestimated by many advection models. Larger effects are expected on dry matter yields because of the direct influence of saturation deficit on the yield-transpiration ratio.
Manhattan equation for the operational amplifier
Mishonov, Todor M.; Danchev, Victor I.; Petkov, Emil G.; Gourev, Vassil N.; Dimitrova, Iglika M.; Varonov, Albert M.
2018-01-01
A differential equation relating the voltage at the output of an operational amplifier $U_0$ and the difference between the input voltages ($U_{+}$ and $U_{-}$) has been derived. The crossover frequency $f_0$ is a parameter in this operational amplifier master equation. The formulas derived as a consequence of this equation find applications in thousands of specifications for electronic devices but as far as we know, the equation has never been published. Actually, the master equation of oper...
Distributed amplifier using Josephson vortex flow transistors
International Nuclear Information System (INIS)
McGinnis, D.P.; Beyer, J.B.; Nordman, J.E.
1986-01-01
A wide-band traveling wave amplifier using vortex flow transistors is proposed. A vortex flow transistor is a long Josephson junction used as a current controlled voltage source. The dual nature of this device to the field effect transistor is exploited. A circuit model of this device is proposed and a distributed amplifier utilizing 50 vortex flow transistors is predicted to have useful gain to 100 GHz
Multiple excitation regenerative amplifier inertial confinement system
International Nuclear Information System (INIS)
George, V.E.; Haas, R.A.; Krupke, W.F.; Schlitt, L.G.
1980-01-01
The invention relates to apparatus and methods for producing high intensity laser radiation generation which is achieved through an optical amplifier-storage ring design. One or two synchronized, counterpropagating laser pulses are injected into a regenerative amplifier cavity and amplified by gain media which are pumped repetitively by electrical or optical means. The gain media excitation pulses are tailored to efficiently amplify the laser pulses during each transit. After the laser pulses have been amplified to the desired intensity level, they are either switched out of the cavity by some switch means, as for example an electro-optical device, for any well known laser end uses, or a target means may be injected into the regenerative amplifier cavity in such a way as to intercept simultaneously the counterpropagating laser pulses. One such well known end uses to which this invention is intended is for production of high density and temperature plasmas suitable for generating neutrons, ions and x-rays and for studying matter heated by high intensity laser radiation
Energy Technology Data Exchange (ETDEWEB)
Torres Astorga, Romina; Velasco, Hugo; Valladares, Diego L.; Lohaiza, Flavia; Ayub, Jimena Juri; Rizzotto, Marcos [Grupo de Estudios Ambientales. Instituto de Matematica Aplicada San Luis - Universidad Nacional de San Luis - CONICET, San Luis (Argentina)
2014-07-01
{sup 7}Be is a short-lived environmental radionuclide, produced in the upper atmosphere by spallation of nitrogen and oxygen by cosmic rays. After of the production by the nuclear reaction, {sup 7}Be diffuses through the atmosphere until it attaches to atmospheric aerosols. Subsequently, it is deposited on the earth surface mainly as wet fallout. The main physical processes which transport {sup 7}Be in soil are diffusion and advection by water. Migration parameters and measurements confirm that sorption is the main physical process, which confines {sup 7}Be concentration to soil surface. The literature data show that in soils, {sup 7}Be is concentrated near the surface (0-2 cm) as it is adsorbed onto clay minerals after its deposition on the soil surface and does not penetrate deeper into soils due to its short half-life. The maximum mass activity density of {sup 7}Be is found at the point of input of the radionuclide, i.e. at the surface of the soil column, showing a exponential distribution profile typical of a purely diffusive transport. Many studies applying the advection dispersion models have been reported in the literature in order to modelling the transport of {sup 137}Cs in soils. On them, the models are used to achieve information of the mechanisms that govern the transport, i. e. the model is used to explain the soil profile of radionuclide. The effective dispersion coefficient and the apparent advection velocity of radionuclide in soil are also obtained by fitting the analytical solution of the model equation to measured depth distributions of the radionuclide. In this work, the advective dispersive transport model with linear sorption is used to analyze the vertical migration process of {sup 7}Be in soils of undisturbed or reference sites. The deposition history is approximated by pulse-like input functions and time dependent analytical solution of equation model is obtained. The values of dispersion coefficient and apparent advection velocity obtained
Ancey, C.; Bohorquez, P.; Heyman, J.
2015-12-01
The advection-diffusion equation is one of the most widespread equations in physics. It arises quite often in the context of sediment transport, e.g., for describing time and space variations in the particle activity (the solid volume of particles in motion per unit streambed area). Phenomenological laws are usually sufficient to derive this equation and interpret its terms. Stochastic models can also be used to derive it, with the significant advantage that they provide information on the statistical properties of particle activity. These models are quite useful when sediment transport exhibits large fluctuations (typically at low transport rates), making the measurement of mean values difficult. Among these stochastic models, the most common approach consists of random walk models. For instance, they have been used to model the random displacement of tracers in rivers. Here we explore an alternative approach, which involves monitoring the evolution of the number of particles moving within an array of cells of finite length. Birth-death Markov processes are well suited to this objective. While the topic has been explored in detail for diffusion-reaction systems, the treatment of advection has received no attention. We therefore look into the possibility of deriving the advection-diffusion equation (with a source term) within the framework of birth-death Markov processes. We show that in the continuum limit (when the cell size becomes vanishingly small), we can derive an advection-diffusion equation for particle activity. Yet while this derivation is formally valid in the continuum limit, it runs into difficulty in practical applications involving cells or meshes of finite length. Indeed, within our stochastic framework, particle advection produces nonlocal effects, which are more or less significant depending on the cell size and particle velocity. Albeit nonlocal, these effects look like (local) diffusion and add to the intrinsic particle diffusion (dispersal due
Advective Removal of Intraparticle Uranium from Contaminated Vadose Zone Sediments, Hanford, USA
International Nuclear Information System (INIS)
Ilton, Eugene S.; Qafoku, Nikolla; Liu, Chongxuan; Moore, D. A.; Zachara, John M.
2008-01-01
A column study on U contaminated vadose zone sediments from the Hanford Site, WA, was performed in order to aid the development of a model for predicting U(VI) release rates under a dynamic flow regime and for variable geochemical conditions. The sediments of interest are adjacent to and below tank BX-102, part of the BX tank farm that contained high level liquid radioactive waste. Two sediments, with different U(VI) loadings and intraparticle large fracture vs. smaller fracture ratios, were reacted with three different solutions. The primary reservoir for U(VI) appears to be a micron-sized nanocrystalline Na-U-Si phase, possibly Na-boltwoodite, that nucleated and grew on plagioclase grains that line fractures within sand-sized granitic clasts. The solutions were all calcite saturated and in equilibrium with atmospheric CO2, where one solution was simply DI-water, the second was a synthetic ground water (SGW) with elevated Na, and the third was the same SGW but with both elevated Na and Si. The latter two solutions were employed, in part, to test the effect of saturation state on U(VI) release. For both sediments and all three electrolytes, there was an initial rapid release of U(VI) to the advecting solution followed by a plateau of low U(VI) concentration. U(VI) effluent concentration increased during subsequent stop flow (SF) events. The electrolytes with elevated Na and Si appreciably depressed U(VI) concentrations relative to DI water. The effluent data for both sediments and all three electrolytes was simulated reasonably well by a three domain model (the advecting fluid, fractures, and matrix) that coupled U(VI) dissolution rates, intraparticle U(VI) diffusion, and interparticle advective transport of U(VI); where key transport and dissolution processes had been parameterized in previous batch studies. For the calcite-saturated DI-water, U(VI) concentrations in the effluent remained far below saturation with respect to Na-boltwoodite and release of U(VI) to
DEFF Research Database (Denmark)
Cook, Perran L. M.; Wenzhofer, Frank; Glud, Ronnie N.
2007-01-01
within the range measured in the chambers. The contribution of advection to solute exchange was highly variable and dependent on sediment topography. Advective processes also had a pronounced influence on the in situ distribution of O-2 within the sediment, with characteristic two-dimensional patterns...... of O-2 distribution across ripples, and also deep subsurface O-2 pools, being observed. Mineralization pathways were predominantly aerobic when benthic mineralization rates were low and advective pore-water flow high as a result of well-developed sediment topography. By contrast, mineralization...... proceeded predominantly through sulfate reduction when benthic mineralization rates were high and advective pore-water flow low as a result of poorly developed topography. Previous studies of benthic mineralization in shallow sandy sediments have generally ignored these dynamics and, hence, have overlooked...
It is well known that the fate and transport of contaminants in the subsurface are controlled by complex processes including advection, dispersion-diffusion, and chemical reactions. However, the interplay between the physical transport processes and chemical reactions, and their...
National Research Council Canada - National Science Library
Lewis, Danielle
2004-01-01
.... To date, there are no suitable methods developed for forecasting advective sea fog at Kunsan, primarily due to a lack of understanding of sea fog formation under various synoptic situations over the Yellow Sea...
Advances in high-power rf amplifiers
International Nuclear Information System (INIS)
Tallerico, P.J.
1979-01-01
Several powerful accelerators and storage rings are being considered that will require tens or even hundreds of megawatts of continuous rf power. The economics of such large machines can be dictated by the cost and efficiency of the rf amplifiers. The overall design and performance of such narrow-band amplifiers, operating in the 50- to 1500-MHz region, are being theoretically studied as a function of frequency to determine the optimum rf amplifier output power, gain, efficiency, and dc power requirements. The state of the art for three types of amplifiers (gridded tubes, klystrons, and gyrocons) is considered and the development work necessary to improve each is discussed. The gyrocon is a new device, hence its various embodiments are discussed in detail. The Soviet designs are reviewed and the gyrocon's strengths and weaknesses are compared to other types of microwave amplifiers. The primary advantages of the gyrocon are the very large amount of power available from a single device and the excellent efficiency and stable operation. The klystron however, has much greater gain and is simpler mechanically. At very low frequencies, the small size of the gridded tube makes it the optimum choice for all but the most powerful systems
Transpermeance Amplifier Applied to Magnetic Bearings
Directory of Open Access Journals (Sweden)
Jossana Ferreira
2017-02-01
Full Text Available The most conventional approach of controlling magnetic forces in active magnetic bearings (AMBs is through current feedback amplifiers: transconductance. This enables the operation of the AMB to be understood in terms of a relatively simple current-based model as has been widely reported on in the literature. The alternative notion of using transpermeance amplifiers, which approximate the feedback of gap flux rather than current, has been in commercial use in some form for at least thirty years, however is only recently seeing more widespread acceptance as a commercial standard. This study explores how such alternative amplifiers should be modeled and then examines the differences in behavior between AMBs equipped with transconductance and transpermeance amplifiers. The focus of this study is on two aspects. The first is the influence of rotor displacement on AMB force, commonly modeled as a constant negative equivalent mechanical stiffness, and it is shown that either scheme actually leads to a finite bandwidth effect, but that this bandwidth is much lower when transpermeance is employed. The second aspect is the influence of eddy currents. Using a very simple model of eddy currents (a secondary short-circuited coil, it is demonstrated that transpermeance amplifiers can recover significant actuator bandwidth compared with transconductance, but at the cost of needing increased peak current headroom.
Wideband Low Noise Amplifiers Exploiting Thermal Noise Cancellation
Bruccoleri, F.; Klumperink, Eric A.M.; Nauta, Bram
2005-01-01
Low Noise Amplifiers (LNAs) are commonly used to amplify signals that are too weak for direct processing for example in radio or cable receivers. Traditionally, low noise amplifiers are implemented via tuned amplifiers, exploiting inductors and capacitors in resonating LC-circuits. This can render
Solid-state disk amplifiers for fusion-laser systems
Energy Technology Data Exchange (ETDEWEB)
Martin, W.E.; Trenholme, J.B.; Linford, G.J.; Yarema, S.M.; Hurley, C.A.
1981-09-01
We review the design, performance, and operation of large-aperture (10 to 46 cm) solid-state disk amplifiers for use in laser systems. We present design data, prototype tests, simulations, and projections for conventional cylindrical pump-geometry amplifiers and rectangular pump-geometry disk amplifiers. The design of amplifiers for the Nova laser system is discussed.
The design of high performance weak current integrated amplifier
International Nuclear Information System (INIS)
Chen Guojie; Cao Hui
2005-01-01
A design method of high performance weak current integrated amplifier using ICL7650 operational amplifier is introduced. The operating principle of circuits and the step of improving amplifier's performance are illustrated. Finally, the experimental results are given. The amplifier has programmable measurement range of 10 -9 -10 -12 A, automatic zero-correction, accurate measurement, and good stability. (authors)
Power Amplifiers in CMOS Technology: A contribution to power amplifier theory and techniques
Acar, M.
2011-01-01
In order to meet the demands from the market on cheaper, miniaturized mobile communications devices realization of RF power amplifiers in the mainstream CMOS technology is essential. In general, CMOS Power Amplifiers (PAs) require high voltage to decrease the matching network losses and for high
Design considerations for RF power amplifiers demonstrated through a GSM/EDGE power amplifier module
Baltus, P.G.M.; Bezooijen, van A.; Huijsing, J.H.; Steyaert, M.; Roermund, van A.H.M.
2002-01-01
This paper describes the design considerations for RF power amplifiers in general, including trends in systems, linearity and efficiency, the PA environment, implementation is sues and technology. As an example a triple-band (900/1800/1900MHz) dual mode (GSMIEdge) power amplifier module is described
Wideband pulse amplifiers for the NECTAr chip
Sanuy, A.; Delagnes, E.; Gascon, D.; Sieiro, X.; Bolmont, J.; Corona, P.; Feinstein, F.; Glicenstein, J.-F.; Naumann, C. L.; Nayman, P.; Ribó, M.; Tavernet, J.-P.; Toussenel, F.; Vincent, P.; Vorobiov, S.
2012-12-01
The NECTAr collaboration's FE option for the camera of the CTA is a 16 bits and 1-3 GS/s sampling chip based on analog memories including most of the readout functions. This works describes the input amplifiers of the NECTAr ASIC. A fully differential wideband amplifier, with voltage gain up to 20 V/V and a BW of 400 MHz. As it is impossible to design a fully differential OpAmp with an 8 GHz GBW product in a 0.35 CMOS technology, an alternative implementation based on HF linearized transconductors is explored. The output buffer is a class AB miller operational amplifier, with special non-linear current boost.
Wideband pulse amplifiers for the NECTAr chip
International Nuclear Information System (INIS)
Sanuy, A.; Delagnes, E.; Gascon, D.; Sieiro, X.; Bolmont, J.; Corona, P.; Feinstein, F.; Glicenstein, J-F.; Naumann, C.L.; Nayman, P.; Ribó, M.
2012-01-01
The NECTAr collaboration's FE option for the camera of the CTA is a 16 bits and 1–3 GS/s sampling chip based on analog memories including most of the readout functions. This works describes the input amplifiers of the NECTAr ASIC. A fully differential wideband amplifier, with voltage gain up to 20 V/V and a BW of 400 MHz. As it is impossible to design a fully differential OpAmp with an 8 GHz GBW product in a 0.35 CMOS technology, an alternative implementation based on HF linearized transconductors is explored. The output buffer is a class AB miller operational amplifier, with special non-linear current boost.
Wideband pulse amplifiers for the NECTAr chip
Energy Technology Data Exchange (ETDEWEB)
Sanuy, A., E-mail: asanuy@ecm.ub.es [Dept. AM i Dept. ECM, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); Delagnes, E. [IRFU/DSM/CEA, CE-Saclay, Bat. 141 SEN Saclay, F-91191, Gif-sur-Yvette (France); Gascon, D. [Dept. AM i Dept. ECM, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); Sieiro, X. [Departament d' Electronica, Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); Bolmont, J.; Corona, P. [LPNHE, Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Barre 12-22, 1er etage, 4 place Jussieu, 75252 Paris (France); Feinstein, F. [LUPM, Universite Montpellier II and IN2P3/CNRS, CC072, bat. 13, place Eugene Bataillon, 34095 Montpellier (France); Glicenstein, J-F. [IRFU/DSM/CEA, CE-Saclay, Bat. 141 SEN Saclay, F-91191, Gif-sur-Yvette (France); Naumann, C.L.; Nayman, P. [LPNHE, Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Barre 12-22, 1er etage, 4 place Jussieu, 75252 Paris (France); Ribo, M. [Dept. AM i Dept. ECM, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); and others
2012-12-11
The NECTAr collaboration's FE option for the camera of the CTA is a 16 bits and 1-3 GS/s sampling chip based on analog memories including most of the readout functions. This works describes the input amplifiers of the NECTAr ASIC. A fully differential wideband amplifier, with voltage gain up to 20 V/V and a BW of 400 MHz. As it is impossible to design a fully differential OpAmp with an 8 GHz GBW product in a 0.35 CMOS technology, an alternative implementation based on HF linearized transconductors is explored. The output buffer is a class AB miller operational amplifier, with special non-linear current boost.
An automated test facility for neutronic amplifiers
International Nuclear Information System (INIS)
Beattie, W.J.
1997-01-01
Neutronic amplifiers are used at the Chalk River Laboratory in applications such as neutron flux monitoring and reactor control systems. Routine preventive maintenance of control and safety systems included annual calibration and characterization of the neutronic amplifiers. An investigation into the traditional methods of annual routine maintenance of amplifiers concluded that frequency and phase response measurements in particular were labour intensive and subject to non-repeatable errors. A decision was made to upgrade testing methods and facilities by using programmable test equipment under the control of a computer. In order to verify the results of the routine measurements, expressions for the transfer functions were derived from the circuit diagrams. Frequency and phase responses were then calculated and plotted thus providing a bench-mark to which the test results can be compared. (author)
A high-efficiency superconductor distributed amplifier
Energy Technology Data Exchange (ETDEWEB)
Herr, Q P, E-mail: quentin.herr@ngc.co [Northrop Grumman Corporation, 7323 Aviation Boulevard, Baltimore, MD 21240 (United States)
2010-02-15
A superconductor output amplifier that converts single-flux-quantum signals to a non-return-to-zero pattern is reported using a twelve-stage distributed amplifier configuration. The output amplitude is measured to be 1.75 mV over a wide bias current range of {+-} 12%. The bit error rate is measured using a Delta-Sigma data pattern to be less than 1 x 10{sup -9} at 10 Gb s{sup -1} per channel. Analysis of the eye diagram suggests that the actual bit error rate may be much lower. The amplifier has power efficiency of 12% neglecting the termination resistor, which may be eliminated from the circuit with a small modification. (rapid communication)
Methods to assess radioisotope migration in cementitious media using radial diffusion and advection
International Nuclear Information System (INIS)
Hinchliff, J.; Felipe-Sotero, M.; Evans, N.D.M.; Read, D.; Drury, D.
2012-01-01
One of the primary aims of this project is to understand how a range of isotopes associated with radioactive wastes, move through the cementitious media potentially present in a geological disposal facility (GDF). This paper describes the development of experimental methods that use radial flow from intact cylinders of cementitious material to evaluate the potential for diffusion and advection of relevant isotopes through Nirex reference vault backfill (NRVB). The small scale and cost effectiveness of the approach means that multiple experiments can be undertaken encompassing the full range of physical (and chemical) variations. The radial flow experimental method uses small pre-cast cylinders of the matrix under investigation. For diffusion an appropriate concentration of the isotope of interest ( 90 Sr in the present experiments) is introduced into a cavity in the centre of the cylinder, which is then sealed, and placed in a solution previously equilibrated with the matrix. The increase in concentration of the isotope in the external solution is then determined at defined time intervals. For advection 90 Sr is similarly introduced into the central core of the cylinder and then equilibrated water is forced under nitrogen pressure, from the central core to the outside of the cylinder where it is collected in a tray prior to analysis. Both experimental set ups and results have been modelled using conventional numerical solutions and the simulation package GoldSim. Concerning diffusion experiments the modelled data reproduces the observed data effectively with a right diffusivity value of 9*10 -11 m 2 /s. Concerning advection results are more mitigated and need further investigation
Variational Integration for Ideal MHD with Built-in Advection Equations
Energy Technology Data Exchange (ETDEWEB)
Zhou, Yao [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Qin, Hong [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Burby, J. W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Bhattacharjee, A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
2014-08-05
Newcomb's Lagrangian for ideal MHD in Lagrangian labeling is discretized using discrete exterior calculus. Variational integrators for ideal MHD are derived thereafter. Besides being symplectic and momentum preserving, the schemes inherit built-in advection equations from Newcomb's formulation, and therefore avoid solving them and the accompanying error and dissipation. We implement the method in 2D and show that numerical reconnection does not take place when singular current sheets are present. We then apply it to studying the dynamics of the ideal coalescence instability with multiple islands. The relaxed equilibrium state with embedded current sheets is obtained numerically.
Proton probe measurement of fast advection of magnetic fields by hot electrons
International Nuclear Information System (INIS)
Willingale, L; Thomas, A G R; Nilson, P M; Kaluza, M C; Dangor, A E; Evans, R G; Fernandes, P; Haines, M G; Kamperidis, C; Kingham, R J; Ridgers, C P; Sherlock, M; Wei, M S; Najmudin, Z; Krushelnick, K; Bandyopadhyay, S; Notley, M; Minardi, S; Rozmus, W; Tatarakis, M
2011-01-01
A laser generated proton beam was used to measure the megagauss strength self-generated magnetic fields from a nanosecond laser interaction with an aluminum target. At intensities of 10 15 W cm −2 , the significant hot electron production and strong heat fluxes result in non-local transport becoming important to describe the magnetic field dynamics. Two-dimensional implicit Vlasov–Fokker–Planck modeling shows that fast advection of the magnetic field from the focal region occurs via the Nernst effect at significantly higher velocities than the sound speed, v N /c s ≈ 10.
On one model problem for the reaction-diffusion-advection equation
Davydova, M. A.; Zakharova, S. A.; Levashova, N. T.
2017-09-01
The asymptotic behavior of the solution with boundary layers in the time-independent mathematical model of reaction-diffusion-advection arising when describing the distribution of greenhouse gases in the surface atmospheric layer is studied. On the basis of the asymptotic method of differential inequalities, the existence of a boundary-layer solution and its asymptotic Lyapunov stability as a steady-state solution of the corresponding parabolic problem is proven. One of the results of this work is the determination of the local domain of the attraction of a boundary-layer solution.
Nefedov, Nikolay
2017-02-01
This is an extended variant of the paper presented at MURPHYS-HSFS 2016 conference in Barcelona. We discuss further development of the asymptotic method of differential inequalities to investigate existence and stability of sharp internal layers (fronts) for nonlinear singularly perturbed periodic parabolic problems and initial boundary value problems with blow-up of fronts for reaction-diffusion-advection equations. In particular, we consider periodic solutions with internal layer in the case of balanced reaction. For the initial boundary value problems we prove the existence of fronts and give their asymptotic approximation including the new case of blowing-up fronts. This case we illustrate by the generalised Burgers equation.
Advective-diffusive transport of D2O in unsaturated media under evaporation condition
International Nuclear Information System (INIS)
Koarashi, Jun; Atarashi-Andoh, Mariko; Amano, Hikaru; Yamazawa, Hiromi; Iida, Takao
2003-01-01
Advective-diffusive transport of HTO in unsaturated media was investigated empirically using deuterated water (D 2 O) and columns filled with glass beads. The tortuosity factor was evaluated by numerical model calculations corresponding to first experiment for diffusion under no-evaporation condition. Temporal variations in depth profiles of D 2 O concentrations in the columns were observed by second experiment, which considers the transferring and spreading of D 2 O by pore-water flow caused by evaporation. Measurements and model calculations indicated that diffusion was about two times more efficient than dispersion for D 2 O spreading process under this evaporation condition. (author)
Variational integration for ideal magnetohydrodynamics with built-in advection equations
Energy Technology Data Exchange (ETDEWEB)
Zhou, Yao; Burby, J. W.; Bhattacharjee, A. [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Qin, Hong [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)
2014-10-15
Newcomb's Lagrangian for ideal magnetohydrodynamics (MHD) in Lagrangian labeling is discretized using discrete exterior calculus. Variational integrators for ideal MHD are derived thereafter. Besides being symplectic and momentum-preserving, the schemes inherit built-in advection equations from Newcomb's formulation, and therefore avoid solving them and the accompanying error and dissipation. We implement the method in 2D and show that numerical reconnection does not take place when singular current sheets are present. We then apply it to studying the dynamics of the ideal coalescence instability with multiple islands. The relaxed equilibrium state with embedded current sheets is obtained numerically.
Accuracy of spectral and finite difference schemes in 2D advection problems
DEFF Research Database (Denmark)
Naulin, V.; Nielsen, A.H.
2003-01-01
In this paper we investigate the accuracy of two numerical procedures commonly used to solve 2D advection problems: spectral and finite difference (FD) schemes. These schemes are widely used, simulating, e.g., neutral and plasma flows. FD schemes have long been considered fast, relatively easy...... that the accuracy of FD schemes can be significantly improved if one is careful in choosing an appropriate FD scheme that reflects conservation properties of the nonlinear terms and in setting up the grid in accordance with the problem....
The determination of an unknown source for a space fractional advection dispersion equation
Aldoghaither, Abeer
2014-09-01
In this paper, we are interested in the estimation of the source term for a space fractional advection dispersion equation using concentration and flux measurements at final time. An example of application is the identification of contamination source in groundwater transport. We propose to use the socalled modulating functions method which has been introduced for parameters estimation. This method allows to transfer the estimation problem into solving a system of algebraic equations. Numerical examples are given to illustrate the effectiveness and the robustness of the proposed method. Finally, a comparison between a Tikhonov-based optimization method and the modulating functions approach is presented.
A Computational Realization of a Semi-Lagrangian Method for Solving the Advection Equation
Directory of Open Access Journals (Sweden)
Alexander Efremov
2014-01-01
Full Text Available A parallel implementation of a method of the semi-Lagrangian type for the advection equation on a hybrid architecture computation system is discussed. The difference scheme with variable stencil is constructed on the base of an integral equality between the neighboring time levels. The proposed approach allows one to avoid the Courant-Friedrichs-Lewy restriction on the relation between time step and mesh size. The theoretical results are confirmed by numerical experiments. Performance of a sequential algorithm and several parallel implementations with the OpenMP and CUDA technologies in the C language has been studied.
Preconditioned iterative methods for space-time fractional advection-diffusion equations
Zhao, Zhi; Jin, Xiao-Qing; Lin, Matthew M.
2016-08-01
In this paper, we propose practical numerical methods for solving a class of initial-boundary value problems of space-time fractional advection-diffusion equations. First, we propose an implicit method based on two-sided Grünwald formulae and discuss its stability and consistency. Then, we develop the preconditioned generalized minimal residual (preconditioned GMRES) method and preconditioned conjugate gradient normal residual (preconditioned CGNR) method with easily constructed preconditioners. Importantly, because resulting systems are Toeplitz-like, fast Fourier transform can be applied to significantly reduce the computational cost. We perform numerical experiments to demonstrate the efficiency of our preconditioners, even in cases with variable coefficients.
Renner, Angelika H. H.; Thorpe, Sally E.; Heywood, Karen J.; Murphy, Eugene J.; Watkins, Jon L.; Meredith, Michael P.
2012-05-01
Pathways and rates of ocean flow near the Antarctic Peninsula are strongly affected by frontal features, forcings from the atmosphere and the cryosphere. In the surface mixed layer, the currents advect material from the northwestern Weddell Sea on the eastern side of the Peninsula around the tip of the Peninsula to its western side and into the Scotia Sea, connecting populations of Antarctic krill (Euphausia superba) and supporting the ecosystem of the region. Modelling of subsurface drifters using a particle tracking algorithm forced by the velocity fields of a coupled sea ice-ocean model (ORCA025-LIM2) allows analysis of the seasonal and interannual variability of drifter pathways over 43 years. The results show robust and persistent connections from the Weddell Sea both to the west into the Bellingshausen Sea and across the Scotia Sea towards South Georgia, reproducing well the observations. The fate of the drifters is sensitive to their deployment location, in addition to other factors. From the shelf of the eastern Antarctic Peninsula, the majority enter the Bransfield Strait and subsequently the Bellingshausen Sea. When originating further offshore over the deeper Weddell Sea, drifters are more likely to cross the South Scotia Ridge and reach South Georgia. However, the wind field east and southeast of Elephant Island, close to the tip of the Peninsula, is crucial for the drifter trajectories and is highly influenced by the Southern Annular Mode (SAM). Increased advection and short travel times to South Georgia, and reduced advection to the western Antarctic Peninsula can be linked to strong westerlies, a signature of the positive phase of the SAM. The converse is true for the negative phase. Strong westerlies and shifts of ocean fronts near the tip of the Peninsula that are potentially associated with both the SAM and the El Niño-Southern Oscillation restrict the connection from the Weddell Sea to the west, and drifters then predominantly follow the open
Enriched reproducing kernel particle method for fractional advection-diffusion equation
Ying, Yuping; Lian, Yanping; Tang, Shaoqiang; Liu, Wing Kam
2018-06-01
The reproducing kernel particle method (RKPM) has been efficiently applied to problems with large deformations, high gradients and high modal density. In this paper, it is extended to solve a nonlocal problem modeled by a fractional advection-diffusion equation (FADE), which exhibits a boundary layer with low regularity. We formulate this method on a moving least-square approach. Via the enrichment of fractional-order power functions to the traditional integer-order basis for RKPM, leading terms of the solution to the FADE can be exactly reproduced, which guarantees a good approximation to the boundary layer. Numerical tests are performed to verify the proposed approach.
Noise figure of amplified dispersive Fourier transformation
International Nuclear Information System (INIS)
Goda, Keisuke; Jalali, Bahram
2010-01-01
Amplified dispersive Fourier transformation (ADFT) is a powerful tool for fast real-time spectroscopy as it overcomes the limitations of traditional optical spectrometers. ADFT maps the spectrum of an optical pulse into a temporal waveform using group-velocity dispersion and simultaneously amplifies it in the optical domain. It greatly simplifies spectroscopy by replacing the diffraction grating and detector array in the conventional spectrometer with a dispersive fiber and single-pixel photodetector, enabling ultrafast real-time spectroscopic measurements. Following our earlier work on the theory of ADFT, here we study the effect of noise on ADFT. We derive the noise figure of ADFT and discuss its dependence on various parameters.
Predistortion of a Bidirectional Cuk Audio Amplifier
DEFF Research Database (Denmark)
Birch, Thomas Hagen; Nielsen, Dennis; Knott, Arnold
2014-01-01
Some non-linear amplifier topologies are capable of providing a larger voltage gain than one from a DC source, which could make them suitable for various applications. However, the non-linearities introduce a significant amount of harmonic distortion (THD). Some of this distortion could be reduced...... using predistortion. This paper suggests linearizing a nonlinear bidirectional Cuk audio amplifier using an analog predistortion approach. A prototype power stage was built and results show that a voltage gain of up to 9 dB and reduction in THD from 6% down to 3% was obtainable using this approach....
Cryogenic transimpedance amplifier for micromechanical capacitive sensors.
Antonio, D; Pastoriza, H; Julián, P; Mandolesi, P
2008-08-01
We developed a cryogenic transimpedance amplifier that works at a broad range of temperatures, from room temperature down to 4 K. The device was realized with a standard complementary metal oxide semiconductor 1.5 mum process. Measurements of current-voltage characteristics, open-loop gain, input referred noise current, and power consumption are presented as a function of temperature. The transimpedance amplifier has been successfully applied to sense the motion of a polysilicon micromechanical oscillator at low temperatures. The whole device is intended to serve as a magnetometer for microscopic superconducting samples.
Dynamic range meter for radiofrequency amplifiers
Directory of Open Access Journals (Sweden)
Drozd S. S.
2009-04-01
Full Text Available The new measurement setup having increased on 20…30 dB the own dynamic range in comparison with the standard circuit of the dynamic range meter is offered and the rated value of an error bringing by setup in the worst case does not exceed ± 2,8 dB. The measurement setup can be applied also to determinate levels of intermodulation components average power amplifiers and powerful amplifiers of a low-frequency at replacement of the quartz filter on meeting low-frequency the LC-filter and the spectrum analyzer.
Optimization of a high efficiency FEL amplifier
International Nuclear Information System (INIS)
Schneidmiller, E.A.; Yurkov, M.V.
2014-10-01
The problem of an efficiency increase of an FEL amplifier is now of great practical importance. Technique of undulator tapering in the post-saturation regime is used at the existing X-ray FELs LCLS and SACLA, and is planned for use at the European XFEL, Swiss FEL, and PAL XFEL. There are also discussions on the future of high peak and average power FELs for scientific and industrial applications. In this paper we perform detailed analysis of the tapering strategies for high power seeded FEL amplifiers. Application of similarity techniques allows us to derive universal law of the undulator tapering.
Operational amplifier circuits analysis and design
Nelson, J C C
1995-01-01
This book, a revised and updated version of the author's Basic Operational Amplifiers (Butterworths 1986), enables the non-specialist to make effective use of readily available integrated circuit operational amplifiers for a range of applications, including instrumentation, signal generation and processing.It is assumed the reader has a background in the basic techniques of circuit analysis, particularly the use of j notation for reactive circuits, with a corresponding level of mathematical ability. The underlying theory is explained with sufficient but not excessive, detail. A range of compu
Cavity enhanced rephased amplified spontaneous emission
International Nuclear Information System (INIS)
A Williamson, Lewis; J Longdell, Jevon
2014-01-01
Amplified spontaneous emission is usually treated as an incoherent noise process. Recent theoretical and experimental work using rephasing optical pulses has shown that rephased amplified spontaneous emission (RASE) is a potential source of wide bandwidth time-delayed entanglement. Due to poor echo efficiency the plain RASE protocol does not in theory achieve perfect entanglement. Experiments done to date show a very small amount of entanglement at best. Here we show that RASE can, in principle, produce perfect multimode time-delayed two mode squeezing when the active medium is placed inside a Q-switched cavity. (paper)
International Nuclear Information System (INIS)
Lou, C.
2002-01-01
An advection-diffusion model has been set up to describe normal grain growth. In this model grains are divided into different groups according to their topological classes (number of sides of a grain). Topological transformations are modelled by advective and diffusive flows governed by advective and diffusive coefficients respectively, which are assumed to be proportional to topological classes. The ordinary differential equations governing self-similar time-independent grain size distribution can be derived analytically from continuity equations. It is proved that the time-independent distributions obtained by solving the ordinary differential equations have the same form as the time-dependent distributions obtained by solving the continuity equations. The advection-diffusion model is extended to describe the stagnation of normal grain growth in thin films. Grain boundary grooving prevents grain boundaries from moving, and the correlation between neighbouring grains accelerates the stagnation of normal grain growth. After introducing grain boundary grooving and the correlation between neighbouring grains into the model, the grain size distribution is close to a lognormal distribution, which is usually found in experiments. A vertex computer simulation of normal grain growth has also been carried out to make a cross comparison with the advection-diffusion model. The result from the simulation did not verify the assumption that the advective and diffusive coefficients are proportional to topological classes. Instead, we have observed that topological transformations usually occur on certain topological classes. This suggests that the advection-diffusion model can be improved by making a more realistic assumption on topological transformations. (author)
Saturation of drift instabilities by ExB advection of resonant electrons
International Nuclear Information System (INIS)
Dimits, A.M.
1990-01-01
Saturation of the collisionless and weakly collisional drift instabilities by nonlinear ExB advection of resonant electrons is considered. The nonlinear ExB advection of the resonant electrons around the O points and X points of the potential shuts off the linear phase shift between the electron density and the potential, and hence the linear growth, and produces residual oscillations at the ExB-trapping frequency. Two analytical solutions of a three-mode model of Lee et al. [Phys. Fluids 27, 2652 (1984)], which describes the saturation of drift waves by this mechanism, are found. The first is an exact solution in the form of a steadily propagating wave of constant amplitude, and is relevant when electron pitch-angle scattering is present. The second is an approximate time-dependent analytical solution, obtained using the method of O'Neil [Phys. Fluids 8, 2255 (1965)], and is relevant to the collisionless case. The predictions that follow from this solution for the saturation level and for the amplitude oscillation frequency are in excellent agreement with the direct numerical solutions of the three-mode system
Temporal evolution of photon energy emitted from two-component advective flows: origin of time lag
Chatterjee, Arka; Chakrabarti, Sandip K.; Ghosh, Himadri
2017-12-01
X-ray time lag of black hole candidates contains important information regarding the emission geometry. Recently, study of time lags from observational data revealed very intriguing properties. To investigate the real cause of this lag behavior with energy and spectral states, we study photon paths inside a two-component advective flow (TCAF) which appears to be a satisfactory model to explain the spectral and timing properties. We employ the Monte Carlo simulation technique to carry out the Comptonization process. We use a relativistic thick disk in Schwarzschild geometry as the CENtrifugal pressure supported BOundary Layer (CENBOL) which is the Compton cloud. In TCAF, this is the post-shock region of the advective component. Keplerian disk on the equatorial plane which is truncated at the inner edge i.e. at the outer boundary of the CENBOL, acts as the soft photon source. Ray-tracing code is employed to track the photons to a distantly located observer. We compute the cumulative time taken by a photon during Comptonization, reflection and following the curved geometry on the way to the observer. Time lags between various hard and soft bands have been calculated. We study the variation of time lags with accretion rates, CENBOL size and inclination angle. Time lags for different energy channels are plotted for different inclination angles. The general trend of variation of time lag with QPO frequency and energy as observed in satellite data is reproduced.
Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.-L.
2015-05-01
The most widely used community weather forecast and research model in the world is the Weather Research and Forecast (WRF) model. Two distinct varieties of WRF exist. The one we are interested is the Advanced Research WRF (ARW) is an experimental, advanced research version featuring very high resolution. The WRF Nonhydrostatic Mesoscale Model (WRF-NMM) has been designed for forecasting operations. WRF consists of dynamics code and several physics modules. The WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations. In the paper, we optimize a meridional (north-south direction) advection subroutine for Intel Xeon Phi coprocessor. Advection is of the most time consuming routines in the ARW dynamics core. It advances the explicit perturbation horizontal momentum equations by adding in the large-timestep tendency along with the small timestep pressure gradient tendency. We will describe the challenges we met during the development of a high-speed dynamics code subroutine for MIC architecture. Furthermore, lessons learned from the code optimization process will be discussed. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 1.2x.
Optimizing zonal advection of the Advanced Research WRF (ARW) dynamics for Intel MIC
Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.
2014-10-01
The Weather Research and Forecast (WRF) model is the most widely used community weather forecast and research model in the world. There are two distinct varieties of WRF. The Advanced Research WRF (ARW) is an experimental, advanced research version featuring very high resolution. The WRF Nonhydrostatic Mesoscale Model (WRF-NMM) has been designed for forecasting operations. WRF consists of dynamics code and several physics modules. The WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations. In the paper, we will use Intel Intel Many Integrated Core (MIC) architecture to substantially increase the performance of a zonal advection subroutine for optimization. It is of the most time consuming routines in the ARW dynamics core. Advection advances the explicit perturbation horizontal momentum equations by adding in the large-timestep tendency along with the small timestep pressure gradient tendency. We will describe the challenges we met during the development of a high-speed dynamics code subroutine for MIC architecture. Furthermore, lessons learned from the code optimization process will be discussed. The results show that the optimizations improved performance of the original code on Xeon Phi 5110P by a factor of 2.4x.
International Nuclear Information System (INIS)
Gárfias, J.; Llanos, H.; Franco, R.; Martel, R.
2017-01-01
Groundwater vulnerability assessment is an important task in water resources and land management. Depending on the availability of data and the complexity of the hydrogeological conditions, different approaches can be adopted. As an alternative, this study involves the use of a combined approach based on vulnerability methods and advective particle tracking to better understand the susceptibility to contamination in the Toluca valley aquifer. An intrinsic vulnerability map (DRASTIC) was used to identify areas that are more susceptible to ground water contamination. To estimate advective particle tracking, we developed a 3D flow model using VisualModflow and MODPATH to describe the regional flow of groundwater. The vulnerability map demonstrates the problematic application and interpretation of qualitative the vulnerability method of the parametric system group, which indicates a difference of approximately 23% when compared with the modified vulnerability map. Potential contamination sources based on landfill sites were comparatively high; approximately 76% are located in areas that could be susceptible to contamination through vertical infiltration, especially those that are located along the Lerma system of wells. Industrial parks located in the centre of the valley (83%), where continuous extraction of groundwater and land subsidence occurs, have been classified as high vulnerability zones, increasing the risk of contaminants from surface sources reaching the groundwater. In order to understand the susceptibility to contamination in the aquifer, various delineation approaches should be adopted and all the results that validate each other should be considered, thus making a good strategy for implementing different degrees of protection measures. [es
Energy Technology Data Exchange (ETDEWEB)
Hinrichsen, K
1982-01-01
A very simple Lagrangian finite difference scheme has been developed to calculate the time dependent advection of air pollutants. It is mass conserving and avoids numerical pseudo-diffusion. No condition of numerical stability is required. The Eulerian grid used for the diffusion part of the pollutant transport equation remains unchanged. There are no restrictions on temporally and spatially variable emission rates, production and destruction processes, wind velocity, diffusion coefficients, roughness parameters or inversion heights. The only exception is that the wind field should not be too far from being homogeneous in the horizontal direction (test of D. W. Pepper and P. E. Long, 1978, J. appl. Met. 17, 228-233). Steady state solutions are nearly identical with corresponding analytical solutions. The propagation of a pollutant cloud is simulated more realistically as compared with the advection treatment of E. Runca and F. Sardei (1975, Atmospheric Environment 9, 69-80) and M. Dunst (1980, Z. Met. 30, 47-59). The course of a diffusion experiment is modelled to demonstrate the efficiency of the proposed method. Because of its simplicity, the method is especially suited for use in license processes, for control, and for calculating health risks in relation to industrial and power plant accidents with the goal of organizing efficient protection or evacuation.
Mehdinejadiani, Behrouz
2017-08-01
This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation. Copyright © 2017 Elsevier B.V. All rights reserved.
The effect of coherent stirring on the advection-condensation of water vapour
Tsang, Yue-Kin; Vanneste, Jacques
2017-06-01
Atmospheric water vapour is an essential ingredient of weather and climate. The key features of its distribution can be represented by kinematic models which treat it as a passive scalar advected by a prescribed flow and reacting through condensation. Condensation acts as a sink that maintains specific humidity below a prescribed, space-dependent saturation value. To investigate how the interplay between large-scale advection, small-scale turbulence and condensation controls moisture distribution, we develop simple kinematic models which combine a single circulating flow with a Brownian-motion representation of turbulence. We first study the drying mechanism of a water-vapour anomaly released inside a vortex at an initial time. Next, we consider a cellular flow with a moisture source at a boundary. The statistically steady state attained shows features reminiscent of the Hadley cell such as boundary layers, a region of intense precipitation and a relative humidity minimum. Explicit results provide a detailed characterization of these features in the limit of strong flow.
Images and Spectra of Time Dependent Two Component Advective Flow in Presence of Outflows
Chatterjee, Arka; Chakrabarti, Sandip K.; Ghosh, Himadri; Garain, Sudip K.
2018-05-01
Two Component Advective Flow (TCAF) successfully explains the spectral and temporal properties of outbursting or persistent sources. Images of static TCAF with Compton cloud or CENtrifugal pressure supported Boundary Layer (CENBOL) due to gravitational bending of photons have been studied before. In this paper, we study time dependent images of advective flows around a Schwarzschild black hole which include cooling effects due to Comptonization of soft photons from a Keplerian disks well as the self-consistently produced jets and outflows. We show the overall image of the disk-jet system after convolving with a typical beamwidth. A long exposure image with time dependent system need not show the black hole horizon conspicuously, unless one is looking at a soft state with no jet or the system along the jet axis. Assuming these disk-jet configurations are relevant to radio emitting systems also, our results would be useful to look for event horizons in high accretion rate Supermassive Black Holes in Seyfert galaxies, RL Quasars.
Magnetized advective accretion flows: formation of magnetic barriers in magnetically arrested discs
Mondal, Tushar; Mukhopadhyay, Banibrata
2018-05-01
We discuss the importance of large-scale strong magnetic field in the removal of angular momentum outward, as well as the possible origin of different kinds of magnetic barrier in advective, geometrically thick, sub-Keplerian accretion flows around black holes. The origin of this large-scale strong magnetic field near the event horizon is due to the advection of the magnetic flux by the accreting gas from the environment, say, the interstellar medium or a companion star, because of flux freezing. In this simplest vertically averaged, 1.5-dimensional disc model, we choose the maximum upper limit of the magnetic field, which the disc around a black hole can sustain. In this so called magnetically arrested disc model, the accreting gas either decelerates or faces the magnetic barrier near the event horizon by the accumulated magnetic field depending on the geometry. The magnetic barrier may knock the matter to infinity. We suggest that these types of flow are the building block to produce jets and outflows in the accreting system. We also find that in some cases, when matter is trying to go back to infinity after knocking the barrier, matter is prevented being escaped by the cumulative action of strong gravity and the magnetic tension, hence by another barrier. In this way, magnetic field can lock the matter in between these two barriers and it might be a possible explanation for the formation of episodic jet.
White, Jeffrey A.; Baurle, Robert A.; Fisher, Travis C.; Quinlan, Jesse R.; Black, William S.
2012-01-01
The 2nd-order upwind inviscid flux scheme implemented in the multi-block, structured grid, cell centered, finite volume, high-speed reacting flow code VULCAN has been modified to reduce numerical dissipation. This modification was motivated by the desire to improve the codes ability to perform large eddy simulations. The reduction in dissipation was accomplished through a hybridization of non-dissipative and dissipative discontinuity-capturing advection schemes that reduces numerical dissipation while maintaining the ability to capture shocks. A methodology for constructing hybrid-advection schemes that blends nondissipative fluxes consisting of linear combinations of divergence and product rule forms discretized using 4th-order symmetric operators, with dissipative, 3rd or 4th-order reconstruction based upwind flux schemes was developed and implemented. A series of benchmark problems with increasing spatial and fluid dynamical complexity were utilized to examine the ability of the candidate schemes to resolve and propagate structures typical of turbulent flow, their discontinuity capturing capability and their robustness. A realistic geometry typical of a high-speed propulsion system flowpath was computed using the most promising of the examined schemes and was compared with available experimental data to demonstrate simulation fidelity.
Effect of advection on variations in zooplankton at a single location near Cabo Nazca, Peru
Energy Technology Data Exchange (ETDEWEB)
Smith, S L; Brink, K H; Santander, H; Cowles, T J; Huyer, A
1980-04-01
Temporal variations in the biomass and species composition of zooplankton at a single midshelf station in an upwelling area off Peru can be explained to a large extent by onshore-offshore advection in the upper 20 m of the water column. During periods of strong or sustained near-surface onshore flow, peaks in biomass of zooplankton were observed at midshelf and typically oceanic species of copepod were collected. In periods of offshore flow at the surface, a copepod capable of migrating into oxygen-depleted layers deeper than 30 m was collected. A simple translocation model of advection applied to the cross-shelf distribution of Paracalanus parvus suggests that the fluctuations in P. pavus observed in the midshelf time-series were closely related to onshore-offshore flow in the upper 20 m. Fluctuations in abundance of the numerically dominant copepod, Acartia tonsa, were apparently affected by near surface flow also. The population age-structure suggests that A. tonsa was growing at maximal rates, due in part to its positive feeding response to the dinoflagellate/diatom assemblage of phytoplankton.
Advection diffusion model for particles deposition in Rayleigh-Benard turbulent flows
International Nuclear Information System (INIS)
Oresta, P.; Lippolis, A.; Verzicco, R.; Soldati, A.
2005-01-01
In this paper, Direct Numerical Simulation (DNS) and Lagrangian Particle Tracking are used to precisely investigate the turbulent thermally driven flow and particles dispersion in a closed, slender cylindrical domain. The numerical simulations are carried out for Rayleigh (Ra) and Prandtl numbers (Pr) equal to Ra = 2X10 8 and Pr = 0.7, considering three sets of particles with Stokes numbers, based on Kolmogorov scale, equal to St k 1.3, St k 0.65 and St k = 0.13. This data are used to calculate a priori the drift velocity and the turbulent diffusion coefficient for the Advection Diffusion model. These quantities are function of the Stokes, Froude, Rayleigh and Prandtl numbers only. One dimensional, time dependent, Advection- Diffusion Equation (ADE) is presented to predict particles deposition in Rayleigh-Benard flow in the cylindrical domain. This archetype configuration models flow and aerosol dynamics, produced in case of accident in the passive containment cooling system (PCCS) of a nuclear reactor. ADE results show a good agreement with DNS data for all the sets of particles investigated. (author)
Liao, C M; Liang, H M
2000-05-01
Two models for evaluating the contents and advection of manure moisture on odor causing volatile organic compounds (VOC-odor) volatilization from stored swine manure were studied for their ability to predict the volatilization rate (indoor air concentration) and cumulative exposure dose: a MJ-I model and a MJ-II model. Both models simulating depletion of source contaminant via volatilization and degradation based on an analytical model adapted from the behavior assessment model of Jury et al. In the MJ-I model, manure moisture movement was negligible, whereas in the MJ-II model, time-dependent indoor air concentrations was a function of constant manure moisture contents and steady-state moisture advection. Predicted indoor air concentrations and inhaled doses for the study VOC-odors of p-cresol, toluene, and p-xylene varied by up to two to three orders of magnitude depending on the manure moisture conditions. The sensitivity analysis of both models suggests that when manure moisture movement exists, simply MJ-I model is inherently not sufficient to represent a more generally volatilization process, which can even become stringent as moisture content increases. The conclusion illustrates how one needs to include a wide variety of manure moisture values in order to fully assess the complex volatilization mechanisms that are present in a real situation.
Space-Time Fractional Diffusion-Advection Equation with Caputo Derivative
Directory of Open Access Journals (Sweden)
José Francisco Gómez Aguilar
2014-01-01
Full Text Available An alternative construction for the space-time fractional diffusion-advection equation for the sedimentation phenomena is presented. The order of the derivative is considered as 0<β, γ≤1 for the space and time domain, respectively. The fractional derivative of Caputo type is considered. In the spatial case we obtain the fractional solution for the underdamped, undamped, and overdamped case. In the temporal case we show that the concentration has amplitude which exhibits an algebraic decay at asymptotically large times and also shows numerical simulations where both derivatives are taken in simultaneous form. In order that the equation preserves the physical units of the system two auxiliary parameters σx and σt are introduced characterizing the existence of fractional space and time components, respectively. A physical relation between these parameters is reported and the solutions in space-time are given in terms of the Mittag-Leffler function depending on the parameters β and γ. The generalization of the fractional diffusion-advection equation in space-time exhibits anomalous behavior.
Mehdinejadiani, Behrouz
2017-08-01
This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation.
Federal Laboratory Consortium — The Aircraft Simulation Division, home to the Manned Flight Simulator (MFS), provides real-time, high fidelity, hardware-in-the-loop flight simulation capabilities...
Hybrid amplifier for calorimetry with photodiode readout
Energy Technology Data Exchange (ETDEWEB)
Sushkov, V V
1994-12-31
A hybrid surface mounted amplifier for the photodiode readout of the EM calorimeter has been developed. The main technical characteristics of the design are presented. The design able to math readout constraints for a high luminosity collider experiment is discussed. 10 refs., 2 tabs., 8 figs.
Amplifier Design for Proportional Ionization Chambers
Energy Technology Data Exchange (ETDEWEB)
Baker, W. H.
1950-08-24
This paper presents the requirements of a nuclear amplifier of short resolving time, designed to accept pulses of widely varying amplitudes. Data are given which show that a proportional ionization chamber loaded with a 1,000-ohm resistor develops pulses of 0.5 microsecond duration and several volts amplitude. Results indicate that seven basic requirements are imposed on the amplifier when counting soft beta and gamma radiation in the presence of alpha particles, without absorbers. It should, (1) have a fast recovery time, (2) have a relatively good low frequency response, (3) accept pulses of widely varying heights without developing spurious pulsed, (4) have a limiting output stage, (5) preserve the inherently short rise time of the chamber, (6) minimize pulse integration, and (7) have sufficient gain to detect the weak pulses well below the chamber voltage at which continuous discharge takes place. The results obtained with an amplifier which meets these requirements is described. A formula is derived which indicates that redesign of the proportional ionization chamber might eliminate the need for an amplifier. This may be possible if the radioactive particles are collimated parallel to the collecting electrode.
Methylation sensitive amplified polymorphism (MSAP) reveals that ...
African Journals Online (AJOL)
ajl yemi
2011-12-19
Dec 19, 2011 ... Key words: Salt stress, alkali stress, Gossypium hirsutum L., DNA methylation, methylation sensitive amplified polymorphism (MSAP). INTRODUCTION. DNA methylation is one of the key epigenetic mecha- nisms among eukaryotes that can modulate gene expression without the changes of DNA sequence.
Enhanced timing channel for spectroscopy amplifiers
Energy Technology Data Exchange (ETDEWEB)
Ianakiev, K; Grigorov, N [Inst. for Nuclear Research and Nuclear Energy, Sofia (Bulgaria)
1996-12-31
Purpose of this paper is to analyze noise and timing performance of some methods of filtering in the fast channel. Implementation of RLC-filter into a semi-Gaussian amplifier allows to obtain the time resolution of 420 ns. 5 refs.
Optimization of Pr3+:ZBLAN fiber amplifiers
DEFF Research Database (Denmark)
Pedersen, B.; Miniscalco, J. W.; Quimby, R. S.
1992-01-01
Experimental parameters have been measured and used in a quantitative model of Pr3+-doped fluorozirconate fiber amplifiers. The optimum cutoff wavelength was determined to be 800 nm and the gain for 400 mW of pump was found to increase from 12 to 34 dB if the NA was increased from 0.15 to 0...
Reducing Switching Artifacts in Chopper Amplifiers
Kusuda, Y.
2018-01-01
This thesis describes the theory, design, and implementation of chopper operational amplifiers (op-amps) in CMOS integrated circuits (ICs). The chopping technique periodically corrects DC errors of such op-amps, so that low 1/f noise and stable, microvolt-level offset can be achieved. However,
High-Performance Operational and Instrumentation Amplifiers
Shahi, B.
2015-01-01
This thesis describes techniques to reduce the offset error in precision instrumentation and operational amplifiers. The offset error which is considered a major error source associated with gain blocks, together with other errors are reviewed. Conventional and newer approaches to remove offset and
SINGLE CONVERSION ISOLATED IMPEDANCE TRANSFORMATION AMPLIFIER
DEFF Research Database (Denmark)
2003-01-01
The invention relates to a switch mode power amplifier. A first and a second change-over switch are inserted between a DC voltage supply and a primary side of an isolation transformer. Two secondary windings are connected to a power output terminal. A first and a second secondary side power switc...
Feedback analysis of transimpedance operational amplifier circuits
DEFF Research Database (Denmark)
Bruun, Erik
1993-01-01
The transimpedance or current feedback operational amplifier (CFB op-amp) is reviewed and compared to a conventional voltage mode op-amp using an analysis emphasizing the basic feedback characteristics of the circuit. With this approach the paradox of the constant bandwidth obtained from CFB op...
Random amplified polymorphic DNA based genetic characterization ...
African Journals Online (AJOL)
Random amplified polymorphic DNA based genetic characterization of four important species of Bamboo, found in Raigad district, Maharashtra State, India. ... Bambusoideae are differentiated from other members of the family by the presence of petiolate blades with parallel venation and stamens are three, four, six or more, ...
Molecular markers. Amplified fragment length polymorphism
Directory of Open Access Journals (Sweden)
Pržulj Novo
2005-01-01
Full Text Available Amplified Fragment Length Polymorphism molecular markers (AFLPs has been developed combining procedures of RFLPs and RAPDs molekular markers, i.e. the first step is restriction digestion of the genomic DNA that is followed by selective amplification of the restricted fragments. The advantage of the AFLP technique is that it allows rapid generation of a large number of reproducible markers. The reproducibility of AFLPs markers is assured by the use of restriction site-specific adapters and adapter-specific primers for PCR reaction. Only fragments containing the restriction site sequence plus the additional nucleotides will be amplified and the more selected nucleotides added on the primer sequence the fewer the number of fragments amplified by PCR. The amplified products are normally separated on a sequencing gel and visualized after exposure to X-ray film or by using fluorescent labeled primers. AFLP shave proven to be extremely proficient in revealing diversity at below the species level. A disadvantage of AFLP technique is that AFLPs are essentially a dominant marker system and not able to identify heterozygotes.
Compensation techniques for operational amplifier bias current
International Nuclear Information System (INIS)
Silva, M.S.
1981-01-01
Two techniques are proposed for the compensation of the input current on operational amplifiers that can be used on inverting and non-inverting configurations. A qualitative analysis of temperature drift problems is made, and as a practical application, the construction of a voltage follower for high impedance measurements is presented. (Author) [pt
Application of randomly amplified polymorphic DNA (RAPD ...
African Journals Online (AJOL)
Jane
2011-10-10
Oct 10, 2011 ... and T7-010 based on functional markers according to He et al. (2007). These primers were constructed by Invitrogen GmbH,. Karlsruhe, Germany, and used to amplify the polyphenol oxidases genes. The sequences of these primers were as follows: T3-001: 5`-CCA TTA ACC CTC ACT AAA GGG ACC GTA ...
Multi-pass amplifier architecture for high power laser systems
Manes, Kenneth R; Spaeth, Mary L; Erlandson, Alvin C
2014-04-01
A main amplifier system includes a first reflector operable to receive input light through a first aperture and direct the input light along an optical path. The input light is characterized by a first polarization. The main amplifier system also includes a first polarizer operable to reflect light characterized by the first polarization state. The main amplifier system further includes a first and second set of amplifier modules. Each of the first and second set of amplifier modules includes an entrance window, a quarter wave plate, a plurality of amplifier slablets arrayed substantially parallel to each other, and an exit window. The main amplifier system additionally includes a set of mirrors operable to reflect light exiting the first set of amplifier modules to enter the second set of amplifier modules and a second polarizer operable to reflect light characterized by a second polarization state.
Transmission characteristics of acoustic amplifier in thermoacoustic engine
International Nuclear Information System (INIS)
Sun Daming; Qiu Limin; Wang Bo; Xiao Yong
2008-01-01
Thermoacoustic engines are promising in practical applications for the merits of simple configuration, reliable operation and environmentally friendly working gas. An acoustic amplifier can increase the output pressure amplitude of a thermoacoustic engine (TE) and improve the matching between the engine and its load. In order to make full use of an acoustic amplifier, the transmission characteristics are studied based on linear thermoacoustic theory. Computational and experimental results show that the amplifying ability of an acoustic amplifier is mainly determined by its geometry parameters and output resistance impedance. The amplifying ability of an acoustic amplifier with appropriate length and diameter reaches its maximum when the output resistance impedance is infinite. It is also shown that the acoustic amplifier consumes an amount of acoustic power when amplifying pressure amplitude and the acoustic power consumption increases with amplifying ratio. Furthermore, a novel cascade acoustic amplifier is proposed, which has a much stronger amplifying ability with reduced acoustic power consumption. In experiments, a two-stage cascade acoustic amplifier amplifies the pressure ratio from 1.177 to 1.62 and produces a pressure amplitude of 0.547 MPa with nitrogen of 2.20 MPa as working gas. Good agreements are obtained between the theoretical analysis and experimental results. This research is instructive for comprehensively understanding the mechanism and making full use of the acoustic amplifier
Insect flight muscle metabolism
Horst, D.J. van der; Beenakkers, A.M.Th.; Marrewijk, W.J.A. van
1984-01-01
The flight of an insect is of a very complicated and extremely energy-demanding nature. Wingbeat frequency may differ between various species but values up to 1000 Hz have been measured. Consequently metabolic activity may be very high during flight and the transition from rest to flight is
Is there a role for amplifiers in sexual selection?
Gualla, Filippo; Cermelli, Paolo; Castellano, Sergio
2008-05-21
The amplifier hypothesis states that selection could favour the evolution of traits in signallers that improve the ability of receivers to extract honest information from other signals or cues. We provide a formal definition of amplifiers based on the receiver's mechanisms of signal perception and we present a game-theoretical model in which males advertise their quality and females use sequential-sampling tactics to choose among prospective mates. The main effect of an amplifier on the female mating strategy is to increase her mating threshold, making the female more selective as the effectiveness of the amplifier increases. The effects of the amplifier on male advertising strategy depends both on the context and on the types of the amplifier involved. We consider two different contexts for the evolution of amplifiers (when the effect of amplifiers is on signals and when it is on cues) and two types of amplifiers (the 'neutral amplifier', when it improves quality assessment without altering male attractiveness, and the 'attractive amplifier', when it improves both quality assessment and male attractiveness). The game-theoretical model provides two main results. First, neutral and attractive amplifiers represent, respectively, a conditional and an unconditional signalling strategy. In fact, at the equilibrium, neutral amplifiers are displayed only by males whose advertising level lays above the female acceptance threshold, whereas attractive amplifiers are displayed by all signalling males, independent of their quality. Second, amplifiers of signals increase the differences in advertising levels between amplifying and not-amplifying males, but they decrease the differences within each group, so that the system converges towards an 'all-or-nothing' signalling strategy. By applying concepts from information theory, we show that the increase in information transfer at the perception level due to the amplifier of signals is contrasted by a decrease in information
International Nuclear Information System (INIS)
Wang Hanchao; Huang Lirong; Shi Zhongwei
2011-01-01
A two-electrode multi-quantum-well semiconductor optical amplifier is designed and fabricated. The amplified spontaneous emission (ASE) spectrum and gain were measured and analyzed. It is shown that the ASE spectrum and gain characteristic are greatly influencedby the distribution of the injection current density. By changing the injection current density of two electrodes, the full width at half maximum, peak wavelength, peak power of the ASE spectrum and the gain characteristic can be easily controlled. (semiconductor devices)
International Nuclear Information System (INIS)
Horvath, J. A.
1998-01-01
Mechanical assembly and maintenance of the prototype National Ignition Facility amplifiers in the Amplifier Module Prototype Laboratory (AMPLAB) at Lawrence Livermore National Laboratory requires specialized equipment designed to manipulate large and delicate amplifier components in a safe and clean manner. Observations made during the operation of this assembly and maintenance equipment in AMPLAB provide design guidance for similar tools being built for the National Ignition Facility. Fixtures used for amplifier frame installation, laser slab and flashlamp cassette assembly, transport, and installation, and in-situ blastshield exchange are presented. Examples include a vacuum slab gripper, slab handling clean crane, slab cassette assembly fixture, sealed transport vehicle for slab cassette movement between the cleanroom and amplifier, slab cassette transfer fixture between the cleanroom and transport vehicle, and equipment needed for frame assembly unit, blastshield, an d flashlamp cassette installation and removal. The use of these tools for amplifier assembly, system reconfiguration, reflector replacement, and recovery from an abnormal occurrence such as a flashlamp explosion is described. Observations are made on the design and operation of these tools and their contribution to the final design
Atlantic Water advection vs. glacier dynamics in northern Spitsbergen since early deglaciation
Directory of Open Access Journals (Sweden)
M. Bartels
2017-11-01
Full Text Available Atlantic Water (AW advection plays an important role in climatic, oceanographic and environmental conditions in the eastern Arctic. Situated along the only deep connection between the Atlantic and the Arctic oceans, the Svalbard Archipelago is an ideal location to reconstruct the past AW advection history and document its linkage with local glacier dynamics, as illustrated in the present study of a 275 cm long sedimentary record from Woodfjorden (northern Spitsbergen; water depth: 171 m spanning the last ∼ 15 500 years. Sedimentological, micropalaeontological and geochemical analyses were used to reconstruct changes in marine environmental conditions, sea ice cover and glacier activity. Data illustrate a partial break-up of the Svalbard–Barents Sea Ice Sheet from Heinrich Stadial 1 onwards (until ∼ 14.6 ka. During the Bølling–Allerød ( ∼ 14.6–12.7 ka, AW penetrated as a bottom water mass into the fjord system and contributed significantly to the destabilization of local glaciers. During the Younger Dryas ( ∼ 12.7–11.7 ka, it intruded into intermediate waters while evidence for a glacier advance is lacking. A short-term deepening of the halocline occurred at the very end of this interval. During the early Holocene ( ∼ 11.7–7.8 ka, mild conditions led to glacier retreat, a reduced sea ice cover and increasing sea surface temperatures, with a brief interruption during the Preboreal Oscillation ( ∼ 11.1–10.8 ka. Due to a ∼ 6000-year gap, the mid-Holocene is not recorded in this sediment core. During the late Holocene ( ∼ 1.8–0.4 ka, a slightly reduced AW inflow and lower sea surface temperatures compared to the early Holocene are reconstructed. Glaciers, which previously retreated to the shallower inner parts of the Woodfjorden system, likely advanced during the late Holocene. In particular, topographic control in concert with the reduced
Directory of Open Access Journals (Sweden)
Kresno Wikan Sadono
2016-12-01
Full Text Available Persamaan differensial banyak digunakan untuk menggambarkan berbagai fenomena dalam bidang sains dan rekayasa. Berbagai masalah komplek dalam kehidupan sehari-hari dapat dimodelkan dengan persamaan differensial dan diselesaikan dengan metode numerik. Salah satu metode numerik, yaitu metode meshfree atau meshless berkembang akhir-akhir ini, tanpa proses pembuatan elemen pada domain. Penelitian ini menggabungkan metode meshless yaitu radial basis point interpolation method (RPIM dengan integrasi waktu discontinuous Galerkin method (DGM, metode ini disebut RPIM-DGM. Metode RPIM-DGM diaplikasikan pada advection equation pada satu dimensi. RPIM menggunakan basis function multiquadratic function (MQ dan integrasi waktu diturunkan untuk linear-DGM maupun quadratic-DGM. Hasil simulasi menunjukkan, metode ini mendekati hasil analitis dengan baik. Hasil simulasi numerik dengan RPIM DGM menunjukkan semakin banyak node dan semakin kecil time increment menunjukkan hasil numerik semakin akurat. Hasil lain menunjukkan, integrasi numerik dengan quadratic-DGM untuk suatu time increment dan jumlah node tertentu semakin meningkatkan akurasi dibandingkan dengan linear-DGM. [Title: Numerical solution of advection equation with radial basis interpolation method and discontinuous Galerkin method for time integration] Differential equation is widely used to describe a variety of phenomena in science and engineering. A variety of complex issues in everyday life can be modeled with differential equations and solved by numerical method. One of the numerical methods, the method meshfree or meshless developing lately, without making use of the elements in the domain. The research combines methods meshless, i.e. radial basis point interpolation method with discontinuous Galerkin method as time integration method. This method is called RPIM-DGM. The RPIM-DGM applied to one dimension advection equation. The RPIM using basis function multiquadratic function and time
Hernandez-Santana, V.; Asbjornsen, H.; Sauer, T.; Isenhart, T.; Schilling, K.; Schultz, Ronald
2011-01-01
Riparian buffers are designed as management practices to increase infiltration and reduce surface runoff and transport of sediment and nonpoint source pollutants from crop fields to adjacent streams. Achieving these ecosystem service goals depends, in part, on their ability to remove water from the soil via transpiration. In these systems, edges between crop fields and trees of the buffer systems can create advection processes, which could influence water use by trees. We conducted a field study in a riparian buffer system established in 1994 under a humid temperate climate, located in the Corn Belt region of the Midwestern U.S. (Iowa). The goals were to estimate stand level transpiration by the riparian buffer, quantify the controls on water use by the buffer system, and determine to what extent advective energy and tree position within the buffer system influence individual tree transpiration rates. We primarily focused on the water use response (determined with the Heat Ratio Method) of one of the dominant species (Acer saccharinum) and a subdominant (Juglans nigra). A few individuals of three additional species (Quercus bicolor, Betula nigra, Platanus occidentalis) were monitored over a shorter time period to assess the generality of responses. Meteorological stations were installed along a transect across the riparian buffer to determine the microclimate conditions. The differences found among individuals were attributed to differences in species sap velocities and sapwood depths, location relative to the forest edge and prevailing winds and canopy exposure and dominance. Sapflow rates for A. saccharinum trees growing at the SE edge (prevailing winds) were 39% greater than SE interior trees and 30% and 69% greater than NW interior and edge trees, respectively. No transpiration enhancement due to edge effect was detected in the subdominant J. nigra. The results were interpreted as indicative of advection effects from the surrounding crops. Further, significant
Vandieken, Verona; Sabelhaus, Lara; Engelhardt, Tim
2017-01-01
Sandy surface sediments of tidal flats exhibit high microbial activity due to the fast and deep-reaching transport of oxygen and nutrients by porewater advection. On the other hand during low tide, limited transport results in nutrient and oxygen depletion concomitant to the accumulation of microbial metabolites. This study represents the first attempt to use flow-through reactors to investigate virus production, virus transport and the impact of tides and season in permeable sediments. The reactors were filled with intertidal sands of two sites (North beach site and backbarrier sand flat of Spiekeroog island in the German Wadden Sea) to best simulate advective porewater transport through the sediments. Virus and cell release along with oxygen consumption were measured in the effluents of reactors during continuous flow of water through the sediments as well as in tidal simulation experiments where alternating cycles with and without water flow (each for 6 h) were operated. The results showed net rates of virus production (0.3-13.2 × 10 6 viruses cm -3 h -1 ) and prokaryotic cell production (0.3-10.0 × 10 5 cells cm -3 h -1 ) as well as oxygen consumption rates (56-737 μmol l -1 h -1 ) to be linearly correlated reflecting differences in activity, season and location of the sediments. Calculations show that total virus turnover was fast with 2 to 4 days, whereas virus-mediated cell turnover was calculated to range between 5-13 or 33-91 days depending on the assumed burst sizes (number of viruses released upon cell lysis) of 14 or 100 viruses, respectively. During the experiments, the homogenized sediments in the reactors became vertically structured with decreasing microbial activities and increasing impact of viruses on prokaryotic mortality with depth. Tidal simulation clearly showed a strong accumulation of viruses and cells in the top sections of the reactors when the flow was halted indicating a consistently high virus production during low tide. In
Advection from the North Atlantic as the Forcing of Winter Greenhouse Effect Over Europe
Otterman, J.; Angell, J.; Atlas, R.; Bungato, D.; Shubert, S.; Starr, David OC.; Susskind, J.; Wu, M.-L. C.
2002-01-01
In winter, large interannual fluctuations in the surface temperature are observed over central Europe. Comparing warm February 1990 with cold February 1996, a satellite-retrieved surface (skin) temperature difference of 9.8 K is observed for the region 50-60 degrees N; 5-35 degrees E. Previous studies show that advection from the North Atlantic constitutes the forcing to such fluctuations. The advection is quantified by Index I(sub na), the average of the ocean-surface wind speed over the eastern North Atlantic when the direction is from the southwest (when the wind is from another direction, it counts as a zero speed to the average). Average I(sub na) for February 1990 was 10.6 m/s, but for February 1996 I(sub na) was only 2.4 m/s. A large value of I(sub na) means a strong southwesterly flow which brings warm and moist air into central Europe at low level, producing a steeper tropospheric lapse rate. Strong ascending motions at 700 mb are observed in association with the occurrence of enhanced warm, moist advection from the ocean in February 1990 producing clouds and precipitation. Total precipitable water and cloud-cover fraction have larger values in February 1990 than in 1996. The difference in the greenhouse effect between these two scenarios, this reduction in heat loss to space, can be translated into a virtual radiative heating of 2.6 W/square m above the February 1990 surface/atmosphere system, which contributes to a warming of the surface on the order of 2.6 K. Accepting this estimate as quantitatively meaningful, we evaluate the direct effect, the rise in the surface temperature in Europe as a result of maritime-air inflow, as 7.2 K (9.8 K-2.6 K). Thus, fractional reinforcement by the greenhouse effect is 2.6/7.2, or 36%, a substantial positive feedback.
Directory of Open Access Journals (Sweden)
Taohua Liu
2017-01-01
Full Text Available Fractional advection-dispersion equations, as generalizations of classical integer-order advection-dispersion equations, are used to model the transport of passive tracers carried by fluid flow in a porous medium. In this paper, we develop an implicit finite difference method for fractional advection-dispersion equations with fractional derivative boundary conditions. First-order consistency, solvability, unconditional stability, and first-order convergence of the method are proven. Then, we present a fast iterative method for the implicit finite difference scheme, which only requires storage of O(K and computational cost of O(KlogK. Traditionally, the Gaussian elimination method requires storage of O(K2 and computational cost of O(K3. Finally, the accuracy and efficiency of the method are checked with a numerical example.
Bassett, Richard; Cai, Xiaoming; Chapman, Lee; Heaviside, Clare; Thornes, John E.
2017-10-01
Weather and climate networks traditionally follow rigorous siting guidelines, with individual stations located away from frost hollows, trees or urban areas. However, the diverse nature of the UK landscape suggests that the feasibility of siting stations that are truly representative of regional climate and free from distorting local effects is increasingly difficult. Whilst the urban heat island is a well-studied phenomenon and usually accounted for, the effect of warm urban air advected downwind is rarely considered, particularly at rural stations adjacent to urban areas. Until recently, urban heat advection (UHA) was viewed as an urban boundary-layer process through the formation of an urban plume that rises above the surface as it is advected. However, these dynamic UHA effects are shown to also have an impact on surface observations. Results show a significant difference in temperatures anomalies (p careful interpretation of long-term temperature data taken near small urban areas.
Transport in coherently absorbing or amplifying media
International Nuclear Information System (INIS)
Sen, A.K.
1995-11-01
We study electronic transport in a one-dimensional ordered chain in the presence of either absorption or amplification at each site (the site-potential having an imaginary positive or negative part) within a single-band tightbinding Hamiltonian. The spectrum in either case for the isolated (closed) quantum system is found to become broader compared to the regular Bloch case where there is no absorption or amplification at any site. Interestingly for the transport through an infinitely long ordered chain (open quantum system), the reflectance saturates to a value greater (lesser) than unity in the amplifying (absorbing) case and the transmittance decays to zero in either case. This fact implies that the transmittance does not grow indefinitely even for an ordered, amplifying (active or lasing) medium and that it is not necessary to have any disorder or interaction induced confining mechanism on the transmitted wave, so as to achieve an amplification in the backscattered wave. (author). 8 refs, 2 figs
Amplified music exposure carries risks to hearing.
da Silva, Valéria Gomes; de Oliveira, Carlos Augusto Costa Pires; Tauil, Pedro Luíz; de Castro Silva, Isabella Monteiro; Sampaio, André Luiz Lopes
2017-02-01
To investigate the association between changes in the outer hair cells and exposure to amplified music in a group of high-school students. In this retrospective, case-control study, 86 subjects underwent audiometry, immittance audiometry, and distortion-product otoacoustic emission tests. The subjects were questioned about their listening habits and divided into 2 groups: exposed and unexposed. Most of the subjects had reduced function in their outer hair cells, mainly beginning at 8 kHz. Among 60 subjects-30 cases and 30 controls-75% were considered exposed and 25% unexposed. The exposed subjects were 9.33 times more likely to have altered outer hair cells than the unexposed subjects were. Exposure to amplified music is associated with reduced function in the hair cells. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Cryogenic cooling for high power laser amplifiers
Directory of Open Access Journals (Sweden)
Perin J.P.
2013-11-01
Full Text Available Using DPSSL (Diode Pumped Solid State Lasers as pumping technology, PW-class lasers with enhanced repetition rates are developed. Each of the Yb YAG amplifiers will be diode-pumped at a wavelength of 940 nm. This is a prerequisite for achieving high repetition rates (light amplification duration 1 millisecond and repetition rate 10 Hz. The efficiency of DPSSL is inversely proportional to the temperature, for this reason the slab amplifier have to be cooled at a temperature in the range of 100 K–170 K with a heat flux of 1 MW*m−2. This paper describes the thermo-mechanical analysis for the design of the amplification laser head, presents a preliminary proposal for the required cryogenic cooling system and finally outlines the gain of cryogenic operation for the efficiency of high pulsed laser.
Spaceflight 2 um Tm Fiber MOPA Amplifier, Phase I
National Aeronautics and Space Administration — Fibertek proposes to design, develop, and test a spaceflight prototype 2051 nm thulium (Tm)-doped fiber amplifier (TDFA) optical master oscillator power amplifier...
Conversion of the random amplified polymorphic DNA (RAPD ...
African Journals Online (AJOL)
Conversion of the random amplified polymorphic DNA (RAPD) marker UBC#116 linked to Fusarium crown and root rot resistance gene (Frl) into a co-dominant sequence characterized amplified region (SCAR) marker for marker-assisted selection of tomato.
DEFF Research Database (Denmark)
Machefaux, Ewan; Larsen, Gunner Chr.; Troldborg, Niels
2015-01-01
In the present paper, single-wake dynamics have been studied both experimentally and numerically. The use of pulsed lidar measurements allows for validation of basic dynamic wake meandering modeling assumptions. Wake center tracking is used to estimate the wake advection velocity experimentally...... fairly well in the far wake but lacks accuracy in the outer region of the near wake. An empirical relationship, relating maximum wake induction and wake advection velocity, is derived and linked to the characteristics of a spherical vortex structure. Furthermore, a new empirical model for single...
International Nuclear Information System (INIS)
Pepper, D.W.; Long, P.E.
1978-01-01
The method of moments is used with and without a a width-correction technique to solve the advection of a passive scalar. The method of moments is free of numerical dispersion but suffers from numerical diffusion (damping). In order to assess the effect of the width-correction procedure on reducing numerical diffusion, both versions are used to advect a passive scalar in straight-line and rotational wind fields. Although the width-correction procedure reduces numerical diffusion under some circumstances, the unmodified version of the second-moment procedure is better suited as a general method
Directory of Open Access Journals (Sweden)
Maria Crespo
2017-08-01
Full Text Available In this work, we present an asymptotic analysis of a coupled system of two advection-diffusion-reaction equations with Danckwerts boundary conditions, which models the interaction between a microbial population (e.g., bacteria, called biomass, and a diluted organic contaminant (e.g., nitrates, called substrate, in a continuous flow bioreactor. This system exhibits, under suitable conditions, two stable equilibrium states: one steady state in which the biomass becomes extinct and no reaction is produced, called washout, and another steady state, which corresponds to the partial elimination of the substrate. We use the linearization method to give sufficient conditions for the linear asymptotic stability of the two stable equilibrium configurations. Finally, we compare our asymptotic analysis with the usual asymptotic analysis associated to the continuous bioreactor when it is modeled with ordinary differential equations.
Comparison of finite-difference and variational solutions to advection-diffusion problems
International Nuclear Information System (INIS)
Lee, C.E.; Washington, K.E.
1984-01-01
Two numerical solution methods are developed for 1-D time-dependent advection-diffusion problems on infinite and finite domains. Numerical solutions are compared with analytical results for constant coefficients and various boundary conditions. A finite-difference spectrum method is solved exactly in time for periodic boundary conditions by a matrix operator method and exhibits excellent accuracy compared with other methods, especially at late times, where it is also computationally more efficient. Finite-system solutions are determined from a conservational variational principle with cubic spatial trial functions and solved in time by a matrix operator method. Comparisons of problems with few nodes show excellent agreement with analytical solutions and exhibit the necessity of implementing Lagrangian conservational constraints for physically-correct solutions. (author)
An accurate anisotropic adaptation method for solving the level set advection equation
International Nuclear Information System (INIS)
Bui, C.; Dapogny, C.; Frey, P.
2012-01-01
In the present paper, a mesh adaptation process for solving the advection equation on a fully unstructured computational mesh is introduced, with a particular interest in the case it implicitly describes an evolving surface. This process mainly relies on a numerical scheme based on the method of characteristics. However, low order, this scheme lends itself to a thorough analysis on the theoretical side. It gives rise to an anisotropic error estimate which enjoys a very natural interpretation in terms of the Hausdorff distance between the exact and approximated surfaces. The computational mesh is then adapted according to the metric supplied by this estimate. The whole process enjoys a good accuracy as far as the interface resolution is concerned. Some numerical features are discussed and several classical examples are presented and commented in two or three dimensions. (authors)
Directory of Open Access Journals (Sweden)
Dali Zhang
2012-01-01
Full Text Available This paper deals with an inverse problem for identifying multiparameters in 1D space fractional advection dispersion equation (FADE on a finite domain with final observations. The parameters to be identified are the fractional order, the diffusion coefficient, and the average velocity in the FADE. The forward problem is solved by a finite difference scheme, and then an optimal perturbation regularization algorithm is introduced to determine the three parameters simultaneously. Numerical inversions are performed both with the accurate data and noisy data, and several factors having influences on realization of the algorithm are discussed. The inversion solutions are in good approximations to the exact solutions demonstrating the efficiency of the proposed algorithm.
Advection and diffusion in random media implications for sea surface temperature anomalies
Piterbarg, Leonid I
1997-01-01
The book presents the foundations of the theory of turbulent transport within the context of stochastic partial differential equations. It serves to establish a firm connection between rigorous and non-rigorous results concerning turbulent diffusion. Mathematically all of the issues addressed in this book are concentrated around a single linear equation: stochastic advection-diffusion (transport) equation. There is no attempt made to derive universal statistics for turbulent flow. Instead emphasis is placed on a statistical description of a passive scalar (tracer) under given velocity statistics. An application concerning transport of sea surface temperature anomalies reconciles the developed theory and a highly practical issue of modern physical oceanography by using the newly designed inversion techniques which take advantage of powerful maximum likelihood and autoregressive estimators. Audience: Graduate students and researchers in mathematics, fluid dynamics, and physical oceanography.
Analytical solutions of a fractional diffusion-advection equation for solar cosmic-ray transport
International Nuclear Information System (INIS)
Litvinenko, Yuri E.; Effenberger, Frederic
2014-01-01
Motivated by recent applications of superdiffusive transport models to shock-accelerated particle distributions in the heliosphere, we analytically solve a one-dimensional fractional diffusion-advection equation for the particle density. We derive an exact Fourier transform solution, simplify it in a weak diffusion approximation, and compare the new solution with previously available analytical results and with a semi-numerical solution based on a Fourier series expansion. We apply the results to the problem of describing the transport of energetic particles, accelerated at a traveling heliospheric shock. Our analysis shows that significant errors may result from assuming an infinite initial distance between the shock and the observer. We argue that the shock travel time should be a parameter of a realistic superdiffusive transport model.
Energy Technology Data Exchange (ETDEWEB)
Tang, B.H.Y.; Chan, C.K. [Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)
2006-10-15
In this paper, a 2-dimensional rod-stabilized V-shaped flame is simulated using contour advection with surgery as well as the random vortex method. Effects of turbulence on various quantities, such as flame brush thickness and flame surface density, are investigated. The flame surface density S is estimated using the Bray-Moss-Libby formulation, which involves the use of a mean orientation factor {sigma}{sub c}. As a comparison, values of S are also obtained using Shepherd's model, which employs the values of mean flame surface area and mean flame length. Local flame structure is characterized in terms of turbulent flame brush, orientation factor, and flame surface density. Profiles of S obtained using the two different models are compared and show that discrepancy is more evident with increasing turbulence intensity. (author)
International Nuclear Information System (INIS)
Barth, Andrea; Lang, Annika
2012-01-01
In this paper, the strong approximation of a stochastic partial differential equation, whose differential operator is of advection-diffusion type and which is driven by a multiplicative, infinite dimensional, càdlàg, square integrable martingale, is presented. A finite dimensional projection of the infinite dimensional equation, for example a Galerkin projection, with nonequidistant time stepping is used. Error estimates for the discretized equation are derived in L 2 and almost sure senses. Besides space and time discretizations, noise approximations are also provided, where the Milstein double stochastic integral is approximated in such a way that the overall complexity is not increased compared to an Euler–Maruyama approximation. Finally, simulations complete the paper.
International Nuclear Information System (INIS)
Richon, Patrick; Perrier, Frederic; Koirala, Bharat Prasad; Girault, Frederic; Bhattarai, Mukunda; Sapkota, Soma Nath
2011-01-01
Temporal variation of radon-222 concentration was studied at the Syabru-Bensi hot springs, located on the Main Central Thrust zone in Central Nepal. This site is characterized by several carbon dioxide discharges having maximum fluxes larger than 10 kg m -2 d -1 . Radon concentration was monitored with autonomous Barasol TM probes between January 2008 and November 2009 in two small natural cavities with high CO 2 concentration and at six locations in the soil: four points having a high flux, and two background reference points. At the reference points, dominated by radon diffusion, radon concentration was stable from January to May, with mean values of 22 ± 6.9 and 37 ± 5.5 kBq m -3 , but was affected by a large increase, of about a factor of 2 and 1.6, respectively, during the monsoon season from June to September. At the points dominated by CO 2 advection, by contrast, radon concentration showed higher mean values 39.0 ± 2.6 to 78 ± 1.4 kBq m -3 , remarkably stable throughout the year with small long-term variation, including a possible modulation of period around 6 months. A significant difference between the diffusion dominated reference points and the advection-dominated points also emerged when studying the diurnal S 1 and semi-diurnal S 2 periodic components. At the advection-dominated points, radon concentration did not exhibit S 1 or S 2 components. At the reference points, however, the S 2 component, associated with barometric tide, could be identified during the dry season, but only when the probe was installed at shallow depth. The S 1 component, associated with thermal and possibly barometric diurnal forcing, was systematically observed, especially during monsoon season. The remarkable short-term and long-term temporal stability of the radon concentration at the advection-dominated points, which suggests a strong pressure source at depth, may be an important asset to detect possible temporal variations associated with the seismic cycle. - Graphical
Coulombic interactions during advection-dominated transport of ions in porous media
DEFF Research Database (Denmark)
Muniruzzaman, Muhammad; Stolze, Lucien; Rolle, Massimo
2017-01-01
bench-scale experiments and numerical simulations. The investigation aims at quantifying the key role of small-scale electrostatic interactions in flow-through systems, especially when advection is the dominant mass-transfer process. Considering dilute solutions of strong electrolytes (e.g., MgCl2......Solute transport of charged species in porous media is significantly affected by the electrochemical migration term resulting from the charge-induced interactions among dissolved ions and with solid surfaces. Therefore, the characterization of such Coulombic interactions and their effect...... on multicomponent ionic transport is of critical importance for assessing the fate of charged solutes in porous media. In this work we present a detailed investigation of the electrochemical effects during conservative multicomponent ionic transport in homogeneous and heterogeneous domains by means of laboratory...
Mode-locking in advection-reaction-diffusion systems: An invariant manifold perspective
Locke, Rory A.; Mahoney, John R.; Mitchell, Kevin A.
2018-01-01
Fronts propagating in two-dimensional advection-reaction-diffusion systems exhibit a rich topological structure. When the underlying fluid flow is periodic in space and time, the reaction front can lock to the driving frequency. We explain this mode-locking phenomenon using the so-called burning invariant manifolds (BIMs). In fact, the mode-locked profile is delineated by a BIM attached to a relative periodic orbit (RPO) of the front element dynamics. Changes in the type (and loss) of mode-locking can be understood in terms of local and global bifurcations of the RPOs and their BIMs. We illustrate these concepts numerically using a chain of alternating vortices in a channel geometry.
International Nuclear Information System (INIS)
Buske, D.
2011-01-01
The present contribution focuses on the question of radioactive material dispersion after discharge from a nuclear power plant in the context of micro-meteorology, i.e. an atmospheric dispersion model. The advection-diffusion equation with Fickian closure for the turbulence is solved for the atmospheric boundary layer where the eddy diffusivity coefficients and the wind profile are assumed to be space dependent. The model is solved in closed form using integral transform and spectral theory. Convergence of the solution is discussed in terms of a convergence criterion using a new interpretation of the Cardinal Theorem of Interpolation theory and Parseval's theorem. The solution is compared to other methods and model adequacy is analyzed. Model validation is performed against experimental data from a controlled release of radioactive material at the Itaorna Beach (Angra dos Reis, Rio de Janeiro state, Brazil, 1985). (author)
Measurements on, and modelling of diffusive and advective radon transport in soil
DEFF Research Database (Denmark)
Graff, E.R. van der; Witteman, G.A.A.; Spoel, W.H. van der
1994-01-01
Results are presented of measurements on radon transport in soil under controlled conditions with a laboratory facility consisting of a stainless steel vessel (height and diameter 2 m) filled with a uniform column of sand. At several depths under the sand surface, probes are radially inserted...... into the vessel to measure the radon concentration in the soil gas. To study advective radon transport a perforated circular box is placed in the sand close to the bottom of the vessel. By pressurising this box, an air flow through the sand column is induced. Radon concentration profiles were measured without...... an air flow as a function of time, and for several values of the air flow, equilibrium radon concentration profiles were measured....
Existence of solution for a general fractional advection-dispersion equation
Torres Ledesma, César E.
2018-05-01
In this work, we consider the existence of solution to the following fractional advection-dispersion equation -d/dt ( p {_{-∞}}It^{β }(u'(t)) + q {t}I_{∞}^{β }(u'(t))) + b(t)u = f(t, u(t)),t\\in R where β \\in (0,1) , _{-∞}It^{β } and tI_{∞}^{β } denote left and right Liouville-Weyl fractional integrals of order β respectively, 0continuous functions. Due to the general assumption on the constant p and q, the problem (0.1) does not have a variational structure. Despite that, here we study it performing variational methods, combining with an iterative technique, and give an existence criteria of solution for the problem (0.1) under suitable assumptions.
Advection of pollutants by internal solitary waves in oceanic and atmospheric stable stratifications
Directory of Open Access Journals (Sweden)
G. W. Haarlemmer
1998-01-01
Full Text Available When a pollutant is released into the ocean or atmosphere under turbulent conditions, even a steady release is captured by large eddies resulting in localized patches of high concentration of the pollutant. If such a cloud of pollutant subsequently enters a stable stratification-either a pycnocline or thermocline-then internal waves are excited. Since large solitary internal waves have a recirculating core, pollutants may be trapped in the sclitary wave, and advected large distances through the waveguide provided by the stratification. This paper addresses the mechanisms, through computer and physical simulation, by which a localized release of a dense pollutant results in solitary waves that trap the pollutant or disperse the pollutant faster than in the absence of the waves.
Electrically Pumped Vertical-Cavity Amplifiers
DEFF Research Database (Denmark)
Greibe, Tine
2007-01-01
In this work, the design of electrically pumped vertical cavity semiconductor optical amplifiers (eVCAs) for use in a mode-locked external-cavity laser has been developed, investigated and analysed. Four different eVCAs, one top-emitting and three bottom emitting structures, have been designed...... and discussed. The thesis concludes with recommendations for further work towards the realisation of compact electrically pumped mode-locked vertical externalcavity surface emitting lasers....
Self-amplifying mRNA vaccines.
Brito, Luis A; Kommareddy, Sushma; Maione, Domenico; Uematsu, Yasushi; Giovani, Cinzia; Berlanda Scorza, Francesco; Otten, Gillis R; Yu, Dong; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Ulmer, Jeffrey B; Geall, Andrew J
2015-01-01
This chapter provides a brief introduction to nucleic acid-based vaccines and recent research in developing self-amplifying mRNA vaccines. These vaccines promise the flexibility of plasmid DNA vaccines with enhanced immunogenicity and safety. The key to realizing the full potential of these vaccines is efficient delivery of nucleic acid to the cytoplasm of a cell, where it can amplify and express the encoded antigenic protein. The hydrophilicity and strong net negative charge of RNA impedes cellular uptake. To overcome this limitation, electrostatic complexation with cationic lipids or polymers and physical delivery using electroporation or ballistic particles to improve cellular uptake has been evaluated. This chapter highlights the rapid progress made in using nonviral delivery systems for RNA-based vaccines. Initial preclinical testing of self-amplifying mRNA vaccines has shown nonviral delivery to be capable of producing potent and robust innate and adaptive immune responses in small animals and nonhuman primates. Historically, the prospect of developing mRNA vaccines was uncertain due to concerns of mRNA instability and the feasibility of large-scale manufacturing. Today, these issues are no longer perceived as barriers in the widespread implementation of the technology. Currently, nonamplifying mRNA vaccines are under investigation in human clinical trials and can be produced at a sufficient quantity and quality to meet regulatory requirements. If the encouraging preclinical data with self-amplifying mRNA vaccines are matched by equivalently positive immunogenicity, potency, and tolerability in human trials, this platform could establish nucleic acid vaccines as a versatile new tool for human immunization. Copyright © 2015 Elsevier Inc. All rights reserved.
Fast Electrocardiogram Amplifier Recovery after Defibrillation Shock
Directory of Open Access Journals (Sweden)
Ivan Dotsinsky
2005-04-01
Full Text Available A procedure for fast ECG amplifier recovery after defibrillation shocks was developed and simulated in the MATLAB environment. Exponentially decaying post-shock voltages have been recorded. Signals from the AHA database are taken and mixed with the recorded exponential disturbances. The algorithm applies moving averaging (comb filter on the compound input signal, thereby obtaining the samples of the disturbance. They are currently subtracted from the input signal. The results obtained show that its recovery is practically instantaneous.
Ultra-low Voltage CMOS Cascode Amplifier
Lehmann, Torsten; Cassia, Marco
2000-01-01
In this paper, we design a folded cascode operational transconductance amplifier in a standard CMOS process, which has a measured 69 dB DC gain, a 2 MHz bandwidth and compatible input- and output voltage levels at a 1 V power supply. This is done by a novel Current Driven Bulk (CDB) technique, which reduces the MOST threshold voltage by forcing a constant current though the transistor bulk terminal. We also look at limitations and improvements of this CDB technique.
International Nuclear Information System (INIS)
1977-01-01
The photo electrons from the picture on the fluorescent input screen are amplified by an electron optical system and produce an intensified image on the output screen. This can be photographed and shown on a TV screen. The effects of stray magnetic fields are reduced by covering the input screen with a grating made of strips of ferromagnetic material such as μ metal. (T.S.E.T.)
Ultra-low Voltage CMOS Cascode Amplifier
DEFF Research Database (Denmark)
Lehmann, Torsten; Cassia, Marco
2000-01-01
In this paper, we design a folded cascode operational transconductance amplifier in a standard CMOS process, which has a measured 69 dB DC gain, a 2 MHz bandwidth and compatible input- and output voltage levels at a 1 V power supply. This is done by a novel Current Driven Bulk (CDB) technique......, which reduces the MOST threshold voltage by forcing a constant current though the transistor bulk terminal. We also look at limitations and improvements of this CDB technique....
Bernabé, Y.; Wang, Y.; Qi, T.; Li, M.
2016-02-01
The main purpose of this work is to investigate the relationship between passive advection-dispersion and permeability in porous materials presumed to be statistically homogeneous at scales larger than the pore scale but smaller than the reservoir scale. We simulated fluid flow through pipe network realizations with different pipe radius distributions and different levels of connectivity. The flow simulations used periodic boundary conditions, allowing monitoring of the advective motion of solute particles in a large periodic array of identical network realizations. In order to simulate dispersion, we assumed that the solute particles obeyed Taylor dispersion in individual pipes. When a particle entered a pipe, a residence time consistent with local Taylor dispersion was randomly assigned to it. When exiting the pipe, the particle randomly proceeded into one of the pipes connected to the original one according to probabilities proportional to the outgoing volumetric flow in each pipe. For each simulation we tracked the motion of at least 6000 solute particles. The mean fluid velocity was 10-3 ms-1, and the distance traveled was on the order of 10 m. Macroscopic dispersion was quantified using the method of moments. Despite differences arising from using different types of lattices (simple cubic, body-centered cubic, and face-centered cubic), a number of general observations were made. Longitudinal dispersion was at least 1 order of magnitude greater than transverse dispersion, and both strongly increased with decreasing pore connectivity and/or pore size variability. In conditions of variable hydraulic radius and fixed pore connectivity and pore size variability, the simulated dispersivities increased as power laws of the hydraulic radius and, consequently, of permeability, in agreement with previously published experimental results. Based on these observations, we were able to resolve some of the complexity of the relationship between dispersivity and permeability.
Bemal, Suchandan; Anil, Arga Chandrashekar; Shankar, D.; Remya, R.; Roy, Rajdeep
2018-04-01
The deepening of mixed layer and ensuing changes in optical and physicochemical properties of euphotic zone can influence phytoplankton community dynamics in the northeastern Arabian Sea during winter monsoon. The response of picophytoplankton community to such changes during winter convective mixing is not well understood. Herein, we have compared variations in the picophytoplankton community structure during early (November-December 2012), peak (end-January 2014) and late (mid-February 2015) winter monsoon from three separate cruises in the southern northeastern Arabian Sea. The higher Synechococcus abundance owing to entrainment of nutrients in mixed layer was observed during peak winter monsoon, while the concomitant changes in nitrate concentration, light and oxygen environment restricted Prochlorococcus growth resulting in lower abundance during the same period. This highlights the diverse responses of picophytoplankton groups to physicochemical changes of water column during winter convective mixing. The divinyl chlorophyll b/a ratio (marker for Prochlorococcus ecotypes) indicated prevalence of one low-light adapted ecotype (sensitive to light shock) in sub-surface water, one high-light adapted ecotype in surface water during early winter monsoon and both disappeared during intense mixing period in peak winter monsoon. Subsequently, a distinct low-light adapted ecotype, capable to tolerate light shock, was noticed during late winter monsoon and we argue that this ecotype is introduced to southern northeastern Arabian Sea through advection from north by sub-surface circulation. The total picophytoplankton biomass available to microbial loop is restored during late winter monsoon, when stratification begins, with a higher abundance of Synechococcus and the re-occurrence of Prochlorococcus population in the region. These inferences indicate that variability in picophytoplankton community structure and their contribution to the microbial loop are driven by
Energy Technology Data Exchange (ETDEWEB)
Xu, Z., E-mail: zhanjie.xu@kit.ed [Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe (Germany); Travis, J.R. [Ingenieurbuero DuBois-Pitzer-Travis, 63071 Offenbach (Germany); Breitung, W.; Jordan, T. [Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe (Germany)
2010-12-15
Potentially explosive dust aerosol mobilization in the vacuum vessel is an important safety issue of the ITER facility, especially in scenarios of loss of vacuum accidents. Therefore dust mobilization modeling is ongoing in Research Center Karlsuhe. At first the aerosol particle model in the GASFLOW computer code is introduced briefly. To verify the particle model, a series of particle diffusion problems are simulated in one-, two- and three-dimensions. In each problem a particle source is initially exposed to an advective gas flow. Then a dust cloud is formed in the down stream. To obtain the theoretical solution about the particle concentration in the dust cloud, the governing diffusion partial differential equations with an additional advection term are solved by using Green's function method. Different spatial and temporal characters about the particle sources are also considered, e.g., instantaneous or continuous sources, line, or volume sources and so forth. The GASFLOW simulation results about the particle concentrations and the corresponding Green's function solutions are compared case by case. Very good agreements are found between the theoretical solutions and the GASGLOW simulations, when the drag force between the micron-sized particles and the conveying gas flow meets the Stokes' law about resistance. This situation is corresponding to a very small Reynolds number based on the particle diameter, with a negligible inertia effect of the particles. This verification work shows that the particle model of the GASFLOW code can reproduce numerically particle transport and diffusion in a good way.
Advection from the North Atlantic as the Forcing of Winter Greenhouse Effect Over Europe
Otterman, Jay; Angell, J.; Atlas, Robert; Bungato, D.; Schubert, S.; Starr, D.; Susskind, J.; Wu, M.-L. C.
2001-01-01
In winter, large interannual fluctuations in the surface skin temperature are observed over central Europe: we observe a difference of 9.8 K comparing warm February 1990 with cold February 1996 for the region 50-60 degrees N; 5-35 degrees E. Previous studies show that advection from the North Atlantic constitutes the forcing to such fluctuations. The advection is quantified by Index I(sub na), the average of the ocean-surface wind speed over the eastern North Atlantic when the direction is from the southwest (when the wind is from another direction, it counts as a zero speed to the average). Average Ina for February 1990 was 10.6 in s(exp -1), but for February 1996 I(sub na) was only 2.4 m s(exp -1). A large value of I(sub na) means a strong southwesterly flow which brings warm and moist air into Europe at low level, producing a steeper tropospheric lapse rate. Strong ascending motions result, which we observe in February 1990 at 700 mb. The near-surface moisture rises to higher (and cooler) levels, producing clouds and precipitation. Total preciptable water and cloud-cover fraction have larger values in February 1990 than in 1996. The difference in the greenhouse effect between these two scenarios can be translated into a virtual irradiating source of 2.6 W m(exp -2) above the February 1990 atmosphere, which, as an order of magnitude estimate, contributes to the warming of the surface by 2.6 K. If we accept this estimate as numerically pertinent, the direct effect stands as 7.2 K (9.8 K - 2.6 K), and therefore its greenhouse-effect reinforcement is by 36%. This constitutes a substantial positive feedback to the direct effect, which is the inflow of warm air to the low troposphere over Europe.
Kordilla, Jannes; Pan, Wenxiao; Tartakovsky, Alexandre
2014-12-14
We propose a novel smoothed particle hydrodynamics (SPH) discretization of the fully coupled Landau-Lifshitz-Navier-Stokes (LLNS) and stochastic advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and the self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations is found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study formation of the so-called "giant fluctuations" of the front between light and heavy fluids with and without gravity, where the light fluid lies on the top of the heavy fluid. We find that the power spectra of the simulated concentration field are in good agreement with the experiments and analytical solutions. In the absence of gravity, the power spectra decay as the power -4 of the wavenumber-except for small wavenumbers that diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations, resulting in much weaker dependence of the power spectra on the wavenumber. Finally, the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlaying a light fluid. The front dynamics is shown to agree well with the analytical solutions.
Fournier, S.; Vandemark, D. C.; Gaultier, L.; Lee, T.; Jonsson, B. F.; Gierach, M. M.
2017-12-01
Sea surface salinity (SSS) and sea surface temperature (SST) variations in the tropical Atlantic east of the Lesser Antilles, a region impacted by freshwater advection from the Amazon and Orinoco Rivers have potential implications to late-summer tropical cyclones (TCs). This study examines these variations during late summer and their forcing mechanisms using observations. During the period 2010-2014, the largest difference in plume-affected area, defined as the extent covered by SSS lower than 35.5 pss, is found between 2011 and 2014. Plume waters covered 92% (60%) of the study region in 2011 (2014) with the averaged SSS in the study region being 2-pss lower in 2011. Lagrangian particle tracking based on satellite-derived ocean currents is used to diagnose the impacts of the river plumes on SSS and SST during 2010-2014. Northward freshwater flux in the summer of 2014 is significantly weaker than those in 2010-2013. This is not due to interannual discharge variability, but significant changes in eddy-driven transport and cross-shore winds. In particular, the stronger cross-shore wind in May 2014 restricted offshore freshwater flow, leading to a smaller extent of the plume-affected area. Persistent SST gradients are often found near the plume edge, which may have implication to ocean-atmosphere coupling associated with TC-related convection. SST in the study region is 1°C higher in 2010 than in other years, and is related to basin-scale ocean-atmosphere processes. Interannual variation in Amazon advective pathways and the associated SSS changes are also influenced by changes in the ITCZ position between 2011 and 2014.
Prototype disc amplifier for Iskra-6 facility
International Nuclear Information System (INIS)
Grigorovich, S.V.; Eroshenko, V.F.; Krotov, V.A.; Demidov, V.L.; Kalinin, N.V.; Kurunov, R.F.; Smirnov, V.G.; Fomin, V.M.
2006-01-01
Eight-channel disk amplifiers of the ISKRA-6 facility are made up of sections. An amplifier section consists of eight active elements (2*4) made of KGSS-0180/35-grade neodymium phosphate glass 400*690*40 mm in size located in frames at the Brewster angle. Twenty flash-lamps are arranged in one amplifier module. The flash-lamps have an inter electrode distance of 1600 mm, the tube is 40 mm in inner diameter. The results of numerical investigations into the dynamics of high-current pulse radiation discharge are presented. The investigations were carried out by the 1-dimensional RMHD-model. This model takes into account the transient processes in the electric circuit and the physical processes in the discharge plasma: ionization, Joule heating, thermal conductivity, radiation transfer and plasma motion caused by the non-uniformity of energy introduction into the discharge in case of a non-uniform initial ionization of gas in the pumping lamp. The experimental results of spectral measurements and light efficiency of the flash-lamps depending on specific power and value of energy contribution are presented
Charge sensitive amplifies. The state of arts
Energy Technology Data Exchange (ETDEWEB)
Mori, Kunishiro [Clear Pulse Co., Tokyo (Japan)
1996-07-01
In the radiation detectors, signals are essentially brought with charges produced by radiation, then it is naturally the best way to use a charge sensitive amplifier (CSA) system to extract those signals. The CSA is thought to be the best amplifier suitable to almost all the radiation detectors, if neglecting economical points of view. The CSA has been only applied to special fields like radiation detection because the concept of `charges` is not so universal against the concepts of `voltage` and `current`. The CSA, however, is low in noise and a high speed amplifier and may be applicable not only to radiation measurement but also piezoelectric devices and also bolometers. In this article, noise in the CSA, basic circuit on the CSA, concepts of `equivalent noise charge` (ENC), a method for the ENC, and importance of the `open-loop gain` in the CSA to achieve better performance of it and how to realize in a practical CSA were described. And, characteristics on a counting rate of the CSA, various circuit used in the CSA, and CSAs which are commercially available at present and special purpose CSAs were also introduced. (G.K.)
Pump to signal noise transfer in parametric fiber amplifiers
DEFF Research Database (Denmark)
Lund-Hansen, Toke; Rottwitt, Karsten; Peucheret, Christophe
2010-01-01
Fiber optic parametric amplifiers have been suggested due to their potential low spontaneous emission. However, by nature the parametric amplifier only work in a forward pumped configuration, which result in transfer of relative intensity noise in the pump to the signal.......Fiber optic parametric amplifiers have been suggested due to their potential low spontaneous emission. However, by nature the parametric amplifier only work in a forward pumped configuration, which result in transfer of relative intensity noise in the pump to the signal....
Noise and saturation properties of semiconductor quantum dot optical amplifiers
DEFF Research Database (Denmark)
Berg, Tommy Winther; Mørk, Jesper
2002-01-01
We present a detailed theoretical analysis of quantum dot optical amplifiers. Due to the presence of a reservoir of wetting layer states, the saturation and noise properties differ markedly from bulk or QW amplifiers and may be significantly improved.......We present a detailed theoretical analysis of quantum dot optical amplifiers. Due to the presence of a reservoir of wetting layer states, the saturation and noise properties differ markedly from bulk or QW amplifiers and may be significantly improved....
The OPTHER Project: Progress toward the THz Amplifier
DEFF Research Database (Denmark)
Paoloni, C; Brunetti, F; Di Carlo, A
2011-01-01
This paper describes the status of the OPTHER (OPtically driven TeraHertz AmplifiERs) project and progress toward the THz amplifier realization. This project represents a considerable advancement in the field of high frequency amplification. The design and realization of a THz amplifier within...... this project is a consolidation of efforts at the international level from the leading scientific and industrial European organizations working with vacuum electronics....
Differential transimpedance amplifier circuit for correlated differential amplification
Gresham, Christopher A [Albuquerque, NM; Denton, M Bonner [Tucson, AZ; Sperline, Roger P [Tucson, AZ
2008-07-22
A differential transimpedance amplifier circuit for correlated differential amplification. The amplifier circuit increase electronic signal-to-noise ratios in charge detection circuits designed for the detection of very small quantities of electrical charge and/or very weak electromagnetic waves. A differential, integrating capacitive transimpedance amplifier integrated circuit comprising capacitor feedback loops performs time-correlated subtraction of noise.
Functional Blocks and Biquadratic ARC Filters using Transimpedance Amplifiers
R. Sarman; R. Prokop; T. Dostal
1997-01-01
The aims of the article are design and analysis of modern circuits including high performance functional blocks and biquadratic filters using transimpedance amplifiers. Here are given various types of these circuits, that works in classical voltage, current or hybrid mode. In this paper are also compared various possibilities of connection of single amplifier filters as for reduction of influence of transimpedance amplifier parasitic elements.
The Dynamics of Semiconductor Optical Amplifiers – Modeling and Applications
DEFF Research Database (Denmark)
Mørk, Jesper; Nielsen, Mads Lønstrup; Berg, Tommy Winther
2003-01-01
The importance of semiconductor optical amplifiers is discussed. A semiconductor optical amplifier (SOA) is a semiconductor laser with anti-reflection coated facets that amplifies an injected light signal by means of stimulated emission. SOAs have a number of unique properties that open up...
Flight code validation simulator
Sims, Brent A.
1996-05-01
An End-To-End Simulation capability for software development and validation of missile flight software on the actual embedded computer has been developed utilizing a 486 PC, i860 DSP coprocessor, embedded flight computer and custom dual port memory interface hardware. This system allows real-time interrupt driven embedded flight software development and checkout. The flight software runs in a Sandia Digital Airborne Computer and reads and writes actual hardware sensor locations in which Inertial Measurement Unit data resides. The simulator provides six degree of freedom real-time dynamic simulation, accurate real-time discrete sensor data and acts on commands and discretes from the flight computer. This system was utilized in the development and validation of the successful premier flight of the Digital Miniature Attitude Reference System in January of 1995 at the White Sands Missile Range on a two stage attitude controlled sounding rocket.
Flight control actuation system
Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)
2006-01-01
A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.
Bat flight: aerodynamics, kinematics and flight morphology.
Hedenström, Anders; Johansson, L Christoffer
2015-03-01
Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace. © 2015. Published by The Company of Biologists Ltd.
A low-voltage sense amplifier with two-stage operational amplifier clamping for flash memory
Guo, Jiarong
2017-04-01
A low-voltage sense amplifier with reference current generator utilizing two-stage operational amplifier clamp structure for flash memory is presented in this paper, capable of operating with minimum supply voltage at 1 V. A new reference current generation circuit composed of a reference cell and a two-stage operational amplifier clamping the drain pole of the reference cell is used to generate the reference current, which avoids the threshold limitation caused by current mirror transistor in the traditional sense amplifier. A novel reference voltage generation circuit using dummy bit-line structure without pull-down current is also adopted, which not only improves the sense window enhancing read precision but also saves power consumption. The sense amplifier was implemented in a flash realized in 90 nm flash technology. Experimental results show the access time is 14.7 ns with power supply of 1.2 V and slow corner at 125 °C. Project supported by the National Natural Science Fundation of China (No. 61376028).
Prakash Loungani; Paolo Mauro
2000-01-01
This paper documents the scale of capital flight from Russia, compares it with that observed in other countries, and reviews policy options. The evidence from other countries suggests that capital flight can be reversed once reforms take hold. The paper argues that capital flight from Russia can only be curbed through a medium-term reform strategy aimed at improving governance and macroeconomic performance, and strengthening the banking system. Capital controls result in costly distortions an...
1996-01-01
The twin pusher propeller-driven engines of the Theseus research aircraft can be clearly seen in this photo, taken during a 1996 research flight at NASA's Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite
Putnam, Terrill W.; Ayers, Theodore G.
1989-01-01
Flight research and testing form a critical link in the aeronautic research and development chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond a doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing were the crucible in which aeronautical concepts were advanced and proven to the point that engineers and companies are willing to stake their future to produce and design aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress being made and the challenges to come.
Flight Standards Automation System -
Department of Transportation — FAVSIS supports Flight Standards Service (AFS) by maintaining their information on entities such as air carriers, air agencies, designated airmen, and check airmen....
Note: A high dynamic range, linear response transimpedance amplifier.
Eckel, S; Sushkov, A O; Lamoreaux, S K
2012-02-01
We have built a high dynamic range (nine decade) transimpedance amplifier with a linear response. The amplifier uses junction-gate field effect transistors (JFETs) to switch between three different resistors in the feedback of a low input bias current operational amplifier. This allows for the creation of multiple outputs, each with a linear response and a different transimpedance gain. The overall bandwidth of the transimpedance amplifier is set by the bandwidth of the most sensitive range. For our application, we demonstrate a three-stage amplifier with transimpedance gains of approximately 10(9)Ω, 3 × 10(7)Ω, and 10(4)Ω with a bandwidth of 100 Hz.
Characterization of a Common-Source Amplifier Using Ferroelectric Transistors
Hunt, Mitchell; Sayyah, Rana; MacLeond, Todd C.; Ho, Pat D.
2010-01-01
This paper presents empirical data that was collected through experiments using a FeFET in the established common-source amplifier circuit. The unique behavior of the FeFET lends itself to interesting and useful operation in this widely used common-source amplifier. The paper examines the effect of using a ferroelectric transistor for the amplifier. It also examines the effects of varying load resistance, biasing, and input voltages on the output signal and gives several examples of the output of the amplifier for a given input. The difference between a commonsource amplifier using a ferroelectric transistor and that using a MOSFET is addressed.
Characterization of a Common-Gate Amplifier Using Ferroelectric Transistors
Hunt, Mitchell; Sayyah, Rana; MacLeod, Todd C.; Ho, Fat D.
2011-01-01
In this paper, the empirical data collected through experiments performed using a FeFET in the common-gate amplifier circuit is presented. The FeFET common-gate amplifier was characterized by varying all parameters in the circuit, such as load resistance, biasing of the transistor, and input voltages. Due to the polarization of the ferroelectric layer, the particular behavior of the FeFET common-gate amplifier presents interesting results. Furthermore, the differences between a FeFET common-gate amplifier and a MOSFET common-gate amplifier are examined.
International Nuclear Information System (INIS)
Devol-Brown, I.; Tinseau, E.; Rebischung, F.; De Windt, L.; Bartier, D.; Motellier, S.; Techer, I.
2012-01-01
The Tournemire experimental platform of IRSN in Aveyron is based on a tunnel and several galleries. The tunnel was excavated between 1882 and 1886 through Domerian marls and Toarcian argillites. Its walls were recovered by lime that is yet in contact with the argillites. The program associated to the study of the engineered analogues provided by the Tournemire experimental platform is presented in another paper. In parallel, lab experiments (diffusion and advection) are performed in smaller time (1 year) and space scale to control some parameters and complete engineered analogues results. This paper details the scientific program developed on these diffusion and advection lab samples. The diffusion study was designed to provide better understanding of the phenomena that govern diffusion processes during the transient phase between site and alkaline conditions. The advection study was designed to evaluate the influence of an advective hydraulic regime on the interaction argillite/alkaline fluid in comparison with the diffusive one. In all experiments, pH and concentrations (cations, anions) were monitored in time. Mineralogical and petrographic analyses (XRD, SEM, TEM) of the argillite cores were performed before and after the experiments for characterizing the mineral alterations and their potential role on the alkaline plume migration
van der Vegt, Jacobus J.W.; Rhebergen, Sander
2011-01-01
The hp-Multigrid as Smoother algorithm (hp-MGS) for the solution of higher order accurate space-(time) discontinuous Galerkin discretizations of advection dominated flows is presented. This algorithm combines p-multigrid with h-multigrid at all p-levels, where the h-multigrid acts as smoother in the
W. J. Massman
2006-01-01
Advective flows within soils and snowpacks caused by pressure fluctuations at the upper surface of either medium can significantly influence the exchange rate of many trace gases from the underlying substrate to the atmosphere. Given the importance of many of these trace gases in understanding biogeochemical cycling and global change, it is crucial to quantify (as much...
W. J. Massman; J. M. Frank
2006-01-01
Meadow and forest CO2 amounts sampled beneath an approximately meter deep (steady state) snowpack at a subalpine site in southern Rocky Mountains of Wyoming are observed to vary by nearly 200 ppm over periods ranging from 4 to 15 days. This work employs the model of periodic, pressure-induced, advective transport in permeable media developed in...
International Nuclear Information System (INIS)
Hughes, T.J.R.; Hulbert, G.M.; Franca, L.P.
1988-10-01
Galerkin/least-squares finite element methods are presented for advective-diffusive equations. Galerkin/least-squares represents a conceptual simplification of SUPG, and is in fact applicable to a wide variety of other problem types. A convergence analysis and error estimates are presented. (author) [pt
Digital Repository Service at National Institute of Oceanography (India)
AnilKumar, N.; Singbal, S.Y.S.
The vertical advection-diffusion model proposed by Craig has been applied to the study of CO sub(2) and O sub(2) profiles in Central Arabian Sea. Distributions of total CO Sub(2) and O sub(2) are explained better by expressions involving exponential...
Guerrero, E. F.; Meigs, A.
2012-12-01
Mantle plumes have been recognized to express themselves on the surface as long wavelength and low amplitude topographic swells. These swells are measured as positive geoid anomalies and include shorter wavelength topographic features such as volcanic edifices and pre-exisitng topography. Advection of the topographic swell is expected as the lithosphere passes over the plume uplift source. The hot spot swell occurs in the landscape as transient signal that is expressed with waxing and waning topography. Waxing topography occurs at the leading edge of the swell and is expressed as an increase in rock uplift that is preserved by rivers and landscapes. Advection of topography predicts a shift in a basin from deposition to incision, an increase in convexity of a transverse river's long profile and a lateral river migration in the direction of advection. The Yellowstone region has a strong positive geoid anomaly and the volcanic signal, which have been interpreted as the longer and shorter wavelength topographic expressions of the hot spot. These expressions of the hot spot developed in a part of North America with a compounded deformation and topographic history. Previous studies of the Yellowstone topographic swell have concentrated on the waning or trailing signal preserved in the Snake River Plain. Our project revisits the classic geomorphology study area in the Bighorn Basin of Wyoming and Montana, which is in leading edge of the swell. Present models identify the swell as having a 400 km in diameter and that it is centered on the Yellowstone caldera. If we assume advection to occur in concert with the caldera eruptive track, the Yellowstone swell has migrated to the northeast at a rate of 3 cm yr-1 and began acting on the Bighorn Basin's landscape between 3 and 2 Ma. The Bighorn Basin has an established history of a basin-wide switch from deposition to incision during the late Pliocene, yet the age control on the erosional evolution of the region is relative. This
Class D audio amplifiers for high voltage capacitive transducers
DEFF Research Database (Denmark)
Nielsen, Dennis
of high volume, weight, and cost. High efficient class D amplifiers are now widely available offering power densities, that their linear counterparts can not match. Unlike the technology of audio amplifiers, the loudspeaker is still based on the traditional electrodynamic transducer invented by C.W. Rice......Audio reproduction systems contains two key components, the amplifier and the loudspeaker. In the last 20 – 30 years the technology of audio amplifiers have performed a fundamental shift of paradigm. Class D audio amplifiers have replaced the linear amplifiers, suffering from the well-known issues...... with the low level of acoustical output power and complex amplifier requirements, have limited the commercial success of the technology. Horn or compression drivers are typically favoured, when high acoustic output power is required, this is however at the expense of significant distortion combined...
Low noise amplifier for ZnS(Ag) scintillation chamber
International Nuclear Information System (INIS)
Do Hoang Cuong
1998-01-01
A new pulse amplifier that can be used with standard photomultiplier tubes coupled with Zn(Ag) scintillation chamber is presented. The amplifier based on an IC operational amplifier LF 356N consists of a low-noise charge sensitive preamplifier and pulse shaping circuits for optimization of signal to noise ratio. Temperature instability is ≤ 0.05%/ o C. Dynamic range for linear output signals is equal +7 V. The presented amplifier is used in a measuring head for 0.17 L Lucas chambers developed in Department of Nuclear Instruments and Methods of the INCT in laboratory investigations aimed to develop methods and instruments for measurement of radon concentration in the air. The amplifier can also be employed for measurement of ionizing radiation by means of other scintillators coupled to PM tube. The amplifier is followed by a pulse discriminator with adjustable discrimination level. The amplifier output signal and discriminator output pulses are fed to external devices. (author)
A new semicustom integrated bipolar amplifier for silicon strip detectors
International Nuclear Information System (INIS)
Zimmerman, T.
1989-01-01
The QPA02 is a four channel DC coupled two stage transimpedance amplifier designed at Fermilab on a semicustom linear array (Quickchip 2S) manufactured by Tektronix. The chip was developed as a silicon strip amplifier but may have other applications as well. Each channel consists of a preamplifier and a second stage amplifier/sharper with differential output which can directly drive a transmission line (90 to 140 ohms). External bypass capacitors are the only discrete components required. QPA02 has been tested and demonstrated to be an effective silicon strip amplifier. Other applications may exist which can use this amplifier or a modified version of this amplifier. For example, another design is now in progress for a wire chamber amplifier, QPA03, to be reported later. Only a relatively small effort was required to modify the design and layout for this application. 11 figs
Low-noise detector and amplifier design for 100 ns direct detection CO{sub 2} LIDAR receiver
Energy Technology Data Exchange (ETDEWEB)
Cafferty, M.M.; Cooke, B.J.; Laubscher, B.E.; Olivas, N.L.; Fuller, K.
1997-06-01
The development and test results of a prototype detector/amplifier design for a background limited, pulsed 100 ns, 10--100 kHz repetition rate LIDAR/DIAL receiver system are presented. Design objectives include near-matched filter detection of received pulse amplitude and round trip time-of-flight, and the elimination of excess correlated detector/amplifier noise for optimal pulse averaging. A novel pole-zero cancellation amplifier, coupled with a state-of-the-art SBRC (Santa Barbara Research Center) infrared detector was implemented to meet design objectives. The pole-zero cancellation amplifier utilizes a tunable, pseudo-matched filter technique to match the width of the laser pulse to the shaping time of the filter for optimal SNR performance. Low frequency correlated noise, (l/f and drift noise) is rejected through a second order high gain feedback loop. The amplifier also employs an active detector bias stage minimizing detector drift. Experimental results will be provided that demonstrate near-background limited, 100 ns pulse detection performance given a 8.5--11.5 {micro}m (300 K B.B.) radiant background, with the total noise floor spectrally white for optimal pulse averaging efficiency.
High sensitivity amplifier/discriminator for PWC's
International Nuclear Information System (INIS)
Hansen, S.
1983-01-01
The facility support group at Fermilab is designing and building a general purpose beam chamber for use in several locations at the laboratory. This pwc has 128 wires per plane spaced 1 mm apart. An initial production of 25 signal planes is anticipated. In proportional chambers, the size of the signal depends exponentially on the charge stored per unit of length along the anode wire. As the wire spacing decreases, the capacitance per unit length decreases, thereby requiring increased applied voltage to restore the necessary charge per unit length. In practical terms, this phenomenon is responsible for difficulties in constructing chambers with less than 2 mm wire spacing. 1 mm chambers, therefore, are frequently operated very near to their breakdown point and/or a high gain gas containing organic compounds such as magic gas is used. This argon/iso-butane mixture has three drawbacks: it is explosive when exposed to the air, it leaves a residue on the wires after extended use and is costly. An amplifier with higher sensitivity would reduce the problems associated with operating chambers with small wire spacings and allow them to be run a safe margin below their breakdown voltage even with an inorganic gas mixture such as argon/CO2, this eliminating the need to use magic gas. Described here is a low cost amplifier with a usable threshold of less than 0.5 μA. Data on the performance of this amplifier/discriminator in operation on a prototype beam chamber are given. This data shows the advantages of the high sensitivity of this design
Numerical simulation of cross field amplifiers
International Nuclear Information System (INIS)
Eppley, K.
1990-01-01
Cross field amplifiers (CFA) have been used in many applications where high power, high frequency microwaves are needed. Although these tubes have been manufactured for decades, theoretical analysis of their properties is not as highly developed as for other microwave devices such as klystrons. One feature distinguishing cross field amplifiers is that the operating current is produced by secondary emission from a cold cathode. This removes the need for a heater and enables the device to act as a switch tube, drawing no power until the rf drive is applied. However, this method of generating the current does complicate the simulation. We are developing a simulation model of cross field amplifiers using the PIC code CONDOR. We simulate an interaction region, one traveling wavelength long, with periodic boundary conditions. An electric field with the appropriate phase velocity is imposed on the upper boundary of the problem. Evaluation of the integral of E·J gives the power interchanged between the wave and the beam. Given the impedance of the structure, we then calculate the change in the traveling wave field. Thus we simulate the growth of the wave through the device. The main advance of our model over previous CFA simulations is the realistic tracking of absorption and secondary emission. The code uses experimental curves to calculate secondary production as a function of absorbed energy, with a theoretical expression for the angular dependence. We have used this code to model the 100 MW X-band CFA under construction at SLAC, as designed by Joseph Feinstein and Terry Lee. We are examining several questions of practical interest, such as the power and spectrum of absorbed electrons, the minimum traveling wave field needed to initiate spoke formation, and the variation of output power with dc voltage, anode-cathode gap, and magnetic field. 5 refs., 8 figs
Waveguide harmonic damper for klystron amplifier
International Nuclear Information System (INIS)
Kang, Y.
1998-01-01
A waveguide harmonic damper was designed for removing the harmonic frequency power from the klystron amplifiers of the APS linac. Straight coaxial probe antennas are used in a rectangular waveguide to form a damper. A linear array of the probe antennas is used on a narrow wall of the rectangular waveguide for damping klystron harmonics while decoupling the fundamental frequency in dominent TE 01 mode. The klystron harmonics can exist in the waveguide as waveguide higher-order modes above cutoff. Computer simulations are made to investigate the waveguide harmonic damping characteristics of the damper
Active isotropic slabs: conditions for amplified reflection
Perez, Liliana I.; Matteo, Claudia L.; Etcheverry, Javier; Duplaá, María Celeste
2012-12-01
We analyse in detail the necessary conditions to obtain amplified reflection (AR) in isotropic interfaces when a plane wave propagates from a transparent medium towards an active one. First, we demonstrate analytically that AR is not possible if a single interface is involved. Then, we study the conditions for AR in a very simple configuration: normal incidence on an active slab immersed in transparent media. Finally, we develop an analysis in the complex plane in order to establish a geometrical method that not only describes the behaviour of active slabs but also helps to simplify the calculus.
Active isotropic slabs: conditions for amplified reflection
International Nuclear Information System (INIS)
Perez, Liliana I; Duplaá, María Celeste; Matteo, Claudia L; Etcheverry, Javier
2012-01-01
We analyse in detail the necessary conditions to obtain amplified reflection (AR) in isotropic interfaces when a plane wave propagates from a transparent medium towards an active one. First, we demonstrate analytically that AR is not possible if a single interface is involved. Then, we study the conditions for AR in a very simple configuration: normal incidence on an active slab immersed in transparent media. Finally, we develop an analysis in the complex plane in order to establish a geometrical method that not only describes the behaviour of active slabs but also helps to simplify the calculus. (paper)
Sm 3+-doped polymer optical waveguide amplifiers
Huang, Lihui; Tsang, Kwokchu; Pun, Edwin Yue-Bun; Xu, Shiqing
2010-04-01
Trivalent samarium ion (Sm 3+) doped SU8 polymer materials were synthesized and characterized. Intense red emission at 645 nm was observed under UV laser light excitation. Spectroscopic investigations show that the doped materials are suitable for realizing planar optical waveguide amplifiers. About 100 μm wide multimode Sm 3+-doped SU8 channel waveguides were fabricated using a simple UV exposure process. At 250 mW, 351 nm UV pump power, a signal enhancement of ˜7.4 dB at 645 nm was obtained for a 15 mm long channel waveguide.
Advective, Diffusive and Eruptive Leakage of CO2 and Brine within Fault Zone
Jung, N. H.; Han, W. S.
2014-12-01
This study investigated a natural analogue for CO2 leakage near the Green River, Utah, aiming to understand the influence of various factors on CO2 leakage and to reliably predict underground CO2 behavior after injection for geologic CO2 sequestration. Advective, diffusive, and eruptive characteristics of CO2 leakage were assessed via a soil CO2 flux survey and numerical modeling. The field results show anomalous CO2 fluxes (> 10 g m-2 d-1) along the faults, particularly adjacent to CO2-driven cold springs and geysers (e.g., 36,259 g m-2 d-1 at Crystal Geyser), ancient travertines (e.g., 5,917 g m-2 d-1), joint zones in sandstone (e.g., 120 g m-2 d-1), and brine discharge zones (e.g., 5,515 g m-2 d-1). Combined to similar isotopic ratios of gas and progressive evolution of brine chemistry at springs and geysers, a gradual decrease of soil CO2 flux from the Little Grand Wash (LGW; ~36,259 g m-2 d-1) to Salt Wash (SW; ~1,428 g m-2 d-1) fault zones reveals the same CO2 origin and potential southward transport of CO2 over 10-20 km. The numerical simulations overtly exhibit lateral transport of free CO2 and CO2-rich brine from the LGW to SW fault zones through the regional aquifers (e.g., Entrada, Navajo, Kayenta, Wingate, White Rim). CO2 travels predominantly as an aqueous phase (Xco2=~0.045) as previously suggested, giving rise to the convective instability that further accelerates CO2 dissolution. While the buoyant free CO2 always tends to ascend, a fraction of dense CO2-rich brine flows laterally into the aquifer and mixes with the formation fluids during upward migration along the fault. The fault always enhances advective CO2 transport regardless of its permeability (k). However, only the low-k fault scenario engenders development of CO2 anticlinal trap within the shallow aquifers (Entrada and Navajo), concentrating high CO2 fluxes (~1,273 g m-2 d-1) within the northern footwall of the LGW fault similar to the field. Moreover, eruptive CO2 leakage at a well
Advection within side-by-side liquid micro-cylinders in a cross-flow
Dong, Qingming; Sau, Amalendu
2017-11-01
The gaseous SO2 entrainment from outer air stream and dispersion in binary and ternary liquid micro-cylinders appearing side-by-side are examined hereby. The separation/attachment regulated non-uniform interfacial momentum exchange creates main stream driven "primary" and shear reversed "secondary" vortices in the liquid cylinders. At separation points, the sense of rotation of the generated "primary-secondary" vortex pair remains inward directed. We define such a vortex pair as the "inflow" type. However, at stagnation or attachment points, the sense of rotation of a "primary-primary" or "secondary-secondary" vortex pair remains outward directed, and such a vortex pair is defined as the "outflow" type. For the coupled water cylinders facing an oncoming stream contaminated by gaseous SO2, its absorption and internal transport are effectively controlled by dominant "inflow" and "outflow" natured dynamics of the said vortex pairs, besides by diffusion. The evolving "inflow" natured "primary-secondary" vortex pairs at separation points actively entrain the outer SO2, whereas the "outflow" natured vortex-pairs oppose SO2 entry through the stagnation regions. Moreover, the blockage induced steady-symmetric, steady-deflected, and flip-flopping air-jets through gaps, for varied gap-ratio (1 ≤ G/R ≤ 4) and Reynolds number (30 ≤ Re ≤ 160), create distinctive impact both on quantitative SO2 absorption (mso2 ') and convective nature of the SO2 transport in upper, lower, and middle cylinders, by virtue of modified strength and size of the inflow and outflow paired vortices. The present study shows that the tiny "secondary vortices" play important roles in SO2 entrainment and in effectively controlling the local absorption rate Rs o2. The sudden acceleration and upward/downward deflection of gap-flows enhanced near-neck advective SO2 entrainment by suitably strengthening the "inflow" natured local vortex dynamics. Conversely, for the reduced size of secondary vortices
Camassa, Roberto; McLaughlin, Richard M.; Viotti, Claudio
2010-11-01
The time evolution of a passive scalar advected by parallel shear flows is studied for a class of rapidly varying initial data. Such situations are of practical importance in a wide range of applications from microfluidics to geophysics. In these contexts, it is well-known that the long-time evolution of the tracer concentration is governed by Taylor's asymptotic theory of dispersion. In contrast, we focus here on the evolution of the tracer at intermediate time scales. We show how intermediate regimes can be identified before Taylor's, and in particular, how the Taylor regime can be delayed indefinitely by properly manufactured initial data. A complete characterization of the sorting of these time scales and their associated spatial structures is presented. These analytical predictions are compared with highly resolved numerical simulations. Specifically, this comparison is carried out for the case of periodic variations in the streamwise direction on the short scale with envelope modulations on the long scales, and show how this structure can lead to "anomalously" diffusive transients in the evolution of the scalar onto the ultimate regime governed by Taylor dispersion. Mathematically, the occurrence of these transients can be viewed as a competition in the asymptotic dominance between large Péclet (Pe) numbers and the long/short scale aspect ratios (LVel/LTracer≡k), two independent nondimensional parameters of the problem. We provide analytical predictions of the associated time scales by a modal analysis of the eigenvalue problem arising in the separation of variables of the governing advection-diffusion equation. The anomalous time scale in the asymptotic limit of large k Pe is derived for the short scale periodic structure of the scalar's initial data, for both exactly solvable cases and in general with WKBJ analysis. In particular, the exactly solvable sawtooth flow is especially important in that it provides a short cut to the exact solution to the
Rogers, C. W.; Eadie, W. J.; Katz, U.; Kocmond, W. C.
1975-01-01
A two-dimensional numerical model was used to investigate the formation of marine advection fog. The model predicts the evolution of potential temperature, horizontal wind, water vapor content, and liquid water content in a vertical cross section of the atmosphere as determined by vertical turbulent transfer and horizontal advection, as well as radiative cooling and drop sedimentation. The model is designed to simulate the formation, development, or dissipation of advection fog in response to transfer of heat and moisture between the atmosphere and the surface as driven by advection over horizontal discontinuities in the surface temperature. Results from numerical simulations of advection fog formation are discussed with reference to observations of marine fog. A survey of candidate fog or cloud microphysics experiments which might be performed in the low gravity environment of a shuttle-type spacecraft in presented. Recommendations are given for relatively simple experiments which are relevent to fog modification problems.
Baumann, Ethan
2006-01-01
A viewgraph presentation detailing X-43A Flight controls at NASA Dryden Flight Research Center is shown. The topics include: 1) NASA Dryden, Overview and current and recent flight test programs; 2) Unmanned Aerial Vehicle Synthetic Aperture Radar (UAVSAR) Program, Program Overview and Platform Precision Autopilot; and 3) Hyper-X Program, Program Overview, X-43A Flight Controls and Flight Results.
Trial manufacture of an insulated amplifier
International Nuclear Information System (INIS)
Okuno, Shigeo; Matsuura, Kiyokata.
1978-10-01
Trial manufacture of an insulated amplifier was carried out. The input signals are divided by filters Th and Tl into high frequency component and low frequency component. The high frequency component drives a transformer T 1 , and secondary signals are induced. The low frequency component drives a transformer T 2 through a buffer and a modulator. The secondary signals from both transformers are recombined to make the output signals. Compensation for the frequency characteristics of the high frequency transformer and that for the effect of a filter in the demodulation circuit for low frequency component are considered. The time constant of output signals for rectangular input signals was 30 microsec, when only the low frequency part is operated. The drift of the direct current level is within 5 mV. The characteristic features of the high frequency part was also investigated. The overall characteristic features of this amplifier were good for the frequency range of 0 to 500 kHz. (Kato, T.)
Mechanical Amplifier for a Piezoelectric Transducer
Moore, James; Swain, Mark; Lawson, Peter; Calvet, Robert
2003-01-01
A mechanical amplifier has been devised to multiply the stroke of a piezoelectric transducer (PZT) intended for use at liquid helium temperatures. Interferometry holds the key to high angular resolution imaging and astrometry in space. Future space missions that will detect planets around other solar systems and perform detailed studies of the evolution of stars and galaxies will use new interferometers that observe at mid- and far-infrared wavelengths. Phase-measurement interferometry is key to many aspects of astronomical interferometry, and PZTs are ideal modulators for most methods of phase measurement, but primarily at visible wavelengths. At far infrared wavelengths of 150 to 300 m, background noise is a severe problem and all optics must be cooled to about 4 K. Under these conditions, piezos are ill-suited as modulators, because their throw is reduced by as much as a factor of 2, and even a wavelength or two of modulation is beyond their capability. The largest commercially available piezo stacks are about 5 in. (12.7 cm) long and have a throw of about 180 m at room temperature and only 90 m at 4 K. It would seem difficult or impossible to use PZTs for phase measurements in the far infrared were it not for the new mechanical amplifier that was designed and built.
Direct solar-pumped iodine laser amplifier
Han, Kwang S.; Hwang, In Heon
1990-01-01
The optimum conditions of a solar pumped iodine laser are found in this research for the case of a continuous wave operation and a pulsed operation. The optimum product of the pressure(p) inside the laser tube and the tube diameter(d) was pd=40 approx. 50 torr-cm on the contrary to the case of a high intensity flashlamp pumped iodine laser where the optimum value of the product is known to be pd=150 torr-cm. The pressure-diameter product is less than 1/3 of that of the high power iodine laser. During the research period, various laser materials were also studied for solar pumping. Among the laser materials, Nd:YAG is found to have the lowest laser threshold pumping intensity of about 200 solar constant. The Rhodamine 6G was also tested as the solar pumped laser material. The threshold pumping power was measured to be about 20,000 solar constant. The amplification experiment for a continuously pumped iodine laser amplifier was performed using Vortek solar simulator and the amplification factors were measured for single pass amplification and triple pass amplification of the 15 cm long amplifier tube. The amplification of 5 was obtained for the triple pass amplification.
Discretization analysis of bifurcation based nonlinear amplifiers
Feldkord, Sven; Reit, Marco; Mathis, Wolfgang
2017-09-01
Recently, for modeling biological amplification processes, nonlinear amplifiers based on the supercritical Andronov-Hopf bifurcation have been widely analyzed analytically. For technical realizations, digital systems have become the most relevant systems in signal processing applications. The underlying continuous-time systems are transferred to the discrete-time domain using numerical integration methods. Within this contribution, effects on the qualitative behavior of the Andronov-Hopf bifurcation based systems concerning numerical integration methods are analyzed. It is shown exemplarily that explicit Runge-Kutta methods transform the truncated normalform equation of the Andronov-Hopf bifurcation into the normalform equation of the Neimark-Sacker bifurcation. Dependent on the order of the integration method, higher order terms are added during this transformation.A rescaled normalform equation of the Neimark-Sacker bifurcation is introduced that allows a parametric design of a discrete-time system which corresponds to the rescaled Andronov-Hopf system. This system approximates the characteristics of the rescaled Hopf-type amplifier for a large range of parameters. The natural frequency and the peak amplitude are preserved for every set of parameters. The Neimark-Sacker bifurcation based systems avoid large computational effort that would be caused by applying higher order integration methods to the continuous-time normalform equations.
Quantum dots for lasers, amplifiers and computing
International Nuclear Information System (INIS)
Bimberg, Dieter
2005-01-01
For InAs-GaAs based quantum dot lasers emitting at 1300 nm, digital modulation showing an open eye pattern up to 12 Gb s -1 at room temperature is demonstrated, at 10 Gb s -1 the bit error rate is below 10 -12 at -2 dB m receiver power. Cut-off frequencies up to 20 GHz are realised for lasers emitting at 1.1 μm. Passively mode-locked QD lasers generate optical pulses with repetition frequencies between 5 and 50 GHz, with a minimum Fourier limited pulse length of 3 ps. The uncorrelated jitter is below 1 ps. We use here deeply etched narrow ridge waveguide structures which show excellent performance similar to shallow mesa structures, but a circular far field at a ridge width of 1 μm, improving coupling efficiency into fibres. No beam filamentation of the fundamental mode, low a-factors and strongly reduced sensitivity to optical feedback are observed. QD lasers are thus superior to QW lasers for any system or network. Quantum dot semiconductor optical amplifier (QD SOAs) demonstrate gain recovery times of 120-140 fs, 4-7 times faster than bulk/QW SOAs, and a net gain larger than 0.4 dB/(mm*QD-layer) providing us with novel types of booster amplifiers and Mach-Zehnder interferometers. These breakthroughs became possible due to systematic development of self-organized growth technologies
Development of FIR arrays with integrating amplifiers
Young, Erick T.
1988-08-01
The development of optimized photoconductor arrays suitable for far infrared space astronomical applications are described. Although the primary impetus is the production of a 16 by 16 element Ge:Ga demonstration array for SIRTF, the extension of this technology to Large Deployable Reflector (LDR) is considered. The optimization of Ge:Ga and Ge:Be photoconductor materials is discussed. In collaboration with Lawrence Berkeley Laboratory, measurements of FIR photoconductors with quantum efficiencies greater than 20 percent at 100 micrometers, and dark currents below 300 electrons/s are presented. Integrating J-FET amplifier technology is discussed. The current generation of integrating amplifiers has a demonstrated read noise of less than 20 electrons for an integration time of 100 s. The design is shown for a stackable 16 x n Ge:Ga array that utilizes a 16-channel monolithic version of the J-FET integrator. A part of the design is the use of a thin, thermally insulating substrate that allows the electronics to operate at the optimum temperature of 50 K while maintaining thermal and optical isolation from the detectors at 2 K. The power dissipation for the array is less than 16 mW. The array design may particularly be applicable to high resolution imaging spectrometers for LDR.
Multipath interference test method for distributed amplifiers
Okada, Takahiro; Aida, Kazuo
2005-12-01
A method for testing distributed amplifiers is presented; the multipath interference (MPI) is detected as a beat spectrum between the multipath signal and the direct signal using a binary frequency shifted keying (FSK) test signal. The lightwave source is composed of a DFB-LD that is directly modulated by a pulse stream passing through an equalizer, and emits the FSK signal of the frequency deviation of about 430MHz at repetition rate of 80-100 kHz. The receiver consists of a photo-diode and an electrical spectrum analyzer (ESA). The base-band power spectrum peak appeared at the frequency of the FSK frequency deviation can be converted to amount of MPI using a calibration chart. The test method has improved the minimum detectable MPI as low as -70 dB, compared to that of -50 dB of the conventional test method. The detailed design and performance of the proposed method are discussed, including the MPI simulator for calibration procedure, computer simulations for evaluating the error caused by the FSK repetition rate and the fiber length under test and experiments on singlemode fibers and distributed Raman amplifier.
Application of GPU to Multi-interfaces Advection and Reconstruction Solver (MARS)
International Nuclear Information System (INIS)
Nagatake, Taku; Takase, Kazuyuki; Kunugi, Tomoaki
2010-01-01
In the nuclear engineering fields, a high performance computer system is necessary to perform the large scale computations. Recently, a Graphics Processing Unit (GPU) has been developed as a rendering computational system in order to reduce a Central Processing Unit (CPU) load. In the graphics processing, the high performance computing is needed to render the high-quality 3D objects in some video games. Thus the GPU consists of many processing units and a wide memory bandwidth. In this study, the Multi-interfaces Advection and Reconstruction Solver (MARS) which is one of the interface volume tracking methods for multi-phase flows has been performed. The multi-phase flow computation is very important for the nuclear reactors and other engineering fields. The MARS consists of two computing parts: the interface tracking part and the fluid motion computing part. As for the interface tracking part, the performance of GPU (GTX280) was 6 times faster than that of the CPU (Dual-Xeon 5040), and in the fluid motion computing part the Poisson Solver by the GPU (GTX285) was 22 times faster than that by the CPU(Core i7). As for the Dam Breaking Problem, the result of GPU-MARS showed slightly different from the experimental result. Because the GPU-MARS was developed using the single-precision GPU, it can be considered that the round-off error might be accumulated. (author)
On the potential importance of transient air flow in advective radon entry into buildings
International Nuclear Information System (INIS)
Narasimhan, T.N.; Tsang, Y.W.; Holman, H.Y.
1990-01-01
The authors have investigated, using a mathematical model, the temporal variations of air flux within the soil mass surrounding a basement in the presence of time dependent periodic variations of barometric pressure and a persistent under-pressure at the basement. The results of transient air flow show that for a homogeneous soil medium, the effects of barometric fluctuations are most significant in the cases where soil permeability to air is low and the fluctuation frequency is high. In these cases, the barometric fluctuation can greatly enhance the magnitude of fluxes as well as introduce flow direction reversals from surrounding soil into the basement. These large fluxes with direction reversals have strong implications in regard to advective transport of radon. The results suggest that the transient oscillations have to be accounted for in quantifying radon entry into buildings. In the actual field set up, the transient behavior will be further influenced by soil permeability heterogeneity, by soil moisture variations, and by the effects of multiple periodic components in the barometric pressure fluctuations
Effect of organic compounds for the advection of actinide elements in the environments
Energy Technology Data Exchange (ETDEWEB)
Muraoka, Susumu; Nagao, Seiya; Tanaka, Tadao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Hiraki, Keizo; Nakaguchi, Yuzuru; Suzuki, Yasuhiro
1998-01-01
The aim of this studies is understood the effects of humic substances for the advection of actinide elements in the environments. These substances are a major role of dissolved organic matter in natural waters. In order to obtain the informations on the structure of metal-humic substances complexes, these substances were studied by fluorescence spectroscopy. Observation the spectrum forms, peak positions of maximum intensity are related to these informations on the chemical structures and functional groups in organic compounds. Using three-dimensional excitation emission matrix (3-D EEM) spectroscopy, the characteristics of metal-humic substances complexes were studied. Observation the wavelengths and fluorescence intensity of the peaks were varied between humic substances before the complex to the metal and these substances after ones. Understanding the fluorescence properties of metal-humic substances complexes, working program of the 3-D EEM spectroscopy was studied to obtaining detailed data collection. New program was applied to copper-humic acid complex, the peak positions which different with before the complex and after ones were recorded. This program is supported by the interpreation of fluorescence properties in the metal-humic substances by the 3-D EEM spectroscopy. (author)
Lewis, F.M.; Voss, C.I.; Rubin, Jacob
1986-01-01
A model was developed that can simulate the effect of certain chemical and sorption reactions simultaneously among solutes involved in advective-dispersive transport through porous media. The model is based on a methodology that utilizes physical-chemical relationships in the development of the basic solute mass-balance equations; however, the form of these equations allows their solution to be obtained by methods that do not depend on the chemical processes. The chemical environment is governed by the condition of local chemical equilibrium, and may be defined either by the linear sorption of a single species and two soluble complexation reactions which also involve that species, or binary ion exchange and one complexation reaction involving a common ion. Partial differential equations that describe solute mass balance entirely in the liquid phase are developed for each tenad (a chemical entity whose total mass is independent of the reaction process) in terms of their total dissolved concentration. These equations are solved numerically in two dimensions through the modification of an existing groundwater flow/transport computer code. (Author 's abstract)
Yan, Zhifeng; Yang, Xiaofan; Li, Siliang; Hilpert, Markus
2017-11-01
The lattice Boltzmann method (LBM) based on single-relaxation-time (SRT) or multiple-relaxation-time (MRT) collision operators is widely used in simulating flow and transport phenomena. The LBM based on two-relaxation-time (TRT) collision operators possesses strengths from the SRT and MRT LBMs, such as its simple implementation and good numerical stability, although tedious mathematical derivations and presentations of the TRT LBM hinder its application to a broad range of flow and transport phenomena. This paper describes the TRT LBM clearly and provides a pseudocode for easy implementation. Various transport phenomena were simulated using the TRT LBM to illustrate its applications in subsurface environments. These phenomena include advection-diffusion in uniform flow, Taylor dispersion in a pipe, solute transport in a packed column, reactive transport in uniform flow, and bacterial chemotaxis in porous media. The TRT LBM demonstrated good numerical performance in terms of accuracy and stability in predicting these transport phenomena. Therefore, the TRT LBM is a powerful tool to simulate various geophysical and biogeochemical processes in subsurface environments.
Marseguerra, M.; Zoia, A.
2007-04-01
Anomalous diffusion has recently turned out to be almost ubiquitous in transport problems. When the physical properties of the medium where the transport process takes place are stationary and constant at each spatial location, anomalous transport has been successfully analysed within the Continuous Time Random Walk (CTRW) model. In this paper, within a Monte Carlo approach to CTRW, we focus on the particle transport through two regions characterized by different physical properties, in presence of an external driving action constituted by an additional advective field, modelled within both the Galilei invariant and Galilei variant schemes. Particular attention is paid to the interplay between the distributions of space and time across the discontinuity. The resident concentration and the flux of the particles are finally evaluated and it is shown that at the interface between the two regions the flux is continuous as required by mass conservation, while the concentration may reveal a neat discontinuity. This result could open the route to the Monte Carlo investigation of the effectiveness of a physical discontinuity acting as a filter on particle concentration.
Lin, Neil Y. C.
2013-12-01
Using high-speed confocal microscopy, we measure the particle positions in a colloidal suspension under large-amplitude oscillatory shear. Using the particle positions, we quantify the in situ anisotropy of the pair-correlation function, a measure of the Brownian stress. From these data we find two distinct types of responses as the system crosses over from equilibrium to far-from-equilibrium states. The first is a nonlinear amplitude saturation that arises from shear-induced advection, while the second is a linear frequency saturation due to competition between suspension relaxation and shear rate. In spite of their different underlying mechanisms, we show that all the data can be scaled onto a master curve that spans the equilibrium and far-from-equilibrium regimes, linking small-amplitude oscillatory to continuous shear. This observation illustrates a colloidal analog of the Cox-Merz rule and its microscopic underpinning. Brownian dynamics simulations show that interparticle interactions are sufficient for generating both experimentally observed saturations. © 2013 American Physical Society.
Energy Technology Data Exchange (ETDEWEB)
McGraw R.
2012-03-01
Moment methods are finding increasing usage for simulations of particle population balance in box models and in more complex flows including two-phase flows. These highly efficient methods have nevertheless had little impact to date for multi-moment representation of aerosols and clouds in atmospheric models. There are evidently two reasons for this: First, atmospheric models, especially if the goal is to simulate climate, tend to be extremely complex and take many man-years to develop. Thus there is considerable inertia to the implementation of novel approaches. Second, and more fundamental, the nonlinear transport algorithms designed to reduce numerical diffusion during advection of various species (tracers) from cell to cell, in the typically coarse grid arrays of these models, can and occasionally do fail to preserve correlations between the moments. Other correlated tracers such as isotopic abundances, composition of aerosol mixtures, hydrometeor phase, etc., are subject to this same fate. In the case of moments, this loss of correlation can and occasionally does give rise to unphysical moment sets. When this happens the simulation can come to a halt. Following a brief description and review of moment methods, the goal of this paper is to present two new approaches that both test moment sequences for validity and correct them when they fail. The new approaches work on individual grid cells without requiring stored information from previous time-steps or neighboring cells.
Quantification of Stokes Drift as a Mechanism for Surface Oil Advection in the DWH Oil Spill
Clark, M.
2013-12-01
Stokes drift has previously been qualitatively shown to be a factor in ocean surface particle transport, but has never been comprehensively quantified. In addition, most operational ocean particle advection models used during the Deepwater Horizon oil spill do not explicitly account for Stokes drift, instead using a simple parameterization based on wind drift (or ignoring it completely). This research works to quantify Stokes drift via direct calculation, with a focus on shallow water, where Stokes drift is more likely to have a relatively large impact compared to other transport processes such as ocean currents. For this study, WaveWatch III modeled waves in the Gulf of Mexico are used, from which Stokes drift is calculated using the peak wave period and significant wave height outputs. Trajectories are also calculated to examine the role Stokes drift plays in bringing surface particles (and specifically surface oil slicks) onshore. The impact of Stokes drift is compared to transport by currents and traditional estimates of wind drift.
Energy Technology Data Exchange (ETDEWEB)
Mezzacappa, Anthony [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Endeve, Eirik [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hauck, Cory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Xing, Yulong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2015-02-01
We extend the positivity-preserving method of Zhang & Shu [49] to simulate the advection of neutral particles in phase space using curvilinear coordinates. The ability to utilize these coordinates is important for non-equilibrium transport problems in general relativity and also in science and engineering applications with specific geometries. The method achieves high-order accuracy using Discontinuous Galerkin (DG) discretization of phase space and strong stabilitypreserving, Runge-Kutta (SSP-RK) time integration. Special care in taken to ensure that the method preserves strict bounds for the phase space distribution function f; i.e., f ϵ [0, 1]. The combination of suitable CFL conditions and the use of the high-order limiter proposed in [49] is su cient to ensure positivity of the distribution function. However, to ensure that the distribution function satisfies the upper bound, the discretization must, in addition, preserve the divergencefree property of the phase space ow. Proofs that highlight the necessary conditions are presented for general curvilinear coordinates, and the details of these conditions are worked out for some commonly used coordinate systems (i.e., spherical polar spatial coordinates in spherical symmetry and cylindrical spatial coordinates in axial symmetry, both with spherical momentum coordinates). Results from numerical experiments - including one example in spherical symmetry adopting the Schwarzschild metric - demonstrate that the method achieves high-order accuracy and that the distribution function satisfies the maximum principle.
Shen, Xiaoteng; Maa, Jerome P.-Y.
2017-11-01
In estuaries and coastal waters, floc size and its statistical distributions of cohesive sediments are of primary importance, due to their effects on the settling velocity and thus deposition rates of cohesive aggregates. The development of a robust flocculation model that includes the predictions of floc size distributions (FSDs), however, is still in a research stage. In this study, a one-dimensional longitudinal (1-DL) flocculation model along a streamtube is developed. This model is based on solving the population balance equation to find the FSDs by using the quadrature method of moments. To validate this model, a laboratory experiment is carried out to produce an advection transport-dominant environment in a cylindrical tank. The flow field is generated by a marine pump mounted at the bottom center, with its outlet facing upward. This setup generates an axially symmetric flow which is measured by an acoustic Doppler velocimeter (ADV). The measurement results provide the hydrodynamic input data required for this 1-DL model. The other measurement results, the FSDs, are acquired by using an automatic underwater camera system and the resulting images are analyzed to validate the predicted FSDs. This study shows that the FSDs as well as their representative sizes can be efficiently and reasonably simulated by this 1-DL model.
Lin, Caiyan; Zhang, Zhongfeng; Pu, Zhaoxia; Wang, Fengyun
2017-10-01
A series of numerical simulations is conducted to understand the formation, evolution, and dissipation of an advection fog event over Shanghai Pudong International Airport (ZSPD) with the Weather Research and Forecasting (WRF) model. Using the current operational settings at the Meteorological Center of East China Air Traffic Management Bureau, the WRF model successfully predicts the fog event at ZSPD. Additional numerical experiments are performed to examine the physical processes associated with the fog event. The results indicate that prediction of this particular fog event is sensitive to microphysical schemes for the time of fog dissipation but not for the time of fog onset. The simulated timing of the arrival and dissipation of the fog, as well as the cloud distribution, is substantially sensitive to the planetary boundary layer and radiation (both longwave and shortwave) processes. Moreover, varying forecast lead times also produces different simulation results for the fog event regarding its onset and duration, suggesting a trade-off between more accurate initial conditions and a proper forecast lead time that allows model physical processes to spin up adequately during the fog simulation. The overall outcomes from this study imply that the complexity of physical processes and their interactions within the WRF model during fog evolution and dissipation is a key area of future research.
Correlation Networks from Flows. The Case of Forced and Time-Dependent Advection-Diffusion Dynamics.
Directory of Open Access Journals (Sweden)
Liubov Tupikina
Full Text Available Complex network theory provides an elegant and powerful framework to statistically investigate different types of systems such as society, brain or the structure of local and long-range dynamical interrelationships in the climate system. Network links in climate networks typically imply information, mass or energy exchange. However, the specific connection between oceanic or atmospheric flows and the climate network's structure is still unclear. We propose a theoretical approach for verifying relations between the correlation matrix and the climate network measures, generalizing previous studies and overcoming the restriction to stationary flows. Our methods are developed for correlations of a scalar quantity (temperature, for example which satisfies an advection-diffusion dynamics in the presence of forcing and dissipation. Our approach reveals that correlation networks are not sensitive to steady sources and sinks and the profound impact of the signal decay rate on the network topology. We illustrate our results with calculations of degree and clustering for a meandering flow resembling a geophysical ocean jet.
Lin, Neil Y. C.; Goyal, Sushmit; Cheng, Xiang; Zia, Roseanna N.; Escobedo, Fernando A.; Cohen, Itai
2013-01-01
Using high-speed confocal microscopy, we measure the particle positions in a colloidal suspension under large-amplitude oscillatory shear. Using the particle positions, we quantify the in situ anisotropy of the pair-correlation function, a measure of the Brownian stress. From these data we find two distinct types of responses as the system crosses over from equilibrium to far-from-equilibrium states. The first is a nonlinear amplitude saturation that arises from shear-induced advection, while the second is a linear frequency saturation due to competition between suspension relaxation and shear rate. In spite of their different underlying mechanisms, we show that all the data can be scaled onto a master curve that spans the equilibrium and far-from-equilibrium regimes, linking small-amplitude oscillatory to continuous shear. This observation illustrates a colloidal analog of the Cox-Merz rule and its microscopic underpinning. Brownian dynamics simulations show that interparticle interactions are sufficient for generating both experimentally observed saturations. © 2013 American Physical Society.
The 8th-10 th January 2009 snowfalls: a case of Mediterranean warm advection event
Aguado, F.; Ayensa, E.; Barriga, M.; Del Hoyo, J.; Fernández, A.; Garrido, N.; Martín, A.; Martín, F.; Roa, I. Martínez, A.; Pascual, R.
2009-09-01
From 8 th to 10 th of January 2009, significant snowfalls were reported in many areas of the Iberian Peninsula and the Balearic Islands. This relevant event was very important from the meteorological and social impact point of views. The snow affected many zones, especially the regions of Madrid, Castilla & León and Castilla-La Mancha (Spanish central plateau) with the persistence and thickness of solid precipitation. Up to twenty-five centimetres of snow were reported in some places. On 9th of January the snowfalls caused great social and media impact due to the fact that they took place in the early hours in the Madrid metropolitan areas, affecting both air traffic and land transport. The "Madrid-Barajas" airport was closed and the city was collapsed during several hours. A study of this situation appears in the poster. The snowstorm was characterized by the previous irruption of an European continental polar air mass, that subsequently interacted with a wet and warm air mass of Mediterranean origin, all preceded by low level easterly flows. This type of snowfall is called "warm advection". These winter situations are very efficient from precipitation point of view, generating significant snowfalls and affecting a lot of areas.
Sensitivity analysis of numerical results of one- and two-dimensional advection-diffusion problems
International Nuclear Information System (INIS)
Motoyama, Yasunori; Tanaka, Nobuatsu
2005-01-01
Numerical simulation has been playing an increasingly important role in the fields of science and engineering. However, every numerical result contains errors such as modeling, truncation, and computing errors, and the magnitude of the errors that are quantitatively contained in the results is unknown. This situation causes a large design margin in designing by analyses and prevents further cost reduction by optimizing design. To overcome this situation, we developed a new method to numerically analyze the quantitative error of a numerical solution by using the sensitivity analysis method and modified equation approach. If a reference case of typical parameters is calculated once by this method, then no additional calculation is required to estimate the results of other numerical parameters such as those of parameters with higher resolutions. Furthermore, we can predict the exact solution from the sensitivity analysis results and can quantitatively evaluate the error of numerical solutions. Since the method incorporates the features of the conventional sensitivity analysis method, it can evaluate the effect of the modeling error as well as the truncation error. In this study, we confirm the effectiveness of the method through some numerical benchmark problems of one- and two-dimensional advection-diffusion problems. (author)
Influence of fast advective flows on pattern formation of Dictyostelium discoideum
Bae, Albert; Zykov, Vladimir; Bodenschatz, Eberhard
2018-01-01
We report experimental and numerical results on pattern formation of self-organizing Dictyostelium discoideum cells in a microfluidic setup under a constant buffer flow. The external flow advects the signaling molecule cyclic adenosine monophosphate (cAMP) downstream, while the chemotactic cells attached to the solid substrate are not transported with the flow. At high flow velocities, elongated cAMP waves are formed that cover the whole length of the channel and propagate both parallel and perpendicular to the flow direction. While the wave period and transverse propagation velocity are constant, parallel wave velocity and the wave width increase linearly with the imposed flow. We also observe that the acquired wave shape is highly dependent on the wave generation site and the strength of the imposed flow. We compared the wave shape and velocity with numerical simulations performed using a reaction-diffusion model and found excellent agreement. These results are expected to play an important role in understanding the process of pattern formation and aggregation of D. discoideum that may experience fluid flows in its natural habitat. PMID:29590179
A nonlocal and periodic reaction-diffusion-advection model of a single phytoplankton species.
Peng, Rui; Zhao, Xiao-Qiang
2016-02-01
In this article, we are concerned with a nonlocal reaction-diffusion-advection model which describes the evolution of a single phytoplankton species in a eutrophic vertical water column where the species relies solely on light for its metabolism. The new feature of our modeling equation lies in that the incident light intensity and the death rate are assumed to be time periodic with a common period. We first establish a threshold type result on the global dynamics of this model in terms of the basic reproduction number R0. Then we derive various characterizations of R0 with respect to the vertical turbulent diffusion rate, the sinking or buoyant rate and the water column depth, respectively, which in turn give rather precise conditions to determine whether the phytoplankton persist or become extinct. Our theoretical results not only extend the existing ones for the time-independent case, but also reveal new interesting effects of the modeling parameters and the time-periodic heterogeneous environment on persistence and extinction of the phytoplankton species, and thereby suggest important implications for phytoplankton growth control.
International Nuclear Information System (INIS)
Figueroa, Aldo; Meunier, Patrice; Villermaux, Emmanuel; Cuevas, Sergio; Ramos, Eduardo
2014-01-01
We present a combination of experiment, theory, and modelling on laminar mixing at large Péclet number. The flow is produced by oscillating electromagnetic forces in a thin electrolytic fluid layer, leading to oscillating dipoles, quadrupoles, octopoles, and disordered flows. The numerical simulations are based on the Diffusive Strip Method (DSM) which was recently introduced (P. Meunier and E. Villermaux, “The diffusive strip method for scalar mixing in two-dimensions,” J. Fluid Mech. 662, 134–172 (2010)) to solve the advection-diffusion problem by combining Lagrangian techniques and theoretical modelling of the diffusion. Numerical simulations obtained with the DSM are in reasonable agreement with quantitative dye visualization experiments of the scalar fields. A theoretical model based on log-normal Probability Density Functions (PDFs) of stretching factors, characteristic of homogeneous turbulence in the Batchelor regime, allows to predict the PDFs of scalar in agreement with numerical and experimental results. This model also indicates that the PDFs of scalar are asymptotically close to log-normal at late stages, except for the large concentration levels which correspond to low stretching factors
Directory of Open Access Journals (Sweden)
Lingju Kong
2013-04-01
Full Text Available We study the existence of multiple solutions to the boundary value problem $$displaylines{ frac{d}{dt}Big(frac12{}_0D_t^{-eta}(u'(t+frac12{}_tD_T^{-eta}(u'(t Big+lambda abla F(t,u(t=0,quad tin [0,T],cr u(0=u(T=0, }$$ where $T>0$, $lambda>0$ is a parameter, $0leqeta<1$, ${}_0D_t^{-eta}$ and ${}_tD_T^{-eta}$ are, respectively, the left and right Riemann-Liouville fractional integrals of order $eta$, $F: [0,T]imesmathbb{R}^Nomathbb{R}$ is a given function. Our interest in the above system arises from studying the steady fractional advection dispersion equation. By applying variational methods, we obtain sufficient conditions under which the above equation has at least three solutions. Our results are new even for the special case when $eta=0$. Examples are provided to illustrate the applicability of our results.
A deformable particle-in-cell method for advective transport in geodynamic modeling
Samuel, Henri
2018-06-01
This paper presents an improvement of the particle-in-cell method commonly used in geodynamic modeling for solving pure advection of sharply varying fields. Standard particle-in-cell approaches use particle kernels to transfer the information carried by the Lagrangian particles to/from the Eulerian grid. These kernels are generally one-dimensional and non-evolutive, which leads to the development of under- and over-sampling of the spatial domain by the particles. This reduces the accuracy of the solution, and may require the use of a prohibitive amount of particles in order to maintain the solution accuracy to an acceptable level. The new proposed approach relies on the use of deformable kernels that account for the strain history in the vicinity of particles. It results in a significant improvement of the spatial sampling by the particles, leading to a much higher accuracy of the numerical solution, for a reasonable computational extra cost. Various 2D tests were conducted to compare the performances of the deformable particle-in-cell method with the particle-in-cell approach. These consistently show that at comparable accuracy, the deformable particle-in-cell method was found to be four to six times more efficient than standard particle-in-cell approaches. The method could be adapted to 3D space and generalized to cases including motionless transport.
Post-Buckled Precompressed (PBP) piezoelectric actuators for UAV flight control
Vos, R.; Barrett, R.; Krakers, L.; Van Tooren, M.
2006-01-01
This paper presents the use of a new class of flight control actuators employing Post-Buckled Precompressed (PBP) piezoelectric elements in morphing wing Uninhabited Aerial Vehicles (UAVs). The new actuator relieson axial compression to amplify deflections and control forces simultaneously. Two
Direct coupled amplifiers using field effect transistors
Energy Technology Data Exchange (ETDEWEB)
Fowler, E P [Control and Instrumentation Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)
1964-03-15
The concept of the uni-polar field effect transistor (P.E.T.) was known before the invention of the bi-polar transistor but it is only recently that they have been made commercially. Being produced as yet only in small quantities, their price imposes a restriction on use to circuits where their peculiar properties can be exploited to the full. One such application is described here where the combination of low voltage drift and relatively low input leakage current are necessarily used together. One of the instruments used to control nuclear reactors has a logarithmic response to the mean output current from a polarised ionisation chamber. The logarithmic signal is then differentiated electrically, the result being displayed on a meter calibrated to show the reactor divergence or doubling time. If displayed in doubling time the scale is calibrated reciprocally. Because of the wide range obtained in the logarithmic section and the limited supply voltage, an output of 1 volt per decade change in ionisation current is used. Differentiating this gives a current of 1.5 x 10{sup -8} A for p.s.D. (20 sec. doubling time) in the differentiating amplifier. To overcome some of the problems of noise due to statistical variations in input current, the circuit design necessitates a resistive path to ground at the amplifier input of 20 M.ohms. A schematic diagram is shown. 1. It is evident that a zero drift of 1% can be caused by a leakage current of 1.5 x 10{sup -10} A or an offset voltage of 3 mV at the amplifier input. Although the presently used electrometer valve is satisfactory from the point of view of grid current, there have been sudden changes in grid to grid voltage (the valve is a double triode) of up to 10 m.V. It has been found that a pair of F.E.T's. can be used to replace the electrometer valve so long as care is taken in correct balance of the two devices. An investigation has been made into the characteristics of some fourteen devices to see whether those with
Single-mode operation of a coiled multimode fiber amplifier
International Nuclear Information System (INIS)
Koplow, Jeffrey P.; Kliner, Dahv A. V.; Goldberg, Lew
2000-01-01
We report a new approach to obtaining single-transverse-mode operation of a multimode fiber amplifier in which the gain fiber is coiled to induce significant bend loss for all but the lowest-order mode. We demonstrated this method by constructing a coiled amplifier using Yb-doped, double-clad fiber with a core diameter of 25 μm and a numerical aperture of ∼0.1 (V≅7.4) . When the amplifier was operated as an amplified-spontaneous-emission source, the output beam had an M 2 value of 1.09±0.09 ; when seeded at 1064 nm, the slope efficiency was similar to that of an uncoiled amplifier. This technique will permit scaling of pulsed fiber lasers and amplifiers to significantly higher pulse energies and peak powers and cw fiber sources to higher average powers while maintaining excellent beam quality. (c) 2000 Optical Society of America
Realization of OFCC based Transimpedance Mode Instrumentation Amplifier
Directory of Open Access Journals (Sweden)
Neeta Pandey
2016-01-01
Full Text Available The paper presents an instrumentation amplifier suitable for amplifying the current source transducer signals. It provides a voltage output. It has a high gain, common mode rejection ratio and gain independent bandwidth. It uses three Operational Floating Current Conveyors (OFCCs and four resistors. The effect of nonidealities of OFCC on performance of proposed transimpedance instrumentation amplifier (TIA is also analyzed. The proposal has been verified through SPICE simulations using CMOS based schematicThe paper presents an instrumentation amplifier suitable for amplifying the current source transducer signals. It provides a voltage output. It has a high gain, common mode rejection ratio and gain independent bandwidth. It uses three operational floating current conveyors (OFCCs and four resistors. The effect of nonidealities of OFCC on performance of proposed transimpedance instrumentation amplifier (TIA is also analyzed. The proposal has been verified through SPICE simulations using CMOS based schematic.
Carter, John; Stephenson, Mark
1999-01-01
The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.
Modeling and design techniques for RF power amplifiers
Raghavan, Arvind; Laskar, Joy
2008-01-01
The book covers RF power amplifier design, from device and modeling considerations to advanced circuit design architectures and techniques. It focuses on recent developments and advanced topics in this area, including numerous practical designs to back the theoretical considerations. It presents the challenges in designing power amplifiers in silicon and helps the reader improve the efficiency of linear power amplifiers, and design more accurate compact device models, with faster extraction routines, to create cost effective and reliable circuits.
GaN-based Power amplifiers for microwave applications
Directory of Open Access Journals (Sweden)
Jorge Julián Moreno-Rubio
2016-01-01
Full Text Available This paper presents a discussion about the design strategies of different kind of power amplifiers for RF/Microwave appli- cations, such as the tuned load power amplifier, class F, class F-1 and Doherty. Furthermore, it is shown the continuous wave characterization of the amplifiers above mentioned. A comparison between the obtained results, in terms of gain, efficiency and output power is presented.
InP Heterojunction Bipolar Transistor Amplifiers to 255 GHz
Radisic, Vesna; Sawdai, Donald; Scott, Dennis; Deal, William; Dang, Linh; Li, Danny; Cavus, Abdullah; To, Richard; Lai, Richard
2009-01-01
Two single-stage InP heterojunction bipolar transistor (HBT) amplifiers operate at 184 and 255 GHz, using Northrop Grumman Corporation s InP HBT MMIC (monolithic microwave integrated circuit) technology. At the time of this reporting, these are reported to be the highest HBT amplifiers ever created. The purpose of the amplifier design is to evaluate the technology capability for high-frequency designs and verify the model for future development work.
Functional Blocks and Biquadratic ARC Filters using Transimpedance Amplifiers
Directory of Open Access Journals (Sweden)
R. Sarman
1997-04-01
Full Text Available The aims of the article are design and analysis of modern circuits including high performance functional blocks and biquadratic filters using transimpedance amplifiers. Here are given various types of these circuits, that works in classical voltage, current or hybrid mode. In this paper are also compared various possibilities of connection of single amplifier filters as for reduction of influence of transimpedance amplifier parasitic elements.
Compressed magnetic flux amplifier with capacitive load
International Nuclear Information System (INIS)
Stuetzer, O.M.
1980-03-01
A first-order analysis is presented for a compressed magnetic flux (CMF) current amplifier working into a load with a capacitive component. Since the purpose of the investigation was to gain a general understanding of the arrangement, a number of approximations and limitations were accepted. The inductance of the transducer varies with time; the inductance/resistance/capacitance (LRC) circuit therefore is parametric and solutions are different for the stable regime (high C), the oscillation regime (low C), and the transition case. Solutions and performance depend strongly on circuit boundary conditions, i.e., energization of the circuit by either an injected current or by an applied capacitor charge. The behavior of current and energy amplification for the various cases are discussed in detail. A number of experiments with small CMF devices showed that the first-order theory presented predicts transducer performance well in the linear regime
Noise-driven neuromorphic tuned amplifier
Fanelli, Duccio; Ginelli, Francesco; Livi, Roberto; Zagli, Niccoló; Zankoc, Clement
2017-12-01
We study a simple stochastic model of neuronal excitatory and inhibitory interactions. The model is defined on a directed lattice and internodes couplings are modulated by a nonlinear function that mimics the process of synaptic activation. We prove that such a system behaves as a fully tunable amplifier: the endogenous component of noise, stemming from finite size effects, seeds a coherent (exponential) amplification across the chain generating giant oscillations with tunable frequencies, a process that the brain could exploit to enhance, and eventually encode, different signals. On a wider perspective, the characterized amplification process could provide a reliable pacemaking mechanism for biological systems. The device extracts energy from the finite size bath and operates as an out of equilibrium thermal machine, under stationary conditions.
Rippled beam free electron laser amplifier
Carlsten, Bruce E.
1999-01-01
A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.
Current feedback operational amplifiers and their applications
Senani, Raj; Singh, A K; Singh, V K
2013-01-01
This book describes a variety of current feedback operational amplifier (CFOA) architectures and their applications in analog signal processing/generation. Coverage includes a comprehensive survey of commercially available, off-the-shelf integrated circuit CFOAs, as well as recent advances made on the design of CFOAs, including design innovations for bipolar and CMOS CFOAs. This book serves as a single-source reference to the topic, as well as a catalog of over 200 application circuits which would be useful not only for students, educators and researchers in apprising them about the recent developments in the area but would also serve as a comprehensive repertoire of useful circuits for practicing engineers who might be interested in choosing an appropriate CFOA-based topology for use in a given application.
A highly linear power amplifier for WLAN
International Nuclear Information System (INIS)
Jin Jie; Shi Jia; Ai Baoli; Zhang Xuguang
2016-01-01
A three-stage power amplifier (PA) for WLAN application in 2.4-2.5 GHz is presented. The proposed PA employs an adaptive bias circuit to adjust the operating point of the PA to improve the linearity of the PA. Two methods to short the 2nd harmonic circuit are compared in the area of efficiency and gain of the PA. The PA is taped out in the process of 2 μm InGaP/GaAs HBT and is tested by the evaluation board. The measured results show that 31.5 dB power gain and 29.3 dBm P 1dB with an associated 40.4% power added efficiency (PAE) under the single tone stimulus. Up to 26.5 dBm output power can be achieved with an error vector magnitude (EVM) of lower than 3% under the 64QAM/OFDM WLAN stimulus. (paper)
New developments in relativistic klystron amplifiers
Energy Technology Data Exchange (ETDEWEB)
Friedman, M; Colombant, D; Fernsler, R; Hubbard, R; Lampe, M; Serlin, V; Slinker, S [Naval Research Lab., Washington, DC (United States). Plasma Physics Div.
1997-12-31
A relativistic klystron amplifier that employed cavities with inductively loaded wide gaps and a novel converter has achieved 50% energy efficiency, a significant advance over the previous state of the art of 20%. The new device was immersed in a 3 kG magnetic field and contained two innovations: (1) Wide gaps which include an inductively loaded return current structure that was opaque to the unmodulated beam space charge but transparent to the RF field. (2) A novel converter that was made of a `leaky` cavity with a radially-converging inductively-loaded structure that was inserted in the output wide-gap. This structure reduced the potential energy residing in the electron beam and maximized RF output energy. (author). 4 figs., 13 refs.
Optical oscillator-amplifier laser configuration
International Nuclear Information System (INIS)
McAllister, G.L.
1975-01-01
A laser is described that has incorporated therein an oscillator formed by a pair of mirrors, at least one of the mirrors being positioned outside of the envelope. The mirrors are dimensioned and spaced from each other so that the resonator has a relatively low Fresnel number and is operated unstably. The entire surface of one of these mirrors is convex and diffracts a portion of the energy outside of the oscillator region. Also incorporated into the laser is an amplifier region defined by a separate pair of mirrors which receive the energy diffracted from the oscillator region. The second pair of mirrors form an optical system with a high Fresnel number. A filter, modulator or other control for the laser signal may be placed outside the laser envelope in the optical path of the oscillator
Coherent combination of ultrafast fiber amplifiers
International Nuclear Information System (INIS)
Hanna, Marc; Guichard, Florent; Druon, Frédéric; Georges, Patrick; Zaouter, Yoann; Papadopoulos, Dimitris N
2016-01-01
We review recent progress in coherent combining of femtosecond pulses amplified in optical fibers as a way to scale the peak and average power of ultrafast sources. Different methods of achieving coherent pulse addition in space (beam combining) and time (divided pulse amplification) domains are described. These architectures can be widely classified into active methods, where the relative phases between pulses are subject to a servomechanism, and passive methods, where phase matching is inherent to the geometry. Other experiments that combine pulses with different spectral contents, pulses that have been nonlinearly broadened or successive pulses from a mode-locked laser oscillator, are then presented. All these techniques allow access to unprecedented parameter range for fiber ultrafast sources. (topical review)
National Aeronautics and Space Administration — The AES Core Flight Software (CFS) project purpose is to analyze applicability, and evolve and extend the reusability of the CFS system originally developed by...
Pulse shaping amplifier (PSA) for nuclear spectroscopy system
International Nuclear Information System (INIS)
Lombigit, L.; Maslina Mohd Ibrahim; Nolida Yusup; Nur Aira Abdul Rahman; Yong, C.F.
2014-01-01
Pulse Shaping Amplifier (PSA) is an essential components in nuclear spectroscopy system. This networks have two functions; to shape the output pulse and performs noise filtering. In this paper, we describes procedure for design and development of a pulse shaping amplifier which can be used for nuclear spectroscopy system. This prototype was developed using high performance electronics devices and assembled on a FR4 type printed circuit board. Performance of this prototype was tested by comparing it with an equivalent commercial spectroscopy amplifier (Model SILENA 7611). The test results show that the performance of this prototype is comparable to the commercial spectroscopic amplifier. (author)
Ring cavity for a Raman capillary waveguide amplifier
Kurnit, N.A.
1981-01-27
A regenerative ring amplifier and regenerative ring oscillator are described which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO/sub 2/ laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplified Stokes signal is synchronous with the mode-locked spikes of the incoming CO/sub 2/ laser pump signal.
Tremblin, P.; Chabrier, G.; Mayne, N. J.; Amundsen, D. S.; Baraffe, I.; Debras, F.; Drummond, B.; Manners, J.; Fromang, S.
2017-01-01
The anomalously large radii of strongly irradiated exoplanets have remained a major puzzle in astronomy. Based on a two-dimensional steady-state atmospheric circulation model, the validity of which is assessed by comparison to three-dimensional calculations, we reveal a new mechanism, namely the advection of the potential temperature due to mass and longitudinal momentum conservation, a process occurring in the Earth's atmosphere or oceans. In the deep atmosphere, the vanishing heating flux forces the atmospheric structure to converge to a hotter adiabat than the one obtained with 1D calculations, implying a larger radius for the planet. Not only do the calculations reproduce the observed radius of HD 209458b, but also reproduce the observed correlation between radius inflation and irradiation for transiting planets. Vertical advection of potential temperature induced by non-uniform atmospheric heating thus provides a robust mechanism to explain the inflated radii of irradiated hot Jupiters.
International Nuclear Information System (INIS)
Tremblin, P.; Chabrier, G.; Mayne, N. J.; Baraffe, I.; Debras, F.; Drummond, B.; Manners, J.; Amundsen, D. S.; Fromang, S.
2017-01-01
The anomalously large radii of strongly irradiated exoplanets have remained a major puzzle in astronomy. Based on a two-dimensional steady-state atmospheric circulation model, the validity of which is assessed by comparison to three-dimensional calculations, we reveal a new mechanism, namely the advection of the potential temperature due to mass and longitudinal momentum conservation, a process occurring in the Earth’s atmosphere or oceans. In the deep atmosphere, the vanishing heating flux forces the atmospheric structure to converge to a hotter adiabat than the one obtained with 1D calculations, implying a larger radius for the planet. Not only do the calculations reproduce the observed radius of HD 209458b, but also reproduce the observed correlation between radius inflation and irradiation for transiting planets. Vertical advection of potential temperature induced by non-uniform atmospheric heating thus provides a robust mechanism to explain the inflated radii of irradiated hot Jupiters.
Energy Technology Data Exchange (ETDEWEB)
Tremblin, P. [Maison de la Simulation, CEA-CNRS-INRIA-UPS-UVSQ, USR 3441, CEA Paris-Saclay, F-91191 Gif-Sur-Yvette (France); Chabrier, G.; Mayne, N. J.; Baraffe, I.; Debras, F.; Drummond, B.; Manners, J. [Astrophysics Group, University of Exeter, EX4 4QL Exeter (United Kingdom); Amundsen, D. S. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10025 (United States); Fromang, S., E-mail: pascal.tremblin@cea.fr [Laboratoire AIM, CEA/DSM-CNRS-Université Paris 7, Irfu/Service d’Astrophysique, CEA Paris-Saclay, F-91191 Gif-sur-Yvette (France)
2017-05-20
The anomalously large radii of strongly irradiated exoplanets have remained a major puzzle in astronomy. Based on a two-dimensional steady-state atmospheric circulation model, the validity of which is assessed by comparison to three-dimensional calculations, we reveal a new mechanism, namely the advection of the potential temperature due to mass and longitudinal momentum conservation, a process occurring in the Earth’s atmosphere or oceans. In the deep atmosphere, the vanishing heating flux forces the atmospheric structure to converge to a hotter adiabat than the one obtained with 1D calculations, implying a larger radius for the planet. Not only do the calculations reproduce the observed radius of HD 209458b, but also reproduce the observed correlation between radius inflation and irradiation for transiting planets. Vertical advection of potential temperature induced by non-uniform atmospheric heating thus provides a robust mechanism to explain the inflated radii of irradiated hot Jupiters.
International Nuclear Information System (INIS)
Oliveira, G.M. de; Leitao, M. de M.V.B.R.
2000-01-01
The objective of this study was to analyze the consequences in the evapotranspiration estimates (ET) during the growing cycle of a peanut crop due to the errors committed in the determination of the radiation balance (Rn), as well as those caused by the advective effects. This research was conducted at the Experimental Station of CODEVASF in an irrigated perimeter located in the city of Rodelas, BA, during the period of September to December of 1996. The results showed that errors of the order of 2.2 MJ m -2 d -1 in the calculation of Rn, and consequently in the estimate of ET, can occur depending on the time considered for the daily total of Rn. It was verified that the surrounding areas of the experimental field, as well as the areas of exposed soil within the field, contributed significantly to the generation of local advection of sensible heat, which resulted in the increase of the evapotranspiration [pt
Adaptive structures flight experiments
Martin, Maurice
The topics are presented in viewgraph form and include the following: adaptive structures flight experiments; enhanced resolution using active vibration suppression; Advanced Controls Technology Experiment (ACTEX); ACTEX program status; ACTEX-2; ACTEX-2 program status; modular control patch; STRV-1b Cryocooler Vibration Suppression Experiment; STRV-1b program status; Precision Optical Bench Experiment (PROBE); Clementine Spacecraft Configuration; TECHSAT all-composite spacecraft; Inexpensive Structures and Materials Flight Experiment (INFLEX); and INFLEX program status.
Advective transport observations with MODPATH-OBS--documentation of the MODPATH observation process
Hanson, R.T.; Kauffman, L.K.; Hill, M.C.; Dickinson, J.E.; Mehl, S.W.
2013-01-01
The MODPATH-OBS computer program described in this report is designed to calculate simulated equivalents for observations related to advective groundwater transport that can be represented in a quantitative way by using simulated particle-tracking data. The simulated equivalents supported by MODPATH-OBS are (1) distance from a source location at a defined time, or proximity to an observed location; (2) time of travel from an initial location to defined locations, areas, or volumes of the simulated system; (3) concentrations used to simulate groundwater age; and (4) percentages of water derived from contributing source areas. Although particle tracking only simulates the advective component of conservative transport, effects of non-conservative processes such as retardation can be approximated through manipulation of the effective-porosity value used to calculate velocity based on the properties of selected conservative tracers. This program can also account for simple decay or production, but it cannot account for diffusion. Dispersion can be represented through direct simulation of subsurface heterogeneity and the use of many particles. MODPATH-OBS acts as a postprocessor to MODPATH, so that the sequence of model runs generally required is MODFLOW, MODPATH, and MODPATH-OBS. The version of MODFLOW and MODPATH that support the version of MODPATH-OBS presented in this report are MODFLOW-2005 or MODFLOW-LGR, and MODPATH-LGR. MODFLOW-LGR is derived from MODFLOW-2005, MODPATH 5, and MODPATH 6 and supports local grid refinement. MODPATH-LGR is derived from MODPATH 5. It supports the forward and backward tracking of particles through locally refined grids and provides the output needed for MODPATH_OBS. For a single grid and no observations, MODPATH-LGR results are equivalent to MODPATH 5. MODPATH-LGR and MODPATH-OBS simulations can use nearly all of the capabilities of MODFLOW-2005 and MODFLOW-LGR; for example, simulations may be steady-state, transient, or a combination
Horizontal Advection and Mixing of Pollutants in the Urban Atmospheric Environment
Magnusson, S. P.; Entekhabi, D.; Britter, R.; Norford, L.; Fernando, H. J.
2013-12-01
Although urban air quality and its impacts on the public health have long been studied, the increasing urbanization is raising concerns on how to better control and mitigate these health impacts. A necessary element in predicting exposure levels is fundamental understanding of flow and dispersion in urban canyons. The complex topology of building structures and roads requires the resolution of turbulence phenomena within urban canyons. The use of dense and low porosity construction material can lead to rapid heating in response to direct solar exposure due to large thermal mass. Hence thermal and buoyancy effects may be as important as mechanically-forced or shear-induced flows. In this study, the transport of pollutants within the urban environment, as well as the thermal and advection effects, are investigated. The focus is on the horizontal transport or the advection effects within the urban environment. With increased urbanization and larger and more spread cities, concern about how the upstream air quality situation can affect downstream areas. The study also examines the release and the dispersion of hazardous material. Due to the variety and complexity of urban areas around the world, the urban environment is simplified into adjacent two-dimensional urban street canyons. Pollutants are released inside each canyon. Computational Fluid Dynamics (CFD) simulations are applied to evaluate and quantify the flow rate out of each canyon and also the exchange of pollutants between the canyons. Imagine a row of ten adjacent urban street canyons of aspect ratio 1 with horizontal flow perpendicular to it as shown in the attached figure. C is the concentration of pollutants. The first digit indicates in what canyon the pollutant is released and the second digit indicates the location of that pollutant. For example, C3,4 is the concentration of pollutant released inside canyon 3 measured in canyon 4. The same amount of pollution is released inside the ten street canyons
International Nuclear Information System (INIS)
Landesman, C.; Grambow, B.; Bailly, C.; Ribet, S.; Perrigaud, K.; Baty, V.; Giffaut, E.
2010-01-01
Document available in extended abstract form only. Full text of publication entered in this record. For assessing the mass transfer resistance of the Callovo-Oxfordian clay rock formation in case of implementing a nuclear waste repository, various strongly coupled processes need to be understood and quantified both in near and far field: multi-species diffusion/advection, mineral/pore water interaction, interaction with the waste matrix and engineered barrier material, radionuclide retention, colloid transport, pore water chemistry evolution etc. To study many of these processes in their interrelationship simultaneously, a series of high pressure stainless steel advection cell was designed and clay cores from different locations of different calcite and clay contents were machined to fit the inner diameter of the cells with a precision of 50 μm. After assembling, simulated oxygen free clay pore water with bromine tracer was pushed by a High Pressure pump through the reactor by a pressure of up 100 bars at temperatures between 20 and 90 deg. C and the out-flowing water was collected, protected from air and analyzed by ICP-MS, COT meter and ion chromatography in regular time intervals. The water flow rate was between 0.02 and 1.2 mL/ d, corresponding to a clay rock permeabilities between 10 -12 and 10 -14 m/s at 25 deg. C. Permeabilities increase with temperature as expected due to reduction of viscosity of water. The experiments last up to 2 years. The first drops of out flowing allow estimating the initial pore water composition. This is particular useful to assess mobile natural organic matter contents, Se concentrations and temperature effect on clay water composition. Results show that only very small organic molecules are mobile. Temperature had only little effect on water composition. After few months both tritiated (HTO) water and 36 Cl were added and from the evolution of the activities in the out flowing water dispersion coefficients and accessible
Digital Repository Service at National Institute of Oceanography (India)
Jyothi, D.; Murty, T.V.R.; Sarma, V.V.; Rao, D.P.
conditions. As the pollutant load on the estuary increases, the. water quality may deteriorate rapidly and therefore the scientific interests are centered on the analysis of water quality. The pollutants will be subjected to a number of physical, chemical... study we have applied one-dimensional advection-diffusion model for the waters of Gauthami Godavari estuary to determine the axial diffusion coefficients and thereby to predict the impact assessment. The study area (Fig. 1) is the lower most 32 km...
Vinsard, G.; Dufour, S.; Saatdjian, E.; Mota, J. P. B.
2016-03-01
Chaotic advection can effectively enhance the heat transfer rate between a boundary and fluids with high Prandtl number. These fluids are usually highly viscous and thus turbulent agitation is not a viable solution since the energy required to mix the fluid would be prohibitive. Here, we analyze previously obtained results on chaotic advection and heat transfer in two similar 2-D periodic flows and on their corresponding 3-D periodic flows when an axial velocity component is superposed. The two flows studied are the flow between eccentric rotating cylinders and the flow between confocal ellipses. For both of these flows the analysis is simplified because the Stokes equations can be solved analytically to obtain a closed form solution. For both 2-D periodic flows, we show that chaotic heat transfer is enhanced by the displacement of the saddle point location during one period. Furthermore, the enhancement by chaotic advection in the elliptical geometry is approximately double that obtained in the cylindrical geometry because there are two saddle points instead of one. We also explain why, for high eccentricity ratios, there is no heat transfer enhancement in the cylindrical geometry. When an axial velocity component is added to both of these flows so that they become 3-D, previous work has shown that there is an optimum modulation frequency for which chaotic advection and heat transfer enhancement is a maximum. Here we show that the optimum modulation frequency can be derived from results without an axial flow. We also explain by physical arguments other previously unanswered questions in the published data.
DEFF Research Database (Denmark)
In this paper, single wake characteristics have been studied both experimentally and numerically. Firstly, the wake is studied experimentally using full-scale measurements from an adapted focused pulsed lidar system, which potentially gives more insight into the wake dynamics as compared to class...... using the EllipSys3D flow solver using Large Eddy Simulation (LES) and Actuator Line Technique (ACL) to model the rotor. Discrepancies due to the uncertainties on the wake advection velocity are observed and discussed....
DEFF Research Database (Denmark)
Machefaux, Ewan; Larsen, Gunner Chr.; Troldborg, Niels
2013-01-01
In this paper, single wake characteristics have been studied both experimentally and numerically. Firstly, the wake is studied experimentally using full-scale measurements from an adapted focused pulsed lidar system, which potentially gives more insight into the wake dynamics as compared to class...... using the EllipSys3D flow solver using Large Eddy Simulation (LES) and Actuator Line Technique (ACL) to model the rotor. Discrepancies due to the uncertainties on the wake advection velocity are observed and discussed....
Directory of Open Access Journals (Sweden)
Scott M. Smith
2015-12-01
Full Text Available Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female, 35 ± 7 years old. We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions.
Smith, Scott M.; Zwart, Sara R.
2015-01-01
Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions. PMID:26670248
Mudunuru, M. K.; Shabouei, M.; Nakshatrala, K.
2015-12-01
Advection-diffusion-reaction (ADR) equations appear in various areas of life sciences, hydrogeological systems, and contaminant transport. Obtaining stable and accurate numerical solutions can be challenging as the underlying equations are coupled, nonlinear, and non-self-adjoint. Currently, there is neither a robust computational framework available nor a reliable commercial package known that can handle various complex situations. Herein, the objective of this poster presentation is to present a novel locally conservative non-negative finite element formulation that preserves the underlying physical and mathematical properties of a general linear transient anisotropic ADR equation. In continuous setting, governing equations for ADR systems possess various important properties. In general, all these properties are not inherited during finite difference, finite volume, and finite element discretizations. The objective of this poster presentation is two fold: First, we analyze whether the existing numerical formulations (such as SUPG and GLS) and commercial packages provide physically meaningful values for the concentration of the chemical species for various realistic benchmark problems. Furthermore, we also quantify the errors incurred in satisfying the local and global species balance for two popular chemical kinetics schemes: CDIMA (chlorine dioxide-iodine-malonic acid) and BZ (Belousov--Zhabotinsky). Based on these numerical simulations, we show that SUPG and GLS produce unphysical values for concentration of chemical species due to the violation of the non-negative constraint, contain spurious node-to-node oscillations, and have large errors in local and global species balance. Second, we proposed a novel finite element formulation to overcome the above difficulties. The proposed locally conservative non-negative computational framework based on low-order least-squares finite elements is able to preserve these underlying physical and mathematical properties
Jaiswal, Vivek; Harikrishnan, A. R.; Khurana, Gargi; Dhar, Purbarun
2018-01-01
The presence of dispersed inclusions is known to modify the interfacial characteristics in liquids by adsorption-desorption of the ions at interfaces. The present article reports the influencing role of dissolved ions in a polar fluid on its evaporation dynamics. The evaporation dynamics of pendant droplets of aqueous solutions of variant simple salts and concentrations have been experimentally studied. The presence of salts is observed to enhance the evaporation rate (obeying the classical D2 law), and the enhancement has been found to hold a direct proportionality to the concentration of the dissolved salt. Furthermore, it is observed that the degree of enhancement in the evaporation rate is also directly proportional to the solubility of the salt in question. The phenomenon is explained based on the chemical kinetics and thermodynamics of hydration of the ionic species in the polar fluid. The classical evaporation rate constant formulation is found to be inadequate in modeling the enhanced species transport. Additional probing via particle image velocimetry reveals augmented internal circulation within the evaporating salt based drops compared to pure water. Mapping the dynamic surface tension reveals that a salt concentration gradient is generated between the bulk and periphery of the droplet and it could be responsible for the internal advection cells visualized. A thermo-solutal Marangoni and Rayleigh convection based mathematical formulation has been put forward, and it is shown that the enhanced solute-thermal convection could play a major role in enhanced evaporation. The internal circulation mapped from experiments is found to be in good quantitative agreement with the model predictions. Scaling analysis further reveals that the stability of the solutal Marangoni convection surpasses the thermal counterpart with higher salt concentration and solubility. The present article sheds insight into the possible domineering role of conjugate thermohydraulic and
Rigorous upper bounds for transport due to passive advection by inhomogeneous turbulence
International Nuclear Information System (INIS)
Krommes, J.A.; Smith, R.A.
1987-05-01
A variational procedure, due originally to Howard and explored by Busse and others for self-consistent turbulence problems, is employed to determine rigorous upper bounds for the advection of a passive scalar through an inhomogeneous turbulent slab with arbitrary generalized Reynolds number R and Kubo number K. In the basic version of the method, the steady-state energy balance is used as a constraint; the resulting bound, though rigorous, is independent of K. A pedagogical reference model (one dimension, K = ∞) is described in detail; the bound compares favorably with the exact solution. The direct-interaction approximation is also worked out for this model; it is somewhat more accurate than the bound, but requires considerably more labor to solve. For the basic bound, a general formalism is presented for several dimensions, finite correlation length, and reasonably general boundary conditions. Part of the general method, in which a Green's function technique is employed, applies to self-consistent as well as to passive problems, and thereby generalizes previous results in the fluid literature. The formalism is extended for the first time to include time-dependent constraints, and a bound is deduced which explicitly depends on K and has the correct physical scalings in all regimes of R and K. Two applications from the theory of turbulent plasmas ae described: flux in velocity space, and test particle transport in stochastic magnetic fields. For the velocity space problem the simplest bound reproduces Dupree's original scaling for the strong turbulence diffusion coefficient. For the case of stochastic magnetic fields, the scaling of the bounds is described for the magnetic diffusion coefficient as well as for the particle diffusion coefficient in the so-called collisionless, fluid, and double-streaming regimes
Gamma irradiation test report of simulated grout specimens for gas generation/liquid advection
International Nuclear Information System (INIS)
Hinman, C.A.
1994-01-01
This report presents the results from an irradiation test performed on four specimens of grout that were fabricated from synthetic Double Shell Slurry Feed (DSSF) liquid waste. The objective was to investigate the radiolytic generation of gases and the potential for advective rejection of waste liquids from the grout matrix and to provide experimental information for the validation of the C-Cubed calculated model. It has been demonstrated that a number of gases can be formed within the grout due to radiolytic decomposition of various chemical components that make up the grout. This observation leads to the conjecture that the potential exists for the rejection of a portion of the 60 vol% free liquid from the grout matrix driven by pressurization by these gases. It was found that, for the specimen geometries used in this test series, and for peak radiation dose accumulation rates on the order of 4 to 60 times of the initial rate expected in the grout vaults (300 Rads/hr), no liquid rejection was observed from 2% to 35% of the target exposure expected in the grout vaults (1E+08 Rads). When the irradiation rate exceeded the projected grout vault dose rate by a factor of 200 a small amount of liquid rejection was observed from one of two specimens that had received 20% more than the goal exposure. Because of the differences in the magnitudes of the relative radiation field strengths between this study and an actual grout vault, it is concluded that the potential for liquid rejection by internal gas pressurization from presently configured grout waste forms is very low for the expected conditions
Summertime influences of tidal energy advection on the surface energy balance in a mangrove forest
Directory of Open Access Journals (Sweden)
J. G. Barr
2013-01-01
Full Text Available Mangrove forests are ecosystems susceptible to changing water levels and temperatures due to climate change as well as perturbations resulting from tropical storms. Numerical models can be used to project mangrove forest responses to regional and global environmental changes, and the reliability of these models depends on surface energy balance closure. However, for tidal ecosystems, the surface energy balance is complex because the energy transport associated with tidal activity remains poorly understood. This study aimed to quantify impacts of tidal flows on energy dynamics within a mangrove ecosystem. To address the research objective, an intensive 10-day study was conducted in a mangrove forest located along the Shark River in the Everglades National Park, FL, USA. Forest–atmosphere turbulent exchanges of energy were quantified with an eddy covariance system installed on a 30-m-tall flux tower. Energy transport associated with tidal activity was calculated based on a coupled mass and energy balance approach. The mass balance included tidal flows and accumulation of water on the forest floor. The energy balance included temporal changes in enthalpy, resulting from tidal flows and temperature changes in the water column. By serving as a net sink or a source of available energy, flood waters reduced the impact of high radiational loads on the mangrove forest. Also, the regression slope of available energy versus sink terms increased from 0.730 to 0.754 and from 0.798 to 0.857, including total enthalpy change in the water column in the surface energy balance for 30-min periods and daily daytime sums, respectively. Results indicated that tidal inundation provides an important mechanism for heat removal and that tidal exchange should be considered in surface energy budgets of coastal ecosystems. Results also demonstrated the importance of including tidal energy advection in mangrove biophysical models that are used for predicting ecosystem
Fiori, A.; Zarlenga, A.; Jankovic, I.; Dagan, G.
2017-12-01
Natural gradient steady flow of mean velocity U takes place in heterogeneous aquifers of random logconductivity Y = lnK , characterized by the normal univariate PDF f(Y) and autocorrelation ρY, of variance σY2 and horizontal integral scale I. Solute transport is quantified by the Breakthrough Curve (BTC) M at planes at distance x from the injection plane. The study builds on the extensive 3D numerical simulations of flow and transport of Jankovic et al. (2017) for different conductivity structures. The present study further explores the predictive capabilities of the Advection Dispersion Equation (ADE), with macrodispersivity αL given by the First Order Approximation (FOA), by checking in a quantitative manner its applicability. After a discussion on the suitable boundary conditions for ADE, we find that the ADE-FOA solution is a sufficiently accurate predictor for applications, the many other sources of uncertainty prevailing in practice notwithstanding. We checked by least squares and by comparison of travel time of quantiles of M that indeed the analytical Inverse Gaussian M with αL =σY2 I , is able to fit well the bulk of the simulated BTCs. It tends to underestimate the late arrival time of the thin and persistent tail. The tail is better reproduced by the semi-analytical MIMSCA model, which also allows for a physical explanation of the success of the Inverse Gaussian solution. Examination of the pertinent longitudinal mass distribution shows that it is different from the commonly used Gaussian one in the analysis of field experiments, and it captures the main features of the plume measurements of the MADE experiment. The results strengthen the confidence in the applicability of the ADE and the FOA to predicting longitudinal spreading in solute transport through heterogeneous aquifers of stationary random structure.
Directory of Open Access Journals (Sweden)
A. Randelhoff
2018-04-01
Full Text Available The future of Arctic marine ecosystems has received increasing attention in recent years as the extent of the sea ice cover is dwindling. Although the Pacific and Atlantic inflows both import huge quantities of nutrients and plankton, they feed into the Arctic Ocean in quite diverse regions. The strongly stratified Pacific sector has a historically heavy ice cover, a shallow shelf and dominant upwelling-favourable winds, while the Atlantic sector is weakly stratified, with a dynamic ice edge and a complex bathymetry. We argue that shelf break upwelling is likely not a universal but rather a regional, albeit recurring, feature of the new Arctic. It is the regional oceanography that decides its importance through a range of diverse factors such as stratification, bathymetry and wind forcing. Teasing apart their individual contributions in different regions can only be achieved by spatially resolved time series and dedicated modelling efforts. The Northern Barents Sea shelf is an example of a region where shelf break upwelling likely does not play a dominant role, in contrast to the shallower shelves north of Alaska where ample evidence for its importance has already accumulated. Still, other factors can contribute to marked future increases in biological productivity along the Arctic shelf break. A warming inflow of nutrient-rich Atlantic Water feeds plankton at the same time as it melts the sea ice, permitting increased photosynthesis. Concurrent changes in sea ice cover and zooplankton communities advected with the boundary currents make for a complex mosaic of regulating factors that do not allow for Arctic-wide generalizations.
The role of boundary layer momentum advection in the mean location of the ITCZ
Dixit, Vishal; Srinivasan, J.
2017-08-01
The inter-tropical convergence zones (ITCZ) form closer to the equator during equinoxes while they form well away from the equator during the boreal summer. A simple three-way balance between the pressure gradients, Coriolis force and effective Rayleigh friction has been classically used to diagnose the location of maximum boundary layer convergence in the near equatorial ITCZ. If such a balance can capture the dynamics of off-equatorial convergence was not known. We used idealized aqua planet simulations with fixed, zonally symmetric sea surface temperature boundary conditions to simulate the near equatorial and off-equatorial ITCZ. As opposed to the convergence of inter-hemispheric flows in the near equatorial convergence, the off-equatorial convergence forms due to the deceleration of cross-equatorial meridional flow. The detailed momentum budget of the off-equatorial convergence zone reveals that the simple balance is not sufficient to capture the relevant dynamics. The deceleration of the meridional flow is strongly modulated by the inertial effects due to the meridional advection of zonal momentum in addition to the terms in the simple balance. The simple balance predicts a spurious near equatorial convergence and a consistent off-equatorial convergence of the meridional flow. The spurious convergence disappears when inertial effects are included in the balance. As cross equatorial meridional flow decelerates to form convergence, the inertial effects cancel the pressure gradient effects near the equator while they add away from the equator. The contribution to the off-equatorial convergence induced by the pressure gradients is significantly larger than the contribution due to the inertial effects and hence pressure gradients appear to be the primary factor in anchoring the strength and location of the off-equatorial convergence.
Relativistic Outflows from Advection-dominated Accretion Disks around Black Holes
Becker, Peter A.; Subramanian, Prasad; Kazanas, Demosthenes
2001-05-01
Advection-dominated accretion flows (ADAFs) have a positive Bernoulli parameter and are therefore gravitationally unbound. The Newtonian ADAF model has been generalized recently to obtain the ADIOS model that includes outflows of energy and angular momentum, thereby allowing accretion to proceed self-consistently. However, the utilization of a Newtonian gravitational potential limits the ability of this model to describe the inner region of the disk, where any relativistic outflows are likely to originate. In this paper we modify the ADIOS scenario to incorporate a pseudo-Newtonian potential, which approximates the effects of general relativity. The analysis yields a unique, self-similar solution for the structure of the coupled disk/wind system. Interesting features of the new solution include the relativistic character of the outflow in the vicinity of the radius of marginal stability, which represents the inner edge of the quasi-Keplerian disk in our model. Hence, our self-similar solution may help to explain the origin of relativistic jets in active galaxies. At large distances the radial dependence of the accretion rate approaches the unique form M~r1/2, with an associated density variation given by ρ~r-1. This density variation agrees with that implied by the dependence of the hard X-ray time lags on the Fourier frequency for a number of accreting galactic black hole candidates. While intriguing, the predictions made using our self-similar solution need to be confirmed in the future using a detailed model that includes a physical description of the energization mechanism that drives the outflow, which is likely to be powered by the shear of the underlying accretion disk.
Randelhoff, Achim; Sundfjord, Arild
2018-04-01
The future of Arctic marine ecosystems has received increasing attention in recent years as the extent of the sea ice cover is dwindling. Although the Pacific and Atlantic inflows both import huge quantities of nutrients and plankton, they feed into the Arctic Ocean in quite diverse regions. The strongly stratified Pacific sector has a historically heavy ice cover, a shallow shelf and dominant upwelling-favourable winds, while the Atlantic sector is weakly stratified, with a dynamic ice edge and a complex bathymetry. We argue that shelf break upwelling is likely not a universal but rather a regional, albeit recurring, feature of the new Arctic. It is the regional oceanography that decides its importance through a range of diverse factors such as stratification, bathymetry and wind forcing. Teasing apart their individual contributions in different regions can only be achieved by spatially resolved time series and dedicated modelling efforts. The Northern Barents Sea shelf is an example of a region where shelf break upwelling likely does not play a dominant role, in contrast to the shallower shelves north of Alaska where ample evidence for its importance has already accumulated. Still, other factors can contribute to marked future increases in biological productivity along the Arctic shelf break. A warming inflow of nutrient-rich Atlantic Water feeds plankton at the same time as it melts the sea ice, permitting increased photosynthesis. Concurrent changes in sea ice cover and zooplankton communities advected with the boundary currents make for a complex mosaic of regulating factors that do not allow for Arctic-wide generalizations.
Characteristics of the surface layer above a row crop in the presence of local advection
Energy Technology Data Exchange (ETDEWEB)
Figuerola, P.I. [Universidad de Buenos Aires, Buenos Aires (Argentina)]. E-mail: figuerol@at.fcen.uba.ar; Berliner, P.R. [Blaustein Institute for Desert Research, Ben-Gurion University of the Negev (Israel)
2006-04-15
In some arid land, the irrigated fields are not contiguous and are surrounded by large patches of bare land. During the summer time and rainless season, the solar radiation flux is high and the surface temperature during daylight in the dry bare areas, is much higher than that of the air. The sensible heat generated over these areas may be advected to the irrigated fields. The crops are usually planted in rows and the irrigation systems used (trickle) do not wet the whole surface, the dry bare soil between the rows may develop high soil surface temperatures and lead to convective activity inside the canopy above the bare soil. Advection from the surrounding fields and convective activity inside the canopy affect the layer above the crop. We studied the surface layer above an irrigated tomato field planted in Israel's Negev desert. The crop was planted in rows, trickle irrigated and the distance between the outer edges of two adjacent rows was 0.36 m at the time of measurement. The gradients in temperature and water vapor pressure were obtained at various heights above the canopy using a Bowen ratio machine. The residual in the energy balance equation was used as a criterion to determine the equilibrium layer. During the morning, unstable conditions prevail, and the equilibrium layer was between Z/h {approx} 1.9 and 2.4. In some particular circumstances, in the late morning, the bare soil between the rows reached extremely high temperatures and during conditions with low wind speeds free convection was identified. During these hours the residuals of the energy budget to the heights Z/h = 1.5 and 2.4 were significantly different from zero and an extremely large variability was evident for the Z/h = 3.2 layer. Local advection took place during the afternoon resulting in an increase in the stability of the uppermost measured layer and propagated slowly downwards. The equilibrium layer was between Z/h {approx} 1.5 to 2.4. The residuals were significantly different
International Nuclear Information System (INIS)
Mihalas, D.; Kunasz, P.B.; Hummer, D.G.
1976-01-01
We investigate the importance of the advection and aberration terms, which are of order V/c, in the comoving-frame transfer equation in spherical geometry. Characteristic trajectories are found which reduce the spatial derivatives to a perfect differential, and a generalization of the numerical procedure developed in the earlier papers of this series that permits the integration of the transfer equation on these characteristics is presented. For cases in which V/cvery-much-less-than1, a perturbation solution is developed which reduces the problem to that solved in the first paper in this series. For velocities of the form V (r) approx.r/subn/(n=0,1,2), it is shown that the magnitude of the effects arising from the advection and aberration terms is about 5V/c relative to the solution with these terms omitted. In stellar winds V/capproximately-less-than0.01; hence we conclude that aberration and advection terms may safely be ignored, and that consideration of the Doppler-shift term alone is adequate in the computation of spectra from such expanding atmospheres
Magnetic flux and heat losses by diffusive, advective, and Nernst effects in MagLIF-like plasma
International Nuclear Information System (INIS)
Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.
2014-01-01
The MagLIF approach to inertial confinement fusion involves subsonic/isobaric compression and heating of a DT plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot plasma to the cold liner is dominated by the transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ω e τ e effective diffusion coefficients determining the losses of heat and magnetic flux are both shown to decrease with ω e τ e as does the Bohm diffusion coefficient, which is commonly associated with low collisionality and two-dimensional transport. This family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics
Directory of Open Access Journals (Sweden)
Suhua Liu
2016-08-01
Full Text Available Evapotranspiration (ET is an essential part of the hydrological cycle and accurately estimating it plays a crucial role in water resource management. Surface energy balance (SEB models are widely used to estimate regional ET with remote sensing. The presence of horizontal advection, however, perturbs the surface energy balance system and contributes to the uncertainty of energy influxes. Thus, it is vital to consider horizontal advection when applying SEB models to estimate ET. This study proposes an innovative and simplified approach, the surface energy balance-advection (SEB-A method, which is based on the energy balance theory and also takes into account the horizontal advection to determine ET by remote sensing. The SEB-A method considers that the actual ET consists of two parts: the local ET that is regulated by the energy balance system and the exotic ET that arises from horizontal advection. To evaluate the SEB-A method, it was applied to the middle region of the Heihe River in China. Instantaneous ET for three days were acquired and assessed with ET measurements from eddy covariance (EC systems. The results demonstrated that the ET estimates had a high accuracy, with a correlation coefficient (R2 of 0.713, a mean average error (MAE of 39.3 W/m2 and a root mean square error (RMSE of 54.6 W/m2 between the estimates and corresponding measurements. Percent error was calculated to more rigorously assess the accuracy of these estimates, and it ranged from 0% to 35%, with over 80% of the locations within a 20% error. To better understand the SEB-A method, the relationship between the ET estimates and land use types was analyzed, and the results indicated that the ET estimates had spatial distributions that correlated with vegetation patterns and could well demonstrate the ET differences caused by different land use types. The sensitivity analysis suggested that the SEB-A method requested accurate estimation of the available energy, R n − G
1980-01-01
The modified BQM-34 Firebee II drone with Aeroelastic Research Wing (ARW-1), a supercritical airfoil, during a 1980 research flight. The remotely-piloted vehicle, which was air launched from NASA's NB-52B mothership, participated in the Drones for Aerodynamic and Structural Testing (DAST) program which ran from 1977 to 1983. The DAST 1 aircraft (Serial #72-1557), pictured, crashed on 12 June 1980 after its right wing ripped off during a test flight near Cuddeback Dry Lake, California. The crash occurred on the modified drone's third free flight. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of
FDML swept source at 1060 nm using a tapered amplifier
DEFF Research Database (Denmark)
Marschall, Sebastian; Klein, Thomas; Wieser, Wolfgang
2010-01-01
We present a novel frequency-swept light source working at 1060nm that utilizes a tapered amplifier as gain medium. These devices feature significantly higher saturation power than conventional semiconductor optical amplifiers and can thus improve the limited output power of swept sources in this...... an axial resolution of 15 µm in air (~11µm in tissue) for OCT applications can be achieved....
Subjective test of class D amplifiers without output filter
DEFF Research Database (Denmark)
Agerkvist, Finn T.; Fenger, Lars M.
2004-01-01
This paper presents the results of subjective listening tests designed to determine whether the output filter on class D amplifiers used in active loudspeakers can be omitted without audible errors occurring. The frequency range of the amplifiers was limited to 0-3 kHz corresponding to a woofer...
A Power Efficient Audio Amplifier Combining Switching and Linear Techniques
van der Zee, Ronan A.R.; van Tuijl, Adrianus Johannes Maria
1998-01-01
Integrated Class D audio amplifiers are very power efficient, but require an external filter which prevents further integration. Also due to this filter, large feedback factors are hard to realise, so that the load influences the distortion- and transfer characteristics. The amplifier presented in
Switching-mode Audio Power Amplifiers with Direct Energy Conversion
DEFF Research Database (Denmark)
Ljusev, Petar; Andersen, Michael Andreas E.
2005-01-01
has been replaced with a high frequency AC link. When compared to the conventional Class D amplifiers with a separate DC power supply, the proposed single conversion stage amplifier provides simple and compact solution with better efficiency and higher level of integration, leading to reduced...
Asymmetric gain-saturated spectrum in fiber optical parametric amplifiers
DEFF Research Database (Denmark)
Lali-Dastjerdi, Zohreh; Rottwitt, Karsten; Galili, Michael
2012-01-01
We demonstrate experimentally and numerically an unexpected spectral asymmetry in the saturated-gain spectrum of single-pump fiber optical parametric amplifiers. The interaction between higher-order four-wave mixing products and dispersive waves radiated as an effect of third-order dispersion inf...... characteristics of the amplifier and shows local maxima for specific dispersion values....
A high performance electrometer amplifier of hybrid design
International Nuclear Information System (INIS)
Rao, N.V.; Nazare, C.K.
1979-01-01
A high performance, reliable, electrometer amplifier of hybrid design for low current measurements in mass spectrometers has been developed. The short term instability with a 5 x 10 11 ohms input resistor is less than 1 x 10sup(-15) Amp. The drift is better than 1 mV/hour. The design steps are illustrated with a typical amplifier performance details. (auth.)
Amplified spontaneous emission in solar-pumped iodine laser
Cho, Yong S.; Hwang, In H.; Han, Kwang S.; Lee, Ja H.
1992-01-01
The amplified spontaneous emission (ASE) from a long pulse, solar-simulating radiation pumped iodine laser amplifier is studied. The ASE threshold pump intensity is almost proportional to the inverse of the laser gain length when the gas pressure is constant in the laser tube.
A Review of High Voltage Drive Amplifiers for Capacitive Actuators
DEFF Research Database (Denmark)
Huang, Lina; Zhang, Zhe; Andersen, Michael A. E.
2012-01-01
This paper gives an overview of the high voltage amplifiers, which are used to drive capacitive actuators. The amplifiers for both piezoelectric and DEAP (dielectric electroactive polymer) actuator are discussed. The suitable topologies for driving capacitive actuators are illustrated in detail...
Efficiency of random amplified polymorphic DNA (RAPD) and inter ...
African Journals Online (AJOL)
Efficiency of random amplified polymorphic DNA (RAPD) and inter-simple sequence repeats (ISSR) markers for genotype fingerprinting and genetic diversity studies in canola ( ) ... The number of amplified fragments with RAPD primers ranged from 8 to 21, with the size of amplicons ranging from 162 to 3154 bp.
Gain characteristics of a saturated fiber optic parametric amplifier
DEFF Research Database (Denmark)
Rottwitt, Karsten; Lorenzen, Michael Rodas; Noordegraaf, Danny
2008-01-01
In this work we discuss saturation performance of a fiber optic parametric amplifier. A simple numerical model is described and applied to specific cases. A system experiment using a saturated amplifier illustrates a 4 dB improvement in required signal to noise ratio for a fixed bit error ratio....
47 CFR 2.815 - External radio frequency power amplifiers.
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false External radio frequency power amplifiers. 2... AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency Devices § 2.815 External radio frequency power amplifiers. (a) As used in this part, an external radio frequency power...
Ultrafast Dynamics of Quantum-Dot Semiconductor Optical Amplifiers
DEFF Research Database (Denmark)
Poel, Mike van der; Hvam, Jørn Märcher
2007-01-01
We report on a series of experiments on the dynamical properties of quantum-dot semiconductor optical amplifiers. We show how the amplifier responds to one or several ultrafast (170 fs) pulses in rapid succession and our results demonstrate applicability and ultimate limitations to application...
Series-Tuned High Efficiency RF-Power Amplifiers
DEFF Research Database (Denmark)
Vidkjær, Jens
2008-01-01
An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits.......An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits....
External Peltier Cooler For Low-Noise Amplifier
Soper, Terry A.
1990-01-01
Inexpensive Peltier-effect cooling module made of few commercially available parts used to reduce thermal noise in microwave amplifier. Retrofitted to almost any microwave low-noise amplifier or receiver preamplifier used in communication, telemetry, or radar. Includes copper or aluminum cold plate held tightly against unit to be cooled by strap-type worm-gear clamps.
Slow Light at High Frequencies in an Amplifying Semiconductor Waveguide
DEFF Research Database (Denmark)
Öhman, Filip; Yvind, Kresten; Mørk, Jesper
2006-01-01
We demonstrate slow-down of a modulated light signal in a semiconductor waveguide. Concatenated amplifying and absorbing sections simultaneously achieve both amplification and a controllable time delay at 15 GHz.......We demonstrate slow-down of a modulated light signal in a semiconductor waveguide. Concatenated amplifying and absorbing sections simultaneously achieve both amplification and a controllable time delay at 15 GHz....
Modeling Distortion Effects in Class-D Amplifier Filter Inductors
DEFF Research Database (Denmark)
Knott, Arnold; Stegenborg-Andersen, Tore; Thomsen, Ole Cornelius
2010-01-01
Distortion is generally accepted as a quantifier to judge the quality of audio power amplifiers. In switchmode power amplifiers various mechanisms influence this performance measure. After giving an overview of those, this paper focuses on the particular effect of the nonlinearity of the output f...
CARM and harmonic gyro-amplifier experiments at 17 GHz
International Nuclear Information System (INIS)
Menninger, W.L.; Danly, B.G.; Alberti, S.; Chen, C.; Rullier, J.L.; Temkin, R.J.
1993-01-01
Cyclotron resonance maser amplifiers are possible sources for applications such as electron cyclotron resonance heating of fusion plasmas and driving high-gradient rf linear accelerators. For accelerator drivers, amplifiers or phase locked-oscillators are required. A 17 GHz cyclotron autoresonance maser (CARM) amplifier experiment and a 17 GHz third harmonic gyro-amplifier experiment are presently underway at the MIT Plasma Fusion Center. Using the SRL/MIT SNOMAD II introduction accelerator to provide a 380 kV, 180 A, 30 ns flat top electron beam, the gyro-amplifier experiment has produced 5 MW of rf power with over 50 dB of gain at 17 GHz. The gyro-amplifier operates in the TE 31 mode using a third harmonic interaction. Because of its high power output, the gyro-amplifier will be used as the rf source for a photocathode rf electron gun experiment also taking place at MIT. Preliminary gyro-amplifier results are presented, including measurement of rf power, gain versus interaction length, and the far-field pattern. A CARM experiment designed to operate in the TE 11 mode is also discussed
A Transimpedance Amplifier for Remotely Located Quartz Tuning Forks
Kleinbaum, Ethan; Csathy, Gabor
2012-01-01
The cable capacitance in cryogenic and high vacuum applications of quartz tuning forks imposes severe constraints on the bandwidth and noise performance of the measurement. We present a single stage low noise transimpedance amplifier with a bandwidth exceeding 1 MHz and provide an in-depth analysis of the dependence of the amplifier parameters on the cable capacitance.